WorldWideScience

Sample records for nonmycorrhizal fungal colonization

  1. Fungal colonization of air-conditioning systems

    Directory of Open Access Journals (Sweden)

    Ljaljević-Grbić Milica

    2008-01-01

    Full Text Available Fungi have been implicated as quantitatively the most important bioaerosol component of indoor air associated with contaminated air-conditioning systems. rarely, indoor fungi may cause human infections, but more commonly allergenic responses ranging from pneumonitis to asthma-like symptoms. From all air conditioner filters analyzed, 16 fungal taxa were isolated and identified. Aspergillus fumigatus causes more lethal infections worldwide than any other mold. Air-conditioning filters that adsorb moisture and volatile organics appear to provide suitable substrates for fungal colonization. It is important to stress that fungal colonization of air-conditioning systems should not be ignored, especially in hospital environments.

  2. A Study Of Fungal Colonization In Newborn

    Directory of Open Access Journals (Sweden)

    S Rashid Husain

    1997-04-01

    Full Text Available Research Problem: What are the factors responsible for fungal colonization in newborns? Objective: To study the pattern of and predisposing fac­tors for the development of superficial candidiasis and fungal colonization in the newborns. Study Design: Prospective study. Setting: Neonatology unitof the Paediatrics department of a teaching hospital. Participants: Randomly selected pregnant mothers admit­ted to the maternity ward and the newborns delivered to them. Sample Size: 120 pregnant mothers and the newborns delivered. Study Variables: Candida, Site of colonization. Statistical Analysis: By tests of significance Results: Candida was isolated from 23 (19.16% infants on the first day increasing to 52 (43.33% infants on the sixth day. The most common site of colonization was oral cavity. Candida colonization was more common in prema­ture infants (p<0.05. Oral thrush was seen in 29 (24.17% infants during the study and a significant number of these infants showed colonization from the first day of life. Conclusions: Fungal colonization of the newborns due to Candida species is quite common, and in the first week of life predominantly occurred in the ora I cavity. Superficial clinical candidiasis, especially oral thrush is more common in those colonized on the first day of life.

  3. Airway fungal colonization compromises the immune system allowing bacterial pneumonia to prevail.

    Science.gov (United States)

    Roux, Damien; Gaudry, Stéphane; Khoy-Ear, Linda; Aloulou, Meryem; Phillips-Houlbracq, Mathilde; Bex, Julie; Skurnik, David; Denamur, Erick; Monteiro, Renato C; Dreyfuss, Didier; Ricard, Jean-Damien

    2013-09-01

    To study the correlation between fungal colonization and bacterial pneumonia and to test the effect of antifungal treatments on the development of bacterial pneumonia in colonized rats. Experimental animal investigation. University research laboratory. Pathogen-free male Wistar rats weighing 250-275 g. Rats were colonized by intratracheal instillation of Candida albicans. Fungal clearance from the lungs and immune response were measured. Both colonized and noncolonized animals were secondarily instilled with different bacterial species (Pseudomonas aeruginosa, Escherichia coli, or Staphylococcus aureus). Bacterial phagocytosis by alveolar macrophages was evaluated in the presence of interferon-gamma, the main cytokine produced during fungal colonization. The effect of antifungal treatments on fungal colonization and its immune response were assessed. The prevalence of P. aeruginosa pneumonia was compared in antifungal treated and control colonized rats. C. albicans was slowly cleared and induced a Th1-Th17 immune response with very high interferon-gamma concentrations. Airway fungal colonization favored the development of bacterial pneumonia. Interferon-gamma was able to inhibit the phagocytosis of unopsonized bacteria by alveolar macrophages. Antifungal treatment decreased airway fungal colonization, lung interferon-gamma levels and, consequently, the prevalence of subsequent bacterial pneumonia. C. albicans airway colonization elicited a Th1-Th17 immune response that favored the development of bacterial pneumonia via the inhibition of bacterial phagocytosis by alveolar macrophages. Antifungal treatment decreased the risk of bacterial pneumonia in colonized rats.

  4. Genotypic variation in the response of chickpea to arbuscular mycorrhizal fungi and non-mycorrhizal fungal endophytes.

    Science.gov (United States)

    Bazghaleh, Navid; Hamel, Chantal; Gan, Yantai; Tar'an, Bunyamin; Knight, Joan Diane

    2018-04-01

    Plant roots host symbiotic arbuscular mycorrhizal (AM) fungi and other fungal endophytes that can impact plant growth and health. The impact of microbial interactions in roots may depend on the genetic properties of the host plant and its interactions with root-associated fungi. We conducted a controlled condition experiment to investigate the effect of several chickpea (Cicer arietinum L.) genotypes on the efficiency of the symbiosis with AM fungi and non-AM fungal endophytes. Whereas the AM symbiosis increased the biomass of most of the chickpea cultivars, inoculation with non-AM fungal endophytes had a neutral effect. The chickpea cultivars responded differently to co-inoculation with AM fungi and non-AM fungal endophytes. Co-inoculation had additive effects on the biomass of some cultivars (CDC Corrine, CDC Anna, and CDC Cory), but non-AM fungal endophytes reduced the positive effect of AM fungi on Amit and CDC Vanguard. This study demonstrated that the response of plant genotypes to an AM symbiosis can be modified by the simultaneous colonization of the roots by non-AM fungal endophytes. Intraspecific variations in the response of chickpea to AM fungi and non-AM fungal endophytes indicate that the selection of suitable genotypes may improve the ability of crop plants to take advantage of soil ecosystem services.

  5. Osmotic Adjustment in Leaves of VA Mycorrhizal and Nonmycorrhizal Rose Plants in Response to Drought Stress.

    Science.gov (United States)

    Augé, R M; Schekel, K A; Wample, R L

    1986-11-01

    Osmotic adjustment in Rosa hybrida L. cv Samantha was characterized by the pressure-volume approach in drought-acclimated and unacclimated plants brought to the same level of drought strain, as assayed by stomatal closure. Plants were colonized by either of the vesicular-arbuscular mycorrhizal fungi Glomus deserticola Trappe, Bloss and Menge or G. intraradices Schenck and Smith, or were nonmycorrhizal. Both the acclimation and the mycorrhizal treatments decreased the osmotic potential (Psi(pi)) of leaves at full turgor and at the turgor loss point, with a corresponding increase in pressure potential at full turgor. Mycorrhizae enabled plants to maintain leaf turgor and conductance at greater tissue water deficits, and lower leaf and soil water potentials, when compared with nonmycorrhizal plants. As indicated by the Psi(pi) at the turgor loss point, the active Psi(pi) depression which attended mycorrhizal colonization alone was 0.4 to 0.6 megapascals, and mycorrhizal colonization and acclimation in concert 0.6 to 0.9 megapascals, relative to unacclimated controls without mycorrhizae. Colonization levels and sporulation were higher in plants subjected to acclimation. In unacclimated hosts, leaf water potential, water saturation deficit, and soil water potential at a particular level of drought strain were affected most by G. intraradices. G. deserticola had the greater effect after drought preconditioning.

  6. Prophylactic Saccharomyces boulardii versus nystatin for the prevention of fungal colonization and invasive fungal infection in premature infants.

    Science.gov (United States)

    Demirel, Gamze; Celik, Istemi Han; Erdeve, Omer; Saygan, Sibel; Dilmen, Ugur; Canpolat, Fuat Emre

    2013-10-01

    This study aims to compare the efficacy of orally administered Saccharomyces boulardii versus nystatin in prevention of fungal colonization and invasive fungal infections in very low birth weight infants. A prospective, randomized comparative study was conducted in preterm infants with a gestational age of ≤ 32 weeks and birth weight of ≤ 1,500 g. They were randomized into two groups, to receive S. boulardii or nystatin. Skin and stool cultures were performed for colonization and blood cultures for invasive infections, weekly. A total of 181 infants were enrolled (S. boulardii group, n = 91; nystatin group, n = 90). Fungal colonization of the skin (15.4 vs 18.9 %, p = 0.532) and the stool (32.2 vs 27 %, p = 0.441) were not different between the probiotic and nystatin groups. Two patients had Candida-positive blood culture in the nystatin group whereas none in the probiotic group. Feeding intolerance, clinical sepsis, and number of sepsis attacks were significantly lower in the probiotics group than in the nystatin group. Prophylactic S. boulardii supplementation is as effective as nystatin in reducing fungal colonization and invasive fungal infection, more effective in reducing the incidence of clinical sepsis and number of sepsis attacks and has favorable effect on feeding intolerance.

  7. Fungal colonization of air filters for use in heating, ventilating, and air conditioning (HVAC) systems.

    Science.gov (United States)

    Simmons, R B; Crow, S A

    1995-01-01

    New and used cellulosic air filters for HVAC systems including those treated with antimicrobials were suspended in vessels with a range of relative humidities (55-99%) and containing non-sterile potting soil which stimulates fungal growth. Most filters yielded fungi prior to suspension in the chambers but only two of 14 nontreated filters demonstrated fungal colonization following use in HVAC systems. Filters treated with antimicrobials, particularly a phosphated amine complex, demonstrated markedly less fungal colonization than nontreated filters. In comparison with nontreated cellulosic filters, fungal colonization of antimicrobial-treated cellulosic filters was selective and delayed.

  8. Inhibition of fungal colonization by Pseudoalteromonas tunicata provides a competitive advantage during surface colonization.

    Science.gov (United States)

    Franks, A; Egan, S; Holmström, C; James, S; Lappin-Scott, H; Kjelleberg, S

    2006-09-01

    The marine epiphytic bacterium Pseudoalteromonas tunicata produces a range of extracellular secondary metabolites that inhibit an array of common fouling organisms, including fungi. In this study, we test the hypothesis that the ability to inhibit fungi provides P. tunicata with an advantage during colonization of a surface. Studies on a transposon-generated antifungal-deficient mutant of P. tunicata, FM3, indicated that a long-chain fatty acid-coenzyme A ligase is involved in the production of a broad-range antifungal compound by P. tunicata. Flow cell experiments demonstrated that production of an antifungal compound provided P. tunicata with a competitive advantage against a marine yeast isolate during surface colonization. This compound enabled P. tunicata to disrupt an already established fungal biofilm by decreasing the number of yeast cells attached to the surface by 66% +/- 9%. For in vivo experiments, the wild-type and FM3 strains of P. tunicata were used to inoculate the surface of the green alga Ulva australis. Double-gradient denaturing gradient gel electrophoresis analysis revealed that after 48 h, the wild-type P. tunicata had outcompeted the surface-associated fungal community, whereas the antifungal-deficient mutant had no effect on the fungal community. Our data suggest that P. tunicata is an effective competitor against fungal surface communities in the marine environment.

  9. Microscopy Observations of Habitable Space in Biochar for Colonization by Fungal Hyphae From Soil

    Institute of Scientific and Technical Information of China (English)

    Noraini M. Jaafar; Peta L. Clode; Lynette K. Abbott

    2014-01-01

    Biochar is a potential micro-environment for soil microorganisms but evidence to support this suggestion is limited. We explored imaging techniques to visualize and quantify fungal colonization of habitable spaces in a biochar made from a woody feedstock. In addition to characterization of the biochar, it was necessary to optimize preparation and observation methodologies for examining fungal colonization of the biochar. Biochar surfaces and pores were investigated using several microscopy techniques. Biochar particles were compared in soilless media and after deposition in soil. Scanning electron microscopy (SEM) observations and characterization of the biochar demonstrated structural heterogeneity within and among biochar particles. Fungal colonization in and on biochar particles was observed using light, fluorescence and electron microscopy. Fluorescent brightener RR 2200 was more effective than Calcolfuor White as a hyphal stain. Biochar retrieved from soil and observed using lfuorescence microscopy exhibited distinct hyphal networks on external biochar surfaces. The extent of hyphal colonization of biochar incubated in soil was much less than for biochar artiifcially inoculated with fungi in a soilless medium. The location of fungal hyphae was more clearly visible using SEM than with lfuorescence microscopy. Observations of biochar particles colonized by hyphae from soil posed a range of dififculties including obstruction by the presence of soil particles on biochar surfaces and inside pores. Extensive hyphal colonization of the surface of the biochar in the soilless medium contrasted with limited hyphal colonization of pores within the biochar. Both visualization and quantiifcation of hyphal colonization of surfaces and pores of biochar were restricted by two-dimensional imaging associated with uneven biochar surfaces and variable biochar pore structure. There was very little colonization of biochar from hyphae in the agricultural soil used in this study.

  10. Oral Yeast Colonization and Fungal Infections in Peritoneal Dialysis Patients: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Liliana Simões-Silva

    2017-01-01

    Full Text Available Peritonitis and exit-site infections are important complications in peritoneal dialysis (PD patients that are occasionally caused by opportunistic fungi inhabiting distant body sites. In this study, the oral yeast colonization of PD patients and the antifungal susceptibility profile of the isolated yeasts were accessed and correlated with fungal infection episodes in the following 4 years. Saliva yeast colonization was accessed in 21 PD patients and 27 healthy controls by growth in CHROMagar-Candida® and 18S rRNA/ITS sequencing. PD patients presented a lower oral yeast prevalence when compared to controls, namely, Candida albicans. Other species were also isolated, Candida glabrata and Candida carpophila. The antifungal susceptibility profiles of these isolates revealed resistance to itraconazole, variable susceptibility to caspofungin, and higher MIC values of posaconazole compared to previous reports. The 4-year longitudinal evaluation of these patients revealed Candida parapsilosis and Candida zeylanoides as PD-related exit-site infectious agents, but no correlation was found with oral yeast colonization. This pilot study suggests that oral yeast colonization may represent a limited risk for fungal infection development in PD patients. Oral yeast isolates presented a variable antifungal susceptibility profile, which may suggest resistance to some second-line drugs, highlighting the importance of antifungal susceptibility assessment in the clinical practice.

  11. Dynamics of Short-Term Phosphorus Uptake by Intact Mycorrhizal and Non-mycorrhizal Maize Plants Grown in a Circulatory Semi-Hydroponic Cultivation System.

    Science.gov (United States)

    Garcés-Ruiz, Mónica; Calonne-Salmon, Maryline; Plouznikoff, Katia; Misson, Coralie; Navarrete-Mier, Micaela; Cranenbrouck, Sylvie; Declerck, Stéphane

    2017-01-01

    A non-destructive cultivation system was developed to study the dynamics of phosphorus (Pi) uptake by mycorrhizal and non-mycorrhizal maize plantlets. The system consisted of a plant container connected via silicon tubes to a glass bottle containing a nutrient solution supplemented with Pi. The nutrient solution is pumped with a peristaltic pump to the upper part of the container via the silicon tubes and the solution percolate through the plantlet container back into the glass bottle. Pi is sampled from the glass bottle at regular intervals and concentration evaluated. Maize plantlets were colonized by the AMF Rhizophagus irregularis MUCL 41833 and Pi uptake quantified at fixed intervals (9, 21, and 42 h) from the depletion of the Pi in the nutrient solution flowing through the plantlets containers. Plants and fungus grew well in the perlite substrate. The concentration of Pi in the bottles followed an almost linear decrease over time, demonstrating a depletion of Pi in the circulating solution and a concomitant uptake/immobilization by the plantlet-AMF associates in the containers. The Pi uptake rate was significantly increased in the AMF-colonized plantlets (at 9 and 21 h) as compared to non-colonized plantlets, although no correlation was noticed with plant growth or P accumulation in shoots. The circulatory semi-hydroponic cultivation system developed was adequate for measuring Pi depletion in a nutrient solution and by corollary Pi uptake/immobilization by the plant-AMF associates. The measurements were non-destructive so that the time course of Pi uptake could be monitored without disturbing the growth of the plant and its fungal associate. The system further opens the door to study the dynamics of other micro and macro-nutrients as well as their uptake under stressed growth conditions such as salinity, pollution by hydrocarbon contaminants or potential toxic elements.

  12. Dynamics of Short-Term Phosphorus Uptake by Intact Mycorrhizal and Non-mycorrhizal Maize Plants Grown in a Circulatory Semi-Hydroponic Cultivation System

    Directory of Open Access Journals (Sweden)

    Mónica Garcés-Ruiz

    2017-08-01

    Full Text Available A non-destructive cultivation system was developed to study the dynamics of phosphorus (Pi uptake by mycorrhizal and non-mycorrhizal maize plantlets. The system consisted of a plant container connected via silicon tubes to a glass bottle containing a nutrient solution supplemented with Pi. The nutrient solution is pumped with a peristaltic pump to the upper part of the container via the silicon tubes and the solution percolate through the plantlet container back into the glass bottle. Pi is sampled from the glass bottle at regular intervals and concentration evaluated. Maize plantlets were colonized by the AMF Rhizophagus irregularis MUCL 41833 and Pi uptake quantified at fixed intervals (9, 21, and 42 h from the depletion of the Pi in the nutrient solution flowing through the plantlets containers. Plants and fungus grew well in the perlite substrate. The concentration of Pi in the bottles followed an almost linear decrease over time, demonstrating a depletion of Pi in the circulating solution and a concomitant uptake/immobilization by the plantlet-AMF associates in the containers. The Pi uptake rate was significantly increased in the AMF-colonized plantlets (at 9 and 21 h as compared to non-colonized plantlets, although no correlation was noticed with plant growth or P accumulation in shoots. The circulatory semi-hydroponic cultivation system developed was adequate for measuring Pi depletion in a nutrient solution and by corollary Pi uptake/immobilization by the plant-AMF associates. The measurements were non-destructive so that the time course of Pi uptake could be monitored without disturbing the growth of the plant and its fungal associate. The system further opens the door to study the dynamics of other micro and macro-nutrients as well as their uptake under stressed growth conditions such as salinity, pollution by hydrocarbon contaminants or potential toxic elements.

  13. Dynamics of fungal colonization in a new medical mycology laboratory.

    Science.gov (United States)

    Sautour, M; Fournel, I; Dalle, F; Calinon, C; L'Ollivier, C; Goyer, M; Cachia, C; Aho, S; Sixt, N; Vagner, O; Cuisenier, B; Bonnin, A

    2012-03-01

    Study of the spatio-temporal fungal colonization in a new medical mycology laboratory. A 17-month survey of airborne fungal contamination was conducted in a new medical mycology laboratory at a tertiary care university hospital. This survey was implemented at three different periods: before the new premises were occupied (period A), during the move into the new laboratory (period B) and after resumption of the mycological activities in these new premises (period C). During period A, the airborne fungal load ranged from 2.3 to 6 cfu/m(3). The most frequently recovered airborne fungi were Penicillium spp. (75 to 100%). During period B, a dramatic increase in Penicillium chrysogenum conidia was observed in the air of the new laboratory (40 to 160 cfu/m(3)). During period C, the fungal load ranged from 4.5 to 8.4 cfu/m(3). Penicillium was the most common genus identified in rooms of the laboratory where no filamentous fungi were handled, while Aspergillus was clearly the predominant genus (78%) in the room dedicated to the culture of filamentous fungi. We suggest that the specific fungal ecology in air of the room dedicated to the culture of filamentous fungi is due to the handling of a large number of medical strains of A. fumigatus. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  14. Seasonal dynamics in arbuscular mycorrhizal fungal colonization and spore numbers in the rhizosphere of dactylis glomerata l. and trifolium repens L

    International Nuclear Information System (INIS)

    Xin, G.; Ye, S.; Wang, Y.; Wu, E.; Sugawara, K.

    2012-01-01

    The seasonal dynamics in the colonization of the rhizosphere of orchardgrass (Dactylis glomerata L.) and white clover (Trifolium repens L.) pastures by arbuscular mycorrhizal (AM) fungi and the production of spores in an artifical Japanese grassland was investigated over 12 months (between December 2001 and December 2002). The results showed that the AM fungal colonization fluctuated seasonally in the rhizosphere of both pastures. The total AM fungal colonization of the two pastures decreased during winter, then increased from March to June as the pastures grew, but slightly decreased again in July and August, and again followed an increase in September. There was significant difference of the colonization by arbuscules and vesicles between the two pastures ( p <0.05). Besides, the vesicular colonization of orchardgrass was higher than that of white clover, but the opposite trend was observed for arbuscular colonization. Similarly, the numbers of AM fungal spores in the pastures varied throughout the year, decreasing from spring to summer, then slowly increasing in late summer, reaching peak levels in winter. There is significant correlation between the frequency of spores in the rhizosphere soil and both soil temperature and pH. (author)

  15. Inhibition of Fungal Colonization by Pseudoalteromonas tunicata Provides a Competitive Advantage during Surface Colonization†

    Science.gov (United States)

    Franks, A.; Egan, S.; Holmström, C.; James, S.; Lappin-Scott, H.; Kjelleberg, S.

    2006-01-01

    The marine epiphytic bacterium Pseudoalteromonas tunicata produces a range of extracellular secondary metabolites that inhibit an array of common fouling organisms, including fungi. In this study, we test the hypothesis that the ability to inhibit fungi provides P. tunicata with an advantage during colonization of a surface. Studies on a transposon-generated antifungal-deficient mutant of P. tunicata, FM3, indicated that a long-chain fatty acid-coenzyme A ligase is involved in the production of a broad-range antifungal compound by P. tunicata. Flow cell experiments demonstrated that production of an antifungal compound provided P. tunicata with a competitive advantage against a marine yeast isolate during surface colonization. This compound enabled P. tunicata to disrupt an already established fungal biofilm by decreasing the number of yeast cells attached to the surface by 66% ± 9%. For in vivo experiments, the wild-type and FM3 strains of P. tunicata were used to inoculate the surface of the green alga Ulva australis. Double-gradient denaturing gradient gel electrophoresis analysis revealed that after 48 h, the wild-type P. tunicata had outcompeted the surface-associated fungal community, whereas the antifungal-deficient mutant had no effect on the fungal community. Our data suggest that P. tunicata is an effective competitor against fungal surface communities in the marine environment. PMID:16957232

  16. Hyphae colonizing bacteria associated with Penicillium bilaii

    DEFF Research Database (Denmark)

    Ghodsalavi, Behnoushsadat

    shown that mycorrhizal helper bacteria presenting in mycorrhizal fungi could stimulate fungal growth, promote establishment of root-fungus symbiosis and enhance plant production. But it is unknown if the comparable relationship exist between the non-mycorrhizal fungus P. bilaii and its hyphae associated...... bacteria. In the current PhD thesis, we assumed that hyphae-associated microbiome of P. bilaii might harbor helper bacteria with ability to improve fungal growth and P solubilization performance. Therefore, we aimed to isolate bacteria associated with the P. bilaii hyphae and identify the fungal growth...... stimulating bacteria with the perspective of promoting efficiency of Jumpstart in soil – plant system. For this purpose, most of the work within the current project was carried out by development of suitable model systems by mimicking the natural soil habitat to reach to the reliable performance in soil...

  17. Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula

    Science.gov (United States)

    Watts-Williams, Stephanie J.; Jakobsen, Iver; Cavagnaro, Timothy R.; Grønlund, Mette

    2015-01-01

    Two pathways exist for plant Pi uptake from soil: via root epidermal cells (direct pathway) or via associations with arbuscular mycorrhizal (AM) fungi, and the two pathways interact in a complex manner. This study investigated distal and local effects of AM colonization on direct root Pi uptake and root growth, at different soil P levels. Medicago truncatula was grown at three soil P levels in split-pots with or without AM fungal inoculation and where one root half grew into soil labelled with 33P. Plant genotypes included the A17 wild type and the mtpt4 mutant. The mtpt4 mutant, colonized by AM fungi, but with no functional mycorrhizal pathway for Pi uptake, was included to better understand effects of AM colonization per se. Colonization by AM fungi decreased expression of direct Pi transporter genes locally, but not distally in the wild type. In mtpt4 mutant plants, direct Pi transporter genes and the Pi starvation-induced gene Mt4 were more highly expressed than in wild-type roots. In wild-type plants, less Pi was taken up via the direct pathway by non-colonized roots when the other root half was colonized by AM fungi, compared with non-mycorrhizal plants. Colonization by AM fungi strongly influenced root growth locally and distally, and direct root Pi uptake activity locally, but had only a weak influence on distal direct pathway activity. The responses to AM colonization in the mtpt4 mutant suggested that in the wild type, the increased P concentration of colonized roots was a major factor driving the effects of AM colonization on direct root Pi uptake. PMID:25944927

  18. Frost hardiness of mycorrhizal and non-mycorrhizal Scots pine under two fertilization treatments.

    Science.gov (United States)

    Korhonen, Anna; Lehto, Tarja; Repo, Tapani

    2015-07-01

    Survival and functioning of mycorrhizal associations at low temperatures are not known well. In an earlier study, ectomycorrhizas did not affect the frost hardiness of Scots pine (Pinus sylvestris L.) roots, but here we studied whether differential nutrient availability would change the result and additionally, alter frost hardiness aboveground. The aim in this experiment was to compare the frost hardiness of roots and needles of mycorrhizal (Hebeloma sp.) and non-mycorrhizal Scots pine seedlings raised using two fertilization treatments and two cold-hardening regimes. The fertilization treatments were low (LF) and high (HF) application of a complete nutrient solution. Three hundred mycorrhizal and non-mycorrhizal seedlings were cultivated in growth chambers in four blocks for 16 weeks. For the first 9 weeks, the seedlings grew in long-day and high-temperature (LDHT) with low fertilization and then they were raised for 3 weeks in LDHT with either low or high fertilization. After this, half of the plants in each treatment combination remained in LDHT, and half were transferred to short-day and low-temperature (SDLT) conditions to cold acclimatize. The frost hardiness of the roots and needles was assessed using controlled freezing tests followed by electrolyte leakage tests (REL). Mycorrhizal roots were slightly more frost hardy than non-mycorrhizal roots, but only in the growing-season conditions (LDHT) in low-nutrient treatment. In LDHT and LF, the frost hardiness of the non-mycorrhizal roots was about -9 °C, and that of the non-mycorrhizal HF roots and the mycorrhizal roots in both fertilization levels was about -11 °C. However, no difference was found in the roots within the SDLT regime, and in needles, there was no difference between mycorrhizal and fertilization treatments. The frost hardiness of needles increased by SDLT treatment, being -8.5 and -14.1 °C in LDHT and SDLT, respectively. The dry mass of roots, stems, and needles was lower in LF than in

  19. Competitive interactions between a nonmycorrhizal invasive plant, Alliaria petiolata, and a suite of mycorrhizal grassland, old field, and forest species.

    Science.gov (United States)

    Poon, Gary T; Maherali, Hafiz

    2015-01-01

    The widespread invasion of the nonmycorrhizal biennial plant, Alliaria petiolata in North America is hypothesized to be facilitated by the production of novel biochemical weapons that suppress the growth of mycorrhizal fungi. As a result, A. petiolata is expected to be a strong competitor against plant species that rely on mycorrhizal fungi for nutrient uptake services. If A. petiolata is also a strong competitor for soil resources, it should deplete nutrients to levels lower than can be tolerated by weaker competitors. Because the negative effect of losing the fungal symbiont for mycorrhizal plants is greatest when nutrients are low, the ability of A. petiolata to simultaneously suppress fungi and efficiently take up soil nutrients should further strengthen its competitive ability against mycorrhizal plants. To test this hypothesis, we grew 27 mycorrhizal tree, forb and grass species that are representative of invaded habitats in the absence or presence of competition with A. petiolata in soils that had previously been experimentally planted with the invader or left as a control. A history of A. petiolata in soil reduced plant available forms of nitrogen by >50% and phosphorus by 17% relative to control soil. Average mycorrhizal colonization of competitor species was reduced by >50% in A. petiolata history versus control soil. Contrary to expectations, competition between A. petiolata and other species was stronger in control than history soil. The invader suppressed the biomass of 70% of competitor species in control soil but only 26% of species in history soil. In addition, A. petiolata biomass was reduced by 56% in history versus control soil, whereas the average biomass of competitor species was reduced by 15%. Thus, our results suggest that the negative effect of nutrient depletion on A. petiolata was stronger than the negative effect of suppressing mycorrhizal colonization on competitor species. These findings indicate that the inhibitory potential of A

  20. Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species.

    Science.gov (United States)

    Bailey, B A; Bae, H; Strem, M D; Roberts, D P; Thomas, S E; Crozier, J; Samuels, G J; Choi, Ik-Young; Holmes, K A

    2006-11-01

    Endophytic isolates of Trichoderma species are being considered as biocontrol agents for diseases of Theobroma cacao (cacao). Gene expression was studied during the interaction between cacao seedlings and four endophytic Trichoderma isolates, T. ovalisporum-DIS 70a, T. hamatum-DIS 219b, T. harzianum-DIS 219f, and Trichoderma sp.-DIS 172ai. Isolates DIS 70a, DIS 219b, and DIS 219f were mycoparasitic on the pathogen Moniliophthora roreri, and DIS 172ai produced metabolites that inhibited growth of M. roreri in culture. ESTs (116) responsive to endophytic colonization of cacao were identified using differential display and their expression analyzed using macroarrays. Nineteen cacao ESTs and 17 Trichoderma ESTs were chosen for real-time quantitative PCR analysis. Seven cacao ESTs were induced during colonization by the Trichoderma isolates. These included putative genes for ornithine decarboxylase (P1), GST-like proteins (P4), zinc finger protein (P13), wound-induced protein (P26), EF-calcium-binding protein (P29), carbohydrate oxidase (P59), and an unknown protein (U4). Two plant ESTs, extensin-like protein (P12) and major intrinsic protein (P31), were repressed due to colonization. The plant gene expression profile was dependent on the Trichoderma isolate colonizing the cacao seedling. The fungal ESTs induced in colonized cacao seedlings also varied with the Trichoderma isolate used. The most highly induced fungal ESTs were putative glucosyl hydrolase family 2 (F3), glucosyl hydrolase family 7 (F7), serine protease (F11), and alcohol oxidase (F19). The pattern of altered gene expression suggests a complex system of genetic cross talk occurs between the cacao tree and Trichoderma isolates during the establishment of the endophytic association.

  1. Weed control and cover crop management affect mycorrhizal colonization of grapevine roots and arbuscular mycorrhizal fungal spore populations in a California vineyard.

    Science.gov (United States)

    Baumgartner, Kendra; Smith, Richard F; Bettiga, Larry

    2005-03-01

    Arbuscular mycorrhizal (AM) fungi naturally colonize grapevines in California vineyards. Weed control and cover cropping may affect AM fungi directly, through destruction of extraradical hyphae by soil disruption, or indirectly, through effects on populations of mycorrhizal weeds and cover crops. We examined the effects of weed control (cultivation, post-emergence herbicides, pre-emergence herbicides) and cover crops (Secale cereale cv. Merced rye, x Triticosecale cv.Trios 102) on AM fungi in a Central Coast vineyard. Seasonal changes in grapevine mycorrhizal colonization differed among weed control treatments, but did not correspond with seasonal changes in total weed frequency. Differences in grapevine colonization among weed control treatments may be due to differences in mycorrhizal status and/or AM fungal species composition among dominant weed species. Cover crops had no effect on grapevine mycorrhizal colonization, despite higher spring spore populations in cover cropped middles compared to bare middles. Cover crops were mycorrhizal and shared four AM fungal species (Glomus aggregatum, G. etunicatum, G. mosseae, G. scintillans) in common with grapevines. Lack of contact between grapevine roots and cover crop roots may have prevented grapevines from accessing higher spore populations in the middles.

  2. Carbon economy of sour orange in response to different Glomus spp.

    Science.gov (United States)

    Graham, J. H.; Drouillard, D. L.; Hodge, N. C.

    1996-01-01

    Vesicular-arbuscular mycorrhizal (M) fungal colonization, growth, and nonstructural carbohydrate status of sour orange (Citrus aurantium L.) seedlings were compared at low- and high-phosphorus (P) supply following inoculation with four Glomus isolates: G. intraradices (Gi, FL208), G. etunicatum (Ge, UT316), G. claroideum (Gc, SC186), and Glomus sp. (G329, FL906). Nonmycorrhizal (NM) seedlings served as controls. At low-P supply, increases in incidence of M colonization, vesicles and accumulation of fungal fatty acid 16:1omega(5)C in roots were most rapid for G329-inoculated seedlings, followed closely by Gi- and Gc-inoculated seedlings. Glomus etunicatum was a less aggressive colonizer and produced lower rates of fungal fatty acid accumulation in seedling roots than the other Glomus species. Nonmycorrhizal and Ge-inoculated seedlings had lower P status and growth rates than seedlings inoculated with Gi or G329. Glomus claroideum increased seedling P status, but growth rate was lower than for seedlings colonized by Gi or G329, suggesting higher belowground costs for Gc colonization. In P-sufficient roots colonized by Gi, Gc, or G329, starch and ketone sugar concentrations were lower than in P-deficient NM and Ge-inoculated plants. Under conditions of high-P supply where mycorrhizae provided no P benefit to the seedlings, colonization by Gc, Gi, and G329 was delayed and reduced compared to that at low-P supply; however, the relative colonization rates among Glomus spp. were similar. Colonization by Ge was not detected in roots until 64 days after inoculation. Compared to NM seedlings, growth rates of mycorrhizal seedlings were reduced by the three aggressive fungi but not by the less aggressive Ge. After 64 days, starch and ketone sugar concentrations were lower in fibrous roots colonized by Gc, Gi, and G329 than in NM roots, indicating greater utilization of nonstructural carbohydrates in roots colonized by the aggressive fungi. After 49 days, colonization by the

  3. Quantitative evaluation of protocorm growth and fungal colonization in Bletilla striata (Orchidaceae) reveals less-productive symbiosis with a non-native symbiotic fungus.

    Science.gov (United States)

    Yamamoto, Tatsuki; Miura, Chihiro; Fuji, Masako; Nagata, Shotaro; Otani, Yuria; Yagame, Takahiro; Yamato, Masahide; Kaminaka, Hironori

    2017-02-21

    In nature, orchid plants depend completely on symbiotic fungi for their nutrition at the germination and the subsequent seedling (protocorm) stages. However, only limited quantitative methods for evaluating the orchid-fungus interactions at the protocorm stage are currently available, which greatly constrains our understanding of the symbiosis. Here, we aimed to improve and integrate quantitative evaluations of the growth and fungal colonization in the protocorms of a terrestrial orchid, Blettila striata, growing on a plate medium. We achieved both symbiotic and asymbiotic germinations for the terrestrial orchid B. striata. The protocorms produced by the two germination methods grew almost synchronously for the first three weeks. At week four, however, the length was significantly lower in the symbiotic protocorms. Interestingly, the dry weight of symbiotic protocorms did not significantly change during the growth period, which implies that there was only limited transfer of carbon compounds from the fungus to the protocorms in this relationship. Next, to evaluate the orchid-fungus interactions, we developed an ink-staining method to observe the hyphal coils in protocorms without preparing thin sections. Crushing the protocorm under the coverglass enables us to observe all hyphal coils in the protocorms with high resolution. For this observation, we established a criterion to categorize the stages of hyphal coils, depending on development and degradation. By counting the symbiotic cells within each stage, it was possible to quantitatively evaluate the orchid-fungus symbiosis. We describe a method for quantitative evaluation of orchid-fungus symbiosis by integrating the measurements of plant growth and fungal colonization. The current study revealed that although fungal colonization was observed in the symbiotic protocorms, the weight of the protocorm did not significantly increase, which is probably due to the incompatibility of the fungus in this symbiosis. These

  4. Plant and fungal gene expression in mycorrhizal protocorms of the orchid Serapias vomeracea colonized by Tulasnella calospora.

    Science.gov (United States)

    Balestrini, Raffaella; Nerva, Luca; Sillo, Fabiano; Girlanda, Mariangela; Perotto, Silvia

    2014-01-01

    Little is known on the molecular bases of plant-fungal interactions in orchid mycorrhiza. We developed a model system to investigate gene expression in mycorrhizal protocorms of Serapias vomeracea colonised by Tulasnella calospora. Our recent results with a small panel of genes as indicators of plant response to mycorrhizal colonization indicate that genes related with plant defense were not significantly up-regulated in mycorrhizal tissues. Here, we used laser microdissection to investigate whether expression of some orchid genes was restricted to specific cell types. Results showed that SvNod1, a S. vomeracea nodulin-like protein containing a plastocyanin-like domain, is expressed only in protocorm cells containing intracellular fungal hyphae. In addition, we investigated a family of fungal zinc metallopeptidases (M36). This gene family has expanded in the T. calospora genome and RNA-Seq experiments indicate that some members of the M36 metallopeptidases family are differentially regulated in orchid mycorrhizal protocorms.

  5. Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils.

    Science.gov (United States)

    Adriaensen, K; Vrålstad, T; Noben, J-P; Vangronsveld, J; Colpaert, J V

    2005-11-01

    Natural populations thriving in heavy-metal-contaminated ecosystems are often subjected to selective pressures for increased resistance to toxic metals. In the present study we describe a population of the ectomycorrhizal fungus Suillus luteus that colonized a toxic Cu mine spoil in Norway. We hypothesized that this population had developed adaptive Cu tolerance and was able to protect pine trees against Cu toxicity. We also tested for the existence of cotolerance to Cu and Zn in S. luteus. Isolates from Cu-polluted, Zn-polluted, and nonpolluted sites were grown in vitro on Cu- or Zn-supplemented medium. The Cu mine isolates exhibited high Cu tolerance, whereas the Zn-tolerant isolates were shown to be Cu sensitive, and vice versa. This indicates the evolution of metal-specific tolerance mechanisms is strongly triggered by the pollution in the local environment. Cotolerance does not occur in the S. luteus isolates studied. In a dose-response experiment, the Cu sensitivity of nonmycorrhizal Pinus sylvestris seedlings was compared to the sensitivity of mycorrhizal seedlings colonized either by a Cu-sensitive or Cu-tolerant S. luteus isolate. In nonmycorrhizal plants and plants colonized by the Cu-sensitive isolate, root growth and nutrient uptake were strongly inhibited under Cu stress conditions. In contrast, plants colonized by the Cu-tolerant isolate were hardly affected. The Cu-adapted S. luteus isolate provided excellent insurance against Cu toxicity in pine seedlings exposed to elevated Cu levels. Such a metal-adapted Suillus-Pinus combination might be suitable for large-scale land reclamation at phytotoxic metalliferous and industrial sites.

  6. Effect of fungal colonization of wheat grains with Fusarium spp. on food choice, weight gain and mortality of meal beetle larvae (Tenebrio molitor.

    Directory of Open Access Journals (Sweden)

    Zhiqing Guo

    Full Text Available Species of Fusarium have significant agro-economical and human health-related impact by infecting diverse crop plants and synthesizing diverse mycotoxins. Here, we investigated interactions of grain-feeding Tenebrio molitor larvae with four grain-colonizing Fusarium species on wheat kernels. Since numerous metabolites produced by Fusarium spp. are toxic to insects, we tested the hypothesis that the insect senses and avoids Fusarium-colonized grains. We found that only kernels colonized with F. avenaceum or Beauveria bassiana (an insect-pathogenic fungal control were avoided by the larvae as expected. Kernels colonized with F. proliferatum, F. poae or F. culmorum attracted T. molitor larvae significantly more than control kernels. The avoidance/preference correlated with larval feeding behaviors and weight gain. Interestingly, larvae that had consumed F. proliferatum- or F. poae-colonized kernels had similar survival rates as control. Larvae fed on F. culmorum-, F. avenaceum- or B. bassiana-colonized kernels had elevated mortality rates. HPLC analyses confirmed the following mycotoxins produced by the fungal strains on the kernels: fumonisins, enniatins and beauvericin by F. proliferatum, enniatins and beauvericin by F. poae, enniatins by F. avenaceum, and deoxynivalenol and zearalenone by F. culmorum. Our results indicate that T. molitor larvae have the ability to sense potential survival threats of kernels colonized with F. avenaceum or B. bassiana, but not with F. culmorum. Volatiles potentially along with gustatory cues produced by these fungi may represent survival threat signals for the larvae resulting in their avoidance. Although F. proliferatum or F. poae produced fumonisins, enniatins and beauvericin during kernel colonization, the larvae were able to use those kernels as diet without exhibiting increased mortality. Consumption of F. avenaceum-colonized kernels, however, increased larval mortality; these kernels had higher enniatin

  7. Effect of Fungal Colonization of Wheat Grains with Fusarium spp. on Food Choice, Weight Gain and Mortality of Meal Beetle Larvae (Tenebrio molitor)

    Science.gov (United States)

    Guo, Zhiqing; Döll, Katharina; Dastjerdi, Raana; Karlovsky, Petr; Dehne, Heinz-Wilhelm; Altincicek, Boran

    2014-01-01

    Species of Fusarium have significant agro-economical and human health-related impact by infecting diverse crop plants and synthesizing diverse mycotoxins. Here, we investigated interactions of grain-feeding Tenebrio molitor larvae with four grain-colonizing Fusarium species on wheat kernels. Since numerous metabolites produced by Fusarium spp. are toxic to insects, we tested the hypothesis that the insect senses and avoids Fusarium-colonized grains. We found that only kernels colonized with F. avenaceum or Beauveria bassiana (an insect-pathogenic fungal control) were avoided by the larvae as expected. Kernels colonized with F. proliferatum, F. poae or F. culmorum attracted T. molitor larvae significantly more than control kernels. The avoidance/preference correlated with larval feeding behaviors and weight gain. Interestingly, larvae that had consumed F. proliferatum- or F. poae-colonized kernels had similar survival rates as control. Larvae fed on F. culmorum-, F. avenaceum- or B. bassiana-colonized kernels had elevated mortality rates. HPLC analyses confirmed the following mycotoxins produced by the fungal strains on the kernels: fumonisins, enniatins and beauvericin by F. proliferatum, enniatins and beauvericin by F. poae, enniatins by F. avenaceum, and deoxynivalenol and zearalenone by F. culmorum. Our results indicate that T. molitor larvae have the ability to sense potential survival threats of kernels colonized with F. avenaceum or B. bassiana, but not with F. culmorum. Volatiles potentially along with gustatory cues produced by these fungi may represent survival threat signals for the larvae resulting in their avoidance. Although F. proliferatum or F. poae produced fumonisins, enniatins and beauvericin during kernel colonization, the larvae were able to use those kernels as diet without exhibiting increased mortality. Consumption of F. avenaceum-colonized kernels, however, increased larval mortality; these kernels had higher enniatin levels than F

  8. Effect of fungal colonization of wheat grains with Fusarium spp. on food choice, weight gain and mortality of meal beetle larvae (Tenebrio molitor).

    Science.gov (United States)

    Guo, Zhiqing; Döll, Katharina; Dastjerdi, Raana; Karlovsky, Petr; Dehne, Heinz-Wilhelm; Altincicek, Boran

    2014-01-01

    Species of Fusarium have significant agro-economical and human health-related impact by infecting diverse crop plants and synthesizing diverse mycotoxins. Here, we investigated interactions of grain-feeding Tenebrio molitor larvae with four grain-colonizing Fusarium species on wheat kernels. Since numerous metabolites produced by Fusarium spp. are toxic to insects, we tested the hypothesis that the insect senses and avoids Fusarium-colonized grains. We found that only kernels colonized with F. avenaceum or Beauveria bassiana (an insect-pathogenic fungal control) were avoided by the larvae as expected. Kernels colonized with F. proliferatum, F. poae or F. culmorum attracted T. molitor larvae significantly more than control kernels. The avoidance/preference correlated with larval feeding behaviors and weight gain. Interestingly, larvae that had consumed F. proliferatum- or F. poae-colonized kernels had similar survival rates as control. Larvae fed on F. culmorum-, F. avenaceum- or B. bassiana-colonized kernels had elevated mortality rates. HPLC analyses confirmed the following mycotoxins produced by the fungal strains on the kernels: fumonisins, enniatins and beauvericin by F. proliferatum, enniatins and beauvericin by F. poae, enniatins by F. avenaceum, and deoxynivalenol and zearalenone by F. culmorum. Our results indicate that T. molitor larvae have the ability to sense potential survival threats of kernels colonized with F. avenaceum or B. bassiana, but not with F. culmorum. Volatiles potentially along with gustatory cues produced by these fungi may represent survival threat signals for the larvae resulting in their avoidance. Although F. proliferatum or F. poae produced fumonisins, enniatins and beauvericin during kernel colonization, the larvae were able to use those kernels as diet without exhibiting increased mortality. Consumption of F. avenaceum-colonized kernels, however, increased larval mortality; these kernels had higher enniatin levels than F

  9. Phosphatase activity in sandy soil influenced by mycorrhizal and non-mycorrhizal cover crops

    Directory of Open Access Journals (Sweden)

    Alceu Kunze

    2011-06-01

    Full Text Available Cover crops may difffer in the way they affect rhizosphere microbiota nutrient dynamics. The purpose of this study was to evaluate the effect of mycorrhizal and non-mycorrhizal cover crops on soil phosphatase activity and its persistence in subsequent crops. A three-year experiment was carried out with a Typic Quartzipsamment. Treatments were winter species, either mycorrhizal black oat (Avena strigosa Schreb or the non-mycorrhizal species oilseed radish (Raphanus sativus L. var. oleiferus Metzg and corn spurry (Spergula arvensis L.. The control treatment consisted of resident vegetation (fallow in the winter season. In the summer, a mixture of pearl millet (Pennisetum americanum L. with sunnhemp (Crotalaria juncea L. or with soybean (Glycine max L. was sown in all plots. Soil cores (0-10 cm and root samples were collected in six growing seasons (winter and summer of each year. Microbial biomass P was determined by the fumigation-extraction method and phosphatase activity using p-nitrophenyl-phosphate as enzyme substrate. During the flowering stage of the winter cover crops, acid phosphatase activity was 30-35 % higher in soils with the non-mycorrhizal species oilseed radish, than in the control plots, regardless of the amount of P immobilized in microbial biomass. The values of enzyme activity were intermediate in the plots with corn spurry and black oat. Alkaline phosphatase activity was 10-fold lower and less sensitive to the treatments, despite the significant relationship between the two phosphatase activities. The effect of plant species on the soil enzyme profile continued in the subsequent periods, during the growth of mycorrhizal summer crops, after completion of the life cycle of the cover crops.

