WorldWideScience

Sample records for nonperturbative qcd simulations

  1. Nonperturbative QCD and elastic processes at CEBAF energies

    Energy Technology Data Exchange (ETDEWEB)

    Radyushkin, A.V. [Old Dominion Univ., Norfolk, VA (United States)]|[Continuous Electron Beam Accelerator Facility, Newport News, VA (United States)

    1994-04-01

    The author outlines how one can approach nonperturbative aspects of the QCD dynamics studying elastic processes at energies accessible at upgraded CEBAF. The author`s point is that, in the absence of a complete theory of the nonperturbative effects, a possible way out is based on a systematic use of the QCD factorization procedure which separates theoretically understood ({open_quotes}known{close_quotes}) short-distance effects and nonperturbative ({open_quotes}unknown{close_quotes}) long-distance ones. The latter include hadronic distribution amplitudes, soft components of hadronic form factors etc. Incorporating the QCD sum rule version of the QCD factorization approach, one can relate these nonperturbative functions to more fundamental objects, vacuum condensates, which accumulate information about the nonperturbative structure of the QCD vacuum. The emerging QCD sum rule picture of hadronic form factors is characterized by a dominant role of essentially nonperturbative effects in the few GeV region, with perturbative mechanisms starting to show up for momentum transfers Q{sup 2} closer to 10 GeV{sup 2} and higher. Thus, increasing CEBAF energy provides a unique opportunity for a precision study of interplay between the perturbative and nonperturbative phenomena in the QCD description of elastic processes.

  2. Nonperturbative QCD and elastic processes at CEBAF energies

    International Nuclear Information System (INIS)

    Radyushkin, A.V.

    1994-01-01

    The author outlines how one can approach nonperturbative aspects of the QCD dynamics studying elastic processes at energies accessible at upgraded CEBAF. The author's point is that, in the absence of a complete theory of the nonperturbative effects, a possible way out is based on a systematic use of the QCD factorization procedure which separates theoretically understood (open-quotes knownclose quotes) short-distance effects and nonperturbative (open-quotes unknownclose quotes) long-distance ones. The latter include hadronic distribution amplitudes, soft components of hadronic form factors etc. Incorporating the QCD sum rule version of the QCD factorization approach, one can relate these nonperturbative functions to more fundamental objects, vacuum condensates, which accumulate information about the nonperturbative structure of the QCD vacuum. The emerging QCD sum rule picture of hadronic form factors is characterized by a dominant role of essentially nonperturbative effects in the few GeV region, with perturbative mechanisms starting to show up for momentum transfers Q 2 closer to 10 GeV 2 and higher. Thus, increasing CEBAF energy provides a unique opportunity for a precision study of interplay between the perturbative and nonperturbative phenomena in the QCD description of elastic processes

  3. New Methods in Non-Perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Unsal, Mithat [North Carolina State Univ., Raleigh, NC (United States)

    2017-01-31

    In this work, we investigate the properties of quantum chromodynamics (QCD), by using newly developing mathematics and physics formalisms. Almost all of the mass in the visible universe emerges from a quantum chromodynamics (QCD), which has a completely negligible microscopic mass content. An intimately related issue in QCD is the quark confinement problem. Answers to non-perturbative questions in QCD remained largely elusive despite much effort over the years. It is also believed that the usual perturbation theory is inadequate to address these kinds of problems. Perturbation theory gives a divergent asymptotic series (even when the theory is properly renormalized), and there are non-perturbative phenomena which never appear at any order in perturbation theory. Recently, a fascinating bridge between perturbation theory and non-perturbative effects has been found: a formalism called resurgence theory in mathematics tells us that perturbative data and non-perturbative data are intimately related. Translating this to the language of quantum field theory, it turns out that non-perturbative information is present in a coded form in perturbation theory and it can be decoded. We take advantage of this feature, which is particularly useful to understand some unresolved mysteries of QCD from first principles. In particular, we use: a) Circle compactifications which provide a semi-classical window to study confinement and mass gap problems, and calculable prototypes of the deconfinement phase transition; b) Resurgence theory and transseries which provide a unified framework for perturbative and non-perturbative expansion; c) Analytic continuation of path integrals and Lefschetz thimbles which may be useful to address sign problem in QCD at finite density.

  4. Controlling quark mass determinations non-perturbatively in three-flavour QCD

    CERN Document Server

    Campos, Isabel

    2017-01-01

    The determination of quark masses from lattice QCD simulations requires a non-perturbative renormalization procedure and subsequent scale evolution to high energies, where a conversion to the commonly used MS-bar scheme can be safely established. We present our results for the non-perturbative running of renormalized quark masses in Nf=3 QCD between the electroweak and a hadronic energy scale, where lattice simulations are at our disposal. Recent theoretical advances in combination with well-established techniques allows to follow the scale evolution to very high statistical accuracy, and full control of systematic effects.

  5. Perturbative and nonperturbative renormalization in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Horsley, R. [University of Edinburgh (United Kingdom). School of Physics and Astronomy; Perlt, H. [Leipzig Univ. (DE). Institut fuer Theoretische Physik] (and others)

    2010-03-15

    We investigate the perturbative and nonperturbative renormalization of composite operators in lattice QCD restricting ourselves to operators that are bilinear in the quark fields (quark-antiquark operators). These include operators which are relevant to the calculation of moments of hadronic structure functions. The nonperturbative computations are based on Monte Carlo simulations with two flavors of clover fermions and utilize the Rome-Southampton method also known as the RI-MOM scheme. We compare the results of this approach with various estimates from lattice perturbation theory, in particular with recent two-loop calculations. (orig.)

  6. Non-perturbative Debye mass in finite-T QCD

    CERN Document Server

    Kajantie, Keijo; Peisa, J; Rajantie, A; Rummukainen, K; Shaposhnikov, Mikhail E

    1997-01-01

    Employing a non-perturbative gauge invariant definition of the Debye screening mass m_D in the effective field theory approach to finite T QCD, we use 3d lattice simulations to determine the leading O(g^2) and to estimate the next-to-leading O(g^3) corrections to m_D in the high temperature region. The O(g^2) correction is large and modifies qualitatively the standard power-counting hierarchy picture of correlation lengths in high temperature QCD.

  7. Non-perturbative QCD and hadron physics

    International Nuclear Information System (INIS)

    Cobos-Martínez, J J

    2016-01-01

    A brief exposition of contemporary non-perturbative methods based on the Schwinger-Dyson (SDE) and Bethe-Salpeter equations (BSE) of Quantum Chromodynamics (QCD) and their application to hadron physics is given. These equations provide a non-perturbative continuum formulation of QCD and are a powerful and promising tool for the study of hadron physics. Results on some properties of hadrons based on this approach, with particular attention to the pion distribution amplitude, elastic, and transition electromagnetic form factors, and their comparison to experimental data are presented. (paper)

  8. Nonperturbative determination of the QCD potential at O(1/m)

    International Nuclear Information System (INIS)

    Koma, Y.; Koma, M.; Wittig, H.

    2006-07-01

    The relativistic correction to the QCD static inter-quark potential at O(1/m) is investigated nonperturbatively for the first time by using lattice Monte Carlo QCD simulations. The correction is found to be comparable with the Coulombic term of the static potential when applied to charmonium, and amounts to 26% of the Coulombic term for bottomonium. (Orig.)

  9. Testing QCD in the non-perturbative regime

    Energy Technology Data Exchange (ETDEWEB)

    A.W. Thomas

    2007-01-01

    This is an exciting time for strong interaction physics. We have a candidate for a fundamental theory, namely QCD, which has passed all the tests thrown at it in the perturbative regime. In the non-perturbative regime it has also produced some promising results and recently a few triumphs but the next decade will see enormous progress in our ability to unambiguously calculate the consequences of non-perturbative QCD and to test those predictions experimentally. Amongst the new experimental facilities being constructed, the hadronic machines at JPARC and GSI-FAIR and the 12 GeV Upgrade at Jefferson Lab, the major new electromagnetic facility worldwide, present a beautifully complementary network aimed at producing precise new measurements which will advance our knowledge of nuclear systems and push our ability to calculate the consequences of QCD to the limit. We will first outline the plans at Jefferson Lab for doubling the energy of CEBAF. The new facility presents some wonderful opportunities for discovery in strong interaction physics, as well as beyond the standard model. Then we turn to the theoretical developments aimed at extracting precise results for physical hadron properties from lattice QCD simulations. This discussion will begin with classical examples, such as the mass of the nucleon and ?, before dealing with a very recent and spectacular success involving information extracted from modern parity violating electron scattering.

  10. Fundamental parameters of QCD from non-perturbative methods for two and four flavors

    International Nuclear Information System (INIS)

    Marinkovic, Marina

    2013-01-01

    The non-perturbative formulation of Quantumchromodynamics (QCD) on a four dimensional space-time Euclidean lattice together with the finite size techniques enable us to perform the renormalization of the QCD parameters non-perturbatively. In order to obtain precise predictions from lattice QCD, one needs to include the dynamical fermions into lattice QCD simulations. We consider QCD with two and four mass degenerate flavors of O(a) improved Wilson quarks. In this thesis, we improve the existing determinations of the fundamental parameters of two and four flavor QCD. In four flavor theory, we compute the precise value of the Λ parameter in the units of the scale L max defined in the hadronic regime. We also give the precise determination of the Schroedinger functional running coupling in four flavour theory and compare it to the perturbative results. The Monte Carlo simulations of lattice QCD within the Schroedinger Functional framework were performed with a platform independent program package Schroedinger Funktional Mass Preconditioned Hybrid Monte Carlo (SF-MP-HMC), developed as a part of this project. Finally, we compute the strange quark mass and the Λ parameter in two flavour theory, performing a well-controlled continuum limit and chiral extrapolation. To achieve this, we developed a universal program package for simulating two flavours of Wilson fermions, Mass Preconditioned Hybrid Monte Carlo (MP-HMC), which we used to run large scale simulations on small lattice spacings and on pion masses close to the physical value.

  11. Non-Perturbative QCD Coupling and Beta Function from Light Front Holography

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    2010-01-01

    The light-front holographic mapping of classical gravity in AdS space, modified by a positive-sign dilaton background, leads to a non-perturbative effective coupling α s AdS (Q 2 ). It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale ∼ 1 GeV. The resulting β-function appears to capture the essential characteristics of the full β-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on α s AdS (Q 2 ).

  12. Non-perturbative QCD Effect on K-Factor of Drell-Yan Process

    International Nuclear Information System (INIS)

    Hou Zhaoyu; Zhi Haisu; Chen Junxiao

    2006-01-01

    By using a non-perturbative quark propagator with the lowest-dimensional condensate contributions from the QCD vacuum, the non-perturbative effect to K-factor of the Drell-Yan process is numerically investigated for 12 6 C- 12 6 C collision at the center-of-mass energy (s) 1/2 = 200 GeV, 630 GeV respectively. Calculated results show that the non-perturbative QCD effect has just a weak influence on K-factor in the two cases.

  13. Non-Perturbative QCD Coupling and Beta Function from Light Front Holography

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.; Deur, Alexandre; /Jefferson Lab

    2010-05-26

    The light-front holographic mapping of classical gravity in AdS space, modified by a positive-sign dilaton background, leads to a non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q{sup 2}). It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale {approx} 1 GeV. The resulting {beta}-function appears to capture the essential characteristics of the full {beta}-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on {alpha}{sub s}{sup AdS} (Q{sup 2}).

  14. Non-perturbative renormalization of HQET and QCD

    International Nuclear Information System (INIS)

    Sommer, Rainer

    2003-01-01

    We discuss the necessity of non-perturbative renormalization in QCD and HQET and explain the general strategy for solving this problem. A few selected topics are discussed in some detail, namely the importance of off shell improvement in the MOM-scheme on the lattice, recent progress in the implementation of finite volume schemes and then particular emphasis is put on the recent idea to carry out a non-perturbative renormalization of the Heavy Quark Effective Theory (HQET)

  15. Importance of Nonperturbative QCD Parameters for Bottom Mesons

    Directory of Open Access Journals (Sweden)

    A. Upadhyay

    2014-01-01

    Full Text Available The importance of nonperturbative quantum chromodynamics (QCD parameters is discussed in context to the predicting power for bottom meson masses and isospin splitting. In the framework of heavy quark effective theory, the work presented here focuses on the different allowed values of the two nonperturbative QCD parameters used in heavy quark effective theory formula, and using the best fitted parameter, masses of the excited bottom meson states in jp=1/2+ doublet in strange and nonstrange sectors are calculated here. The calculated masses are found to be matching well with experiments and other phenomenological models. The mass splitting and hyperfine splitting have also been analyzed for both strange and nonstrange heavy mesons with respect to spin and flavor symmetries.

  16. Non-perturbative Aspects of QCD and Parameterized Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    HAN Ding-An; ZHOU Li-Juan; ZENG Ya-Guang; GU Yun-Ting; CAO Hui; MA Wei-Xing; MENG Cheng-Ju; PAN Ji-Huan

    2008-01-01

    Based on the Global Color Symmetry Model, the non-perturbative QCD vacuum is investigated in theparameterized fully dressed quark propagator. Our theoretical predictions for various quantities characterized the QCD vacuum are in agreement with those predicted by many other phenomenological QCD inspired models. The successful predictions clearly indicate the extensive validity of our parameterized quark propagator used here. A detailed discussion on the arbitrariness in determining the integration cut-off parameter of# in calculating QCD vacuum condensates and a good method, which avoided the dependence of calculating results on the cut-off parameter is also strongly recommended to readers.

  17. Renormalisaton of composite operators in lattice QCD. Perturbative versus nonperturbative

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M.; Nakamura, Y. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (GB). School of Physics and Astronomy] (and others)

    2010-07-01

    The perturbative and nonperturbative renormalisation of quark-antiquark operators in lattice QCD with two flavours of clover fermions is investigated within the research programme of the QCDSF collaboration. Operators with up to three derivatives are considered. The nonperturbative results based on the RI-MOM scheme are compared with estimates from one- and two-loop lattice perturbation theory. (orig.)

  18. Nonperturbative QCD corrections to electroweak observables

    Energy Technology Data Exchange (ETDEWEB)

    Dru B Renner, Xu Feng, Karl Jansen, Marcus Petschlies

    2011-12-01

    Nonperturbative QCD corrections are important to many low-energy electroweak observables, for example the muon magnetic moment. However, hadronic corrections also play a significant role at much higher energies due to their impact on the running of standard model parameters, such as the electromagnetic coupling. Currently, these hadronic contributions are accounted for by a combination of experimental measurements and phenomenological modeling but ideally should be calculated from first principles. Recent developments indicate that many of the most important hadronic corrections may be feasibly calculated using lattice QCD methods. To illustrate this, we will examine the lattice computation of the leading-order QCD corrections to the muon magnetic moment, paying particular attention to a recently developed method but also reviewing the results from other calculations. We will then continue with several examples that demonstrate the potential impact of the new approach: the leading-order corrections to the electron and tau magnetic moments, the running of the electromagnetic coupling, and a class of the next-to-leading-order corrections for the muon magnetic moment. Along the way, we will mention applications to the Adler function, the determination of the strong coupling constant and QCD corrections to muonic-hydrogen.

  19. Nonperturbative QCD corrections to electroweak observables

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Dru B. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Feng, Xu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus)

    2012-06-15

    Nonperturbative QCD corrections are important to many low-energy electroweak observables, for example the muon magnetic moment. However, hadronic corrections also play a significant role at much higher energies due to their impact on the running of standard model parameters, such as the electromagnetic coupling. Currently, these hadronic contributions are accounted for by a combination of experimental measurements, effective field theory techniques and phenomenological modeling but ideally should be calculated from first principles. Recent developments indicate that many of the most important hadronic corrections may be feasibly calculated using lattice QCD methods. To illustrate this, we examine the lattice computation of the leading-order QCD corrections to the muon magnetic moment, paying particular attention to a recently developed method but also reviewing the results from other calculations. We then continue with several examples that demonstrate the potential impact of the new approach: the leading-order corrections to the electron and tau magnetic moments, the running of the electromagnetic coupling, and a class of the next-to-leading-order corrections for the muon magnetic moment. Along the way, we mention applications to the Adler function, which can be used to determine the strong coupling constant, and QCD corrections to muonic-hydrogen.

  20. QCD and resonance physics Nonperturbative effects in operator expansion

    International Nuclear Information System (INIS)

    Shifman, M.A.; Vainshtein, A.L.; Zakharov, V.I.

    1978-01-01

    The aim of the paper is to show that QCD provides well-defined predictions for a single resonance. The crucial point is the inclusion of power corrections to asymptotic freedom which are due to nonperturbative effects of QCD. Apart from presenting a general outline in intuitive terms the operator expansion for the product of external currents is discussed. It is argued that the effect of nonperturbative terms is twofold: a) they induce vacuum expectation values such as (0.1Gsub(μv)sup(a)Gsub(μv)sup(a)10), Gsub(μv)sup(a) being the gluon field strength tensor and b) they break the operator expansion itself starting from some critical dimension. The latter effect is suppressed as a high power of Q -2 where Q is the momentum carried by a current. Both a) and b) are examplified in the instanton physics but the whole approach is of more general value

  1. Non-perturbative supersymmetry anomaly in supersymmetric QCD

    International Nuclear Information System (INIS)

    Shamir, Y.

    1991-03-01

    The zero modes of the Dirac operator in an instanton and other topologically non-trivial backgrounds are unstable in a large class of massless or partially massless supersymmetric gauge theories. We show that under a generic perturbation of the scalar fields all zero modes become resonances, and discuss the ensuing breakdown of conventional perturbation theory. As a result, despite of the presence of massless fermions, the field theoretic tunneling amplitude is not suppressed. In massless supersymmetric QCD with N c ≤ N f the effective potential is found to be negative and monotonically increasing in the weak coupling regime for scalar VEVs which lie on the perturbatively flat directions. Consequently, massless supersymmetric QCD with N c ≤ N f exhibits a non-perturbative supersymmetry anomaly and exists in a strongly interacting phase which closely resembles ordinary QCD. The same conclusions apply if small masses are added to the lagrangian and the massless limit is smooth. (author). 21 refs, 5 figs

  2. AdS/QCD, LIight-Front Holography, and the Non-perturbative Running Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC; de Teramond, Guy; /Costa Rica U.; Deur, Alexandre; /Jefferson Lab

    2010-04-29

    The combination of Anti-de Sitter space (AdS) methods with light-front (LF) holography provides a remarkably accurate first approximation for the spectra and wavefunctions of meson and baryon light-quark bound states. The resulting bound-state Hamiltonian equation of motion in QCD leads to relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. The eigenvalues give the hadronic spectrum, and the eigenmodes represent the probability distributions of the hadronic constituents at a given scale. A positive-sign confining dilaton background modifying AdS space gives a very good account of meson and baryon spectroscopy and form factors. The light-front holographic mapping of this model also leads to a non-perturbative effective coupling {alpha}{sub s}{sup Ads} (Q{sup 2}) which agrees with the effective charge defined by the Bjorken sum rule and lattice simulations. It displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale {approx} 1 GeV. The resulting {beta}-function appears to capture the essential characteristics of the full {beta}-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD.

  3. Towards a non-perturbative matching of HQET and QCD with dynamical light quarks

    International Nuclear Information System (INIS)

    Della Morte, M.; Simma, H.; Sommer, R.

    2007-10-01

    We explain how the strategy of solving renormalization problems in HQET non-perturbatively by a matching to QCD in finite volume can be implemented to include dynamical fermions. As a primary application, some elements of an HQET computation of the mass of the b-quark beyond the leading order with N f =2 are outlined. In particular, the matching of HQET and QCD requires relativistic QCD simulations in a volume with L∼0.5 fm, which will serve to quantitatively determine the heavy quark mass dependence of heavy-light meson observables in the continuum limit of finite-volume two-flavour lattice QCD. As a preparation for the latter, we report on our determination of the renormalization constants and improvement coefficients relating the renormalized current and subtracted bare quark mass in the relevant weak coupling region. The calculation of these coefficients employs a constant physics condition in the Schrodinger functional scheme, where the box size L is fixed by working at a prescribed value of the renormalized coupling. (orig.)

  4. Towards a non-perturbative matching of HQET and QCD with dynamical light quarks

    Energy Technology Data Exchange (ETDEWEB)

    Della Morte, M. [CERN, Geneva (Switzerland). Physics Dept.; Fritzsch, P.; Heitger, J. [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Meyer, H.B. [Massachusets Institute of Technology, Center for Theoretical Physics, Cambridge, MA (United States); Simma, H.; Sommer, R. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2007-10-15

    We explain how the strategy of solving renormalization problems in HQET non-perturbatively by a matching to QCD in finite volume can be implemented to include dynamical fermions. As a primary application, some elements of an HQET computation of the mass of the b-quark beyond the leading order with N{sub f} =2 are outlined. In particular, the matching of HQET and QCD requires relativistic QCD simulations in a volume with L{approx}0.5 fm, which will serve to quantitatively determine the heavy quark mass dependence of heavy-light meson observables in the continuum limit of finite-volume two-flavour lattice QCD. As a preparation for the latter, we report on our determination of the renormalization constants and improvement coefficients relating the renormalized current and subtracted bare quark mass in the relevant weak coupling region. The calculation of these coefficients employs a constant physics condition in the Schrodinger functional scheme, where the box size L is fixed by working at a prescribed value of the renormalized coupling. (orig.)

  5. Comparative Study of Algorithms for the Numerical Simulation of Lattice QCD

    International Nuclear Information System (INIS)

    Luz, Fernando H. P.; Mendes, Tereza

    2010-01-01

    Large-scale numerical simulations are the prime method for a nonperturbative study of QCD from first principles. Although the lattice simulation of the pure-gauge (or quenched-QCD) case may be performed very efficiently on parallel machines, there are several additional difficulties in the simulation of the full-QCD case, i.e. when dynamical quark effects are taken into account. We discuss the main aspects of full-QCD simulations, describing the most common algorithms. We present a comparative analysis of performance for two versions of the hybrid Monte Carlo method (the so-called R and RHMC algorithms), as provided in the MILC software package. We consider two degenerate flavors of light quarks in the staggered formulation, having in mind the case of finite-temperature QCD.

  6. Non-perturbative QCD correlation functions

    Energy Technology Data Exchange (ETDEWEB)

    Cyrol, Anton Konrad

    2017-11-27

    Functional methods provide access to the non-perturbative regime of quantum chromo- dynamics. Hence, they allow investigating confinement and chiral symmetry breaking. In this dissertation, correlation functions of Yang-Mills theory and unquenched two-flavor QCD are computed from the functional renormalization group. Employing a self-consistent vertex expansion of the effective action, Yang-Mills correlation functions are obtained in four as well as in three spacetime dimensions. To this end, confinement and Slavnov-Taylor identities are discussed. Our numerical results show very good agreement with corresponding lattice results. Next, unquenched two-flavor QCD is considered where it is shown that the unquenched two-flavor gluon propagator is insensitive to the pion mass. Furthermore, the necessity for consistent truncations is emphasized. Finally, correlation functions of finite-temperature Yang-Mills theory are computed in a truncation that includes the splitting of the gluon field into directions that are transverse and longitudinal to the heat bath. In particular, it includes the splitting of the three- and four-gluon vertices. The obtained gluon propagator allows to extract a Debye screening mass that coincides with the hard thermal loop screening mass at high temperatures, but is meaningful also at temperatures below the phase transition temperature.

  7. Non-perturbative renormalization of static-light four-fermion operators in quenched lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Palombi, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Papinutto, M.; Pena, C. [CERN, Geneva (Switzerland). Physics Dept., Theory Div.; Wittig, H. [Mainz Univ. (Germany). Inst. fuer Kernphysik

    2007-06-15

    We perform a non-perturbative study of the scale-dependent renormalization factors of a multiplicatively renormalizable basis of {delta}B=2 parity-odd four-fermion operators in quenched lattice QCD. Heavy quarks are treated in the static approximation with various lattice discretizations of the static action. Light quarks are described by nonperturbatively O(a) improved Wilson-type fermions. The renormalization group running is computed for a family of Schroedinger functional (SF) schemes through finite volume techniques in the continuum limit. We compute non-perturbatively the relation between the renormalization group invariant operators and their counterparts renormalized in the SF at a low energy scale. Furthermore, we provide non-perturbative estimates for the matching between the lattice regularized theory and all the SF schemes considered. (orig.)

  8. Quasilocal quark models as effective theory of non-perturbative QCD

    International Nuclear Information System (INIS)

    Andrianov, A.A.

    2006-01-01

    We consider the Quasilocal Quark Model of NJL type (QNJLM) as effective theory of non-perturbative QCD including scalar (S), pseudo-scalar (P), vector (V) and axial-vector (A) four-fermion interaction with derivatives. In the presence of a strong attraction in the scalar channel the chiral symmetry is spontaneously broken and as a consequence the composite meson states are generated in all channels. With the help of Operator Product Expansion the appropriate set of Chiral Symmetry Restoration (CSR) Sum Rules in these channels are imposed as matching rules to QCD at intermediate energies. The mass spectrum and some decay constants for ground and excited meson states are calculated

  9. Quark content of the nucleon in QCD: Perturbative and nonperturbative aspects

    International Nuclear Information System (INIS)

    Stefanis, N.G.

    1989-01-01

    We elaborate on two proposed model distribution amplitudes for the nucleon, based on perturbative light-cone QCD supplemented by QCD sum rules. The novel nonperturbative features of these amplitudes are discussed in detail. Reasonable predictions for the Dirac form factor of the proton and the neutron are obtained, paying particular attention to the treatment of the effective coupling constant α s (Q 2 ) and the scale parameter Λ QCD . In addition, the stability properties of the sum rules for the moments of these model distribution amplitudes are analyzed. The range of values of the parameters entering the sum rules is estimated. Relying on expectation values of longitudinal-momentum fractions instead of moments, a heuristic interpretation of the physical content of the model distribution amplitudes is attempted

  10. Non-perturbative O(a) improvement of lattice QCD

    CERN Document Server

    Lüscher, Martin; Sommer, Rainer; Weisz, P; Wolff, U; Luescher, Martin; Sint, Stefan; Sommer, Rainer; Weisz, Peter; Wolff, Ulli

    1997-01-01

    The coefficients multiplying the counterterms required for O($a$) improvement of the action and the isovector axial current in lattice QCD are computed non-perturbatively, in the quenched approximation and for bare gauge couplings $g_0$ in the range $0 \\leq g_0 \\leq 1$. A finite-size method based on the Schrödinger functional is employed, which enables us to perform all calculations at zero or nearly zero quark mass. As a by-product the critical hopping parameter $\\kappa_c$ is obtained at all couplings considered.

  11. Non-perturbative phenomena in QCD vacuum, hadrons, and quark-gluon plasma

    International Nuclear Information System (INIS)

    Shuryak, E.V.

    1983-01-01

    These lectures provide a brief review of recent progress in non-perturbative quantum chromodynamics (QCD). They are intended for non specialists, mainly experimentalists. The main object of discussion, the QCD vacuum, is a rather complicated medium. It may be studied either by infinitesimal probes producing microscopic excitations (=hadrons), or by finite excitations (say, heating some volume to a given temperature T). In the latter case, some qualitative changes (phase transitions) should take place. A summary is given of the extent to which such phenomena can be observed in the laboratory by proton-proton, proton-nucleus, and nucleus-nucleus collisions. (orig.)

  12. Nonperturbative QCD simulations with 2+1 flavors of improved staggered quarks

    International Nuclear Information System (INIS)

    Bazavov, A.; Toussaint, D.; Bernard, C.; Laiho, J.; DeTar, C.; Levkova, L.; Oktay, M. B.; Gottlieb, Steven; Heller, U. M.; Hetrick, J. E.; Mackenzie, P. B.; Sugar, R.; Van de Water, R. S.

    2010-01-01

    Dramatic progress has been made over the last decade in the numerical study of quantum chromodynamics (QCD) through the use of improved formulations of QCD on the lattice (improved actions), the development of new algorithms, and the rapid increase in computing power available to lattice gauge theorists. In this article simulations of full QCD are described using the improved staggered quark formalism, ''asqtad'' fermions. These simulations were carried out with two degenerate flavors of light quarks (up and down) and with one heavier flavor, the strange quark. Several light quark masses, down to about three times the physical light quark mass, and six lattice spacings have been used. These enable controlled continuum and chiral extrapolations of many low energy QCD observables. The improved staggered formalism is reviewed, emphasizing both advantages and drawbacks. In particular, the procedure for removing unwanted staggered species in the continuum limit is reviewed. Then the asqtad lattice ensembles created by the MILC Collaboration are described. All MILC lattice ensembles are publicly available, and they have been used extensively by a number of lattice gauge theory groups. The physics results obtained with them are reviewed, and the impact of these results on phenomenology is discussed. Topics include the heavy quark potential, spectrum of light hadrons, quark masses, decay constants of light and heavy-light pseudoscalar mesons, semileptonic form factors, nucleon structure, scattering lengths, and more.

  13. Nonperturbation aspects of QCD. Monte Carlo and optimization

    International Nuclear Information System (INIS)

    Brezin, E.; Morel, A.; Marinari, E.; Couchot, F.; Narison, S.; Richard, J.M.; Blaizot, J.P.; Souillard, B.

    1986-01-01

    Phase transitions; lattice QCD; numerical simulation of lattice gauge theories; experimental research on gluonic mesons; QCD-duality sum rules; the bag model, potentials, and hadron spectra; and efficient Lagrangian functions and the Skyrme model are introduced [fr

  14. Non-perturbative running of quark masses in three-flavour QCD

    CERN Document Server

    Campos, Isabel; Pena, Carlos; Preti, David; Ramos, Alberto; Vladikas, Anastassios

    2016-01-01

    We present our preliminary results for the computation of the non-perturbative running of renormalized quark masses in $N_f = 3$ QCD, between the electroweak and hadronic scales, using standard finite-size scaling techniques. The computation is carried out to very high precision, using massless $\\mathcal{O}(a)$-improved Wilson quarks. Following the strategy adopted by the ALPHA Collaboration for the running coupling, different schemes are used above and below a scale $\\mu_0 \\sim m_b$, which differ by using either the Schr\\"odinger Functional or Gradient Flow renormalized coupling. We discuss our results for the running in both regions, and the procedure to match the two schemes.

  15. The strong coupling from a nonperturbative determination of the Λ parameter in three-flavor QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Mattia [Brookhaven National Laboratory, Upton, NY (United States). Physics Dept.; Dalla Brida, Mattia [Univ. di Milano-Bicocca (Italy). Dipt. di Fisica; INFN, Sezione di Milano-Bicocca (Italy); Fritzsch, Patrick; Ramos, Alberto [CERN, Geneva (Switzerland). Theoretical Physics Dept.; Korzec, Tomasz [Wuppertal Univ. (Germany). Dept. of Physics; Schaefer, Stefan; Simma, Hubert [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Sint, Stefan [Trinity College Dublin (Ireland). School of Mathematics and Hamilton Mathematics Inst.; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Collaboration: ALPHA Collaboration

    2017-07-15

    We present a lattice determination of the Λ parameter in three-flavor QCD and the strong coupling at the Z pole mass. Computing the nonperturbative running of the coupling in the range from 0.2 GeV to 70 GeV, and using experimental input values for the masses and decay constants of the pion and the kaon, we obtain Λ{sup (3)}{sub MS}=341(12) MeV. The nonperturbative running up to very high energies guarantees that systematic effects associated with perturbation theory are well under control. Using the four-loop prediction for Λ{sup (5)}{sub MS}/Λ{sup (3)}{sub MS} yields α{sup (5)}{sub MS}(m{sub Z})=0.11852(84).

  16. QCD phenomenology

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1979-01-01

    Selected topics in QCD phenomenology are reviewed: the development of an effective jet perturbation series with applications to factorization, energy flow analysis and photon physics; implications of non-perturbative phenomena for hard scattering processes and the pseudoscalar mass spectrum; resonance properties as extracted from the combined technologies of perturbative and non-perturbative QCD. (orig.)

  17. Symmetry Relations and the Nonperturbative Form of Interactions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Applying QCD to study and understand hadronic physics and nuclear physics is one of basic goals of modern nuclear physics. Developing nonperturbative approach of QCD to understand the dynamical chiral-symmetry breaking and color confinement then becomes one of our most important challenges. Besides the lattice gauge theory, the Dyson-Schwinger equation (DSE) formalism is such an appropriate nonperturbative approach. In undertaking nonperturbative studies using DSEs, we immediately have to confront the issue of what is the nonperturbative form of interactions. In recent 20 years, there have been considerable efforts to solve this open problem, however, all such attempts

  18. Lattice QCD. A critical status report

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Karl

    2008-10-15

    The substantial progress that has been achieved in lattice QCD in the last years is pointed out. I compare the simulation cost and systematic effects of several lattice QCD formulations and discuss a number of topics such as lattice spacing scaling, applications of chiral perturbation theory, non-perturbative renormalization and finite volume effects. Additionally, the importance of demonstrating universality is emphasized. (orig.)

  19. Lattice QCD. A critical status report

    International Nuclear Information System (INIS)

    Jansen, Karl

    2008-10-01

    The substantial progress that has been achieved in lattice QCD in the last years is pointed out. I compare the simulation cost and systematic effects of several lattice QCD formulations and discuss a number of topics such as lattice spacing scaling, applications of chiral perturbation theory, non-perturbative renormalization and finite volume effects. Additionally, the importance of demonstrating universality is emphasized. (orig.)

  20. Illustrated study of the semi-holographic non-perturbative framework

    NARCIS (Netherlands)

    Banerjee, Souvik; Gaddam, Nava; Mukhopadhyay, Ayan

    2017-01-01

    Semi-holography has been proposed as an effective nonperturbative framework which can combine perturbative and nonperturbative effects consistently for theories like QCD. It is postulated that the strongly coupled nonperturbative sector has a holographic dual in the form of a classical gravity

  1. Non-perturbative effective interactions in the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Arbuzov, Boris A. [Moscow Lomonosov State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics

    2014-07-01

    This monograph is devoted to the nonperturbative dynamics in the Standard Model (SM), the basic theory of allfundamental interactions in natureexcept gravity. The Standard Model is divided into two parts: the quantum chromodynamics (QCD) and the electro-weak theory (EWT) are well-defined renormalizable theories in which the perturbation theory is valid. However, for the adequate description of the real physics nonperturbative effects are inevitable. This book describes how these nonperturbative effects may be obtained in the framework of spontaneous generation of effective interactions. The well-known example of such effective interaction is provided by the famous Nambu-Jona-Lasinio effective interaction. Also a spontaneous generation of this interaction in the framework of QCD is described and applied to the method for other effective interactions in QCD and EWT. The method is based on N.N. Bogolyubov's conception of compensation equations. As a result we then describe the principal features of the Standard Model, e.g. Higgs sector, and significant nonperturbative effects including recent results obtained at LHC and TEVATRON.

  2. QCD Dual

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2009-01-01

    We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...

  3. Introduction to non-perturbative heavy quark effective theory

    International Nuclear Information System (INIS)

    Sommer, R.

    2010-08-01

    out non-perturbatively beyond the order 1/m will be very difficult. In this context two observations are relevant. First, the expansion parameter for HQET applied to B-physics is Λ QCD /m b ∝ 1/(r 0 m b )=1/10 and indeed recent computations of 1/m b corrections showed them to be very small. Second, since HQET yields the asymptotic expansion of QCD, it becomes more and more accurate the larger the mass is. It can therefore be used to constrain the large mass behavior of QCD computations done at finite, varying, quark masses. At some point, computers and computational strategies will be sufficient to simulate with lattice spacings which are small enough for a relativistic b-quark. One would then like to understand the full mass-behavior of observables and a combination of HQET and relativistic QCD will again be most useful. Already now, there is a strategy (de Divitiis et al. (2003), de Divitiis et al. (2003), Guazzini et al. (2008)), which, in its final version combines HQET and QCD in such a manner. For a short review of this aspect I refer to (Tantalo, 2008). (orig.)

  4. QCD non-perturbative study in radiative and pure-leptonic decays of Bc by wave function

    International Nuclear Information System (INIS)

    Guo Peng; Hou Zhaoyu; Zhi Haisu

    2012-01-01

    The radiative and pure-leptonic decays of B c mesons are of hadrons uncertainty in theoretical calculations. Using three types of the B c meson wave functions which describe the characteristics of the QCD non-perturbative and by controlling the parameters in them, the uncertainties of B c meson decay caused by the hadron decay model are studied in detail. The theoretical results show the branching ratios are (1.81981∼3.18961) × 10 -5 , which are sensitive to the type of wave functions. (authors)

  5. Non-perturbative effective interactions in the standard model

    CERN Document Server

    Arbuzov, Boris A

    2014-01-01

    This monograph is devoted to the nonperturbative dynamics in the Standard Model (SM), the basic theory of all, but gravity, fundamental interactions in nature. The Standard Model is devided into two parts: the Quantum chromodynamics (QCD) and the Electro-weak theory (EWT) are well-defined renormalizable theories in which the perturbation theory is valid. However, for the adequate description of the real physics nonperturbative effects are inevitable. This book describes how these nonperturbative effects may be obtained in the framework of spontaneous generation of effective interactions. The well-known example of such effective interaction is provided by the famous Nambu--Jona-Lasinio effective interaction. Also a spontaneous generation of this interaction in the framework of QCD is described and applied to the method for other effective interactions in QCD and EWT. The method is based on N.N. Bogoliubov conception of compensation equations. As a result we then describe the principle feathures of the Standard...

  6. Non-perturbative renormalization of the static vector current and its O(a)-improvement in quenched QCD

    Energy Technology Data Exchange (ETDEWEB)

    Palombi, F.

    2007-06-15

    We carry out the renormalization and the Symanzik O(a)-improvement programme for the static vector current in quenched lattice QCD. The scale independent ratio of the renormalization constants of the static vector and axial currents is obtained non-perturbatively from an axial Ward identity with Wilson-type light quarks and various lattice discretizations of the static action. The improvement coefficients c{sub V}{sup stat} and b{sub V}{sup stat} are obtained up to O(g{sub 4}{sup 0})-terms by enforcing improvement conditions respectively on the axial Ward identity and a three-point correlator of the static vector current. A comparison between the non-perturbative estimates and the corresponding one-loop results shows a non-negligible effect of the O(g{sub 4}{sup 0})-terms on the improvement coefficients but a good accuracy of the perturbative description of the ratio of the renormalization constants. (orig.)

  7. Introduction to non-perturbative heavy quark effective theory

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, R. [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2010-08-15

    intrinsically is an expansion. In practise, carrying it out non-perturbatively beyond the order 1/m will be very difficult. In this context two observations are relevant. First, the expansion parameter for HQET applied to B-physics is {lambda}{sub QCD}/m{sub b} {proportional_to} 1/(r{sub 0}m{sub b})=1/10 and indeed recent computations of 1/m{sub b} corrections showed them to be very small. Second, since HQET yields the asymptotic expansion of QCD, it becomes more and more accurate the larger the mass is. It can therefore be used to constrain the large mass behavior of QCD computations done at finite, varying, quark masses. At some point, computers and computational strategies will be sufficient to simulate with lattice spacings which are small enough for a relativistic b-quark. One would then like to understand the full mass-behavior of observables and a combination of HQET and relativistic QCD will again be most useful. Already now, there is a strategy (de Divitiis et al. (2003), de Divitiis et al. (2003), Guazzini et al. (2008)), which, in its final version combines HQET and QCD in such a manner. For a short review of this aspect I refer to (Tantalo, 2008). (orig.)

  8. The b-quark mass from non-perturbative $N_f=2$ Heavy Quark Effective Theory at $O(1/m_h)$

    DEFF Research Database (Denmark)

    Bernardoni, F.; Blossier, B.; Bulava, J.

    2014-01-01

    We report our final estimate of the b-quark mass from $N_f=2$ lattice QCD simulations using Heavy Quark Effective Theory non-perturbatively matched to QCD at $O(1/m_h)$. Treating systematic and statistical errors in a conservative manner, we obtain $\\overline{m}_{\\rm b}^{\\overline{\\rm MS}}(2 {\\rm...

  9. A Precise determination of B(K) in quenched QCD

    CERN Document Server

    Dimopoulos, P.; Palombi, F.; Pena, C.; Sint, S.; Vladikas, A.

    2006-01-01

    The $B_K$ parameter is computed in quenched lattice QCD with Wilson twisted mass fermions. Two variants of tmQCD are used; in both of them the relevant $\\Delta S = 2$ four-fermion operator is renormalised multiplicatively. The renormalisation adopted is non-perturbative, with a Schroedinger functional renormalisation condition. Renormalisation group running is also non-perturbative, up to very high energy scales. In one of the two tmQCD frameworks the computations have been performed at the physical $K$-meson mass, thus eliminating the need of mass extrapolations. Simulations have been performed at several lattice spacings and the continuum limit was reached by combining results from both tmQCD regularisations. Finite volume effects have been partially checked and turned out to be small. Exploratory studies have also been performed with non-degenerate valence flavours. The final result for the RGI bag parameter, with all sources of uncertainty (except quenching) under control, is $\\hat B_K =0.789 \\pm 0.046$.

  10. Simulations of dimensionally reduced effective theories of high temperature QCD

    CERN Document Server

    Hietanen, Ari

    Quantum chromodynamics (QCD) is the theory describing interaction between quarks and gluons. At low temperatures, quarks are confined forming hadrons, e.g. protons and neutrons. However, at extremely high temperatures the hadrons break apart and the matter transforms into plasma of individual quarks and gluons. In this theses the quark gluon plasma (QGP) phase of QCD is studied using lattice techniques in the framework of dimensionally reduced effective theories EQCD and MQCD. Two quantities are in particular interest: the pressure (or grand potential) and the quark number susceptibility. At high temperatures the pressure admits a generalised coupling constant expansion, where some coefficients are non-perturbative. We determine the first such contribution of order g^6 by performing lattice simulations in MQCD. This requires high precision lattice calculations, which we perform with different number of colors N_c to obtain N_c-dependence on the coefficient. The quark number susceptibility is studied by perf...

  11. Non-perturbative QCD Effects and the Top Mass at the Tevatron

    CERN Document Server

    Wicke, Daniel

    2008-01-01

    The modelling of non-perturbative effects is an important part of modern collider physics simulations. In hadron collisions there is some indication that the modelling of the interactions of the beam remnants, the underlying event, may require non-trivial colour reconnection effects to be present. We recently introduced a universally applicable toy model of such reconnections, based on hadronising strings. This model, which has one free parameter, has been implemented in the Pythia event generator. We then considered several parameter sets (`tunes'), constrained by fits to Tevatron minimum-bias data, and determined the sensitivity of a simplified top mass analysis to these effects, in exclusive semi-leptonic top events at the Tevatron. A first attempt at isolating the genuine non-perturbative effects gave an estimate of order +-0.5GeV from non-perturbative uncertainties. The results presented here are an update to the original study and include recent bug fixes of Pythia that influenced the tunings investigat...

  12. Non-perturbative quark mass renormalization

    CERN Document Server

    Capitani, S.; Luescher, M.; Sint, S.; Sommer, R.; Weisz, P.; Wittig, H.

    1998-01-01

    We show that the renormalization factor relating the renormalization group invariant quark masses to the bare quark masses computed in lattice QCD can be determined non-perturbatively. The calculation is based on an extension of a finite-size technique previously employed to compute the running coupling in quenched QCD. As a by-product we obtain the $\\Lambda$--parameter in this theory with completely controlled errors.

  13. Non-perturbative studies of QCD at small quark masses

    Energy Technology Data Exchange (ETDEWEB)

    Wennekers, J.

    2006-07-15

    We investigate the quenched approximation of lattice QCD with numerical simulations of Ginsparg-Wilson fermions, which are a fermion discretisation with exact chiral symmetry. We compute the renormalisation constant of the scalar density, which allows to extrapolate the chiral condensate to the continuum limit. Furthermore we match lattice results of matrix elements describing hadronic kaon decays to Chiral Perturbation Theory in finite volume and at almost vanishing quark mass. The resulting low-energy constants in the considered SU(4)-flavour symmetric case indicate a substantial contribution of low scale QCD effects to the {delta}I = 1/2 rule. (Orig.)

  14. The strong coupling constant of QCD with four flavors

    Energy Technology Data Exchange (ETDEWEB)

    Tekin, Fatih

    2010-11-01

    In this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient c{sub sw} with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the {lambda} parameter is determined in units of a technical scale L{sub max} which is an unambiguously defined length in the hadronic regime. The coupling {alpha}{sub SF} of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors. (orig.)

  15. The strong coupling constant of QCD with four flavors

    International Nuclear Information System (INIS)

    Tekin, Fatih

    2010-01-01

    In this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient c sw with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the Λ parameter is determined in units of a technical scale L max which is an unambiguously defined length in the hadronic regime. The coupling α SF of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors. (orig.)

  16. Simulation of QCD with N_f=2+1 flavors of non-perturbatively improved Wilson fermions

    International Nuclear Information System (INIS)

    Bruno, Mattia; Djukanovic, Dalibor; Engel, Georg P.; Francis, Anthony; Herdoiza, Gregorio; Horch, Hanno; Korcyl, Piotr; Korzec, Tomasz; Papinutto, Mauro; Schaefer, Stefan; Scholz, Enno E.; Simeth, Jakob; Simma, Hubert; Söldner, Wolfgang

    2015-01-01

    We describe a new set of gauge configurations generated within the CLS effort. These ensembles have N_f=2+1 flavors of non-perturbatively improved Wilson fermions in the sea with the Lüscher-Weisz action used for the gluons. Open boundary conditions in time are used to address the problem of topological freezing at small lattice spacings and twisted-mass reweighting for improved stability of the simulations. We give the bare parameters at which the ensembles have been generated and how these parameters have been chosen. Details of the algorithmic setup and its performance are presented as well as measurements of the pion and kaon masses alongside the scale parameter t_0.

  17. The non-perturbative QCD Debye mass from a Wilson line operator

    CERN Document Server

    Laine, Mikko

    1999-01-01

    According to a proposal by Arnold and Yaffe, the non-perturbative g^2T-contribution to the Debye mass in the deconfined QCD plasma phase can be determined from a single Wilson line operator in the three-dimensional pure SU(3) gauge theory. We extend a previous SU(2) measurement of this quantity to the physical SU(3) case. We find a numerical coefficient which is more accurate and smaller than that obtained previously with another method, but still very large compared with the naive expectation: the correction is larger than the leading term up to T ~ 10^7 T_c, corresponding to g^2 ~ 0.4. At moderate temperatures T ~ 2 T_c, a consistent picture emerges where the Debye mass is m_D ~ 6T, the lightest gauge invariant screening mass in the system is ~ 3T, and the purely magnetic operators couple dominantly to a scale ~ 6T. Electric (~ gT) and magnetic (~ g^2T) scales are therefore strongly overlapping close to the phase transition, and the colour-electric fields play an essential role in the dynamics.

  18. Nonperturbative volume reduction of large-N QCD with adjoint fermions

    International Nuclear Information System (INIS)

    Bringoltz, Barak; Sharpe, Stephen R.

    2009-01-01

    We use nonperturbative lattice techniques to study the volume-reduced 'Eguchi-Kawai' version of four-dimensional large-N QCD with a single adjoint Dirac fermion. We explore the phase diagram of this single-site theory in the space of quark mass and gauge coupling using Wilson fermions for a number of colors in the range 8≤N≤15. Our evidence suggests that these values of N are large enough to determine the nature of the phase diagram for N→∞. We identify the region in the parameter space where the (Z N ) 4 center symmetry is intact. According to previous theoretical work using the orbifolding paradigm, and assuming that translation invariance is not spontaneously broken in the infinite-volume theory, in this region volume reduction holds: the single-site and infinite-volume theories become equivalent when N→∞. We find strong evidence that this region includes both light and heavy quarks (with masses that are at the cutoff scale), and our results are consistent with this region extending toward the continuum limit. We also compare the action density and the eigenvalue density of the overlap Dirac operator in the fundamental representation with those obtained in large-N pure-gauge theory.

  19. Nonperturbative QCD with modern tools

    International Nuclear Information System (INIS)

    Roberts, C.D.

    1998-01-01

    In these lectures the author introduces and explores a range of topics of contemporary interest in hadronic physics: from what drives the formation of a nonzero quark condensate to the effect that mechanism has on light and heavy meson form factors and the properties of the quark-gluon plasma. The trail leads naturally through a discussion of confinement, dynamical chiral symmetry breaking and bound state structure: phenomena that require nonperturbative methods for their explanation. In all of this, the necessary and necessarily momentum-dependent modification of the quark and gluon propagators plays a significant role

  20. Non-perturbative inputs for gluon distributions in the hadrons

    International Nuclear Information System (INIS)

    Ermolaev, B.I.; Troyan, S.I.

    2017-01-01

    Description of hadronic reactions at high energies is conventionally done in the framework of QCD factorization. All factorization convolutions comprise non-perturbative inputs mimicking non-perturbative contributions and perturbative evolution of those inputs. We construct inputs for the gluon-hadron scattering amplitudes in the forward kinematics and, using the optical theorem, convert them into inputs for gluon distributions in the hadrons, embracing the cases of polarized and unpolarized hadrons. In the first place, we formulate mathematical criteria which any model for the inputs should obey and then suggest a model satisfying those criteria. This model is based on a simple reasoning: after emitting an active parton off the hadron, the remaining set of spectators becomes unstable and therefore it can be described through factors of the resonance type, so we call it the resonance model. We use it to obtain non-perturbative inputs for gluon distributions in unpolarized and polarized hadrons for all available types of QCD factorization: basic, K_T-and collinear factorizations. (orig.)

  1. Non-perturbative inputs for gluon distributions in the hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Ermolaev, B.I. [Ioffe Physico-Technical Institute, Saint Petersburg (Russian Federation); Troyan, S.I. [St. Petersburg Institute of Nuclear Physics, Gatchina (Russian Federation)

    2017-03-15

    Description of hadronic reactions at high energies is conventionally done in the framework of QCD factorization. All factorization convolutions comprise non-perturbative inputs mimicking non-perturbative contributions and perturbative evolution of those inputs. We construct inputs for the gluon-hadron scattering amplitudes in the forward kinematics and, using the optical theorem, convert them into inputs for gluon distributions in the hadrons, embracing the cases of polarized and unpolarized hadrons. In the first place, we formulate mathematical criteria which any model for the inputs should obey and then suggest a model satisfying those criteria. This model is based on a simple reasoning: after emitting an active parton off the hadron, the remaining set of spectators becomes unstable and therefore it can be described through factors of the resonance type, so we call it the resonance model. We use it to obtain non-perturbative inputs for gluon distributions in unpolarized and polarized hadrons for all available types of QCD factorization: basic, K{sub T}-and collinear factorizations. (orig.)

  2. Lattice QCD

    International Nuclear Information System (INIS)

    Hasenfratz, P.

    1983-01-01

    The author presents a general introduction to lattice gauge theories and discusses non-perturbative methods in the gauge sector. He then shows how the lattice works in obtaining the string tension in SU(2). Lattice QCD at finite physical temperature is discussed. Universality tests in SU(2) lattice QCD are presented. SU(3) pure gauge theory is briefly dealt with. Finally, fermions on the lattice are considered. (Auth.)

  3. Non-perturbative field theory/field theory on a lattice

    International Nuclear Information System (INIS)

    Ambjorn, J.

    1988-01-01

    The connection between the theory of critical phenomena in statistical mechanics and the renormalization of field theory is briefly outlined. The way of using this connection is described to get information about non-perturbative quantities in QCD and about more intelligent ways of doing the Monte Carlo (MC) simulations. The (MC) method is shown to be a viable one in high energy physics, but it is not a good substitute for an analytic understanding. MC-methods will be very valuable both for getting out hard numbers and for testing the correctness of new ideas

  4. Non-perturbative plaquette in 3d pure SU(3)

    CERN Document Server

    Hietanen, A; Laine, Mikko; Rummukainen, K; Schröder, Y

    2005-01-01

    We present a determination of the elementary plaquette and, after the subsequent ultraviolet subtractions, of the finite part of the gluon condensate, in lattice regularization in three-dimensional pure SU(3) gauge theory. Through a change of regularization scheme to MSbar and a matching back to full four-dimensional QCD, this result determines the first non-perturbative contribution in the weak-coupling expansion of hot QCD pressure.

  5. Exploring the nucleon structure from first principles of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, W. [Universidad Nacional Autonoma de Mexico (Mexico). Inst. de Ciencias Nucleares; Cundy, N.; Goeckeler, M. [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)

    2010-04-15

    Quantum Chromodynamics (QCD) is generally assumed to be the fundamental theory underlying nuclear physics. In recent years there is progress towards investigating the nucleon structure from first principles of QCD. Although this structure is best revealed in Deep Inelastic Scattering, a consistent analysis has to be performed in a fully non-perturbative scheme. The only known method for this purpose are lattice simulations. We first sketch the ideas of Monte Carlo simulations in lattice gauge theory. Then we comment in particular on the issues of chiral symmetry and operator mixing. Finally we present our results for the Bjorken variable of a single quark, and for the second Nachtmann moment of the nucleon structure functions. (orig.)

  6. Exploring the nucleon structure from first principles of QCD

    International Nuclear Information System (INIS)

    Bietenholz, W.; Cundy, N.; Goeckeler, M.

    2010-04-01

    Quantum Chromodynamics (QCD) is generally assumed to be the fundamental theory underlying nuclear physics. In recent years there is progress towards investigating the nucleon structure from first principles of QCD. Although this structure is best revealed in Deep Inelastic Scattering, a consistent analysis has to be performed in a fully non-perturbative scheme. The only known method for this purpose are lattice simulations. We first sketch the ideas of Monte Carlo simulations in lattice gauge theory. Then we comment in particular on the issues of chiral symmetry and operator mixing. Finally we present our results for the Bjorken variable of a single quark, and for the second Nachtmann moment of the nucleon structure functions. (orig.)

  7. Understanding of QCD through solvable models

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, G.

    1980-07-01

    Various aspects of strong interaction physics are discussed. It is shown that several nontrivial features arise from non-perturbative 'solutions' of QCD-like models in (1+1) dimensions. An attempt is made to bring these features in (3+1) dimensional semiclassical treatments of QCD.

  8. Large x Behaviour and the Non-Perturbative Structure of Hadronic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Anthony W. Thomas

    2005-02-01

    While the traditional interest in structure functions has been the confirmation of the predictions of perturbative QCD, this data also contains a wealth of information on how QCD works in the infrared, or confinement, region. As the challenge of the strong force now turns to the study of QCD in the non-perturbative region, such information is extremely valuable.We outline some of the key issues for both nucleon and nuclear structure functions.

