WorldWideScience

Sample records for nonparametric probability density

  1. High throughput nonparametric probability density estimation.

    Science.gov (United States)

    Farmer, Jenny; Jacobs, Donald

    2018-01-01

    In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference.

  2. Probability Machines: Consistent Probability Estimation Using Nonparametric Learning Machines

    Science.gov (United States)

    Malley, J. D.; Kruppa, J.; Dasgupta, A.; Malley, K. G.; Ziegler, A.

    2011-01-01

    Summary Background Most machine learning approaches only provide a classification for binary responses. However, probabilities are required for risk estimation using individual patient characteristics. It has been shown recently that every statistical learning machine known to be consistent for a nonparametric regression problem is a probability machine that is provably consistent for this estimation problem. Objectives The aim of this paper is to show how random forests and nearest neighbors can be used for consistent estimation of individual probabilities. Methods Two random forest algorithms and two nearest neighbor algorithms are described in detail for estimation of individual probabilities. We discuss the consistency of random forests, nearest neighbors and other learning machines in detail. We conduct a simulation study to illustrate the validity of the methods. We exemplify the algorithms by analyzing two well-known data sets on the diagnosis of appendicitis and the diagnosis of diabetes in Pima Indians. Results Simulations demonstrate the validity of the method. With the real data application, we show the accuracy and practicality of this approach. We provide sample code from R packages in which the probability estimation is already available. This means that all calculations can be performed using existing software. Conclusions Random forest algorithms as well as nearest neighbor approaches are valid machine learning methods for estimating individual probabilities for binary responses. Freely available implementations are available in R and may be used for applications. PMID:21915433

  3. Nonparametric methods for volatility density estimation

    NARCIS (Netherlands)

    Es, van Bert; Spreij, P.J.C.; Zanten, van J.H.

    2009-01-01

    Stochastic volatility modelling of financial processes has become increasingly popular. The proposed models usually contain a stationary volatility process. We will motivate and review several nonparametric methods for estimation of the density of the volatility process. Both models based on

  4. Nonparametric Collective Spectral Density Estimation and Clustering

    KAUST Repository

    Maadooliat, Mehdi

    2017-04-12

    In this paper, we develop a method for the simultaneous estimation of spectral density functions (SDFs) for a collection of stationary time series that share some common features. Due to the similarities among the SDFs, the log-SDF can be represented using a common set of basis functions. The basis shared by the collection of the log-SDFs is estimated as a low-dimensional manifold of a large space spanned by a pre-specified rich basis. A collective estimation approach pools information and borrows strength across the SDFs to achieve better estimation efficiency. Also, each estimated spectral density has a concise representation using the coefficients of the basis expansion, and these coefficients can be used for visualization, clustering, and classification purposes. The Whittle pseudo-maximum likelihood approach is used to fit the model and an alternating blockwise Newton-type algorithm is developed for the computation. A web-based shiny App found at

  5. Nonparametric Collective Spectral Density Estimation and Clustering

    KAUST Repository

    Maadooliat, Mehdi; Sun, Ying; Chen, Tianbo

    2017-01-01

    In this paper, we develop a method for the simultaneous estimation of spectral density functions (SDFs) for a collection of stationary time series that share some common features. Due to the similarities among the SDFs, the log-SDF can be represented using a common set of basis functions. The basis shared by the collection of the log-SDFs is estimated as a low-dimensional manifold of a large space spanned by a pre-specified rich basis. A collective estimation approach pools information and borrows strength across the SDFs to achieve better estimation efficiency. Also, each estimated spectral density has a concise representation using the coefficients of the basis expansion, and these coefficients can be used for visualization, clustering, and classification purposes. The Whittle pseudo-maximum likelihood approach is used to fit the model and an alternating blockwise Newton-type algorithm is developed for the computation. A web-based shiny App found at

  6. Non-parametric adaptive importance sampling for the probability estimation of a launcher impact position

    International Nuclear Information System (INIS)

    Morio, Jerome

    2011-01-01

    Importance sampling (IS) is a useful simulation technique to estimate critical probability with a better accuracy than Monte Carlo methods. It consists in generating random weighted samples from an auxiliary distribution rather than the distribution of interest. The crucial part of this algorithm is the choice of an efficient auxiliary PDF that has to be able to simulate more rare random events. The optimisation of this auxiliary distribution is often in practice very difficult. In this article, we propose to approach the IS optimal auxiliary density with non-parametric adaptive importance sampling (NAIS). We apply this technique for the probability estimation of spatial launcher impact position since it has currently become a more and more important issue in the field of aeronautics.

  7. Nonparametric Bayesian density estimation on manifolds with applications to planar shapes.

    Science.gov (United States)

    Bhattacharya, Abhishek; Dunson, David B

    2010-12-01

    Statistical analysis on landmark-based shape spaces has diverse applications in morphometrics, medical diagnostics, machine vision and other areas. These shape spaces are non-Euclidean quotient manifolds. To conduct nonparametric inferences, one may define notions of centre and spread on this manifold and work with their estimates. However, it is useful to consider full likelihood-based methods, which allow nonparametric estimation of the probability density. This article proposes a broad class of mixture models constructed using suitable kernels on a general compact metric space and then on the planar shape space in particular. Following a Bayesian approach with a nonparametric prior on the mixing distribution, conditions are obtained under which the Kullback-Leibler property holds, implying large support and weak posterior consistency. Gibbs sampling methods are developed for posterior computation, and the methods are applied to problems in density estimation and classification with shape-based predictors. Simulation studies show improved estimation performance relative to existing approaches.

  8. The Kernel Mixture Network: A Nonparametric Method for Conditional Density Estimation of Continuous Random Variables

    OpenAIRE

    Ambrogioni, Luca; Güçlü, Umut; van Gerven, Marcel A. J.; Maris, Eric

    2017-01-01

    This paper introduces the kernel mixture network, a new method for nonparametric estimation of conditional probability densities using neural networks. We model arbitrarily complex conditional densities as linear combinations of a family of kernel functions centered at a subset of training points. The weights are determined by the outer layer of a deep neural network, trained by minimizing the negative log likelihood. This generalizes the popular quantized softmax approach, which can be seen ...

  9. Probability densities and Lévy densities

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler

    For positive Lévy processes (i.e. subordinators) formulae are derived that express the probability density or the distribution function in terms of power series in time t. The applicability of the results to finance and to turbulence is briefly indicated.......For positive Lévy processes (i.e. subordinators) formulae are derived that express the probability density or the distribution function in terms of power series in time t. The applicability of the results to finance and to turbulence is briefly indicated....

  10. Quantum probability measures and tomographic probability densities

    NARCIS (Netherlands)

    Amosov, GG; Man'ko, [No Value

    2004-01-01

    Using a simple relation of the Dirac delta-function to generalized the theta-function, the relationship between the tomographic probability approach and the quantum probability measure approach with the description of quantum states is discussed. The quantum state tomogram expressed in terms of the

  11. Using multinomial and imprecise probability for non-parametric modelling of rainfall in Manizales (Colombia

    Directory of Open Access Journals (Sweden)

    Ibsen Chivatá Cárdenas

    2008-05-01

    Full Text Available This article presents a rainfall model constructed by applying non-parametric modelling and imprecise probabilities; these tools were used because there was not enough homogeneous information in the study area. The area’s hydro-logical information regarding rainfall was scarce and existing hydrological time series were not uniform. A distributed extended rainfall model was constructed from so-called probability boxes (p-boxes, multinomial probability distribu-tion and confidence intervals (a friendly algorithm was constructed for non-parametric modelling by combining the last two tools. This model confirmed the high level of uncertainty involved in local rainfall modelling. Uncertainty en-compassed the whole range (domain of probability values thereby showing the severe limitations on information, leading to the conclusion that a detailed estimation of probability would lead to significant error. Nevertheless, rele-vant information was extracted; it was estimated that maximum daily rainfall threshold (70 mm would be surpassed at least once every three years and the magnitude of uncertainty affecting hydrological parameter estimation. This paper’s conclusions may be of interest to non-parametric modellers and decisions-makers as such modelling and imprecise probability represents an alternative for hydrological variable assessment and maybe an obligatory proce-dure in the future. Its potential lies in treating scarce information and represents a robust modelling strategy for non-seasonal stochastic modelling conditions

  12. Kernel bandwidth estimation for non-parametric density estimation: a comparative study

    CSIR Research Space (South Africa)

    Van der Walt, CM

    2013-12-01

    Full Text Available We investigate the performance of conventional bandwidth estimators for non-parametric kernel density estimation on a number of representative pattern-recognition tasks, to gain a better understanding of the behaviour of these estimators in high...

  13. Nonparametric volatility density estimation for discrete time models

    NARCIS (Netherlands)

    Es, van Bert; Spreij, P.J.C.; Zanten, van J.H.

    2005-01-01

    We consider discrete time models for asset prices with a stationary volatility process. We aim at estimating the multivariate density of this process at a set of consecutive time instants. A Fourier-type deconvolution kernel density estimator based on the logarithm of the squared process is proposed

  14. Box-particle probability hypothesis density filtering

    OpenAIRE

    Schikora, M.; Gning, A.; Mihaylova, L.; Cremers, D.; Koch, W.

    2014-01-01

    This paper develops a novel approach for multitarget tracking, called box-particle probability hypothesis density filter (box-PHD filter). The approach is able to track multiple targets and estimates the unknown number of targets. Furthermore, it is capable of dealing with three sources of uncertainty: stochastic, set-theoretic, and data association uncertainty. The box-PHD filter reduces the number of particles significantly, which improves the runtime considerably. The small number of box-p...

  15. Strong consistency of nonparametric Bayes density estimation on compact metric spaces with applications to specific manifolds.

    Science.gov (United States)

    Bhattacharya, Abhishek; Dunson, David B

    2012-08-01

    This article considers a broad class of kernel mixture density models on compact metric spaces and manifolds. Following a Bayesian approach with a nonparametric prior on the location mixing distribution, sufficient conditions are obtained on the kernel, prior and the underlying space for strong posterior consistency at any continuous density. The prior is also allowed to depend on the sample size n and sufficient conditions are obtained for weak and strong consistency. These conditions are verified on compact Euclidean spaces using multivariate Gaussian kernels, on the hypersphere using a von Mises-Fisher kernel and on the planar shape space using complex Watson kernels.

  16. Multiple model cardinalized probability hypothesis density filter

    Science.gov (United States)

    Georgescu, Ramona; Willett, Peter

    2011-09-01

    The Probability Hypothesis Density (PHD) filter propagates the first-moment approximation to the multi-target Bayesian posterior distribution while the Cardinalized PHD (CPHD) filter propagates both the posterior likelihood of (an unlabeled) target state and the posterior probability mass function of the number of targets. Extensions of the PHD filter to the multiple model (MM) framework have been published and were implemented either with a Sequential Monte Carlo or a Gaussian Mixture approach. In this work, we introduce the multiple model version of the more elaborate CPHD filter. We present the derivation of the prediction and update steps of the MMCPHD particularized for the case of two target motion models and proceed to show that in the case of a single model, the new MMCPHD equations reduce to the original CPHD equations.

  17. Modulation Based on Probability Density Functions

    Science.gov (United States)

    Williams, Glenn L.

    2009-01-01

    A proposed method of modulating a sinusoidal carrier signal to convey digital information involves the use of histograms representing probability density functions (PDFs) that characterize samples of the signal waveform. The method is based partly on the observation that when a waveform is sampled (whether by analog or digital means) over a time interval at least as long as one half cycle of the waveform, the samples can be sorted by frequency of occurrence, thereby constructing a histogram representing a PDF of the waveform during that time interval.

  18. Comparison of density estimators. [Estimation of probability density functions

    Energy Technology Data Exchange (ETDEWEB)

    Kao, S.; Monahan, J.F.

    1977-09-01

    Recent work in the field of probability density estimation has included the introduction of some new methods, such as the polynomial and spline methods and the nearest neighbor method, and the study of asymptotic properties in depth. This earlier work is summarized here. In addition, the computational complexity of the various algorithms is analyzed, as are some simulations. The object is to compare the performance of the various methods in small samples and their sensitivity to change in their parameters, and to attempt to discover at what point a sample is so small that density estimation can no longer be worthwhile. (RWR)

  19. Testing and Estimating Shape-Constrained Nonparametric Density and Regression in the Presence of Measurement Error

    KAUST Repository

    Carroll, Raymond J.

    2011-03-01

    In many applications we can expect that, or are interested to know if, a density function or a regression curve satisfies some specific shape constraints. For example, when the explanatory variable, X, represents the value taken by a treatment or dosage, the conditional mean of the response, Y , is often anticipated to be a monotone function of X. Indeed, if this regression mean is not monotone (in the appropriate direction) then the medical or commercial value of the treatment is likely to be significantly curtailed, at least for values of X that lie beyond the point at which monotonicity fails. In the case of a density, common shape constraints include log-concavity and unimodality. If we can correctly guess the shape of a curve, then nonparametric estimators can be improved by taking this information into account. Addressing such problems requires a method for testing the hypothesis that the curve of interest satisfies a shape constraint, and, if the conclusion of the test is positive, a technique for estimating the curve subject to the constraint. Nonparametric methodology for solving these problems already exists, but only in cases where the covariates are observed precisely. However in many problems, data can only be observed with measurement errors, and the methods employed in the error-free case typically do not carry over to this error context. In this paper we develop a novel approach to hypothesis testing and function estimation under shape constraints, which is valid in the context of measurement errors. Our method is based on tilting an estimator of the density or the regression mean until it satisfies the shape constraint, and we take as our test statistic the distance through which it is tilted. Bootstrap methods are used to calibrate the test. The constrained curve estimators that we develop are also based on tilting, and in that context our work has points of contact with methodology in the error-free case.

  20. Interactive design of probability density functions for shape grammars

    KAUST Repository

    Dang, Minh; Lienhard, Stefan; Ceylan, Duygu; Neubert, Boris; Wonka, Peter; Pauly, Mark

    2015-01-01

    A shape grammar defines a procedural shape space containing a variety of models of the same class, e.g. buildings, trees, furniture, airplanes, bikes, etc. We present a framework that enables a user to interactively design a probability density

  1. Continuation of probability density functions using a generalized Lyapunov approach

    NARCIS (Netherlands)

    Baars, S.; Viebahn, J. P.; Mulder, T. E.; Kuehn, C.; Wubs, F. W.; Dijkstra, H. A.

    2017-01-01

    Techniques from numerical bifurcation theory are very useful to study transitions between steady fluid flow patterns and the instabilities involved. Here, we provide computational methodology to use parameter continuation in determining probability density functions of systems of stochastic partial

  2. Probability densities and the radon variable transformation theorem

    International Nuclear Information System (INIS)

    Ramshaw, J.D.

    1985-01-01

    D. T. Gillespie recently derived a random variable transformation theorem relating to the joint probability densities of functionally dependent sets of random variables. The present author points out that the theorem can be derived as an immediate corollary of a simpler and more fundamental relation. In this relation the probability density is represented as a delta function averaged over an unspecified distribution of unspecified internal random variables. The random variable transformation is derived from this relation

  3. Low default credit scoring using two-class non-parametric kernel density estimation

    CSIR Research Space (South Africa)

    Rademeyer, E

    2016-12-01

    Full Text Available This paper investigates the performance of two-class classification credit scoring data sets with low default ratios. The standard two-class parametric Gaussian and non-parametric Parzen classifiers are extended, using Bayes’ rule, to include either...

  4. On Farmer's line, probability density functions, and overall risk

    International Nuclear Information System (INIS)

    Munera, H.A.; Yadigaroglu, G.

    1986-01-01

    Limit lines used to define quantitative probabilistic safety goals can be categorized according to whether they are based on discrete pairs of event sequences and associated probabilities, on probability density functions (pdf's), or on complementary cumulative density functions (CCDFs). In particular, the concept of the well-known Farmer's line and its subsequent reinterpretations is clarified. It is shown that Farmer's lines are pdf's and, therefore, the overall risk (defined as the expected value of the pdf) that they represent can be easily calculated. It is also shown that the area under Farmer's line is proportional to probability, while the areas under CCDFs are generally proportional to expected value

  5. Probability-density-function characterization of multipartite entanglement

    International Nuclear Information System (INIS)

    Facchi, P.; Florio, G.; Pascazio, S.

    2006-01-01

    We propose a method to characterize and quantify multipartite entanglement for pure states. The method hinges upon the study of the probability density function of bipartite entanglement and is tested on an ensemble of qubits in a variety of situations. This characterization is also compared to several measures of multipartite entanglement

  6. Visualization techniques for spatial probability density function data

    Directory of Open Access Journals (Sweden)

    Udeepta D Bordoloi

    2006-01-01

    Full Text Available Novel visualization methods are presented for spatial probability density function data. These are spatial datasets, where each pixel is a random variable, and has multiple samples which are the results of experiments on that random variable. We use clustering as a means to reduce the information contained in these datasets; and present two different ways of interpreting and clustering the data. The clustering methods are used on two datasets, and the results are discussed with the help of visualization techniques designed for the spatial probability data.

  7. An empirical probability model of detecting species at low densities.

    Science.gov (United States)

    Delaney, David G; Leung, Brian

    2010-06-01

    False negatives, not detecting things that are actually present, are an important but understudied problem. False negatives are the result of our inability to perfectly detect species, especially those at low density such as endangered species or newly arriving introduced species. They reduce our ability to interpret presence-absence survey data and make sound management decisions (e.g., rapid response). To reduce the probability of false negatives, we need to compare the efficacy and sensitivity of different sampling approaches and quantify an unbiased estimate of the probability of detection. We conducted field experiments in the intertidal zone of New England and New York to test the sensitivity of two sampling approaches (quadrat vs. total area search, TAS), given different target characteristics (mobile vs. sessile). Using logistic regression we built detection curves for each sampling approach that related the sampling intensity and the density of targets to the probability of detection. The TAS approach reduced the probability of false negatives and detected targets faster than the quadrat approach. Mobility of targets increased the time to detection but did not affect detection success. Finally, we interpreted two years of presence-absence data on the distribution of the Asian shore crab (Hemigrapsus sanguineus) in New England and New York, using our probability model for false negatives. The type of experimental approach in this paper can help to reduce false negatives and increase our ability to detect species at low densities by refining sampling approaches, which can guide conservation strategies and management decisions in various areas of ecology such as conservation biology and invasion ecology.

  8. Assumed Probability Density Functions for Shallow and Deep Convection

    OpenAIRE

    Steven K Krueger; Peter A Bogenschutz; Marat Khairoutdinov

    2010-01-01

    The assumed joint probability density function (PDF) between vertical velocity and conserved temperature and total water scalars has been suggested to be a relatively computationally inexpensive and unified subgrid-scale (SGS) parameterization for boundary layer clouds and turbulent moments. This paper analyzes the performance of five families of PDFs using large-eddy simulations of deep convection, shallow convection, and a transition from stratocumulus to trade wind cumulus. Three of the PD...

  9. Probability Density Estimation Using Neural Networks in Monte Carlo Calculations

    International Nuclear Information System (INIS)

    Shim, Hyung Jin; Cho, Jin Young; Song, Jae Seung; Kim, Chang Hyo

    2008-01-01

    The Monte Carlo neutronics analysis requires the capability for a tally distribution estimation like an axial power distribution or a flux gradient in a fuel rod, etc. This problem can be regarded as a probability density function estimation from an observation set. We apply the neural network based density estimation method to an observation and sampling weight set produced by the Monte Carlo calculations. The neural network method is compared with the histogram and the functional expansion tally method for estimating a non-smooth density, a fission source distribution, and an absorption rate's gradient in a burnable absorber rod. The application results shows that the neural network method can approximate a tally distribution quite well. (authors)

  10. Testing and Estimating Shape-Constrained Nonparametric Density and Regression in the Presence of Measurement Error

    KAUST Repository

    Carroll, Raymond J.; Delaigle, Aurore; Hall, Peter

    2011-01-01

    In many applications we can expect that, or are interested to know if, a density function or a regression curve satisfies some specific shape constraints. For example, when the explanatory variable, X, represents the value taken by a treatment

  11. Continuation of probability density functions using a generalized Lyapunov approach

    Energy Technology Data Exchange (ETDEWEB)

    Baars, S., E-mail: s.baars@rug.nl [Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, P.O. Box 407, 9700 AK Groningen (Netherlands); Viebahn, J.P., E-mail: viebahn@cwi.nl [Centrum Wiskunde & Informatica (CWI), P.O. Box 94079, 1090 GB, Amsterdam (Netherlands); Mulder, T.E., E-mail: t.e.mulder@uu.nl [Institute for Marine and Atmospheric research Utrecht, Department of Physics and Astronomy, Utrecht University, Princetonplein 5, 3584 CC Utrecht (Netherlands); Kuehn, C., E-mail: ckuehn@ma.tum.de [Technical University of Munich, Faculty of Mathematics, Boltzmannstr. 3, 85748 Garching bei München (Germany); Wubs, F.W., E-mail: f.w.wubs@rug.nl [Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, P.O. Box 407, 9700 AK Groningen (Netherlands); Dijkstra, H.A., E-mail: h.a.dijkstra@uu.nl [Institute for Marine and Atmospheric research Utrecht, Department of Physics and Astronomy, Utrecht University, Princetonplein 5, 3584 CC Utrecht (Netherlands); School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY (United States)

    2017-05-01

    Techniques from numerical bifurcation theory are very useful to study transitions between steady fluid flow patterns and the instabilities involved. Here, we provide computational methodology to use parameter continuation in determining probability density functions of systems of stochastic partial differential equations near fixed points, under a small noise approximation. Key innovation is the efficient solution of a generalized Lyapunov equation using an iterative method involving low-rank approximations. We apply and illustrate the capabilities of the method using a problem in physical oceanography, i.e. the occurrence of multiple steady states of the Atlantic Ocean circulation.

  12. A Balanced Approach to Adaptive Probability Density Estimation

    Directory of Open Access Journals (Sweden)

    Julio A. Kovacs

    2017-04-01

    Full Text Available Our development of a Fast (Mutual Information Matching (FIM of molecular dynamics time series data led us to the general problem of how to accurately estimate the probability density function of a random variable, especially in cases of very uneven samples. Here, we propose a novel Balanced Adaptive Density Estimation (BADE method that effectively optimizes the amount of smoothing at each point. To do this, BADE relies on an efficient nearest-neighbor search which results in good scaling for large data sizes. Our tests on simulated data show that BADE exhibits equal or better accuracy than existing methods, and visual tests on univariate and bivariate experimental data show that the results are also aesthetically pleasing. This is due in part to the use of a visual criterion for setting the smoothing level of the density estimate. Our results suggest that BADE offers an attractive new take on the fundamental density estimation problem in statistics. We have applied it on molecular dynamics simulations of membrane pore formation. We also expect BADE to be generally useful for low-dimensional applications in other statistical application domains such as bioinformatics, signal processing and econometrics.

  13. A menu-driven software package of Bayesian nonparametric (and parametric) mixed models for regression analysis and density estimation.

    Science.gov (United States)

    Karabatsos, George

    2017-02-01

    Most of applied statistics involves regression analysis of data. In practice, it is important to specify a regression model that has minimal assumptions which are not violated by data, to ensure that statistical inferences from the model are informative and not misleading. This paper presents a stand-alone and menu-driven software package, Bayesian Regression: Nonparametric and Parametric Models, constructed from MATLAB Compiler. Currently, this package gives the user a choice from 83 Bayesian models for data analysis. They include 47 Bayesian nonparametric (BNP) infinite-mixture regression models; 5 BNP infinite-mixture models for density estimation; and 31 normal random effects models (HLMs), including normal linear models. Each of the 78 regression models handles either a continuous, binary, or ordinal dependent variable, and can handle multi-level (grouped) data. All 83 Bayesian models can handle the analysis of weighted observations (e.g., for meta-analysis), and the analysis of left-censored, right-censored, and/or interval-censored data. Each BNP infinite-mixture model has a mixture distribution assigned one of various BNP prior distributions, including priors defined by either the Dirichlet process, Pitman-Yor process (including the normalized stable process), beta (two-parameter) process, normalized inverse-Gaussian process, geometric weights prior, dependent Dirichlet process, or the dependent infinite-probits prior. The software user can mouse-click to select a Bayesian model and perform data analysis via Markov chain Monte Carlo (MCMC) sampling. After the sampling completes, the software automatically opens text output that reports MCMC-based estimates of the model's posterior distribution and model predictive fit to the data. Additional text and/or graphical output can be generated by mouse-clicking other menu options. This includes output of MCMC convergence analyses, and estimates of the model's posterior predictive distribution, for selected

  14. INTERACTIVE VISUALIZATION OF PROBABILITY AND CUMULATIVE DENSITY FUNCTIONS

    KAUST Repository

    Potter, Kristin; Kirby, Robert Michael; Xiu, Dongbin; Johnson, Chris R.

    2012-01-01

    The probability density function (PDF), and its corresponding cumulative density function (CDF), provide direct statistical insight into the characterization of a random process or field. Typically displayed as a histogram, one can infer probabilities of the occurrence of particular events. When examining a field over some two-dimensional domain in which at each point a PDF of the function values is available, it is challenging to assess the global (stochastic) features present within the field. In this paper, we present a visualization system that allows the user to examine two-dimensional data sets in which PDF (or CDF) information is available at any position within the domain. The tool provides a contour display showing the normed difference between the PDFs and an ansatz PDF selected by the user and, furthermore, allows the user to interactively examine the PDF at any particular position. Canonical examples of the tool are provided to help guide the reader into the mapping of stochastic information to visual cues along with a description of the use of the tool for examining data generated from an uncertainty quantification exercise accomplished within the field of electrophysiology.

  15. Nonparametric estimation of transition probabilities in the non-Markov illness-death model: A comparative study.

    Science.gov (United States)

    de Uña-Álvarez, Jacobo; Meira-Machado, Luís

    2015-06-01

    Multi-state models are often used for modeling complex event history data. In these models the estimation of the transition probabilities is of particular interest, since they allow for long-term predictions of the process. These quantities have been traditionally estimated by the Aalen-Johansen estimator, which is consistent if the process is Markov. Several non-Markov estimators have been proposed in the recent literature, and their superiority with respect to the Aalen-Johansen estimator has been proved in situations in which the Markov condition is strongly violated. However, the existing estimators have the drawback of requiring that the support of the censoring distribution contains the support of the lifetime distribution, which is not often the case. In this article, we propose two new methods for estimating the transition probabilities in the progressive illness-death model. Some asymptotic results are derived. The proposed estimators are consistent regardless the Markov condition and the referred assumption about the censoring support. We explore the finite sample behavior of the estimators through simulations. The main conclusion of this piece of research is that the proposed estimators are much more efficient than the existing non-Markov estimators in most cases. An application to a clinical trial on colon cancer is included. Extensions to progressive processes beyond the three-state illness-death model are discussed. © 2015, The International Biometric Society.

  16. Divergence from, and Convergence to, Uniformity of Probability Density Quantiles

    Directory of Open Access Journals (Sweden)

    Robert G. Staudte

    2018-04-01

    Full Text Available We demonstrate that questions of convergence and divergence regarding shapes of distributions can be carried out in a location- and scale-free environment. This environment is the class of probability density quantiles (pdQs, obtained by normalizing the composition of the density with the associated quantile function. It has earlier been shown that the pdQ is representative of a location-scale family and carries essential information regarding shape and tail behavior of the family. The class of pdQs are densities of continuous distributions with common domain, the unit interval, facilitating metric and semi-metric comparisons. The Kullback–Leibler divergences from uniformity of these pdQs are mapped to illustrate their relative positions with respect to uniformity. To gain more insight into the information that is conserved under the pdQ mapping, we repeatedly apply the pdQ mapping and find that further applications of it are quite generally entropy increasing so convergence to the uniform distribution is investigated. New fixed point theorems are established with elementary probabilistic arguments and illustrated by examples.

  17. Probability density functions for CP-violating rephasing invariants

    Science.gov (United States)

    Fortin, Jean-François; Giasson, Nicolas; Marleau, Luc

    2018-05-01

    The implications of the anarchy principle on CP violation in the lepton sector are investigated. A systematic method is introduced to compute the probability density functions for the CP-violating rephasing invariants of the PMNS matrix from the Haar measure relevant to the anarchy principle. Contrary to the CKM matrix which is hierarchical, it is shown that the Haar measure, and hence the anarchy principle, are very likely to lead to the observed PMNS matrix. Predictions on the CP-violating Dirac rephasing invariant |jD | and Majorana rephasing invariant |j1 | are also obtained. They correspond to 〈 |jD | 〉 Haar = π / 105 ≈ 0.030 and 〈 |j1 | 〉 Haar = 1 / (6 π) ≈ 0.053 respectively, in agreement with the experimental hint from T2K of | jDexp | ≈ 0.032 ± 0.005 (or ≈ 0.033 ± 0.003) for the normal (or inverted) hierarchy.

  18. Near-native protein loop sampling using nonparametric density estimation accommodating sparcity.

    Science.gov (United States)

    Joo, Hyun; Chavan, Archana G; Day, Ryan; Lennox, Kristin P; Sukhanov, Paul; Dahl, David B; Vannucci, Marina; Tsai, Jerry

    2011-10-01

    Unlike the core structural elements of a protein like regular secondary structure, template based modeling (TBM) has difficulty with loop regions due to their variability in sequence and structure as well as the sparse sampling from a limited number of homologous templates. We present a novel, knowledge-based method for loop sampling that leverages homologous torsion angle information to estimate a continuous joint backbone dihedral angle density at each loop position. The φ,ψ distributions are estimated via a Dirichlet process mixture of hidden Markov models (DPM-HMM). Models are quickly generated based on samples from these distributions and were enriched using an end-to-end distance filter. The performance of the DPM-HMM method was evaluated against a diverse test set in a leave-one-out approach. Candidates as low as 0.45 Å RMSD and with a worst case of 3.66 Å were produced. For the canonical loops like the immunoglobulin complementarity-determining regions (mean RMSD 7.0 Å), this sampling method produces a population of loop structures to around 3.66 Å for loops up to 17 residues. In a direct test of sampling to the Loopy algorithm, our method demonstrates the ability to sample nearer native structures for both the canonical CDRH1 and non-canonical CDRH3 loops. Lastly, in the realistic test conditions of the CASP9 experiment, successful application of DPM-HMM for 90 loops from 45 TBM targets shows the general applicability of our sampling method in loop modeling problem. These results demonstrate that our DPM-HMM produces an advantage by consistently sampling near native loop structure. The software used in this analysis is available for download at http://www.stat.tamu.edu/~dahl/software/cortorgles/.

  19. Near-native protein loop sampling using nonparametric density estimation accommodating sparcity.

    Directory of Open Access Journals (Sweden)

    Hyun Joo

    2011-10-01

    Full Text Available Unlike the core structural elements of a protein like regular secondary structure, template based modeling (TBM has difficulty with loop regions due to their variability in sequence and structure as well as the sparse sampling from a limited number of homologous templates. We present a novel, knowledge-based method for loop sampling that leverages homologous torsion angle information to estimate a continuous joint backbone dihedral angle density at each loop position. The φ,ψ distributions are estimated via a Dirichlet process mixture of hidden Markov models (DPM-HMM. Models are quickly generated based on samples from these distributions and were enriched using an end-to-end distance filter. The performance of the DPM-HMM method was evaluated against a diverse test set in a leave-one-out approach. Candidates as low as 0.45 Å RMSD and with a worst case of 3.66 Å were produced. For the canonical loops like the immunoglobulin complementarity-determining regions (mean RMSD 7.0 Å, this sampling method produces a population of loop structures to around 3.66 Å for loops up to 17 residues. In a direct test of sampling to the Loopy algorithm, our method demonstrates the ability to sample nearer native structures for both the canonical CDRH1 and non-canonical CDRH3 loops. Lastly, in the realistic test conditions of the CASP9 experiment, successful application of DPM-HMM for 90 loops from 45 TBM targets shows the general applicability of our sampling method in loop modeling problem. These results demonstrate that our DPM-HMM produces an advantage by consistently sampling near native loop structure. The software used in this analysis is available for download at http://www.stat.tamu.edu/~dahl/software/cortorgles/.

  20. Near-Native Protein Loop Sampling Using Nonparametric Density Estimation Accommodating Sparcity

    Science.gov (United States)

    Day, Ryan; Lennox, Kristin P.; Sukhanov, Paul; Dahl, David B.; Vannucci, Marina; Tsai, Jerry

    2011-01-01

    Unlike the core structural elements of a protein like regular secondary structure, template based modeling (TBM) has difficulty with loop regions due to their variability in sequence and structure as well as the sparse sampling from a limited number of homologous templates. We present a novel, knowledge-based method for loop sampling that leverages homologous torsion angle information to estimate a continuous joint backbone dihedral angle density at each loop position. The φ,ψ distributions are estimated via a Dirichlet process mixture of hidden Markov models (DPM-HMM). Models are quickly generated based on samples from these distributions and were enriched using an end-to-end distance filter. The performance of the DPM-HMM method was evaluated against a diverse test set in a leave-one-out approach. Candidates as low as 0.45 Å RMSD and with a worst case of 3.66 Å were produced. For the canonical loops like the immunoglobulin complementarity-determining regions (mean RMSD 7.0 Å), this sampling method produces a population of loop structures to around 3.66 Å for loops up to 17 residues. In a direct test of sampling to the Loopy algorithm, our method demonstrates the ability to sample nearer native structures for both the canonical CDRH1 and non-canonical CDRH3 loops. Lastly, in the realistic test conditions of the CASP9 experiment, successful application of DPM-HMM for 90 loops from 45 TBM targets shows the general applicability of our sampling method in loop modeling problem. These results demonstrate that our DPM-HMM produces an advantage by consistently sampling near native loop structure. The software used in this analysis is available for download at http://www.stat.tamu.edu/~dahl/software/cortorgles/. PMID:22028638

  1. Structural Reliability Using Probability Density Estimation Methods Within NESSUS

    Science.gov (United States)

    Chamis, Chrisos C. (Technical Monitor); Godines, Cody Ric

    2003-01-01

    A reliability analysis studies a mathematical model of a physical system taking into account uncertainties of design variables and common results are estimations of a response density, which also implies estimations of its parameters. Some common density parameters include the mean value, the standard deviation, and specific percentile(s) of the response, which are measures of central tendency, variation, and probability regions, respectively. Reliability analyses are important since the results can lead to different designs by calculating the probability of observing safe responses in each of the proposed designs. All of this is done at the expense of added computational time as compared to a single deterministic analysis which will result in one value of the response out of many that make up the density of the response. Sampling methods, such as monte carlo (MC) and latin hypercube sampling (LHS), can be used to perform reliability analyses and can compute nonlinear response density parameters even if the response is dependent on many random variables. Hence, both methods are very robust; however, they are computationally expensive to use in the estimation of the response density parameters. Both methods are 2 of 13 stochastic methods that are contained within the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) program. NESSUS is a probabilistic finite element analysis (FEA) program that was developed through funding from NASA Glenn Research Center (GRC). It has the additional capability of being linked to other analysis programs; therefore, probabilistic fluid dynamics, fracture mechanics, and heat transfer are only a few of what is possible with this software. The LHS method is the newest addition to the stochastic methods within NESSUS. Part of this work was to enhance NESSUS with the LHS method. The new LHS module is complete, has been successfully integrated with NESSUS, and been used to study four different test cases that have been

  2. Assessing Goodness of Fit in Item Response Theory with Nonparametric Models: A Comparison of Posterior Probabilities and Kernel-Smoothing Approaches

    Science.gov (United States)

    Sueiro, Manuel J.; Abad, Francisco J.

    2011-01-01

    The distance between nonparametric and parametric item characteristic curves has been proposed as an index of goodness of fit in item response theory in the form of a root integrated squared error index. This article proposes to use the posterior distribution of the latent trait as the nonparametric model and compares the performance of an index…

  3. Interactive design of probability density functions for shape grammars

    KAUST Repository

    Dang, Minh

    2015-11-02

    A shape grammar defines a procedural shape space containing a variety of models of the same class, e.g. buildings, trees, furniture, airplanes, bikes, etc. We present a framework that enables a user to interactively design a probability density function (pdf) over such a shape space and to sample models according to the designed pdf. First, we propose a user interface that enables a user to quickly provide preference scores for selected shapes and suggest sampling strategies to decide which models to present to the user to evaluate. Second, we propose a novel kernel function to encode the similarity between two procedural models. Third, we propose a framework to interpolate user preference scores by combining multiple techniques: function factorization, Gaussian process regression, autorelevance detection, and l1 regularization. Fourth, we modify the original grammars to generate models with a pdf proportional to the user preference scores. Finally, we provide evaluations of our user interface and framework parameters and a comparison to other exploratory modeling techniques using modeling tasks in five example shape spaces: furniture, low-rise buildings, skyscrapers, airplanes, and vegetation.

  4. Probability Density Function Method for Observing Reconstructed Attractor Structure

    Institute of Scientific and Technical Information of China (English)

    陆宏伟; 陈亚珠; 卫青

    2004-01-01

    Probability density function (PDF) method is proposed for analysing the structure of the reconstructed attractor in computing the correlation dimensions of RR intervals of ten normal old men. PDF contains important information about the spatial distribution of the phase points in the reconstructed attractor. To the best of our knowledge, it is the first time that the PDF method is put forward for the analysis of the reconstructed attractor structure. Numerical simulations demonstrate that the cardiac systems of healthy old men are about 6 - 6.5 dimensional complex dynamical systems. It is found that PDF is not symmetrically distributed when time delay is small, while PDF satisfies Gaussian distribution when time delay is big enough. A cluster effect mechanism is presented to explain this phenomenon. By studying the shape of PDFs, that the roles played by time delay are more important than embedding dimension in the reconstruction is clearly indicated. Results have demonstrated that the PDF method represents a promising numerical approach for the observation of the reconstructed attractor structure and may provide more information and new diagnostic potential of the analyzed cardiac system.

  5. Probability density function method for variable-density pressure-gradient-driven turbulence and mixing

    International Nuclear Information System (INIS)

    Bakosi, Jozsef; Ristorcelli, Raymond J.

    2010-01-01

    Probability density function (PDF) methods are extended to variable-density pressure-gradient-driven turbulence. We apply the new method to compute the joint PDF of density and velocity in a non-premixed binary mixture of different-density molecularly mixing fluids under gravity. The full time-evolution of the joint PDF is captured in the highly non-equilibrium flow: starting from a quiescent state, transitioning to fully developed turbulence and finally dissipated by molecular diffusion. High-Atwood-number effects (as distinguished from the Boussinesq case) are accounted for: both hydrodynamic turbulence and material mixing are treated at arbitrary density ratios, with the specific volume, mass flux and all their correlations in closed form. An extension of the generalized Langevin model, originally developed for the Lagrangian fluid particle velocity in constant-density shear-driven turbulence, is constructed for variable-density pressure-gradient-driven flows. The persistent small-scale anisotropy, a fundamentally 'non-Kolmogorovian' feature of flows under external acceleration forces, is captured by a tensorial diffusion term based on the external body force. The material mixing model for the fluid density, an active scalar, is developed based on the beta distribution. The beta-PDF is shown to be capable of capturing the mixing asymmetry and that it can accurately represent the density through transition, in fully developed turbulence and in the decay process. The joint model for hydrodynamics and active material mixing yields a time-accurate evolution of the turbulent kinetic energy and Reynolds stress anisotropy without resorting to gradient diffusion hypotheses, and represents the mixing state by the density PDF itself, eliminating the need for dubious mixing measures. Direct numerical simulations of the homogeneous Rayleigh-Taylor instability are used for model validation.

  6. Stochastic chaos induced by diffusion processes with identical spectral density but different probability density functions.

    Science.gov (United States)

    Lei, Youming; Zheng, Fan

    2016-12-01

    Stochastic chaos induced by diffusion processes, with identical spectral density but different probability density functions (PDFs), is investigated in selected lightly damped Hamiltonian systems. The threshold amplitude of diffusion processes for the onset of chaos is derived by using the stochastic Melnikov method together with a mean-square criterion. Two quasi-Hamiltonian systems, namely, a damped single pendulum and damped Duffing oscillator perturbed by stochastic excitations, are used as illustrative examples. Four different cases of stochastic processes are taking as the driving excitations. It is shown that in such two systems the spectral density of diffusion processes completely determines the threshold amplitude for chaos, regardless of the shape of their PDFs, Gaussian or otherwise. Furthermore, the mean top Lyapunov exponent is employed to verify analytical results. The results obtained by numerical simulations are in accordance with the analytical results. This demonstrates that the stochastic Melnikov method is effective in predicting the onset of chaos in the quasi-Hamiltonian systems.

  7. Bayesian nonparametric data analysis

    CERN Document Server

    Müller, Peter; Jara, Alejandro; Hanson, Tim

    2015-01-01

    This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book’s structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones. The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in on-line software pages.

  8. Assumed Probability Density Functions for Shallow and Deep Convection

    Directory of Open Access Journals (Sweden)

    Steven K Krueger

    2010-10-01

    Full Text Available The assumed joint probability density function (PDF between vertical velocity and conserved temperature and total water scalars has been suggested to be a relatively computationally inexpensive and unified subgrid-scale (SGS parameterization for boundary layer clouds and turbulent moments. This paper analyzes the performance of five families of PDFs using large-eddy simulations of deep convection, shallow convection, and a transition from stratocumulus to trade wind cumulus. Three of the PDF families are based on the double Gaussian form and the remaining two are the single Gaussian and a Double Delta Function (analogous to a mass flux model. The assumed PDF method is tested for grid sizes as small as 0.4 km to as large as 204.8 km. In addition, studies are performed for PDF sensitivity to errors in the input moments and for how well the PDFs diagnose some higher-order moments. In general, the double Gaussian PDFs more accurately represent SGS cloud structure and turbulence moments in the boundary layer compared to the single Gaussian and Double Delta Function PDFs for the range of grid sizes tested. This is especially true for small SGS cloud fractions. While the most complex PDF, Lewellen-Yoh, better represents shallow convective cloud properties (cloud fraction and liquid water mixing ratio compared to the less complex Analytic Double Gaussian 1 PDF, there appears to be no advantage in implementing Lewellen-Yoh for deep convection. However, the Analytic Double Gaussian 1 PDF better represents the liquid water flux, is less sensitive to errors in the input moments, and diagnoses higher order moments more accurately. Between the Lewellen-Yoh and Analytic Double Gaussian 1 PDFs, it appears that neither family is distinctly better at representing cloudy layers. However, due to the reduced computational cost and fairly robust results, it appears that the Analytic Double Gaussian 1 PDF could be an ideal family for SGS cloud and turbulence

  9. On the evolution of the density probability density function in strongly self-gravitating systems

    International Nuclear Information System (INIS)

    Girichidis, Philipp; Konstandin, Lukas; Klessen, Ralf S.; Whitworth, Anthony P.

    2014-01-01

    The time evolution of the probability density function (PDF) of the mass density is formulated and solved for systems in free-fall using a simple approximate function for the collapse of a sphere. We demonstrate that a pressure-free collapse results in a power-law tail on the high-density side of the PDF. The slope quickly asymptotes to the functional form P V (ρ)∝ρ –1.54 for the (volume-weighted) PDF and P M (ρ)∝ρ –0.54 for the corresponding mass-weighted distribution. From the simple approximation of the PDF we derive analytic descriptions for mass accretion, finding that dynamically quiet systems with narrow density PDFs lead to retarded star formation and low star formation rates (SFRs). Conversely, strong turbulent motions that broaden the PDF accelerate the collapse causing a bursting mode of star formation. Finally, we compare our theoretical work with observations. The measured SFRs are consistent with our model during the early phases of the collapse. Comparison of observed column density PDFs with those derived from our model suggests that observed star-forming cores are roughly in free-fall.

  10. On the discretization of probability density functions and the ...

    Indian Academy of Sciences (India)

    important for most applications or theoretical problems of interest. In statistics ... In probability theory, statistics, statistical mechanics, communication theory, and other .... (1) by taking advantage of SMVT as a general mathematical approach.

  11. Probability density fittings of corrosion test-data: Implications on ...

    Indian Academy of Sciences (India)

    Steel-reinforced concrete; probability distribution functions; corrosion ... to be present in the corrosive system at a suitable concentration (Holoway et al 2004; Söylev & ..... voltage, equivalent to voltage drop, across a resistor divided by the ...

  12. Influence of nucleon density distribution in nucleon emission probability

    International Nuclear Information System (INIS)

    Paul, Sabyasachi; Nandy, Maitreyee; Mohanty, A.K.; Sarkar, P.K.; Gambhir, Y.K.

    2014-01-01

    Different decay modes are observed in heavy ion reactions at low to intermediate energies. It is interesting to study total neutron emission in these reactions which may be contributed by all/many of these decay modes. In an attempt to understand the importance of mean field and the entrance channel angular momentum, we study their influence on the emission probability of nucleons in heavy ion reactions in this work. This study owes its significance to the fact that once population of different states are determined, emission probability governs the double differential neutron yield

  13. Improved Variable Window Kernel Estimates of Probability Densities

    OpenAIRE

    Hall, Peter; Hu, Tien Chung; Marron, J. S.

    1995-01-01

    Variable window width kernel density estimators, with the width varying proportionally to the square root of the density, have been thought to have superior asymptotic properties. The rate of convergence has been claimed to be as good as those typical for higher-order kernels, which makes the variable width estimators more attractive because no adjustment is needed to handle the negativity usually entailed by the latter. However, in a recent paper, Terrell and Scott show that these results ca...

  14. Probability

    CERN Document Server

    Shiryaev, A N

    1996-01-01

    This book contains a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks, martingales, Markov chains, ergodic theory, weak convergence of probability measures, stationary stochastic processes, and the Kalman-Bucy filter Many examples are discussed in detail, and there are a large number of exercises The book is accessible to advanced undergraduates and can be used as a text for self-study This new edition contains substantial revisions and updated references The reader will find a deeper study of topics such as the distance between probability measures, metrization of weak convergence, and contiguity of probability measures Proofs for a number of some important results which were merely stated in the first edition have been added The author included new material on the probability of large deviations, and on the central limit theorem for sums of dependent random variables

  15. Estimation of Extreme Response and Failure Probability of Wind Turbines under Normal Operation using Probability Density Evolution Method

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Nielsen, Søren R.K.; Liu, W. F.

    2013-01-01

    Estimation of extreme response and failure probability of structures subjected to ultimate design loads is essential for structural design of wind turbines according to the new standard IEC61400-1. This task is focused on in the present paper in virtue of probability density evolution method (PDEM......), which underlies the schemes of random vibration analysis and structural reliability assessment. The short-term rare failure probability of 5-mega-watt wind turbines, for illustrative purposes, in case of given mean wind speeds and turbulence levels is investigated through the scheme of extreme value...... distribution instead of any other approximate schemes of fitted distribution currently used in statistical extrapolation techniques. Besides, the comparative studies against the classical fitted distributions and the standard Monte Carlo techniques are carried out. Numerical results indicate that PDEM exhibits...

  16. Predicting critical transitions in dynamical systems from time series using nonstationary probability density modeling.

    Science.gov (United States)

    Kwasniok, Frank

    2013-11-01

    A time series analysis method for predicting the probability density of a dynamical system is proposed. A nonstationary parametric model of the probability density is estimated from data within a maximum likelihood framework and then extrapolated to forecast the future probability density and explore the system for critical transitions or tipping points. A full systematic account of parameter uncertainty is taken. The technique is generic, independent of the underlying dynamics of the system. The method is verified on simulated data and then applied to prediction of Arctic sea-ice extent.

  17. Examples of the Application of Nonparametric Information Geometry to Statistical Physics

    Directory of Open Access Journals (Sweden)

    Giovanni Pistone

    2013-09-01

    Full Text Available We review a nonparametric version of Amari’s information geometry in which the set of positive probability densities on a given sample space is endowed with an atlas of charts to form a differentiable manifold modeled on Orlicz Banach spaces. This nonparametric setting is used to discuss the setting of typical problems in machine learning and statistical physics, such as black-box optimization, Kullback-Leibler divergence, Boltzmann-Gibbs entropy and the Boltzmann equation.

  18. Blue functions: probability and current density propagators in non-relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Withers, L P Jr

    2011-01-01

    Like a Green function to propagate a particle's wavefunction in time, a Blue function is introduced to propagate the particle's probability and current density. Accordingly, the complete Blue function has four components. They are constructed from path integrals involving a quantity like the action that we call the motion. The Blue function acts on the displaced probability density as the kernel of an integral operator. As a result, we find that the Wigner density occurs as an expression for physical propagation. We also show that, in quantum mechanics, the displaced current density is conserved bilocally (in two places at one time), as expressed by a generalized continuity equation. (paper)

  19. The force distribution probability function for simple fluids by density functional theory.

    Science.gov (United States)

    Rickayzen, G; Heyes, D M

    2013-02-28

    Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.

  20. Estimating reliability of degraded system based on the probability density evolution with multi-parameter

    Directory of Open Access Journals (Sweden)

    Jiang Ge

    2017-01-01

    Full Text Available System degradation was usually caused by multiple-parameter degradation. The assessment result of system reliability by universal generating function was low accurate when compared with the Monte Carlo simulation. And the probability density function of the system output performance cannot be got. So the reliability assessment method based on the probability density evolution with multi-parameter was presented for complexly degraded system. Firstly, the system output function was founded according to the transitive relation between component parameters and the system output performance. Then, the probability density evolution equation based on the probability conservation principle and the system output function was established. Furthermore, probability distribution characteristics of the system output performance was obtained by solving differential equation. Finally, the reliability of the degraded system was estimated. This method did not need to discrete the performance parameters and can establish continuous probability density function of the system output performance with high calculation efficiency and low cost. Numerical example shows that this method is applicable to evaluate the reliability of multi-parameter degraded system.

  1. Visualizing classical and quantum probability densities for momentum using variations on familiar one-dimensional potentials

    International Nuclear Information System (INIS)

    Robinett, R.W.

    2002-01-01

    After briefly reviewing the definitions of classical probability densities for position, P C L(x), and for momentum, P C L(p), we present several examples of classical mechanical potential systems, mostly variations on such familiar cases as the infinite well and the uniformly accelerated particle for which the classical distributions can be easily derived and visualized. We focus especially on a simple potential which interpolates between the symmetric linear potential, V(x)=F vertical bar x vertical bar, and the infinite well, which can illustrate, in a mathematically straightforward way, how the divergent δ-function classical probability density for momentum for the infinite well can be seen to arise. Such examples can help students understand the quantum mechanical momentum-space wavefunction (and its corresponding probability density) in much the same way that other semiclassical techniques, such as the WKB approximation, can be used to visualize position-space wavefunctions. (author)

  2. Unification of field theory and maximum entropy methods for learning probability densities

    OpenAIRE

    Kinney, Justin B.

    2014-01-01

    The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy de...

  3. Modelling the Probability Density Function of IPTV Traffic Packet Delay Variation

    Directory of Open Access Journals (Sweden)

    Michal Halas

    2012-01-01

    Full Text Available This article deals with modelling the Probability density function of IPTV traffic packet delay variation. The use of this modelling is in an efficient de-jitter buffer estimation. When an IP packet travels across a network, it experiences delay and its variation. This variation is caused by routing, queueing systems and other influences like the processing delay of the network nodes. When we try to separate these at least three types of delay variation, we need a way to measure these types separately. This work is aimed to the delay variation caused by queueing systems which has the main implications to the form of the Probability density function.

  4. The influence of phonotactic probability and neighborhood density on children's production of newly learned words.

    Science.gov (United States)

    Heisler, Lori; Goffman, Lisa

    A word learning paradigm was used to teach children novel words that varied in phonotactic probability and neighborhood density. The effects of frequency and density on speech production were examined when phonetic forms were non-referential (i.e., when no referent was attached) and when phonetic forms were referential (i.e., when a referent was attached through fast mapping). Two methods of analysis were included: (1) kinematic variability of speech movement patterning; and (2) measures of segmental accuracy. Results showed that phonotactic frequency influenced the stability of movement patterning whereas neighborhood density influenced phoneme accuracy. Motor learning was observed in both non-referential and referential novel words. Forms with low phonotactic probability and low neighborhood density showed a word learning effect when a referent was assigned during fast mapping. These results elaborate on and specify the nature of interactivity observed across lexical, phonological, and articulatory domains.

  5. Dynamic Graphics in Excel for Teaching Statistics: Understanding the Probability Density Function

    Science.gov (United States)

    Coll-Serrano, Vicente; Blasco-Blasco, Olga; Alvarez-Jareno, Jose A.

    2011-01-01

    In this article, we show a dynamic graphic in Excel that is used to introduce an important concept in our subject, Statistics I: the probability density function. This interactive graphic seeks to facilitate conceptual understanding of the main aspects analysed by the learners.