  10. Investigation of fungal root colonizers of the invasive plant Vincetoxicum rossicum and co-occurring local native plants in a field and woodland area in Southern Ontario

    Directory of Open Access Journals (Sweden)

    Cindy Bongard

    2013-06-01

    Full Text Available Fungal communities forming associations with plant roots have generally been described as ranging from symbiotic to parasitic. Disruptions to these associations consequently can have significant impacts on native plant communities. We examined how invasion by Vincetoxicum rossicum, a plant native to Europe, can alter both the arbuscular mycorrhizal fungi, as well as the general fungal communities associating with native plant roots in both field and woodland sites in Southern Ontario. In two different sites in the Greater Toronto Area, we took advantage of invasion by V. rossicum and neighbouring uninvaded sites to investigate the fungal communities associating with local plant roots, including goldenrod (Solidago spp., wild red raspberry (Rubus idaeus, Canada anemone (Anemone canadensis, meadow rue (Thalictrum dioicum, and wild ginger (Asarum canadense. Fungi colonizing roots were characterized with terminal restriction fragment length polymorphism (T-RFLP analysis of amplified total fungal (TF and arbuscular mycorrhizal fungal (AMF ribosomal fragments. We saw a significant effect of the presence of this invader on the diversity of TF phylotypes colonizing native plant roots, and a composition shift of both the TF and AMF community in native roots in both sites. In native communities invaded by V. rossicum, a significant increase in richness and colonization density of TF suggests that invaders such as V. rossicum may be able to influence the composition of soil fungi available to natives, possibly via mechanisms such as increased carbon provision or antibiosis attributable to unique root exudates.

  11. Fungal colonization and decomposition of leaves and stems of Salix arctica on deglaciated moraines in high-Arctic Canada

    Science.gov (United States)

    Osono, Takashi; Matsuoka, Shunsuke; Hirose, Dai; Uchida, Masaki; Kanda, Hiroshi

    2014-06-01

    Fungal colonization, succession, and decomposition of leaves and stems of Salix arctica were studied to estimate the roles of fungi in the decomposition processes in the high Arctic. The samples were collected from five moraines with different periods of development since deglaciation to investigate the effects of ecosystem development on the decomposition processes during the primary succession. The total hyphal lengths and the length of darkly pigmented hyphae increased during decomposition of leaves and stems and were not varied with the moraines. Four fungal morphotaxa were frequently isolated from both leaves and stems. The frequencies of occurrence of two morphotaxa varied with the decay class of leaves and/or stems. The hyphal lengths and the frequencies of occurrence of fungal morphotaxa were positively or negatively correlated with the contents of organic chemical components and nutrients in leaves and stems, suggesting the roles of fungi in chemical changes in the field. Pure culture decomposition tests demonstrated that the fungal morphotaxa were cellulose decomposers. Our results suggest that fungi took part in the chemical changes in decomposing leaves and stems even under the harsh environment of the high Arctic.

  12. Selection of Infective Arbuscular Mycorrhizal Fungal Isolates for Field Inoculation

    Directory of Open Access Journals (Sweden)

    Elisa Pellegrino

    2010-09-01

    Full Text Available Arbuscular mycorrhizal (AM fungi play a key role in host plant growth and health, nutrient and water uptake, plant community diversity and dynamics. AM fungi differ in their symbiotic performance, which is the result of the interaction of two fungal characters, infectivity and efficiency. Infectivity is the ability of a fungal isolate to establish rapidly an extensive mycorrhizal symbiosis and is correlated with pre-symbiotic steps of fungal life cycle, such as spore germination and hyphal growth. Here, different AM fungal isolates were tested, with the aim of selecting infective endophytes for field inoculation. Greenhouse and microcosm experiments were performed in order to assess the ability of 12 AM fungal isolates to produce spores, colonize host roots and to perform initial steps of symbiosis establishment, such as spore germination and hyphal growth. AM fungal spore production and root colonization were significantly different among AM fungal isolates. Spore and sporocarp densities ranged from 0.8 to 7.4 and from 0.6 to 2.0 per gram of soil, respectively, whereas root colonization ranged from 2.9 to 72.2%. Percentage of spore or sporocarp germination ranged from 5.8 to 53.3% and hyphal length from 4.7 to 79.8 mm. The ordination analysis (Redundancy Analysis, RDA showed that environmental factors explained about 60% of the whole variance and their effect on fungal infectivity variables was significant (P = 0.002. The biplot clearly showed that variables which might be used to detect infective AM fungal isolates were hyphal length and root colonization. Such analysis may allow the detection of the best parameters to select efficient AM fungal isolates to be used in agriculture.

  13. Fungal Endophytes: Beyond Herbivore Management

    Directory of Open Access Journals (Sweden)

    Bamisope S. Bamisile

    2018-03-01

    Full Text Available The incorporation of entomopathogenic fungi as biocontrol agents into Integrated Pest Management (IPM programs without doubt, has been highly effective. The ability of these fungal pathogens such as Beauveria bassiana and Metarhizium anisopliae to exist as endophytes in plants and protect their colonized host plants against the primary herbivore pests has widely been reported. Aside this sole role of pest management that has been traditionally ascribed to fungal endophytes, recent findings provided evidence of other possible functions as plant yield promoter, soil nutrient distributor, abiotic stress and drought tolerance enhancer in plants. However, reports on these additional important effects of fungal endophytes on the colonized plants remain scanty. In this review, we discussed the various beneficial effects of endophytic fungi on the host plants and their primary herbivore pests; as well as some negative effects that are relatively unknown. We also highlighted the prospects of our findings in further increasing the acceptance of fungal endophytes as an integral part of pest management programs for optimized crop production.

  14. Frost hardiness of mycorrhizal (Hebeloma sp.) and non-mycorrhizal Scots pine roots.

    Science.gov (United States)

    Korhonen, Anna; Lehto, Tarja; Repo, Tapani

    2013-10-01

    The frost hardiness (FH) of mycorrhizal [ectomycorrhizal (ECM)] and non-mycorrhizal (NM) Scots pine (Pinus sylvestris) seedlings was studied to assess whether mycorrhizal symbiosis affected the roots' tolerance of below-zero temperatures. ECM (Hebeloma sp.) and NM seedlings were cultivated in a growth chamber for 18 weeks. After 13 weeks' growth in long-day and high-temperature (LDHT) conditions, a half of the ECM and NM seedlings were moved into a chamber with short-day and low-temperature (SDLT) conditions to cold acclimate. After exposures to a range of below-zero temperatures, the FH of the roots was assessed by means of the relative electrolyte leakage test. The FH was determined as the inflection point of the temperature-response curve. No significant difference was found between the FH of mycorrhizal and non-mycorrhizal roots in LDHT (-8.9 and -9.8 °C) or SDLT (-7.5 and -6.8 °C). The mycorrhizal treatment had no significant effect on the total dry mass, the allocation of dry mass among the roots and needles or nutrient accumulation. The mycorrhizal treatment with Hebeloma sp. did not affect the FH of Scots pine in this experimental setup. More information is needed on the extent to which mycorrhizas tolerate low temperatures, especially with different nutrient contents and different mycorrhiza fungi.

  15. Calcium uptake by cowpea as influenced by mycorrhizal colonization and water stress

    International Nuclear Information System (INIS)

    Pai, G.; Bagyaraj, D.J.; Padmavathi Ravindra, T.; Prasad, T.G.

    1994-01-01

    The role of vesicular-arbuscular mycorrhizal (VAM) colonization on calcium uptake was studied under different levels of moisture stress. Pots maintained at different moisture levels were given water containing known amount of radioactive calcium. The radioactivity in different parts of the plant was assessed 60 h after giving 45 Ca to the soil. High 45 Ca activity was present in all parts of vesicular-arbuscular mycrrohizal (VAM) plants compared to non-mycorrhizal plants at all levels of moisture stress. (author). 14 refs., 1 tab

  16. Epidemiology of fungal infections and risk factors in newborn patients

    Directory of Open Access Journals (Sweden)

    Paolo Manzoni

    2013-07-01

    Full Text Available The incidence of fungal infections among newborn babies is increasing, owing mainly to the in­creased ability to care and make survive immature infants at higher specific risk for fungal infections. The risk is higher in infants with very low and extremely low birth weight, in babies receiving total parenteral nutrition, in neonates with limited barrier effect in the gut, or with central venous catheter or other devices where fungal biofilms can originate. Also neonates receiving broad spectrum antibiotics, born through caesarian section or non-breastfed can feature an increased, specific risk. Most fungal infections in neonatology occur in premature children, are of nosocomial origin, and are due to Candida species. Colonization is a preliminary step, and some factors must be considered for the diagnosis and grading process: the iso­lation site, the number of colonized sites, the intensity of colonization, and the Candida subspecies. The most complicated patients are at greater risk of fungal infections, and prophylaxis or pre-emptive therapy should often be considered. A consistent decisional tree in neonatology is yet to be defined, but some efforts have been made in order to identify characteristics that should guide the prophylaxis or treatment choices. A negative blood culture and the absence of symptoms aren’t enough to rule out the diagnosis of fungal infections in newborn babies. Similarly, laboratory tests have been validated only for adults. The clinical judgement is of utmost importance in the diagnostic process, and should take into account the presence of clinical signs of infection, of a severe clinical deterioration, as well as changes in some laboratory tests, and also the presence and characteristics of a pre-existing fungal colonization.http://dx.doi.org/10.7175/rhc.v14i1S.856

  17. Interaction of Heterodera glycines and Glomus mosseae on Soybean.

    Science.gov (United States)

    Todd, T C; Winkler, H E; Wilson, G W

    2001-12-01

    The effects of the arbuscular mycorrhizal (AM) fungus Glomus mosseae on Heterodera glycines-soybean interactions were investigated in greenhouse experiments. Mycorrhizal and nonmycorrhizal soybean cultivars that were either resistant or susceptible to H. glycines were exposed to initial nematode population densities (Pi) of 0, 100, 1,000, or 10,000 eggs and infective juveniles. Soybean growth, nematode reproduction, and AM fungal colonization were determined after 35 (experiment I) and 83 (experiment II) days. Soybean shoot and root weights were reduced an average 29% across H. glycines Pi but were 36% greater overall in the presence of G. mosseae. Analyses of variance indicated that root colonization and stimulation of soybean growth by G. mosseae were inhibited at high H. glycines Pi, while the combined effects of the nematode and fungus on soybean growth were best described as additive in linear regression models. No evidence for increased nematode tolerance of mycorrhizal soybean plants was observed. Nematode population densities and reproduction were lower on a nematode-resistant soybean cultivar than on a susceptible cultivar, but reproduction was comparable on mycorrhizal and nonmycorrhizal plants. Root colonization by G. mosseae was reduced at high nematode Pi. The results suggest that nematode antagonism to the mycorrhizal symbiosis is a more likely consequence of interactions between H. glycines and AM fungi on soybean than is nematode suppression by the fungus.

  18. Systemic fungal infections in neonates

    Directory of Open Access Journals (Sweden)

    Rao S

    2005-01-01

    Full Text Available Advances in neonatal management have led to considerable improvement in newborn survival. However, early (72hours onset systemic infections, both bacterial and fungal, remain a devastating complication and an important cause of morbidity and mortality in these babies. Most neonatal fungal infections are due to Candida species, particularly Candida albicans. The sources of candidiasis in NICU are often endogenous following colonization of the babies with fungi. About 10% of these babies get colonized in first week of life and up to 64% babies get colonized by 4 weeks of hospital stay. Disseminated candidiasis presents like bacterial sepsis and can involve multiple organs such as the kidneys, brain, eye, liver, spleen, bone, joints, meninges and heart. Confirming the diagnosis by laboratory tests is difficult and a high index of suspicion is required. The diagnosis of fungemia can be made definitely only by recovering the organism from blood or other sterile bodily fluid. Amphotericin B continues to be the mainstay of therapy for systemic fungal infections but its use is limited by the risks of nephrotoxicity and hypokalemia. Newer formulations of amphotericin B, namely the liposomal and the lipid complex forms, have recently become available and have been reported to have lesser toxicity. More recently Indian liposomal Amphotericin B derived from neutral lipids (L-Amp -LRC-1 has shown good response with less toxicity. A clinical trial with this preparation has shown to be safe and efficacious in neonatal fungal infections. Compared to other liposomal preparations, L-Amp-LRC-1 is effective at lower dose and is less expensive drug for the treatment of neonatal candidiasis.

  19. Disrupting mycorrhizal mutualisms: a potential mechanism by which exotic tamarisk outcompetes native cottonwoods.

    Science.gov (United States)

    Meinhardt, Kelley A; Gehring, Catherine A

    2012-03-01

    The disruption of mutualisms between plants and mycorrhizal fungi is a potentially powerful mechanism by which invasives can negatively impact native species, yet our understanding of this mechanism's role in exotic species invasion is still in its infancy. Here, we provide several lines of evidence indicating that invasive tamarisk (Tamarix sp.) negatively affects native cottonwoods (Populus fremontii) by disrupting their associations with arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungi. At a field site in the early stages of tamarisk invasion, cottonwoods with tamarisk neighbors had reduced EM colonization and altered EM fungal community composition relative to cottonwoods with native neighbors, leading to reductions in EM propagule abundance in the soil beneath tamarisk. Similarly, AM colonization of cottonwoods was reduced with a tamarisk neighbor, but there were no significant changes in AM fungal spore communities or propagule abundance. Root colonization by nonmycorrhizal fungi, including potential pathogens, was higher in cottonwoods with tamarisk neighbors. A greenhouse experiment in which AM and EM inoculation and plant neighbor were manipulated in a fully factorial design showed that cottonwoods benefited from mycorrhizas, especially EM, in terms of shoot biomass when grown with a conspecific, but shoot biomass was similar to that of nonmycorrhizal controls when cottonwoods were grown with a tamarisk neighbor. These results are partially explained by a reduction in EM but not AM colonization of cottonwoods by a tamarisk neighbor. Tamarisk neighbors negatively affected cottonwood specific leaf area, but not chlorophyll content, in the field. To pinpoint a mechanism for these changes, we measured soil chemistry in the field and the growth response of an EM fungus (Hebeloma crustuliniforme) to salt-amended media in the laboratory. Tamarisk increased both NO3- concentrations and electrical conductivity 2.5-fold beneath neighboring cottonwoods in

  20. A shift from arbuscular mycorrhizal to dark septate endophytic colonization in Deschampsia flexuosa roots occurs along primary successional gradient.

    Science.gov (United States)

    Huusko, K; Ruotsalainen, A L; Markkola, A M

    2017-02-01

    Soil fungal community and dominant mycorrhizal types are known to shift along with plant community changes during primary succession. However, it is not well understood how and why root fungal symbionts and colonization types vary within the plant host when the host species is able to thrive both at young and at old successional stages with different light and nutrient resource availability. We asked (i) how root fungal colonization of Deschampsia flexuosa (Poaceae) by arbuscular mycorrhizal (AM) fungi and dark septate endophytes (DSE) changes along a postglacial primary successional land uplift gradient. As neighboring vegetation may play a role in root fungal colonization, we also asked (ii) whether removal of the dominant neighbor, Empetrum nigrum ssp. hermaphroditum (Ericaceae), affects root fungal colonization of Deschampsia. We also studied whether (iii) foliar carbon (C) and nitrogen (N) concentration of Deschampsia is related to successional changes along a land uplift gradient. AM colonization decreased (-50 %), DSE colonization increased (+200 %), and foliar C declined in Deschampsia along with increasing successional age, whereas foliar N was not affected. Empetrum removal did not affect AM colonization but increased DSE sclerotial colonization especially at older successional stages. The observed decrease in foliar C coincides with an increase in canopy closure along with increasing successional age. We suggest that the shift from an AM-dominated to a DSE-dominated root fungal community in Deschampsia along a land uplift successional gradient may be related to different nutritional benefits gained through these root fungal groups.

  1. A systematic review of oral fungal infections in patients receiving cancer therapy

    NARCIS (Netherlands)

    Lalla, Rajesh V.; Latortue, Marie C.; Hong, Catherine H.; Ariyawardana, Anura; D'Amato-Palumbo, Sandra; Fischer, Dena J.; Martof, Andrew; Nicolatou-Galitis, Ourania; Patton, Lauren L.; Elting, Linda S.; Spijkervet, Fred K. L.; Brennan, Michael T.

    The aims of this systematic review were to determine, in patients receiving cancer therapy, the prevalence of clinical oral fungal infection and fungal colonization, to determine the impact on quality of life and cost of care, and to review current management strategies for oral fungal infections.

  2. Arbuscular Mycorrhizal and Dark Septate Endophyte Fungal Associations in South Indian Aquatic and Wetland Macrophytes

    Directory of Open Access Journals (Sweden)

    Kumar Seerangan

    2014-01-01

    Full Text Available Investigations on the prevalence of arbuscular mycorrhizal (AM and dark septate endophyte (DSE fungal symbioses are limited for plants growing in tropical aquatic and wetland habitats compared to those growing on terrestrial moist or dry habitats. Therefore, we assessed the incidence of AM and DSE symbiosis in 8 hydrophytes and 50 wetland plants from four sites in south India. Of the 58 plant species examined, we found AM and DSE fungal symbiosis in 21 and five species, respectively. We reported for the first time AM and DSE fungal symbiosis in seven and five species, respectively. Intermediate-type AM morphology was common, and AM morphology is reported for the first time in 16 plant species. Both AM and DSE fungal colonization varied significantly across plant species and sites. Intact and identifiable AM fungal spores occurred in root zones of nine plant species, but AM fungal species richness was low. Though no clear relationship between AM and DSE fungal colonization was recognized, a significant negative correlation between AM colonization and spore numbers was established. Our study suggests that the occurrence of AM and DSE fungal symbiosis in plants growing in hydrophytic and wetland habitats is not as common as in terrestrial habitats.

  3. Arbuscular mycorrhiza formation and its function under elevated atmospheric O3: A meta-analysis.

    Science.gov (United States)

    Wang, Shuguang; Augé, Robert M; Toler, Heather D

    2017-07-01

    We quantitatively evaluated the effects of elevated O 3 on arbuscular mycorrhiza (AM) formation and on AM role in promoting plant growth in regard to several moderating variables (O 3 levels, O 3 exposure duration, plant types, AM fungi family, and additional stress) by means of meta-analysis of published data. The analysis consisted of 117 trials representing 20 peer-reviewed articles and 16 unpublished trials. Relative to non-mycorrhizal controls, AM inoculation did not significantly alter plant growth (shoot biomass, root biomass, total biomass and plant height) when O 3 concentration was less than 80 ppb, but at concentrations above 80 ppb symbiosis was associated with increases of 68% in shoot biomass and 131% in root biomass. AM effects on plant growth were affected by the duration of O 3 exposure but did not differ much with AM fungi taxa or plant type. AM symbiosis has also led to higher yields under O 3 stress, relative to the non-mycorrhizal plants, and the AM effects have been more pronounced as O 3 concentration increases. As with biomass, AM effects on yield have been affected by the duration of O 3 exposure, with the greatest increase (100%) occurring at 61-90 d. AM-induced promotion of yield differed with fungal species but not with plant type or other abiotic stress. Colonization of roots by AM fungi has been negatively affected by elevated O 3 compared to ambient O 3 ; total mycorrhizal colonization rate (MCR), arbuscular MCR, vesicular MCR and hyphal coil MCR declined as O 3 levels rose. AM colonization rates were affected by duration of O 3 exposure, plant type, AM fungal taxa and other concurrent stresses in most cases. The analysis showed that AM inoculation has the potential to ameliorate detrimental effects of elevated O 3 on plant growth and productivity, despite colonization rates being negatively affected by elevated O 3 . Copyright © 2017. Published by Elsevier Ltd.

  4. Effects of Different Ectomycorrhizal Fungal Inoculates on the Growth of Pinus tabulaeformis Seedlings under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Nan Lu

    2016-12-01

    Full Text Available The tree species Pinus tabulaeformis Carr. (P. tabulaeformis is commonly planted in China due to its economic and ecological value. In order to identify one or more ectomycorrhizal (ECM fungal species for future P. tabulaeformis afforestation, we investigated the effects of five ECM fungal species: Laccaria laccata, Boletus edulis, Gomphidius viscidus, Suillus grevillei, and Suillus luteus on the growth of P. tabulaeformis seedlings under greenhouse conditions. The growth parameters of P. tabulaeformis seedlings were evaluated 90 days following fungal colonisation. The majority of seedlings were significantly affected by ECM inoculation. Mycorrhizal inoculated seedlings were taller, had more lateral roots, and a greater biomass compared with the non-mycorrhizal (CK seedlings. With the exception of G. viscidus, inoculated seedlings exhibited higher phosphorus, potassium, and nitrogen content compared with the CK seedlings. In addition, ECM colonisation increased the enzymatic activity of catalase, acidic phosphatase, protease, and the urease content in the rhizosphere soil. Our study showed that Laccaria laccata, Suillus grevillei, and Suillus luteus may be useful for improving the growth and cultivation of P. tabulaeformis seedlings. Furthermore, we observed that S. luteus inoculation increased the gas exchange parameters of P. tabulaeformis seedlings under field conditions.

  5. Interactions of NH4+ and L-glutamate with NO3- transport processes of non-mycorrhizal Fagus sylvatica roots

    NARCIS (Netherlands)

    Kreuzwieser, J; Herschbach, C; Stulen, [No Value; Wiersema, P; Vaalburg, W; Rennenberg, H

    The processes of NO3- uptake and transport and the effects of NH4+ or L-glutamate on these processes were investigated with excised non-mycorrhizal beech (Fagus sylvatica L,) roots, NO3- net uptake followed uniphasic Michaelis-Menten kinetics in a concentration range of 10 mu M to 1 mM with an

  6. Microbiological diagnostics of fungal infections

    Directory of Open Access Journals (Sweden)

    Corrado Girmenia

    2013-07-01

    Full Text Available Laboratory tests for the detection of fungal infections are easy to perform. The main obstacle to a correct diagnosis is the correlation between the laboratory findings and the clinical diagnosis. Among pediatric patients, the most common fungal pathogen is Candida. The detection of fungal colonization may be performed through the use of chromogenic culture media, which allows also the identification of Candida subspecies, from which pathogenicity depends. In neonatology, thistest often drives the decision to begin a empiric therapy; in this regard, a close cooperation between microbiologists and clinicians is highly recommended. Blood culture, if positive, is a strong confirmation of fungal infection; however, its low sensitivity results in a high percentage of false negatives, thus decreasing its reliability. Molecular diagnostics is still under evaluation, whereas the detection of some fungal antigens, such as β-D-glucan, galactomannan, mannoprotein, and cryptococcal antigen in the serum is used for adults, but still under evaluations for pediatric patients.http://dx.doi.org/10.7175/rhc.v4i1S.862

  7. Microbial biomass in compost during colonization of Agaricus bisporus

    NARCIS (Netherlands)

    Vos, Aurin M.; Heijboer, Amber; Boschker, Henricus T.S.; Bonnet, Barbara; Lugones, Luis G.; Wösten, Han A.B.

    2017-01-01

    Agaricus bisporus mushrooms are commercially produced on a microbe rich compost. Here, fungal and bacterial biomass was quantified in compost with and without colonization by A. bisporus. Chitin content, indicative of total fungal biomass, increased during a 26-day period from 576 to 779 nmol

  8. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation

    Science.gov (United States)

    Greenfield, Melinda; Gómez-Jiménez, María I.; Ortiz, Viviana; Vega, Fernando E.; Kramer, Matthew; Parsa, Soroush

    2016-01-01

    We investigated the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae to determine if endophytic colonization could be achieved in cassava. An inoculation method based on drenching the soil around cassava stem cuttings using conidial suspensions resulted in endophytic colonization of cassava roots by both entomopathogens, though neither was found in the leaves or stems of the treated cassava plants. Both fungal entomopathogens were detected more often in the proximal end of the root than in the distal end. Colonization levels of B. bassiana were higher when plants were sampled at 7–9 days post-inoculation (84%) compared to 47–49 days post-inoculation (40%). In contrast, the colonization levels of M. anisopliae remained constant from 7–9 days post-inoculation (80%) to 47–49 days post-inoculation (80%), which suggests M. anisopliae is better able to persist in the soil, or as an endophyte in cassava roots over time. Differences in colonization success and plant growth were found among the fungal entomopathogen treatments. PMID:27103778

  9. Neutral lipid fatty acid analysis is a sensitive marker for quantitative estimation of arbuscular mycorrhizal fungi in agricultural soil with crops of different mycotrophy

    Directory of Open Access Journals (Sweden)

    Mauritz Vestberg

    2012-03-01

    Full Text Available The impact of host mycotrophy on arbuscular mycorrhizal fungal (AMF markers was studied in a temperate agricultural soil cropped with mycorrhizal barley, flax, reed canary-grass, timothy, caraway and quinoa and non-mycorrhizal buckwheat, dyer's woad, nettle and false flax. The percentage of AMF root colonization, the numbers of infective propagules by the Most Probable Number (MPN method, and the amounts of signature Phospholipid Fatty Acid (PLFA 16:1ω5 and Neutral Lipid Fatty Acid (NLFA 16:1ω5 were measured as AMF markers.  Crop had a significant impact on MPN levels of AMF, on NLFA 16:1ω5 levels in bulk and rhizosphere soil and on PLFA 16:1ω5 levels in rhizosphere soil. Reed canary-grass induced the highest levels of AMF markers. Mycorrhizal markers were at low levels in all non-mycorrhizal crops. NLFA 16:1ω5 and the ratio of NLFA to PLFA 16:1ω5 from bulk soil are adequate methods as indicators of AMF biomass in soil.

  10. Fungal colonization of fiberglass insulation in the air distribution system of a multi-story office building: VOC production and possible relationship to a sick building syndrome

    Science.gov (United States)

    Ahearn, D. G.; Crow, S. A.; Simmons, R. B.; Price, D. L.; Noble, J. A.; Mishra, S. K.; Pierson, D. L.

    1996-01-01

    Complaints characteristic of those for sick building syndrome prompted mycological investigations of a modern multi-story office building on the Gulf coast in the Southeastern United States (Houston-Galveston area). The air handling units and fiberglass duct liner of the heating, ventilating and air conditioning system of the building, without a history of catastrophic or chronic water damage, demonstrated extensive colonization with Penicillium spp and Cladosporium herbarum. Although dense fungal growth was observed on surfaces within the heating-cooling system, most air samples yielded fewer than 200 CFU m-3. Several volatile compounds found in the building air were released also from colonized fiberglass. Removal of colonized insulation from the floor receiving the majority of complaints of mouldy air and continuous operation of the units supplying this floor resulted in a reduction in the number of complaints.

  11. Oak protein profile alterations upon root colonization by an ectomycorrhizal fungus

    DEFF Research Database (Denmark)

    Sebastiana, Mónica; Martins, Joana; Figueiredo, Andreia

    2017-01-01

    in the roots. Consistent with the results of the biochemical analysis, the proteome analysis of the mycorrhizal roots suggests a decreasing utilization of sucrose for the metabolic activity of mycorrhizal roots which is consistent with an increased allocation of carbohydrates from the plant to the fungus...... to ectomycorrhizae formation using a proteomics approach complemented by biochemical analysis of carbohydrate levels. Comparative proteome analysis between mycorrhizal and nonmycorrhizal cork oak plants revealed no differences at the foliar level. However, the protein profile of 34 unique oak proteins was altered...... in order to sustain the symbiosis. In addition, a promotion of protein unfolding mechanisms, attenuation of defense reactions, increased nutrient mobilization from the plant-fungus interface (N and P), as well as cytoskeleton rearrangements and induction of plant cell wall loosening for fungal root...

  12. Inoculation, colonization and distribution of fungal endophytes in ...

    African Journals Online (AJOL)

    Mo

    and for a part or whole of their life cycle live symptomlessly within the plant. ... inoculated in tissue culture banana plants, must occur at high frequencies in the plant and be able to persist in ... For instance, the influence of fungal endophytes.

  13. Quercus rubra-associated ectomycorrhizal fungal communities of disturbed urban sites and mature forests.

    Science.gov (United States)

    Karpati, Amy S; Handel, Steven N; Dighton, John; Horton, Thomas R

    2011-08-01

    The presence and quality of the belowground mycorrhizal fungal community could greatly influence plant community structure and host species response. This study tests whether mycorrhizal fungal communities in areas highly impacted by anthropogenic disturbance and urbanization are less species rich or exhibit lower host root colonization rates when compared to those of less disturbed systems. Using a soil bioassay, we sampled the ectomycorrhizal fungal (EMF) communities associating with Quercus rubra (northern red oak) seedlings in soil collected from seven sites: two mature forest reference sites and five urban sites of varying levels of disturbance. Morphological and polymerase chain reaction-restriction fragment length polymorphism analyses of fungi colonizing root tips revealed that colonization rates and fungal species richness were significantly lower on root systems of seedlings grown in disturbed site soils. Analysis of similarity showed that EMF community composition was not significantly different among several urban site soils but did differ significantly between mature forest sites and all but one urban site. We identified a suite of fungal species that occurred across several urban sites. Lack of a diverse community of belowground mutualists could be a constraint on urban plant community development, especially of late-successional woodlands. Analysis of urban EMF communities can add to our understanding of urban plant community structure and should be addressed during ecological assessment before pragmatic decisions to restore habitats are framed.

  14. Exo-metabolome of some fungal isolates growing on cork-based medium

    DEFF Research Database (Denmark)

    Barreto, M. C.; Frisvad, Jens Christian; Larsen, Thomas Ostenfeld

    2011-01-01

    are produced by the studied fungal species, both in cork medium or in cork medium added with C. sitophila extracts. However, the addition of C. sitophila extract to the cork medium enhanced the growth of the other studied fungal isolates and altered the respective exo-metabolome profile, leading...... they can be dependent of the remains of former colonizers. In fact, the production of the exo-metabolites by the studied fungal isolates suggests that, under the used experimental conditions, they appear to play an important role in fungal interactions amongst the cork mycoflora....

  15. Oral Bacterial and Fungal Microbiome Impacts Colorectal Carcinogenesis

    OpenAIRE

    Klara Klimesova; Zuzana Jiraskova Zakostelska; Helena Tlaskalova-Hogenova

    2018-01-01

    Host’s physiology is significantly influenced by microbiota colonizing the epithelial surfaces. Complex microbial communities contribute to proper mucosal barrier function, immune response, and prevention of pathogen invasion and have many other crucial functions. The oral cavity and large intestine are distant parts of the digestive tract, both heavily colonized by commensal microbiota. Nevertheless, they feature different proportions of major bacterial and fungal phyla, mostly due to distin...

  16. Ectomycorrhizal activity as affected by soil liming

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Solbritt

    1996-05-01

    Acidification of the forest soils in southern Sweden due to atmospheric deposition has become evident during recent decades. To counteract further acidification, liming of forests in the most affected areas has been proposed. Most forest trees in the temperate and boreal forest ecosystems live in symbiosis with ectomycorrhizal fungi, and their uptake of mineral nutrients from the soil is greatly influenced by the symbiosis. In this thesis effects of liming on ectomycorrhiza have been studied in relation to effects on root colonization, fungal growth and nitrogen uptake. In field experiments the effects of liming on ectomycorrhizal colonization of root tips were variable, possibly due to different soil types and climatic variations. However, a changed mycorrhizal community structure could be detected. Laboratory studies also showed that the substrate may influence the outcome of lime applications; the nutrient status of the substrate had a marked effect on how mycelial growth was affected by liming. Under the experimental conditions used in the studies presented in this thesis, liming reduced the uptake of nitrogen and phosphorus by both mycorrhizal and non-mycorrhizal plants. The amount of extractable nitrogen and phosphorus in the peat was also reduced by liming. The latter could be due to either microbial or chemical immobilization. The lime induced decrease in nitrogen uptake was stronger in non-mycorrhizal plants than in mycorrhizal plants. Thus, the mycorrhizal plants had a higher ability to deal with the negative effects of liming on nitrogen availability. This was not the case for phosphorus. The lime induced decrease in phosphorus uptake was stronger for mycorrhizal plants, and in the highest lime treatment there was no significant difference between the mycorrhizal and the non-mycorrhizal spruce plants. 76 refs, 2 figs, 1 tab

  17. Bioreceptivity of dolostones to fungal colonization

    Directory of Open Access Journals (Sweden)

    Ascaso, C.

    2008-06-01

    Full Text Available In many historic monuments in which signs of biodeterioration have been frequently reported, dolostones were used as dimension stone for their construction. In an effort to assess the influence of the texture of dolostones on their potential bioreceptivity, we characterized microbial colonization strategies in dolostone samples of predictably different textural features by scanning electron microscopy in back scattered electron mode (SEM-BSE, low temperature scanning electron microscopy (LTSEM, transmission light microscopy (TLM and mercury intrusion porosimetry (MIP. Fungi were the predominant microorganisms in the dolostones examined and their colonization showed three well defined stages with the final consequence of complete rock disaggregation. The results of this study indicate that porosity differences (mainly the extent and type were particularly relevant for determining the presence and extent of each colonization stage. As a determinant of bioreceptivity, the porosity of dolostones will also condition the decay processes associated with this colonization. These findings highlight the fact that the intrinsic properties of dolostones, such as texture, need to be considered when selecting this type of stone for future construction projects.La dolomía ha sido empleada como piedra de fábrica en la construcción de muchos monumentos históricos en los que se han detectado fenómenos de biodeterioro en numerosas ocasiones. En este trabajo se evalúa cómo influye la textura de las dolomías en las estrategias adoptadas por los microorganismos para colonizar estos materiales pétreos. Para ello se han caracterizado muestras de dolomías con diferentes texturas mediante microscopía electrónica de barrido en modo de electrones retrodispersados (SEM-BSE, microscopía electrónica de barrido a bajas temperaturas (LTSEM, microscopía de luz transmitida (TLM y porosimetría por intrusión de mercurio (MIP. De estas observaciones se deduce que

  18. Dynamics of initial colonization of nonconserved perennial ryegrass by anaerobic fungi in the bovine rumen.

    Science.gov (United States)

    Edwards, Joan E; Kingston-Smith, Alison H; Jimenez, Hugo R; Huws, Sharon A; Skøt, Kirsten P; Griffith, Gareth W; McEwan, Neil R; Theodorou, Michael K

    2008-12-01

    Anaerobic fungi (Neocallimastigales) are active degraders of fibrous plant material in the rumen. However, only limited information is available relating to how quickly they colonize ingested feed particles. The aim of this study was to determine the dynamics of initial colonization of forage by anaerobic fungi in the rumen and the impact of different postsampling wash procedures used to remove loosely associated microorganisms. Neocallimastigales-specific molecular techniques were optimized to ensure maximal coverage before application to assess the population size (quantitative PCR) and composition (automated ribosomal intergenic spacer analysis) of the colonizing anaerobic fungi. Colonization of perennial ryegrass (PRG) was evident within 5 min, with no consistent effect of time or wash procedure on fungal population composition. Wash procedure had no effect on population size unlike time, which had a significant effect. Colonizing fungal population size continued to increase over the incubation period after an initial lag of c. 4 min. This dynamic differs from that reported previously for rumen bacteria, where substantial colonization of PRG occurred within 5 min. The observed delay in colonization of plant material by anaerobic fungi is suggested to be primarily mediated by the time taken for fungal zoospores to locate, attach and encyst on plant material.

  19. Colonización radical por endófitos fúngicos en Trithrinax campestris (Arecaceae de ecosistemas semiáridos del centro de Argentina Root colonization by fungal endophytes in Trithrinax campestris (Arecaceae from semiarid ecosystems from Central Argentine

    Directory of Open Access Journals (Sweden)

    Mónica A Lugo

    2011-12-01

    Full Text Available En ecosistemas áridos y semiáridos las raíces de las plantas suelen formar simbiosis con hongos, los que les proporcionan nutrientes y agua. Poco se conoce sobre los hongos asociados a palmeras nativas y cómo éstos podrían estar relacionados entre ellos. Se describe y cuantifica la colonización radical de los simbiontes de Trithrinax campestris en poblaciones leve y fuertemente afectadas por el fuego. T. campestris fue colonizada por hongos micorrícico-arbusculares (HMA y endófitos septados oscuros (ESO. La colonización por HMA fue del tipo intermedio entre los tipos Arum y Paris. La colonización por HMA y ESO y la producción de pelos radicales, presentó diferencias entre las poblaciones estudiadas. Los resultados sugieren que en T. campestris la relación entre hongos simbiontes/producción de pelos radicales podrían estar relacionada con su alta tolerancia al fuego y la aridez.In arid and semiarid ecosystems, roots frequently form symbiosis with fungi that provides access to nutrients and water. Knowledge regarding the study of fungal symbionts colonizing native palms roots is still scarce. We described, quantified and compared fungal colonization in roots of Trithrinax campestris from two environmental situations: population with weak-burning-signs and population with strong-burning-signs. T. campestris was colonized by arbuscular-mycorrhizal-fungi (AMF and dark-septate-endophytes (DSE. AMF colonization was an intermediate type between Arum and Paris. The AMF and DSE colonization and root hair production differed between populations. Our results suggest that in T. campestris the relation between fungal-symbionts and root-hair-production might be related to tolerance to burning and aridity.

  20. Arbuscular mycorrhizal colonization in field-collected terrestrial cordate gametophytes of pre-polypod leptosporangiate ferns (Osmundaceae, Gleicheniaceae, Plagiogyriaceae, Cyatheaceae).

    Science.gov (United States)

    Ogura-Tsujita, Yuki; Hirayama, Yumiko; Sakoda, Aki; Suzuki, Ayako; Ebihara, Atsushi; Morita, Nana; Imaichi, Ryoko

    2016-02-01

    To determine the mycorrhizal status of pteridophyte gametophytes in diverse taxa, the mycorrhizal colonization of wild gametophytes was investigated in terrestrial cordate gametophytes of pre-polypod leptosporangiate ferns, i.e., one species of Osmundaceae (Osmunda banksiifolia), two species of Gleicheniaceae (Diplopterygium glaucum, Dicranopteris linearis), and four species of Cyatheales including tree ferns (Plagiogyriaceae: Plagiogyria japonica, Plagiogyria euphlebia; Cyatheaceae: Cyathea podophylla, Cyathea lepifera). Microscopic observations revealed that 58 to 97% of gametophytes in all species were colonized with arbuscular mycorrhizal (AM) fungi. Fungal colonization was limited to the multilayered midrib (cushion) tissue in all gametophytes examined. Molecular identification using fungal SSU rDNA sequences indicated that the AM fungi in gametophytes primarily belonged to the Glomeraceae, but also included the Claroideoglomeraceae, Gigasporaceae, Acaulosporaceae, and Archaeosporales. This study provides the first evidence for AM fungal colonization of wild gametophytes in the Plagiogyriaceae and Cyatheaceae. Taxonomically divergent photosynthetic gametophytes are similarly colonized by AM fungi, suggesting that mycorrhizal associations with AM fungi could widely occur in terrestrial pteridophyte gametophytes.

  1. Fungal endophytes – the hidden inducers of volatile terpene biosynthesis in tomato plants

    DEFF Research Database (Denmark)

    Ntana, Fani; Jensen, Birgit; Jørgensen, Hans Jørgen Lyngs

    mycorrhizal spores in the Indian Thar desert, colonizes the root cortex of a wide range of plants, enhancing plant growth and modulating plant specialized metabolism. The effect of S. indica colonization on the metabolism of the host can be potentially used in improving plant defence against pathogens...... and herbivores. Tomato (Solanum lycopersicum) is an important crop, often challenged by fungal pathogens and insect pests. The wide variety of secondary metabolites produced by the plant, and especially terpenes, play a crucial role in plant defence, helping in repelling possible enemies. This project is focused....... indica-inoculated and S. indica-free tomato plants. Preliminary data suggest that fungal colonization results in increased production of specific volatile terpenes. A transcriptome analysis on fungus-associated and fungus-free plant tissues is currently ongoing to elucidate in depth the mechanisms...

  2. Cohort Study of Airway Mycobiome in Adult Cystic Fibrosis Patients: Differences in Community Structure between Fungi and Bacteria Reveal Predominance of Transient Fungal Elements

    Science.gov (United States)

    Sauer-Heilborn, Annette; Welte, Tobias; Guzman, Carlos A.; Abraham, Wolf-Rainer; Höfle, Manfred G.

    2015-01-01

    The respiratory mycobiome is an important but understudied component of the human microbiota. Like bacteria, fungi can cause severe lung diseases, but their infection rates are much lower. This study compared the bacterial and fungal communities of sputum samples from a large cohort of 56 adult patients with cystic fibrosis (CF) during nonexacerbation periods and under continuous antibiotic treatment. Molecular fingerprinting based on single-strand conformation polymorphism (SSCP) analysis revealed fundamental differences between bacterial and fungal communities. Both groups of microorganisms were taxonomically classified by identification of gene sequences (16S rRNA and internal transcript spacer), and prevalences of single taxa were determined for the entire cohort. Major bacterial pathogens were frequently observed, whereas fungi of known pathogenicity in CF were detected only in low numbers. Fungal species richness increased without reaching a constant level (saturation), whereas bacterial richness showed saturation after 50 patients were analyzed. In contrast to bacteria, a large number of fungal species were observed together with high fluctuations over time and among patients. These findings demonstrated that the mycobiome was dominated by transient species, which strongly suggested that the main driving force was their presence in inhaled air rather than colonization. Considering the high exposure of human airways to fungal spores, we concluded that fungi have low colonization abilities in CF, and colonization by pathogenic fungal species may be considered a rare event. A comprehensive understanding of the conditions promoting fungal colonization may offer the opportunity to prevent colonization and substantially reduce or even eliminate fungus-related disease progression in CF. PMID:26135861

  3. Fungal Responses to Anthropogenic N Deposition: A Historical Perspective

    Science.gov (United States)

    Cline, L.; Gutknecht, J.; Kennedy, P.

    2017-12-01

    Fungi mediate primary productivity via the decay of organic matter and the formation of mycorrhizal associations. Short-term experimental manipulations reveal that nitrogen (N) addition slows decomposition and decreases plant reliance on fungal symbionts. However, it remains unclear if the responses observed in experimental systems apply to natural forests, where the addition of N via atmospheric deposition has taken place over much longer time periods. To address this discrepancy, we measured N concentration and isotopic composition in leaf and sporocarp tissue of herbarium specimens collected over the last 120 years in the Twin Cities metropolitan area of Minnesota, USA. We selected specimens from two fungal genera (Marasmius, Amanita) and two plant genera (Acer, Betula) due to their differing ability to form ectomycorrhizal associations as well as extensive representation in the UMN Bell Museum collections (1890 - 2010). Independent of taxonomy and mycorrhizal association, we observed consistent and significant decreases in foliar δ15N and sporocarp δ15N values through time (mixed effects model; b = -0.046; F = 42.0; P fungi ; r2 = 0.10 P = 0.085), despite no significant change in Amanita (ectomycorrhizal fungi) or Acer (non-mycorrhizal host) N content. The declining foliar δ15N and foliar N concentrations suggest that despite significant atmospheric N input during the latter half of the 20th century, soil N availability in MN forests has actually declined. Furthermore, concomitant declines in foliar and sporocarp δ15N did not indicate a shrinking fungal role in temperate forest N cycling. We hypothesize that interactions among global change agents (i.e., N deposition and elevated atmospheric CO2) may be leading to enhanced ecosystem N sequestration and progressive N limitation. Collectively, these results suggest that short-term experimental studies may not accurately reflect the cumulative effects of background N addition via deposition in temperate forest

  4. Comparative studies about fungal colonization and deoxynivalenol translocation in barley plants inoculated at the base with Fusarium graminearum, Fusarium culmorum and Fusarium pseudograminearum

    Directory of Open Access Journals (Sweden)

    Francesco Pecoraro

    2018-03-01

    Full Text Available Fusarium crown rot (FCR, an important disease of wheat and barley, is mainly caused by Fusarium graminearum, F. culmorum and F. pseudograminearum, which are also responsible for mycotoxin production. This is the first comparative investigation of their colonization on barley plants after stem base inoculation. At plant maturity, FCR symptoms were visually evaluated, fungal biomass was quantified by Real-Time quantitative PCR and deoxynivalenol (DON was detected by enzyme-linked immunosorbent assay (ELISA. All the inoculated strains caused the typical FCR necrotic symptoms. Real-Time PCR analysis showed that F. graminearum and F. culmorum were present in the head tissues, while F. pseudograminearum colonized only up to the area including the second node of the stem. Conversely, DON was detected up to the head for all the three species. This study shows that, as already demonstrated in previous research for wheat, DON may be detected up to the head as a consequence of stem base infection by the three FCR agents

  5. Different waves of effector genes with contrasted genomic location are expressed by Leptosphaeria maculans during cotyledon and stem colonization of oilseed rape.

    Science.gov (United States)

    Gervais, Julie; Plissonneau, Clémence; Linglin, Juliette; Meyer, Michel; Labadie, Karine; Cruaud, Corinne; Fudal, Isabelle; Rouxel, Thierry; Balesdent, Marie-Hélène

    2017-10-01

    Leptosphaeria maculans, the causal agent of stem canker disease, colonizes oilseed rape (Brassica napus) in two stages: a short and early colonization stage corresponding to cotyledon or leaf colonization, and a late colonization stage during which the fungus colonizes systemically and symptomlessly the plant during several months before stem canker appears. To date, the determinants of the late colonization stage are poorly understood; L. maculans may either successfully escape plant defences, leading to stem canker development, or the plant may develop an 'adult-stage' resistance reducing canker incidence. To obtain an insight into these determinants, we performed an RNA-sequencing (RNA-seq) pilot project comparing fungal gene expression in infected cotyledons and in symptomless or necrotic stems. Despite the low fraction of fungal material in infected stems, sufficient fungal transcripts were detected and a large number of fungal genes were expressed, thus validating the feasibility of the approach. Our analysis showed that all avirulence genes previously identified are under-expressed during stem colonization compared with cotyledon colonization. A validation RNA-seq experiment was then performed to investigate the expression of candidate effector genes during systemic colonization. Three hundred and seven 'late' effector candidates, under-expressed in the early colonization stage and over-expressed in the infected stems, were identified. Finally, our analysis revealed a link between the regulation of expression of effectors and their genomic location: the 'late' effector candidates, putatively involved in systemic colonization, are located in gene-rich genomic regions, whereas the 'early' effector genes, over-expressed in the early colonization stage, are located in gene-poor regions of the genome. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  6. Bat white-nose syndrome: An emerging fungal pathogen?