  9. Topology in dynamical lattice QCD simulations

    International Nuclear Information System (INIS)

    Gruber, Florian

    2012-01-01

    Lattice simulations of Quantum Chromodynamics (QCD), the quantum field theory which describes the interaction between quarks and gluons, have reached a point were contact to experimental data can be made. The underlying mechanisms, like chiral symmetry breaking or the confinement of quarks, are however still not understood. This thesis focuses on topological structures in the QCD vacuum. Those are not only mathematically interesting but also closely related to chiral symmetry and confinement. We consider methods to identify these objects in lattice QCD simulations. Based on this, we explore the structures resulting from different discretizations and investigate the effect of a very strong electromagnetic field on the QCD vacuum.

  10. Topology in dynamical lattice QCD simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Florian

    2012-08-20

    Lattice simulations of Quantum Chromodynamics (QCD), the quantum field theory which describes the interaction between quarks and gluons, have reached a point were contact to experimental data can be made. The underlying mechanisms, like chiral symmetry breaking or the confinement of quarks, are however still not understood. This thesis focuses on topological structures in the QCD vacuum. Those are not only mathematically interesting but also closely related to chiral symmetry and confinement. We consider methods to identify these objects in lattice QCD simulations. Based on this, we explore the structures resulting from different discretizations and investigate the effect of a very strong electromagnetic field on the QCD vacuum.

  11. Nonperturbative Dynamics of Strong Interactions from Gauge/Gravity Duality

    Energy Technology Data Exchange (ETDEWEB)

    Grigoryan, Hovhannes [Louisiana State Univ., Baton Rouge, LA (United States)

    2008-08-01

    This thesis studies important dynamical observables of strong interactions such as form factors. It is known that Quantum Chromodynamics (QCD) is a theory which describes strong interactions. For large energies, one can apply perturbative techniques to solve some of the QCD problems. However, for low energies QCD enters into the nonperturbative regime, where di erent analytical or numerical tools have to be applied to solve problems of strong interactions. The holographic dual model of QCD is such an analytical tool that allows one to solve some nonperturbative QCD problems by translating them into a dual ve-dimensional theory de ned on some warped Anti de Sitter (AdS) background. Working within the framework of the holographic dual model of QCD, we develop a formalism to calculate form factors and wave functions of vector mesons and pions. As a result, we provide predictions of the electric radius, the magnetic and quadrupole moments which can be directly veri ed in lattice calculations or even experimentally. To nd the anomalous pion form factor, we propose an extension of the holographic model by including the Chern-Simons term required to reproduce the chiral anomaly of QCD. This allows us to nd the slope of the form factor with one real and one slightly o -shell photon which appeared to be close to the experimental ndings. We also analyze the limit of large virtualities (when the photon is far o -shell) and establish that predictions of the holographic model analytically coincide with those of perturbative QCD with asymptotic pion distribution amplitude. We also study the e ects of higher dimensional terms in the AdS/QCD model and show that these terms improve the holographic description towards a more realistic scenario. We show this by calculating corrections to the vector meson form factors and corrections to the observables such as electric radii, magnetic and quadrupole moments.

  12. Introduction to non-perturbative quantum chromodynamics; Introduction a QCD non perturbatif

    Energy Technology Data Exchange (ETDEWEB)

    Pene, O. [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique et Hautes Energies

    1995-12-31

    Quantum chromodynamics is considered to be the theory of strong interaction. The main peculiarity of this theory is that its asymptotic states (hadrons) are different from its elementary fields (quarks and gluons). This property plays a great part in any physical process involving small momentum-energy transfers. In such a range perturbative methods are no longer allowed. This work focuses on other tools such as QCD symmetry, the quark model, Green functions and the sum rules. To get hadron characteristics numerically, QCD on lattices is used but only in the case of simple process involving no more than one hadron in the initial and final states because of the complexity of the Green function. Some examples using a Monte-Carlo simulation are given. (A.C.) 39 refs.

  13. Properties of the quark gluon plasma from lattice QCD

    International Nuclear Information System (INIS)

    Mages, Simon Wolfgang

    2015-01-01

    Quantum Chromodynamics (QCD) is the theory of the strong interaction, the theory of the interaction between the constituents of composite elementary particles (hadrons). In the low energy regime of the theory, standard methods of theoretical physics like perturbative approaches break down due to a large value of the coupling constant. However, this is the region of most interest, where the degrees of freedom of QCD, the color charges, form color-neutral composite elementary particles, like protons and neutrons. Also the transition to more energetic states of matter like the quark gluon plasma (QGP), is difficult to investigate with perturbative approaches. A QGP is a state of strongly interacting matter, which existed shortly after the Big Bang and can be created with heavy ion collisions for example at the LHC at CERN. In a QGP the color charges of QCD are deconfined. This thesis explores ways how to use the non-perturbative approach of lattice QCD to determine properties of the QGP. It focuses mostly on observables which are derived from the energy momentum tensor, like two point correlation functions. In principle these contain information on low energy properties of the QGP like the shear and bulk viscosity and other transport coefficients. The thesis describes the lattice QCD simulations which are necessary to measure the correlation functions and proposes new methods to extract these low energy properties. The thesis also tries to make contact to another non-perturbative approach which is Improved Holographic QCD. The aim of this approach is to use the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence to make statements about QCD with calculations of a five dimensional theory of gravity. This thesis contributes to that work by constraining the parameters of the model action by comparing the predictions with those of measurements with lattice QCD.

  14. Holographic models and the QCD trace anomaly

    International Nuclear Information System (INIS)

    Goity, Jose L.; Trinchero, Roberto C.

    2012-01-01

    Five dimensional dilaton models are considered as possible holographic duals of the pure gauge QCD vacuum. In the framework of these models, the QCD trace anomaly equation is considered. Each quantity appearing in that equation is computed by holographic means. Two exact solutions for different dilaton potentials corresponding to perturbative and non-perturbative β-functions are studied. It is shown that in the perturbative case, where the β-function is the QCD one at leading order, the resulting space is not asymptotically AdS. In the non-perturbative case, the model considered presents confinement of static quarks and leads to a non-vanishing gluon condensate, although it does not correspond to an asymptotically free theory. In both cases analyses based on the trace anomaly and on Wilson loops are carried out.

  15. Light hadron spectrum in 2+1 flavor full QCD by CP-PACS and JLQCD Collaborations

    International Nuclear Information System (INIS)

    Ishikawa, T.; Aoki, S.; Fukugita, M.; Hashimoto, S.; Ishikawa, K-I.; Ishizuka, N.; Iwasaki, Y.; Kanaya, K.; Kaneko, T.; Kuramashi, Y.; Okawa, M.; Onogi, T.; Taniguchi, N.; Tsutsui, N.; Ukawa, A.; Yoshie, T.

    2005-01-01

    CP-PACS and JLQCD Collaborations are carrying out a joint project of the 2+1 flavor full QCD with the RG-improved gauge action and the non-perturbatively O(a)-improved Wilson quark action. This simulation removes quenching effects of all three light quarks, which is the last major uncertainty in lattice QCD. In this report we present our results for the light meson spectrum and quark masses on a 20 3 x40 lattice at the lattice spacing a∼0.10 fm

  16. Nonperturbative treatment of reduced model with fermions

    International Nuclear Information System (INIS)

    Gutierrez, W.R.

    1983-01-01

    A nonperturbative method is presented to show that the reduced model produces the correct leading large-N contribution to the fermion Green's functions. A new form of the reduced model is introduced, which avoids the quenching procedure. Also the equation for the meson bound states is discussed. The method is illustrated in the case of two-dimensional QCD

  17. Beauty and the beast: What lattice QCD can do for B physics

    International Nuclear Information System (INIS)

    Kronfeld, A.S.

    1993-01-01

    One of the reasons why b-hadrons are interesting is that their properties (decays, mixing, CP violation) help determine the least well-known elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In each case, however, the standard-model expression for the (differential) decay rate follows the pattern: (experimental measurement) = (known factors)(QCD factor)(CKM factor). To extract the CKM factor from the measurement one must have reliable theoretical calculations in nonperturbative QCD. The only systematic, first-principles approach to nonperturbative QCD is the formulation on the lattice. The most promising calculational method has proven to be large-scale numerical computations

  18. Scattering processes and resonances from lattice QCD

    Science.gov (United States)

    Briceño, Raúl A.; Dudek, Jozef J.; Young, Ross D.

    2018-04-01

    The vast majority of hadrons observed in nature are not stable under the strong interaction; rather they are resonances whose existence is deduced from enhancements in the energy dependence of scattering amplitudes. The study of hadron resonances offers a window into the workings of quantum chromodynamics (QCD) in the low-energy nonperturbative region, and in addition many probes of the limits of the electroweak sector of the standard model consider processes which feature hadron resonances. From a theoretical standpoint, this is a challenging field: the same dynamics that binds quarks and gluons into hadron resonances also controls their decay into lighter hadrons, so a complete approach to QCD is required. Presently, lattice QCD is the only available tool that provides the required nonperturbative evaluation of hadron observables. This article reviews progress in the study of few-hadron reactions in which resonances and bound states appear using lattice QCD techniques. The leading approach is described that takes advantage of the periodic finite spatial volume used in lattice QCD calculations to extract scattering amplitudes from the discrete spectrum of QCD eigenstates in a box. An explanation is given of how from explicit lattice QCD calculations one can rigorously garner information about a variety of resonance properties, including their masses, widths, decay couplings, and form factors. The challenges which currently limit the field are discussed along with the steps being taken to resolve them.

  19. Non-perturbative RPA-method implemented in the Coulomb gauge QCD Hamiltonian: From quarks and gluons to baryons and mesons

    Science.gov (United States)

    Yepez-Martinez, Tochtli; Civitarese, Osvaldo; Hess, Peter O.

    2018-02-01

    Starting from an algebraic model based on the QCD-Hamiltonian and previously applied to study meson states, we have developed an extension of it in order to explore the structure of baryon states. In developing our approach we have adapted concepts taken from group theory and non-perturbative many-body methods to describe states built from effective quarks and anti-quarks degrees of freedom. As a Hamiltonian we have used the QCD Hamiltonian written in the Coulomb Gauge, and expressed it in terms of effective quark-antiquark, di-quarks and di-antiquark excitations. To gain some insights about the relevant interactions of quarks in hadronic states, the Hamiltonian was approximately diagonalized by mapping quark-antiquark pairs and di-quarks (di-antiquarks) onto phonon states. In dealing with the structure of the vacuum of the theory, color-scalar and color-vector states are introduced to account for ground-state correlations. While the use of a purely color-scalar ground state is an obvious choice, so that colorless hadrons contain at least three quarks, the presence of coupled color-vector pairs in the ground state allows for colorless excitations resulting from the action of color objects upon it.

  20. Insights on non-perturbative aspects of TMDs from models

    Energy Technology Data Exchange (ETDEWEB)

    H. Avakian, A. Efremov, P. Schweitzer, O. Teryaev, F. Yuan, P. Zavada

    2009-12-01

    Transverse momentum dependent parton distribution functions are a key ingredient in the description of spin and azimuthal asymmetries in deep-inelastic scattering processes. Recent results from non-perturbative calculations in effective approaches are reviewed, with focus on relations among different parton distribution functions in QCD and models.

  1. QCD at finite temperature

    International Nuclear Information System (INIS)

    Kikkawa, Keiji

    1983-01-01

    The varidity of the perturbation method in the high temperature QCD is discussed. The skeleton expansion method takes account of plasmon effects and eliminates the electric infrared singularity but not the magnetic one. A possibility of eliminating the latter, which was recently proposed, is examined by a gauge invariant skeleton expansion. The magnetic singularity is unable to be eliminated by the perturbation method. This implies that some non-perturbative approaches must be incorporated in the high temperature QCD. (author)

  2. The running coupling of QCD with four flavors

    International Nuclear Information System (INIS)

    Tekin, Fatih; Wolff, Ulli; Sommer, Rainer

    2010-06-01

    We have calculated the step scaling function and the running coupling of QCD in the Schroedinger functional scheme with four flavors of O(a) improved Wilson quarks. Comparisons of our non-perturbative results with 2-loop and 3-loop perturbation theory as well as with non-perturbative data for only two flavors are made. (orig.)

  3. QCD on the light cone

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1992-09-01

    The quantization of gauge theory at fixed light-cone time τ = t - z/c provides new perspectives for solving non-perturbative problems in quantum chromodynamics. The light-cone Fock state expansion provides both a precise definition of the relativistic wavefunctions of hadrons as bound-states of quarks and gluons and a general calculus for predicting QCD processes at the amplitude level. Applications to exclusive processes and weak decay amplitudes are discussed. The problem of computing the hadronic spectrum and the corresponding light-cone wavefunctions of QCD in one space and one time dimension has been successfully reduced to the diagonalization of a discrete representation of the light-cone Hamiltonian. The problems confronting the solution of gauge theories in 3 + 1 dimensions in the light-cone quantization formalism,, including zero modes and non-perturbative renormalization, are reviewed

  4. A non-perturbative operator product expansion

    International Nuclear Information System (INIS)

    Bietenholz, W.; Cundy, N.; Goeckeler, M.

    2009-10-01

    Nucleon structure functions can be observed in Deep Inelastic Scattering experiments, but it is an outstanding challenge to confront them with fully non-perturbative QCD results. For this purpose we investigate the product of electromagnetic currents (with large photonmomenta) between quark states (of low momenta). By means of an Operator Product Expansion the structure function can be decomposed into matrix elements of local operators, and Wilson coefficients. For consistency both have to be computed non-perturbatively. Here we present precision results for a set of Wilson coefficients. They are evaluated from propagators for numerous quark momenta on the lattice, where the use of chiral fermions suppresses undesired operator mixing. This overdetermines the Wilson coefficients, but reliable results can be extracted by means of a Singular Value Decomposition. (orig.)

  5. Light-front QCD. II. Two-component theory

    International Nuclear Information System (INIS)

    Zhang, W.; Harindranath, A.

    1993-01-01

    The light-front gauge A a + =0 is known to be a convenient gauge in practical QCD calculations for short-distance behavior, but there are persistent concerns about its use because of its ''singular'' nature. The study of nonperturbative field theory quantizing on a light-front plane for hadronic bound states requires one to gain a priori systematic control of such gauge singularities. In the second paper of this series we study the two-component old-fashioned perturbation theory and various severe infrared divergences occurring in old-fashioned light-front Hamiltonian calculations for QCD. We also analyze the ultraviolet divergences associated with a large transverse momentum and examine three currently used regulators: an explicit transverse cutoff, transverse dimensional regularization, and a global cutoff. We discuss possible difficulties caused by the light-front gauge singularity in the applications of light-front QCD to both old-fashioned perturbative calculations for short-distance physics and upcoming nonperturbative investigations for hadronic bound states

  6. Dynamical effects of QCD vacuum structure

    International Nuclear Information System (INIS)

    Ferreira, Erasmo

    1994-01-01

    The role of the QCD vacuum structure in the determination of the properties of states and processes occurring in the confinement regime of QCD is reviewed. The finite range of the vacuum correlations is discussed, and an analytical form is suggested for the correlation functions. The role of the vacuum quantum numbers in the phenomenology of high-energy scattering is reviewed. The vacuum correlation model of non-perturbative QCD is mentioned as a bridge between the fundamental theory and the description of the experiments. (author). 13 refs., 1 fig

  7. Light relativistic bound states in high temperature QCD

    International Nuclear Information System (INIS)

    Zahed, Ismail

    1991-01-01

    The nonperturbative structure of high temperature QCD is combined with generalized sum-rules arguments to analyse gauge invariant correlation functions in real time. It is shown that for a plausible choice of condensates, QCD at high temperature exhibits color singlet excitations as opposed to merely screened quarks and gluons. (author). 14 refs.; 2 figs

  8. Confinining properties of QCD in strong magnetic backgrounds

    Directory of Open Access Journals (Sweden)

    Bonati Claudio

    2017-01-01

    Full Text Available Strong magnetic backgrounds are known to modify QCD properties at a nonperturbative level. We discuss recent lattice results, obtained for Nf = 2 + 1 QCD with physical quark masses, concerning in particular the modifications and the anisotropies induced at the level of the static quark-antiquark potential, both at zero and finite temperature.

  9. The IR sector of QCD: lattice versus Schwinger-Dyson equations

    International Nuclear Information System (INIS)

    Binosi, Daniele

    2010-01-01

    Important information about the infrared dynamics of QCD is encoded in the behavior of its (of-shell) Green's functions, most notably the gluon and the ghost propagators. Due to recent improvements in the quality of lattice data and the truncation schemes employed for the Schwinger-Dyson equations we have now reached a point where the interplay between these two non-perturbative tools can be most fruitful. In this talk several of the above points will be reviewed, with particular emphasis on the implications for the ghost sector, the non-perturbative effective charge of QCD, and the Kugo-Ojima function.

  10. arXiv Mass-improvement of the vector current in three-flavor QCD

    CERN Document Server

    Fritzsch, Patrick

    2018-06-04

    We determine two improvement coefficients which are relevant to cancel mass-dependent cutoff effects in correlation functions with operator insertions of the non-singlet local QCD vector current. This determination is based on degenerate three-flavor QCD simulations of non-perturbatively O(a) improved Wilson fermions with tree-level improved gauge action. Employing a very robust strategy that has been pioneered in the quenched approximation leads to an accurate estimate of a counterterm cancelling dynamical quark cutoff effects linear in the trace of the quark mass matrix. To our knowledge this is the first time that such an effect has been determined systematically with large significance.

  11. Solving QCD via multi-Regge theory

    International Nuclear Information System (INIS)

    White, A. R.

    1998-01-01

    To solve QCD at high-energy the authors must simultaneously find the hadronic states and the exchanged pomeron (IP) giving UNITARY scattering amplitudes. Experimentally, the IP ∼ a Regge pole at small Q 2 and a single gluon at larger Q 2 . (F 2 D -H1, dijets-ZEUS). In the solution which the author describes, these non-perturbative properties of the IP are directly related to the non-perturbative confinement and chiral symmetry breaking properties of hadrons

  12. B-physics from non-perturbatively renormalized HQET in two-flavour lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bernardoni, Fabio; Simma, Hubert [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Blossier, Benoit; Gerardin, Antoine [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique; CNRS, Orsay (France); Bulava, John [CERN, Geneva (Switzerland). Physics Department; Della Morte, Michele; Hippel, Georg M. von [Mainz Univ. (Germany). Inst. fuer Kernphysik; Fritzsch, Patrick [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Garron, Nicolas [Trinity College, Dublin (Ireland). School of Mathematics; Heitger, Jochen [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Collaboration: ALPHA Collaboration

    2012-10-15

    We report on the ALPHA Collaboration's lattice B-physics programme based on N{sub f}=2 O(a) improved Wilson fermions and HQET, including all NLO effects in the inverse heavy quark mass, as well as non-perturbative renormalization and matching, to fix the parameters of the effective theory. Our simulations in large physical volume cover 3 lattice spacings a {approx} (0.08-0.05) fm and pion masses down to 190 MeV to control continuum and chiral extrapolations. We present the status of results for the b-quark mass and the B{sub (s)}-meson decay constants, f{sub B} and f{sub B{sub s}}.

  13. Large scale computing in theoretical physics: Example QCD

    International Nuclear Information System (INIS)

    Schilling, K.

    1986-01-01

    The limitations of the classical mathematical analysis of Newton and Leibniz appear to be more and more overcome by the power of modern computers. Large scale computing techniques - which resemble closely the methods used in simulations within statistical mechanics - allow to treat nonlinear systems with many degrees of freedom such as field theories in nonperturbative situations, where analytical methods do fail. The computation of the hadron spectrum within the framework of lattice QCD sets a demanding goal for the application of supercomputers in basic science. It requires both big computer capacities and clever algorithms to fight all the numerical evils that one encounters in the Euclidean world. The talk will attempt to describe both the computer aspects and the present state of the art of spectrum calculations within lattice QCD. (orig.)

  14. Shadowing of gluons in perturbative QCD: A comparison of different models

    International Nuclear Information System (INIS)

    Jalilian-Marian, Jamal; Wang, Xin-Nian

    2001-01-01

    We investigate the different perturbative QCD-based models for nuclear shadowing of gluons. We show that, in the kinematic region appropriate to the BNL relativistic heavy ion collider experiment, all models give similar estimates for the magnitude of gluon shadowing. At scales relevant to CERN large hadron collider (LHC), there is a sizable difference between the predictions of the different models. However, the uncertainties in gluon shadowing coming from a different parametrization of the gluon distribution in nucleons, are larger than those due to different perturbative QCD models of gluon shadowing. We also investigate the effect of initial nonperturbative shadowing on the magnitude of perturbative shadowing and show that the magnitudes of perturbative and nonperturbative shadowing are comparable at RHIC but perturbative shadowing dominates over nonperturbative shadowing at smaller values of x reached at LHC

  15. How do we model continuum QCD

    International Nuclear Information System (INIS)

    Cornwall, J.M.

    1986-01-01

    The nonperturbative aspects of continuum QCD are so complex that one can only hope to approach them through well-motivated models. The author reviews the general properties that any such model must have, based on the understanding of the gluon condensate in the QCD vacuum. A specific, practical model is proposed motivated by a picture of the condensate as made of thick vortex sheets self-consistently constructed from dynamically massive gluons. (author)

  16. Nonperturbative QCD and quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shuryak, E V [Department of Physics and Astronomy, State University of New York, Stony Brook (United States)

    2002-09-15

    This is a brief written version of 5 lectures made at 2001 ICTP Summer School on High Energy Physics in Trieste. The lectures provide an overview of what we have learned about QCD vacuum, hadrons and hot / dense hadronic matter during the last 2 decades. Last two lectures contain discussion of heavy ion physics. We focus on the first surprising results from new heavy ion collider, RHIC, as well as recent development toward understanding of the old problem of 'soft pomeron' in high energy hadronic collisions and its connection to new heavy ion data. (author)

  17. Experimental investigations of strong interaction in the non-perturbative QCD region

    International Nuclear Information System (INIS)

    Lindenbaum, S.J.; Samuel, S.

    1993-09-01

    A critical investigation of non-perturbative QCD require investigating glueballs, search for a Quark Gluon Plasma (OGP), and search for strangelets. In the glueball area the data obtained (E- 881) at 8 GeV/c were analyzed for π - + p → φφn (OZI forbidden), φK + K - n (OZI allowed), K - p → φφ(ΛΣ) (OZI allowed), and bar pp → φφ → φφπ 0 (OZI forbidden), φK + K - π 0 (OZI allowed). By comparing the OZI forbidden (glueball filter reactions) with the OZI allowed and previous 22 GeV/c π - p → φφn or φK + K - n data a further critical test of the so far unsuccessfully challenged hypothesis that our g T (2010), g T '(2300) and g T double-prime(2340) all with I G J PC = 0 + 2 ++ are produced by 1-3 2 ++ glueballs will be made. In the QGP search with a large-solid-angle TPC a good Ξ signal was observed. The ratio of Ξ to single strange quark particles such as λ is a better indication of strangeness enhancement in QGP formation. The data indicate enhancement by a factor ∼ 2 over cascade model (corrected to observed strangeness) predictions, but it is definitely far from conclusive at this stage since the result is model dependent. Double λ topologies of the type needed to discover light strangelets in the nanosecond lifetime region were found. In addition, research has been accomplished in three main areas: bosonic technicolor and strings, buckministerfullerene C 60 and neutrino oscillations in a dense neutrino gas

  18. Non-perturbative renormalisation of {delta}F=2 four-fermion operators in two-flavour QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, P.; Vladikas, A. [INFN, Sezione di Roma II (Italy)]|[Rome-3 Univ. (Italy). Dipt. di Fisica; Herdoiza, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Palombi, F.; Papinutto, M. [CERN, Geneva (Switzerland). Physics Dept., TH Division; Pena, C. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica C-XI]|[Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM/CSIC C-XVI; Wittig, H. [Mainz Univ. (Germany). Inst. fuer Kernphysik

    2007-12-15

    Using Schroedinger Functional methods, we compute the non-perturbative renormalisation and renormalisation group running of several four-fermion operators, in the framework of lattice simulations with two dynamical Wilson quarks. Two classes of operators have been targeted: (i) those with left-left current structure and four propagating quark fields; (ii) all operators containing two static quarks. In both cases, only the parity-odd contributions have been considered, being the ones that renormalise multiplicatively. Our results, once combined with future simulations of the corresponding lattice hadronic matrix elements, may be used for the computation of phenomenological quantities of interest, such as B{sub K} and B{sub B} (the latter also in the static limit). (orig.)

  19. Freezing of the QCD coupling constant and the pion form factor

    International Nuclear Information System (INIS)

    Aguilar, A.C.; Mihara, A.; Natale, A.A.

    2003-01-01

    The possibility that the QCD coupling constant (α s ) has an infrared finite behavior (freezing) has been extensively studied in recent years. We compare phenomenological values of the 'frozen' the QCD running coupling between different classes of solutions obtained through non-perturbative Schwinger-Dyson Equations. With these solutions were computed QCD predictions for the asymptotic pion form factor which, in turn, were compared with experiment. (author)

  20. Dynamical chiral-symmetry breaking in dual QCD

    International Nuclear Information System (INIS)

    Krein, G.; Williams, A.G.

    1991-01-01

    We have extended recent studies by Baker, Ball, and Zachariasen (BBZ) of dynamical chiral-symmetry breaking in dual QCD. Specifically, we have taken dual QCD to specify the nonperturbative infrared nature of the quark-quark interaction and then we have smoothly connected onto this the known leading-log perturbative QCD interaction in the ultraviolet region. In addition, we have solved for a momentum-dependent self-energy and have used the complete lowest-order dual QCD quark-quark interaction. We calculate the quark condensate left-angle bar qq right-angle and the pion decay constant f π within this model. We find that the dual QCD parameters needed to give acceptable results are reasonably consistent with those extracted from independent physical considerations by BBZ

  1. A non-perturbative exploration of the high energy regime in Nf=3 QCD. ALPHA Collaboration

    Science.gov (United States)

    Dalla Brida, Mattia; Fritzsch, Patrick; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer

    2018-05-01

    Using continuum extrapolated lattice data we trace a family of running couplings in three-flavour QCD over a large range of scales from about 4 to 128 GeV. The scale is set by the finite space time volume so that recursive finite size techniques can be applied, and Schrödinger functional (SF) boundary conditions enable direct simulations in the chiral limit. Compared to earlier studies we have improved on both statistical and systematic errors. Using the SF coupling to implicitly define a reference scale 1/L_0≈ 4 GeV through \\bar{g}^2(L_0) =2.012, we quote L_0 Λ ^{N_f=3}_{{\\overline{MS}}} =0.0791(21). This error is dominated by statistics; in particular, the remnant perturbative uncertainty is negligible and very well controlled, by connecting to infinite renormalization scale from different scales 2^n/L_0 for n=0,1,\\ldots ,5. An intermediate step in this connection may involve any member of a one-parameter family of SF couplings. This provides an excellent opportunity for tests of perturbation theory some of which have been published in a letter (ALPHA collaboration, M. Dalla Brida et al. in Phys Rev Lett 117(18):182001, 2016). The results indicate that for our target precision of 3 per cent in L_0 Λ ^{N_f=3}_{{\\overline{MS}}}, a reliable estimate of the truncation error requires non-perturbative data for a sufficiently large range of values of α _s=\\bar{g}^2/(4π ). In the present work we reach this precision by studying scales that vary by a factor 2^5= 32, reaching down to α _s≈ 0.1. We here provide the details of our analysis and an extended discussion.

  2. Non-perturbative improvement of stout-smeared three flavour clover fermions

    Energy Technology Data Exchange (ETDEWEB)

    Cundy, N.; Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (GB). School of Physics and Astronomy] (and others)

    2009-01-15

    We discuss a 3-flavour lattice QCD action with clover improvement in which the fermion matrix has single level stout smearing for the hopping terms together with unsmeared links for the clover term. With the (tree-level) Symanzik improved gluon action this constitutes the Stout Link Non-perturbative Clover or SLiNC action. To cancel O(a) terms the clover term coefficient has to be tuned. We present here results of a non-perturbative determination of this coefficient using the Schroedinger functional and as a by-product a determination of the critical hopping parameter. Comparisons of the results are made with lowest order perturbation theory. (orig.)

  3. Gauge-invariant, nonperturbative approach to the infrared-finite bound-state problem in QCD

    International Nuclear Information System (INIS)

    Gogokhia, V.Sh.

    1989-09-01

    Gauge invariant, nonperturbative approach to the bound state problem within the infrared finite Bethe-Salpeter equation is presented. Condition of cancellation of the nonperturbative infrared divergences is derived. Solutions for the quark propagator and corresponding quark gluon vertex function are written down which can be directly applied to the Bethe-Salpeter equation, in particular to the 'generalized ladder' approximation of this equation. (author) 18 refs.; 3 figs

  4. Hadron scattering, resonances, and QCD

    Science.gov (United States)

    Briceño, R. A.

    2016-11-01

    The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.

  5. Thoughts on non-perturbative thermalization and jet quenching in heavy ion collisions

    International Nuclear Information System (INIS)

    Kovchegov, Yuri V.

    2006-01-01

    We start by presenting physical arguments for the impossibility of perturbative thermalization leading to (non-viscous) Bjorken hydrodynamic description of heavy ion collisions. These arguments are complimentary to our more formal argument presented in [Yu.V. Kovchegov, hep-ph/0503038]. We argue that the success of hydrodynamic models in describing the quark-gluon system produced in heavy ion collisions could only be due to non-perturbative strong coupling effects. We continue by studying non-perturbative effects in heavy ion collisions at high energies. We model non-perturbative phenomena by an instanton ensemble. We show that non-perturbative instanton vacuum fields may significantly contribute to jet quenching in nuclear collisions. At the same time, the instanton ensemble contribution to thermalization is likely to be rather weak, leading to non-perturbative thermalization time comparable to the time of hadronization. This example illustrates that jet quenching is not necessarily a signal of a thermalized medium. Indeed, since the instanton models do not capture all the effects of QCD vacuum (e.g., they do not account for confinement), there may be other non-perturbative effects facilitating thermalization of the system

  6. Simulating QCD at finite density

    CERN Document Server

    de Forcrand, Philippe

    2009-01-01

    In this review, I recall the nature and the inevitability of the "sign problem" which plagues attempts to simulate lattice QCD at finite baryon density. I present the main approaches used to circumvent the sign problem at small chemical potential. I sketch how one can predict analytically the severity of the sign problem, as well as the numerically accessible range of baryon densities. I review progress towards the determination of the pseudo-critical temperature T_c(mu), and towards the identification of a possible QCD critical point. Some promising advances with non-standard approaches are reviewed.

  7. The instanton liquid model of QCD

    International Nuclear Information System (INIS)

    Blotz, A.

    1998-01-01

    Within a microscopic model for the non-perturbative vacuum of QCD, hadronic correlation functions are calculated. In the model the vacuum is a statistical, interacting ensemble of instantons and anti-instantons at the scale of Λ QCD . Hadronic two-point as well as three-point correlation functions are evaluated and compared with phenomenological information about the spectra, couplings and form factors. Especially the electro magnetic form factor of the pion is obtained and new predictions for the charm contribution to DIS structure functions are made

  8. Factorization method for simulating QCD at finite density

    International Nuclear Information System (INIS)

    Nishimura, Jun

    2003-01-01

    We propose a new method for simulating QCD at finite density. The method is based on a general factorization property of distribution functions of observables, and it is therefore applicable to any system with a complex action. The so-called overlap problem is completely eliminated by the use of constrained simulations. We test this method in a Random Matrix Theory for finite density QCD, where we are able to reproduce the exact results for the quark number density. (author)

  9. World-Line Formalism: Non-Perturbative Applications

    Directory of Open Access Journals (Sweden)

    Dmitry Antonov

    2016-11-01

    Full Text Available This review addresses the impact on various physical observables which is produced by confinement of virtual quarks and gluons at the level of the one-loop QCD diagrams. These observables include the quark condensate for various heavy flavors, the Yang-Mills running coupling with an infra-red stable fixed point, and the correlation lengths of the stochastic Yang-Mills fields. Other non-perturbative applications of the world-line formalism presented in the review are devoted to the determination of the electroweak phase-transition critical temperature, to the derivation of a semi-classical analogue of the relation between the chiral and the gluon QCD condensates, and to the calculation of the free energy of the gluon plasma in the high-temperature limit. As a complementary result, we demonstrate Casimir scaling of k-string tensions in the Gaussian ensemble of the stochastic Yang-Mills fields.

  10. Aspects of confinement in QCD from lattice simulations

    International Nuclear Information System (INIS)

    Spielmann, Daniel

    2011-01-01

    We study confinement in quantum chromodynamics via numerical simulations in the framework of lattice gauge theory. In Landau gauge, the mechanism of confinement is related to the infrared behavior of the ghost and gluon propagators via the Gribov-Zwanziger and Kugo- Ojima scenarios. These scenarios entail a scaling behavior. Functional methods in the continuum allow both for this behavior and for decoupling solutions, while lattice simulations in three and four dimensions yield only the latter. A possible explanation for this mismatch is based on limitations of standard lattice gauge fixing methods. Hence, we investigate a number of alternative gauge fixing algorithms in pure SU(2) gauge theory in two, three and four dimensions. We find that stochastic quantization yields an infrared behavior of the propagators in agreement with the results of standard procedures, even though the Faddeev-Popov operator spectrum indicates some different properties. In the strong-coupling limit, our results challenge the standard picture. In particular, we find in a non-perturbative completion of Landau gauge an enormous effect of the Gribov ambiguity. It entails that no subset of infrared solutions can be excluded yet. Moreover, we study the gluon propagator with free boundary conditions. On large lattices, the results mostly show the standard behavior. We also examine non-periodic gauge transformations. Furthermore, we analyze two topics related to the phase diagram of QCD. First, we explore the sign problem for fermions on the lattice by simulating the three-dimensional Thirring model with a complex Langevin equation. The algorithm succeeds in yielding a 'Silver Blaze' behavior of observables, but it does not reliably describe the onset to a phase with non-zero density. Second, we determine properties of the deconfinement phase transition of pure SU(2) gauge theory in 2+1 dimensions, like the critical temperature, by means of the gluon propagator in Landau gauge. (orig.)

  11. Aspects of confinement in QCD from lattice simulations

    Energy Technology Data Exchange (ETDEWEB)

    Spielmann, Daniel

    2011-01-12

    We study confinement in quantum chromodynamics via numerical simulations in the framework of lattice gauge theory. In Landau gauge, the mechanism of confinement is related to the infrared behavior of the ghost and gluon propagators via the Gribov-Zwanziger and Kugo- Ojima scenarios. These scenarios entail a scaling behavior. Functional methods in the continuum allow both for this behavior and for decoupling solutions, while lattice simulations in three and four dimensions yield only the latter. A possible explanation for this mismatch is based on limitations of standard lattice gauge fixing methods. Hence, we investigate a number of alternative gauge fixing algorithms in pure SU(2) gauge theory in two, three and four dimensions. We find that stochastic quantization yields an infrared behavior of the propagators in agreement with the results of standard procedures, even though the Faddeev-Popov operator spectrum indicates some different properties. In the strong-coupling limit, our results challenge the standard picture. In particular, we find in a non-perturbative completion of Landau gauge an enormous effect of the Gribov ambiguity. It entails that no subset of infrared solutions can be excluded yet. Moreover, we study the gluon propagator with free boundary conditions. On large lattices, the results mostly show the standard behavior. We also examine non-periodic gauge transformations. Furthermore, we analyze two topics related to the phase diagram of QCD. First, we explore the sign problem for fermions on the lattice by simulating the three-dimensional Thirring model with a complex Langevin equation. The algorithm succeeds in yielding a 'Silver Blaze' behavior of observables, but it does not reliably describe the onset to a phase with non-zero density. Second, we determine properties of the deconfinement phase transition of pure SU(2) gauge theory in 2+1 dimensions, like the critical temperature, by means of the gluon propagator in Landau gauge. (orig.)

  12. Coherent-state representation for the QCD ground state

    International Nuclear Information System (INIS)

    Celenza, L.S.; Ji, C.; Shakin, C.M.

    1987-01-01

    We make use of the temporal gauge to construct a coherent state which is meant to describe the gluon condensate in the QCD vacuum under the assumption that the condensate is in a zero-momentum mode. The state so constructed is a color singlet and will yield finite, nonperturbative vacuum expectation values such as . (This matrix element is found to have a value of about 0.012 GeV 4 in QCD sum-rule studies.)

  13. M{sub b} and f{sub B} from non-perturbatively renormalized HQET with N{sub f} = 2 light quarks

    Energy Technology Data Exchange (ETDEWEB)

    Blossier, Benoit [CNRS et Univ. Paris-Sud XI, Orsay (France). Lab. de Physique Theorique; Bulava, John [CERN, Geneva (Switzerland). Physics Dept.; Della Morte, Michele; Hippel, Georg von [Mainz Univ. (Germany). Inst. fuer Kernphysik; Donnellan, Michael; Simma, Hubert; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). NIC; Fritzsch, Patrick [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Garron, Nicolas [Edinburgh Univ. (United Kingdom). Tait Inst.; Heitger, Jochen [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1

    2011-12-15

    We present an updated analysis of the non-perturbatively renormalized b-quark mass and B meson decay constant based on CLS lattices with two dynamical non-perturbatively improved Wilson quarks. This update incorporates additional light quark masses and lattice spacings in large physical volume to improve chiral extrapolations and to reach the continuum limit. We use Heavy Quark Effective Theory (HQET) including 1/m{sub b} terms with non-perturbative coefficients based on the matching of QCD and HQET developed by the ALPHA collaboration during the past years. (orig.)

  14. Nonperturbative effects in B → Xsl+l- for large dilepton invariant mass

    International Nuclear Information System (INIS)

    Buchalla, G.

    1998-01-01

    The authors consider the calculation of O(Λ QCD 2 /m b 2 ) nonperturbative corrections to B → X s l + l - decay. The analysis confirms the results of Ali et al. for the dilepton invariant mass spectrum, which were in disagreement with an earlier publication, and for the lepton forward-backward asymmetry. The authors also give expressions for the O(Λ QCD 2 /m b 2 ) corrections to the left-right asymmetry. In addition the authors discuss the breakdown of the heavy quark expansion near the point of maximal dilepton invariant mass q 2 and consider a model independent approach to this region using heavy hadron chiral perturbation theory. The modes B → Kl + l - and B → Kπl + l - , which determine the endpoint region of the inclusive decay, are analysed within this framework. An interpolation is suggested between the region of moderately high q 2 , where the heavy quark expansion is still valid, and the vicinity of the endpoint described by chiral perturbation theory. The authors also comment on further nonperturbative effects in B → Kl + l -

  15. A nonperturbative study of quarkonium systems

    International Nuclear Information System (INIS)

    Ma, J.P.; McKellar, H.J.

    1995-01-01

    Using nonrelativistic QCD on the lattice we studied the mass spectrum of quarkonium systems nonperturbatively for a range of the bar quark mass. We determined two products of the matrix elements involved in quarkonium decays and studied the mass dependence of the results. We predict from our calculations the leptonic decay width of Υ, and use the mass dependence to predict the leptonic decay width of J/ψ. These calculations agree with the experimental results. In lattice NRQCD an additional parameter n is introduced, and we study the sensitivity of our results to the choice of n. (authors). 10 refs., 2 figs

  16. QCD improved exclusive rare B-decays at the heavy b-quark limit

    International Nuclear Information System (INIS)

    Liu Dongsheng.

    1993-09-01

    The renormalization effects from the b-quark scale down to the non-perturbative QCD regime are studied for rare B-decays at the heavy b-quark limit. Phenomenological consequences of these effects are investigated. We find that the anomalous scaling behaviour plays a positive role in making non-perturbative model calculations consistent with recent CLEO measurements of B → K*γ. (author). 21 refs, 3 tabs

  17. Non-perturbative investigation of current correlators in twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Petschlies, Marcus

    2013-01-01

    We present an investigation of hadronic current-current correlators based on the first principles of Quantum Chromodynamics. Specifically we apply the non-perturbative methods of twisted mass lattice QCD with dynamical up and down quark taking advantage of its automatic O(a) improvement. As a special application we discuss the calculation of the hadronic leading order contribution to the muon anomalous magnetic moment. The latter is regarded as a promising quantity for the search for physics beyond the standard model. The origin of the strong interest in the muon anomaly lies in the persistent discrepancy between the standard model estimate and its experimental measurement. In the theoretical determination the hadronic leading order part is currently afflicted with the largest uncertainty and a dedicated lattice investigation of the former can be of strong impact on future estimates. We discuss our study of all systematic uncertainties in the lattice calculation, including three lattice volumes, two lattice spacings, pion masses from 650 MeV to 290 MeV and the quark-disconnected contribution. We present a new method for the extrapolation to the physical point that softens the pion mass dependence of a μ hlo and allows for a linear extrapolation with small statistical uncertainty at the physical point. We determine the contribution of up and down quark as a μ hlo (N f =2)=5.69(15)10 -8 . The methods used for the muon are extended to the electron and tau lepton and we find a e hlo (N f =2)=1.512(43)10 -12 and a τ hlo (N f =2)=2.635(54)10 -6 . We estimate the charm contribution to a μ hlo in partially quenched tmLQCD with the result a μ hlo (charm)=1.447(24)(30)10 -9 in very good agreement with a dispersion-relation based result using experimental data for the hadronic R-ratio.

  18. Bridging a gap between continuum-QCD and ab initio predictions of hadron observables

    Energy Technology Data Exchange (ETDEWEB)

    Binosi, Daniele [European Centre for Theoretical Studies in Nuclear Physics and Related Areas - ECT* and Fondazione Bruno Kessler, Villa Tambosi, Strada delle Tabarelle 286, I-38123 Villazzano (Italy); Chang, Lei [CSSM, School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005 (Australia); Papavassiliou, Joannis [Department of Theoretical Physics and IFIC, University of Valencia and CSIC, E-46100, Valencia (Spain); Roberts, Craig D., E-mail: cdroberts@anl.gov [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-03-06

    Within contemporary hadron physics there are two common methods for determining the momentum-dependence of the interaction between quarks: the top-down approach, which works toward an ab initio computation of the interaction via direct analysis of the gauge-sector gap equations; and the bottom-up scheme, which aims to infer the interaction by fitting data within a well-defined truncation of those equations in the matter sector that are relevant to bound-state properties. We unite these two approaches by demonstrating that the renormalisation-group-invariant running-interaction predicted by contemporary analyses of QCD's gauge sector coincides with that required in order to describe ground-state hadron observables using a nonperturbative truncation of QCD's Dyson–Schwinger equations in the matter sector. This bridges a gap that had lain between nonperturbative continuum-QCD and the ab initio prediction of bound-state properties.

  19. Phase transitions: the lattice QCD approach

    International Nuclear Information System (INIS)

    Gavai, R.V.

    1986-01-01

    Recent results in the field of finite temperature lattice quantum chromodynamics (QCD) are presented with special emphasis on comparison of the different methods used to incorporate the dynamical fermions. Attempts to obtain a nonperturbative estimate of the velocity of sound in both the hadronic and quark-gluon phase are summarized along with the results. 15 refs., 7 figs

  20. Second-order QCD analysis of the photon structure function

    International Nuclear Information System (INIS)

    Antoniadis, I.; Grunberg, G.

    1983-01-01

    The QCD predictions for the photon structure function are reexamined with particular emphasis on the small-x behavior. A simple parametrization of the real photon structure function, free of 1/x singularity, is derived. The structure function is found to be sensitive at small x to the non-perturbatively calculable constant term in the n=2 moment, and we show that the problem of a negative structure function can be solved on the basis of the knowledge of this single non-perturbative parameter. (orig.)

  1. Simulations of QCD and QED with C* boundary conditions

    Science.gov (United States)

    Hansen, Martin; Lucini, Biagio; Patella, Agostino; Tantalo, Nazario

    2018-03-01

    We present exploratory results from dynamical simulations of QCD in isolation, as well as QCD coupled to QED, with C* boundary conditions. In finite volume, the use of C* boundary conditions allows for a gauge invariant and local formulation of QED without zero modes. In particular we show that the simulations reproduce known results and that masses of charged mesons can be extracted in a completely gauge invariant way. For the simulations we use a modified version of the HiRep code. The primary features of the simulation code are presented and we discuss some details regarding the implementation of C* boundary conditions and the simulated lattice action. Preprint: CP3-Origins-2017-046 DNRF90, CERN-TH-2017-214

  2. Calculating hadronic properties in strong QCD

    International Nuclear Information System (INIS)

    Pennington, M.R.

    1996-01-01

    This talk gives a brief review of the progress that has been made in calculating the properties of hadrons in strong QCD. In keeping with this meeting I will concentrate on those properties that can be studied with electromagnetic probes. Though perturbative QCD is highly successful, it only applies in a limited kinematic regime, where hard scattering occur, and the quarks move in the interaction region as if they are free, pointlike objects. However, the bulk of strong interactions are governed by the long distance regime, where the strong interaction is strong. It is this regime of length scales of the order of a Fermi, that determines the spectrum of light hadrons and their properties. The calculation of these properties requires an understanding of non-perturbative QCD, of confinement and chiral symmetry breaking. (author)

  3. OpenQ∗D simulation code for QCD+QED

    DEFF Research Database (Denmark)

    Campos, Isabel; Fritzsch, Patrick; Hansen, Martin

    2018-01-01

    The openQ∗D code for the simulation of QCD+QED with C∗ boundary conditions is presented. This code is based on openQCD-1.6, from which it inherits the core features that ensure its efficiency: the locally-deflated SAP-preconditioned GCR solver, the twisted-mass frequency splitting of the fermion....... An alpha version of this code is publicly available and can be downloaded from http://rcstar.web.cern.ch/....

  4. Lattice QCD at finite density. An introductory review

    International Nuclear Information System (INIS)

    Muroya, Shin; Nakamura, Atushi; Nonaka, Chiho; Takaishi, Tetsuya

    2003-01-01

    This is a pedagogical review of the lattice study of finite density QCD. It is intended to provide the minimum necessary content, so that it may be used as an introduction for newcomers to the field and also for those working in nonlattice areas. After a brief introduction in which we discuss the reasons that finite density QCD is an active and important subject, we present the fundamental formulae that are necessary for the treatment given in the following sections. Next, we survey lattice QCD simulational studies of system with small chemical potentials, of which there have been several prominent works reported recently. Then, two-color QCD calculations are discussed, where we are free from the notorious phase problem and have a chance to consider many new features of finite density QCD. Of special note is the result of recent simulations indicating quark pair condensation and the in-medium effect. Tables of SU(3) and SU(2) lattice simulations at finite baryon density are given. In the next section, we survey several related works that may represent a starting point of future development, although some of these works have not attracted much attention yet. This material is described in a pedagogical manner. Starting from a simple 2-d model, we briefly discuss a lattice analysis of the NJL model. We describe a non-perturbative analytic approach, i.e., the strong coupling approximation method and some results. The canonical ensemble approach, instead of the usual canonical ensemble may be another route to reach high density. We examine the density of state method and show that this old idea includes the recently proposed factorization method. An alternative method, the complex Langevin equation, and an interesting model, the finite isospin model, are also discussed. We give brief comments on a partial sum with respect to Z 3 symmetry and the meron-cluster algorithm, which might solve the sign problem partially or completely. In the Appendix, we discuss several

  5. QCD and Light-Front Holography

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.

    2010-10-27

    The soft-wall AdS/QCD model, modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics. The model predicts a zero-mass pion for zero-mass quarks and a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number N. Light-Front Holography maps the amplitudes which are functions of the fifth dimension variable z of anti-de Sitter space to a corresponding hadron theory quantized on the light front. The resulting Lorentz-invariant relativistic light-front wave equations are functions of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. The result is to a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryon light-quark bound states, which in turn predict the behavior of the pion and nucleon form factors. The theory implements chiral symmetry in a novel way: the effects of chiral symmetry breaking increase as one goes toward large interquark separation, consistent with spectroscopic data, and the the hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. The soft-wall model also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function which agrees with the effective coupling {alpha}{sub g1} extracted from the Bjorken sum rule. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also reviewed.

  6. Non-perturbative chiral corrections for lattice QCD

    International Nuclear Information System (INIS)

    Thomas, A.W.; Leinweber, D.B.; Lu, D.H.

    2002-01-01

    We explore the chiral aspects of extrapolation of observables calculated within lattice QCD, using the nucleon magnetic moments as an example. Our analysis shows that the biggest effects of chiral dynamics occur for quark masses corresponding to a pion mass below 600 MeV. In this limited range chiral perturbation theory is not rapidly convergent, but we can develop some understanding of the behaviour through chiral quark models. This model dependent analysis leads us to a simple Pade approximant which builds in both the limits m π → 0 and m π → ∞ correctly and permits a consistent, model independent extrapolation to the physical pion mass which should be extremely reliable. (author)

  7. Non-perturbative test of the Witten-Veneziano formula from lattice QCD

    International Nuclear Information System (INIS)

    Cichy, Krzysztof; Jansen, Karl; Ottnad, Konstantin; Urbach, Carsten; Bonn Univ.

    2015-10-01

    We compute both sides of the Witten-Veneziano formula using lattice techniques. For the one side we perform dedicated quenched simulations and use the spectral projector method to determine the topological susceptibility in the pure Yang-Mills theory. The other side we determine in lattice QCD with N f =2 +1+1 dynamical Wilson twisted mass fermions including for the first time also the flavour singlet decay constant. The Witten-Veneziano formula represents a leading order expression in the framework of chiral perturbation theory and we also employ leading order chiral perturbation theory to relate the flavor singlet decay constant to the relevant decay constant parameters in the quark flavor basis and flavor non-singlet decay constants. After taking the continuum and the SU(2) chiral limits we compare both sides and find good agreement within uncertainties.

  8. Effective field theory approach to parton-hadron conversion in high energy QCD processes

    CERN Document Server

    Kinder-Geiger, Klaus

    1995-01-01

    A QCD based effective action is constructed to describe the dynamics of confinement and symmetry breaking in the process of parton-hadron conversion. The deconfined quark and gluon degrees of freedom of the perturbative QCD vacuum are coupled to color singlet collective fields representing the non-perturbative vacuum with broken scale and chiral symmetry. The effective action recovers QCD with its scale and chiral symmetry properties at short space-time distances, but yields at large distances (r > 1 fm) to the formation of symmetry breaking gluon and quark condensates. The approach is applied to the evolution of a fragmenting q\\bar q pair with its generated gluon distribution, starting from a large hard scale Q^2. The modification of the gluon distribution arising from the coupling to the non-perturbative collective field results eventually in a complete condensation of gluons. Color flux tube configurations of the gluons in between the q\\bar q pair are obtained as solutions of the equations of motion. With ...

  9. QCD in e+e- annihilation

    International Nuclear Information System (INIS)

    Ali, A.

    1981-04-01

    The promise of e + e - annihilation as an ideal laboratory to test Quantum Chromodynamics, QCD, has been the dominating theme in elementary particle physics during the last several years. An attempt is made to partially survey the subject in deep perturbative region in e + e - annihilation where theoretical ambiguities are minimal. Topics discussed include a review of the renormalization group methods relevant for e + e - annihilation, total hadronic cross section, jets and large-psub(T) phenomena, non-perturbative quark and gluon fragmentation effects and analysis of the jet distributions measured at DORIS, SPEAR and PETRA. My hope is to review realistic tests of QCD in e + e - annihilation - as opposed to the ultimate tests, which abound in literature. (orig.)

  10. Higher-Twist Distribution Amplitudes of the K Meson in QCD

    CERN Document Server

    Ball, P; Lenz, A; Ball, Patricia

    2006-01-01

    We present a systematic study of twist-3 and twist-4 light-cone distribution amplitudes of the K meson in QCD. The structure of SU(3)-breaking corrections is studied in detail. Non-perturbative input parameters are estimated from QCD sum rules and renormalons. As a by-product, we give a complete reanalysis of the twist-3 and -4 parameters of the pi-meson distribution amplitudes; some of the results differ from those usually quoted in the literature.

  11. Playing with QCD I: effective field theories

    International Nuclear Information System (INIS)

    Fraga, Eduardo S.

    2009-01-01

    The building blocks of hadrons are quarks and gluons, although color is confined into singlet states. QCD is believed to be the fundamental theory of strong interactions. Its asymptotically free nature puts the vacuum out of reach for perturbation theory. The Lagrangian of QCD and the Feynman rules associated were built by using the Gauge Principle, starting from the quark matter fields and obtaining gluons as connections. A simpler, and sometimes necessary or complementary, approach is provided by effective field theories or effective models, especially when one has to deal with the nonperturbative sector of the theory. (author)

  12. Lattice gauge theory for QCD

    International Nuclear Information System (INIS)

    DeGrand, T.

    1997-01-01

    These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and α s (M z ), and B-anti B mixing. 67 refs., 36 figs

  13. QCD contributions to vacuum polarization

    International Nuclear Information System (INIS)

    Reinders, L.J.; Rubinstein, H.R.; Yazaki, S.

    1980-01-01

    We have computed to lowest non-trivial order the perturbative and non-perturbative contributions to the vacuum polarization from all currents up to and including spin 2 ++ . These expressions are important, for example to evaluate QCD sum rules for heavy and light quark systems as shown by Shifman, Vainshtein and Zakharov. Most of the known ones are verified, one slightly changed, and many new ones are displayed. (orig.)

  14. Bootstrap calculation of the dynamical quark mass in QCD4 at finite temperature

    International Nuclear Information System (INIS)

    Cabo, A.; Kalashnikov, O.K.; Veliev, E.Kh.

    1988-01-01

    Nonperturbative calculations of the dynamical quark mass m(T) are given in QCD 4 , based on the bootstrap solution of the Schwinger-Dyson equation for the quark Green function at finite temperatures. A closed nonlinear equation is obtained for m(T) whose solution is found under some simplifying assumptions. We used a particular approximation for the effective charge and the nonperturbative expressions of the gluon magnetic and electric masses. The singular behavior of m(T) is established and its parameters are determined numerically. The singularity found is shown to correctly reproduce the chiral phase transition and the temperature limits obtained for m(T) are qualitatively correct. The complete phase diagram of QCD 4 in the (μ,T) plane is briefly discussed. (orig.)