  6. Probability density of wave function of excited photoelectron: understanding XANES features

    Czech Academy of Sciences Publication Activity Database

    Šipr, Ondřej

    2001-01-01

    Roč. 8, - (2001), s. 232-234 ISSN 0909-0495 R&D Projects: GA ČR GA202/99/0404 Institutional research plan: CEZ:A02/98:Z1-010-914 Keywords : XANES * PED - probability density of wave function Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.519, year: 2001

  7. A new formulation of the probability density function in random walk models for atmospheric dispersion

    DEFF Research Database (Denmark)

    Falk, Anne Katrine Vinther; Gryning, Sven-Erik

    1997-01-01

    In this model for atmospheric dispersion particles are simulated by the Langevin Equation, which is a stochastic differential equation. It uses the probability density function (PDF) of the vertical velocity fluctuations as input. The PDF is constructed as an expansion after Hermite polynomials...

  8. Probability density of tunneled carrier states near heterojunctions calculated numerically by the scattering method.

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, William R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Myers, Samuel M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Modine, Normand A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    The energy-dependent probability density of tunneled carrier states for arbitrarily specified longitudinal potential-energy profiles in planar bipolar devices is numerically computed using the scattering method. Results agree accurately with a previous treatment based on solution of the localized eigenvalue problem, where computation times are much greater. These developments enable quantitative treatment of tunneling-assisted recombination in irradiated heterojunction bipolar transistors, where band offsets may enhance the tunneling effect by orders of magnitude. The calculations also reveal the density of non-tunneled carrier states in spatially varying potentials, and thereby test the common approximation of uniform- bulk values for such densities.

  9. Effect on Prediction when Modeling Covariates in Bayesian Nonparametric Models.

    Science.gov (United States)

    Cruz-Marcelo, Alejandro; Rosner, Gary L; Müller, Peter; Stewart, Clinton F

    2013-04-01

    In biomedical research, it is often of interest to characterize biologic processes giving rise to observations and to make predictions of future observations. Bayesian nonparametric methods provide a means for carrying out Bayesian inference making as few assumptions about restrictive parametric models as possible. There are several proposals in the literature for extending Bayesian nonparametric models to include dependence on covariates. Limited attention, however, has been directed to the following two aspects. In this article, we examine the effect on fitting and predictive performance of incorporating covariates in a class of Bayesian nonparametric models by one of two primary ways: either in the weights or in the locations of a discrete random probability measure. We show that different strategies for incorporating continuous covariates in Bayesian nonparametric models can result in big differences when used for prediction, even though they lead to otherwise similar posterior inferences. When one needs the predictive density, as in optimal design, and this density is a mixture, it is better to make the weights depend on the covariates. We demonstrate these points via a simulated data example and in an application in which one wants to determine the optimal dose of an anticancer drug used in pediatric oncology.

  10. Response and reliability analysis of nonlinear uncertain dynamical structures by the probability density evolution method

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Peng, Yongbo; Sichani, Mahdi Teimouri

    2016-01-01

    The paper deals with the response and reliability analysis of hysteretic or geometric nonlinear uncertain dynamical systems of arbitrary dimensionality driven by stochastic processes. The approach is based on the probability density evolution method proposed by Li and Chen (Stochastic dynamics...... of structures, 1st edn. Wiley, London, 2009; Probab Eng Mech 20(1):33–44, 2005), which circumvents the dimensional curse of traditional methods for the determination of non-stationary probability densities based on Markov process assumptions and the numerical solution of the related Fokker–Planck and Kolmogorov......–Feller equations. The main obstacle of the method is that a multi-dimensional convolution integral needs to be carried out over the sample space of a set of basic random variables, for which reason the number of these need to be relatively low. In order to handle this problem an approach is suggested, which...

  11. Probability density cloud as a geometrical tool to describe statistics of scattered light.

    Science.gov (United States)

    Yaitskova, Natalia

    2017-04-01

    First-order statistics of scattered light is described using the representation of the probability density cloud, which visualizes a two-dimensional distribution for complex amplitude. The geometric parameters of the cloud are studied in detail and are connected to the statistical properties of phase. The moment-generating function for intensity is obtained in a closed form through these parameters. An example of exponentially modified normal distribution is provided to illustrate the functioning of this geometrical approach.

  12. Probability density function modeling of scalar mixing from concentrated sources in turbulent channel flow

    OpenAIRE

    Bakosi, J.; Franzese, P.; Boybeyi, Z.

    2010-01-01

    Dispersion of a passive scalar from concentrated sources in fully developed turbulent channel flow is studied with the probability density function (PDF) method. The joint PDF of velocity, turbulent frequency and scalar concentration is represented by a large number of Lagrangian particles. A stochastic near-wall PDF model combines the generalized Langevin model of Haworth & Pope with Durbin's method of elliptic relaxation to provide a mathematically exact treatment of convective and viscous ...

  13. Dictionary-Based Stochastic Expectation–Maximization for SAR Amplitude Probability Density Function Estimation

    OpenAIRE

    Moser , Gabriele; Zerubia , Josiane; Serpico , Sebastiano B.

    2006-01-01

    International audience; In remotely sensed data analysis, a crucial problem is represented by the need to develop accurate models for the statistics of the pixel intensities. This paper deals with the problem of probability density function (pdf) estimation in the context of synthetic aperture radar (SAR) amplitude data analysis. Several theoretical and heuristic models for the pdfs of SAR data have been proposed in the literature, which have been proved to be effective for different land-cov...

  14. Unification of field theory and maximum entropy methods for learning probability densities

    Science.gov (United States)

    Kinney, Justin B.

    2015-09-01

    The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.

  15. Unification of field theory and maximum entropy methods for learning probability densities.

    Science.gov (United States)

    Kinney, Justin B

    2015-09-01

    The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.

  16. Nonparametric statistical inference

    CERN Document Server

    Gibbons, Jean Dickinson

    2010-01-01

    Overall, this remains a very fine book suitable for a graduate-level course in nonparametric statistics. I recommend it for all people interested in learning the basic ideas of nonparametric statistical inference.-Eugenia Stoimenova, Journal of Applied Statistics, June 2012… one of the best books available for a graduate (or advanced undergraduate) text for a theory course on nonparametric statistics. … a very well-written and organized book on nonparametric statistics, especially useful and recommended for teachers and graduate students.-Biometrics, 67, September 2011This excellently presente

  17. The Effect of Incremental Changes in Phonotactic Probability and Neighborhood Density on Word Learning by Preschool Children

    Science.gov (United States)

    Storkel, Holly L.; Bontempo, Daniel E.; Aschenbrenner, Andrew J.; Maekawa, Junko; Lee, Su-Yeon

    2013-01-01

    Purpose: Phonotactic probability or neighborhood density has predominately been defined through the use of gross distinctions (i.e., low vs. high). In the current studies, the authors examined the influence of finer changes in probability (Experiment 1) and density (Experiment 2) on word learning. Method: The authors examined the full range of…

  18. The intensity detection of single-photon detectors based on photon counting probability density statistics

    International Nuclear Information System (INIS)

    Zhang Zijing; Song Jie; Zhao Yuan; Wu Long

    2017-01-01

    Single-photon detectors possess the ultra-high sensitivity, but they cannot directly respond to signal intensity. Conventional methods adopt sampling gates with fixed width and count the triggered number of sampling gates, which is capable of obtaining photon counting probability to estimate the echo signal intensity. In this paper, we not only count the number of triggered sampling gates, but also record the triggered time position of photon counting pulses. The photon counting probability density distribution is obtained through the statistics of a series of the triggered time positions. Then Minimum Variance Unbiased Estimation (MVUE) method is used to estimate the echo signal intensity. Compared with conventional methods, this method can improve the estimation accuracy of echo signal intensity due to the acquisition of more detected information. Finally, a proof-of-principle laboratory system is established. The estimation accuracy of echo signal intensity is discussed and a high accuracy intensity image is acquired under low-light level environments. (paper)

  19. Exact joint density-current probability function for the asymmetric exclusion process.

    Science.gov (United States)

    Depken, Martin; Stinchcombe, Robin

    2004-07-23

    We study the asymmetric simple exclusion process with open boundaries and derive the exact form of the joint probability function for the occupation number and the current through the system. We further consider the thermodynamic limit, showing that the resulting distribution is non-Gaussian and that the density fluctuations have a discontinuity at the continuous phase transition, while the current fluctuations are continuous. The derivations are performed by using the standard operator algebraic approach and by the introduction of new operators satisfying a modified version of the original algebra. Copyright 2004 The American Physical Society

  20. Relationship between the Wigner function and the probability density function in quantum phase space representation

    International Nuclear Information System (INIS)

    Li Qianshu; Lue Liqiang; Wei Gongmin

    2004-01-01

    This paper discusses the relationship between the Wigner function, along with other related quasiprobability distribution functions, and the probability density distribution function constructed from the wave function of the Schroedinger equation in quantum phase space, as formulated by Torres-Vega and Frederick (TF). At the same time, a general approach in solving the wave function of the Schroedinger equation of TF quantum phase space theory is proposed. The relationship of the wave functions between the TF quantum phase space representation and the coordinate or momentum representation is thus revealed

  1. Observability of the probability current density using spin rotator as a quantum clock

    International Nuclear Information System (INIS)

    Home, D.; Alok Kumar Pan; Md Manirul Ali

    2005-01-01

    Full text: An experimentally realizable scheme is formulated which can test any quantum mechanical approach for calculating the arrival time distribution. This is specifically illustrated by using the modulus of the probability current density for calculating the arrival time distribution of spin-1/2 neutral particles at the exit point of a spin rotator (SR) which contains a constant magnetic field. Such a calculated time distribution is then used for evaluating the distribution of spin orientations along different directions for these particles emerging from the SR. Based on this, the result of spin measurement along any arbitrary direction for such an ensemble is predicted. (author)

  2. The effect of incremental changes in phonotactic probability and neighborhood density on word learning by preschool children

    Science.gov (United States)

    Storkel, Holly L.; Bontempo, Daniel E.; Aschenbrenner, Andrew J.; Maekawa, Junko; Lee, Su-Yeon

    2013-01-01

    Purpose Phonotactic probability or neighborhood density have predominately been defined using gross distinctions (i.e., low vs. high). The current studies examined the influence of finer changes in probability (Experiment 1) and density (Experiment 2) on word learning. Method The full range of probability or density was examined by sampling five nonwords from each of four quartiles. Three- and 5-year-old children received training on nonword-nonobject pairs. Learning was measured in a picture-naming task immediately following training and 1-week after training. Results were analyzed using multi-level modeling. Results A linear spline model best captured nonlinearities in phonotactic probability. Specifically word learning improved as probability increased in the lowest quartile, worsened as probability increased in the midlow quartile, and then remained stable and poor in the two highest quartiles. An ordinary linear model sufficiently described neighborhood density. Here, word learning improved as density increased across all quartiles. Conclusion Given these different patterns, phonotactic probability and neighborhood density appear to influence different word learning processes. Specifically, phonotactic probability may affect recognition that a sound sequence is an acceptable word in the language and is a novel word for the child, whereas neighborhood density may influence creation of a new representation in long-term memory. PMID:23882005

  3. Noise-level determination for discrete spectra with Gaussian or Lorentzian probability density functions

    International Nuclear Information System (INIS)

    Moriya, Netzer

    2010-01-01

    A method, based on binomial filtering, to estimate the noise level of an arbitrary, smoothed pure signal, contaminated with an additive, uncorrelated noise component is presented. If the noise characteristics of the experimental spectrum are known, as for instance the type of the corresponding probability density function (e.g., Gaussian), the noise properties can be extracted. In such cases, both the noise level, as may arbitrarily be defined, and a simulated white noise component can be generated, such that the simulated noise component is statistically indistinguishable from the true noise component present in the original signal. In this paper we present a detailed analysis of the noise level extraction when the additive noise is Gaussian or Lorentzian. We show that the statistical parameters in these cases (mainly the variance and the half width at half maximum, respectively) can directly be obtained from the experimental spectrum even when the pure signal is erratic. Further discussion is given for cases where the noise probability density function is initially unknown.

  4. Audio Query by Example Using Similarity Measures between Probability Density Functions of Features

    Directory of Open Access Journals (Sweden)

    Marko Helén

    2010-01-01

    Full Text Available This paper proposes a query by example system for generic audio. We estimate the similarity of the example signal and the samples in the queried database by calculating the distance between the probability density functions (pdfs of their frame-wise acoustic features. Since the features are continuous valued, we propose to model them using Gaussian mixture models (GMMs or hidden Markov models (HMMs. The models parametrize each sample efficiently and retain sufficient information for similarity measurement. To measure the distance between the models, we apply a novel Euclidean distance, approximations of Kullback-Leibler divergence, and a cross-likelihood ratio test. The performance of the measures was tested in simulations where audio samples are automatically retrieved from a general audio database, based on the estimated similarity to a user-provided example. The simulations show that the distance between probability density functions is an accurate measure for similarity. Measures based on GMMs or HMMs are shown to produce better results than that of the existing methods based on simpler statistics or histograms of the features. A good performance with low computational cost is obtained with the proposed Euclidean distance.

  5. Probability density function evolution of power systems subject to stochastic variation of renewable energy

    Science.gov (United States)

    Wei, J. Q.; Cong, Y. C.; Xiao, M. Q.

    2018-05-01

    As renewable energies are increasingly integrated into power systems, there is increasing interest in stochastic analysis of power systems.Better techniques should be developed to account for the uncertainty caused by penetration of renewables and consequently analyse its impacts on stochastic stability of power systems. In this paper, the Stochastic Differential Equations (SDEs) are used to represent the evolutionary behaviour of the power systems. The stationary Probability Density Function (PDF) solution to SDEs modelling power systems excited by Gaussian white noise is analysed. Subjected to such random excitation, the Joint Probability Density Function (JPDF) solution to the phase angle and angular velocity is governed by the generalized Fokker-Planck-Kolmogorov (FPK) equation. To solve this equation, the numerical method is adopted. Special measure is taken such that the generalized FPK equation is satisfied in the average sense of integration with the assumed PDF. Both weak and strong intensities of the stochastic excitations are considered in a single machine infinite bus power system. The numerical analysis has the same result as the one given by the Monte Carlo simulation. Potential studies on stochastic behaviour of multi-machine power systems with random excitations are discussed at the end.

  6. Protein single-model quality assessment by feature-based probability density functions.

    Science.gov (United States)

    Cao, Renzhi; Cheng, Jianlin

    2016-04-04

    Protein quality assessment (QA) has played an important role in protein structure prediction. We developed a novel single-model quality assessment method-Qprob. Qprob calculates the absolute error for each protein feature value against the true quality scores (i.e. GDT-TS scores) of protein structural models, and uses them to estimate its probability density distribution for quality assessment. Qprob has been blindly tested on the 11th Critical Assessment of Techniques for Protein Structure Prediction (CASP11) as MULTICOM-NOVEL server. The official CASP result shows that Qprob ranks as one of the top single-model QA methods. In addition, Qprob makes contributions to our protein tertiary structure predictor MULTICOM, which is officially ranked 3rd out of 143 predictors. The good performance shows that Qprob is good at assessing the quality of models of hard targets. These results demonstrate that this new probability density distribution based method is effective for protein single-model quality assessment and is useful for protein structure prediction. The webserver of Qprob is available at: http://calla.rnet.missouri.edu/qprob/. The software is now freely available in the web server of Qprob.

  7. Analysis of Observation Data of Earth-Rockfill Dam Based on Cloud Probability Distribution Density Algorithm

    Directory of Open Access Journals (Sweden)

    Han Liwei

    2014-07-01

    Full Text Available Monitoring data on an earth-rockfill dam constitutes a form of spatial data. Such data include much uncertainty owing to the limitation of measurement information, material parameters, load, geometry size, initial conditions, boundary conditions and the calculation model. So the cloud probability density of the monitoring data must be addressed. In this paper, the cloud theory model was used to address the uncertainty transition between the qualitative concept and the quantitative description. Then an improved algorithm of cloud probability distribution density based on a backward cloud generator was proposed. This was used to effectively convert certain parcels of accurate data into concepts which can be described by proper qualitative linguistic values. Such qualitative description was addressed as cloud numerical characteristics-- {Ex, En, He}, which could represent the characteristics of all cloud drops. The algorithm was then applied to analyze the observation data of a piezometric tube in an earth-rockfill dam. And experiment results proved that the proposed algorithm was feasible, through which, we could reveal the changing regularity of piezometric tube’s water level. And the damage of the seepage in the body was able to be found out.

  8. Using Prediction Markets to Generate Probability Density Functions for Climate Change Risk Assessment

    Science.gov (United States)

    Boslough, M.

    2011-12-01

    Climate-related uncertainty is traditionally presented as an error bar, but it is becoming increasingly common to express it in terms of a probability density function (PDF). PDFs are a necessary component of probabilistic risk assessments, for which simple "best estimate" values are insufficient. Many groups have generated PDFs for climate sensitivity using a variety of methods. These PDFs are broadly consistent, but vary significantly in their details. One axiom of the verification and validation community is, "codes don't make predictions, people make predictions." This is a statement of the fact that subject domain experts generate results using assumptions within a range of epistemic uncertainty and interpret them according to their expert opinion. Different experts with different methods will arrive at different PDFs. For effective decision support, a single consensus PDF would be useful. We suggest that market methods can be used to aggregate an ensemble of opinions into a single distribution that expresses the consensus. Prediction markets have been shown to be highly successful at forecasting the outcome of events ranging from elections to box office returns. In prediction markets, traders can take a position on whether some future event will or will not occur. These positions are expressed as contracts that are traded in a double-action market that aggregates price, which can be interpreted as a consensus probability that the event will take place. Since climate sensitivity cannot directly be measured, it cannot be predicted. However, the changes in global mean surface temperature are a direct consequence of climate sensitivity, changes in forcing, and internal variability. Viable prediction markets require an undisputed event outcome on a specific date. Climate-related markets exist on Intrade.com, an online trading exchange. One such contract is titled "Global Temperature Anomaly for Dec 2011 to be greater than 0.65 Degrees C." Settlement is based

  9. Momentum Probabilities for a Single Quantum Particle in Three-Dimensional Regular "Infinite" Wells: One Way of Promoting Understanding of Probability Densities

    Science.gov (United States)

    Riggs, Peter J.

    2013-01-01

    Students often wrestle unsuccessfully with the task of correctly calculating momentum probability densities and have difficulty in understanding their interpretation. In the case of a particle in an "infinite" potential well, its momentum can take values that are not just those corresponding to the particle's quantised energies but…

  10. Probability density functions of photochemicals over a coastal area of Northern Italy

    International Nuclear Information System (INIS)

    Georgiadis, T.; Fortezza, F.; Alberti, L.; Strocchi, V.; Marani, A.; Dal Bo', G.

    1998-01-01

    The present paper surveys the findings of experimental studies and analyses of statistical probability density functions (PDFs) applied to air pollutant concentrations to provide an interpretation of the ground-level distributions of photochemical oxidants in the coastal area of Ravenna (Italy). The atmospheric-pollution data set was collected from the local environmental monitoring network for the period 1978-1989. Results suggest that the statistical distribution of surface ozone, once normalised over the solar radiation PDF for the whole measurement period, follows a log-normal law as found for other pollutants. Although the Weibull distribution also offers a good fit of the experimental data, the area's meteorological features seem to favour the former distribution once the statistical index estimates have been analysed. Local transport phenomena are discussed to explain the data tail trends

  11. General Exact Solution to the Problem of the Probability Density for Sums of Random Variables

    Science.gov (United States)

    Tribelsky, Michael I.

    2002-07-01

    The exact explicit expression for the probability density pN(x) for a sum of N random, arbitrary correlated summands is obtained. The expression is valid for any number N and any distribution of the random summands. Most attention is paid to application of the developed approach to the case of independent and identically distributed summands. The obtained results reproduce all known exact solutions valid for the, so called, stable distributions of the summands. It is also shown that if the distribution is not stable, the profile of pN(x) may be divided into three parts, namely a core (small x), a tail (large x), and a crossover from the core to the tail (moderate x). The quantitative description of all three parts as well as that for the entire profile is obtained. A number of particular examples are considered in detail.

  12. Multiple Vehicle Cooperative Localization with Spatial Registration Based on a Probability Hypothesis Density Filter

    Directory of Open Access Journals (Sweden)

    Feihu Zhang

    2014-01-01

    Full Text Available This paper studies the problem of multiple vehicle cooperative localization with spatial registration in the formulation of the probability hypothesis density (PHD filter. Assuming vehicles are equipped with proprioceptive and exteroceptive sensors (with biases to cooperatively localize positions, a simultaneous solution for joint spatial registration and state estimation is proposed. For this, we rely on the sequential Monte Carlo implementation of the PHD filtering. Compared to other methods, the concept of multiple vehicle cooperative localization with spatial registration is first proposed under Random Finite Set Theory. In addition, the proposed solution also addresses the challenges for multiple vehicle cooperative localization, e.g., the communication bandwidth issue and data association uncertainty. The simulation result demonstrates its reliability and feasibility in large-scale environments.

  13. Gaussian mixture probability hypothesis density filter for multipath multitarget tracking in over-the-horizon radar

    Science.gov (United States)

    Qin, Yong; Ma, Hong; Chen, Jinfeng; Cheng, Li

    2015-12-01

    Conventional multitarget tracking systems presume that each target can produce at most one measurement per scan. Due to the multiple ionospheric propagation paths in over-the-horizon radar (OTHR), this assumption is not valid. To solve this problem, this paper proposes a novel tracking algorithm based on the theory of finite set statistics (FISST) called the multipath probability hypothesis density (MP-PHD) filter in cluttered environments. First, the FISST is used to derive the update equation, and then Gaussian mixture (GM) is introduced to derive the closed-form solution of the MP-PHD filter. Moreover, the extended Kalman filter (EKF) is presented to deal with the nonlinear problem of the measurement model in OTHR. Eventually, the simulation results are provided to demonstrate the effectiveness of the proposed filter.

  14. Probability Density Components Analysis: A New Approach to Treatment and Classification of SAR Images

    Directory of Open Access Journals (Sweden)

    Osmar Abílio de Carvalho Júnior

    2014-04-01

    Full Text Available Speckle noise (salt and pepper is inherent to synthetic aperture radar (SAR, which causes a usual noise-like granular aspect and complicates the image classification. In SAR image analysis, the spatial information might be a particular benefit for denoising and mapping classes characterized by a statistical distribution of the pixel intensities from a complex and heterogeneous spectral response. This paper proposes the Probability Density Components Analysis (PDCA, a new alternative that combines filtering and frequency histogram to improve the classification procedure for the single-channel synthetic aperture radar (SAR images. This method was tested on L-band SAR data from the Advanced Land Observation System (ALOS Phased-Array Synthetic-Aperture Radar (PALSAR sensor. The study area is localized in the Brazilian Amazon rainforest, northern Rondônia State (municipality of Candeias do Jamari, containing forest and land use patterns. The proposed algorithm uses a moving window over the image, estimating the probability density curve in different image components. Therefore, a single input image generates an output with multi-components. Initially the multi-components should be treated by noise-reduction methods, such as maximum noise fraction (MNF or noise-adjusted principal components (NAPCs. Both methods enable reducing noise as well as the ordering of multi-component data in terms of the image quality. In this paper, the NAPC applied to multi-components provided large reductions in the noise levels, and the color composites considering the first NAPC enhance the classification of different surface features. In the spectral classification, the Spectral Correlation Mapper and Minimum Distance were used. The results obtained presented as similar to the visual interpretation of optical images from TM-Landsat and Google Maps.

  15. Development and evaluation of probability density functions for a set of human exposure factors

    Energy Technology Data Exchange (ETDEWEB)

    Maddalena, R.L.; McKone, T.E.; Bodnar, A.; Jacobson, J.

    1999-06-01

    The purpose of this report is to describe efforts carried out during 1998 and 1999 at the Lawrence Berkeley National Laboratory to assist the U.S. EPA in developing and ranking the robustness of a set of default probability distributions for exposure assessment factors. Among the current needs of the exposure-assessment community is the need to provide data for linking exposure, dose, and health information in ways that improve environmental surveillance, improve predictive models, and enhance risk assessment and risk management (NAS, 1994). The U.S. Environmental Protection Agency (EPA) Office of Emergency and Remedial Response (OERR) plays a lead role in developing national guidance and planning future activities that support the EPA Superfund Program. OERR is in the process of updating its 1989 Risk Assessment Guidance for Superfund (RAGS) as part of the EPA Superfund reform activities. Volume III of RAGS, when completed in 1999 will provide guidance for conducting probabilistic risk assessments. This revised document will contain technical information including probability density functions (PDFs) and methods used to develop and evaluate these PDFs. The PDFs provided in this EPA document are limited to those relating to exposure factors.

  16. Development and evaluation of probability density functions for a set of human exposure factors

    International Nuclear Information System (INIS)

    Maddalena, R.L.; McKone, T.E.; Bodnar, A.; Jacobson, J.

    1999-01-01

    The purpose of this report is to describe efforts carried out during 1998 and 1999 at the Lawrence Berkeley National Laboratory to assist the U.S. EPA in developing and ranking the robustness of a set of default probability distributions for exposure assessment factors. Among the current needs of the exposure-assessment community is the need to provide data for linking exposure, dose, and health information in ways that improve environmental surveillance, improve predictive models, and enhance risk assessment and risk management (NAS, 1994). The U.S. Environmental Protection Agency (EPA) Office of Emergency and Remedial Response (OERR) plays a lead role in developing national guidance and planning future activities that support the EPA Superfund Program. OERR is in the process of updating its 1989 Risk Assessment Guidance for Superfund (RAGS) as part of the EPA Superfund reform activities. Volume III of RAGS, when completed in 1999 will provide guidance for conducting probabilistic risk assessments. This revised document will contain technical information including probability density functions (PDFs) and methods used to develop and evaluate these PDFs. The PDFs provided in this EPA document are limited to those relating to exposure factors

  17. Calculation of probability density functions for temperature and precipitation change under global warming

    International Nuclear Information System (INIS)

    Watterson, Ian G.

    2007-01-01

    Full text: he IPCC Fourth Assessment Report (Meehl ef al. 2007) presents multi-model means of the CMIP3 simulations as projections of the global climate change over the 21st century under several SRES emission scenarios. To assess the possible range of change for Australia based on the CMIP3 ensemble, we can follow Whetton etal. (2005) and use the 'pattern scaling' approach, which separates the uncertainty in the global mean warming from that in the local change per degree of warming. This study presents several ways of representing these two factors as probability density functions (PDFs). The beta distribution, a smooth, bounded, function allowing skewness, is found to provide a useful representation of the range of CMIP3 results. A weighting of models based on their skill in simulating seasonal means in the present climate over Australia is included. Dessai ef al. (2005) and others have used Monte-Carlo sampling to recombine such global warming and scaled change factors into values of net change. Here, we use a direct integration of the product across the joint probability space defined by the two PDFs. The result is a cumulative distribution function (CDF) for change, for each variable, location, and season. The median of this distribution provides a best estimate of change, while the 10th and 90th percentiles represent a likely range. The probability of exceeding a specified threshold can also be extracted from the CDF. The presentation focuses on changes in Australian temperature and precipitation at 2070 under the A1B scenario. However, the assumption of linearity behind pattern scaling allows results for different scenarios and times to be simply obtained. In the case of precipitation, which must remain non-negative, a simple modification of the calculations (based on decreases being exponential with warming) is used to avoid unrealistic results. These approaches are currently being used for the new CSIRO/ Bureau of Meteorology climate projections

  18. On Cooper's Nonparametric Test.

    Science.gov (United States)

    Schmeidler, James

    1978-01-01

    The basic assumption of Cooper's nonparametric test for trend (EJ 125 069) is questioned. It is contended that the proper assumption alters the distribution of the statistic and reduces its usefulness. (JKS)

  19. Robust functional statistics applied to Probability Density Function shape screening of sEMG data.

    Science.gov (United States)

    Boudaoud, S; Rix, H; Al Harrach, M; Marin, F

    2014-01-01

    Recent studies pointed out possible shape modifications of the Probability Density Function (PDF) of surface electromyographical (sEMG) data according to several contexts like fatigue and muscle force increase. Following this idea, criteria have been proposed to monitor these shape modifications mainly using High Order Statistics (HOS) parameters like skewness and kurtosis. In experimental conditions, these parameters are confronted with small sample size in the estimation process. This small sample size induces errors in the estimated HOS parameters restraining real-time and precise sEMG PDF shape monitoring. Recently, a functional formalism, the Core Shape Model (CSM), has been used to analyse shape modifications of PDF curves. In this work, taking inspiration from CSM method, robust functional statistics are proposed to emulate both skewness and kurtosis behaviors. These functional statistics combine both kernel density estimation and PDF shape distances to evaluate shape modifications even in presence of small sample size. Then, the proposed statistics are tested, using Monte Carlo simulations, on both normal and Log-normal PDFs that mimic observed sEMG PDF shape behavior during muscle contraction. According to the obtained results, the functional statistics seem to be more robust than HOS parameters to small sample size effect and more accurate in sEMG PDF shape screening applications.

  20. Exact probability function for bulk density and current in the asymmetric exclusion process

    Science.gov (United States)

    Depken, Martin; Stinchcombe, Robin

    2005-03-01

    We examine the asymmetric simple exclusion process with open boundaries, a paradigm of driven diffusive systems, having a nonequilibrium steady-state transition. We provide a full derivation and expanded discussion and digression on results previously reported briefly in M. Depken and R. Stinchcombe, Phys. Rev. Lett. 93, 040602 (2004). In particular we derive an exact form for the joint probability function for the bulk density and current, both for finite systems, and also in the thermodynamic limit. The resulting distribution is non-Gaussian, and while the fluctuations in the current are continuous at the continuous phase transitions, the density fluctuations are discontinuous. The derivations are done by using the standard operator algebraic techniques and by introducing a modified version of the original operator algebra. As a by-product of these considerations we also arrive at a very simple way of calculating the normalization constant appearing in the standard treatment with the operator algebra. Like the partition function in equilibrium systems, this normalization constant is shown to completely characterize the fluctuations, albeit in a very different manner.

  1. Statistical tests for whether a given set of independent, identically distributed draws comes from a specified probability density.

    Science.gov (United States)

    Tygert, Mark

    2010-09-21

    We discuss several tests for determining whether a given set of independent and identically distributed (i.i.d.) draws does not come from a specified probability density function. The most commonly used are Kolmogorov-Smirnov tests, particularly Kuiper's variant, which focus on discrepancies between the cumulative distribution function for the specified probability density and the empirical cumulative distribution function for the given set of i.i.d. draws. Unfortunately, variations in the probability density function often get smoothed over in the cumulative distribution function, making it difficult to detect discrepancies in regions where the probability density is small in comparison with its values in surrounding regions. We discuss tests without this deficiency, complementing the classical methods. The tests of the present paper are based on the plain fact that it is unlikely to draw a random number whose probability is small, provided that the draw is taken from the same distribution used in calculating the probability (thus, if we draw a random number whose probability is small, then we can be confident that we did not draw the number from the same distribution used in calculating the probability).

  2. A Nonparametric Bayesian Approach For Emission Tomography Reconstruction

    International Nuclear Information System (INIS)

    Barat, Eric; Dautremer, Thomas

    2007-01-01

    We introduce a PET reconstruction algorithm following a nonparametric Bayesian (NPB) approach. In contrast with Expectation Maximization (EM), the proposed technique does not rely on any space discretization. Namely, the activity distribution--normalized emission intensity of the spatial poisson process--is considered as a spatial probability density and observations are the projections of random emissions whose distribution has to be estimated. This approach is nonparametric in the sense that the quantity of interest belongs to the set of probability measures on R k (for reconstruction in k-dimensions) and it is Bayesian in the sense that we define a prior directly on this spatial measure. In this context, we propose to model the nonparametric probability density as an infinite mixture of multivariate normal distributions. As a prior for this mixture we consider a Dirichlet Process Mixture (DPM) with a Normal-Inverse Wishart (NIW) model as base distribution of the Dirichlet Process. As in EM-family reconstruction, we use a data augmentation scheme where the set of hidden variables are the emission locations for each observed line of response in the continuous object space. Thanks to the data augmentation, we propose a Markov Chain Monte Carlo (MCMC) algorithm (Gibbs sampler) which is able to generate draws from the posterior distribution of the spatial intensity. A difference with EM is that one step of the Gibbs sampler corresponds to the generation of emission locations while only the expected number of emissions per pixel/voxel is used in EM. Another key difference is that the estimated spatial intensity is a continuous function such that there is no need to compute a projection matrix. Finally, draws from the intensity posterior distribution allow the estimation of posterior functionnals like the variance or confidence intervals. Results are presented for simulated data based on a 2D brain phantom and compared to Bayesian MAP-EM

  3. Probability density functions for radial anisotropy: implications for the upper 1200 km of the mantle

    Science.gov (United States)

    Beghein, Caroline; Trampert, Jeannot

    2004-01-01

    The presence of radial anisotropy in the upper mantle, transition zone and top of the lower mantle is investigated by applying a model space search technique to Rayleigh and Love wave phase velocity models. Probability density functions are obtained independently for S-wave anisotropy, P-wave anisotropy, intermediate parameter η, Vp, Vs and density anomalies. The likelihoods for P-wave and S-wave anisotropy beneath continents cannot be explained by a dry olivine-rich upper mantle at depths larger than 220 km. Indeed, while shear-wave anisotropy tends to disappear below 220 km depth in continental areas, P-wave anisotropy is still present but its sign changes compared to the uppermost mantle. This could be due to an increase with depth of the amount of pyroxene relative to olivine in these regions, although the presence of water, partial melt or a change in the deformation mechanism cannot be ruled out as yet. A similar observation is made for old oceans, but not for young ones where VSH> VSV appears likely down to 670 km depth and VPH> VPV down to 400 km depth. The change of sign in P-wave anisotropy seems to be qualitatively correlated with the presence of the Lehmann discontinuity, generally observed beneath continents and some oceans but not beneath ridges. Parameter η shows a similar age-related depth pattern as shear-wave anisotropy in the uppermost mantle and it undergoes the same change of sign as P-wave anisotropy at 220 km depth. The ratio between dln Vs and dln Vp suggests that a chemical component is needed to explain the anomalies in most places at depths greater than 220 km. More tests are needed to infer the robustness of the results for density, but they do not affect the results for anisotropy.

  4. Using probability density function in the procedure for recognition of the type of physical exercise

    Directory of Open Access Journals (Sweden)

    Cakić Nikola

    2017-01-01

    Full Text Available This paper presents a method for recognition of physical exercises, using only a triaxial accelerometer of a smartphone. The smartphone itself is free to move inside subject's pocket. Exercises for leg muscle strengthening from subject's standing position squat, right knee rise and lunge with right leg were analyzed. All exercises were performed with the accelerometric sensor of a smartphone placed in the pocket next to the leg used for exercises. In order to test the proposed recognition method, the knee rise exercise of the opposite leg with the same position of the sensor was randomly selected. Filtering of the raw accelerometric signals was carried out using Butterworth tenth-order low-pass filter. The filtered signals from each of the three axes were described using three signal descriptors. After the descriptors were calculated, a probability density function was constructed for each of the descriptors. The program that implemented the proposed recognition method was executed online within an Android application of the smartphone. Signals from two male and two female subjects were considered as a reference for exercise recognition. The exercise recognition accuracy was 94.22% for three performed exercises, and 85.33% for all four considered exercises.

  5. ExGUtils: A Python Package for Statistical Analysis With the ex-Gaussian Probability Density.

    Science.gov (United States)

    Moret-Tatay, Carmen; Gamermann, Daniel; Navarro-Pardo, Esperanza; Fernández de Córdoba Castellá, Pedro

    2018-01-01

    The study of reaction times and their underlying cognitive processes is an important field in Psychology. Reaction times are often modeled through the ex-Gaussian distribution, because it provides a good fit to multiple empirical data. The complexity of this distribution makes the use of computational tools an essential element. Therefore, there is a strong need for efficient and versatile computational tools for the research in this area. In this manuscript we discuss some mathematical details of the ex-Gaussian distribution and apply the ExGUtils package, a set of functions and numerical tools, programmed for python, developed for numerical analysis of data involving the ex-Gaussian probability density. In order to validate the package, we present an extensive analysis of fits obtained with it, discuss advantages and differences between the least squares and maximum likelihood methods and quantitatively evaluate the goodness of the obtained fits (which is usually an overlooked point in most literature in the area). The analysis done allows one to identify outliers in the empirical datasets and criteriously determine if there is a need for data trimming and at which points it should be done.

  6. ExGUtils: A Python Package for Statistical Analysis With the ex-Gaussian Probability Density

    Directory of Open Access Journals (Sweden)

    Carmen Moret-Tatay

    2018-05-01

    Full Text Available The study of reaction times and their underlying cognitive processes is an important field in Psychology. Reaction times are often modeled through the ex-Gaussian distribution, because it provides a good fit to multiple empirical data. The complexity of this distribution makes the use of computational tools an essential element. Therefore, there is a strong need for efficient and versatile computational tools for the research in this area. In this manuscript we discuss some mathematical details of the ex-Gaussian distribution and apply the ExGUtils package, a set of functions and numerical tools, programmed for python, developed for numerical analysis of data involving the ex-Gaussian probability density. In order to validate the package, we present an extensive analysis of fits obtained with it, discuss advantages and differences between the least squares and maximum likelihood methods and quantitatively evaluate the goodness of the obtained fits (which is usually an overlooked point in most literature in the area. The analysis done allows one to identify outliers in the empirical datasets and criteriously determine if there is a need for data trimming and at which points it should be done.

  7. Predicting Ligand Binding Sites on Protein Surfaces by 3-Dimensional Probability Density Distributions of Interacting Atoms

    Science.gov (United States)

    Jian, Jhih-Wei; Elumalai, Pavadai; Pitti, Thejkiran; Wu, Chih Yuan; Tsai, Keng-Chang; Chang, Jeng-Yih; Peng, Hung-Pin; Yang, An-Suei

    2016-01-01

    Predicting ligand binding sites (LBSs) on protein structures, which are obtained either from experimental or computational methods, is a useful first step in functional annotation or structure-based drug design for the protein structures. In this work, the structure-based machine learning algorithm ISMBLab-LIG was developed to predict LBSs on protein surfaces with input attributes derived from the three-dimensional probability density maps of interacting atoms, which were reconstructed on the query protein surfaces and were relatively insensitive to local conformational variations of the tentative ligand binding sites. The prediction accuracy of the ISMBLab-LIG predictors is comparable to that of the best LBS predictors benchmarked on several well-established testing datasets. More importantly, the ISMBLab-LIG algorithm has substantial tolerance to the prediction uncertainties of computationally derived protein structure models. As such, the method is particularly useful for predicting LBSs not only on experimental protein structures without known LBS templates in the database but also on computationally predicted model protein structures with structural uncertainties in the tentative ligand binding sites. PMID:27513851

  8. On the method of logarithmic cumulants for parametric probability density function estimation.

    Science.gov (United States)

    Krylov, Vladimir A; Moser, Gabriele; Serpico, Sebastiano B; Zerubia, Josiane

    2013-10-01

    Parameter estimation of probability density functions is one of the major steps in the area of statistical image and signal processing. In this paper we explore several properties and limitations of the recently proposed method of logarithmic cumulants (MoLC) parameter estimation approach which is an alternative to the classical maximum likelihood (ML) and method of moments (MoM) approaches. We derive the general sufficient condition for a strong consistency of the MoLC estimates which represents an important asymptotic property of any statistical estimator. This result enables the demonstration of the strong consistency of MoLC estimates for a selection of widely used distribution families originating from (but not restricted to) synthetic aperture radar image processing. We then derive the analytical conditions of applicability of MoLC to samples for the distribution families in our selection. Finally, we conduct various synthetic and real data experiments to assess the comparative properties, applicability and small sample performance of MoLC notably for the generalized gamma and K families of distributions. Supervised image classification experiments are considered for medical ultrasound and remote-sensing SAR imagery. The obtained results suggest that MoLC is a feasible and computationally fast yet not universally applicable alternative to MoM. MoLC becomes especially useful when the direct ML approach turns out to be unfeasible.

  9. Power probability density function control and performance assessment of a nuclear research reactor

    International Nuclear Information System (INIS)

    Abharian, Amir Esmaeili; Fadaei, Amir Hosein

    2014-01-01

    Highlights: • In this paper, the performance assessment of static PDF control system is discussed. • The reactor PDF model is set up based on the B-spline functions. • Acquaints of Nu, and Th-h. equations solve concurrently by reformed Hansen’s method. • A principle of performance assessment is put forward for the PDF of the NR control. - Abstract: One of the main issues in controlling a system is to keep track of the conditions of the system function. The performance condition of the system should be inspected continuously, to keep the system in reliable working condition. In this study, the nuclear reactor is considered as a complicated system and a principle of performance assessment is used for analyzing the performance of the power probability density function (PDF) of the nuclear research reactor control. First, the model of the power PDF is set up, then the controller is designed to make the power PDF for tracing the given shape, that make the reactor to be a closed-loop system. The operating data of the closed-loop reactor are used to assess the control performance with the performance assessment criteria. The modeling, controller design and the performance assessment of the power PDF are all applied to the control of Tehran Research Reactor (TRR) power in a nuclear process. In this paper, the performance assessment of the static PDF control system is discussed, the efficacy and efficiency of the proposed method are investigated, and finally its reliability is proven

  10. Probability density function of a puff dispersing from the wall of a turbulent channel

    Science.gov (United States)

    Nguyen, Quoc; Papavassiliou, Dimitrios

    2015-11-01

    Study of dispersion of passive contaminants in turbulence has proved to be helpful in understanding fundamental heat and mass transfer phenomena. Many simulation and experimental works have been carried out to locate and track motions of scalar markers in a flow. One method is to combine Direct Numerical Simulation (DNS) and Lagrangian Scalar Tracking (LST) to record locations of markers. While this has proved to be useful, high computational cost remains a concern. In this study, we develop a model that could reproduce results obtained by DNS and LST for turbulent flow. Puffs of markers with different Schmidt numbers were released into a flow field at a frictional Reynolds number of 150. The point of release was at the channel wall, so that both diffusion and convection contribute to the puff dispersion pattern, defining different stages of dispersion. Based on outputs from DNS and LST, we seek the most suitable and feasible probability density function (PDF) that represents distribution of markers in the flow field. The PDF would play a significant role in predicting heat and mass transfer in wall turbulence, and would prove to be helpful where DNS and LST are not always available.

  11. Representation of Probability Density Functions from Orbit Determination using the Particle Filter

    Science.gov (United States)

    Mashiku, Alinda K.; Garrison, James; Carpenter, J. Russell

    2012-01-01

    Statistical orbit determination enables us to obtain estimates of the state and the statistical information of its region of uncertainty. In order to obtain an accurate representation of the probability density function (PDF) that incorporates higher order statistical information, we propose the use of nonlinear estimation methods such as the Particle Filter. The Particle Filter (PF) is capable of providing a PDF representation of the state estimates whose accuracy is dependent on the number of particles or samples used. For this method to be applicable to real case scenarios, we need a way of accurately representing the PDF in a compressed manner with little information loss. Hence we propose using the Independent Component Analysis (ICA) as a non-Gaussian dimensional reduction method that is capable of maintaining higher order statistical information obtained using the PF. Methods such as the Principal Component Analysis (PCA) are based on utilizing up to second order statistics, hence will not suffice in maintaining maximum information content. Both the PCA and the ICA are applied to two scenarios that involve a highly eccentric orbit with a lower apriori uncertainty covariance and a less eccentric orbit with a higher a priori uncertainty covariance, to illustrate the capability of the ICA in relation to the PCA.

  12. Probability density function modeling of scalar mixing from concentrated sources in turbulent channel flow

    Science.gov (United States)

    Bakosi, J.; Franzese, P.; Boybeyi, Z.

    2007-11-01

    Dispersion of a passive scalar from concentrated sources in fully developed turbulent channel flow is studied with the probability density function (PDF) method. The joint PDF of velocity, turbulent frequency and scalar concentration is represented by a large number of Lagrangian particles. A stochastic near-wall PDF model combines the generalized Langevin model of Haworth and Pope [Phys. Fluids 29, 387 (1986)] with Durbin's [J. Fluid Mech. 249, 465 (1993)] method of elliptic relaxation to provide a mathematically exact treatment of convective and viscous transport with a nonlocal representation of the near-wall Reynolds stress anisotropy. The presence of walls is incorporated through the imposition of no-slip and impermeability conditions on particles without the use of damping or wall-functions. Information on the turbulent time scale is supplied by the gamma-distribution model of van Slooten et al. [Phys. Fluids 10, 246 (1998)]. Two different micromixing models are compared that incorporate the effect of small scale mixing on the transported scalar: the widely used interaction by exchange with the mean and the interaction by exchange with the conditional mean model. Single-point velocity and concentration statistics are compared to direct numerical simulation and experimental data at Reτ=1080 based on the friction velocity and the channel half width. The joint model accurately reproduces a wide variety of conditional and unconditional statistics in both physical and composition space.

  13. A joint probability density function of wind speed and direction for wind energy analysis

    International Nuclear Information System (INIS)

    Carta, Jose A.; Ramirez, Penelope; Bueno, Celia

    2008-01-01

    A very flexible joint probability density function of wind speed and direction is presented in this paper for use in wind energy analysis. A method that enables angular-linear distributions to be obtained with specified marginal distributions has been used for this purpose. For the marginal distribution of wind speed we use a singly truncated from below Normal-Weibull mixture distribution. The marginal distribution of wind direction comprises a finite mixture of von Mises distributions. The proposed model is applied in this paper to wind direction and wind speed hourly data recorded at several weather stations located in the Canary Islands (Spain). The suitability of the distributions is judged from the coefficient of determination R 2 . The conclusions reached are that the joint distribution proposed in this paper: (a) can represent unimodal, bimodal and bitangential wind speed frequency distributions, (b) takes into account the frequency of null winds, (c) represents the wind direction regimes in zones with several modes or prevailing wind directions, (d) takes into account the correlation between wind speeds and its directions. It can therefore be used in several tasks involved in the evaluation process of the wind resources available at a potential site. We also conclude that, in the case of the Canary Islands, the proposed model provides better fits in all the cases analysed than those obtained with the models used in the specialised literature on wind energy

  14. Estimating the population size and colony boundary of subterranean termites by using the density functions of directionally averaged capture probability.

    Science.gov (United States)

    Su, Nan-Yao; Lee, Sang-Hee

    2008-04-01

    Marked termites were released in a linear-connected foraging arena, and the spatial heterogeneity of their capture probabilities was averaged for both directions at distance r from release point to obtain a symmetrical distribution, from which the density function of directionally averaged capture probability P(x) was derived. We hypothesized that as marked termites move into the population and given sufficient time, the directionally averaged capture probability may reach an equilibrium P(e) over the distance r and thus satisfy the equal mixing assumption of the mark-recapture protocol. The equilibrium capture probability P(e) was used to estimate the population size N. The hypothesis was tested in a 50-m extended foraging arena to simulate the distance factor of field colonies of subterranean termites. Over the 42-d test period, the density functions of directionally averaged capture probability P(x) exhibited four phases: exponential decline phase, linear decline phase, equilibrium phase, and postequilibrium phase. The equilibrium capture probability P(e), derived as the intercept of the linear regression during the equilibrium phase, correctly projected N estimates that were not significantly different from the known number of workers in the arena. Because the area beneath the probability density function is a constant (50% in this study), preequilibrium regression parameters and P(e) were used to estimate the population boundary distance 1, which is the distance between the release point and the boundary beyond which the population is absent.

  15. Nonparametric Transfer Function Models

    Science.gov (United States)

    Liu, Jun M.; Chen, Rong; Yao, Qiwei

    2009-01-01

    In this paper a class of nonparametric transfer function models is proposed to model nonlinear relationships between ‘input’ and ‘output’ time series. The transfer function is smooth with unknown functional forms, and the noise is assumed to be a stationary autoregressive-moving average (ARMA) process. The nonparametric transfer function is estimated jointly with the ARMA parameters. By modeling the correlation in the noise, the transfer function can be estimated more efficiently. The parsimonious ARMA structure improves the estimation efficiency in finite samples. The asymptotic properties of the estimators are investigated. The finite-sample properties are illustrated through simulations and one empirical example. PMID:20628584

  16. Theory of nonparametric tests

    CERN Document Server

    Dickhaus, Thorsten

    2018-01-01

    This textbook provides a self-contained presentation of the main concepts and methods of nonparametric statistical testing, with a particular focus on the theoretical foundations of goodness-of-fit tests, rank tests, resampling tests, and projection tests. The substitution principle is employed as a unified approach to the nonparametric test problems discussed. In addition to mathematical theory, it also includes numerous examples and computer implementations. The book is intended for advanced undergraduate, graduate, and postdoc students as well as young researchers. Readers should be familiar with the basic concepts of mathematical statistics typically covered in introductory statistics courses.

  17. Nonparametric Bayesian inference for multidimensional compound Poisson processes

    NARCIS (Netherlands)

    Gugushvili, S.; van der Meulen, F.; Spreij, P.

    2015-01-01

    Given a sample from a discretely observed multidimensional compound Poisson process, we study the problem of nonparametric estimation of its jump size density r0 and intensity λ0. We take a nonparametric Bayesian approach to the problem and determine posterior contraction rates in this context,

  18. Probability Density Functions for the CALIPSO Lidar Version 4 Cloud-Aerosol Discrimination (CAD) Algorithm

    Science.gov (United States)

    Liu, Z.; Kar, J.; Zeng, S.; Tackett, J. L.; Vaughan, M.; Trepte, C. R.; Omar, A. H.; Hu, Y.; Winker, D. M.

    2017-12-01

    In the CALIPSO retrieval algorithm, detection layers in the lidar measurements is followed by their classification as a "cloud" or "aerosol" using 5-dimensional probability density functions (PDFs). The five dimensions are the mean attenuated backscatter at 532 nm, the layer integrated total attenuated color ratio, the mid-layer altitude, integrated volume depolarization ratio and latitude. The new version 4 (V4) level 2 (L2) data products, released in November 2016, are the first major revision to the L2 product suite since May 2010. Significant calibration changes in the V4 level 1 data necessitated substantial revisions to the V4 L2 CAD algorithm. Accordingly, a new set of PDFs was generated to derive the V4 L2 data products. The V4 CAD algorithm is now applied to layers detected in the stratosphere, where volcanic layers and occasional cloud and smoke layers are observed. Previously, these layers were designated as `stratospheric', and not further classified. The V4 CAD algorithm is also applied to all layers detected at single shot (333 m) resolution. In prior data releases, single shot detections were uniformly classified as clouds. The CAD PDFs used in the earlier releases were generated using a full year (2008) of CALIPSO measurements. Because the CAD algorithm was not applied to stratospheric features, the properties of these layers were not incorporated into the PDFs. When building the V4 PDFs, the 2008 data were augmented with additional data from June 2011, and all stratospheric features were included. The Nabro and Puyehue-Cordon volcanos erupted in June 2011, and volcanic aerosol layers were observed in the upper troposphere and lower stratosphere in both the northern and southern hemispheres. The June 2011 data thus provides the stratospheric aerosol properties needed for comprehensive PDF generation. In contrast to earlier versions of the PDFs, which were generated based solely on observed distributions, construction of the V4 PDFs considered the

  19. Kinetic and dynamic probability-density-function descriptions of disperse turbulent two-phase flows

    Science.gov (United States)

    Minier, Jean-Pierre; Profeta, Christophe

    2015-11-01

    This article analyzes the status of two classical one-particle probability density function (PDF) descriptions of the dynamics of discrete particles dispersed in turbulent flows. The first PDF formulation considers only the process made up by particle position and velocity Zp=(xp,Up) and is represented by its PDF p (t ;yp,Vp) which is the solution of a kinetic PDF equation obtained through a flux closure based on the Furutsu-Novikov theorem. The second PDF formulation includes fluid variables into the particle state vector, for example, the fluid velocity seen by particles Zp=(xp,Up,Us) , and, consequently, handles an extended PDF p (t ;yp,Vp,Vs) which is the solution of a dynamic PDF equation. For high-Reynolds-number fluid flows, a typical formulation of the latter category relies on a Langevin model for the trajectories of the fluid seen or, conversely, on a Fokker-Planck equation for the extended PDF. In the present work, a new derivation of the kinetic PDF equation is worked out and new physical expressions of the dispersion tensors entering the kinetic PDF equation are obtained by starting from the extended PDF and integrating over the fluid seen. This demonstrates that, under the same assumption of a Gaussian colored noise and irrespective of the specific stochastic model chosen for the fluid seen, the kinetic PDF description is the marginal of a dynamic PDF one. However, a detailed analysis reveals that kinetic PDF models of particle dynamics in turbulent flows described by statistical correlations constitute incomplete stand-alone PDF descriptions and, moreover, that present kinetic-PDF equations are mathematically ill posed. This is shown to be the consequence of the non-Markovian characteristic of the stochastic process retained to describe the system and the use of an external colored noise. Furthermore, developments bring out that well-posed PDF descriptions are essentially due to a proper choice of the variables selected to describe physical systems

  20. Word Recognition and Nonword Repetition in Children with Language Disorders: The Effects of Neighborhood Density, Lexical Frequency, and Phonotactic Probability

    Science.gov (United States)

    Rispens, Judith; Baker, Anne; Duinmeijer, Iris

    2015-01-01

    Purpose: The effects of neighborhood density (ND) and lexical frequency on word recognition and the effects of phonotactic probability (PP) on nonword repetition (NWR) were examined to gain insight into processing at the lexical and sublexical levels in typically developing (TD) children and children with developmental language problems. Method:…

  1. Spatial correlations and probability density function of the phase difference in a developed speckle-field: numerical and natural experiments

    International Nuclear Information System (INIS)

    Mysina, N Yu; Maksimova, L A; Ryabukho, V P; Gorbatenko, B B

    2015-01-01

    Investigated are statistical properties of the phase difference of oscillations in speckle-fields at two points in the far-field diffraction region, with different shapes of the scatterer aperture. Statistical and spatial nonuniformity of the probability density function of the field phase difference is established. Numerical experiments show that, for the speckle-fields with an oscillating alternating-sign transverse correlation function, a significant nonuniformity of the probability density function of the phase difference in the correlation region of the field complex amplitude, with the most probable values 0 and p, is observed. A natural statistical interference experiment using Young diagrams has confirmed the results of numerical experiments. (laser applications and other topics in quantum electronics)

  2. Nonparametric Bayesian inference in biostatistics

    CERN Document Server

    Müller, Peter

    2015-01-01

    As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters c...