    Science.gov (United States)

    Blehert, D.S.; Hicks, A.C.; Behr, M.; Meteyer, C.U.; Berlowski-Zier, B. M.; Buckles, E.L.; Coleman, J.T.H.; Darling, S.R.; Gargas, A.; Niver, R.; Okoniewski, J.C.; Rudd, R.J.; Stone, W.B.

    2009-01-01

    White-nose syndrome (WNS) is a condition associated with an unprecedented bat mortality event in the northeastern United States. Since the winter of 2006*2007, bat declines exceeding 75% have been observed at surveyed hibernacula. Affected bats often present with visually striking white fungal growth on their muzzles, ears, and/or wing membranes. Direct microscopy and culture analyses demonstrated that the skin of WNS-affected bats is colonized by a psychro-philic fungus that is phylogenetically related to Geomyces spp. but with a conidial morphology distinct from characterized members of this genus. This report characterizes the cutaneous fungal infection associated with WNS.

  7. Symbiotic fungal associations in 'lower' land plants.

    Science.gov (United States)

    Read, D J; Ducket, J G; Francis, R; Ligron, R; Russell, A

    2000-06-29

    An analysis of the current state of knowledge of symbiotic fungal associations in 'lower' plants is provided. Three fungal phyla, the Zygomycota, Ascomycota and Basidiomycota, are involved in forming these associations, each producing a distinctive suite of structural features in well-defined groups of 'lower' plants. Among the 'lower' plants only mosses and Equisetum appear to lack one or other of these types of association. The salient features of the symbioses produced by each fungal group are described and the relationships between these associations and those formed by the same or related fungi in 'higher' plants are discussed. Particular consideration is given to the question of the extent to which root fungus associations in 'lower' plants are analogous to 'mycorrhizas' of 'higher' plants and the need for analysis of the functional attributes of these symbioses is stressed. Zygomycetous fungi colonize a wide range of extant lower land plants (hornworts, many hepatics, lycopods, Ophioglossales, Psilotales and Gleicheniaceae), where they often produce structures analogous to those seen in the vesicular-arbuscular (VA) mycorrhizas of higher plants, which are formed by members of the order Glomales. A preponderance of associations of this kind is in accordance with palaeohbotanical and molecular evidence indicating that glomalean fungi produced the archetypal symbioses with the first plants to emerge on to land. It is shown, probably for the first time, that glomalean fungi forming typical VA mycorrhiza with a higher plant (Plantago lanceolata) can colonize a thalloid liverwort (Pellia epiphylla), producing arbuscules and vesicles in the hepatic. The extent to which these associations, which are structurally analogous to mycorrhizas, have similar functions remains to be evaluated. Ascomycetous associations are found in a relatively small number of families of leafy liverworts. The structural features of the fungal colonization of rhizoids and underground axes of

  8. Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review.

    Science.gov (United States)

    van Kuijk, S J A; Sonnenberg, A S M; Baars, J J P; Hendriks, W H; Cone, J W

    2015-01-01

    In ruminant nutrition, there is an increasing interest for ingredients that do not compete with human nutrition. Ruminants are specialists in digesting carbohydrates in plant cell walls; therefore lignocellulosic biomass has potential in ruminant nutrition. The presence of lignin in biomass, however, limits the effective utilization of cellulose and hemicellulose. Currently, most often chemical and/or physical treatments are used to degrade lignin. White rot fungi are selective lignin degraders and can be a potential alternative to current methods which involve potentially toxic chemicals and expensive equipment. This review provides an overview of research conducted to date on fungal pretreatment of lignocellulosic biomass for ruminant feeds. White rot fungi colonize lignocellulosic biomass, and during colonization produce enzymes, radicals and other small compounds to breakdown lignin. The mechanisms on how these fungi degrade lignin are not fully understood, but fungal strain, the origin of lignocellulose and culture conditions have a major effect on the process. Ceriporiopsis subvermispora and Pleurotus eryngii are the most effective fungi to improve the nutritional value of biomass for ruminant nutrition. However, conclusions on the effectiveness of fungal delignification are difficult to draw due to a lack of standardized culture conditions and information on fungal strains used. Methods of analysis between studies are not uniform for both chemical analysis and in vitro degradation measurements. In vivo studies are limited in number and mostly describing digestibility after mushroom production, when the fungus has degraded cellulose to derive energy for fruit body development. Optimization of fungal pretreatment is required to shorten the process of delignification and make it more selective for lignin. In this respect, future research should focus on optimization of culture conditions and gene expression to obtain a better understanding of the mechanisms

  9. Aspergillus spp. colonization in exhaled breath condensate of lung cancer patients from Puglia Region of Italy.

    Science.gov (United States)

    Carpagnano, Giovanna E; Lacedonia, Donato; Palladino, Grazia Pia; Logrieco, Giuseppe; Crisetti, Elisabetta; Susca, Antonia; Logrieco, Antonio; Foschino-Barbaro, Maria P

    2014-02-18

    Airways of lung cancer patients are often colonized by fungi. Some of these colonizing fungi, under particular conditions, produce cancerogenic mycotoxins. Given the recent interest in the infective origin of lung cancer, with this preliminary study we aim to give our small contribution to this field of research by analysing the fungal microbiome of the exhaled breath condensate of lung cancer patients from Puglia, a region of Italy. We enrolled 43 lung cancer patients and 21 healthy subjects that underwent exhaled breath condensate and bronchial brushing collection. The fungal incidence and nature of sample collected were analysed by using a selected media for Aspergillus species. For the first time we were able to analyse the fungal microbioma of the exhaled breath condensate. 27.9% of lung cancer patients showed a presence of Aspergillus niger, or A. ochraceus or Penicillium ssp. while none of the healthy subjects did so. The results confirmed the high percentage of fungal colonization of the airways of lung cancer patients from Puglia, suggesting the need to conduct further analyses in this field in order to evaluate the exact pathogenetic role of these fungi in lung cancer as well as to propose efficient, empirical therapy.

  10. Effect of Preservative Treatment on Fungal Colonization of Teak, Redwood, and Western Red Cedar

    DEFF Research Database (Denmark)

    Cabrera Orozco, Yohanna; Freitag, F.; Morrell, Jeffrey J.

    Fungal flora present in preservative treated samples or non-treated samples from sapwood and heartwood of teak, western red cedar, redwood, and southern yellow pine was assessed after 6 to 18 months of exposure near Hilo, Hawaii. The objectives were to compare fungal composition and diversity...... between treated and non-treated samples, and to examine the use of molecular techniques for assessing fungal community structure in a ground-proximity-test located in Hilo, Hawaii. Fungi were recovered in culture after 6, 12, or 18 months, yielding 178 unique DNA sequences that represented 85 taxa...

  11. Studies on mycoflora colonizing raw keratin wastes in arable soil

    Directory of Open Access Journals (Sweden)

    Teresa Korniłłowicz

    2014-08-01

    Full Text Available The present studies showed that feathers placed in soil demonstrated the succesion of physiologically differentiated communities of micromycetes. The first colonizers were sugar fungi. The second phase of feather colonization showed the prevalence of nutritively undeveloped polyphages and "root" celulolytic fungi. The final phase of colonization was dominated by keratinophilic fungi together with microflora that involved the forms known mainly for their strong proteolytic abilities. It was found that both the Chemical structure of substrate and soil properties with its pH determined the qualitative composition of fungal flora.

  12. Ameboma: A Colon Carcinoma-Like Lesion in a Colonoscopy Finding

    Directory of Open Access Journals (Sweden)

    Chung-Cheng Lin

    2013-10-01

    Full Text Available Ameboma is a rare complication of amebic colitis presenting as a mass of granulation tissue with peripheral fibrosis and a core of inflammation related to amebic chronic infection. The initial presentations are usually obstruction and low gastrointestinal bleeding. The most common sites are the ascending colon and the cecum. It may mimic colon carcinoma, Crohn's disease, carcinoma of the colon, non-Hodgkin's lymphoma, tuberculosis, fungal infection, AIDS-associated lymphoma and Kaposi's sarcoma in colonoscopy findings. The therapeutic strategy should be combined with antibiotics for invasive dysentery and eradication of luminal cysts.

  13. Horizontal transmission of Candida albicans and evidence of a vaccine response in mice colonized with the fungus.

    Science.gov (United States)

    Cutler, Jim E; Corti, Miriam; Lambert, Patrick; Ferris, Michael; Xin, Hong

    2011-01-01

    Disseminated candidiasis is the third leading nosocomial blood stream infection in the United States and is often fatal. We previously showed that disseminated candidiasis was preventable in normal mice by immunization with either a glycopeptide or a peptide synthetic vaccine, both of which were Candida albicans cell wall derived. A weakness of these studies is that, unlike humans, mice do not have a C. albicans GI flora and they lack Candida serum antibodies. We examined the influence of C. albicans GI tract colonization and serum antibodies on mouse vaccination responses to the peptide, Fba, derived from fructose bisphosphate aldolase which has cytosolic and cell wall distributions in the fungus. We evaluated the effect of live C. albicans in drinking water and antimicrobial agents on establishment of Candida colonization of the mouse GI tract. Body mass, C. albicans in feces, and fungal-specific serum antibodies were monitored longitudinally. Unexpectedly, C. albicans colonization occurred in mice that received only antibiotics in their drinking water, provided that the mice were housed in the same room as intentionally colonized mice. The fungal strain in unintentionally colonized mice appeared identical to the strain used for intentional GI-tract colonization. This is the first report of horizontal transmission and spontaneous C. albicans colonization in mice. Importantly, many Candida-colonized mice developed serum fungal-specific antibodies. Despite the GI-tract colonization and presence of serum antibodies, the animals made antibodies in response to the Fba immunogen. This mouse model has potential for elucidating C. albicans horizontal transmission and for exploring factors that induce host defense against disseminated candidiasis. Furthermore, a combined protracted GI-tract colonization with Candida and the possibility of serum antibody responses to the presence of the fungus makes this an attractive mouse model for testing the efficacy of vaccines

  14. Horizontal transmission of Candida albicans and evidence of a vaccine response in mice colonized with the fungus.

    Directory of Open Access Journals (Sweden)

    Jim E Cutler

    Full Text Available Disseminated candidiasis is the third leading nosocomial blood stream infection in the United States and is often fatal. We previously showed that disseminated candidiasis was preventable in normal mice by immunization with either a glycopeptide or a peptide synthetic vaccine, both of which were Candida albicans cell wall derived. A weakness of these studies is that, unlike humans, mice do not have a C. albicans GI flora and they lack Candida serum antibodies. We examined the influence of C. albicans GI tract colonization and serum antibodies on mouse vaccination responses to the peptide, Fba, derived from fructose bisphosphate aldolase which has cytosolic and cell wall distributions in the fungus. We evaluated the effect of live C. albicans in drinking water and antimicrobial agents on establishment of Candida colonization of the mouse GI tract. Body mass, C. albicans in feces, and fungal-specific serum antibodies were monitored longitudinally. Unexpectedly, C. albicans colonization occurred in mice that received only antibiotics in their drinking water, provided that the mice were housed in the same room as intentionally colonized mice. The fungal strain in unintentionally colonized mice appeared identical to the strain used for intentional GI-tract colonization. This is the first report of horizontal transmission and spontaneous C. albicans colonization in mice. Importantly, many Candida-colonized mice developed serum fungal-specific antibodies. Despite the GI-tract colonization and presence of serum antibodies, the animals made antibodies in response to the Fba immunogen. This mouse model has potential for elucidating C. albicans horizontal transmission and for exploring factors that induce host defense against disseminated candidiasis. Furthermore, a combined protracted GI-tract colonization with Candida and the possibility of serum antibody responses to the presence of the fungus makes this an attractive mouse model for testing the

  15. Differentiated surface fungal communities at point of harvest on apple fruits from rural and peri-urban orchards

    OpenAIRE

    Shen, Youming; Nie, Jiyun; Li, Zhixia; Li, Haifei; Wu, Yonglong; Dong, Yafeng; Zhang, Jianyi

    2018-01-01

    The diverse fungal communities that colonize fruit surfaces are closely associated with fruit development, preservation and quality control. However, the overall fungi adhering to the fruit surface and the inference of environmental factors are still unknown. Here, we characterized the fungal signatures on apple surfaces by sequencing internal transcribed spacer 1 (ITS1) region. We collected the surface fungal communities from apple fruits cultivated in rural and peri-urban orchards. A total ...

  16. Endogenous Antimicrobial Peptide Expression in Response to Bacterial Epidermal Colonization

    Directory of Open Access Journals (Sweden)

    Michael Brandwein

    2017-11-01

    Full Text Available Bacterial commensal colonization of human skin is vital for the training and maintenance of the skin’s innate and adaptive immune functions. In addition to its physical barrier against pathogen colonization, the skin expresses a variety of antimicrobial peptides (AMPs which are expressed constitutively and induced in response to pathogenic microbial stimuli. These AMPs are differentially effective against a suite of microbial skin colonizers, including both bacterial and fungal residents of the skin. We review the breadth of microorganism-induced cutaneous AMP expression studies and their complementary findings on the efficacy of skin AMPs against different bacterial and fungal species. We suggest further directions for skin AMP research based on emerging skin microbiome knowledge in an effort to advance our understanding of the nuanced host–microbe balance on human skin. Such advances should enable the scientific community to bridge the gap between descriptive disease-state AMP studies and experimental single-species in vitro studies, thereby enabling research endeavors that more closely mimic the natural skin environs.

  17. Unraveling the role of fungal symbionts in plant abiotic stress tolerance

    Science.gov (United States)

    Singh, Lamabam Peter

    2011-01-01

    Fungal symbionts have been found to be associated with every plant studied in the natural ecosystem, where they colonize and reside entirely or partially in the internal tissues of their host plant. Fungal endophytes can express/form a range of different lifestyle/relationships with different host including symbiotic, mutualistic, commensalistic and parasitic in response to host genotype and environmental factors. In mutualistic association fungal endophyte can enhance growth, increase reproductive success and confer biotic and abiotic stress tolerance to its host plant. Since abiotic stress such as, drought, high soil salinity, heat, cold, oxidative stress and heavy metal toxicity is the common adverse environmental conditions that affect and limit crop productivity worldwide. It may be a promising alternative strategy to exploit fungal endophytes to overcome the limitations to crop production brought by abiotic stress. There is an increasing interest in developing the potential biotechnological applications of fungal endophytes for improving plant stress tolerance and sustainable production of food crops. Here we have described the fungal symbioses, fungal symbionts and their role in abiotic stress tolerance. A putative mechanism of stress tolerance by symbionts has also been covered. PMID:21512319

  18. Carbon cost of the fungal symbiont relative to net leaf P accumulation in a split-root VA mycorrhizal symbiosis

    International Nuclear Information System (INIS)

    Douds, D.D. Jr.; Johnson, C.R.; Koch, K.E.

    1988-01-01

    Translocation of 14 C-photosynthates to mycorrhizal (++), half mycorrhizal (0+), and nonmycorrhizal (00) split-root systems was compared to P accumulation in leaves of the host plant. Carrizo citrange seedlings (Poncirus trifoliata [L.] Raf. x Citrus sinensis [L.] Osbeck) were inoculated with the vesicular-arbuscular mycorrhizal fungus Glomus intraradices Schenck and Smith. Plants were exposed to 14 CO 2 for 10 minutes and ambient air for 2 hours. Three to 4% of recently labeled photosynthate was allocated to metabolism of the mycorrhiza in each inoculated root half independent of shoot P concentration, growth response, and whether one or both root halves were colonized. Nonmycorrhizal roots respired more of the label translocated to them than did mycorrhizal roots. Label recovered in the potting medium due to exudation or transport into extraradical hyphae was 5 to 6 times greater for (++) versus (00) plants. In low nutrient media, roots of (0+) and (++) plants transported more P to leaves per root weight than roots of (00) plants. However, when C translocated to roots utilized for respiration, exudation, etc., as well as growth is considered, (00) plant roots were at least as efficient at P uptake (benefit) per C utilized (cost) as (0+) and (++) plants. Root systems of (++) plants did not supply more P to leaves than (0+) plants in higher nutrient media, yet they still allocated twice the 14 C-photosynthate to the mycorrhiza as did (0+) root systems

  19. The effect of particle size and amount of inoculum on fungal treatment of wheat straw and wood chips

    NARCIS (Netherlands)

    Kuijk, van Sandra J.A.; Sonnenberg, Anton S.M.; Baars, Johan J.P.; Hendriks, Wouter H.; Cone, John W.

    2016-01-01

    Background: The aim of this study was to optimize the fungal treatment of lignocellulosic biomass by stimulating the colonization. Wheat straw and wood chips were treated with Ceriporiopsis subvermispora and Lentinula edodes with various amounts of colonized millet grains (0.5, 1.5 or 3.0 % per g

  20. On the perils of mycorrhizal status lists: the case of Buddleja davidii.

    Science.gov (United States)

    Dickie, I A; Thomas, M M; Bellingham, P J

    2007-11-01

    One observation in a mycorrhizal check-list that Buddleja davidii is nonmycorrhizal has been perpetuated in subsequent citations and used in a number of analyses of mycorrhizal ecology and evolution. Direct observation of B. davidii from New Zealand and the UK shows extensive arbuscular mycorrhizal fungal structures inside B. davidii roots. The suggestion that B. davidii is nonmycorrhizal is therefore not supported. The use of mycorrhizal checklists for analysis of plant traits and evolution needs to be undertaken with care to ensure the validity of underlying data.

  1. A continental view of pine-associated ectomycorrhizal fungal spore banks: a quiescent functional guild with a strong biogeographic pattern.

    Science.gov (United States)

    Glassman, Sydney I; Peay, Kabir G; Talbot, Jennifer M; Smith, Dylan P; Chung, Judy A; Taylor, John W; Vilgalys, Rytas; Bruns, Thomas D

    2015-03-01

    Ecologists have long acknowledged the importance of seed banks; yet, despite the fact that many plants rely on mycorrhizal fungi for survival and growth, the structure of ectomycorrhizal (ECM) fungal spore banks remains poorly understood. The primary goal of this study was to assess the geographic structure in pine-associated ECM fungal spore banks across the North American continent. Soils were collected from 19 plots in forests across North America. Fresh soils were pyrosequenced for fungal internal transcribed spacer (ITS) amplicons. Adjacent soil cores were dried and bioassayed with pine seedlings, and colonized roots were pyrosequenced to detect resistant propagules of ECM fungi. The results showed that ECM spore banks correlated strongly with biogeographic location, but not with the identity of congeneric plant hosts. Minimal community overlap was found between resident ECM fungi vs those in spore banks, and spore bank assemblages were relatively simple and dominated by Rhizopogon, Wilcoxina, Cenococcum, Thelephora, Tuber, Laccaria and Suillus. Similar to plant seed banks, ECM fungal spore banks are, in general, depauperate, and represent a small and rare subset of the mature forest soil fungal community. Yet, they may be extremely important in fungal colonization after large-scale disturbances such as clear cuts and forest fires. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. Utilization of organic nitrogen by arbuscular mycorrhizal fungi-is there a specific role for protists and ammonia oxidizers?

    Science.gov (United States)

    Bukovská, Petra; Bonkowski, Michael; Konvalinková, Tereza; Beskid, Olena; Hujslová, Martina; Püschel, David; Řezáčová, Veronika; Gutiérrez-Núñez, María Semiramis; Gryndler, Milan; Jansa, Jan

    2018-04-01

    Arbuscular mycorrhizal (AM) fungi can significantly contribute to plant nitrogen (N) uptake from complex organic sources, most likely in concert with activity of soil saprotrophs and other microbes releasing and transforming the N bound in organic forms. Here, we tested whether AM fungus (Rhizophagus irregularis) extraradical hyphal networks showed any preferences towards certain forms of organic N (chitin of fungal or crustacean origin, DNA, clover biomass, or albumin) administered in spatially discrete patches, and how the presence of AM fungal hyphae affected other microbes. By direct 15 N labeling, we also quantified the flux of N to the plants (Andropogon gerardii) through the AM fungal hyphae from fungal chitin and from clover biomass. The AM fungal hyphae colonized patches supplemented with organic N sources significantly more than those receiving only mineral nutrients, organic carbon in form of cellulose, or nothing. Mycorrhizal plants grew 6.4-fold larger and accumulated, on average, 20.3-fold more 15 N originating from the labeled organic sources than their nonmycorrhizal counterparts. Whereas the abundance of microbes (bacteria, fungi, or Acanthamoeba sp.) in the different patches was primarily driven by patch quality, we noted a consistent suppression of the microbial abundances by the presence of AM fungal hyphae. This suppression was particularly strong for ammonia oxidizing bacteria. Our results indicate that AM fungi successfully competed with the other microbes for free ammonium ions and suggest an important role for the notoriously understudied soil protists to play in recycling organic N from soil to plants via AM fungal hyphae.

  3. Shaping of the fungal communities isolated from yellow lupin seeds (Lupinus luteus L. throughout storage time

    Directory of Open Access Journals (Sweden)

    Bożena Cwalina-Ambroziak

    2012-12-01

    Full Text Available The object of the experiment were seeds of two traditional cultivars of yellow lupin (Juno and Amulet cultivated in 1999 in two crop-rotation with 20% and 33% yellow lupine contribution. The quantitative and qualitative composition of the fungal community colonizing the seeds were determined in the laboratory conditions after 0.5-, 1.5- and 2.5-year of storage time. In total 1077 fungal colonies were isolated from the lupin seeds. Fungi representing the species of Penicillium - 29.3%, Alternaria alternata - 26.7% and Rhizopus nigricans - 12.7% were isolated most widely. Among the fungi pathogenic to lupin, the species of Colletotrichum gloeosporioides (16.3% isolates was dominant. The crop rotation with 20% lupin reduced the number of fungal colonies colonizing the seeds including the pathogens from the species of C. gloeosporioides. Seed disinfection decreased the total number of fungal colonies isolated from both cultivars. Higher number of C. gloeosporioides isolates was found in the combination with disinfected seeds. More fungal colonies were obtained from seeds of cv. Amulet than from those of cv. Juno. The storage duration had an effect on the population and the composition of species of fungi isolated from seeds of yellow lupine. With longer storage population of Penicillium spp. and Rhizopus spp. increased, whereas the population of C. gloeosporioides decreased.

  4. Friends or foes? Emerging insights from fungal interactions with plants.

    Science.gov (United States)

    Zeilinger, Susanne; Gupta, Vijai K; Dahms, Tanya E S; Silva, Roberto N; Singh, Harikesh B; Upadhyay, Ram S; Gomes, Eriston Vieira; Tsui, Clement Kin-Ming; Nayak S, Chandra

    2016-03-01

    Fungi interact with plants in various ways, with each interaction giving rise to different alterations in both partners. While fungal pathogens have detrimental effects on plant physiology, mutualistic fungi augment host defence responses to pathogens and/or improve plant nutrient uptake. Tropic growth towards plant roots or stomata, mediated by chemical and topographical signals, has been described for several fungi, with evidence of species-specific signals and sensing mechanisms. Fungal partners secrete bioactive molecules such as small peptide effectors, enzymes and secondary metabolites which facilitate colonization and contribute to both symbiotic and pathogenic relationships. There has been tremendous advancement in fungal molecular biology, omics sciences and microscopy in recent years, opening up new possibilities for the identification of key molecular mechanisms in plant-fungal interactions, the power of which is often borne out in their combination. Our fragmentary knowledge on the interactions between plants and fungi must be made whole to understand the potential of fungi in preventing plant diseases, improving plant productivity and understanding ecosystem stability. Here, we review innovative methods and the associated new insights into plant-fungal interactions. © FEMS 2015.

  5. Mycorrhizal status of plants in two successional stages on spoil heaps from fireloam mining in Lower Silesia (SW Poland

    Directory of Open Access Journals (Sweden)

    Dorota Kasowska

    2014-01-01

    Full Text Available The mycorrhizal status of two plant communities representing an initial stage (1-2 year-old and a 8-9-year-old stage of succession on spoil heaps from fireloam mining in Lower Silesia, Poland, was determined. In the initial stage, the mycorrhizal structures were not observed in 39% of the investigated species; they were members of the Polygonaceae, Chenopodiaceae and Poaceae families. The relative cover of non-mycorrhizal plants exceeded 50% and the major role was played by the Polygonum aviculare population, which predominated the whole community. Mycorrhizal species (arbuscular mycorrhizae contributed to 61 % of the composition of the initial phyto-coenosis. The most numerous taxa were those with 20-40% of the root length colonized, with a small number of arbuscules (0.2-3.1% of the root length containig arbuscules and no vesicles. In the advanced stage of succession, mycorrhizal plants definitely dominated and the major role was played by the Tussilago farfara population. Compared with the initial stage, the later one also harboured more plants with mycorrhizas occupied >40% of the root length, as well as containing numerous arbuscules (>20% of the root length and vesicles. The non-mycorrhizal species, i.e., Equisetum arvense and Poa compressa, represented 11 % o': the community composition and their relative cover amounted to 3%. Despite the relatively frequent occurrence of the arbuscular mycorrhizae in the initial stage of succession, the qualitative properties of the colonization indicated a low effectiveness of symbiosis. This could be caused by the lack of adaptation of the fungal symbiont to the edaphic conditions which were changed after disturbance.

  6. Colonization of Onions by Endophytic Fungi and Their Impacts on the Biology of Thrips tabaci

    Science.gov (United States)

    Muvea, Alexander M.; Meyhöfer, Rainer; Subramanian, Sevgan; Poehling, Hans-Michael; Ekesi, Sunday; Maniania, Nguya K.

    2014-01-01

    Endophytic fungi, which live within host plant tissues without causing any visible symptom of infection, are important mutualists that mediate plant–herbivore interactions. Thrips tabaci (Lindeman) is one of the key pests of onion, Allium cepa L., an economically important agricultural crop cultivated worldwide. However, information on endophyte colonization of onions, and their impacts on the biology of thrips feeding on them, is lacking. We tested the colonization of onion plants by selected fungal endophyte isolates using two inoculation methods. The effects of inoculated endophytes on T. tabaci infesting onion were also examined. Seven fungal endophytes used in our study were able to colonize onion plants either by the seed or seedling inoculation methods. Seed inoculation resulted in 1.47 times higher mean percentage post-inoculation recovery of all the endophytes tested as compared to seedling inoculation. Fewer thrips were observed on plants inoculated with Clonostachys rosea ICIPE 707, Trichoderma asperellum M2RT4, Trichoderma atroviride ICIPE 710, Trichoderma harzianum 709, Hypocrea lixii F3ST1 and Fusarium sp. ICIPE 712 isolates as compared to those inoculated with Fusarium sp. ICIPE 717 and the control treatments. Onion plants colonized by C. rosea ICIPE 707, T. asperellum M2RT4, T. atroviride ICIPE 710 and H. lixii F3ST1 had significantly lower feeding punctures as compared to the other treatments. Among the isolates tested, the lowest numbers of eggs were laid by T. tabaci on H. lixii F3ST1 and C. rosea ICIPE 707 inoculated plants. These results extend the knowledge on colonization of onions by fungal endophytes and their effects on Thrips tabaci. PMID:25254657

  7. Diversity of fungal endophytes in non-native Phragmites australis in the Great Lakes

    Science.gov (United States)

    Clay, Keith; Shearin, Zachery; Bourke, Kimberly; Bickford, Wesley A.; Kowalski, Kurt P.

    2016-01-01

    Plant–microbial interactions may play a key role in plant invasions. One common microbial interaction takes place between plants and fungal endophytes when fungi asymptomatically colonize host plant tissues. The objectives of this study were to isolate and sequence fungal endophytes colonizing non-native Phragmites australis in the Great Lakes region to evaluate variation in endophyte community composition among three host tissue types and three geographical regions. We collected entire ramets from multiple clones and populations, surface sterilized plant tissues, and plated replicate tissue samples from leaves, stems, and rhizomes on corn meal agar plates to culture and isolate fungal endophytes. Isolates were then subjected to Sanger sequencing of the ITS region of the nuclear ribosomal DNA. Sequences were compared to fungal databases to define operational taxonomic units (OTUs) that were analyzed statistically for community composition. In total, we obtained 173 endophyte isolates corresponding to 55 OTUs, 39 of which were isolated only a single time. The most common OTU corresponded most closely to Sarocladium strictum and comprised 25 % of all fungal isolates. More OTUs were found in stem tissues, but endophyte diversity was greatest in rhizome tissues. PERMANOVA analyses indicated significant differences in endophyte communities among tissue types, geographical regions, and the interaction between those factors, but no differences among individual ramets were detected. The functional role of the isolated endophytes is not yet known, but one genus isolated here (Stagonospora) has been reported to enhance Phragmites growth. Understanding the diversity and functions of Phragmites endophytes may provide targets for control measures based on disrupting host plant/endophyte interactions.

  8. Centralized Drinking Water Treatment Operations Shape Bacterial and Fungal Community Structure.

    Science.gov (United States)

    Ma, Xiao; Vikram, Amit; Casson, Leonard; Bibby, Kyle

    2017-07-05

    Drinking water microbial communities impact opportunistic pathogen colonization and corrosion of water distribution systems, and centralized drinking water treatment represents a potential control for microbial community structure in finished drinking water. In this article, we examine bacterial and fungal abundance and diversity, as well as the microbial community taxonomic structure following each unit operation in a conventional surface water treatment plant. Treatment operations drove the microbial composition more strongly than sampling time. Both bacterial and fungal abundance and diversity decreased following sedimentation and filtration; however, only bacterial abundance and diversity was significantly impacted by free chlorine disinfection. Similarly, each treatment step was found to shift bacterial and fungal community beta-diversity, with the exception of disinfection on the fungal community structure. We observed the enrichment of bacterial and fungal taxa commonly found in drinking water distribution systems through the treatment process, for example, Sphingomonas following filtration and Leptospirillium and Penicillium following disinfection. Study results suggest that centralized drinking water treatment processes shape the final drinking water microbial community via selection of community members and that the bacterial community is primarily driven by disinfection while the eukaryotic community is primarily controlled by physical treatment processes.

  9. Coupled Metagenomic and Chemical Analyses of Degrading Fungal Necromass and Implications for Fungal contributions to Stable Soil Organic Carbon

    Science.gov (United States)

    Egerton-Warburton, L. M.; Schreiner, K. M.; Morgan, B. S. T.; Schultz, J.; Blair, N. E.

    2016-12-01

    Fungi comprise a significant portion of total soil biomass, the turnover of which must represent a dominant flux within the soil carbon cycle. Fungal organic carbon (OC) can turn over on time scales of days to months, but this process is poorly understood. Here, we examined temporal changes in the chemical and microbial community composition of fungal necromass during a 2-month decomposition experiment in which Fusarium avenaceum (a common saprophyte) was exposed to a natural soil microbial community. Over the course of the experiment, residual fungal necromass was harvested and analyzed using FTIR and thermochemolysis-GCMS to examine chemical changes in the tissue. In addition, genomic DNA was extracted from tissues, amplified with barcoded ITS primers, and sequenced using the high-throughput Illumina platform to examine changes in microbial community composition. Up to 80% of the fungal necromass turned over in the first week. This rapid degradation phase corresponded to colonization of the necromass by known chitinolytic soil fungi including Mortierella species. Members of the Zygomycota and Ascomycota were among the dominant fungal groups involved in degradation with very small contributions from Basidiomycota. At the end of the 2-month degradation, only 15% of the original necromass remained. The residual material was rich in amide and C-O moieties which is consistent with previous work predicting that peptidoglycans are the main residual product from microbial tissue degradation. Straight-chain fatty acids exhibited varying degradation profiles, with some fatty acids (e.g. C16, C18:1) degrading more rapidly than bulk tissue while others maintained steady concentrations relative to bulk OC (C18) or increased in concentration throughout the degradation sequence (C24). These results indicate that the turnover of fungal necromass has the potential to rapidly and significantly influence a variety of soil OC properties including C/N ratios, lipid biomarker

  10. Differentiated surface fungal communities at point of harvest on apple fruits from rural and peri-urban orchards.

    Science.gov (United States)

    Shen, Youming; Nie, Jiyun; Li, Zhixia; Li, Haifei; Wu, Yonglong; Dong, Yafeng; Zhang, Jianyi

    2018-02-01

    The diverse fungal communities that colonize fruit surfaces are closely associated with fruit development, preservation and quality control. However, the overall fungi adhering to the fruit surface and the inference of environmental factors are still unknown. Here, we characterized the fungal signatures on apple surfaces by sequencing internal transcribed spacer 1 (ITS1) region. We collected the surface fungal communities from apple fruits cultivated in rural and peri-urban orchards. A total of 111 fungal genera belonging to 4 phyla were identified, showing remarkable fungal diversity on the apple surface. Comparative analysis of rural samples harboured higher fungal diversity than those from peri-urban orchards. In addition, fungal composition varied significantly across apple samples. At the genus level, the protective genera Coniothyrium, Paraphaeosphaeria and Periconia were enriched in rural samples. The pathogenic genera Acremonium, Aspergillus, Penicillium and Tilletiposis were enriched in peri-urban samples. Our findings indicate that rural samples maintained more diverse fungal communities on apple surfaces, whereas peri-urban-planted apple carried potential pathogenic risks. This study sheds light on ways to improve fruit cultivation and disease prevention practices.

  11. Experimental soil warming shifts the fungal community composition at the alpine treeline.

    Science.gov (United States)

    Solly, Emily F; Lindahl, Björn D; Dawes, Melissa A; Peter, Martina; Souza, Rômulo C; Rixen, Christian; Hagedorn, Frank

    2017-07-01

    Increased CO 2 emissions and global warming may alter the composition of fungal communities through the removal of temperature limitation in the plant-soil system, faster nitrogen (N) cycling and changes in the carbon (C) allocation of host plants to the rhizosphere. At a Swiss treeline featuring Larix decidua and Pinus uncinata, the effects of multiple years of CO 2 enrichment and experimental soil warming on the fungal community composition in the organic horizons were analysed using 454-pyrosequencing of ITS2 amplicons. Sporocarp production and colonization of ectomycorrhizal root tips were investigated in parallel. Fungal community composition was significantly altered by soil warming, whereas CO 2 enrichment had little effect. Tree species influenced fungal community composition and the magnitude of the warming responses. The abundance of ectomycorrhizal fungal taxa was positively correlated with N availability, and ectomycorrhizal taxa specialized for conditions of high N availability proliferated with warming, corresponding to considerable increases in inorganic N in warmed soils. Traits related to N utilization are important in determining the responses of ectomycorrhizal fungi to warming in N-poor cold ecosystems. Shifts in the overall fungal community composition in response to higher temperatures may alter fungal-driven processes with potential feedbacks on ecosystem N cycling and C storage at the alpine treeline. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  12. Imaging O2 changes induced in tomato roots by fungal pathogen

    Science.gov (United States)

    Rubol, S.; Turco, E.; Rodeghiero, M.; Bellin, A.

    2014-12-01

    In the last decade, planar optodes have demonstrated to be a useful non-invasive tool to monitor real time oxygen concentrations in a wide range of applications. However, only limited investigations have been carried out to explore the use of optodes in plant respiration studies. In particular, their use to study plant-pathogen interactions has been not deeply investigated. Here, we present for the first time an in vitro experimental setup capable to depict the dynamical effects of the fungal pathogen Fusarium oxysporum f.sp. lycopersici (Fol) on tomato roots by the use of a recently developed optical non-invasive optode oxygen sensor (Visisens, Presens, Germany). Fol is a soil-borne pathogen and the causal agent of wilt in tomato plants, a destructive worldwide disease. The interaction Fol-tomato is widely accepted as a model system in plant pathology. In this work, oxygen concentrations are monitored continuously in time and considered a proxy for root respiration and metabolic activity. The experimental procedure reveals three different dynamic stages: 1) a uniform oxygen consumption in tomato roots earlier before pathogen colonization, 2) a progressive decrease in the oxygen concentration indicating a high metabolic activity as soon as the roots were surrounded and colonized by the fungal mycelium, and 3) absence of root respiration, as a consequence of root death. Our results suggest the ability of the fungal mycelium to move preferentially towards and along the root as a consequence of the recognition event.

  13. Transcriptome analysis of the Populus trichocarpa-Rhizophagus irregularis Mycorrhizal Symbiosis: Regulation of Plant and Fungal Transportomes under Nitrogen Starvation.

    Science.gov (United States)

    Calabrese, Silvia; Kohler, Annegret; Niehl, Annette; Veneault-Fourrey, Claire; Boller, Thomas; Courty, Pierre-Emmanuel

    2017-06-01

    Nutrient transfer is a key feature of the arbuscular mycorrhizal (AM) symbiosis. Valuable mineral nutrients are transferred from the AM fungus to the plant, increasing its fitness and productivity, and, in exchange, the AM fungus receives carbohydrates as an energy source from the plant. Here, we analyzed the transcriptome of the Populus trichocarpa-Rhizophagus irregularis symbiosis using RNA-sequencing of non-mycorrhizal or mycorrhizal fine roots, with a focus on the effect of nitrogen (N) starvation. In R. irregularis, we identified 1,015 differentially expressed genes, whereby N starvation led to a general induction of gene expression. Genes of the functional classes of cell growth, membrane biogenesis and cell structural components were highly abundant. Interestingly, N starvation also led to a general induction of fungal transporters, indicating increased nutrient demand upon N starvation. In non-mycorrhizal P. trichocarpa roots, 1,341 genes were differentially expressed under N starvation. Among the 953 down-regulated genes in N starvation, most were involved in metabolic processes including amino acids, carbohydrate and inorganic ion transport, while the 342 up-regulated genes included many defense-related genes. Mycorrhization led to the up-regulation of 549 genes mainly involved in secondary metabolite biosynthesis and transport; only 24 genes were down-regulated. Mycorrhization specifically induced expression of three ammonium transporters and one phosphate transporter, independently of the N conditions, corroborating the hypothesis that these transporters are important for symbiotic nutrient exchange. In conclusion, our data establish a framework of gene expression in the two symbiotic partners under high-N and low-N conditions. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Fungal treatment of lignocellulosic biomass: Importance of fungal species, colonization and time on chemical composition and in vitro rumen degradability

    NARCIS (Netherlands)

    Kuijk, van S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; Cone, J.W.

    2015-01-01

    The aim of this study is to evaluate fungal treatments to improve in vitro rumen degradability of lignocellulosic biomass. In this study four selective lignin degrading fungi, Ganoderma lucidum, Lentinula edodes, Pleurotus eryngii and Pleurotus ostreatus, were used to pre-treat lignocellulosic

  15. Endophytic colonization of tomato plants by the biological control agent Clonostachys rosea

    DEFF Research Database (Denmark)

    Høyer, Anna Kaja; Jørgensen, Hans Jørgen Lyngs; Amby, Daniel Buchvaldt

    Fungal endophytes live naturally inside plants without causing symptoms. On the contrary, they can promote plant growth and increase tolerance to abiotic and biotic stress. These beneficial effects have increased the agricultural interest for exploitation of fungal isolates with an endophytic life...... controls seed- and soil-borne diseases and can furthermore promote plant growth. However, it is not known whether IK726 can colonize plants internally and therefore, the objective of the present study was to examine the possibility of an endophytic life-style of IK726 in tomato. Tomato seeds were sown...

  16. Immune Cell-Supplemented Human Skin Model for Studying Fungal Infections.

    Science.gov (United States)

    Kühbacher, Andreas; Sohn, Kai; Burger-Kentischer, Anke; Rupp, Steffen

    2017-01-01

    Human skin is a niche for various fungal species which either colonize the surface of this tissue as commensals or, primarily under conditions of immunosuppression, invade the skin and cause infection. Here we present a method for generation of a human in vitro skin model supplemented with immune cells of choice. This model represents a complex yet amenable tool to study molecular mechanisms of host-fungi interactions at human skin.

  17. Effect of Pre-weaning Diet on the Ruminal Archaeal, Bacterial, and Fungal Communities of Dairy Calves.

    Science.gov (United States)

    Dias, Juliana; Marcondes, Marcos I; Noronha, Melline F; Resende, Rafael T; Machado, Fernanda S; Mantovani, Hilário C; Dill-McFarland, Kimberly A; Suen, Garret

    2017-01-01

    At birth, calves display an underdeveloped rumen that eventually matures into a fully functional rumen as a result of solid food intake and microbial activity. However, little is known regarding the gradual impact of pre-weaning diet on the establishment of the rumen microbiota. Here, we employed next-generation sequencing to investigate the effects of the inclusion of starter concentrate (M: milk-fed vs. MC: milk plus starter concentrate fed) on archaeal, bacterial and anaerobic fungal communities in the rumens of 45 crossbred dairy calves across pre-weaning development (7, 28, 49, and 63 days). Our results show that archaeal, bacterial, and fungal taxa commonly found in the mature rumen were already established in the rumens of calves at 7 days old, regardless of diet. This confirms that microbiota colonization occurs in the absence of solid substrate. However, diet did significantly impact some microbial taxa. In the bacterial community, feeding starter concentrate promoted greater diversity of bacterial taxa known to degrade readily fermentable carbohydrates in the rumen (e.g., Megasphaera, Sharpea , and Succinivribrio ). Shifts in the ruminal bacterial community also correlated to changes in fermentation patterns that favored the colonization of Methanosphaera sp. A4 in the rumen of MC calves. In contrast, M calves displayed a bacterial community dominated by taxa able to utilize milk nutrients (e.g., Lactobacillus, Bacteroides , and Parabacteroides ). In both diet groups, the dominance of these milk-associated taxa decreased with age, suggesting that diet and age simultaneously drive changes in the structure and abundance of bacterial communities in the developing rumen. Changes in the composition and abundance of archaeal communities were attributed exclusively to diet, with more highly abundant Methanosphaera and less abundant Methanobrevibacter in MC calves. Finally, the fungal community was dominated by members of the genus SK3 and Caecomyces . Relative

  18. Effect of Pre-weaning Diet on the Ruminal Archaeal, Bacterial, and Fungal Communities of Dairy Calves

    Science.gov (United States)

    Dias, Juliana; Marcondes, Marcos I.; Noronha, Melline F.; Resende, Rafael T.; Machado, Fernanda S.; Mantovani, Hilário C.; Dill-McFarland, Kimberly A.; Suen, Garret

    2017-01-01

    At birth, calves display an underdeveloped rumen that eventually matures into a fully functional rumen as a result of solid food intake and microbial activity. However, little is known regarding the gradual impact of pre-weaning diet on the establishment of the rumen microbiota. Here, we employed next-generation sequencing to investigate the effects of the inclusion of starter concentrate (M: milk-fed vs. MC: milk plus starter concentrate fed) on archaeal, bacterial and anaerobic fungal communities in the rumens of 45 crossbred dairy calves across pre-weaning development (7, 28, 49, and 63 days). Our results show that archaeal, bacterial, and fungal taxa commonly found in the mature rumen were already established in the rumens of calves at 7 days old, regardless of diet. This confirms that microbiota colonization occurs in the absence of solid substrate. However, diet did significantly impact some microbial taxa. In the bacterial community, feeding starter concentrate promoted greater diversity of bacterial taxa known to degrade readily fermentable carbohydrates in the rumen (e.g., Megasphaera, Sharpea, and Succinivribrio). Shifts in the ruminal bacterial community also correlated to changes in fermentation patterns that favored the colonization of Methanosphaera sp. A4 in the rumen of MC calves. In contrast, M calves displayed a bacterial community dominated by taxa able to utilize milk nutrients (e.g., Lactobacillus, Bacteroides, and Parabacteroides). In both diet groups, the dominance of these milk-associated taxa decreased with age, suggesting that diet and age simultaneously drive changes in the structure and abundance of bacterial communities in the developing rumen. Changes in the composition and abundance of archaeal communities were attributed exclusively to diet, with more highly abundant Methanosphaera and less abundant Methanobrevibacter in MC calves. Finally, the fungal community was dominated by members of the genus SK3 and Caecomyces. Relative

  19. Effect of Pre-weaning Diet on the Ruminal Archaeal, Bacterial, and Fungal Communities of Dairy Calves

    Directory of Open Access Journals (Sweden)

    Juliana Dias

    2017-08-01

    Full Text Available At birth, calves display an underdeveloped rumen that eventually matures into a fully functional rumen as a result of solid food intake and microbial activity. However, little is known regarding the gradual impact of pre-weaning diet on the establishment of the rumen microbiota. Here, we employed next-generation sequencing to investigate the effects of the inclusion of starter concentrate (M: milk-fed vs. MC: milk plus starter concentrate fed on archaeal, bacterial and anaerobic fungal communities in the rumens of 45 crossbred dairy calves across pre-weaning development (7, 28, 49, and 63 days. Our results show that archaeal, bacterial, and fungal taxa commonly found in the mature rumen were already established in the rumens of calves at 7 days old, regardless of diet. This confirms that microbiota colonization occurs in the absence of solid substrate. However, diet did significantly impact some microbial taxa. In the bacterial community, feeding starter concentrate promoted greater diversity of bacterial taxa known to degrade readily fermentable carbohydrates in the rumen (e.g., Megasphaera, Sharpea, and Succinivribrio. Shifts in the ruminal bacterial community also correlated to changes in fermentation patterns that favored the colonization of Methanosphaera sp. A4 in the rumen of MC calves. In contrast, M calves displayed a bacterial community dominated by taxa able to utilize milk nutrients (e.g., Lactobacillus, Bacteroides, and Parabacteroides. In both diet groups, the dominance of these milk-associated taxa decreased with age, suggesting that diet and age simultaneously drive changes in the structure and abundance of bacterial communities in the developing rumen. Changes in the composition and abundance of archaeal communities were attributed exclusively to diet, with more highly abundant Methanosphaera and less abundant Methanobrevibacter in MC calves. Finally, the fungal community was dominated by members of the genus SK3 and Caecomyces

  20. Caterpillars and fungal pathogens: two co-occurring parasites of an ant-plant mutualism.

    Directory of Open Access Journals (Sweden)

    Olivier Roux

    Full Text Available In mutualisms, each interacting species obtains resources from its partner that it would obtain less efficiently if alone, and so derives a net fitness benefit. In exchange for shelter (domatia and food, mutualistic plant-ants protect their host myrmecophytes from herbivores, encroaching vines and fungal pathogens. Although selective filters enable myrmecophytes to host those ant species most favorable to their fitness, some insects can by-pass these filters, exploiting the rewards supplied whilst providing nothing in return. This is the case in French Guiana for Cecropia obtusa (Cecropiaceae as Pseudocabima guianalis caterpillars (Lepidoptera, Pyralidae can colonize saplings before the installation of their mutualistic Azteca ants. The caterpillars shelter in the domatia and feed on food bodies (FBs whose production increases as a result. They delay colonization by ants by weaving a silk shield above the youngest trichilium, where the FBs are produced, blocking access to them. This probable temporal priority effect also allows female moths to lay new eggs on trees that already shelter caterpillars, and so to occupy the niche longer and exploit Cecropia resources before colonization by ants. However, once incipient ant colonies are able to develop, they prevent further colonization by the caterpillars. Although no higher herbivory rates were noted, these caterpillars are ineffective in protecting their host trees from a pathogenic fungus, Fusarium moniliforme (Deuteromycetes, that develops on the trichilium in the absence of mutualistic ants. Therefore, the Cecropia treelets can be parasitized by two often overlooked species: the caterpillars that shelter in the domatia and feed on FBs, delaying colonization by mutualistic ants, and the fungal pathogen that develops on old trichilia. The cost of greater FB production plus the presence of the pathogenic fungus likely affect tree growth.