  15. Two-color lattice QCD with staggered quarks

    Energy Technology Data Exchange (ETDEWEB)

    Scheffler, David

    2015-07-20

    The study of quantum chromodynamics (QCD) at finite temperature and density provides important contributions to the understanding of strong-interaction matter as it is present e.g. in nuclear matter and in neutron stars or as produced in heavy-ion collision experiments. Lattice QCD is a non-perturbative approach, where equations of motion for quarks and gluons are discretized on a finite space-time lattice. The method successfully describes the behavior of QCD in the vacuum and at finite temperature, however it cannot be applied to finite baryon density due to the fermion sign problem. Various QCD-like theories, that offer to draw conclusions about QCD, allow simulations also at finite densities. In this work we investigate two-color QCD as a popular example of a QCD-like theory free from the sign problem with methods from lattice gauge theory. For the generation of gauge configurations with two dynamical quark flavors in the staggered formalism with the ''rooting trick'' we apply the Rational Hybrid Monte Carlo (RHMC) algorithm. We carry out essential preparatory work for future simulations at finite density. As a start, we concentrate on the calculation of the effective potential for the Polyakov loop, which is an order parameter for the confinement-deconfinement transition, in dependence of the temperature and quark mass. It serves as an important input for effective models of QCD. We obtain the effective potential via the histogram method from local distributions of the Polyakov loop. To study the influence of dynamical quarks on gluonic observables, the simulations are performed with large quark masses and are compared to calculations in the pure gauge theory. In the second part of the thesis we examine aspects of the chiral phase transition along the temperature axis. The symmetry group of chiral symmetry in two-color QCD is enlarged to SU(2N{sub f}). Discretized two-color QCD in the staggered formalism exhibits a chiral symmetry breaking

  16. Towards four-flavour dynamical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Herdoiza, Gregorio [DESY, Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC; Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica e Inst. de Fiscia Teorica

    2011-03-15

    The inclusion of physical effects from sea quarks has been one of the main advances in lattice QCD simulations over the last few years. We report on recent studies with four flavours of dynamical quarks and address some of the potential issues arising in this new setup. First results for physical observables in the light, strange and charm sectors are presented together with the status of dedicated simulations to perform the non-perturbative renormalisation in mass-independent schemes. (orig.)

  17. Hard And Soft QCD Physics In ATLAS

    Directory of Open Access Journals (Sweden)

    Adomeit Stefanie

    2014-04-01

    Full Text Available Hard and soft QCD results using proton-proton collisions recorded with the ATLAS detector at the LHC are reported. Charged-particle distributions and forward-backward correlations have been studied in low-luminosity minimum bias data taken at centre-of-mass energies of √s = 0.9, 2.36 and 7 TeV. Recent measurements on underlying event characteristics using charged-particle jets are also presented. The results are tested against various phenomenological soft QCD models implemented in Monte-Carlo generators. A summary of hard QCD measurements involving high transverse momentum jets is also given. Inclusive jet and dijet cross-sections have been measured at a centre-of-mass energy of 7 TeV and are compared to expectations based on NLO pQCD calculations corrected for non-perturbative effects as well as to NLO Monte Carlo predictions. Recent studies exploiting jet substructure techniques to identify hadronic decays of boosted massive particles are reported.

  18. Lattice gauge theory for QCD

    Energy Technology Data Exchange (ETDEWEB)

    DeGrand, T. [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics

    1997-06-01

    These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.

  19. Hadronic {tau} decays and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Davier, M

    1999-12-01

    Hadronic decays of the {tau} lepton provide a clean source to study hadron dynamics in an energy regime dominated by resonances, with the interesting information captured in the spectral functions. Recent results on exclusive channels are reviewed. Inclusive spectral functions are the basis for QCD analyses, delivering an accurate determination of the strong coupling constant and quantitative information on nonperturbative contributions. Strange decays yield a determination of the strange quark mass. (author)

  20. Hadronic τ decays and QCD

    International Nuclear Information System (INIS)

    Davier, M.

    1999-12-01

    Hadronic decays of the τ lepton provide a clean source to study hadron dynamics in an energy regime dominated by resonances, with the interesting information captured in the spectral functions. Recent results on exclusive channels are reviewed. Inclusive spectral functions are the basis for QCD analyses, delivering an accurate determination of the strong coupling constant and quantitative information on nonperturbative contributions. Strange decays yield a determination of the strange quark mass. (author)

  1. Moments of nucleon generalized parton distributions from lattice QCD

    International Nuclear Information System (INIS)

    Alexandrou, C.; Cyprus Institute, Nicosia; Carbonell, J.; Harraud, P.A.; Papinutto, M.; Constantinou, M.; Kallidonis, C.; Guichon, P.; Jansen, K.; Korzec, T.; Humboldt Univ. Berlin

    2011-07-01

    We present results on the lower moments of the nucleon generalized parton distributions within lattice QCD using two dynamical flavors of degenerate twisted mass fermions. Our simulations are performed on lattices with three different values of the lattice spacings, namely a=0.089 fm, a=0.070 fm and a=0.056 fm, allowing the investigation of cut-off effects. The volume dependence is examined using simulations on two lattices of spatial length L=2.1 fm and L=2.8 fm. The simulations span pion masses in the range of 260-470 MeV. Our results are renormalized nonperturbatively and the values are given in the MS scheme at a scale μ=2 GeV. They are chirally extrapolated to the physical point in order to compare with experiment. The consequences of these results on the spin carried by the quarks in the nucleon are investigated. (orig.)

  2. Heterotic Pomeron: high energy hadronic collisions in QCD

    International Nuclear Information System (INIS)

    Chung-I Tan

    1993-01-01

    A unified treatment of high energy collisions in QCD is presented. Using a probabilistic approach, both perturbative (hard) and non-perturbative (soft) components are incorporated in a consistent fashion, leading to a ''Heterotic Pomeron''. As a Regge trajectory, it is non linear, approaching 1 in the limit t → -∞. 2 tabs., 9 refs

  3. QCD: color or glow

    International Nuclear Information System (INIS)

    Reya, E.

    1982-01-01

    The some of motivations for color and the numerous qualitative successes of QCD are presented. Non-leading higher order contributions to the (x, Q 2 )-dependence of scaling violations of non-singlet and singlet structure functions are discussed, especially non-perturbative correction to deep inelastic processes such as higher twist contributions. Finally the topic of how to account theoretically for the existence of free fractionally charged particles by concentrating mainly on spontaneously breaking SU(3) color is presented. (M.F.W.)

  4. Masses and couplings of open beauty states in QCD

    International Nuclear Information System (INIS)

    Rubinstein, H.R.; Reinders, L.J.; Yazaki, S.

    1981-05-01

    Masses and couplings of open beauty states (strange and non-strange) with Jsup(PC) = 0 ++ , 0 -+ , 1 -- . and 1 ++ are calculated using the QCD sum rule formalism. Non-perturbative effects due to quark and gluon condensate operators are shown to be important, confirming earlier calculations for equal quark mass systems. (author)

  5. Winter Workshop on Recent QCD Advances at the LHC, Slides of the presentations

    International Nuclear Information System (INIS)

    D'Enterria, D.; Skands, P.; Siodmok, A.K.; Hoeth, H.; Jung, H.; Caforio, D.; Poghosyan, M.; Aquines, O.; Mitsuka, G.; Toia, A.; Jalilian-Marian, J.; Watt, G.; Guzzi, M.; Sarkar, A.; Paukkunen, H.; Kucharczyk, M.; Gouzevitch, M.; Bartels, J.; Lopez Albacete, J.; Teixeira de Almeida Milhano, G.; Marquet, C.; Kosower, D.; Guillet, J.P.; Arleo, F.; Hance, M.; Kolberg, T.R.; Weber, M.A.; Delsart, P.A.; Hinzmann, A.; Vincter, M.; Soyez, G.; Busch, O.; Nguyen, M.; Rybar, M.; Schienbein, I.; Lansberg, J.P.; Britsch, M.; Dorigo, T.; De Capua, S.; Greco, V.; Prino, F.; Panikashvili, N.; Park, W.J.; Ulrich, R.M.; Pecjak, B.; Silvestre, C.; Van Eldik, N.

    2012-01-01

    With the recent startup of operation at the Large Hadron Collider (LHC), the physics of the strong interaction described by the theory of Quantum Chromodynamics (QCD) explores a new territory in proton-proton and Pb-Pb collisions at energies never reached before: √(s)=7 TeV for p-p collisions and √=2.76 TeV for Pb-Pb collisions. The topics of the workshop are organized around 3 main axes: perturbative QCD (including jets, high-P T , direct photons, heavy quarks, quarkonia,...), QCD in the non-perturbative regime (including inclusive hadron production, diffraction,...) and low-x QCD. This document gathers the slides of all the presentations

  6. Probing QCD in low energy anti pp collisions

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1986-06-01

    A number of exclusive and inclusive antiproton reactions are discussed which could provide useful constraints or test novel features of quantum chromodynamics in the intermediate momentum transfer domain involving both perturbative and non-perturbative dynamics. High momentum transfer reactions are briefly reviewed. Inclusive antiproton reactions and the QCD critical length, QCD predictions for proton-antiproton exclusive processes, and studies of the Compton amplitude in proton-antiproton annihilation are covered. Testing hadron helicity conservation in heavy quark resonance is discussed. Also covered are heavy hadron pair production in proton-antiproton exclusive interactions, exclusive nuclear reactions, and quasi-exclusive nuclear processes

  7. Structure of Nonlocal quark vacuum condensate in non-perturbative QCD vacuum

    International Nuclear Information System (INIS)

    Xiang Qianfei; Ma Weixing; Zhou Lijuan; Jiang Weizhou

    2014-01-01

    Based on the Dyson-Schwinger Equations (DSEs) with the rainbow truncation, and Operator Product Expansion, the structure of nonlocal quark vacuum condensate in QCD, described by quark self-energy functions A_f and B_f given usually by the solutions of the DSEs of quark propagator, is predicted numerically. We also calculate the local quark vacuum condensate, quark-gluon mixed local vacuum condensate, and quark virtuality. The self-energy functions A_f and B_f are given by the parameterized quark propagator functions σ_v"f (p"2) and σ_s"f (p"2) of Roberts and Williams, instead of the numerical solutions of the DSEs. Our calculated results are in reasonable agreement with those of QCD sum rules, Lattice QCD calculations, and instanton model predictions, although the resulting local quark vacuum condensate for light quarks, u, d, s, are a little bit larger than those of the above theoretical predictions. We think the differences are caused by model dependence. The larger of strange quark vacuum condensate than u, d quark is due to the s quark mass which is more larger than u, d quark masses. Of course, the Roberts-Williams parameterized quark propagator is an empirical formulism, which approximately describes quark propagation. (authors)

  8. Investigating the critical slowing down of QCD simulations

    International Nuclear Information System (INIS)

    Schaefer, Stefan

    2009-12-01

    Simulations of QCD are known to suffer from serious critical slowing down towards the continuum limit. This is particularly prominent in the topological charge. We investigate the severeness of the problem in the range of lattice spacings used in contemporary simulations and propose a method to give more reliable error estimates. (orig.)

  9. The ADS/QCD correspondence and exclusive processes

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.; De Teramond, Guy F.; Deur, Alexandre

    2011-01-01

    The AdS/CFT correspondence between theories in AdS space and conformal field theories in physical space-time provides an analytic, semi-classical, color-confining model for strongly-coupled QCD. The soft-wall AdS/QCD model, modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics at zero quark mass, including a zero-mass pion and meson and baryon Regge spectra of linear trajectories with the same slope in orbital angular momentum L and radial quantum number n. One also predicts the form of the non-perturbative effective coupling alpha AdS/s (Q) and its Beta-function which agrees with the effective coupling alphag1 extracted from the Bjorken sum rule. Light-front holography, which connects the fifth-dimensional coordinate of AdS space z to an invariant impact separation variable zeta, allows one to compute the analytic form of the frame-independent light-front wave functions, the fundamental entities which encode hadron properties as well as decay constants, form factors, deeply-virtual Compton scattering, exclusive heavy hadron decays, and other exclusive scattering amplitudes. One thus obtains a relativistic description of hadrons in QCD at the amplitude level with dimensional counting for exclusive reactions at high momentum transfer. As specific examples, we discuss the behavior of the pion and nucleon form factors in the space-like and time-like regions. We also review the phenomenology of exclusive processes including some anomalous empirical results.

  10. QCD effects to Bjorken unpolarized sum rule for νN deep-inelastic scattering

    International Nuclear Information System (INIS)

    Alekhin, S I; Kataev, A L

    2003-01-01

    The possibility of the first measurement of Bjorken unpolarized sum rule for F 1 structure function of νN deep-inelastic scattering at neutrino factories is commented. The brief summary of various theoretical contributions to this sum rule is given. Using the next-to-leading set of parton distributions functions, we simulate the expected Q 2 -behaviour and emphasize that its measurement can allow us to determine the value of the QCD strong coupling constant α s with reasonable theoretical uncertainty, dominated by the ambiguity in the existing estimates of the twist-4 non-perturbative 1/Q 2 -effect

  11. Critical slowing down and error analysis in lattice QCD simulations

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Stefan [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Sommer, Rainer; Virotta, Francesco [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2010-09-15

    We study the critical slowing down towards the continuum limit of lattice QCD simulations with Hybrid Monte Carlo type algorithms. In particular for the squared topological charge we find it to be very severe with an effective dynamical critical exponent of about 5 in pure gauge theory. We also consider Wilson loops which we can demonstrate to decouple from the modes which slow down the topological charge. Quenched observables are studied and a comparison to simulations of full QCD is made. In order to deal with the slow modes in the simulation, we propose a method to incorporate the information from slow observables into the error analysis of physical observables and arrive at safer error estimates. (orig.)

  12. Critical slowing down and error analysis in lattice QCD simulations

    International Nuclear Information System (INIS)

    Schaefer, Stefan; Sommer, Rainer; Virotta, Francesco

    2010-09-01

    We study the critical slowing down towards the continuum limit of lattice QCD simulations with Hybrid Monte Carlo type algorithms. In particular for the squared topological charge we find it to be very severe with an effective dynamical critical exponent of about 5 in pure gauge theory. We also consider Wilson loops which we can demonstrate to decouple from the modes which slow down the topological charge. Quenched observables are studied and a comparison to simulations of full QCD is made. In order to deal with the slow modes in the simulation, we propose a method to incorporate the information from slow observables into the error analysis of physical observables and arrive at safer error estimates. (orig.)

  13. Deflation acceleration of lattice QCD simulations

    International Nuclear Information System (INIS)

    Luescher, Martin

    2007-01-01

    Close to the chiral limit, many calculations in numerical lattice QCD can potentially be accelerated using low-mode deflation techniques. In this paper it is shown that the recently introduced domain-decomposed deflation subspaces can be propagated along the field trajectories generated by the Hybrid Monte Carlo (HMC) algorithm with a modest effort. The quark forces that drive the simulation may then be computed using a deflation-accelerated solver for the lattice Dirac equation. As a consequence, the computer time required for the simulations is significantly reduced and an improved scaling behaviour of the simulation algorithm with respect to the quark mass is achieved

  14. Deflation acceleration of lattice QCD simulations

    CERN Document Server

    Lüscher, Martin

    2007-01-01

    Close to the chiral limit, many calculations in numerical lattice QCD can potentially be accelerated using low-mode deflation techniques. In this paper it is shown that the recently introduced domain-decomposed deflation subspaces can be propagated along the field trajectories generated by the Hybrid Monte Carlo (HMC) algorithm with a modest effort. The quark forces that drive the simulation may then be computed using a deflation-accelerated solver for the lattice Dirac equation. As a consequence, the computer time required for the simulations is significantly reduced and an improved scaling behaviour of the simulation algorithm with respect to the quark mass is achieved.

  15. Meson widths and form factor at intermediate momentum transfer in nonperturbative QCD

    International Nuclear Information System (INIS)

    Ioffe, B.L.; Smilga, A.V.

    1982-01-01

    A general method is proposed for the QCD based calculations of form factors at intermediate momentum transfer Q 2 and of the partial widths of the low-lying meson resonances. The basic idea is to use the QCD sum rules for the vertex functions. With this method the pion electromagnetic form factor along with electromagnetic form factors of rho- and A 1 mesons and transition form factors γπ → A 1 at 0.5 2 2 are calculated. The widths rho+2π and A 1 → rhoπ are also determined. +.he results are in a good agreement with experiment

  16. Multiplicity and Underlying Event in ALICE: as measurements and as tools to probe QCD arXiv

    CERN Document Server

    INSPIRE-00361691

    With the high collision energies at the LHC, the contributions to particle production from hard-QCD processes increase, but it remains dominated by soft-QCD processes. Such processes challenge the theoretical models, since they are described by non-perturbative phenomenology. A selection of the most recent ALICE measurements of charged-particle multiplicities and the Underlying Event will be presented, focusing on model comparisons. A summary of the current understanding of soft-QCD processes will be discussed, evaluating possible ways to further constrain theory.

  17. Towards the petaflop for Lattice QCD simulations the PetaQCD project

    International Nuclear Information System (INIS)

    D'Auriac, Jean-Christian Angles; Carbonell, Jaume; Barthou, Denis

    2010-01-01

    The study and design of a very ambitious petaflop cluster exclusively dedicated to Lattice QCD simulations started in early '08 among a consortium of 7 laboratories (IN2P3, CNRS, INRIA, CEA) and 2 SMEs. This consortium received a grant from the French ANR agency in July '08, and the PetaQCD project kickoff took place in January '09. Building upon several years of fruitful collaborative studies in this area, the aim of this project is to demonstrate that the simulation of a 256 x 128 3 lattice can be achieved through the HMC/ETMC software, using a machine with efficient speed/cost/reliability/power consumption ratios. It is expected that this machine can be built out of a rather limited number of processors (e.g. between 1000 and 4000), although capable of a sustained petaflop CPU performance. The proof-of-concept should be a mock-up cluster built as much as possible with off-the-shelf components, and 2 particularly attractive axis will be mainly investigated, in addition to fast all-purpose multi-core processors: the use of the new brand of IBM-Cell processors (with on-chip accelerators) and the very recent Nvidia GP-GPUs (off-chip co-processors). This cluster will obviously be massively parallel, and heterogeneous. Communication issues between processors, implied by the Physics of the simulation and the lattice partitioning, will certainly be a major key to the project.

  18. Conformal Aspects of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S

    2003-11-19

    Theoretical and phenomenological evidence is now accumulating that the QCD coupling becomes constant at small virtuality; i.e., {alpha}{sub s}(Q{sup 2}) develops an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. For example, the hadronic decays of the {tau} lepton can be used to determine the effective charge {alpha}{sub {tau}}(m{sub {tau}{prime}}{sup 2}) for a hypothetical {tau}-lepton with mass in the range 0 < m{sub {tau}{prime}} < m{sub {tau}}. The {tau} decay data at low mass scales indicates that the effective charge freezes at a value of s = m{sub {tau}{prime}}{sup 2} of order 1 GeV{sup 2} with a magnitude {alpha}{sub {tau}} {approx} 0.9 {+-} 0.1. The near-constant behavior of effective couplings suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer and why there are no significant running coupling corrections to quark counting rules for exclusive processes. The AdS/CFT correspondence of large N{sub c} supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time also has interesting implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for exclusive processes and light-front wavefunctions. The utility of light-front quantization and light-front Fock wavefunctions for analyzing nonperturbative QCD and representing the dynamics of QCD bound states is also discussed.

  19. AdS/QCD, Light-Front Holography, and Sublimated Gluons

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC; de Teramond, Guy F.; /Costa Rica U.

    2012-02-16

    The gauge/gravity duality leads to a simple analytical and phenomenologically compelling nonperturbative approximation to the full light-front QCD Hamiltonian - 'Light-Front Holography', which provides a Lorentz-invariant first-approximation to QCD, and successfully describes the spectroscopy of light-quark meson and baryons, their elastic and transition form factors, and other hadronic properties. The bound-state Schroedinger and Dirac equations of the soft-wall AdS/QCD model predict linear Regge trajectories which have the same slope in orbital angular momentum L and radial quantum number n for both mesons and baryons. Light-front holography connects the fifth-dimensional coordinate of AdS space z to an invariant impact separation variable {zeta} in 3+1 space at fixed light-front time. A key feature is the determination of the frame-independent light-front wavefunctions of hadrons - the relativistic analogs of the Schroedinger wavefunctions of atomic physics which allow one to compute form factors, transversity distributions, spin properties of the valence quarks, jet hadronization, and other hadronic observables. One thus obtains a one-parameter color-confining model for hadron physics at the amplitude level. AdS/QCD also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function with an infrared fixed point which agrees with the effective coupling a{sub g1} (Q{sup 2}) extracted from measurements of the Bjorken sum rule below Q{sup 2} < 1 GeV{sup 2}. This is consistent with a flux-tube interpretation of QCD where soft gluons with virtualities Q{sup 2} < 1 GeV{sup 2} are sublimated into a color-confining potential for quarks. We discuss a number of phenomenological hadronic properties which support this picture.

  20. Non-perturbative renormalization of three-quark operators

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, Meinulf [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, Roger [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Kaltenbrunner, Thomas [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)

    2008-10-15

    High luminosity accelerators have greatly increased the interest in semi-exclusive and exclusive reactions involving nucleons. The relevant theoretical information is contained in the nucleon wavefunction and can be parametrized by moments of the nucleon distribution amplitudes, which in turn are linked to matrix elements of local three-quark operators. These can be calculated from first principles in lattice QCD. Defining an RI-MOM renormalization scheme, we renormalize three-quark operators corresponding to low moments non-perturbatively and take special care of the operator mixing. After performing a scheme matching and a conversion of the renormalization scale we quote our final results in the MS scheme at {mu}=2 GeV. (orig.)

  1. Exactly soluble QCD and confinement of quarks

    International Nuclear Information System (INIS)

    Rusakov, B.

    1997-01-01

    An exactly soluble non-perturbative model of the pure gauge QCD is derived as a weak coupling limit of the lattice theory in plaquette formulation [B. Rusakov, Phys. Lett. B 398 (1997) 331]. The model represents QCD as a theory of the weakly interacting field strength fluxes. The area law behavior of the Wilson loop average is a direct result of this representation: the total flux through macroscopic loop is the additive (due to the weakness of the interaction) function of the elementary fluxes. The compactness of the gauge group is shown to be the factor which prevents the elementary fluxes contributions from cancellation. There is no area law in the non-compact theory. (orig.)

  2. The running QCD coupling in the pre-asymptotic region

    Energy Technology Data Exchange (ETDEWEB)

    Burgio, G.; Di Renzo, F.; Parrinello, C.; Pittori, C

    1999-03-01

    We study deviations from the perturbative asymptotic behaviour in the running QCD coupling by analysing non-perturbative measurements of {alpha}{sub s}(p) at low momenta (p {approx} 2 GeV) as obtained from the lattice three-gluon vertex. Our exploratory study provides some evidence for power corrections to the perturbative running proportional to 1/p{sup 2}.

  3. Perturbative QCD Lagrangian at large distances and stochastic dimensionality reduction. Pt. 2

    International Nuclear Information System (INIS)

    Shintani, M.

    1986-11-01

    Using the method of stochastic dimensional reduction, we derive a four-dimensional quantum effective Lagrangian for the classical Yang-Mills system coupled to the Gaussian white noise. It is found that the Lagrangian coincides with the perturbative QCD at large distances constructed in our previous paper. That formalism is based on the local covariant operator formalism which maintains the unitarity of the S-matrix. Furthermore, we show the non-perturbative equivalence between super-Lorentz invariant sectors of the effective Lagrangian and two dimensional QCD coupled to the adjoint pseudo-scalars. This implies that stochastic dimensionality reduction by two is approximately operative in QCD at large distances. (orig.)

  4. Cluster computing for lattice QCD simulations

    International Nuclear Information System (INIS)

    Coddington, P.D.; Williams, A.G.

    2000-01-01

    Full text: Simulations of lattice quantum chromodynamics (QCD) require enormous amounts of compute power. In the past, this has usually involved sharing time on large, expensive machines at supercomputing centres. Over the past few years, clusters of networked computers have become very popular as a low-cost alternative to traditional supercomputers. The dramatic improvements in performance (and more importantly, the ratio of price/performance) of commodity PCs, workstations, and networks have made clusters of off-the-shelf computers an attractive option for low-cost, high-performance computing. A major advantage of clusters is that since they can have any number of processors, they can be purchased using any sized budget, allowing research groups to install a cluster for their own dedicated use, and to scale up to more processors if additional funds become available. Clusters are now being built for high-energy physics simulations. Wuppertal has recently installed ALiCE, a cluster of 128 Alpha workstations running Linux, with a peak performance of 158 G flops. The Jefferson Laboratory in the US has a 16 node Alpha cluster and plans to upgrade to a 256 processor machine. In Australia, several large clusters have recently been installed. Swinburne University of Technology has a cluster of 64 Compaq Alpha workstations used for astrophysics simulations. Early this year our DHPC group constructed a cluster of 116 dual Pentium PCs (i.e. 232 processors) connected by a Fast Ethernet network, which is used by chemists at Adelaide University and Flinders University to run computational chemistry codes. The Australian National University has recently installed a similar PC cluster with 192 processors. The Centre for the Subatomic Structure of Matter (CSSM) undertakes large-scale high-energy physics calculations, mainly lattice QCD simulations. The choice of the computer and network hardware for a cluster depends on the particular applications to be run on the machine. Our

  5. The AdS/QCD Correspondence and Exclusive Processes

    International Nuclear Information System (INIS)

    Brodsky, Stanley

    2010-01-01

    The AdS/CFT correspondence between theories in AdS space and conformal field theories in physical space-time provides an analytic, semi-classical, color-confining model for strongly-coupled QCD. The soft-wall AdS/QCD model modified by a positive-sign dilaton metric leads to a remarkable one-parameter description of nonperturbative hadron dynamics at zero quark mass, including a zero-mass pion and a Regge spectrum of linear trajectories with the same slope in orbital angular momentum L and radial quantum number n for both mesons and baryons. One also predicts the form of the non-perturbative effective coupling α s AdS (q) and its β-function which agrees with the effective coupling α ga extracted from the Bjorken sum rule. Light-front holography, which connects the fifth-dimensional coordinate of AdS space z to an invariant impact separation variable ζ, allows one to compute the analytic form of the frame-independent light-front wavefunctions, the fundamental entities which encode hadron properties as well as decay constants, form factors, deeply virtual Compton scattering, exclusive heavy hadron decays and other exclusive scattering amplitudes. One thus obtains a relativistic description of hadrons in QCD at the amplitude level with dimensional counting for hard exclusive reactions at high momentum transfer. As specific examples we discuss the behavior of the pion and nucleon form factors in the space-like and time-like regions. We also review the phenomenology of exclusive processes including some anomalous empirical results.

  6. Gluon and ghost propagator studies in lattice QCD at finite temperature

    International Nuclear Information System (INIS)

    Aouane, Rafik

    2013-01-01

    Gluon and ghost propagators in quantum chromodynamics (QCD) computed in the infrared momentum region play an important role to understand quark and gluon confinement. They are the subject of intensive research thanks to non-perturbative methods based on Dyson-Schwinger (DS) and functional renormalization group (FRG) equations. Moreover, their temperature behavior might also help to explore the chiral and deconfinement phase transition or crossover within QCD at non-zero temperature. Our prime tool is the lattice discretized QCD (LQCD) providing a unique ab-initio non-perturbative approach to deal with the computation of various observables of the hadronic world. We investigate the temperature dependence of Landau gauge gluon and ghost propagators in pure gluodynamics and in full QCD. Regarding the gluon propagator, we compute its longitudinal D L as well its transversal D T components. The aim is to provide a data set in terms of fitting formulae which can be used as input for DS (or FRG) equations. We deal with full (N f =2) LQCD with the twisted mass fermion discretization. We employ gauge field configurations provided by the tmfT collaboration for temperatures in the crossover region and for three fixed pion mass values in the range [300,500] MeV. Finally, within SU(3) pure gauge theory (at T=0) we compute the Landau gauge gluon propagator according to different gauge fixing criteria. Our goal is to understand the influence of gauge copies with minimal (non-trivial) eigenvalues of the Faddeev-Popov operator.

  7. Matching of heavy-light flavour currents between HQET at order 1/m and QCD. I. Strategy and tree-level study

    Energy Technology Data Exchange (ETDEWEB)

    Della Morte, Michele [Instituto de Fisica Corpuscular IFIC (CSIC), Paterna (Spain); Dooling, Samantha; Heitger, Jochen [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Hesse, Dirk [Parma Univ. degli Studi (Italy); Simma, Hubert [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Collaboration: ALPHA Collaboration

    2013-12-15

    We present a strategy how to match the full set of components of the heavy-light axial and vector currents in Heavy Quark Effective Theory (HQET), up to and including 1/m{sub h}-corrections, to QCD. While the ultimate goal is to apply these matching conditions non-perturbatively, in this study we first have implemented them at tree-level, in order to find good choices of the matching observables with small O(1/m{sup 2}{sub h}) contributions. They can later be employed in the non-perturbative matching procedure which is a crucial part of precision HQET computations of semileptonic decay form factors in lattice QCD.

  8. Non-perturbative computation of the strong coupling constant on the lattice

    International Nuclear Information System (INIS)

    Sommer, Rainer; Humboldt-Universitaet, Berlin; Wolff, Ulli

    2015-01-01

    We review the long term project of the ALPHA collaboration to compute in QCD the running coupling constant and quark masses at high energy scales in terms of low energy hadronic quantities. The adapted techniques required to numerically carry out the required multiscale non-perturbative calculation with our special emphasis on the control of systematic errors are summarized. The complete results in the two dynamical flavor approximation are reviewed and an outlook is given on the ongoing three flavor extension of the programme with improved target precision.

  9. QCD at low Q2 - a correspondence relation for moments of structure functions

    International Nuclear Information System (INIS)

    Schrempp, B.; Schrempp, F.

    1980-01-01

    The precocious validity of QCD predictions in deep inelastic lepton nucleon scattering and e + e - annihilation is interpreted as a signal for an underlying 'correspondence principle' relating perturbative and nonperturbative physics on the Q 2 average. Correspondence relations for nonsinglet moments of deep inelastic structure functions are formulated, discussed and successfully tested against experiment. The relations provide an independent determination of the QCD Λ-parameter from low Q 2 data in perfect agreement with results from large Q 2 analyses. (author)

  10. Hadronic and nuclear interactions in QCD

    International Nuclear Information System (INIS)

    1982-01-01

    Despite the evidence that QCD - or something close to it - gives a correct description of the structure of hadrons and their interactions, it seems paradoxical that the theory has thus far had very little impact in nuclear physics. One reason for this is that the application of QCD to distances larger than 1 fm involves coherent, non-perturbative dynamics which is beyond present calculational techniques. For example, in QCD the nuclear force can evidently be ascribed to quark interchange and gluon exchange processes. These, however, are as complicated to analyze from a fundamental point of view as is the analogous covalent bond in molecular physics. Since a detailed description of quark-quark interactions and the structure of hadronic wavefunctions is not yet well-understood in QCD, it is evident that a quantitative first-principle description of the nuclear force will require a great deal of theoretical effort. Another reason for the limited impact of QCD in nuclear physics has been the conventional assumption that nuclear interactions can for the most part be analyzed in terms of an effective meson-nucleon field theory or potential model in isolation from the details of short distance quark and gluon structure of hadrons. These lectures, argue that this view is untenable: in fact, there is no correspondence principle which yields traditional nuclear physics as a rigorous large-distance or non-relativistic limit of QCD dynamics. On the other hand, the distinctions between standard nuclear physics dynamics and QCD at nuclear dimensions are extremely interesting and illuminating for both particle and nuclear physics

  11. QCD factorizations in γ*γ*->ρL0ρL0

    International Nuclear Information System (INIS)

    Pire, B.; Segond, M.; Szymanowski, L.; Wallon, S.

    2006-01-01

    We calculate the lowest order QCD amplitude, i.e. the quark exchange contribution, to the forward production amplitude of a pair of longitudinally polarized ρ mesons in the scattering of two virtual photons γ*(Q 1 )γ*(Q 2 )->ρ L 0 ρ L 0 . We show that the scattering amplitude simultaneously factorizes in two quite different ways: the part with transverse photons is described by the QCD factorization formula involving the generalized distribution amplitude of two final ρ mesons, whereas the part with longitudinally polarized photons takes the QCD factorized form with the γ L *->ρ L 0 transition distribution amplitude. Perturbative expressions for these, in general, non-perturbative functions are obtained in terms of the ρ-meson distribution amplitude

  12. Gluon and ghost correlation functions of 2-color QCD at finite density

    Science.gov (United States)

    Hajizadeh, Ouraman; Boz, Tamer; Maas, Axel; Skullerud, Jon-Ivar

    2018-03-01

    2-color QCD, i. e. QCD with the gauge group SU(2), is the simplest non-Abelian gauge theory without sign problem at finite quark density. Therefore its study on the lattice is a benchmark for other non-perturbative approaches at finite density. To provide such benchmarks we determine the minimal-Landau-gauge 2-point and 3-gluon correlation functions of the gauge sector and the running gauge coupling at finite density. We observe no significant effects, except for some low-momentum screening of the gluons at and above the supposed high-density phase transition.

  13. Gluon and ghost propagator studies in lattice QCD at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Aouane, Rafik

    2013-04-29

    Gluon and ghost propagators in quantum chromodynamics (QCD) computed in the infrared momentum region play an important role to understand quark and gluon confinement. They are the subject of intensive research thanks to non-perturbative methods based on Dyson-Schwinger (DS) and functional renormalization group (FRG) equations. Moreover, their temperature behavior might also help to explore the chiral and deconfinement phase transition or crossover within QCD at non-zero temperature. Our prime tool is the lattice discretized QCD (LQCD) providing a unique ab-initio non-perturbative approach to deal with the computation of various observables of the hadronic world. We investigate the temperature dependence of Landau gauge gluon and ghost propagators in pure gluodynamics and in full QCD. Regarding the gluon propagator, we compute its longitudinal D{sub L} as well its transversal D{sub T} components. The aim is to provide a data set in terms of fitting formulae which can be used as input for DS (or FRG) equations. We deal with full (N{sub f}=2) LQCD with the twisted mass fermion discretization. We employ gauge field configurations provided by the tmfT collaboration for temperatures in the crossover region and for three fixed pion mass values in the range [300,500] MeV. Finally, within SU(3) pure gauge theory (at T=0) we compute the Landau gauge gluon propagator according to different gauge fixing criteria. Our goal is to understand the influence of gauge copies with minimal (non-trivial) eigenvalues of the Faddeev-Popov operator.

  14. Applicability of perturbative QCD and NLO power corrections for the pion form factor

    International Nuclear Information System (INIS)

    Yeh Tsungwen

    2002-01-01

    As is well recognized, the asymptotic of the perturbative QCD prediction for the pion form factor is much smaller than the upper end of the data. We investigate this problem. We first evaluate the next-to-leading-order (NLO) power correction for the pion form factor. The corrected form factor contains nonperturbative parameters which are determined from a χ 2 fit to the data. Interpreting these parameters leads to the fact that the involved strong interaction coupling constant should be identified as an effective coupling constant under a nonperturbative QCD vacuum. If the scale associated with the effective coupling constant is identified as 2 Q 2 , then Q 2 , the momentum transfer square for the pion form factor to be measured, can have a value about 1 GeV 2 , and , the averaged momentum fraction variable, can locate around 0.5. This circumstance is consistent with the asymptotic model for the pion wave function

  15. Critical slowing down and error analysis in lattice QCD simulations

    Energy Technology Data Exchange (ETDEWEB)

    Virotta, Francesco

    2012-02-21

    In this work we investigate the critical slowing down of lattice QCD simulations. We perform a preliminary study in the quenched approximation where we find that our estimate of the exponential auto-correlation time scales as {tau}{sub exp}(a){proportional_to}a{sup -5}, where a is the lattice spacing. In unquenched simulations with O(a) improved Wilson fermions we do not obtain a scaling law but find results compatible with the behavior that we find in the pure gauge theory. The discussion is supported by a large set of ensembles both in pure gauge and in the theory with two degenerate sea quarks. We have moreover investigated the effect of slow algorithmic modes in the error analysis of the expectation value of typical lattice QCD observables (hadronic matrix elements and masses). In the context of simulations affected by slow modes we propose and test a method to obtain reliable estimates of statistical errors. The method is supposed to help in the typical algorithmic setup of lattice QCD, namely when the total statistics collected is of O(10){tau}{sub exp}. This is the typical case when simulating close to the continuum limit where the computational costs for producing two independent data points can be extremely large. We finally discuss the scale setting in N{sub f}=2 simulations using the Kaon decay constant f{sub K} as physical input. The method is explained together with a thorough discussion of the error analysis employed. A description of the publicly available code used for the error analysis is included.

  16. Critical slowing down and error analysis in lattice QCD simulations

    International Nuclear Information System (INIS)

    Virotta, Francesco

    2012-01-01

    In this work we investigate the critical slowing down of lattice QCD simulations. We perform a preliminary study in the quenched approximation where we find that our estimate of the exponential auto-correlation time scales as τ exp (a)∝a -5 , where a is the lattice spacing. In unquenched simulations with O(a) improved Wilson fermions we do not obtain a scaling law but find results compatible with the behavior that we find in the pure gauge theory. The discussion is supported by a large set of ensembles both in pure gauge and in the theory with two degenerate sea quarks. We have moreover investigated the effect of slow algorithmic modes in the error analysis of the expectation value of typical lattice QCD observables (hadronic matrix elements and masses). In the context of simulations affected by slow modes we propose and test a method to obtain reliable estimates of statistical errors. The method is supposed to help in the typical algorithmic setup of lattice QCD, namely when the total statistics collected is of O(10)τ exp . This is the typical case when simulating close to the continuum limit where the computational costs for producing two independent data points can be extremely large. We finally discuss the scale setting in N f =2 simulations using the Kaon decay constant f K as physical input. The method is explained together with a thorough discussion of the error analysis employed. A description of the publicly available code used for the error analysis is included.

  17. QCD and Light-Front Dynamics

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.; de Teramond, Guy F.

    2011-01-01

    AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate ζ which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its β-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.

  18. QCD and Light-Front Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; de Teramond, Guy F.; /SLAC /Southern Denmark U., CP3-Origins /Costa Rica U.

    2011-01-10

    AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its {beta}-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.

  19. Dynamical breakdown of chiral symmetry in vectorial theories: QED and QCD

    International Nuclear Information System (INIS)

    Garcia, J.C.M.

    1987-01-01

    Using a variational approach for the Effective Potential for composite operators we dicuss the dynamical breakdown of chiral symmetry in two vectorial theories: Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD). We study the energetic aspects of the problem calculating the Effective Potential with the asymptotic nonperturbative solutions of the Schwinger-Dyson equation for the fermion selfenergy. (author) [pt

  20. QCD predictions for the azimuthal asymmetry in charm leptoproduction for the COMPASS kinematics

    Directory of Open Access Journals (Sweden)

    A.V. Efremov

    2017-09-01

    Full Text Available We present the QCD predictions for the azimuthal cos⁡2φ asymmetry in charm leptoproduction for the kinematics of the COMPASS experiment at CERN. The asymmetry is predicted to be large, about 15%. The radiative corrections to the QCD predictions for the cos⁡2φ distribution are estimated to be small, less than 10%. Our calculations show that the azimuthal asymmetry in charm production is well defined in pQCD: it is stable both perturbatively and parametrically, and practically insensitive to theoretical uncertainties in the input parameters. We analyze the nonperturbative contributions to the cos⁡2φ distribution due to the gluon transverse motion in the target and the c-quark fragmentation. Because of the c-quark low mass, the nonperturbative contributions are expected to be sizable, about (30–40%. We conclude that extraction of the azimuthal asymmetries from available COMPASS data will provide valuable information about the transverse momentum dependent distribution of the gluon in the proton and the c-quark hadronization mechanism. Finally, we discuss the cos⁡2φ asymmetry as a probe of the gluonic analogue of the Boer–Mulders function, h1⊥g, describing the linear polarization of gluons inside unpolarized proton.

  1. Introduction and overview to some topics in perturbative QCD and their relationship to non perturbative effects

    International Nuclear Information System (INIS)

    West, G.

    1990-01-01

    The main thrust of this talk is to review and discuss various topics in both perturbative and non-perturbative QCD that are, by and large, model independent. This inevitably means that we shall rely heavily on the renormalization group and asymptotic freedom. Although this usually means that one has to concentrate on high energy phenomena, there are some physical processes even involving bound states which are certainly highly non-perturbative, where one can make some progress without becoming overly model independent. Experience with the EMC effect, where there are about as many ''explanations'' as authors, has surely taught us that it may well be worth returning to ''basics'' and thinking about general properties of QCD rather than guessing, essentially arbitrarily, what we think is its low energy structure. No doubt we shall have to await further numerical progress or for some inspired theoretical insight before we can, with confidence, attack these extremely difficult problems. So, with this in mine, I shall review a smattering of problems which do have a non-perturbative component and where some rather modest progress can actually be made; I emphasize the adjective ''modest''exclamation point

  2. openQ*D simulation code for QCD+QED

    Science.gov (United States)

    Campos, Isabel; Fritzsch, Patrick; Hansen, Martin; Krstić Marinković, Marina; Patella, Agostino; Ramos, Alberto; Tantalo, Nazario

    2018-03-01

    The openQ*D code for the simulation of QCD+QED with C* boundary conditions is presented. This code is based on openQCD-1.6, from which it inherits the core features that ensure its efficiency: the locally-deflated SAP-preconditioned GCR solver, the twisted-mass frequency splitting of the fermion action, the multilevel integrator, the 4th order OMF integrator, the SSE/AVX intrinsics, etc. The photon field is treated as fully dynamical and C* boundary conditions can be chosen in the spatial directions. We discuss the main features of openQ*D, and we show basic test results and performance analysis. An alpha version of this code is publicly available and can be downloaded from http://rcstar.web.cern.ch/.

  3. Phenomenological dynamics in QCD at large distances

    International Nuclear Information System (INIS)

    Gogohia, V.Sh.; Kluge, Gy.

    1991-07-01

    A gauge-invariant, nonperturbative approach to QCD at large distances in the context of the Schwinger-Dyson equations and corresponding Slavnov-Taylor identities in the quark sector is presented. Making only one widely accepted assumption that the full gluon propagator becomes an infrared singular like (q 2 ) -2 in the covariant gauge, we find three and only three confinement-type solutions for the quark propagator (quark confinement theorem.) The approach is free from ghost complications. Also show that multiplication by the quark infrared renormalization constant only, would make all the Green's functions infrared finite (multiplicative renormalizability). The bound-state problem in framework of Bethe-Salpeter equation is discussed as well. Some basic physical parameters of chiral QCD as pion decay constant and quark condensate, have been calculated within our approach. (author) 75 refs.; 14 figs

  4. Uses of Effective Field Theory in Lattice QCD

    OpenAIRE

    Kronfeld, Andreas S.

    2002-01-01

    Several physical problems in particle physics, nuclear physics, and astrophysics require information from non-perturbative QCD to gain a full understanding. In some cases the most reliable technique for quantitative results is to carry out large-scale numerical calculations in lattice gauge theory. As in any numerical technique, there are several sources of uncertainty. This chapter explains how effective field theories are used to keep them under control and, then, obtain a sensible error ba...

  5. Simulation of N{sub f} = 2 + 1 lattice QCD at realistic quark masses

    Energy Technology Data Exchange (ETDEWEB)

    Schierholz, Gerrit

    2014-07-01

    So far most lattice QCD simulations are performed neglecting electromagnetic effects. In order to compute physical observables to high precision, it is important to include and control contributions from QED. We have initiated a similar program, as the symmetry of the electromagnetic current is similar to that of the mass matrix mass m=(m{sub u}+m{sub d}+m{sub s})/3=constant versus e{sub u}+e{sub d}+e{sub s}=constant=0. In a follow-up project we shall use this expansion and complement our previous simulations by a fully dynamical simulation of QCD+QED. (orig.)

  6. Numerical studies of QCD renormalons in high-order perturbative expansions

    International Nuclear Information System (INIS)

    Bauer, Clemens

    2013-01-01

    Perturbative expansions in four-dimensional non-Abelian gauge theories such as Quantum Chromodynamics (QCD) are expected to be divergent, at best asymptotic. One reason is that it is impossible to strictly exclude from the relevant Feynman diagrams those energy regions in which a perturbative treatment is inapplicable. The divergent nature of the series is then signaled by a rapid (factorial) growth of the perturbative expansion coefficients, commonly referred to as a renormalon. In QCD, the most severe divergences occur in the infrared (IR) limit and therefore they are classified as IR renormalons. Their appearance can be understood within the well-accepted Operator Product Expansion (OPE) framework. According to the OPE, the perturbative calculation of a physical observable must be amended by non-perturbative power corrections that come in the form of condensates, universal characteristics of the rich QCD vacuum structure. Adding up perturbative and non-perturbative contributions, the ambiguity due to the renormalon cancels and the physical observable is well-defined. Although the field has made considerable progress in the last twenty years, a proof of renormalon existence is still pending. It has only been tested assuming strong simplifications or in toy models. The aim of this thesis is to provide the first numerical evidence for renormalon existence in the gauge sector of QCD. We use Numerical Stochastic Perturbation Theory (NSPT) to directly obtain perturbative coefficients within lattice regularization, a means to replace continuum spacetime by a four-dimensional hypercubic lattice. A peculiar feature of NSPT are comparatively low simulation costs when reaching high expansion orders. We examine two distinct observables: the static self-energy of an isolated quark and the elementary plaquette. Following the OPE classification, the static quark self-energy is ideally suited for a renormalon study. Taking into account peculiarities of the lattice approach such

  7. The renormalization group and lattice QCD

    International Nuclear Information System (INIS)

    Gupta, R.

    1989-01-01

    This report discusses the following topics: scaling of thermodynamic quantities and critical exponents; scaling relations; block spin idea of Kadanoff; exact RG solution of the 1-d Ising model; Wilson's formulation of the renormalization group; linearized transformation matrix and classification of exponents; derivation of exponents from the eigenvalues of Τ αβ ; simple field theory: the gaussian model; linear renormalization group transformations; numerical methods: MCRG; block transformations for 4-d SU(N) LGT; asymptotic freedom makes QCD simple; non-perturbative β-function and scaling; and the holy grail: the renormalized trajectory

  8. Structure functions of hadrons in the QCD effective theory

    International Nuclear Information System (INIS)

    Shigetani, Takayuki

    1996-01-01

    We study the structure functions of hadrons with the low energy effective theory of QCD. We try to clarify a link between the low energy effective theory, where non-perturbative dynamics is essential, and the high energy deep inelastic scattering experiment. We calculate the leading twist matrix elements of the structure function at the low energy model scale within the effective theory. Calculated structure functions are evoluted to the high momentum scale with the help of the perturbative QCD, and compared with the experimental data. Through the comparison of the model calculations with the experiment, we discuss how the non-perturbative dynamics of the effective theory is reflected in the deep inelastic phenomena. We first evaluate the structure functions of the pseudoscalar mesons using the NJL model. The resulting structure functions show reasonable agreements with experiments. We study then the quark distribution functions of the nucleon using a covariant quark-diquark model. We calculate three leading twist distribution functions, spin-independent f 1 (x), longitudinal spin distribution g 1 (x), and chiral-odd transversity spin distribution h 1 (x). The results for f 1 (x) and g 1 (x) turn out to be consistent with available experiments because of the strong spin-0 diquark correlation. (author)

  9. ADS/CFT and QCD

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.; de Teramond, Guy F.

    2007-01-01

    The AdS/CFT correspondence between string theory in AdS space and conformal .eld theories in physical spacetime leads to an analytic, semi-classical model for strongly-coupled QCD which has scale invariance and dimensional counting at short distances and color confinement at large distances. Although QCD is not conformally invariant, one can nevertheless use the mathematical representation of the conformal group in five-dimensional anti-de Sitter space to construct a first approximation to the theory. The AdS/CFT correspondence also provides insights into the inherently non-perturbative aspects of QCD, such as the orbital and radial spectra of hadrons and the form of hadronic wavefunctions. In particular, we show that there is an exact correspondence between the fifth-dimensional coordinate of AdS space z and a specific impact variable ζ which measures the separation of the quark and gluonic constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions, the fundamental entities which encode hadron properties and allow the computation of decay constants, form factors, and other exclusive scattering amplitudes. New relativistic lightfront equations in ordinary space-time are found which reproduce the results obtained using the 5-dimensional theory. The effective light-front equations possess remarkable algebraic structures and integrability properties. Since they are complete and orthonormal, the AdS/CFT model wavefunctions can also be used as a basis for the diagonalization of the full light-front QCD Hamiltonian, thus systematically improving the AdS/CFT approximation

  10. Aspects of Chiral Symmetry Breaking in Lattice QCD

    Science.gov (United States)

    Horkel, Derek P.

    In this thesis we describe two studies concerting lattice quantum chromodynamics (LQCD): first, an analysis of the phase structure of Wilson and twisted-mass fermions with isospin breaking effects, second a computational study measuring non-perturbative Greens functions. We open with a brief overview of the formalism of QCD and LQCD, focusing on the aspects necessary for understanding how a lattice computation is performed and how discretization effects can be understood. Our work in Wilson and twisted-mass fermions investigates an increasingly relevant regime where lattice simulations are performed with quarks at or near their physical masses and both the mass difference of the up and down quarks and their differing electric charges are included. Our computation of a non-perturbative Greens functions on the lattice serves as a first attempt to validate recent work by Dine et. al. [24] in which they calculate Greens functions which vanish in perturbation theory, yet have a contribution from the one instanton background. In chapter 2, we determine the phase diagram and pion spectrum for Wilson and twisted-mass fermions in the presence of non-degeneracy between the up and down quark and discretization errors, using Wilson and twisted-mass chiral perturbation theory. We find that the CP-violating phase of the continuum theory (which occurs for sufficiently large non-degeneracy) is continuously connected to the Aoki phase of the lattice theory with degenerate quarks. We show that discretization effects can, in some cases, push simulations with physical masses closer to either the CP-violating phase or another phase not present in the continuum, so that at sufficiently large lattice spacings physical-point simulations could lie in one of these phases. In chapter 3, we extend the work in chapter 2 to include the effects of electromagnetism, so that it is applicable to recent simulations incorporating all sources of isospin breaking. For Wilson fermions, we find that the

  11. Iso-vector form factors of the delta and nucleon in QCD sum rules

    International Nuclear Information System (INIS)

    Ozpineci, A.

    2012-01-01

    Form factors are important non-perturbative properties of hadrons. They give information about the internal structure of the hadrons. In this work, iso-vector axial-vector and iso-vector tensor form factors of the nucleon and the iso-vector axial-vector Δ→N transition form factor calculations in QCD Sum Rules are presented.

  12. Sum rules for baryonic vertex functions and the proton wave function in QCD

    International Nuclear Information System (INIS)

    Lavelle, M.J.

    1985-01-01

    We consider light-cone sum rules for vertex functions involving baryon-meson couplings. These sum rules relate the non-perturbative, and experimentally known, coupling constants to the moments of the wave function of the proton state. Our results for these moments are consistent with those obtained from QCD sum rules for two-point functions. (orig.)

  13. A new simulation algorithm for lattice QCD with dynamical quarks

    CERN Document Server

    Bunk, B.; Jegerlehner, B.; Luscher, M.; Simma, H.; Sommer, R.; Bunk, B; Jansen, K; Jegerlehner, B; Luscher, M; Simma, H

    1994-01-01

    A previously introduced multi-boson technique for the simulation of QCD with dynamical quarks is described and some results of first test runs on a 6^3\\times12 lattice with Wilson quarks and gauge group SU(2) are reported.

  14. Practical Implementation of Lattice QCD Simulation on Intel Xeon Phi Knights Landing

    OpenAIRE

    Kanamori, Issaku; Matsufuru, Hideo

    2017-01-01

    We investigate implementation of lattice Quantum Chromodynamics (QCD) code on the Intel Xeon Phi Knights Landing (KNL). The most time consuming part of the numerical simulations of lattice QCD is a solver of linear equation for a large sparse matrix that represents the strong interaction among quarks. To establish widely applicable prescriptions, we examine rather general methods for the SIMD architecture of KNL, such as using intrinsics and manual prefetching, to the matrix multiplication an...

  15. Nonperturbative effects in B {yields} X{sub s}l{sup +}l{sup -} for large dilepton invariant mass

    Energy Technology Data Exchange (ETDEWEB)

    Buchalla, G. [CERN, Geneva (Switzerland). Theory Division; Isidori, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy)

    1998-01-01

    The authors consider the calculation of O({Lambda}{sub QCD}{sup 2}/m{sub b}{sup 2}) nonperturbative corrections to B {yields} X{sub s}l{sup +}l{sup -} decay. The analysis confirms the results of Ali et al. for the dilepton invariant mass spectrum, which were in disagreement with an earlier publication, and for the lepton forward-backward asymmetry. The authors also give expressions for the O({Lambda}{sub QCD}{sup 2}/m{sub b}{sup 2}) corrections to the left-right asymmetry. In addition the authors discuss the breakdown of the heavy quark expansion near the point of maximal dilepton invariant mass q{sup 2} and consider a model independent approach to this region using heavy hadron chiral perturbation theory. The modes B {yields} Kl{sup +}l{sup -} and B {yields} K{pi}l{sup +}l{sup -}, which determine the endpoint region of the inclusive decay, are analysed within this framework. An interpolation is suggested between the region of moderately high q{sup 2}, where the heavy quark expansion is still valid, and the vicinity of the endpoint described by chiral perturbation theory. The authors also comment on further nonperturbative effects in B {yields} Kl{sup +}l{sup -} .

  16. Matching of heavy-light flavour currents between HQET at order 1/m and QCD

    DEFF Research Database (Denmark)

    Della Morte, Michele; Dooling, Samantha; Heitger, Jochen

    2014-01-01

    We present a strategy how to match the full set of components of the heavy-light axial and vector currents in Heavy Quark Effective Theory (HQET), up to and including 1/m-corrections, to QCD. While the ultimate goal is to apply these matching conditions non-perturbatively, in this study we first...

  17. QCD-motivated Nambu-Jona-Lasinio model with quark and gluon condensates

    International Nuclear Information System (INIS)

    Ebert, D.; Volkov, M.K.

    1991-01-01

    We present a systematic study of the role of the nonperturbative gluon condensate arising in a QCD-motivated NJL model. The effects of the gluon condensate on induced meson couplings, the pion decay constant, quark condensate and mass formulae are investigated. An interesting result is the change of the scale Λ of chiral symmetry breaking and of the universal four-quark coupling κ. (orig.)

  18. QCD as a Theory of Hadrons

    Science.gov (United States)

    Narison, Stephan

    2007-07-01

    About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD

  19. QCD bound states and their response to extremes of temperature and density

    International Nuclear Information System (INIS)

    Maris, P.

    1998-01-01

    We describe the application of Dyson-Schwinger equations to the calculation of hadron observable. The studies at zero temperature (T) and quark chemical potential (μ) provide a springboard for the extension to finite-(T, μ). Our exemplars highlight that much of hadronic physics can be understood as simply a manifestation of the nonperturbative, momentum-dependent dressing of the elementary Schwinger functions in QCD

  20. Stochastic processes and the non-perturbative structure of the QCD vacuum

    International Nuclear Information System (INIS)

    Vilela Mendes, R.

    1992-01-01

    Based on a local Gaussian evaluation of the functional integral representation, a method is developed to obtain ground state functionals. The method is applied to the gluon sector of QCD. For the leading term in the ground state functional, stochastic techniques are used to check consistency of the quantum theory, finiteness of the mass gap and the scaling relation in the continuum limit. The functional also implies strong chromomagnetic fluctuations which constrain the propagators in the fermion sector. (orig.)