  3. Bayesian nonparametric hierarchical modeling.

    Science.gov (United States)

    Dunson, David B

    2009-04-01

    In biomedical research, hierarchical models are very widely used to accommodate dependence in multivariate and longitudinal data and for borrowing of information across data from different sources. A primary concern in hierarchical modeling is sensitivity to parametric assumptions, such as linearity and normality of the random effects. Parametric assumptions on latent variable distributions can be challenging to check and are typically unwarranted, given available prior knowledge. This article reviews some recent developments in Bayesian nonparametric methods motivated by complex, multivariate and functional data collected in biomedical studies. The author provides a brief review of flexible parametric approaches relying on finite mixtures and latent class modeling. Dirichlet process mixture models are motivated by the need to generalize these approaches to avoid assuming a fixed finite number of classes. Focusing on an epidemiology application, the author illustrates the practical utility and potential of nonparametric Bayes methods.

  4. Quantal Response: Nonparametric Modeling

    Science.gov (United States)

    2017-01-01

    capture the behavior of observed phenomena. Higher-order polynomial and finite-dimensional spline basis models allow for more complicated responses as the...flexibility as these are nonparametric (not constrained to any particular functional form). These should be useful in identifying nonstandard behavior via... deviance ∆ = −2 log(Lreduced/Lfull) is defined in terms of the likelihood function L. For normal error, Lfull = 1, and based on Eq. A-2, we have log

  5. Estimation of the four-wave mixing noise probability-density function by the multicanonical Monte Carlo method.

    Science.gov (United States)

    Neokosmidis, Ioannis; Kamalakis, Thomas; Chipouras, Aristides; Sphicopoulos, Thomas

    2005-01-01

    The performance of high-powered wavelength-division multiplexed (WDM) optical networks can be severely degraded by four-wave-mixing- (FWM-) induced distortion. The multicanonical Monte Carlo method (MCMC) is used to calculate the probability-density function (PDF) of the decision variable of a receiver, limited by FWM noise. Compared with the conventional Monte Carlo method previously used to estimate this PDF, the MCMC method is much faster and can accurately estimate smaller error probabilities. The method takes into account the correlation between the components of the FWM noise, unlike the Gaussian model, which is shown not to provide accurate results.

  6. 2nd Conference of the International Society for Nonparametric Statistics

    CERN Document Server

    Manteiga, Wenceslao; Romo, Juan

    2016-01-01

    This volume collects selected, peer-reviewed contributions from the 2nd Conference of the International Society for Nonparametric Statistics (ISNPS), held in Cádiz (Spain) between June 11–16 2014, and sponsored by the American Statistical Association, the Institute of Mathematical Statistics, the Bernoulli Society for Mathematical Statistics and Probability, the Journal of Nonparametric Statistics and Universidad Carlos III de Madrid. The 15 articles are a representative sample of the 336 contributed papers presented at the conference. They cover topics such as high-dimensional data modelling, inference for stochastic processes and for dependent data, nonparametric and goodness-of-fit testing, nonparametric curve estimation, object-oriented data analysis, and semiparametric inference. The aim of the ISNPS 2014 conference was to bring together recent advances and trends in several areas of nonparametric statistics in order to facilitate the exchange of research ideas, promote collaboration among researchers...

  7. PDE-Foam - a probability-density estimation method using self-adapting phase-space binning

    CERN Document Server

    Dannheim, Dominik; Voigt, Alexander; Grahn, Karl-Johan; Speckmayer, Peter

    2009-01-01

    Probability-Density Estimation (PDE) is a multivariate discrimination technique based on sampling signal and background densities defined by event samples from data or Monte-Carlo (MC) simulations in a multi-dimensional phase space. To efficiently use large event samples to estimate the probability density, a binary search tree (range searching) is used in the PDE-RS implementation. It is a generalisation of standard likelihood methods and a powerful classification tool for problems with highly non-linearly correlated observables. In this paper, we present an innovative improvement of the PDE method that uses a self-adapting binning method to divide the multi-dimensional phase space in a finite number of hyper-rectangles (cells). The binning algorithm adjusts the size and position of a predefined number of cells inside the multidimensional phase space, minimizing the variance of the signal and background densities inside the cells. The binned density information is stored in binary trees, allowing for a very ...

  8. Nonparametric statistical inference

    CERN Document Server

    Gibbons, Jean Dickinson

    2014-01-01

    Thoroughly revised and reorganized, the fourth edition presents in-depth coverage of the theory and methods of the most widely used nonparametric procedures in statistical analysis and offers example applications appropriate for all areas of the social, behavioral, and life sciences. The book presents new material on the quantiles, the calculation of exact and simulated power, multiple comparisons, additional goodness-of-fit tests, methods of analysis of count data, and modern computer applications using MINITAB, SAS, and STATXACT. It includes tabular guides for simplified applications of tests and finding P values and confidence interval estimates.

  9. Protein distance constraints predicted by neural networks and probability density functions

    DEFF Research Database (Denmark)

    Lund, Ole; Frimand, Kenneth; Gorodkin, Jan

    1997-01-01

    We predict interatomic C-α distances by two independent data driven methods. The first method uses statistically derived probability distributions of the pairwise distance between two amino acids, whilst the latter method consists of a neural network prediction approach equipped with windows taki...... method based on the predicted distances is presented. A homepage with software, predictions and data related to this paper is available at http://www.cbs.dtu.dk/services/CPHmodels/...

  10. Probability density adjoint for sensitivity analysis of the Mean of Chaos

    Energy Technology Data Exchange (ETDEWEB)

    Blonigan, Patrick J., E-mail: blonigan@mit.edu; Wang, Qiqi, E-mail: qiqi@mit.edu

    2014-08-01

    Sensitivity analysis, especially adjoint based sensitivity analysis, is a powerful tool for engineering design which allows for the efficient computation of sensitivities with respect to many parameters. However, these methods break down when used to compute sensitivities of long-time averaged quantities in chaotic dynamical systems. This paper presents a new method for sensitivity analysis of ergodic chaotic dynamical systems, the density adjoint method. The method involves solving the governing equations for the system's invariant measure and its adjoint on the system's attractor manifold rather than in phase-space. This new approach is derived for and demonstrated on one-dimensional chaotic maps and the three-dimensional Lorenz system. It is found that the density adjoint computes very finely detailed adjoint distributions and accurate sensitivities, but suffers from large computational costs.

  11. Nonparametric combinatorial sequence models.

    Science.gov (United States)

    Wauthier, Fabian L; Jordan, Michael I; Jojic, Nebojsa

    2011-11-01

    This work considers biological sequences that exhibit combinatorial structures in their composition: groups of positions of the aligned sequences are "linked" and covary as one unit across sequences. If multiple such groups exist, complex interactions can emerge between them. Sequences of this kind arise frequently in biology but methodologies for analyzing them are still being developed. This article presents a nonparametric prior on sequences which allows combinatorial structures to emerge and which induces a posterior distribution over factorized sequence representations. We carry out experiments on three biological sequence families which indicate that combinatorial structures are indeed present and that combinatorial sequence models can more succinctly describe them than simpler mixture models. We conclude with an application to MHC binding prediction which highlights the utility of the posterior distribution over sequence representations induced by the prior. By integrating out the posterior, our method compares favorably to leading binding predictors.

  12. Random function representation of stationary stochastic vector processes for probability density evolution analysis of wind-induced structures

    Science.gov (United States)

    Liu, Zhangjun; Liu, Zenghui

    2018-06-01

    This paper develops a hybrid approach of spectral representation and random function for simulating stationary stochastic vector processes. In the proposed approach, the high-dimensional random variables, included in the original spectral representation (OSR) formula, could be effectively reduced to only two elementary random variables by introducing the random functions that serve as random constraints. Based on this, a satisfactory simulation accuracy can be guaranteed by selecting a small representative point set of the elementary random variables. The probability information of the stochastic excitations can be fully emerged through just several hundred of sample functions generated by the proposed approach. Therefore, combined with the probability density evolution method (PDEM), it could be able to implement dynamic response analysis and reliability assessment of engineering structures. For illustrative purposes, a stochastic turbulence wind velocity field acting on a frame-shear-wall structure is simulated by constructing three types of random functions to demonstrate the accuracy and efficiency of the proposed approach. Careful and in-depth studies concerning the probability density evolution analysis of the wind-induced structure have been conducted so as to better illustrate the application prospects of the proposed approach. Numerical examples also show that the proposed approach possesses a good robustness.

  13. Fusing probability density function into Dempster-Shafer theory of evidence for the evaluation of water treatment plant.

    Science.gov (United States)

    Chowdhury, Shakhawat

    2013-05-01

    The evaluation of the status of a municipal drinking water treatment plant (WTP) is important. The evaluation depends on several factors, including, human health risks from disinfection by-products (R), disinfection performance (D), and cost (C) of water production and distribution. The Dempster-Shafer theory (DST) of evidence can combine the individual status with respect to R, D, and C to generate a new indicator, from which the overall status of a WTP can be evaluated. In the DST, the ranges of different factors affecting the overall status are divided into several segments. The basic probability assignments (BPA) for each segment of these factors are provided by multiple experts, which are then combined to obtain the overall status. In assigning the BPA, the experts use their individual judgments, which can impart subjective biases in the overall evaluation. In this research, an approach has been introduced to avoid the assignment of subjective BPA. The factors contributing to the overall status were characterized using the probability density functions (PDF). The cumulative probabilities for different segments of these factors were determined from the cumulative density function, which were then assigned as the BPA for these factors. A case study is presented to demonstrate the application of PDF in DST to evaluate a WTP, leading to the selection of the required level of upgradation for the WTP.

  14. Probability and Cumulative Density Function Methods for the Stochastic Advection-Reaction Equation

    Energy Technology Data Exchange (ETDEWEB)

    Barajas-Solano, David A.; Tartakovsky, Alexandre M.

    2018-01-01

    We present a cumulative density function (CDF) method for the probabilistic analysis of $d$-dimensional advection-dominated reactive transport in heterogeneous media. We employ a probabilistic approach in which epistemic uncertainty on the spatial heterogeneity of Darcy-scale transport coefficients is modeled in terms of random fields with given correlation structures. Our proposed CDF method employs a modified Large-Eddy-Diffusivity (LED) approach to close and localize the nonlocal equations governing the one-point PDF and CDF of the concentration field, resulting in a $(d + 1)$ dimensional PDE. Compared to the classsical LED localization, the proposed modified LED localization explicitly accounts for the mean-field advective dynamics over the phase space of the PDF and CDF. To illustrate the accuracy of the proposed closure, we apply our CDF method to one-dimensional single-species reactive transport with uncertain, heterogeneous advection velocities and reaction rates modeled as random fields.

  15. Non-stationary random vibration analysis of a 3D train-bridge system using the probability density evolution method

    Science.gov (United States)

    Yu, Zhi-wu; Mao, Jian-feng; Guo, Feng-qi; Guo, Wei

    2016-03-01

    Rail irregularity is one of the main sources causing train-bridge random vibration. A new random vibration theory for the coupled train-bridge systems is proposed in this paper. First, number theory method (NTM) with 2N-dimensional vectors for the stochastic harmonic function (SHF) of rail irregularity power spectrum density was adopted to determine the representative points of spatial frequencies and phases to generate the random rail irregularity samples, and the non-stationary rail irregularity samples were modulated with the slowly varying function. Second, the probability density evolution method (PDEM) was employed to calculate the random dynamic vibration of the three-dimensional (3D) train-bridge system by a program compiled on the MATLAB® software platform. Eventually, the Newmark-β integration method and double edge difference method of total variation diminishing (TVD) format were adopted to obtain the mean value curve, the standard deviation curve and the time-history probability density information of responses. A case study was presented in which the ICE-3 train travels on a three-span simply-supported high-speed railway bridge with excitation of random rail irregularity. The results showed that compared to the Monte Carlo simulation, the PDEM has higher computational efficiency for the same accuracy, i.e., an improvement by 1-2 orders of magnitude. Additionally, the influences of rail irregularity and train speed on the random vibration of the coupled train-bridge system were discussed.

  16. An investigation of student understanding of classical ideas related to quantum mechanics: Potential energy diagrams and spatial probability density

    Science.gov (United States)

    Stephanik, Brian Michael

    This dissertation describes the results of two related investigations into introductory student understanding of ideas from classical physics that are key elements of quantum mechanics. One investigation probes the extent to which students are able to interpret and apply potential energy diagrams (i.e., graphs of potential energy versus position). The other probes the extent to which students are able to reason classically about probability and spatial probability density. The results of these investigations revealed significant conceptual and reasoning difficulties that students encounter with these topics. The findings guided the design of instructional materials to address the major problems. Results from post-instructional assessments are presented that illustrate the impact of the curricula on student learning.

  17. Nonparametric tests for censored data

    CERN Document Server

    Bagdonavicus, Vilijandas; Nikulin, Mikhail

    2013-01-01

    This book concerns testing hypotheses in non-parametric models. Generalizations of many non-parametric tests to the case of censored and truncated data are considered. Most of the test results are proved and real applications are illustrated using examples. Theories and exercises are provided. The incorrect use of many tests applying most statistical software is highlighted and discussed.

  18. Charged-particle thermonuclear reaction rates: II. Tables and graphs of reaction rates and probability density functions

    International Nuclear Information System (INIS)

    Iliadis, C.; Longland, R.; Champagne, A.E.; Coc, A.; Fitzgerald, R.

    2010-01-01

    Numerical values of charged-particle thermonuclear reaction rates for nuclei in the A=14 to 40 region are tabulated. The results are obtained using a method, based on Monte Carlo techniques, that has been described in the preceding paper of this issue (Paper I). We present a low rate, median rate and high rate which correspond to the 0.16, 0.50 and 0.84 quantiles, respectively, of the cumulative reaction rate distribution. The meaning of these quantities is in general different from the commonly reported, but statistically meaningless expressions, 'lower limit', 'nominal value' and 'upper limit' of the total reaction rate. In addition, we approximate the Monte Carlo probability density function of the total reaction rate by a lognormal distribution and tabulate the lognormal parameters μ and σ at each temperature. We also provide a quantitative measure (Anderson-Darling test statistic) for the reliability of the lognormal approximation. The user can implement the approximate lognormal reaction rate probability density functions directly in a stellar model code for studies of stellar energy generation and nucleosynthesis. For each reaction, the Monte Carlo reaction rate probability density functions, together with their lognormal approximations, are displayed graphically for selected temperatures in order to provide a visual impression. Our new reaction rates are appropriate for bare nuclei in the laboratory. The nuclear physics input used to derive our reaction rates is presented in the subsequent paper of this issue (Paper III). In the fourth paper of this issue (Paper IV) we compare our new reaction rates to previous results.

  19. Speaker Linking and Applications using Non-Parametric Hashing Methods

    Science.gov (United States)

    2016-09-08

    nonparametric estimate of a multivariate density function,” The Annals of Math- ematical Statistics , vol. 36, no. 3, pp. 1049–1051, 1965. [9] E. A. Patrick...Speaker Linking and Applications using Non-Parametric Hashing Methods† Douglas Sturim and William M. Campbell MIT Lincoln Laboratory, Lexington, MA...with many approaches [1, 2]. For this paper, we focus on using i-vectors [2], but the methods apply to any embedding. For the task of speaker QBE and

  20. Estimation of probability density functions of damage parameter for valve leakage detection in reciprocating pump used in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Kyeom; Kim, Tae Yun; Kim, Hyun Su; Chai, Jang Bom; Lee, Jin Woo [Div. of Mechanical Engineering, Ajou University, Suwon (Korea, Republic of)

    2016-10-15

    This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage.

  1. Estimation of probability density functions of damage parameter for valve leakage detection in reciprocating pump used in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Jong Kyeom; Kim, Tae Yun; Kim, Hyun Su; Chai, Jang Bom; Lee, Jin Woo

    2016-01-01

    This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage

  2. Estimation of Probability Density Functions of Damage Parameter for Valve Leakage Detection in Reciprocating Pump Used in Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Jong Kyeom Lee

    2016-10-01

    Full Text Available This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage.

  3. Continuous time random walk model with asymptotical probability density of waiting times via inverse Mittag-Leffler function

    Science.gov (United States)

    Liang, Yingjie; Chen, Wen

    2018-04-01

    The mean squared displacement (MSD) of the traditional ultraslow diffusion is a logarithmic function of time. Recently, the continuous time random walk model is employed to characterize this ultraslow diffusion dynamics by connecting the heavy-tailed logarithmic function and its variation as the asymptotical waiting time density. In this study we investigate the limiting waiting time density of a general ultraslow diffusion model via the inverse Mittag-Leffler function, whose special case includes the traditional logarithmic ultraslow diffusion model. The MSD of the general ultraslow diffusion model is analytically derived as an inverse Mittag-Leffler function, and is observed to increase even more slowly than that of the logarithmic function model. The occurrence of very long waiting time in the case of the inverse Mittag-Leffler function has the largest probability compared with the power law model and the logarithmic function model. The Monte Carlo simulations of one dimensional sample path of a single particle are also performed. The results show that the inverse Mittag-Leffler waiting time density is effective in depicting the general ultraslow random motion.

  4. Nonparametric identification of copula structures

    KAUST Repository

    Li, Bo; Genton, Marc G.

    2013-01-01

    We propose a unified framework for testing a variety of assumptions commonly made about the structure of copulas, including symmetry, radial symmetry, joint symmetry, associativity and Archimedeanity, and max-stability. Our test is nonparametric

  5. The effect of fog on the probability density distribution of the ranging data of imaging laser radar

    Science.gov (United States)

    Song, Wenhua; Lai, JianCheng; Ghassemlooy, Zabih; Gu, Zhiyong; Yan, Wei; Wang, Chunyong; Li, Zhenhua

    2018-02-01

    This paper outlines theoretically investigations of the probability density distribution (PDD) of ranging data for the imaging laser radar (ILR) system operating at a wavelength of 905 nm under the fog condition. Based on the physical model of the reflected laser pulses from a standard Lambertian target, a theoretical approximate model of PDD of the ranging data is developed under different fog concentrations, which offer improved precision target ranging and imaging. An experimental test bed for the ILR system is developed and its performance is evaluated using a dedicated indoor atmospheric chamber under homogeneously controlled fog conditions. We show that the measured results are in good agreement with both the accurate and approximate models within a given margin of error of less than 1%.

  6. The effect of fog on the probability density distribution of the ranging data of imaging laser radar

    Directory of Open Access Journals (Sweden)

    Wenhua Song

    2018-02-01

    Full Text Available This paper outlines theoretically investigations of the probability density distribution (PDD of ranging data for the imaging laser radar (ILR system operating at a wavelength of 905 nm under the fog condition. Based on the physical model of the reflected laser pulses from a standard Lambertian target, a theoretical approximate model of PDD of the ranging data is developed under different fog concentrations, which offer improved precision target ranging and imaging. An experimental test bed for the ILR system is developed and its performance is evaluated using a dedicated indoor atmospheric chamber under homogeneously controlled fog conditions. We show that the measured results are in good agreement with both the accurate and approximate models within a given margin of error of less than 1%.

  7. Learning Grasp Affordance Densities

    DEFF Research Database (Denmark)

    Detry, Renaud; Kraft, Dirk; Kroemer, Oliver

    2011-01-01

    and relies on kernel density estimation to provide a continuous model. Grasp densities are learned and refined from exploration, by letting a robot “play” with an object in a sequence of graspand-drop actions: The robot uses visual cues to generate a set of grasp hypotheses; it then executes......We address the issue of learning and representing object grasp affordance models. We model grasp affordances with continuous probability density functions (grasp densities) which link object-relative grasp poses to their success probability. The underlying function representation is nonparametric...... these and records their outcomes. When a satisfactory number of grasp data is available, an importance-sampling algorithm turns these into a grasp density. We evaluate our method in a largely autonomous learning experiment run on three objects of distinct shapes. The experiment shows how learning increases success...

  8. Time-averaged probability density functions of soot nanoparticles along the centerline of a piloted turbulent diffusion flame using a scanning mobility particle sizer

    KAUST Repository

    Chowdhury, Snehaunshu; Boyette, Wesley; Roberts, William L.

    2017-01-01

    In this study, we demonstrate the use of a scanning mobility particle sizer (SMPS) as an effective tool to measure the probability density functions (PDFs) of soot nanoparticles in turbulent flames. Time-averaged soot PDFs necessary for validating

  9. Annihilation probability density and other applications of the Schwinger multichannel method to the positron and electron scattering

    International Nuclear Information System (INIS)

    Varella, Marcio Teixeira do Nascimento

    2001-12-01

    We have calculated annihilation probability densities (APD) for positron collisions against He atom and H 2 molecule. It was found that direct annihilation prevails at low energies, while annihilation following virtual positronium (Ps) formation is the dominant mechanism at higher energies. In room-temperature collisions (10 -2 eV) the APD spread over a considerable extension, being quite similar to the electronic densities of the targets. The capture of the positron in an electronic Feshbach resonance strongly enhanced the annihilation rate in e + -H 2 collisions. We also discuss strategies to improve the calculation of the annihilation parameter (Z eff ), after debugging the computational codes of the Schwinger Multichannel Method (SMC). Finally, we consider the inclusion of the Ps formation channel in the SMC and show that effective configurations (pseudo eigenstates of the Hamiltonian of the collision ) are able to significantly reduce the computational effort in positron scattering calculations. Cross sections for electron scattering by polyatomic molecules were obtained in three different approximations: static-exchange (SE); tatic-exchange-plus-polarization (SEP); and multichannel coupling. The calculations for polar targets were improved through the rotational resolution of scattering amplitudes in which the SMC was combined with the first Born approximation (FBA). In general, elastic cross sections (SE and SEP approximations) showed good agreement with available experimental data for several targets. Multichannel calculations for e - -H 2 O scattering, on the other hand, presented spurious structures at the electronic excitation thresholds (author)

  10. Ignition Probability

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — USFS, State Forestry, BLM, and DOI fire occurrence point locations from 1987 to 2008 were combined and converted into a fire occurrence probability or density grid...

  11. DPpackage: Bayesian Semi- and Nonparametric Modeling in R

    Directory of Open Access Journals (Sweden)

    Alejandro Jara

    2011-04-01

    Full Text Available Data analysis sometimes requires the relaxation of parametric assumptions in order to gain modeling flexibility and robustness against mis-specification of the probability model. In the Bayesian context, this is accomplished by placing a prior distribution on a function space, such as the space of all probability distributions or the space of all regression functions. Unfortunately, posterior distributions ranging over function spaces are highly complex and hence sampling methods play a key role. This paper provides an introduction to a simple, yet comprehensive, set of programs for the implementation of some Bayesian nonparametric and semiparametric models in R, DPpackage. Currently, DPpackage includes models for marginal and conditional density estimation, receiver operating characteristic curve analysis, interval-censored data, binary regression data, item response data, longitudinal and clustered data using generalized linear mixed models, and regression data using generalized additive models. The package also contains functions to compute pseudo-Bayes factors for model comparison and for eliciting the precision parameter of the Dirichlet process prior, and a general purpose Metropolis sampling algorithm. To maximize computational efficiency, the actual sampling for each model is carried out using compiled C, C++ or Fortran code.

  12. Bayesian nonparametric system reliability using sets of priors

    NARCIS (Netherlands)

    Walter, G.M.; Aslett, L.J.M.; Coolen, F.P.A.

    2016-01-01

    An imprecise Bayesian nonparametric approach to system reliability with multiple types of components is developed. This allows modelling partial or imperfect prior knowledge on component failure distributions in a flexible way through bounds on the functioning probability. Given component level test

  13. Parametric vs. Nonparametric Regression Modelling within Clinical Decision Support

    Czech Academy of Sciences Publication Activity Database

    Kalina, Jan; Zvárová, Jana

    2017-01-01

    Roč. 5, č. 1 (2017), s. 21-27 ISSN 1805-8698 R&D Projects: GA ČR GA17-01251S Institutional support: RVO:67985807 Keywords : decision support systems * decision rules * statistical analysis * nonparametric regression Subject RIV: IN - Informatics, Computer Science OBOR OECD: Statistics and probability

  14. Nonparametric predictive pairwise comparison with competing risks

    International Nuclear Information System (INIS)

    Coolen-Maturi, Tahani

    2014-01-01

    In reliability, failure data often correspond to competing risks, where several failure modes can cause a unit to fail. This paper presents nonparametric predictive inference (NPI) for pairwise comparison with competing risks data, assuming that the failure modes are independent. These failure modes could be the same or different among the two groups, and these can be both observed and unobserved failure modes. NPI is a statistical approach based on few assumptions, with inferences strongly based on data and with uncertainty quantified via lower and upper probabilities. The focus is on the lower and upper probabilities for the event that the lifetime of a future unit from one group, say Y, is greater than the lifetime of a future unit from the second group, say X. The paper also shows how the two groups can be compared based on particular failure mode(s), and the comparison of the two groups when some of the competing risks are combined is discussed

  15. Decision support using nonparametric statistics

    CERN Document Server

    Beatty, Warren

    2018-01-01

    This concise volume covers nonparametric statistics topics that most are most likely to be seen and used from a practical decision support perspective. While many degree programs require a course in parametric statistics, these methods are often inadequate for real-world decision making in business environments. Much of the data collected today by business executives (for example, customer satisfaction opinions) requires nonparametric statistics for valid analysis, and this book provides the reader with a set of tools that can be used to validly analyze all data, regardless of type. Through numerous examples and exercises, this book explains why nonparametric statistics will lead to better decisions and how they are used to reach a decision, with a wide array of business applications. Online resources include exercise data, spreadsheets, and solutions.

  16. A Student’s t Mixture Probability Hypothesis Density Filter for Multi-Target Tracking with Outliers

    Science.gov (United States)

    Liu, Zhuowei; Chen, Shuxin; Wu, Hao; He, Renke; Hao, Lin

    2018-01-01

    In multi-target tracking, the outliers-corrupted process and measurement noises can reduce the performance of the probability hypothesis density (PHD) filter severely. To solve the problem, this paper proposed a novel PHD filter, called Student’s t mixture PHD (STM-PHD) filter. The proposed filter models the heavy-tailed process noise and measurement noise as a Student’s t distribution as well as approximates the multi-target intensity as a mixture of Student’s t components to be propagated in time. Then, a closed PHD recursion is obtained based on Student’s t approximation. Our approach can make full use of the heavy-tailed characteristic of a Student’s t distribution to handle the situations with heavy-tailed process and the measurement noises. The simulation results verify that the proposed filter can overcome the negative effect generated by outliers and maintain a good tracking accuracy in the simultaneous presence of process and measurement outliers. PMID:29617348

  17. A Case Series of the Probability Density and Cumulative Distribution of Laryngeal Disease in a Tertiary Care Voice Center.

    Science.gov (United States)

    de la Fuente, Jaime; Garrett, C Gaelyn; Ossoff, Robert; Vinson, Kim; Francis, David O; Gelbard, Alexander

    2017-11-01

    To examine the distribution of clinic and operative pathology in a tertiary care laryngology practice. Probability density and cumulative distribution analyses (Pareto analysis) was used to rank order laryngeal conditions seen in an outpatient tertiary care laryngology practice and those requiring surgical intervention during a 3-year period. Among 3783 new clinic consultations and 1380 operative procedures, voice disorders were the most common primary diagnostic category seen in clinic (n = 3223), followed by airway (n = 374) and swallowing (n = 186) disorders. Within the voice strata, the most common primary ICD-9 code used was dysphonia (41%), followed by unilateral vocal fold paralysis (UVFP) (9%) and cough (7%). Among new voice patients, 45% were found to have a structural abnormality. The most common surgical indications were laryngotracheal stenosis (37%), followed by recurrent respiratory papillomatosis (18%) and UVFP (17%). Nearly 55% of patients presenting to a tertiary referral laryngology practice did not have an identifiable structural abnormality in the larynx on direct or indirect examination. The distribution of ICD-9 codes requiring surgical intervention was disparate from that seen in clinic. Application of the Pareto principle may improve resource allocation in laryngology, but these initial results require confirmation across multiple institutions.

  18. On the shapes of the presumed probability density function for the modeling of turbulence-radiation interactions

    International Nuclear Information System (INIS)

    Liu, L.H.; Xu, X.; Chen, Y.L.

    2004-01-01

    The laminar flamelet equations in combination with the joint probability density function (PDF) transport equation of mixture fraction and turbulence frequency have been used to simulate turbulent jet diffusion flames. To check the suitability of the presumed shapes of the PDF for the modeling of turbulence-radiation interactions (TRI), two types of presumed joint PDFs are constructed by using the second-order moments of temperature and the species concentrations, which are derived by the laminar flamelet model. The time-averaged radiative source terms and the time-averaged absorption coefficients are calculated by the presumed joint PDF approaches, and compared with those obtained by the laminar flamelet model. By comparison, it is shown that there are obvious differences between the results of the independent PDF approach and the laminar flamelet model. Generally, the results of the dependent PDF approach agree better with those of the flamelet model. For the modeling of TRI, the dependent PDF approach is superior to the independent PDF approach

  19. Evaluation of Presumed Probability-Density-Function Models in Non-Premixed Flames by using Large Eddy Simulation

    International Nuclear Information System (INIS)

    Cao Hong-Jun; Zhang Hui-Qiang; Lin Wen-Yi

    2012-01-01

    Four kinds of presumed probability-density-function (PDF) models for non-premixed turbulent combustion are evaluated in flames with various stoichiometric mixture fractions by using large eddy simulation (LES). The LES code is validated by the experimental data of a classical turbulent jet flame (Sandia flame D). The mean and rms temperatures obtained by the presumed PDF models are compared with the LES results. The β-function model achieves a good prediction for different flames. The predicted rms temperature by using the double-δ function model is very small and unphysical in the vicinity of the maximum mean temperature. The clip-Gaussian model and the multi-δ function model make a worse prediction of the extremely fuel-rich or fuel-lean side due to the clip at the boundary of the mixture fraction space. The results also show that the overall prediction performance of presumed PDF models is better at mediate stoichiometric mixture fractions than that at very small or very large ones. (fundamental areas of phenomenology(including applications))

  20. Testing discontinuities in nonparametric regression

    KAUST Repository

    Dai, Wenlin

    2017-01-19

    In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100

  1. Testing discontinuities in nonparametric regression

    KAUST Repository

    Dai, Wenlin; Zhou, Yuejin; Tong, Tiejun

    2017-01-01

    In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100

  2. Application of nonparametric statistic method for DNBR limit calculation

    International Nuclear Information System (INIS)

    Dong Bo; Kuang Bo; Zhu Xuenong

    2013-01-01

    Background: Nonparametric statistical method is a kind of statistical inference method not depending on a certain distribution; it calculates the tolerance limits under certain probability level and confidence through sampling methods. The DNBR margin is one important parameter of NPP design, which presents the safety level of NPP. Purpose and Methods: This paper uses nonparametric statistical method basing on Wilks formula and VIPER-01 subchannel analysis code to calculate the DNBR design limits (DL) of 300 MW NPP (Nuclear Power Plant) during the complete loss of flow accident, simultaneously compared with the DL of DNBR through means of ITDP to get certain DNBR margin. Results: The results indicate that this method can gain 2.96% DNBR margin more than that obtained by ITDP methodology. Conclusions: Because of the reduction of the conservation during analysis process, the nonparametric statistical method can provide greater DNBR margin and the increase of DNBR margin is benefited for the upgrading of core refuel scheme. (authors)

  3. Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables

    Science.gov (United States)

    Cannon, Alex J.

    2018-01-01

    Most bias correction algorithms used in climatology, for example quantile mapping, are applied to univariate time series. They neglect the dependence between different variables. Those that are multivariate often correct only limited measures of joint dependence, such as Pearson or Spearman rank correlation. Here, an image processing technique designed to transfer colour information from one image to another—the N-dimensional probability density function transform—is adapted for use as a multivariate bias correction algorithm (MBCn) for climate model projections/predictions of multiple climate variables. MBCn is a multivariate generalization of quantile mapping that transfers all aspects of an observed continuous multivariate distribution to the corresponding multivariate distribution of variables from a climate model. When applied to climate model projections, changes in quantiles of each variable between the historical and projection period are also preserved. The MBCn algorithm is demonstrated on three case studies. First, the method is applied to an image processing example with characteristics that mimic a climate projection problem. Second, MBCn is used to correct a suite of 3-hourly surface meteorological variables from the Canadian Centre for Climate Modelling and Analysis Regional Climate Model (CanRCM4) across a North American domain. Components of the Canadian Forest Fire Weather Index (FWI) System, a complicated set of multivariate indices that characterizes the risk of wildfire, are then calculated and verified against observed values. Third, MBCn is used to correct biases in the spatial dependence structure of CanRCM4 precipitation fields. Results are compared against a univariate quantile mapping algorithm, which neglects the dependence between variables, and two multivariate bias correction algorithms, each of which corrects a different form of inter-variable correlation structure. MBCn outperforms these alternatives, often by a large margin

  4. Adaptive nonparametric Bayesian inference using location-scale mixture priors

    NARCIS (Netherlands)

    Jonge, de R.; Zanten, van J.H.

    2010-01-01

    We study location-scale mixture priors for nonparametric statistical problems, including multivariate regression, density estimation and classification. We show that a rate-adaptive procedure can be obtained if the prior is properly constructed. In particular, we show that adaptation is achieved if

  5. Nonparametric factor analysis of time series

    OpenAIRE

    Rodríguez-Poo, Juan M.; Linton, Oliver Bruce

    1998-01-01

    We introduce a nonparametric smoothing procedure for nonparametric factor analaysis of multivariate time series. The asymptotic properties of the proposed procedures are derived. We present an application based on the residuals from the Fair macromodel.

  6. Nonparametric Inference for Periodic Sequences

    KAUST Repository

    Sun, Ying

    2012-02-01

    This article proposes a nonparametric method for estimating the period and values of a periodic sequence when the data are evenly spaced in time. The period is estimated by a "leave-out-one-cycle" version of cross-validation (CV) and complements the periodogram, a widely used tool for period estimation. The CV method is computationally simple and implicitly penalizes multiples of the smallest period, leading to a "virtually" consistent estimator of integer periods. This estimator is investigated both theoretically and by simulation.We also propose a nonparametric test of the null hypothesis that the data have constantmean against the alternative that the sequence of means is periodic. Finally, our methodology is demonstrated on three well-known time series: the sunspots and lynx trapping data, and the El Niño series of sea surface temperatures. © 2012 American Statistical Association and the American Society for Quality.

  7. Nonparametric predictive inference in reliability

    International Nuclear Information System (INIS)

    Coolen, F.P.A.; Coolen-Schrijner, P.; Yan, K.J.

    2002-01-01

    We introduce a recently developed statistical approach, called nonparametric predictive inference (NPI), to reliability. Bounds for the survival function for a future observation are presented. We illustrate how NPI can deal with right-censored data, and discuss aspects of competing risks. We present possible applications of NPI for Bernoulli data, and we briefly outline applications of NPI for replacement decisions. The emphasis is on introduction and illustration of NPI in reliability contexts, detailed mathematical justifications are presented elsewhere

  8. Nonparametric predictive inference for combining diagnostic tests with parametric copula

    Science.gov (United States)

    Muhammad, Noryanti; Coolen, F. P. A.; Coolen-Maturi, T.

    2017-09-01

    Measuring the accuracy of diagnostic tests is crucial in many application areas including medicine and health care. The Receiver Operating Characteristic (ROC) curve is a popular statistical tool for describing the performance of diagnostic tests. The area under the ROC curve (AUC) is often used as a measure of the overall performance of the diagnostic test. In this paper, we interest in developing strategies for combining test results in order to increase the diagnostic accuracy. We introduce nonparametric predictive inference (NPI) for combining two diagnostic test results with considering dependence structure using parametric copula. NPI is a frequentist statistical framework for inference on a future observation based on past data observations. NPI uses lower and upper probabilities to quantify uncertainty and is based on only a few modelling assumptions. While copula is a well-known statistical concept for modelling dependence of random variables. A copula is a joint distribution function whose marginals are all uniformly distributed and it can be used to model the dependence separately from the marginal distributions. In this research, we estimate the copula density using a parametric method which is maximum likelihood estimator (MLE). We investigate the performance of this proposed method via data sets from the literature and discuss results to show how our method performs for different family of copulas. Finally, we briefly outline related challenges and opportunities for future research.

  9. Nonparametric estimation for censored mixture data with application to the Cooperative Huntington's Observational Research Trial.

    Science.gov (United States)

    Wang, Yuanjia; Garcia, Tanya P; Ma, Yanyuan

    2012-01-01

    This work presents methods for estimating genotype-specific distributions from genetic epidemiology studies where the event times are subject to right censoring, the genotypes are not directly observed, and the data arise from a mixture of scientifically meaningful subpopulations. Examples of such studies include kin-cohort studies and quantitative trait locus (QTL) studies. Current methods for analyzing censored mixture data include two types of nonparametric maximum likelihood estimators (NPMLEs) which do not make parametric assumptions on the genotype-specific density functions. Although both NPMLEs are commonly used, we show that one is inefficient and the other inconsistent. To overcome these deficiencies, we propose three classes of consistent nonparametric estimators which do not assume parametric density models and are easy to implement. They are based on the inverse probability weighting (IPW), augmented IPW (AIPW), and nonparametric imputation (IMP). The AIPW achieves the efficiency bound without additional modeling assumptions. Extensive simulation experiments demonstrate satisfactory performance of these estimators even when the data are heavily censored. We apply these estimators to the Cooperative Huntington's Observational Research Trial (COHORT), and provide age-specific estimates of the effect of mutation in the Huntington gene on mortality using a sample of family members. The close approximation of the estimated non-carrier survival rates to that of the U.S. population indicates small ascertainment bias in the COHORT family sample. Our analyses underscore an elevated risk of death in Huntington gene mutation carriers compared to non-carriers for a wide age range, and suggest that the mutation equally affects survival rates in both genders. The estimated survival rates are useful in genetic counseling for providing guidelines on interpreting the risk of death associated with a positive genetic testing, and in facilitating future subjects at risk

  10. Nonparametric identification of copula structures

    KAUST Repository

    Li, Bo

    2013-06-01

    We propose a unified framework for testing a variety of assumptions commonly made about the structure of copulas, including symmetry, radial symmetry, joint symmetry, associativity and Archimedeanity, and max-stability. Our test is nonparametric and based on the asymptotic distribution of the empirical copula process.We perform simulation experiments to evaluate our test and conclude that our method is reliable and powerful for assessing common assumptions on the structure of copulas, particularly when the sample size is moderately large. We illustrate our testing approach on two datasets. © 2013 American Statistical Association.

  11. Nonparametric Mixture of Regression Models.

    Science.gov (United States)

    Huang, Mian; Li, Runze; Wang, Shaoli

    2013-07-01

    Motivated by an analysis of US house price index data, we propose nonparametric finite mixture of regression models. We study the identifiability issue of the proposed models, and develop an estimation procedure by employing kernel regression. We further systematically study the sampling properties of the proposed estimators, and establish their asymptotic normality. A modified EM algorithm is proposed to carry out the estimation procedure. We show that our algorithm preserves the ascent property of the EM algorithm in an asymptotic sense. Monte Carlo simulations are conducted to examine the finite sample performance of the proposed estimation procedure. An empirical analysis of the US house price index data is illustrated for the proposed methodology.

  12. The Precise Time Course of Lexical Activation: MEG Measurements of the Effects of Frequency, Probability, and Density in Lexical Decision

    Science.gov (United States)

    Stockall, Linnaea; Stringfellow, Andrew; Marantz, Alec

    2004-01-01

    Visually presented letter strings consistently yield three MEG response components: the M170, associated with letter-string processing (Tarkiainen, Helenius, Hansen, Cornelissen, & Salmelin, 1999); the M250, affected by phonotactic probability, (Pylkkanen, Stringfellow, & Marantz, 2002); and the M350, responsive to lexical frequency (Embick,…

  13. Task 4.1: Development of a framework for creating a databank to generate probability density functions for process parameters

    International Nuclear Information System (INIS)

    Burgazzi, Luciano

    2011-01-01

    PSA analysis should be based on the best available data for the types of equipment and systems in the plant. In some cases very limited data may be available for evolutionary designs or new equipments, especially in the case of passive systems. It has been recognized that difficulties arise in addressing the uncertainties related to the physical phenomena and characterizing the parameters relevant to the passive system performance evaluation, since the unavailability of a consistent operational and experimental data base. This lack of experimental evidence and validated data forces the analyst to resort to expert/engineering judgment to a large extent, thus making the results strongly dependent upon the expert elicitation process. This prompts the need for the development of a framework for constructing a database to generate probability distributions for the parameters influencing the system behaviour. The objective of the task is to develop a consistent framework aimed at creating probability distributions for the parameters relevant to the passive system performance evaluation. In order to achieve this goal considerable experience and engineering judgement are also required to determine which existing data are most applicable to the new systems or which generic data bases or models provide the best information for the system design. Eventually in case of absence of documented specific reliability data, documented expert judgement coming out from a well structured procedure could be used to envisage sound probability distributions for the parameters under interest

  14. Determination of probability density functions for parameters in the Munson-Dawson model for creep behavior of salt

    International Nuclear Information System (INIS)

    Pfeifle, T.W.; Mellegard, K.D.; Munson, D.E.

    1992-10-01

    The modified Munson-Dawson (M-D) constitutive model that describes the creep behavior of salt will be used in performance assessment calculations to assess compliance of the Waste Isolation Pilot Plant (WIPP) facility with requirements governing the disposal of nuclear waste. One of these standards requires that the uncertainty of future states of the system, material model parameters, and data be addressed in the performance assessment models. This paper presents a method in which measurement uncertainty and the inherent variability of the material are characterized by treating the M-D model parameters as random variables. The random variables can be described by appropriate probability distribution functions which then can be used in Monte Carlo or structural reliability analyses. Estimates of three random variables in the M-D model were obtained by fitting a scalar form of the model to triaxial compression creep data generated from tests of WIPP salt. Candidate probability distribution functions for each of the variables were then fitted to the estimates and their relative goodness-of-fit tested using the Kolmogorov-Smirnov statistic. A sophisticated statistical software package obtained from BMDP Statistical Software, Inc. was used in the M-D model fitting. A separate software package, STATGRAPHICS, was used in fitting the candidate probability distribution functions to estimates of the variables. Skewed distributions, i.e., lognormal and Weibull, were found to be appropriate for the random variables analyzed

  15. Nonparametric correlation models for portfolio allocation

    DEFF Research Database (Denmark)

    Aslanidis, Nektarios; Casas, Isabel

    2013-01-01

    This article proposes time-varying nonparametric and semiparametric estimators of the conditional cross-correlation matrix in the context of portfolio allocation. Simulations results show that the nonparametric and semiparametric models are best in DGPs with substantial variability or structural ...... currencies. Results show the nonparametric model generally dominates the others when evaluating in-sample. However, the semiparametric model is best for out-of-sample analysis....

  16. A contingency table approach to nonparametric testing

    CERN Document Server

    Rayner, JCW

    2000-01-01

    Most texts on nonparametric techniques concentrate on location and linear-linear (correlation) tests, with less emphasis on dispersion effects and linear-quadratic tests. Tests for higher moment effects are virtually ignored. Using a fresh approach, A Contingency Table Approach to Nonparametric Testing unifies and extends the popular, standard tests by linking them to tests based on models for data that can be presented in contingency tables.This approach unifies popular nonparametric statistical inference and makes the traditional, most commonly performed nonparametric analyses much more comp

  17. Nonparametric statistics for social and behavioral sciences

    CERN Document Server

    Kraska-MIller, M

    2013-01-01

    Introduction to Research in Social and Behavioral SciencesBasic Principles of ResearchPlanning for ResearchTypes of Research Designs Sampling ProceduresValidity and Reliability of Measurement InstrumentsSteps of the Research Process Introduction to Nonparametric StatisticsData AnalysisOverview of Nonparametric Statistics and Parametric Statistics Overview of Parametric Statistics Overview of Nonparametric StatisticsImportance of Nonparametric MethodsMeasurement InstrumentsAnalysis of Data to Determine Association and Agreement Pearson Chi-Square Test of Association and IndependenceContingency

  18. Do non-gaussian effects decrease tunneling probabilities? Three-loop instanton density for the double-well potential

    International Nuclear Information System (INIS)

    Olejnik, S.

    1989-01-01

    It is shown that the leading and next-to-leading non-gaussian effects have a minor inlfuence on the instanton density for the double-well potential: it is slightly increased, contrary to the claims of other authors. We point out a connection to recent quantitative studies of topological effects in gauge theories. (orig.)

  19. Nonparametric Identification and Estimation of Finite Mixture Models of Dynamic Discrete Choices

    OpenAIRE

    Hiroyuki Kasahara; Katsumi Shimotsu

    2006-01-01

    In dynamic discrete choice analysis, controlling for unobserved heterogeneity is an important issue, and finite mixture models provide flexible ways to account for unobserved heterogeneity. This paper studies nonparametric identifiability of type probabilities and type-specific component distributions in finite mixture models of dynamic discrete choices. We derive sufficient conditions for nonparametric identification for various finite mixture models of dynamic discrete choices used in appli...

  20. Nonparametric e-Mixture Estimation.

    Science.gov (United States)

    Takano, Ken; Hino, Hideitsu; Akaho, Shotaro; Murata, Noboru

    2016-12-01

    This study considers the common situation in data analysis when there are few observations of the distribution of interest or the target distribution, while abundant observations are available from auxiliary distributions. In this situation, it is natural to compensate for the lack of data from the target distribution by using data sets from these auxiliary distributions-in other words, approximating the target distribution in a subspace spanned by a set of auxiliary distributions. Mixture modeling is one of the simplest ways to integrate information from the target and auxiliary distributions in order to express the target distribution as accurately as possible. There are two typical mixtures in the context of information geometry: the [Formula: see text]- and [Formula: see text]-mixtures. The [Formula: see text]-mixture is applied in a variety of research fields because of the presence of the well-known expectation-maximazation algorithm for parameter estimation, whereas the [Formula: see text]-mixture is rarely used because of its difficulty of estimation, particularly for nonparametric models. The [Formula: see text]-mixture, however, is a well-tempered distribution that satisfies the principle of maximum entropy. To model a target distribution with scarce observations accurately, this letter proposes a novel framework for a nonparametric modeling of the [Formula: see text]-mixture and a geometrically inspired estimation algorithm. As numerical examples of the proposed framework, a transfer learning setup is considered. The experimental results show that this framework works well for three types of synthetic data sets, as well as an EEG real-world data set.

  1. The non-Gaussian joint probability density function of slope and elevation for a nonlinear gravity wave field. [in ocean surface

    Science.gov (United States)

    Huang, N. E.; Long, S. R.; Bliven, L. F.; Tung, C.-C.

    1984-01-01

    On the basis of the mapping method developed by Huang et al. (1983), an analytic expression for the non-Gaussian joint probability density function of slope and elevation for nonlinear gravity waves is derived. Various conditional and marginal density functions are also obtained through the joint density function. The analytic results are compared with a series of carefully controlled laboratory observations, and good agreement is noted. Furthermore, the laboratory wind wave field observations indicate that the capillary or capillary-gravity waves may not be the dominant components in determining the total roughness of the wave field. Thus, the analytic results, though derived specifically for the gravity waves, may have more general applications.

  2. Analysis of small sample size studies using nonparametric bootstrap test with pooled resampling method.

    Science.gov (United States)

    Dwivedi, Alok Kumar; Mallawaarachchi, Indika; Alvarado, Luis A

    2017-06-30

    Experimental studies in biomedical research frequently pose analytical problems related to small sample size. In such studies, there are conflicting findings regarding the choice of parametric and nonparametric analysis, especially with non-normal data. In such instances, some methodologists questioned the validity of parametric tests and suggested nonparametric tests. In contrast, other methodologists found nonparametric tests to be too conservative and less powerful and thus preferred using parametric tests. Some researchers have recommended using a bootstrap test; however, this method also has small sample size limitation. We used a pooled method in nonparametric bootstrap test that may overcome the problem related with small samples in hypothesis testing. The present study compared nonparametric bootstrap test with pooled resampling method corresponding to parametric, nonparametric, and permutation tests through extensive simulations under various conditions and using real data examples. The nonparametric pooled bootstrap t-test provided equal or greater power for comparing two means as compared with unpaired t-test, Welch t-test, Wilcoxon rank sum test, and permutation test while maintaining type I error probability for any conditions except for Cauchy and extreme variable lognormal distributions. In such cases, we suggest using an exact Wilcoxon rank sum test. Nonparametric bootstrap paired t-test also provided better performance than other alternatives. Nonparametric bootstrap test provided benefit over exact Kruskal-Wallis test. We suggest using nonparametric bootstrap test with pooled resampling method for comparing paired or unpaired means and for validating the one way analysis of variance test results for non-normal data in small sample size studies. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Innovative Methods for Estimating Densities and Detection Probabilities of Secretive Reptiles Including Invasive Constrictors and Rare Upland Snakes

    Science.gov (United States)

    2018-01-30

    home range  maintenance  or attraction to or avoidance of  landscape features, including  roads  (Morales et al. 2004, McClintock et al. 2012). For example...radiotelemetry and extensive road survey data are used to generate the first density estimates available for the species. The results show that southern...secretive snakes that combines behavioral observations of snake road crossing speed, systematic road survey data, and simulations of spatial

  4. Influence of the level of fit of a density probability function to wind-speed data on the WECS mean power output estimation

    International Nuclear Information System (INIS)

    Carta, Jose A.; Ramirez, Penelope; Velazquez, Sergio

    2008-01-01

    Static methods which are based on statistical techniques to estimate the mean power output of a WECS (wind energy conversion system) have been widely employed in the scientific literature related to wind energy. In the static method which we use in this paper, for a given wind regime probability distribution function and a known WECS power curve, the mean power output of a WECS is obtained by resolving the integral, usually using numerical evaluation techniques, of the product of these two functions. In this paper an analysis is made of the influence of the level of fit between an empirical probability density function of a sample of wind speeds and the probability density function of the adjusted theoretical model on the relative error ε made in the estimation of the mean annual power output of a WECS. The mean power output calculated through the use of a quasi-dynamic or chronological method, that is to say using time-series of wind speed data and the power versus wind speed characteristic of the wind turbine, serves as the reference. The suitability of the distributions is judged from the adjusted R 2 statistic (R a 2 ). Hourly mean wind speeds recorded at 16 weather stations located in the Canarian Archipelago, an extensive catalogue of wind-speed probability models and two wind turbines of 330 and 800 kW rated power are used in this paper. Among the general conclusions obtained, the following can be pointed out: (a) that the R a 2 statistic might be useful as an initial gross indicator of the relative error made in the mean annual power output estimation of a WECS when a probabilistic method is employed; (b) the relative errors tend to decrease, in accordance with a trend line defined by a second-order polynomial, as R a 2 increases

  5. Influence of the level of fit of a density probability function to wind-speed data on the WECS mean power output estimation

    Energy Technology Data Exchange (ETDEWEB)

    Carta, Jose A. [Department of Mechanical Engineering, University of Las Palmas de Gran Canaria, Campus de Tafira s/n, 35017 Las Palmas de Gran Canaria, Canary Islands (Spain); Ramirez, Penelope; Velazquez, Sergio [Department of Renewable Energies, Technological Institute of the Canary Islands, Pozo Izquierdo Beach s/n, 35119 Santa Lucia, Gran Canaria, Canary Islands (Spain)

    2008-10-15

    Static methods which are based on statistical techniques to estimate the mean power output of a WECS (wind energy conversion system) have been widely employed in the scientific literature related to wind energy. In the static method which we use in this paper, for a given wind regime probability distribution function and a known WECS power curve, the mean power output of a WECS is obtained by resolving the integral, usually using numerical evaluation techniques, of the product of these two functions. In this paper an analysis is made of the influence of the level of fit between an empirical probability density function of a sample of wind speeds and the probability density function of the adjusted theoretical model on the relative error {epsilon} made in the estimation of the mean annual power output of a WECS. The mean power output calculated through the use of a quasi-dynamic or chronological method, that is to say using time-series of wind speed data and the power versus wind speed characteristic of the wind turbine, serves as the reference. The suitability of the distributions is judged from the adjusted R{sup 2} statistic (R{sub a}{sup 2}). Hourly mean wind speeds recorded at 16 weather stations located in the Canarian Archipelago, an extensive catalogue of wind-speed probability models and two wind turbines of 330 and 800 kW rated power are used in this paper. Among the general conclusions obtained, the following can be pointed out: (a) that the R{sub a}{sup 2} statistic might be useful as an initial gross indicator of the relative error made in the mean annual power output estimation of a WECS when a probabilistic method is employed; (b) the relative errors tend to decrease, in accordance with a trend line defined by a second-order polynomial, as R{sub a}{sup 2} increases. (author)

  6. Bayesian Nonparametric Longitudinal Data Analysis.

    Science.gov (United States)

    Quintana, Fernando A; Johnson, Wesley O; Waetjen, Elaine; Gold, Ellen

    2016-01-01

    Practical Bayesian nonparametric methods have been developed across a wide variety of contexts. Here, we develop a novel statistical model that generalizes standard mixed models for longitudinal data that include flexible mean functions as well as combined compound symmetry (CS) and autoregressive (AR) covariance structures. AR structure is often specified through the use of a Gaussian process (GP) with covariance functions that allow longitudinal data to be more correlated if they are observed closer in time than if they are observed farther apart. We allow for AR structure by considering a broader class of models that incorporates a Dirichlet Process Mixture (DPM) over the covariance parameters of the GP. We are able to take advantage of modern Bayesian statistical methods in making full predictive inferences and about characteristics of longitudinal profiles and their differences across covariate combinations. We also take advantage of the generality of our model, which provides for estimation of a variety of covariance structures. We observe that models that fail to incorporate CS or AR structure can result in very poor estimation of a covariance or correlation matrix. In our illustration using hormone data observed on women through the menopausal transition, biology dictates the use of a generalized family of sigmoid functions as a model for time trends across subpopulation categories.