  1. Deteriorating effects of lichen and microbial colonization of carbonate building rocks in the Romanesque churches of Segovia (Spain)

    International Nuclear Information System (INIS)

    Rios, Asuncion de los; Camara, Beatriz; Garcia del Cura, Ma Angeles; Rico, Victor J.; Galvan, Virginia; Ascaso, Carmen

    2009-01-01

    In this study, the deterioration effects of lichens and other lithobionts in a temperate mesothermal climate were explored. We examined samples of dolostone and limestone rocks with visible signs of biodeterioration taken from the exterior wall surfaces of four Romanesque churches in Segovia (Spain): San Lorenzo, San Martin, San Millan and La Vera Cruz. Biofilms developing on the lithic substrate were analyzed by scanning electron microscopy. The most common lichen species found in the samples were recorded. Fungal cultures were then obtained from these carbonate rocks and characterized by sequencing Internal Transcribed Spacers (ITS). Through scanning electron microscopy in back-scattered electron mode, fungi (lichenized and non-lichenized) were observed as the most frequent microorganisms occurring at sites showing signs of biodeterioration. The colonization process was especially conditioned by the porosity characteristics of the stone used in these buildings. While in dolostones, microorganisms mainly occupied spaces comprising the rock's intercrystalline porosity, in bioclastic dolomitized limestones, fungal colonization seemed to be more associated with moldic porosity. Microbial biofilms make close contact with the substrate, and thus probably cause significant deterioration of the underlying materials. We describe the different processes of stone alteration induced by fungal colonization and discuss the implications of these processes for the design of treatments to prevent biodeterioration

  2. Deteriorating effects of lichen and microbial colonization of carbonate building rocks in the Romanesque churches of Segovia (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Asuncion de los [Instituto de Recursos Naturales, Centro de Ciencias Medioambientales (CSIC), Serrano 115 dpdo., 28006 Madrid (Spain)], E-mail: arios@ccma.csic.es; Camara, Beatriz [Instituto de Recursos Naturales, Centro de Ciencias Medioambientales (CSIC), Serrano 115 dpdo., 28006 Madrid (Spain); Garcia del Cura, Ma Angeles [Instituto de Geologia Economica CSIC-UCM, Laboratorio de Petrologia Aplicada, Unidad Asociada CSIC-UA, Alicante (Spain); Rico, Victor J. [Departamento de Biologia Vegetal II, Facultad de Farmacia, Universidad Complutense, 28040 Madrid (Spain); Galvan, Virginia [Facultad Patrimonio Cultural, Universidad SEK, Convento de Santa Cruz la Real, 40003 Segovia (Spain); Ascaso, Carmen [Instituto de Recursos Naturales, Centro de Ciencias Medioambientales (CSIC), Serrano 115 dpdo., 28006 Madrid (Spain)

    2009-01-15

    In this study, the deterioration effects of lichens and other lithobionts in a temperate mesothermal climate were explored. We examined samples of dolostone and limestone rocks with visible signs of biodeterioration taken from the exterior wall surfaces of four Romanesque churches in Segovia (Spain): San Lorenzo, San Martin, San Millan and La Vera Cruz. Biofilms developing on the lithic substrate were analyzed by scanning electron microscopy. The most common lichen species found in the samples were recorded. Fungal cultures were then obtained from these carbonate rocks and characterized by sequencing Internal Transcribed Spacers (ITS). Through scanning electron microscopy in back-scattered electron mode, fungi (lichenized and non-lichenized) were observed as the most frequent microorganisms occurring at sites showing signs of biodeterioration. The colonization process was especially conditioned by the porosity characteristics of the stone used in these buildings. While in dolostones, microorganisms mainly occupied spaces comprising the rock's intercrystalline porosity, in bioclastic dolomitized limestones, fungal colonization seemed to be more associated with moldic porosity. Microbial biofilms make close contact with the substrate, and thus probably cause significant deterioration of the underlying materials. We describe the different processes of stone alteration induced by fungal colonization and discuss the implications of these processes for the design of treatments to prevent biodeterioration.

  3. Effect of ectomycorrhizal colonization and drought on reactive oxygen species metabolism of Nothofagus dombeyi roots.

    Science.gov (United States)

    Alvarez, Maricel; Huygens, Dries; Fernandez, Carlos; Gacitúa, Yessy; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Infection with ectomycorrhizal fungi can increase the ability of plants to resist drought stress through morphophysiological and biochemical mechanisms. However, the metabolism of antioxidative enzyme activities in the ectomycorrhizal symbiosis remains poorly understood. This study investigated biomass production, reactive oxygen metabolism (hydrogen peroxide and malondialdehyde concentration) and antioxidant enzyme activity (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) in pure cultures of the ectomycorrhizal fungi Descolea antartica Sing. and Pisolithus tinctorius (Pers.) Coker & Couch, and non-mycorrhizal and mycorrhizal roots of Nothofagus dombeyi (Mirb.) roots under well-watered conditions and drought conditions (DC). The studied ectomycorrhizal fungi regulated their antioxidative enzyme metabolism differentially in response to drought, resulting in cellular damage in D. antartica but not in P. tinctorius. Ectomycorrhizal inoculation and water treatment had a significant effect on all parameters studied, including relative water content of the plant. As such, N. dombeyi plants in symbiosis experienced a lower oxidative stress effect than non-mycorrhizal plants under DC. Additionally, ectomycorrhizal N. dombeyi roots showed a greater antioxidant enzyme activity relative to non-mycorrhizal roots, an effect which was further expressed under DC. The association between the non-specific P. tinctorius and N. dombeyi had a more effective reactive oxygen species (ROS) metabolism than the specific D. antartica-N. dombeyi symbiosis. We conclude that the combination of effective ROS prevention and ROS detoxification by ectomycorrhizal plants resulted in reduced cellular damage and increased plant growth relative to non-mycorrhizal plants under drought.

  4. Arbuscular mycorrhizal fungi increase salt tolerance of apple seedlings.

    Science.gov (United States)

    Yang, Shou-Jun; Zhang, Zhong-Lan; Xue, Yuan-Xia; Zhang, Zhi-Fen; Shi, Shu-Yi

    2014-12-01

    Apple trees are often subject to severe salt stress in China as well as in the world that results in significant loss of apple production. Therefore this study was carried out to evaluate the response of apple seedlings inoculated with abuscular mycorrhizal fungi under 0, 2‰, 4‰ and 6‰ salinity stress levels and further to conclude the upper threshold of mycorrhizal salinity tolerance. The results shows that abuscular mycorrhizal fungi significantly increased the root length colonization of mycorrhizal apple plants with exposure time period to 0, 2‰ and 4‰ salinity levels as compared to non-mycorrhizal plants, however, percent root colonization reduced as saline stress increased. Salinity levels were found to negatively correlate with leaf relative turgidity, osmotic potential irrespective of non-mycorrhizal and mycorrhizal apple plants, but the decreased mycorrhizal leaf turgidity maintained relative normal values at 2‰ and 4‰ salt concentrations. Under salt stress condition, Cl - and Na + concentrations clearly increased and K + contents obviously decreased in non-mycorrhizal roots in comparison to mycorrhizal plants, this caused mycorrhizal plants had a relatively higher K + /Na + ratio in root. In contrast to zero salinity level, although ascorbate peroxidase and catalase activities in non-inoculated and inoculated leaf improved under all saline levels, the extent of which these enzymes increased was greater in mycorrhizal than in non-mycorrhizal plants. The numbers of survived tree with non-mycorrhization were 40, 20 and 0 (i.e., 66.7%, 33.3% and 0) on the days of 30, 60 and 90 under 4‰ salinity, similarly in mycorrhization under 6‰ salinity 40, 30 and 0 (i.e., 66.7%, 50% and 0) respectively. These results suggest that 2‰ and 4‰ salt concentrations may be the upper thresholds of salinity tolerance in non-mycorrhizal and mycorrhizal apple plants, respectively.

  5. Early diagnosis of fungal infections in lung transplant recipients, colonization versus invasive disease?

    Science.gov (United States)

    Herrera, Sabina; Husain, Shahid

    2018-05-21

    The diagnosis of invasive aspergillosis remains challenging in solid organ transplants in general, and in lung transplant recipients, in particular, because of colonization. Lung transplant recipients may be over treated with antifungal drugs because of the lack of appropriate diagnostic tools. A review of the new developments of diagnostic tools and whether this help distinguishing colonization from invasive disease is presented. Efforts are being made to develop new tools that will allow us to identify which patients will develop IPA, and those who will be able to control the disease.

  6. Dandruff is associated with disequilibrium in the proportion of the major bacterial and fungal populations colonizing the scalp.

    Directory of Open Access Journals (Sweden)

    Cécile Clavaud

    Full Text Available The bacterial and fungal communities associated with dandruff were investigated using culture-independent methodologies in the French subjects. The major bacterial and fungal species inhabiting the scalp subject's were identified by cloning and sequencing of the conserved ribosomal unit regions (16S for bacterial and 28S-ITS for fungal and were further quantified by quantitative PCR. The two main bacterial species found on the scalp surface were Propionibacterium acnes and Staphylococcus epidermidis, while Malassezia restricta was the main fungal inhabitant. Dandruff was correlated with a higher incidence of M. restricta and S. epidermidis and a lower incidence of P. acnes compared to the control population (p<0.05. These results suggested for the first time using molecular methods, that dandruff is linked to the balance between bacteria and fungi of the host scalp surface.

  7. A study on fungal flora of the normal eye surface in Iranian native cattle

    Directory of Open Access Journals (Sweden)

    tohid nouri

    2014-11-01

    Full Text Available The microflora of the normal ocular surface is one of the sources supplying fungal agents for keratomycosis. This study was conducted to identify fungal isolates of the conjunctiva in clinically healthy Iranian native cattle in Urmia district. Swabs were taken from both eyes of cattle (n=45 and cultured onto Sabouraud dextrose agar with chloramphenicol and malt extract agar. Plates were incubated at 25°C and examined for 7 days. Data were analyzed for the effect of age and sex by fisher’s exact test. Thirteen cattle (28.89% were found to be positive for fungal growth. The isolated fungal genera were Aspergillus spp-7 cases (53.84%, Penicillium spp-6 cases (46.15%, Rhodotorula sp-1 case (7.69% and Candida sp-1 case (7.69%. Yeast genera represented 13.3% of all the isolates. Sex and age of cattle had no significant effect on prevalence of isolates. Incidence of fungal colonization of the eyes compared with similar studies was low which may reflect differences in season and technique of sampling. Unexpected high frequency of Aspergillus may be due to geographic differences.

  8. Age and gender affect the composition of fungal population of the human gastrointestinal tract

    Directory of Open Access Journals (Sweden)

    Francesco Strati

    2016-08-01

    Full Text Available The fungal component of the human gut microbiota has been neglected for long time due to the low relative abundance of fungi with respect to bacteria, and only recently few reports have explored its composition and dynamics in health or disease. The application of metagenomics methods to the full understanding of fungal communities is currently limited by the under representation of fungal DNA with respect to the bacterial one, as well as by the limited ability to discriminate passengers from colonizers. Here we investigated the gut mycobiota of a cohort of healthy subjects in order to reduce the gap of knowledge concerning fungal intestinal communities in the healthy status further screening for phenotypical traits that could reflect fungi adaptation to the host. We studied the fecal fungal populations of 111 healthy subjects by means of cultivation on fungal selective media and by amplicon-based ITS1 metagenomics analysis on a subset of 57 individuals. We then characterized the isolated fungi for their tolerance to gastrointestinal tract-like challenges and their susceptibility to antifungals. A total of 34 different fungal species were isolated showing several phenotypic characteristics associated with intestinal environment such as tolerance to body temperature (37°C, to acidic and oxidative stress and to bile salts exposure. We found a high frequency of azoles resistance in fungal isolates, with potential and significant clinical impact. Analyses of fungal communities revealed that the human gut mycobiota differs in function of individuals’ life stage in a gender-related fashion. The combination of metagenomics and fungal cultivation allowed an in-depth understanding of the fungal intestinal community structure associated to the healthy status and the commensalism-related traits of isolated fungi. We further discussed comparatively the results of sequencing and cultivation to critically evaluate the application of metagenomics

  9. Arbuscular mycorrhizal fungal diversity, root colonization, and soil alkaline phosphatase activity in response to maize-wheat rotation and no-tillage in North China.

    Science.gov (United States)

    Hu, Junli; Yang, Anna; Zhu, Anning; Wang, Junhua; Dai, Jue; Wong, Ming Hung; Lin, Xiangui

    2015-07-01

    Monitoring the effects of no-tillage (NT) in comparison with conventional tillage (CT) on soil microbes could improve our understanding of soil biochemical processes and thus help us to develop sound management strategies. The objective of this study was to compare the species composition and ecological function of soil arbuscular mycorrhizal (AM) fungi during the growth and rotation of crops under NT and CT. From late June 2009 to early June 2010, 32 topsoil (0-15 cm) samples from four individual plots per treatment (CT and NT) were collected at both the jointing and maturation stages of maize (Zea mays L.) and wheat (Triticum aestivum L.) from a long-term experimental field that was established in an Aquic Inceptisol in North China in June 2006. The AM fungal spores were isolated and identified and then used to calculate species diversity indices, including the Shannon- Wiener index (H'), Evenness (E), and Simpson's index (D). The root mycorrhizal colonization and soil alkaline phosphatase activity were also determined. A total of 34 species of AM fungi within nine genera were recorded. Compared with NT, CT negatively affected the soil AM fungal community at the maize sowing stage, leading to decreases in the average diversity indices (from 2.12, 0.79, and 0.82 to 1.79, 0.72, and 0.74 for H', E, and D, respectively), root mycorrhizal colonization (from 28% to 20%), soil alkaline phosphatase activity (from 0.24 to 0.19 mg/g/24 h) and available phosphorus concentration (from 17.4 to 10.5 mg/kg) at the maize jointing stage. However, reductions in diversity indices of H', E, and D were restored to 2.20, 0.81, and 0.84, respectively, at the maize maturation stage. CT should affect the community again at the wheat sowing stage; however, a similar restoration in the species diversity of AM fungi was completed before the wheat jointing stage, and the highest Jaccard index (0.800) for similarity in the species composition of soil AM fungi between CT and NT was recorded at

  10. Fungal diversity in the rhizosphere of endemic plant species of Tenerife (Canary Islands): relationship to vegetation zones and environmental factors

    DEFF Research Database (Denmark)

    Zachow, Christin; Berg, Christian; Müller, Henry

    2008-01-01

    , molecular analysis of fungal communities was determined by single-strand conformation polymorphism (SSCP) analysis using universal and specific primers for Trichoderma. The highly diverse fungal communities were mainly characterized by ectomycorrhiza-forming Basidiomycota and a high proportion of yet......-unidentified species. Besides, Trichoderma-specific SSCP resulted in low diversity of mainly cosmopolitan species, for example Hypocrea lixii/T. harzianum. The dominance of T. harzianum was confirmed by cultivation. All Trichoderma isolates show an extraordinarily high antagonistic potential towards different groups...... of plant pathogens, supporting the hypothesis of extensive colonization by highly competitive Trichoderma species from the continent. In contrast, biodiversity patterns of the whole fungal and plant communities follow the same ecological rules. Furthermore, a high statistical correlation between fungal...

  11. Rhizosphere Colonization and Control of Meloidogyne spp. by Nematode-trapping Fungi

    Science.gov (United States)

    Persson, Christina; Jansson, Hans-Börje

    1999-01-01

    The ability of nematode-trapping fungi to colonize the rhizosphere of crop plants has been suggested to be an important factor in biological control of root-infecting nematodes. In this study, rhizosphere colonization was evaluated for 38 isolates of nematode-trapping fungi representing 11 species. In an initial screen, Arthrobotrys dactyloides, A. superba, and Monacrosporium ellipsosporum were most frequently detected in the tomato rhizosphere. In subsequent pot experiments these fungi and the non-root colonizing M. geophyropagum were introduced to soil in a sodium alginate matrix, and further tested both for establishment in the tomato rhizosphere and suppression of root-knot nematodes. The knob-forming M. ellipsosporum showed a high capacity to colonize the rhizosphere both in the initial screen and the pot experiments, with more than twice as many fungal propagules in the rhizosphere as in the root-free soil. However, neither this fungus nor the other nematode-trapping fungi tested reduced nematode damage to tomato plants. PMID:19270886

  12. Climate Controls AM Fungal Distributions from Global to Local Scales

    Science.gov (United States)

    Kivlin, S. N.; Hawkes, C.; Muscarella, R.; Treseder, K. K.; Kazenel, M.; Lynn, J.; Rudgers, J.

    2016-12-01

    composition and root colonization, with weaker influences of plant identity and soil nutrients. These two studies across scales suggest prevailing effects of climate on AM fungal distributions. Thus, incorporating climate when forecasting future ranges of AM fungi will enhance predictions of AM fungal abundance and associated ecosystem functions.

  13. Quantification of arbuscular mycorrhizal fungal DNA in roots: how important is material preservation?

    Science.gov (United States)

    Janoušková, Martina; Püschel, David; Hujslová, Martina; Slavíková, Renata; Jansa, Jan

    2015-04-01

    Monitoring populations of arbuscular mycorrhizal fungi (AMF) in roots is a pre-requisite for improving our understanding of AMF ecology and functioning of the symbiosis in natural conditions. Among other approaches, quantification of fungal DNA in plant tissues by quantitative real-time PCR is one of the advanced techniques with a great potential to process large numbers of samples and to deliver truly quantitative information. Its application potential would greatly increase if the samples could be preserved by drying, but little is currently known about the feasibility and reliability of fungal DNA quantification from dry plant material. We addressed this question by comparing quantification results based on dry root material to those obtained from deep-frozen roots of Medicago truncatula colonized with Rhizophagus sp. The fungal DNA was well conserved in the dry root samples with overall fungal DNA levels in the extracts comparable with those determined in extracts of frozen roots. There was, however, no correlation between the quantitative data sets obtained from the two types of material, and data from dry roots were more variable. Based on these results, we recommend dry material for qualitative screenings but advocate using frozen root materials if precise quantification of fungal DNA is required.

  14. Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus.

    Science.gov (United States)

    Takeda, Naoya; Handa, Yoshihiro; Tsuzuki, Syusaku; Kojima, Mikiko; Sakakibara, Hitoshi; Kawaguchi, Masayoshi

    2015-02-01

    Arbuscular mycorrhiza is a mutualistic plant-fungus interaction that confers great advantages for plant growth. Arbuscular mycorrhizal (AM) fungi enter the host root and form symbiotic structures that facilitate nutrient supplies between the symbionts. The gibberellins (GAs) are phytohormones known to inhibit AM fungal infection. However, our transcriptome analysis and phytohormone quantification revealed GA accumulation in the roots of Lotus japonicus infected with AM fungi, suggesting that de novo GA synthesis plays a role in arbuscular mycorrhiza development. We found pleiotropic effects of GAs on the AM fungal infection. In particular, the morphology of AM fungal colonization was drastically altered by the status of GA signaling in the host root. Exogenous GA treatment inhibited AM hyphal entry into the host root and suppressed the expression of Reduced Arbuscular Mycorrhization1 (RAM1) and RAM2 homologs that function in hyphal entry and arbuscule formation. On the other hand, inhibition of GA biosynthesis or suppression of GA signaling also affected arbuscular mycorrhiza development in the host root. Low-GA conditions suppressed arbuscular mycorrhiza-induced subtilisin-like serine protease1 (SbtM1) expression that is required for AM fungal colonization and reduced hyphal branching in the host root. The reduced hyphal branching and SbtM1 expression caused by the inhibition of GA biosynthesis were recovered by GA treatment, supporting the theory that insufficient GA signaling causes the inhibitory effects on arbuscular mycorrhiza development. Most studies have focused on the negative role of GA signaling, whereas our study demonstrates that GA signaling also positively interacts with symbiotic responses and promotes AM colonization of the host root. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Arbuscular mycorrhizal growth responses are fungal specific but do not differ between soybean genotypes with different phosphate efficiency.

    Science.gov (United States)

    Wang, Xiurong; Zhao, Shaopeng; Bücking, Heike

    2016-07-01

    Arbuscular mycorrhizal (AM) fungi play a key role in the phosphate (P) uptake of many important crop species, but the mechanisms that control their efficiency and their contribution to the P nutrition of the host plant are only poorly understood. The P uptake and growth potential of two soybean genotypes that differ in their root architectural traits and P acquisition efficiency were studied after colonization with different AM fungi and the transcript levels of plant P transporters involved in the plant or mycorrhizal P uptake pathway were examined. The mycorrhizal growth responses of both soybean genotypes ranged from highly beneficial to detrimental, and were dependent on the P supply conditions, and the fungal species involved. Only the colonization with Rhizophagus irregularis increased the growth and P uptake of both soybean genotypes. The expression of GmPT4 was downregulated, while the mycorrhiza-inducible P transporter GmPT10 was upregulated by colonization with R. irregularis Colonization with both fungi also led to higher transcript levels of the mycorrhiza-inducible P transporter GmPT9, but only in plants colonized with R. irregularis were the higher transcript levels correlated to a better P supply. The results suggest that AM fungi can also significantly contribute to the P uptake and growth potential of genotypes with a higher P acquisition efficiency, but that mycorrhizal P benefits depend strongly on the P supply conditions and the fungal species involved. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Dominant Tree Species and Soil Type Affect the Fungal Community Structure in a Boreal Peatland Forest

    Science.gov (United States)

    Terhonen, Eeva; Kovalchuk, Andriy; Tuovila, Hanna; Chen, Hongxin; Oghenekaro, Abbot O.; Heinonsalo, Jussi; Kohler, Annegret; Kasanen, Risto; Vasander, Harri; Asiegbu, Fred O.

    2016-01-01

    Boreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (P peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands. PMID:26896139

  17. Establishment of ectomycorrhizal fungal community on isolated Nothofagus cunninghamii seedlings regenerating on dead wood in Australian wet temperate forests: does fruit-body type matter?

    Science.gov (United States)

    Tedersoo, Leho; Gates, Genevieve; Dunk, Chris W; Lebel, Teresa; May, Tom W; Kõljalg, Urmas; Jairus, Teele

    2009-08-01

    Decaying wood provides an important habitat for animals and forms a seed bed for many shade-intolerant, small-seeded plants, particularly Nothofagus. Using morphotyping and rDNA sequence analysis, we compared the ectomycorrhizal fungal community of isolated N. cunninghamii seedlings regenerating in decayed wood against that of mature tree roots in the forest floor soil. The /cortinarius, /russula-lactarius, and /laccaria were the most species-rich and abundant lineages in forest floor soil in Australian sites at Yarra, Victoria and Warra, Tasmania. On root tips of seedlings in dead wood, a subset of the forest floor taxa were prevalent among them species of /laccaria, /tomentella-thelephora, and /descolea, but other forest floor dominants were rare. Statistical analyses suggested that the fungal community differs between forest floor soil and dead wood at the level of both species and phylogenetic lineage. The fungal species colonizing isolated seedlings on decayed wood in austral forests were taxonomically dissimilar to the species dominating in similar habitats in Europe. We conclude that formation of a resupinate fruit body type on the underside of decayed wood is not necessarily related to preferential root colonization in decayed wood. Rather, biogeographic factors as well as differential dispersal and competitive abilities of fungal taxa are likely to play a key role in structuring the ectomycorrhizal fungal community on isolated seedlings in decaying wood.

  18. Gibberellins Interfere with Symbiosis Signaling and Gene Expression and Alter Colonization by Arbuscular Mycorrhizal Fungi in Lotus japonicus1

    Science.gov (United States)

    Takeda, Naoya; Handa, Yoshihiro; Tsuzuki, Syusaku; Kojima, Mikiko; Sakakibara, Hitoshi; Kawaguchi, Masayoshi

    2015-01-01

    Arbuscular mycorrhiza is a mutualistic plant-fungus interaction that confers great advantages for plant growth. Arbuscular mycorrhizal (AM) fungi enter the host root and form symbiotic structures that facilitate nutrient supplies between the symbionts. The gibberellins (GAs) are phytohormones known to inhibit AM fungal infection. However, our transcriptome analysis and phytohormone quantification revealed GA accumulation in the roots of Lotus japonicus infected with AM fungi, suggesting that de novo GA synthesis plays a role in arbuscular mycorrhiza development. We found pleiotropic effects of GAs on the AM fungal infection. In particular, the morphology of AM fungal colonization was drastically altered by the status of GA signaling in the host root. Exogenous GA treatment inhibited AM hyphal entry into the host root and suppressed the expression of Reduced Arbuscular Mycorrhization1 (RAM1) and RAM2 homologs that function in hyphal entry and arbuscule formation. On the other hand, inhibition of GA biosynthesis or suppression of GA signaling also affected arbuscular mycorrhiza development in the host root. Low-GA conditions suppressed arbuscular mycorrhiza-induced subtilisin-like serine protease1 (SbtM1) expression that is required for AM fungal colonization and reduced hyphal branching in the host root. The reduced hyphal branching and SbtM1 expression caused by the inhibition of GA biosynthesis were recovered by GA treatment, supporting the theory that insufficient GA signaling causes the inhibitory effects on arbuscular mycorrhiza development. Most studies have focused on the negative role of GA signaling, whereas our study demonstrates that GA signaling also positively interacts with symbiotic responses and promotes AM colonization of the host root. PMID:25527715

  19. Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot.

    Science.gov (United States)

    Glassman, Sydney I; Levine, Carrie R; DiRocco, Angela M; Battles, John J; Bruns, Thomas D

    2016-05-01

    After severe wildfires, pine recovery depends on ectomycorrhizal (ECM) fungal spores surviving and serving as partners for regenerating forest trees. We took advantage of a large, severe natural forest fire that burned our long-term study plots to test the response of ECM fungi to fire. We sampled the ECM spore bank using pine seedling bioassays and high-throughput sequencing before and after the California Rim Fire. We found that ECM spore bank fungi survived the fire and dominated the colonization of in situ and bioassay seedlings, but there were specific fire adapted fungi such as Rhizopogon olivaceotinctus that increased in abundance after the fire. The frequency of ECM fungal species colonizing pre-fire bioassay seedlings, post-fire bioassay seedlings and in situ seedlings were strongly positively correlated. However, fire reduced the ECM spore bank richness by eliminating some of the rare species, and the density of the spore bank was reduced as evidenced by a larger number of soil samples that yielded uncolonized seedlings. Our results show that although there is a reduction in ECM inoculum, the ECM spore bank community largely remains intact, even after a high-intensity fire. We used advanced techniques for data quality control with Illumina and found consistent results among varying methods. Furthermore, simple greenhouse bioassays can be used to determine which fungi will colonize after fires. Similar to plant seed banks, a specific suite of ruderal, spore bank fungi take advantage of open niche space after fires.

  20. The importance of amino sugar turnover to C and N cycling in organic horizons of old-growth Douglas-fir forest soils colonized by ectomycorrhizal mats

    Science.gov (United States)

    L. Zeglin; L.A. Kluber; D.D. Myrold

    2012-01-01

    Amino sugar dynamics represent an important but under-investigated component of the carbon (C) and nitrogen (N) cycles in old-growth Douglas-fir forest soils. Because fungal biomass is high in these soils, particularly in areas colonized by rhizomorphic ectomycorrhizal fungal mats, organic matter derived from chitinous cell wall material (or the monomeric building...

  1. Patterns of Arbuscular Mycorrhizal Fungal Distribution on Mainland and Island Sandy Coastal Plain Ecosystems in Brazil.

    Science.gov (United States)

    da Silva, Iolanda Ramalho; de Souza, Francisco Adriano; da Silva, Danielle Karla Alves; Oehl, Fritz; Maia, Leonor Costa

    2017-10-01

    Although sandy coastal plains are important buffer zones to protect the coast line and maintain biological diversity and ecosystem services, these ecosystems have been endangered by anthropogenic activities. Thus, information on coastal biodiversity and forces shaping coastal biological diversity are extremely important for effective conservation strategies. In this study, we aimed to compare arbuscular mycorrhizal (AM) fungal communities from soil samples collected on the mainland and nearby islands located in Brazilian sandy coastal plain ecosystems (Restingas) to get information about AM fungal biogeography and identify factors shaping these communities. Soil samples were collected in 2013 and 2014 on the beachfront of the tropical sandy coastal plain at six sites (three island and three mainland locations) across the northeast, southeast, and south regions of Brazil. Overall, we recorded 53 AM fungal species from field and trap culture samples. The richness and diversity of AM fungal species did not differ between mainland and island locations, but AM fungal community assemblages were different between mainland and island environments and among most sites sampled. Glomeromycota communities registered from island samples showed higher heterogeneity than communities from mainland samples. Sandy coastal plains harbor diverse AM fungal communities structured by climatic, edaphic, and spatial factors, while the distance from the colonizing source (mainland environments) does not strongly affect the AM fungal communities in Brazilian coastal environments.

  2. P depletion and activity of phosphatases in the rhizosphere of mycorrhizal and non-mycorrhizal cucumber (Cucumis Sativus L.)

    DEFF Research Database (Denmark)

    Joner, E.J.; Magid, J.; Gahoonia, T.S.

    1995-01-01

    An experiment was set up to test the ability of arbuscular mycorrhizal (AM) roots and hyphae to produce extracellular phosphatases and to study the relationship between phosphatase activity and soil organic P (P-o). Non-mycorrhizal cucumber and cucumber in symbiosis with either of two mycorrhizal...... fungi were grown in a sandy loam-sand mixture in three-compartment pots. Plant roots were separated from two consecutively adjoining compartments, first by a 37 m mesh excluding roots and subsequently by a 0.45 m membrane excluding mycorrhizal hyphae. Soil from the two root-free compartments...... was sectioned in a freezing microtome and analyzed for extracellular acid (pH 5.2) and alkaline (pH 8.5) phosphatase activity as well as depletion of NaHCO-3-extractable inorganic P (P-i) and P-o. Roots and mycorrhizal hyphae depleted the soil of P-i but did not influence the concentration of P-o in spite...

  3. Experimental warming decreases arbuscular mycorrhizal fungal colonization in prairie plants along a Mediterranean climate gradient

    Directory of Open Access Journals (Sweden)

    Hannah Wilson

    2016-06-01

    Full Text Available Background: Arbuscular mycorrhizal fungi (AMF provide numerous services to their plant symbionts. Understanding climate change effects on AMF, and the resulting plant responses, is crucial for predicting ecosystem responses at regional and global scales. We investigated how the effects of climate change on AMF-plant symbioses are mediated by soil water availability, soil nutrient availability, and vegetation dynamics. Methods: We used a combination of a greenhouse experiment and a manipulative climate change experiment embedded within a Mediterranean climate gradient in the Pacific Northwest, USA to examine this question. Structural equation modeling (SEM was used to determine the direct and indirect effects of experimental warming on AMF colonization. Results: Warming directly decreased AMF colonization across plant species and across the climate gradient of the study region. Other positive and negative indirect effects of warming, mediated by soil water availability, soil nutrient availability, and vegetation dynamics, canceled each other out. Discussion: A warming-induced decrease in AMF colonization would likely have substantial consequences for plant communities and ecosystem function. Moreover, predicted increases in more intense droughts and heavier rains for this region could shift the balance among indirect causal pathways, and either exacerbate or mitigate the negative, direct effect of increased temperature on AMF colonization.

  4. Nutrition acquisition strategies during fungal infection of plants.

    Science.gov (United States)

    Divon, Hege H; Fluhr, Robert

    2007-01-01

    In host-pathogen interactions, efficient pathogen nutrition is a prerequisite for successful colonization and fungal fitness. Filamentous fungi have a remarkable capability to adapt and exploit the external nutrient environment. For phytopathogenic fungi, this asset has developed within the context of host physiology and metabolism. The understanding of nutrient acquisition and pathogen primary metabolism is of great importance in the development of novel disease control strategies. In this review, we discuss the current knowledge on how plant nutrient supplies are utilized by phytopathogenic fungi, and how these activities are controlled. The generation and use of auxotrophic mutants have been elemental to the determination of essential and nonessential nutrient compounds from the plant. Considerable evidence indicates that pathogen entrainment of host metabolism is a widespread phenomenon and can be accomplished by rerouting of the plant's responses. Crucial fungal signalling components for nutrient-sensing pathways as well as their developmental dependency have now been identified, and were shown to operate in a coordinate cross-talk fashion that ensures proper nutrition-related behaviour during the infection process.

  5. Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation?

    Science.gov (United States)

    Fusconi, Anna

    2014-01-01

    Background Arbuscular mycorrhizae (AMs) form a widespread root–fungus symbiosis that improves plant phosphate (Pi) acquisition and modifies the physiology and development of host plants. Increased branching is recognized as a general feature of AM roots, and has been interpreted as a means of increasing suitable sites for colonization. Fungal exudates, which are involved in the dialogue between AM fungi and their host during the pre-colonization phase, play a well-documented role in lateral root (LR) formation. In addition, the increased Pi content of AM plants, in relation to Pi-starved controls, as well as changes in the delivery of carbohydrates to the roots and modulation of phytohormone concentration, transport and sensitivity, are probably involved in increasing root system branching. Scope This review discusses the possible causes of increased branching in AM plants. The differential root responses to Pi, sugars and hormones of potential AM host species are also highlighted and discussed in comparison with those of the non-host Arabidopsis thaliana. Conclusions Fungal exudates are probably the main compounds regulating AM root morphogenesis during the first colonization steps, while a complex network of interactions governs root development in established AMs. Colonization and high Pi act synergistically to increase root branching, and sugar transport towards the arbusculated cells may contribute to LR formation. In addition, AM colonization and high Pi generally increase auxin and cytokinin and decrease ethylene and strigolactone levels. With the exception of cytokinins, which seem to regulate mainly the root:shoot biomass ratio, these hormones play a leading role in governing root morphogenesis, with strigolactones and ethylene blocking LR formation in the non-colonized, Pi-starved plants, and auxin inducing them in colonized plants, or in plants grown under high Pi conditions. PMID:24227446

  6. Cryopreservation of ectomycorrhizal fungi has minor effects on root colonization of Pinus sylvestris plantlets and their subsequent nutrient uptake capacity.

    Science.gov (United States)

    Crahay, Charlotte; Wevers, Jan; Munaut, Françoise; Colpaert, Jan V; Declerck, Stéphane

    2013-08-01

    The use of ectomycorrhizal (ECM) fungi for afforestation, bioremediation, and timber production requires their maintenance over long periods under conditions that preserve their genetic, phenotypic, and physiological stability. Cryopreservation is nowadays considered as the most suitable method to maintain the phenotypic and genetic stability of a large number of filamentous fungi including the ECM fungi. Here, we compared the ability of eight ECM fungal isolates to colonize Pinus sylvestris roots and to transport inorganic phosphate (Pi) and NH4 (+) from the substrate to the plant after cryopreservation for 6 months at -130 °C or after storage at 4 °C. Overall, the mode of preservation had no significant effect on the colonization rates of P. sylvestris, the concentrations of ergosterol in the roots and substrate, and the uptake of Pi and NH4 (+). Comparing the isolates, differences were sometimes observed with one or the other method of preservation. Suillus bovinus exhibited a reduced ability to form mycorrhizas and to take up Pi following cryopreservation, while one Suillus luteus isolate exhibited a decreased ability to take up NH4 (+). Conversely, Hebeloma crustuliniforme, Laccaria bicolor, Paxillus involutus, and Pisolithus tinctorius exhibited a reduced ability to form mycorrhizas after storage at 4 °C, although this did not result in a reduced uptake of Pi and NH4 (+). Cryopreservation appeared as a reliable method to maintain important phenotypic characteristics (i.e., root colonization and nutrient acquisition) of most of the ECM fungal isolates studied. For 50 % of the ECM fungal isolates, the colonization rate was even higher with the cultures cryopreserved at -130 °C as compared to those stored at 4 °C.

  7. Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil

    Energy Technology Data Exchange (ETDEWEB)

    Huang Honglin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China); Zhang Shuzhen [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China)]. E-mail: szzhang@mail.rcees.ac.cn; Shan Xiaoquan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China); Chen Baodong [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China); Zhu Yongguan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China); Bell, J. Nigel B. [Center for Environmental Policy, Imperial College, London (United Kingdom)

    2007-03-15

    Effects of an arbuscular mycorrhizal (AM) fungus (Glomus caledonium) on accumulation and metabolism of atrazine in maize grown in soil contaminated with different concentrations of atrazine were investigated in a series of pot experiments. Roots of mycorrhizal plants accumulated more atrazine than non-mycorrhizal roots. In contrast, atrazine accumulation in shoot decreased in mycorrhizal compared with non-mycorrhizal plants. No atrazine derivatives were detected in the soil, either with or without mycorrhizal colonization. However, atrazine metabolites, deethylatrazine (DEA) and deisopropylatrazine (DIA), were detected in plant roots and the AM colonization enhanced the metabolism. After plant harvest atrazine concentrations decreased markedly in the soils compared to the initial concentrations. The decreases were the most in rhizosphere soil and then near-rhizosphere soil and the least in bulk soil. Mycorrhizal treatment enhanced atrazine dissipation in the near-rhizosphere and bulk soils irrespective of atrazine application rates. - Arbuscular mycorrhizal fungus increases the accumulation and metabolism of atrazine in maize.

  8. Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil

    International Nuclear Information System (INIS)

    Huang Honglin; Zhang Shuzhen; Shan Xiaoquan; Chen Baodong; Zhu Yongguan; Bell, J. Nigel B.

    2007-01-01

    Effects of an arbuscular mycorrhizal (AM) fungus (Glomus caledonium) on accumulation and metabolism of atrazine in maize grown in soil contaminated with different concentrations of atrazine were investigated in a series of pot experiments. Roots of mycorrhizal plants accumulated more atrazine than non-mycorrhizal roots. In contrast, atrazine accumulation in shoot decreased in mycorrhizal compared with non-mycorrhizal plants. No atrazine derivatives were detected in the soil, either with or without mycorrhizal colonization. However, atrazine metabolites, deethylatrazine (DEA) and deisopropylatrazine (DIA), were detected in plant roots and the AM colonization enhanced the metabolism. After plant harvest atrazine concentrations decreased markedly in the soils compared to the initial concentrations. The decreases were the most in rhizosphere soil and then near-rhizosphere soil and the least in bulk soil. Mycorrhizal treatment enhanced atrazine dissipation in the near-rhizosphere and bulk soils irrespective of atrazine application rates. - Arbuscular mycorrhizal fungus increases the accumulation and metabolism of atrazine in maize

  9. Mutualism in a Reduced Gravity Environment (MuRGE)

    Science.gov (United States)

    Haire, Timothy C.

    2010-01-01

    Mutualism in a Reduced Gravity Environment (MuRGE) is a ground research study to determine the feasibility of assessing fungi-plant (Piriformospora indica-Arabidopsis thaliana) interactions in microgravity. Seeds from the plant Arabiddospsis thaliana (At) will be grown in the presence of Piriformospora indica (Pi) an endophytic Sebacinacae family fungus. Pi is capable of colonizing the roots of a wide variety of plant species, including non-mycorrhizal hosts like At, and promoting plant growth similarly to AMF (arbusuclar mychorrizal fungi) unlike most AMF, Pi is not an obligate plant symbiont and can be grown in the absence of a host. In the presence of a suitable plant host, Pi can attach to and colonize root tips. Interaction visualization is accomplished with strong autofluorescence in the roots, followed by root colonization via fungal hyphae, and chlamydospore production. Increased root growth can be observed even before root colonization is detectable. In addition, Pi chlamydospores generated from axenic culture in microgravity will be used to inoculate roots of At grown in 1g to determine the effect of microgravity upon the inherent virulence or beneficial effects. Based on recent reports of increased virulence of S. typhimurium, P. aeruginosa, and S. Pneumoniae in reduced gravity, differences in microbial pathogenic responses and host plant systemic acquired resistance are expected. The focus of this project within MuRGE involved the development P. indica culture media evaluation and microscopy protocol development. High, clean spore harvest yields for the detection of fungi-plant interactions microscopically was the immediate goal of this experiment.

  10. Oral Bacterial and Fungal Microbiome Impacts Colorectal Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Klara Klimesova

    2018-04-01

    Full Text Available Host’s physiology is significantly influenced by microbiota colonizing the epithelial surfaces. Complex microbial communities contribute to proper mucosal barrier function, immune response, and prevention of pathogen invasion and have many other crucial functions. The oral cavity and large intestine are distant parts of the digestive tract, both heavily colonized by commensal microbiota. Nevertheless, they feature different proportions of major bacterial and fungal phyla, mostly due to distinct epithelial layers organization and different oxygen levels. A few obligate anaerobic strains inhabiting the oral cavity are involved in the pathogenesis of oral diseases. Interestingly, these microbiota components are also enriched in gut inflammatory and tumor tissue. An altered microbiota composition – dysbiosis – and formation of polymicrobial biofilms seem to play important roles in the development of oral diseases and colorectal cancer. In this review, we describe the differences in composition of commensal microbiota in the oral cavity and large intestine and the mechanisms by which microbiota affect the inflammatory and carcinogenic response of the host.

  11. Rhizobial Nodulation Factors Stimulate Mycorrhizal Colonization of Nodulating and Nonnodulating Soybeans.

    Science.gov (United States)

    Xie, Z. P.; Staehelin, C.; Vierheilig, H.; Wiemken, A.; Jabbouri, S.; Broughton, W. J.; Vogeli-Lange, R.; Boller, T.

    1995-08-01

    Legumes form tripartite symbiotic associations with noduleinducing rhizobia and vesicular-arbuscular mycorrhizal fungi. Co-inoculation of soybean (Glycine max [L.] Merr.) roots with Bradyrhizobium japonicum 61-A-101 considerably enhanced colonization by the mycorrhizal fungus Glomus mosseae. A similar stimulatory effect on mycorrhizal colonization was also observed in nonnodulating soybean mutants when inoculated with Bradyrhizobium japonicum and in wild-type soybean plants when inoculated with ineffective rhizobial strains, indicating that a functional rhizobial symbiosis is not necessary for enhanced mycorrhiza formation. Inoculation with the mutant Rhizobium sp. NGR[delta]nodABC, unable to produce nodulation (Nod) factors, did not show any effect on mycorrhiza. Highly purified Nod factors also increased the degree of mycorrhizal colonization. Nod factors from Rhizobium sp. NGR234 differed in their potential to promote fungal colonization. The acetylated factor NodNGR-V (MeFuc, Ac), added at concentrations as low as 10-9 M, was active, whereas the sulfated factor, NodNGR-V (MeFuc, S), was inactive. Several soybean flavonoids known to accumulate in response to the acetylated Nod factor showed a similar promoting effect on mycorrhiza. These results suggest that plant flavonoids mediate the Nod factor-induced stimulation of mycorrhizal colonization in soybean roots.

  12. Colonization and community structure of arbuscular mycorrhizal fungi in maize roots at different depths in the soil profile respond differently to phosphorus inputs on a long-term experimental site.

    Science.gov (United States)

    Wang, Chao; White, Philip J; Li, Chunjian

    2017-05-01

    Effects of soil depth and plant growth stages on arbuscular mycorrhizal fungal (AMF) colonization and community structure in maize roots and their potential contribution to host plant phosphorus (P) nutrition under different P-fertilizer inputs were studied. Research was conducted on a long-term field experiment over 3 years. AMF colonization was assessed by AM colonization rate and arbuscule abundances and their potential contribution to host P nutrition by intensity of fungal alkaline phosphatase (ALP)/acid phosphatase (ACP) activities and expressions of ZmPht1;6 and ZmCCD8a in roots from the topsoil and subsoil layer at different growth stages. AMF community structure was determined by specific amplification of 18S rDNA. Increasing P inputs up to 75-100 kg ha -1  yr -1 increased shoot biomass and P content but decreased AMF colonization and interactions between AMF and roots. AM colonization rate, intensity of fungal ACP/ALP activities, and expression of ZmPht1;6 in roots from the subsoil were greater than those from topsoil at elongation and silking but not at the dough stage when plants received adequate or excessive P inputs. Neither P input nor soil depth influenced the number of AMF operational taxonomic units (OTUs) present in roots, but P-fertilizer input, in particular, influenced community composition and relative AMF abundance. In conclusion, although increasing P inputs reduce AMF colonization and influence AMF community structure, AMF can potentially contribute to plant P nutrition even in well-fertilized soils, depending on the soil layer in which roots are located and the growth stage of host plants.