  1. Pion structure from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Javadi Motaghi, Narjes

    2015-05-12

    In this thesis we use lattice QCD to compute the second Mellin moments of pion generalized parton distributions and pion electromagnetic form factors. For our calculations we are able to analyze a large set of gauge configurations with 2 dynamical flavours using non-perturbatively the improved Wilson-Sheikholeslami-Wohlert fermionic action pion masses ranging down to 151 MeV. By employing improved smearing we were able to suppress excited state contamination. However, our data in the physical quark mass limit show that some excited state contamination remains. We show the non-zero sink momentum is optimal for the computation of the electromagnetic form factors and generalized form factors at finite momenta.

  2. The FLUKA Monte Carlo, Non-Perturbative QCD and Cosmic Ray Cascades

    International Nuclear Information System (INIS)

    Battistoni, G.

    2005-01-01

    The FLUKA Monte Carlo code, presently used in cosmic ray physics, contains packages to sample soft hadronic processes which are built according to the Dual Parton Model. This is a phenomenological model capable of reproducing many of the features of hadronic collisions in the non perturbative QCD regime. The basic principles of the model are summarized and, as an example, the associated Lambda-K production is discussed. This is a process which has some relevance for the calculation of atmospheric neutrino fluxes

  3. Recent Tests of QCD with the ATLAS Detector

    CERN Document Server

    Callea, Giuseppe; The ATLAS collaboration

    2018-01-01

    The ATLAS Collaboration has a large program to study various aspects of Quantum Chromodynamics starting from non-perturbative effects over diffractive physics to high precision perturbative calculations. In this talk, we review the latest results on Bose-Einstein correlations measured with the ATLAS detector along with an analysis of the momentum difference between charged hadrons in high–energy proton–proton collisions. The latter allows the investigation of observables sensitive to the predictions of the quantized string model. Going to higher energy scales, we present first measurements of jet substructure quantities at a hadron collider, calculated at next-to-next-to-leading-logarithm accuracy. In particular, the soft drop mass is measured in dijet events with the ATLAS detector at 13 TeV, unfolded to particle-level and compared to Monte Carlo simulations. Perturbative QCD at highest energies can be precisely tested with the measurement of particle jet production of which we present the latest results...

  4. Analyzing Bs - anti Bs mixing. Non-perturbative contributions to bag parameters from sum rules

    International Nuclear Information System (INIS)

    Mannel, T.; Pivovarov, A.A.; Russian Academy of Sciecnes, Moscow

    2007-03-01

    We use QCD sum rules to compute matrix elements of the ΔB=2 operators appearing in the heavy-quark expansion of the width difference of the B s mass eigenstates. Our analysis includes the leading-order operators Q and Q S , as well as the subleading operators R 2 and R 3 , which appear at next-to-leading order in the 1/m b expansion. We conclude that the violation of the factorization approximation for these matrix elements due to non-perturbative vacuum condensates is as low as 1-2%. (orig.)

  5. QCD and resonance physics. The π-p-A1 system

    International Nuclear Information System (INIS)

    Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I.

    1978-01-01

    The QCD sum rules derived earlier are applied to evaluate the leptonic widths and masses of the π, rho, A 1 mesons (the very existence of resonances is taken as granted, however). The mass scale is set by the power corrections to asymptotic freedom which are due to nonperturbative effects in QCD. The main results are expressions for the p → e + e - and π → μν decay widths and a relation between the mass and the power corrections. Estimates of the A 1 leptonic width are also presented. It is argued that the observed difference in the spectra in the in the vector and axial-vector channels (π - rho - A 1 system) provides a very clean test of the power corrections

  6. QCD in heavy quark production and decay

    Energy Technology Data Exchange (ETDEWEB)

    Wiss, J. [Univ. of Illinois, Urbana, IL (United States)

    1997-06-01

    The author discusses how QCD is used to understand the physics of heavy quark production and decay dynamics. His discussion of production dynamics primarily concentrates on charm photoproduction data which are compared to perturbative QCD calculations which incorporate fragmentation effects. He begins his discussion of heavy quark decay by reviewing data on charm and beauty lifetimes. Present data on fully leptonic and semileptonic charm decay are then reviewed. Measurements of the hadronic weak current form factors are compared to the nonperturbative QCD-based predictions of Lattice Gauge Theories. He next discusses polarization phenomena present in charmed baryon decay. Heavy Quark Effective Theory predicts that the daughter baryon will recoil from the charmed parent with nearly 100% left-handed polarization, which is in excellent agreement with present data. He concludes by discussing nonleptonic charm decay which is traditionally analyzed in a factorization framework applicable to two-body and quasi-two-body nonleptonic decays. This discussion emphasizes the important role of final state interactions in influencing both the observed decay width of various two-body final states as well as modifying the interference between interfering resonance channels which contribute to specific multibody decays. 50 refs., 77 figs.

  7. QCD in heavy quark production and decay

    International Nuclear Information System (INIS)

    Wiss, J.

    1997-01-01

    The author discusses how QCD is used to understand the physics of heavy quark production and decay dynamics. His discussion of production dynamics primarily concentrates on charm photoproduction data which are compared to perturbative QCD calculations which incorporate fragmentation effects. He begins his discussion of heavy quark decay by reviewing data on charm and beauty lifetimes. Present data on fully leptonic and semileptonic charm decay are then reviewed. Measurements of the hadronic weak current form factors are compared to the nonperturbative QCD-based predictions of Lattice Gauge Theories. He next discusses polarization phenomena present in charmed baryon decay. Heavy Quark Effective Theory predicts that the daughter baryon will recoil from the charmed parent with nearly 100% left-handed polarization, which is in excellent agreement with present data. He concludes by discussing nonleptonic charm decay which is traditionally analyzed in a factorization framework applicable to two-body and quasi-two-body nonleptonic decays. This discussion emphasizes the important role of final state interactions in influencing both the observed decay width of various two-body final states as well as modifying the interference between interfering resonance channels which contribute to specific multibody decays. 50 refs., 77 figs

  8. Infrared behavior of the effective coupling in quantum chromodynamics: A non-perturbative approach

    International Nuclear Information System (INIS)

    Bar-Gadda, U.

    1980-01-01

    In this paper we examine a different viewpoint, based on a self-consistent approach. This means that rather than attempting to identify any particular physical mechanism as dominating the QCD vacuum state we use the non-perturbative Schwinger-Dyson equations and Slavnov-Taylor identities of QCD as well as the renormalization group equation to obtain the self-consistent behavior of the effective coupling in the infrared region. We show that the infrared effective coupling behavior anti g(q 2 /μ 2 , gsub(R)(μ)) = (μ 2 /q 2 )sup(lambda/2)gsub(R)(μ) in the infrared limit q 2 /μ 2 → 0, where μ 2 is the euclidean subtraction point; lambda = 1/2(d - 2), where d is the space-time dimension, is the preferred solution if a sufficient self-consistency condition is satisfied. Finally we briefly discuss the nature of the dynamical mass Λ and the 1/N expansion as well as an effective bound state equation. (orig.)

  9. QCD-motivated Nambu-Jona-Lasinio model with quark and gluon condensates

    International Nuclear Information System (INIS)

    Ebert, D.; Volkov, M.K.

    1991-01-01

    A systematic study of the role of the nonperturbative gluon condensate arising in a QCD-motivated Nambu-Jona-Lasinio model is presented. The effects of the gluon condensate on induced meson couplings, the pion decay constant, quark condensate and mass formulae are investigated. An interesting result is the change of the scale Λ of chiral symmetry breaking and of the universal four-quark coupling constant κ. 20 refs

  10. The strange quark mass and Lambda parameter of two flavor QCD

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsch, Patrick; Marinkovic, Marina [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Knechtli, Francesco; Leder, Bjoern [Wuppertal Univ. (Germany). Fachbereich C - Mathematik und Naturwissenschaften; Schaefer, Stefan [CERN, Geneva (Switzerland). Physics Dept.; Sommer, Rainer; Virotta, Francesco [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2012-06-15

    We complete the non-perturbative calculations of the strange quark mass and the {lambda} parameter in two flavor QCD by the ALPHA collaboration. The missing lattice scale is determined via the kaon decay constant, for whose chiral extrapolation complementary strategies are compared. We also give a value for the scale r{sub 0} in physical units as well as an improved determination of the renormalization constant Z{sub A}.

  11. Search for ({lambda}{sup 2})/p{sup 2} corrections to the QCD running coupling

    Energy Technology Data Exchange (ETDEWEB)

    Burgio, G.; Di Renzo, F.; Parrinello, C.; Pittori, C

    1999-03-01

    We investigate the occurrence of power terms ({lambda}{sup 2})/p>{sup 2} in the running QCD coupling by analysing non-perturbative measurements of {alpha}{sub s}(p) at quite low momenta obtained from the lattice three-gluon vertex. Our study provides some evidence for such a contribution. The phenomenological implications of such a presence are reviewed.

  12. Lattice QCD with mixed action - Borici-Creutz valence quark on staggered sea

    Science.gov (United States)

    Basak, Subhasish; Goswami, Jishnu; Chakrabarti, Dipankar

    2018-03-01

    Mixed action lattice QCD with Borici-Creutz valence quarks on staggered sea is investigated. The counter terms in Borici-Creutz action are fixed nonperturbatively to restore the broken symmetries. On symmetry restoration, the usual signatures of partial quenching / unitarity violation like negative scalar correlator are observed. The size of unitarity violation due to different discretization of valence and sea quark is determined by measuring Δmix.

  13. Non-perturbative improvement of the axial current with three dynamical flavors and the Iwasaki gauge action

    International Nuclear Information System (INIS)

    Kaneko, T.; Hashimoto, S.; Aoki, S.; Hoffmann, R.

    2007-03-01

    We perform a non-perturbative determination of the improvement coefficient c A to remove O(a) discretization errors in the axial vector current in three-flavor lattice QCD with the Iwasaki gauge action and the standard O(a)-improved Wilson quark action. An improvement condition with a good sensitivity to c A is imposed at constant physics. Combining our results with the perturbative expansion, c A is now known rather precisely for a -1 >or similar 1.6 GeV. (orig.)

  14. Two-flavor QCD correction to lepton magnetic moments at leading-order in the electromagnetic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Dru Renner, Xu Feng, Karl Jansen, Marcus Petschlies

    2011-08-01

    We present a reliable nonperturbative calculation of the QCD correction, at leading-order in the electromagnetic coupling, to the anomalous magnetic moment of the electron, muon and tau leptons using two-flavor lattice QCD. We use multiple lattice spacings, multiple volumes and a broad range of quark masses to control the continuum, infinite-volume and chiral limits. We examine the impact of the commonly ignored disconnected diagrams and introduce a modification to the previously used method that results in a well-controlled lattice calculation. We obtain 1.513 (43) 10^-12, 5.72 (16) 10^-8 and 2.650 (54) 10^-6 for the leading-order QCD correction to the anomalous magnetic moment of the electron, muon and tau respectively, each accurate to better than 3%.

  15. A strategy for implementing non-perturbative renormalisation of heavy-light four-quark operators in the static approximation

    Energy Technology Data Exchange (ETDEWEB)

    Palombi, F. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Papinutto, M. [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Pena, C. [European Organization for Nuclear Research, Geneva (Switzerland). Theoretical Physics Div.; Wittig, H. [Mainz Univ. (Germany). Inst. fuer Kernphysik

    2006-04-15

    We discuss the renormalisation properties of the complete set of {delta}B=2 four-quark operators with the heavy quark treated in the static approximation. We elucidate the role of heavy quark symmetry and other symmetry transformations in constraining their mixing under renormalisation. By employing the Schroedinger functional, a set of non-perturbative renormalisation conditions can be defined in terms of suitable correlation functions. As a first step in a fully non-perturbative determination of the scale-dependent renormalisation factors, we evaluate these conditions in lattice perturbation theory at one loop. Thereby we verify the expected mixing patterns and determine the anomalous dimensions of the operators at NLO in the Schroedinger functional scheme. Finally, by employing twisted-mass QCD it is shown how finite subtractions arising from explicit chiral symmetry breaking can be avoided completely. (Orig.)

  16. A strategy for implementing non-perturbative renormalisation of heavy-light four-quark operators in the static approximation

    International Nuclear Information System (INIS)

    Palombi, F.; Pena, C.; Wittig, H.

    2006-04-01

    We discuss the renormalisation properties of the complete set of ΔB=2 four-quark operators with the heavy quark treated in the static approximation. We elucidate the role of heavy quark symmetry and other symmetry transformations in constraining their mixing under renormalisation. By employing the Schroedinger functional, a set of non-perturbative renormalisation conditions can be defined in terms of suitable correlation functions. As a first step in a fully non-perturbative determination of the scale-dependent renormalisation factors, we evaluate these conditions in lattice perturbation theory at one loop. Thereby we verify the expected mixing patterns and determine the anomalous dimensions of the operators at NLO in the Schroedinger functional scheme. Finally, by employing twisted-mass QCD it is shown how finite subtractions arising from explicit chiral symmetry breaking can be avoided completely. (Orig.)

  17. QCD jet simulation with CMS at LHC and background studies to H to gamma gamma process

    CERN Document Server

    Litvin, V; Shevchenko, S; Wisniewski, N

    2002-01-01

    We have simulated and reconstructed one million of QCD jet events. This study was done with CMS full detector simulation, based on GEANT3 package, and object-oriented CMS C++ reconstruction program. The understanding of QCD jet background is important for the Higgs search in two-photon decay mode. The comparison with other types of backgrounds was also done. It was shown that the isolation tools were important ones to isolate the signal process from the huge background one. Using the isolation criteria based on the information from PbWO /sub 4/ electromagnetic calorimeter and the tracker we were able to reduce the QCD jet background to 15% of the total one. (9 refs).

  18. Non-perturbative aspects of quantum field theory. From the quark-gluon plasma to quantum gravity

    International Nuclear Information System (INIS)

    Christiansen, Nicolai

    2015-01-01

    In this dissertation we investigate several aspects of non-perturbative quantum field theory. Two main parts of the thesis are concerned with non-perturbative renormalization of quantum gravity within the asymptotic safety scenario. This framework is based on a non-Gaussian ultraviolet fixed point and provides a well-defined theory of quantized gravity. We employ functional renormalization group (FRG) techniques that allow for the study of quantum fields even in strongly coupled regimes. We construct a setup for the computation of graviton correlation functions and analyze the ultraviolet completion of quantum gravity in terms of the properties of the two- and three point function of the graviton. Moreover, the coupling of gravity to Yang-Mills theories is discussed. In particular, we study the effects of graviton induced interactions on asymptotic freedom on the one hand, and the role of gluonic fluctuations in the gravity sector on the other hand. The last subject of this thesis is the physics of the quark-gluon plasma. We set-up a general non-perturbative strategy for the computation of transport coefficients in non-Abelian gauge theories. We determine the viscosity over entropy ratio η/s in SU(3) Yang-Mills theory as a function of temperature and estimate its behavior in full quantum chromodynamics (QCD).

  19. Studies of QCD at $e^{+}e^{-}$ Centre-of-Mass Energies between 91 and 209 GeV

    CERN Document Server

    Heister, A; Barate, R; Brunelière, R; De Bonis, I; Décamp, D; Goy, C; Jézéquel, S; Lees, J P; Martin, F; Merle, E; Minard, M N; Pietrzyk, B; Trocmé, B; Bravo, S; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Martínez, M; Pacheco, A; Ruiz, H; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Iaselli, G; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Barklow, T; Buchmüller, O L; Cattaneo, M; Clerbaux, B; Drevermann, H; Forty, R W; Frank, M; Gianotti, F; Hansen, J B; Harvey, J; Hutchcroft, D E; Janot, P; Jost, B; Kado, M; Mato, P; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Sguazzoni, G; Teubert, F; Valassi, Andrea; Videau, I; Badaud, F; Dessagne, S; Falvard, A; Fayolle, D; Gay, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Pascolo, J M; Perret, P; Hansen, J D; Hansen, J R; Hansen, P H; Kraan, A C; Nilsson, B S; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Zachariadou, K; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Videau, H L; Ciulli, V; Focardi, E; Parrini, G; Antonelli, A; Antonelli, M; Bencivenni, G; Bossi, F; Capon, G; Cerutti, F; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, G P; Passalacqua, L; Kennedy, J; Lynch, J G; Negus, P; O'Shea, V; Thompson, A S; Wasserbaech, S R; Cavanaugh, R J; Dhamotharan, S; Geweniger, C; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Stenzel, H; Tittel, K; Wunsch, M; Beuselinck, R; Cameron, W; Davies, G; Dornan, P J; Girone, M; Hill, R D; Marinelli, N; Nowell, J; Rutherford, S A; Sedgbeer, J K; Thompson, J C; White, R; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bouhova-Thacker, E; Bowdery, C K; Clarke, D P; Ellis, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Pearson, M R; Robertson, N A; Smizanska, M; van der Aa, O; Delaere, C; Leibenguth, G; Lemaître, V; Blumenschein, U; Hölldorfer, F; Jakobs, K; Kayser, F; Kleinknecht, K; Müller, A S; Renk, B; Sander, H G; Schmeling, S; Wachsmuth, H W; Zeitnitz, C; Ziegler, T; Bonissent, A; Coyle, P; Curtil, C; Ealet, A; Fouchez, D; Payre, P; Tilquin, A; Ragusa, F; David, A; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Männer, W; Moser, H G; Settles, Ronald; Villegas, M; Wolf, G; Boucrot, J; Callot, O; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Serin, L; Veillet, J J; Azzurri, P; Bagliesi, G; Boccali, T; Foà, L; Giammanco, A; Giassi, A; Ligabue, F; Messineo, A; Palla, F; Sanguinetti, G; Sciabà, A; Spagnolo, P; Tenchini, R; Venturi, A; Verdini, P G; Awunor, O; Blair, G A; Cowan, G; García-Bellido, A; Green, M G; Medcalf, T; Misiejuk, A; Strong, J A; Teixeira-Dias, P; Clifft, R W; Edgecock, T R; Norton, P R; Tomalin, I R; Ward, J J; Bloch-Devaux, B; Boumediene, D E; Colas, P; Fabbro, B; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Tuchming, B; Vallage, B; Litke, A M; Taylor, G; Booth, C N; Cartwright, S; Combley, F; Hodgson, P N; Lehto, M H; Thompson, L F; Böhrer, A; Brandt, S; Grupen, C; Hess, J; Ngac, A; Prange, G; Borean, C; Giannini, G; He, H; Pütz, J; Rothberg, J E; Armstrong, S R; Berkelman, K; Cranmer, K; Ferguson, D P S; Gao, Y; González, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Pan, Y B; Von Wimmersperg-Töller, J H; Wiedenmann, W; Wu, J; Wu Sau Lan; Wu, X; Zobernig, G; Dissertori, G

    2004-01-01

    The hadronic final states observed with the ALEPH detector at LEP in e+e- annihilation are analysed using 730 pb-1 of data collected between 91 and 209 GeV in the framework of QCD. In particular event-shape variables and inclusive charged particle spectra are measured. The energy evolution of quantities derived from these measurements is compared to analytic QCD predictions. The mean charged particle multiplicity, the charged particle momentum spectrum and its peak position are compared to predictions of the modified-leading-logarithmic approximation. The strong coupling constant alpha_s is determined from a fit of the QCD prediction to distributions of six event-shape variables at eight centre-of-mass energies. A study of non-perturbative power law corrections is presented

  20. Non-perturbative improvement of the axial current with three dynamical flavors and the Iwasaki gauge action

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, T.; Hashimoto, S. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan)]|[Graduate Univ. for Advanced Studies, Tsukuba, Ibaraki (Japan); Aoki, S. [Tsukuba Univ., Ibaraki (Japan). Graduate School of Pure and Applied Sciences]|[Brookhaven National Laboratory, Upton, NY (United States). Riken BNL Research Center; Della Morte, M. [CERN, Physics Dept., Geneva (Switzerland); Hoffmann, R. [Colorado Univ., Boulder, CO (United States). Dept. of Physics; Sommer, R. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2007-03-15

    We perform a non-perturbative determination of the improvement coefficient c{sub A} to remove O(a) discretization errors in the axial vector current in three-flavor lattice QCD with the Iwasaki gauge action and the standard O(a)-improved Wilson quark action. An improvement condition with a good sensitivity to c{sub A} is imposed at constant physics. Combining our results with the perturbative expansion, c{sub A} is now known rather precisely for a{sup -1}>or similar 1.6 GeV. (orig.)

  1. What can we learn from sum rules for vertex functions in QCD

    International Nuclear Information System (INIS)

    Craigie, N.S.; Stern, J.

    1982-04-01

    We demonstrate that the light cone sum rules for vertex functions based on the operator product expansion and QCD perturbation theory lead to interesting relationships between various non-perturbative parameters associated with hadronic bound states (e.g. vertex couplings and decay constants). We also show that such sum rules provide a valuable means of estimating the matrix elements of the higher spin operators in the meson wave function. (author)

  2. Decay Constants of B and D Mesons from Non-pertubatively Improved Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    K.C. Bowler; L. Del Debbio; J.M. Flynn; G.N, Lacagnina; V.I. Lesk; C.M. Maynard; D.G. Richards

    2000-07-01

    The decay constants of B and D mesons are computed in quenched lattice QCD at two different values of the coupling. The action and operators are ? (a) improved with non-perturbative coefficients where available. The results and systematic errors are discussed in detail. Results for vector decay constants, flavour symmetry breaking ratios of decay constants, the pseudoscalar-vector mass splitting and D meson masses are also presented.

  3. Heavy-light mesons in lattice HQET and QCD

    International Nuclear Information System (INIS)

    Guazzini, D.

    2007-12-01

    We present a study of a combination of HQET and relativistic QCD to extract the b-quark mass and the B s -meson decay constant from lattice quenched simulations. We start from a small volume, where one can directly simulate the b-quark, and compute the connection to a large volume, where finite size effects are negligible, through a finite size technique. The latter consists of steps extrapolated to the continuum limit, where the b-region is reached through interpolations guided by the effective theory. With the lattice spacing given in terms of the Sommer's scale r 0 and the experimental B s and K masses, we get the final results for the renormalization group invariant mass M b =6.88(10) GeV, translating into anti m b (anti m b )=4.42(6) GeV in the MS scheme, and f B s =191(6) MeV for the decay constant. A renormalization condition for the chromo-magnetic operator, responsible, at leading order in the heavy quark mass expansion of HQET, for the mass splitting between the pseudoscalar and the vector channel in mesonic heavy-light bound states, is provided in terms of lattice correlations functions which well suits a non-perturbative computation involving a large range of renormalization scales and no valence quarks. The two-loop expression of the corresponding anomalous dimension in the Schroedinger functional (SF) scheme is computed starting from results in the literature; it requires a one-loop calculation in the SF scheme with a non-vanishing background field. The cutoff effects affecting the scale evolution of the renormalization factors are studied at one-loop order, and confirmed by non-perturbative quenched computations to be negligible for the numerical precision achievable at present. (orig.)

  4. Heavy-light mesons in lattice HQET and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Guazzini, D.

    2007-12-15

    We present a study of a combination of HQET and relativistic QCD to extract the b-quark mass and the B{sub s}-meson decay constant from lattice quenched simulations. We start from a small volume, where one can directly simulate the b-quark, and compute the connection to a large volume, where finite size effects are negligible, through a finite size technique. The latter consists of steps extrapolated to the continuum limit, where the b-region is reached through interpolations guided by the effective theory. With the lattice spacing given in terms of the Sommer's scale r{sub 0} and the experimental B{sub s} and K masses, we get the final results for the renormalization group invariant mass M{sub b}=6.88(10) GeV, translating into anti m{sub b}(anti m{sub b})=4.42(6) GeV in the MS scheme, and f{sub B{sub s}}=191(6) MeV for the decay constant. A renormalization condition for the chromo-magnetic operator, responsible, at leading order in the heavy quark mass expansion of HQET, for the mass splitting between the pseudoscalar and the vector channel in mesonic heavy-light bound states, is provided in terms of lattice correlations functions which well suits a non-perturbative computation involving a large range of renormalization scales and no valence quarks. The two-loop expression of the corresponding anomalous dimension in the Schroedinger functional (SF) scheme is computed starting from results in the literature; it requires a one-loop calculation in the SF scheme with a non-vanishing background field. The cutoff effects affecting the scale evolution of the renormalization factors are studied at one-loop order, and confirmed by non-perturbative quenched computations to be negligible for the numerical precision achievable at present. (orig.)

  5. Static QCD potential at rQCD-1: Perturbative expansion and operator-product expansion

    International Nuclear Information System (INIS)

    Sumino, Y.

    2007-01-01

    We analyze the static QCD potential V QCD (r) in the distance region 0.1 fm QCD (r) analytically. Higher-order terms are estimated by large-β 0 approximation or by renormalization group, and the renormalization scale is varied around the minimal-sensitivity scale. A 'Coulomb'+linear potential can be identified with the scale-independent and renormalon-free part of the prediction and can be separated from the renormalon-dominating part. (II) In the frame of OPE, we define two types of renormalization schemes for the leading Wilson coefficient. One scheme belongs to the class of conventional factorization schemes. The other scheme belongs to a new class, which is independent of the factorization scale, derived from a generalization of the Coulomb+linear potential of (I). The Wilson coefficient is free from IR renormalons and IR divergences in both schemes. We study properties of the Wilson coefficient and of the corresponding nonperturbative contribution δE US (r) in each scheme. (III) We compare numerically perturbative predictions of the Wilson coefficient and lattice computations of V QCD (r) when n l =0. We confirm either correctness or consistency (within uncertainties) of the theoretical predictions made in (II). Then we perform fits to simultaneously determine δE US (r) and r 0 Λ MS 3-loop (relation between lattice scale and Λ MS ). As for the former quantity, we improve bounds as compared to the previous determination; as for the latter quantity, our analysis provides a new method for its determination. We find that (a) δE US (r)=0 is disfavored, and (b) r 0 Λ MS 3-loop =0.574±0.042. We elucidate the mechanism for the sensitivities and examine sources of errors in detail

  6. Challenges in the extraction of TMDs from SIDIS data: perturbative vs non-perturbative aspects

    Energy Technology Data Exchange (ETDEWEB)

    Boglione, Mariaelena [aDipartimento di Fisica Teorica, Università di Torino, Via P. Giuria 1, I-10125 Torino, Italy; Gonzalez Hernandez, Jose O. [INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino, Via P. Giuria 1, I-10125 Torino, Italy; Melis, Stefano [Univ. Torino, Torino, Italy; Prokudin, Alexey [Jefferson Laboratory, 12000 Jeerson Avenue, Newport News, VA 23606, USA

    2015-09-01

    We present our recent results on the study of the Semi-Inclusive Deep Inelastic Scattering (SIDIS) cross section as a function of the transverse momentum, qT. Using the Collins-Soper-Sterman (CSS) formalism, we study the matching between the region where fixed-order perturbative QCD can successfully be applied and the region where soft gluon resummation is necessary. We find that the commonly used prescription of matching through the so-called Y-factor cannot be applied in the SIDIS kinematical configurations we examine. We comment on the impact that the nonperturbative component has even at relatively high energies.

  7. Two-flavor QCD correction to lepton magnetic moments at leading-order in the electromagnetic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xu [DESY, Zeuthen (Germany). NIC; Muenster Univ. (Germany). Inst. fuer Theoretische Physik; Jansen, Karl; Renner, Dru B. [DESY, Zeuthen (Germany). NIC; Petschlies, Marcus [Humboldt Univ. Berlin (Germany). Inst. fuer Physik

    2011-03-15

    We present a reliable nonperturbative calculation of the QCD correction, at leading-order in the electromagnetic coupling, to the anomalous magnetic moment of the electron, muon and tau leptons using two-flavor lattice QCD. We use multiple lattice spacings, multiple volumes and a broad range of quark masses to control the continuum, in nite-volume and chiral limits. We examine the impact of the commonly ignored disconnected diagrams and introduce a modi cation to the previously used method that results in a well-controlled lattice calculation. We obtain 1.513(43).10{sup -12}, 5.72(16).10{sup -8} and 2.650(54).10{sup -6} for the leading-order QCD correction to the anomalous magnetic moment of the electron, muon and tau respectively, each accurate to better than 3%. (orig.)

  8. QCD factorizations in {gamma}*{gamma}*->{rho}{sub L}{sup 0}{rho}{sub L}{sup 0}

    Energy Technology Data Exchange (ETDEWEB)

    Pire, B. [CPHT, Unite mixte 7644 du CNRS, Ecole Polytechnique, 91128 Palaiseau (France)]. E-mail: pire@cpht.polytechnique.fr; Segond, M. [LPT, Unite mixte 8627 du CNRS, Universite Paris-Sud, 91405 Orsay (France); Szymanowski, L. [LPT, Unite mixte 8627 du CNRS, Universite Paris-Sud, 91405 Orsay (France); Universite de Liege, B-4000 Liege (Belgium); Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland); Wallon, S. [LPT, Unite mixte 8627 du CNRS. , Universite Paris-Sud, 91405 Orsay (France)

    2006-08-24

    We calculate the lowest order QCD amplitude, i.e. the quark exchange contribution, to the forward production amplitude of a pair of longitudinally polarized {rho} mesons in the scattering of two virtual photons {gamma}*(Q{sub 1}){gamma}*(Q{sub 2})->{rho}{sub L}{sup 0}{rho}{sub L}{sup 0}. We show that the scattering amplitude simultaneously factorizes in two quite different ways: the part with transverse photons is described by the QCD factorization formula involving the generalized distribution amplitude of two final {rho} mesons, whereas the part with longitudinally polarized photons takes the QCD factorized form with the {gamma}{sub L}*->{rho}{sub L}{sup 0} transition distribution amplitude. Perturbative expressions for these, in general, non-perturbative functions are obtained in terms of the {rho}-meson distribution amplitude.

  9. Simulation studies for charmed baryons production

    International Nuclear Information System (INIS)

    Garcia, Fernanda Gallinucci; Escobar, Carlos O.

    1994-01-01

    Multiparticle soft production is a dominant characteristic in most of high energy hadron collision. Processes with many particles at the final state are intrinsically complicated, since too many variables are involved. Nevertheless, it would be possible to utilize the QCD Lagrangian for studying these soft processes, which do not involve large transferred momenta and therefore, the strong coupling constant α s is to much large for using. Consequently, non-perturbative procedures must be adopted. Presently, when describing the soft hadron physics, it is advisable to build models incorporating all the available ideas, motivated by both QCD non-perturbative studies and the S-matrix general properties (duality and unitarity). A non-perturbative approach presently studied consists in N -1 expansions, where N can be either the color number N c or the N f flavor number. This expansion provides a topological diagram classification. A model which has been very successful in the light particle production is the Quark Gluon String Model. This model uses the Pomerons quark-gluon strings idea for describing the multiple production of hadrons with low p t at high energies

  10. Chiral phase transition of QCD with N{sub f}=2+1 flavors from holography

    Energy Technology Data Exchange (ETDEWEB)

    Li, Danning [Department of Physics, Jinan University,Guangzhou 510632 (China); Huang, Mei [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China); University of Chinese Academy of Sciences,Beijing 100049 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences,Beijing 100049 (China)

    2017-02-08

    Chiral phase transition for three-flavor N{sub f}=2+1 QCD with m{sub u}=m{sub d}≠m{sub s} is investigated in a modified soft-wall holographic QCD model. Solving temperature dependent chiral condensates from equations of motion of the modified soft-wall model, we extract the quark mass dependence of the order of chiral phase transition in the case of N{sub f}=2+1, and the result is in agreement with the “Columbia Plot”, which is summarized from lattice simulations and other non-perturbative methods. First order phase transition is observed around the three flavor chiral limit m{sub u/d}=0,m{sub s}=0, while at sufficient large quark masses it turns to be a crossover phase transition. The first order and crossover regions are separated by a second order phase transition line. The second order line is divided into two parts by the m{sub u/d}=m{sub s} line, and the m{sub s} dependence of the transition temperature in these two parts are totally contrast, which might indicate that the two parts are governed by different universality classes.

  11. QCD-instantons at LHC. Theoretical aspects; QCD-Instantonen am LHC. Theoretische Aspekte

    Energy Technology Data Exchange (ETDEWEB)

    Petermann, M.

    2007-06-15

    Instantons are nonperturbative, topologically nontrivial field configurations, which occur in every nonabelian gauge theory. They can be understood as tunneling processes between topologically distinct vacua. Although being a basic theoretical aspect of the Standard Model, a direct experimental verification of instanton processes is still lacking. In this thesis the general discovery potential for QCD-instantons at the LHC is studied in detail by means of instanton perturbation theory. In this context the close correspondence between the leading instanton induced processes at HERA and at LHC becomes important. Essential aspects and differences to deep inelastic scattering can already be revealed by studying the simplest process. Based on these results inclusive cross sections are calculated including the emission of final state gluons. Compared to deep inelastic scattering, a large enhancement of the cross section is found. (orig.)

  12. Light-Front QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.

    2004-11-30

    In these lectures, I survey a number of applications of light-front methods to hadron and nuclear physics phenomenology and dynamics, including light-front statistical physics. Light-front Fock-state wavefunctions provide a frame-independent representation of hadrons in terms of their fundamental quark and gluon degrees of freedom. Nonperturbative methods for computing LFWFs in QCD are discussed, including string/gauge duality which predicts the power-law fall-off at high momentum transfer of light-front Fock-state hadronic wavefunctions with an arbitrary number of constituents and orbital angular momentum. The AdS/CFT correspondence has important implications for hadron phenomenology in the conformal limit, including an all-orders derivation of counting rules for exclusive processes. One can also compute the hadronic spectrum of near-conformal QCD assuming a truncated AdS/CFT space. Given the LFWFs, one can compute form factors, heavy hadron decay amplitudes, hadron distribution amplitudes, and the generalized parton distributions underlying deeply virtual Compton scattering. The quantum fluctuations represented by the light-front Fock expansion leads to novel QCD phenomena such as color transparency, intrinsic heavy quark distributions, diffractive dissociation, and hidden-color components of nuclear wavefunctions. A new test of hidden color in deuteron photodisintegration is proposed. The origin of leading-twist phenomena such as the diffractive component of deep inelastic scattering, single-spin asymmetries, nuclear shadowing and antishadowing is also discussed; these phenomena cannot be described by light-front wavefunctions of the target computed in isolation. Part of the anomalous NuTeV results for the weak mixing angle {theta}{sub W} could be due to the non-universality of nuclear antishadowing for charged and neutral currents.

  13. Non-perturbative renormalization of left-left four-fermion operators in quenched lattice QCD

    CERN Document Server

    Guagnelli, M; Peña, C; Sint, S; Vladikas, A

    2006-01-01

    We define a family of Schroedinger Functional renormalization schemes for the four-quark multiplicatively renormalizable operators of the $\\Delta F = 1$ and $\\Delta F = 2$ effective weak Hamiltonians. Using the lattice regularization with quenched Wilson quarks, we compute non-perturbatively the renormalization group running of these operators in the continuum limit in a large range of renormalization scales. Continuum limit extrapolations are well controlled thanks to the implementation of two fermionic actions (Wilson and Clover). The ratio of the renormalization group invariant operator to its renormalized counterpart at a low energy scale, as well as the renormalization constant at this scale, is obtained for all schemes.

  14. Light-cone quantization and QCD phenomenology

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Robertson, D.G.

    1995-01-01

    In principle, quantum chromodynamics provides a fundamental description of hadronic and nuclear structure and dynamics in terms of their elementary quark and gluon degrees of freedom. In practice, the direct application of QCD to reactions involving the structure of hadrons is extremely complex because of the interplay of nonperturbative effects such as color confinement and multi-quark coherence. A crucial tool in analyzing such phenomena is the use of relativistic light-cone quantum mechanics and Fock state methods to provide tractable and consistent treatments of relativistic many-body systems. In this article we present an overview of this formalism applied to QCD, focusing in particular on applications to the final states in deep inelastic lepton scattering that will be relevant for the proposed European Laboratory for Electrons (ELFE), HERMES, HERA, SLAC, and CEBAF. We begin with a brief introduction to light-cone field theory, stressing how it many allow the derivation of a constituent picture, analogous to the constituent quark model, from QCD. We then discuss several applications of the light-cone Fock state formalism to QCD phenomenology. The Fock state representation includes all quantum fluctuations of the hadron wavefunction, including far off-shell configurations such as intrinsic charm and, in the case of nuclei, hidden color. In some applications, such as exclusive processes at large momentum transfer, one can make first-principle predictions using factorization theorems which separate the hard perturbative dynamics from the nonpertubative physics associated with hadron binding. The Fock state components of the hadron with small transverse size, which dominate hard exclusive reactions, have small color dipole moments and thus diminished hadronic interactions. Thus QCD predicts minimal absorptive corrections, i.e., color transparency for quasi-elastic exclusive reactions in nuclear targets at large momentum transfer

  15. Lattice QCD simulations using the OpenACC platform

    International Nuclear Information System (INIS)

    Majumdar, Pushan

    2016-01-01

    In this article we will explore the OpenACC platform for programming Graphics Processing Units (GPUs). The OpenACC platform offers a directive based programming model for GPUs which avoids the detailed data flow control and memory management necessary in a CUDA programming environment. In the OpenACC model, programs can be written in high level languages with OpenMP like directives. We present some examples of QCD simulation codes using OpenACC and discuss their performance on the Fermi and Kepler GPUs. (paper)

  16. Leading infrared logarithms and vacuum structure of QCD3

    International Nuclear Information System (INIS)

    Guendelman, E.I.

    1990-01-01

    QCD 3 is a superrenormalizable, massless theory; therefore off-mass-shell infrared divergences appear in the loop expansion. This paper shows how certain infrared divergences can be subtracted by changing the boundary conditions in the functional integral, letting the vector potentials approach non-zero constant values at infinity. Infrared divergences, in the Green's functions, come together with powers of logarithms of the external momenta, and among the infrared divergences we deal with, there are those that give rise to the leading and first subleading logarithms. The authors show how for two-point functions it is possible to sum the leading and first subleading logarithms to all orders. This procedure defines a nonperturbative approximation for QCD 3 . The authors find that in the ultraviolet region these summations are well defined, while in the infrared region, some additional prescription is needed to make sense out of them

  17. Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.

    2012-02-16

    Light-Front Holography is one of the most remarkable features of the AdS/CFT correspondence. In spite of its present limitations it provides important physical insights into the nonperturbative regime of QCD and its transition to the perturbative domain. This novel framework allows hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The model leads to an effective confining light-front QCD Hamiltonian and a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound-state wavefunctions, and thus the fall-off as a function of the invariant mass of the constituents. The soft-wall holographic model modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics - a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryons. The model predicts a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number n. The hadron eigensolutions projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions {Psi}{sub n/H} (x{sub i}, k{sub {perpendicular}i}, {lambda}{sub i}) which describe the hadron's momentum and spin distributions needed to compute the direct measures of hadron structure at the quark and gluon level, such as elastic and transition form factors, distribution amplitudes, structure functions, generalized parton distributions and transverse

  18. The infrared behavior of lattice QCD Green's functions. A numerical study of lattice QCD in Landau gauge

    International Nuclear Information System (INIS)

    Sternbeck, A.

    2006-01-01

    Within the framework of lattice QCD we investigate different aspects of QCD in Landau gauge using Monte Carlo simulations. In particular, we focus on the low momentum behavior of gluon and ghost propagators. The gauge group is SU(3). Different systematic effects on the gluon and ghost propagators are studied. We demonstrate the ghost dressing function to systematically depend on the choice of Gribov copies at low momentum, while the influence on the gluon dressing function is not resolvable. Also the eigenvalue distribution of the Faddeev-Popov operator is sensitive to Gribov copies. We show that the influence of dynamical Wilson fermions on the ghost propagator is negligible at the momenta available to us. On the contrary, fermions affect the gluon propagator at large and intermediate momenta. In addition, we analyze data for both propagators obtained on asymmetric lattices and compare these results with data obtained on symmetric lattices. We compare our data with results from studies of Dyson-Schwinger equations for the gluon and ghost propagators. We demonstrate that the infrared behavior of both propagators, as found in this thesis, is consistent with different criteria for confinement. However, the running coupling constant, given as a renormalization-group-invariant combination of the gluon and ghost dressing functions, does not expose a finite infrared fixed point. Rather the data are in favor of an infrared vanishing coupling constant. We also report on a first nonperturbative computation of the SU(3) ghost-gluon-vertex renormalization constant. We present results of an investigation of the spectral properties of the Faddeev-Popov operator. For this we have calculated the low-lying eigenvalues and eigenmodes of the Faddeev-Popov operator. (orig.)

  19. Nucleon structure from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dinter, Simon

    2012-11-13

    In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a{sup 2}) discretization effects.

  20. Nucleon structure from lattice QCD

    International Nuclear Information System (INIS)

    Dinter, Simon

    2012-01-01

    In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a 2 ) discretization effects.

  1. Spin-2 NΩ dibaryon from lattice QCD

    International Nuclear Information System (INIS)

    Etminan, Faisal; Nemura, Hidekatsu; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko; Sasaki, Kenji

    2014-01-01

    We investigate properties of the N(nucleon)–Ω(Omega) interaction in lattice QCD to seek for possible dibaryon states in the strangeness −3 channel. We calculate the NΩ potential through the equal-time Nambu–Bethe–Salpeter wave function in 2+1 flavor lattice QCD with the renormalization group improved Iwasaki gauge action and the nonperturbatively O(a) improved Wilson quark action at the lattice spacing a≃0.12 fm on a (1.9 fm) 3 × 3.8 fm lattice. The ud and s quark masses in our study correspond to m π =875(1) MeV and m K =916(1) MeV. At these parameter values, the central potential in the S-wave with the spin 2 shows attractions at all distances. By solving the Schrödinger equation with this potential, we find one bound state whose binding energy is 18.9(5.0)( +12.1 −1.8 ) MeV, where the first error is the statistical one, while the second represents the systematic error

  2. Spin-2 NΩ dibaryon from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Etminan, Faisal [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Department of Physics, Faculty of Sciences, University of Birjand, Birjand 97175-615 (Iran, Islamic Republic of); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Nemura, Hidekatsu [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Aoki, Sinya [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Doi, Takumi [Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan); Hatsuda, Tetsuo [Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan); Kavli IPMU (WPI), The University of Tokyo, Chiba 277-8583 (Japan); Ikeda, Yoichi [Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan); Inoue, Takashi [Nihon University, College of Bioresource Sciences, Kanagawa 252-0880 (Japan); Ishii, Noriyoshi [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Murano, Keiko [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Sasaki, Kenji [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan)

    2014-08-15

    We investigate properties of the N(nucleon)–Ω(Omega) interaction in lattice QCD to seek for possible dibaryon states in the strangeness −3 channel. We calculate the NΩ potential through the equal-time Nambu–Bethe–Salpeter wave function in 2+1 flavor lattice QCD with the renormalization group improved Iwasaki gauge action and the nonperturbatively O(a) improved Wilson quark action at the lattice spacing a≃0.12 fm on a (1.9 fm){sup 3}× 3.8 fm lattice. The ud and s quark masses in our study correspond to m{sub π}=875(1) MeV and m{sub K}=916(1) MeV. At these parameter values, the central potential in the S-wave with the spin 2 shows attractions at all distances. By solving the Schrödinger equation with this potential, we find one bound state whose binding energy is 18.9(5.0)({sup +12.1}{sub −1.8}) MeV, where the first error is the statistical one, while the second represents the systematic error.

  3. Nonperturbative construction of massive Yang-Mills fields without the Higgs field

    Science.gov (United States)

    Kondo, Kei-Ichi

    2013-01-01

    In order to understand the so-called decoupling solution for gluon and ghost propagators in QCD, we give a nonperturbative construction of a massive vector field describing a non-Abelian massive spin-one particle, which has the correct physical degrees of freedom and is invariant under a modified Becchi-Rouet-Stora-Tyutin transformation, in a massive Yang-Mills model without the Higgs field, i.e., the Curci-Ferrari model. The resulting non-Abelian massive vector boson field is written by using a nonlinear but local transformation from the original fields in the Curci-Ferrari model. As an application, we write down a local mass term for the Yang-Mills field and a dimension-two condensate, which are exactly invariant under the modified Becchi-Rouet-Stora-Tyutin transformation, Lorentz transformation, and color rotation.

  4. Axion cosmology, lattice QCD and the dilute instanton gas

    International Nuclear Information System (INIS)

    Borsanyi, S.; Fodor, Z.; Mages, S.W.; Nogradi, D.; Szabo, K.K.

    2015-08-01

    Axions are one of the most attractive dark matter candidates. The evolution of their number density in the early universe can be determined by calculating the topological susceptibility χ(T) of QCD as a function of the temperature. Lattice QCD provides an ab initio technique to carry out such a calculation. A full result needs two ingredients: physical quark masses and a controlled continuum extrapolation from non-vanishing to zero lattice spacings. We determine χ(T) in the quenched framework (infinitely large quark masses) and extrapolate its values to the continuum limit. The results are compared with the prediction of the dilute instanton gas approximation (DIGA). A nice agreement is found for the temperature dependence, whereas the overall normalization of the DIGA result still differs from the non-perturbative continuum extrapolated lattice results by a factor of order ten. We discuss the consequences of our findings for the prediction of the amount of axion dark matter.

  5. The accuracy of QCD perturbation theory at high energies

    CERN Document Server

    Dalla Brida, Mattia; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer

    2016-01-01

    We discuss the determination of the strong coupling $\\alpha_\\mathrm{\\overline{MS}}^{}(m_\\mathrm{Z})$ or equivalently the QCD $\\Lambda$-parameter. Its determination requires the use of perturbation theory in $\\alpha_s(\\mu)$ in some scheme, $s$, and at some energy scale $\\mu$. The higher the scale $\\mu$ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the $\\Lambda$-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to $\\alpha_s = 0.1$ and below. We find that perturbation theory is very accurate there, yielding a three percent error in the $\\Lambda$-parameter, while data around $\\alpha_s \\approx 0.2$ is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.

  6. Photon structure functions at small x in holographic QCD

    International Nuclear Information System (INIS)

    Watanabe, Akira; Li, Hsiang-nan

    2015-01-01

    We investigate the photon structure functions at small Bjorken variable x in the framework of the holographic QCD, assuming dominance of the Pomeron exchange. The quasi-real photon structure functions are expressed as convolution of the Brower–Polchinski–Strassler–Tan (BPST) Pomeron kernel and the known wave functions of the U(1) vector field in the five-dimensional AdS space, in which the involved parameters in the BPST kernel have been fixed in previous studies of the nucleon structure functions. The predicted photon structure functions, as confronted with data, provide a clean test of the BPST kernel. The agreement between theoretical predictions and data is demonstrated, which supports applications of holographic QCD to hadronic processes in the nonperturbative region. Our results are also consistent with those derived from the parton distribution functions of the photon proposed by Glück, Reya, and Schienbein, implying realization of the vector meson dominance in the present model setup.

  7. Effective methods in QCD and the phenomenology of hadrons

    International Nuclear Information System (INIS)

    Chemtob, M.

    1989-01-01

    To place the problem in perspective I will first discuss the decoupling of heavy quarks in QCD which is a simpler perturbative problem. Then, I will review two experimental observables (the σ-term in πN scattering and the polarised deep inelastic scattering) which diagnose the possibility of non-perturbative effects associated with the decoupling of the strange quark and will next discuss their possible interpretation on the basis of the skyrme model. I will also present some simple-minded results for a related low-energy application to the meson-nucleon scattering lengths obtained in a chiral effective lagrangian approach

  8. Determination of csw in Nf=3+1 lattice QCD with massive Wilson fermions

    International Nuclear Information System (INIS)

    Fritzsch, Patrick; Stollenwerk, Felix; Wolff, Ulli; Sommer, Rainer

    2015-01-01

    We develop a strategy for the non-perturbative determination of the O(a)-improvement coefficient c sw for Wilson fermions with massive sea quarks. The improvement condition is defined via the PCAC relation in the Schroedinger functional. It is imposed along a line of constant physics designed to be close to the correct mass of the charm quark. The numerical work uses the tree-level improved Luescher-Weisz gauge action in N f =3+1 Lattice QCD.

  9. QCD factorization beyond leading twist in exclusive processes: rhoT-meson production

    International Nuclear Information System (INIS)

    Wallon, S.; Anikin, I.; ); Ivanov, D.; Pire, B.; Szymanowski, L.

    2009-01-01

    Exclusive processes in hard electroproduction with asymptotic γ * p center of mass energy is one of the best place for understanding QCD in the perturbative Regge limit. The HERA experiment recently provided precise data for rho electroproduction, including all spin density matrix elements. From QCD, it is expected that such a process should factorize between a hard (calculable) coefficient function, and hadronic (P and ρ) matrix elements. Such a factorization is up to now only proven for a longitudinally polarized rho. Within the kt-factorization approach (valid at large s γ * p), we evaluate the impact factor of the transition γ * → ρT taking into account the twist 3 contributions. We show that a gauge invariant expression is obtained with the help of QCD equations of motion. More generally, relying on these equations and on the gauge invariance of the factorized amplitude, the non-perturbative Distribution Amplitudes can be reduced to a minimal set. This opens the way to a consistent treatment of factorization for exclusive processes with a transversally polarized vector meson. (author)

  10. Electric Dipole Moment Results from lattice QCD

    Science.gov (United States)

    Dragos, Jack; Luu, Thomas; Shindler, Andrea; de Vries, Jordy

    2018-03-01

    We utilize the gradient flow to define and calculate electric dipole moments induced by the strong QCD θ-term and the dimension-6 Weinberg operator. The gradient flow is a promising tool to simplify the renormalization pattern of local operators. The results of the nucleon electric dipole moments are calculated on PACS-CS gauge fields (available from the ILDG) using Nf = 2+1, of discrete size 323×64 and spacing a ≃ 0.09 fm. These gauge fields use a renormalization-group improved gauge action and a nonperturbatively O(a) improved clover quark action at β = 1.90, with cSW = 1.715. The calculation is performed at pion masses of mπ ≃ 411, 701 MeV.

  11. Analysis of J/psi → etasub(c)γ decay by the method of QCD sum rules

    International Nuclear Information System (INIS)

    Bejlin, V.A.; Radyushkin, A.V.

    1984-01-01

    The radiative M1 transitions in charmonium are analyzed by the method of QCD sum rules taking into account nonperturbative corrections O( ). The dependence of the result on the choice of the parameter is investigated. The account of the lower nonperturbative corrections to the amplitude, describing radiation M1-transitions in charmonium, changes slightly the result for the decay widths GITA(J/psi → etasub(c)γ). The calculations show that the values of parameter phi, somewhat larger than the standard, one, result in shifting the theoretical values for GITA(J/psi → etasub(c)γ) in the direction of the experimental one, however no unambiguous conclusion on phi deviation of the standard value can be drawn without account for the contribution from higher dimensions

  12. The infrared behavior of lattice QCD Green's functions. A numerical study of lattice QCD in Landau gauge

    Energy Technology Data Exchange (ETDEWEB)

    Sternbeck, A.

    2006-07-18

    Within the framework of lattice QCD we investigate different aspects of QCD in Landau gauge using Monte Carlo simulations. In particular, we focus on the low momentum behavior of gluon and ghost propagators. The gauge group is SU(3). Different systematic effects on the gluon and ghost propagators are studied. We demonstrate the ghost dressing function to systematically depend on the choice of Gribov copies at low momentum, while the influence on the gluon dressing function is not resolvable. Also the eigenvalue distribution of the Faddeev-Popov operator is sensitive to Gribov copies. We show that the influence of dynamical Wilson fermions on the ghost propagator is negligible at the momenta available to us. On the contrary, fermions affect the gluon propagator at large and intermediate momenta. In addition, we analyze data for both propagators obtained on asymmetric lattices and compare these results with data obtained on symmetric lattices. We compare our data with results from studies of Dyson-Schwinger equations for the gluon and ghost propagators. We demonstrate that the infrared behavior of both propagators, as found in this thesis, is consistent with different criteria for confinement. However, the running coupling constant, given as a renormalization-group-invariant combination of the gluon and ghost dressing functions, does not expose a finite infrared fixed point. Rather the data are in favor of an infrared vanishing coupling constant. We also report on a first nonperturbative computation of the SU(3) ghost-gluon-vertex renormalization constant. We present results of an investigation of the spectral properties of the Faddeev-Popov operator. For this we have calculated the low-lying eigenvalues and eigenmodes of the Faddeev-Popov operator. (orig.)

  13. Non-perturbative power corrections to ghost and gluon propagators

    International Nuclear Information System (INIS)

    Boucaud, Philippe; Leroy, Jean-Pierre; Yaouanc, Alain Le; Lokhov, Alexey; Micheli, Jacques; Pene, Olivier; RodrIguez-Quintero, Jose; Roiesnel, Claude

    2006-01-01

    We study the dominant non-perturbative power corrections to the ghost and gluon propagators in Landau gauge pure Yang-Mills theory using OPE and lattice simulations. The leading order Wilson coefficients are proven to be the same for both propagators. The ratio of the ghost and gluon propagators is thus free from this dominant power correction. Indeed, a purely perturbative fit of this ratio gives smaller value ( ≅ 270MeV) of Λ M-barS-bar than the one obtained from the propagators separately( ≅ 320MeV). This argues in favour of significant non-perturbative ∼ 1/q 2 power corrections in the ghost and gluon propagators. We check the self-consistency of the method

  14. Next-to-leading QCD calculation of the heavy quark fragmentation function

    International Nuclear Information System (INIS)

    Mele, B.; Nason, P.

    1990-01-01

    We present the results of a next-to-leading order QCD calculation of the fragmentation function of b flavoured hadrons at LEP. We find that the addition of the next-to-leading effects improves the stability of the result under changes of the evolution scale and does not alter drastically the leading order prediction. Our next-to-leading calculation suggests that, if we neglect non-perturbative effects, the b fragmentation function is peaked at fairly large values of x, even if the average value of x is not necessarily large. (orig.)

  15. Twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Shindler, A.

    2007-07-01

    I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)

  16. Twisted mass lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2007-07-15

    I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)

  17. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, HADRON STRUCTURE FROM LATTICE QCD, MARCH 18 - 22, 2002, BROOKHAVEN NATIONAL LABORATORY.

    Energy Technology Data Exchange (ETDEWEB)

    BLUM, T.; BOER, D.; CREUTZ, M.; OHTA, S.; ORGINOS, K.