  7. Nonparametric Bayesian Modeling of Complex Networks

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Mørup, Morten

    2013-01-01

    an infinite mixture model as running example, we go through the steps of deriving the model as an infinite limit of a finite parametric model, inferring the model parameters by Markov chain Monte Carlo, and checking the model?s fit and predictive performance. We explain how advanced nonparametric models......Modeling structure in complex networks using Bayesian nonparametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This article provides a gentle introduction to nonparametric Bayesian modeling of complex networks: Using...

  8. Nonparametric estimation for censored mixture data with application to the Cooperative Huntington’s Observational Research Trial

    Science.gov (United States)

    Wang, Yuanjia; Garcia, Tanya P.; Ma, Yanyuan

    2012-01-01

    This work presents methods for estimating genotype-specific distributions from genetic epidemiology studies where the event times are subject to right censoring, the genotypes are not directly observed, and the data arise from a mixture of scientifically meaningful subpopulations. Examples of such studies include kin-cohort studies and quantitative trait locus (QTL) studies. Current methods for analyzing censored mixture data include two types of nonparametric maximum likelihood estimators (NPMLEs) which do not make parametric assumptions on the genotype-specific density functions. Although both NPMLEs are commonly used, we show that one is inefficient and the other inconsistent. To overcome these deficiencies, we propose three classes of consistent nonparametric estimators which do not assume parametric density models and are easy to implement. They are based on the inverse probability weighting (IPW), augmented IPW (AIPW), and nonparametric imputation (IMP). The AIPW achieves the efficiency bound without additional modeling assumptions. Extensive simulation experiments demonstrate satisfactory performance of these estimators even when the data are heavily censored. We apply these estimators to the Cooperative Huntington’s Observational Research Trial (COHORT), and provide age-specific estimates of the effect of mutation in the Huntington gene on mortality using a sample of family members. The close approximation of the estimated non-carrier survival rates to that of the U.S. population indicates small ascertainment bias in the COHORT family sample. Our analyses underscore an elevated risk of death in Huntington gene mutation carriers compared to non-carriers for a wide age range, and suggest that the mutation equally affects survival rates in both genders. The estimated survival rates are useful in genetic counseling for providing guidelines on interpreting the risk of death associated with a positive genetic testing, and in facilitating future subjects at risk

  9. Nonparametric model validations for hidden Markov models with applications in financial econometrics.

    Science.gov (United States)

    Zhao, Zhibiao

    2011-06-01

    We address the nonparametric model validation problem for hidden Markov models with partially observable variables and hidden states. We achieve this goal by constructing a nonparametric simultaneous confidence envelope for transition density function of the observable variables and checking whether the parametric density estimate is contained within such an envelope. Our specification test procedure is motivated by a functional connection between the transition density of the observable variables and the Markov transition kernel of the hidden states. Our approach is applicable for continuous time diffusion models, stochastic volatility models, nonlinear time series models, and models with market microstructure noise.

  10. Nonparametric functional mapping of quantitative trait loci.

    Science.gov (United States)

    Yang, Jie; Wu, Rongling; Casella, George

    2009-03-01

    Functional mapping is a useful tool for mapping quantitative trait loci (QTL) that control dynamic traits. It incorporates mathematical aspects of biological processes into the mixture model-based likelihood setting for QTL mapping, thus increasing the power of QTL detection and the precision of parameter estimation. However, in many situations there is no obvious functional form and, in such cases, this strategy will not be optimal. Here we propose to use nonparametric function estimation, typically implemented with B-splines, to estimate the underlying functional form of phenotypic trajectories, and then construct a nonparametric test to find evidence of existing QTL. Using the representation of a nonparametric regression as a mixed model, the final test statistic is a likelihood ratio test. We consider two types of genetic maps: dense maps and general maps, and the power of nonparametric functional mapping is investigated through simulation studies and demonstrated by examples.

  11. Essays on nonparametric econometrics of stochastic volatility

    NARCIS (Netherlands)

    Zu, Y.

    2012-01-01

    Volatility is a concept that describes the variation of financial returns. Measuring and modelling volatility dynamics is an important aspect of financial econometrics. This thesis is concerned with nonparametric approaches to volatility measurement and volatility model validation.

  12. A non-parametric Bayesian approach to decompounding from high frequency data

    NARCIS (Netherlands)

    Gugushvili, Shota; van der Meulen, F.H.; Spreij, Peter

    2016-01-01

    Given a sample from a discretely observed compound Poisson process, we consider non-parametric estimation of the density f0 of its jump sizes, as well as of its intensity λ0. We take a Bayesian approach to the problem and specify the prior on f0 as the Dirichlet location mixture of normal densities.

  13. Correlator bank detection of gravitational wave chirps--False-alarm probability, template density, and thresholds: Behind and beyond the minimal-match issue

    International Nuclear Information System (INIS)

    Croce, R.P.; Demma, Th.; Pierro, V.; Pinto, I.M.; Longo, M.; Marano, S.; Matta, V.

    2004-01-01

    The general problem of computing the false-alarm probability vs the detection-threshold relationship for a bank of correlators is addressed, in the context of maximum-likelihood detection of gravitational waves in additive stationary Gaussian noise. Specific reference is made to chirps from coalescing binary systems. Accurate (lower-bound) approximants for the cumulative distribution of the whole-bank supremum are deduced from a class of Bonferroni-type inequalities. The asymptotic properties of the cumulative distribution are obtained, in the limit where the number of correlators goes to infinity. The validity of numerical simulations made on small-size banks is extended to banks of any size, via a Gaussian-correlation inequality. The result is used to readdress the problem of relating the template density to the fraction of potentially observable sources which could be dismissed as an effect of template space discreteness

  14. Impact of distributed generation in the probability density of voltage sags; Impacto da geracao distribuida na densidade de probabilidade de afundamentos de tensao

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Alessandro Candido Lopes [CELG - Companhia Energetica de Goias, Goiania, GO (Brazil). Generation and Transmission. System' s Operation Center], E-mail: alessandro.clr@celg.com.br; Batista, Adalberto Jose [Universidade Federal de Goias (UFG), Goiania, GO (Brazil)], E-mail: batista@eee.ufg.br; Leborgne, Roberto Chouhy [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil)], E-mail: rcl@ece.ufrgs.br; Emiliano, Pedro Henrique Mota, E-mail: ph@phph.com.br

    2009-07-01

    This article presents the impact of distributed generation in studies of voltage sags caused by faults in the electrical system. We simulated short-circuit-to-ground in 62 lines of 230, 138, 69 and 13.8 kV that are part of the electrical system of the city of Goiania, of Goias state . For each fault position was monitored the bus voltage of 380 V in an industrial consumer sensitive to such sags. Were inserted different levels of GD near the consumer. The simulations of a short circuit, with the monitoring bar 380 V, were performed again. A study using stochastic simulation Monte Carlo (SMC) was performed to obtain, at each level of GD, the probability curves and sags of the probability density and its voltage class. With these curves were obtained the average number of sags according to each class, that the consumer bar may be submitted annually. The simulations were performed using the Program Analysis of Simultaneous Faults - ANAFAS. In order to overcome the intrinsic limitations of the methods of simulation of this program and allow data entry via windows, a computational tool was developed in Java language. Data processing was done using the MATLAB software.

  15. A Bayesian nonparametric estimation of distributions and quantiles

    International Nuclear Information System (INIS)

    Poern, K.

    1988-11-01

    The report describes a Bayesian, nonparametric method for the estimation of a distribution function and its quantiles. The method, presupposing random sampling, is nonparametric, so the user has to specify a prior distribution on a space of distributions (and not on a parameter space). In the current application, where the method is used to estimate the uncertainty of a parametric calculational model, the Dirichlet prior distribution is to a large extent determined by the first batch of Monte Carlo-realizations. In this case the results of the estimation technique is very similar to the conventional empirical distribution function. The resulting posterior distribution is also Dirichlet, and thus facilitates the determination of probability (confidence) intervals at any given point in the space of interest. Another advantage is that also the posterior distribution of a specified quantitle can be derived and utilized to determine a probability interval for that quantile. The method was devised for use in the PROPER code package for uncertainty and sensitivity analysis. (orig.)

  16. Application of nonparametric statistics to material strength/reliability assessment

    International Nuclear Information System (INIS)

    Arai, Taketoshi

    1992-01-01

    An advanced material technology requires data base on a wide variety of material behavior which need to be established experimentally. It may often happen that experiments are practically limited in terms of reproducibility or a range of test parameters. Statistical methods can be applied to understanding uncertainties in such a quantitative manner as required from the reliability point of view. Statistical assessment involves determinations of a most probable value and the maximum and/or minimum value as one-sided or two-sided confidence limit. A scatter of test data can be approximated by a theoretical distribution only if the goodness of fit satisfies a test criterion. Alternatively, nonparametric statistics (NPS) or distribution-free statistics can be applied. Mathematical procedures by NPS are well established for dealing with most reliability problems. They handle only order statistics of a sample. Mathematical formulas and some applications to engineering assessments are described. They include confidence limits of median, population coverage of sample, required minimum number of a sample, and confidence limits of fracture probability. These applications demonstrate that a nonparametric statistical estimation is useful in logical decision making in the case a large uncertainty exists. (author)

  17. Nonparametric Estimation of Interval Reliability for Discrete-Time Semi-Markov Systems

    DEFF Research Database (Denmark)

    Georgiadis, Stylianos; Limnios, Nikolaos

    2016-01-01

    In this article, we consider a repairable discrete-time semi-Markov system with finite state space. The measure of the interval reliability is given as the probability of the system being operational over a given finite-length time interval. A nonparametric estimator is proposed for the interval...

  18. Recent Advances and Trends in Nonparametric Statistics

    CERN Document Server

    Akritas, MG

    2003-01-01

    The advent of high-speed, affordable computers in the last two decades has given a new boost to the nonparametric way of thinking. Classical nonparametric procedures, such as function smoothing, suddenly lost their abstract flavour as they became practically implementable. In addition, many previously unthinkable possibilities became mainstream; prime examples include the bootstrap and resampling methods, wavelets and nonlinear smoothers, graphical methods, data mining, bioinformatics, as well as the more recent algorithmic approaches such as bagging and boosting. This volume is a collection o

  19. Effects of combined dimension reduction and tabulation on the simulations of a turbulent premixed flame using a large-eddy simulation/probability density function method

    Science.gov (United States)

    Kim, Jeonglae; Pope, Stephen B.

    2014-05-01

    A turbulent lean-premixed propane-air flame stabilised by a triangular cylinder as a flame-holder is simulated to assess the accuracy and computational efficiency of combined dimension reduction and tabulation of chemistry. The computational condition matches the Volvo rig experiments. For the reactive simulation, the Lagrangian Large-Eddy Simulation/Probability Density Function (LES/PDF) formulation is used. A novel two-way coupling approach between LES and PDF is applied to obtain resolved density to reduce its statistical fluctuations. Composition mixing is evaluated by the modified Interaction-by-Exchange with the Mean (IEM) model. A baseline case uses In Situ Adaptive Tabulation (ISAT) to calculate chemical reactions efficiently. Its results demonstrate good agreement with the experimental measurements in turbulence statistics, temperature, and minor species mass fractions. For dimension reduction, 11 and 16 represented species are chosen and a variant of Rate Controlled Constrained Equilibrium (RCCE) is applied in conjunction with ISAT to each case. All the quantities in the comparison are indistinguishable from the baseline results using ISAT only. The combined use of RCCE/ISAT reduces the computational time for chemical reaction by more than 50%. However, for the current turbulent premixed flame, chemical reaction takes only a minor portion of the overall computational cost, in contrast to non-premixed flame simulations using LES/PDF, presumably due to the restricted manifold of purely premixed flame in the composition space. Instead, composition mixing is the major contributor to cost reduction since the mean-drift term, which is computationally expensive, is computed for the reduced representation. Overall, a reduction of more than 15% in the computational cost is obtained.

  20. Teaching Nonparametric Statistics Using Student Instrumental Values.

    Science.gov (United States)

    Anderson, Jonathan W.; Diddams, Margaret

    Nonparametric statistics are often difficult to teach in introduction to statistics courses because of the lack of real-world examples. This study demonstrated how teachers can use differences in the rankings and ratings of undergraduate and graduate values to discuss: (1) ipsative and normative scaling; (2) uses of the Mann-Whitney U-test; and…

  1. Nonparametric conditional predictive regions for time series

    NARCIS (Netherlands)

    de Gooijer, J.G.; Zerom Godefay, D.

    2000-01-01

    Several nonparametric predictors based on the Nadaraya-Watson kernel regression estimator have been proposed in the literature. They include the conditional mean, the conditional median, and the conditional mode. In this paper, we consider three types of predictive regions for these predictors — the

  2. Nonparametric predictive inference in statistical process control

    NARCIS (Netherlands)

    Arts, G.R.J.; Coolen, F.P.A.; Laan, van der P.

    2000-01-01

    New methods for statistical process control are presented, where the inferences have a nonparametric predictive nature. We consider several problems in process control in terms of uncertainties about future observable random quantities, and we develop inferences for these random quantities hased on

  3. Nonparametric predictive inference in statistical process control

    NARCIS (Netherlands)

    Arts, G.R.J.; Coolen, F.P.A.; Laan, van der P.

    2004-01-01

    Statistical process control (SPC) is used to decide when to stop a process as confidence in the quality of the next item(s) is low. Information to specify a parametric model is not always available, and as SPC is of a predictive nature, we present a control chart developed using nonparametric

  4. Non-Parametric Estimation of Correlation Functions

    DEFF Research Database (Denmark)

    Brincker, Rune; Rytter, Anders; Krenk, Steen

    In this paper three methods of non-parametric correlation function estimation are reviewed and evaluated: the direct method, estimation by the Fast Fourier Transform and finally estimation by the Random Decrement technique. The basic ideas of the techniques are reviewed, sources of bias are point...

  5. Nonparametric estimation in models for unobservable heterogeneity

    OpenAIRE

    Hohmann, Daniel

    2014-01-01

    Nonparametric models which allow for data with unobservable heterogeneity are studied. The first publication introduces new estimators and their asymptotic properties for conditional mixture models. The second publication considers estimation of a function from noisy observations of its Radon transform in a Gaussian white noise model.

  6. Nonparametric estimation of location and scale parameters

    KAUST Repository

    Potgieter, C.J.; Lombard, F.

    2012-01-01

    Two random variables X and Y belong to the same location-scale family if there are constants μ and σ such that Y and μ+σX have the same distribution. In this paper we consider non-parametric estimation of the parameters μ and σ under minimal

  7. A Bayesian Nonparametric Approach to Factor Analysis

    DEFF Research Database (Denmark)

    Piatek, Rémi; Papaspiliopoulos, Omiros

    2018-01-01

    This paper introduces a new approach for the inference of non-Gaussian factor models based on Bayesian nonparametric methods. It relaxes the usual normality assumption on the latent factors, widely used in practice, which is too restrictive in many settings. Our approach, on the contrary, does no...

  8. Panel data specifications in nonparametric kernel regression

    DEFF Research Database (Denmark)

    Czekaj, Tomasz Gerard; Henningsen, Arne

    parametric panel data estimators to analyse the production technology of Polish crop farms. The results of our nonparametric kernel regressions generally differ from the estimates of the parametric models but they only slightly depend on the choice of the kernel functions. Based on economic reasoning, we...

  9. New evolution equations for the joint response-excitation probability density function of stochastic solutions to first-order nonlinear PDEs

    Science.gov (United States)

    Venturi, D.; Karniadakis, G. E.

    2012-08-01

    By using functional integral methods we determine new evolution equations satisfied by the joint response-excitation probability density function (PDF) associated with the stochastic solution to first-order nonlinear partial differential equations (PDEs). The theory is presented for both fully nonlinear and for quasilinear scalar PDEs subject to random boundary conditions, random initial conditions or random forcing terms. Particular applications are discussed for the classical linear and nonlinear advection equations and for the advection-reaction equation. By using a Fourier-Galerkin spectral method we obtain numerical solutions of the proposed response-excitation PDF equations. These numerical solutions are compared against those obtained by using more conventional statistical approaches such as probabilistic collocation and multi-element probabilistic collocation methods. It is found that the response-excitation approach yields accurate predictions of the statistical properties of the system. In addition, it allows to directly ascertain the tails of probabilistic distributions, thus facilitating the assessment of rare events and associated risks. The computational cost of the response-excitation method is order magnitudes smaller than the one of more conventional statistical approaches if the PDE is subject to high-dimensional random boundary or initial conditions. The question of high-dimensionality for evolution equations involving multidimensional joint response-excitation PDFs is also addressed.

  10. Sensor Fusion Based on an Integrated Neural Network and Probability Density Function (PDF) Dual Kalman Filter for On-Line Estimation of Vehicle Parameters and States.

    Science.gov (United States)

    Vargas-Melendez, Leandro; Boada, Beatriz L; Boada, Maria Jesus L; Gauchia, Antonio; Diaz, Vicente

    2017-04-29

    Vehicles with a high center of gravity (COG), such as light trucks and heavy vehicles, are prone to rollover. This kind of accident causes nearly 33 % of all deaths from passenger vehicle crashes. Nowadays, these vehicles are incorporating roll stability control (RSC) systems to improve their safety. Most of the RSC systems require the vehicle roll angle as a known input variable to predict the lateral load transfer. The vehicle roll angle can be directly measured by a dual antenna global positioning system (GPS), but it is expensive. For this reason, it is important to estimate the vehicle roll angle from sensors installed onboard in current vehicles. On the other hand, the knowledge of the vehicle's parameters values is essential to obtain an accurate vehicle response. Some of vehicle parameters cannot be easily obtained and they can vary over time. In this paper, an algorithm for the simultaneous on-line estimation of vehicle's roll angle and parameters is proposed. This algorithm uses a probability density function (PDF)-based truncation method in combination with a dual Kalman filter (DKF), to guarantee that both vehicle's states and parameters are within bounds that have a physical meaning, using the information obtained from sensors mounted on vehicles. Experimental results show the effectiveness of the proposed algorithm.

  11. Time-averaged probability density functions of soot nanoparticles along the centerline of a piloted turbulent diffusion flame using a scanning mobility particle sizer

    KAUST Repository

    Chowdhury, Snehaunshu

    2017-01-23

    In this study, we demonstrate the use of a scanning mobility particle sizer (SMPS) as an effective tool to measure the probability density functions (PDFs) of soot nanoparticles in turbulent flames. Time-averaged soot PDFs necessary for validating existing soot models are reported at intervals of ∆x/D∆x/D = 5 along the centerline of turbulent, non-premixed, C2H4/N2 flames. The jet exit Reynolds numbers of the flames investigated were 10,000 and 20,000. A simplified burner geometry based on a published design was chosen to aid modelers. Soot was sampled directly from the flame using a sampling probe with a 0.5-mm diameter orifice and diluted with N2 by a two-stage dilution process. The overall dilution ratio was not evaluated. An SMPS system was used to analyze soot particle concentrations in the diluted samples. Sampling conditions were optimized over a wide range of dilution ratios to eliminate the effect of agglomeration in the sampling probe. Two differential mobility analyzers (DMAs) with different size ranges were used separately in the SMPS measurements to characterize the entire size range of particles. In both flames, the PDFs were found to be mono-modal in nature near the jet exit. Further downstream, the profiles were flatter with a fall-off at larger particle diameters. The geometric mean of the soot size distributions was less than 10 nm for all cases and increased monotonically with axial distance in both flames.

  12. 概率密度函数法研究重构吸引子的结构%Probability Density Function Method for Observing Reconstructed Attractor Structure

    Institute of Scientific and Technical Information of China (English)

    陆宏伟; 陈亚珠; 卫青

    2004-01-01

    Probability density function (PDF) method is proposed for analysing the structure of the reconstructed attractor in computing the correlation dimensions of RR intervals of ten normal old men.PDF contains important information about the spatial distribution of the phase points in the reconstructed attractor.To the best of our knowledge, it is the first time that the PDF method is put forward for the analysis of the reconstructed attractor structure.Numerical simulations demonstrate that the cardiac systems of healthy old men are about 6-6.5 dimensional complex dynamical systems.It is found that PDF is not symmetrically distributed when time delay is small, while PDF satisfies Gaussian distribution when time delay is big enough.A cluster effect mechanism is presented to explain this phenomenon.By studying the shape of PDFs, that the roles played by time delay are more important than embedding dimension in the reconstruction is clearly indicated.Results have demonstrated that the PDF method represents a promising numerical approach for the observation of the reconstructed attractor structure and may provide more information and new diagnostic potential of the analyzed cardiac system.

  13. Neighbor-dependent Ramachandran probability distributions of amino acids developed from a hierarchical Dirichlet process model.

    Directory of Open Access Journals (Sweden)

    Daniel Ting

    2010-04-01

    Full Text Available Distributions of the backbone dihedral angles of proteins have been studied for over 40 years. While many statistical analyses have been presented, only a handful of probability densities are publicly available for use in structure validation and structure prediction methods. The available distributions differ in a number of important ways, which determine their usefulness for various purposes. These include: 1 input data size and criteria for structure inclusion (resolution, R-factor, etc.; 2 filtering of suspect conformations and outliers using B-factors or other features; 3 secondary structure of input data (e.g., whether helix and sheet are included; whether beta turns are included; 4 the method used for determining probability densities ranging from simple histograms to modern nonparametric density estimation; and 5 whether they include nearest neighbor effects on the distribution of conformations in different regions of the Ramachandran map. In this work, Ramachandran probability distributions are presented for residues in protein loops from a high-resolution data set with filtering based on calculated electron densities. Distributions for all 20 amino acids (with cis and trans proline treated separately have been determined, as well as 420 left-neighbor and 420 right-neighbor dependent distributions. The neighbor-independent and neighbor-dependent probability densities have been accurately estimated using Bayesian nonparametric statistical analysis based on the Dirichlet process. In particular, we used hierarchical Dirichlet process priors, which allow sharing of information between densities for a particular residue type and different neighbor residue types. The resulting distributions are tested in a loop modeling benchmark with the program Rosetta, and are shown to improve protein loop conformation prediction significantly. The distributions are available at http://dunbrack.fccc.edu/hdp.

  14. Probability in quantum mechanics

    Directory of Open Access Journals (Sweden)

    J. G. Gilson

    1982-01-01

    Full Text Available By using a fluid theory which is an alternative to quantum theory but from which the latter can be deduced exactly, the long-standing problem of how quantum mechanics is related to stochastic processes is studied. It can be seen how the Schrödinger probability density has a relationship to time spent on small sections of an orbit, just as the probability density has in some classical contexts.

  15. Nonparametric Information Geometry: From Divergence Function to Referential-Representational Biduality on Statistical Manifolds

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2013-12-01

    Full Text Available Divergence functions are the non-symmetric “distance” on the manifold, Μθ, of parametric probability density functions over a measure space, (Χ,μ. Classical information geometry prescribes, on Μθ: (i a Riemannian metric given by the Fisher information; (ii a pair of dual connections (giving rise to the family of α-connections that preserve the metric under parallel transport by their joint actions; and (iii a family of divergence functions ( α-divergence defined on Μθ x Μθ, which induce the metric and the dual connections. Here, we construct an extension of this differential geometric structure from Μθ (that of parametric probability density functions to the manifold, Μ, of non-parametric functions on X, removing the positivity and normalization constraints. The generalized Fisher information and α-connections on M are induced by an α-parameterized family of divergence functions, reflecting the fundamental convex inequality associated with any smooth and strictly convex function. The infinite-dimensional manifold, M, has zero curvature for all these α-connections; hence, the generally non-zero curvature of M can be interpreted as arising from an embedding of Μθ into Μ. Furthermore, when a parametric model (after a monotonic scaling forms an affine submanifold, its natural and expectation parameters form biorthogonal coordinates, and such a submanifold is dually flat for α = ± 1, generalizing the results of Amari’s α-embedding. The present analysis illuminates two different types of duality in information geometry, one concerning the referential status of a point (measurable function expressed in the divergence function (“referential duality” and the other concerning its representation under an arbitrary monotone scaling (“representational duality”.

  16. Parametric and Non-Parametric System Modelling

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg

    1999-01-01

    the focus is on combinations of parametric and non-parametric methods of regression. This combination can be in terms of additive models where e.g. one or more non-parametric term is added to a linear regression model. It can also be in terms of conditional parametric models where the coefficients...... considered. It is shown that adaptive estimation in conditional parametric models can be performed by combining the well known methods of local polynomial regression and recursive least squares with exponential forgetting. The approach used for estimation in conditional parametric models also highlights how...... networks is included. In this paper, neural networks are used for predicting the electricity production of a wind farm. The results are compared with results obtained using an adaptively estimated ARX-model. Finally, two papers on stochastic differential equations are included. In the first paper, among...

  17. Nonparametric Bayes Modeling of Multivariate Categorical Data.

    Science.gov (United States)

    Dunson, David B; Xing, Chuanhua

    2012-01-01

    Modeling of multivariate unordered categorical (nominal) data is a challenging problem, particularly in high dimensions and cases in which one wishes to avoid strong assumptions about the dependence structure. Commonly used approaches rely on the incorporation of latent Gaussian random variables or parametric latent class models. The goal of this article is to develop a nonparametric Bayes approach, which defines a prior with full support on the space of distributions for multiple unordered categorical variables. This support condition ensures that we are not restricting the dependence structure a priori. We show this can be accomplished through a Dirichlet process mixture of product multinomial distributions, which is also a convenient form for posterior computation. Methods for nonparametric testing of violations of independence are proposed, and the methods are applied to model positional dependence within transcription factor binding motifs.

  18. Bayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors

    Directory of Open Access Journals (Sweden)

    Xibin Zhang

    2016-04-01

    Full Text Available This paper develops a sampling algorithm for bandwidth estimation in a nonparametric regression model with continuous and discrete regressors under an unknown error density. The error density is approximated by the kernel density estimator of the unobserved errors, while the regression function is estimated using the Nadaraya-Watson estimator admitting continuous and discrete regressors. We derive an approximate likelihood and posterior for bandwidth parameters, followed by a sampling algorithm. Simulation results show that the proposed approach typically leads to better accuracy of the resulting estimates than cross-validation, particularly for smaller sample sizes. This bandwidth estimation approach is applied to nonparametric regression model of the Australian All Ordinaries returns and the kernel density estimation of gross domestic product (GDP growth rates among the organisation for economic co-operation and development (OECD and non-OECD countries.

  19. Nonparametric Second-Order Theory of Error Propagation on Motion Groups.

    Science.gov (United States)

    Wang, Yunfeng; Chirikjian, Gregory S

    2008-01-01

    Error propagation on the Euclidean motion group arises in a number of areas such as in dead reckoning errors in mobile robot navigation and joint errors that accumulate from the base to the distal end of kinematic chains such as manipulators and biological macromolecules. We address error propagation in rigid-body poses in a coordinate-free way. In this paper we show how errors propagated by convolution on the Euclidean motion group, SE(3), can be approximated to second order using the theory of Lie algebras and Lie groups. We then show how errors that are small (but not so small that linearization is valid) can be propagated by a recursive formula derived here. This formula takes into account errors to second-order, whereas prior efforts only considered the first-order case. Our formulation is nonparametric in the sense that it will work for probability density functions of any form (not only Gaussians). Numerical tests demonstrate the accuracy of this second-order theory in the context of a manipulator arm and a flexible needle with bevel tip.

  20. A nonparametric approach to medical survival data: Uncertainty in the context of risk in mortality analysis

    International Nuclear Information System (INIS)

    Janurová, Kateřina; Briš, Radim

    2014-01-01

    Medical survival right-censored data of about 850 patients are evaluated to analyze the uncertainty related to the risk of mortality on one hand and compare two basic surgery techniques in the context of risk of mortality on the other hand. Colorectal data come from patients who underwent colectomy in the University Hospital of Ostrava. Two basic surgery operating techniques are used for the colectomy: either traditional (open) or minimally invasive (laparoscopic). Basic question arising at the colectomy operation is, which type of operation to choose to guarantee longer overall survival time. Two non-parametric approaches have been used to quantify probability of mortality with uncertainties. In fact, complement of the probability to one, i.e. survival function with corresponding confidence levels is calculated and evaluated. First approach considers standard nonparametric estimators resulting from both the Kaplan–Meier estimator of survival function in connection with Greenwood's formula and the Nelson–Aalen estimator of cumulative hazard function including confidence interval for survival function as well. The second innovative approach, represented by Nonparametric Predictive Inference (NPI), uses lower and upper probabilities for quantifying uncertainty and provides a model of predictive survival function instead of the population survival function. The traditional log-rank test on one hand and the nonparametric predictive comparison of two groups of lifetime data on the other hand have been compared to evaluate risk of mortality in the context of mentioned surgery techniques. The size of the difference between two groups of lifetime data has been considered and analyzed as well. Both nonparametric approaches led to the same conclusion, that the minimally invasive operating technique guarantees the patient significantly longer survival time in comparison with the traditional operating technique

  1. Network structure exploration via Bayesian nonparametric models

    International Nuclear Information System (INIS)

    Chen, Y; Wang, X L; Xiang, X; Tang, B Z; Bu, J Z

    2015-01-01

    Complex networks provide a powerful mathematical representation of complex systems in nature and society. To understand complex networks, it is crucial to explore their internal structures, also called structural regularities. The task of network structure exploration is to determine how many groups there are in a complex network and how to group the nodes of the network. Most existing structure exploration methods need to specify either a group number or a certain type of structure when they are applied to a network. In the real world, however, the group number and also the certain type of structure that a network has are usually unknown in advance. To explore structural regularities in complex networks automatically, without any prior knowledge of the group number or the certain type of structure, we extend a probabilistic mixture model that can handle networks with any type of structure but needs to specify a group number using Bayesian nonparametric theory. We also propose a novel Bayesian nonparametric model, called the Bayesian nonparametric mixture (BNPM) model. Experiments conducted on a large number of networks with different structures show that the BNPM model is able to explore structural regularities in networks automatically with a stable, state-of-the-art performance. (paper)

  2. portfolio optimization based on nonparametric estimation methods

    Directory of Open Access Journals (Sweden)

    mahsa ghandehari

    2017-03-01

    Full Text Available One of the major issues investors are facing with in capital markets is decision making about select an appropriate stock exchange for investing and selecting an optimal portfolio. This process is done through the risk and expected return assessment. On the other hand in portfolio selection problem if the assets expected returns are normally distributed, variance and standard deviation are used as a risk measure. But, the expected returns on assets are not necessarily normal and sometimes have dramatic differences from normal distribution. This paper with the introduction of conditional value at risk ( CVaR, as a measure of risk in a nonparametric framework, for a given expected return, offers the optimal portfolio and this method is compared with the linear programming method. The data used in this study consists of monthly returns of 15 companies selected from the top 50 companies in Tehran Stock Exchange during the winter of 1392 which is considered from April of 1388 to June of 1393. The results of this study show the superiority of nonparametric method over the linear programming method and the nonparametric method is much faster than the linear programming method.

  3. Nonparametric Mixture Models for Supervised Image Parcellation.

    Science.gov (United States)

    Sabuncu, Mert R; Yeo, B T Thomas; Van Leemput, Koen; Fischl, Bruce; Golland, Polina

    2009-09-01

    We present a nonparametric, probabilistic mixture model for the supervised parcellation of images. The proposed model yields segmentation algorithms conceptually similar to the recently developed label fusion methods, which register a new image with each training image separately. Segmentation is achieved via the fusion of transferred manual labels. We show that in our framework various settings of a model parameter yield algorithms that use image intensity information differently in determining the weight of a training subject during fusion. One particular setting computes a single, global weight per training subject, whereas another setting uses locally varying weights when fusing the training data. The proposed nonparametric parcellation approach capitalizes on recently developed fast and robust pairwise image alignment tools. The use of multiple registrations allows the algorithm to be robust to occasional registration failures. We report experiments on 39 volumetric brain MRI scans with expert manual labels for the white matter, cerebral cortex, ventricles and subcortical structures. The results demonstrate that the proposed nonparametric segmentation framework yields significantly better segmentation than state-of-the-art algorithms.

  4. Robustifying Bayesian nonparametric mixtures for count data.

    Science.gov (United States)

    Canale, Antonio; Prünster, Igor

    2017-03-01

    Our motivating application stems from surveys of natural populations and is characterized by large spatial heterogeneity in the counts, which makes parametric approaches to modeling local animal abundance too restrictive. We adopt a Bayesian nonparametric approach based on mixture models and innovate with respect to popular Dirichlet process mixture of Poisson kernels by increasing the model flexibility at the level both of the kernel and the nonparametric mixing measure. This allows to derive accurate and robust estimates of the distribution of local animal abundance and of the corresponding clusters. The application and a simulation study for different scenarios yield also some general methodological implications. Adding flexibility solely at the level of the mixing measure does not improve inferences, since its impact is severely limited by the rigidity of the Poisson kernel with considerable consequences in terms of bias. However, once a kernel more flexible than the Poisson is chosen, inferences can be robustified by choosing a prior more general than the Dirichlet process. Therefore, to improve the performance of Bayesian nonparametric mixtures for count data one has to enrich the model simultaneously at both levels, the kernel and the mixing measure. © 2016, The International Biometric Society.

  5. Introduction to nonparametric statistics for the biological sciences using R

    CERN Document Server

    MacFarland, Thomas W

    2016-01-01

    This book contains a rich set of tools for nonparametric analyses, and the purpose of this supplemental text is to provide guidance to students and professional researchers on how R is used for nonparametric data analysis in the biological sciences: To introduce when nonparametric approaches to data analysis are appropriate To introduce the leading nonparametric tests commonly used in biostatistics and how R is used to generate appropriate statistics for each test To introduce common figures typically associated with nonparametric data analysis and how R is used to generate appropriate figures in support of each data set The book focuses on how R is used to distinguish between data that could be classified as nonparametric as opposed to data that could be classified as parametric, with both approaches to data classification covered extensively. Following an introductory lesson on nonparametric statistics for the biological sciences, the book is organized into eight self-contained lessons on various analyses a...

  6. Log-concave Probability Distributions: Theory and Statistical Testing

    DEFF Research Database (Denmark)

    An, Mark Yuing

    1996-01-01

    This paper studies the broad class of log-concave probability distributions that arise in economics of uncertainty and information. For univariate, continuous, and log-concave random variables we prove useful properties without imposing the differentiability of density functions. Discrete...... and multivariate distributions are also discussed. We propose simple non-parametric testing procedures for log-concavity. The test statistics are constructed to test one of the two implicati ons of log-concavity: increasing hazard rates and new-is-better-than-used (NBU) property. The test for increasing hazard...... rates are based on normalized spacing of the sample order statistics. The tests for NBU property fall into the category of Hoeffding's U-statistics...

  7. Bayesian nonparametric estimation of continuous monotone functions with applications to dose-response analysis.

    Science.gov (United States)

    Bornkamp, Björn; Ickstadt, Katja

    2009-03-01

    In this article, we consider monotone nonparametric regression in a Bayesian framework. The monotone function is modeled as a mixture of shifted and scaled parametric probability distribution functions, and a general random probability measure is assumed as the prior for the mixing distribution. We investigate the choice of the underlying parametric distribution function and find that the two-sided power distribution function is well suited both from a computational and mathematical point of view. The model is motivated by traditional nonlinear models for dose-response analysis, and provides possibilities to elicitate informative prior distributions on different aspects of the curve. The method is compared with other recent approaches to monotone nonparametric regression in a simulation study and is illustrated on a data set from dose-response analysis.

  8. Ruin probabilities

    DEFF Research Database (Denmark)

    Asmussen, Søren; Albrecher, Hansjörg

    The book gives a comprehensive treatment of the classical and modern ruin probability theory. Some of the topics are Lundberg's inequality, the Cramér-Lundberg approximation, exact solutions, other approximations (e.g., for heavy-tailed claim size distributions), finite horizon ruin probabilities......, extensions of the classical compound Poisson model to allow for reserve-dependent premiums, Markov-modulation, periodicity, change of measure techniques, phase-type distributions as a computational vehicle and the connection to other applied probability areas, like queueing theory. In this substantially...... updated and extended second version, new topics include stochastic control, fluctuation theory for Levy processes, Gerber–Shiu functions and dependence....

  9. Generalized Probability-Probability Plots

    NARCIS (Netherlands)

    Mushkudiani, N.A.; Einmahl, J.H.J.

    2004-01-01

    We introduce generalized Probability-Probability (P-P) plots in order to study the one-sample goodness-of-fit problem and the two-sample problem, for real valued data.These plots, that are constructed by indexing with the class of closed intervals, globally preserve the properties of classical P-P

  10. Non-parametric smoothing of experimental data

    International Nuclear Information System (INIS)

    Kuketayev, A.T.; Pen'kov, F.M.

    2007-01-01

    Full text: Rapid processing of experimental data samples in nuclear physics often requires differentiation in order to find extrema. Therefore, even at the preliminary stage of data analysis, a range of noise reduction methods are used to smooth experimental data. There are many non-parametric smoothing techniques: interval averages, moving averages, exponential smoothing, etc. Nevertheless, it is more common to use a priori information about the behavior of the experimental curve in order to construct smoothing schemes based on the least squares techniques. The latter methodology's advantage is that the area under the curve can be preserved, which is equivalent to conservation of total speed of counting. The disadvantages of this approach include the lack of a priori information. For example, very often the sums of undifferentiated (by a detector) peaks are replaced with one peak during the processing of data, introducing uncontrolled errors in the determination of the physical quantities. The problem is solvable only by having experienced personnel, whose skills are much greater than the challenge. We propose a set of non-parametric techniques, which allows the use of any additional information on the nature of experimental dependence. The method is based on a construction of a functional, which includes both experimental data and a priori information. Minimum of this functional is reached on a non-parametric smoothed curve. Euler (Lagrange) differential equations are constructed for these curves; then their solutions are obtained analytically or numerically. The proposed approach allows for automated processing of nuclear physics data, eliminating the need for highly skilled laboratory personnel. Pursuant to the proposed approach is the possibility to obtain smoothing curves in a given confidence interval, e.g. according to the χ 2 distribution. This approach is applicable when constructing smooth solutions of ill-posed problems, in particular when solving

  11. Probability-1

    CERN Document Server

    Shiryaev, Albert N

    2016-01-01

    This book contains a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks, martingales, Markov chains, the measure-theoretic foundations of probability theory, weak convergence of probability measures, and the central limit theorem. Many examples are discussed in detail, and there are a large number of exercises. The book is accessible to advanced undergraduates and can be used as a text for independent study. To accommodate the greatly expanded material in the third edition of Probability, the book is now divided into two volumes. This first volume contains updated references and substantial revisions of the first three chapters of the second edition. In particular, new material has been added on generating functions, the inclusion-exclusion principle, theorems on monotonic classes (relying on a detailed treatment of “π-λ” systems), and the fundamental theorems of mathematical statistics.

  12. Decompounding random sums: A nonparametric approach

    DEFF Research Database (Denmark)

    Hansen, Martin Bøgsted; Pitts, Susan M.

    Observations from sums of random variables with a random number of summands, known as random, compound or stopped sums arise within many areas of engineering and science. Quite often it is desirable to infer properties of the distribution of the terms in the random sum. In the present paper we...... review a number of applications and consider the nonlinear inverse problem of inferring the cumulative distribution function of the components in the random sum. We review the existing literature on non-parametric approaches to the problem. The models amenable to the analysis are generalized considerably...

  13. A Nonparametric Test for Seasonal Unit Roots

    OpenAIRE

    Kunst, Robert M.

    2009-01-01

    Abstract: We consider a nonparametric test for the null of seasonal unit roots in quarterly time series that builds on the RUR (records unit root) test by Aparicio, Escribano, and Sipols. We find that the test concept is more promising than a formalization of visual aids such as plots by quarter. In order to cope with the sensitivity of the original RUR test to autocorrelation under its null of a unit root, we suggest an augmentation step by autoregression. We present some evidence on the siz...

  14. Bayesian Nonparametric Clustering for Positive Definite Matrices.

    Science.gov (United States)

    Cherian, Anoop; Morellas, Vassilios; Papanikolopoulos, Nikolaos

    2016-05-01

    Symmetric Positive Definite (SPD) matrices emerge as data descriptors in several applications of computer vision such as object tracking, texture recognition, and diffusion tensor imaging. Clustering these data matrices forms an integral part of these applications, for which soft-clustering algorithms (K-Means, expectation maximization, etc.) are generally used. As is well-known, these algorithms need the number of clusters to be specified, which is difficult when the dataset scales. To address this issue, we resort to the classical nonparametric Bayesian framework by modeling the data as a mixture model using the Dirichlet process (DP) prior. Since these matrices do not conform to the Euclidean geometry, rather belongs to a curved Riemannian manifold,existing DP models cannot be directly applied. Thus, in this paper, we propose a novel DP mixture model framework for SPD matrices. Using the log-determinant divergence as the underlying dissimilarity measure to compare these matrices, and further using the connection between this measure and the Wishart distribution, we derive a novel DPM model based on the Wishart-Inverse-Wishart conjugate pair. We apply this model to several applications in computer vision. Our experiments demonstrate that our model is scalable to the dataset size and at the same time achieves superior accuracy compared to several state-of-the-art parametric and nonparametric clustering algorithms.

  15. Bayesian Nonparametric Model for Estimating Multistate Travel Time Distribution

    Directory of Open Access Journals (Sweden)

    Emmanuel Kidando

    2017-01-01

    Full Text Available Multistate models, that is, models with more than two distributions, are preferred over single-state probability models in modeling the distribution of travel time. Literature review indicated that the finite multistate modeling of travel time using lognormal distribution is superior to other probability functions. In this study, we extend the finite multistate lognormal model of estimating the travel time distribution to unbounded lognormal distribution. In particular, a nonparametric Dirichlet Process Mixture Model (DPMM with stick-breaking process representation was used. The strength of the DPMM is that it can choose the number of components dynamically as part of the algorithm during parameter estimation. To reduce computational complexity, the modeling process was limited to a maximum of six components. Then, the Markov Chain Monte Carlo (MCMC sampling technique was employed to estimate the parameters’ posterior distribution. Speed data from nine links of a freeway corridor, aggregated on a 5-minute basis, were used to calculate the corridor travel time. The results demonstrated that this model offers significant flexibility in modeling to account for complex mixture distributions of the travel time without specifying the number of components. The DPMM modeling further revealed that freeway travel time is characterized by multistate or single-state models depending on the inclusion of onset and offset of congestion periods.

  16. Inflation of type I error rates by unequal variances associated with parametric, nonparametric, and Rank-Transformation Tests

    Directory of Open Access Journals (Sweden)

    Donald W. Zimmerman

    2004-01-01

    Full Text Available It is well known that the two-sample Student t test fails to maintain its significance level when the variances of treatment groups are unequal, and, at the same time, sample sizes are unequal. However, introductory textbooks in psychology and education often maintain that the test is robust to variance heterogeneity when sample sizes are equal. The present study discloses that, for a wide variety of non-normal distributions, especially skewed distributions, the Type I error probabilities of both the t test and the Wilcoxon-Mann-Whitney test are substantially inflated by heterogeneous variances, even when sample sizes are equal. The Type I error rate of the t test performed on ranks replacing the scores (rank-transformed data is inflated in the same way and always corresponds closely to that of the Wilcoxon-Mann-Whitney test. For many probability densities, the distortion of the significance level is far greater after transformation to ranks and, contrary to known asymptotic properties, the magnitude of the inflation is an increasing function of sample size. Although nonparametric tests of location also can be sensitive to differences in the shape of distributions apart from location, the Wilcoxon-Mann-Whitney test and rank-transformation tests apparently are influenced mainly by skewness that is accompanied by specious differences in the means of ranks.

  17. Quantum Probabilities as Behavioral Probabilities

    Directory of Open Access Journals (Sweden)

    Vyacheslav I. Yukalov

    2017-03-01

    Full Text Available We demonstrate that behavioral probabilities of human decision makers share many common features with quantum probabilities. This does not imply that humans are some quantum objects, but just shows that the mathematics of quantum theory is applicable to the description of human decision making. The applicability of quantum rules for describing decision making is connected with the nontrivial process of making decisions in the case of composite prospects under uncertainty. Such a process involves deliberations of a decision maker when making a choice. In addition to the evaluation of the utilities of considered prospects, real decision makers also appreciate their respective attractiveness. Therefore, human choice is not based solely on the utility of prospects, but includes the necessity of resolving the utility-attraction duality. In order to justify that human consciousness really functions similarly to the rules of quantum theory, we develop an approach defining human behavioral probabilities as the probabilities determined by quantum rules. We show that quantum behavioral probabilities of humans do not merely explain qualitatively how human decisions are made, but they predict quantitative values of the behavioral probabilities. Analyzing a large set of empirical data, we find good quantitative agreement between theoretical predictions and observed experimental data.

  18. An automated technique for most-probable-number (MPN) analysis of densities of phagotrophic protists with lux-AB labelled bacteria as growth medium

    DEFF Research Database (Denmark)

    Ekelund, Flemming; Christensen, Søren; Rønn, Regin

    1999-01-01

    An automated modification of the most-probable-number (MPN) technique has been developed for enumeration of phagotrophic protozoa. The method is based on detection of prey depletion in micro titre plates rather than on presence of protozoa. A transconjugant Pseudomonas fluorescens DR54 labelled w...

  19. Risk Probabilities

    DEFF Research Database (Denmark)

    Rojas-Nandayapa, Leonardo

    Tail probabilities of sums of heavy-tailed random variables are of a major importance in various branches of Applied Probability, such as Risk Theory, Queueing Theory, Financial Management, and are subject to intense research nowadays. To understand their relevance one just needs to think...... analytic expression for the distribution function of a sum of random variables. The presence of heavy-tailed random variables complicates the problem even more. The objective of this dissertation is to provide better approximations by means of sharp asymptotic expressions and Monte Carlo estimators...

  20. Regularized Regression and Density Estimation based on Optimal Transport

    KAUST Repository

    Burger, M.

    2012-03-11

    The aim of this paper is to investigate a novel nonparametric approach for estimating and smoothing density functions as well as probability densities from discrete samples based on a variational regularization method with the Wasserstein metric as a data fidelity. The approach allows a unified treatment of discrete and continuous probability measures and is hence attractive for various tasks. In particular, the variational model for special regularization functionals yields a natural method for estimating densities and for preserving edges in the case of total variation regularization. In order to compute solutions of the variational problems, a regularized optimal transport problem needs to be solved, for which we discuss several formulations and provide a detailed analysis. Moreover, we compute special self-similar solutions for standard regularization functionals and we discuss several computational approaches and results. © 2012 The Author(s).

  1. Application of tests of goodness of fit in determining the probability density function for spacing of steel sets in tunnel support system

    Directory of Open Access Journals (Sweden)

    Farnoosh Basaligheh

    2015-12-01

    Full Text Available One of the conventional methods for temporary support of tunnels is to use steel sets with shotcrete. The nature of a temporary support system demands a quick installation of its structures. As a result, the spacing between steel sets is not a fixed amount and it can be considered as a random variable. Hence, in the reliability analysis of these types of structures, the selection of an appropriate probability distribution function of spacing of steel sets is essential. In the present paper, the distances between steel sets are collected from an under-construction tunnel and the collected data is used to suggest a proper Probability Distribution Function (PDF for the spacing of steel sets. The tunnel has two different excavation sections. In this regard, different distribution functions were investigated and three common tests of goodness of fit were used for evaluation of each function for each excavation section. Results from all three methods indicate that the Wakeby distribution function can be suggested as the proper PDF for spacing between the steel sets. It is also noted that, although the probability distribution function for two different tunnel sections is the same, the parameters of PDF for the individual sections are different from each other.

  2. On Parametric (and Non-Parametric Variation

    Directory of Open Access Journals (Sweden)

    Neil Smith

    2009-11-01

    Full Text Available This article raises the issue of the correct characterization of ‘Parametric Variation’ in syntax and phonology. After specifying their theoretical commitments, the authors outline the relevant parts of the Principles–and–Parameters framework, and draw a three-way distinction among Universal Principles, Parameters, and Accidents. The core of the contribution then consists of an attempt to provide identity criteria for parametric, as opposed to non-parametric, variation. Parametric choices must be antecedently known, and it is suggested that they must also satisfy seven individually necessary and jointly sufficient criteria. These are that they be cognitively represented, systematic, dependent on the input, deterministic, discrete, mutually exclusive, and irreversible.

  3. Nonparametric estimation of location and scale parameters

    KAUST Repository

    Potgieter, C.J.

    2012-12-01

    Two random variables X and Y belong to the same location-scale family if there are constants μ and σ such that Y and μ+σX have the same distribution. In this paper we consider non-parametric estimation of the parameters μ and σ under minimal assumptions regarding the form of the distribution functions of X and Y. We discuss an approach to the estimation problem that is based on asymptotic likelihood considerations. Our results enable us to provide a methodology that can be implemented easily and which yields estimators that are often near optimal when compared to fully parametric methods. We evaluate the performance of the estimators in a series of Monte Carlo simulations. © 2012 Elsevier B.V. All rights reserved.

  4. Nonparametric inference of network structure and dynamics

    Science.gov (United States)

    Peixoto, Tiago P.

    The network structure of complex systems determine their function and serve as evidence for the evolutionary mechanisms that lie behind them. Despite considerable effort in recent years, it remains an open challenge to formulate general descriptions of the large-scale structure of network systems, and how to reliably extract such information from data. Although many approaches have been proposed, few methods attempt to gauge the statistical significance of the uncovered structures, and hence the majority cannot reliably separate actual structure from stochastic fluctuations. Due to the sheer size and high-dimensionality of many networks, this represents a major limitation that prevents meaningful interpretations of the results obtained with such nonstatistical methods. In this talk, I will show how these issues can be tackled in a principled and efficient fashion by formulating appropriate generative models of network structure that can have their parameters inferred from data. By employing a Bayesian description of such models, the inference can be performed in a nonparametric fashion, that does not require any a priori knowledge or ad hoc assumptions about the data. I will show how this approach can be used to perform model comparison, and how hierarchical models yield the most appropriate trade-off between model complexity and quality of fit based on the statistical evidence present in the data. I will also show how this general approach can be elegantly extended to networks with edge attributes, that are embedded in latent spaces, and that change in time. The latter is obtained via a fully dynamic generative network model, based on arbitrary-order Markov chains, that can also be inferred in a nonparametric fashion. Throughout the talk I will illustrate the application of the methods with many empirical networks such as the internet at the autonomous systems level, the global airport network, the network of actors and films, social networks, citations among

  5. Computing rates of Markov models of voltage-gated ion channels by inverting partial differential equations governing the probability density functions of the conducting and non-conducting states.