  13. Chlorine-rich plasma polymer coating for the prevention of attachment of pathogenic fungal cells onto materials surfaces

    International Nuclear Information System (INIS)

    Lamont-Friedrich, Stephanie J; Michl, Thomas D; Giles, Carla; Griesser, Hans J; Coad, Bryan R

    2016-01-01

    The attachment of pathogenic fungal cells onto materials surfaces, which is often followed by biofilm formation, causes adverse consequences in a wide range of areas. Here we have investigated the ability of thin film coatings from chlorinated molecules to deter fungal colonization of solid materials by contact killing of fungal cells reaching the surface of the coating. Coatings were deposited onto various substrate materials via plasma polymerization, which is a substrate-independent process widely used for industrial coating applications, using 1,1,2-trichloroethane as the process vapour. XPS surface analysis showed that the coatings were characterized by a highly chlorinated hydrocarbon polymer nature, with only a very small amount of oxygen incorporated. The activity of these coatings against human fungal pathogens was quantified using a recently developed, modified yeast assay and excellent antifungal activity was observed against Candida albicans and Candida glabrata . Plasma polymer surface coatings derived from chlorinated hydrocarbon molecules may therefore offer a promising solution to preventing yeast and mould biofilm formation on materials surfaces, for applications such as air conditioners, biomedical devices, food processing equipment, and others. (paper)

  14. Growth, cadmium uptake and accumulation of maize (Zea mays L.) under the effects of arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Liu, Lingzhi; Gong, Zongqiang; Zhang, Yulong; Li, Peijun

    2014-12-01

    The effects of three arbuscular mycorrhizal fungi isolates on Cd uptake and accumulation by maize (Zea mays L.) were investigated in a planted pot experiment. Plants were inoculated with Glomus intraradices, Glomus constrictum and Glomus mosseae at three different Cd concentrations. The results showed that root colonization increased with Cd addition during a 6-week growth period, however, the fungal density on roots decreased after 9-week growth in the treatments with G. constrictum and G. mosseae isolates. The percentage of mycorrhizal colonization by the three arbuscular mycorrhizal fungi isolates ranged from 22.7 to 72.3%. Arbuscular mycorrhizal fungi inoculations decreased maize biomass especially during the first 6-week growth before Cd addition, and this inhibitory effect was less significant with Cd addition and growth time. Cd concentrations and uptake in maize plants increased with arbuscular mycorrhizal fungi colonization at low Cd concentration (0.02 mM): nonetheless, it decreased at high Cd concentration (0.20 mM) after 6-week growth period. Inoculation with G. constrictum isolates enhanced the root Cd concentrations and uptake, but G. mosseae isolates showed the opposite results at high Cd concentration level after 9 week growth period, as compared to non-mycorrhizal plants. In conclusion, maize plants inoculated with arbuscular mycorrhizal fungi were less sensitive to Cd stress than uninoculated plants. G. constrictum isolates enhanced Cd phytostabilization and G. mosseae isolates reduced Cd uptake in maize (Z. mays L.).

  15. Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil.

    Science.gov (United States)

    Zangaro, Waldemar; Rostirola, Leila Vergal; de Souza, Priscila Bochi; de Almeida Alves, Ricardo; Lescano, Luiz Eduardo Azevedo Marques; Rondina, Artur Berbel Lírio; Nogueira, Marco Antonio; Carrenho, Rosilaine

    2013-04-01

    The influence of plant functional groups and moderate seasonality on arbuscular mycorrhizal (AM) fungal status (root colonization and spore density) was investigated during 13 consecutive months in a chronosequence of succession in southern Brazil, consisting of grassland field, scrub vegetation, secondary forest and mature forest, in a region of transition from tropical to subtropical zones. AM root colonization and spore density decreased with advancing succession and were highest in early successional sites with grassland and scrub vegetation, intermediary in the secondary forest and lowest in the mature forest. They were little influenced by soil properties, but were sufficiently influenced by the fine root nutrient status and fine root traits among different functional plant groups. AM root colonization and spore density were higher during the favourable plant growth season (spring and summer) than during the less favourable plant growth season (autumn and winter). Spore density displayed significant seasonal variation at all sites, whilst root colonization displayed significant seasonal variation in grassland, scrub and secondary forest, but not in mature forest. The data suggest that (1) different plant functional groups display different relationships with AM fungi, influencing their abundance differentially; (2) plant species from early successional phases are more susceptible to AM root colonization and maintain higher AM sporulation than late successional species; (3) fine root traits and nutrient status influence these AM fungal attributes; and (4) higher AM spore production and root colonization is associated with the season of higher light incidence and temperature, abundant water in soil and higher plant metabolic activity.

  16. Lophodermium piceae and Tryblidiopsis pinastri. Two latent colonizers of Norway spruce

    Energy Technology Data Exchange (ETDEWEB)

    Lehtijaervi, A. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology

    1998-12-31

    Among the endophytic microfungi colonizing Norway spruce, the non-pathogenic species Lophodermium piceae and Tryblidiopsis pinastri are ubiquitous. Most Norway spruce in Sweden are colonized by these fungi. L. piceae colonizes healthy needles of various ages, while T pinastri colonizes the bark of branches. New shoots become infected around the time of their emergence. Fruit bodies are formed after the needles and branches die. It was found that L. piceae colonized needles during the summer and early autumn, about six weeks after a prolonged period of intensive rain. The number of individual fungal mycelia per needle increased linearly with needle age. In experiments with trees, irrigation resulted in lower total colonization and delayed colonization of the current-year needles, regardless of whether fertilizer had been added. Colonization by L. piceae was lowest in the ammonium sulfate treatment, which simulated the deposition of air pollutants. Colonization was highest in the control and drought treatments, which did not differ significantly from each other. Only a few pathogenic fungi can damage Norway spruce needles. Needles damaged by the rust fungus Chrysomyxa abietis were investigated to study interactions between fungi. The frequency and intensity of L. piceae colonization were found to be similar for C. abietis infected and healthy needles. However, in needles partially infected with rust, L. piceae seemed to establish itself easier in the rust-infected part than in the green part. The genetic structures of populations of T. pinastri in southern Sweden and Finland were investigated using DNA markers produced by means of arbitrarily primed PCR. Single spore isolates from apothecia were used in the analysis. A considerable amount of variation was detected. No geographical differentiation was found among the populations studied

  17. Temporal Dynamics of Bacterial and Fungal Colonization on Plastic Debris in the North Sea.

    Science.gov (United States)

    De Tender, Caroline; Devriese, Lisa I; Haegeman, Annelies; Maes, Sara; Vangeyte, Jürgen; Cattrijsse, André; Dawyndt, Peter; Ruttink, Tom

    2017-07-05

    Despite growing evidence that biofilm formation on plastic debris in the marine environment may be essential for its biodegradation, the underlying processes have yet to be fully understood. Thus, far, bacterial biofilm formation had only been studied after short-term exposure or on floating plastic, yet a prominent share of plastic litter accumulates on the seafloor. In this study, we explored the taxonomic composition of bacterial and fungal communities on polyethylene plastic sheets and dolly ropes during long-term exposure on the seafloor, both at a harbor and an offshore location in the Belgian part of the North Sea. We reconstructed the sequence of events during biofilm formation on plastic in the harbor environment and identified a core bacteriome and subsets of bacterial indicator species for early, intermediate, and late stages of biofilm formation. Additionally, by implementing ITS2 metabarcoding on plastic debris, we identified and characterized for the first time fungal genera on plastic debris. Surprisingly, none of the plastics exposed to offshore conditions displayed the typical signature of a late stage biofilm, suggesting that biofilm formation is severely hampered in the natural environment where most plastic debris accumulates.

  18. Spread and change in stress resistance of Shiga toxin-producing Escherichia coli O157 on fungal colonies.

    Science.gov (United States)

    Lee, Ken-Ichi; Kobayashi, Naoki; Watanabe, Maiko; Sugita-Konishi, Yoshiko; Tsubone, Hirokazu; Kumagai, Susumu; Hara-Kudo, Yukiko

    2014-11-01

    To elucidate the effect of fungal hyphae on the behaviour of Shiga toxin-producing Escherichia coli (STEC) O157, the spread and change in stress resistance of the bacterium were evaluated after coculture with 11 species of food-related fungi including fermentation starters. Spread distances of STEC O157 varied depending on the co-cultured fungal species, and the motile bacterial strain spread for longer distances than the non-motile strain. The population of STEC O157 increased when co-cultured on colonies of nine fungal species but decreased on colonies of Emericella nidulans and Aspergillus ochraceus. Confocal scanning microscopy visualization of green fluorescent protein-tagged STEC O157 on fungal hyphae revealed that the bacterium colonized in the water film that existed on and between hyphae. To investigate the physiological changes in STEC O157 caused by co-culturing with fungi, the bacterium was harvested after 7 days of co-culturing and tested for acid resistance. After co-culture with eight fungal species, STEC O157 showed greater acid resistance compared to those cultured without fungi. Our results indicate that fungal hyphae can spread the contamination of STEC O157 and can also enhance the stress resistance of the bacteria. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. (1→3)-β-d-Glucan and Galactomannan for Differentiating Chemical "Black Particles" and Fungal Particles Inside Peritoneal Dialysis Tubing.

    Science.gov (United States)

    Leelahavanichkul, Asada; Pongpirul, Krit; Thongbor, Nisa; Worasilchai, Navaporn; Petphuak, Kwanta; Thongsawang, Bussakorn; Towannang, Piyaporn; Lorvinitnun, Pichet; Sukhontasing, Kanya; Katavetin, Pisut; Praditpornsilpa, Kearkiat; Eiam-Ong, Somchai; Chindamporn, Ariya; Kanjanabuch, Talerngsak

    2016-01-01

    ♦ Aseptic, sheet-like foreign bodies observed inside Tenckhoff (TK) catheter lumens (referred to as "black particles") are, on gross morphology, hardly distinguishable from fungal colonization because these contaminants adhere tightly to the catheter. Detection of fungal cell wall components using (1→3)-β-d-glucan (BG) and galactomannan index (GMI) might be an alternative method for differentiating the particles. ♦ Foreign particles retrieved from TK catheters in 19 peritoneal dialysis patients were examined microscopically and cultured for fungi and bacteria. Simultaneously, a Fungitell test (Associates of Cape Cod, Falmouth, MA, USA) and a Platelia Aspergillus ELISA assay (Bio-Rad Laboratories, Marnes-La-Coquette, France) were used to test the spent dialysate for BG and GMI respectively. ♦ Of the 19 patients, 9 had aseptic black particles and 10 had fungal particles in their tubing. The fungal particles looked grainy, were tightly bound to the catheter, and appeared more "colorful" than the black particles, which looked sheet-like and could easily be removed by milking the tubing. Compared with effluent from patients having aseptic particles, effluent from patients with fungal particles had significantly higher levels of BG (501 ± 70 pg/mL vs. 46 ± 10 pg/mL) and GMI (10.98 ± 2.17 vs. 0.25 ± 0.05). Most of the fungi that formed colonies inside the catheter lumen were molds not usually found in clinical practice, but likely from water or soil, suggesting environmental contamination. Interestingly, in all 10 patients with fungal colonization, visualization of black particles preceded a peritonitis episode and TK catheter removal by approximately 1-3 weeks; in patients with aseptic particles, a 17-week onset to peritonitis was observed. ♦ In all patients with particle-coated peritoneal dialysis tubing, spent dialysate should be screened for BG and GMI. Manipulation of the TK catheter by squeezing, hard flushing, or even brushing to dislodge black

  20. The microbiome-metabolome crosstalk in the pathogenesis of respiratory fungal diseases.

    Science.gov (United States)

    Gonçalves, Samuel M; Lagrou, Katrien; Duarte-Oliveira, Cláudio; Maertens, Johan A; Cunha, Cristina; Carvalho, Agostinho

    2017-08-18

    Filamentous fungi of the genus Aspergillus are responsible for several superficial and invasive infections and allergic syndromes. The risk of infection and its clinical outcome vary significantly even among patients with similar predisposing clinical factors and pathogen exposure. There is increasing evidence that the individual microbiome supervises the outcome of the host-fungus interaction by influencing mechanisms of immune regulation, inflammation, metabolism, and other physiological processes. Microbiome-mediated mechanisms of resistance allow therefore the control of fungal colonization, preventing the onset of overt disease, particularly in patients with underlying immune dysfunction. Here, we review this emerging area of research and discuss the contribution of the microbiota (and its dysbiosis), including its immunoregulatory properties and relationship with the metabolic activity of commensals, to respiratory fungal diseases. Finally, we highlight possible strategies aimed at decoding the microbiome-metabolome dialog and at its exploitation toward personalized medical interventions in patients at high risk of infection.

  1. Endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis are influenced by soil mercury contamination.

    Science.gov (United States)

    Pietro-Souza, William; Mello, Ivani Souza; Vendruscullo, Suzana Junges; Silva, Gilvan Ferreira da; Cunha, Cátia Nunes da; White, James Francis; Soares, Marcos Antônio

    2017-01-01

    The endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis were examined with respect to soil mercury (Hg) contamination. Plants were collected in places with and without Hg+2 for isolation and identification of their endophytic root fungi. We evaluated frequency of colonization, number of isolates and richness, indices of diversity and similarity, functional traits (hydrolytic enzymes, siderophores, indoleacetic acid, antibiosis and metal tolerance) and growth promotion of Aeschynomene fluminensis inoculated with endophytic fungi on soil with mercury. The frequency of colonization, structure and community function, as well as the abundant distribution of taxa of endophytic fungi were influenced by mercury contamination, with higher endophytic fungi in hosts in soil with mercury. The presence or absence of mercury in the soil changes the profile of the functional characteristics of the endophytic fungal community. On the other hand, tolerance of lineages to multiple metals is not associated with contamination. A. fluminensis depends on its endophytic fungi, since plants free of endophytic fungi grew less than expected due to mercury toxicity. In contrast plants containing certain endophytic fungi showed good growth in soil containing mercury, even exceeding growth of plants cultivated in soil without mercury. The data obtained confirm the hypothesis that soil contamination by mercury alters community structure of root endophytic fungi in terms of composition, abundance and species richness. The inoculation of A. fluminensis with certain strains of stress tolerant endophytic fungi contribute to colonization and establishment of the host and may be used in processes that aim to improve phytoremediation of soils with toxic concentrations of mercury.

  2. Reduced aboveground tree growth associated with higher arbuscular mycorrhizal fungal diversity in tropical forest restoration.

    Science.gov (United States)

    Holste, Ellen K; Holl, Karen D; Zahawi, Rakan A; Kobe, Richard K

    2016-10-01

    Establishing diverse mycorrhizal fungal communities is considered important for forest recovery, yet mycorrhizae may have complex effects on tree growth depending on the composition of fungal species present. In an effort to understand the role of mycorrhizal fungi community in forest restoration in southern Costa Rica, we sampled the arbuscular mycorrhizal fungal (AMF) community across eight sites that were planted with the same species ( Inga edulis, Erythrina poeppigiana, Terminalia amazonia, and Vochysia guatemalensis ) but varied twofold to fourfold in overall tree growth rates. The AMF community was measured in multiple ways: as percent colonization of host tree roots, by DNA isolation of the fungal species associated with the roots, and through spore density, volume, and identity in both the wet and dry seasons. Consistent with prior tropical restoration research, the majority of fungal species belonged to the genus Glomus and genus Acaulospora , accounting for more than half of the species and relative abundance found on trees roots and over 95% of spore density across all sites. Greater AMF diversity correlated with lower soil organic matter, carbon, and nitrogen concentrations and longer durations of prior pasture use across sites. Contrary to previous literature findings, AMF species diversity and spore densities were inversely related to tree growth, which may have arisen from trees facultatively increasing their associations with AMF in lower soil fertility sites. Changes to AMF community composition also may have led to variation in disturbance susceptibility, host tree nutrient acquisition, and tree growth. These results highlight the potential importance of fungal-tree-soil interactions in forest recovery and suggest that fungal community dynamics could have important implications for tree growth in disturbed soils.

  3. Carbon transport by symbiotic fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt

    Science.gov (United States)

    Jerry R. Barrow

    2001-01-01

    Mycorrhizal fungi enhance the nutrition and survival of host plants in native ecosystems. Arid rangelands severely challenge plants because of chronic nutrient and water stress. Fourwing saltbush, Atriplex canescens (Pursh) Nutt., a dominant and important shrub of western arid rangelands, generally considered to be non-mycorrhizal, is more extensively colonized by dark...

  4. Fungal Endocarditis.

    Science.gov (United States)

    Yuan, Shi-Min

    2016-01-01

    Fungal endocarditis is a rare and fatal condition. The Candida and Aspergillus species are the two most common etiologic fungi found responsible for fungal endocarditis. Fever and changing heart murmur are the most common clinical manifestations. Some patients may have a fever of unknown origin as the onset symptom. The diagnosis of fungal endocarditis is challenging, and diagnosis of prosthetic valve fungal endocarditis is extremely difficult. The optimum antifungal therapy still remains debatable. Treating Candida endocarditis can be difficult because the Candida species can form biofilms on native and prosthetic heart valves. Combined treatment appears superior to monotherapy. Combination of antifungal therapy and surgical debridement might bring about better prognosis.

  5. Comparison of root-associated communities of native and non-native ectomycorrhizal hosts in an urban landscape.

    Science.gov (United States)

    Lothamer, K; Brown, S P; Mattox, J D; Jumpponen, A

    2014-05-01

    Non-native tree species are often used as ornamentals in urban landscapes. However, their root-associated fungal communities remain yet to be examined in detail. Here, we compared richness, diversity and community composition of ectomycorrhizosphere fungi in general and ectomycorrhizal (EcM) fungi in particular between a non-native Pinus nigra and a native Quercus macrocarpa across a growing season in urban parks using 454-pyrosequencing. Our data show that, while the ectomycorrhizosphere community richness and diversity did not differ between the two host, the EcM communities associated with the native host were often more species rich and included more exclusive members than those of the non-native hosts. In contrast, the ectomycorrhizosphere communities of the two hosts were compositionally clearly distinct in nonmetric multidimensional ordination analyses, whereas the EcM communities were only marginally so. Taken together, our data suggest EcM communities with broad host compatibilities and with a limited numbers of taxa with preference to the non-native host. Furthermore, many common fungi in the non-native Pinus were not EcM taxa, suggesting that the fungal communities of the non-native host may be enriched in non-mycorrhizal fungi at the cost of the EcM taxa. Finally, while our colonization estimates did not suggest a shortage in EcM inoculum for either host in urban parks, the differences in the fungi associated with the two hosts emphasize the importance of using native hosts in urban environments as a tool to conserve endemic fungal diversity and richness in man-made systems.

  6. Colonization of olive trees (Olea europaea L.) with the arbuscular mycorrhizal fungus Glomus sp. modified the glycolipids biosynthesis and resulted in accumulation of unsaturated fatty acids.

    Science.gov (United States)

    Mechri, Beligh; Attia, Faouzi; Tekaya, Meriem; Cheheb, Hechmi; Hammami, Mohamed

    2014-09-01

    The influence of arbuscular mycorrhizal (AM) fungi colonization on photosynthesis, mineral nutrition, the amount of phospholipids and glycolipids in the leaves of olive (Olea europaea L.) trees was investigated. After six months of growth, the rate of photosynthesis, carboxylation efficiency, transpiration and stomatal conductance in mycorrhizal (M) plants was significantly higher than that of non-mycorrhizal (NM) plants. The inoculation treatment increased the foliar P and Mg but not N. The amount of glycolipids in the leaves of M plants was significantly higher than that of NM plants. However, the amount of phospholipids in the leaves of M plants was not significantly different to that in the leaves of NM plants. Also, we observed a significant increase in the level of α-linolenic acid (C18:3ω3) in glycolipids of M plants. This work supports the view that increased glycolipids level in the leaves of M plants could be involved, at least in part, in the beneficial effects of mycorrhizal colonization on photosynthesis performance of olive trees. To our knowledge, this is the first report on the effect of AM fungi on the amount of glycolipids in the leaves of mycorrhizal plants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Ecotoxicological analysis during the removal of carbofuran in fungal bioaugmented matrices.

    Science.gov (United States)

    Ruíz-Hidalgo, Karla; Masís-Mora, Mario; Barbieri, Edison; Carazo-Rojas, Elizabeth; Rodríguez-Rodríguez, Carlos E

    2016-02-01

    Biomixtures are used for the removal of pesticides from agricultural wastewater. As biomixtures employ high content of lignocellulosic substrates, their bioaugmentation with ligninolytic fungi represents a novel approach for their enhancement. Nonetheless, the decrease in the concentration of the pesticide may result in sublethal concentrations that still affect ecosystems. Two matrices, a microcosm of rice husk (lignocellulosic substrate) bioaugmented with the fungus Trametes versicolor and a biomixture that contained fungally colonized rice husk were used in the degradation of the insecticide/nematicide carbofuran (CFN). Elutriates simulating lixiviates from these matrices were used to assay the ecotoxicological effects at sublethal level over Daphnia magna (Straus) and the fish Oreochromis aureus (Steindachner) and Oncorhynchus mykiss (Walbaum). Elutriates obtained after 30 d of treatment in the rice husk microcosms at dilutions over 2.5% increased the offspring of D. magna as a trade-off stress response, and produced mortality of neonates at dilutions over 5%. Elutriates (dilution 1:200) obtained during a 30 d period did not produce alterations on the oxygen consumption and ammonium excretion of O. mykiss, however these physiological parameters were affected in O. aureus at every time point of treatment, irrespective of the decrease in CFN concentration. When the fungally colonized rice husk was used to prepare a biomixture, where more accelerated degradation is expected, similar alterations on the responses by O. aureus were achieved. Results suggest that despite the good removal of the pesticide, it is necessary to optimize biomixtures to minimize their residual toxicity and potential chronic effects on aquatic life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-03-12

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scale genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.

  9. Arbuscular mycorrhizal fungi alter phosphorus relations of broomsedge (Andropogon virginicus L.) plants

    Energy Technology Data Exchange (ETDEWEB)

    Ning, J.C.; Cumming, J.R.

    2001-07-01

    Broomsedge (Andropogon virginicus L.) is a dominant grass revegetating many abandoned coal-mined lands in West Virginia, USA. Residual soils on such sites are often characterized by low pH, low nutrients, and high aluminium. Experiments were conducted to assess the resistance of broomsedge to limited phosphorus (Pi) availability and to investigate the role that arbuscular mycorrhizal (AM) fungi play in aiding plant growth under low Pi conditions. Pregerminated mycorrhizal and non-mycorrhizal seedlings were grown in a sand-culture system with nutrient solutions containing Pi concentrations ranging from 10 to 100 {mu}M for 8 weeks. Non-mycorrhizal plants exhibited severe inhibition of growth under Pi limitation ({lt}60 {mu}M). Colonization by AM fungi greatly enhanced host plant growth at low Pi concentrations, but did not benefit growth when Pi was readily available (100 {mu}M). In comparison to non-mycorrhizal plants, mycorrhizal plants had higher phosphorus use efficiency at low Pi concentrations and maintained nearly constant tissue nutrient concentrations across the gradient of Pi concentrations investigated. Manganese (Mn) and sodium (Na) accumulated in shoots of nonmycorrhizal plants under Pi limitation. Mycorrhizal plants exhibited lower instantaneous Pi uptake rates and significantly lower C-min values compared to non-mycorrhizal plants. These patterns suggest that the symbiotic association between broomsedge roots and AM fungi effectively maintains nutrient homeostasis through changes in physiological properties, including nutrient uptake, allocation and use. The mycorrhizal association is thus a major adaptation that allows broomsedge to become established on infertile mined lands.

  10. Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants

    Science.gov (United States)

    Krak, Karol; Vosátka, Miroslav; Püschel, David; Štorchová, Helena

    2017-01-01

    Inoculation with arbuscular mycorrhizal fungi (AMF) may improve plant performance at disturbed sites, but inoculation may also suppress root colonization by native AMF and decrease the diversity of the root-colonizing AMF community. This has been shown for the roots of directly inoculated plants, but little is known about the stability of inoculation effects, and to which degree the inoculant and the inoculation-induced changes in AMF community composition spread into newly emerging seedlings that were not in direct contact with the introduced propagules. We addressed this topic in a greenhouse experiment based on the soil and native AMF community of a post-mining site. Plants were cultivated in compartmented pots with substrate containing the native AMF community, where AMF extraradical mycelium radiating from directly inoculated plants was allowed to inoculate neighboring plants. The abundances of the inoculated isolate and of native AMF taxa were monitored in the roots of the directly inoculated plants and the neighboring plants by quantitative real-time PCR. As expected, inoculation suppressed root colonization of the directly inoculated plants by other AMF taxa of the native AMF community and also by native genotypes of the same species as used for inoculation. In the neighboring plants, high abundance of the inoculant and the suppression of native AMF were maintained. Thus, we demonstrate that inoculation effects on native AMF propagate into plants that were not in direct contact with the introduced inoculum, and are therefore likely to persist at the site of inoculation. PMID:28738069

  11. Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants.

    Directory of Open Access Journals (Sweden)

    Martina Janoušková

    Full Text Available Inoculation with arbuscular mycorrhizal fungi (AMF may improve plant performance at disturbed sites, but inoculation may also suppress root colonization by native AMF and decrease the diversity of the root-colonizing AMF community. This has been shown for the roots of directly inoculated plants, but little is known about the stability of inoculation effects, and to which degree the inoculant and the inoculation-induced changes in AMF community composition spread into newly emerging seedlings that were not in direct contact with the introduced propagules. We addressed this topic in a greenhouse experiment based on the soil and native AMF community of a post-mining site. Plants were cultivated in compartmented pots with substrate containing the native AMF community, where AMF extraradical mycelium radiating from directly inoculated plants was allowed to inoculate neighboring plants. The abundances of the inoculated isolate and of native AMF taxa were monitored in the roots of the directly inoculated plants and the neighboring plants by quantitative real-time PCR. As expected, inoculation suppressed root colonization of the directly inoculated plants by other AMF taxa of the native AMF community and also by native genotypes of the same species as used for inoculation. In the neighboring plants, high abundance of the inoculant and the suppression of native AMF were maintained. Thus, we demonstrate that inoculation effects on native AMF propagate into plants that were not in direct contact with the introduced inoculum, and are therefore likely to persist at the site of inoculation.

  12. A prospective study of fungal biomarkers to improve management of invasive fungal diseases in a mixed specialty critical care unit.

    Science.gov (United States)

    Talento, Alida Fe; Dunne, Katie; Joyce, Eimear Ann; Palmer, Michael; Johnson, Elizabeth; White, P Lewis; Springer, Jan; Loeffler, Juergen; Ryan, Thomas; Collins, Daniel; Rogers, Thomas R

    2017-08-01

    The diagnosis of invasive fungal diseases (IFD) in critical care patients (CrCP) is difficult. The study investigated the performance of a set of biomarkers for diagnosis of IFD in a mixed specialty critical care unit (CrCU). A prospective observational study in patients receiving critical care for ≥7days was performed. Serum samples were tested for the presence of: (1-3) - β-d-glucan (BDG), galactomannan (GM), and Aspergillus fumigatus DNA. GM antigen detection was also performed on bronchoalveolar lavage (BAL) samples. The patients were classified using published definitions for IFD and a diagnostic algorithm for invasive pulmonary aspergillosis. Performance parameters of the assays were determined. In patients with proven and probable IFD, the sensitivity, specificity, PPV and NPV of a single positive BDG were 63%, 83%, 65% and 83% respectively. Specificity increased to 86% with 2 consecutive positive results. The mean BDG value of patients with proven and probable IFD was significantly higher compared to those with fungal colonization and no IFD (p value<0.0001). New diagnostic criteria which incorporate these biomarkers, in particular BDG, and host factors unique to critical care patients should enhance diagnosis of IFD and positively impact antifungal stewardship programs. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Understanding colonization and proliferation potential of endophytes and pathogen in planta via plating, polymerase chain reaction and ergosterol assay.

    Science.gov (United States)

    Chow, Yiing Yng; Rahman, Sadequr; Ting, Adeline Su Yien

    2017-01-01

    This study aimed to establish the colonization behavior and proliferation potential of three endophytes and one pathogen Ganoderma boninense (Gb) introduced into oil palm ramets (host model). The endophytes selected were Diaporthe phaseolorum (WAA02), Trichoderma asperellum (T2), and Penicillium citrinum (BTF08). Ramets were first inoculated with 100 mL of fungal cells (10 6  cfu mL - 1 ) via soil drenching. For the next 7 days, ramets were sampled and subjected to three different assays to detect and identify fungal colonization, and establish their proliferation potential in planta . Plate assay revealed the presence of endophytes in root, stem and leaf tissues within 7 days after inoculation. Polymerase Chain Reaction (PCR) detected and identified the isolates from the plant tissues. The ergosterol assay (via high performance liquid chromatography, HPLC) confirmed the presence of endophytes and Gb in planta . The increase in ergosterol levels throughout 49 days was however insignificant, suggesting that proliferation may be absent or may occur very slowly in planta . This study strongly suggests that the selected endophytes could colonize the host upon inoculation, but proliferation occurs at a slower rate, which may subsequently influence the biocontrol expression of endophytes against the pathogen.

  14. Understanding colonization and proliferation potential of endophytes and pathogen in planta via plating, polymerase chain reaction, and ergosterol assay

    Directory of Open Access Journals (Sweden)

    Yiing Yng Chow

    2017-01-01

    Full Text Available This study aimed to establish the colonization behavior and proliferation potential of three endophytes and one pathogen Ganoderma boninense (Gb introduced into oil palm ramets (host model. The endophytes selected were Diaporthe phaseolorum (WAA02, Trichoderma asperellum (T2, and Penicillium citrinum (BTF08. Ramets were first inoculated with 100 mL of fungal cells (106 cfu mL−1 via soil drenching. For the next 7 days, ramets were sampled and subjected to three different assays to detect and identify fungal colonization, and establish their proliferation potential in planta. Plate assay revealed the presence of endophytes in root, stem and leaf tissues within 7 days after inoculation. Polymerase Chain Reaction (PCR detected and identified the isolates from the plant tissues. The ergosterol assay (via high-performance liquid chromatography, HPLC confirmed the presence of endophytes and Gb in planta. The increase in ergosterol levels throughout 49 days was however insignificant, suggesting that proliferation may be absent or may occur very slowly in planta. This study strongly suggests that the selected endophytes could colonize the host upon inoculation, but proliferation occurs at a slower rate, which may subsequently influence the biocontrol expression of endophytes against the pathogen.

  15. Seasonality and mycorrhizal colonization in three species of epiphytic orchids in southeast Mexico

    Directory of Open Access Journals (Sweden)

    Vincenzo Bertolini

    2014-12-01

    Full Text Available Orchids establish symbiosis with Rhizoctonia mycorrhizal fungi, forming the characteristic pelotons within the cells of the root cortex. Under natural conditions, terrestrial and epiphytic orchids have different levels of dependence upon the fungal symbiont, although various authors have mentioned that once orchid plants reach maturity the interaction becomes weaker and intermittent. Recent evidence shows that in some epiphytic orchid species mycorrhization is constant and systematic. In three species of wild orchids from southeast Mexico, we show that mycorrhization is systematically present in roots of different ages, in the wet and dry seasons. We demonstrate that the volume of the root that is colonized depends upon the quantity of rainfall and the diameter of the root, and that rainfall also determines the presence of fresh, undigested pelotons. In very thin roots, mycorrhizal colonization occupies a considerable proportion of the cortex, whereas in thicker roots the proportion of the volume of the root cortex colonized is lower.

  16. Diversity of fungi colonizing leaves of Rhododendron (Rhododendron L. cuttings

    Directory of Open Access Journals (Sweden)

    Barbara Kierpiec-Baran

    2014-04-01

    Full Text Available Rhododendrons (Rhododendron L. are shrubs whose attractiveness is determined by their multi-coloured flowers and evergreen leaves. Necroses visible on the leaves of rhododendron cuttings diminish the suitability of nursery material for marketing. These symptoms are most frequently caused by fungi. The investigations were conducted in 2010–2011 in an ornamental shrub nursery to identify fungi colonizing the phyllosphere of rhododendron cuttings and causing leaf necroses. The material for analysis consisted of leaves of 11 rhododendron cultivars. 550 leaves were collected from 110 half-year-old cuttings for mycological analysis. Over 350 fungal colonies belonging to 15 species were isolated from the leaves of rhododendron cuttings. The dominants included: Pestalotiopsis sydowiana, Trichoderma koningii and Alternaria alternata. The influents included: Aspergillus brasiliensis, Mucor hiemalis f. hiemalis, Epicoccum nigrum, Sordaria fimicola and Umbelopsis isabellina. A large majority of the fungi preferred the phyllosphere environment of Yakushima rhododendron (R. yakushimanum cultivars ‘Sneezy’ and ‘Golden Torch’ as well as of the large-flowered cultivars ‘Flautando’, ‘Dominik’, and ‘Simona’. The phyllosphere of the large-flowered cultivars ‘Bernstein’, ‘Nova Zembla’, and ‘Goldbuckett’ was a reservoir for many fungal colonies and fungi species. The cultivars less susceptible to colonization by fungi and the most promising for planting in green areas and home gardens are the large-flowered cultivars ‘Bernstein’, ‘Nova Zembla’, ‘Goldbuckett’, ‘Rasputin’, and ‘Roseum Elegans’.

  17. Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus

    Energy Technology Data Exchange (ETDEWEB)

    Wu Naiying [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Department of Chemistry, Shangqiu Normal College, Shangqiu 476000 (China); Huang Honglin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Zhang Shuzhen, E-mail: szzhang@rcees.ac.c [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Zhu Yongguan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Christie, Peter [Agri-Environment Branch, Agriculture Food and Environmental Science Division, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX (United Kingdom); Zhang Yong [State Key Laboratory of Marine Environmental Science, Environmental Science Research Centre, Xiamen University, Xiamen 361005 (China)

    2009-05-15

    Phenanthrene uptake by Medicago sativa L. was investigated under the influence of an arbuscular mycorrhizal fungus. Inoculation of lucerne with the arbuscular mycorrhizal fungus Glomus etunicatum L. resulted in higher phenanthrene accumulation in the roots and lower accumulation in the shoots compared to non-mycorrhizal controls. Studies on sorption and desorption of phenanthrene by roots and characterization of heterogeneity of mycorrhizal and non-mycorrhizal roots using solid-state {sup 13}C nuclear magnetic resonance spectroscopy ({sup 13}C NMR) demonstrated that increased aromatic components due to mycorrhizal inoculation resulted in enhanced phenanthrene uptake by the roots but lower translocation to the shoots. Direct visualization using two-photon excitation microscopy (TPEM) revealed higher phenanthrene accumulation in epidermal cells of roots and lower transport into the root interior and stem in mycorrhizal plants than in non-mycorrhizal controls. These results provide some insight into the mechanisms by which arbuscular mycorrhizal inoculation may influence the uptake of organic contaminants by plants. - Colonization by an arbuscular mycorrhizal fungus promoted root uptake and decreased shoot uptake of phenanthrene by Medicago sativa L.

  18. Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus

    International Nuclear Information System (INIS)

    Wu Naiying; Huang Honglin; Zhang Shuzhen; Zhu Yongguan; Christie, Peter; Zhang Yong

    2009-01-01

    Phenanthrene uptake by Medicago sativa L. was investigated under the influence of an arbuscular mycorrhizal fungus. Inoculation of lucerne with the arbuscular mycorrhizal fungus Glomus etunicatum L. resulted in higher phenanthrene accumulation in the roots and lower accumulation in the shoots compared to non-mycorrhizal controls. Studies on sorption and desorption of phenanthrene by roots and characterization of heterogeneity of mycorrhizal and non-mycorrhizal roots using solid-state 13 C nuclear magnetic resonance spectroscopy ( 13 C NMR) demonstrated that increased aromatic components due to mycorrhizal inoculation resulted in enhanced phenanthrene uptake by the roots but lower translocation to the shoots. Direct visualization using two-photon excitation microscopy (TPEM) revealed higher phenanthrene accumulation in epidermal cells of roots and lower transport into the root interior and stem in mycorrhizal plants than in non-mycorrhizal controls. These results provide some insight into the mechanisms by which arbuscular mycorrhizal inoculation may influence the uptake of organic contaminants by plants. - Colonization by an arbuscular mycorrhizal fungus promoted root uptake and decreased shoot uptake of phenanthrene by Medicago sativa L.

  19. A Histological Study of Aspergillus flavus Colonization of Wound Inoculated Maize Kernels of Resistant and Susceptible Maize Hybrids in the Field

    Directory of Open Access Journals (Sweden)

    Gary L. Windham

    2018-04-01

    Full Text Available Aspergillus flavus colonization in developing kernels of maize single-cross hybrids resistant (Mp313E × Mp717 and susceptible (GA209 × T173 to aflatoxin accumulation was determined in the field over three growing seasons (2012–2014. Plants were hand pollinated, and individual kernels were inoculated with a needle dipped in a suspension of A. flavus conidia 21 days after pollination. Kernels were harvested at 1- to 2-day intervals from 1 to 21 days after inoculation (DAI. Kernels were placed in FAA fixative, dehydrated, embedded in paraffin, sectioned, and stained with toluidine blue. Kernels were also collected additional kernels for aflatoxin analyses in 2013 and 2014. At 2 DAI, A. flavus hyphae were observed among endosperm cells in the susceptible hybrid, but colonization of the endosperm in the resistant hybrid was limited to the wound site of the resistant hybrid. Sections of the scutellum of the susceptible hybrid were colonized by A. flavus by 5 DAI. Fungal growth was slower in the resistant hybrid compared to the susceptible hybrid. By 10 DAI, A. flavus had colonized a large section of the embryo in the susceptible hybrid; whereas in the resistant hybrid, approximately half of the endosperm had been colonized and very few cells in the embryo were colonized. Fungal colonization in some of the kernels of the resistant hybrid was slowed in the aleurone layer or at the endosperm-scutellum interface. In wounded kernels with intact aleurone layers, the fungus spread around the kernel between the pericarp and aleurone layer with minimal colonization of the endosperm. Aflatoxin B1 was first detected in susceptible kernel tissues 8 DAI in 2013 (14 μg/kg and 2014 (18 μg/kg. The resistant hybrid had significantly lower levels of aflatoxin accumulation compared to the susceptible hybrid at harvests 10, 21, and 28 DAI in 2013, and 20 and 24 DAI in 2014. Our study found differential A. flavus colonization of susceptible and resistant kernel

  20. Fungal Meningitis

    Science.gov (United States)

    ... Schedules Preteen & Teen Vaccines Meningococcal Disease Sepsis Fungal Meningitis Language: English Spanish Recommend on Facebook Tweet Share ... the brain or spinal cord. Investigation of Fungal Meningitis, 2012 In September 2012, the Centers for Disease ...

  1. Demographic population structure and fungal associations of plants colonizing High Arctic glacier forelands, Petuniabukta, Svalbard

    Czech Academy of Sciences Publication Activity Database

    Těšitel, J.; Těšitelová, T.; Bernardová, A.; Drdová, Edita; Lučanová, Magdalena; Klimešová, Jitka

    2014-01-01

    Roč. 33, č. 20797 (2014) ISSN 0800-0395 Institutional support: RVO:61389030 ; RVO:67985939 Keywords : Colonizer * deglaciation * endophyte Subject RIV: DO - Wilderness Conservation; EF - Botanics (BU-J) Impact factor: 1.141, year: 2014

  2. Preferential colonization of Solanum tuberosum L. roots by the fungus Glomus intraradices in arable soil of a potato farming area.

    Science.gov (United States)

    Cesaro, Patrizia; van Tuinen, Diederik; Copetta, Andrea; Chatagnier, Odile; Berta, Graziella; Gianinazzi, Silvio; Lingua, Guido

    2008-09-01

    The symbiosis between plant roots and arbuscular mycorrhizal (AM) fungi has been shown to affect both the diversity and productivity of agricultural communities. In this study, we characterized the AM fungal communities of Solanum tuberosum L. (potato) roots and of the bulk soil in two nearby areas of northern Italy, in order to verify if land use practices had selected any particular AM fungus with specificity to potato plants. The AM fungal large-subunit (LSU) rRNA genes were subjected to nested PCR, cloning, sequencing, and phylogenetic analyses. One hundred eighty-three LSU rRNA sequences were analyzed, and eight monophyletic ribotypes, belonging to Glomus groups A and B, were identified. AM fungal communities differed between bulk soil and potato roots, as one AM fungal ribotype, corresponding to Glomus intraradices, was much more frequent in potato roots than in soils (accounting for more than 90% of sequences from potato samples and less than 10% of sequences from soil samples). A semiquantitative heminested PCR with specific primers was used to confirm and quantify the AM fungal abundance observed by cloning. Overall results concerning the biodiversity of AM fungal communities in roots and in bulk soils from the two studied areas suggested that potato roots were preferentially colonized by one AM fungal species, G. intraradices.

  3. Root-Associated Fungi Shared Between Arbuscular Mycorrhizal and Ectomycorrhizal Conifers in a Temperate Forest.

    Science.gov (United States)

    Toju, Hirokazu; Sato, Hirotoshi

    2018-01-01

    Arbuscular mycorrhizal and ectomycorrhizal symbioses are among the most important drivers of terrestrial ecosystem dynamics. Historically, the two types of symbioses have been investigated separately because arbuscular mycorrhizal and ectomycorrhizal plant species are considered to host discrete sets of fungal symbionts (i.e., arbuscular mycorrhizal and ectomycorrhizal fungi, respectively). Nonetheless, recent studies based on high-throughput DNA sequencing technologies have suggested that diverse non-mycorrhizal fungi (e.g., endophytic fungi) with broad host ranges play roles in relationships between arbuscular mycorrhizal and ectomycorrhizal plant species in forest ecosystems. By analyzing an Illumina sequencing dataset of root-associated fungi in a temperate forest in Japan, we statistically examined whether co-occurring arbuscular mycorrhizal ( Chamaecyparis obtusa ) and ectomycorrhizal ( Pinus densiflora ) plant species could share non-mycorrhizal fungal communities. Among the 919 fungal operational taxonomic units (OTUs) detected, OTUs in various taxonomic lineages were statistically designated as "generalists," which associated commonly with both coniferous species. The list of the generalists included fungi in the genera Meliniomyces, Oidiodendron, Cladophialophora, Rhizodermea, Penicillium , and Mortierella . Meanwhile, our statistical analysis also detected fungi preferentially associated with Chamaecyparis (e.g., Pezicula ) or Pinus (e.g., Neolecta ). Overall, this study provides a basis for future studies on how arbuscular mycorrhizal and ectomycorrhizal plant species interactively drive community- or ecosystem-scale processes. The physiological functions of the fungi highlighted in our host-preference analysis deserve intensive investigations for understanding their roles in plant endosphere and rhizosphere.

  4. Correlation of maple sap composition with bacterial and fungal communities determined by multiplex automated ribosomal intergenic spacer analysis (MARISA).

    Science.gov (United States)

    Filteau, Marie; Lagacé, Luc; LaPointe, Gisèle; Roy, Denis

    2011-08-01

    During collection, maple sap is contaminated by bacteria and fungi that subsequently colonize the tubing system. The bacterial microbiota has been more characterized than the fungal microbiota, but the impact of both components on maple sap quality remains unclear. This study focused on identifying bacterial and fungal members of maple sap and correlating microbiota composition with maple sap properties. A multiplex automated ribosomal intergenic spacer analysis (MARISA) method was developed to presumptively identify bacterial and fungal members of maple sap samples collected from 19 production sites during the tapping period. Results indicate that the fungal community of maple sap is mainly composed of yeast related to Mrakia sp., Mrakiella sp., Guehomyces pullulans, Cryptococcus victoriae and Williopsis saturnus. Mrakia, Mrakiella and Guehomyces peaks were identified in samples of all production sites and can be considered dominant and stable members of the fungal microbiota of maple sap. A multivariate analysis based on MARISA profiles and maple sap chemical composition data showed correlations between Candida sake, Janthinobacterium lividum, Williopsis sp., Leuconostoc mesenteroides, Mrakia sp., Rhodococcus sp., Pseudomonas tolaasii, G. pullulans and maple sap composition at different flow periods. This study provides new insights on the relationship between microbial community and maple sap quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Fungal endophytes: diversity and functional roles

    Science.gov (United States)

    Rodriguez, R.J.; White, J.F.; Arnold, A.E.; Redman, R.S.

    2009-01-01

    All plants in natural ecosystems appear to be symbiotic with fungal endophytes. This highly diverse group of fungi can have profound impacts on plant communities through increasing fitness by conferring abiotic and biotic stress tolerance, increasing biomass and decreasing water consumption, or decreasing fitness by altering resource allocation. Despite more than 100 yr of research resulting in thousands of journal articles, the ecological significance of these fungi remains poorly characterized. Historically, two endophytic groups (clavicipitaceous (C) and nonclavicipitaceous (NC)) have been discriminated based on phylogeny and life history traits. Here, we show that NC-endophytes represent three distinct functional groups based on host colonization and transmission, in planta biodiversity and fitness benefits conferred to hosts. Using this framework, we contrast the life histories, interactions with hosts and potential roles in plant ecophysiology of C- and NC-endophytes, and highlight several key questions for future work in endophyte biology.

  6. Difference between resistant and susceptible maize to systematic colonization as revealed by DsRed-labeled Fusarium verticillioides

    Directory of Open Access Journals (Sweden)

    Lei Wu

    2013-10-01

    Full Text Available Fusarium verticillioides was labeled with DsRed via Agrobacterium tumefaciens-mediated transformation to examine differences in colonization and reactions of resistant and susceptible inbred lines of maize (Zea mays L.. The extent of systemic colonization of F. verticillioides in roots from maize lines either resistant or susceptible to the fungus was studied by visualizing the red fluorescence produced by the fungus expressing DsRed. The difference in quantities of colony forming units (CFU in roots and basal stems, production of fumonisin B1, and pH of root were determined. Although F. verticillioides colonized both resistant and susceptible lines, differences were observed in the pattern and extent of fungal colonization in the two types of maize lines. The fungus colonized the susceptible lines producing mosaic patterns by filling the individual root cells with hyphae. Such a pattern of colonization was rarely observed in resistant lines, which were less colonized by the fungus than the susceptible lines in terms of CFUs. The production of mycotoxin fumonisin B1 in roots from different lines was closely correlated with the amount of F. verticillioides colonization, rather than the pH or amylopectin concentrations in the root. The findings from this study contribute to a better understanding of the defense mechanism in resistant maize lines to F. verticillioides.

  7. The relationship between Swiss needle cast symptom severity and level of Phaeocryptopus gaeumannii colonization in coastal Douglas-fir (Pseudotsuga menziesii var. menziesii).

    Science.gov (United States)

    F. Temel; G.R. Johnson; J.K. Stone

    2004-01-01

    This study examined 108 15-year-old Douglas-fir (Pseudotsuga menziesii var. menziesii trees to investigate whether trees exhibiting less severe Swiss needle cast (SNC) symptoms were more resistant (had less fungal colonization) or more tolerant (maintained healthy foliage under similar infection levels). Trees were sampled from...