    2002-03-18

    The RIKEN BNL Research Center workshop on ''Hadron Structure from Lattice QCD'' was held at BNL during March 11-15, 2002. Hadron structure has been the subject of many theoretical and experimental investigations, with significant success in understanding the building blocks of matter. The nonperturbative nature of QCD, however, has always been an obstacle to deepening our understanding of hadronic physics. Lattice QCD provides the tool to overcome these difficulties and hence a link can be established between the fundamental theory of QCD and hadron phenomenology. Due to the steady progress in improving lattice calculations over the years, comparison with experimentally measured hadronic quantities has become important. In this respect the workshop was especially timely. By providing an opportunity for experts from the lattice and hadron structure communities to present their latest results, the workshop enhanced the exchange of knowledge and ideas. With a total of 32 registered participants and 26 talks, the interest of a growing community is clearly exemplified. At the workshop Schierholz and Negele presented the current status of lattice computations of hadron structure. Substantial progress has been made during recent years now that the quenched results are well under control and the first dynamical results have appeared. In both the dynamical and the quenched simulations the lattice results, extrapolated to lighter quark masses, seem to disagree with experiment. Melnitchouk presented a possible explanation (chiral logs) for this disagreement. It became clear from these discussions that lattice computations at significantly lighter quark masses need to be performed.

  18. Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena

    DEFF Research Database (Denmark)

    Brodsky, S. J.; de Teramond, G. F.

    2012-01-01

    Light-front holography is one of the most remarkable features of the AdS/CFT correspondence. In spite of its present limitations, it provides important physical insights into the non-perturbative regime of QCD and its transition to the perturbative domain. This novel framework allows hadronic...... projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions Psi(n)/H(x(i), k(perpendicular to i), lambda(i)) which describe the hadron's momentum and spin distributions needed to compute the direct measures of hadron structure at the quark...

  19. Energy-momentum tensor correlation function in Nf = 2 + 1 full QCD at finite temperature

    Science.gov (United States)

    Taniguchi, Yusuke; Ejiri, Shinji; Kanaya, Kazuyuki; Kitazawa, Masakiyo; Suzuki, Asobu; Suzuki, Hiroshi; Umeda, Takashi

    2018-03-01

    We measure correlation functions of the nonperturbatively renormalized energy-momentum tensor in Nf = 2 + 1 full QCD at finite temperature by applying the gradient flow method both to the gauge and quark fields. Our main interest is to study the conservation law of the energy-momentum tensor and to test whether the linear response relation is properly realized for the entropy density. By using the linear response relation we calculate the specific heat from the correlation function. We adopt the nonperturba-tively improved Wilson fermion and Iwasaki gauge action at a fine lattice spacing = 0:07 fm. In this paper the temperature is limited to a single value T ≃ 232 MeV. The u, d quark mass is rather heavy with mπ=mρ ≃ 0:63 while the s quark mass is set to approximately its physical value.

  20. Hadronic corrections to electroweak observables from twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Pientka, Grit

    2015-01-01

    For several benchmark quantities investigated to detect signs for new physics beyond the standard model of elementary particle physics, lattice QCD currently constitutes the only ab initio approach available at small momentum transfers for the computation of non-perturbative hadronic contributions. Among those observables are the lepton anomalous magnetic moments and the running of the electroweak coupling constants. We compute the leading QCD contribution to the muon anomalous magnetic moment by performing lattice QCD calculations on ensembles incorporating N f =2+1+1 dynamical twisted mass fermions. Considering active up, down, strange, and charm quarks, admits for the first time a direct comparison of the lattice data for the muon anomaly with phenomenological results because both the latter as well as the experimentally obtained values are sensitive to the complete first two generations of quarks at the current level of precision. Recently, it has been noted that improved measurements of the electron and tau anomalous magnetic moments might also provide ways of detecting new physics contributions. Therefore, we also compute their leading QCD contributions, which simultaneously serve as cross-checks of the value obtained for the muon. Additionally, we utilise the obtained data to compute the leading hadronic contribution to the running of the fine structure constant, which enters all perturbative QED calculations. Furthermore, we show that even for the weak mixing angle the leading QCD contribution can be computed from this data. In this way, we identify a new prime observable in the search for new physics whose hadronic contributions can be obtained from lattice QCD. With the results obtained in this thesis, we are able to exclude unsuitable phenomenologically necessary flavour separations and thus directly assist the presently more precise phenomenological determinations of this eminent quantity.

  1. Valence QCD: Connecting QCD to the quark model

    International Nuclear Information System (INIS)

    Liu, K.F.; Dong, S.J.; Draper, T.; Sloan, J.; Leinweber, D.; Woloshyn, R.M.

    1999-01-01

    A valence QCD theory is developed to study the valence quark properties of hadrons. To keep only the valence degrees of freedom, the pair creation through the Z graphs is deleted in the connected insertions, whereas the sea quarks are eliminated in the disconnected insertions. This is achieved with a new 'valence QCD' Lagrangian where the action in the time direction is modified so that the particle and antiparticle decouple. It is shown in this valence version of QCD that the ratios of isovector to isoscalar matrix elements (e.g., F A /D A and F S /D S ratios) in the nucleon reproduce the SU(6) quark model predictions in a lattice QCD calculation. We also consider how the hadron masses are affected on the lattice and discover new insights into the origin of dynamical mass generation. It is found that, within statistical errors, the nucleon and the Δ become degenerate for the quark masses we have studied (ranging from 1 to 4 times the strange mass). The π and ρ become nearly degenerate in this range. It is shown that valence QCD has the C, P, T symmetries. The lattice version is reflection positive. It also has the vector and axial symmetries. The latter leads to a modified partially conserved axial Ward identity. As a result, the theory has a U(2N F ) symmetry in the particle-antiparticle space. Through lattice simulation, it appears that this is dynamically broken down to U q (N F )xU bar q (N F ). Furthermore, the lattice simulation reveals spin degeneracy in the hadron masses and various matrix elements. This leads to an approximate U q (2N F )xU bar q (2N F ) symmetry which is the basis for the valence quark model. In addition, we find that the masses of N, Δ,ρ,π,a 1 , and a 0 all drop precipitously compared to their counterparts in the quenched QCD calculation. This is interpreted as due to the disappearance of the 'constituent' quark mass which is dynamically generated through tadpole diagrams. The origin of the hyperfine splitting in the baryon is

  2. The strange and light quark contributions to the nucleon mass from lattice QCD

    International Nuclear Information System (INIS)

    Bali, Gunnar S.; Collins, Sara; Goeckeler, Meinulf

    2011-12-01

    We determine the strangeness and light quark fractions of the nucleon mass by computing the quark line connected and disconnected contributions to the matrix elements m q left angle N vertical stroke anti qq vertical stroke N right angle in lattice QCD, using the non-perturbatively improved Sheikholeslami-Wohlert Wilson Fermionic action. We simulate n F =2 mass degenerate sea quarks with a pion mass of about 285 MeV and a lattice spacing ∼0.073 fm. The renormalization of the matrix elements involves mixing between contributions from different quark flavours. The pion-nucleon σ-term is extrapolated to physical quark masses exploiting the sea quark mass dependence of the nucleon mass. We obtain the renormalized values σ πN =(38±12) MeV at the physical point and f T s =σ s /m N =0.012(14) +10 -3 for the strangeness contribution at our larger than physical sea quark mass. (orig.)

  3. The strange and light quark contributions to the nucleon mass from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bali, Gunnar S.; Collins, Sara; Goeckeler, Meinulf [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)

    2011-12-15

    We determine the strangeness and light quark fractions of the nucleon mass by computing the quark line connected and disconnected contributions to the matrix elements m{sub q} left angle N vertical stroke anti qq vertical stroke N right angle in lattice QCD, using the non-perturbatively improved Sheikholeslami-Wohlert Wilson Fermionic action. We simulate n{sub F}=2 mass degenerate sea quarks with a pion mass of about 285 MeV and a lattice spacing {approx}0.073 fm. The renormalization of the matrix elements involves mixing between contributions from different quark flavours. The pion-nucleon {sigma}-term is extrapolated to physical quark masses exploiting the sea quark mass dependence of the nucleon mass. We obtain the renormalized values {sigma}{sub {pi}}{sub N}=(38{+-}12) MeV at the physical point and f{sub T{sub s}}={sigma}{sub s}/m{sub N}=0.012(14){sup +10}{sub -3} for the strangeness contribution at our larger than physical sea quark mass. (orig.)

  4. Analyzing B{sub s} - anti B{sub s} mixing. Non-perturbative contributions to bag parameters from sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Mannel, T. [Siegen Univ. (Germany). FB 7, Theoretische Physik; Pecjak, B.D. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Pivovarov, A.A. [Siegen Univ. (Germany). FB 7, Theoretische Physik]|[Russian Academy of Sciecnes, Moscow (Russian Federation). Inst. for Nuclear Research

    2007-03-15

    We use QCD sum rules to compute matrix elements of the {delta}B=2 operators appearing in the heavy-quark expansion of the width difference of the B{sub s} mass eigenstates. Our analysis includes the leading-order operators Q and Q{sub S}, as well as the subleading operators R{sub 2} and R{sub 3}, which appear at next-to-leading order in the 1/m{sub b} expansion. We conclude that the violation of the factorization approximation for these matrix elements due to non-perturbative vacuum condensates is as low as 1-2%. (orig.)

  5. Nucleon-nucleon interactions via Lattice QCD: Methodology. HAL QCD approach to extract hadronic interactions in lattice QCD

    Science.gov (United States)

    Aoki, Sinya

    2013-07-01

    We review the potential method in lattice QCD, which has recently been proposed to extract nucleon-nucleon interactions via numerical simulations. We focus on the methodology of this approach by emphasizing the strategy of the potential method, the theoretical foundation behind it, and special numerical techniques. We compare the potential method with the standard finite volume method in lattice QCD, in order to make pros and cons of the approach clear. We also present several numerical results for nucleon-nucleon potentials.

  6. QCD-instantons at LHC. Theoretical aspects

    International Nuclear Information System (INIS)

    Petermann, M.

    2007-06-01

    Instantons are nonperturbative, topologically nontrivial field configurations, which occur in every nonabelian gauge theory. They can be understood as tunneling processes between topologically distinct vacua. Although being a basic theoretical aspect of the Standard Model, a direct experimental verification of instanton processes is still lacking. In this thesis the general discovery potential for QCD-instantons at the LHC is studied in detail by means of instanton perturbation theory. In this context the close correspondence between the leading instanton induced processes at HERA and at LHC becomes important. Essential aspects and differences to deep inelastic scattering can already be revealed by studying the simplest process. Based on these results inclusive cross sections are calculated including the emission of final state gluons. Compared to deep inelastic scattering, a large enhancement of the cross section is found. (orig.)

  7. Static and dynamic properties of QCD bound states

    International Nuclear Information System (INIS)

    Kubrak, Stanislav

    2015-01-01

    The QCD phenomenology can be faced with the framework of the coupled quark DSE, meson BSE and baryon Faddeev equation, providing non-perturbative, continuum and Poincare invariant scientific approach. The research performed throughout this thesis is twofold. From one perspective we focus on the investigation of mass spectra for mesons with total spin quantum number J=3 and arising Regge-trajectory for natural parity states J PC =1 -- ,2 ++ ,3 -- within rainbow-ladder single gluon exchange model. The other findings are concerning the impact of the pion cloud effect on J>2 meson states, baryon masses, namely on Nucleon and Delta three-body bound states and meson dynamical properties like the pion form factor.

  8. The lightest hybrid meson supermultiplet in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dudek, Jozef J

    2011-10-01

    We interpret the spectrum of meson states recently obtained in non-perturbative lattice QCD calculations in terms of constituent quark-antiquark bound states and states, called 'hybrids', in which the q{bar q} pair is supplemented by an excitation of the gluonic field. We identify a lightest supermultiplet of hybrid mesons with J{sup PC} = (0,1,2){sup {-+}}, 1{sup -} built from a gluonic excitation of chromomagnetic character coupled to q{bar q} in an S-wave. The next lightest hybrids are suggested to be quark orbital excitations with the same gluonic excitation, while the next distinct gluonic excitation is significantly heavier. Existing models of gluonic excitations are compared to these findings and possible phenomenological consequences explored.

  9. Electric Dipole Moment Results from lattice QCD

    Directory of Open Access Journals (Sweden)

    Dragos Jack

    2018-01-01

    Full Text Available We utilize the gradient flow to define and calculate electric dipole moments induced by the strong QCD θ-term and the dimension-6 Weinberg operator. The gradient flow is a promising tool to simplify the renormalization pattern of local operators. The results of the nucleon electric dipole moments are calculated on PACS-CS gauge fields (available from the ILDG using Nf = 2+1, of discrete size 323×64 and spacing a ≃ 0.09 fm. These gauge fields use a renormalization-group improved gauge action and a nonperturbatively O(a improved clover quark action at β = 1.90, with cSW = 1.715. The calculation is performed at pion masses of mπ ≃ 411, 701 MeV.

  10. Performance tests of the Kramers equation and boson algorithms for simulations of QCD

    International Nuclear Information System (INIS)

    Jansen, K.; Liu Chuan; Jegerlehner, B.

    1995-12-01

    We present a performance comparison of the Kramers equation and the boson algorithms for simulations of QCD with two flavors of dynamical Wilson fermions and gauge group SU(2). Results are obtained on 6 3 12, 8 3 12 and 16 4 lattices. In both algorithms a number of optimizations are installed. (orig.)

  11. Exploiting finite-size-effects to simulate full QCD with light quarks - a progress report

    International Nuclear Information System (INIS)

    Orth, B.; Eicker, N.; Lippert, Th.; Schilling, K.; Schroers, W.; Sroczynski, Z.

    2002-01-01

    We present a report on the status of the GRAL project (Going Realistic And Light), which aims at simulating full QCD with two dynamical Wilson quarks below the vector meson decay threshold, m ps /m v < 0.5, making use of finite-size-scaling techniques

  12. Simulating QCD at the physical point with Nf=2 Wilson twisted mass fermions at maximal twist

    International Nuclear Information System (INIS)

    Abdel-Rehim, A.; Alexandrou, C.; Cyprus Univ. Nicosia; Burger, F.

    2015-12-01

    We present simulations of QCD using N f =2 dynamical Wilson twisted mass lattice QCD with physical value of the pion mass and at one value of the lattice spacing. Such simulations at a∼0.09 fm became possible by adding the clover term to the action. While O(a) improvement is still guaranteed by Wilson twisted mass fermions at maximal twist, the introduction of the clover term reduces O(a 2 ) cutoff effects related to isospin symmetry breaking. We give results for a set of phenomenologically interesting observables like pseudo-scalar masses and decay constants, quark masses and the anomalous magnetic moments of leptons. We mostly find remarkably good agreement with phenomenology, even though we cannot take the continuum and thermodynamic limits.

  13. Chiral symmetry breaking and nonperturbative scale anomaly in gauge field theories

    International Nuclear Information System (INIS)

    Miranskij, V.A.; Gusynin, V.P.

    1987-01-01

    The nonperturbative dynamics of chiral and scale symmetry breaking in asymtotically free and non-asymptotically free (with an ultraviolet stable fixed point) vector-like gauge theories is investigated. In the two-loop approximation analytical expressions for the chiral and gluon condensates are obtained. The hypothesis about a soft behaviour at small distances of composite operators in non-asymptotically free gauge theories with a fixed point is put forward and substantiated. It is shown that in these theories the form of the scale anomaly depends on the type of the phase in coupling constant to which it relates. A new dilaton effective lagrangian for glueball and chiral fields is suggested. The mass relation for the single scalar fermion-antifermion bound state is obtained. The important ingredient of this approach is a large (d≅ 2) dynamical dimension of composite chiral fields. The application of this approach to QCD and technicolour models is discussed

  14. Baryon interactions from lattice QCD with physical quark masses - Nuclear forces and ΞΞ forces -

    Science.gov (United States)

    Doi, Takumi; Iritani, Takumi; Aoki, Sinya; Gongyo, Shinya; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Ishii, Noriyoshi; Miyamoto, Takaya; Nemura, Hidekatsu; Sasaki, Kenji

    2018-03-01

    We present the latest lattice QCD results for baryon interactions obtained at nearly physical quark masses. Nf = 2 + 1 nonperturbatively O(a)-improved Wilson quark action with stout smearing and Iwasaki gauge action are employed on the lattice of (96a)4 ≃(8.1fm)4 with a-1 ≃2.3 GeV, where mπ ≃146 MeV and mK ≃525 MeV. In this report, we study the two-nucleon systems and two-Ξ systems in 1S0 channel and 3S1-3D1 coupled channel, and extract central and tensor interactions by the HAL QCD method. We also present the results for the NΩ interaction in 5S2 channel which is relevant to the NΩ pair-momentum correlation in heavy-ion collision experiments.

  15. Hadronic matrix elements in lattice QCD

    International Nuclear Information System (INIS)

    Jaeger, Benjamin

    2014-01-01

    The lattice formulation of Quantum ChromoDynamics (QCD) has become a reliable tool providing an ab initio calculation of low-energy quantities. Despite numerous successes, systematic uncertainties, such as discretisation effects, finite-size effects, and contaminations from excited states, are inherent in any lattice calculation. Simulations with controlled systematic uncertainties and close to the physical pion mass have become state-of-the-art. We present such a calculation for various hadronic matrix elements using non-perturbatively O(a)-improved Wilson fermions with two dynamical light quark flavours. The main topics covered in this thesis are the axial charge of the nucleon, the electro-magnetic form factors of the nucleon, and the leading hadronic contributions to the anomalous magnetic moment of the muon. Lattice simulations typically tend to underestimate the axial charge of the nucleon by 5-10%. We show that including excited state contaminations using the summed operator insertion method leads to agreement with the experimentally determined value. Further studies of systematic uncertainties reveal only small discretisation effects. For the electro-magnetic form factors of the nucleon, we see a similar contamination from excited states as for the axial charge. The electro-magnetic radii, extracted from a dipole fit to the momentum dependence of the form factors, show no indication of finite-size or cutoff effects. If we include excited states using the summed operator insertion method, we achieve better agreement with the radii from phenomenology. The anomalous magnetic moment of the muon can be measured and predicted to very high precision. The theoretical prediction of the anomalous magnetic moment receives contribution from strong, weak, and electro-magnetic interactions, where the hadronic contributions dominate the uncertainties. A persistent 3σ tension between the experimental determination and the theoretical calculation is found, which is

  16. Energy-momentum tensor correlation function in Nf = 2 + 1 full QCD at finite temperature

    Directory of Open Access Journals (Sweden)

    Taniguchi Yusuke

    2018-01-01

    Full Text Available We measure correlation functions of the nonperturbatively renormalized energy-momentum tensor in Nf = 2 + 1 full QCD at finite temperature by applying the gradient flow method both to the gauge and quark fields. Our main interest is to study the conservation law of the energy-momentum tensor and to test whether the linear response relation is properly realized for the entropy density. By using the linear response relation we calculate the specific heat from the correlation function. We adopt the nonperturba-tively improved Wilson fermion and Iwasaki gauge action at a fine lattice spacing = 0:07 fm. In this paper the temperature is limited to a single value T ≃ 232 MeV. The u, d quark mass is rather heavy with mπ=mρ ≃ 0:63 while the s quark mass is set to approximately its physical value.

  17. Introduction to non-perturbative quantum chromodynamics

    International Nuclear Information System (INIS)

    Pene, O.

    1995-01-01

    Quantum chromodynamics is considered to be the theory of strong interaction. The main peculiarity of this theory is that its asymptotic states (hadrons) are different from its elementary fields (quarks and gluons). This property plays a great part in any physical process involving small momentum-energy transfers. In such a range perturbative methods are no longer allowed. This work focuses on other tools such as QCD symmetry, the quark model, Green functions and the sum rules. To get hadron characteristics numerically, QCD on lattices is used but only in the case of simple process involving no more than one hadron in the initial and final states because of the complexity of the Green function. Some examples using a Monte-Carlo simulation are given. (A.C.)

  18. Lattice simulations of QCD-like theories at finite baryon density

    Energy Technology Data Exchange (ETDEWEB)

    Scior, Philipp Friedrich

    2016-07-13

    The exploration of the phase diagram of quantum chromodynamics (QCD) is of great importance to describe e.g. the properties of neutron stars or heavy-ion collisions. Due to the sign problem of lattice QCD at finite chemical potential we need effective theories to study QCD at finite density. Here, we use a three-dimensional Polyakov-loop theory to study the phase diagrams of QCD-like theories. In particular, we investigate the heavy quark limit of the QCD-like theories where the effective theory can be derived from the full theory by a combined strong coupling and hopping expansion. This expansion can be systematically improved order by order. Since there is no sign problem for the QCD-like theories we consider, we can compare our results to data from lattice calculations of the full theories to make qualitative and quantitative statements of the effective theory's validity. We start by deriving the effective theory up to next-to-next-to leading-order, in particular for two-color and G{sub 2}-QCD where replace the three colors in QCD with only two colors or respectively replace the gauge group SU(3) of QCD with G{sub 2}. We will then apply the effective theory at finite temperature mainly to test the theory and the implementation but also to make some predictions for the deconfinement phase transition in G{sub 2} Yang-Mills theory. Finally, we turn our attention to the cold and dense regime of the phase diagram where we observe a sharp increase of the baryon density with the quark chemical potential μ, when μ reaches half the diquark mass. At vanishing temperature this is expected to happen in a quantum phase transition with Bose-Einstein-condensation of diquarks. In contrast to the liquid-gas transition in QCD, the phase transition to the Bose-Einstein condensate is continuous. We find evidence that the effective theories for heavy quarks are able to describe the qualitative difference between first and second order phase transitions. For even higher μ we

  19. Lattice simulations of QCD-like theories at finite baryon density

    International Nuclear Information System (INIS)

    Scior, Philipp Friedrich

    2016-01-01

    The exploration of the phase diagram of quantum chromodynamics (QCD) is of great importance to describe e.g. the properties of neutron stars or heavy-ion collisions. Due to the sign problem of lattice QCD at finite chemical potential we need effective theories to study QCD at finite density. Here, we use a three-dimensional Polyakov-loop theory to study the phase diagrams of QCD-like theories. In particular, we investigate the heavy quark limit of the QCD-like theories where the effective theory can be derived from the full theory by a combined strong coupling and hopping expansion. This expansion can be systematically improved order by order. Since there is no sign problem for the QCD-like theories we consider, we can compare our results to data from lattice calculations of the full theories to make qualitative and quantitative statements of the effective theory's validity. We start by deriving the effective theory up to next-to-next-to leading-order, in particular for two-color and G_2-QCD where replace the three colors in QCD with only two colors or respectively replace the gauge group SU(3) of QCD with G_2. We will then apply the effective theory at finite temperature mainly to test the theory and the implementation but also to make some predictions for the deconfinement phase transition in G_2 Yang-Mills theory. Finally, we turn our attention to the cold and dense regime of the phase diagram where we observe a sharp increase of the baryon density with the quark chemical potential μ, when μ reaches half the diquark mass. At vanishing temperature this is expected to happen in a quantum phase transition with Bose-Einstein-condensation of diquarks. In contrast to the liquid-gas transition in QCD, the phase transition to the Bose-Einstein condensate is continuous. We find evidence that the effective theories for heavy quarks are able to describe the qualitative difference between first and second order phase transitions. For even higher μ we find the rise of the

  20. On the nonperturbative foundations of the dipole picture

    Energy Technology Data Exchange (ETDEWEB)

    Ewerz, C. [Milano Univ., INFN, Dipt. di Fisica (Italy); ECT, Villazzano (Trento) (Italy); Nachtmannc, B.O. [Heidelberg Univ., Institut fur Theoretische Physik (Germany)

    2005-07-01

    Starting from a completely non-perturbative formulation of photon-proton scattering we have identified the assumptions and approximations that are needed in order to obtain the dipole picture at high energies. At the same time we have found corrections to the dipole picture which can become large at small photon virtualities. We consider it as an important task for the future to investigate in detail the validity of the assumptions, the accuracy of the approximations, and the size of the corrections. In our opinion these issues should be addressed in order to put the results obtained in the framework of the dipole picture on solid ground. The framework developed here should be suitable for studying the effects caused by the non-existence of a mass-shell for quarks, and for using non-perturbative quark propagators, obtained for example from Dyson-Schwinger equations or from lattice simulations.

  1. A non-perturbative approach to jet cross-sections and a new model for hadron-hadron interactions

    International Nuclear Information System (INIS)

    Andersson, B.

    1986-01-01

    The author discusses two subjects in this work. The first is a description of a non-perturbative approach to calculate the probabilities to obtain a particular state of confined force field in a hard interaction like e/sup +/e/sup -/ annihilation. This approach has been discussed previously by the author. There are at this time many more results of the program, in particular, some rather puzzling and disturbing ones as compared to the results obtained in perturbative QCD. The second subject is a new approach to hadron-hadron inelastic scattering. A model for these interactions based upon multiple perturbative parton interactions and subsequent string-stretching and breaking has been formulated by others in earlier works

  2. arXiv A non-perturbative exploration of the high energy regime in $N_\\text{f}=3$ QCD

    CERN Document Server

    Dalla Brida, Mattia; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer

    Using continuum extrapolated lattice data we trace a family of running couplings in three-flavour QCD over a large range of scales from about 4 to 128 GeV. The scale is set by the finite space time volume so that recursive finite size techniques can be applied, and Schr\\"odinger functional (SF) boundary conditions enable direct simulations in the chiral limit. Compared to earlier studies we have improved on both statistical and systematic errors. Using the SF coupling to implicitly define a reference scale $1/L_0\\approx 4$ GeV through $\\bar{g}^2(L_0) =2.012$, we quote $L_0 \\Lambda^{N_{\\rm f}=3}_{\\overline{\\rm MS}} =0.0791(21)$. This error is dominated by statistics; in particular, the remnant perturbative uncertainty is negligible and very well controlled, by connecting to infinite renormalization scale from different scales $2^n/L_0$ for $n=0,1,\\ldots,5$. An intermediate step in this connection may involve any member of a one-parameter family of SF couplings. This provides an excellent opportunity for tests ...

  3. Lattice QCD at finite temperature with Wilson fermions

    International Nuclear Information System (INIS)

    Pinke, Christopher

    2014-01-01

    The subatomic world is governed by the strong interactions of quarks and gluons, described by Quantum Chromodynamics (QCD). Quarks experience confinement into colour-less objects, i.e. they can not be observed as free particles. Under extreme conditions such as high temperature or high density, this constraint softens and a transition to a phase where quarks and gluons are quasi-free particles (Quark-Gluon-Plasma) can occur. This environment resembles the conditions prevailing during the early stages of the universe shortly after the Big Bang. The phase diagram of QCD is under investigation in current and future collider experiments, for example at the Large Hadron Collider (LHC) or at the Facility for Antiproton and Ion Research (FAIR). Due to the strength of the strong interactions in the energy regime of interest, analytic methods can not be applied rigorously. The only tool to study QCD from first principles is given by simulations of its discretised version, Lattice QCD (LQCD). These simulations are in the high-performance computing area, hence, the numerical aspects of LQCD are a vital part in this field of research. In recent years, Graphic Processing Units (GPUs) have been incorporated in these simulations as they are a standard tool for general purpose calculations today. In the course of this thesis, the LQCD application CL 2 QCD has been developed, which allows for simulations on GPUs as well as on traditional CPUs, as it is based on OpenCL. CL 2 QCD constitutes the first application for Wilson type fermions in OpenCL. It provides excellent performance and has been applied in physics studies presented in this thesis. The investigation of the QCD phase diagram is hampered by the notorious sign-problem, which restricts current simulation algorithms to small values of the chemical potential. Theoretically, studying unphysical parameter ranges allows for constraints on the phase diagram. Of utmost importance is the clarification of the order of the finite

  4. Nuclear physics research front line by K computer. Elucidation of inter-hadron interactions by lattice QCD simulation

    International Nuclear Information System (INIS)

    Doi, Takumi

    2013-01-01

    Research of nuclear forces by lattice QCD including inter-hadron interactions is presented. Determination of nuclear forces based on the first principle of QCD means to give underpinning of nuclear physics from the elementary particle standard model. Determining the unknown interactions such as hyperon forces or three-body ones gives large impacts not only to the nuclear physics but also to the universe or astrophysics. In this paper, the most up-to-date achievements as well as the scientific visions of future by using K computer is introduced. The nuclear potential is shown to be determined by the first principle simulation based on the purely fundamental theory without using any input from experiments. When this research is completed, nuclear physics is consolidated in the frame of standard model of elementary particles. The formulation of nuclear potentials was though very problematic but solved by using HAL method. The way to use Nambu-Bethe-Salpeter wave functions to go to the QCD is explained. The results of the lattice QCD simulation are shown about the nuclear force potential of 1 S 0 channel and the scattering phase differences. About the hyperon forces, computer results from the limit of flavor SU(3) where the masses of u, d and s quarks are equal are introduced here. Further studies using different quark masses are necessary and calculation taking the SU(3) breaking into consideration is in progress. The calculation result of triple proton channel is shown as an example of three-body forth, which is another important nuclear force. To let the lattice QCD exert the predicting ability further steps are left. Calculations on real quark masses are considered especially important as the future problem. Confronting the large problem of hadron many-body systems, K computer is the biggest challenging force as well as the new formalism of HAL QCD and Unified Contraction Algorithm (UCA). (S. Funahashi)

  5. Non-perturbative QCD. Renormalization, O(a)-improvement and matching to heavy quark effective theory

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, R.

    2006-11-15

    We give an introduction to three topics in lattice gauge theory: I. The Schroedinger Functional and O(a) improvement. O(a) improvement has been reviewed several times. Here we focus on explaining the basic ideas in detail and then proceed directly to an overview of the literature and our personal assessment of what has been achieved and what is missing. II. The computation of the running coupling, running quark masses and the extraction of the renormalization group invariants. We focus on the basic strategy and on the large effort that has been invested in understanding the continuum limit. We point out what remains to be done. III. Non-perturbative Heavy Quark Effective Theory. Since the literature on this subject is still rather sparse, we go beyond the basic ideas and discuss in some detail how the theory works in principle and in practice. (orig.)

  6. Non-perturbative QCD. Renormalization, O(a)-improvement and matching to heavy quark effective theory

    International Nuclear Information System (INIS)

    Sommer, R.

    2006-11-01

    We give an introduction to three topics in lattice gauge theory: I. The Schroedinger Functional and O(a) improvement. O(a) improvement has been reviewed several times. Here we focus on explaining the basic ideas in detail and then proceed directly to an overview of the literature and our personal assessment of what has been achieved and what is missing. II. The computation of the running coupling, running quark masses and the extraction of the renormalization group invariants. We focus on the basic strategy and on the large effort that has been invested in understanding the continuum limit. We point out what remains to be done. III. Non-perturbative Heavy Quark Effective Theory. Since the literature on this subject is still rather sparse, we go beyond the basic ideas and discuss in some detail how the theory works in principle and in practice. (orig.)

  7. Lattice QCD inputs to the CKM unitarity triangle analysis

    International Nuclear Information System (INIS)

    Laiho, Jack; Lunghi, E.; Van de Water, Ruth S.

    2010-01-01

    We perform a global fit to the Cabibbo-Kobayashi-Maskawa unitarity triangle using the latest experimental and theoretical constraints. Our emphasis is on the hadronic weak matrix elements that enter the analysis, which must be computed using lattice QCD or other nonperturbative methods. Realistic lattice QCD calculations which include the effects of the dynamical up, down, and strange quarks are now available for all of the standard inputs to the global fit. We therefore present lattice averages for all of the necessary hadronic weak matrix elements. We attempt to account for correlations between lattice QCD results in a reasonable but conservative manner: whenever there are reasons to believe that an error is correlated between two lattice calculations, we take the degree of correlation to be 100%. These averages are suitable for use as inputs both in the global Cabibbo-Kobayashi-Maskawa unitarity triangle fit and other phenomenological analyses. In order to illustrate the impact of the lattice averages, we make standard model predictions for the parameters B-circumflex K , |V cb |, and |V ub |/|V cb |. We find a (2-3)σ tension in the unitarity triangle, depending upon whether we use the inclusive or exclusive determination of |V cb |. If we interpret the tension as a sign of new physics in either neutral kaon or B mixing, we find that the scenario with new physics in kaon mixing is preferred by present data.

  8. Langevin simulations of QCD, including fermions

    International Nuclear Information System (INIS)

    Kronfeld, A.S.

    1986-02-01

    We encounter critical slow down in updating when xi/a -> infinite and in matrix inversion (needed to include fermions) when msub(q)a -> 0. A simulation that purports to solve QCD numerically will encounter these limits, so to face the challenge in the title of this workshop, we must cure the disease of critical slow down. Physically, this critical slow down is due to the reluctance of changes at short distances to propagate to large distances. Numerically, the stability of an algorithm at short wavelengths requires a (moderately) small step size; critical slow down occurs when the effective long wavelength step size becomes tiny. The remedy for this disease is an algorithm that propagates signals quickly throughout the system; i.e. one whose effective step size is not reduced for the long wavelength conponents of the fields. (Here the effective ''step size'' is essentially an inverse decorrelation time.) To do so one must resolve various wavelengths of the system and modify the dynamics (in CPU time) of the simulation so that all modes evolve at roughly the same rate. This can be achieved by introducing Fourier transforms. I show how to implement Fourier acceleration for Langevin updating and for conjugate gradient matrix inversion. The crucial feature of these algorithms that lends them to Fourier acceleration is that they update the lattice globally; hence the Fourier transforms are computed once per sweep rather than once per hit. (orig./HSI)

  9. Charm quark mass and D-meson decay constants from two-flavour lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Heitger, Jochen [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Hippel, Georg M. von [Mainz Univ. (Germany). Inst. fuer Kernphysik; Schaefer, Stefan; Virotta, Francesco [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2013-12-15

    We present a computation of the charm quark's mass and the leptonic D-meson decay constants f{sub D} and f{sub D{sub s}} in two-flavour lattice QCD with non-perturbatively O(a) improvedWilson quarks. Our analysis is based on the CLS configurations at two lattice spacings (a=0.065 and 0.048 fm, where the lattice scale is set by f{sub K}) and pion masses ranging down to {proportional_to}190 MeV at Lm{sub {pi}}>or similar 4, in order to perform controlled continuum and chiral extrapolations with small systematic uncertainties.

  10. QCD on the BlueGene/L Supercomputer

    International Nuclear Information System (INIS)

    Bhanot, G.; Chen, D.; Gara, A.; Sexton, J.; Vranas, P.

    2005-01-01

    In June 2004 QCD was simulated for the first time at sustained speed exceeding 1 TeraFlops in the BlueGene/L supercomputer at the IBM T.J. Watson Research Lab. The implementation and performance of QCD in the BlueGene/L is presented

  11. QCD on the BlueGene/L Supercomputer

    Science.gov (United States)

    Bhanot, G.; Chen, D.; Gara, A.; Sexton, J.; Vranas, P.

    2005-03-01

    In June 2004 QCD was simulated for the first time at sustained speed exceeding 1 TeraFlops in the BlueGene/L supercomputer at the IBM T.J. Watson Research Lab. The implementation and performance of QCD in the BlueGene/L is presented.

  12. B physics from HQET in two-flavour lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bernardoni, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Blossier, B. [Paris-11 Univ., Orsay (France). Lab. de Physique Theorique; Bulava, J. [CERN, Geneva (Switzerland). Physics Department] [and others; Collaboration: ALPHA Collaboration

    2012-11-15

    We present our analysis of B physics quantities using non-perturbatively matched Heavy Quark Effective Theory (HQET) in N{sub f}=2 lattice QCD on the CLS ensembles. Using all-to-all propagators, HYP-smeared static quarks, and the Generalized Eigenvalue Problem (GEVP) approach with a conservative plateau selection procedure, we are able to systematically control all sources of error. With significantly increased statistics compared to last year, our preliminary results are anti m{sub b}(anti m{sub b})=4.22(10)(4){sub z} GeV for the MS b-quark mass, and f{sub B}=193(9){sub stat}(4){sub {chi}} MeV and f{sub B{sub s}}=219(12){sub stat} MeV for the B-meson decay constants.

  13. Large scale simulations of lattice QCD thermodynamics on Columbia Parallel Supercomputers

    International Nuclear Information System (INIS)

    Ohta, Shigemi

    1989-01-01

    The Columbia Parallel Supercomputer project aims at the construction of a parallel processing, multi-gigaflop computer optimized for numerical simulations of lattice QCD. The project has three stages; 16-node, 1/4GF machine completed in April 1985, 64-node, 1GF machine completed in August 1987, and 256-node, 16GF machine now under construction. The machines all share a common architecture; a two dimensional torus formed from a rectangular array of N 1 x N 2 independent and identical processors. A processor is capable of operating in a multi-instruction multi-data mode, except for periods of synchronous interprocessor communication with its four nearest neighbors. Here the thermodynamics simulations on the two working machines are reported. (orig./HSI)

  14. QCD as a topologically ordered system

    International Nuclear Information System (INIS)

    Zhitnitsky, Ariel R.

    2013-01-01

    We argue that QCD belongs to a topologically ordered phase similar to many well-known condensed matter systems with a gap such as topological insulators or superconductors. Our arguments are based on an analysis of the so-called “deformed QCD” which is a weakly coupled gauge theory, but nevertheless preserves all the crucial elements of strongly interacting QCD, including confinement, nontrivial θ dependence, degeneracy of the topological sectors, etc. Specifically, we construct the so-called topological “BF” action which reproduces the well known infrared features of the theory such as non-dispersive contribution to the topological susceptibility which cannot be associated with any propagating degrees of freedom. Furthermore, we interpret the well known resolution of the celebrated U(1) A problem where the would be η ′ Goldstone boson generates its mass as a result of mixing of the Goldstone field with a topological auxiliary field characterizing the system. We then identify the non-propagating auxiliary topological field of the BF formulation in deformed QCD with the Veneziano ghost (which plays the crucial role in resolution of the U(1) A problem). Finally, we elaborate on relation between “string-net” condensation in topologically ordered condensed matter systems and long range coherent configurations, the “skeletons”, studied in QCD lattice simulations. -- Highlights: •QCD may belong to a topologically ordered phase similar to condensed matter (CM) systems. •We identify the non-propagating topological field in deformed QCD with the Veneziano ghost. •Relation between “string-net” condensates in CM systems and the “skeletons” in QCD lattice simulations is studied

  15. Non-Perturbative Quantum Geometry III

    CERN Document Server

    Krefl, Daniel

    2016-08-02

    The Nekrasov-Shatashvili limit of the refined topological string on toric Calabi-Yau manifolds and the resulting quantum geometry is studied from a non-perturbative perspective. The quantum differential and thus the quantum periods exhibit Stockes phenomena over the combined string coupling and quantized Kaehler moduli space. We outline that the underlying formalism of exact quantization is generally applicable to points in moduli space featuring massless hypermultiplets, leading to non-perturbative band splitting. Our prime example is local P1xP1 near a conifold point in moduli space. In particular, we will present numerical evidence that in a Stockes chamber of interest the string based quantum geometry reproduces the non-perturbative corrections for the Nekrasov-Shatashvili limit of 4d supersymmetric SU(2) gauge theory at strong coupling found in the previous part of this series. A preliminary discussion of local P2 near the conifold point in moduli space is also provided.

  16. Quark-gluon plasma in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran

    2013-04-15

    One of the fundamental problems in subatomic physics is the determination of properties of matter at extreme temperatures, densities and electromagnetic fields. The modern ultrarelativistic heavy-ion experiments are able to study such states (the quark-gluon plasma) and indicate that the physics at extreme conditions differs drastically from what is known from the conventional observations. Also the theoretical methods developed mostly within the perturbative framework face various conceptual problems and need to be replaced by a nonperturbative approach. In this thesis we study the physics of the strongly-coupled quark-gluon plasma in external magnetic fields as well as general electromagnetic and topological properties of the QCD and QCD-like systems. We develop and apply various nonperturbative techniques, based on e.g. gauge-gravity correspondence, lattice QCD simulations, relativistic hydrodynamics and condensed-matter-inspired models.

  17. Quark-gluon plasma in strong magnetic fields

    International Nuclear Information System (INIS)

    Kalaydzhyan, Tigran

    2013-04-01

    One of the fundamental problems in subatomic physics is the determination of properties of matter at extreme temperatures, densities and electromagnetic fields. The modern ultrarelativistic heavy-ion experiments are able to study such states (the quark-gluon plasma) and indicate that the physics at extreme conditions differs drastically from what is known from the conventional observations. Also the theoretical methods developed mostly within the perturbative framework face various conceptual problems and need to be replaced by a nonperturbative approach. In this thesis we study the physics of the strongly-coupled quark-gluon plasma in external magnetic fields as well as general electromagnetic and topological properties of the QCD and QCD-like systems. We develop and apply various nonperturbative techniques, based on e.g. gauge-gravity correspondence, lattice QCD simulations, relativistic hydrodynamics and condensed-matter-inspired models.

  18. Monte-Carlo code PARJET to simulate e+e--annihilation events via QCD jets

    International Nuclear Information System (INIS)

    Ritter, S.

    1983-01-01

    The Monte-Carlo code PARJET simulates exclusive hadronic final states produced in e + e - -annihilation via a virtual photon by two steps: (i) the fragmentation of the original quark-antiquark pair into further partons using results of perturbative QCD in the leading logarithmic approximation (LLA), and (ii) the transition of these parton jets into hadrons on the basis of a chain decay model. Program summary and code description are given. (author)

  19. The pressure of hot QCD up to $g^{6}$ ln(1/g)

    CERN Document Server

    Kajantie, Keijou; Rummukainen, K; Schröder, Y

    2003-01-01

    The free energy density, or pressure, of QCD has at high temperatures an expansion in the coupling constant g, known so far up to order g^5. We compute here the last contribution which can be determined perturbatively, g^6 ln(1/g), by summing together results for the 4-loop vacuum energy densities of two different three-dimensional effective field theories. We also demonstrate that the inclusion of the new perturbative g^6 ln(1/g) terms, together with the so far unknown perturbative and non-perturbative g^6 terms, could potentially extend the applicability of the resummed coupling constant series down to surprisingly low temperatures.

  20. U-duality multiplets and nonperturbative superstring states

    International Nuclear Information System (INIS)

    Bars, I.; Yankielowicz, S.

    1996-01-01

    We employ an algebraic approach for unifying perturbative and nonperturbative superstring states on an equal footing, in the form of U-duality multiplets, at all excited string levels. In compactified type-IIA supertring theory we present evidence that the multiplet is labeled by two spaces, open-quote open-quote index close-quote close-quote space and open-quote open-quote base close-quote close-quote space, on which U acts without mixing them. Both spaces are nonperturbative extensions of similar spaces that label perturbative T-duality multiplets. Base space consists of all the central charges of the 11D SUSY algebra, while index space corresponds to representations of the maximal compact subgroup K improper-subset U. This structure predicts the quantum numbers of the nonperturbative states. We also discuss whether and how U multiplets may coexist with 11-dimensional multiplets that are associated with an additional nonperturbative 11D structure that seems to be lurking behind in the underlying theory. copyright 1996 The American Physical Society

  1. QCD condensates in ADS/QCD

    DEFF Research Database (Denmark)

    Bechi, Jacopo

    2009-01-01

    This paper focuses on some issues about condensates and renormalization in AdS/QCD models. In particular we consider the consistency of the AdS/QCD approach for scale dependent quantities as the chiral condensate questioned in some recent papers and the 4D meaning of the 5D cosmological constant...... in a model in which the QCD is dual to a 5D gravity theory. We will be able to give some arguments that the cosmological constant is related to the QCD gluon condensate....

  2. The QCD phase transition. From the microscopic mechanism to signals

    International Nuclear Information System (INIS)

    Shuryak, E.V.

    1997-01-01

    This talk consists of two very different parts: the first one deals with non-perturbative QCD and physics of the chiral restoration, the second with rather low-key (and still unfinished) work aiming at obtaining EOS and other properties of hot/dense hadronic matter from data on heavy ion collisions. The microscopic mechanism for chiral restoration phase transition is a transition from randomly placed tunneling events (instantons) at low T to a set of strongly correlated tunneling-anti-tunneling events (known as instanton-anti-instanton molecules) at high T. Many features of the transition can be explained in this simple picture, especially the critical line and its dependence on quark masses. This scenario predicts qualitative change of the basic quark-quark interactions around the phase transition line, with some states (such as pion-sigma ones) probably surviving event at T > T c . In the second half of the talk experimental data on collective flow in heavy ion collision are discussed its hydro-based description and relation to equation of state (EOS). A distinct feature of the QCD phase transition region is high degree of 'softness', (small ratio pressure/energy density). (author)

  3. Complex Langevin Simulations of QCD at Finite Density - Progress Report

    Science.gov (United States)

    Sinclair, D. K.; Kogut, J. B.

    2018-03-01

    We simulate lattice QCD at finite quark-number chemical potential to study nuclear matter, using the complex Langevin equation (CLE). The CLE is used because the fermion determinant is complex so that standard methods relying on importance sampling fail. Adaptive methods and gauge-cooling are used to prevent runaway solutions. Even then, the CLE is not guaranteed to give correct results. We are therefore performing extensive testing to determine under what, if any, conditions we can achieve reliable results. Our earlier simulations at β = 6/g2 = 5.6, m = 0.025 on a 124 lattice reproduced the expected phase structure but failed in the details. Our current simulations at β = 5.7 on a 164 lattice fail in similar ways while showing some improvement. We are therefore moving to even weaker couplings to see if the CLE might produce the correct results in the continuum (weak-coupling) limit, or, if it still fails, whether it might reproduce the results of the phase-quenched theory. We also discuss action (and other dynamics) modifications which might improve the performance of the CLE.

  4. Spin-dependent structure functions of sea quarks in the framework of nonperturbative QCD and new Regge trajectory

    International Nuclear Information System (INIS)

    Dorokhov, A.E.; Kochelev, N.I.

    1991-01-01

    Within the model of QCD vacuum as an instanton liquid the spin-dependent structure functions of sea quarks are obtained. It is shown that the EMC data manages the definition of new Regge trajectory connected with the axial anomaly. The model explains the modern experimental data on the sea quark structure functions. 23 refs.; 3 figs

  5. QCD are we ready for the LHC?

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    The LHC energy regime poses a serious challenge to our capability of predicting QCD reactions to the level of accuracy necessary for a successful programme of searches for physics beyond the Standard Model. In these lectures, I'll introduce basic concepts in QCD, and present techniques based on perturbation theory, such as fixed-order and resummed computations, and Monte Carlo simulations. I'll discuss applications of these techniques to hadron-hadron processes, concentrating on recent trends in perturbative QCD aimed at improving our understanding of LHC phenomenology.

  6. Perturbative QCD and jets

    International Nuclear Information System (INIS)

    Mueller, A.H.

    1986-03-01

    A brief review of some of the recent progress in perturbative QCD is given (heavy quark production, small-x physics, minijets and related topics, classical simulations in high energy reactions, coherence and the string effect)

  7. Determination of the QCD Λ-parameter and the accuracy of perturbation theory at high energies

    International Nuclear Information System (INIS)

    Dalla Brida, Mattia; Fritzsch, Patrick; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer; Humboldt-Universitaet, Berlin

    2016-04-01

    We discuss the determination of the strong coupling α_M_S(m_Z) or equivalently the QCD Λ-parameter. Its determination requires the use of perturbation theory in α_s(μ) in some scheme, s, and at some energy scale μ. The higher the scale μ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the Λ-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to α_s=0.1 and below. We find that (continuum) perturbation theory is very accurate there, yielding a three percent error in the Λ-parameter, while data around α_s∼0.2 is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.

  8. Determination of the QCD Λ-parameter and the accuracy of perturbation theory at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Brida, Mattia [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Fritzsch, Patrick [Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM/CSIC; Korzec, Tomasz [Wuppertal Univ. (Germany). Dept. of Physics; Ramos, Alberto [CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Sint, Stefan [Trinity College Dublin (Ireland). School of Mathematics; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Collaboration: ALPHA Collaboration

    2016-04-15

    We discuss the determination of the strong coupling α{sub MS}(m{sub Z}) or equivalently the QCD Λ-parameter. Its determination requires the use of perturbation theory in α{sub s}(μ) in some scheme, s, and at some energy scale μ. The higher the scale μ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the Λ-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to α{sub s}=0.1 and below. We find that (continuum) perturbation theory is very accurate there, yielding a three percent error in the Λ-parameter, while data around α{sub s}∼0.2 is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.

  9. The Operator Product Expansion Beyond Perturbation Theory in QCD

    International Nuclear Information System (INIS)

    Dominguez, C. A.

    2011-01-01

    The Operator Product Expansion (OPE) of current correlators at short distances beyond perturbation theory in QCD, together with Cauchy's theorem in the complex energy plane, are the pillars of the method of QCD sum rules. This technique provides an analytic tool to relate QCD with hadronic physics at low and intermediate energies. It has been in use for over thirty years to determine hadronic parameters, form factors, and QCD parameters such as the quark masses, and the running strong coupling at the scale of the τ-lepton. QCD sum rules provide a powerful complement to numerical simulations of QCD on the lattice. In this talk a short review of the method is presented for non experts, followed by three examples of recent applications.

  10. A note on nonperturbative renormalization of effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jifeng [Department of Physics, East China Normal University, Shanghai 200062 (China)

    2009-08-28

    Within the realm of contact potentials, the key structures intrinsic of nonperturbative renormalization of T-matrices are unraveled using rigorous solutions and an inverse form of the algebraic Lippmann-Schwinger equation. The intrinsic mismatches between effective field theory power counting and nonperturbative divergence structures are shown for the first time to preclude the conventional counterterm algorithm from working in the renormalization of EFT for NN scattering in nonperturbative regimes.

  11. A note on nonperturbative renormalization of effective field theory

    International Nuclear Information System (INIS)

    Yang Jifeng

    2009-01-01

    Within the realm of contact potentials, the key structures intrinsic of nonperturbative renormalization of T-matrices are unraveled using rigorous solutions and an inverse form of the algebraic Lippmann-Schwinger equation. The intrinsic mismatches between effective field theory power counting and nonperturbative divergence structures are shown for the first time to preclude the conventional counterterm algorithm from working in the renormalization of EFT for NN scattering in nonperturbative regimes.

  12. The Bayesian reconstruction of the in-medium heavy quark potential from lattice QCD and its stability

    Science.gov (United States)

    Burnier, Yannis; Kaczmarek, Olaf; Rothkopf, Alexander

    2016-01-01

    We report recent results of a non-perturbative determination of the static heavy-quark potential in quenched and dynamical lattice QCD at finite temperature. The real and imaginary part of this complex quantity are extracted from the spectral function of Wilson line correlators in Coulomb gauge. To obtain spectral information from Euclidean time numerical data, our study relies on a novel Bayesian prescription that differs from the Maximum Entropy Method. We perform simulations on quenched 323 × Nτ (β = 7.0, ξ = 3.5) lattices with Nτ = 24, …, 96, which cover 839MeV ≥ T ≥ 210MeV. To investigate the potential in a quark-gluon plasma with light u,d and s quarks we utilize Nf = 2 + 1 ASQTAD lattices with ml = ms/20 by the HotQCD collaboration, giving access to temperatures between 286MeV ≥ T ≥ 148MeV. The real part of the potential exhibits a clean transition from a linear, confining behavior in the hadronic phase to a Debye screened form above deconfinement. Interestingly its values lie close to the color singlet free energies in Coulomb gauge at all temperatures. We estimate the imaginary part on quenched lattices and find that it is of the same order of magnitude as in hard-thermal loop perturbation theory. From among all the systematic checks carried out in our study, we discuss explicitly the dependence of the result on the default model and the number of datapoints.

  13. Light hadron spectrum from quenched lattice QCD. Results from the CP-PACS

    International Nuclear Information System (INIS)

    Yoshie, Tomoteru

    2001-01-01

    Deriving the light hadron spectrum from first principles of QCD has been a fundamental issue in elementary particle physics since the mid-1970s, when QCD was established. With this goal in mind, we have carried out large-scale simulations of lattice QCD on the CP-PACS computer. In this article, we present results for the light hadron spectrum derived in the quenched approximation to lattice QCD. We find that although the global structure of the observed spectrum is reproduced, the quenched spectrum systematically deviates from experiment when examined with an accuracy at better than a 10% level. Results for light quark masses are also reported. Another simulation of full QCD done recently (also on the CP-PACS computer) shows indications that the discrepancy observed in quenched QCD is significantly reduced by the introduction of two flavors of light dynamical quarks. (author)

  14. 13. international QCD conference (QCD 06)

    International Nuclear Information System (INIS)

    2006-01-01

    This conference was organized around 5 sessions: 1) quantum chromodynamics (QCD) at colliders, 2) CP-violation, Kaon decays and Chiral symmetry, 3) perturbative QCD, 4) physics of light and heavy hadrons, 5) confinement, thermodynamics QCD and axion searches. This document gathers only the slides of the presentations

  15. 13. international QCD conference (QCD 06)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This conference was organized around 5 sessions: 1) quantum chromodynamics (QCD) at colliders, 2) CP-violation, Kaon decays and Chiral symmetry, 3) perturbative QCD, 4) physics of light and heavy hadrons, 5) confinement, thermodynamics QCD and axion searches. This document gathers only the slides of the presentations.

  16. A new approach to the problem of dynamical quarks in numerical simulations of lattice QCD

    International Nuclear Information System (INIS)

    Luescher, M.

    1993-11-01

    Lattice QCD with an even number of degenerate quark flavours is shown to be a limit of a local bosonic field theory. The action of the bosonic theory is real and bounded from below so that standard simulation algorithms can be expected to apply. The feasibility of such calculations is discussed, but no practical tests have yet been made. (orig.)

  17. NNLO QCD corrections to the $B\\to X_s \\gamma$ matrix elements using interpolation in $m_c$

    CERN Document Server

    Misiak, M; Misiak, Mikolaj; Steinhauser, Matthias

    2007-01-01

    One of the most troublesome contributions to the NNLO QCD corrections to B -> X_s gamma originates from three-loop matrix elements of four-quark operators. A part of this contribution that is proportional to the QCD beta-function coefficient beta_0 was found in 2003 as an expansion in m_c/m_b. In the present paper, we evaluate the asymptotic behaviour of the complete contribution for m_c >> m_b/2. The asymptotic form of the beta_0-part matches the small-m_c expansion very well at the threshold m_c = m_b/2. For the remaining part, we perform an interpolation down to the measured value of m_c, assuming that the beta_0-part is a good approximation at m_c=0. Combining our results with other contributions to the NNLO QCD corrections, we find BR(B -> X_s gamma) = (3.15 +_ 0.23) x 10^-4 for E_gamma > 1.6 GeV in the B-meson rest frame. The indicated error has been obtained by adding in quadrature the following uncertainties: non-perturbative (5%), parametric (3%), higher-order perturbative (3%), and the interpolation...