    Science.gov (United States)

    Tveito, Aslak; Lines, Glenn T; Edwards, Andrew G; McCulloch, Andrew

    2016-07-01

    Markov models are ubiquitously used to represent the function of single ion channels. However, solving the inverse problem to construct a Markov model of single channel dynamics from bilayer or patch-clamp recordings remains challenging, particularly for channels involving complex gating processes. Methods for solving the inverse problem are generally based on data from voltage clamp measurements. Here, we describe an alternative approach to this problem based on measurements of voltage traces. The voltage traces define probability density functions of the functional states of an ion channel. These probability density functions can also be computed by solving a deterministic system of partial differential equations. The inversion is based on tuning the rates of the Markov models used in the deterministic system of partial differential equations such that the solution mimics the properties of the probability density function gathered from (pseudo) experimental data as well as possible. The optimization is done by defining a cost function to measure the difference between the deterministic solution and the solution based on experimental data. By evoking the properties of this function, it is possible to infer whether the rates of the Markov model are identifiable by our method. We present applications to Markov model well-known from the literature. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Derivation of the probability distribution function for the local density of states of a disordered quantum wire via the replica trick and supersymmetry

    International Nuclear Information System (INIS)

    Bunder, J.E.J.E.; McKenzie, R.H.Ross H.

    2001-01-01

    We consider the statistical properties of the local density of states of a one-dimensional Dirac equation in the presence of various types of disorder with Gaussian white-noise distribution. It is shown how either the replica trick or supersymmetry can be used to calculate exactly all the moments of the local density of states. Careful attention is paid to how the results change if the local density of states is averaged over atomic length scales. For both the replica trick and supersymmetry the problem is reduced to finding the ground state of a zero-dimensional Hamiltonian which is written solely in terms of a pair of coupled 'spins' which are elements of u(1,1). This ground state is explicitly found for the particular case of the Dirac equation corresponding to an infinite metallic quantum wire with a single conduction channel. The calculated moments of the local density of states agree with those found previously by Al'tshuler and Prigodin [Sov. Phys. JETP 68 (1989) 198] using a technique based on recursion relations for Feynman diagrams

  7. Probability tales

    CERN Document Server

    Grinstead, Charles M; Snell, J Laurie

    2011-01-01

    This book explores four real-world topics through the lens of probability theory. It can be used to supplement a standard text in probability or statistics. Most elementary textbooks present the basic theory and then illustrate the ideas with some neatly packaged examples. Here the authors assume that the reader has seen, or is learning, the basic theory from another book and concentrate in some depth on the following topics: streaks, the stock market, lotteries, and fingerprints. This extended format allows the authors to present multiple approaches to problems and to pursue promising side discussions in ways that would not be possible in a book constrained to cover a fixed set of topics. To keep the main narrative accessible, the authors have placed the more technical mathematical details in appendices. The appendices can be understood by someone who has taken one or two semesters of calculus.

  8. Probability theory

    CERN Document Server

    Dorogovtsev, A Ya; Skorokhod, A V; Silvestrov, D S; Skorokhod, A V

    1997-01-01

    This book of problems is intended for students in pure and applied mathematics. There are problems in traditional areas of probability theory and problems in the theory of stochastic processes, which has wide applications in the theory of automatic control, queuing and reliability theories, and in many other modern science and engineering fields. Answers to most of the problems are given, and the book provides hints and solutions for more complicated problems.

  9. A NONPARAMETRIC HYPOTHESIS TEST VIA THE BOOTSTRAP RESAMPLING

    OpenAIRE

    Temel, Tugrul T.

    2001-01-01

    This paper adapts an already existing nonparametric hypothesis test to the bootstrap framework. The test utilizes the nonparametric kernel regression method to estimate a measure of distance between the models stated under the null hypothesis. The bootstraped version of the test allows to approximate errors involved in the asymptotic hypothesis test. The paper also develops a Mathematica Code for the test algorithm.

  10. Simple nonparametric checks for model data fit in CAT

    NARCIS (Netherlands)

    Meijer, R.R.

    2005-01-01

    In this paper, the usefulness of several nonparametric checks is discussed in a computerized adaptive testing (CAT) context. Although there is no tradition of nonparametric scalability in CAT, it can be argued that scalability checks can be useful to investigate, for example, the quality of item

  11. Nonparametric analysis of blocked ordered categories data: some examples revisited

    Directory of Open Access Journals (Sweden)

    O. Thas

    2006-08-01

    Full Text Available Nonparametric analysis for general block designs can be given by using the Cochran-Mantel-Haenszel (CMH statistics. We demonstrate this with four examples and note that several well-known nonparametric statistics are special cases of CMH statistics.

  12. A Structural Labor Supply Model with Nonparametric Preferences

    NARCIS (Netherlands)

    van Soest, A.H.O.; Das, J.W.M.; Gong, X.

    2000-01-01

    Nonparametric techniques are usually seen as a statistic device for data description and exploration, and not as a tool for estimating models with a richer economic structure, which are often required for policy analysis.This paper presents an example where nonparametric flexibility can be attained

  13. On Wasserstein Two-Sample Testing and Related Families of Nonparametric Tests

    Directory of Open Access Journals (Sweden)

    Aaditya Ramdas

    2017-01-01

    Full Text Available Nonparametric two-sample or homogeneity testing is a decision theoretic problem that involves identifying differences between two random variables without making parametric assumptions about their underlying distributions. The literature is old and rich, with a wide variety of statistics having being designed and analyzed, both for the unidimensional and the multivariate setting. Inthisshortsurvey,wefocusonteststatisticsthatinvolvetheWassersteindistance. Usingan entropic smoothing of the Wasserstein distance, we connect these to very different tests including multivariate methods involving energy statistics and kernel based maximum mean discrepancy and univariate methods like the Kolmogorov–Smirnov test, probability or quantile (PP/QQ plots and receiver operating characteristic or ordinal dominance (ROC/ODC curves. Some observations are implicit in the literature, while others seem to have not been noticed thus far. Given nonparametric two-sample testing’s classical and continued importance, we aim to provide useful connections for theorists and practitioners familiar with one subset of methods but not others.

  14. Bootstrap Prediction Intervals in Non-Parametric Regression with Applications to Anomaly Detection

    Science.gov (United States)

    Kumar, Sricharan; Srivistava, Ashok N.

    2012-01-01

    Prediction intervals provide a measure of the probable interval in which the outputs of a regression model can be expected to occur. Subsequently, these prediction intervals can be used to determine if the observed output is anomalous or not, conditioned on the input. In this paper, a procedure for determining prediction intervals for outputs of nonparametric regression models using bootstrap methods is proposed. Bootstrap methods allow for a non-parametric approach to computing prediction intervals with no specific assumptions about the sampling distribution of the noise or the data. The asymptotic fidelity of the proposed prediction intervals is theoretically proved. Subsequently, the validity of the bootstrap based prediction intervals is illustrated via simulations. Finally, the bootstrap prediction intervals are applied to the problem of anomaly detection on aviation data.

  15. Scalable Bayesian nonparametric measures for exploring pairwise dependence via Dirichlet Process Mixtures.

    Science.gov (United States)

    Filippi, Sarah; Holmes, Chris C; Nieto-Barajas, Luis E

    2016-11-16

    In this article we propose novel Bayesian nonparametric methods using Dirichlet Process Mixture (DPM) models for detecting pairwise dependence between random variables while accounting for uncertainty in the form of the underlying distributions. A key criteria is that the procedures should scale to large data sets. In this regard we find that the formal calculation of the Bayes factor for a dependent-vs.-independent DPM joint probability measure is not feasible computationally. To address this we present Bayesian diagnostic measures for characterising evidence against a "null model" of pairwise independence. In simulation studies, as well as for a real data analysis, we show that our approach provides a useful tool for the exploratory nonparametric Bayesian analysis of large multivariate data sets.

  16. Probability of Transmission of Malaria from Mosquito to Human Is Regulated by Mosquito Parasite Density in Naïve and Vaccinated Hosts.

    Directory of Open Access Journals (Sweden)

    Thomas S Churcher

    2017-01-01

    Full Text Available Over a century since Ronald Ross discovered that malaria is caused by the bite of an infectious mosquito it is still unclear how the number of parasites injected influences disease transmission. Currently it is assumed that all mosquitoes with salivary gland sporozoites are equally infectious irrespective of the number of parasites they harbour, though this has never been rigorously tested. Here we analyse >1000 experimental infections of humans and mice and demonstrate a dose-dependency for probability of infection and the length of the host pre-patent period. Mosquitoes with a higher numbers of sporozoites in their salivary glands following blood-feeding are more likely to have caused infection (and have done so quicker than mosquitoes with fewer parasites. A similar dose response for the probability of infection was seen for humans given a pre-erythrocytic vaccine candidate targeting circumsporozoite protein (CSP, and in mice with and without transfusion of anti-CSP antibodies. These interventions prevented infection more efficiently from bites made by mosquitoes with fewer parasites. The importance of parasite number has widespread implications across malariology, ranging from our basic understanding of the parasite, how vaccines are evaluated and the way in which transmission should be measured in the field. It also provides direct evidence for why the only registered malaria vaccine RTS,S was partially effective in recent clinical trials.

  17. Characterization of neutron leakage probability, k /SUB eff/ , and critical core surface mass density of small reactor assemblies through the Trombay criticality formula

    International Nuclear Information System (INIS)

    Kumar, A.; Rao, K.S.; Srinivasan, M.

    1983-01-01

    The Trombay criticality formula (TCF) has been derived by incorporating a number of well-known concepts of criticality physics to enable prediction of changes in critical size or k /SUB eff/ following alterations in geometrical and physical parameters of uniformly reflected small reactor assemblies characterized by large neutron leakage from the core. The variant parameters considered are size, shape, density and diluent concentration of the core, and density and thickness of the reflector. The effect of these changes (except core size) manifests, through sigma /SUB c/ the critical surface mass density of the ''corresponding critical core,'' that sigma, the massto-surface-area ratio of the core,'' is essentially a measure of the product /rho/ extended to nonspherical systems and plays a dominant role in the TCF. The functional dependence of k /SUB eff/ on sigma/sigma /SUB c/ , the system size relative to critical, is expressed in the TCF through two alternative representations, namely the modified Wigner rational form and, an exponential form, which is given

  18. Nonparametric statistics with applications to science and engineering

    CERN Document Server

    Kvam, Paul H

    2007-01-01

    A thorough and definitive book that fully addresses traditional and modern-day topics of nonparametric statistics This book presents a practical approach to nonparametric statistical analysis and provides comprehensive coverage of both established and newly developed methods. With the use of MATLAB, the authors present information on theorems and rank tests in an applied fashion, with an emphasis on modern methods in regression and curve fitting, bootstrap confidence intervals, splines, wavelets, empirical likelihood, and goodness-of-fit testing. Nonparametric Statistics with Applications to Science and Engineering begins with succinct coverage of basic results for order statistics, methods of categorical data analysis, nonparametric regression, and curve fitting methods. The authors then focus on nonparametric procedures that are becoming more relevant to engineering researchers and practitioners. The important fundamental materials needed to effectively learn and apply the discussed methods are also provide...

  19. Nonparametric Integrated Agrometeorological Drought Monitoring: Model Development and Application

    Science.gov (United States)

    Zhang, Qiang; Li, Qin; Singh, Vijay P.; Shi, Peijun; Huang, Qingzhong; Sun, Peng

    2018-01-01

    Drought is a major natural hazard that has massive impacts on the society. How to monitor drought is critical for its mitigation and early warning. This study proposed a modified version of the multivariate standardized drought index (MSDI) based on precipitation, evapotranspiration, and soil moisture, i.e., modified multivariate standardized drought index (MMSDI). This study also used nonparametric joint probability distribution analysis. Comparisons were done between standardized precipitation evapotranspiration index (SPEI), standardized soil moisture index (SSMI), MSDI, and MMSDI, and real-world observed drought regimes. Results indicated that MMSDI detected droughts that SPEI and/or SSMI failed to do. Also, MMSDI detected almost all droughts that were identified by SPEI and SSMI. Further, droughts detected by MMSDI were similar to real-world observed droughts in terms of drought intensity and drought-affected area. When compared to MMSDI, MSDI has the potential to overestimate drought intensity and drought-affected area across China, which should be attributed to exclusion of the evapotranspiration components from estimation of drought intensity. Therefore, MMSDI is proposed for drought monitoring that can detect agrometeorological droughts. Results of this study provide a framework for integrated drought monitoring in other regions of the world and can help to develop drought mitigation.

  20. Nonparametric methods in actigraphy: An update

    Directory of Open Access Journals (Sweden)

    Bruno S.B. Gonçalves

    2014-09-01

    Full Text Available Circadian rhythmicity in humans has been well studied using actigraphy, a method of measuring gross motor movement. As actigraphic technology continues to evolve, it is important for data analysis to keep pace with new variables and features. Our objective is to study the behavior of two variables, interdaily stability and intradaily variability, to describe rest activity rhythm. Simulated data and actigraphy data of humans, rats, and marmosets were used in this study. We modified the method of calculation for IV and IS by modifying the time intervals of analysis. For each variable, we calculated the average value (IVm and ISm results for each time interval. Simulated data showed that (1 synchronization analysis depends on sample size, and (2 fragmentation is independent of the amplitude of the generated noise. We were able to obtain a significant difference in the fragmentation patterns of stroke patients using an IVm variable, while the variable IV60 was not identified. Rhythmic synchronization of activity and rest was significantly higher in young than adults with Parkinson׳s when using the ISM variable; however, this difference was not seen using IS60. We propose an updated format to calculate rhythmic fragmentation, including two additional optional variables. These alternative methods of nonparametric analysis aim to more precisely detect sleep–wake cycle fragmentation and synchronization.

  1. Bayesian nonparametric adaptive control using Gaussian processes.

    Science.gov (United States)

    Chowdhary, Girish; Kingravi, Hassan A; How, Jonathan P; Vela, Patricio A

    2015-03-01

    Most current model reference adaptive control (MRAC) methods rely on parametric adaptive elements, in which the number of parameters of the adaptive element are fixed a priori, often through expert judgment. An example of such an adaptive element is radial basis function networks (RBFNs), with RBF centers preallocated based on the expected operating domain. If the system operates outside of the expected operating domain, this adaptive element can become noneffective in capturing and canceling the uncertainty, thus rendering the adaptive controller only semiglobal in nature. This paper investigates a Gaussian process-based Bayesian MRAC architecture (GP-MRAC), which leverages the power and flexibility of GP Bayesian nonparametric models of uncertainty. The GP-MRAC does not require the centers to be preallocated, can inherently handle measurement noise, and enables MRAC to handle a broader set of uncertainties, including those that are defined as distributions over functions. We use stochastic stability arguments to show that GP-MRAC guarantees good closed-loop performance with no prior domain knowledge of the uncertainty. Online implementable GP inference methods are compared in numerical simulations against RBFN-MRAC with preallocated centers and are shown to provide better tracking and improved long-term learning.

  2. Nonparametric tests for equality of psychometric functions.

    Science.gov (United States)

    García-Pérez, Miguel A; Núñez-Antón, Vicente

    2017-12-07

    Many empirical studies measure psychometric functions (curves describing how observers' performance varies with stimulus magnitude) because these functions capture the effects of experimental conditions. To assess these effects, parametric curves are often fitted to the data and comparisons are carried out by testing for equality of mean parameter estimates across conditions. This approach is parametric and, thus, vulnerable to violations of the implied assumptions. Furthermore, testing for equality of means of parameters may be misleading: Psychometric functions may vary meaningfully across conditions on an observer-by-observer basis with no effect on the mean values of the estimated parameters. Alternative approaches to assess equality of psychometric functions per se are thus needed. This paper compares three nonparametric tests that are applicable in all situations of interest: The existing generalized Mantel-Haenszel test, a generalization of the Berry-Mielke test that was developed here, and a split variant of the generalized Mantel-Haenszel test also developed here. Their statistical properties (accuracy and power) are studied via simulation and the results show that all tests are indistinguishable as to accuracy but they differ non-uniformly as to power. Empirical use of the tests is illustrated via analyses of published data sets and practical recommendations are given. The computer code in MATLAB and R to conduct these tests is available as Electronic Supplemental Material.

  3. A Bayesian nonparametric approach to reconstruction and prediction of random dynamical systems

    Science.gov (United States)

    Merkatas, Christos; Kaloudis, Konstantinos; Hatjispyros, Spyridon J.

    2017-06-01

    We propose a Bayesian nonparametric mixture model for the reconstruction and prediction from observed time series data, of discretized stochastic dynamical systems, based on Markov Chain Monte Carlo methods. Our results can be used by researchers in physical modeling interested in a fast and accurate estimation of low dimensional stochastic models when the size of the observed time series is small and the noise process (perhaps) is non-Gaussian. The inference procedure is demonstrated specifically in the case of polynomial maps of an arbitrary degree and when a Geometric Stick Breaking mixture process prior over the space of densities, is applied to the additive errors. Our method is parsimonious compared to Bayesian nonparametric techniques based on Dirichlet process mixtures, flexible and general. Simulations based on synthetic time series are presented.

  4. Analysing the length of care episode after hip fracture: a nonparametric and a parametric Bayesian approach.

    Science.gov (United States)

    Riihimäki, Jaakko; Sund, Reijo; Vehtari, Aki

    2010-06-01

    Effective utilisation of limited resources is a challenge for health care providers. Accurate and relevant information extracted from the length of stay distributions is useful for management purposes. Patient care episodes can be reconstructed from the comprehensive health registers, and in this paper we develop a Bayesian approach to analyse the length of care episode after a fractured hip. We model the large scale data with a flexible nonparametric multilayer perceptron network and with a parametric Weibull mixture model. To assess the performances of the models, we estimate expected utilities using predictive density as a utility measure. Since the model parameters cannot be directly compared, we focus on observables, and estimate the relevances of patient explanatory variables in predicting the length of stay. To demonstrate how the use of the nonparametric flexible model is advantageous for this complex health care data, we also study joint effects of variables in predictions, and visualise nonlinearities and interactions found in the data.

  5. A Bayesian nonparametric approach to reconstruction and prediction of random dynamical systems.

    Science.gov (United States)

    Merkatas, Christos; Kaloudis, Konstantinos; Hatjispyros, Spyridon J

    2017-06-01

    We propose a Bayesian nonparametric mixture model for the reconstruction and prediction from observed time series data, of discretized stochastic dynamical systems, based on Markov Chain Monte Carlo methods. Our results can be used by researchers in physical modeling interested in a fast and accurate estimation of low dimensional stochastic models when the size of the observed time series is small and the noise process (perhaps) is non-Gaussian. The inference procedure is demonstrated specifically in the case of polynomial maps of an arbitrary degree and when a Geometric Stick Breaking mixture process prior over the space of densities, is applied to the additive errors. Our method is parsimonious compared to Bayesian nonparametric techniques based on Dirichlet process mixtures, flexible and general. Simulations based on synthetic time series are presented.

  6. Scalable Bayesian nonparametric regression via a Plackett-Luce model for conditional ranks

    Science.gov (United States)

    Gray-Davies, Tristan; Holmes, Chris C.; Caron, François

    2018-01-01

    We present a novel Bayesian nonparametric regression model for covariates X and continuous response variable Y ∈ ℝ. The model is parametrized in terms of marginal distributions for Y and X and a regression function which tunes the stochastic ordering of the conditional distributions F (y|x). By adopting an approximate composite likelihood approach, we show that the resulting posterior inference can be decoupled for the separate components of the model. This procedure can scale to very large datasets and allows for the use of standard, existing, software from Bayesian nonparametric density estimation and Plackett-Luce ranking estimation to be applied. As an illustration, we show an application of our approach to a US Census dataset, with over 1,300,000 data points and more than 100 covariates. PMID:29623150

  7. A nonparametric empirical Bayes framework for large-scale multiple testing.

    Science.gov (United States)

    Martin, Ryan; Tokdar, Surya T

    2012-07-01

    We propose a flexible and identifiable version of the 2-groups model, motivated by hierarchical Bayes considerations, that features an empirical null and a semiparametric mixture model for the nonnull cases. We use a computationally efficient predictive recursion (PR) marginal likelihood procedure to estimate the model parameters, even the nonparametric mixing distribution. This leads to a nonparametric empirical Bayes testing procedure, which we call PRtest, based on thresholding the estimated local false discovery rates. Simulations and real data examples demonstrate that, compared to existing approaches, PRtest's careful handling of the nonnull density can give a much better fit in the tails of the mixture distribution which, in turn, can lead to more realistic conclusions.

  8. Nonparametric Bayes Classification and Hypothesis Testing on Manifolds

    Science.gov (United States)

    Bhattacharya, Abhishek; Dunson, David

    2012-01-01

    Our first focus is prediction of a categorical response variable using features that lie on a general manifold. For example, the manifold may correspond to the surface of a hypersphere. We propose a general kernel mixture model for the joint distribution of the response and predictors, with the kernel expressed in product form and dependence induced through the unknown mixing measure. We provide simple sufficient conditions for large support and weak and strong posterior consistency in estimating both the joint distribution of the response and predictors and the conditional distribution of the response. Focusing on a Dirichlet process prior for the mixing measure, these conditions hold using von Mises-Fisher kernels when the manifold is the unit hypersphere. In this case, Bayesian methods are developed for efficient posterior computation using slice sampling. Next we develop Bayesian nonparametric methods for testing whether there is a difference in distributions between groups of observations on the manifold having unknown densities. We prove consistency of the Bayes factor and develop efficient computational methods for its calculation. The proposed classification and testing methods are evaluated using simulation examples and applied to spherical data applications. PMID:22754028

  9. Risk estimation using probability machines

    Science.gov (United States)

    2014-01-01

    Background Logistic regression has been the de facto, and often the only, model used in the description and analysis of relationships between a binary outcome and observed features. It is widely used to obtain the conditional probabilities of the outcome given predictors, as well as predictor effect size estimates using conditional odds ratios. Results We show how statistical learning machines for binary outcomes, provably consistent for the nonparametric regression problem, can be used to provide both consistent conditional probability estimation and conditional effect size estimates. Effect size estimates from learning machines leverage our understanding of counterfactual arguments central to the interpretation of such estimates. We show that, if the data generating model is logistic, we can recover accurate probability predictions and effect size estimates with nearly the same efficiency as a correct logistic model, both for main effects and interactions. We also propose a method using learning machines to scan for possible interaction effects quickly and efficiently. Simulations using random forest probability machines are presented. Conclusions The models we propose make no assumptions about the data structure, and capture the patterns in the data by just specifying the predictors involved and not any particular model structure. So they do not run the same risks of model mis-specification and the resultant estimation biases as a logistic model. This methodology, which we call a “risk machine”, will share properties from the statistical machine that it is derived from. PMID:24581306

  10. Kinetic Analysis of Isothermal Decomposition Process of Sodium Bicarbonate Using the Weibull Probability Function—Estimation of Density Distribution Functions of the Apparent Activation Energies

    Science.gov (United States)

    Janković, Bojan

    2009-10-01

    The decomposition process of sodium bicarbonate (NaHCO3) has been studied by thermogravimetry in isothermal conditions at four different operating temperatures (380 K, 400 K, 420 K, and 440 K). It was found that the experimental integral and differential conversion curves at the different operating temperatures can be successfully described by the isothermal Weibull distribution function with a unique value of the shape parameter ( β = 1.07). It was also established that the Weibull distribution parameters ( β and η) show independent behavior on the operating temperature. Using the integral and differential (Friedman) isoconversional methods, in the conversion (α) range of 0.20 ≤ α ≤ 0.80, the apparent activation energy ( E a ) value was approximately constant ( E a, int = 95.2 kJmol-1 and E a, diff = 96.6 kJmol-1, respectively). The values of E a calculated by both isoconversional methods are in good agreement with the value of E a evaluated from the Arrhenius equation (94.3 kJmol-1), which was expressed through the scale distribution parameter ( η). The Málek isothermal procedure was used for estimation of the kinetic model for the investigated decomposition process. It was found that the two-parameter Šesták-Berggren (SB) autocatalytic model best describes the NaHCO3 decomposition process with the conversion function f(α) = α0.18(1-α)1.19. It was also concluded that the calculated density distribution functions of the apparent activation energies ( ddfE a ’s) are not dependent on the operating temperature, which exhibit the highly symmetrical behavior (shape factor = 1.00). The obtained isothermal decomposition results were compared with corresponding results of the nonisothermal decomposition process of NaHCO3.

  11. Collision Probability Analysis

    DEFF Research Database (Denmark)

    Hansen, Peter Friis; Pedersen, Preben Terndrup

    1998-01-01

    It is the purpose of this report to apply a rational model for prediction of ship-ship collision probabilities as function of the ship and the crew characteristics and the navigational environment for MS Dextra sailing on a route between Cadiz and the Canary Islands.The most important ship and crew...... characteristics are: ship speed, ship manoeuvrability, the layout of the navigational bridge, the radar system, the number and the training of navigators, the presence of a look out etc. The main parameters affecting the navigational environment are ship traffic density, probability distributions of wind speeds...... probability, i.e. a study of the navigator's role in resolving critical situations, a causation factor is derived as a second step.The report documents the first step in a probabilistic collision damage analysis. Future work will inlcude calculation of energy released for crushing of structures giving...

  12. Nonparametric study of the evolution of the cosmological equation of state with SNeIa, BAO, and high-redshift GRBs

    Energy Technology Data Exchange (ETDEWEB)

    Postnikov, S. [Nuclear Theory Center, Indiana University, Bloomington, IN (United States); Dainotti, M. G. [Physics Department, Stanford University, Via Pueblo Mall 382, Stanford, CA (United States); Hernandez, X. [Instituto de Astronomía, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Capozziello, S., E-mail: spostnik@indiana.edu, E-mail: mdainott@stanford.edu, E-mail: dainotti@oa.uj.edu.pl, E-mail: xavier@astros.unam.mx, E-mail: capozziello@na.infn.it [Dipartimento di Fisica, Universitá di Napoli " Federico II," Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126 Napoli (Italy)

    2014-03-10

    We study the dark energy equation of state as a function of redshift in a nonparametric way, without imposing any a priori w(z) (ratio of pressure over energy density) functional form. As a check of the method, we test our scheme through the use of synthetic data sets produced from different input cosmological models that have the same relative errors and redshift distribution as the real data. Using the luminosity-time L{sub X} -T{sub a} correlation for gamma-ray burst (GRB) X-ray afterglows (the Dainotti et al. correlation), we are able to utilize GRB samples from the Swift satellite as probes of the expansion history of the universe out to z ≈ 10. Within the assumption of a flat Friedmann-Lemaître-Robertson-Walker universe and combining supernovae type Ia (SNeIa) data with baryonic acoustic oscillation constraints, the resulting maximum likelihood solutions are close to a constant w = –1. If one imposes the restriction of a constant w, we obtain w = –0.99 ± 0.06 (consistent with a cosmological constant) with the present-day Hubble constant as H {sub 0} = 70.0 ± 0.6km s{sup –1} Mpc{sup –1} and density parameter as Ω{sub Λ0} = 0.723 ± 0.025, while nonparametric w(z) solutions give us a probability map that is centered at H {sub 0} = 70.04 ± 1km s{sup –1} Mpc{sup –1} and Ω{sub Λ0} = 0.724 ± 0.03. Our chosen GRB data sample with a full correlation matrix allows us to estimate the amount, as well as quality (errors), of data needed to constrain w(z) in the redshift range extending an order of magnitude beyond the farthest SNeIa measured.

  13. Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs

    NARCIS (Netherlands)

    Kuosmanen, T.K.

    2005-01-01

    Environmental Economics and Natural Resources Group at Wageningen University in The Netherlands Weak disposability of outputs means that firms can abate harmful emissions by decreasing the activity level. Modeling weak disposability in nonparametric production analysis has caused some confusion.

  14. Multi-sample nonparametric treatments comparison in medical ...

    African Journals Online (AJOL)

    Multi-sample nonparametric treatments comparison in medical follow-up study with unequal observation processes through simulation and bladder tumour case study. P. L. Tan, N.A. Ibrahim, M.B. Adam, J. Arasan ...

  15. A nonparametric mixture model for cure rate estimation.

    Science.gov (United States)

    Peng, Y; Dear, K B

    2000-03-01

    Nonparametric methods have attracted less attention than their parametric counterparts for cure rate analysis. In this paper, we study a general nonparametric mixture model. The proportional hazards assumption is employed in modeling the effect of covariates on the failure time of patients who are not cured. The EM algorithm, the marginal likelihood approach, and multiple imputations are employed to estimate parameters of interest in the model. This model extends models and improves estimation methods proposed by other researchers. It also extends Cox's proportional hazards regression model by allowing a proportion of event-free patients and investigating covariate effects on that proportion. The model and its estimation method are investigated by simulations. An application to breast cancer data, including comparisons with previous analyses using a parametric model and an existing nonparametric model by other researchers, confirms the conclusions from the parametric model but not those from the existing nonparametric model.

  16. Non-parametric Bayesian graph models reveal community structure in resting state fMRI

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther; Madsen, Kristoffer H.; Siebner, Hartwig Roman

    2014-01-01

    Modeling of resting state functional magnetic resonance imaging (rs-fMRI) data using network models is of increasing interest. It is often desirable to group nodes into clusters to interpret the communication patterns between nodes. In this study we consider three different nonparametric Bayesian...... models for node clustering in complex networks. In particular, we test their ability to predict unseen data and their ability to reproduce clustering across datasets. The three generative models considered are the Infinite Relational Model (IRM), Bayesian Community Detection (BCD), and the Infinite...... between clusters. BCD restricts the between-cluster link probabilities to be strictly lower than within-cluster link probabilities to conform to the community structure typically seen in social networks. IDM only models a single between-cluster link probability, which can be interpreted as a background...

  17. Estimating the joint survival probabilities of married individuals

    NARCIS (Netherlands)

    Sanders, Lisanne; Melenberg, Bertrand

    We estimate the joint survival probability of spouses using a large random sample drawn from a Dutch census. As benchmarks we use two bivariate Weibull models. We consider more flexible models, using a semi-nonparametric approach, by extending the independent Weibull distribution using squared

  18. Methodology in robust and nonparametric statistics

    CERN Document Server

    Jurecková, Jana; Picek, Jan

    2012-01-01

    Introduction and SynopsisIntroductionSynopsisPreliminariesIntroductionInference in Linear ModelsRobustness ConceptsRobust and Minimax Estimation of LocationClippings from Probability and Asymptotic TheoryProblemsRobust Estimation of Location and RegressionIntroductionM-EstimatorsL-EstimatorsR-EstimatorsMinimum Distance and Pitman EstimatorsDifferentiable Statistical FunctionsProblemsAsymptotic Representations for L-Estimators

  19. Smooth semi-nonparametric (SNP) estimation of the cumulative incidence function.

    Science.gov (United States)

    Duc, Anh Nguyen; Wolbers, Marcel

    2017-08-15

    This paper presents a novel approach to estimation of the cumulative incidence function in the presence of competing risks. The underlying statistical model is specified via a mixture factorization of the joint distribution of the event type and the time to the event. The time to event distributions conditional on the event type are modeled using smooth semi-nonparametric densities. One strength of this approach is that it can handle arbitrary censoring and truncation while relying on mild parametric assumptions. A stepwise forward algorithm for model estimation and adaptive selection of smooth semi-nonparametric polynomial degrees is presented, implemented in the statistical software R, evaluated in a sequence of simulation studies, and applied to data from a clinical trial in cryptococcal meningitis. The simulations demonstrate that the proposed method frequently outperforms both parametric and nonparametric alternatives. They also support the use of 'ad hoc' asymptotic inference to derive confidence intervals. An extension to regression modeling is also presented, and its potential and challenges are discussed. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  20. Nonparametric, Coupled ,Bayesian ,Dictionary ,and Classifier Learning for Hyperspectral Classification.

    Science.gov (United States)

    Akhtar, Naveed; Mian, Ajmal

    2017-10-03

    We present a principled approach to learn a discriminative dictionary along a linear classifier for hyperspectral classification. Our approach places Gaussian Process priors over the dictionary to account for the relative smoothness of the natural spectra, whereas the classifier parameters are sampled from multivariate Gaussians. We employ two Beta-Bernoulli processes to jointly infer the dictionary and the classifier. These processes are coupled under the same sets of Bernoulli distributions. In our approach, these distributions signify the frequency of the dictionary atom usage in representing class-specific training spectra, which also makes the dictionary discriminative. Due to the coupling between the dictionary and the classifier, the popularity of the atoms for representing different classes gets encoded into the classifier. This helps in predicting the class labels of test spectra that are first represented over the dictionary by solving a simultaneous sparse optimization problem. The labels of the spectra are predicted by feeding the resulting representations to the classifier. Our approach exploits the nonparametric Bayesian framework to automatically infer the dictionary size--the key parameter in discriminative dictionary learning. Moreover, it also has the desirable property of adaptively learning the association between the dictionary atoms and the class labels by itself. We use Gibbs sampling to infer the posterior probability distributions over the dictionary and the classifier under the proposed model, for which, we derive analytical expressions. To establish the effectiveness of our approach, we test it on benchmark hyperspectral images. The classification performance is compared with the state-of-the-art dictionary learning-based classification methods.

  1. Propensity, Probability, and Quantum Theory

    Science.gov (United States)

    Ballentine, Leslie E.

    2016-08-01

    Quantum mechanics and probability theory share one peculiarity. Both have well established mathematical formalisms, yet both are subject to controversy about the meaning and interpretation of their basic concepts. Since probability plays a fundamental role in QM, the conceptual problems of one theory can affect the other. We first classify the interpretations of probability into three major classes: (a) inferential probability, (b) ensemble probability, and (c) propensity. Class (a) is the basis of inductive logic; (b) deals with the frequencies of events in repeatable experiments; (c) describes a form of causality that is weaker than determinism. An important, but neglected, paper by P. Humphreys demonstrated that propensity must differ mathematically, as well as conceptually, from probability, but he did not develop a theory of propensity. Such a theory is developed in this paper. Propensity theory shares many, but not all, of the axioms of probability theory. As a consequence, propensity supports the Law of Large Numbers from probability theory, but does not support Bayes theorem. Although there are particular problems within QM to which any of the classes of probability may be applied, it is argued that the intrinsic quantum probabilities (calculated from a state vector or density matrix) are most naturally interpreted as quantum propensities. This does not alter the familiar statistical interpretation of QM. But the interpretation of quantum states as representing knowledge is untenable. Examples show that a density matrix fails to represent knowledge.

  2. Pharmacokinetic modelling of intravenous tobramycin in adolescent and adult patients with cystic fibrosis using the nonparametric expectation maximization (NPEM) algorithm.

    Science.gov (United States)

    Touw, D J; Vinks, A A; Neef, C

    1997-06-01

    The availability of personal computer programs for individualizing drug dosage regimens has stimulated the interest in modelling population pharmacokinetics. Data from 82 adolescent and adult patients with cystic fibrosis (CF) who were treated with intravenous tobramycin because of an exacerbation of their pulmonary infection were analysed with a non-parametric expectation maximization (NPEM) algorithm. This algorithm estimates the entire discrete joint probability density of the pharmacokinetic parameters. It also provides traditional parametric statistics such as the means, standard deviation, median, covariances and correlations among the various parameters. It also provides graphic-2- and 3-dimensional representations of the marginal densities of the parameters investigated. Several models for intravenous tobramycin in adolescent and adult patients with CF were compared. Covariates were total body weight (for the volume of distribution) and creatinine clearance (for the total body clearance and elimination rate). Because of lack of data on patients with poor renal function, restricted models with non-renal clearance and the non-renal elimination rate constant fixed at literature values of 0.15 L/h and 0.01 h-1 were also included. In this population, intravenous tobramycin could be best described by median (+/-dispersion factor) volume of distribution per unit of total body weight of 0.28 +/- 0.05 L/kg, elimination rate constant of 0.25 +/- 0.10 h-1 and elimination rate constant per unit of creatinine clearance of 0.0008 +/- 0.0009 h-1/(ml/min/1.73 m2). Analysis of populations of increasing size showed that using a restricted model with a non-renal elimination rate constant fixed at 0.01 h-1, a model based on a population of only 10 to 20 patients, contained parameter values similar to those of the entire population and, using the full model, a larger population (at least 40 patients) was needed.

  3. Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification.

    Science.gov (United States)

    Fan, Jianqing; Feng, Yang; Jiang, Jiancheng; Tong, Xin

    We propose a high dimensional classification method that involves nonparametric feature augmentation. Knowing that marginal density ratios are the most powerful univariate classifiers, we use the ratio estimates to transform the original feature measurements. Subsequently, penalized logistic regression is invoked, taking as input the newly transformed or augmented features. This procedure trains models equipped with local complexity and global simplicity, thereby avoiding the curse of dimensionality while creating a flexible nonlinear decision boundary. The resulting method is called Feature Augmentation via Nonparametrics and Selection (FANS). We motivate FANS by generalizing the Naive Bayes model, writing the log ratio of joint densities as a linear combination of those of marginal densities. It is related to generalized additive models, but has better interpretability and computability. Risk bounds are developed for FANS. In numerical analysis, FANS is compared with competing methods, so as to provide a guideline on its best application domain. Real data analysis demonstrates that FANS performs very competitively on benchmark email spam and gene expression data sets. Moreover, FANS is implemented by an extremely fast algorithm through parallel computing.

  4. Statistical decisions under nonparametric a priori information

    International Nuclear Information System (INIS)

    Chilingaryan, A.A.

    1985-01-01

    The basic module of applied program package for statistical analysis of the ANI experiment data is described. By means of this module tasks of choosing theoretical model most adequately fitting to experimental data, selection of events of definte type, identification of elementary particles are carried out. For mentioned problems solving, the Bayesian rules, one-leave out test and KNN (K Nearest Neighbour) adaptive density estimation are utilized

  5. Generalized Probability Functions

    Directory of Open Access Journals (Sweden)

    Alexandre Souto Martinez

    2009-01-01

    Full Text Available From the integration of nonsymmetrical hyperboles, a one-parameter generalization of the logarithmic function is obtained. Inverting this function, one obtains the generalized exponential function. Motivated by the mathematical curiosity, we show that these generalized functions are suitable to generalize some probability density functions (pdfs. A very reliable rank distribution can be conveniently described by the generalized exponential function. Finally, we turn the attention to the generalization of one- and two-tail stretched exponential functions. We obtain, as particular cases, the generalized error function, the Zipf-Mandelbrot pdf, the generalized Gaussian and Laplace pdf. Their cumulative functions and moments were also obtained analytically.

  6. Predicting Market Impact Costs Using Nonparametric Machine Learning Models.

    Directory of Open Access Journals (Sweden)

    Saerom Park

    Full Text Available Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.

  7. Predicting Market Impact Costs Using Nonparametric Machine Learning Models.

    Science.gov (United States)

    Park, Saerom; Lee, Jaewook; Son, Youngdoo

    2016-01-01

    Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.

  8. Comparing parametric and nonparametric regression methods for panel data

    DEFF Research Database (Denmark)

    Czekaj, Tomasz Gerard; Henningsen, Arne

    We investigate and compare the suitability of parametric and non-parametric stochastic regression methods for analysing production technologies and the optimal firm size. Our theoretical analysis shows that the most commonly used functional forms in empirical production analysis, Cobb......-Douglas and Translog, are unsuitable for analysing the optimal firm size. We show that the Translog functional form implies an implausible linear relationship between the (logarithmic) firm size and the elasticity of scale, where the slope is artificially related to the substitutability between the inputs....... The practical applicability of the parametric and non-parametric regression methods is scrutinised and compared by an empirical example: we analyse the production technology and investigate the optimal size of Polish crop farms based on a firm-level balanced panel data set. A nonparametric specification test...

  9. A nonparametric spatial scan statistic for continuous data.

    Science.gov (United States)

    Jung, Inkyung; Cho, Ho Jin

    2015-10-20

    Spatial scan statistics are widely used for spatial cluster detection, and several parametric models exist. For continuous data, a normal-based scan statistic can be used. However, the performance of the model has not been fully evaluated for non-normal data. We propose a nonparametric spatial scan statistic based on the Wilcoxon rank-sum test statistic and compared the performance of the method with parametric models via a simulation study under various scenarios. The nonparametric method outperforms the normal-based scan statistic in terms of power and accuracy in almost all cases under consideration in the simulation study. The proposed nonparametric spatial scan statistic is therefore an excellent alternative to the normal model for continuous data and is especially useful for data following skewed or heavy-tailed distributions.

  10. Probability of Failure in Random Vibration

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Sørensen, John Dalsgaard

    1988-01-01

    Close approximations to the first-passage probability of failure in random vibration can be obtained by integral equation methods. A simple relation exists between the first-passage probability density function and the distribution function for the time interval spent below a barrier before out......-crossing. An integral equation for the probability density function of the time interval is formulated, and adequate approximations for the kernel are suggested. The kernel approximation results in approximate solutions for the probability density function of the time interval and thus for the first-passage probability...

  11. Nonparametric variational optimization of reaction coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Banushkina, Polina V.; Krivov, Sergei V., E-mail: s.krivov@leeds.ac.uk [Astbury Center for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2015-11-14

    State of the art realistic simulations of complex atomic processes commonly produce trajectories of large size, making the development of automated analysis tools very important. A popular approach aimed at extracting dynamical information consists of projecting these trajectories into optimally selected reaction coordinates or collective variables. For equilibrium dynamics between any two boundary states, the committor function also known as the folding probability in protein folding studies is often considered as the optimal coordinate. To determine it, one selects a functional form with many parameters and trains it on the trajectories using various criteria. A major problem with such an approach is that a poor initial choice of the functional form may lead to sub-optimal results. Here, we describe an approach which allows one to optimize the reaction coordinate without selecting its functional form and thus avoiding this source of error.

  12. Nonparametric regression using the concept of minimum energy

    International Nuclear Information System (INIS)

    Williams, Mike

    2011-01-01

    It has recently been shown that an unbinned distance-based statistic, the energy, can be used to construct an extremely powerful nonparametric multivariate two sample goodness-of-fit test. An extension to this method that makes it possible to perform nonparametric regression using multiple multivariate data sets is presented in this paper. The technique, which is based on the concept of minimizing the energy of the system, permits determination of parameters of interest without the need for parametric expressions of the parent distributions of the data sets. The application and performance of this new method is discussed in the context of some simple example analyses.

  13. Probability Aggregates in Probability Answer Set Programming

    OpenAIRE

    Saad, Emad

    2013-01-01

    Probability answer set programming is a declarative programming that has been shown effective for representing and reasoning about a variety of probability reasoning tasks. However, the lack of probability aggregates, e.g. {\\em expected values}, in the language of disjunctive hybrid probability logic programs (DHPP) disallows the natural and concise representation of many interesting problems. In this paper, we extend DHPP to allow arbitrary probability aggregates. We introduce two types of p...

  14. Probability theory and mathematical statistics for engineers

    CERN Document Server

    Pugachev, V S

    1984-01-01

    Probability Theory and Mathematical Statistics for Engineers focuses on the concepts of probability theory and mathematical statistics for finite-dimensional random variables.The publication first underscores the probabilities of events, random variables, and numerical characteristics of random variables. Discussions focus on canonical expansions of random vectors, second-order moments of random vectors, generalization of the density concept, entropy of a distribution, direct evaluation of probabilities, and conditional probabilities. The text then examines projections of random vector

  15. Probability density function of the number of embryos collected from superovulated Nelore breed donors Função de densidade de probabilidade do número de embriões produzidos por doadoras da raça Nelore

    Directory of Open Access Journals (Sweden)

    Renato Travassos Beltrame

    2009-08-01

    Full Text Available Several models have been developed to evaluate reproductive status of cows through concentration of progesterone in milk, the effect of sex selection in the commercial production of herds and bioeconomic performance of the multiple ovulation and embryo transfer system in select herds. However, models describing the production of embryos in superovulated females have yet to be developed. A probability density function of the number of embryos collected by donors of the Nelore breed was determined. Records of 61,928 embryo collections from 26,767 donors from 1991 to 2005 were analyzed. Data were provided by the Brazilian Association of Creators of Zebu and Controlmax Consultoria e Sistemas Ltda. The probability density function of the number of viable embryos was modeled using exponential and gamma distributions. Parameter fitting was carried out for maximum likelihood using a non-linear gradient method. Both distributions presented similar level of precision: root mean square error (RMSE = 0.0072 and 0.0071 for the exponential and gamma distributions, respectively; both distributions are thus deemed suitable for representing the probability density function of embryo production by Nelore females.Diversos modelos têm sido desenvolvidos para avaliar o estado reprodutivo de vacas por meio da concentração de progesterona no leite, o efeito da seleção do sexo na produção comercial de rebanhos e o desempenho bioeconômico da ovulação múltipla e transferência de embriões em rebanhos selecionados. No entanto, modelos que descrevem a produção de embriões em fêmeas superovulados ainda têm de ser desenvolvidos. Uma função de densidade probabilidade para o número de embriões viáveis recuperados de doadoras da raça Nelore foi determinada. Dados de 61.928 coletas de 26.767 doadoras entre 1991 e 2005 foram analisados. Os resultados foram fornecidos pela Associação Brasileira de Criadores de Zebu (ABCZ e pela empresa Controlmax

  16. The nonparametric bootstrap for the current status model

    NARCIS (Netherlands)

    Groeneboom, P.; Hendrickx, K.

    2017-01-01

    It has been proved that direct bootstrapping of the nonparametric maximum likelihood estimator (MLE) of the distribution function in the current status model leads to inconsistent confidence intervals. We show that bootstrapping of functionals of the MLE can however be used to produce valid

  17. Non-Parametric Analysis of Rating Transition and Default Data

    DEFF Research Database (Denmark)

    Fledelius, Peter; Lando, David; Perch Nielsen, Jens

    2004-01-01

    We demonstrate the use of non-parametric intensity estimation - including construction of pointwise confidence sets - for analyzing rating transition data. We find that transition intensities away from the class studied here for illustration strongly depend on the direction of the previous move b...

  18. Nonparametric modeling of dynamic functional connectivity in fmri data

    DEFF Research Database (Denmark)

    Nielsen, Søren Føns Vind; Madsen, Kristoffer H.; Røge, Rasmus

    2015-01-01

    dynamic changes. The existing approaches modeling dynamic connectivity have primarily been based on time-windowing the data and k-means clustering. We propose a nonparametric generative model for dynamic FC in fMRI that does not rely on specifying window lengths and number of dynamic states. Rooted...

  19. Surface Estimation, Variable Selection, and the Nonparametric Oracle Property.

    Science.gov (United States)

    Storlie, Curtis B; Bondell, Howard D; Reich, Brian J; Zhang, Hao Helen

    2011-04-01

    Variable selection for multivariate nonparametric regression is an important, yet challenging, problem due, in part, to the infinite dimensionality of the function space. An ideal selection procedure should be automatic, stable, easy to use, and have desirable asymptotic properties. In particular, we define a selection procedure to be nonparametric oracle (np-oracle) if it consistently selects the correct subset of predictors and at the same time estimates the smooth surface at the optimal nonparametric rate, as the sample size goes to infinity. In this paper, we propose a model selection procedure for nonparametric models, and explore the conditions under which the new method enjoys the aforementioned properties. Developed in the framework of smoothing spline ANOVA, our estimator is obtained via solving a regularization problem with a novel adaptive penalty on the sum of functional component norms. Theoretical properties of the new estimator are established. Additionally, numerous simulated and real examples further demonstrate that the new approach substantially outperforms other existing methods in the finite sample setting.

  20. On the robust nonparametric regression estimation for a functional regressor

    OpenAIRE

    Azzedine , Nadjia; Laksaci , Ali; Ould-Saïd , Elias

    2009-01-01

    On the robust nonparametric regression estimation for a functional regressor correspondance: Corresponding author. (Ould-Said, Elias) (Azzedine, Nadjia) (Laksaci, Ali) (Ould-Said, Elias) Departement de Mathematiques--> , Univ. Djillali Liabes--> , BP 89--> , 22000 Sidi Bel Abbes--> - ALGERIA (Azzedine, Nadjia) Departement de Mathema...

  1. A general approach to posterior contraction in nonparametric inverse problems

    NARCIS (Netherlands)

    Knapik, Bartek; Salomond, Jean Bernard

    In this paper, we propose a general method to derive an upper bound for the contraction rate of the posterior distribution for nonparametric inverse problems. We present a general theorem that allows us to derive contraction rates for the parameter of interest from contraction rates of the related

  2. Non-parametric analysis of production efficiency of poultry egg ...

    African Journals Online (AJOL)

    Non-parametric analysis of production efficiency of poultry egg farmers in Delta ... analysis of factors affecting the output of poultry farmers showed that stock ... should be put in place for farmers to learn the best farm practices carried out on the ...

  3. Scaling Qualitative Probability

    OpenAIRE

    Burgin, Mark

    2017-01-01

    There are different approaches to qualitative probability, which includes subjective probability. We developed a representation of qualitative probability based on relational systems, which allows modeling uncertainty by probability structures and is more coherent than existing approaches. This setting makes it possible proving that any comparative probability is induced by some probability structure (Theorem 2.1), that classical probability is a probability structure (Theorem 2.2) and that i...

  4. Annihilation probability density and other applications of the Schwinger multichannel method to the positron and electron scattering; Densidade de probabilidade de aniquilacao e outras aplicacoes do metodo multicanal de Schwinger ao espalhamento de positrons e eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Varella, Marcio Teixeira do Nascimento

    2001-12-15

    We have calculated annihilation probability densities (APD) for positron collisions against He atom and H{sub 2} molecule. It was found that direct annihilation prevails at low energies, while annihilation following virtual positronium (Ps) formation is the dominant mechanism at higher energies. In room-temperature collisions (10{sup -2} eV) the APD spread over a considerable extension, being quite similar to the electronic densities of the targets. The capture of the positron in an electronic Feshbach resonance strongly enhanced the annihilation rate in e{sup +}-H{sub 2} collisions. We also discuss strategies to improve the calculation of the annihilation parameter (Z{sub eff} ), after debugging the computational codes of the Schwinger Multichannel Method (SMC). Finally, we consider the inclusion of the Ps formation channel in the SMC and show that effective configurations (pseudo eigenstates of the Hamiltonian of the collision ) are able to significantly reduce the computational effort in positron scattering calculations. Cross sections for electron scattering by polyatomic molecules were obtained in three different approximations: static-exchange (SE); tatic-exchange-plus-polarization (SEP); and multichannel coupling. The calculations for polar targets were improved through the rotational resolution of scattering amplitudes in which the SMC was combined with the first Born approximation (FBA). In general, elastic cross sections (SE and SEP approximations) showed good agreement with available experimental data for several targets. Multichannel calculations for e{sup -} -H{sub 2}O scattering, on the other hand, presented spurious structures at the electronic excitation thresholds (author)

  5. A semi-nonparametric mixture model for selecting functionally consistent proteins.

    Science.gov (United States)

    Yu, Lianbo; Doerge, Rw

    2010-09-28

    High-throughput technologies have led to a new era of proteomics. Although protein microarray experiments are becoming more common place there are a variety of experimental and statistical issues that have yet to be addressed, and that will carry over to new high-throughput technologies unless they are investigated. One of the largest of these challenges is the selection of functionally consistent proteins. We present a novel semi-nonparametric mixture model for classifying proteins as consistent or inconsistent while controlling the false discovery rate and the false non-discovery rate. The performance of the proposed approach is compared to current methods via simulation under a variety of experimental conditions. We provide a statistical method for selecting functionally consistent proteins in the context of protein microarray experiments, but the proposed semi-nonparametric mixture model method can certainly be generalized to solve other mixture data problems. The main advantage of this approach is that it provides the posterior probability of consistency for each protein.

  6. Testing for constant nonparametric effects in general semiparametric regression models with interactions

    KAUST Repository

    Wei, Jiawei; Carroll, Raymond J.; Maity, Arnab

    2011-01-01

    We consider the problem of testing for a constant nonparametric effect in a general semi-parametric regression model when there is the potential for interaction between the parametrically and nonparametrically modeled variables. The work

  7. Two-component mixture cure rate model with spline estimated nonparametric components.

    Science.gov (United States)

    Wang, Lu; Du, Pang; Liang, Hua

    2012-09-01

    In some survival analysis of medical studies, there are often long-term survivors who can be considered as permanently cured. The goals in these studies are to estimate the noncured probability of the whole population and the hazard rate of the susceptible subpopulation. When covariates are present as often happens in practice, to understand covariate effects on the noncured probability and hazard rate is of equal importance. The existing methods are limited to parametric and semiparametric models. We propose a two-component mixture cure rate model with nonparametric forms for both the cure probability and the hazard rate function. Identifiability of the model is guaranteed by an additive assumption that allows no time-covariate interactions in the logarithm of hazard rate. Estimation is carried out by an expectation-maximization algorithm on maximizing a penalized likelihood. For inferential purpose, we apply the Louis formula to obtain point-wise confidence intervals for noncured probability and hazard rate. Asymptotic convergence rates of our function estimates are established. We then evaluate the proposed method by extensive simulations. We analyze the survival data from a melanoma study and find interesting patterns for this study. © 2011, The International Biometric Society.

  8. On Probability Leakage

    OpenAIRE

    Briggs, William M.

    2012-01-01

    The probability leakage of model M with respect to evidence E is defined. Probability leakage is a kind of model error. It occurs when M implies that events $y$, which are impossible given E, have positive probability. Leakage does not imply model falsification. Models with probability leakage cannot be calibrated empirically. Regression models, which are ubiquitous in statistical practice, often evince probability leakage.