  8. Long-term no-till: A major driver of fungal communities in dryland wheat cropping systems.

    Directory of Open Access Journals (Sweden)

    Dipak Sharma-Poudyal

    Full Text Available In the dryland Pacific Northwest wheat cropping systems, no-till is becoming more prevalent as a way to reduce soil erosion and fuel inputs. Tillage can have a profound effect on microbial communities and soilborne fungal pathogens, such as Rhizoctonia. We compared the fungal communities in long-term no-till (NT plots adjacent to conventionally tilled (CT plots, over three years at two locations in Washington state and one location in Idaho, US. We used pyrosequencing of the fungal ITS gene and identified 422 OTUs after rarefication. Fungal richness was higher in NT compared to CT, in two of the locations. Humicola nigrescens, Cryptococcus terreus, Cadophora spp. Hydnodontaceae spp., and Exophiala spp. were more abundant in NT, while species of Glarea, Coniochaetales, Mycosphaerella tassiana, Cryptococcus bhutanensis, Chaetomium perlucidum, and Ulocladium chartarum were more abundant in CT in most locations. Other abundant groups that did not show any trends were Fusarium, Mortierella, Penicillium, Aspergillus, and Macroventuria. Plant pathogens such as Rhizoctonia (Ceratobasidiaceae were not abundant enough to see tillage differences, but Microdochium bolleyi, a weak root pathogen, was more abundant in NT. Our results suggest that NT fungi are better adapted at utilizing intact, decaying roots as a food source and may exist as root endophytes. CT fungi can utilize mature plant residues that are turned into the soil with tillage as pioneer colonizers, and then produce large numbers of conidia. But a larger proportion of the fungal community is not affected by tillage and may be niche generalists.

  9. Ecotoxicity and fungal deterioration of recycled polypropylene/wood composites: effect of wood content and coupling.

    Science.gov (United States)

    Sudár, András; López, María J; Keledi, Gergely; Vargas-García, M Carmen; Suárez-Estrella, Francisca; Moreno, Joaquín; Burgstaller, Christoph; Pukánszky, Béla

    2013-09-01

    Recycled polypropylene (rPP) was recovered from an industrial shredder and composites were prepared with a relatively wide range of wood content and with two coupling agents, a maleated PP (MAPP) and a maleated ethylene-propylene-diene elastomer (MAEPDM). The mechanical properties of the composites showed that the coupling agents change structure only slightly, but interfacial adhesion quite drastically. The durability of the materials was determined by exposing them to a range of fungi and, ecotoxicity was studied on the aquatic organism Vibrio fischeri. The composites generally exhibit low acute toxicity, with values below the levels considered to have direct ecotoxic effect on aquatic ecosystems (deterioration proved that wood facilitates fungal colonization. Fungi caused slight mass loss (below 3%) but it was not correlated with substantial deterioration in material properties. MAPP seems to be beneficial in the retention of mechanical properties during fungal attack. rPP/wood composites can be considered non-ecotoxic and quite durable, but the influence of wood content on resistance to fungal attack must be taken into account for materials intended for applications requiring long-term outdoor exposure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Micromycetes colonizing and damaging leaves of evergreen rhododendron (Rhododendron L. in nursery

    Directory of Open Access Journals (Sweden)

    Maria Kowalik

    2015-07-01

    Full Text Available In May and October 2010–2012, mycological studies were conducted on 10 cultivars of rhododendron bushes growing in containers in the nursery of ornamental plants. Out of 3000 specimens of infested leaf fragments, 2566 fungal colonies belonging to 41 species were isolated. The following species colonizing the leaves and causing their necrosis were extracted in the largest number of colonies: Alternaria alternata, Aspergillus niger, Epicoccum nigrum, Humicola grisea, Pestalotiopsis sydowiana, Phoma pomorum, Sordaria fimicola, Trichoderma koningii, Trichoderma polysporum, Truncatella truncata, Umbelopsis isabellina and others. The research showed that the micromycetes colonies colonizing and damaging rhododendron leaves varied in species composition and number of colonies in different years and at different times. The study determined which rhododendron cultivars were characterized by good health and which had the greatest susceptibility to infection by micromycetes.

  11. Effectiveness of Arbuscular Mycorrhizal Fungal Isolates from the Land Uses of Amazon Region in Symbiosis with Cowpea.

    Science.gov (United States)

    Silva, Gláucia Alves E; Siqueira, José O; Stürmer, Sidney L; Moreira, Fatima M S

    2018-01-01

    Arbuscular mycorrhizal fungi provide several ecosystem services, including increase in plant growth and nutrition. The occurrence, richness, and structure of arbuscular mycorrhizal fungi communities are influenced by human activities, which may affect the functional benefits of these components of the soil biota. In this study, 13 arbuscular mycorrhizal fungi isolates originating from soils with different land uses in the Alto Solimões-Amazon region were evaluated regarding their effect on growth, nutrition, and cowpea yield in controlled conditions using two soils. Comparisons with reference isolates and a mixture of isolates were also performed. Fungal isolates exhibited a wide variability associated with colonization, sporulation, production of aboveground biomass, nitrogen and phosphorus uptake, and grain yield, indicating high functional diversity within and among fungal species. A generalized effect of isolates in promoting phosphorus uptake, increase in biomass, and cowpea yield was observed in both soils. The isolates of Glomus were the most efficient and are promising isolates for practical inoculation programs. No relationship was found between the origin of fungal isolate (i.e. land use) and their symbiotic performance in cowpea.

  12. Higher fungal diversity is correlated with lower CO2 emissions from dead wood in a natural forest.

    Science.gov (United States)

    Yang, Chunyan; Schaefer, Douglas A; Liu, Weijie; Popescu, Viorel D; Yang, Chenxue; Wang, Xiaoyang; Wu, Chunying; Yu, Douglas W

    2016-08-24

    Wood decomposition releases almost as much CO2 to the atmosphere as does fossil-fuel combustion, so the factors regulating wood decomposition can affect global carbon cycling. We used metabarcoding to estimate the fungal species diversities of naturally colonized decomposing wood in subtropical China and, for the first time, compared them to concurrent measures of CO2 emissions. Wood hosting more diverse fungal communities emitted less CO2, with Shannon diversity explaining 26 to 44% of emissions variation. Community analysis supports a 'pure diversity' effect of fungi on decomposition rates and thus suggests that interference competition is an underlying mechanism. Our findings extend the results of published experiments using low-diversity, laboratory-inoculated wood to a high-diversity, natural system. We hypothesize that high levels of saprotrophic fungal biodiversity could be providing globally important ecosystem services by maintaining dead-wood habitats and by slowing the atmospheric contribution of CO2 from the world's stock of decomposing wood. However, large-scale surveys and controlled experimental tests in natural settings will be needed to test this hypothesis.

  13. Towards a molecular understanding of symbiont function: identification of a fungal gene for the degradation of xylan in the fungus gardens of leaf-cutting ants

    DEFF Research Database (Denmark)

    Schiøtt, Morten; De Fine Licht, Henrik H; Lange, Lene

    2008-01-01

    -substrate degradation in fungus gardens is a multi-step process comparable to normal biodegradation of organic matter in soil ecosystems, but with the crucial difference that a single fungal symbiont realizes most of the steps that are normally provided by a series of microorganisms that colonize fallen leaves...

  14. Variable effects of plant colonization on black slate uptake into microbial PLFAs

    Science.gov (United States)

    Seifert, Anne-Gret; Trumbore, Susan; Xu, Xiaomei; Zhang, Dachung; Gleixner, Gerd

    2013-04-01

    Microbial degradation of carbon derived from black shale and slate has been shown in vitro. However, in natural settings where other labile carbon sources are likely to exist, this has not been previously demonstrated. We investigated the uptake of ancient carbon derived from slate weathering and from recently photosynthesised organic matter by different groups of microorganisms. Therefore we isolated microbial biomarkers (phospholipid fatty acids, PLFAs) from black slates collected at a chronosequence of waste piles which differed in age and vegetation cover. We quantified the amount of PLFAs and performed stable isotope and radiocarbon measurements on individual or grouped PLFAs to quantify the fraction of slate derived carbon. We used black slate from a pile heaped in the 1950s with either uncovered black slate material (bare site) or material slightly colonized by small plants (greened site) and from a forested leaching pile (forested site) used for alum-mining in the 19th century. Colonization by plants influenced the amount and composition of the microbial community. Greater amounts of PLFAs (5410 ng PLFA/g dw) were extracted from slate sampled at the forested site as opposed to the bare site (960 ng PLFAs/g dw) or the greened (annual grasses and mosses) rock waste pile (1050 ng PLFAs/g dw). We found the highest proportion of PLFAs representing Gram-negative bacteria on the forested site and the highest proportion of PLFAs representing Gram-positive bacteria on the bare site. The fungal PLFA was most abundant at the greened site. Sites with less plant colonization (bare and greened site) tended to have more depleted δ13C values compared to the forested site. Radiocarbon measurements on PLFAs indicated that fungi and Gram-positive bacteria were best adapted to black slate carbon uptake. In the fungal PLFA (combined bare and greened waste pile sample) and in PLFAs of Gram-positive bacteria (greened site) we measured 39.7% and 28.9% ancient carbon uptake

  15. A nonnative and a native fungal plant pathogen similarly stimulate ectomycorrhizal development but are perceived differently by a fungal symbiont.

    Science.gov (United States)

    Zampieri, Elisa; Giordano, Luana; Lione, Guglielmo; Vizzini, Alfredo; Sillo, Fabiano; Balestrini, Raffaella; Gonthier, Paolo

    2017-03-01

    The effects of plant symbionts on host defence responses against pathogens have been extensively documented, but little is known about the impact of pathogens on the symbiosis and if such an impact may differ for nonnative and native pathogens. Here, this issue was addressed in a study of the model system comprising Pinus pinea, its ectomycorrhizal symbiont Tuber borchii, and the nonnative and native pathogens Heterobasidion irregulare and Heterobasidion annosum, respectively. In a 6-month inoculation experiment and using both in planta and gene expression analyses, we tested the hypothesis that H. irregulare has greater effects on the symbiosis than H. annosum. Although the two pathogens induced the same morphological reaction in the plant-symbiont complex, with mycorrhizal density increasing exponentially with pathogen colonization of the host, the number of target genes regulated in T. borchii in plants inoculated with the native pathogen (i.e. 67% of tested genes) was more than twice that in plants inoculated with the nonnative pathogen (i.e. 27% of genes). Although the two fungal pathogens did not differentially affect the amount of ectomycorrhizas, the fungal symbiont perceived their presence differently. The results may suggest that the symbiont has the ability to recognize a self/native and a nonself/nonnative pathogen, probably through host plant-mediated signal transduction. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  16. An endophytic fungus isolated from finger millet (Eleucine coracona produces anti-fungal natural products

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2015-10-01

    Full Text Available Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes that contribute to the antifungal activity. Here we report the first isolation of endophyte(s from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp. was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation.

  17. An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products.

    Science.gov (United States)

    Mousa, Walaa K; Schwan, Adrian; Davidson, Jeffrey; Strange, Philip; Liu, Huaizhi; Zhou, Ting; Auzanneau, France-Isabelle; Raizada, Manish N

    2015-01-01

    Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes) that contribute to the antifungal activity. Here we report the first isolation of endophyte(s) from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp.) was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol, and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation.

  18. Freshwater Fungal Infections

    Directory of Open Access Journals (Sweden)

    Dennis J. Baumgardner

    2017-01-01

    Full Text Available Fungal infections as a result of freshwater exposure or trauma are fortunately rare. Etiologic agents are varied, but commonly include filamentous fungi and Candida. This narrative review describes various sources of potential freshwater fungal exposure and the diseases that may result, including fungal keratitis, acute otitis externa and tinea pedis, as well as rare deep soft tissue or bone infections and pulmonary or central nervous system infections following traumatic freshwater exposure during natural disasters or near-drowning episodes. Fungal etiology should be suspected in appropriate scenarios when bacterial cultures or molecular tests are normal or when the infection worsens or fails to resolve with appropriate antibacterial therapy.

  19. Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula

    DEFF Research Database (Denmark)

    Watts-Williams, Stephanie J.; Jakobsen, Iver; Cavagnaro, Timothy R.

    2015-01-01

    and root growth, at different soil P levels. Medicago truncatula was grown at three soil P levels in split-pots with or without AM fungal inoculation and where one root half grew into soil labelled with 33P. Plant genotypes included the A17 wild type and the mtpt4 mutant. The mtpt4 mutant, colonized by AM...

  20. Fungal-host diversity among mycoheterotrophic plants increases proportionally to their fungal-host overlap.

    Science.gov (United States)

    Gomes, Sofia I F; Merckx, Vincent S F T; Saavedra, Serguei

    2017-05-01

    The vast majority of plants obtain an important proportion of vital resources from soil through mycorrhizal fungi. Generally, this happens in exchange of photosynthetically fixed carbon, but occasionally the interaction is mycoheterotrophic, and plants obtain carbon from mycorrhizal fungi. This process results in an antagonistic interaction between mycoheterotrophic plants and their fungal hosts. Importantly, the fungal-host diversity available for plants is restricted as mycoheterotrophic interactions often involve narrow lineages of fungal hosts. Unfortunately, little is known whether fungal-host diversity may be additionally modulated by plant-plant interactions through shared hosts. Yet, this may have important implications for plant competition and coexistence. Here, we use DNA sequencing data to investigate the interaction patterns between mycoheterotrophic plants and arbuscular mycorrhizal fungi. We find no phylogenetic signal on the number of fungal hosts nor on the fungal hosts shared among mycoheterotrophic plants. However, we observe a potential trend toward increased phylogenetic diversity of fungal hosts among mycoheterotrophic plants with increasing overlap in their fungal hosts. While these patterns remain for groups of plants regardless of location, we do find higher levels of overlap and diversity among plants from the same location. These findings suggest that species coexistence cannot be fully understood without attention to the two sides of ecological interactions.

  1. The effects of fire severity on ectomycorrhizal colonization and morphometric features in Pinus pinaster Ait. seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Vásquez-Gassibe, P.; Oria-de-Rueda, J.A.; Santos-del-Blanco, L.; Martín-Pinto, P.

    2016-07-01

    Aim of study: Mycorrhizal fungi in Mediterranean forests play a key role in the complex process of recovery after wildfires. A broader understanding of an important pyrophytic species as Pinus pinaster and its fungal symbionts is thus necessary for forest restoration purposes. This study aims to assess the effects of ectomycorrhizal symbiosis on maritime pine seedlings and how fire severity affects fungal colonization ability. Area of study: Central Spain, in a Mediterranean region typically affected by wildfires dominated by Pinus pinaster, a species adapted to fire disturbance. Material and Methods: We studied P. pinaster root apexes from seedlings grown in soils collected one year after fire in undisturbed sites, sites moderately affected by fire and sites highly affected by fire. Natural ectomycorrhization was observed at the whole root system level as well as at two root vertical sections (0-10 cm and 10-20 cm). We also measured several morphometric traits (tap root length, shoot length, dry biomass of shoots and root/shoot ratio), which were used to test the influence of fire severity and soil chemistry upon them. Main results: Ectomycorrhizal colonization in undisturbed soils for total and separated root vertical sections was higher than in soils that had been affected by fire to some degree. Inversely, seedling vegetative size increased according to fire severity. Research highlights: Fire severity affected soil properties and mycorrhizal colonization one year after occurrence, thus affecting plant development. These findings can contribute to a better knowledge of the factors mediating successful establishment of P. pinaster in Mediterranean forests after wildfires. (Author)

  2. Dominant Tree Species and Soil Type Affect the Fungal Community Structure in a Boreal Peatland Forest.

    Science.gov (United States)

    Sun, Hui; Terhonen, Eeva; Kovalchuk, Andriy; Tuovila, Hanna; Chen, Hongxin; Oghenekaro, Abbot O; Heinonsalo, Jussi; Kohler, Annegret; Kasanen, Risto; Vasander, Harri; Asiegbu, Fred O

    2016-05-01

    Boreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (P< 0.001) and tree species (P< 0.001). The distance-based linear models analysis showed that environmental variables were significantly correlated with community structure (P< 0.04). The availability of soil nutrients (Ca [P= 0.002], Fe [P= 0.003], and P [P= 0.003]) within the site was an important factor in the fungal community composition. The species richness in wood was significantly lower than in the corresponding soil (P< 0.004). The results of the molecular identification were supplemented by fruiting body surveys. Seven of the genera of Agaricomycotina identified in our surveys were among the top 20 genera observed in pyrosequencing data. Our study is the first, to our knowledge, fungal high-throughput next-generation sequencing study performed on peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells.

    Science.gov (United States)

    Balestrini, Raffaella; Gómez-Ariza, Jorge; Lanfranco, Luisa; Bonfante, Paola

    2007-09-01

    The establishment of a symbiotic interaction between plant roots and arbuscular mycorrhizal (AM) fungi requires both partners to undergo significant morphological and physiological modifications which eventually lead to reciprocal beneficial effects. Extensive changes in gene expression profiles recently have been described in transcriptomic studies that have analyzed the whole mycorrhizal root. However, because root colonization by AM fungi involves different cell types, a cell-specific gene expression pattern is likely to occur. We have applied the laser microdissection (LMD) technology to investigate expression profiles of both plant and fungal genes in Lycopersicon esculentum roots colonized by Glomus mosseae. A protocol to harvest arbuscule-containing cells from paraffin sections of mycorrhizal roots has been developed using a Leica AS LMD system. RNA of satisfactory quantity and quality has been extracted for molecular analysis. Transcripts for plant phosphate transporters (LePTs), selected as molecular markers for a functional symbiosis, have been detected by reverse-transcriptase polymerase chain reaction assays and associated to distinct cell types, leading to novel insights into the distribution of LePT mRNAs. In fact, the transcripts of the five phosphate transporters (PTs) have been detected contemporaneously in the same arbusculated cell population, unlike from the neighboring noncolonized cells. In addition, fungal H(+)ATPase (GmHA5) and phosphate transporter (GmosPT) mRNAs were found exclusively in arbusculated cells. The discovery that five plant and one fungal PT genes are consistently expressed inside the arbusculated cells provides a new scenario for plant-fungus nutrient exchanges.

  4. Evolution of the Immune Response to Chronic Airway Colonization with Aspergillus fumigatus Hyphae.

    Science.gov (United States)

    Urb, Mirjam; Snarr, Brendan D; Wojewodka, Gabriella; Lehoux, Mélanie; Lee, Mark J; Ralph, Benjamin; Divangahi, Maziar; King, Irah L; McGovern, Toby K; Martin, James G; Fraser, Richard; Radzioch, Danuta; Sheppard, Donald C

    2015-09-01

    Airway colonization by the mold Aspergillus fumigatus is common in patients with underlying lung disease and is associated with chronic airway inflammation. Studies probing the inflammatory response to colonization with A. fumigatus hyphae have been hampered by the lack of a model of chronic colonization in immunocompetent mice. By infecting mice intratracheally with conidia embedded in agar beads (Af beads), we have established an in vivo model to study the natural history of airway colonization with live A. fumigatus hyphae. Histopathological examination and galactomannan assay of lung homogenates demonstrated that hyphae exited beads and persisted in the lungs of mice up to 28 days postinfection without invasive disease. Fungal lesions within the airways were surrounded by a robust neutrophilic inflammatory reaction and peribronchial infiltration of lymphocytes. Whole-lung cytokine analysis from Af bead-infected mice revealed an increase in proinflammatory cytokines and chemokines early in infection. Evidence of a Th2 type response was observed only early in the course of colonization, including increased levels of interleukin-4 (IL-4), elevated IgE levels in serum, and a mild increase in airway responsiveness. Pulmonary T cell subset analysis during infection mirrored these results with an initial transient increase in IL-4-producing CD4(+) T cells, followed by a rise in IL-17 and Foxp3(+) cells by day 14. These results provide the first report of the evolution of the immune response to A. fumigatus hyphal colonization. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Evaluation of pulmonary fungal diseases in patients with fungal rhino-sinusitis

    Directory of Open Access Journals (Sweden)

    M.Sh. Badawy

    2013-07-01

    Conclusion: Universal screening for pulmonary fungal infection especially in patients with fungal rhino sinusitis is highly recommended to treat it early, decrease morbidity and mortality of the diseases.

  6. Nutrient uptake by intact mycorrhizal Pinus sylvestris seedlings: a diagnostic tool to detect copper toxicity.

    Science.gov (United States)

    Van Tichelen, Katia K.; Vanstraelen, Tom; Colpaert, Jan V.

    1999-03-01

    We developed a nondestructive method for detecting early toxic effects of inflethal copper (Cu) concentrations on ectomycorrhizal and non-mycorrhizal (NM) Scots pine (Pinus sylvestris L.) seedlings. The fungal symbionts examined were Paxillus involutus (Fr.) Fr., Suillus luteus (Fr.) S.F. Gray and Thelephora terrestris (Ehrh.) Fr. The accumulation of Cu in needles and fungal development (ergosterol) in roots and infstrate were assessed. Inorganic phosphate (P(i)) and ammonium (NH(4) (+)) uptake capacities were determined in a semi-hydroponic cultivation system on intact P-limited plants that were exposed for 3 weeks to 0.32 (control), 8 or 16 &mgr;moles Cu(2+). Short-term effects of a 1-hour exposure to 32 &mgr;moles Cu(2+) on nutrient uptake rates were also determined. None of the Cu(2+) treatments affected plant growth or root ergosterol concentrations. The active fungal biomass in infstrate invaded by S. luteus was reduced by 50% in the 16 &mgr;M Cu(2+) treatment compared with the control treatment; however, colonization by S. luteus prevented an increased accumulation of Cu in the needles. In contrast, the 16 &mgr;M Cu(2+) treatment caused a 2.2-fold increase in needle Cu concentration in NM plants. Ergosterol concentrations in the infstrate colonized by P. involutus and T. terrestris were not affected by 16 &mgr;molar Cu(2+). Although P. involutus and T. terrestris were less sensitive to Cu(2+) than S. luteus, T. terrestris did not prevent the accumulation of Cu in needles of its host plant in the 16 &mgr;molar Cu(2+) treatment. Mycorrhizal plants consistently had higher P(i) and NH(4) (+) uptake capacities than NM plants. In the control treatment, specific P(i) uptake rates were almost 10, 4 and 3 times higher in plants associated with P. involutus, S. luteus and T. terrestris, respectively, than in NM plants, and specific NH(4) (+) uptake rates were about 2, 2 and 5 times higher, respectively, than those of NM seedlings. Compared with the corresponding

  7. Colon cancer

    Science.gov (United States)

    Colorectal cancer; Cancer - colon; Rectal cancer; Cancer - rectum; Adenocarcinoma - colon; Colon - adenocarcinoma; Colon carcinoma ... eat may play a role in getting colon cancer. Colon cancer may be linked to a high-fat, ...

  8. Uptake of 15 trace elements in arbuscular mycorrhizal marigold measured by the multitracer technique

    International Nuclear Information System (INIS)

    Suzuki, H.; Kumagai, H.; Oohashi, K.; Sakamoto, K.; Inubushi, K.; Enomoto, S.; Ambe, F.

    2000-01-01

    The effect of arbuscular mycorrhizal (AM) colonization on the uptake of trace elements in marigold (Tagetes patula L.) was studied using a multitracer consisting of radionuclides of 7 Be, 22 Na, 46 Sc, 51 Cr, 54 Mn, 59 Fe, 56 Co, 65 Zn, 74 As, 75 Se, 83 Rb, 85 Sr, 88 Y, 88 Zr, and 95m Tc. Marigold plants were grown under controlled environmental conditions in sand culture either without mycorrhizas or in association with an AM fungus, Glomus etunicatum. The multitracer was applied to the pot, and plants were harvested at 7 and 21 d after tracer application. We found that the uptake of 7 Be, 22 Na, 51 Cr, 59 Fe, 65 Zn, and 95m Tc was higher in the mycorrhizal marigolds than in the non-mycorrhizal ones, while that of 46 Sc, 56 Co, 83 Rb, and 85 Sr was lower in the mycorrhizal marigolds than in the non-mycorrhizal ones. Thus, the multitracer technique enabled to analyze the uptake of various elements by plant simultaneously. It is suggested that this technique could be used to analyze the effects of AM colonization on the uptake of trace elements by plant. (author)

  9. Rapid change of AM fungal community in a rain-fed wheat field with short-term plastic film mulching practice.

    Science.gov (United States)

    Liu, Yongjun; Mao, Lin; He, Xinhua; Cheng, Gang; Ma, Xiaojun; An, Lizhe; Feng, Huyuan

    2012-01-01

    Plastic film mulching (PFM) is a widely used agricultural practice in the temperate semi-arid Loess Plateau of China. However, how beneficial soil microbes, arbuscular mycorrhizal (AM) fungi in particular, respond to the PFM practice is not known. Here, a field experiment was performed to study the effects of a 3-month short-term PFM practice on AM fungi in plots planted with spring wheat (Triticum aestivum L. cv. Dingxi-2) in the Loess Plateau. AM colonization, spore density, wheat spike weight, and grain phosphorus (P) content were significantly increased in the PFM treatments, and these changes were mainly attributable to changes in soil properties such as available P and soil moisture. Alkaline phosphatase activity was significantly higher in PFM soils, but levels of AM fungal-related glomalin were similar between treatments. A total of nine AM fungal phylotypes were detected in root samples based on AM fungal SSU rDNA analyses, with six and five phylotypes in PFM and no-PFM plots, respectively. Although AM fungal phylotype richness was not statistically different between treatments, the community compositions were different, with four and three specific phylotypes in the PFM and no-PFM plots, respectively. A significant and rapid change in AM fungal, wheat, and soil variables following PFM suggested that the functioning of the AM symbiosis had been changed in the wheat field under PFM. Future studies are needed to investigate whether PFM applied over a longer term has a similar effect on the AM fungal community and their functioning in an agricultural ecosystem.

  10. Protection by fungal starters against growth and secondary metabolite production of fungal spoilers of cheese.

    Science.gov (United States)

    Nielsen, M S; Frisvad, J C; Nielsen, P V

    1998-06-30

    The influence of fungal starter cultures on growth and secondary metabolite production of fungal contaminants associated with cheese was studied on laboratory media and Camembert cheese. Isolates of the species Penicillium nalgiovense, P. camemberti, P. roqueforti and Geotrichum candidum were used as fungal starters. The species P. commune, P. caseifulvum, P. verrucosum, P. discolor, P. solitum, P. coprophilum and Aspergillus versicolor were selected as contaminants. The fungal starters showed different competitive ability on laboratory media and Camembert cheese. The presence of the Penicillium species, especially P. nalgiovense, showed an inhibitory effect on the growth of the fungal contaminants on laboratory media. G. candidum caused a significant inhibition of the fungal contaminants on Camembert cheese. The results indicate that G. candidum plays an important role in competition with undesirable microorganisms in mould fermented cheeses. Among the starters, P. nalgiovense caused the largest reduction in secondary metabolite production of the fungal contaminants on the laboratory medium. On Camembert cheese no significant changes in metabolite production of the fungal contaminants was observed in the presence of the starters.

  11. Fungal Diversity in Lichens: From Extremotolerance to Interactions with Algae

    Directory of Open Access Journals (Sweden)

    Lucia Muggia

    2018-05-01

    Full Text Available Lichen symbioses develop long-living thallus structures even in the harshest environments on Earth. These structures are also habitats for many other microscopic organisms, including other fungi, which vary in their specificity and interaction with the whole symbiotic system. This contribution reviews the recent progress regarding the understanding of the lichen-inhabiting fungi that are achieved by multiphasic approaches (culturing, microscopy, and sequencing. The lichen mycobiome comprises a more or less specific pool of species that can develop symptoms on their hosts, a generalist environmental pool, and a pool of transient species. Typically, the fungal classes Dothideomycetes, Eurotiomycetes, Leotiomycetes, Sordariomycetes, and Tremellomycetes predominate the associated fungal communities. While symptomatic lichenicolous fungi belong to lichen-forming lineages, many of the other fungi that are found have close relatives that are known from different ecological niches, including both plant and animal pathogens, and rock colonizers. A significant fraction of yet unnamed melanized (‘black’ fungi belong to the classes Chaethothyriomycetes and Dothideomycetes. These lineages tolerate the stressful conditions and harsh environments that affect their hosts, and therefore are interpreted as extremotolerant fungi. Some of these taxa can also form lichen-like associations with the algae of the lichen system when they are enforced to symbiosis by co-culturing assays.

  12. Candida colonization and species identification by two methods in NICU newborn

    Directory of Open Access Journals (Sweden)

    Narges Sadat Taherzadeh

    2016-02-01

    Full Text Available Background: Over the last two decades invasive candidiasis has become an increasing problem in neonatal intensive care units (NICUs. Colonization of skin and mucous membranes with Candida spp. is important factor in the pathogenesis of neonatal infection and several colonized sites are major risk factors evoking higher frequencies of progression to invasive candidiasis. The aim of this study was to detect Candida colonization in NICU patients. Methods: This cross-sectional study was conducted on 93 neonates in NICUs at Imam Khomeini and Children Medical Center Hospitals in Tehran. Cutaneous and mucous membrane samples obtained at first, third, and seventh days of patients’ stay in NICUs during nine months from August 2013 to May 2014. The samples were primarily cultured on CHROMagar Candida medium. The cultured media were incubated at 35°C for 48h and evaluated based on colony color produced on CHROMagar Candida. In addition, isolated colonies were cultured on Corn Meal Agar medium supplemented with tween 80 for identification of Candida spp. based on their morphology. Finally, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP method was performed for definite identification of isolated species. Results: Colonization by Candida spp. was occurred in 20.43% of neonates. Fifteen and four patients colonized with one and two different Candida spp., respectively. Isolated Candida spp. identified as; C. parapsilosis (n: 10, C. albicans (n: 7, C. tropicalis (n: 3, C. guilliermondii (n: 2, and C. krusei (n: 1. In present study non-albicans Candia species were dominant (69.56% and C. parapsilosis was the most frequent isolate (43.47%. Using Fisher's exact test, the correlation between fungal colonization with low birth weight, low gestational age, and duration of hospital stay was found to be statistically significant (P=0.003. Conclusion: The results of this study imply to the candida species colonization of neonates

  13. Fungal composition on leaves explains pollutant-mediated indirect effects on amphipod feeding.

    Science.gov (United States)

    Bundschuh, Mirco; Zubrod, Jochen P; Kosol, Sujitra; Maltby, Lorraine; Stang, Christoph; Duester, Lars; Schulz, Ralf

    2011-07-01

    The energy stored in coarse particulate organic matter, e.g. leaf litter, is released to aquatic ecosystems by breakdown processes involving microorganisms and leaf shredding invertebrates. The palatability of leaves and thus the feeding of shredders on leaf material are highly influenced by microorganisms. However, implications in the colonization of leaves by microorganisms (=conditioning) caused by chemical stressors are rarely studied. Our laboratory experiments, therefore, investigated for the first time effects of a fungicide on the conditioning process of leaf material by means of food-choice experiments using Gammarus fossarum (Crustacea: Amphipoda). Additionally, microbial analyses were conducted to facilitate the mechanistic understanding of the observed behavior. Gammarids significantly preferred control leaf discs over those conditioned in presence of the fungicide tebuconazole at concentrations of 50 and 500 μg/L. Besides the decrease of fungal biomass with increasing fungicide concentration, also the leaf associated fungal community composition showed that species preferred by gammarids, such as Alatospora acumunata, Clavariopsis aquatica, or Flagellospora curvula, were more frequent in the control. Tetracladium marchalianum, however, which is rejected by gammarids, was abundant in all treatments suggesting an increasing importance of this species for the lower leaf palatability--as other more palatable fungal species were almost absent--in the fungicide treatments. Hence, the food-choice behavior of G. fossarum seems to be a suitable indicator for alterations in leaf associated microbial communities, especially fungal species composition, caused by chemical stressors. Finally, this or similar test systems may be a reasonable supplement to the environmental risk assessment of chemicals in order to achieve its protection goals, as on the one hand, indirect effects may occur far below concentrations known to affect gammarids directly, and on the other

  14. Transport of trace elements through the hyphae of an arbuscular mycorrhizal fungus into marigold determined by the multitracer technique

    International Nuclear Information System (INIS)

    Suzuki, H.; Kumagai, H.; Oohashi, K.; Sakamoto, K.; Inubushi, K.; Enomoto, S.

    2001-01-01

    The contribution of the hyphae of an arbuscular mycorrhizal (AM) fungus to the uptake of traceelements by marigold (Tagetes patula L.) was studied using a multitracer consisting of radionuclides of 7 Be, 22 Na, 46 Sc, 51 Cr, 54 Mn, 59 Fe, 56 Co, 65 Zn, 75 Se, 83 Rb, 85 Sr, 88 Y, 88 Zr, and 95m Tc. Marigold plants colonized and not colonized with Glomus etunicatum were grown for 40 and 60 d in pots with a hyphal compartment separated from the rooting medium by a fine nylon mesh. The multitracer was applied to the hyphal compartment. We found that the uptake of 22 Na, 65 Zn , 75 Se, 83 Rb, 85 Sr, and 88 Y by the mycorrhizal plants was higher than that by the non-mycorrhizal ones. In the case of 95m Tc, the uptake by the mycorrhizal plants was similar to that by the control ones. The radioactivity of 7 Be, 46 Sc, 51 Cr, 54 Mn, 59 Fe, 56 Co, and 88 Zr could not be detected in any plants. Our results suggest that the AM fungus can absorb Na, Zn, Se, Rh, Sr, and Y from the soil and transport these elements to the plant through its hyphae. The transport ability of the AM fungal hyphae to plant for Be, Sc, Cr, Mn, Fe, Co, Zr, and Tc is likely to be low. (author)

  15. Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition.

    Science.gov (United States)

    Poosakkannu, Anbu; Nissinen, Riitta; Kytöviita, Minna-Maarit

    2017-11-01

    The effects of arbuscular mycorrhizal (AM) fungi on plant-associated microbes are poorly known. We tested the hypothesis that colonization by an AM fungus affects microbial species richness and microbial community composition of host plant tissues. We grew the grass, Deschampsia flexuosa in a greenhouse with or without the native AM fungus, Claroideoglomus etunicatum. We divided clonally produced tillers into two parts: one inoculated with AM fungus spores and one without AM fungus inoculation (non-mycorrhizal, NM). We characterized bacterial (16S rRNA gene) and fungal communities (internal transcribed spacer region) in surface-sterilized leaf and root plant compartments. AM fungus inoculation did not affect microbial species richness or diversity indices in leaves or roots, but the AM fungus inoculation significantly affected bacterial community composition in leaves. A total of three OTUs in leaves belonging to the phylum Firmicutes positively responded to the presence of the AM fungus in roots. Another six OTUs belonging to the Proteobacteria (Alpha, Beta, and Gamma) and Bacteroidetes were significantly more abundant in NM plants when compared to AM fungus-inoculated plants. Further, there was a significant correlation between plant dry weight and leaf microbial community compositional shift. Also, there was a significant correlation between leaf bacterial community compositional shift and foliar nitrogen content changes due to AM fungus inoculation. The results suggest that AM fungus colonization in roots has a profound effect on plant physiology that is reflected in leaf bacterial community composition.

  16. Differential effects of ephemeral colonization by arbuscular mycorrhizal fungi in two Cuscuta species with different ecology.

    Science.gov (United States)

    Behdarvandi, Behrang; Guinel, Frédérique C; Costea, Mihai

    2015-10-01

    Seedlings of parasitic Cuscuta species are autotrophic but can survive only a short period of time, during which they must locate and attach to a suitable host. They have an ephemeral root-like organ considered not a "true" root by most studies. In the present study, two species with contrasting ecology were examined: Cuscuta gronovii, a North American riparian species, and Cuscuta campestris, an invasive dodder that thrives in disturbed habitats. The morphology, structure, and absorptive capability of their root-like organ were compared, their potential for colonization by two species of arbuscular mycorrhizal fungi (AMF) was assessed, and the effect of the AMF on seedling growth and survival was determined. The root of both species absorbed water and interacted with AMF, but the two species exhibited dissimilar growth and survival patterns depending on the colonization level of their seedlings. The extensively colonized seedlings of C. gronovii grew more and survived longer than non-colonized seedlings. In contrast, the scarce colonization of C. campestris seedlings did not increase their growth or longevity. The differential growth responses of the AMF-colonized and non-colonized Cuscuta species suggest a mycorrhizal relationship and reflect their ecology. While C. gronovii roots have retained a higher ability to interact with AMF and are likely to take advantage of fungal communities in riparian habitats, the invasive C. campestris has largely lost this ability possibly as an adaptation to disturbed ecosystems. These results indicate that dodders have a true root, even if much reduced and ephemeral, that can interact with AMF.

  17. Anaerobic fungal populations

    International Nuclear Information System (INIS)

    Brookman, J.L.; Nicholson, M.J.

    2005-01-01

    The development of molecular techniques has greatly broadened our view of microbial diversity and enabled a more complete detection and description of microbial communities. The application of these techniques provides a simple means of following community changes, for example, Ishii et al. described transient and more stable inhabitants in another dynamic microbial system, compost. Our present knowledge of anaerobic gut fungal population diversity within the gastrointestinal tract is based upon isolation, cultivation and observations in vivo. It is likely that there are many species yet to be described, some of which may be non-culturable. We have observed a distinct difference in the ease of cultivation between the different genera, for example, Caecomyes isolates are especially difficult to isolate and maintain in vitro, a feature that is likely to result in the under representation of this genera in culture-based enumerations. The anaerobic gut fungi are the only known obligately anaerobic fungi. For the majority of their life cycles, they are found tightly associated with solid digesta in the rumen and/or hindgut. They produce potent fibrolytic enzymes and grow invasively on and into the plant material they are digesting making them important contributors to fibre digestion. This close association with intestinal digesta has made it difficult to accurately determine the amount of fungal biomass present in the rumen, with Orpin suggesting 8% contribution to the total microbial biomass, whereas Rezaeian et al. more recently gave a value of approximately 20%. It is clear that the rumen microbial complement is affected by dietary changes, and that the fungi are more important in digestion in the rumens of animals fed with high-fibre diets. It seems likely that the gut fungi play an important role within the rumen as primary colonizers of plant fibre, and so we are particularly interested in being able to measure the appearance and diversity of fungi on the plant

  18. Inhibition of fungal colonization on the rhizoplane of the CS2 - producing plant, Mimosa pudica L.

    Science.gov (United States)

    Z. Feng; P.G. Hartel; R.W. Roncadori; Shi-Jean S. Sung

    1998-01-01

    Carbon disulfide (CS2) is a colorless, volatile, foul-smelling, fungicidal liquid that is produced by some plants. The authors determined the ability of a model CS2-producing plant, Mimosa pudica, to affect the rhizoplane colonization of six species of soil fungi. Tomato (Lycopersicon esculentum...

  19. Colonic lymphoid follicles associated with colonic neoplasms

    International Nuclear Information System (INIS)

    Glick, S.N.; Teplick, S.K.; Ross, W.M.

    1986-01-01

    The authors prospectively evaluated 62 patients over 40 years old in whom lymphoid follicles were demonstrated on double-contrast enema examinations. Eighteen patients (29%) had no current radiographic evidence of, or history of, colonic neoplasms. Forty-four patients (71%) had an associated neoplasm. Fourteen patients had associated colonic carcinoma, and ten patients had a history of a previously resected colon cancer. One patient had previously undergone resection for ''polyps.'' Twenty-two patients had an associated ''polyp.'' There were no clinical or radiographic features that could reliably distinguish the neoplastic from the nonneoplastic groups. However, lymphoid follicles in the left colon or diffusely involving the colon were more likely to be associated with a colonic neoplasm. Lymphoid follicles were almost always identified near a malignant lesion

  20. Incidence of Candida species colonization in neonatal intensive care unit at Riyadh Hospital, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mohammed S. Alhussaini

    2016-10-01

    Full Text Available Background: Candida species are important hospital-acquired pathogens in infants admitted to the neonatal intensive care unit (NICU. This study was performed in the NICU of Saudi Arabian Hospital, Riyadh region, KSA to analyze patterns of neonatal Candida colonization as well as to determine the potential risk factors.Methods: Weekly surveillance fungal cultures of anal area, oral cavity, umbilicus and ear canal of neonates were performed from birth until their discharge from the hospital. Colonization was analyzed for timing, site, species, birth weight and gestational age. Potential environmental reservoirs and hands of health care workers (HCWs were also cultured monthly for fungi. Antifungal susceptibility of the identified isolates was also determined.Results: One hundred subjects have been recruited in this study. The overall colonization rate was 51%. Early colonization was found in 27 (27% neonates whereas 24 (24% neonates were lately colonized during their stay in NICU. Colonization was more in preterm neonates than in full and post term. Perianal area and oral cavity were the most frequent colonized sites. C. albicans was the main spp. (58.8% isolated from the neonates followed by C. tropicalis (17.6%, C. glabrata (15.6%, and C. krusei (2%. Of the 51 isolated Candida spp., 68.6% were sensitive to fluconazole, 80% to itraconazole and 64.7% to ketoconazole, while only 33% were sensitive to amphotericin B.Conclusion: Candida has emerged as a common cause of infections in infants admitted to NICU, and C. albicans is the most commonly isolated candidal species. Neonatal infections caused by non- albicans species occur at a later age during their stay in NICU.

  1. CT Findings of Colonic Complications Associated with Colon Cancer

    International Nuclear Information System (INIS)

    Kim, Sang Won; Shin, Hyeong Cheol; Kim, Il Young; Kim, Young Tong; Kim, Chang Jin

    2010-01-01

    A broad spectrum of colonic complications can occur in patients with colon cancer. Clinically, some of these complications can obscure the presence of underlying malignancies in the colon and these complications may require emergency surgical management. The complications of the colon that can be associated with colon cancer include obstruction, perforation, abscess formation, acute appendicitis, ischemic colitis and intussusception. Although the majority of these complications only rarely occur, familiarity with the various manifestations of colon cancer complications will facilitate making an accurate diagnosis and administering prompt management in these situations. The purpose of this pictorial essay is to review the CT appearance of the colonic complications associated with colon cancer

  2. CT Findings of Colonic Complications Associated with Colon Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Won; Shin, Hyeong Cheol; Kim, Il Young; Kim, Young Tong; Kim, Chang Jin [Cheonan Hospital, Soonchunhyang University, Cheonan (Korea, Republic of)

    2010-04-15

    A broad spectrum of colonic complications can occur in patients with colon cancer. Clinically, some of these complications can obscure the presence of underlying malignancies in the colon and these complications may require emergency surgical management. The complications of the colon that can be associated with colon cancer include obstruction, perforation, abscess formation, acute appendicitis, ischemic colitis and intussusception. Although the majority of these complications only rarely occur, familiarity with the various manifestations of colon cancer complications will facilitate making an accurate diagnosis and administering prompt management in these situations. The purpose of this pictorial essay is to review the CT appearance of the colonic complications associated with colon cancer.

  3. Metabarcoding-based fungal diversity on coarse and fine particulate organic matter in a first-order stream in Nova Scotia, Canada [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Christian Wurzbacher

    2016-02-01

    Full Text Available Most streams receive substantial inputs of allochthonous organic material in the form of leaves and twigs (CPOM, coarse particulate organic matter. Mechanical and biological processing converts this into fine particulate organic matter (FPOM. Other sources of particles include flocculated dissolved matter and soil particles. Fungi are known to play a role in the CPOM conversion process, but the taxonomic affiliations of these fungi remain poorly studied. The present study seeks to shed light on the composition of fungal communities on FPOM and CPOM as assessed in a natural stream in Nova Scotia, Canada. Maple leaves were exposed in a stream for four weeks and their fungal community evaluated through pyrosequencing. Over the same period, four FPOM size fractions were collected by filtration and assessed. Particles had much lower ergosterol contents than leaves, suggesting major differences in the extent of fungal colonization. Pyrosequencing documented a total of 821 fungal operational taxonomic units (OTU, of which 726 were exclusive to particles and 47 to leaf samples. Most fungal phyla were represented, including yeast lineages (e.g., Taphrinaceae and Saccharomycotina, Basidiomycota, Chytridiomycota and Cryptomycota, but several classes of Pezizomycontina (Ascomycota dominated. Cluster dendrograms clearly separated fungal communities from leaves and from particles. Characterizing fungal communities may shed some light on the processing pathways of fine particles in streams and broadens our view of the phylogenetic composition of fungi in freshwater ecosystems.

  4. Coupled Metagenomic and Chemical Analyses of Degrading Fungal Necromass and Implications for Microbial Contributions to Stable Soil OC

    Science.gov (United States)

    Schreiner, K. M.; Morgan, B. S. T.; Schultz, J.; Blair, N. E.; Egerton-Warburton, L. M.

    2014-12-01

    Fungi comprise a significant portion of total soil biomass, the turnover of which must represent a dominant flux within the soil carbon cycle. Fungal OC can turn over on time scales of days to months, but this process is poorly understood. Here, we examined temporal changes in the chemical and microbial community composition of fungal necromass during a 2 month decomposition experiment in which Fusarium avenaceum (a common saprophyte) was exposed to a natural soil microbial community. Over the course of the experiment, residual fungal necromass was harvested and analyzed using FTIR and thermochemolysis-GCMS to examine chemical changes in the tissue. Additionally, genomic DNA was extracted from tissues, amplified with barcoded ITS primers, and sequenced using the high-throughput Illumina platform to examine changes in microbial community composition. Up to 80% of the fungal necromass turned over in the first week. This rapid degradation phase corresponded to colonization of the necromass by known chitinolytic soil fungi including Mortierella species. Zygomycetes and Ascomycetes were among the dominant fungal species involved in degradation with very small contributions from Basidiomycetes. At the end of the 2 month degradation, only 15% of the original necromass remained. The residual material was rich in amide and C-O moieties which is consistent with previous work predicting that peptidoglycans are the main residual product from microbial tissue degradation. Straight-chain fatty acids exhibit varying degradation profiles, with some fatty acids (e.g. C16 and C18:1) degrading more rapidly than bulk tissue, others maintaining steady concentrations relative to bulk OC (e.g. C18), and some increasing in concentration throughout the degradation (e.g. C24). These results indicate that the turnover of fungal necromass has the potential to significantly influence a variety of soil OC properties, including C/N ratios, lipid biomarker distributions, and OC turnover times.

  5. Clinical characteristics of patients with Aspergillus species isolation from respiratory samples: Comparison of chronic pulmonary aspergillosis and colonization.