  18. Determination of electric dipole transitions in heavy quarkonia using potential non-relativistic QCD

    Science.gov (United States)

    Segovia, Jorge; Steinbeißer, Sebastian

    2018-05-01

    The electric dipole transitions {χ }bJ(1P)\\to γ \\Upsilon (1S) with J = 0, 1, 2 and {h}b(1P)\\to γ {η }b(1S) are computed using the weak-coupling version of a low-energy effective field theory named potential non-relativistic QCD (pNRQCD). In order to improve convergence and thus give firm predictions for the studied reactions, the full static potential is incorporated into the leading order Hamiltonian; moreover, we must handle properly renormalon effects and re-summation of large logarithms. The precision we reach is {k}γ 3/{(mv)}2× O({v}2), where kγ is the photon energy, m is the mass of the heavy quark and v its velocity. Our analysis separates those relativistic contributions that account for the electromagnetic interaction terms in the pNRQCD Lagrangian which are v 2 suppressed and those that account for wave function corrections of relative order v 2. Among the last ones, corrections from 1/m and 1/m2 potentials are computed, but not those coming from higher Fock states since they demand non-perturbative input and are {{{Λ }}}{{QCD}}2/{(mv)}2 or {{{Λ }}}{{QCD}}3/({m}3{v}4) suppressed, at least, in the strict weak coupling regime. These proceedings are based on the forthcoming publication [1].

  19. Nearly perturbative lattice-motivated QCD coupling with zero IR limit

    Science.gov (United States)

    Ayala, César; Cvetič, Gorazd; Kögerler, Reinhart; Kondrashuk, Igor

    2018-03-01

    The product of the gluon dressing function and the square of the ghost dressing function in the Landau gauge can be regarded to represent, apart from the inverse power corrections 1/{Q}2n, a nonperturbative generalization { \\mathcal A }({Q}2) of the perturbative QCD running coupling a({Q}2) (\\equiv {α }s({Q}2)/π ). Recent large volume lattice calculations for these dressing functions indicate that the coupling defined in such a way goes to zero as { \\mathcal A }({Q}2)∼ {Q}2 when the squared momenta Q 2 go to zero ({Q}2\\ll 1 {GeV}}2). In this work we construct such a QCD coupling { \\mathcal A }({Q}2) which fulfills also various other physically motivated conditions. At high momenta it becomes the underlying perturbative coupling a({Q}2) to a very high precision. And at intermediate low squared momenta {Q}2∼ 1 {GeV}}2 it gives results consistent with the data of the semihadronic τ lepton decays as measured by OPAL and ALEPH. The coupling is constructed in a dispersive way, resulting as a byproduct in the holomorphic behavior of { \\mathcal A }({Q}2) in the complex Q 2-plane which reflects the holomorphic behavior of the spacelike QCD observables. Application of the Borel sum rules to τ-decay V + A spectral functions allows us to obtain values for the gluon (dimension-4) condensate and the dimension-6 condensate, which reproduce the measured OPAL and ALEPH data to a significantly better precision than the perturbative \\overline{MS}} coupling approach.

  20. Lattice investigations of the QCD phase diagram

    International Nuclear Information System (INIS)

    Guenther, Jana

    2016-01-01

    To understand the physics in the early universe as well as in heavy ion collisions a throughout understanding of the theory of strong interaction, quantum chromodynamics (QCD), is important. Lattice QCD provides a tool to study it from first principles. However due to the sign problem direct simulations with physical conditions are at the moment limited to zero chemical potential. In this thesis I present a circumvention of this problem. We can gain information on the QCD phase diagram and the equation of state from analytical continuation of results extracted from simulations at imaginary chemical potential. The topological susceptibility is very expensive to compute in Lattice QCD. However it provides an important ingredient for the estimation of the axion mass. The axion is a possible candidate for a dark matter, which plays in important role in the understanding of our universe. In this thesis I discuss two techniques that make it possible to determine the topological susceptibility and allow for an estimation of the axion mass. I then use this mass restrain to analyze the idea of an experiment to detect axions with a dielectric mirror.

  1. Lattice investigations of the QCD phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Jana

    2016-12-15

    To understand the physics in the early universe as well as in heavy ion collisions a throughout understanding of the theory of strong interaction, quantum chromodynamics (QCD), is important. Lattice QCD provides a tool to study it from first principles. However due to the sign problem direct simulations with physical conditions are at the moment limited to zero chemical potential. In this thesis I present a circumvention of this problem. We can gain information on the QCD phase diagram and the equation of state from analytical continuation of results extracted from simulations at imaginary chemical potential. The topological susceptibility is very expensive to compute in Lattice QCD. However it provides an important ingredient for the estimation of the axion mass. The axion is a possible candidate for a dark matter, which plays in important role in the understanding of our universe. In this thesis I discuss two techniques that make it possible to determine the topological susceptibility and allow for an estimation of the axion mass. I then use this mass restrain to analyze the idea of an experiment to detect axions with a dielectric mirror.

  2. Non-perturbative effects and the refined topological string

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [DESY Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Marino, Marcos [Geneve Univ. (Switzerland). Dept. de Physique Theorique et Section de Mathematiques; Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst.; Nagoya Univ. (Japan). Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics

    2013-06-15

    The partition function of ABJM theory on the three-sphere has non-perturbative corrections due to membrane instantons in the M-theory dual. We show that the full series of membrane instanton corrections is completely determined by the refined topological string on the Calabi-Yau manifold known as local P{sup 1} x P{sup 1}, in the Nekrasov-Shatashvili limit. Our result can be interpreted as a first-principles derivation of the full series of non-perturbative effects for the closed topological string on this Calabi-Yau background. Based on this, we make a proposal for the non-perturbative free energy of topological strings on general, local Calabi-Yau manifolds.

  3. {alpha}{sub s} from the non-perturbatively renormalised lattice three-gluon vertex

    Energy Technology Data Exchange (ETDEWEB)

    Alles, B. [Pisa Univ. (Italy). Dipt. di Fisica; Henty, D.S. [Department of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Panagopoulos, H. [Department of Natural Sciences, University of Cyprus, CY-1678 Nicosia (Cyprus); Parrinello, C. [Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX (United Kingdom); Pittori, C. [L.P.T.H.E., Universite de Paris Sud, Centre d`Orsay, 91405 Orsay (France); Richards, D.G. [Department of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom)]|[Fermilab, P.O. Box 500, Batavia, IL 60510 (United States)

    1997-09-29

    We compute the running QCD coupling on the lattice by evaluating two-point and three-point off-shell gluon Green`s functions in a fixed gauge and imposing non-perturbative renormalisation conditions on them. Our exploratory study is performed in the quenched approximation at {beta}=6.0 on 16{sup 4} and 24{sup 4} lattices. We show that, for momenta in the range 1.8-2.3 GeV, our coupling runs according to the two-loop asymptotic formula, allowing a precise determination of the corresponding {Lambda} parameter. The role of lattice artifacts and finite-volume effects is carefully analysed and these appear to be under control in the momentum range of interest. Our renormalisation procedure corresponds to a momentum subtraction scheme in continuum field theory, and therefore lattice perturbation theory is not needed in order to match our results to the anti M anti S scheme, thus eliminating a major source of uncertainty in the determination of {alpha} {sub anti} {sub M} {sub anti} {sub S}. Our method can be applied directly to the unquenched case. (orig.). 20 refs.

  4. A 4π tracking TPC magnetic spectrometer for RHIC

    International Nuclear Information System (INIS)

    Danby, G.; Eiseman, S.E.; Etkin, A.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C.; Van Dijk, J.H.; Lindenbaum, S.J.; Chan, C.S.; Kramer, M.A.; Zhao, K.; Biswas, N.; Kenney, P.; Piekarz, J.; Adams, D.L.; Ahmad, S.; Bonner, B.E.; Buchanan, J.A.; Chiou, C.N.; Clement, J.M.; Corcoran, M.D.; Empl, T.; Miettinen, H.E.; Mutchler, G.S.; Roberts, J.B.; Skeens, J.

    1990-01-01

    The primary physics objective of the 4π TPC magnetic spectrometer proposal is to search for the Quark-Gluon Plasma. In previous workshops we have discussed what the possible hadronic signatures of such a state of matter would be. Succinctly, the QGP is a direct prediction of non-perturbative QCD. Therefore the question of the existence of this new state of matter bears directly on the validity of non-perturbative QCD. However, since non-perturbative QCD has never been established, it is apparent that what may await us is a host of new phenomena that will go beyond the standard model

  5. Nonperturbative quantum gravity

    International Nuclear Information System (INIS)

    Ambjørn, J.; Görlich, A.; Jurkiewicz, J.; Loll, R.

    2012-01-01

    Asymptotic safety describes a scenario in which general relativity can be quantized as a conventional field theory, despite being nonrenormalizable when expanding it around a fixed background geometry. It is formulated in the framework of the Wilsonian renormalization group and relies crucially on the existence of an ultraviolet fixed point, for which evidence has been found using renormalization group equations in the continuum. “Causal Dynamical Triangulations” (CDT) is a concrete research program to obtain a nonperturbative quantum field theory of gravity via a lattice regularization, and represented as a sum over spacetime histories. In the Wilsonian spirit one can use this formulation to try to locate fixed points of the lattice theory and thereby provide independent, nonperturbative evidence for the existence of a UV fixed point. We describe the formalism of CDT, its phase diagram, possible fixed points and the “quantum geometries” which emerge in the different phases. We also argue that the formalism may be able to describe a more general class of Hořava–Lifshitz gravitational models.

  6. Hot QCD equations of state and relativistic heavy ion collisions

    Science.gov (United States)

    Chandra, Vinod; Kumar, Ravindra; Ravishankar, V.

    2007-11-01

    We study two recently proposed equations of state obtained from high-temperature QCD and show how they can be adapted to use them for making predictions for relativistic heavy ion collisions. The method involves extracting equilibrium distribution functions for quarks and gluons from the equation of state (EOS), which in turn will allow a determination of the transport and other bulk properties of the quark gluon-plasma. Simultaneously, the method also yields a quasiparticle description of interacting quarks and gluons. The first EOS is perturbative in the QCD coupling constant and has contributions of O(g5). The second EOS is an improvement over the first, with contributions up to O[g6ln(1/g)]; it incorporates the nonperturbative hard thermal contributions. The interaction effects are shown to be captured entirely by the effective chemical potentials for the gluons and the quarks, in both cases. The chemical potential is seen to be highly sensitive to the EOS. As an application, we determine the screening lengths, which are, indeed, the most important diagnostics for QGP. The screening lengths are seen to behave drastically differently depending on the EOS considered and therefore yield a way to distinguish the two equations of state in heavy ion collisions.

  7. Fermion determinants in lattice QCD

    International Nuclear Information System (INIS)

    Johnson, Christopher Andrew

    2001-01-01

    The main topic of this thesis concerns efficient algorithms for the calculation of determinants of the kind of matrix typically encountered in lattice QCD. In particular an efficient method for calculating the fermion determinant is described. Such a calculation is useful to illustrate the effects of light dynamical (virtual) quarks. The methods employed in this thesis are stochastic methods, based on the Lanczos algorithm, which is used for the solution of large, sparse matrix problems via a partial tridiagonalisation of the matrix. Here an implementation is explored which requires less exhaustive treatment of the matrix than previous Lanczos methods. This technique exploits the analogy between the Lanczos tridiagonalisation algorithm and Gaussian quadrature in order to calculate the fermion determinant. A technique for determining a number of the eigenvalues of the matrix is also presented. A demonstration is then given of how one can improve upon this estimate considerably using variance reduction techniques, reducing the variance by a factor of order 100 with a further, equal amount of work. The variance reduction method is a two-stage process, involving a Chebyshev approximation to the quantity in question and then the subtraction of traceless operators. The method is applied to the fermion determinant for non-perturbatively improved Wilson fermions on a 16 3 x 32 lattice. It is also applicable to a wider class of matrix operators. Finally we discuss how dynamical quark effects may be simulated in a Monte Carlo process with an effective partitioning of low and high eigenmodes. This may be done via selective updating of a trial configuration which highlights the physically relevant effects of light quark modes. (author)

  8. Novel Perspectives from Light-Front QCD, Super-Conformal Algebra, and Light-Front Holography

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    Light-Front Quantization – Dirac’s “Front Form” – provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic LFWFs. One obtains new insights into the hadronic mass scale, the hadronic spectrum, and the functional form of the QCD running coupling in the nonperturbative domain using light-front holography. In addition, superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons. I also discuss evidence that the antishadowing of nuclear structure functions is nonuniversal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with the momentum and other sum rules for the nuclear parton distribution functions.

  9. Impact of the strong electromagnetic field on the QCD effective potential for homogeneous Abelian gluon field configurations

    International Nuclear Information System (INIS)

    Galilo, Bogdan V.; Nedelko, Sergei N.

    2011-01-01

    The one-loop quark contribution to the QCD effective potential for the homogeneous Abelian gluon field in the presence of an external strong electromagnetic field is evaluated. The structure of extrema of the potential as a function of the angles between chromoelectric, chromomagnetic, and electromagnetic fields is analyzed. In this setup, the electromagnetic field is considered as an external one while the gluon field represents domain structured nonperturbative gluon configurations related to the QCD vacuum in the confinement phase. Two particularly interesting gluon configurations, (anti-)self-dual and crossed orthogonal chromomagnetic and chromoelectric fields, are discussed specifically. Within this simplified framework it is shown that the strong electromagnetic fields can play a catalyzing role for a deconfinement transition. At the qualitative level, the present consideration can be seen as a highly simplified study of an impact of the electromagnetic fields generated in relativistic heavy ion collisions on the strongly interacting hadronic matter.

  10. Parallel tempering in full QCD with Wilson fermions

    International Nuclear Information System (INIS)

    Ilgenfritz, E.-M.; Kerler, W.; Mueller-Preussker, M.; Stueben, H.

    2002-01-01

    We study the performance of QCD simulations with dynamical Wilson fermions by combining the hybrid Monte Carlo algorithm with parallel tempering on 10 4 and 12 4 lattices. In order to compare tempered with standard simulations, covariance matrices between subensembles have to be formulated and evaluated using the general properties of autocorrelations of the parallel tempering algorithm. We find that rendering the hopping parameter κ dynamical does not lead to an essential improvement. We point out possible reasons for this observation and discuss more suitable ways of applying parallel tempering to QCD

  11. Masses and decay constants of bound states containing fourth family quarks from QCD sum rules

    International Nuclear Information System (INIS)

    Bashiry, V.; Azizi, K.; Sultansoy, S.

    2011-01-01

    The heavy fourth generation of quarks that have sufficiently small mixing with the three known standard model families form hadrons. In the present work, we calculate the masses and decay constants of mesons containing either both quarks from the fourth generation or one from the fourth family and the other from known third family standard model quarks in the framework of the QCD sum rules. In the calculations, we take into account two-gluon condensate diagrams as nonperturbative contributions. The obtained results reduce to the known masses and decay constants of the bb and cc quarkonia when the fourth family quark is replaced by the bottom or charm quark.

  12. A non-perturbative argument for the non-abelian Higgs mechanism

    International Nuclear Information System (INIS)

    De Palma, G.; Strocchi, F.

    2013-01-01

    The evasion of massless Goldstone bosons by the non-abelian Higgs mechanism is proved by a non-perturbative argument in the local BRST gauge. -- Highlights: •The perturbative explanation of the Higgs mechanism (HM) is not under mathematical control. •We offer a non-perturbative proof of the absence of Goldstone bosons from the non-abelian HM. •Our non-perturbative proof in the BRST gauge avoids a mean field ansatz and expansion

  13. A non-perturbative argument for the non-abelian Higgs mechanism

    Energy Technology Data Exchange (ETDEWEB)

    De Palma, G. [Scuola Normale Superiore, Pisa (Italy); INFN, Sezione di Pisa, Pisa (Italy); Strocchi, F., E-mail: franco.strocchi@sns.it [INFN, Sezione di Pisa, Pisa (Italy)

    2013-09-15

    The evasion of massless Goldstone bosons by the non-abelian Higgs mechanism is proved by a non-perturbative argument in the local BRST gauge. -- Highlights: •The perturbative explanation of the Higgs mechanism (HM) is not under mathematical control. •We offer a non-perturbative proof of the absence of Goldstone bosons from the non-abelian HM. •Our non-perturbative proof in the BRST gauge avoids a mean field ansatz and expansion.

  14. Cost of QCD simulations with nf = 2 dynamical Wilson fermions

    International Nuclear Information System (INIS)

    Lippert, Th.

    2002-01-01

    Cost estimates for simulations of full QCD with n f = 2 Wilson fermions by hybrid Monte Carlo are presented. The extrapolations are based on the average number of iterations, N it , of the iterative solver within the fermionic part of the HMC molecular dynamics, which is closely related to the minimal eigenvalue of M † M. The cost formula is determined as a product of the scaling functions of iterative solver and integrated autocorrelation time of 1/N it as function of the inverse lattice pseudoscalar mass. Timings by SESAM/TχL allow to fix the pre-factor. It is demonstrated that a 2-flavor dynamical determination of light hadron masses with a statistical precision comparable to the corresponding quenched results from CP-PACS is the appropriate task for a 100 Tflops system

  15. Critical endline of the finite temperature phase transition for 2+1 flavor QCD away from the SU(3-flavor symmetric point

    Directory of Open Access Journals (Sweden)

    Nakamura Yoshifumi

    2018-01-01

    Full Text Available We investigate the critical end line of the finite temperature phase transition of QCD away from the SU(3-flavor symmetric point at zero chemical potential. We employ the renormalization-group improved Iwasaki gauge action and non-perturbatively O(a- improved Wilson-clover fermion action. The critical end line is determined by using the intersection point of kurtosis, employing the multi-parameter, multi-ensemble reweighting method at the temporal size NT = 6 and lattice spacing as low as a ≈0.19 fm.

  16. VNI 3.1 MC-simulation program to study high-energy particle collisions in QCD by space-time evolution of parton-cascades and parton-hadron conversion

    Science.gov (United States)

    Geiger, Klaus

    1997-08-01

    VNI is a general-purpose Monte Carlo event generator, which includes the simulation of lepton-lepton, lepton-hadron, lepton-nucleus, hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. On the basis of renormalization-group improved parton description and quantum-kinetic theory, it uses the real-time evolution of parton cascades in conjunction with a self-consistent hadronization scheme that is governed by the dynamics itself. The causal evolution from a specific initial state (determined by the colliding beam particles) is followed by the time development of the phase-space densities of partons, pre-hadronic parton clusters, and final-state hadrons, in position space, momentum space and color space. The parton evolution is described in terms of a space-time generalization of the familiar momentum-space description of multiple (semi) hard interactions in QCD, involving 2 → 2 parton collisions, 2 → 1 parton fusion processes, and 1 → 2 radiation processes. The formation of color-singlet pre-hadronic clusters and their decays into hadrons, on the other hand, is treated by using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. This article gives a brief review of the physics underlying VNI, which is followed by a detailed description of the program itself. The latter program description emphasizes easy-to-use pragmatism and explains how to use the program (including a simple example), annotates input and control parameters, and discusses output data provided by it.

  17. Perturbative study of the QCD phase diagram for heavy quarks at nonzero chemical potential: Two-loop corrections

    Science.gov (United States)

    Maelger, J.; Reinosa, U.; Serreau, J.

    2018-04-01

    We extend a previous investigation [U. Reinosa et al., Phys. Rev. D 92, 025021 (2015), 10.1103/PhysRevD.92.025021] of the QCD phase diagram with heavy quarks in the context of background field methods by including the two-loop corrections to the background field effective potential. The nonperturbative dynamics in the pure-gauge sector is modeled by a phenomenological gluon mass term in the Landau-DeWitt gauge-fixed action, which results in an improved perturbative expansion. We investigate the phase diagram at nonzero temperature and (real or imaginary) chemical potential. Two-loop corrections yield an improved agreement with lattice data as compared to the leading-order results. We also compare with the results of nonperturbative continuum approaches. We further study the equation of state as well as the thermodynamic stability of the system at two-loop order. Finally, using simple thermodynamic arguments, we show that the behavior of the Polyakov loops as functions of the chemical potential complies with their interpretation in terms of quark and antiquark free energies.

  18. QCD light-cone sum rule estimate of charming penguin contributions in B→ππ

    International Nuclear Information System (INIS)

    Khodjamirian, A.; Mannel, Th.; Melic, B.

    2003-01-01

    Employing the QCD light-cone sum rule approach we calculate the B→ππ hadronic matrix element of the current-current operator with c quarks in the penguin topology (''charming penguin''). The dominant contribution to the sum rule is due to the c-quark loop at short distances and is of O(α s ) with respect to the factorizable B→ππ amplitude. The effects of soft gluons are suppressed at least by O(α s m b -2 ). Our result indicates that sizable nonperturbative effects generated by charming penguins at finite m b are absent. The same is valid for the penguin contractions of the current-current operators with light quarks

  19. QCD light-cone sum rule estimate of charming penguin contributions in B→ππ

    International Nuclear Information System (INIS)

    Khodjamirian, A.; Mannel, Th.; Melic, B.

    2003-01-01

    Employing the QCD light-cone sum rule approach we calculate the B→ππ hadronic matrix element of the current-current operator with c quarks in the penguin topology ('charming penguin'). The dominant contribution to the sum rule is due to the c-quark loop at short distances and is of O(α s ) with respect to the factorizable B→ππ amplitude. The effects of soft gluons are suppressed at least by O(α s m b -2 ). Our result indicates that sizable nonperturbative effects generated by charming penguins at finite m b are absent. The same is valid for the penguin contractions of the current-current operators with light quarks

  20. QCD and resonance physics. The rho-ω mixing

    International Nuclear Information System (INIS)

    Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I.

    1978-01-01

    The QCD-based approach to the resonance physics proposed earlier is extended to cover the rho-ω mixing problem. A two-point function relevant to the problem with account of nonperturbative contributions is considered. The sum rules are derived and related phenomenology is introduced. The rho-ω interference is found to be due to the relatively strong isotopic symmetry breaking in the quark masses, and a solution with msub(u) = 0, msub(d) not equal to 0 seems to be ruled out. It is shown that virtual photon exchanges alone can not explain the observed value of the mixing parameter. The phenomenon gets a natural explanation if one assumes a large isotopic symmetry violation in the mechanical quark masses, (msub(d) - msub(u))/(msub(d) + msub(u)) approximately 0.3. This number is close to that resulting from the well-known pseudoscalar meson analysis. Unlike the latter, the result, however, does not assume an exact SU(3)sub(flavor) symmetry in vacuum-to-vacuum matrix elements

  1. Wave functions, evolution equations and evolution kernels form light-ray operators of QCD

    International Nuclear Information System (INIS)

    Mueller, D.; Robaschik, D.; Geyer, B.; Dittes, F.M.; Horejsi, J.

    1994-01-01

    The widely used nonperturbative wave functions and distribution functions of QCD are determined as matrix elements of light-ray operators. These operators appear as large momentum limit of non-local hardron operators or as summed up local operators in light-cone expansions. Nonforward one-particle matrix elements of such operators lead to new distribution amplitudes describing both hadrons simultaneously. These distribution functions depend besides other variables on two scaling variables. They are applied for the description of exclusive virtual Compton scattering in the Bjorken region near forward direction and the two meson production process. The evolution equations for these distribution amplitudes are derived on the basis of the renormalization group equation of the considered operators. This includes that also the evolution kernels follow from the anomalous dimensions of these operators. Relations between different evolution kernels (especially the Altarelli-Parisi and the Brodsky-Lepage kernels) are derived and explicitly checked for the existing two-loop calculations of QCD. Technical basis of these resluts are support and analytically properties of the anomalous dimensions of light-ray operators obtained with the help of the α-representation of Green's functions. (orig.)

  2. Pion form factor in QCD at intermediate momentum transfers

    Science.gov (United States)

    Braun, V. M.; Khodjamirian, A.; Maul, M.

    2000-04-01

    We present a quantitative analysis of the electromagnetic pion form factor in the light-cone sum rule approach, including radiative corrections and higher-twist effects. The comparison to the existing data favors the asymptotic profile of the pion distribution amplitude and allows us to estimate the deviation: [∫du/uφπ(u)]/[∫du/uφasπ(u)]=1.1+/-0.1 at the scale of 1 GeV. Special attention is paid to the precise definition and interplay of soft and hard contributions at intermediate momentum transfer, and to the matching of the sum rule to the perturbative QCD prediction. We observe a strong numerical cancellation between the soft (end-point) contribution and power-suppressed hard contributions of higher twist, so that the total nonperturbative correction to the usual PQCD result turns out to be of the order of 30% for Q2~1 GeV2.

  3. Quark model and high energy collisions

    CERN Document Server

    Anisovich, V V; Nyíri, J; Shabelski, Yu M

    2004-01-01

    This is an updated version of the book published in 1985. QCD-motivated, it gives a detailed description of hadron structure and soft interactions in the additive quark model, where hadrons are regarded as composite systems of dressed quarks. In the past decade it has become clear that nonperturbative QCD, responsible for soft hadronic processes, may differ rather drastically from perturbative QCD. The understanding of nonperturbative QCD requires a detailed investigation of the experiments and the theoretical approaches. Bearing this in mind, the book has been rewritten paying special attenti

  4. Renormalization constants for 2-twist operators in twisted mass QCD

    International Nuclear Information System (INIS)

    Alexandrou, C.; Constantinou, M.; Panagopoulos, H.; Stylianou, F.; Korzec, T.

    2011-01-01

    Perturbative and nonperturbative results on the renormalization constants of the fermion field and the twist-2 fermion bilinears are presented with emphasis on the nonperturbative evaluation of the one-derivative twist-2 vector and axial-vector operators. Nonperturbative results are obtained using the twisted mass Wilson fermion formulation employing two degenerate dynamical quarks and the tree-level Symanzik improved gluon action. The simulations have been performed for pion masses in the range of about 450-260 MeV and at three values of the lattice spacing a corresponding to β=3.9, 4.05, 4.20. Subtraction of O(a 2 ) terms is carried out by performing the perturbative evaluation of these operators at 1-loop and up to O(a 2 ). The renormalization conditions are defined in the RI ' -MOM scheme, for both perturbative and nonperturbative results. The renormalization factors, obtained for different values of the renormalization scale, are evolved perturbatively to a reference scale set by the inverse of the lattice spacing. In addition, they are translated to MS at 2 GeV using 3-loop perturbative results for the conversion factors.

  5. QCD sum rules for D mesons. In-medium effects, chiral symmetry aspects and higher orders

    Energy Technology Data Exchange (ETDEWEB)

    Buchheim, Thomas

    2017-04-11

    Heavy open flavor mesons can serve as probes of hot and dense, strongly interacting matter in heavy-ion collisions suitable to mimic the extreme conditions shortly after the big-bang or in compact stars. Thus, the thorough theoretical investigation of medium modifications of D mesons is of utmost importance for the interpretation of the experimental data. Even at finite thermodynamic parameters, such as temperature and density, the non-perturbative framework of QCD sum rules allows for the determination of hadronic properties which are not accessible in perturbative quantum chromodynamics (QCD). By virtue of the separation of scales, long-range effects of hadrons are related to quark and gluon degrees of freedom, where features of the hadron spectrum are linked to condensates parameterizing the complex QCD ground state. This thesis furnishes the conception and calculus of QCD sum rules with emphasis on in-medium effects which are inevitable when addressing such effects in higher order contributions. In this regard, the notion and implications of medium-specific condensates are elucidated. Motivated by the significant numerical impact of four-quark condensates to the ρ meson sum rule we evaluate, for the first time, the corresponding in-medium mass-dimension 6 terms for D mesons tentatively employing the factorization hypothesis. Four-quark condensates containing heavy-quark operators may be included into the sum rule analysis utilizing the in-medium heavy-quark expansion made available here. Particular quark condensates are potential order parameters of chiral symmetry breaking, which is the mass generating mechanism of QCD giving the essential mass fraction to light hadrons. The interplay of altered spectral properties with changing in-medium QCD condensates, i. e. the chiral order parameters, can be studied with chiral partner sum rules. Although, introduced for light spin-1 mesons we foster their generalization to spin-0 open charm mesons demonstrating their

  6. QCD sum rules for D mesons. In-medium effects, chiral symmetry aspects and higher orders

    International Nuclear Information System (INIS)

    Buchheim, Thomas

    2017-01-01

    Heavy open flavor mesons can serve as probes of hot and dense, strongly interacting matter in heavy-ion collisions suitable to mimic the extreme conditions shortly after the big-bang or in compact stars. Thus, the thorough theoretical investigation of medium modifications of D mesons is of utmost importance for the interpretation of the experimental data. Even at finite thermodynamic parameters, such as temperature and density, the non-perturbative framework of QCD sum rules allows for the determination of hadronic properties which are not accessible in perturbative quantum chromodynamics (QCD). By virtue of the separation of scales, long-range effects of hadrons are related to quark and gluon degrees of freedom, where features of the hadron spectrum are linked to condensates parameterizing the complex QCD ground state. This thesis furnishes the conception and calculus of QCD sum rules with emphasis on in-medium effects which are inevitable when addressing such effects in higher order contributions. In this regard, the notion and implications of medium-specific condensates are elucidated. Motivated by the significant numerical impact of four-quark condensates to the ρ meson sum rule we evaluate, for the first time, the corresponding in-medium mass-dimension 6 terms for D mesons tentatively employing the factorization hypothesis. Four-quark condensates containing heavy-quark operators may be included into the sum rule analysis utilizing the in-medium heavy-quark expansion made available here. Particular quark condensates are potential order parameters of chiral symmetry breaking, which is the mass generating mechanism of QCD giving the essential mass fraction to light hadrons. The interplay of altered spectral properties with changing in-medium QCD condensates, i. e. the chiral order parameters, can be studied with chiral partner sum rules. Although, introduced for light spin-1 mesons we foster their generalization to spin-0 open charm mesons demonstrating their

  7. The infrared behaviour of QCD Green's functions. Confinement, dynamical symmetry breaking, and hadrons as relativistic bound states

    Science.gov (United States)

    Alkofer, Reinhard; von Smekal, Lorenz

    2001-11-01

    Recent studies of QCD Green's functions and their applications in hadronic physics are reviewed. We discuss the definition of the generating functional in gauge theories, in particular, the rôle of redundant degrees of freedom, possibilities of a complete gauge fixing versus gauge fixing in presence of Gribov copies, BRS invariance and positivity. The apparent contradiction between positivity and colour antiscreening in combination with BRS invariance in QCD is considered. Evidence for the violation of positivity by quarks and transverse gluons in the covariant gauge is collected, and it is argued that this is one manifestation of confinement. We summarise the derivation of the Dyson-Schwinger equations (DSEs) of QED and QCD. For the latter, the implications of BRS invariance on the Green's functions are explored. The possible influence of instantons on DSEs is discussed in a two-dimensional model. In QED in (2+1) and (3+1) dimensions, the solutions for Green's functions provide tests of truncation schemes which can under certain circumstances be extended to the DSEs of QCD. We discuss some limitations of such extensions and assess the validity of assumptions for QCD as motivated from studies in QED. Truncation schemes for DSEs are discussed in axial and related gauges, as well as in the Landau gauge. Furthermore, we review the available results from a systematic non-perturbative expansion scheme established for Landau gauge QCD. Comparisons to related lattice results, where available, are presented. The applications of QCD Green's functions to hadron physics are summarised. Properties of ground state mesons are discussed on the basis of the ladder Bethe-Salpeter equation for quarks and antiquarks. The Goldstone nature of pseudoscalar mesons and a mechanism for diquark confinement beyond the ladder approximation are reviewed. We discuss some properties of ground state baryons based on their description as Bethe-Salpeter/Faddeev bound states of quark

  8. Chiral properties of two-flavour QCD at zero and non-zero temperature

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Bastian Benjamin

    2012-11-22

    Lattice Quantum Chromodynamics (LQCD) is the preferred tool for obtaining non-perturbative results from QCD in the low-energy regime. It has by now entered the era in which high precision calculations for a number of phenomenologically relevant observables at the physical point, with dynamical quark degrees of freedom and controlled systematics, become feasible. Despite these successes there are still quantities where control of systematic effects is insufficient. The subject of this thesis is the exploration of the potential of todays state-of-the-art simulation algorithms for non-perturbatively O(a)-improved Wilson fermions to produce reliable results in the chiral regime and at the physical point both for zero and non-zero temperature. Important in this context is the control over the chiral extrapolation. This thesis is concerned with two particular topics, namely the computation of hadronic form factors at zero temperature, and the properties of the phase transition in the chiral limit of two-flavour QCD. The electromagnetic iso-vector form factor of the pion provides a platform to study systematic effects and the chiral extrapolation for observables connected to the structure of mesons (and baryons). Mesonic form factors are computationally simpler than their baryonic counterparts but share most of the systematic effects. This thesis contains a comprehensive study of the form factor in the regime of low momentum transfer q{sup 2}, where the form factor is connected to the charge radius of the pion. A particular emphasis is on the region very close to q{sup 2}=0 which has not been explored so far, neither in experiment nor in LQCD. The results for the form factor close the gap between the smallest spacelike q{sup 2}-value available so far and q{sup 2}=0, and reach an unprecedented accuracy at full control over the main systematic effects. This enables the model-independent extraction of the pion charge radius. The results for the form factor and the charge

  9. Chiral properties of two-flavour QCD at zero and non-zero temperature

    International Nuclear Information System (INIS)

    Brandt, Bastian Benjamin

    2012-01-01

    Lattice Quantum Chromodynamics (LQCD) is the preferred tool for obtaining non-perturbative results from QCD in the low-energy regime. It has by now entered the era in which high precision calculations for a number of phenomenologically relevant observables at the physical point, with dynamical quark degrees of freedom and controlled systematics, become feasible. Despite these successes there are still quantities where control of systematic effects is insufficient. The subject of this thesis is the exploration of the potential of todays state-of-the-art simulation algorithms for non-perturbatively O(a)-improved Wilson fermions to produce reliable results in the chiral regime and at the physical point both for zero and non-zero temperature. Important in this context is the control over the chiral extrapolation. This thesis is concerned with two particular topics, namely the computation of hadronic form factors at zero temperature, and the properties of the phase transition in the chiral limit of two-flavour QCD. The electromagnetic iso-vector form factor of the pion provides a platform to study systematic effects and the chiral extrapolation for observables connected to the structure of mesons (and baryons). Mesonic form factors are computationally simpler than their baryonic counterparts but share most of the systematic effects. This thesis contains a comprehensive study of the form factor in the regime of low momentum transfer q 2 , where the form factor is connected to the charge radius of the pion. A particular emphasis is on the region very close to q 2 =0 which has not been explored so far, neither in experiment nor in LQCD. The results for the form factor close the gap between the smallest spacelike q 2 -value available so far and q 2 =0, and reach an unprecedented accuracy at full control over the main systematic effects. This enables the model-independent extraction of the pion charge radius. The results for the form factor and the charge radius are used to

  10. The heavy quark-antiquark potential from lattice and perturbative QCD

    OpenAIRE

    Laschka, Alexander; Kaiser, Norbert; Weise, Wolfram

    2009-01-01

    The heavy quark-antiquark potential in perturbative QCD is subject to ambiguities. We show how to derive a well-defined and stable short-distance potential that can be matched to results from lattice QCD simulations at intermediate distances. The static potential as well as the order 1/m potential are discussed.

  11. Lattice QCD simulation of meson exchange forces

    International Nuclear Information System (INIS)

    Richards, D.G.; Sinclair, D.K.; Sivers, D.

    1990-01-01

    We present the formalism for investigating the bar Qq bar Qq system in lattice QCD. This system serves as a model for describing exchange forces between heavy, static hadrons. We use this formalism to calculate the exchange potential from gauge configurations which incorporate the effects of dynamical quarks. Our data can be interpreted as giving preliminary results on the range of the nuclear force

  12. Conformal window in QCD for large numbers of colors and flavors

    International Nuclear Information System (INIS)

    Zhitnitsky, Ariel R.

    2014-01-01

    We conjecture that the phase transitions in QCD at large number of colors N≫1 is triggered by the drastic change in the instanton density. As a result of it, all physical observables also experience some sharp modification in the θ behavior. This conjecture is motivated by the holographic model of QCD where confinement–deconfinement phase transition indeed happens precisely at temperature T=T c where θ-dependence of the vacuum energy experiences a sudden change in behavior: from N 2 cos(θ/N) at T c to cosθexp(−N) at T>T c . This conjecture is also supported by recent lattice studies. We employ this conjecture to study a possible phase transition as a function of κ≡N f /N from confinement to conformal phase in the Veneziano limit N f ∼N when number of flavors and colors are large, but the ratio κ is finite. Technically, we consider an operator which gets its expectation value solely from non-perturbative instanton effects. When κ exceeds some critical value κ>κ c the integral over instanton size is dominated by small-size instantons, making the instanton computations reliable with expected exp(−N) behavior. However, when κ c , the integral over instanton size is dominated by large-size instantons, and the instanton expansion breaks down. This regime with κ c corresponds to the confinement phase. We also compute the variation of the critical κ c (T,μ) when the temperature and chemical potential T,μ≪Λ QCD slightly vary. We also discuss the scaling (x i −x j ) −γ det in the conformal phase

  13. Electromagnetic form factors at large momenta from lattice QCD

    Science.gov (United States)

    Chambers, A. J.; Dragos, J.; Horsley, R.; Nakamura, Y.; Perlt, H.; Pleiter, D.; Rakow, P. E. L.; Schierholz, G.; Schiller, A.; Somfleth, K.; Stüben, H.; Young, R. D.; Zanotti, J. M.; Qcdsf/Ukqcd/Cssm Collaborations

    2017-12-01

    Accessing hadronic form factors at large momentum transfers has traditionally presented a challenge for lattice QCD simulations. Here, we demonstrate how a novel implementation of the Feynman-Hellmann method can be employed to calculate hadronic form factors in lattice QCD at momenta much higher than previously accessible. Our simulations are performed on a single set of gauge configurations with three flavors of degenerate mass quarks corresponding to mπ≈470 MeV . We are able to determine the electromagnetic form factors of the pion and nucleon up to approximately 6 GeV2 , with results for the ratio of the electric and magnetic form factors of the proton at our simulated quark mass agreeing well with experimental results.

  14. On the non-perturbative effects

    International Nuclear Information System (INIS)

    Manjavidze, J.; Voronyuk, V.

    2004-01-01

    The quantum correspondence principle based on the time reversibility is adopted to take into account the non-Abelian symmetry constrains. The main properties of the new strong-coupling perturbation theory which take into account non-perturbative effects are described. (author)

  15. fB from finite size effects in lattice QCD

    International Nuclear Information System (INIS)

    Guagnelli, M.; Palombi, F.; Petronzio, R.; Tantalo, N.

    2003-01-01

    We discuss a novel method to calculate f B on the lattice, introduced in [1], based on the study of the dependence of finite size effects upon the heavy quark mass of flavoured mesons and on a non-perturbative recursive finite size technique. This method avoids the systematic errors related to extrapolations from the static limit or to the tuning of the coefficients of effective Lagrangian and the results admit an extrapolation to the continuum limit. We show the results of a first estimate at finite lattice spacing, but close to the continuum limit, giving f B = 170(11)(5)(22) MeV. We also obtain f B s = 192(9)(5)(24)MeV. The first error is statistical, the second is our estimate of the systematic error from the method and the third the systematic error from the specific approximations adopted in this first exploratory calculation. The method can be generalized to two-scale problems in lattice QCD

  16. A nonperturbative solution of D=1 string theory

    International Nuclear Information System (INIS)

    Gross, D.J.; Miljkovic, N.

    1990-01-01

    We derive a nonperturbative solution of D=1 string theory, based on a double scaling limit of the one dimensional random matrix model. We derive an exact expression for the partition function in terms of the string coupling constant. The weak coupling expansion suffers from infrared divergences, which we attribute to massless tadpoles. The continuum limit seems to be well defined, however, in a strong coupling expansion. This could correspond to a different stable nonperturbative vacuum. (orig.)

  17. The running coupling from the QCD Schrödinger functional a one-loop analysis

    CERN Document Server

    Sint, S; Sint, Stefan; Sommer, Rainer

    1996-01-01

    Starting from the Schr\\"odinger functional, we give a non-perturbative definition of the running coupling constant in QCD. The spatial boundary conditions for the quark fields are chosen such that the massless Dirac operator in the classical background field has a large smallest eigenvalue. At one-loop order of perturbation theory, we determine the matching coefficient to the \\MSbar-scheme and discuss the quark mass effects in the \\beta-function. To this order, we also compute the Symanzik improvement coefficient necessary to remove the \\Oa lattice artefacts originating from the boundaries. For reasonable lattice resolutions and the standard Wilson action, lattice artefacts are found to be only weakly dependent on the lattice spacing a, while they vanish quickly with the improved action of Sheikholeslami and Wohlert.

  18. Four-loop logarithms in 3d gauge + Higgs theory

    CERN Document Server

    Kajantie, Keijo; Rummukainen, K; Schröder, Y

    2003-01-01

    We discuss the logarithmic contributions to the vacuum energy density of the three-dimensional SU(3) + adjoint Higgs theory in its symmetric phase, and relate them to numerical Monte Carlo simulations. We also comment on the implications of these results for perturbative and non-perturbative determinations of the pressure of finite-temperature QCD.

  19. Academic Training: QCD: are we ready for the LHC

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 4, 5, 6, 7 December, from 11:00 to 12:00 4, 5, 6 December - Main Auditorium, bldg. 500, 7 December - TH Auditorium, bldg. 4 - 3-006 QCD: are we ready for the LHC S. FRIXIONE / INFN, Genoa, Italy The LHC energy regime poses a serious challenge to our capability of predicting QCD reactions to the level of accuracy necessary for a successful programme of searches for physics beyond the Standard Model. In these lectures, I'll introduce basic concepts in QCD, and present techniques based on perturbation theory, such as fixed-order and resummed computations, and Monte Carlo simulations. I'll discuss applications of these techniques to hadron-hadron processes, concentrating on recent trends in perturbative QCD aimed at improving our understanding of LHC phenomenology.

  20. Experimental status QCD

    International Nuclear Information System (INIS)

    Radyushkin, A.V.; Slepchenko, L.A.

    1983-01-01

    Analysis of experimental status of quantum chromodynamics (QCD) has been carried out. A short introduction into QCD is given. QCD sum rules are considered. Jets in e + e - annihilation and inclusive processes of lepton-hadron and hadron-hadron scattering are considered. Effect of QCD corrections to perturbation theory on quark count is analyzed

  1. Non-perturbative methods applied to multiphoton ionization

    International Nuclear Information System (INIS)

    Brandi, H.S.; Davidovich, L.; Zagury, N.

    1982-09-01

    The use of non-perturbative methods in the treatment of atomic ionization is discussed. Particular attention is given to schemes of the type proposed by Keldysh where multiphoton ionization and tunnel auto-ionization occur for high intensity fields. These methods are shown to correspond to a certain type of expansion of the T-matrix in the intra-atomic potential; in this manner a criterium concerning the range of application of these non-perturbative schemes is suggested. A brief comparison between the ionization rate of atoms in the presence of linearly and circularly polarized light is presented. (Author) [pt

  2. Kaon matrix elements and CP violation from quenched lattice QCD: The 3-flavor case

    International Nuclear Information System (INIS)

    Blum, T.; Wingate, M.; Chen, P.; Christ, N.; Cristian, C.; Fleming, G.; Mawhinney, R.; Siegert, G.; Wu, L.; Zhestkov, Y.; Dawson, C.; Soni, A.; Ohta, S.; Vranas, P.

    2003-01-01

    We report the results of a calculation of the K→ππ matrix elements relevant for the ΔI=1/2 rule and ε ' /ε in quenched lattice QCD using domain wall fermions at a fixed lattice spacing a -1 ∼2 GeV. Working in the three-quark effective theory, where only the u, d, and s quarks enter and which is known perturbatively to next-to-leading order, we calculate the lattice K→π and K→|0> matrix elements of dimension six, four-fermion operators. Through lowest order chiral perturbation theory these yield K→ππ matrix elements, which we then normalize to continuum values through a nonperturbative renormalization technique. For the ratio of isospin amplitudes vertical bar A 0 vertical bar/vertical bar A 2 vertical bar we find a value of 25.3±1.8 (statistical error only) compared to the experimental value of 22.2, with individual isospin amplitudes 10%-20% below the experimental values. For ε ' /ε, using known central values for standard model parameters, we calculate (-4.0±2.3)x10 -4 (statistical error only) compared to the current experimental average of (17.2±1.8)x10 -4 . Because we find a large cancellation between the I=0 and I=2 contributions to ε ' /ε, the result may be very sensitive to the approximations employed. Among these are the use of quenched QCD, lowest order chiral perturbation theory, and continuum perturbation theory below 1.3 GeV. We also calculate the kaon B parameter B K and find B K,MS (2 GeV)=0.532(11). Although currently unable to give a reliable systematic error, we have control over statistical errors and more simulations will yield information about the effects of the approximations on this first-principles determination of these important quantities

  3. Lattice calculations in gauge theory

    International Nuclear Information System (INIS)

    Rebbi, C.

    1985-01-01

    The lattice formulation of quantum gauge theories is discussed as a viable technique for quantitative studies of nonperturbative effects in QCD. Evidence is presented to ascertain that whole classes of lattice actions produce a universal continuum limit. Discrepancies between numerical results from Monto Carlo simulations for the pure gauge system and for the system with gauge and quark fields are discussed. Numerical calculations for QCD require very substantial computational resources. The use of powerful vector processors of special purpose machines, in extending the scope and magnitude or the calculations is considered, and one may reasonably expect that in the near future good quantitative predictions will be obtained for QCD

  4. AdS/CFT and Light-Front QCD

    International Nuclear Information System (INIS)

    Brodsky, S

    2008-01-01

    The AdS/CFT correspondence between string theory in AdS space and conformal field theories in physical space-time leads to an analytic, semi-classical model for strongly-coupled QCD which has scale invariance and dimensional counting at short distances and color confinement at large distances. The AdS/CFT correspondence also provides insights into the inherently nonperturbative aspects of QCD such as the orbital and radial spectra of hadrons and the form of hadronic wavefunctions. In particular, we show that there is an exact correspondence between the fifth-dimensional coordinate of AdS space z and a specific impact variable ζ which measures the separation of the quark and gluonic constituents within the hadron in ordinary space-time. This connection leads to AdS/CFT predictions for the analytic form of the frame-independent light-front wavefunctions (LFWFs) of mesons and baryons, the fundamental entities which encode hadron properties. The LFWFs in turn predict decay constants and spin correlations, as well as dynamical quantities such as form factors, structure functions, generalized parton distributions, and exclusive scattering amplitudes. Relativistic light-front equations in ordinary space-time are found which reproduce the results obtained using the fifth-dimensional theory and have remarkable algebraic structures and integrability properties. As specific examples we describe the behavior of the pion form factor in the space and time-like regions and determine the Dirac nucleon form factors in the space-like region. An extension to nonzero quark mass is used to determine hadronic distribution amplitudes of all mesons, heavy and light. We compare our results with the moments of the distribution amplitudes which have recently been computed from lattice gauge theory

  5. Non-perturbative heavy quark effective theory. Introduction and status

    International Nuclear Information System (INIS)

    Sommer, Rainer; Humboldt-Universitaet, Berlin

    2015-01-01

    We give an introduction to Heavy Quark Effective Theory (HQET). Our emphasis is on its formulation non-perturbative in the strong coupling, including the non-perturbative determination of the parameters in the HQET Lagrangian. In a second part we review the present status of HQET on the lattice, largely based on work of the ALPHA collaboration in the last few years. We finally discuss opportunities and challenges.

  6. Non-perturbative materialization of ghosts

    International Nuclear Information System (INIS)

    Emparan, Roberto; Garriga, Jaume

    2006-01-01

    In theories with a hidden ghost sector that couples to visible matter through gravity only, empty space can decay into ghosts and ordinary matter by graviton exchange. Perturbatively, such processes can be very slow provided that the gravity sector violates Lorentz invariance above some cut-off scale. Here, we investigate non-perturbative decay processes involving ghosts, such as the spontaneous creation of self-gravitating lumps of ghost matter, as well as pairs of Bondi dipoles (i.e. lumps of ghost matter chasing after positive energy objects). We find the corresponding instantons and calculate their Euclidean action. In some cases, the instantons induce topology change or have negative Euclidean action. To shed some light on the meaning of such peculiarities, we also consider the nucleation of concentrical domain walls of ordinary and ghost matter, where the Euclidean calculation can be compared with the canonical (Lorentzian) description of tunneling. We conclude that non-perturbative ghost nucleation processes can be safely suppressed in phenomenological scenarios

  7. Electromagnetic form factors at large momenta from lattice QCD

    International Nuclear Information System (INIS)

    Chambers, Alexander J.; Dragos, J.; Michigan State Univ., East Lansing, MI; Horsley, R.

    2017-01-01

    Accessing hadronic form factors at large momentum transfers has traditionally presented a challenge for lattice QCD simulations. Here we demonstrate how a novel implementation of the Feynman-Hellmann method can be employed to calculate hadronic form factors in lattice QCD at momenta much higher than previously accessible. Our simulations are performed on a single set of gauge configurations with three flavours of degenerate mass quarks corresponding to m_π∼470 MeV. We are able to determine the electromagnetic form factors of the pion and nucleon up to approximately 6 GeV"2, with results for G_E/G_M in the proton agreeing well with experimental results.

  8. Bethe-Salpeter dynamics and the constituent mass concept for heavy quark mesons

    International Nuclear Information System (INIS)

    Souchlas, N.; Stratakis, D.

    2010-01-01

    The definition of a quark as heavy requires a comparison of its mass with the nonperturbative chiral symmetry breaking scale which is about 1 GeV (Λ χ ∼1 GeV) or with the scale Λ QCD ∼0.2 GeV that characterizes the distinction between perturbative and nonperturbative QCD. For quark masses significantly larger than these scales, nonperturbative dressing effects, or equivalently nonperturbative self-energy contributions, and relativistic effects are believed to be less important for physical observables. We explore the concept of a constituent mass for heavy quarks in the Dyson-Schwinger equations formalism, for light-heavy and heavy-heavy quark mesons by studying their masses and electroweak decay constants.

  9. Investigations of chiral symmetry breaking and topological aspects of lattice QCD

    International Nuclear Information System (INIS)

    Garcia Ramos, Elena

    2013-01-01

    The spontaneous breaking of chiral symmetry is a fascinating phenomenon of QCD whose mechanism is still not well understood and it has fundamental phenomenological implications. It is, for instance, responsible for the low mass of the pions which are effectively Goldstone bosons of the spontaneously broken symmetry. Since these phenomena belong to the low energy regime of QCD, non-perturbative techniques have to be applied in order to study them. In this work we use the twisted mass lattice QCD regularization to compute the chiral condensate, the order parameter of spontaneous chiral symmetry breaking. To this end we apply the recently introduced method of spectral projectors which allows us to perform calculations in large volumes due to its inherently low computational cost. This approach, moreover, enables a direct calculation of the chiral condensate based on a theoretically clean definition of the observable via density chains. We thus present a continuum limit determination of the chirally extrapolated condensate for N f =2 and N f =2+1+1 flavours of twisted mass fermions at maximal twist. In addition we study the chiral behavior of the topological susceptibility, a measure of the topological fluctuations of the gauge fields. We again apply the spectral projector method for this calculation. We comment on the difficulties which appear in the calculation of this observable due to the large autocorrelations involved. Finally we present the continuum limit result of the topological susceptibility in the pure gluonic theory which allows us to perform a test of the Witten-Veneziano relation. We found that this relation is well satisfied. Our results support the validity of the Witten-Veneziano formula which relates the topological fluctuations of the gauge fields with the unexpectedly large value of the η' mass.

  10. Holographic study of the QCD matter under external conditions

    Directory of Open Access Journals (Sweden)

    Katanaeva Alisa

    2017-01-01

    We use methods of the bottom-up AdS/QCD approach to bring out the phase structure of several holographic models in which transition to a deconfined phase is related to a (first order Hawking-Page phase transition. The impact of phenomenological model parameters on the critical temperature and chemical potential is studied in detail. Comparison of the model predictions with results of experimental investigations, lattice QCD simulations and other methods is also done.

  11. A non-perturbative study of massive gauge theories

    DEFF Research Database (Denmark)

    Della Morte, Michele; Hernandez, Pilar

    2013-01-01

    and the lightest degrees of freedom are spin one vector particles with the same quantum numbers as the conserved current, we argue that the most general effective theory describing their low-energy dynamics must be a massive gauge theory. We present results of a exploratory numerical simulation of the model......We consider a non-perturbative formulation of an SU(2) massive gauge theory on a space-time lattice, which is also a discretised gauged non-linear chiral model. The lattice model is shown to have an exactly conserved global SU(2) symmetry. If a scaling region for the lattice model exists...... and find indications for the presence of a scaling region where both a triplet vector and a scalar remain light....

  12. Deconfinement phase transition in QCD with heavy quarks

    International Nuclear Information System (INIS)

    Attig, N.; Petersson, B.; Wolff, M.; Gavai, R.V.

    1988-01-01

    Using the pseudo-fermion method to simulate QCD with dynamical quarks we investigate the effects of heavy dynamical quarks of 2 flavours on the deconfinement phase transition in the quenched QCD. As the mass of the quark is decreased the phase transition weakens as expected. Compared to the earlier results with leading order hopping parameter expansion, however, the weakening is less rapid. Our estimated upper bound on the critical mass where the transition becomes continuous is 1.5-2 times lower than earlier results. (orig.)

  13. Duality covariant type IIB supersymmetry and nonperturbative consequences

    CERN Document Server

    Bars, Itzhak

    1997-01-01

    Type-IIB supersymmetric theories have an SL(2,Z) invariance, known as U-duality, which controls the non-perturbative behavior of the theory. Under SL(2,Z) the supercharges are doublets, implying that the bosonic charges would be singlets or triplets. However, among the bosonic charges there are doublet strings and doublet fivebranes which are in conflict with the doublet property of the supercharges. It is shown that the conflict is resolved by structure constants that depend on moduli, such as the tau parameter, which transform under the same SL(2,Z). The resulting superalgebra encodes the non-perturbative duality properties of the theory and is valid for any value of the string coupling constant. The usefulness of the formalism is illustrated by applying it to purely algebraic computations of the tension of (p,q) strings, and the mass and entropy of extremal blackholes constructed from D-1-branes and D-5-branes. In the latter case the non-perturbative coupling dependence of the BPS mass and metric is comput...

  14. Towards a nonperturbative calculation of weak Hamiltonian Wilson coefficients

    Science.gov (United States)

    Bruno, Mattia; Lehner, Christoph; Soni, Amarjit; Rbc; Ukqcd Collaborations

    2018-04-01

    We propose a method to compute the Wilson coefficients of the weak effective Hamiltonian to all orders in the strong coupling constant using Lattice QCD simulations. We perform our calculations adopting an unphysically light weak boson mass of around 2 GeV. We demonstrate that systematic errors for the Wilson coefficients C1 and C2 , related to the current-current four-quark operators, can be controlled and present a path towards precise determinations in subsequent works.