  9. MEASURING DARK MATTER PROFILES NON-PARAMETRICALLY IN DWARF SPHEROIDALS: AN APPLICATION TO DRACO

    International Nuclear Information System (INIS)

    Jardel, John R.; Gebhardt, Karl; Fabricius, Maximilian H.; Williams, Michael J.; Drory, Niv

    2013-01-01

    We introduce a novel implementation of orbit-based (or Schwarzschild) modeling that allows dark matter density profiles to be calculated non-parametrically in nearby galaxies. Our models require no assumptions to be made about velocity anisotropy or the dark matter profile. The technique can be applied to any dispersion-supported stellar system, and we demonstrate its use by studying the Local Group dwarf spheroidal galaxy (dSph) Draco. We use existing kinematic data at larger radii and also present 12 new radial velocities within the central 13 pc obtained with the VIRUS-W integral field spectrograph on the 2.7 m telescope at McDonald Observatory. Our non-parametric Schwarzschild models find strong evidence that the dark matter profile in Draco is cuspy for 20 ≤ r ≤ 700 pc. The profile for r ≥ 20 pc is well fit by a power law with slope α = –1.0 ± 0.2, consistent with predictions from cold dark matter simulations. Our models confirm that, despite its low baryon content relative to other dSphs, Draco lives in a massive halo.

  10. Nonparametric Regression Estimation for Multivariate Null Recurrent Processes

    Directory of Open Access Journals (Sweden)

    Biqing Cai

    2015-04-01

    Full Text Available This paper discusses nonparametric kernel regression with the regressor being a \\(d\\-dimensional \\(\\beta\\-null recurrent process in presence of conditional heteroscedasticity. We show that the mean function estimator is consistent with convergence rate \\(\\sqrt{n(Th^{d}}\\, where \\(n(T\\ is the number of regenerations for a \\(\\beta\\-null recurrent process and the limiting distribution (with proper normalization is normal. Furthermore, we show that the two-step estimator for the volatility function is consistent. The finite sample performance of the estimate is quite reasonable when the leave-one-out cross validation method is used for bandwidth selection. We apply the proposed method to study the relationship of Federal funds rate with 3-month and 5-year T-bill rates and discover the existence of nonlinearity of the relationship. Furthermore, the in-sample and out-of-sample performance of the nonparametric model is far better than the linear model.

  11. Nonparametric instrumental regression with non-convex constraints

    International Nuclear Information System (INIS)

    Grasmair, M; Scherzer, O; Vanhems, A

    2013-01-01

    This paper considers the nonparametric regression model with an additive error that is dependent on the explanatory variables. As is common in empirical studies in epidemiology and economics, it also supposes that valid instrumental variables are observed. A classical example in microeconomics considers the consumer demand function as a function of the price of goods and the income, both variables often considered as endogenous. In this framework, the economic theory also imposes shape restrictions on the demand function, such as integrability conditions. Motivated by this illustration in microeconomics, we study an estimator of a nonparametric constrained regression function using instrumental variables by means of Tikhonov regularization. We derive rates of convergence for the regularized model both in a deterministic and stochastic setting under the assumption that the true regression function satisfies a projected source condition including, because of the non-convexity of the imposed constraints, an additional smallness condition. (paper)

  12. Nonparametric instrumental regression with non-convex constraints

    Science.gov (United States)

    Grasmair, M.; Scherzer, O.; Vanhems, A.

    2013-03-01

    This paper considers the nonparametric regression model with an additive error that is dependent on the explanatory variables. As is common in empirical studies in epidemiology and economics, it also supposes that valid instrumental variables are observed. A classical example in microeconomics considers the consumer demand function as a function of the price of goods and the income, both variables often considered as endogenous. In this framework, the economic theory also imposes shape restrictions on the demand function, such as integrability conditions. Motivated by this illustration in microeconomics, we study an estimator of a nonparametric constrained regression function using instrumental variables by means of Tikhonov regularization. We derive rates of convergence for the regularized model both in a deterministic and stochastic setting under the assumption that the true regression function satisfies a projected source condition including, because of the non-convexity of the imposed constraints, an additional smallness condition.

  13. Comparing nonparametric Bayesian tree priors for clonal reconstruction of tumors.

    Science.gov (United States)

    Deshwar, Amit G; Vembu, Shankar; Morris, Quaid

    2015-01-01

    Statistical machine learning methods, especially nonparametric Bayesian methods, have become increasingly popular to infer clonal population structure of tumors. Here we describe the treeCRP, an extension of the Chinese restaurant process (CRP), a popular construction used in nonparametric mixture models, to infer the phylogeny and genotype of major subclonal lineages represented in the population of cancer cells. We also propose new split-merge updates tailored to the subclonal reconstruction problem that improve the mixing time of Markov chains. In comparisons with the tree-structured stick breaking prior used in PhyloSub, we demonstrate superior mixing and running time using the treeCRP with our new split-merge procedures. We also show that given the same number of samples, TSSB and treeCRP have similar ability to recover the subclonal structure of a tumor…

  14. Single versus mixture Weibull distributions for nonparametric satellite reliability

    International Nuclear Information System (INIS)

    Castet, Jean-Francois; Saleh, Joseph H.

    2010-01-01

    Long recognized as a critical design attribute for space systems, satellite reliability has not yet received the proper attention as limited on-orbit failure data and statistical analyses can be found in the technical literature. To fill this gap, we recently conducted a nonparametric analysis of satellite reliability for 1584 Earth-orbiting satellites launched between January 1990 and October 2008. In this paper, we provide an advanced parametric fit, based on mixture of Weibull distributions, and compare it with the single Weibull distribution model obtained with the Maximum Likelihood Estimation (MLE) method. We demonstrate that both parametric fits are good approximations of the nonparametric satellite reliability, but that the mixture Weibull distribution provides significant accuracy in capturing all the failure trends in the failure data, as evidenced by the analysis of the residuals and their quasi-normal dispersion.

  15. International Conference on Robust Rank-Based and Nonparametric Methods

    CERN Document Server

    McKean, Joseph

    2016-01-01

    The contributors to this volume include many of the distinguished researchers in this area. Many of these scholars have collaborated with Joseph McKean to develop underlying theory for these methods, obtain small sample corrections, and develop efficient algorithms for their computation. The papers cover the scope of the area, including robust nonparametric rank-based procedures through Bayesian and big data rank-based analyses. Areas of application include biostatistics and spatial areas. Over the last 30 years, robust rank-based and nonparametric methods have developed considerably. These procedures generalize traditional Wilcoxon-type methods for one- and two-sample location problems. Research into these procedures has culminated in complete analyses for many of the models used in practice including linear, generalized linear, mixed, and nonlinear models. Settings are both multivariate and univariate. With the development of R packages in these areas, computation of these procedures is easily shared with r...

  16. Seismic Signal Compression Using Nonparametric Bayesian Dictionary Learning via Clustering

    Directory of Open Access Journals (Sweden)

    Xin Tian

    2017-06-01

    Full Text Available We introduce a seismic signal compression method based on nonparametric Bayesian dictionary learning method via clustering. The seismic data is compressed patch by patch, and the dictionary is learned online. Clustering is introduced for dictionary learning. A set of dictionaries could be generated, and each dictionary is used for one cluster’s sparse coding. In this way, the signals in one cluster could be well represented by their corresponding dictionaries. A nonparametric Bayesian dictionary learning method is used to learn the dictionaries, which naturally infers an appropriate dictionary size for each cluster. A uniform quantizer and an adaptive arithmetic coding algorithm are adopted to code the sparse coefficients. With comparisons to other state-of-the art approaches, the effectiveness of the proposed method could be validated in the experiments.

  17. Using non-parametric methods in econometric production analysis

    DEFF Research Database (Denmark)

    Czekaj, Tomasz Gerard; Henningsen, Arne

    2012-01-01

    by investigating the relationship between the elasticity of scale and the farm size. We use a balanced panel data set of 371~specialised crop farms for the years 2004-2007. A non-parametric specification test shows that neither the Cobb-Douglas function nor the Translog function are consistent with the "true......Econometric estimation of production functions is one of the most common methods in applied economic production analysis. These studies usually apply parametric estimation techniques, which obligate the researcher to specify a functional form of the production function of which the Cobb...... parameter estimates, but also in biased measures which are derived from the parameters, such as elasticities. Therefore, we propose to use non-parametric econometric methods. First, these can be applied to verify the functional form used in parametric production analysis. Second, they can be directly used...

  18. Probability 1/e

    Science.gov (United States)

    Koo, Reginald; Jones, Martin L.

    2011-01-01

    Quite a number of interesting problems in probability feature an event with probability equal to 1/e. This article discusses three such problems and attempts to explain why this probability occurs with such frequency.

  19. Probability an introduction

    CERN Document Server

    Goldberg, Samuel

    1960-01-01

    Excellent basic text covers set theory, probability theory for finite sample spaces, binomial theorem, probability distributions, means, standard deviations, probability function of binomial distribution, more. Includes 360 problems with answers for half.

  20. Nonparametric Bayesian models through probit stick-breaking processes.

    Science.gov (United States)

    Rodríguez, Abel; Dunson, David B

    2011-03-01

    We describe a novel class of Bayesian nonparametric priors based on stick-breaking constructions where the weights of the process are constructed as probit transformations of normal random variables. We show that these priors are extremely flexible, allowing us to generate a great variety of models while preserving computational simplicity. Particular emphasis is placed on the construction of rich temporal and spatial processes, which are applied to two problems in finance and ecology.

  1. Exact nonparametric inference for detection of nonlinear determinism

    OpenAIRE

    Luo, Xiaodong; Zhang, Jie; Small, Michael; Moroz, Irene

    2005-01-01

    We propose an exact nonparametric inference scheme for the detection of nonlinear determinism. The essential fact utilized in our scheme is that, for a linear stochastic process with jointly symmetric innovations, its ordinary least square (OLS) linear prediction error is symmetric about zero. Based on this viewpoint, a class of linear signed rank statistics, e.g. the Wilcoxon signed rank statistic, can be derived with the known null distributions from the prediction error. Thus one of the ad...

  2. Non-parametric estimation of the individual's utility map

    OpenAIRE

    Noguchi, Takao; Sanborn, Adam N.; Stewart, Neil

    2013-01-01

    Models of risky choice have attracted much attention in behavioural economics. Previous research has repeatedly demonstrated that individuals' choices are not well explained by expected utility theory, and a number of alternative models have been examined using carefully selected sets of choice alternatives. The model performance however, can depend on which choice alternatives are being tested. Here we develop a non-parametric method for estimating the utility map over the wide range of choi...

  3. Nonparametric Efficiency Testing of Asian Stock Markets Using Weekly Data

    OpenAIRE

    CORNELIS A. LOS

    2004-01-01

    The efficiency of speculative markets, as represented by Fama's 1970 fair game model, is tested on weekly price index data of six Asian stock markets - Hong Kong, Indonesia, Malaysia, Singapore, Taiwan and Thailand - using Sherry's (1992) non-parametric methods. These scientific testing methods were originally developed to analyze the information processing efficiency of nervous systems. In particular, the stationarity and independence of the price innovations are tested over ten years, from ...

  4. MÉTODOS DISCRETOS Y CONTINUOS PARA MODELAR LA DENSIDAD DE PROBABILIDAD DE LA VOLATILIDAD ESTOCÁSTICA DE LOS RENDIMIENTOS DE SERIES FINANCIERAS DISCRETE AND CONTINUOUS METHODS FOR MODELING FINANCIAL SERIES YIELDING STOCHASTIC VOLATILITY PROBABILITY DENSITY

    Directory of Open Access Journals (Sweden)

    Carlos Alexánder Grajales Correa

    2007-07-01

    Full Text Available En este trabajo se consideran los rendimientos diarios de un activo financiero con el propósito de modelar y comparar la densidad de probabilidad de la volatilidad estocástica de los retornos. Para tal fin, se proponen los modelos ARCH y sus extensiones, que son en tiempo discreto, así como un modelo empírico de volatilidad estocástica, desarrollado por Paul Wilmott. Para el caso discreto se muestran los modelos que permiten estimar la volatilidad condicional heterocedástica en un instante t del tiempo, t∈[1,T]. En el caso continuo se asocia un proceso de difusión de Itô a la volatilidad estocástica de la serie financiera, lo cual posibilita discretizar dicho proceso y simularlo para obtener densidades de probabilidad empíricas de la volatilidad. Finalmente se ilustran y se comparan los resultados obtenidos con las metodologías expuestas para el caso de las series financieras S&P 500 de EEUU, el Índice de Precios y Cotizaciones de la Bolsa Mexicana de Valores (IPC y el IGBC de Colombia.This work considers daily yields of financial assets in order to model and compare returns stochastic volatility probability density. For such aim, ARCH models and its extensions are proposed - they are in discrete time- as well as an Empirical Stochastic Volatility Model, developed by Paul Wilmott. For the discrete case, models that allow to estimate heteroscedasticity conditional volatility in a time, t, t,t∈[1,T], are shown. In the continuous case, there is an association of an Itô diffusion process to stochastic volatility of the financial series, which allows to write a discretization of this process and to simulate it to obtain empirical probabilistic densities from the volatility. Finally the results are illustrated and compared with methodologies exposed by the case of the financial series S&P 500 of the U.S.A., Index of Prices and Quotations of stock-market Mexican of Values (IPC and IGBC of Colombia.

  5. Investigation of MLE in nonparametric estimation methods of reliability function

    International Nuclear Information System (INIS)

    Ahn, Kwang Won; Kim, Yoon Ik; Chung, Chang Hyun; Kim, Kil Yoo

    2001-01-01

    There have been lots of trials to estimate a reliability function. In the ESReDA 20 th seminar, a new method in nonparametric way was proposed. The major point of that paper is how to use censored data efficiently. Generally there are three kinds of approach to estimate a reliability function in nonparametric way, i.e., Reduced Sample Method, Actuarial Method and Product-Limit (PL) Method. The above three methods have some limits. So we suggest an advanced method that reflects censored information more efficiently. In many instances there will be a unique maximum likelihood estimator (MLE) of an unknown parameter, and often it may be obtained by the process of differentiation. It is well known that the three methods generally used to estimate a reliability function in nonparametric way have maximum likelihood estimators that are uniquely exist. So, MLE of the new method is derived in this study. The procedure to calculate a MLE is similar just like that of PL-estimator. The difference of the two is that in the new method, the mass (or weight) of each has an influence of the others but the mass in PL-estimator not

  6. Toward a generalized probability theory: conditional probabilities

    International Nuclear Information System (INIS)

    Cassinelli, G.

    1979-01-01

    The main mathematical object of interest in the quantum logic approach to the foundations of quantum mechanics is the orthomodular lattice and a set of probability measures, or states, defined by the lattice. This mathematical structure is studied per se, independently from the intuitive or physical motivation of its definition, as a generalized probability theory. It is thought that the building-up of such a probability theory could eventually throw light on the mathematical structure of Hilbert-space quantum mechanics as a particular concrete model of the generalized theory. (Auth.)

  7. msBP: An R Package to Perform Bayesian Nonparametric Inference Using Multiscale Bernstein Polynomials Mixtures

    Directory of Open Access Journals (Sweden)

    Antonio Canale

    2017-06-01

    Full Text Available msBP is an R package that implements a new method to perform Bayesian multiscale nonparametric inference introduced by Canale and Dunson (2016. The method, based on mixtures of multiscale beta dictionary densities, overcomes the drawbacks of Pólya trees and inherits many of the advantages of Dirichlet process mixture models. The key idea is that an infinitely-deep binary tree is introduced, with a beta dictionary density assigned to each node of the tree. Using a multiscale stick-breaking characterization, stochastically decreasing weights are assigned to each node. The result is an infinite mixture model. The package msBP implements a series of basic functions to deal with this family of priors such as random densities and numbers generation, creation and manipulation of binary tree objects, and generic functions to plot and print the results. In addition, it implements the Gibbs samplers for posterior computation to perform multiscale density estimation and multiscale testing of group differences described in Canale and Dunson (2016.

  8. PHOTOMETRIC REDSHIFTS AND QUASAR PROBABILITIES FROM A SINGLE, DATA-DRIVEN GENERATIVE MODEL

    International Nuclear Information System (INIS)

    Bovy, Jo; Hogg, David W.; Weaver, Benjamin A.; Myers, Adam D.; Hennawi, Joseph F.; McMahon, Richard G.; Schiminovich, David; Sheldon, Erin S.; Brinkmann, Jon; Schneider, Donald P.

    2012-01-01

    We describe a technique for simultaneously classifying and estimating the redshift of quasars. It can separate quasars from stars in arbitrary redshift ranges, estimate full posterior distribution functions for the redshift, and naturally incorporate flux uncertainties, missing data, and multi-wavelength photometry. We build models of quasars in flux-redshift space by applying the extreme deconvolution technique to estimate the underlying density. By integrating this density over redshift, one can obtain quasar flux densities in different redshift ranges. This approach allows for efficient, consistent, and fast classification and photometric redshift estimation. This is achieved by combining the speed obtained by choosing simple analytical forms as the basis of our density model with the flexibility of non-parametric models through the use of many simple components with many parameters. We show that this technique is competitive with the best photometric quasar classification techniques—which are limited to fixed, broad redshift ranges and high signal-to-noise ratio data—and with the best photometric redshift techniques when applied to broadband optical data. We demonstrate that the inclusion of UV and NIR data significantly improves photometric quasar-star separation and essentially resolves all of the redshift degeneracies for quasars inherent to the ugriz filter system, even when included data have a low signal-to-noise ratio. For quasars spectroscopically confirmed by the SDSS 84% and 97% of the objects with Galaxy Evolution Explorer UV and UKIDSS NIR data have photometric redshifts within 0.1 and 0.3, respectively, of the spectroscopic redshift; this amounts to about a factor of three improvement over ugriz-only photometric redshifts. Our code to calculate quasar probabilities and redshift probability distributions is publicly available.

  9. Using non-parametric methods in econometric production analysis

    DEFF Research Database (Denmark)

    Czekaj, Tomasz Gerard; Henningsen, Arne

    Econometric estimation of production functions is one of the most common methods in applied economic production analysis. These studies usually apply parametric estimation techniques, which obligate the researcher to specify the functional form of the production function. Most often, the Cobb...... results—including measures that are of interest of applied economists, such as elasticities. Therefore, we propose to use nonparametric econometric methods. First, they can be applied to verify the functional form used in parametric estimations of production functions. Second, they can be directly used...

  10. STATCAT, Statistical Analysis of Parametric and Non-Parametric Data

    International Nuclear Information System (INIS)

    David, Hugh

    1990-01-01

    1 - Description of program or function: A suite of 26 programs designed to facilitate the appropriate statistical analysis and data handling of parametric and non-parametric data, using classical and modern univariate and multivariate methods. 2 - Method of solution: Data is read entry by entry, using a choice of input formats, and the resultant data bank is checked for out-of- range, rare, extreme or missing data. The completed STATCAT data bank can be treated by a variety of descriptive and inferential statistical methods, and modified, using other standard programs as required

  11. Panel data nonparametric estimation of production risk and risk preferences

    DEFF Research Database (Denmark)

    Czekaj, Tomasz Gerard; Henningsen, Arne

    approaches for obtaining firm-specific measures of risk attitudes. We found that Polish dairy farmers are risk averse regarding production risk and price uncertainty. According to our results, Polish dairy farmers perceive the production risk as being more significant than the risk related to output price......We apply nonparametric panel data kernel regression to investigate production risk, out-put price uncertainty, and risk attitudes of Polish dairy farms based on a firm-level unbalanced panel data set that covers the period 2004–2010. We compare different model specifications and different...

  12. Digital spectral analysis parametric, non-parametric and advanced methods

    CERN Document Server

    Castanié, Francis

    2013-01-01

    Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature.The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.An entire chapter is devoted to the non-parametric methods most widely used in industry.High resolution methods a

  13. A Bayesian nonparametric approach to causal inference on quantiles.

    Science.gov (United States)

    Xu, Dandan; Daniels, Michael J; Winterstein, Almut G

    2018-02-25

    We propose a Bayesian nonparametric approach (BNP) for causal inference on quantiles in the presence of many confounders. In particular, we define relevant causal quantities and specify BNP models to avoid bias from restrictive parametric assumptions. We first use Bayesian additive regression trees (BART) to model the propensity score and then construct the distribution of potential outcomes given the propensity score using a Dirichlet process mixture (DPM) of normals model. We thoroughly evaluate the operating characteristics of our approach and compare it to Bayesian and frequentist competitors. We use our approach to answer an important clinical question involving acute kidney injury using electronic health records. © 2018, The International Biometric Society.

  14. Categorical and nonparametric data analysis choosing the best statistical technique

    CERN Document Server

    Nussbaum, E Michael

    2014-01-01

    Featuring in-depth coverage of categorical and nonparametric statistics, this book provides a conceptual framework for choosing the most appropriate type of test in various research scenarios. Class tested at the University of Nevada, the book's clear explanations of the underlying assumptions, computer simulations, and Exploring the Concept boxes help reduce reader anxiety. Problems inspired by actual studies provide meaningful illustrations of the techniques. The underlying assumptions of each test and the factors that impact validity and statistical power are reviewed so readers can explain

  15. Nonparametric statistics a step-by-step approach

    CERN Document Server

    Corder, Gregory W

    2014-01-01

    "…a very useful resource for courses in nonparametric statistics in which the emphasis is on applications rather than on theory.  It also deserves a place in libraries of all institutions where introductory statistics courses are taught."" -CHOICE This Second Edition presents a practical and understandable approach that enhances and expands the statistical toolset for readers. This book includes: New coverage of the sign test and the Kolmogorov-Smirnov two-sample test in an effort to offer a logical and natural progression to statistical powerSPSS® (Version 21) software and updated screen ca

  16. Evaluation of Nonparametric Probabilistic Forecasts of Wind Power

    DEFF Research Database (Denmark)

    Pinson, Pierre; Møller, Jan Kloppenborg; Nielsen, Henrik Aalborg, orlov 31.07.2008

    Predictions of wind power production for horizons up to 48-72 hour ahead comprise a highly valuable input to the methods for the daily management or trading of wind generation. Today, users of wind power predictions are not only provided with point predictions, which are estimates of the most...... likely outcome for each look-ahead time, but also with uncertainty estimates given by probabilistic forecasts. In order to avoid assumptions on the shape of predictive distributions, these probabilistic predictions are produced from nonparametric methods, and then take the form of a single or a set...

  17. Estimation of Stochastic Volatility Models by Nonparametric Filtering

    DEFF Research Database (Denmark)

    Kanaya, Shin; Kristensen, Dennis

    2016-01-01

    /estimated volatility process replacing the latent process. Our estimation strategy is applicable to both parametric and nonparametric stochastic volatility models, and can handle both jumps and market microstructure noise. The resulting estimators of the stochastic volatility model will carry additional biases...... and variances due to the first-step estimation, but under regularity conditions we show that these vanish asymptotically and our estimators inherit the asymptotic properties of the infeasible estimators based on observations of the volatility process. A simulation study examines the finite-sample properties...

  18. Bayesian Nonparametric Mixture Estimation for Time-Indexed Functional Data in R

    Directory of Open Access Journals (Sweden)

    Terrance D. Savitsky

    2016-08-01

    Full Text Available We present growfunctions for R that offers Bayesian nonparametric estimation models for analysis of dependent, noisy time series data indexed by a collection of domains. This data structure arises from combining periodically published government survey statistics, such as are reported in the Current Population Study (CPS. The CPS publishes monthly, by-state estimates of employment levels, where each state expresses a noisy time series. Published state-level estimates from the CPS are composed from household survey responses in a model-free manner and express high levels of volatility due to insufficient sample sizes. Existing software solutions borrow information over a modeled time-based dependence to extract a de-noised time series for each domain. These solutions, however, ignore the dependence among the domains that may be additionally leveraged to improve estimation efficiency. The growfunctions package offers two fully nonparametric mixture models that simultaneously estimate both a time and domain-indexed dependence structure for a collection of time series: (1 A Gaussian process (GP construction, which is parameterized through the covariance matrix, estimates a latent function for each domain. The covariance parameters of the latent functions are indexed by domain under a Dirichlet process prior that permits estimation of the dependence among functions across the domains: (2 An intrinsic Gaussian Markov random field prior construction provides an alternative to the GP that expresses different computation and estimation properties. In addition to performing denoised estimation of latent functions from published domain estimates, growfunctions allows estimation of collections of functions for observation units (e.g., households, rather than aggregated domains, by accounting for an informative sampling design under which the probabilities for inclusion of observation units are related to the response variable. growfunctions includes plot

  19. Philosophical theories of probability

    CERN Document Server

    Gillies, Donald

    2000-01-01

    The Twentieth Century has seen a dramatic rise in the use of probability and statistics in almost all fields of research. This has stimulated many new philosophical ideas on probability. Philosophical Theories of Probability is the first book to present a clear, comprehensive and systematic account of these various theories and to explain how they relate to one another. Gillies also offers a distinctive version of the propensity theory of probability, and the intersubjective interpretation, which develops the subjective theory.

  20. Non-Archimedean Probability

    NARCIS (Netherlands)

    Benci, Vieri; Horsten, Leon; Wenmackers, Sylvia

    We propose an alternative approach to probability theory closely related to the framework of numerosity theory: non-Archimedean probability (NAP). In our approach, unlike in classical probability theory, all subsets of an infinite sample space are measurable and only the empty set gets assigned

  1. Interpretations of probability

    CERN Document Server

    Khrennikov, Andrei

    2009-01-01

    This is the first fundamental book devoted to non-Kolmogorov probability models. It provides a mathematical theory of negative probabilities, with numerous applications to quantum physics, information theory, complexity, biology and psychology. The book also presents an interesting model of cognitive information reality with flows of information probabilities, describing the process of thinking, social, and psychological phenomena.

  2. Bayesian nonparametric dictionary learning for compressed sensing MRI.

    Science.gov (United States)

    Huang, Yue; Paisley, John; Lin, Qin; Ding, Xinghao; Fu, Xueyang; Zhang, Xiao-Ping

    2014-12-01

    We develop a Bayesian nonparametric model for reconstructing magnetic resonance images (MRIs) from highly undersampled k -space data. We perform dictionary learning as part of the image reconstruction process. To this end, we use the beta process as a nonparametric dictionary learning prior for representing an image patch as a sparse combination of dictionary elements. The size of the dictionary and patch-specific sparsity pattern are inferred from the data, in addition to other dictionary learning variables. Dictionary learning is performed directly on the compressed image, and so is tailored to the MRI being considered. In addition, we investigate a total variation penalty term in combination with the dictionary learning model, and show how the denoising property of dictionary learning removes dependence on regularization parameters in the noisy setting. We derive a stochastic optimization algorithm based on Markov chain Monte Carlo for the Bayesian model, and use the alternating direction method of multipliers for efficiently performing total variation minimization. We present empirical results on several MRI, which show that the proposed regularization framework can improve reconstruction accuracy over other methods.

  3. 1st Conference of the International Society for Nonparametric Statistics

    CERN Document Server

    Lahiri, S; Politis, Dimitris

    2014-01-01

    This volume is composed of peer-reviewed papers that have developed from the First Conference of the International Society for NonParametric Statistics (ISNPS). This inaugural conference took place in Chalkidiki, Greece, June 15-19, 2012. It was organized with the co-sponsorship of the IMS, the ISI, and other organizations. M.G. Akritas, S.N. Lahiri, and D.N. Politis are the first executive committee members of ISNPS, and the editors of this volume. ISNPS has a distinguished Advisory Committee that includes Professors R.Beran, P.Bickel, R. Carroll, D. Cook, P. Hall, R. Johnson, B. Lindsay, E. Parzen, P. Robinson, M. Rosenblatt, G. Roussas, T. SubbaRao, and G. Wahba. The Charting Committee of ISNPS consists of more than 50 prominent researchers from all over the world.   The chapters in this volume bring forth recent advances and trends in several areas of nonparametric statistics. In this way, the volume facilitates the exchange of research ideas, promotes collaboration among researchers from all over the wo...

  4. Nonparametric Analyses of Log-Periodic Precursors to Financial Crashes

    Science.gov (United States)

    Zhou, Wei-Xing; Sornette, Didier

    We apply two nonparametric methods to further test the hypothesis that log-periodicity characterizes the detrended price trajectory of large financial indices prior to financial crashes or strong corrections. The term "parametric" refers here to the use of the log-periodic power law formula to fit the data; in contrast, "nonparametric" refers to the use of general tools such as Fourier transform, and in the present case the Hilbert transform and the so-called (H, q)-analysis. The analysis using the (H, q)-derivative is applied to seven time series ending with the October 1987 crash, the October 1997 correction and the April 2000 crash of the Dow Jones Industrial Average (DJIA), the Standard & Poor 500 and Nasdaq indices. The Hilbert transform is applied to two detrended price time series in terms of the ln(tc-t) variable, where tc is the time of the crash. Taking all results together, we find strong evidence for a universal fundamental log-frequency f=1.02±0.05 corresponding to the scaling ratio λ=2.67±0.12. These values are in very good agreement with those obtained in earlier works with different parametric techniques. This note is extracted from a long unpublished report with 58 figures available at , which extensively describes the evidence we have accumulated on these seven time series, in particular by presenting all relevant details so that the reader can judge for himself or herself the validity and robustness of the results.

  5. Genomic breeding value estimation using nonparametric additive regression models

    Directory of Open Access Journals (Sweden)

    Solberg Trygve

    2009-01-01

    Full Text Available Abstract Genomic selection refers to the use of genomewide dense markers for breeding value estimation and subsequently for selection. The main challenge of genomic breeding value estimation is the estimation of many effects from a limited number of observations. Bayesian methods have been proposed to successfully cope with these challenges. As an alternative class of models, non- and semiparametric models were recently introduced. The present study investigated the ability of nonparametric additive regression models to predict genomic breeding values. The genotypes were modelled for each marker or pair of flanking markers (i.e. the predictors separately. The nonparametric functions for the predictors were estimated simultaneously using additive model theory, applying a binomial kernel. The optimal degree of smoothing was determined by bootstrapping. A mutation-drift-balance simulation was carried out. The breeding values of the last generation (genotyped was predicted using data from the next last generation (genotyped and phenotyped. The results show moderate to high accuracies of the predicted breeding values. A determination of predictor specific degree of smoothing increased the accuracy.

  6. A non-parametric framework for estimating threshold limit values

    Directory of Open Access Journals (Sweden)

    Ulm Kurt

    2005-11-01

    Full Text Available Abstract Background To estimate a threshold limit value for a compound known to have harmful health effects, an 'elbow' threshold model is usually applied. We are interested on non-parametric flexible alternatives. Methods We describe how a step function model fitted by isotonic regression can be used to estimate threshold limit values. This method returns a set of candidate locations, and we discuss two algorithms to select the threshold among them: the reduced isotonic regression and an algorithm considering the closed family of hypotheses. We assess the performance of these two alternative approaches under different scenarios in a simulation study. We illustrate the framework by analysing the data from a study conducted by the German Research Foundation aiming to set a threshold limit value in the exposure to total dust at workplace, as a causal agent for developing chronic bronchitis. Results In the paper we demonstrate the use and the properties of the proposed methodology along with the results from an application. The method appears to detect the threshold with satisfactory success. However, its performance can be compromised by the low power to reject the constant risk assumption when the true dose-response relationship is weak. Conclusion The estimation of thresholds based on isotonic framework is conceptually simple and sufficiently powerful. Given that in threshold value estimation context there is not a gold standard method, the proposed model provides a useful non-parametric alternative to the standard approaches and can corroborate or challenge their findings.

  7. [Nonparametric method of estimating survival functions containing right-censored and interval-censored data].

    Science.gov (United States)

    Xu, Yonghong; Gao, Xiaohuan; Wang, Zhengxi

    2014-04-01

    Missing data represent a general problem in many scientific fields, especially in medical survival analysis. Dealing with censored data, interpolation method is one of important methods. However, most of the interpolation methods replace the censored data with the exact data, which will distort the real distribution of the censored data and reduce the probability of the real data falling into the interpolation data. In order to solve this problem, we in this paper propose a nonparametric method of estimating the survival function of right-censored and interval-censored data and compare its performance to SC (self-consistent) algorithm. Comparing to the average interpolation and the nearest neighbor interpolation method, the proposed method in this paper replaces the right-censored data with the interval-censored data, and greatly improves the probability of the real data falling into imputation interval. Then it bases on the empirical distribution theory to estimate the survival function of right-censored and interval-censored data. The results of numerical examples and a real breast cancer data set demonstrated that the proposed method had higher accuracy and better robustness for the different proportion of the censored data. This paper provides a good method to compare the clinical treatments performance with estimation of the survival data of the patients. This pro vides some help to the medical survival data analysis.

  8. CADDIS Volume 4. Data Analysis: PECBO Appendix - R Scripts for Non-Parametric Regressions

    Science.gov (United States)

    Script for computing nonparametric regression analysis. Overview of using scripts to infer environmental conditions from biological observations, statistically estimating species-environment relationships, statistical scripts.

  9. Moments expansion densities for quantifying financial risk

    OpenAIRE

    Ñíguez, T.M.; Perote, J.

    2017-01-01

    We propose a novel semi-nonparametric distribution that is feasibly parameterized to represent the non-Gaussianities of the asset return distributions. Our Moments Expansion (ME) density presents gains in simplicity attributable to its innovative polynomials, which are defined by the difference between the nth power of the random variable and the nth moment of the density used as the basis. We show that the Gram-Charlier distribution is a particular case of the ME-type of densities. The latte...

  10. Foundations of probability

    International Nuclear Information System (INIS)

    Fraassen, B.C. van

    1979-01-01

    The interpretation of probabilities in physical theories are considered, whether quantum or classical. The following points are discussed 1) the functions P(μ, Q) in terms of which states and propositions can be represented, are classical (Kolmogoroff) probabilities, formally speaking, 2) these probabilities are generally interpreted as themselves conditional, and the conditions are mutually incompatible where the observables are maximal and 3) testing of the theory typically takes the form of confronting the expectation values of observable Q calculated with probability measures P(μ, Q) for states μ; hence, of comparing the probabilities P(μ, Q)(E) with the frequencies of occurrence of the corresponding events. It seems that even the interpretation of quantum mechanics, in so far as it concerns what the theory says about the empirical (i.e. actual, observable) phenomena, deals with the confrontation of classical probability measures with observable frequencies. This confrontation is studied. (Auth./C.F.)

  11. The quantum probability calculus

    International Nuclear Information System (INIS)

    Jauch, J.M.

    1976-01-01

    The Wigner anomaly (1932) for the joint distribution of noncompatible observables is an indication that the classical probability calculus is not applicable for quantum probabilities. It should, therefore, be replaced by another, more general calculus, which is specifically adapted to quantal systems. In this article this calculus is exhibited and its mathematical axioms and the definitions of the basic concepts such as probability field, random variable, and expectation values are given. (B.R.H)

  12. Choice Probability Generating Functions

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; McFadden, Daniel L; Bierlaire, Michel

    This paper considers discrete choice, with choice probabilities coming from maximization of preferences from a random utility field perturbed by additive location shifters (ARUM). Any ARUM can be characterized by a choice-probability generating function (CPGF) whose gradient gives the choice...... probabilities, and every CPGF is consistent with an ARUM. We relate CPGF to multivariate extreme value distributions, and review and extend methods for constructing CPGF for applications....

  13. Probability of satellite collision

    Science.gov (United States)

    Mccarter, J. W.

    1972-01-01

    A method is presented for computing the probability of a collision between a particular artificial earth satellite and any one of the total population of earth satellites. The collision hazard incurred by the proposed modular Space Station is assessed using the technique presented. The results of a parametric study to determine what type of satellite orbits produce the greatest contribution to the total collision probability are presented. Collision probability for the Space Station is given as a function of Space Station altitude and inclination. Collision probability was also parameterized over miss distance and mission duration.

  14. Choice probability generating functions

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; McFadden, Daniel; Bierlaire, Michel

    2013-01-01

    This paper considers discrete choice, with choice probabilities coming from maximization of preferences from a random utility field perturbed by additive location shifters (ARUM). Any ARUM can be characterized by a choice-probability generating function (CPGF) whose gradient gives the choice...... probabilities, and every CPGF is consistent with an ARUM. We relate CPGF to multivariate extreme value distributions, and review and extend methods for constructing CPGF for applications. The choice probabilities of any ARUM may be approximated by a cross-nested logit model. The results for ARUM are extended...

  15. Handbook of probability

    CERN Document Server

    Florescu, Ionut

    2013-01-01

    THE COMPLETE COLLECTION NECESSARY FOR A CONCRETE UNDERSTANDING OF PROBABILITY Written in a clear, accessible, and comprehensive manner, the Handbook of Probability presents the fundamentals of probability with an emphasis on the balance of theory, application, and methodology. Utilizing basic examples throughout, the handbook expertly transitions between concepts and practice to allow readers an inclusive introduction to the field of probability. The book provides a useful format with self-contained chapters, allowing the reader easy and quick reference. Each chapter includes an introductio

  16. Real analysis and probability

    CERN Document Server

    Ash, Robert B; Lukacs, E

    1972-01-01

    Real Analysis and Probability provides the background in real analysis needed for the study of probability. Topics covered range from measure and integration theory to functional analysis and basic concepts of probability. The interplay between measure theory and topology is also discussed, along with conditional probability and expectation, the central limit theorem, and strong laws of large numbers with respect to martingale theory.Comprised of eight chapters, this volume begins with an overview of the basic concepts of the theory of measure and integration, followed by a presentation of var

  17. Generative Temporal Modelling of Neuroimaging - Decomposition and Nonparametric Testing

    DEFF Research Database (Denmark)

    Hald, Ditte Høvenhoff

    The goal of this thesis is to explore two improvements for functional magnetic resonance imaging (fMRI) analysis; namely our proposed decomposition method and an extension to the non-parametric testing framework. Analysis of fMRI allows researchers to investigate the functional processes...... of the brain, and provides insight into neuronal coupling during mental processes or tasks. The decomposition method is a Gaussian process-based independent components analysis (GPICA), which incorporates a temporal dependency in the sources. A hierarchical model specification is used, featuring both...... instantaneous and convolutive mixing, and the inferred temporal patterns. Spatial maps are seen to capture smooth and localized stimuli-related components, and often identifiable noise components. The implementation is freely available as a GUI/SPM plugin, and we recommend using GPICA as an additional tool when...

  18. Nonparametric Estimation of Distributions in Random Effects Models

    KAUST Repository

    Hart, Jeffrey D.

    2011-01-01

    We propose using minimum distance to obtain nonparametric estimates of the distributions of components in random effects models. A main setting considered is equivalent to having a large number of small datasets whose locations, and perhaps scales, vary randomly, but which otherwise have a common distribution. Interest focuses on estimating the distribution that is common to all datasets, knowledge of which is crucial in multiple testing problems where a location/scale invariant test is applied to every small dataset. A detailed algorithm for computing minimum distance estimates is proposed, and the usefulness of our methodology is illustrated by a simulation study and an analysis of microarray data. Supplemental materials for the article, including R-code and a dataset, are available online. © 2011 American Statistical Association.

  19. Prior processes and their applications nonparametric Bayesian estimation

    CERN Document Server

    Phadia, Eswar G

    2016-01-01

    This book presents a systematic and comprehensive treatment of various prior processes that have been developed over the past four decades for dealing with Bayesian approach to solving selected nonparametric inference problems. This revised edition has been substantially expanded to reflect the current interest in this area. After an overview of different prior processes, it examines the now pre-eminent Dirichlet process and its variants including hierarchical processes, then addresses new processes such as dependent Dirichlet, local Dirichlet, time-varying and spatial processes, all of which exploit the countable mixture representation of the Dirichlet process. It subsequently discusses various neutral to right type processes, including gamma and extended gamma, beta and beta-Stacy processes, and then describes the Chinese Restaurant, Indian Buffet and infinite gamma-Poisson processes, which prove to be very useful in areas such as machine learning, information retrieval and featural modeling. Tailfree and P...

  20. Spurious Seasonality Detection: A Non-Parametric Test Proposal

    Directory of Open Access Journals (Sweden)

    Aurelio F. Bariviera

    2018-01-01

    Full Text Available This paper offers a general and comprehensive definition of the day-of-the-week effect. Using symbolic dynamics, we develop a unique test based on ordinal patterns in order to detect it. This test uncovers the fact that the so-called “day-of-the-week” effect is partly an artifact of the hidden correlation structure of the data. We present simulations based on artificial time series as well. While time series generated with long memory are prone to exhibit daily seasonality, pure white noise signals exhibit no pattern preference. Since ours is a non-parametric test, it requires no assumptions about the distribution of returns, so that it could be a practical alternative to conventional econometric tests. We also made an exhaustive application of the here-proposed technique to 83 stock indexes around the world. Finally, the paper highlights the relevance of symbolic analysis in economic time series studies.

  1. Nonparametric autocovariance estimation from censored time series by Gaussian imputation.

    Science.gov (United States)

    Park, Jung Wook; Genton, Marc G; Ghosh, Sujit K

    2009-02-01

    One of the most frequently used methods to model the autocovariance function of a second-order stationary time series is to use the parametric framework of autoregressive and moving average models developed by Box and Jenkins. However, such parametric models, though very flexible, may not always be adequate to model autocovariance functions with sharp changes. Furthermore, if the data do not follow the parametric model and are censored at a certain value, the estimation results may not be reliable. We develop a Gaussian imputation method to estimate an autocovariance structure via nonparametric estimation of the autocovariance function in order to address both censoring and incorrect model specification. We demonstrate the effectiveness of the technique in terms of bias and efficiency with simulations under various rates of censoring and underlying models. We describe its application to a time series of silicon concentrations in the Arctic.

  2. Nonparametric estimation of stochastic differential equations with sparse Gaussian processes.

    Science.gov (United States)

    García, Constantino A; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G

    2017-08-01

    The application of stochastic differential equations (SDEs) to the analysis of temporal data has attracted increasing attention, due to their ability to describe complex dynamics with physically interpretable equations. In this paper, we introduce a nonparametric method for estimating the drift and diffusion terms of SDEs from a densely observed discrete time series. The use of Gaussian processes as priors permits working directly in a function-space view and thus the inference takes place directly in this space. To cope with the computational complexity that requires the use of Gaussian processes, a sparse Gaussian process approximation is provided. This approximation permits the efficient computation of predictions for the drift and diffusion terms by using a distribution over a small subset of pseudosamples. The proposed method has been validated using both simulated data and real data from economy and paleoclimatology. The application of the method to real data demonstrates its ability to capture the behavior of complex systems.

  3. Debt and growth: A non-parametric approach

    Science.gov (United States)

    Brida, Juan Gabriel; Gómez, David Matesanz; Seijas, Maria Nela

    2017-11-01

    In this study, we explore the dynamic relationship between public debt and economic growth by using a non-parametric approach based on data symbolization and clustering methods. The study uses annual data of general government consolidated gross debt-to-GDP ratio and gross domestic product for sixteen countries between 1977 and 2015. Using symbolic sequences, we introduce a notion of distance between the dynamical paths of different countries. Then, a Minimal Spanning Tree and a Hierarchical Tree are constructed from time series to help detecting the existence of groups of countries sharing similar economic performance. The main finding of the study appears for the period 2008-2016 when several countries surpassed the 90% debt-to-GDP threshold. During this period, three groups (clubs) of countries are obtained: high, mid and low indebted countries, suggesting that the employed debt-to-GDP threshold drives economic dynamics for the selected countries.

  4. Nonparametric estimation of benchmark doses in environmental risk assessment

    Science.gov (United States)

    Piegorsch, Walter W.; Xiong, Hui; Bhattacharya, Rabi N.; Lin, Lizhen

    2013-01-01

    Summary An important statistical objective in environmental risk analysis is estimation of minimum exposure levels, called benchmark doses (BMDs), that induce a pre-specified benchmark response in a dose-response experiment. In such settings, representations of the risk are traditionally based on a parametric dose-response model. It is a well-known concern, however, that if the chosen parametric form is misspecified, inaccurate and possibly unsafe low-dose inferences can result. We apply a nonparametric approach for calculating benchmark doses, based on an isotonic regression method for dose-response estimation with quantal-response data (Bhattacharya and Kong, 2007). We determine the large-sample properties of the estimator, develop bootstrap-based confidence limits on the BMDs, and explore the confidence limits’ small-sample properties via a short simulation study. An example from cancer risk assessment illustrates the calculations. PMID:23914133

  5. Indoor Positioning Using Nonparametric Belief Propagation Based on Spanning Trees

    Directory of Open Access Journals (Sweden)

    Savic Vladimir

    2010-01-01

    Full Text Available Nonparametric belief propagation (NBP is one of the best-known methods for cooperative localization in sensor networks. It is capable of providing information about location estimation with appropriate uncertainty and to accommodate non-Gaussian distance measurement errors. However, the accuracy of NBP is questionable in loopy networks. Therefore, in this paper, we propose a novel approach, NBP based on spanning trees (NBP-ST created by breadth first search (BFS method. In addition, we propose a reliable indoor model based on obtained measurements in our lab. According to our simulation results, NBP-ST performs better than NBP in terms of accuracy and communication cost in the networks with high connectivity (i.e., highly loopy networks. Furthermore, the computational and communication costs are nearly constant with respect to the transmission radius. However, the drawbacks of proposed method are a little bit higher computational cost and poor performance in low-connected networks.

  6. Multi-Directional Non-Parametric Analysis of Agricultural Efficiency

    DEFF Research Database (Denmark)

    Balezentis, Tomas

    This thesis seeks to develop methodologies for assessment of agricultural efficiency and employ them to Lithuanian family farms. In particular, we focus on three particular objectives throughout the research: (i) to perform a fully non-parametric analysis of efficiency effects, (ii) to extend...... to the Multi-Directional Efficiency Analysis approach when the proposed models were employed to analyse empirical data of Lithuanian family farm performance, we saw substantial differences in efficiencies associated with different inputs. In particular, assets appeared to be the least efficiently used input...... relative to labour, intermediate consumption and land (in some cases land was not treated as a discretionary input). These findings call for further research on relationships among financial structure, investment decisions, and efficiency in Lithuanian family farms. Application of different techniques...

  7. Exact nonparametric confidence bands for the survivor function.

    Science.gov (United States)

    Matthews, David

    2013-10-12

    A method to produce exact simultaneous confidence bands for the empirical cumulative distribution function that was first described by Owen, and subsequently corrected by Jager and Wellner, is the starting point for deriving exact nonparametric confidence bands for the survivor function of any positive random variable. We invert a nonparametric likelihood test of uniformity, constructed from the Kaplan-Meier estimator of the survivor function, to obtain simultaneous lower and upper bands for the function of interest with specified global confidence level. The method involves calculating a null distribution and associated critical value for each observed sample configuration. However, Noe recursions and the Van Wijngaarden-Decker-Brent root-finding algorithm provide the necessary tools for efficient computation of these exact bounds. Various aspects of the effect of right censoring on these exact bands are investigated, using as illustrations two observational studies of survival experience among non-Hodgkin's lymphoma patients and a much larger group of subjects with advanced lung cancer enrolled in trials within the North Central Cancer Treatment Group. Monte Carlo simulations confirm the merits of the proposed method of deriving simultaneous interval estimates of the survivor function across the entire range of the observed sample. This research was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada. It was begun while the author was visiting the Department of Statistics, University of Auckland, and completed during a subsequent sojourn at the Medical Research Council Biostatistics Unit in Cambridge. The support of both institutions, in addition to that of NSERC and the University of Waterloo, is greatly appreciated.

  8. Hyperspectral image segmentation using a cooperative nonparametric approach

    Science.gov (United States)

    Taher, Akar; Chehdi, Kacem; Cariou, Claude

    2013-10-01

    In this paper a new unsupervised nonparametric cooperative and adaptive hyperspectral image segmentation approach is presented. The hyperspectral images are partitioned band by band in parallel and intermediate classification results are evaluated and fused, to get the final segmentation result. Two unsupervised nonparametric segmentation methods are used in parallel cooperation, namely the Fuzzy C-means (FCM) method, and the Linde-Buzo-Gray (LBG) algorithm, to segment each band of the image. The originality of the approach relies firstly on its local adaptation to the type of regions in an image (textured, non-textured), and secondly on the introduction of several levels of evaluation and validation of intermediate segmentation results before obtaining the final partitioning of the image. For the management of similar or conflicting results issued from the two classification methods, we gradually introduced various assessment steps that exploit the information of each spectral band and its adjacent bands, and finally the information of all the spectral bands. In our approach, the detected textured and non-textured regions are treated separately from feature extraction step, up to the final classification results. This approach was first evaluated on a large number of monocomponent images constructed from the Brodatz album. Then it was evaluated on two real applications using a respectively multispectral image for Cedar trees detection in the region of Baabdat (Lebanon) and a hyperspectral image for identification of invasive and non invasive vegetation in the region of Cieza (Spain). A correct classification rate (CCR) for the first application is over 97% and for the second application the average correct classification rate (ACCR) is over 99%.

  9. Oscillometric blood pressure estimation by combining nonparametric bootstrap with Gaussian mixture model.

    Science.gov (United States)

    Lee, Soojeong; Rajan, Sreeraman; Jeon, Gwanggil; Chang, Joon-Hyuk; Dajani, Hilmi R; Groza, Voicu Z

    2017-06-01

    Blood pressure (BP) is one of the most important vital indicators and plays a key role in determining the cardiovascular activity of patients. This paper proposes a hybrid approach consisting of nonparametric bootstrap (NPB) and machine learning techniques to obtain the characteristic ratios (CR) used in the blood pressure estimation algorithm to improve the accuracy of systolic blood pressure (SBP) and diastolic blood pressure (DBP) estimates and obtain confidence intervals (CI). The NPB technique is used to circumvent the requirement for large sample set for obtaining the CI. A mixture of Gaussian densities is assumed for the CRs and Gaussian mixture model (GMM) is chosen to estimate the SBP and DBP ratios. The K-means clustering technique is used to obtain the mixture order of the Gaussian densities. The proposed approach achieves grade "A" under British Society of Hypertension testing protocol and is superior to the conventional approach based on maximum amplitude algorithm (MAA) that uses fixed CR ratios. The proposed approach also yields a lower mean error (ME) and the standard deviation of the error (SDE) in the estimates when compared to the conventional MAA method. In addition, CIs obtained through the proposed hybrid approach are also narrower with a lower SDE. The proposed approach combining the NPB technique with the GMM provides a methodology to derive individualized characteristic ratio. The results exhibit that the proposed approach enhances the accuracy of SBP and DBP estimation and provides narrower confidence intervals for the estimates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Introduction to probability

    CERN Document Server

    Freund, John E

    1993-01-01

    Thorough, lucid coverage of permutations and factorials, probabilities and odds, frequency interpretation, mathematical expectation, decision making, postulates of probability, rule of elimination, binomial distribution, geometric distribution, standard deviation, law of large numbers, and much more. Exercises with some solutions. Summary. Bibliography. Includes 42 black-and-white illustrations. 1973 edition.

  11. Probability, Nondeterminism and Concurrency

    DEFF Research Database (Denmark)

    Varacca, Daniele

    Nondeterminism is modelled in domain theory by the notion of a powerdomain, while probability is modelled by that of the probabilistic powerdomain. Some problems arise when we want to combine them in order to model computation in which both nondeterminism and probability are present. In particula...

  12. Janus-faced probability

    CERN Document Server

    Rocchi, Paolo

    2014-01-01

    The problem of probability interpretation was long overlooked before exploding in the 20th century, when the frequentist and subjectivist schools formalized two conflicting conceptions of probability. Beyond the radical followers of the two schools, a circle of pluralist thinkers tends to reconcile the opposing concepts. The author uses two theorems in order to prove that the various interpretations of probability do not come into opposition and can be used in different contexts. The goal here is to clarify the multifold nature of probability by means of a purely mathematical approach and to show how philosophical arguments can only serve to deepen actual intellectual contrasts. The book can be considered as one of the most important contributions in the analysis of probability interpretation in the last 10-15 years.

  13. A ¤nonparametric dynamic additive regression model for longitudinal data

    DEFF Research Database (Denmark)

    Martinussen, T.; Scheike, T. H.

    2000-01-01

    dynamic linear models, estimating equations, least squares, longitudinal data, nonparametric methods, partly conditional mean models, time-varying-coefficient models......dynamic linear models, estimating equations, least squares, longitudinal data, nonparametric methods, partly conditional mean models, time-varying-coefficient models...

  14. Nonparametric Estimation of Cumulative Incidence Functions for Competing Risks Data with Missing Cause of Failure

    DEFF Research Database (Denmark)

    Effraimidis, Georgios; Dahl, Christian Møller

    In this paper, we develop a fully nonparametric approach for the estimation of the cumulative incidence function with Missing At Random right-censored competing risks data. We obtain results on the pointwise asymptotic normality as well as the uniform convergence rate of the proposed nonparametric...