    Science.gov (United States)

    Ohara, Sayaka; Tazawa, Yoko; Tanai, Chiharu; Tanaka, Yoshiaki; Noda, Hiromichi; Horiuchi, Hajime; Usui, Kazuhiro

    2016-03-01

    With advancements in anti-fungal drugs, it has become more important to correctly diagnose chronic pulmonary aspergillosis (CPA); however, it is not easy to distinguish CPA from colonization when Aspergillus species are isolated from respiratory samples. The aim of the study was to clarify the particular clinical characteristics of patients with CPA vs. those with colonization. We retrospectively reviewed the medical records of 110 patients with Aspergillus species isolation from respiratory samples, to analyze and compare the differences between CPA and colonization of the Aspergillus species. The median age of all analyzed was 71 years (range: 31-92 years); 64 were female (58%). The most frequently cultured Aspergillus species was Aspergillus fumigatus (48.3%), followed by A. niger (29.2%). Thirty patients (27.4%) were diagnosed with CPA, vs. 75 (68.2%) with colonization and 5 (4.5%) with allergic bronchopulmonary aspergillosis. Compared with the colonization group, the CPA group included more males (CPA vs. colonization: 49.3% vs. 13.3%) and subjects with a low body mass index (18.45 kg/m2 vs. 21.09 kg/m2). As for the underlying pulmonary diseases, the patients with CPA showed a significantly higher prevalence of sequelae of pulmonary tuberculosis (40% vs. 8%) and a history of thoracic surgery (43% vs. 13%) than those with colonization. Asthma was less frequent in the CPA group than in the colonization group (0% vs. 20%). We found no significantly important underlying extrapulmonary diseases. Patients with CPA display clinical characteristics distinct from those seen in subjects with colonization. Copyright © 2015 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  6. Root colonization with arbuscular mycorrhizal fungi and glomalin-related soil protein (GRSP concentration in hypoxic soils in natural CO2 springs

    Directory of Open Access Journals (Sweden)

    Irena Maček

    2012-03-01

    Full Text Available Changed ratios of soil gases that lead to hypoxia are most often present in waterlogged soils, but can also appear in soils not saturated with water. In natural CO2 springs (mofettes, gases in soil air differ from those in typical soils. In this study, plant roots from the mofette area Stavešinci (Slovenia were sampled in a spatial scale and investigated for AM fungal colonization. AM fungi were found in roots from areas with high geological CO2 concentration, however mycorrhizal intensity was relatively low and no correlation between AM fungal colonization and soil pattern of CO2/O2 concentrations (up to 37% CO2 was found. The relatively high abundance of arbuscules in root cortex indicated existence of functional symbiosis at much higher CO2 concentrations than normally found in soils. In addition, concentration of two different glomalin-related soil protein fractions – EE-GRSP and TG-GRSP – was measured. No significant correlation between any of the fractions and soil gases was found, however the concentration of both fractions was significantly higher in the upper 0–5 cm, compared to the 5–10 cm layer of the soil.

  7. Invasive fungal infections after natural disasters.

    Science.gov (United States)

    Benedict, Kaitlin; Park, Benjamin J

    2014-03-01

    The link between natural disasters and subsequent fungal infections in disaster-affected persons has been increasingly recognized. Fungal respiratory conditions associated with disasters include coccidioidomycosis, and fungi are among several organisms that can cause near-drowning pneumonia. Wound contamination with organic matter can lead to post-disaster skin and soft tissue fungal infections, notably mucormycosis. The role of climate change in the environmental growth, distribution, and dispersal mechanisms of pathogenic fungi is not fully understood; however, ongoing climate change could lead to increased disaster-associated fungal infections. Fungal infections are an often-overlooked clinical and public health issue, and increased awareness by health care providers, public health professionals, and community members regarding disaster-associated fungal infections is needed.

  8. Plant and fungal biodiversity from metal mine wastes under remediation at Zimapan, Hidalgo, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ortega-Larrocea, Maria del Pilar [Departamento de Edafologia, Instituto de Geologia, Universidad Nacional Autonoma de Mexico (UNAM) (Mexico); Xoconostle-Cazares, Beatriz [Departamento de Biotecnologia y Bioingenieria, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Av. IPN 2508, Zacatenco 07360, D.F. (Mexico); Maldonado-Mendoza, Ignacio E. [Centro Interdisciplinario de Investigacion para el Desarrollo Integral Regional (CIIDIR)-Instituto Politecnico Nacional - Unidad Sinaloa, Blvd. Juan de Dios Batiz Paredes No. 250, Guasave, Sinaloa 81101 (Mexico); Carrillo-Gonzalez, Rogelio [Programa de Edafologia, Colegio de Postgraduados en Ciencias Agricolas, Campus Montecillo, Carretera Mexico-Texcoco, km 36.5, Texcoco, Estado de Mexico 56230 (Mexico); Hernandez-Hernandez, Jani [Departamento de Edafologia, Instituto de Geologia, Universidad Nacional Autonoma de Mexico (UNAM) (Mexico); Garduno, Margarita Diaz [Universidad Autonoma Chapingo, Carretera Mexico-Texcoco, km 38.5, Chapingo, Estado de Mexico 56230 (Mexico); Lopez-Meyer, Melina [Centro Interdisciplinario de Investigacion para el Desarrollo Integral Regional (CIIDIR)-Instituto Politecnico Nacional - Unidad Sinaloa, Blvd. Juan de Dios Batiz Paredes No. 250, Guasave, Sinaloa 81101 (Mexico); Gomez-Flores, Lydia [Departamento de Biotecnologia y Bioingenieria, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Av. IPN 2508, Zacatenco 07360, D.F. (Mexico); Gonzalez-Chavez, Ma. del Carmen A., E-mail: carmeng@colpos.m [Programa de Edafologia, Colegio de Postgraduados en Ciencias Agricolas, Campus Montecillo, Carretera Mexico-Texcoco, km 36.5, Texcoco, Estado de Mexico 56230 (Mexico)

    2010-05-15

    Plant establishment, presence of arbuscular mycorrhizal fungi (AMF) and other rhizospheric fungi were studied in mine wastes from Zimapan, Hidalgo state, Mexico, using a holistic approach. Two long-term afforested and three non-afforested mine tailings were included in this research. Fifty-six plant species belonging to 29 families were successfully established on the afforested sites, while unmanaged tailings had only a few native plant species colonizing the surrounding soils. Almost all plant roots collected were associated to AMF in these sites. The genus Glomus was the most abundant AMF species found in their rhizosphere; however, the Acaulospora genus was also observed. Other rhizospheric fungi were identified by 18S rDNA sequencing analysis. Their role in these substrates, i.e. biocontrol, pollutant- and organic matter-degradation, and aides that increase plant metal tolerance is discussed. Our results advance the understanding of fungal diversity in sites polluted with metals and present alternative plants for remediation use. - Rhizospheric fungi and organic matter encourage plant vegetation of tailings by pioneers and colonizing species.

  9. Plant and fungal biodiversity from metal mine wastes under remediation at Zimapan, Hidalgo, Mexico

    International Nuclear Information System (INIS)

    Ortega-Larrocea, Maria del Pilar; Xoconostle-Cazares, Beatriz; Maldonado-Mendoza, Ignacio E.; Carrillo-Gonzalez, Rogelio; Hernandez-Hernandez, Jani; Garduno, Margarita Diaz; Lopez-Meyer, Melina; Gomez-Flores, Lydia; Gonzalez-Chavez, Ma. del Carmen A.

    2010-01-01

    Plant establishment, presence of arbuscular mycorrhizal fungi (AMF) and other rhizospheric fungi were studied in mine wastes from Zimapan, Hidalgo state, Mexico, using a holistic approach. Two long-term afforested and three non-afforested mine tailings were included in this research. Fifty-six plant species belonging to 29 families were successfully established on the afforested sites, while unmanaged tailings had only a few native plant species colonizing the surrounding soils. Almost all plant roots collected were associated to AMF in these sites. The genus Glomus was the most abundant AMF species found in their rhizosphere; however, the Acaulospora genus was also observed. Other rhizospheric fungi were identified by 18S rDNA sequencing analysis. Their role in these substrates, i.e. biocontrol, pollutant- and organic matter-degradation, and aides that increase plant metal tolerance is discussed. Our results advance the understanding of fungal diversity in sites polluted with metals and present alternative plants for remediation use. - Rhizospheric fungi and organic matter encourage plant vegetation of tailings by pioneers and colonizing species.

  10. Fungal endophytes which invade insect galls: insect pathogens, benign saprophytes, or fungal inquilines?

    Science.gov (United States)

    Wilson, Dennis

    1995-08-01

    Fungi are frequently found within insect galls. However, the origin of these fungi, whether they are acting as pathogens, saprophytes invading already dead galls, or fungal inquilines which invade the gall but kill the gall maker by indirect means, is rarely investigated. A pathogenic role for these fungi is usually inferred but never tested. I chose the following leaf-galling-insect/host-plant pairs (1) a cynipid which forms two-chambered galls on the veins of Oregon white oak, (2) a cynipid which forms single-chambered galls on California coast live oak, and (3) an aphid which forms galls on narrowleaf cottonwood leaves. All pairs were reported to have fungi associated with dead insects inside the gall. These fungi were cultured and identified. For the two cynipids, all fungi found inside the galls were also present in the leaves as fungal endophytes. The cottonwood leaves examined did not harbor fungal endophytes. For the cynipid on Oregon white oak, the fungal endophyte grows from the leaf into the gall and infects all gall tissue but does not directly kill the gall maker. The insect dies as a result of the gall tissue dying from fungal infection. Therefore, the fungus acts as an inquiline. Approximately 12.5% of these galls die as a result of invasion by the fungal endophyte.

  11. Fungi colonizing the soil and roots of tomato (Lycopersicum esculentum Mill. plants treated with biological control agents

    Directory of Open Access Journals (Sweden)

    Bożena Cwalina-Ambroziak

    2012-12-01

    Full Text Available Tomato plants, cv. Rumba Ożarowska, grown in the greenhouse of the University of Warmia and Mazury, were protected in the form of alternate spraying (twice and watering (twice with 5% aqueous extracts of the following plant species: Aloe vulgaris Lam., Achillea millefolium L., Mentha piperita L., Polygonum aviculare L., Equisetum arvense L., Juglans regia L. and Urtica dioica L. Plants not treated with the extracts served as control. After fruit harvest, samples of roots and soil were collected. The roots were disinfected and next placed on PDA medium. Soil-colonizing fungi were cultured on Martin medium. Fungi were identified microscopically after incubation. Pathogenic fungal species, Colletotrichum coccodes, Fusarium equiseti, F. oxysporum and F. poae, accounted for over 60% of all isolates obtained from the roots of tomato plants. The soil fungal community was dominated by yeast-like fungi (75.4%, whereas pathogenic fungi were present in low numbers. The applied 5% aqueous plant extracts effectively reduced the abundance of fungi, including pathogenic species, colonizing tomato plants and soil. The extract from P. aviculare showed the highest efficacy, while the extract from J. regia was least effective. Fungi showing antagonistic activity against pathogens (Paecilomyces roseum and species of the genus Trichoderma were isolated in greatest abundance from the soil and the roots of tomato plants treated with A. millefolium, M. piperita and U. dioica extracts.

  12. Optical properties of arbuscular mycorrhizal fungal structures

    International Nuclear Information System (INIS)

    Perez, Adverdi; V-Hernandez, Alejandra; Rudamas, Carlos; Dreyer, Beatriz

    2008-01-01

    It was already reported by B. Dreyer at al. [1] that all fungal structures, both intra- and extra-radical fluoresced under blue light excitation regardless of their state (dead or alive). The source of the so called autofluorescence appears to be localized in the fungal cell wall. This supports the use of photoluminescence for the evaluation of AM colonization. However, the interpretation of these results is still in discussion [1-4]. In this work, arbuscular mycorrhizal spores were isolated from the rhizosphere of mango (Mangifera indica L.) plants by the method of wet sieving and decanting of Gerdemann and Nicolson [5] and studied by photoluminescence spectroscopy. Our experimental setup consists of an epifluorescence microscope (EM) coupled to a CCD-spectrometer through an arrangement of a home-made-telescope + fiber optic. This experimental setup allows the capture of images of the mycorrhizal structures (as usual in a standard epifluorescence microscope) combined with measurements of their corresponding emission bands. The preliminary results based on images obtained by standard EM do not clearly show that the emission is originated in the fungal cell walls as reported in Ref. 1. On the other hand, a very broad emission band in the visible part of the electromagnetic spectrum was observed in these spores by exciting at 450-490 nm and 300- 380 nm. We obtain a Full Width at Half Maximum (FWHM) of around 200 nm for this emission band whichis centered at 515 nm. This broad band seems to be composed of two narrower bands peaked around 494 and 547 nm and with FWHM of 50 nm and 150 nm, respectively. The profile of the observed emission band is in good agreement with the bands reported in Ref. 1 for vesicles, arbuscules and spores measured using the λ-Scan of a confocal laser scanning microscope. However, our results for spores show that the maxima of the narrower bands are shifted to higher energies in comparison to the corresponding bands observed in Ref. 1

  13. Induced terpene accumulation in Norway spruce inhibits bark beetle colonization in a dose-dependent manner.

    Directory of Open Access Journals (Sweden)

    Tao Zhao

    Full Text Available Tree-killing bark beetles (Coleoptera, Scolytinae are among the most economically and ecologically important forest pests in the northern hemisphere. Induction of terpenoid-based oleoresin has long been considered important in conifer defense against bark beetles, but it has been difficult to demonstrate a direct correlation between terpene levels and resistance to bark beetle colonization.To test for inhibitory effects of induced terpenes on colonization by the spruce bark beetle Ips typographus (L. we inoculated 20 mature Norway spruce Picea abies (L. Karsten trees with a virulent fungus associated with the beetle, Ceratocystis polonica (Siem. C. Moreau, and investigated induced terpene levels and beetle colonization in the bark.Fungal inoculation induced very strong and highly variable terpene accumulation 35 days after inoculation. Trees with high induced terpene levels (n = 7 had only 4.9% as many beetle attacks (5.1 vs. 103.5 attacks m(-2 and 2.6% as much gallery length (0.029 m m(-2 vs. 1.11 m m(-2 as trees with low terpene levels (n = 6. There was a highly significant rank correlation between terpene levels at day 35 and beetle colonization in individual trees. The relationship between induced terpene levels and beetle colonization was not linear but thresholded: above a low threshold concentration of ∼100 mg terpene g(-1 dry phloem trees suffered only moderate beetle colonization, and above a high threshold of ∼200 mg terpene g(-1 dry phloem trees were virtually unattacked.This is the first study demonstrating a dose-dependent relationship between induced terpenes and tree resistance to bark beetle colonization under field conditions, indicating that terpene induction may be instrumental in tree resistance. This knowledge could be useful for developing management strategies that decrease the impact of tree-killing bark beetles.

  14. Reduction of bacterial growth by a vesicular-arbuscular mycorrhizal fungus in the rhizosphere of cucumber (Cucumis sativus L.)

    DEFF Research Database (Denmark)

    Christensen, H.; Jakobsen, I.

    1993-01-01

    Cucumber was grown in a partially sterilized sand-soil mixture with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum or left uninoculated. Fresh soil extract was places in polyvinyl chloride tubes without propagules of mycorrhizal fungi. Root tips and root segments...... and top of tubes, and of cocci with a diameter of 0.55-0.78 mum in the bulk soil in the center of tubes, were significantly reduced by VAM fungi. The extremely high bacterial biomass (1-7 mg C g-1 dry weight soil) was significant reduced by mycorrhizal colonization on root segments and in bulk soil...... biomass, and changed the spatial pattern of bacterial growth compared to non-mycorrhizal cucumbers. The [H-3]-thymidine incorporation was significantly higher on root tips in the top of tubes, and on root segments and bulk soil in the center of tubes on non-mycorrhizal plants compared to mycorrhizal...

  15. Skin Fungi from Colonization to Infection.

    Science.gov (United States)

    de Hoog, Sybren; Monod, Michel; Dawson, Tom; Boekhout, Teun; Mayser, Peter; Gräser, Yvonne

    2017-07-01

    Humans are exceptional among vertebrates in that their living tissue is directly exposed to the outside world. In the absence of protective scales, feathers, or fur, the skin has to be highly effective in defending the organism against the gamut of opportunistic fungi surrounding us. Most (sub)cutaneous infections enter the body by implantation through the skin barrier. On intact skin, two types of fungal expansion are noted: (A) colonization by commensals, i.e., growth enabled by conditions prevailing on the skin surface without degradation of tissue, and (B) infection by superficial pathogens that assimilate epidermal keratin and interact with the cellular immune system. In a response-damage framework, all fungi are potentially able to cause disease, as a balance between their natural predilection and the immune status of the host. For this reason, we will not attribute a fixed ecological term to each species, but rather describe them as growing in a commensal state (A) or in a pathogenic state (B).

  16. Genetic and ontogenetic variation in an endangered tree structures dependent arthropod and fungal communities.

    Directory of Open Access Journals (Sweden)

    Benjamin J Gosney

    Full Text Available Plant genetic and ontogenetic variation can significantly impact dependent fungal and arthropod communities. However, little is known of the relative importance of these extended genetic and ontogenetic effects within a species. Using a common garden trial, we compared the dependent arthropod and fungal community on 222 progeny from two highly differentiated populations of the endangered heteroblastic tree species, Eucalyptus morrisbyi. We assessed arthropod and fungal communities on both juvenile and adult foliage. The community variation was related to previous levels of marsupial browsing, as well as the variation in the physicochemical properties of leaves using near-infrared spectroscopy. We found highly significant differences in community composition, abundance and diversity parameters between eucalypt source populations in the common garden, and these were comparable to differences between the distinctive juvenile and adult foliage. The physicochemical properties assessed accounted for a significant percentage of the community variation but did not explain fully the community differences between populations and foliage types. Similarly, while differences in population susceptibility to a major marsupial herbivore may result in diffuse genetic effects on the dependent community, this still did not account for the large genetic-based differences in dependent communities between populations. Our results emphasize the importance of maintaining the populations of this rare species as separate management units, as not only are the populations highly genetically structured, this variation may alter the trajectory of biotic colonization of conservation plantings.

  17. JGI Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  18. Gene expression in mycorrhizal orchid protocorms suggests a friendly plant-fungus relationship.

    Science.gov (United States)

    Perotto, Silvia; Rodda, Marco; Benetti, Alex; Sillo, Fabiano; Ercole, Enrico; Rodda, Michele; Girlanda, Mariangela; Murat, Claude; Balestrini, Raffaella

    2014-06-01

    Orchids fully depend on symbiotic interactions with specific soil fungi for seed germination and early development. Germinated seeds give rise to a protocorm, a heterotrophic organ that acquires nutrients, including organic carbon, from the mycorrhizal partner. It has long been debated if this interaction is mutualistic or antagonistic. To investigate the molecular bases of the orchid response to mycorrhizal invasion, we developed a symbiotic in vitro system between Serapias vomeracea, a Mediterranean green meadow orchid, and the rhizoctonia-like fungus Tulasnella calospora. 454 pyrosequencing was used to generate an inventory of plant and fungal genes expressed in mycorrhizal protocorms, and plant genes could be reliably identified with a customized bioinformatic pipeline. A small panel of plant genes was selected and expression was assessed by real-time quantitative PCR in mycorrhizal and non-mycorrhizal protocorm tissues. Among these genes were some markers of mutualistic (e.g. nodulins) as well as antagonistic (e.g. pathogenesis-related and wound/stress-induced) genes. None of the pathogenesis or wound/stress-related genes were significantly up-regulated in mycorrhizal tissues, suggesting that fungal colonization does not trigger strong plant defence responses. In addition, the highest expression fold change in mycorrhizal tissues was found for a nodulin-like gene similar to the plastocyanin domain-containing ENOD55. Another nodulin-like gene significantly more expressed in the symbiotic tissues of mycorrhizal protocorms was similar to a sugar transporter of the SWEET family. Two genes coding for mannose-binding lectins were significantly up-regulated in the presence of the mycorrhizal fungus, but their role in the symbiosis is unclear.

  19. A Case of Sigmoid Colon Tuberculosis Mimicking Colon Cancer

    OpenAIRE

    Yu, Seong-Min; Park, Jong-Hwan; Kim, Min-Dae; Lee, Hee-Ryong; Jung, Peel; Ryu, Tae-Hyun; Choi, Seung-Ho; Lee, Il-Seon

    2012-01-01

    Tuberculosis of the sigmoid colon is a rare disorder. An 80-year-old man visited Bongseng Memorial Hospital for medical examination. A colonoscopy was performed, and a lesion in the sigmoid colon that was suspected to be colon cancer was found. A biopsy was performed, and tuberculous enteritis with chronic granulomatous inflammation was diagnosed. Intestinal tuberculosis is most frequent in the ileocecal area, followed by the ascending colon, transverse colon, duodenum, stomach, and sigmoid c...

  20. Mutualistic interaction between Salmonella enterica and Aspergillus niger and its effects on Zea mays colonization.

    Science.gov (United States)

    Balbontín, Roberto; Vlamakis, Hera; Kolter, Roberto

    2014-11-01

    Salmonella Typhimurium inhabits a variety of environments and is able to infect a broad range of hosts. Throughout its life cycle, some hosts can act as intermediates in the path to the infection of others. Aspergillus niger is a ubiquitous fungus that can often be found in soil or associated to plants and microbial consortia. Recently, S. Typhimurium was shown to establish biofilms on the hyphae of A. niger. In this work, we have found that this interaction is stable for weeks without a noticeable negative effect on either organism. Indeed, bacterial growth is promoted upon the establishment of the interaction. Moreover, bacterial biofilms protect the fungus from external insults such as the effects of the anti-fungal agent cycloheximide. Thus, the Salmonella-Aspergillus interaction can be defined as mutualistic. A tripartite gnotobiotic system involving the bacterium, the fungus and a plant revealed that co-colonization has a greater negative effect on plant growth than colonization by either organism in dividually. Strikingly, co-colonization also causes a reduction in plant invasion by S. Typhimurium. This work demonstrates that S. Typhimurium and A. niger establish a mutualistic interaction that alters bacterial colonization of plants and affects plant physiology. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  1. A fungal biofilm reactor based on metal structured packing improves the quality of a Gla::GFP fusion protein produced by Aspergillus oryzae.

    Science.gov (United States)

    Zune, Q; Delepierre, A; Gofflot, S; Bauwens, J; Twizere, J C; Punt, P J; Francis, F; Toye, D; Bawin, T; Delvigne, F

    2015-08-01

    Fungal biofilm is known to promote the excretion of secondary metabolites in accordance with solid-state-related physiological mechanisms. This work is based on the comparative analysis of classical submerged fermentation with a fungal biofilm reactor for the production of a Gla::green fluorescent protein (GFP) fusion protein by Aspergillus oryzae. The biofilm reactor comprises a metal structured packing allowing the attachment of the fungal biomass. Since the production of the target protein is under the control of the promoter glaB, specifically induced in solid-state fermentation, the biofilm mode of culture is expected to enhance the global productivity. Although production of the target protein was enhanced by using the biofilm mode of culture, we also found that fusion protein production is also significant when the submerged mode of culture is used. This result is related to high shear stress leading to biomass autolysis and leakage of intracellular fusion protein into the extracellular medium. Moreover, 2-D gel electrophoresis highlights the preservation of fusion protein integrity produced in biofilm conditions. Two fungal biofilm reactor designs were then investigated further, i.e. with full immersion of the packing or with medium recirculation on the packing, and the scale-up potentialities were evaluated. In this context, it has been shown that full immersion of the metal packing in the liquid medium during cultivation allows for a uniform colonization of the packing by the fungal biomass and leads to a better quality of the fusion protein.

  2. Serious fungal infections in Ecuador.

    Science.gov (United States)

    Zurita, J; Denning, D W; Paz-Y-Miño, A; Solís, M B; Arias, L M

    2017-06-01

    There is a dearth of data from Ecuador on the burden of life-threatening fungal disease entities; therefore, we estimated the burden of serious fungal infections in Ecuador based on the populations at risk and available epidemiological databases and publications. A full literature search was done to identify all epidemiology papers reporting fungal infection rates. WHO, ONU-AIDS, Index Mundi, Global Asthma Report, Globocan, and national data [Instituto Nacional de Estadística y Censos (INEC), Ministerio de Salud Pública (MSP), Sociedad de Lucha Contra el Cáncer (SOLCA), Instituto Nacional de Donación y Trasplante de Órganos, Tejidos y Células (INDOT)] were reviewed. When no data existed, risk populations were used to estimate frequencies of fungal infections, using previously described methodology by LIFE. Ecuador has a variety of climates from the cold of the Andes through temperate to humid hot weather at the coast and in the Amazon basin. Ecuador has a population of 15,223,680 people and an average life expectancy of 76 years. The median estimate of the human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) population at risk for fungal disease (Ecuador is affected by serious fungal infection.

  3. Relative importance of deterministic and stochastic processes in driving arbuscular mycorrhizal fungal assemblage during the spreading of a toxic plant.

    Directory of Open Access Journals (Sweden)

    Guoxi Shi

    Full Text Available Both deterministic and stochastic processes are expected to drive the assemblages of arbuscular mycorrhizal (AM fungi, but little is known about the relative importance of these processes during the spreading of toxic plants. Here, the species composition and phylogenetic structure of AM fungal communities colonizing the roots of a toxic plant, Ligularia virgaurea, and its neighborhood plants, were analyzed in patches with different individual densities of L. virgaurea (represents the spreading degree. Community compositions of AM fungi in both root systems were changed significantly by the L. virgaurea spreading, and also these communities fitted the neutral model very well. AM fungal communities in patches with absence and presence of L. virgaurea were phylogenetically random and clustered, respectively, suggesting that the principal ecological process determining AM fungal assemblage shifted from stochastic process to environmental filtering when this toxic plant was present. Our results indicate that deterministic and stochastic processes together determine the assemblage of AM fungi, but the dominant process would be changed by the spreading of toxic plants, and suggest that the spreading of toxic plants in alpine meadow ecosystems might be involving the mycorrhizal symbionts.

  4. DIAGNOSIS & MANAGEMENT OF ALLERGIC FUNGAL SINUSITIS

    Directory of Open Access Journals (Sweden)

    Syam Manohar Gadhamsetty

    2016-08-01

    Full Text Available BACKGROUND Chronic sinusitis is one of the common diagnosis in ENT practice. Allergic fungal sinusitis is a clinical entity with characteristic clinical, radiographic and histopathological findings. Allergic fungal sinusitis and eosinophilic mucin rhinosinusitis can easily be misdiagnosed. AIM OF STUDY A prospective clinical study of allergic Fungal Rhinosinusitis to use diagnostic criteria to confirm the disease with Radiological, Pathological & Microbiological investigations and their management. MATERIALS & METHODS A prospective study of allergic Fungal Rhinosinusitis in 2 years from November 2011 to October 2013. Among the patients who attended the ENT OPD during this period, 21 patients with symptoms and signs suggestive of Allergic Fungal Rhinosinusitis are selected.

  5. Components of Antagonism and Mutualism in Ips pini–Fungal Interactions: Relationship to a Life History of Colonizing Highly Stressed and Dead Trees

    Science.gov (United States)

    Brian J. Kopper; Kier D. Klepzig; Kenneth F. Raffa

    2004-01-01

    Efforts to describe the complex relationships between bark beetles and the ophiostomatoid (stain) fungi they transport have largely resulted in a dichotomous classification. These symbioses have been viewed as either mutualistic (i.e., fungi help bark beetles colonize living trees by overcoming tree defenses or by providing nutrients after colonization in return for...

  6. MycoCosm, an Integrated Fungal Genomics Resource

    Energy Technology Data Exchange (ETDEWEB)

    Shabalov, Igor; Grigoriev, Igor

    2012-03-16

    MycoCosm is a web-based interactive fungal genomics resource, which was first released in March 2010, in response to an urgent call from the fungal community for integration of all fungal genomes and analytical tools in one place (Pan-fungal data resources meeting, Feb 21-22, 2010, Alexandria, VA). MycoCosm integrates genomics data and analysis tools to navigate through over 100 fungal genomes sequenced at JGI and elsewhere. This resource allows users to explore fungal genomes in the context of both genome-centric analysis and comparative genomics, and promotes user community participation in data submission, annotation and analysis. MycoCosm has over 4500 unique visitors/month or 35000+ visitors/year as well as hundreds of registered users contributing their data and expertise to this resource. Its scalable architecture allows significant expansion of the data expected from JGI Fungal Genomics Program, its users, and integration with external resources used by fungal community.

  7. Symbiotic lifestyle expression by fungal endophytes and the adaptation of plants to stress: unraveling the complexities of intimacy

    Science.gov (United States)

    Redman, Regina S.; Henson, Joan M.; Rodriguez, Russell J.

    2005-01-01

    The fossil record indicates that fungal symbionts have been associated with plants since the Ordovician period (approximately 400 million years ago), when plants first became established on land (Pirozynski and Malloch, 1975; Redecker et al., 2000; Remy et al., 1994; Simon et al., 1993). Transitioning from aquatic to terrestrial habitats likely presented plants with new stresses, including periods of desiccation. Since symbiotic fungi are known to confer drought tolerance to plants (Bacon, 1993; Read and Camp, 1986), it has been suggested that fungal symbiosis was involved with or responsible for the establishment of land plants (Pirozynski and Malloch, 1975). Symbiosis was first defined by De Bary in 1879, and since that time, all plants in natural ecosystems have been found to be colonized with fungal and bacterial symbionts. It is clear that individual plants represent symbiotic communities with microorganisms associated in or on tissues below- and aboveground.There are two major classes of fungal symbionts associated with internal plant tissues: fungal endophytes that reside entirely within plants and may be associated with roots, stems leaves, or flowers; and mycorrhizal fungi that reside only in roots but extend out into the rhizosphere. In addition, fungal endophytes may be divided into two classes: (1) a relatively small number of fastidious species that are limited to a few monocot hosts (Clay and Schardl, 2002), and (2) a large number of tractable species with broad host ranges, including both monocots and eudicots (Stone et al., 2000). While significant resources and research have been invested in mycorrhizae and class 1 endophytes, comparatively little is known about class 2 endophytes, which may represent the largest group of fungal symbionts. This is partially because the symbiotic functionalities of class 2 endophytes have only recently been elucidated and shown to be responsible for the adaptation of some plants to high-stress environments (Redman

  8. Strategies for the Prevention of Neonatal Candidiasis

    Directory of Open Access Journals (Sweden)

    Eugene Leibovitz

    2012-04-01

    Full Text Available Invasive fungal infections represent the third-leading cause of late-onset sepsis in very-low-birth-weight infants (VLBWI and have a high rate of infection-associated mortality. The infants at high risk for fungal sepsis are VLBWI with presence of additional risk factors that contribute to increased colonization and concentration of fungal organisms. Colonization with Candida spp. in neonates is secondary to either maternal vertical transmission or nosocomial acquisition in the nursery. Multiple sites may become colonized and a direct correlation between fungal colonization and subsequent progression to invasive candidemia was determined. Randomized, single and multiple-center, placebo-controlled trials found intravenous fluconazole prophylaxis to be effective in decreasing fungal colonization and sepsis for at-risk preterm infants <1500 g birth weight. The prophylactic use of fluconazole was found to be safe with no significant development of fungal resistance. Fluconazole prophylaxis administered to preterm neonates with birth weight <1000 g and/or 27 weeks’ gestation or less has the potential of reducing and potentially eliminating invasive fungal infections and Candida-related mortality.

  9. Clinical consideration of fungal paranasal sinusitis

    International Nuclear Information System (INIS)

    Okuni, Tsuyoshi; Asakura, Koji; Homma, Tomo; Kawaguchi, Ryuichi; Ishikawa, Tadataka; Yamazaki, Norikazu; Himi, Tetsuo

    2008-01-01

    Fungal paranasal sinusitis is included in the differential diagnosis of unilateral paranasal lesion. Recently the incidence of fungal paranasal sinusitis has been increasing. We reviewed 24 patients (9 males and 15 females) with fungal paranasal sinusitis treated at Muroran City Hospital between January 2001 and May 2006, and clinical presentation and CT findings with those of 56 patients (36 males and 20 females) with chronic unilateral sinusitis. Fungal sinusitis patients ranged in age from 45 to 87, and the average age was 65.9 years old. In contrast, the age of chronic sinusitis patients ranged from 24 to 83, and the average age was 54.4 years old. The chief complaint of both fungal sinusitis and chronic sinusitis included rhinorrhea, nasal obstruction and post nasal discharge. CT exam was performed in all patients. In 23 cases of paranasal fungal sinusitis and 54 cases of chronic sinusitis the findings involved the maxillary sinus. The most common observation (69.6%) was bone density within the affected sinus in fungal sinusitis. However, only 2 cases of chronic sinusitis (3.9%) showed calcification. All cases of fungal sinusitis were diagnosed by pathological examinations. Most cases were proved to be aspergillus, while only one case was mucor. We treated all cases surgically, 18 cases underwent Caldwell-Luc's procedure and 5 cases underwent endoscopic sinus surgery under local anesthesia. (author)

  10. Fungal infection in organ transplant patients.

    Science.gov (United States)

    Hong, Wei; Wen, Hai; Liao, Wanqing

    2003-09-01

    To review the characteristics and evolution of the fungal spectrum, and the risk factors causing fungal infection, and to make progress in diagnosing fungal infection after organ transplantation. An English-language literature search (MEDLINE 1990 - 2000) and bibliographic review of textbooks and review articles. Twenty-three articles were selected from the literature that specifically addressed the stated purpose. Fungal infections in organ transplant patients were generally divided into two types: (1) disseminated primary or reactivation infection with one of the geographically restricted systemic mycoses; (2) opportunistic infection by fungal species that rarely cause invasive infection in normal hosts. The risk factors of fungal infection after a transplant can be evaluated and predicted according to the organ recipient's conditions before, during and after the transplant. Progress in early diagnostic methods during the past 10 years has mainly revolved around two aspects, culture and non-culture. It is important to undertake a systemic evaluation on the condition of the organ recipient before, during and after a transplant; should any risk factor for fungal infection be suspected, diagnosis should be made as early as possible by employing mycological techniques including culture and non-culture methods.

  11. Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza.

    Science.gov (United States)

    de Andrade, Sara Adrián López; da Silveira, Adriana Parada Dias; Jorge, Renato Atílio; de Abreu, Mônica Ferreira

    2008-01-01

    In order to investigate the cadmium (Cd) accumulation patterns and possible alleviation of Cd stress by mycorrhization, sunflower plants (Helianthus annuus L.) were grown in the presence or absence of Cd (20 micromol L(-1)) and inoculated or not inoculated with the arbuscular mycorrhizal fungus (AMF) Glomus intraradices. No visual symptoms of Cd phytotoxicity were observed; nevertheless, in non-mycorrhizal plants the presence of Cd decreased plant growth. The addition of Cd had no significant effect on either mycorrhizal colonization or the amount of extra-radical mycelia that was produced by the AMF. Cd accumulated mainly in roots; only 22% of the total Cd absorbed was translocated to the shoots, where it accumulated to an average of 228 mg Cd kg(-1). Although the shoot-to-root ratio of Cd was similar in both the AMF inoculated and non-inoculated plants, the total absorbed Cd was 23% higher in mycorrhizal plants. Cd concentration in AMF extra-radical mycelium was 728 microg g(-1) dry weight. Despite the greater absorption of Cd, mycorrhizal plants showed higher photosynthetic pigment concentrations and shoot P contents. Cd also influenced mineral nutrition, leading to decreased Ca and Cu shoot concentrations; N, Fe and Cu shoot contents; and increased S and K shoot concentrations. Cd induced guaiacol peroxidase activity in roots in both mycorrhizal and non-mycorrhizal plants, but this increase was much more accentuated in non-mycorrhizal roots. In conclusion, sunflower plants associated with G. intraradices were less sensitive to Cd stress than non-mycorrhizal plants. Mycorrhizal sunflowers showed enhanced Cd accumulation and some tolerance to excessive Cd concentrations in plant tissues.

  12. Strain Identity of the Ectomycorrhizal Fungus Laccaria bicolor Is More Important than Richness in Regulating Plant and Fungal Performance under Nutrient Rich Conditions

    Directory of Open Access Journals (Sweden)

    Christina Hazard

    2017-09-01

    Full Text Available Effects of biodiversity on productivity are more likely to be expressed when there is greater potential for niche complementarity. In soil, chemically complex pools of nutrient resources should provide more opportunities for niche complementarity than chemically simple pools. Ectomycorrhizal (ECM fungal genotypes can exhibit substantial variation in nutrient acquisition traits and are key components of soil biodiversity. Here, we tested the hypothesis that increasing the chemical complexity and forms of soil nutrients would enhance the effects of intraspecific ECM diversity on host plant and fungal productivity. In pure culture, we found substantial variation in growth of strains of the ECM fungus Laccaria bicolor on a range of inorganic and organic forms of nutrients. Subsequent experiments examined the effects of intraspecific identity and richness using Scots pine (Pinus sylvestris seedlings colonized with different strains of L. bicolor growing on substrates supplemented with either inorganic or organic forms of nitrogen and phosphorus. Intraspecific identity effects on plant productivity were only found under the inorganic nutrient amendment, whereas intraspecific identity affected fungal productivity to a similar extent under both nutrient treatments. Overall, there were no significant effects of intraspecific richness on plant and fungal productivity. Our findings suggest soil nutrient composition does not interact strongly with ECM intraspecific richness, at least under experimental conditions where mineral nutrients were not limiting. Under these conditions, intraspecific identity of ECM fungi becomes more important than richness in modulating plant and fungal performance.

  13. Suppression of allene oxide synthase 3 in potato increases degree of arbuscular mycorrhizal fungal colonization.

    Science.gov (United States)

    Morcillo, Rafael Jorge León; Navarrete, María Isabel Tamayo; Bote, Juan Antonio Ocampo; Monguio, Salomé Prat; García-Garrido, José Manuel

    2016-01-15

    Arbuscular mycorrhizal (AM) is a mutually beneficial interaction among higher plants and soil fungi of the phylum Glomeromycota. Numerous studies have pointed that jasmonic acid plays an important role in the development of the intraradical fungus. This compound belongs to a group of biologically active compounds known as oxylipins which are derived from the oxidative metabolism of polyunsaturated fatty acids. Studies of the regulatory role played by oxylipins in AM colonization have generally focused on jasmonates, while few studies exist on the 9-LOX pathway of oxylipins during AM formation. Here, the cDNA of Allene oxide synthase 3 (AOS3), a key enzyme in the 9-LOX pathway, was used in the RNA interference (RNAi) system to transform potato plants in order to suppress its expression. Results show increases in AOS3 gene expression and 9-LOX products in roots of wild type potato mycorrhizal plants. The suppression of AOS3 gene expression increases the percentage of root with mycorrhizal colonization at early stages of AM formation. AOS3 RNA interference lead to an induction of LOXA and 13-LOX genes, a reduction in AOS3 derived 9-LOX oxylipin compounds and an increase in jasmonic acid content, suggesting compensation between 9 and 13-LOX pathways. The results in a whole support the hypothesis of a regulatory role for the 9-LOX oxylipin pathway during mycorrhization. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Colonization with Arbuscular Mycorrhizal Fungi Promotes the Growth of Morus alba L. Seedlings under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Nan Lu

    2015-03-01

    Full Text Available Morus alba L. is an important tree species planted widely in China because of its economic value. In this report, we investigated the influence of two arbuscular mycorrhizal fungal (AMF species, Glomus mosseae and Glomus intraradices, alone and together, on the growth of M. alba L. seedlings under greenhouse conditions. The growth parameters and physiological performance of M. alba L. seedlings were evaluated 90 days after colonization with the fungi. The growth and physiological performance of M. alba L. seedlings were significantly affected by the AMF species. The mycorrhizal seedlings were taller, had longer roots, more leaves and a greater biomass than the non-mycorrhizae-treated seedlings. In addition, the AMF species-inoculated seedlings had increased root activity and a higher chlorophyll content compared to non-inoculated seedlings. Furthermore, AMF species colonization increased the phosphorus and nitrogen contents of the seedlings. In addition, simultaneous root colonization by the two AMF species did not improve the growth of M. alba L. seedlings compared with inoculation with either species alone. Based on these results, these AMF species may be applicable to mulberry seedling cultivation.

  15. Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses

    Science.gov (United States)

    Hawkes, C.V.; Belnap, J.; D'Antonio, C.; Firestone, M.K.

    2006-01-01

    Plant invasions have the potential to significantly alter soil microbial communities, given their often considerable aboveground effects. We examined how plant invasions altered the arbuscular mycorrhizal fungi of native plant roots in a grassland site in California and one in Utah. In the California site, we used experimentally created plant communities composed of exotic (Avena barbata, Bromus hordeaceus) and native (Nassella pulchra, Lupinus bicolor) monocultures and mixtures. In the Utah semi-arid grassland, we took advantage of invasion by Bromus tectorum into long-term plots dominated by either of two native grasses, Hilaria jamesii or Stipa hymenoides. Arbuscular mycorrhizal fungi colonizing roots were characterized with PCR amplification of the ITS region, cloning, and sequencing. We saw a significant effect of the presence of exotic grasses on the diversity of mycorrhizal fungi colonizing native plant roots. In the three native grasses, richness of mycorrhizal fungi decreased; in the native forb at the California site, the number of fungal RFLP patterns increased in the presence of exotics. The exotic grasses also caused the composition of the mycorrhizal community in native roots to shift dramatically both in California, with turnover of Glomus spp., and Utah, with replacement of Glomus spp. by apparently non-mycorrhizal fungi. Invading plants may be able to influence the network of mycorrhizal fungi in soil that is available to natives through either earlier root activity or differential carbon provision compared to natives. Alteration of the soil microbial community by plant invasion can provide a mechanism for both successful invasion and the resulting effects of invaders on the ecosystem. ?? Springer 2006.

  16. PNNL Fungal Biotechnology Core DOE-OBP Project

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Scott E.; Bruno, Kenneth S.; Butcher, Mark G.; Collett, James R.; Culley, David E.; Dai, Ziyu; Magnuson, Jon K.; Panisko, Ellen A.

    2009-11-30

    In 2009, we continued to address barriers to fungal fermentation in the primary areas of morphology control, genomics, proteomics, fungal hyperproductivity, biomass-to-products via fungal based consolidated bioprocesses, and filamentous fungal ethanol. “Alternative renewable fuels from fungi” was added as a new subtask. Plans were also made to launch a new advanced strain development subtask in FY2010.

  17. Intra-antral application of an anti-fungal agent for recurrent maxillary fungal rhinosinusitis: a case report

    Directory of Open Access Journals (Sweden)

    Dunmade Adekunle D

    2012-08-01

    Full Text Available Abstract Introduction Fungal infection of the paranasal sinuses is an increasingly recognized entity both in immunocompetent and immunocompromised individuals. Treatment has been via use of either surgical or medical modalities, or a combination of the two. Here, we present a case of utilization of intra-antral application of an anti-fungal agent in the management of recurrent fungal sinusitis in an indigent Nigerian patient. Case presentation We present the case of a 30-year-old West African Yoruba man, an indigent Nigerian clergyman, who presented to our facility with a history of recurrent nasal discharge (about one year, recurrent nasal blockage (about five months, and right facial swelling (about one week. After intra-nasal antrostomy for debulking with a systemic anti-fungal agent, our patient had a recurrence after four months. Our patient subsequently had an intra-antral application of flumetasone and clioquinol (Locacorten®-Vioform® weekly for six weeks with improvement of symptoms and no recurrence after six months of follow-up. Conclusions We conclude that topical intra-antral application of anti-fungal agents is effective in patients with recurrent fungal maxillary sinusitis after surgical debulking.

  18. Interactions of Vesicular-Arbuscular Mycorrhizal Fungi, Phosphorus, and Heterodera glycines on Soybean.

    Science.gov (United States)

    Tylka, G L; Hussey, R S; Roncadori, R W

    1991-01-01

    Effects of vesicular-arbuscular mycorrhizal (VAM) fungi and soil phosphorus (P) fertility on parasitism of soybean cultivars Bragg and Wright by soybean cyst nematode (SCN) were investigated in field micropiot and greenhouse experiments. VAM fungi increased height of both cultivars and yield of Wright in microplot studies in 1986 and 1987. Conversely, yield of mycorrhizal and nonmycorrhizal plants of both cultivars was suppressed by SCN. Soil population densities of SCN were unaffected by VAM fungi in 1986 but were greater in microplots infested with VAM fungi than in control microplots in 1987. Growth of Wright soybean was stimulated by VAM fungi and suppressed by SCN in greenhouse experiments. The effect of VAM fungi on SCN varied with time. Numbers of SCN in roots and soil were decreased by VAM fungi by as much as 73% at the highest SCN inoculum level through 49 days after planting. Later, however, SCN numbers were usually comparable on mycorrhizal and nonmycorrhizal plants. Soil P fertility generally had no effect on SCN. Results of a split-root experiment indicated that VAM fungal suppression of SCN was not systemic.

  19. INCIDENCE OF FUNGAL ELEMENTS IN SINONASAL POLYPOSIS

    Directory of Open Access Journals (Sweden)

    Santhosh G. S

    2016-12-01

    Full Text Available BACKGROUND Nasal polyposis is a disease entity characterised by formation of pseudoedema of sinonasal mucus membrane progressing to form polyps. It presents clinically with nasal obstruction and fleshy masses in the nasal cavity. The nasal mucosa reacts to formation of polypi in allergic fungal sinusitis also. The present study is an attempt to demonstrate possible fungal elements from the polypi removed during surgery by KOH study and HPE study. The aim of the study is to find out the incidence of fungal elements in sinonasal polyposis. MATERIALS AND METHODS 50 patients attending the ENT OPD for nasal obstruction and showing polypi on anterior rhinoscopy were selected. All the patients were subjected to surgery and specimens collected were subjected to KOH study and histopathology to demonstrate fungal elements. RESULTS Among 50 patients, the age range was from 9-57 years; mean age- 36.46 years. The male-to-female ratio was 1.5:1. Deviated nasal septum was found in 38% of patients. Among the unilateral cases, 47% were antrochoanal polyps and 53% were ethmoid polyps. Out of 50 patients, only 3 specimens were positive for fungal elements with KOH study and only 2 cases with fungal culture. Thus, the incidence of fungal elements in sinonasal polyposis was 6%. CONCLUSION The incidence of fungal elements in sinonasal polyposis was 6%. Histopathological examination of polypectomy specimen was negative for invasive fungal disease and showed inflammatory changes only. There is no difference in the detection of the presence of fungal by two methods.