  15. Non-Perturbative Renormalization

    CERN Document Server

    Mastropietro, Vieri

    2008-01-01

    The notion of renormalization is at the core of several spectacular achievements of contemporary physics, and in the last years powerful techniques have been developed allowing to put renormalization on a firm mathematical basis. This book provides a self-consistent and accessible introduction to the sophisticated tools used in the modern theory of non-perturbative renormalization, allowing an unified and rigorous treatment of Quantum Field Theory, Statistical Physics and Condensed Matter models. In particular the first part of this book is devoted to Constructive Quantum Field Theory, providi

  16. Lattice QCD at finite temperature and density from Taylor expansion

    Science.gov (United States)

    Steinbrecher, Patrick

    2017-01-01

    In the first part, I present an overview of recent Lattice QCD simulations at finite temperature and density. In particular, we discuss fluctuations of conserved charges: baryon number, electric charge and strangeness. These can be obtained from Taylor expanding the QCD pressure as a function of corresponding chemical potentials. Our simulations were performed using quark masses corresponding to physical pion mass of about 140 MeV and allow a direct comparison to experimental data from ultra-relativistic heavy ion beams at hadron colliders such as the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN. In the second part, we discuss computational challenges for current and future exascale Lattice simulations with a focus on new silicon developments from Intel and NVIDIA.

  17. QCD predictions for four-jet final states in e/sup +/e/sup -/ annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A; Koerner, J G; Kunszt, Z; Pietarinen, E [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany, F.R.); Kramer, G; Schierholz, G; Willrodt, J [Hamburg Univ. (Germany, F.R.). 2. Inst. fuer Theoretische Physik

    1980-05-01

    We have calculated the four-jet production processes e/sup +/e/sup -/ ..-->.. q anti q gg and e/sup -/e/sup -/ ..-->.. q anti q q anti q to lowest order QCD perturbation theory. We find that (q anti q q anti q) production is small compared to the dominant process e/sup +/e/sup -/ ..-->.. q anti q gg which can in part be traced to the fact that the latter process is more singular as the 2- and 3-jet phase-space limits are approached. We present differential 4-jet acoplanarity distributions and compare them with non-perturbative acoplanarity distributions at maximum PETRA and PEP energies. Leading log cross-section formulae are derived for various cut-off procedures and are compared to the results of our numerical integrations. We also present results on associated heavy quark production in e/sup +/e/sup -/ annihilation.

  18. QCD and the chiral critical point

    International Nuclear Information System (INIS)

    Gavin, S.; Gocksch, A.; Pisarski, R.D.

    1994-01-01

    As an extension of QCD, consider a theory with ''2+1'' flavors, where the current quark masses are held in a fixed ratio as the overall scale of the quark masses is varied. At nonzero temperature and baryon density it is expected that in the chiral limit the chiral phase transition is of first order. Increasing the quark mass from zero, the chiral transition becomes more weakly first order, and can end in a chiral critical point. We show that the only massless field at the chiral critical point is a σ meson, with the universality class that of the Ising model. Present day lattice simulations indicate that QCD is (relatively) near to the chiral critical point

  19. Academic training: QCD: are we ready for the LHC

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 4, 5, 6, 7 December, from 11:00 to 12:00 4, 5, 6 December - Main Auditorium, bldg. 500, 7 December - TH Auditorium, bldg. 4 - 3-006 QCD: are we ready for the LHC S. FRIXIONE / INFN, Genoa, Italy The LHC energy regime poses a serious challenge to our capability of predicting QCD reactions to the level of accuracy necessary for a successful programme of searches for physics beyond the Standard Model. In these lectures, I'll introduce basic concepts in QCD, and present techniques based on perturbation theory, such as fixed-order and resummed computations, and Monte Carlo simulations. I'll discuss applications of these techniques to hadron-hadron processes, concentrating on recent trends in perturbative QCD aimed at improving our understanding of LHC phenomenology. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply ...

  20. Supersymmetric Properties of Hadron Physics from Light-Front Holography and Superconformal Algebra and other Advances in Light-Front QCD

    Science.gov (United States)

    Brodsky, Stanley J.

    2018-05-01

    Light-front holography, together with superconformal algebra, have provided new insights into the physics of color confinement and the spectroscopy and dynamics of hadrons. As shown by de Alfaro, Fubini and Furlan, a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the procedure of de Alfaro et al. to the frame-independent light-front Hamiltonian, it leads uniquely to a confining q \\bar{q} potential κ ^4 ζ ^2, where ζ ^2 is the light-front radial variable related in momentum space to the q \\bar{q} invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS_5, the space of isometries of the conformal group—if one modifies the action of AdS_5 by the dilaton e^{κ ^2 z^2} in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions lead to a a unified Regge spectroscopy of meson, baryon, and tetraquarks, including supersymmetric relations between their masses and their wavefunctions. One also predicts hadronic light-front wavefunctions and observables such as structure functions, transverse momentum distributions, and the distribution amplitudes. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ_{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α _s(Q^2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q_0 which sets the interface between perturbative and nonperturbative hadron dynamics. I also discuss a number of applications of light-front phenomenology.

  1. QCD in gauge-boson production at the LHC

    CERN Document Server

    Schott, Matthias; The ATLAS collaboration

    2018-01-01

    Measurements of the Drell-Yan production of W and Z/gamma* bosons at the LHC provide a benchmark of our understanding of perturbative QCD and probe the proton structure in a unique way. The ATLAS and CMS collaborations have performed several high precision measurements at different center-of-mass energies, ranging from single to triple differential cross sections. These measurements are the key in improving physics modelling uncertainties of electroweak precision measurements at the LHC. Moreover, perturbative QCD can be tested further in a multi-scale environment, when studying the production of jets in association with single and di-bosons final states. In this talk, we review the latest measurements, discuss the compatibility between the experiments and compare the results to the state-of-the-art QCD calculations and Monte Carlo simulations, as well their potential impact on improving our understanding PDFs.

  2. Nonperturbative time-convolutionless quantum master equation from the path integral approach

    International Nuclear Information System (INIS)

    Nan Guangjun; Shi Qiang; Shuai Zhigang

    2009-01-01

    The time-convolutionless quantum master equation is widely used to simulate reduced dynamics of a quantum system coupled to a bath. However, except for several special cases, applications of this equation are based on perturbative calculation of the dissipative tensor, and are limited to the weak system-bath coupling regime. In this paper, we derive an exact time-convolutionless quantum master equation from the path integral approach, which provides a new way to calculate the dissipative tensor nonperturbatively. Application of the new method is demonstrated in the case of an asymmetrical two-level system linearly coupled to a harmonic bath.

  3. Chiral Extrapolations of the $\\boldsymbol{ρ(770)}$ Meson in $\\mathbf{N_f=2+1}$ Lattice QCD Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Raquel [Univ. of Sao Paulo (Brazil); Hu, Bitao [George Washington Univ., Washington, DC (United States); Doering, Michael [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); George Washington Univ., Washington, DC (United States); Mai, Maxim [George Washington Univ., Washington, DC (United States); Alexandru, Andrei [George Washington Univ., Washington, DC (United States)

    2018-04-01

    Several lattice QCD simulations of meson-meson scattering in p-wave and Isospin = 1 in Nf = 2 + 1 flavours have been carried out recently. Unitarized Chiral Perturbation Theory is used to perform extrapolations to the physical point. In contrast to previous findings on the analyses of Nf = 2 lattice data, where most of the data seems to be in agreement, some discrepancies are detected in the Nf = 2 + 1 lattice data analyses, which could be due to different masses of the strange quark, meson decay constants, initial constraints in the simulation, or other lattice artifacts. In addition, the low-energy constants are compared to the ones from a recent analysis of Nf = 2 lattice data.

  4. Non-perturbative Heavy Quark Effective Theory

    DEFF Research Database (Denmark)

    Della Morte, Michele; Heitger, Jochen; Simma, Hubert

    2015-01-01

    We review a lattice strategy how to non-perturbatively determine the coefficients in the HQET expansion of all components of the heavy-light axial and vector currents, including 1/m_h-corrections. We also discuss recent preliminary results on the form factors parameterizing semi-leptonic B...

  5. Non-perturbative Approach to Equation of State and Collective Modes of the QGP

    Directory of Open Access Journals (Sweden)

    Y.F. Liu Shuai

    2018-01-01

    Full Text Available We discuss a non-perturbative T-matrix approach to investigate the microscopic structure of the quark-gluon plasma (QGP. Utilizing an effective Hamiltonian which includes both light- and heavy-parton degrees of freedoms. The basic two-body interaction includes color-Coulomb and confining contributions in all available color channels, and is constrained by lattice-QCD data for the heavy-quark free energy. The in-medium T-matrices and parton spectral functions are computed selfconsistently with full account of off-shell properties encoded in large scattering widths. We apply the T-matrices to calculate the equation of state (EoS for the QGP, including a ladder resummation of the Luttinger-Ward functional using a matrix-log technique to account for the dynamical formation of bound states. It turns out that the latter become the dominant degrees of freedom in the EoS at low QGP temperatures indicating a transition from parton to hadron degrees of freedom. The calculated spectral properties of one- and two-body states confirm this picture, where large parton scattering rates dissolve the parton quasiparticle structures while broad resonances start to form as the pseudocritical temperature is approached from above. Further calculations of transport coefficients reveal a small viscosity and heavy-quark diffusion coefficient.

  6. Local-duality QCD sum rules for strong isospin breaking in the decay constants of heavy-light mesons

    Energy Technology Data Exchange (ETDEWEB)

    Lucha, Wolfgang [Austrian Academy of Sciences, Institute for High Energy Physics, Vienna (Austria); Melikhov, Dmitri [Austrian Academy of Sciences, Institute for High Energy Physics, Vienna (Austria); M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); University of Vienna, Faculty of Physics, Vienna (Austria); Simula, Silvano [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, Rome (Italy)

    2018-02-15

    We discuss the leptonic decay constants of heavy-light mesons by means of Borel QCD sum rules in the local-duality (LD) limit of infinitely large Borel mass parameter. In this limit, for an appropriate choice of the invariant structures in the QCD correlation functions, all vacuum-condensate contributions vanish and all nonperturbative effects are contained in only one quantity, the effective threshold. We study properties of the LD effective thresholds in the limits of large heavy-quark mass m{sub Q} and small light-quark mass m{sub q}. In the heavy-quark limit, we clarify the role played by the radiative corrections in the effective threshold for reproducing the pQCD expansion of the decay constants of pseudoscalar and vector mesons. We show that the dependence of the meson decay constants on m{sub q} arises predominantly (at the level of 70-80%) from the calculable m{sub q}-dependence of the perturbative spectral densities. Making use of the lattice QCD results for the decay constants of nonstrange and strange pseudoscalar and vector heavy mesons, we obtain solid predictions for the decay constants of heavy-light mesons as functions of m{sub q} in the range from a few to 100 MeV and evaluate the corresponding strong isospin-breaking effects: f{sub D{sup +}} - f{sub D{sup 0}} = (0.96 ± 0.09) MeV, f{sub D}{sup {sub *}{sub +}} - f{sub D}{sup {sub *}{sub 0}} = (1.18 ± 0.35) MeV, f{sub B{sup 0}} - f{sub B{sup +}} = (1.01 ± 0.10) MeV, f{sub B}{sup {sub *}{sub 0}} - f{sub B}{sup {sub *}{sub +}} = (0.89 ± 0.30) MeV. (orig.)

  7. Inclusive Decays of Heavy Quarkonium to Light Particles

    CERN Document Server

    Brambilla, Nora; Pineda-Ruiz, A; Soto, J; Vairo, Antonio; Brambilla, Nora; Eiras, Dolors; Pineda, Antonio; Soto, Joan; Vairo, Antonio

    2003-01-01

    We derive the imaginary part of the potential NRQCD Hamiltonian up to order 1/m^4, when the typical momentum transfer between the heavy quarks is of the order of Lambda_{QCD} or greater, and the binding energy E much smaller than Lambda_{QCD}. We use this result to calculate the inclusive decay widths into light hadrons, photons and lepton pairs, up to O(mv^3 x (Lambda_{QCD}^2/m^2,E/m)) and O(mv^5) times a short-distance coefficient, for S- and P-wave heavy quarkonium states, respectively. We achieve a large reduction in the number of unknown non-perturbative parameters and, therefore, we obtain new model-independent QCD predictions. All the NRQCD matrix elements relevant to that order are expressed in terms of the wave functions at the origin and six universal non-perturbative parameters. The wave-function dependence factorizes and drops out in the ratio of hadronic and electromagnetic decay widths. The universal non-perturbative parameters are expressed in terms of gluonic field-strength correlators, which ...

  8. QCD and string theories

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, G.

    1990-01-01

    This paper is devoted to a review of the connections between quantumchromodynamics (QCD) and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality

  9. QCD and hadronic strings

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, G.

    1989-01-01

    This series of lectures is devoted to review ot he connections between QCD and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality.(author)

  10. A nonperturbative proof of Dijkgraaf-Vafa conjecture

    International Nuclear Information System (INIS)

    Terashima, Seiji

    2016-01-01

    In this note we exactly compute the gaugino condensation of an arbitrary four dimensional N=1 supersymmetric gauge theory in confining phase, using the localization technique. This result gives a nonperturbative proof of the Dijkgraaf-Vafa conjecture.

  11. Nucleon Structure and Hyperon Form Factors from Lattice QCD.

    Energy Technology Data Exchange (ETDEWEB)

    Lin,H.W.

    2007-06-11

    In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point. to be 1.23(5), consistent with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(2G), consistent with the Adelaide-JLab Collaboration's result. The hyperon {Sigma} and {Xi} axial coupling constants are also performed for the first time in a lattice calculation, g{sub {Sigma}{Sigma}} = 0.441(14) and g{sub {Xi}{Xi}} = -0.277(11).

  12. Nucleon Structure and hyperon form factors from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Huey-Wen

    2007-06-11

    In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point to be 1.23(5), consistant with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(26), consistent with the Adelaide-JLab Collaboration's result. The hyperon Sigma and Xi axial coupling constants are also performed for the first time in a lattice calculation, g_SigmaSigma = 0.441(14) and g_XiXi = -0.277(11).

  13. Proceedings, QCD-TNT-III, From Quarks and Gluons to Hadronic Matter: A Bridge too Far?

    CERN Document Server

    2013-01-01

    In the third edition of the QCD-TNT workshop the traditional focus of the last two editions (that is gaining a firmer grasp on the infrared behavior of the QCD Green's functions) will be slightly shifted towards attempts to implement the transition from the fundamental (quarks and gluons) to the effective (mesons and hadrons) degrees of freedom. So in addition to the traditional QCD-TNT themes (e.g., confinement, gluon mass generation, lattice simulations in different gauges, QCD at finite temperature and density) we plan to have more phenomenologically oriented topics (e.g., experimental reviews, determination of form factors from first principle, construction of Bethe-Salpeter kernels). In addition, a special session will be dedicated to review talks, summarizing the state-of-the-art, as well as highlighting the future perspectives, of simulating non-Abelian gauge fields using ultracold neutral atoms trapped in optical lattices, and other systems.

  14. Dual Ginzburg-Landau theory and quark nuclear physics

    International Nuclear Information System (INIS)

    Toki, Hiroshi

    1999-01-01

    The elementary building blocks of matter are quarks. Hence, it is fundamental to describe hadrons and nuclei in terms of quarks and gluons, the subject of which is called Quark Nuclear Physics. The quark-dynamics is described by Quantum Chromodynamics (QCD). Our interest is the non-perturbative aspect of QCD as confinement, chiral symmetry breaking, hadronization etc. We introduce the dual Ginzburg-Landau theory (DGL), where the color monopole fields and their condensation is the QCD vacuum, play essential roles in describing these non-perturbative phenomena. We emphasize its connection to QCD through the use of the Abelian gauge. We apply the DGL theory to various observables. We discuss then the connection of the monopole fields with instantons, which are the classical solutions of the non-Abelian gauge theory and connect through the tunneling process QCD vacuum with different winding numbers. (author)

  15. Ab initio approach to the non-perturbative scalar Yukawa model

    OpenAIRE

    Li, YangDepartment of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA; Karmanov, V.A.(Lebedev Physical Institute, Leninsky Prospekt 53, Moscow, 119991, Russia); Maris, P.(Department of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA); Vary, J.P.(Department of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA)

    2015-01-01

    We report on the first non-perturbative calculation of the scalar Yukawa model in the single-nucleon sector up to four-body Fock sector truncation (one "scalar nucleon" and three "scalar pions"). The light-front Hamiltonian approach with a systematic non-perturbative renormalization is applied. We study the $n$-body norms and the electromagnetic form factor. We find that the one- and two-body contributions dominate up to coupling $\\alpha \\approx 1.7$. As we approach the coupling $\\alpha \\appr...

  16. Vector and scalar charmonium resonances with lattice QCD

    International Nuclear Information System (INIS)

    Lang, C. B.; Leskovec, Luka; Mohler, Daniel; Prelovsek, Sasa

    2015-01-01

    We perform an exploratory lattice QCD simulation of DD¯ scattering, aimed at determining the masses as well as the decay widths of charmonium resonances above open charm threshold. Neglecting coupling to other channels, the resulting phase shift for DD¯ scattering in p-wave yields the well-known vector resonance ψ(3770). For m π = 156 MeV, the extracted resonance mass and the decay width agree with experiment within large statistical uncertainty. The scalar charmonium resonances present a puzzle, since only the ground state χ c0 (1P) is well understood, while there is no commonly accepted candidate for its first excitation. We simulate DD¯ scattering in s-wave in order to shed light on this puzzle. The resulting phase shift supports the existence of a yet-unobserved narrow resonance with a mass slightly below 4 GeV. A scenario with this narrow resonance and a pole at χ c0 (1P) agrees with the energy-dependence of our phase shift. In addition, further lattice QCD simulations and experimental efforts are needed to resolve the puzzle of the excited scalar charmonia

  17. Effective Chiral Lagrangians and Lattice QCD

    CERN Document Server

    Heitger, J; Wittig, H; Heitger, Jochen; Sommer, Rainer; Wittig, Hartmut

    2000-01-01

    We propose a general method to obtain accurate estimates for some of the "low-energy constants" in the one-loop effective chiral Lagrangian by means of simulating lattice QCD. In particular, the method is sensitive to those constants whose values are required to test the hypothesis of a massless up-quark. Initial tests performed in the quenched approximation confirm that good statistical precision can be achieved. As a byproduct we obtain an accurate estimate for the ratio of pseudoscalar decay constants, F_K/F_pi, in the quenched approximation, which lies 10% below the experimental result. The quantities that serve to extract the low-energy constants also allow a test of the scaling behaviour of different discretizations of QCD and a search for the effects of dynamical quarks.

  18. Massively Parallel QCD

    International Nuclear Information System (INIS)

    Soltz, R; Vranas, P; Blumrich, M; Chen, D; Gara, A; Giampap, M; Heidelberger, P; Salapura, V; Sexton, J; Bhanot, G

    2007-01-01

    The theory of the strong nuclear force, Quantum Chromodynamics (QCD), can be numerically simulated from first principles on massively-parallel supercomputers using the method of Lattice Gauge Theory. We describe the special programming requirements of lattice QCD (LQCD) as well as the optimal supercomputer hardware architectures that it suggests. We demonstrate these methods on the BlueGene massively-parallel supercomputer and argue that LQCD and the BlueGene architecture are a natural match. This can be traced to the simple fact that LQCD is a regular lattice discretization of space into lattice sites while the BlueGene supercomputer is a discretization of space into compute nodes, and that both are constrained by requirements of locality. This simple relation is both technologically important and theoretically intriguing. The main result of this paper is the speedup of LQCD using up to 131,072 CPUs on the largest BlueGene/L supercomputer. The speedup is perfect with sustained performance of about 20% of peak. This corresponds to a maximum of 70.5 sustained TFlop/s. At these speeds LQCD and BlueGene are poised to produce the next generation of strong interaction physics theoretical results

  19. Lattice Field Theory with the Sign Problem and the Maximum Entropy Method

    Directory of Open Access Journals (Sweden)

    Masahiro Imachi

    2007-02-01

    Full Text Available Although numerical simulation in lattice field theory is one of the most effective tools to study non-perturbative properties of field theories, it faces serious obstacles coming from the sign problem in some theories such as finite density QCD and lattice field theory with the θ term. We reconsider this problem from the point of view of the maximum entropy method.

  20. DESY: QCD workshop

    International Nuclear Information System (INIS)

    Ingelman, Gunnar

    1994-01-01

    The traditional annual DESY Theory Workshop highlights a topical theory sector. The most recent was under the motto 'Quantum Chromo-Dynamics' - QCD, the field theory of quarks and gluons. The organizers had arranged a programme covering most aspects of current QCD research. This time the workshop was followed by a topical meeting on 'QCD at HERA' to look at the electron-proton scattering experiments now in operation at DESY's new HERA collider

  1. Determination of csw in Nf=3+1 lattice QCD with massive Wilson fermions

    International Nuclear Information System (INIS)

    Stollenwerk, Felix

    2017-01-01

    In order to obtain sensible results from Lattice QCD that may be compared with experiment, extrapolation to the continuum is crucial. The well-established Symanzik improvement program systematically reduces the order of cutoff effects, allowing for better control of the aforementioned errors, as well as larger and thus more affordable lattice spacings. Applied to the Wilson fermion action, it entails the addition of the Sheikholeslami-Wohlert term with the O(a) improvement coefficient c sw . In this work, a strategy is developed for the non-perturbative determination of c sw in the theory with N f =3+1 massive sea quarks. It is embedded in a general, mass-dependent renormalization and improvement scheme, for which we lay the foundations. The improvement condition, formulated by means of the PCAC relation in the Schroedinger Functional, is imposed along a line of constant physics that is designed to be close to the physical mass of the charm quark. The aim of this rather elaborate approach is to avoid large, mass-dependent O(a 2 ) effects in future large volume simulations with four dynamical quark species. The numerical results are worked out using the tree-level improved Luescher-Weisz gauge action. Since the gradient flow coupling is employed in the definition of the line of constant physics, its interdependence with the topological charge in regard to critical slowing down and topology freezing is investigated in a supplemental study.

  2. Phases of QCD

    International Nuclear Information System (INIS)

    Roessner, Simon

    2009-01-01

    Quantum Chromodynamics (QCD) is the theory of the strong interaction within the Standard Model of elementary particles. Today's research in this area dedicates substantial resources to numeric solutions of the QCD field equations and experimental programs exploring the phases of QCD. This thesis proceeds along a complementary line - that of modelling QCD, with the aim of identifying its dominant degrees of freedom. This is possible by minimally coupling effective potentials for the Polyakov loop to Nambu-Jona-Lasinio models using temporal background fields to model chiral symmetry breaking respecting colour confinement. The fermion sign problem resulting from the minimal coupling is addressed in this work establishing a novel, systematically ordered approach. The modifications to the approximative order parameter of colour confinement, the Polyakov loop, are in direct connection with the fermion sign problem. Furthermore an effective coupling of quark densities of different flavours is induced. This mechanism, most likely also present in QCD, produces finite contributions to flavour off diagonal susceptibilities. Susceptibilities are amongst the most promising physical quantities for the experimental exploration of the phase transition at high temperatures and densities. (orig.)

  3. Non-Perturbative Formulation of Time-Dependent String Solutions

    CERN Document Server

    Alexandre, J; Mavromatos, Nikolaos E; Alexandre, Jean; Ellis, John; Mavromatos, Nikolaos E.

    2006-01-01

    We formulate here a new world-sheet renormalization-group technique for the bosonic string, which is non-perturbative in the Regge slope alpha' and based on a functional method for controlling the quantum fluctuations, whose magnitudes are scaled by the value of alpha'. Using this technique we exhibit, in addition to the well-known linear-dilaton cosmology, a new, non-perturbative time-dependent background solution. Using the reparametrization invariance of the string S-matrix, we demonstrate that this solution is conformally invariant to alpha', and we give a heuristic inductive argument that conformal invariance can be maintained to all orders in alpha'. This new time-dependent string solution may be applicable to primordial cosmology or to the exit from linear-dilaton cosmology at large times.

  4. Standard model group, QCD subgroup - dynamics isolating and testing the elementary QCD subprocess

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1982-01-01

    QCD to an experimentalist is the theory of interactions of quarks and gluons. Experimentalists like QCD because QCD is analogous to QED. Thus, following Drell and others who have for many years studied the validity of QED, one has a ready-made menu for tests of QCD. There are the static and long distance tests. These topics are covered by Peter LePage in the static properties group. In this report, dynamic and short distance tests of QCD will be discussed, primarily via reactions with large transverse momenta. This report is an introduction and overview of the subject, to serve as a framework for other reports from the subgroup. In the last two sections, the author has taken the opportunity to discuss his own ideas and opinions

  5. Correlations in double parton distributions: perturbative and non-perturbative effects

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi, Matteo; Scopetta, Sergio [Dipartimento di Fisica e Geologia, Università degli Studi di Perugia andIstituto Nazionale di Fisica Nucleare, Sezione di Perugia, via A. Pascoli, I-06123 Perugia (Italy); Traini, Marco [Institut de Physique Théorique CEA-Saclay, F-91191 Gif-sur-Yvette (France); INFN - TIFPA, Dipartimento di Fisica, Università degli Studi di Trento,Via Sommarive 14, I-38123 Povo (Trento) (Italy); Vento, Vicente [Departament de Física Teòrica, Universitat de València and Institut de Física Corpuscular,Consejo Superior de Investigaciones Científicas, 46100 Carrer del Dr. Moliner 50 València (Spain)

    2016-10-12

    The correct description of Double Parton Scattering (DPS), which represents a background in several channels for the search of new Physics at the LHC, requires the knowledge of double parton distribution functions (dPDFs). These quantities represent also a novel tool for the study of the three-dimensional nucleon structure, complementary to the possibilities offered by electromagnetic probes. In this paper we analyze dPDFs using Poincaré covariant predictions obtained by using a Light-Front constituent quark model proposed in a recent paper, and QCD evolution. We study to what extent factorized expressions for dPDFs, which neglect, at least in part, two-parton correlations, can be used. We show that they fail in reproducing the calculated dPDFs, in particular in the valence region. Actually measurable processes at existing facilities occur at low longitudinal momenta of the interacting partons; to have contact with these processes we have analyzed correlations between pairs of partons of different kind, finding that, in some cases, they are strongly suppressed at low longitudinal momenta, while for other distributions they can be sizeable. For example, the effect of gluon-gluon correlations can be as large as 20 %. We have shown that these behaviors can be understood in terms of a delicate interference of non-perturbative correlations, generated by the dynamics of the model, and perturbative ones, generated by the model independent evolution procedure. Our analysis shows that at LHC kinematics two-parton correlations can be relevant in DPS, and therefore we address the possibility to study them experimentally.

  6. Better than $1/Mflops substained: a scalable PC-based parallel computer for lattice QCD

    International Nuclear Information System (INIS)

    Fodor, Z.; Papp, G.

    2002-02-01

    We study the feasibility of a PC-based parallel computer for medium to large scale lattice QCD simulations. Our cluster built at the Eoetvoes Univ., Inst. Theor. Phys. consists of 137 Intel P4-1.7 GHz nodes with 512 MB RDRAM. The 32-bit, single precision sustained performance for dynamical QCD without communication is 1510 Mflops/node with Wilson and 970 Mflops/node with staggered fermions. This gives a total performance of 208 Gflops for Wilson and 133 Gflops for staggered QCD, respectively (for 64-bit applications the performance is approximately halved). The novel feature of our system is its communication architecture. In order to have a scalable, cost-effective machine we use Gigabit Ethernet cards for nearest-neighbor communications in a two-dimensional mesh. This type of communication is cost effective (only 30% of the hardware costs is spent on the communication). According to our benchmark measurements this type of communication results in around 40% communication time fraction for lattices upto 48 3 . 96 in full QCD simulations. The price/sustained-perfomance ratio for full QCD is better than $1/Mflops for Wilson (and around $1.5/Mflops for staggered) quarks for practically any lattice size, which can fit in our parallel computer. (orig.)

  7. Critical point in the QCD phase diagram for extremely strong background magnetic fields

    International Nuclear Information System (INIS)

    Endrödi, Gergely

    2015-01-01

    Lattice simulations have demonstrated that a background (electro)magnetic field reduces the chiral/deconfinement transition temperature of quantum chromodynamics for eB<1 GeV 2 . On the level of observables, this reduction manifests itself in an enhancement of the Polyakov loop and in a suppression of the light quark condensates (inverse magnetic catalysis) in the transition region. In this paper, we report on lattice simulations of 1+1+1-flavor QCD at an unprecedentedly high value of the magnetic field eB=3.25 GeV 2 . Based on the behavior of various observables, it is shown that even at this extremely strong field, inverse magnetic catalysis prevails and the transition, albeit becoming sharper, remains an analytic crossover. In addition, we develop an algorithm to directly simulate the asymptotically strong magnetic field limit of QCD. We find strong evidence for a first-order deconfinement phase transition in this limiting theory, implying the presence of a critical point in the QCD phase diagram. Based on the available lattice data, we estimate the location of the critical point.

  8. Nonperturbative renormalization of nonlocal quark bilinears for quasi-PDFs on the lattice using an auxiliary field

    Energy Technology Data Exchange (ETDEWEB)

    Green, Jeremy; Jansen, Karl; Steffens, Fernanda [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2017-07-15

    Quasi-PDFs provide a path toward an ab initio calculation of parton distribution functions (PDFs) using lattice QCD. One of the problems faced in calculations of quasi-PDFs is the renormalization of a nonlocal operator. By introducing an auxiliary field, we can replace the nonlocal operator with a pair of local operators in an extended theory. On the lattice, this is closely related to the static quark theory. In this approach, we show how to understand the pattern of mixing that is allowed by chiral symmetry breaking, and obtain a master formula for renormalizing the nonlocal operator that depends on three parameters. We present an approach for nonperturbatively determining these parameters and use perturbation theory to convert to the MS scheme. Renormalization parameters are obtained for two lattice spacings using Wilson twisted mass fermions and for different discretizations of the Wilson line in the nonlocal operator. Using these parameters we show the effect of renormalization on nucleon matrix elements with pion mass approximately 370 MeV, and compare renormalized results for the two lattice spacings. The renormalized matrix elements are consistent among the different Wilson line discretizations and lattice spacings.

  9. Nonperturbative renormalization of nonlocal quark bilinears for quasi-PDFs on the lattice using an auxiliary field

    International Nuclear Information System (INIS)

    Green, Jeremy; Jansen, Karl; Steffens, Fernanda

    2017-07-01

    Quasi-PDFs provide a path toward an ab initio calculation of parton distribution functions (PDFs) using lattice QCD. One of the problems faced in calculations of quasi-PDFs is the renormalization of a nonlocal operator. By introducing an auxiliary field, we can replace the nonlocal operator with a pair of local operators in an extended theory. On the lattice, this is closely related to the static quark theory. In this approach, we show how to understand the pattern of mixing that is allowed by chiral symmetry breaking, and obtain a master formula for renormalizing the nonlocal operator that depends on three parameters. We present an approach for nonperturbatively determining these parameters and use perturbation theory to convert to the MS scheme. Renormalization parameters are obtained for two lattice spacings using Wilson twisted mass fermions and for different discretizations of the Wilson line in the nonlocal operator. Using these parameters we show the effect of renormalization on nucleon matrix elements with pion mass approximately 370 MeV, and compare renormalized results for the two lattice spacings. The renormalized matrix elements are consistent among the different Wilson line discretizations and lattice spacings.

  10. Semihard QCD

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    1989-01-01

    Recent results concerning the small x limit of parton distributions in perturbative QCD are reviewed. This includes in particular discussion of the bare Pomeron in perturbative QCD and of shadowing corrections. The minijet production processes and possible manifestation of semihard interactions in high energy pp-bar elastic scattering are also discussed. 46 refs., 8 figs. (author)

  11. VNI version 4.1. Simulation of high-energy particle collisions in QCD: Space-time evolution of e+e-... A + B collisions with parton-cascades, cluster-hadronization, final-state hadron cascades

    International Nuclear Information System (INIS)

    Geiger, K.; Longacre, R.

    1999-01-01

    VNI is a general-purpose Monte-Carlo event-generator, which includes the simulation of lepton-lepton, lepton-hadron, lepton-nucleus, hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. It uses the real-time evolution of parton cascades in conjunction with a self-consistent hadronization scheme, as well as the development of hadron cascades after hadronization. The causal evolution from a specific initial state (determined by the colliding beam particles) is followed by the time-development of the phase-space densities of partons, pre-hadronic parton clusters, and final-state hadrons, in position-space, momentum-space and color-space. The parton-evolution is described in terms of a space-time generalization of the familiar momentum-space description of multiple (semi)hard interactions in QCD, involving 2 → 2 parton collisions, 2 → 1 parton fusion processes, and 1 → 2 radiation processes. The formation of color-singlet pre-hadronic clusters and their decays into hadrons, on the other hand, is treated by using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. Finally, the cascading of produced prehadronic clusters and of hadrons includes a multitude of 2 → n processes, and is modeled in parallel to the parton cascade description. This paper gives a brief review of the physics underlying VNI, as well as a detailed description of the program itself. The latter program description emphasizes easy-to-use pragmatism and explains how to use the program (including simple examples), annotates input and control parameters, and discusses output data provided by it

  12. Deep-learning top taggers or the end of QCD?

    Energy Technology Data Exchange (ETDEWEB)

    Kasieczka, Gregor [Institute for Particle Physics, ETH Zürich,Otto-Stern-Weg 5, Zürich (Switzerland); Plehn, Tilman [Institut für Theoretische Physik, Universität Heidelberg,Philosophenweg 16, Heidelberg (Germany); Russell, Michael [School of Physics and Astronomy, University of Glasgow,Glasgow G12 8QQ, Glasgow (United Kingdom); Schell, Torben [Institut für Theoretische Physik, Universität Heidelberg,Philosophenweg 16, Heidelberg (Germany)

    2017-05-02

    Machine learning based on convolutional neural networks can be used to study jet images from the LHC. Top tagging in fat jets offers a well-defined framework to establish our DeepTop approach and compare its performance to QCD-based top taggers. We first optimize a network architecture to identify top quarks in Monte Carlo simulations of the Standard Model production channel. Using standard fat jets we then compare its performance to a multivariate QCD-based top tagger. We find that both approaches lead to comparable performance, establishing convolutional networks as a promising new approach for multivariate hypothesis-based top tagging.

  13. Deep-learning top taggers or the end of QCD?

    International Nuclear Information System (INIS)

    Kasieczka, Gregor; Plehn, Tilman; Russell, Michael; Schell, Torben

    2017-01-01

    Machine learning based on convolutional neural networks can be used to study jet images from the LHC. Top tagging in fat jets offers a well-defined framework to establish our DeepTop approach and compare its performance to QCD-based top taggers. We first optimize a network architecture to identify top quarks in Monte Carlo simulations of the Standard Model production channel. Using standard fat jets we then compare its performance to a multivariate QCD-based top tagger. We find that both approaches lead to comparable performance, establishing convolutional networks as a promising new approach for multivariate hypothesis-based top tagging.

  14. Emergent Gauge Fields and Their Nonperturbative Effects in Correlated Electrons

    Science.gov (United States)

    Kim, Ki-Seok; Tanaka, Akihiro

    The history of modern condensed matter physics may be regarded as the competition and reconciliation between Stoner's and Anderson's physical pictures, where the former is based on momentum-space descriptions focusing on long wave-length fluctuations while the latter is based on real-space physics emphasizing emergent localized excitations. In particular, these two view points compete with each other in various nonperturbative phenomena, which range from the problem of high Tc superconductivity, quantum spin liquids in organic materials and frustrated spin systems, heavy-fermion quantum criticality, metal-insulator transitions in correlated electron systems such as doped silicons and two-dimensional electron systems, the fractional quantum Hall effect, to the recently discussed Fe-based superconductors. An approach to reconcile these competing frameworks is to introduce topologically nontrivial excitations into the Stoner's description, which appear to be localized in either space or time and sometimes both, where scattering between itinerant electrons and topological excitations such as skyrmions, vortices, various forms of instantons, emergent magnetic monopoles, and etc. may catch nonperturbative local physics beyond the Stoner's paradigm. In this review article we discuss nonperturbative effects of topological excitations on dynamics of correlated electrons. First, we focus on the problem of scattering between itinerant fermions and topological excitations in antiferromagnetic doped Mott insulators, expected to be relevant for the pseudogap phase of high Tc cuprates. We propose that nonperturbative effects of topological excitations can be incorporated within the perturbative framework, where an enhanced global symmetry with a topological term plays an essential role. In the second part, we go on to discuss the subject of symmetry protected topological states in a largely similar light. While we do not introduce itinerant fermions here, the nonperturbative

  15. QCD at finite isospin chemical potential

    Science.gov (United States)

    Brandt, Bastian B.; Endrődi, Gergely; Schmalzbauer, Sebastian

    2018-03-01

    We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential and temperatures below the deconfinement transition the system changes into a phase where charged pions condense, accompanied by an accumulation of low modes of the Dirac operator. The simulations are enabled by the introduction of a pionic source into the action, acting as an infrared regulator for the theory, and physical results are obtained by removing the regulator via an extrapolation. We present an update of our study concerning the associated phase diagram using 2+1 flavours of staggered fermions with physical quark masses and the comparison to Taylor expansion. We also present first results for our determination of the equation of state at finite isospin chemical potential and give an example for a cosmological application. The results can also be used to gain information about QCD at small baryon chemical potentials using reweighting with respect to the pionic source parameter and the chemical potential and we present first steps in this direction.

  16. Transport at ''NLO'' in hot QCD

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The study of QCD kinetics is driven by a vast array of the experimental measurements of transport at the LHC, ranging from heavy quark energy loss, jet suppression, and hydrodynamics. I first review the fundamental elements of QCD kinetic theory, i.e. plasma screening, 2to2 scattering, and medium modified collinear bremsstrahlung. Then I will summarize recent progress in calculating these elements and their interplay at "NLO" -- "NLO" refers to an order $\\sqrt{\\alpha_s}$ correction to the plasma processes arising from the statistical fluctuations of soft gluons. These "NLO" calculations suggest a computational strategy where the influence of the Debye sector on the real time dynamics of the hard lightlike modes can be incorporated into a few medium coefficients (such as the drag coefficient and $\\hat{q}$), which can be simulated with a Euclidean 3D dimensionally reduced theory.

  17. Phases of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Roessner, Simon

    2009-04-09

    Quantum Chromodynamics (QCD) is the theory of the strong interaction within the Standard Model of elementary particles. Today's research in this area dedicates substantial resources to numeric solutions of the QCD field equations and experimental programs exploring the phases of QCD. This thesis proceeds along a complementary line - that of modelling QCD, with the aim of identifying its dominant degrees of freedom. This is possible by minimally coupling effective potentials for the Polyakov loop to Nambu-Jona-Lasinio models using temporal background fields to model chiral symmetry breaking respecting colour confinement. The fermion sign problem resulting from the minimal coupling is addressed in this work establishing a novel, systematically ordered approach. The modifications to the approximative order parameter of colour confinement, the Polyakov loop, are in direct connection with the fermion sign problem. Furthermore an effective coupling of quark densities of different flavours is induced. This mechanism, most likely also present in QCD, produces finite contributions to flavour off diagonal susceptibilities. Susceptibilities are amongst the most promising physical quantities for the experimental exploration of the phase transition at high temperatures and densities. (orig.)

  18. Resonances in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2016-04-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015 (Fig.~1). A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions; what is needed to understand the physics of resonances in QCD?; where does QCD lead us to expect resonances with exotic quantum numbers?; and what experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus.This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  19. Predictive Lattice QCD

    International Nuclear Information System (INIS)

    Kronfeld, Andreas

    2005-01-01

    Quantum chromodynamics (QCD) is the quantum field theory describing the strong interactions of quarks bound inside hadrons. It is marvelous theory, which works (mathematically) at all distance scales. Indeed, for thirty years, theorists have known how to calculate short-distance properties of QCD, thanks to the (Nobel-worthy) idea of asymptotic freedom. More recently, numerical techniques applied to the strong-coupling regime of QCD have enabled us to compute long-distance bound-state properties. In this colloquium, we review these achievements and show how the new-found methods of calculation will influence high-energy physics.

  20. Excited QCD 2017

    CERN Document Server

    2017-01-01

    This edition is the ninth in a series of workshops that had been previously organised in Poland (2009), Slovakia (2010 and 2015), France (2011), Portugal (2012 and 2016) and Bosnia and Herzegovina (2013 and 2014). In the year 2017 the workshop goes to the beautiful Sintra near Lisbon, Portugal. The workshop covers diverse aspects of QCD: (i) QCD at low energies: excited hadrons, new resonances, glueballs, multiquarks. (ii) QCD at high temperatures and large densities: heavy-ion collisions, jets, diffraction, hadronisation, quark-gluon plasma, holography, colour-glass condensate, compact stars, applications to astrophysics.

  1. Nonperturbative results for two-index conformal windows

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, Georg [Albert Einstein Center for Fundamental Physics,Institute for Theoretical Physics, University of Bern,Sidlerstrasse 5, CH-3012 Bern (Switzerland); Ryttov, Thomas A.; Sannino, Francesco [CP-Origins and the Danish IAS, University of Southern Denmark,5230 Odense M (Denmark)

    2015-12-10

    Via large and small N{sub c} relations we derive nonperturbative results about the conformal window of two-index theories. Using Schwinger-Dyson methods as well as four-loops results we estimate subleading corrections and show that naive large number of colors extrapolations are unreliable when N{sub c} is less than about six. Nevertheless useful nonperturbative inequalities for the size of the conformal windows, for any number of colors, can be derived. By further observing that the adjoint conformal window is independent of the number of colors we argue, among other things, that: the large N{sub c} two-index conformal window is twice the conformal window of the adjoint representation (which can be determined at small N{sub c}) expressed in terms of Dirac fermions; lattice results for adjoint matter can be used to provide independent information on the conformal dynamics of two-index theories such as SU(N{sub c}) with two and four symmetric Dirac flavors.

  2. Nonperturbative results for two-index conformal windows

    International Nuclear Information System (INIS)

    Bergner, Georg; Ryttov, Thomas A.; Sannino, Francesco

    2015-01-01

    Via large and small N c relations we derive nonperturbative results about the conformal window of two-index theories. Using Schwinger-Dyson methods as well as four-loops results we estimate subleading corrections and show that naive large number of colors extrapolations are unreliable when N c is less than about six. Nevertheless useful nonperturbative inequalities for the size of the conformal windows, for any number of colors, can be derived. By further observing that the adjoint conformal window is independent of the number of colors we argue, among other things, that: the large N c two-index conformal window is twice the conformal window of the adjoint representation (which can be determined at small N c ) expressed in terms of Dirac fermions; lattice results for adjoint matter can be used to provide independent information on the conformal dynamics of two-index theories such as SU(N c ) with two and four symmetric Dirac flavors.

  3. Families in the nonperturbative unification scheme

    Energy Technology Data Exchange (ETDEWEB)

    Kapetanakis, D. (National Research Centre for the Physical Sciences Democritos, Athens (Greece)); Theisen, S. (European Organization for Nuclear Research, Geneva (Switzerland)); Zoupanos, G. (Ethnikon Metsovion Polytechneion, Athens (Greece). Dept. of Physics)

    1989-10-12

    Within the nonperturbative unification framework of Maiani, Parisi and Petronzio, we examine the influence of the number of fermion and Higgs families, when they are grouped in representations of horizontal family groups, on the low energy couplings of the standard model. In this way we find a number of new phenomenologically acceptable solutions for the standard model's low energy couplings. (orig.).

  4. Families in the nonperturbative unification scheme

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Theisen, S.; Zoupanos, G.

    1989-01-01

    Within the nonperturbative unification framework of Maiani, Parisi and Petronzio, we examine the influence of the number of fermion and Higgs families, when they are grouped in representations of horizontal family groups, on the low energy couplings of the standard model. In this way we find a number of new phenomenologically acceptable solutions for the standard model's low energy couplings. (orig.)

  5. Non-perturbative aspects of string theory from elliptic curves

    International Nuclear Information System (INIS)

    Reuter, Jonas

    2015-08-01

    We consider two examples for non-perturbative aspects of string theory involving elliptic curves. First, we discuss F-theory on genus-one fibered Calabi-Yau manifolds with the fiber being a hypersurface in a toric fano variety. We discuss in detail the fiber geometry in order to find the gauge groups, matter content and Yukawa couplings of the corresponding supergravity theories for the four examples leading to gauge groups SU(3) x SU(2) x U(1), SU(4) x SU(2) x SU(2)/Z 2 , U(1) and Z 3 . The theories are connected by Higgsings on the field theory side and conifold transitions on the geometry side. We extend the discussion to the network of Higgsings relating all theories stemming from the 16 hypersurface fibrations. For the models leading to gauge groups SU(3) x SU(2) x U(1), SU(4) x SU(2) x SU(2)/Z 2 and U(1) we discuss the construction of vertical G 4 fluxes. Via the D3-brane tadpole cancelation condition we can restrict the minimal number of families in the first two of these models to be at least three. As a second example for non-perturbative aspects of string theory we discuss a proposal for a non-perturbative completion of topological string theory on local B-model geometries. We discuss in detail the computation of quantum periods for the examples of local F 1 , local F 2 and the resolution of C 3 /Z 5 . The quantum corrections are calculated order by order using second order differential operators acting on the classical periods. Using quantum geometry we calculate the refined free energies in the Nekrasov-Shatashvili limit. Finally we check the non-perturbative completion of topological string theory for the geometry of local F 2 against numerical calculations.

  6. Elliptic CY3folds and non-perturbative modular transformation

    International Nuclear Information System (INIS)

    Iqbal, Amer; Shabbir, Khurram

    2016-01-01

    We study the refined topological string partition function of a class of toric elliptically fibered Calabi-Yau threefolds. These Calabi-Yau threefolds give rise to five dimensional quiver gauge theories and are dual to configurations of M5-M2-branes. We determine the Gopakumar-Vafa invariants for these threefolds and show that the genus g free energy is given by the weight 2 g Eisenstein series. We also show that although the free energy at all genera are modular invariant, the full partition function satisfies the non-perturbative modular transformation property discussed by Lockhart and Vafa in arXiv:1210.5909 and therefore the modularity of free energy is up to non-perturbative corrections. (orig.)

  7. Elliptic CY3folds and non-perturbative modular transformation

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Amer [Government College University, Abdus Salam School of Mathematical Sciences, Lahore (Pakistan); Shabbir, Khurram [Government College University, Department of Mathematics, Lahore (Pakistan)

    2016-03-15

    We study the refined topological string partition function of a class of toric elliptically fibered Calabi-Yau threefolds. These Calabi-Yau threefolds give rise to five dimensional quiver gauge theories and are dual to configurations of M5-M2-branes. We determine the Gopakumar-Vafa invariants for these threefolds and show that the genus g free energy is given by the weight 2 g Eisenstein series. We also show that although the free energy at all genera are modular invariant, the full partition function satisfies the non-perturbative modular transformation property discussed by Lockhart and Vafa in arXiv:1210.5909 and therefore the modularity of free energy is up to non-perturbative corrections. (orig.)

  8. Non-perturbative Heavy-Flavor Transport at RHIC and LHC

    Energy Technology Data Exchange (ETDEWEB)

    He, Min, E-mail: mhe@comp.tamu.edu; Fries, Rainer J.; Rapp, Ralf

    2013-08-15

    We calculate open heavy-flavor (HF) transport in relativistic heavy-ion collisions by applying a strong-coupling treatment in both macro- and microscopic dynamics (hydrodynamics and non-perturbative diffusion interactions). The hydrodynamic medium evolution is quantitatively constrained by bulk and multi-strange hadron spectra and elliptic flow. The heavy quark transport coefficient is evaluated from a non-perturbative T-matrix approach in the Quark–Gluon Plasma which, close to the critical temperature, leads to resonance formation and feeds into the recombination of heavy quarks on a hydrodynamic hypersurface. In the hadronic phase, the diffusion of HF mesons is obtained from effective hadronic theory. We compute observables at RHIC and LHC for non-photonic electrons and HF mesons, respectively.

  9. Nonperturbative Adler-Bardeen theorem

    International Nuclear Information System (INIS)

    Mastropietro, Vieri

    2007-01-01

    The Adler-Bardeen theorem has been proven only as a statement valid at all orders in perturbation theory, without any control on the convergence of the series. In this paper we prove a nonperturbative version of the Adler-Bardeen theorem in d=2 by using recently developed technical tools in the theory of Grassmann integration. The proof is based on the assumption that the boson propagator decays fast enough for large momenta. If the boson propagator does not decay, as for Thirring contact interactions, the anomaly in the WI (Ward Identities) is renormalized by higher order contributions

  10. Lattice Quantum Chromodynamics

    CERN Document Server

    Sachrajda, C T

    2016-01-01

    I review the the application of the lattice formulation of QCD and large-scale numerical simulations to the evaluation of non-perturbative hadronic effects in Standard Model Phenomenology. I present an introduction to the elements of the calculations and discuss the limitations both in the range of quantities which can be studied and in the precision of the results. I focus particularly on the extraction of the QCD parameters, i.e. the quark masses and the strong coupling constant, and on important quantities in flavour physics. Lattice QCD is playing a central role in quantifying the hadronic effects necessary for the development of precision flavour physics and its use in exploring the limits of the Standard Model and in searches for inconsistencies which would signal the presence of new physics.

  11. What lattice calculations can tell us about the gluon gas

    International Nuclear Information System (INIS)

    Kaellman, C.G.; Helsinki Univ.; Montonen, C.

    1982-01-01

    Higher order perturbative and nonperturbative corrections to the grand potential of hot QCD are considered qualitatively Comparing with lattice results, it is argued that the nonperturbative parts are small but that the O(g 4 ) term in Ω is large and positive. (orig.)

  12. Critical point of Nf=3 QCD from lattice simulations in the canonical ensemble

    International Nuclear Information System (INIS)

    Li Anyi; Alexandru, Andrei; Liu, Keh-Fei

    2011-01-01

    A canonical ensemble algorithm is employed to study the phase diagram of N f =3 QCD using lattice simulations. We lock in the desired quark number sector using an exact Fourier transform of the fermion determinant. We scan the phase space below T c and look for an S-shape structure in the chemical potential, which signals the coexistence phase of a first order phase transition in finite volume. Applying Maxwell construction, we determine the boundaries of the coexistence phase at three temperatures and extrapolate them to locate the critical point. Using an improved gauge action and improved Wilson fermions on lattices with a spatial extent of 1.8 fm and quark masses close to that of the strange, we find the critical point at T E =0.925(5)T c and baryon chemical potential μ B E =2.60(8)T c .

  13. Phase diagram of dense two-color QCD within lattice simulations

    Directory of Open Access Journals (Sweden)

    Braguta V.V.

    2017-01-01

    Full Text Available We present the results of a low-temperature scan of the phase diagram of dense two-color QCD with Nf = 2 quarks. The study is conducted using lattice simulation with rooted staggered quarks. At small chemical potential we observe the hadronic phase, where the theory is in a confining state, chiral symmetry is broken, the baryon density is zero and there is no diquark condensate. At the critical point μ = mπ/2 we observe the expected second order transition to Bose-Einstein condensation of scalar diquarks. In this phase the system is still in confinement in conjunction with nonzero baryon density, but the chiral symmetry is restored in the chiral limit. We have also found that in the first two phases the system is well described by chiral perturbation theory. For larger values of the chemical potential the system turns into another phase, where the relevant degrees of freedom are fermions residing inside the Fermi sphere, and the diquark condensation takes place on the Fermi surface. In this phase the system is still in confinement, chiral symmetry is restored and the system is very similar to the quarkyonic state predicted by SU(Nc theory at large Nc.

  14. Duality covariant type-IIB supersymmetry and nonperturbative consequences

    International Nuclear Information System (INIS)

    Bars, I.

    1997-01-01

    Type-IIB supersymmetric theories have an SL(2,Z) invariance, known as U duality, which controls the nonperturbative behavior of the theory. Under SL(2,Z) the supercharges are doublets, implying that the bosonic charges would be singlets or triplets. However, among the bosonic charges there are doublet strings and doublet five-branes which are in conflict with the doublet property of the supercharges. It is shown that the conflict is resolved by structure constants that depend on moduli, such as the tau parameter, which transform under the same SL(2,Z). The resulting superalgebra encodes the nonperturbative duality properties of the theory and is valid for any value of the string coupling constant. The usefulness of the formalism is illustrated by applying it to purely algebraic computations of the tension of (p,q) strings, and the mass and entropy of extremal black holes constructed from D-1-branes and D-5-branes. In the latter case the nonperturbative coupling dependence of the BPS mass and renormalization is computed for the first time in this paper. It is further argued that the moduli dependence of the superalgebra provides hints for four more dimensions beyond ten, such that the superalgebra is embedded in a fundamental theory which would be covariant under SO(11,3). An outline is given for a matrix theory in 14 dimensions that would be consistent with M(atrix) theory as well as with the above observations. copyright 1997 The American Physical Society

  15. Development of an object oriented lattice QCD code ''Bridge++''

    International Nuclear Information System (INIS)

    Ueda, S; Aoki, S; Aoyama, T; Kanaya, K; Taniguchi, Y; Matsufuru, H; Motoki, S; Namekawa, Y; Nemura, H; Ukita, N

    2014-01-01

    We are developing a new lattice QCD code set ''Bridge++'' aiming at extensible, readable, and portable workbench for QCD simulations, while keeping a high performance at the same time. Bridge++ covers conventional lattice actions and numerical algorithms. The code set is constructed in C++ with an object oriented programming. In this paper we describe fundamental ingredients of the code and the current status of development

  16. Perspectives in hadron and quark dynamics

    International Nuclear Information System (INIS)

    Amsler, C.; Bressani, T.; Close, F.E.; De Sanctis, E.; Frois, B.; Kunne, F.; Laget, J.M.; von Harrach, D.; Metag, V.; Mulders, P.J.; Riska, D.O.

    1997-01-01

    In the past two decades, quantum chromodynamics (QCD) has emerged as the theory for the strong force with quarks and gluons as the building blocks of nuclear matter at large densities and high temperatures. One of the most exciting challenges for nuclear physics is the study of the non-perturbative regime of QCD. It is this regime which is relevant for understanding how the elementary fields of QCD - quarks and gluons - build up particles such as protons and neutrons. A basic theoretical difficulty is the non-existence of asymptotic, isolated, colored objects. This is a feature of the richness of the vacuum structure of QCD. Understanding the different QCD phases and the transitions among them is the challenge of the modern study of strong interactions. At low energy, chiral symmetry can be used to build aneffective theory of hadron interactions. At higher energies, the parton model uses non-perturbative quark and gluon distributions to describe hadronic scattering processes. (orig)

  17. Quark–gluon plasma phenomenology from anisotropic lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Skullerud, Jon-Ivar; Kelly, Aoife [Department of Mathematical Physics, Maynooth University, Maynooth, Co Kildare (Ireland); Aarts, Gert; Allton, Chris; Amato, Alessandro; Evans, P. Wynne M.; Hands, Simon [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Burnier, Yannis [Institut de Théorie des Phénomènes Physiques, Ecole Polytechnique Fédérale de Lausanne, CH–1015 Lausanne (Switzerland); Giudice, Pietro [Institut für Theoretische Physik, Universität Münster, D–48149 Münster (Germany); Harris, Tim; Ryan, Sinéad M. [School of Mathematics, Trinity College, Dublin 2 (Ireland); Kim, Seyong [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of); Lombardo, Maria Paola [INFN–Laboratori Nazionali di Frascati, I–00044 Frascati (RM) (Italy); Oktay, Mehmet B. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States); Rothkopf, Alexander [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, D–69120 Heidelberg (Germany)

    2016-01-22

    The FASTSUM collaboration has been carrying out simulations of N{sub f} = 2 + 1 QCD at nonzero temperature in the fixed-scale approach using anisotropic lattices. Here we present the status of these studies, including recent results for electrical conductivity and charge diffusion, and heavy quarkonium (charm and beauty) physics.