  15. Non-parametric tests of productive efficiency with errors-in-variables

    NARCIS (Netherlands)

    Kuosmanen, T.K.; Post, T.; Scholtes, S.

    2007-01-01

    We develop a non-parametric test of productive efficiency that accounts for errors-in-variables, following the approach of Varian. [1985. Nonparametric analysis of optimizing behavior with measurement error. Journal of Econometrics 30(1/2), 445-458]. The test is based on the general Pareto-Koopmans

  16. The Use of Nonparametric Kernel Regression Methods in Econometric Production Analysis

    DEFF Research Database (Denmark)

    Czekaj, Tomasz Gerard

    and nonparametric estimations of production functions in order to evaluate the optimal firm size. The second paper discusses the use of parametric and nonparametric regression methods to estimate panel data regression models. The third paper analyses production risk, price uncertainty, and farmers' risk preferences...... within a nonparametric panel data regression framework. The fourth paper analyses the technical efficiency of dairy farms with environmental output using nonparametric kernel regression in a semiparametric stochastic frontier analysis. The results provided in this PhD thesis show that nonparametric......This PhD thesis addresses one of the fundamental problems in applied econometric analysis, namely the econometric estimation of regression functions. The conventional approach to regression analysis is the parametric approach, which requires the researcher to specify the form of the regression...

  17. A probability space for quantum models

    Science.gov (United States)

    Lemmens, L. F.

    2017-06-01

    A probability space contains a set of outcomes, a collection of events formed by subsets of the set of outcomes and probabilities defined for all events. A reformulation in terms of propositions allows to use the maximum entropy method to assign the probabilities taking some constraints into account. The construction of a probability space for quantum models is determined by the choice of propositions, choosing the constraints and making the probability assignment by the maximum entropy method. This approach shows, how typical quantum distributions such as Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein are partly related with well-known classical distributions. The relation between the conditional probability density, given some averages as constraints and the appropriate ensemble is elucidated.

  18. Probability and Measure

    CERN Document Server

    Billingsley, Patrick

    2012-01-01

    Praise for the Third Edition "It is, as far as I'm concerned, among the best books in math ever written....if you are a mathematician and want to have the top reference in probability, this is it." (Amazon.com, January 2006) A complete and comprehensive classic in probability and measure theory Probability and Measure, Anniversary Edition by Patrick Billingsley celebrates the achievements and advancements that have made this book a classic in its field for the past 35 years. Now re-issued in a new style and format, but with the reliable content that the third edition was revered for, this

  19. The concept of probability

    International Nuclear Information System (INIS)

    Bitsakis, E.I.; Nicolaides, C.A.

    1989-01-01

    The concept of probability is now, and always has been, central to the debate on the interpretation of quantum mechanics. Furthermore, probability permeates all of science, as well as our every day life. The papers included in this volume, written by leading proponents of the ideas expressed, embrace a broad spectrum of thought and results: mathematical, physical epistemological, and experimental, both specific and general. The contributions are arranged in parts under the following headings: Following Schroedinger's thoughts; Probability and quantum mechanics; Aspects of the arguments on nonlocality; Bell's theorem and EPR correlations; Real or Gedanken experiments and their interpretation; Questions about irreversibility and stochasticity; and Epistemology, interpretation and culture. (author). refs.; figs.; tabs

  20. Single molecule force spectroscopy at high data acquisition: A Bayesian nonparametric analysis

    Science.gov (United States)

    Sgouralis, Ioannis; Whitmore, Miles; Lapidus, Lisa; Comstock, Matthew J.; Pressé, Steve

    2018-03-01

    Bayesian nonparametrics (BNPs) are poised to have a deep impact in the analysis of single molecule data as they provide posterior probabilities over entire models consistent with the supplied data, not just model parameters of one preferred model. Thus they provide an elegant and rigorous solution to the difficult problem encountered when selecting an appropriate candidate model. Nevertheless, BNPs' flexibility to learn models and their associated parameters from experimental data is a double-edged sword. Most importantly, BNPs are prone to increasing the complexity of the estimated models due to artifactual features present in time traces. Thus, because of experimental challenges unique to single molecule methods, naive application of available BNP tools is not possible. Here we consider traces with time correlations and, as a specific example, we deal with force spectroscopy traces collected at high acquisition rates. While high acquisition rates are required in order to capture dwells in short-lived molecular states, in this setup, a slow response of the optical trap instrumentation (i.e., trapped beads, ambient fluid, and tethering handles) distorts the molecular signals introducing time correlations into the data that may be misinterpreted as true states by naive BNPs. Our adaptation of BNP tools explicitly takes into consideration these response dynamics, in addition to drift and noise, and makes unsupervised time series analysis of correlated single molecule force spectroscopy measurements possible, even at acquisition rates similar to or below the trap's response times.

  1. European regional efficiency and geographical externalities: a spatial nonparametric frontier analysis

    Science.gov (United States)

    Ramajo, Julián; Cordero, José Manuel; Márquez, Miguel Ángel

    2017-10-01

    This paper analyses region-level technical efficiency in nine European countries over the 1995-2007 period. We propose the application of a nonparametric conditional frontier approach to account for the presence of heterogeneous conditions in the form of geographical externalities. Such environmental factors are beyond the control of regional authorities, but may affect the production function. Therefore, they need to be considered in the frontier estimation. Specifically, a spatial autoregressive term is included as an external conditioning factor in a robust order- m model. Thus we can test the hypothesis of non-separability (the external factor impacts both the input-output space and the distribution of efficiencies), demonstrating the existence of significant global interregional spillovers into the production process. Our findings show that geographical externalities affect both the frontier level and the probability of being more or less efficient. Specifically, the results support the fact that the spatial lag variable has an inverted U-shaped non-linear impact on the performance of regions. This finding can be interpreted as a differential effect of interregional spillovers depending on the size of the neighboring economies: positive externalities for small values, possibly related to agglomeration economies, and negative externalities for high values, indicating the possibility of production congestion. Additionally, evidence of the existence of a strong geographic pattern of European regional efficiency is reported and the levels of technical efficiency are acknowledged to have converged during the period under analysis.

  2. Can confidence indicators forecast the probability of expansion in Croatia?

    Directory of Open Access Journals (Sweden)

    Mirjana Čižmešija

    2016-04-01

    Full Text Available The aim of this paper is to investigate how reliable are confidence indicators in forecasting the probability of expansion. We consider three Croatian Business Survey indicators: the Industrial Confidence Indicator (ICI, the Construction Confidence Indicator (BCI and the Retail Trade Confidence Indicator (RTCI. The quarterly data, used in the research, covered the periods from 1999/Q1 to 2014/Q1. Empirical analysis consists of two parts. The non-parametric Bry-Boschan algorithm is used for distinguishing periods of expansion from the period of recession in the Croatian economy. Then, various nonlinear probit models were estimated. The models differ with respect to the regressors (confidence indicators and the time lags. The positive signs of estimated parameters suggest that the probability of expansion increases with an increase in Confidence Indicators. Based on the obtained results, the conclusion is that ICI is the most powerful predictor of the probability of expansion in Croatia.

  3. Nonparametric predictive inference for reliability of a k-out-of-m:G system with multiple component types

    International Nuclear Information System (INIS)

    Aboalkhair, Ahmad M.; Coolen, Frank P.A.; MacPhee, Iain M.

    2014-01-01

    Nonparametric predictive inference for system reliability has recently been presented, with specific focus on k-out-of-m:G systems. The reliability of systems is quantified by lower and upper probabilities of system functioning, given binary test results on components, taking uncertainty about component functioning and indeterminacy due to limited test information explicitly into account. Thus far, systems considered were series configurations of subsystems, with each subsystem i a k i -out-of-m i :G system which consisted of only one type of components. Key results are briefly summarized in this paper, and as an important generalization new results are presented for a single k-out-of-m:G system consisting of components of multiple types. The important aspects of redundancy and diversity for such systems are discussed. - Highlights: • New results on nonparametric predictive inference for system reliability. • Prediction of system reliability based on test data for components. • New insights on system redundancy optimization and diversity. • Components that appear inferior in tests may be included to enhance redundancy

  4. Notes on the Implementation of Non-Parametric Statistics within the Westinghouse Realistic Large Break LOCA Evaluation Model (ASTRUM)

    International Nuclear Information System (INIS)

    Frepoli, Cesare; Oriani, Luca

    2006-01-01

    In recent years, non-parametric or order statistics methods have been widely used to assess the impact of the uncertainties within Best-Estimate LOCA evaluation models. The bounding of the uncertainties is achieved with a direct Monte Carlo sampling of the uncertainty attributes, with the minimum trial number selected to 'stabilize' the estimation of the critical output values (peak cladding temperature (PCT), local maximum oxidation (LMO), and core-wide oxidation (CWO A non-parametric order statistics uncertainty analysis was recently implemented within the Westinghouse Realistic Large Break LOCA evaluation model, also referred to as 'Automated Statistical Treatment of Uncertainty Method' (ASTRUM). The implementation or interpretation of order statistics in safety analysis is not fully consistent within the industry. This has led to an extensive public debate among regulators and researchers which can be found in the open literature. The USNRC-approved Westinghouse method follows a rigorous implementation of the order statistics theory, which leads to the execution of 124 simulations within a Large Break LOCA analysis. This is a solid approach which guarantees that a bounding value (at 95% probability) of the 95 th percentile for each of the three 10 CFR 50.46 ECCS design acceptance criteria (PCT, LMO and CWO) is obtained. The objective of this paper is to provide additional insights on the ASTRUM statistical approach, with a more in-depth analysis of pros and cons of the order statistics and of the Westinghouse approach in the implementation of this statistical methodology. (authors)

  5. A parametric interpretation of Bayesian Nonparametric Inference from Gene Genealogies: Linking ecological, population genetics and evolutionary processes.

    Science.gov (United States)

    Ponciano, José Miguel

    2017-11-22

    Using a nonparametric Bayesian approach Palacios and Minin (2013) dramatically improved the accuracy, precision of Bayesian inference of population size trajectories from gene genealogies. These authors proposed an extension of a Gaussian Process (GP) nonparametric inferential method for the intensity function of non-homogeneous Poisson processes. They found that not only the statistical properties of the estimators were improved with their method, but also, that key aspects of the demographic histories were recovered. The authors' work represents the first Bayesian nonparametric solution to this inferential problem because they specify a convenient prior belief without a particular functional form on the population trajectory. Their approach works so well and provides such a profound understanding of the biological process, that the question arises as to how truly "biology-free" their approach really is. Using well-known concepts of stochastic population dynamics, here I demonstrate that in fact, Palacios and Minin's GP model can be cast as a parametric population growth model with density dependence and environmental stochasticity. Making this link between population genetics and stochastic population dynamics modeling provides novel insights into eliciting biologically meaningful priors for the trajectory of the effective population size. The results presented here also bring novel understanding of GP as models for the evolution of a trait. Thus, the ecological principles foundation of Palacios and Minin (2013)'s prior adds to the conceptual and scientific value of these authors' inferential approach. I conclude this note by listing a series of insights brought about by this connection with Ecology. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  6. Probability for statisticians

    CERN Document Server

    Shorack, Galen R

    2017-01-01

    This 2nd edition textbook offers a rigorous introduction to measure theoretic probability with particular attention to topics of interest to mathematical statisticians—a textbook for courses in probability for students in mathematical statistics. It is recommended to anyone interested in the probability underlying modern statistics, providing a solid grounding in the probabilistic tools and techniques necessary to do theoretical research in statistics. For the teaching of probability theory to post graduate statistics students, this is one of the most attractive books available. Of particular interest is a presentation of the major central limit theorems via Stein's method either prior to or alternative to a characteristic function presentation. Additionally, there is considerable emphasis placed on the quantile function as well as the distribution function. The bootstrap and trimming are both presented. Martingale coverage includes coverage of censored data martingales. The text includes measure theoretic...

  7. Concepts of probability theory

    CERN Document Server

    Pfeiffer, Paul E

    1979-01-01

    Using the Kolmogorov model, this intermediate-level text discusses random variables, probability distributions, mathematical expectation, random processes, more. For advanced undergraduates students of science, engineering, or math. Includes problems with answers and six appendixes. 1965 edition.

  8. Probability and Bayesian statistics

    CERN Document Server

    1987-01-01

    This book contains selected and refereed contributions to the "Inter­ national Symposium on Probability and Bayesian Statistics" which was orga­ nized to celebrate the 80th birthday of Professor Bruno de Finetti at his birthplace Innsbruck in Austria. Since Professor de Finetti died in 1985 the symposium was dedicated to the memory of Bruno de Finetti and took place at Igls near Innsbruck from 23 to 26 September 1986. Some of the pa­ pers are published especially by the relationship to Bruno de Finetti's scientific work. The evolution of stochastics shows growing importance of probability as coherent assessment of numerical values as degrees of believe in certain events. This is the basis for Bayesian inference in the sense of modern statistics. The contributions in this volume cover a broad spectrum ranging from foundations of probability across psychological aspects of formulating sub­ jective probability statements, abstract measure theoretical considerations, contributions to theoretical statistics an...

  9. Probability and Statistical Inference

    OpenAIRE

    Prosper, Harrison B.

    2006-01-01

    These lectures introduce key concepts in probability and statistical inference at a level suitable for graduate students in particle physics. Our goal is to paint as vivid a picture as possible of the concepts covered.

  10. Probabilities in physics

    CERN Document Server

    Hartmann, Stephan

    2011-01-01

    Many results of modern physics--those of quantum mechanics, for instance--come in a probabilistic guise. But what do probabilistic statements in physics mean? Are probabilities matters of objective fact and part of the furniture of the world, as objectivists think? Or do they only express ignorance or belief, as Bayesians suggest? And how are probabilistic hypotheses justified and supported by empirical evidence? Finally, what does the probabilistic nature of physics imply for our understanding of the world? This volume is the first to provide a philosophical appraisal of probabilities in all of physics. Its main aim is to make sense of probabilistic statements as they occur in the various physical theories and models and to provide a plausible epistemology and metaphysics of probabilities. The essays collected here consider statistical physics, probabilistic modelling, and quantum mechanics, and critically assess the merits and disadvantages of objectivist and subjectivist views of probabilities in these fie...

  11. Probability an introduction

    CERN Document Server

    Grimmett, Geoffrey

    2014-01-01

    Probability is an area of mathematics of tremendous contemporary importance across all aspects of human endeavour. This book is a compact account of the basic features of probability and random processes at the level of first and second year mathematics undergraduates and Masters' students in cognate fields. It is suitable for a first course in probability, plus a follow-up course in random processes including Markov chains. A special feature is the authors' attention to rigorous mathematics: not everything is rigorous, but the need for rigour is explained at difficult junctures. The text is enriched by simple exercises, together with problems (with very brief hints) many of which are taken from final examinations at Cambridge and Oxford. The first eight chapters form a course in basic probability, being an account of events, random variables, and distributions - discrete and continuous random variables are treated separately - together with simple versions of the law of large numbers and the central limit th...

  12. Probability in physics

    CERN Document Server

    Hemmo, Meir

    2012-01-01

    What is the role and meaning of probability in physical theory, in particular in two of the most successful theories of our age, quantum physics and statistical mechanics? Laws once conceived as universal and deterministic, such as Newton‘s laws of motion, or the second law of thermodynamics, are replaced in these theories by inherently probabilistic laws. This collection of essays by some of the world‘s foremost experts presents an in-depth analysis of the meaning of probability in contemporary physics. Among the questions addressed are: How are probabilities defined? Are they objective or subjective? What is their  explanatory value? What are the differences between quantum and classical probabilities? The result is an informative and thought-provoking book for the scientifically inquisitive. 

  13. Quantum computing and probability.

    Science.gov (United States)

    Ferry, David K

    2009-11-25

    Over the past two decades, quantum computing has become a popular and promising approach to trying to solve computationally difficult problems. Missing in many descriptions of quantum computing is just how probability enters into the process. Here, we discuss some simple examples of how uncertainty and probability enter, and how this and the ideas of quantum computing challenge our interpretations of quantum mechanics. It is found that this uncertainty can lead to intrinsic decoherence, and this raises challenges for error correction.

  14. Quantum computing and probability

    International Nuclear Information System (INIS)

    Ferry, David K

    2009-01-01

    Over the past two decades, quantum computing has become a popular and promising approach to trying to solve computationally difficult problems. Missing in many descriptions of quantum computing is just how probability enters into the process. Here, we discuss some simple examples of how uncertainty and probability enter, and how this and the ideas of quantum computing challenge our interpretations of quantum mechanics. It is found that this uncertainty can lead to intrinsic decoherence, and this raises challenges for error correction. (viewpoint)

  15. Glaucoma Monitoring in a Clinical Setting Glaucoma Progression Analysis vs Nonparametric Progression Analysis in the Groningen Longitudinal Glaucoma Study

    NARCIS (Netherlands)

    Wesselink, Christiaan; Heeg, Govert P.; Jansonius, Nomdo M.

    Objective: To compare prospectively 2 perimetric progression detection algorithms for glaucoma, the Early Manifest Glaucoma Trial algorithm (glaucoma progression analysis [GPA]) and a nonparametric algorithm applied to the mean deviation (MD) (nonparametric progression analysis [NPA]). Methods:

  16. Conditional Density Approximations with Mixtures of Polynomials

    DEFF Research Database (Denmark)

    Varando, Gherardo; López-Cruz, Pedro L.; Nielsen, Thomas Dyhre

    2015-01-01

    Mixtures of polynomials (MoPs) are a non-parametric density estimation technique especially designed for hybrid Bayesian networks with continuous and discrete variables. Algorithms to learn one- and multi-dimensional (marginal) MoPs from data have recently been proposed. In this paper we introduce...... two methods for learning MoP approximations of conditional densities from data. Both approaches are based on learning MoP approximations of the joint density and the marginal density of the conditioning variables, but they differ as to how the MoP approximation of the quotient of the two densities...

  17. Density forecasts of crude-oil prices using option-implied and ARCH-type models

    DEFF Research Database (Denmark)

    Høg, Esben; Tsiaras, Leonicas

    2011-01-01

    of derivative contracts. Risk-neutral densities, obtained from panels of crude-oil option prices, are adjusted to reflect real-world risks using either a parametric or a non-parametric calibration approach. The relative performance of the models is evaluated for the entire support of the density, as well...... obtained by option prices and non-parametric calibration methods over those constructed using historical returns and simulated ARCH processes. © 2010 Wiley Periodicals, Inc. Jrl Fut Mark...

  18. A local non-parametric model for trade sign inference

    Science.gov (United States)

    Blazejewski, Adam; Coggins, Richard

    2005-03-01

    We investigate a regularity in market order submission strategies for 12 stocks with large market capitalization on the Australian Stock Exchange. The regularity is evidenced by a predictable relationship between the trade sign (trade initiator), size of the trade, and the contents of the limit order book before the trade. We demonstrate this predictability by developing an empirical inference model to classify trades into buyer-initiated and seller-initiated. The model employs a local non-parametric method, k-nearest neighbor, which in the past was used successfully for chaotic time series prediction. The k-nearest neighbor with three predictor variables achieves an average out-of-sample classification accuracy of 71.40%, compared to 63.32% for the linear logistic regression with seven predictor variables. The result suggests that a non-linear approach may produce a more parsimonious trade sign inference model with a higher out-of-sample classification accuracy. Furthermore, for most of our stocks the observed regularity in market order submissions seems to have a memory of at least 30 trading days.

  19. Efficient nonparametric n -body force fields from machine learning

    Science.gov (United States)

    Glielmo, Aldo; Zeni, Claudio; De Vita, Alessandro

    2018-05-01

    We provide a definition and explicit expressions for n -body Gaussian process (GP) kernels, which can learn any interatomic interaction occurring in a physical system, up to n -body contributions, for any value of n . The series is complete, as it can be shown that the "universal approximator" squared exponential kernel can be written as a sum of n -body kernels. These recipes enable the choice of optimally efficient force models for each target system, as confirmed by extensive testing on various materials. We furthermore describe how the n -body kernels can be "mapped" on equivalent representations that provide database-size-independent predictions and are thus crucially more efficient. We explicitly carry out this mapping procedure for the first nontrivial (three-body) kernel of the series, and we show that this reproduces the GP-predicted forces with meV /Å accuracy while being orders of magnitude faster. These results pave the way to using novel force models (here named "M-FFs") that are computationally as fast as their corresponding standard parametrized n -body force fields, while retaining the nonparametric character, the ease of training and validation, and the accuracy of the best recently proposed machine-learning potentials.

  20. Non-parametric Bayesian networks: Improving theory and reviewing applications

    International Nuclear Information System (INIS)

    Hanea, Anca; Morales Napoles, Oswaldo; Ababei, Dan

    2015-01-01

    Applications in various domains often lead to high dimensional dependence modelling. A Bayesian network (BN) is a probabilistic graphical model that provides an elegant way of expressing the joint distribution of a large number of interrelated variables. BNs have been successfully used to represent uncertain knowledge in a variety of fields. The majority of applications use discrete BNs, i.e. BNs whose nodes represent discrete variables. Integrating continuous variables in BNs is an area fraught with difficulty. Several methods that handle discrete-continuous BNs have been proposed in the literature. This paper concentrates only on one method called non-parametric BNs (NPBNs). NPBNs were introduced in 2004 and they have been or are currently being used in at least twelve professional applications. This paper provides a short introduction to NPBNs, a couple of theoretical advances, and an overview of applications. The aim of the paper is twofold: one is to present the latest improvements of the theory underlying NPBNs, and the other is to complement the existing overviews of BNs applications with the NPNBs applications. The latter opens the opportunity to discuss some difficulties that applications pose to the theoretical framework and in this way offers some NPBN modelling guidance to practitioners. - Highlights: • The paper gives an overview of the current NPBNs methodology. • We extend the NPBN methodology by relaxing the conditions of one of its fundamental theorems. • We propose improvements of the data mining algorithm for the NPBNs. • We review the professional applications of the NPBNs.

  1. Nonparametric predictive inference for combined competing risks data

    International Nuclear Information System (INIS)

    Coolen-Maturi, Tahani; Coolen, Frank P.A.

    2014-01-01

    The nonparametric predictive inference (NPI) approach for competing risks data has recently been presented, in particular addressing the question due to which of the competing risks the next unit will fail, and also considering the effects of unobserved, re-defined, unknown or removed competing risks. In this paper, we introduce how the NPI approach can be used to deal with situations where units are not all at risk from all competing risks. This may typically occur if one combines information from multiple samples, which can, e.g. be related to further aspects of units that define the samples or groups to which the units belong or to different applications where the circumstances under which the units operate can vary. We study the effect of combining the additional information from these multiple samples, so effectively borrowing information on specific competing risks from other units, on the inferences. Such combination of information can be relevant to competing risks scenarios in a variety of application areas, including engineering and medical studies

  2. Transition redshift: new constraints from parametric and nonparametric methods

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Nisha; Mahajan, Shobhit; Mukherjee, Amitabha [Department of Physics and Astrophysics, University of Delhi, New Delhi 110007 (India); Jain, Deepak [Deen Dayal Upadhyaya College, University of Delhi, New Delhi 110015 (India); Pires, Nilza, E-mail: nrani@physics.du.ac.in, E-mail: djain@ddu.du.ac.in, E-mail: shobhit.mahajan@gmail.com, E-mail: amimukh@gmail.com, E-mail: npires@dfte.ufrn.br [Departamento de Física Teórica e Experimental, UFRN, Campus Universitário, Natal, RN 59072-970 (Brazil)

    2015-12-01

    In this paper, we use the cosmokinematics approach to study the accelerated expansion of the Universe. This is a model independent approach and depends only on the assumption that the Universe is homogeneous and isotropic and is described by the FRW metric. We parametrize the deceleration parameter, q(z), to constrain the transition redshift (z{sub t}) at which the expansion of the Universe goes from a decelerating to an accelerating phase. We use three different parametrizations of q(z) namely, q{sub I}(z)=q{sub 1}+q{sub 2}z, q{sub II} (z) = q{sub 3} + q{sub 4} ln (1 + z) and q{sub III} (z)=½+q{sub 5}/(1+z){sup 2}. A joint analysis of the age of galaxies, strong lensing and supernovae Ia data indicates that the transition redshift is less than unity i.e. z{sub t} < 1. We also use a nonparametric approach (LOESS+SIMEX) to constrain z{sub t}. This too gives z{sub t} < 1 which is consistent with the value obtained by the parametric approach.

  3. Discrete non-parametric kernel estimation for global sensitivity analysis

    International Nuclear Information System (INIS)

    Senga Kiessé, Tristan; Ventura, Anne

    2016-01-01

    This work investigates the discrete kernel approach for evaluating the contribution of the variance of discrete input variables to the variance of model output, via analysis of variance (ANOVA) decomposition. Until recently only the continuous kernel approach has been applied as a metamodeling approach within sensitivity analysis framework, for both discrete and continuous input variables. Now the discrete kernel estimation is known to be suitable for smoothing discrete functions. We present a discrete non-parametric kernel estimator of ANOVA decomposition of a given model. An estimator of sensitivity indices is also presented with its asymtotic convergence rate. Some simulations on a test function analysis and a real case study from agricultural have shown that the discrete kernel approach outperforms the continuous kernel one for evaluating the contribution of moderate or most influential discrete parameters to the model output. - Highlights: • We study a discrete kernel estimation for sensitivity analysis of a model. • A discrete kernel estimator of ANOVA decomposition of the model is presented. • Sensitivity indices are calculated for discrete input parameters. • An estimator of sensitivity indices is also presented with its convergence rate. • An application is realized for improving the reliability of environmental models.

  4. Bayesian nonparametric clustering in phylogenetics: modeling antigenic evolution in influenza.

    Science.gov (United States)

    Cybis, Gabriela B; Sinsheimer, Janet S; Bedford, Trevor; Rambaut, Andrew; Lemey, Philippe; Suchard, Marc A

    2018-01-30

    Influenza is responsible for up to 500,000 deaths every year, and antigenic variability represents much of its epidemiological burden. To visualize antigenic differences across many viral strains, antigenic cartography methods use multidimensional scaling on binding assay data to map influenza antigenicity onto a low-dimensional space. Analysis of such assay data ideally leads to natural clustering of influenza strains of similar antigenicity that correlate with sequence evolution. To understand the dynamics of these antigenic groups, we present a framework that jointly models genetic and antigenic evolution by combining multidimensional scaling of binding assay data, Bayesian phylogenetic machinery and nonparametric clustering methods. We propose a phylogenetic Chinese restaurant process that extends the current process to incorporate the phylogenetic dependency structure between strains in the modeling of antigenic clusters. With this method, we are able to use the genetic information to better understand the evolution of antigenicity throughout epidemics, as shown in applications of this model to H1N1 influenza. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Modeling Non-Gaussian Time Series with Nonparametric Bayesian Model.

    Science.gov (United States)

    Xu, Zhiguang; MacEachern, Steven; Xu, Xinyi

    2015-02-01

    We present a class of Bayesian copula models whose major components are the marginal (limiting) distribution of a stationary time series and the internal dynamics of the series. We argue that these are the two features with which an analyst is typically most familiar, and hence that these are natural components with which to work. For the marginal distribution, we use a nonparametric Bayesian prior distribution along with a cdf-inverse cdf transformation to obtain large support. For the internal dynamics, we rely on the traditionally successful techniques of normal-theory time series. Coupling the two components gives us a family of (Gaussian) copula transformed autoregressive models. The models provide coherent adjustments of time scales and are compatible with many extensions, including changes in volatility of the series. We describe basic properties of the models, show their ability to recover non-Gaussian marginal distributions, and use a GARCH modification of the basic model to analyze stock index return series. The models are found to provide better fit and improved short-range and long-range predictions than Gaussian competitors. The models are extensible to a large variety of fields, including continuous time models, spatial models, models for multiple series, models driven by external covariate streams, and non-stationary models.

  6. Nonparametric adaptive age replacement with a one-cycle criterion

    International Nuclear Information System (INIS)

    Coolen-Schrijner, P.; Coolen, F.P.A.

    2007-01-01

    Age replacement of technical units has received much attention in the reliability literature over the last four decades. Mostly, the failure time distribution for the units is assumed to be known, and minimal costs per unit of time is used as optimality criterion, where renewal reward theory simplifies the mathematics involved but requires the assumption that the same process and replacement strategy continues over a very large ('infinite') period of time. Recently, there has been increasing attention to adaptive strategies for age replacement, taking into account the information from the process. Although renewal reward theory can still be used to provide an intuitively and mathematically attractive optimality criterion, it is more logical to use minimal costs per unit of time over a single cycle as optimality criterion for adaptive age replacement. In this paper, we first show that in the classical age replacement setting, with known failure time distribution with increasing hazard rate, the one-cycle criterion leads to earlier replacement than the renewal reward criterion. Thereafter, we present adaptive age replacement with a one-cycle criterion within the nonparametric predictive inferential framework. We study the performance of this approach via simulations, which are also used for comparisons with the use of the renewal reward criterion within the same statistical framework

  7. Bayesian nonparametric meta-analysis using Polya tree mixture models.

    Science.gov (United States)

    Branscum, Adam J; Hanson, Timothy E

    2008-09-01

    Summary. A common goal in meta-analysis is estimation of a single effect measure using data from several studies that are each designed to address the same scientific inquiry. Because studies are typically conducted in geographically disperse locations, recent developments in the statistical analysis of meta-analytic data involve the use of random effects models that account for study-to-study variability attributable to differences in environments, demographics, genetics, and other sources that lead to heterogeneity in populations. Stemming from asymptotic theory, study-specific summary statistics are modeled according to normal distributions with means representing latent true effect measures. A parametric approach subsequently models these latent measures using a normal distribution, which is strictly a convenient modeling assumption absent of theoretical justification. To eliminate the influence of overly restrictive parametric models on inferences, we consider a broader class of random effects distributions. We develop a novel hierarchical Bayesian nonparametric Polya tree mixture (PTM) model. We present methodology for testing the PTM versus a normal random effects model. These methods provide researchers a straightforward approach for conducting a sensitivity analysis of the normality assumption for random effects. An application involving meta-analysis of epidemiologic studies designed to characterize the association between alcohol consumption and breast cancer is presented, which together with results from simulated data highlight the performance of PTMs in the presence of nonnormality of effect measures in the source population.

  8. The perception of probability.

    Science.gov (United States)

    Gallistel, C R; Krishan, Monika; Liu, Ye; Miller, Reilly; Latham, Peter E

    2014-01-01

    We present a computational model to explain the results from experiments in which subjects estimate the hidden probability parameter of a stepwise nonstationary Bernoulli process outcome by outcome. The model captures the following results qualitatively and quantitatively, with only 2 free parameters: (a) Subjects do not update their estimate after each outcome; they step from one estimate to another at irregular intervals. (b) The joint distribution of step widths and heights cannot be explained on the assumption that a threshold amount of change must be exceeded in order for them to indicate a change in their perception. (c) The mapping of observed probability to the median perceived probability is the identity function over the full range of probabilities. (d) Precision (how close estimates are to the best possible estimate) is good and constant over the full range. (e) Subjects quickly detect substantial changes in the hidden probability parameter. (f) The perceived probability sometimes changes dramatically from one observation to the next. (g) Subjects sometimes have second thoughts about a previous change perception, after observing further outcomes. (h) The frequency with which they perceive changes moves in the direction of the true frequency over sessions. (Explaining this finding requires 2 additional parametric assumptions.) The model treats the perception of the current probability as a by-product of the construction of a compact encoding of the experienced sequence in terms of its change points. It illustrates the why and the how of intermittent Bayesian belief updating and retrospective revision in simple perception. It suggests a reinterpretation of findings in the recent literature on the neurobiology of decision making. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  9. Learning Mixtures of Polynomials of Conditional Densities from Data

    DEFF Research Database (Denmark)

    L. López-Cruz, Pedro; Nielsen, Thomas Dyhre; Bielza, Concha

    2013-01-01

    Mixtures of polynomials (MoPs) are a non-parametric density estimation technique for hybrid Bayesian networks with continuous and discrete variables. We propose two methods for learning MoP ap- proximations of conditional densities from data. Both approaches are based on learning MoP approximatio...

  10. Irreversibility and conditional probability

    International Nuclear Information System (INIS)

    Stuart, C.I.J.M.

    1989-01-01

    The mathematical entropy - unlike physical entropy - is simply a measure of uniformity for probability distributions in general. So understood, conditional entropies have the same logical structure as conditional probabilities. If, as is sometimes supposed, conditional probabilities are time-reversible, then so are conditional entropies and, paradoxically, both then share this symmetry with physical equations of motion. The paradox is, of course that probabilities yield a direction to time both in statistical mechanics and quantum mechanics, while the equations of motion do not. The supposed time-reversibility of both conditionals seems also to involve a form of retrocausality that is related to, but possibly not the same as, that described by Costa de Beaurgard. The retrocausality is paradoxically at odds with the generally presumed irreversibility of the quantum mechanical measurement process. Further paradox emerges if the supposed time-reversibility of the conditionals is linked with the idea that the thermodynamic entropy is the same thing as 'missing information' since this confounds the thermodynamic and mathematical entropies. However, it is shown that irreversibility is a formal consequence of conditional entropies and, hence, of conditional probabilities also. 8 refs. (Author)

  11. The pleasures of probability

    CERN Document Server

    Isaac, Richard

    1995-01-01

    The ideas of probability are all around us. Lotteries, casino gambling, the al­ most non-stop polling which seems to mold public policy more and more­ these are a few of the areas where principles of probability impinge in a direct way on the lives and fortunes of the general public. At a more re­ moved level there is modern science which uses probability and its offshoots like statistics and the theory of random processes to build mathematical descriptions of the real world. In fact, twentieth-century physics, in embrac­ ing quantum mechanics, has a world view that is at its core probabilistic in nature, contrary to the deterministic one of classical physics. In addition to all this muscular evidence of the importance of probability ideas it should also be said that probability can be lots of fun. It is a subject where you can start thinking about amusing, interesting, and often difficult problems with very little mathematical background. In this book, I wanted to introduce a reader with at least a fairl...

  12. Experimental Probability in Elementary School

    Science.gov (United States)

    Andrew, Lane

    2009-01-01

    Concepts in probability can be more readily understood if students are first exposed to probability via experiment. Performing probability experiments encourages students to develop understandings of probability grounded in real events, as opposed to merely computing answers based on formulae.

  13. Nonparametric estimates of drift and diffusion profiles via Fokker-Planck algebra.

    Science.gov (United States)

    Lund, Steven P; Hubbard, Joseph B; Halter, Michael

    2014-11-06

    Diffusion processes superimposed upon deterministic motion play a key role in understanding and controlling the transport of matter, energy, momentum, and even information in physics, chemistry, material science, biology, and communications technology. Given functions defining these random and deterministic components, the Fokker-Planck (FP) equation is often used to model these diffusive systems. Many methods exist for estimating the drift and diffusion profiles from one or more identifiable diffusive trajectories; however, when many identical entities diffuse simultaneously, it may not be possible to identify individual trajectories. Here we present a method capable of simultaneously providing nonparametric estimates for both drift and diffusion profiles from evolving density profiles, requiring only the validity of Langevin/FP dynamics. This algebraic FP manipulation provides a flexible and robust framework for estimating stationary drift and diffusion coefficient profiles, is not based on fluctuation theory or solved diffusion equations, and may facilitate predictions for many experimental systems. We illustrate this approach on experimental data obtained from a model lipid bilayer system exhibiting free diffusion and electric field induced drift. The wide range over which this approach provides accurate estimates for drift and diffusion profiles is demonstrated through simulation.

  14. Reliability assessment of complex mechatronic systems using a modified nonparametric belief propagation algorithm

    International Nuclear Information System (INIS)

    Zhong, X.; Ichchou, M.; Saidi, A.

    2010-01-01

    Various parametric skewed distributions are widely used to model the time-to-failure (TTF) in the reliability analysis of mechatronic systems, where many items are unobservable due to the high cost of testing. Estimating the parameters of those distributions becomes a challenge. Previous research has failed to consider this problem due to the difficulty of dependency modeling. Recently the methodology of Bayesian networks (BNs) has greatly contributed to the reliability analysis of complex systems. In this paper, the problem of system reliability assessment (SRA) is formulated as a BN considering the parameter uncertainty. As the quantitative specification of BN, a normal distribution representing the stochastic nature of TTF distribution is learned to capture the interactions between the basic items and their output items. The approximation inference of our continuous BN model is performed by a modified version of nonparametric belief propagation (NBP) which can avoid using a junction tree that is inefficient for the mechatronic case because of the large treewidth. After reasoning, we obtain the marginal posterior density of each TTF model parameter. Other information from diverse sources and expert priors can be easily incorporated in this SRA model to achieve more accurate results. Simulation in simple and complex cases of mechatronic systems demonstrates that the posterior of the parameter network fits the data well and the uncertainty passes effectively through our BN based SRA model by using the modified NBP.

  15. Marginal Bayesian nonparametric model for time to disease arrival of threatened amphibian populations.

    Science.gov (United States)

    Zhou, Haiming; Hanson, Timothy; Knapp, Roland

    2015-12-01

    The global emergence of Batrachochytrium dendrobatidis (Bd) has caused the extinction of hundreds of amphibian species worldwide. It has become increasingly important to be able to precisely predict time to Bd arrival in a population. The data analyzed herein present a unique challenge in terms of modeling because there is a strong spatial component to Bd arrival time and the traditional proportional hazards assumption is grossly violated. To address these concerns, we develop a novel marginal Bayesian nonparametric survival model for spatially correlated right-censored data. This class of models assumes that the logarithm of survival times marginally follow a mixture of normal densities with a linear-dependent Dirichlet process prior as the random mixing measure, and their joint distribution is induced by a Gaussian copula model with a spatial correlation structure. To invert high-dimensional spatial correlation matrices, we adopt a full-scale approximation that can capture both large- and small-scale spatial dependence. An efficient Markov chain Monte Carlo algorithm with delayed rejection is proposed for posterior computation, and an R package spBayesSurv is provided to fit the model. This approach is first evaluated through simulations, then applied to threatened frog populations in Sequoia-Kings Canyon National Park. © 2015, The International Biometric Society.

  16. Semi-nonparametric VaR forecasts for hedge funds during the recent crisis

    Science.gov (United States)

    Del Brio, Esther B.; Mora-Valencia, Andrés; Perote, Javier

    2014-05-01

    The need to provide accurate value-at-risk (VaR) forecasting measures has triggered an important literature in econophysics. Although these accurate VaR models and methodologies are particularly demanded for hedge fund managers, there exist few articles specifically devoted to implement new techniques in hedge fund returns VaR forecasting. This article advances in these issues by comparing the performance of risk measures based on parametric distributions (the normal, Student’s t and skewed-t), semi-nonparametric (SNP) methodologies based on Gram-Charlier (GC) series and the extreme value theory (EVT) approach. Our results show that normal-, Student’s t- and Skewed t- based methodologies fail to forecast hedge fund VaR, whilst SNP and EVT approaches accurately success on it. We extend these results to the multivariate framework by providing an explicit formula for the GC copula and its density that encompasses the Gaussian copula and accounts for non-linear dependences. We show that the VaR obtained by the meta GC accurately captures portfolio risk and outperforms regulatory VaR estimates obtained through the meta Gaussian and Student’s t distributions.

  17. A nonparametric Bayesian approach for genetic evaluation in ...

    African Journals Online (AJOL)

    Unknown

    Finally, one can report the whole of the posterior probability distributions of the parameters in ... the Markov Chain Monte Carlo Methods, and more specific Gibbs Sampling, these ...... Bayesian Methods in Animal Breeding Theory. J. Anim. Sci.

  18. NParCov3: A SAS/IML Macro for Nonparametric Randomization-Based Analysis of Covariance

    Directory of Open Access Journals (Sweden)

    Richard C. Zink

    2012-07-01

    Full Text Available Analysis of covariance serves two important purposes in a randomized clinical trial. First, there is a reduction of variance for the treatment effect which provides more powerful statistical tests and more precise confidence intervals. Second, it provides estimates of the treatment effect which are adjusted for random imbalances of covariates between the treatment groups. The nonparametric analysis of covariance method of Koch, Tangen, Jung, and Amara (1998 defines a very general methodology using weighted least-squares to generate covariate-adjusted treatment effects with minimal assumptions. This methodology is general in its applicability to a variety of outcomes, whether continuous, binary, ordinal, incidence density or time-to-event. Further, its use has been illustrated in many clinical trial settings, such as multi-center, dose-response and non-inferiority trials.NParCov3 is a SAS/IML macro written to conduct the nonparametric randomization-based covariance analyses of Koch et al. (1998. The software can analyze a variety of outcomes and can account for stratification. Data from multiple clinical trials will be used for illustration.

  19. Improving Ranking Using Quantum Probability

    OpenAIRE

    Melucci, Massimo

    2011-01-01

    The paper shows that ranking information units by quantum probability differs from ranking them by classical probability provided the same data used for parameter estimation. As probability of detection (also known as recall or power) and probability of false alarm (also known as fallout or size) measure the quality of ranking, we point out and show that ranking by quantum probability yields higher probability of detection than ranking by classical probability provided a given probability of ...

  20. Choice probability generating functions

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; McFadden, Daniel; Bierlaire, Michel

    2010-01-01

    This paper establishes that every random utility discrete choice model (RUM) has a representation that can be characterized by a choice-probability generating function (CPGF) with specific properties, and that every function with these specific properties is consistent with a RUM. The choice...... probabilities from the RUM are obtained from the gradient of the CPGF. Mixtures of RUM are characterized by logarithmic mixtures of their associated CPGF. The paper relates CPGF to multivariate extreme value distributions, and reviews and extends methods for constructing generating functions for applications....... The choice probabilities of any ARUM may be approximated by a cross-nested logit model. The results for ARUM are extended to competing risk survival models....

  1. Probability and stochastic modeling

    CERN Document Server

    Rotar, Vladimir I

    2012-01-01

    Basic NotionsSample Space and EventsProbabilitiesCounting TechniquesIndependence and Conditional ProbabilityIndependenceConditioningThe Borel-Cantelli TheoremDiscrete Random VariablesRandom Variables and VectorsExpected ValueVariance and Other Moments. Inequalities for DeviationsSome Basic DistributionsConvergence of Random Variables. The Law of Large NumbersConditional ExpectationGenerating Functions. Branching Processes. Random Walk RevisitedBranching Processes Generating Functions Branching Processes Revisited More on Random WalkMarkov ChainsDefinitions and Examples. Probability Distributions of Markov ChainsThe First Step Analysis. Passage TimesVariables Defined on a Markov ChainErgodicity and Stationary DistributionsA Classification of States and ErgodicityContinuous Random VariablesContinuous DistributionsSome Basic Distributions Continuous Multivariate Distributions Sums of Independent Random Variables Conditional Distributions and ExpectationsDistributions in the General Case. SimulationDistribution F...

  2. Estimating Subjective Probabilities

    DEFF Research Database (Denmark)

    Andersen, Steffen; Fountain, John; Harrison, Glenn W.

    2014-01-01

    either construct elicitation mechanisms that control for risk aversion, or construct elicitation mechanisms which undertake 'calibrating adjustments' to elicited reports. We illustrate how the joint estimation of risk attitudes and subjective probabilities can provide the calibration adjustments...... that theory calls for. We illustrate this approach using data from a controlled experiment with real monetary consequences to the subjects. This allows the observer to make inferences about the latent subjective probability, under virtually any well-specified model of choice under subjective risk, while still...

  3. Introduction to imprecise probabilities

    CERN Document Server

    Augustin, Thomas; de Cooman, Gert; Troffaes, Matthias C M

    2014-01-01

    In recent years, the theory has become widely accepted and has been further developed, but a detailed introduction is needed in order to make the material available and accessible to a wide audience. This will be the first book providing such an introduction, covering core theory and recent developments which can be applied to many application areas. All authors of individual chapters are leading researchers on the specific topics, assuring high quality and up-to-date contents. An Introduction to Imprecise Probabilities provides a comprehensive introduction to imprecise probabilities, includin

  4. Classic Problems of Probability

    CERN Document Server

    Gorroochurn, Prakash

    2012-01-01

    "A great book, one that I will certainly add to my personal library."—Paul J. Nahin, Professor Emeritus of Electrical Engineering, University of New Hampshire Classic Problems of Probability presents a lively account of the most intriguing aspects of statistics. The book features a large collection of more than thirty classic probability problems which have been carefully selected for their interesting history, the way they have shaped the field, and their counterintuitive nature. From Cardano's 1564 Games of Chance to Jacob Bernoulli's 1713 Golden Theorem to Parrondo's 1996 Perplexin

  5. Short-term monitoring of benzene air concentration in an urban area: a preliminary study of application of Kruskal-Wallis non-parametric test to assess pollutant impact on global environment and indoor.

    Science.gov (United States)

    Mura, Maria Chiara; De Felice, Marco; Morlino, Roberta; Fuselli, Sergio

    2010-01-01

    In step with the need to develop statistical procedures to manage small-size environmental samples, in this work we have used concentration values of benzene (C6H6), concurrently detected by seven outdoor and indoor monitoring stations over 12 000 minutes, in order to assess the representativeness of collected data and the impact of the pollutant on indoor environment. Clearly, the former issue is strictly connected to sampling-site geometry, which proves critical to correctly retrieving information from analysis of pollutants of sanitary interest. Therefore, according to current criteria for network-planning, single stations have been interpreted as nodes of a set of adjoining triangles; then, a) node pairs have been taken into account in order to estimate pollutant stationarity on triangle sides, as well as b) node triplets, to statistically associate data from air-monitoring with the corresponding territory area, and c) node sextuplets, to assess the impact probability of the outdoor pollutant on indoor environment for each area. Distributions from the various node combinations are all non-Gaussian, in the consequently, Kruskal-Wallis (KW) non-parametric statistics has been exploited to test variability on continuous density function from each pair, triplet and sextuplet. Results from the above-mentioned statistical analysis have shown randomness of site selection, which has not allowed a reliable generalization of monitoring data to the entire selected territory, except for a single "forced" case (70%); most important, they suggest a possible procedure to optimize network design.

  6. Short-term monitoring of benzene air concentration in an urban area: a preliminary study of application of Kruskal-Wallis non-parametric test to assess pollutant impact on global environment and indoor

    Directory of Open Access Journals (Sweden)

    Maria Chiara Mura

    2010-12-01

    Full Text Available In step with the need to develop statistical procedures to manage small-size environmental samples, in this work we have used concentration values of benzene (C6H6, concurrently detected by seven outdoor and indoor monitoring stations over 12 000 minutes, in order to assess the representativeness of collected data and the impact of the pollutant on indoor environment. Clearly, the former issue is strictly connected to sampling-site geometry, which proves critical to correctly retrieving information from analysis of pollutants of sanitary interest. Therefore, according to current criteria for network-planning, single stations have been interpreted as nodes of a set of adjoining triangles; then, a node pairs have been taken into account in order to estimate pollutant stationarity on triangle sides, as well as b node triplets, to statistically associate data from air-monitoring with the corresponding territory area, and c node sextuplets, to assess the impact probability of the outdoor pollutant on indoor environment for each area. Distributions from the various node combinations are all non-Gaussian, in the consequently, Kruskal-Wallis (KW non-parametric statistics has been exploited to test variability on continuous density function from each pair, triplet and sextuplet. Results from the above-mentioned statistical analysis have shown randomness of site selection, which has not allowed a reliable generalization of monitoring data to the entire selected territory, except for a single "forced" case (70%; most important, they suggest a possible procedure to optimize network design.

  7. Optimizing Probability of Detection Point Estimate Demonstration

    Science.gov (United States)

    Koshti, Ajay M.

    2017-01-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-18231and associated mh18232POD software gives most common methods of POD analysis. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using Point Estimate Method. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible.

  8. A robust nonparametric method for quantifying undetected extinctions.

    Science.gov (United States)

    Chisholm, Ryan A; Giam, Xingli; Sadanandan, Keren R; Fung, Tak; Rheindt, Frank E

    2016-06-01

    How many species have gone extinct in modern times before being described by science? To answer this question, and thereby get a full assessment of humanity's impact on biodiversity, statistical methods that quantify undetected extinctions are required. Such methods have been developed recently, but they are limited by their reliance on parametric assumptions; specifically, they assume the pools of extant and undetected species decay exponentially, whereas real detection rates vary temporally with survey effort and real extinction rates vary with the waxing and waning of threatening processes. We devised a new, nonparametric method for estimating undetected extinctions. As inputs, the method requires only the first and last date at which each species in an ensemble was recorded. As outputs, the method provides estimates of the proportion of species that have gone extinct, detected, or undetected and, in the special case where the number of undetected extant species in the present day is assumed close to zero, of the absolute number of undetected extinct species. The main assumption of the method is that the per-species extinction rate is independent of whether a species has been detected or not. We applied the method to the resident native bird fauna of Singapore. Of 195 recorded species, 58 (29.7%) have gone extinct in the last 200 years. Our method projected that an additional 9.6 species (95% CI 3.4, 19.8) have gone extinct without first being recorded, implying a true extinction rate of 33.0% (95% CI 31.0%, 36.2%). We provide R code for implementing our method. Because our method does not depend on strong assumptions, we expect it to be broadly useful for quantifying undetected extinctions. © 2016 Society for Conservation Biology.

  9. Economic decision making and the application of nonparametric prediction models

    Science.gov (United States)

    Attanasi, E.D.; Coburn, T.C.; Freeman, P.A.

    2008-01-01

    Sustained increases in energy prices have focused attention on gas resources in low-permeability shale or in coals that were previously considered economically marginal. Daily well deliverability is often relatively small, although the estimates of the total volumes of recoverable resources in these settings are often large. Planning and development decisions for extraction of such resources must be areawide because profitable extraction requires optimization of scale economies to minimize costs and reduce risk. For an individual firm, the decision to enter such plays depends on reconnaissance-level estimates of regional recoverable resources and on cost estimates to develop untested areas. This paper shows how simple nonparametric local regression models, used to predict technically recoverable resources at untested sites, can be combined with economic models to compute regional-scale cost functions. The context of the worked example is the Devonian Antrim-shale gas play in the Michigan basin. One finding relates to selection of the resource prediction model to be used with economic models. Models chosen because they can best predict aggregate volume over larger areas (many hundreds of sites) smooth out granularity in the distribution of predicted volumes at individual sites. This loss of detail affects the representation of economic cost functions and may affect economic decisions. Second, because some analysts consider unconventional resources to be ubiquitous, the selection and order of specific drilling sites may, in practice, be determined arbitrarily by extraneous factors. The analysis shows a 15-20% gain in gas volume when these simple models are applied to order drilling prospects strategically rather than to choose drilling locations randomly. Copyright ?? 2008 Society of Petroleum Engineers.

  10. Counterexamples in probability

    CERN Document Server

    Stoyanov, Jordan M

    2013-01-01

    While most mathematical examples illustrate the truth of a statement, counterexamples demonstrate a statement's falsity. Enjoyable topics of study, counterexamples are valuable tools for teaching and learning. The definitive book on the subject in regards to probability, this third edition features the author's revisions and corrections plus a substantial new appendix.

  11. Epistemology and Probability

    CERN Document Server

    Plotnitsky, Arkady

    2010-01-01

    Offers an exploration of the relationships between epistemology and probability in the work of Niels Bohr, Werner Heisenberg, and Erwin Schrodinger; in quantum mechanics; and in modern physics. This book considers the implications of these relationships and of quantum theory for our understanding of the nature of thinking and knowledge in general

  12. Transition probabilities for atoms

    International Nuclear Information System (INIS)

    Kim, Y.K.

    1980-01-01

    Current status of advanced theoretical methods for transition probabilities for atoms and ions is discussed. An experiment on the f values of the resonance transitions of the Kr and Xe isoelectronic sequences is suggested as a test for the theoretical methods

  13. Nonparametric Monitoring for Geotechnical Structures Subject to Long-Term Environmental Change

    Directory of Open Access Journals (Sweden)

    Hae-Bum Yun

    2011-01-01

    Full Text Available A nonparametric, data-driven methodology of monitoring for geotechnical structures subject to long-term environmental change is discussed. Avoiding physical assumptions or excessive simplification of the monitored structures, the nonparametric monitoring methodology presented in this paper provides reliable performance-related information particularly when the collection of sensor data is limited. For the validation of the nonparametric methodology, a field case study was performed using a full-scale retaining wall, which had been monitored for three years using three tilt gauges. Using the very limited sensor data, it is demonstrated that important performance-related information, such as drainage performance and sensor damage, could be disentangled from significant daily, seasonal and multiyear environmental variations. Extensive literature review on recent developments of parametric and nonparametric data processing techniques for geotechnical applications is also presented.

  14. Negative probability in the framework of combined probability

    OpenAIRE

    Burgin, Mark

    2013-01-01

    Negative probability has found diverse applications in theoretical physics. Thus, construction of sound and rigorous mathematical foundations for negative probability is important for physics. There are different axiomatizations of conventional probability. So, it is natural that negative probability also has different axiomatic frameworks. In the previous publications (Burgin, 2009; 2010), negative probability was mathematically formalized and rigorously interpreted in the context of extende...