  18. Nonperturbative approach to the attractive Hubbard model

    International Nuclear Information System (INIS)

    Allen, S.; Tremblay, A.-M. S.

    2001-01-01

    A nonperturbative approach to the single-band attractive Hubbard model is presented in the general context of functional-derivative approaches to many-body theories. As in previous work on the repulsive model, the first step is based on a local-field-type ansatz, on enforcement of the Pauli principle and a number of crucial sumrules. The Mermin-Wagner theorem in two dimensions is automatically satisfied. At this level, two-particle self-consistency has been achieved. In the second step of the approximation, an improved expression for the self-energy is obtained by using the results of the first step in an exact expression for the self-energy, where the high- and low-frequency behaviors appear separately. The result is a cooperon-like formula. The required vertex corrections are included in this self-energy expression, as required by the absence of a Migdal theorem for this problem. Other approaches to the attractive Hubbard model are critically compared. Physical consequences of the present approach and agreement with Monte Carlo simulations are demonstrated in the accompanying paper (following this one)

  19. Deep-learning Top Taggers or The End of QCD?

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    https://arxiv.org/abs/1701.08784 Machine learning based on convolutional neural networks can be used to study jet images from the LHC. Top tagging in fat jets offers a well-defined framework to establish our DeepTop approach and compare its performance to QCD-based top taggers. We first optimize a network architecture to identify top quarks in Monte Carlo simulations of the Standard Model production channel. Using standard fat jets we then compare its performance to a multivariate QCD-based top tagger. We find that both approaches lead to comparable performance, establishing convolutional networks as a promising new approach for multivariate hypothesis-based top tagging.

  20. Testing the supersymmetric QCD Yukawa coupling in a combined ...

    Indian Academy of Sciences (India)

    843–847. Testing the supersymmetric QCD Yukawa coupling ... we will only consider a scenario where the mass difference m˜g − m˜qL is sufficiently large to .... Based on the simulations for squark production at the LHC and the ILC presented.

  1. 1-- and 0++ heavy four-quark and molecule states in QCD

    International Nuclear Information System (INIS)

    Albuquerque, R.M.; Fanomezana, F.; Narison, S.; Rabemananjara, A.

    2012-01-01

    We estimate the masses of the 1 -- heavy four-quark and molecule states by combining exponential Laplace (LSR) and finite energy (FESR) sum rules known perturbatively to lowest order (LO) in α s but including non-perturbative terms up to the complete dimension-six condensate contributions. This approach allows to fix more precisely the value of the QCD continuum threshold (often taken ad hoc) at which the optimal result is extracted. We use double ratio of sum rules (DRSR) for determining the SU(3) breakings terms. We also study the effects of the heavy quark mass definitions on these LO results. The SU(3) mass-splittings of about (50-110) MeV and the ones of about (250-300) MeV between the lowest ground states and their 1st radial excitations are (almost) heavy-flavor independent. The mass predictions summarized in Table 4 are compared with the ones in the literature (when available) and with the three Y c (4260,4360,4660) and Y b (10890)1 -- experimental candidates. We conclude (to this order approximation) that the lowest observed state cannot be a pure1 -- four-quark nor a pure molecule but may result from their mixings. We extend the above analyzes to the 0 ++ four-quark and molecule states which are about (0.5-1) GeV heavier than the corresponding 1 -- states, while the splittings between the 0 ++ lowest ground state and the 1st radial excitation is about (300-500) MeV. We complete the analysis by estimating the decay constants of the 1 -- and 0 ++ four-quark states which are tiny and which exhibit a 1/M Q behavior. Our predictions can be further tested using some alternative non-perturbative approaches or/and at LHC b and some other hadron factories.

  2. Novel applications of Lattice QCD: Parton Distributions, proton charge radius and neutron electric dipole moment

    Directory of Open Access Journals (Sweden)

    Alexandrou Constantia

    2017-01-01

    Full Text Available We briefly discuss the current status of lattice QCD simulations and review selective results on nucleon observables focusing on recent developments in the lattice QCD evaluation of the nucleon form factors and radii, parton distribution functions and their moments, and the neutron electric dipole moment. Nucleon charges and moments of parton distribution functions are presented using simulations generated at physical values of the quark masses, while exploratory studies are performed for the parton distribution functions and the neutron electric dipole moment at heavier than physical value of the pion mass.

  3. A non-perturbative definition of 2D quantum gravity by the fifth time action

    International Nuclear Information System (INIS)

    Ambjoern, J.; Greensite, J.; Varsted, S.

    1990-07-01

    The general formalism for stabilizing bottomless Euclidean field theories (the 'fifth-time' action) provides a natural non-perturbative definition of matrix models corresponding to 2d quantum gravity. The formalism allows, in principle, the use of lattice Monte Carlo techniques for non-perturbative computation of correlation functions. (orig.)

  4. Non-perturbative topological strings and conformal blocks

    NARCIS (Netherlands)

    Cheng, M.C.N.; Dijkgraaf, R.; Vafa, C.

    2011-01-01

    We give a non-perturbative completion of a class of closed topological string theories in terms of building blocks of dual open strings. In the specific case where the open string is given by a matrix model these blocks correspond to a choice of integration contour. We then apply this definition to

  5. Lattice QCD computations: Recent progress with modern Krylov subspace methods

    Energy Technology Data Exchange (ETDEWEB)

    Frommer, A. [Bergische Universitaet GH Wuppertal (Germany)

    1996-12-31

    Quantum chromodynamics (QCD) is the fundamental theory of the strong interaction of matter. In order to compare the theory with results from experimental physics, the theory has to be reformulated as a discrete problem of lattice gauge theory using stochastic simulations. The computational challenge consists in solving several hundreds of very large linear systems with several right hand sides. A considerable part of the world`s supercomputer time is spent in such QCD calculations. This paper presents results on solving systems for the Wilson fermions. Recent progress is reviewed on algorithms obtained in cooperation with partners from theoretical physics.

  6. Academic Training Lectures - QCD for Postgraduates

    CERN Multimedia

    Maureen Prola-Tessaur

    2010-01-01

    by Giulia Zanderighi (University of Oxford) Monday 12 to Friday 16 April 2010 From 11:00 to 12:00 - Main Auditorium, Bldg. 500-1-001 Monday 12 - Modern QCD - Lecture 1 Starting from the QCD Lagrangian we will revisit some basic QCD concepts and derive fundamental properties like gauge invariance and isospin symmetry and will discuss the Feynman rules of the theory. We will then focus on the gauge group of QCD and derive the Casimirs CF and CA and some useful color identities. Tuesday 13 - Modern QCD - Lecture 2 We will start discussing the matter content of the theory and revisit the experimental measurements that led to the discovery of quarks. We will then consider a classic QCD observable, the R-ratio, and use it to illustrate the appearance of UV divergences and the need to renormalize the coupling constant of QCD. We will then discuss asymptotic freedom and confinement. Finally, we will examine a case where soft and collinear infrared divergences appear, will discuss the soft approximation in QCD ...

  7. Precision tests of SM and pQCD with jets and photons at LHC

    CERN Document Server

    Sawyer, Lee; The ATLAS collaboration

    2015-01-01

    In this talk, I will present several aspects of jet and isolated photon production in pp collisions that have been measured by the ATLAS and CMS collaborations. The measurements of the production cross sections of inclusive jets, di-jet, tri-jet are presented double-differentially as function of jet pT and rapidity for the inclusive measurement and masses and the jet rapidity separation for the di- and tri-jet cases. They probe the dynamics of QCD and can constrain the parton structure of the proton. The cross sections are measured are compared to expectations based on next-to-leading order QCD calculations, as well as to next-to-leading order Monte Carlo simulations. A QCD analysis of these complementary data set is presented. Jet cross sections measurements of di-jet systems with a veto on additional jets, probe QCD radiation effects. The measurements of inclusive prompt photons and di-photons probe the dynamics of QCD and can constrain the parton proton structure. The inclusive prompt photon cross sections...

  8. Novel QCD Phenomena

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.; SLAC

    2007-01-01

    I discuss a number of novel topics in QCD, including the use of the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories to obtain an analytically tractable approximation to QCD in the regime where the QCD coupling is large and constant. In particular, there is an exact correspondence between the fifth-dimension coordinate z of AdS space and a specific impact variable ζ which measures the separation of the quark constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, the fundamental entities which encode hadron properties and allow the computation of exclusive scattering amplitudes. I also discuss a number of novel phenomenological features of QCD. Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam Tung relation in Drell-Yan reactions, and nuclear shadowing and non-universal antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, and anomalous heavy quark effects. The presence of direct higher-twist processes where a proton is produced in the hard subprocess can explain the large proton-to-pion ratio seen in high centrality heavy ion collisions

  9. Calculation of Some Properties of Vacuum and π,σ Mesons in the Global Color Symmetry Model

    Institute of Scientific and Technical Information of China (English)

    ZONGHong-Shi; LIUYu-Xin; 等

    2001-01-01

    Based on the quark propagator derived in the instanton dilute liquid approximation,the quark condensate ,the mixed quark gluon condensate gs,the four-quark condensate and tensor,pion vacuum susceptibilities have been calculated at the mean-field leval in a nonperturbative QCD model.The numerical results are compatible with the values obtained within other nonperturbative approaches.The calculated masses and decay constants of π and σ mesons are close to the experimental values.These results show that the instanton medium might be a good approximation of the QCD vacuum.

  10. Problems at the interface between perturbative and nonperturbative quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Bodwin, G.T.; Lepage, G.P.

    1983-06-01

    Predictions based on perturbative QCD rest on three premises: (1) that hadronic interactions become weak in strength at small invariant separation; (2) that the perturbative expansion in α/sub s/(Q) is well-defined; and (3) factorization: all effects of collinear singularities, confinement, nonperturbative interactions, and bound state dynamics can be isolated at large momentum transfer in terms of structure functions, fragmentation functions, or in the case of exclusive processes, distribution amplitudes. The assumption that the perturbative expansion for hard scattering amplitudes converges has certainly not been demonstrated; in addition, there are serious ambiguities concerning the choice of renormalization scheme and scale choice Q 2 for the expansion in α/sub s/(Q 2 ). We will discuss a new procedure to at least partly rectify the latter problem. In the case of exclusive processes, the factorization of hadronic amplitudes at large momentum transfer in the form of distribution amplitudes convoluted with hard scattering quark-gluon subprocess amplitudes can be demonstrated systematically to all orders in α/sub s/(Q 2 ). In the case of inclusive reactions, factorization remains an ansatz; general all-orders proofs do not exist because of the complications of soft initial state interactions for hadron-induced processes; thus far factorization has only been verified to two loops beyond lowest order in a regime where the applicability of perturbation theory is in doubt. However, we shall show that a necessary condition for the validity of factorization in inclusive reactions is that the momentum transfer must be large compared to the (rest frame) length of the target. We review the present status of the factorization ansatz. 52 references

  11. Non-perturbative effects in supersymmetry

    International Nuclear Information System (INIS)

    Veneziano, G.

    1987-01-01

    Some non perturbative aspects of globally supersymmetric (SUSY) gauge theories are discussed. These share with their non-supersymmetric analogues interesting non perturbative features, such as the spontaneous breaking of chiral symmetries via condensates. What is peculiar about supersymmetric theories, however, is that one is able to say a lot about non-perturbative effects even without resorting to elaborate numerical calculations: general arguments, supersymmetric and chiral Ward identities and analytic, dynamical calculations will turn out to effectively determine most of the supersymmetric vacuum properties. 28 references, 5 figures

  12. Renormalization of Extended QCD2

    International Nuclear Information System (INIS)

    Fukaya, Hidenori; Yamamura, Ryo

    2015-01-01

    Extended QCD (XQCD), proposed by Kaplan [D. B. Kaplan, arXiv:1306.5818], is an interesting reformulation of QCD with additional bosonic auxiliary fields. While its partition function is kept exactly the same as that of original QCD, XQCD naturally contains properties of low-energy hadronic models. We analyze the renormalization group flow of 2D (X)QCD, which is solvable in the limit of a large number of colors N c , to understand what kind of roles the auxiliary degrees of freedom play and how the hadronic picture emerges in the low-energy region

  13. Experimental application of QCD antennas

    Energy Technology Data Exchange (ETDEWEB)

    Bobrovskyi, Sergei

    2010-02-15

    A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio. (orig.)

  14. Experimental application of QCD antennas

    International Nuclear Information System (INIS)

    Bobrovskyi, Sergei

    2010-02-01

    A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio. (orig.)

  15. Hadron structure from lattice QCD

    International Nuclear Information System (INIS)

    Schaefer, Andreas

    2008-01-01

    Some elements and current developments of lattice QCD are reviewed, with special emphasis on hadron structure observables. In principle, high precision experimental and lattice data provide nowadays a very detailled picture of the internal structure of hadrons. However, to relate both, a very good controle of perturbative QCD is needed in many cases. Finally chiral perturbation theory is extremely helpful to boost the precision of lattice calculations. The mutual need and benefit of all four elements: experiment, lattice QCD, perturbative QCD and chiral perturbation theory is the main topic of this review

  16. Recent QCD results from ATLAS

    CERN Document Server

    Meyer, C; The ATLAS collaboration

    2014-01-01

    The ATLAS collaboration has performed studies of a wide range of QCD phenomena, from soft particle to hard photon and jet production. Recent soft-QCD measurements include studies of underlying event and vector meson production. Differential measurements of inclusive and dijet production provide stringent tests of high-order QCD predictions and provide input for determination of parton density functions. Measurements of isolated inclusive and di-photons cross sections for high transverse momentum photons test theoretical predictions of perturbative QCD and constrain parton density functions. An overview of these results is given.

  17. Static correlation lengths in QCD at high temperatures and finite densities

    CERN Document Server

    Hart, A; Philipsen, O

    2000-01-01

    We use a perturbatively derived effective field theory and three-dimensional lattice simulations to determine the longest static correlation lengths in the deconfined QCD plasma phase at high temperatures (T\\gsim 2 Tc) and finite densities (\\mu\\lsim 4 T). For vanishing chemical potential, we refine a previous determination of the Debye screening length, and determine the dependence of different correlation lengths on the number of massless flavours as well as on the number of colours. For non-vanishing but small chemical potential, the existence of Debye screening allows us to carry out simulations corresponding to the full QCD with two (or three) massless dynamical flavours, in spite of a complex action. We investigate how the correlation lengths in the different quantum number channels change as the chemical potential is switched on.

  18. Quantum chromo dynamite

    International Nuclear Information System (INIS)

    Rujula, A. de

    1979-01-01

    The explosion of interest in QCD makes a review both timely and impossible. In this talk I discuss aspects of QCD that were not covered by other speakers at the same Conference (EPS 79). These include topics in 'non-perturbative' QCD (i.e. the 1/N expansion), in perturbative QCD (is it really being tested, are form factors calculable), and in the land of in-between (higher twists, duality, preconfinement...). (orig.)

  19. QCD in the {delta}-regime

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, W. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Ciencias Nucleares; Cundy, N. [Seoul National Univ. (Korea, Republic of). Lattice Gauge Theory Research Center; Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, R.; Zanotti, J.M. [Edinburgh Univ. (United Kingdom). School of Physics; Nakamura, Y. [Tsukuba Univ., Ibaraki (Japan). Center for Computational Sciences; Pleiter, D. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-03-15

    The {delta}-regime of QCD is characterised by light quarks in a small spatial box, but a large extent in (Euclidean) time. In this setting a specific variant of chiral perturbation theory - the {delta}-expansion - applies, based on a quantum mechanical treatment of the quasi onedimensional system. In particular, for vanishing quark masses one obtains a residual pion mass M{sup R}{sub {pi}}, which has been computed to the third order in the {delta}-expansion. A comparison with numerical measurements of this residual mass allows for a new determination of some Low Energy Constants, which appear in the chiral Lagrangian. We first review the attempts to simulate 2-flavour QCD directly in the {delta}-regime. This is very tedious, but results compatible with the predictions for M{sup R}{sub {pi}} have been obtained. Then we show that an extrapolation of pion masses measured in a larger volume towards the {delta}-regime leads to good agreement with the theoretical predictions. From those results, we also extract a value for the (controversial) sub-leading Low Energy Constant anti l{sub 3}. (orig.)

  20. QCD in the δ-regime

    International Nuclear Information System (INIS)

    Bietenholz, W.; Rakow, P.E.L.

    2011-03-01

    The δ-regime of QCD is characterised by light quarks in a small spatial box, but a large extent in (Euclidean) time. In this setting a specific variant of chiral perturbation theory - the δ-expansion - applies, based on a quantum mechanical treatment of the quasi onedimensional system. In particular, for vanishing quark masses one obtains a residual pion mass M R π , which has been computed to the third order in the δ-expansion. A comparison with numerical measurements of this residual mass allows for a new determination of some Low Energy Constants, which appear in the chiral Lagrangian. We first review the attempts to simulate 2-flavour QCD directly in the δ-regime. This is very tedious, but results compatible with the predictions for M R π have been obtained. Then we show that an extrapolation of pion masses measured in a larger volume towards the δ-regime leads to good agreement with the theoretical predictions. From those results, we also extract a value for the (controversial) sub-leading Low Energy Constant anti l 3 . (orig.)

  1. Polyakov loop and QCD thermodynamics from the gluon and ghost propagators

    International Nuclear Information System (INIS)

    Fukushima, Kenji; Kashiwa, Kouji

    2013-01-01

    We investigate quark deconfinement by calculating the effective potential of the Polyakov loop using the non-perturbative propagators in the Landau gauge measured in the finite-temperature lattice simulation. With the leading term in the 2-particle-irreducible formalism the resultant effective potential exhibits a first-order phase transitions for the pure SU(3) Yang–Mills theory at the critical temperature consistent with the empirical value. We also estimate the thermodynamic quantities to confirm qualitative agreement with the lattice data near the critical temperature. We then apply our effective potential to the chiral model-study and calculate the order parameters and the thermodynamic quantities. Unlike the case in the pure Yang–Mills theory the thermodynamic quantities are sensitive to the temperature dependence of the non-perturbative propagators, while the behavior of the order parameters is less sensitive, which implies the importance of the precise determination of the temperature-dependent propagators

  2. Polynomial hybrid Monte Carlo algorithm for lattice QCD with an odd number of flavors

    International Nuclear Information System (INIS)

    Aoki, S.; Burkhalter, R.; Ishikawa, K-I.; Tominaga, S.; Fukugita, M.; Hashimoto, S.; Kaneko, T.; Kuramashi, Y.; Okawa, M.; Tsutsui, N.; Yamada, N.; Ishizuka, N.; Iwasaki, Y.; Kanaya, K.; Ukawa, A.; Yoshie, T.; Onogi, T.

    2002-01-01

    We present a polynomial hybrid Monte Carlo (PHMC) algorithm for lattice QCD with odd numbers of flavors of O(a)-improved Wilson quark action. The algorithm makes use of the non-Hermitian Chebyshev polynomial to approximate the inverse square root of the fermion matrix required for an odd number of flavors. The systematic error from the polynomial approximation is removed by a noisy Metropolis test for which a new method is developed. Investigating the property of our PHMC algorithm in the N f =2 QCD case, we find that it is as efficient as the conventional HMC algorithm for a moderately large lattice size (16 3 x48) with intermediate quark masses (m PS /m V ∼0.7-0.8). We test our odd-flavor algorithm through extensive simulations of two-flavor QCD treated as an N f =1+1 system, and comparing the results with those of the established algorithms for N f =2 QCD. These tests establish that our PHMC algorithm works on a moderately large lattice size with intermediate quark masses (16 3 x48,m PS /m V ∼0.7-0.8). Finally we experiment with the (2+1)-flavor QCD simulation on small lattices (4 3 x8 and 8 3 x16), and confirm the agreement of our results with those obtained with the R algorithm and extrapolated to a zero molecular dynamics step size

  3. Lattice calculation of 1/p2 corrections to αs and of Λrm(QCD) in the MOM-tilde scheme

    International Nuclear Information System (INIS)

    Boucaud, Ph.; Burgio, G.; Di Renzo, F.; Leroy, J.P.; Micheli, J.; Parrinello, C.; Pene, O.; Pittori, C.; Rodriguez-Quintero, J.; Roiesnel, C.; Sharkey, K.

    2000-01-01

    We report on very strong evidence of the occurrence of power terms in as(p), the QCD running coupling constant in the MOM-tilde scheme, by analyzing non-perturbative measurements from the lattice three-gluon vertex between 2.0 and 10.0 GeV at zero flavor. While putting forward the caveat that this definition of the coupling is a gauge dependent one, the general relevance of such an occurrence is discussed. We fit Λ rm-bar(MS) (n f =0)= 237 /pm 3/ + 0 - 10 MeV in perfect agreement with the result obtained by the ALPHA group with a totally different method. The power correction to as(p) is fitted to (0.63/pm 0.03/ + 0.0 - 0.13),rm GeV 2 /p 2 . (author)

  4. Non-Perturbative Aspects of Thermal QCD

    Energy Technology Data Exchange (ETDEWEB)

    Greensite, Jeff [San Francisco State Univ., CA (United States); Golterman, Maarten F. l. [San Francisco State Univ., CA (United States)

    2015-09-30

    This report summarizes research in theoretical high energy physics carried out under grant support by Mithat Unsal, Jeff Greensite and Maarten Golterman, together with a list of publications generated under this grant.

  5. Variational techniques in non-perturbative QCD

    CERN Document Server

    Kovner, Alex; Kovner, Alex

    2004-01-01

    We review attempts to apply the variational principle to understand the vacuum of non-abelian gauge theories. In particular, we focus on the method explored by Ian Kogan and collaborators, which imposes exact gauge invariance on the trial Gaussian wave functional prior to the minimization of energy. We describe the application of the method to a toy model -- confining compact QED in 2+1 dimensions -- where it works wonderfully and reproduces all known non-trivial results. We then follow its applications to pure Yang-Mills theory in 3+1 dimensions at zero and finite temperature. Among the results of the variational calculation are dynamical mass generation and the analytic description of the deconfinement phase transition.

  6. VNI version 4.1. Simulation of high-energy particle collisions in QCD: Space-time evolution of e{sup +}e{sup {minus}}...A + B collisions with parton-cascades, cluster-hadronization, final-state hadron cascades

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, K.; Longacre, R. [Brookhaven National Lab., Upton, NY (United States). Physics Dept.; Srivastava, D.K. [Variable Energy Cyclotron Centre, Calcutta (India)

    1999-02-01

    VNI is a general-purpose Monte-Carlo event-generator, which includes the simulation of lepton-lepton, lepton-hadron, lepton-nucleus, hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. It uses the real-time evolution of parton cascades in conjunction with a self-consistent hadronization scheme, as well as the development of hadron cascades after hadronization. The causal evolution from a specific initial state (determined by the colliding beam particles) is followed by the time-development of the phase-space densities of partons, pre-hadronic parton clusters, and final-state hadrons, in position-space, momentum-space and color-space. The parton-evolution is described in terms of a space-time generalization of the familiar momentum-space description of multiple (semi)hard interactions in QCD, involving 2 {r_arrow} 2 parton collisions, 2 {r_arrow} 1 parton fusion processes, and 1 {r_arrow} 2 radiation processes. The formation of color-singlet pre-hadronic clusters and their decays into hadrons, on the other hand, is treated by using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. Finally, the cascading of produced prehadronic clusters and of hadrons includes a multitude of 2 {r_arrow} n processes, and is modeled in parallel to the parton cascade description. This paper gives a brief review of the physics underlying VNI, as well as a detailed description of the program itself. The latter program description emphasizes easy-to-use pragmatism and explains how to use the program (including simple examples), annotates input and control parameters, and discusses output data provided by it.

  7. CT14 intrinsic charm parton distribution functions from CTEQ-TEA global analysis

    Science.gov (United States)

    Hou, Tie-Jiun; Dulat, Sayipjamal; Gao, Jun; Guzzi, Marco; Huston, Joey; Nadolsky, Pavel; Schmidt, Carl; Winter, Jan; Xie, Keping; Yuan, C.-P.

    2018-02-01

    We investigate the possibility of a (sizable) nonperturbative contribution to the charm parton distribution function (PDF) in a nucleon, theoretical issues arising in its interpretation, and its potential impact on LHC scattering processes. The "fitted charm" PDF obtained in various QCD analyses contains a process-dependent component that is partly traced to power-suppressed radiative contributions in DIS and is generally different at the LHC. We discuss separation of the universal component of the nonperturbative charm from the rest of the radiative contributions and estimate its magnitude in the CT14 global QCD analysis at the next-to-next-to leading order in the QCD coupling strength, including the latest experimental data from HERA and the Large Hadron Collider. Models for the nonperturbative charm PDF are examined as a function of the charm quark mass and other parameters. The prospects for testing these models in the associated production of a Z boson and a charm jet at the LHC are studied under realistic assumptions, including effects of the final-state parton showering.

  8. Symanzik Improvement with Dynamical Charm: A 3+1 Scheme for Wilson Quarks arXiv

    CERN Document Server

    Fritzsch, Patrick; Stollenwerk, Felix; Wolff, Ulli

    We discuss the problem of lattice artefacts in QCD simulations enhanced by the introduction of dynamical charmed quarks. In particular, we advocate the use of a massive renormalization scheme with a close to realistic charm mass. To maintain O(a) improvement for Wilson type fermions in this case we define a finite size scheme and carry out a nonperturbative estimation of the clover coefficient $c_\\mathrm{sw}$. It is summarized in a fit formula $c_\\mathrm{sw}(g_0^2)$ that defines an improved action suitable for future dynamical charm simulations.

  9. Cosmological abundance of the QCD axion coupled to hidden photons

    Science.gov (United States)

    Kitajima, Naoya; Sekiguchi, Toyokazu; Takahashi, Fuminobu

    2018-06-01

    We study the cosmological evolution of the QCD axion coupled to hidden photons. For a moderately strong coupling, the motion of the axion field leads to an explosive production of hidden photons by tachyonic instability. We use lattice simulations to evaluate the cosmological abundance of the QCD axion. In doing so, we incorporate the backreaction of the produced hidden photons on the axion dynamics, which becomes significant in the non-linear regime. We find that the axion abundance is suppressed by at most O (102) for the decay constant fa =1016GeV, compared to the case without the coupling. For a sufficiently large coupling, the motion of the QCD axion becomes strongly damped, and as a result, the axion abundance is enhanced. Our results show that the cosmological upper bound on the axion decay constant can be relaxed by a few hundred for a certain range of the coupling to hidden photons.

  10. The QCD/SM working group: Summary report

    International Nuclear Information System (INIS)

    Giele, W.

    2004-01-01

    practice, the resummation formalism depends on the observable at issue, through the type of logarithm to be resummed, and the resummation methods. In parallel with this perturbative QCD-oriented working programme, the implementation of both QCD/SM and New physics in Monte Carlo event generators is confronted with a number of issues which deserve uniformization or improvements. The important issues are: (1) the problem of interfacing partonic event generators to showering Monte-Carlos; (2) an implementation using this interface to calculate backgrounds which are poorly simulated by the showering Monte-Carlos alone; (3) a comparison of the HERWIG and PYTHIA parton shower models with the predictions of soft gluon resummation; (4) studies of the underlying events at hadron colliders to check how well they are modeled by the Monte-Carlo generators

  11. The QCD/SM working group: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    W. Giele et al.

    2004-01-12

    logarithmic corrections to all orders in perturbation theory. In practice, the resummation formalism depends on the observable at issue, through the type of logarithm to be resummed, and the resummation methods. In parallel with this perturbative QCD-oriented working programme, the implementation of both QCD/SM and New physics in Monte Carlo event generators is confronted with a number of issues which deserve uniformization or improvements. The important issues are: (1) the problem of interfacing partonic event generators to showering Monte-Carlos; (2) an implementation using this interface to calculate backgrounds which are poorly simulated by the showering Monte-Carlos alone; (3) a comparison of the HERWIG and PYTHIA parton shower models with the predictions of soft gluon resummation; (4) studies of the underlying events at hadron colliders to check how well they are modeled by the Monte-Carlo generators.

  12. Up, down, strange and charm quark masses with Nf=2+1+1 twisted mass lattice QCD

    Directory of Open Access Journals (Sweden)

    N. Carrasco

    2014-10-01

    Full Text Available We present a lattice QCD calculation of the up, down, strange and charm quark masses performed using the gauge configurations produced by the European Twisted Mass Collaboration with Nf=2+1+1 dynamical quarks, which include in the sea, besides two light mass degenerate quarks, also the strange and charm quarks with masses close to their physical values. The simulations are based on a unitary setup for the two light quarks and on a mixed action approach for the strange and charm quarks. The analysis uses data at three values of the lattice spacing and pion masses in the range 210–450 MeV, allowing for accurate continuum limit and controlled chiral extrapolation. The quark mass renormalization is carried out non-perturbatively using the RI′-MOM method. The results for the quark masses converted to the MS¯ scheme are: mud(2 GeV=3.70(17 MeV, ms(2 GeV=99.6(4.3 MeV and mc(mc=1.348(46 GeV. We obtain also the quark mass ratios ms/mud=26.66(32 and mc/ms=11.62(16. By studying the mass splitting between the neutral and charged kaons and using available lattice results for the electromagnetic contributions, we evaluate mu/md=0.470(56, leading to mu=2.36(24 MeV and md=5.03(26 MeV.

  13. Nonperturbative QED vacuum birefringence

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, V.I.; Dolgaya, E.E.; Sokolov, V.A. [Physics Department, Moscow State University,Moscow, 119991 (Russian Federation)

    2017-05-19

    In this paper we represent nonperturbative calculation for one-loop Quantum Electrodynamics (QED) vacuum birefringence in presence of strong magnetic field. The dispersion relations for electromagnetic wave propagating in strong magnetic field point to retention of vacuum birefringence even in case when the field strength greatly exceeds Sauter-Schwinger limit. This gives a possibility to extend some predictions of perturbative QED such as electromagnetic waves delay in pulsars neighbourhood or wave polarization state changing (tested in PVLAS) to arbitrary magnetic field values. Such expansion is especially important in astrophysics because magnetic fields of some pulsars and magnetars greatly exceed quantum magnetic field limit, so the estimates of perturbative QED effects in this case require clarification.

  14. QCD and nuclei

    International Nuclear Information System (INIS)

    Simonov, Yu.A.

    1989-01-01

    To apply QCD to nuclear physics one needs methods of long-distance QCD. A new method, method of Confining Background Fields, CBF, which incorporates confinement, is presented with applications to heavy and light quarks, both in mesons and baryons. Spin-dependent forces are calculated for light and heavy quarks. The quark potential model in some limiting case is derived. 25 refs

  15. Nonperturbative infrared dynamics in three dimensional QED

    International Nuclear Information System (INIS)

    Gusynin, V.P.

    2000-01-01

    A non-linear Schwinger-Dyson (SD) equation for the gauge boson propagator of massless QED in 2 + 1 dimensions is studied. It is shown that the nonperturbative solution leads to a non-trivial renormalization-group infrared fixed point quantitatively close to the one found in the leading order of the 1/N expansion, with N the number of fermion flavors

  16. QCD: Renormalization for the practitioner

    International Nuclear Information System (INIS)

    Pascual, P.; Tarrach, R.

    1984-01-01

    These notes correspond to a GIFT (Grupo Interuniversitario de Fisica Teorica) course which was given by us in autumn 1983 at the University of Barcelona. Their main subject is renormalization in perturbative QCD and only the last chapter goes beyond perturbation theory. They are essentially self contained and their aim is to teach the student the techniques of perturbative QCD and the QCD sum rules. (orig./HSI)

  17. Nonperturbative aspects of Yang-Mills theory

    International Nuclear Information System (INIS)

    Schleifenbaum, Wolfgang

    2008-01-01

    The subject of this thesis is the theory of strong interactions of quarks and gluons, with particular emphasis on nonperturbative aspects of the gluon sector. Continuum methods are used to investigate in particular the confinement phenomenon. Confinement which states that the elementary quarks and gluons cannot be detected as free particles requires an understanding of large-scale correlations. In perturbation theory, only short-range correlations can be reliably described. A nonperturbative approach is given by the set of integral Dyson Schwinger equations involving all Green functions of the theory. A solution for the gluon propagator is obtained in the infrared and ultraviolet asymptotic limits. In chapter 1, redundant degrees of freedom of the Yang Mills gauge theory are removed by fixing the Weyl and Coulomb gauge prior to quantization. The constrained quantization in the Dirac bracket formalism is then performed explicitly to produce the quantized Yang Mills Hamiltonian. The asymptotic infrared limits of Coulomb gauge correlation functions are studied analytically in chapter 2 in the framework of the Gribov Zwanziger confinement scenario. The Coulomb potential between heavy quarks as part of the Yang Mills Hamiltonian is calculated in this limit. A connection between the infrared limits of Coulomb and Landau gauge is established. The Hamiltonian derived paves the way in chapter 3 for finding the Coulomb gauge vacuum wave functional by means of the variational principle. Numerical solutions for the propagators in this vacuum state are discussed and seen to reproduce the anticipated infrared limit. The discussion is extended to the vertex functions. The effect of the approximations on the results is examined. Chapter 4 is mainly devoted to the ultraviolet behavior of the propagators. The discussion is issued in both Coulomb and Landau gauge. A nonperturbative running coupling is defined and calculated. The ultraviolet tails of the variational solutions from

  18. Nonperturbative aspects of Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Schleifenbaum, Wolfgang

    2008-07-01

    The subject of this thesis is the theory of strong interactions of quarks and gluons, with particular emphasis on nonperturbative aspects of the gluon sector. Continuum methods are used to investigate in particular the confinement phenomenon. Confinement which states that the elementary quarks and gluons cannot be detected as free particles requires an understanding of large-scale correlations. In perturbation theory, only short-range correlations can be reliably described. A nonperturbative approach is given by the set of integral Dyson Schwinger equations involving all Green functions of the theory. A solution for the gluon propagator is obtained in the infrared and ultraviolet asymptotic limits. In chapter 1, redundant degrees of freedom of the Yang Mills gauge theory are removed by fixing the Weyl and Coulomb gauge prior to quantization. The constrained quantization in the Dirac bracket formalism is then performed explicitly to produce the quantized Yang Mills Hamiltonian. The asymptotic infrared limits of Coulomb gauge correlation functions are studied analytically in chapter 2 in the framework of the Gribov Zwanziger confinement scenario. The Coulomb potential between heavy quarks as part of the Yang Mills Hamiltonian is calculated in this limit. A connection between the infrared limits of Coulomb and Landau gauge is established. The Hamiltonian derived paves the way in chapter 3 for finding the Coulomb gauge vacuum wave functional by means of the variational principle. Numerical solutions for the propagators in this vacuum state are discussed and seen to reproduce the anticipated infrared limit. The discussion is extended to the vertex functions. The effect of the approximations on the results is examined. Chapter 4 is mainly devoted to the ultraviolet behavior of the propagators. The discussion is issued in both Coulomb and Landau gauge. A nonperturbative running coupling is defined and calculated. The ultraviolet tails of the variational solutions from

  19. High-loop perturbative renormalization constants for Lattice QCD (III): three-loop quark currents for Iwasaki gauge action and n{sub f} = 4 Wilson fermions

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, M.; Di Renzo, F. [Universita di Parma (Italy); INFN, Gruppo Collegato di Parma, Dipartimento di Fisica e Scienze della Terra, Parma (Italy); Hasegawa, M. [Universita di Parma (Italy); Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); INFN, Gruppo Collegato di Parma, Dipartimento di Fisica e Scienze della Terra, Parma (Italy)

    2014-07-15

    This is the third of a series of papers on three-loop computation of renormalization constants for Lattice QCD. Our main points of interest are results for the regularization defined by the Iwasaki gauge action and n{sub f} Wilson fermions. Our results for quark bilinears renormalized according to the RI'-MOM scheme can be compared to non-perturbative results. The latter are available for twisted mass QCD: being defined in the chiral limit, the renormalization constants must be the same. We also address more general problems. In particular, we discuss a few methodological issues connected to summing the perturbative series such as the effectiveness of boosted perturbation theory and the disentanglement of irrelevant and finite-volume contributions. Discussing these issues we consider not only the new results of this paper, but also those for the regularization defined by the tree-level Symanzik improved gauge action and n{sub f} Wilson fermions, which we presented in a recent paper of ours. We finally comment on the extent to which the techniques we put at work in the NSPT context can provide a fresher look into the lattice version of the RI'-MOM scheme. (orig.)

  20. Nonperturbative quantum electrodynamics at T≠0

    International Nuclear Information System (INIS)

    Pevzner, M.Sh.

    1990-01-01

    On the base of Schwinger-Dyson equation for the electron temperature Green's function in the nonperturbative QED in the ladder approximation the ordinary differential equation for the function, connected with temperature one has been obtained. The relation, to which the temperature depending electron mass m(T) satisfies, has been found; its low-temperature behaviour has been studied. The phase transition has been shown to take place in the model, that is accompanied by the chiral symmetry restoration. 34 refs

  1. Duality in supersymmetric Yang-Mills theory

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1997-02-01

    These lectures provide an introduction to the behavior of strongly-coupled supersymmetric gauge theories. After a discussion of the effective Lagrangian in nonsupersymmetric and supersymmetric field theories, the author analyzes the qualitative behavior of the simplest illustrative models. These include supersymmetric QCD for N f c , in which the superpotential is generated nonperturbatively, N = 2 SU(2) Yang-Mills theory (the Seiberg-Witten model), in which the nonperturbative behavior of the effect coupling is described geometrically, and supersymmetric QCD for N f large, in which the theory illustrates a non-Abelian generalization of electric-magnetic duality. 75 refs., 12 figs

  2. Higher order light-cone distribution amplitudes of the Lambda baryon

    International Nuclear Information System (INIS)

    Liu, Yong-Lu; Huang, Ming-Qiu; Cui, Chun-Yu

    2014-01-01

    The improved light-cone distribution amplitudes (LCDAs) of the Λ baryon are examined on the basis of the QCD conformal partial wave expansion approach. The calculations are carried out to the next-to-leading order of conformal spin accuracy with consideration of twist 6. The next leading order conformal expansion coefficients are related to the nonperturbative parameters defined by the local three-quark operator matrix elements with different Lorentz structures with a covariant derivative. The nonperturbative parameters are determined with the QCD sum rule method. The explicit expressions of the LCDAs are provided as the main results. (orig.)

  3. Higher order light-cone distribution amplitudes of the Lambda baryon

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong-Lu; Huang, Ming-Qiu [National University of Defense Technology, College of Science, Hunan (China); Cui, Chun-Yu [Third Military Medical University, Department of Physics, School of Biomedical Engineering, Chongqing (China)

    2014-09-15

    The improved light-cone distribution amplitudes (LCDAs) of the Λ baryon are examined on the basis of the QCD conformal partial wave expansion approach. The calculations are carried out to the next-to-leading order of conformal spin accuracy with consideration of twist 6. The next leading order conformal expansion coefficients are related to the nonperturbative parameters defined by the local three-quark operator matrix elements with different Lorentz structures with a covariant derivative. The nonperturbative parameters are determined with the QCD sum rule method. The explicit expressions of the LCDAs are provided as the main results. (orig.)

  4. Complex Langevin simulation of QCD at finite density and low temperature using the deformation technique

    Science.gov (United States)

    Nagata, Keitro; Nishimura, Jun; Shimasaki, Shinji

    2018-03-01

    We study QCD at finite density and low temperature by using the complex Langevin method. We employ the gauge cooling to control the unitarity norm and intro-duce a deformation parameter in the Dirac operator to avoid the singular-drift problem. The reliability of the obtained results are judged by the probability distribution of the magnitude of the drift term. By making extrapolations with respect to the deformation parameter using only the reliable results, we obtain results for the original system. We perform simulations on a 43 × 8 lattice and show that our method works well even in the region where the reweighing method fails due to the severe sign problem. As a result we observe a delayed onset of the baryon number density as compared with the phase-quenched model, which is a clear sign of the Silver Blaze phenomenon.

  5. QCD-aware partonic jet clustering for truth-jet flavour labelling

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Andy; Pollard, Chris [University of Glasgow, School of Physics and Astronomy, Glasgow (United Kingdom)

    2016-02-15

    We present an algorithm for deriving partonic flavour labels to be applied to truth particle jets in Monte Carlo event simulations. The inputs to this approach are final pre-hadronisation partons, to remove dependence on unphysical details such as the order of matrix element calculation and shower generator frame recoil treatment. These are clustered using standard jet algorithms, modified to restrict the allowed pseudo-jet combinations to those in which tracked flavour labels are consistent with QCD and QED Feynman rules. The resulting algorithm is shown to be portable between the major families of shower generators, and largely insensitive to many possible systematic variations: it hence offers significant advantages over existing ad hoc labelling schemes. However, it is shown that contamination from multi-parton scattering simulations can disrupt the labelling results. Suggestions are made for further extension to incorporate more detailed QCD splitting function kinematics, robustness improvements, and potential uses for truth-level physics object definitions and tagging. (orig.)

  6. QCD-aware partonic jet clustering for truth-jet flavour labelling

    International Nuclear Information System (INIS)

    Buckley, Andy; Pollard, Chris

    2016-01-01

    We present an algorithm for deriving partonic flavour labels to be applied to truth particle jets in Monte Carlo event simulations. The inputs to this approach are final pre-hadronisation partons, to remove dependence on unphysical details such as the order of matrix element calculation and shower generator frame recoil treatment. These are clustered using standard jet algorithms, modified to restrict the allowed pseudo-jet combinations to those in which tracked flavour labels are consistent with QCD and QED Feynman rules. The resulting algorithm is shown to be portable between the major families of shower generators, and largely insensitive to many possible systematic variations: it hence offers significant advantages over existing ad hoc labelling schemes. However, it is shown that contamination from multi-parton scattering simulations can disrupt the labelling results. Suggestions are made for further extension to incorporate more detailed QCD splitting function kinematics, robustness improvements, and potential uses for truth-level physics object definitions and tagging. (orig.)

  7. Spectral zeta function and non-perturbative effects in ABJM Fermi-gas

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki

    2015-03-01

    The exact partition function in ABJM theory on three-sphere can be regarded as a canonical partition function of a non-interacting Fermi-gas with an unconventional Hamiltonian. All the information on the partition function is encoded in the discrete spectrum of this Hamiltonian. We explain how (quantum mechanical) non-perturbative corrections in the Fermi-gas system appear from a spectral consideration. Basic tools in our analysis are a Mellin-Barnes type integral representation and a spectral zeta function. From a consistency with known results, we conjecture that the spectral zeta function in the ABJM Fermi-gas has an infinite number of ''non-perturbative'' poles, which are invisible in the semi-classical expansion of the Planck constant. We observe that these poles indeed appear after summing up perturbative corrections. As a consequence, the perturbative resummation of the spectral zeta function causes non-perturbative corrections to the grand canonical partition function. We also present another example associated with a spectral problem in topological string theory. A conjectured non-perturbative free energy on the resolved conifold is successfully reproduced in this framework.

  8. QED, QCD en pratique

    OpenAIRE

    Aurenche , P; Guillet , J.-Ph; Pilon , E

    2016-01-01

    3rd cycle; Ces notes sont une introduction à l'application de l'électrodynamique quantique (QED) et de la chromodynamiques quantique (QCD) aux réactions de diffusion à hautes énergies. Le premier thème abordé est celui des divergences ultraviolettes et de la renormalisation à une boucle, avec comme conséquence pour QCD la liberté asymptotique. Le deuxième thème est celui des divergences infrarouges et colinéaires qui dans QCD sont traitées dans le cadre du modèle des partons avec l'introducti...

  9. Lattice quantum chromodynamics

    International Nuclear Information System (INIS)

    Hassenfratz, P.

    1983-01-01

    It is generally accepted that relativistic field theory is relevant in high energy physics. It is also recognized that even in QCD, which is asymptotically free, the scope of perturbation theory is very limited. Despite the tremendous theoretical and experimental effort to study scaling, scaling violations, e + e - , lepton pair creation, jets, etc., the answer to the question whether and to what extent is QCD the theory of strong interactions is vague. At present-day energies it is difficult to disentangle perturbative and non-perturbative effects. The author states that QCD must be understood and that quantitative non-perturbative methods are needed. He states that the lattice formulation of field theories is a promising approach to meeting this need and discusses the formulation in detail in this paper

  10. Hadron Structure '89

    International Nuclear Information System (INIS)

    Nagy, M.; Krupa, D.

    1989-01-01

    The proceedings contain the full texts of all 43 papers presented at the conference. All contributions have been inputted to INIS. The topics covered include the chiral aspects of QCD; nonperturbative QCD; heavy ion collisions and quark-gluon plasma signatures; and recent experimental results. (Z.S.)

  11. The b Quark Fragmentation Function, From LEP to TeVatron

    CERN Document Server

    Ben-Haim, Eli; Savoy-Navarro, Aurore

    2004-01-01

    The b quark fragmentation distribution has been measured, using data registered by the DELPHI experiment at the Z pole, in the years 1994-1995. The measurement made use of 176000 inclusively reconstructed B meson candidates. The uncertainties of this measurement are dominated by systematic effects, the principal ones being related to the energy calibration. The distribution has been established in a nine bin histogram. Its mean value has been found to be = 0.704±0.001(stat.)±0.008(syst.) Using this measurement, and other available analyses of the b-quark fragmentation distribution in e +e − collisions, the non-perturbative QCD component of the distribution has been extracted independently of any hadronic physics modeling. This distribution depends only on the way the perturbative QCD component has been defined. When the perturbative QCD component is taken from a parton shower Monte-Carlo, the non-perturbative QCD component is rather similar with those obtained from the Lund or Bowler models. When the pert...

  12. Towards the chiral limit in QCD

    International Nuclear Information System (INIS)

    Shailesh Chandrasekharan

    2006-01-01

    Computing hadronic observables by solving QCD from first principles with realistic quark masses is an important challenge in fundamental nuclear and particle physics research. Although lattice QCD provides a rigorous framework for such calculations many difficulties arise. Firstly, there are no good algorithms to solve lattice QCD with realistically light quark masses. Secondly, due to critical slowing down, Monte Carlo algorithms are able to access only small lattice sizes on coarse lattices. Finally, due to sign problems it is almost impossible to study the physics of finite baryon density. Lattice QCD contains roughly three mass scales: the cutoff (or inverse lattice spacing) a -1 , the confinement scale Λ QCD , and the pion mass m π . Most conventional Monte Carlo algorithms for QCD become inefficient in two regimes: when Λ QCD becomes small compared to a -1 and when m π becomes small compared to Λ QCD . The former can be largely controlled by perturbation theory thanks to asymptotic freedom. The latter is more difficult since chiral extrapolations are typically non-analytic and can be unreliable if the calculations are not done at sufficiently small quark masses. For this reason it has been difficult to compute quantities close to the chiral limit. The essential goal behind this proposal was to develop a new approach towards understanding QCD and QCD-like theories with sufficiently light quarks. The proposal was based on a novel cluster algorithm discovered in the strong coupling limit with staggered fermions [1]. This algorithm allowed us to explore the physics of exactly massless quarks and as well as light quarks. Thus, the hope was that this discovery would lead to the complete solution of at least a few strongly coupled QCD-like theories. The solution would be far better than those achievable through conventional methods and thus would be able to shed light on the chiral physics from a new direction. By the end of the funding period, the project led

  13. Components of QCD

    International Nuclear Information System (INIS)

    Sivers, D.

    1979-10-01

    Some aspects of a simple strategy for testing the validity of QCD perturbation theory are examined. The importance of explicit evaluation of higher-order contributions is illustrated by considering Z 0 decays. The recent progress toward understanding exclusive processes in QCD is discussed and some simple examples are given of how to isolate and test the separate components of the perturbation expansion in a hypothetical series of jet experiments

  14. Quantum chromodynamics (QCD) and collider physics

    International Nuclear Information System (INIS)

    Ellis, R.K.; Stirling, W.J.

    1990-01-01

    This report discusses: fundamentals of perturbative QCD; QCD in e + e - → hadrons; deep inelastic scattering and parton distributions; the QCD parton model in hadron-hadron collisions; large p T jet production in hadron-hadron collisions; the production of vector bosons in hadronic collisions; and the production of heavy quarks

  15. Determination of c{sub sw} in N{sub f}=3+1 lattice QCD with massive Wilson fermions

    Energy Technology Data Exchange (ETDEWEB)

    Stollenwerk, Felix

    2017-02-07

    In order to obtain sensible results from Lattice QCD that may be compared with experiment, extrapolation to the continuum is crucial. The well-established Symanzik improvement program systematically reduces the order of cutoff effects, allowing for better control of the aforementioned errors, as well as larger and thus more affordable lattice spacings. Applied to the Wilson fermion action, it entails the addition of the Sheikholeslami-Wohlert term with the O(a) improvement coefficient c{sub sw}. In this work, a strategy is developed for the non-perturbative determination of c{sub sw} in the theory with N{sub f}=3+1 massive sea quarks. It is embedded in a general, mass-dependent renormalization and improvement scheme, for which we lay the foundations. The improvement condition, formulated by means of the PCAC relation in the Schroedinger Functional, is imposed along a line of constant physics that is designed to be close to the physical mass of the charm quark. The aim of this rather elaborate approach is to avoid large, mass-dependent O(a{sup 2}) effects in future large volume simulations with four dynamical quark species. The numerical results are worked out using the tree-level improved Luescher-Weisz gauge action. Since the gradient flow coupling is employed in the definition of the line of constant physics, its interdependence with the topological charge in regard to critical slowing down and topology freezing is investigated in a supplemental study.

  16. Calculating infrared contributions to vacuum expectation values of gluonic and quark fields

    International Nuclear Information System (INIS)

    Arbuzov, B.A.; Boos, E.E.; Turashvili, K.Sh.

    1986-01-01

    Based on the infrared asymptotics of the lower QCD Green's functions obtained before, we propose a definition and elaborate a technique for calculating non-perturbative vacuum expectations of gluon and quark fields. In our calculations, we use only the known QCD parameters: constituent quark masses, the confining potential slope and the QCD parameter Λ. The values obtained for the vacuum expectations agree well with experiment. (orig.)

  17. Four-fluxes and non-perturbative superpotentials in two dimensions

    International Nuclear Information System (INIS)

    Lerche, W.

    1998-01-01

    We show how certain non-perturbative superpotentials W(Σ), which are the two-dimensional analogs of the Seiberg-Witten prepotential in 4d, can be computed via geometric engineering from 4-folds. We analyze an explicit example for which the relevant compact geometry of the 4-fold is given by P 1 fibered over P 2 . In the field theory limit, this gives an effective U(1) gauge theory with N=(2,2) supersymmetry in two dimensions. We find that the analog of the SW curve is a K3 surface, and that the complex FI coupling is given by the modular parameter of this surface. The FI potential itself coincides with the middle period of a meromorphic differential. However, it only shows up in the effective action if a certain 4-flux is switched on, and then supersymmetry appears to be non-perturbatively broken. (orig.)

  18. Method of analytic continuation by duality in QCD: Beyond QCD sum rules

    International Nuclear Information System (INIS)

    Kremer, M.; Nasrallah, N.F.; Papadopoulos, N.A.; Schilcher, K.

    1986-01-01

    We present the method of analytic continuation by duality which allows the approximate continuation of QCD amplitudes to small values of the momentum variables where direct perturbative calculations are not possible. This allows a substantial extension of the domain of applications of hadronic QCD phenomenology. The method is illustrated by a simple example which shows its essential features

  19. Theoretical summary talk of QCD 2002

    International Nuclear Information System (INIS)

    Basu, Rahul

    2003-01-01

    This is a summary of the talks on QCD, not including QCD at finite temperature or density (which are discussed elsewhere) presented at the QCD 2002 meeting held at IIT, Kanpur. I have attempted to give only an overview of the talks since the details may be found in the individual contributions. (author)

  20. 1{sup --} and 0{sup ++} heavy four-quark and molecule states in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, R.M., E-mail: rma@if.usp.br [Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05389-970 Sao Paulo, SP (Brazil); Laboratoire Particules et Univers de Montpellier, CNRS-IN2P3, Case 070, Place Eugene Bataillon, 34095 Montpellier (France); Fanomezana, F., E-mail: fanfenos@yahoo.fr [Institute of High-Energy Physics of Madagascar (iHEP-MAD), University of Antananarivo (Madagascar); Narison, S., E-mail: snarison@yahoo.fr [Laboratoire Particules et Univers de Montpellier, CNRS-IN2P3, Case 070, Place Eugene Bataillon, 34095 Montpellier (France); Rabemananjara, A., E-mail: achris_01@yahoo.fr [Institute of High-Energy Physics of Madagascar (iHEP-MAD), University of Antananarivo (Madagascar)

    2012-08-29

    We estimate the masses of the 1{sup --} heavy four-quark and molecule states by combining exponential Laplace (LSR) and finite energy (FESR) sum rules known perturbatively to lowest order (LO) in {alpha}{sub s} but including non-perturbative terms up to the complete dimension-six condensate contributions. This approach allows to fix more precisely the value of the QCD continuum threshold (often taken ad hoc) at which the optimal result is extracted. We use double ratio of sum rules (DRSR) for determining the SU(3) breakings terms. We also study the effects of the heavy quark mass definitions on these LO results. The SU(3) mass-splittings of about (50-110) MeV and the ones of about (250-300) MeV between the lowest ground states and their 1st radial excitations are (almost) heavy-flavor independent. The mass predictions summarized in Table 4 are compared with the ones in the literature (when available) and with the three Y{sub c}(4260,4360,4660) and Y{sub b}(10890)1{sup --} experimental candidates. We conclude (to this order approximation) that the lowest observed state cannot be a pure1{sup --} four-quark nor a pure molecule but may result from their mixings. We extend the above analyzes to the 0{sup ++} four-quark and molecule states which are about (0.5-1) GeV heavier than the corresponding 1{sup --} states, while the splittings between the 0{sup ++} lowest ground state and the 1st radial excitation is about (300-500) MeV. We complete the analysis by estimating the decay constants of the 1{sup --} and 0{sup ++} four-quark states which are tiny and which exhibit a 1/M{sub Q} behavior. Our predictions can be further tested using some alternative non-perturbative approaches or/and at LHC{sub b} and some other hadron factories.