  15. Screen Wars, Star Wars, and Sequels: Nonparametric Reanalysis of Movie Profitability

    OpenAIRE

    W. D. Walls

    2012-01-01

    In this paper we use nonparametric statistical tools to quantify motion-picture profit. We quantify the unconditional distribution of profit, the distribution of profit conditional on stars and sequels, and we also model the conditional expectation of movie profits using a non- parametric data-driven regression model. The flexibility of the non-parametric approach accommodates the full range of possible relationships among the variables without prior specification of a functional form, thereb...

  16. Developing an immigration policy for Germany on the basis of a nonparametric labor market classification

    OpenAIRE

    Froelich, Markus; Puhani, Patrick

    2004-01-01

    Based on a nonparametrically estimated model of labor market classifications, this paper makes suggestions for immigration policy using data from western Germany in the 1990s. It is demonstrated that nonparametric regression is feasible in higher dimensions with only a few thousand observations. In sum, labor markets able to absorb immigrants are characterized by above average age and by professional occupations. On the other hand, labor markets for young workers in service occupations are id...

  17. Histogram Estimators of Bivariate Densities

    National Research Council Canada - National Science Library

    Husemann, Joyce A

    1986-01-01

    One-dimensional fixed-interval histogram estimators of univariate probability density functions are less efficient than the analogous variable-interval estimators which are constructed from intervals...

  18. Nonparametric Change Point Diagnosis Method of Concrete Dam Crack Behavior Abnormality

    Directory of Open Access Journals (Sweden)

    Zhanchao Li

    2013-01-01

    Full Text Available The study on diagnosis method of concrete crack behavior abnormality has always been a hot spot and difficulty in the safety monitoring field of hydraulic structure. Based on the performance of concrete dam crack behavior abnormality in parametric statistical model and nonparametric statistical model, the internal relation between concrete dam crack behavior abnormality and statistical change point theory is deeply analyzed from the model structure instability of parametric statistical model and change of sequence distribution law of nonparametric statistical model. On this basis, through the reduction of change point problem, the establishment of basic nonparametric change point model, and asymptotic analysis on test method of basic change point problem, the nonparametric change point diagnosis method of concrete dam crack behavior abnormality is created in consideration of the situation that in practice concrete dam crack behavior may have more abnormality points. And the nonparametric change point diagnosis method of concrete dam crack behavior abnormality is used in the actual project, demonstrating the effectiveness and scientific reasonableness of the method established. Meanwhile, the nonparametric change point diagnosis method of concrete dam crack behavior abnormality has a complete theoretical basis and strong practicality with a broad application prospect in actual project.

  19. Contributions to quantum probability

    International Nuclear Information System (INIS)

    Fritz, Tobias

    2010-01-01

    Chapter 1: On the existence of quantum representations for two dichotomic measurements. Under which conditions do outcome probabilities of measurements possess a quantum-mechanical model? This kind of problem is solved here for the case of two dichotomic von Neumann measurements which can be applied repeatedly to a quantum system with trivial dynamics. The solution uses methods from the theory of operator algebras and the theory of moment problems. The ensuing conditions reveal surprisingly simple relations between certain quantum-mechanical probabilities. It also shown that generally, none of these relations holds in general probabilistic models. This result might facilitate further experimental discrimination between quantum mechanics and other general probabilistic theories. Chapter 2: Possibilistic Physics. I try to outline a framework for fundamental physics where the concept of probability gets replaced by the concept of possibility. Whereas a probabilistic theory assigns a state-dependent probability value to each outcome of each measurement, a possibilistic theory merely assigns one of the state-dependent labels ''possible to occur'' or ''impossible to occur'' to each outcome of each measurement. It is argued that Spekkens' combinatorial toy theory of quantum mechanics is inconsistent in a probabilistic framework, but can be regarded as possibilistic. Then, I introduce the concept of possibilistic local hidden variable models and derive a class of possibilistic Bell inequalities which are violated for the possibilistic Popescu-Rohrlich boxes. The chapter ends with a philosophical discussion on possibilistic vs. probabilistic. It can be argued that, due to better falsifiability properties, a possibilistic theory has higher predictive power than a probabilistic one. Chapter 3: The quantum region for von Neumann measurements with postselection. It is determined under which conditions a probability distribution on a finite set can occur as the outcome

  20. Bayesian Probability Theory

    Science.gov (United States)

    von der Linden, Wolfgang; Dose, Volker; von Toussaint, Udo

    2014-06-01

    Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer-Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.

  1. Contributions to quantum probability

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, Tobias

    2010-06-25

    Chapter 1: On the existence of quantum representations for two dichotomic measurements. Under which conditions do outcome probabilities of measurements possess a quantum-mechanical model? This kind of problem is solved here for the case of two dichotomic von Neumann measurements which can be applied repeatedly to a quantum system with trivial dynamics. The solution uses methods from the theory of operator algebras and the theory of moment problems. The ensuing conditions reveal surprisingly simple relations between certain quantum-mechanical probabilities. It also shown that generally, none of these relations holds in general probabilistic models. This result might facilitate further experimental discrimination between quantum mechanics and other general probabilistic theories. Chapter 2: Possibilistic Physics. I try to outline a framework for fundamental physics where the concept of probability gets replaced by the concept of possibility. Whereas a probabilistic theory assigns a state-dependent probability value to each outcome of each measurement, a possibilistic theory merely assigns one of the state-dependent labels ''possible to occur'' or ''impossible to occur'' to each outcome of each measurement. It is argued that Spekkens' combinatorial toy theory of quantum mechanics is inconsistent in a probabilistic framework, but can be regarded as possibilistic. Then, I introduce the concept of possibilistic local hidden variable models and derive a class of possibilistic Bell inequalities which are violated for the possibilistic Popescu-Rohrlich boxes. The chapter ends with a philosophical discussion on possibilistic vs. probabilistic. It can be argued that, due to better falsifiability properties, a possibilistic theory has higher predictive power than a probabilistic one. Chapter 3: The quantum region for von Neumann measurements with postselection. It is determined under which conditions a probability distribution on a

  2. Waste Package Misload Probability

    International Nuclear Information System (INIS)

    Knudsen, J.K.

    2001-01-01

    The objective of this calculation is to calculate the probability of occurrence for fuel assembly (FA) misloads (i.e., Fa placed in the wrong location) and FA damage during FA movements. The scope of this calculation is provided by the information obtained from the Framatome ANP 2001a report. The first step in this calculation is to categorize each fuel-handling events that occurred at nuclear power plants. The different categories are based on FAs being damaged or misloaded. The next step is to determine the total number of FAs involved in the event. Using the information, a probability of occurrence will be calculated for FA misload and FA damage events. This calculation is an expansion of preliminary work performed by Framatome ANP 2001a

  3. Probability theory and applications

    CERN Document Server

    Hsu, Elton P

    1999-01-01

    This volume, with contributions by leading experts in the field, is a collection of lecture notes of the six minicourses given at the IAS/Park City Summer Mathematics Institute. It introduces advanced graduates and researchers in probability theory to several of the currently active research areas in the field. Each course is self-contained with references and contains basic materials and recent results. Topics include interacting particle systems, percolation theory, analysis on path and loop spaces, and mathematical finance. The volume gives a balanced overview of the current status of probability theory. An extensive bibliography for further study and research is included. This unique collection presents several important areas of current research and a valuable survey reflecting the diversity of the field.

  4. Paradoxes in probability theory

    CERN Document Server

    Eckhardt, William

    2013-01-01

    Paradoxes provide a vehicle for exposing misinterpretations and misapplications of accepted principles. This book discusses seven paradoxes surrounding probability theory.  Some remain the focus of controversy; others have allegedly been solved, however the accepted solutions are demonstrably incorrect. Each paradox is shown to rest on one or more fallacies.  Instead of the esoteric, idiosyncratic, and untested methods that have been brought to bear on these problems, the book invokes uncontroversial probability principles, acceptable both to frequentists and subjectivists. The philosophical disputation inspired by these paradoxes is shown to be misguided and unnecessary; for instance, startling claims concerning human destiny and the nature of reality are directly related to fallacious reasoning in a betting paradox, and a problem analyzed in philosophy journals is resolved by means of a computer program.

  5. Measurement uncertainty and probability

    CERN Document Server

    Willink, Robin

    2013-01-01

    A measurement result is incomplete without a statement of its 'uncertainty' or 'margin of error'. But what does this statement actually tell us? By examining the practical meaning of probability, this book discusses what is meant by a '95 percent interval of measurement uncertainty', and how such an interval can be calculated. The book argues that the concept of an unknown 'target value' is essential if probability is to be used as a tool for evaluating measurement uncertainty. It uses statistical concepts, such as a conditional confidence interval, to present 'extended' classical methods for evaluating measurement uncertainty. The use of the Monte Carlo principle for the simulation of experiments is described. Useful for researchers and graduate students, the book also discusses other philosophies relating to the evaluation of measurement uncertainty. It employs clear notation and language to avoid the confusion that exists in this controversial field of science.

  6. Model uncertainty and probability

    International Nuclear Information System (INIS)

    Parry, G.W.

    1994-01-01

    This paper discusses the issue of model uncertainty. The use of probability as a measure of an analyst's uncertainty as well as a means of describing random processes has caused some confusion, even though the two uses are representing different types of uncertainty with respect to modeling a system. The importance of maintaining the distinction between the two types is illustrated with a simple example

  7. Retrocausality and conditional probability

    International Nuclear Information System (INIS)

    Stuart, C.I.J.M.

    1989-01-01

    Costa de Beauregard has proposed that physical causality be identified with conditional probability. The proposal is shown to be vulnerable on two accounts. The first, though mathematically trivial, seems to be decisive so far as the current formulation of the proposal is concerned. The second lies in a physical inconsistency which seems to have its source in a Copenhagenlike disavowal of realism in quantum mechanics. 6 refs. (Author)

  8. Probability via expectation

    CERN Document Server

    Whittle, Peter

    1992-01-01

    This book is a complete revision of the earlier work Probability which ap­ peared in 1970. While revised so radically and incorporating so much new material as to amount to a new text, it preserves both the aim and the approach of the original. That aim was stated as the provision of a 'first text in probability, de­ manding a reasonable but not extensive knowledge of mathematics, and taking the reader to what one might describe as a good intermediate level'. In doing so it attempted to break away from stereotyped applications, and consider applications of a more novel and significant character. The particular novelty of the approach was that expectation was taken as the prime concept, and the concept of expectation axiomatized rather than that of a probability measure. In the preface to the original text of 1970 (reproduced below, together with that to the Russian edition of 1982) I listed what I saw as the advantages of the approach in as unlaboured a fashion as I could. I also took the view that the text...

  9. An adaptive distance measure for use with nonparametric models

    International Nuclear Information System (INIS)

    Garvey, D. R.; Hines, J. W.

    2006-01-01

    Distance measures perform a critical task in nonparametric, locally weighted regression. Locally weighted regression (LWR) models are a form of 'lazy learning' which construct a local model 'on the fly' by comparing a query vector to historical, exemplar vectors according to a three step process. First, the distance of the query vector to each of the exemplar vectors is calculated. Next, these distances are passed to a kernel function, which converts the distances to similarities or weights. Finally, the model output or response is calculated by performing locally weighted polynomial regression. To date, traditional distance measures, such as the Euclidean, weighted Euclidean, and L1-norm have been used as the first step in the prediction process. Since these measures do not take into consideration sensor failures and drift, they are inherently ill-suited for application to 'real world' systems. This paper describes one such LWR model, namely auto associative kernel regression (AAKR), and describes a new, Adaptive Euclidean distance measure that can be used to dynamically compensate for faulty sensor inputs. In this new distance measure, the query observations that lie outside of the training range (i.e. outside the minimum and maximum input exemplars) are dropped from the distance calculation. This allows for the distance calculation to be robust to sensor drifts and failures, in addition to providing a method for managing inputs that exceed the training range. In this paper, AAKR models using the standard and Adaptive Euclidean distance are developed and compared for the pressure system of an operating nuclear power plant. It is shown that using the standard Euclidean distance for data with failed inputs, significant errors in the AAKR predictions can result. By using the Adaptive Euclidean distance it is shown that high fidelity predictions are possible, in spite of the input failure. In fact, it is shown that with the Adaptive Euclidean distance prediction

  10. SU-F-T-191: 4D Dose Reconstruction of Intensity Modulated Proton Therapy (IMPT) Based On Breathing Probability Density Function (PDF) From 4D Cone Beam Projection Images: A Study for Lung Treatment

    International Nuclear Information System (INIS)

    Zhou, J; Ding, X; Liang, J; Zhang, J; Wang, Y; Yan, D

    2016-01-01

    Purpose: With energy repainting in lung IMPT, the dose delivered is approximate to the convolution of dose in each phase with corresponding breathing PDF. This study is to compute breathing PDF weighted 4D dose in lung IMPT treatment and compare to its initial robust plan. Methods: Six lung patients were evaluated in this study. Amsterdam shroud image were generated from pre-treatment 4D cone-beam projections. Diaphragm motion curve was extract from the shroud image and the breathing PDF was generated. Each patient was planned to 60 Gy (12GyX5). In initial plans, ITV density on average CT was overridden with its maximum value for planning, using two IMPT beams with robust optimization (5mm uncertainty in patient position and 3.5% range uncertainty). The plan was applied to all 4D CT phases. The dose in each phase was deformed to a reference phase. 4D dose is reconstructed by summing all these doses based on corresponding weighting from the PDF. Plan parameters, including maximum dose (Dmax), ITV V100, homogeneity index (HI=D2/D98), R50 (50%IDL/ITV), and the lung-GTV’s V12.5 and V5 were compared between the reconstructed 4D dose to initial plans. Results: The Dmax is significantly less dose in the reconstructed 4D dose, 68.12±3.5Gy, vs. 70.1±4.3Gy in the initial plans (p=0.015). No significant difference is found for the ITV V100, HI, and R50, 92.2%±15.4% vs. 96.3%±2.5% (p=0.565), 1.033±0.016 vs. 1.038±0.017 (p=0.548), 19.2±12.1 vs. 18.1±11.6 (p=0.265), for the 4D dose and initial plans, respectively. The lung-GTV V12.5 and V5 are significantly high in the 4D dose, 13.9%±4.8% vs. 13.0%±4.6% (p=0.021) and 17.6%±5.4% vs. 16.9%±5.2% (p=0.011), respectively. Conclusion: 4D dose reconstruction based on phase PDF can be used to evaluate the dose received by the patient. A robust optimization based on the phase PDF may even further improve patient care.

  11. Probability mapping of contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Rautman, C.A.; Kaplan, P.G. [Sandia National Labs., Albuquerque, NM (United States); McGraw, M.A. [Univ. of California, Berkeley, CA (United States); Istok, J.D. [Oregon State Univ., Corvallis, OR (United States); Sigda, J.M. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    1994-04-01

    Exhaustive characterization of a contaminated site is a physical and practical impossibility. Descriptions of the nature, extent, and level of contamination, as well as decisions regarding proposed remediation activities, must be made in a state of uncertainty based upon limited physical sampling. The probability mapping approach illustrated in this paper appears to offer site operators a reasonable, quantitative methodology for many environmental remediation decisions and allows evaluation of the risk associated with those decisions. For example, output from this approach can be used in quantitative, cost-based decision models for evaluating possible site characterization and/or remediation plans, resulting in selection of the risk-adjusted, least-cost alternative. The methodology is completely general, and the techniques are applicable to a wide variety of environmental restoration projects. The probability-mapping approach is illustrated by application to a contaminated site at the former DOE Feed Materials Production Center near Fernald, Ohio. Soil geochemical data, collected as part of the Uranium-in-Soils Integrated Demonstration Project, have been used to construct a number of geostatistical simulations of potential contamination for parcels approximately the size of a selective remediation unit (the 3-m width of a bulldozer blade). Each such simulation accurately reflects the actual measured sample values, and reproduces the univariate statistics and spatial character of the extant data. Post-processing of a large number of these equally likely statistically similar images produces maps directly showing the probability of exceeding specified levels of contamination (potential clean-up or personnel-hazard thresholds).

  12. Probability mapping of contaminants

    International Nuclear Information System (INIS)

    Rautman, C.A.; Kaplan, P.G.; McGraw, M.A.; Istok, J.D.; Sigda, J.M.

    1994-01-01

    Exhaustive characterization of a contaminated site is a physical and practical impossibility. Descriptions of the nature, extent, and level of contamination, as well as decisions regarding proposed remediation activities, must be made in a state of uncertainty based upon limited physical sampling. The probability mapping approach illustrated in this paper appears to offer site operators a reasonable, quantitative methodology for many environmental remediation decisions and allows evaluation of the risk associated with those decisions. For example, output from this approach can be used in quantitative, cost-based decision models for evaluating possible site characterization and/or remediation plans, resulting in selection of the risk-adjusted, least-cost alternative. The methodology is completely general, and the techniques are applicable to a wide variety of environmental restoration projects. The probability-mapping approach is illustrated by application to a contaminated site at the former DOE Feed Materials Production Center near Fernald, Ohio. Soil geochemical data, collected as part of the Uranium-in-Soils Integrated Demonstration Project, have been used to construct a number of geostatistical simulations of potential contamination for parcels approximately the size of a selective remediation unit (the 3-m width of a bulldozer blade). Each such simulation accurately reflects the actual measured sample values, and reproduces the univariate statistics and spatial character of the extant data. Post-processing of a large number of these equally likely statistically similar images produces maps directly showing the probability of exceeding specified levels of contamination (potential clean-up or personnel-hazard thresholds)

  13. Probability of causation approach

    International Nuclear Information System (INIS)

    Jose, D.E.

    1988-01-01

    Probability of causation (PC) is sometimes viewed as a great improvement by those persons who are not happy with the present rulings of courts in radiation cases. The author does not share that hope and expects that PC will not play a significant role in these issues for at least the next decade. If it is ever adopted in a legislative compensation scheme, it will be used in a way that is unlikely to please most scientists. Consequently, PC is a false hope for radiation scientists, and its best contribution may well lie in some of the spin-off effects, such as an influence on medical practice

  14. Probability in High Dimension

    Science.gov (United States)

    2014-06-30

    precisely the content of the following result. The price we pay is that the assumption that A is a packing in (F, k ·k1) is too weak to make this happen...Regularité des trajectoires des fonctions aléatoires gaussiennes. In: École d’Été de Probabilités de Saint- Flour , IV-1974, pp. 1–96. Lecture Notes in...Lectures on probability theory and statistics (Saint- Flour , 1994), Lecture Notes in Math., vol. 1648, pp. 165–294. Springer, Berlin (1996) 50. Ledoux

  15. Bayesian Nonparametric Statistical Inference for Shock Models and Wear Processes.

    Science.gov (United States)

    1979-12-01

    also note that the results in Section 2 do not depend on the support of F .) This shock model have been studied by Esary, Marshall and Proschan (1973...Barlow and Proschan (1975), among others. The analogy of the shock model in risk and acturial analysis has been given by BUhlmann (1970, Chapter 2... Mathematical Statistics, Vol. 4, pp. 894-906. Billingsley, P. (1968), CONVERGENCE OF PROBABILITY MEASURES, John Wiley, New York. BUhlmann, H. (1970

  16. Probability distribution relationships

    Directory of Open Access Journals (Sweden)

    Yousry Abdelkader

    2013-05-01

    Full Text Available In this paper, we are interesting to show the most famous distributions and their relations to the other distributions in collected diagrams. Four diagrams are sketched as networks. The first one is concerned to the continuous distributions and their relations. The second one presents the discrete distributions. The third diagram is depicted the famous limiting distributions. Finally, the Balakrishnan skew-normal density and its relationship with the other distributions are shown in the fourth diagram.

  17. On density forecast evaluation

    NARCIS (Netherlands)

    Diks, C.

    2008-01-01

    Traditionally, probability integral transforms (PITs) have been popular means for evaluating density forecasts. For an ideal density forecast, the PITs should be uniformly distributed on the unit interval and independent. However, this is only a necessary condition, and not a sufficient one, as

  18. NONLINEAR PROPERTIES OF MEASLES EPIDEMIC DATA ASSESSED WITH A KERNEL NONPARAMETRIC IDENTIFICATION APPROACH

    Directory of Open Access Journals (Sweden)

    Luis García Domínguez

    2006-03-01

    Full Text Available ABSTRACTKernel nonparametric nonlinear autoregression was applied to measles data from the pre-vaccination era (1944-1966. A slowly sliding time window covered 20 overlapping segments of the series. In the case of data from Birmingham the order of the model was higher than 22 for all windows and the reconstructed noise free realizations were periodic with the most probable period being equal to 3 years, though values of 2, 4 and 6 years were also obtained.For London data 6 windows were with low orders (below 5. Low order noise free realizations were chaotic. The rest presented periodic solutions corresponding to 1, 2, and 3-years cycles. Our results are consistent with views about dynamical transitions among measles data. The method is reliable and puts practically no restrictions regarding data properties. We recommend its use for further exploration of epidemic data from different origin. RESUMENPROPIEDADES NO LINEALES DE DATOS EPIDEMIOLÓGICOS DE SARAMPIÓN EVALUADAS MEDIANTE UN ENFOQUE DE IDENTIFICACIÓN NO LINEAL POR NÚCLEOS.Se aplicó un método de auto-regresión no lineal por núcleos a datos de incidencia de sarampión correspondientes a la época previa a la vacunación (1944-1966. Una ventana de tiempo que se desplazaba lentamente cubrió 20 segmentos de serie temporal que se solapaban. En el caso de los datos correspondientes a Birmingham el orden del modelo era mayor de 22 para todas las ventanas y las realizaciones libres de ruido reconstruidas eran periódicas con la duración del periodo más probable igual a 3 años, aunque también se obtuvieron valores de 2, 4 y 6 años.Para los datos de Londres, se observaron 6 ventanas con órdenes inferiores a 5. Las realizaciones libres de ruido con órdenes bajos eran caóticas. El resto de las ventanas mostraron ciclos de 1, 2 y tres años. Nuestros resultados son concordantes con la idea de la presencia de transiciones de fase en series de sarampión. El método es confiable y no

  19. A nonparametric multiple imputation approach for missing categorical data

    Directory of Open Access Journals (Sweden)

    Muhan Zhou

    2017-06-01

    Full Text Available Abstract Background Incomplete categorical variables with more than two categories are common in public health data. However, most of the existing missing-data methods do not use the information from nonresponse (missingness probabilities. Methods We propose a nearest-neighbour multiple imputation approach to impute a missing at random categorical outcome and to estimate the proportion of each category. The donor set for imputation is formed by measuring distances between each missing value with other non-missing values. The distance function is calculated based on a predictive score, which is derived from two working models: one fits a multinomial logistic regression for predicting the missing categorical outcome (the outcome model and the other fits a logistic regression for predicting missingness probabilities (the missingness model. A weighting scheme is used to accommodate contributions from two working models when generating the predictive score. A missing value is imputed by randomly selecting one of the non-missing values with the smallest distances. We conduct a simulation to evaluate the performance of the proposed method and compare it with several alternative methods. A real-data application is also presented. Results The simulation study suggests that the proposed method performs well when missingness probabilities are not extreme under some misspecifications of the working models. However, the calibration estimator, which is also based on two working models, can be highly unstable when missingness probabilities for some observations are extremely high. In this scenario, the proposed method produces more stable and better estimates. In addition, proper weights need to be chosen to balance the contributions from the two working models and achieve optimal results for the proposed method. Conclusions We conclude that the proposed multiple imputation method is a reasonable approach to dealing with missing categorical outcome data with

  20. Non-Parametric Kinetic (NPK Analysis of Thermal Oxidation of Carbon Aerogels

    Directory of Open Access Journals (Sweden)

    Azadeh Seifi

    2017-05-01

    Full Text Available In recent years, much attention has been paid to aerogel materials (especially carbon aerogels due to their potential uses in energy-related applications, such as thermal energy storage and thermal protection systems. These open cell carbon-based porous materials (carbon aerogels can strongly react with oxygen at relatively low temperatures (~ 400°C. Therefore, it is necessary to evaluate the thermal performance of carbon aerogels in view of their energy-related applications at high temperatures and under thermal oxidation conditions. The objective of this paper is to study theoretically and experimentally the oxidation reaction kinetics of carbon aerogel using the non-parametric kinetic (NPK as a powerful method. For this purpose, a non-isothermal thermogravimetric analysis, at three different heating rates, was performed on three samples each with its specific pore structure, density and specific surface area. The most significant feature of this method, in comparison with the model-free isoconversional methods, is its ability to separate the functionality of the reaction rate with the degree of conversion and temperature by the direct use of thermogravimetric data. Using this method, it was observed that the Nomen-Sempere model could provide the best fit to the data, while the temperature dependence of the rate constant was best explained by a Vogel-Fulcher relationship, where the reference temperature was the onset temperature of oxidation. Moreover, it was found from the results of this work that the assumption of the Arrhenius relation for the temperature dependence of the rate constant led to over-estimation of the apparent activation energy (up to 160 kJ/mol that was considerably different from the values (up to 3.5 kJ/mol predicted by the Vogel-Fulcher relationship in isoconversional methods

  1. On Improving Convergence Rates for Nonnegative Kernel Density Estimators

    OpenAIRE

    Terrell, George R.; Scott, David W.

    1980-01-01

    To improve the rate of decrease of integrated mean square error for nonparametric kernel density estimators beyond $0(n^{-\\frac{4}{5}}),$ we must relax the constraint that the density estimate be a bonafide density function, that is, be nonnegative and integrate to one. All current methods for kernel (and orthogonal series) estimators relax the nonnegativity constraint. In this paper we show how to achieve similar improvement by relaxing the integral constraint only. This is important in appl...

  2. Probable maximum flood control

    International Nuclear Information System (INIS)

    DeGabriele, C.E.; Wu, C.L.

    1991-11-01

    This study proposes preliminary design concepts to protect the waste-handling facilities and all shaft and ramp entries to the underground from the probable maximum flood (PMF) in the current design configuration for the proposed Nevada Nuclear Waste Storage Investigation (NNWSI) repository protection provisions were furnished by the United States Bureau of Reclamation (USSR) or developed from USSR data. Proposed flood protection provisions include site grading, drainage channels, and diversion dikes. Figures are provided to show these proposed flood protection provisions at each area investigated. These areas are the central surface facilities (including the waste-handling building and waste treatment building), tuff ramp portal, waste ramp portal, men-and-materials shaft, emplacement exhaust shaft, and exploratory shafts facility

  3. Bioprocess iterative batch-to-batch optimization based on hybrid parametric/nonparametric models.

    Science.gov (United States)

    Teixeira, Ana P; Clemente, João J; Cunha, António E; Carrondo, Manuel J T; Oliveira, Rui

    2006-01-01

    This paper presents a novel method for iterative batch-to-batch dynamic optimization of bioprocesses. The relationship between process performance and control inputs is established by means of hybrid grey-box models combining parametric and nonparametric structures. The bioreactor dynamics are defined by material balance equations, whereas the cell population subsystem is represented by an adjustable mixture of nonparametric and parametric models. Thus optimizations are possible without detailed mechanistic knowledge concerning the biological system. A clustering technique is used to supervise the reliability of the nonparametric subsystem during the optimization. Whenever the nonparametric outputs are unreliable, the objective function is penalized. The technique was evaluated with three simulation case studies. The overall results suggest that the convergence to the optimal process performance may be achieved after a small number of batches. The model unreliability risk constraint along with sampling scheduling are crucial to minimize the experimental effort required to attain a given process performance. In general terms, it may be concluded that the proposed method broadens the application of the hybrid parametric/nonparametric modeling technique to "newer" processes with higher potential for optimization.

  4. Path probabilities of continuous time random walks

    International Nuclear Information System (INIS)

    Eule, Stephan; Friedrich, Rudolf

    2014-01-01

    Employing the path integral formulation of a broad class of anomalous diffusion processes, we derive the exact relations for the path probability densities of these processes. In particular, we obtain a closed analytical solution for the path probability distribution of a Continuous Time Random Walk (CTRW) process. This solution is given in terms of its waiting time distribution and short time propagator of the corresponding random walk as a solution of a Dyson equation. Applying our analytical solution we derive generalized Feynman–Kac formulae. (paper)

  5. Collision warning system based on probability density functions

    NARCIS (Netherlands)

    Broek, T.H.A. van den; Ploeg, J.

    2010-01-01

    In this paper, a collision warning method between the host vehicle and target object(s) is studied. A probabilistic collision warning method is proposed, which is, in particular, useful for objects, e.g. vulnerable road users, which trajectories can rapidly change heading and/or velocity with

  6. On the probability density interpretation of smoothed Wigner functions

    International Nuclear Information System (INIS)

    De Aguiar, M.A.M.; Ozorio de Almeida, A.M.

    1990-01-01

    It has been conjectured that the averages of the Wigner function over phase space volumes, larger than those of minimum uncertainty, are always positive. This is true for Gaussian averaging, so that the Husimi distribution is positive. However, we provide a specific counterexample for the averaging with a discontinuous hat function. The analysis of the specific system of a one-dimensional particle in a box also elucidates the respective advantages of the Wigner and the Husimi functions for the study of the semiclassical limit. The falsification of the averaging conjecture is shown not to depend on the discontinuities of the hat function, by considering the latter as the limit of a sequence of analytic functions. (author)

  7. Indoor Localization with Probability Density Functionsd based on Bluetooth

    OpenAIRE

    Wendlandt, Kai; Robertson, Patrick; Berbig, Marcus

    2005-01-01

    We present a simple system to help people navigate inside of buildings or even in outside areas close to buildings. It is based on the “RSSI” and “Transmit power” data of an established Bluetooth link. The system is in principle sufficient for the intended application (pedestrian, indoor), but it is certainly not a high resolution indoor location system. The achievable accuracy is dependent on the setup (number of access points and their constellation and available Bluetooth devices) but will...

  8. Classical-Quantum Correspondence by Means of Probability Densities

    Science.gov (United States)

    Vegas, Gabino Torres; Morales-Guzman, J. D.

    1996-01-01

    Within the frame of the recently introduced phase space representation of non relativistic quantum mechanics, we propose a Lagrangian from which the phase space Schrodinger equation can be derived. From that Lagrangian, the associated conservation equations, according to Noether's theorem, are obtained. This shows that one can analyze quantum systems completely in phase space as it is done in coordinate space, without additional complications.

  9. METAPHOR: Probability density estimation for machine learning based photometric redshifts

    Science.gov (United States)

    Amaro, V.; Cavuoti, S.; Brescia, M.; Vellucci, C.; Tortora, C.; Longo, G.

    2017-06-01

    We present METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts), a method able to provide a reliable PDF for photometric galaxy redshifts estimated through empirical techniques. METAPHOR is a modular workflow, mainly based on the MLPQNA neural network as internal engine to derive photometric galaxy redshifts, but giving the possibility to easily replace MLPQNA with any other method to predict photo-z's and their PDF. We present here the results about a validation test of the workflow on the galaxies from SDSS-DR9, showing also the universality of the method by replacing MLPQNA with KNN and Random Forest models. The validation test include also a comparison with the PDF's derived from a traditional SED template fitting method (Le Phare).

  10. Goal-Oriented Probability Density Function Methods for Uncertainty Quantification

    Science.gov (United States)

    2015-12-11

    approximations or data-driven approaches. We investigated the accuracy of analytical tech- niques based Kubo -Van Kampen operator cumulant expansions for...analytical techniques based Kubo -Van Kampen operator cumulant expansions for Langevin equations driven by fractional Brownian motion and other noises

  11. On the Probability Density Functions of Forster-Greer-Thorbecke ...

    African Journals Online (AJOL)

    Distributional properties of poverty indices are generally unknown due to the fact that statistical inference for poverty measures are mostly ignored in the field of poverty analysis where attention is usually based on identification and aggregation problems. This study considers the possibility of using Pearson system of ...

  12. Probability and rational choice

    Directory of Open Access Journals (Sweden)

    David Botting

    2014-05-01

    Full Text Available http://dx.doi.org/10.5007/1808-1711.2014v18n1p1 In this paper I will discuss the rationality of reasoning about the future. There are two things that we might like to know about the future: which hypotheses are true and what will happen next. To put it in philosophical language, I aim to show that there are methods by which inferring to a generalization (selecting a hypothesis and inferring to the next instance (singular predictive inference can be shown to be normative and the method itself shown to be rational, where this is due in part to being based on evidence (although not in the same way and in part on a prior rational choice. I will also argue that these two inferences have been confused, being distinct not only conceptually (as nobody disputes but also in their results (the value given to the probability of the hypothesis being not in general that given to the next instance and that methods that are adequate for one are not by themselves adequate for the other. A number of debates over method founder on this confusion and do not show what the debaters think they show.

  13. Turbulent combustion modelization via a tabulation method of detailed kinetic chemistry coupled to Probability Density Function. Application to aeronautical engines; Modelisation de la combustion turbulente via une methode tabulation de la cinetique chimique detaillee couplee a des fonctions densites de probabilite. Application aux foyers aeronautiques

    Energy Technology Data Exchange (ETDEWEB)

    Rullaud, M

    2004-06-01

    A new modelization of turbulent combustion is proposed with detailed chemistry and probability density functions (PDFs). The objective is to capture temperature and species concentrations, mainly the CO. The PCM-FTC model, Presumed Conditional Moment - Flame Tabulated Chemistry, is based on the tabulation of laminar premixed and diffusion flames to capture partial pre-mixing present in aeronautical engines. The presumed PDFs is introduced to predict averaged values. The tabulation method is based on the analysis of the chemical structure of laminar premixed and diffusion flames. Hypothesis are presented, tested and validated with Sandia experimental data jet flames. Then, the model is introduced in a turbulent flow simulation software. Three configurations are retained to quantify the level of prediction of this formulation: the D and F-Flames of Sandia and lifted jet flames of methane/air of Stanford. A good agreement is observed between experiments and simulations. The validity of this method is then demonstrated. (author)

  14. Multivariate nonparametric regression and visualization with R and applications to finance

    CERN Document Server

    Klemelä, Jussi

    2014-01-01

    A modern approach to statistical learning and its applications through visualization methods With a unique and innovative presentation, Multivariate Nonparametric Regression and Visualization provides readers with the core statistical concepts to obtain complete and accurate predictions when given a set of data. Focusing on nonparametric methods to adapt to the multiple types of data generatingmechanisms, the book begins with an overview of classification and regression. The book then introduces and examines various tested and proven visualization techniques for learning samples and functio

  15. NONPARAMETRIC FIXED EFFECT PANEL DATA MODELS: RELATIONSHIP BETWEEN AIR POLLUTION AND INCOME FOR TURKEY

    Directory of Open Access Journals (Sweden)

    Rabia Ece OMAY

    2013-06-01

    Full Text Available In this study, relationship between gross domestic product (GDP per capita and sulfur dioxide (SO2 and particulate matter (PM10 per capita is modeled for Turkey. Nonparametric fixed effect panel data analysis is used for the modeling. The panel data covers 12 territories, in first level of Nomenclature of Territorial Units for Statistics (NUTS, for period of 1990-2001. Modeling of the relationship between GDP and SO2 and PM10 for Turkey, the non-parametric models have given good results.

  16. Nonparametric method for failures diagnosis in the actuating subsystem of aircraft control system

    Science.gov (United States)

    Terentev, M. N.; Karpenko, S. S.; Zybin, E. Yu; Kosyanchuk, V. V.

    2018-02-01

    In this paper we design a nonparametric method for failures diagnosis in the aircraft control system that uses the measurements of the control signals and the aircraft states only. It doesn’t require a priori information of the aircraft model parameters, training or statistical calculations, and is based on analytical nonparametric one-step-ahead state prediction approach. This makes it possible to predict the behavior of unidentified and failure dynamic systems, to weaken the requirements to control signals, and to reduce the diagnostic time and problem complexity.

  17. Non-parametric correlative uncertainty quantification and sensitivity analysis: Application to a Langmuir bimolecular adsorption model

    Science.gov (United States)

    Feng, Jinchao; Lansford, Joshua; Mironenko, Alexander; Pourkargar, Davood Babaei; Vlachos, Dionisios G.; Katsoulakis, Markos A.

    2018-03-01

    We propose non-parametric methods for both local and global sensitivity analysis of chemical reaction models with correlated parameter dependencies. The developed mathematical and statistical tools are applied to a benchmark Langmuir competitive adsorption model on a close packed platinum surface, whose parameters, estimated from quantum-scale computations, are correlated and are limited in size (small data). The proposed mathematical methodology employs gradient-based methods to compute sensitivity indices. We observe that ranking influential parameters depends critically on whether or not correlations between parameters are taken into account. The impact of uncertainty in the correlation and the necessity of the proposed non-parametric perspective are demonstrated.

  18. Non-parametric correlative uncertainty quantification and sensitivity analysis: Application to a Langmuir bimolecular adsorption model

    Directory of Open Access Journals (Sweden)

    Jinchao Feng

    2018-03-01

    Full Text Available We propose non-parametric methods for both local and global sensitivity analysis of chemical reaction models with correlated parameter dependencies. The developed mathematical and statistical tools are applied to a benchmark Langmuir competitive adsorption model on a close packed platinum surface, whose parameters, estimated from quantum-scale computations, are correlated and are limited in size (small data. The proposed mathematical methodology employs gradient-based methods to compute sensitivity indices. We observe that ranking influential parameters depends critically on whether or not correlations between parameters are taken into account. The impact of uncertainty in the correlation and the necessity of the proposed non-parametric perspective are demonstrated.

  19. A Bayesian approach to the analysis of quantal bioassay studies using nonparametric mixture models.

    Science.gov (United States)

    Fronczyk, Kassandra; Kottas, Athanasios

    2014-03-01

    We develop a Bayesian nonparametric mixture modeling framework for quantal bioassay settings. The approach is built upon modeling dose-dependent response distributions. We adopt a structured nonparametric prior mixture model, which induces a monotonicity restriction for the dose-response curve. Particular emphasis is placed on the key risk assessment goal of calibration for the dose level that corresponds to a specified response. The proposed methodology yields flexible inference for the dose-response relationship as well as for other inferential objectives, as illustrated with two data sets from the literature. © 2013, The International Biometric Society.

  20. Modern nonparametric, robust and multivariate methods festschrift in honour of Hannu Oja

    CERN Document Server

    Taskinen, Sara

    2015-01-01

    Written by leading experts in the field, this edited volume brings together the latest findings in the area of nonparametric, robust and multivariate statistical methods. The individual contributions cover a wide variety of topics ranging from univariate nonparametric methods to robust methods for complex data structures. Some examples from statistical signal processing are also given. The volume is dedicated to Hannu Oja on the occasion of his 65th birthday and is intended for researchers as well as PhD students with a good knowledge of statistics.

  1. COVAL, Compound Probability Distribution for Function of Probability Distribution

    International Nuclear Information System (INIS)

    Astolfi, M.; Elbaz, J.

    1979-01-01

    1 - Nature of the physical problem solved: Computation of the probability distribution of a function of variables, given the probability distribution of the variables themselves. 'COVAL' has been applied to reliability analysis of a structure subject to random loads. 2 - Method of solution: Numerical transformation of probability distributions

  2. Ignition probabilities for Compact Ignition Tokamak designs

    International Nuclear Information System (INIS)

    Stotler, D.P.; Goldston, R.J.

    1989-09-01

    A global power balance code employing Monte Carlo techniques had been developed to study the ''probability of ignition'' and has been applied to several different configurations of the Compact Ignition Tokamak (CIT). Probability distributions for the critical physics parameters in the code were estimated using existing experimental data. This included a statistical evaluation of the uncertainty in extrapolating the energy confinement time. A substantial probability of ignition is predicted for CIT if peaked density profiles can be achieved or if one of the two higher plasma current configurations is employed. In other cases, values of the energy multiplication factor Q of order 10 are generally obtained. The Ignitor-U and ARIES designs are also examined briefly. Comparisons of our empirically based confinement assumptions with two theory-based transport models yield conflicting results. 41 refs., 11 figs

  3. Geometric modeling in probability and statistics

    CERN Document Server

    Calin, Ovidiu

    2014-01-01

    This book covers topics of Informational Geometry, a field which deals with the differential geometric study of the manifold probability density functions. This is a field that is increasingly attracting the interest of researchers from many different areas of science, including mathematics, statistics, geometry, computer science, signal processing, physics and neuroscience. It is the authors’ hope that the present book will be a valuable reference for researchers and graduate students in one of the aforementioned fields. This textbook is a unified presentation of differential geometry and probability theory, and constitutes a text for a course directed at graduate or advanced undergraduate students interested in applications of differential geometry in probability and statistics. The book contains over 100 proposed exercises meant to help students deepen their understanding, and it is accompanied by software that is able to provide numerical computations of several information geometric objects. The reader...

  4. A Tale of Two Probabilities

    Science.gov (United States)

    Falk, Ruma; Kendig, Keith

    2013-01-01

    Two contestants debate the notorious probability problem of the sex of the second child. The conclusions boil down to explication of the underlying scenarios and assumptions. Basic principles of probability theory are highlighted.

  5. On the prior probabilities for two-stage Bayesian estimates

    International Nuclear Information System (INIS)

    Kohut, P.

    1992-01-01

    The method of Bayesian inference is reexamined for its applicability and for the required underlying assumptions in obtaining and using prior probability estimates. Two different approaches are suggested to determine the first-stage priors in the two-stage Bayesian analysis which avoid certain assumptions required for other techniques. In the first scheme, the prior is obtained through a true frequency based distribution generated at selected intervals utilizing actual sampling of the failure rate distributions. The population variability distribution is generated as the weighed average of the frequency distributions. The second method is based on a non-parametric Bayesian approach using the Maximum Entropy Principle. Specific features such as integral properties or selected parameters of prior distributions may be obtained with minimal assumptions. It is indicated how various quantiles may also be generated with a least square technique

  6. Introduction to probability with R

    CERN Document Server

    Baclawski, Kenneth

    2008-01-01

    FOREWORD PREFACE Sets, Events, and Probability The Algebra of Sets The Bernoulli Sample Space The Algebra of Multisets The Concept of Probability Properties of Probability Measures Independent Events The Bernoulli Process The R Language Finite Processes The Basic Models Counting Rules Computing Factorials The Second Rule of Counting Computing Probabilities Discrete Random Variables The Bernoulli Process: Tossing a Coin The Bernoulli Process: Random Walk Independence and Joint Distributions Expectations The Inclusion-Exclusion Principle General Random Variable

  7. MAP estimators and their consistency in Bayesian nonparametric inverse problems

    KAUST Repository

    Dashti, M.

    2013-09-01

    We consider the inverse problem of estimating an unknown function u from noisy measurements y of a known, possibly nonlinear, map applied to u. We adopt a Bayesian approach to the problem and work in a setting where the prior measure is specified as a Gaussian random field μ0. We work under a natural set of conditions on the likelihood which implies the existence of a well-posed posterior measure, μy. Under these conditions, we show that the maximum a posteriori (MAP) estimator is well defined as the minimizer of an Onsager-Machlup functional defined on the Cameron-Martin space of the prior; thus, we link a problem in probability with a problem in the calculus of variations. We then consider the case where the observational noise vanishes and establish a form of Bayesian posterior consistency for the MAP estimator. We also prove a similar result for the case where the observation of can be repeated as many times as desired with independent identically distributed noise. The theory is illustrated with examples from an inverse problem for the Navier-Stokes equation, motivated by problems arising in weather forecasting, and from the theory of conditioned diffusions, motivated by problems arising in molecular dynamics. © 2013 IOP Publishing Ltd.

  8. MAP estimators and their consistency in Bayesian nonparametric inverse problems

    International Nuclear Information System (INIS)

    Dashti, M; Law, K J H; Stuart, A M; Voss, J

    2013-01-01

    We consider the inverse problem of estimating an unknown function u from noisy measurements y of a known, possibly nonlinear, map G applied to u. We adopt a Bayesian approach to the problem and work in a setting where the prior measure is specified as a Gaussian random field μ 0 . We work under a natural set of conditions on the likelihood which implies the existence of a well-posed posterior measure, μ y . Under these conditions, we show that the maximum a posteriori (MAP) estimator is well defined as the minimizer of an Onsager–Machlup functional defined on the Cameron–Martin space of the prior; thus, we link a problem in probability with a problem in the calculus of variations. We then consider the case where the observational noise vanishes and establish a form of Bayesian posterior consistency for the MAP estimator. We also prove a similar result for the case where the observation of G(u) can be repeated as many times as desired with independent identically distributed noise. The theory is illustrated with examples from an inverse problem for the Navier–Stokes equation, motivated by problems arising in weather forecasting, and from the theory of conditioned diffusions, motivated by problems arising in molecular dynamics. (paper)

  9. Non-parametric reconstruction of an inflaton potential from Einstein–Cartan–Sciama–Kibble gravity with particle production

    Directory of Open Access Journals (Sweden)

    Shantanu Desai

    2016-04-01

    Full Text Available The coupling between spin and torsion in the Einstein–Cartan–Sciama–Kibble theory of gravity generates gravitational repulsion at very high densities, which prevents a singularity in a black hole and may create there a new universe. We show that quantum particle production in such a universe near the last bounce, which represents the Big Bang, gives the dynamics that solves the horizon, flatness, and homogeneity problems in cosmology. For a particular range of the particle production coefficient, we obtain a nearly constant Hubble parameter that gives an exponential expansion of the universe with more than 60 e-folds, which lasts about ∼10−42 s. This scenario can thus explain cosmic inflation without requiring a fundamental scalar field and reheating. From the obtained time dependence of the scale factor, we follow the prescription of Ellis and Madsen to reconstruct in a non-parametric way a scalar field potential which gives the same dynamics of the early universe. This potential gives the slow-roll parameters of cosmic inflation, from which we calculate the tensor-to-scalar ratio, the scalar spectral index of density perturbations, and its running as functions of the production coefficient. We find that these quantities do not significantly depend on the scale factor at the Big Bounce. Our predictions for these quantities are consistent with the Planck 2015 observations.

  10. A first course in probability

    CERN Document Server

    Ross, Sheldon

    2014-01-01

    A First Course in Probability, Ninth Edition, features clear and intuitive explanations of the mathematics of probability theory, outstanding problem sets, and a variety of diverse examples and applications. This book is ideal for an upper-level undergraduate or graduate level introduction to probability for math, science, engineering and business students. It assumes a background in elementary calculus.

  11. On the shake-off probability for atomic systems

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.C.F., E-mail: toniufrj@gmail.com [Instituto de Física, Universidade Federal do Rio de Janeiro, P.O. Box 68528, 21941-972 Rio de Janeiro, RJ (Brazil); Almeida, D.P. [Departamento de Física, Universidade Federal de Santa Catarina, 88040-900 Florianópolis (Brazil)

    2016-07-15

    Highlights: • The scope is to find the relationship among SO probabilities, Z and electron density. • A scaling law is suggested, allowing us to find the SO probabilities for atoms. • SO probabilities have been scaled as a function of target Z and polarizability. - Abstract: The main scope in this work has been upon the relationship between shake-off probabilities, target atomic number and electron density. By comparing the saturation values of measured double-to-single photoionization ratios from the literature, a simple scaling law has been found, which allows us to predict the shake-off probabilities for several elements up to Z = 54 within a factor 2. The electron shake-off probabilities accompanying valence shell photoionization have been scaled as a function of the target atomic number, Z, and polarizability, α. This behavior is in qualitative agreement with the experimental results.

  12. Statistical analysis of water-quality data containing multiple detection limits II: S-language software for nonparametric distribution modeling and hypothesis testing

    Science.gov (United States)

    Lee, L.; Helsel, D.

    2007-01-01

    Analysis of low concentrations of trace contaminants in environmental media often results in left-censored data that are below some limit of analytical precision. Interpretation of values becomes complicated when there are multiple detection limits in the data-perhaps as a result of changing analytical precision over time. Parametric and semi-parametric methods, such as maximum likelihood estimation and robust regression on order statistics, can be employed to model distributions of multiply censored data and provide estimates of summary statistics. However, these methods are based on assumptions about the underlying distribution of data. Nonparametric methods provide an alternative that does not require such assumptions. A standard nonparametric method for estimating summary statistics of multiply-censored data is the Kaplan-Meier (K-M) method. This method has seen widespread usage in the medical sciences within a general framework termed "survival analysis" where it is employed with right-censored time-to-failure data. However, K-M methods are equally valid for the left-censored data common in the geosciences. Our S-language software provides an analytical framework based on K-M methods that is tailored to the needs of the earth and environmental sciences community. This includes routines for the generation of empirical cumulative distribution functions, prediction or exceedance probabilities, and related confidence limits computation. Additionally, our software contains K-M-based routines for nonparametric hypothesis testing among an unlimited number of grouping variables. A primary characteristic of K-M methods is that they do not perform extrapolation and interpolation. Thus, these routines cannot be used to model statistics beyond the observed data range or when linear interpolation is desired. For such applications, the aforementioned parametric and semi-parametric methods must be used.

  13. Jump probabilities in the non-Markovian quantum jump method

    International Nuclear Information System (INIS)

    Haerkoenen, Kari

    2010-01-01

    The dynamics of a non-Markovian open quantum system described by a general time-local master equation is studied. The propagation of the density operator is constructed in terms of two processes: (i) deterministic evolution and (ii) evolution of a probability density functional in the projective Hilbert space. The analysis provides a derivation for the jump probabilities used in the recently developed non-Markovian quantum jump (NMQJ) method (Piilo et al 2008 Phys. Rev. Lett. 100 180402).

  14. The probability of a tornado missile hitting a target

    International Nuclear Information System (INIS)

    Goodman, J.; Koch, J.E.

    1983-01-01

    It is shown that tornado missile transportation is a diffusion Markovian process. Therefore, the Green's function method is applied for the estimation of the probability of hitting a unit target area. This propability is expressed through a joint density of tornado intensity and path area, a probability of tornado missile injection and a tornado missile height distribution. (orig.)

  15. Effects of Potential Lane-Changing Probability on Uniform Flow

    International Nuclear Information System (INIS)

    Tang Tieqiao; Huang Haijun; Shang Huayan

    2010-01-01

    In this paper, we use the car-following model with the anticipation effect of the potential lane-changing probability (Acta Mech. Sin. 24 (2008) 399) to investigate the effects of the potential lane-changing probability on uniform flow. The analytical and numerical results show that the potential lane-changing probability can enhance the speed and flow of uniform flow and that their increments are related to the density.

  16. Supremum Norm Posterior Contraction and Credible Sets for Nonparametric Multivariate Regression

    NARCIS (Netherlands)

    Yoo, W.W.; Ghosal, S

    2016-01-01

    In the setting of nonparametric multivariate regression with unknown error variance, we study asymptotic properties of a Bayesian method for estimating a regression function f and its mixed partial derivatives. We use a random series of tensor product of B-splines with normal basis coefficients as a

  17. Does Private Tutoring Work? The Effectiveness of Private Tutoring: A Nonparametric Bounds Analysis

    Science.gov (United States)

    Hof, Stefanie

    2014-01-01

    Private tutoring has become popular throughout the world. However, evidence for the effect of private tutoring on students' academic outcome is inconclusive; therefore, this paper presents an alternative framework: a nonparametric bounds method. The present examination uses, for the first time, a large representative data-set in a European setting…

  18. Testing a parametric function against a nonparametric alternative in IV and GMM settings

    DEFF Research Database (Denmark)

    Gørgens, Tue; Wurtz, Allan

    This paper develops a specification test for functional form for models identified by moment restrictions, including IV and GMM settings. The general framework is one where the moment restrictions are specified as functions of data, a finite-dimensional parameter vector, and a nonparametric real ...

  19. A structural nonparametric reappraisal of the CO2 emissions-income relationship

    NARCIS (Netherlands)

    Azomahou, T.T.; Goedhuys - Degelin, Micheline; Nguyen-Van, P.

    Relying on a structural nonparametric estimation, we show that co2 emissions clearly increase with income at low income levels. For higher income levels, we observe a decreasing relationship, though not significant. We also find thatco2 emissions monotonically increases with energy use at a

  20. Testing for constant nonparametric effects in general semiparametric regression models with interactions

    KAUST Repository

    Wei, Jiawei

    2011-07-01

    We consider the problem of testing for a constant nonparametric effect in a general semi-parametric regression model when there is the potential for interaction between the parametrically and nonparametrically modeled variables. The work was originally motivated by a unique testing problem in genetic epidemiology (Chatterjee, et al., 2006) that involved a typical generalized linear model but with an additional term reminiscent of the Tukey one-degree-of-freedom formulation, and their interest was in testing for main effects of the genetic variables, while gaining statistical power by allowing for a possible interaction between genes and the environment. Later work (Maity, et al., 2009) involved the possibility of modeling the environmental variable nonparametrically, but they focused on whether there was a parametric main effect for the genetic variables. In this paper, we consider the complementary problem, where the interest is in testing for the main effect of the nonparametrically modeled environmental variable. We derive a generalized likelihood ratio test for this hypothesis, show how to implement it, and provide evidence that our method can improve statistical power when compared to standard partially linear models with main effects only. We use the method for the primary purpose of analyzing data from a case-control study of colorectal adenoma.