  20. Arbuscular mycorrhizal fungal communities in the rhizosphere of a continuous cropping soybean system at the seedling stage.

    Science.gov (United States)

    Cui, Jiaqi; Bai, Li; Liu, Xiaorui; Jie, Weiguang; Cai, Baiyan

    Arbuscular mycorrhizae (AM) fungi play a crucial role in the growth of soybean; however, the planting system employed is thought to have an effect on AM fungal communities in the rhizosphere. This study was performed to explore the influence of continuous soybean cropping on the diversity of Arbuscular mycorrhizal (AM) fungi, and to identify the dominant AM fungus during the seedling stage. Three soybean cultivars were planted under two and three years continuous cropping, respectively. The diversity of AM fungi in the rhizosphere soil at the seedling stage was subsequently analyzed using polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE). The results showed that an increase in cropping years improved the colonization rate of AM in all three soybean cultivars. Moreover, the dominant species were found to be Funneliformis mosseae and Glomus species. The results of cluster analysis further confirmed that the number of years of continuous cropping significantly affected the composition of rhizospheric AM fungal communities in different soybean cultivars. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  1. Influence of corn steep liquor and glucose on colonization of control and CCB (Cu/Cr/B)-treated wood by brown rot fungi

    International Nuclear Information System (INIS)

    Humar, Miha; Amartey, Sam A.; Pohleven, Franc

    2006-01-01

    There are increasing problems with regard to the disposal of treated wood waste. Due to heavy metals or arsenic in impregnated wood waste, burning and landfill disposal options are not considered to be environmentally friendly solutions for dealing with this problem. Extraction of the heavy metals and recycling of the preservatives from the wood waste is a much more promising and environmentally friendly solution. In order to study the scale up of this process, copper/chromium/boron-treated wood specimens were exposed to copper tolerant (Antrodia vaillantii and Leucogyrophana pinastri) and copper sensitive wood decay fungi (Gloeophyllum trabeum and Poria monticola). Afterwards, the ability of fungal hyphae to penetrate and overgrow the wood specimens was investigated. The fungal growths were stimulated by immersing the specimens into aqueous solution of glucose or corn steep liquor prior to exposure to the fungi. The fastest colonization of the impregnated wood was by the copper tolerant A. vaillantii. Addition of glucose onto the surface of the wood specimens increased the fungi colonization of the specimens; however, immersion of the specimens into the solution of corn steep liquor did not have the same positive influence. These results are important in elucidating copper toxicity in wood decay fungi and for using these fungi for bioremediation of treated wood wastes

  2. [Fungal infections of the gastrointestinal tract].

    Science.gov (United States)

    Maragkoudakis, Emmanouil; Realdi, Giuseppe; Dore, Maria Pina

    2005-06-01

    In immunocompetent subjects fungal infections of the gastrointestinal tract are uncommon. Candida esophagitis remains the single most common fungal infection in immunocompromised hosts or in H. pylori- infected patients who receive antibiotic therapy. Enteric fungal infections are uncommon even in HIV-infected patients. Antifungal agents such as amphotericin B, ketoconazole, fluconazole, and the various formulations of itraconazole are effective for most cases.

  3. Structural Analysis of Fungal Cerebrosides

    Directory of Open Access Journals (Sweden)

    Eliana eBarreto-Bergter

    2011-12-01

    Full Text Available Of the ceramide monohexosides (CMHs, gluco- and galactosylceramides are the main neutral glycosphingolipids expressed in fungal cells. Their structural determination is greatly dependent on the use of mass spectrometric techniques, including fast atom bombardment-mass spectrometry (FAB-MS, electrospray ionization (ESI-MS, and energy collision-induced dissociation mass spectrometry (ESI-MS/CID-MS. Nuclear magnetic resonance (NMR has also been used successfully. Such a combination of techniques, combined with classical analytical separation, such as HPTLC and column chromatography, has led to the structural elucidation of a great number of fungal CMHs. The structure of fungal CMH is conserved among fungal species and consists of a glucose or galactose residue attached to a ceramide moiety containing 9-methyl-4,8-sphingadienine with an amidic linkage to hydroxylated fatty acids, most commonly having 16 or 18 carbon atoms and unsaturation between C-3 and C-4. Along with their unique structural characteristics, fungal CMHs have a peculiar subcellular distribution and striking biological properties. Fungal cerebrosides were also characterized as antigenic molecules directly or indirectly involved in cell growth or differentiation in Schizophyllum commune, Cryptococcus neoformans, Pseudallescheria boydii, Candida albicans, Aspergillus nidulans, A.fumigatus and Colletotrichum gloeosporioides. Besides classical techniques for cerebroside (CMH analysis, we now describe new approaches, combining conventional TLC and mass spectrometry, as well as emerging technologies for subcellular localization and distribution of glycosphingolipids by SIMS and imaging MALDI TOF .

  4. Fungal genomics beyond Saccharomyces cerevisiae?

    DEFF Research Database (Denmark)

    Hofmann, Gerald; Mcintyre, Mhairi; Nielsen, Jens

    2003-01-01

    Fungi are used extensively in both fundamental research and industrial applications. Saccharomyces cerevisiae has been the model organism for fungal research for many years, particularly in functional genomics. However, considering the diversity within the fungal kingdom, it is obvious...

  5. Daphnia can protect diatoms from fungal parasitism

    NARCIS (Netherlands)

    Kagami, M.; Van Donk, E.; De Bruin, A.; Rijkeboer, M.; Ibelings, B.W.

    2004-01-01

    Many phytoplankton species are susceptible to chytrid fungal parasitism. Much attention has been paid to abiotic factors that determine whether fungal infections become epidemic. It is still unknown, however, how biotic factors, such as interactions with zooplankton, affect the fungal infection

  6. Fungal Volatiles Can Act as Carbon Sources and Semiochemicals to Mediate Interspecific Interactions Among Bark Beetle-Associated Fungal Symbionts.

    Directory of Open Access Journals (Sweden)

    Jonathan A Cale

    Full Text Available Mountain pine beetle (Dendroctonus ponderosae has killed millions of hectares of pine forests in western North America. Beetle success is dependent upon a community of symbiotic fungi comprised of Grosmannia clavigera, Ophiostoma montium, and Leptographium longiclavatum. Factors regulating the dynamics of this community during pine infection are largely unknown. However, fungal volatile organic compounds (FVOCs help shape fungal interactions in model and agricultural systems and thus may be important drivers of interactions among bark beetle-associated fungi. We investigated whether FVOCs can mediate interspecific interactions among mountain pine beetle's fungal symbionts by affecting fungal growth and reproduction. Headspace volatiles were collected and identified to determine species-specific volatile profiles. Interspecific effects of volatiles on fungal growth and conidia production were assessed by pairing physically-separated fungal cultures grown either on a carbon-poor or -rich substrate, inside a shared-headspace environment. Fungal VOC profiles differed by species and influenced the growth and/or conidia production of the other species. Further, our results showed that FVOCs can be used as carbon sources for fungi developing on carbon-poor substrates. This is the first report demonstrating that FVOCs can drive interactions among bark beetle fungal symbionts, and thus are important factors in beetle attack success.

  7. Chitosan Increases Tomato Root Colonization by Pochonia chlamydosporia and Their Combination Reduces Root-Knot Nematode Damage

    Directory of Open Access Journals (Sweden)

    Nuria Escudero

    2017-09-01

    Full Text Available The use of biological control agents could be a non-chemical alternative for management of Meloidogyne spp. [root-knot nematodes (RKN], the most damaging plant-parasitic nematodes for horticultural crops worldwide. Pochonia chlamydosporia is a fungal parasite of RKN eggs that can colonize endophytically roots of several cultivated plant species, but in field applications the fungus shows a low persistence and efficiency in RKN management. The combined use of P. chlamydosporia with an enhancer could help its ability to develop in soil and colonize roots, thereby increasing its efficiency against nematodes. Previous work has shown that chitosan enhances P. chlamydosporia sporulation and production of extracellular enzymes, as well as nematode egg parasitism in laboratory bioassays. This work shows that chitosan at low concentrations (up to 0.1 mg ml-1 do not affect the viability and germination of P. chlamydosporia chlamydospores and improves mycelial growth respect to treatments without chitosan. Tomato plants irrigated with chitosan (same dose limit increased root weight and length after 30 days. Chitosan irrigation increased dry shoot and fresh root weight of tomato plants inoculated with Meloidogyne javanica, root length when they were inoculated with P. chlamydosporia, and dry shoot weight of plants inoculated with both P. chlamydosporia and M. javanica. Chitosan irrigation significantly enhanced root colonization by P. chlamydosporia, but neither nematode infection per plant nor fungal egg parasitism was affected. Tomato plants cultivated in a mid-suppressive (29.3 ± 4.7% RKN egg infection non-sterilized clay loam soil and irrigated with chitosan had enhanced shoot growth, reduced RKN multiplication, and disease severity. Chitosan irrigation in a highly suppressive (73.7 ± 2.6% RKN egg infection sterilized-sandy loam soil reduced RKN multiplication in tomato. However, chitosan did not affect disease severity or plant growth irrespective of

  8. Management of Stem-rot of Groundnut (Arachis hypogaea L. Cultivar in Field

    Directory of Open Access Journals (Sweden)

    Khirood DOLEY

    2013-08-01

    Full Text Available The present experiment was conducted at University of Pune for biocontrol of soil-borne plant pathogen Sclerotium rolfsii by incorporating arbuscular mycorrhizal fungi (Glomus fasciculatum and conventional system of cultivation with different spacing pattern (15 and 30 cm in field. Both mycorrhizal inoculation and 30 cm spacing pattern significantly increased growth and yield as compared to control or 15 cm spacing pattern. The pathogenic mycorrhizal groundnut plants in 30 as well as 15 cm spacing pattern showed better growth in terms of plant height, leaf and pod number, fresh and dry weight of whole groundnut plant in comparison to non-mycorrhizal pathogenic ones and the plant growth was better in 30 spacing than 15 cm. The colonization by AM fungi in both spacing pattern was higher in absence of pathogen S. rolfsii. However, pathogen’s presence decreased the mycorrhizal colonization considerably in 30 and 15 cm. The disease severity and incidence were recorded to be lowered when inoculated with mycorrhiza in pathogenic groundnut plants as compared to non-mycorrhizal pathogenic ones in both spacing pattern and incidence and severity was significantly lower in 30 cm as compared to 15 cm. Therefore, it was observed from our results that for management of soil-borne pathogens inoculation of AM fungi and spacing patterns are necessary.

  9. Reaction of mycorrhizal and non-mycorrhizal Scots pine fine roots along a deposition gradient of air pollutants in eastern Germany

    International Nuclear Information System (INIS)

    Muenzenberger, B.; Schminke, B.; Strubelt, F.; Huettl, R.F.

    1995-01-01

    Based on an ecosystematic approach within the comprehensive SANA (regeneration of the atmosphere above the new federal states) project the influence of industrial air pollutants (SO 2 , NO x ) (alkaline fly ashes) on the vitality of mycorrhizal, mycorrhizal frequency, and on parameters of root growth such as root biomass and necromass and distribution of different root classes in the soil horizons was investigated. The studies were conducted in three comparable Scots pine ecosystems in eastern Germany which were exposed to different deposition loads of air pollutants during the time of the former German Democratic Republic. Site specific differences were obtained for all parameters investigated. The reference plot Neuglobsow (background deposition) revealed the highest number of vital mycorrhizal, highest mycorrhizal frequency, and largest biomass of finest roots in the humus layer. At the impact-site Roesa and Taura (heavy and moderate deposition) located near Halle/Bitterfeld and Leipzig, the number of vital mycorrhizae was reduced and the life-span of mycorrhizae of reduced vitality was elongated. Finest root biomass and necromass of the humus layer were also lower at these plots as compared to Neuglobsow. At Neuglobsow a higher turnover of mycorrhizae and finest roots of the humus layer is assumed. The reduced growth of mycorrhizal and non-mycorrhizal finest roots at the two pollution impacted sites Roesa and Taura is seen as an adaptation mechanism of the root system to high nutrient inputs. 14 refs., 4 figs

  10. Fungal prostatitis: an update.

    Science.gov (United States)

    Mayayo, Emilio; Fernández-Silva, Fabiola

    2014-06-01

    Prostate pathology is a daily occurrence in urological and general medical consultations. Besides hyperplasia and neoplastic pathology, other processes, such as infectious ones, are also documented. Their etiology is diverse and varied. Within the infectious prostatic processes, fungi can also be a specific cause of prostatitis. Fungal prostatitis often appears in patients with impaired immunity and can also be rarely found in healthy patients. It can result from a disseminated infection, but it can also be localized. Fungal prostatitis is a nonspecific and harmless process. Diagnosis is commonly made by fine needle aspiration cytology or by biopsy. A number of fungi can be involved. Although there are not many reported cases, they are becoming more frequent, in particular in patients with some degree of immunodeficiency or those who live in areas where specific fungi are endemic or in visitors of those areas. We present a comprehensive review of the various forms of fungal prostatitis, and we describe the morphological characteristics of the fungi more frequently reported as causes of fungal prostatitis. We also report our own experience, aiming to alert physicians, urologists and pathologists of these particular infections.

  11. Current management of fungal infections.

    NARCIS (Netherlands)

    Meis, J.F.G.M.; Verweij, P.E.

    2001-01-01

    The management of superficial fungal infections differs significantly from the management of systemic fungal infections. Most superficial infections are treated with topical antifungal agents, the choice of agent being determined by the site and extent of the infection and by the causative organism,

  12. Ectomycorrhizal fungal diversity in orchards of cultivated pecan (Carya illinoinensis; Juglandaceae).

    Science.gov (United States)

    Bonito, Gregory; Brenneman, Timothy; Vilgalys, Rytas

    2011-10-01

    Carya illinoinensis (pecan) belongs to the Juglandaceae (walnut family) and is a major economic nut crop in the southern USA. Although evidence suggests that some species in the Juglandaceae are ectomycorrhizal, investigations on their ectomycorrhizal fungal symbionts are quite limited. Here we assessed the ectomycorrhizal fungal diversity in cultivated orchards of C. illinoinensis. Five pecan orchards in southern Georgia, USA, were studied, three of which were known to fruit the native edible truffle species Tuber lyonii. We sequenced rDNA from single ectomycorrhizal root tips sampled from a total of 50 individual trees. Mycorrhizae were identified by ITS and LSU rDNA sequence-based methods. Forty-four distinct ectomycorrhizal taxa were detected. Sequestrate taxa including Tuber and Scleroderma were particularly abundant. The two most abundant sequence types belonged to T. lyonii (17%) and an undescribed Tuber species (~20%). Because of our interest in the ecology of T. lyonii, we also conducted greenhouse studies to determine whether this species would colonize and form ectomycorrhizae on roots of pecan, oak, or pine species endemic to the region. T. lyonii ectomycorrhizae were formed on pecan and oak seedlings, but not pine, when these were inoculated with spores. That oak and pecan seedling roots were receptive to truffle spores indicates that spore slurry inoculation could be a suitable method for commercial use and that, ecologically, T. lyonii may function as a pioneer ectomycorrhizal species for these hosts. © Springer-Verlag 2011

  13. Fungal contamination in hospital environments.

    Science.gov (United States)

    Perdelli, F; Cristina, M L; Sartini, M; Spagnolo, A M; Dallera, M; Ottria, G; Lombardi, R; Grimaldi, M; Orlando, P

    2006-01-01

    To assess the degree of fungal contamination in hospital environments and to evaluate the ability of air conditioning systems to reduce such contamination. We monitored airborne microbial concentrations in various environments in 10 hospitals equipped with air conditioning. Sampling was performed with a portable Surface Air System impactor with replicate organism detection and counting plates containing a fungus-selective medium. The total fungal concentration was determined 72-120 hours after sampling. The genera most involved in infection were identified by macroscopic and microscopic observation. The mean concentration of airborne fungi in the set of environments examined was 19 +/- 19 colony-forming units (cfu) per cubic meter. Analysis of the fungal concentration in the different types of environments revealed different levels of contamination: the lowest mean values (12 +/- 14 cfu/m(3)) were recorded in operating theaters, and the highest (45 +/- 37 cfu/m(3)) were recorded in kitchens. Analyses revealed statistically significant differences between median values for the various environments. The fungal genus most commonly encountered was Penicillium, which, in kitchens, displayed the highest mean airborne concentration (8 +/- 2.4 cfu/m(3)). The percentage (35%) of Aspergillus documented in the wards was higher than that in any of the other environments monitored. The fungal concentrations recorded in the present study are comparable to those recorded in other studies conducted in hospital environments and are considerably lower than those seen in other indoor environments that are not air conditioned. These findings demonstrate the effectiveness of air-handling systems in reducing fungal contamination.

  14. Computational approaches for discovery of common immunomodulators in fungal infections: towards broad-spectrum immunotherapeutic interventions.

    Science.gov (United States)

    Kidane, Yared H; Lawrence, Christopher; Murali, T M

    2013-10-07

    Fungi are the second most abundant type of human pathogens. Invasive fungal pathogens are leading causes of life-threatening infections in clinical settings. Toxicity to the host and drug-resistance are two major deleterious issues associated with existing antifungal agents. Increasing a host's tolerance and/or immunity to fungal pathogens has potential to alleviate these problems. A host's tolerance may be improved by modulating the immune system such that it responds more rapidly and robustly in all facets, ranging from the recognition of pathogens to their clearance from the host. An understanding of biological processes and genes that are perturbed during attempted fungal exposure, colonization, and/or invasion will help guide the identification of endogenous immunomodulators and/or small molecules that activate host-immune responses such as specialized adjuvants. In this study, we present computational techniques and approaches using publicly available transcriptional data sets, to predict immunomodulators that may act against multiple fungal pathogens. Our study analyzed data sets derived from host cells exposed to five fungal pathogens, namely, Alternaria alternata, Aspergillus fumigatus, Candida albicans, Pneumocystis jirovecii, and Stachybotrys chartarum. We observed statistically significant associations between host responses to A. fumigatus and C. albicans. Our analysis identified biological processes that were consistently perturbed by these two pathogens. These processes contained both immune response-inducing genes such as MALT1, SERPINE1, ICAM1, and IL8, and immune response-repressing genes such as DUSP8, DUSP6, and SPRED2. We hypothesize that these genes belong to a pool of common immunomodulators that can potentially be activated or suppressed (agonized or antagonized) in order to render the host more tolerant to infections caused by A. fumigatus and C. albicans. Our computational approaches and methodologies described here can now be applied to

  15. Fungal pretreatment of straw for enhanced biogas yield

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xinmei; Pilar Castillo, Maria del; Schnuerer, Anna

    2013-07-01

    Among lignocellulosic materials from the agricultural sector, straw is considered to have the biggest potential as a biofuel and therefore also represents a big potential for biogas production. However, the degradation of lignocellulosic materials is somewhat restricted due to the high content of lignin that binds cellulose and hemicellulose and makes them unavailable for microbial degradation. Consequently, low methane yields are achieved. The biodegradability of the lignocellulosic material can be increased by a pretreatment. Optimally the pre-treatment should give an increase in the formation of sugars while avoiding the degradation or loss of carbohydrates and the formation of inhibitory by-products. The treatment should also be cost-effective. Different methods for pre-treatment of lignocellulosic material have been explored, for example thermal, acid, alkaline and oxidative pretreatments. However, they often have a high energy demand. Biological treatment with fungi represents an alternative method for pretreatment of lignocellulosic materials that could be comparably more environmentally friendly, easier to operate and with low energy input. The fungal groups of interest for lignocellulose degradation are the wood decaying fungi, such as the white-, brown-rot and cellulose degraders. The purpose with this work was to increase the biogas potential of straw by using a pretreatment with fungi. Straw was incubated with fungi at aerobic conditions under certain periods of time. The growth and colonization of the straw by the fungi was expected to increase the availability of the lignocellulosic structure of the straw and thus positively affect the biogas potential. In addition also, the spent lignocellulosic material from the cultivation of edible fungi was investigated. We hypothesized that also growth of edible fungi could give a more accessible material and thus give higher biogas potential compared to the substrate before fungal growth.

  16. The evolution of fungal epiphytes

    NARCIS (Netherlands)

    Hongsanan, S.; Sánchez-Ramírez, S.; Crous, P.W.; Ariyawansa, H.A.; Zhao, R.L.; Hyde, K.D.

    2016-01-01

    Fungal epiphytes are a polyphyletic group found on the surface of plants, particularly on leaves, with a worldwide distribution. They belong in the phylum Ascomycota, which contains the largest known number of fungal genera. There has been little research dating the origins of the common ancestors

  17. Outcomes of colon resection in patients with metastatic colon cancer.

    Science.gov (United States)

    Moghadamyeghaneh, Zhobin; Hanna, Mark H; Hwang, Grace; Mills, Steven; Pigazzi, Alessio; Stamos, Michael J; Carmichael, Joseph C

    2016-08-01

    Patients with advanced colorectal cancer have a high incidence of postoperative complications. We sought to identify outcomes of patients who underwent resection for colon cancer by cancer stage. The National Surgical Quality Improvement Program database was used to evaluate all patients who underwent colon resection with a diagnosis of colon cancer from 2012 to 2014. Multivariate logistic regression analysis was performed to investigate patient outcomes by cancer stage. A total of 7,786 colon cancer patients who underwent colon resection were identified. Of these, 10.8% had metastasis at the time of operation. Patients with metastatic disease had significantly increased risks of perioperative morbidity (adjusted odds ratio [AOR]: 1.44, P = .01) and mortality (AOR: 3.72, P = .01). Patients with metastatic disease were significantly younger (AOR: .99, P colon cancer have metastatic disease. Postoperative morbidity and mortality are significantly higher than in patients with localized disease. Published by Elsevier Inc.

  18. Antegrade Colonic Lavage in Acute Colonic Obstruction

    OpenAIRE

    Foster, Michael E.; Johnson, Colin D.

    1986-01-01

    Conventional management of acute left sided colonic obstruction employs some form of proximal colostomy. Intraoperative antegrade colonic irrigation relieves proximal faecal loading and may permit safer primary resection and anastomosis. The results of a pilot study are presented, and are shown to be favourable.

  19. Phylogenetic analysis of fungal ABC transporters.

    Science.gov (United States)

    Kovalchuk, Andriy; Driessen, Arnold J M

    2010-03-16

    The superfamily of ABC proteins is among the largest known in nature. Its members are mainly, but not exclusively, involved in the transport of a broad range of substrates across biological membranes. Many contribute to multidrug resistance in microbial pathogens and cancer cells. The diversity of ABC proteins in fungi is comparable with those in multicellular animals, but so far fungal ABC proteins have barely been studied. We performed a phylogenetic analysis of the ABC proteins extracted from the genomes of 27 fungal species from 18 orders representing 5 fungal phyla thereby covering the most important groups. Our analysis demonstrated that some of the subfamilies of ABC proteins remained highly conserved in fungi, while others have undergone a remarkable group-specific diversification. Members of the various fungal phyla also differed significantly in the number of ABC proteins found in their genomes, which is especially reduced in the yeast S. cerevisiae and S. pombe. Data obtained during our analysis should contribute to a better understanding of the diversity of the fungal ABC proteins and provide important clues about their possible biological functions.

  20. Fungal endophytes for sustainable crop production.

    Science.gov (United States)

    Lugtenberg, Ben J J; Caradus, John R; Johnson, Linda J

    2016-12-01

    This minireview highlights the importance of endophytic fungi for sustainable agriculture and horticulture production. Fungal endophytes play a key role in habitat adaptation of plants resulting in improved plant performance and plant protection against biotic and abiotic stresses. They encode a vast variety of novel secondary metabolites including volatile organic compounds. In addition to protecting plants against pathogens and pests, selected fungal endophytes have been used to remove animal toxicities associated with fungal endophytes in temperate grasses, to create corn and rice plants that are tolerant to a range of biotic and abiotic stresses, and for improved management of post-harvest control. We argue that practices used in plant breeding, seed treatments and agriculture, often caused by poor knowledge of the importance of fungal endophytes, are among the reasons for the loss of fungal endophyte diversity in domesticated plants and also accounts for the reduced effectiveness of some endophyte strains to confer plant benefits. We provide recommendations on how to mitigate against these negative impacts in modern agriculture. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Fueling the Future with Fungal Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2014-10-27

    Genomes of fungi relevant to energy and environment are in focus of the JGI Fungal Genomic Program. One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts and pathogens) and biorefinery processes (cellulose degradation and sugar fermentation) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Science Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 400 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics will lead to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such ‘parts’ suggested by comparative genomics and functional analysis in these areas are presented here.

  2. The effect of mineral fertilization on fungi colonizing potato (Solanum tuberosum L. tubers after harvest and after storage

    Directory of Open Access Journals (Sweden)

    Bożena Cwalina-Ambroziak

    2012-12-01

    Full Text Available The paper presents the results of a three-year exact experiment conducted in Bałcyny, in which a late potato cultivar, Jasia, was grown. The objective of the study was to determine the effect of different levels of mineral fertilization: A (N 80 kg × ha-1 P 80 kg × ha-1 K120 kg × ha-1 and B (N 120 kg × ha-1 P 144 kg × ha-1 K156 kg × ha-1, and foliar fertilization (Basfoliar 12-4-6, ADOB Mn and Solubor DF on the quantitative and qualitative composition of fungal populations colonizing potato tubers. Fungi were isolated immediately after harvest and after a five-month storage period. After seven days of incubation, fungal colonies were transferred onto agar slants for microscopic identification. Over the entire experimental period, more pathogenic fungi were obtained from potato tubers analyzed after storage (62.9% of the total fungal population after storage than from those analyzed immediately after harvest (39.1%, and the greatest number of fungi was reported in 2004. Rhizoctonia solani was isolated most frequently, followed by Colletotrichum coccodes and Alternaria alternata. Pathogens of the genus Fusarium and the species Helminthosporium solani were not numerous. In the treatment A with soil mineral fertilization with lower NPK rates, larger numbers of pathogenic fungi were noted in 2004 after harvest and after five-month storage, and in 2005 after harvest. At the remaining dates of analysis, pathogens were more frequently isolated from potato tubers in experimental variant B with higher NPK rates. Immediately after harvest, the highest number of pathogenic fungi was isolated in the treatment with foliar application of ADOB Mn and Basfoliar 12-4-6. After five-month storage, pathogens most often colonized potato tubers in experimental variant B with foliar application of Solubor DF, Solubor DF and ADOB Mn, and in experimental variant A with a combination of fertilizers. In the other fertilization variants, including in the control

  3. Climate Change, Extreme Weather Events, and Fungal Disease Emergence and Spread

    Science.gov (United States)

    Tucker, Compton J.; Yager, Karina; Anyamba, Assaf; Linthicum, Kenneth J.

    2011-01-01

    colonize higher elevation lakes, only to be followed shortly by the emergence of fungal disease in the new habitats.

  4. Burden of fungal infections in Senegal.

    Science.gov (United States)

    Badiane, Aida S; Ndiaye, Daouda; Denning, David W

    2015-10-01

    Senegal has a high rate of tuberculosis and a low HIV seropositivity rate and aspergilloma, life-threatening fungal infections, dermatophytosis and mycetoma have been reported in this study. All published epidemiology papers reporting fungal infection rates from Senegal were identified. Where no data existed, we used specific populations at risk and fungal infection frequencies in each to estimate national incidence or prevalence. The results show that tinea capitis is common being found in 25% of children, ~1.5 million. About 191,000 Senegalese women get recurrent vaginal thrush, ≥4 times annually. We estimate 685 incident cases of chronic pulmonary aspergillosis (CPA) following TB and prevalence of 2160 cases. Asthma prevalence in adults varies from 3.2% to 8.2% (mean 5%); 9976 adults have allergic bronchopulmonary aspergillosis (ABPA) and 13,168 have severe asthma with fungal sensitisation (SAFS). Of the 59,000 estimated HIV-positive patients, 366 develop cryptococcal meningitis; 1149 develop Pneumocystis pneumonia and 1946 develop oesophageal candidiasis, in which oral candidiasis (53%) and dermatophytosis (16%) are common. Since 2008-2010, 113 cases of mycetoma were diagnosed. In conclusion, we estimate that 1,743,507 (12.5%) people in Senegal suffer from a fungal infection, excluding oral candidiasis, fungal keratitis, invasive candidiasis or aspergillosis. Diagnostic and treatment deficiencies should be rectified to allow epidemiological studies. © 2015 Blackwell Verlag GmbH.

  5. Regulation of Plant Growth, Photosynthesis, Antioxidation and Osmosis by an Arbuscular Mycorrhizal Fungus in Watermelon Seedlings under Well-Watered and Drought Conditions.

    Science.gov (United States)

    Mo, Yanling; Wang, Yongqi; Yang, Ruiping; Zheng, Junxian; Liu, Changming; Li, Hao; Ma, Jianxiang; Zhang, Yong; Wei, Chunhua; Zhang, Xian

    2016-01-01

    Drought stress has become an increasingly serious environmental issue that influences the growth and production of watermelon. Previous studies found that arbuscular mycorrhizal (AM) colonization improved the fruit yield and water use efficiency (WUE) of watermelon grown under water stress; however, the exact mechanisms remain unknown. In this study, the effects of Glomus versiforme symbiosis on the growth, physio-biochemical attributes, and stress-responsive gene expressions of watermelon seedlings grown under well-watered and drought conditions were investigated. The results showed that AM colonization did not significantly influence the shoot growth of watermelon seedlings under well-watered conditions but did promote root development irrespective of water treatment. Drought stress decreased the leaf relative water content and chlorophyll concentration, but to a lesser extent in the AM plants. Compared with the non-mycorrhizal seedlings, mycorrhizal plants had higher non-photochemical quenching values, which reduced the chloroplast ultrastructural damage in the mesophyll cells and thus maintained higher photosynthetic efficiency. Moreover, AM inoculation led to significant enhancements in the enzyme activities and gene expressions of superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, and monodehydroascorbate reductase in watermelon leaves upon drought imposition. Consequently, AM plants exhibited lower accumulation of MDA, H2O2 and [Formula: see text] compared with non-mycorrhizal plants. Under drought stress, the soluble sugar and proline contents were significantly increased, and further enhancements were observed by pre-treating the drought-stressed plants with AM. Taken together, our findings indicate that mycorrhizal colonization enhances watermelon drought tolerance through a stronger root system, greater protection of photosynthetic apparatus, a more efficient antioxidant system and improved osmoregulation. This study contributes

  6. Human Fungal Pathogens of Mucorales and Entomophthorales.

    Science.gov (United States)

    Mendoza, Leonel; Vilela, Raquel; Voelz, Kerstin; Ibrahim, Ashraf S; Voigt, Kerstin; Lee, Soo Chan

    2014-11-06

    In recent years, we have seen an increase in the number of immunocompromised cohorts as a result of infections and/or medical conditions, which has resulted in an increased incidence of fungal infections. Although rare, the incidence of infections caused by fungi belonging to basal fungal lineages is also continuously increasing. Basal fungal lineages diverged at an early point during the evolution of the fungal lineage, in which, in a simplified four-phylum fungal kingdom, Zygomycota and Chytridiomycota belong to the basal fungi, distinguishing them from Ascomycota and Basidiomycota. Currently there are no known human infections caused by fungi in Chytridiomycota; only Zygomycotan fungi are known to infect humans. Hence, infections caused by zygomycetes have been called zygomycosis, and the term "zygomycosis" is often used as a synonym for "mucormycosis." In the four-phylum fungal kingdom system, Zygomycota is classified mainly based on morphology, including the ability to form coenocytic (aseptated) hyphae and zygospores (sexual spores). In the Zygomycota, there are 10 known orders, two of which, the Mucorales and Entomophthorales, contain species that can infect humans, and the infection has historically been known as zygomycosis. However, recent multilocus sequence typing analyses (the fungal tree of life [AFTOL] project) revealed that the Zygomycota forms not a monophyletic clade but instead a polyphyletic clade, whereas Ascomycota and Basidiomycota are monophyletic. Thus, the term "zygomycosis" needed to be further specified, resulting in the terms "mucormycosis" and "entomophthoramycosis." This review covers these two different types of fungal infections. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  7. Mycorrhizal symbionts of Pisonia grandis and P. sechellarum in Seychelles: identification of mycorrhizal fungi and description of new Tomentella species.

    Science.gov (United States)

    Suvi, Triin; Tedersoo, Leho; Abarenkov, Kessy; Beaver, Katy; Gerlach, Justin; Kõljalg, Urmas

    2010-01-01

    Nyctaginaceae includes species that are predominantly non-mycorrhizal or form arbuscular or ectomycorrhiza. Root-associated fungi were studied from P. grandis and P. sechellarum roots collected respectively on the islands of Cousin and Silhouette in Seychelles. In addition fungal sporocarps were collected from the sampling area. Fungal symbionts were identified from the roots by anatomotyping and rDNA sequencing; sporocarps collected were examined microscopically and sequenced. Three distantly related ectomycorrhizal fungal species belonging to Thelephoraceae were identified from the roots of P. grandis. Sporocarps also were found for two symbionts and described as new Tomentella species. In addition Tomentella species collected from other Seychelles islands were studied and described as new species if there was no close resemblance to previously established species. P. sechellarum was determined to be an arbuscular mycorrhizal plant; three arbuscular mycorrhizal fungal species were detected from the roots. P. grandis is probably associated only with species of Thelephoraceae throughout its area. Only five Tomentella species are known to form ectomycorrhiza with P. grandis and they never have been found to be associated with another host, suggesting adaptation of these fungi to extreme environmental conditions in host's habitat.

  8. Soil fungal community responses to global changes

    DEFF Research Database (Denmark)

    Haugwitz, Merian Skouw

    Global change will affect the functioning and structure of terrestrial ecosystems and since soil fungi are key players in organic matter decomposition and nutrient turnover, shifts in fungal community composition might have a strong impact on soil functioning. The main focus of this thesis...... was therefore to investigate the impact of global environmental changes on soil fungal communities in a temperate and subartic heath ecosystem. The objective was further to determine global change effects on major functional groups of fungi and analyze the influence of fungal community changes on soil carbon...... and nutrient availability and storage. By combining molecular methods such as 454 pyrosequencing and quantitative PCR of fungal ITS amplicons with analyses of soil enzymes, nutrient pools of carbon, nitrogen and phosphorus we were able to characterize soil fungal communities as well as their impact on nutrient...

  9. Inositol Polyphosphate Kinases, Fungal Virulence and Drug Discovery

    Directory of Open Access Journals (Sweden)

    Cecilia Li

    2016-09-01

    Full Text Available Opportunistic fungi are a major cause of morbidity and mortality world-wide, particularly in immunocompromised individuals. Developing new treatments to combat invasive fungal disease is challenging given that fungal and mammalian host cells are eukaryotic, with similar organization and physiology. Even therapies targeting unique fungal cell features have limitations and drug resistance is emerging. New approaches to the development of antifungal drugs are therefore needed urgently. Cryptococcus neoformans, the commonest cause of fungal meningitis worldwide, is an accepted model for studying fungal pathogenicity and driving drug discovery. We recently characterized a phospholipase C (Plc1-dependent pathway in C. neoformans comprising of sequentially-acting inositol polyphosphate kinases (IPK, which are involved in synthesizing inositol polyphosphates (IP. We also showed that the pathway is essential for fungal cellular function and pathogenicity. The IP products of the pathway are structurally diverse, each consisting of an inositol ring, with phosphate (P and pyrophosphate (PP groups covalently attached at different positions. This review focuses on (1 the characterization of the Plc1/IPK pathway in C. neoformans; (2 the identification of PP-IP5 (IP7 as the most crucial IP species for fungal fitness and virulence in a mouse model of fungal infection; and (3 why IPK enzymes represent suitable candidates for drug development.

  10. A study of the colonic transit function by dual radionuclide colon scintigraphy

    International Nuclear Information System (INIS)

    Yang Weidong; Sun Buzhou; Song Changyi; Lu Jinyan; Wang Shejiao; Zheng Xianghong; Huang Lin; Lei Yamei

    1999-01-01

    Objective: To establish a new, simple and noninvasive method which can quantitatively analyze the colonic transit function by dual radionuclide colon scintigraphy. Methods: 24 patients with constipation and 32 normal controls were studied. Na 131 I was sealed into capsule made by polyvinylchloride which can not be digested and absorbed in gastrointestinal tract. Patients and normal volunteers swallow 131 I capsules and drink 99 Tc m labelled sulfur colloid solution at the same time. The static image was acquired at the regular time, then calculate the Geometric Center values (GC). Results: 1) The capsules can be clearly located through the colonic contour shown by 99 Tc m labeled sulfur colloid when it reached the large bowel. 2) The transiting time from mouth to cecum, through colon and through whole gastrointestinal in normal people were (6.61 +- 1.94), (36.61 +- 10.51) and (42.72 +- 10.02) h, respectively, in constipation group were (8.03 +- 3.63), (65.50 +- 28.40) and (74.05 +- 28.17) h, respectively. There was no significant difference (P > 0.05) in two groups compared with each other. But the transiting time through colon and whole gastrointestinal in constipation was slower than that in normal people, with significant difference (P < 0.01). 3) Through examination the colonic transit abnormality can be divided into three patterns: whole colon transit delay, right-colon transit delay and left-colon transit delay. Conclusions: This method is a simple, physiologic and quantitative in evaluating the colonic transit, it can also stage the colonic dyskinesia of the patients

  11. The Verticillium-specific protein VdSCP7 localizes to the plant nucleus and modulates immunity to fungal infections.

    Science.gov (United States)

    Zhang, Lisha; Ni, Hao; Du, Xuan; Wang, Sheng; Ma, Xiao-Wei; Nürnberger, Thorsten; Guo, Hui-Shan; Hua, Chenlei

    2017-07-01

    Fungal pathogens secrete effector proteins to suppress plant basal defense for successful colonization. Resistant plants, however, can recognize effectors by cognate R proteins to induce effector-triggered immunity (ETI). By analyzing secretomes of the vascular fungal pathogen Verticillium dahliae, we identified a novel secreted protein VdSCP7 that targets the plant nucleus. The green fluorescent protein (GFP)-tagged VdSCP7 gene with either a mutated nuclear localization signal motif or with additional nuclear export signal was transiently expressed in Nicotiana benthamiana, and investigated for induction of plant immunity. The role of VdSCP7 in V. dahliae pathogenicity was characterized by gene knockout and complementation, and GFP labeling. Expression of the VdSCP7 gene in N. benthamiana activated both salicylic acid and jasmonate signaling, and altered the plant's susceptibility to the pathogens Botrytis cinerea and Phytophthora capsici. The immune response activated by VdSCP7 was highly dependent on its initial extracellular secretion and subsequent nuclear localization in plants. Knockout of the VdSCP7 gene significantly enhanced V. dahliae aggressiveness on cotton. GFP-labeled VdSCP7 is secreted by V. dahliae and accumulates in the plant nucleus. We conclude that VdSCP7 is a novel effector protein that targets the host nucleus to modulate plant immunity, and suggest that plants can recognize VdSCP7 to activate ETI during fungal infection. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  12. The Fungal Defensin Family Enlarged

    Directory of Open Access Journals (Sweden)

    Jiajia Wu

    2014-08-01

    Full Text Available Fungi are an emerging source of peptide antibiotics. With the availability of a large number of model fungal genome sequences, we can expect that more and more fungal defensin-like peptides (fDLPs will be discovered by sequence similarity search. Here, we report a total of 69 new fDLPs encoded by 63 genes, in which a group of fDLPs derived from dermatophytes are defined as a new family (fDEF8 according to sequence and phylogenetic analyses. In the oleaginous fungus Mortierella alpine, fDLPs have undergone extensive gene expansion. Our work further enlarges the fungal defensin family and will help characterize new peptide antibiotics with therapeutic potential.

  13. Phytoremediation of Alberta oil sand tailings using native plants and fungal endophytes

    Science.gov (United States)

    Repas, T.; Germida, J.; Kaminskyj, S.

    2012-04-01

    Fungal endophytes colonize host plants without causing disease. Some endophytes confer plant tolerance to harsh environments. One such endophyte, Trichoderma harzianum strain TSTh20-1, was isolated from a plant growing on Athabasca oil sand tailings. Tailing sands are a high volume waste product from oil sand extraction that the industry is required to remediate. Tailing sands are low in organic carbon and mineral nutrients, and are hydrophobic due to residual polyaromatic hydrocarbons. Typically, tailing sands are remediated by planting young trees in large quantities of mulch plus mineral fertilizer, which is costly and labour intensive. In greenhouse trials, TSTh20-1 supports growth of tomato seedlings on tailing sands without fertilizer. The potential use of TSTh20-1 in combination with native grasses and forbs to remediate under field conditions is being assessed. Twenty-three commercially available plant species are being screened for seed germination and growth on tailing sands in the presence of TSTh20-1. The best candidates from this group will be used in greenhouse and small scale field trials. Potential mechanisms that contribute to endophyte-induced plant growth promotion, such as plant hormone production, stress tolerance, mineral solubilization, and uptake are also being assessed. As well, TSTh20-1 appears to be remarkably frugal in its nutrient requirements and the possibility that this attribute is characteristic of other plant-fungal endophytes from harsh environments is under study.

  14. Global Analysis of the Fungal Microbiome in Cystic Fibrosis Patients Reveals Loss of Function of the Transcriptional Repressor Nrg1 as a Mechanism of Pathogen Adaptation.

    Science.gov (United States)

    Kim, Sang Hu; Clark, Shawn T; Surendra, Anuradha; Copeland, Julia K; Wang, Pauline W; Ammar, Ron; Collins, Cathy; Tullis, D Elizabeth; Nislow, Corey; Hwang, David M; Guttman, David S; Cowen, Leah E

    2015-11-01

    The microbiome shapes diverse facets of human biology and disease, with the importance of fungi only beginning to be appreciated. Microbial communities infiltrate diverse anatomical sites as with the respiratory tract of healthy humans and those with diseases such as cystic fibrosis, where chronic colonization and infection lead to clinical decline. Although fungi are frequently recovered from cystic fibrosis patient sputum samples and have been associated with deterioration of lung function, understanding of species and population dynamics remains in its infancy. Here, we coupled high-throughput sequencing of the ribosomal RNA internal transcribed spacer 1 (ITS1) with phenotypic and genotypic analyses of fungi from 89 sputum samples from 28 cystic fibrosis patients. Fungal communities defined by sequencing were concordant with those defined by culture-based analyses of 1,603 isolates from the same samples. Different patients harbored distinct fungal communities. There were detectable trends, however, including colonization with Candida and Aspergillus species, which was not perturbed by clinical exacerbation or treatment. We identified considerable inter- and intra-species phenotypic variation in traits important for host adaptation, including antifungal drug resistance and morphogenesis. While variation in drug resistance was largely between species, striking variation in morphogenesis emerged within Candida species. Filamentation was uncoupled from inducing cues in 28 Candida isolates recovered from six patients. The filamentous isolates were resistant to the filamentation-repressive effects of Pseudomonas aeruginosa, implicating inter-kingdom interactions as the selective force. Genome sequencing revealed that all but one of the filamentous isolates harbored mutations in the transcriptional repressor NRG1; such mutations were necessary and sufficient for the filamentous phenotype. Six independent nrg1 mutations arose in Candida isolates from different patients

  15. Colon interposition

    International Nuclear Information System (INIS)

    Isolauri, J.; Tampere Univ. Central Hospital; Paakkala, T.; Arajaervi, P.; Markkula, H.

    1987-01-01

    Colon interposition was carried out in 12 patients with oesophageal carcinoma and on 38 patients with benign oesophageal disease an average of 71 months before the radiographic examination. Various ischaemic changes including 'jejunization', loss of haustration and stricture formation were observed in 15 cases. In 12 patients one or several diverticula were seen in the colon graft. Reflux was observed in 17 cases in supine position. Double contrast technique in the examination of interposed colon is recommended. (orig.)

  16. Antifungal genes expressed in transgenic pea (Pisum sativum L.) do not affect root colonization of arbuscular mycorrhizae fungi.

    Science.gov (United States)

    Kahlon, Jagroop Gill; Jacobsen, Hans-Jörg; Cahill, James F; Hall, Linda M

    2017-10-01

    Genetically modified crops have raised concerns about unintended consequences on non-target organisms including beneficial soil associates. Pea transformed with four antifungal genes 1-3 β glucanase, endochitinase, polygalacturonase-inhibiting proteins, and stilbene synthase is currently under field-testing for efficacy against fungal diseases in Canada. Transgenes had lower expression in the roots than leaves in greenhouse experiment. To determine the impact of disease-tolerant pea or gene products on colonization by non-target arbuscular mycorrhizae and nodulation by rhizobium, a field trial was established. Transgene insertion, as single gene or stacked genes, did not alter root colonization by arbuscular mycorrhiza fungus (AMF) or root nodulation by rhizobium inoculation in the field. We found no effect of transgenes on the plant growth and performance although, having a dual inoculant with both AMF and rhizobium yielded higher fresh weight shoot-to-root ratio in all the lines tested. This initial risk assessment of transgenic peas expressing antifungal genes showed no deleterious effect on non-target organisms.

  17. Characterization of fungal inoculum used in soil bioremediation Caracterização de inóculo fúngico em biorremediação de solo

    Directory of Open Access Journals (Sweden)

    Nara Ballaminut

    2007-06-01

    Full Text Available Studies have indicated the capacity of basidiomycetes to degrade recalcitrant organopollutants. However, the age of the fungal inoculum to obtain a more effective degradation has not been defined. The criterion used is total colonization of the substrate. Psilocybe castanella CCB444 and Lentinus crinitus CCB274 have been evaluated in soils containing hexachlorobenzene. In the present study, the physiological conditions of the fungal inocula were characterized on solid substrate (sugarcane bagasse, starch and soy flour. Colonization of the substrate, loss of organic matter, pH variation, organic carbon, total nitrogen, fungal biomass and enzymatic activity were evaluated over 30 days of incubation. Colonization of the substrate was almost complete after 20 days for both species, with about 90% of organic matter remaining on the substrates. The pH continued to be acid during incubation. The highest enzymatic production was observed at 10 days for L. crinitus and at 5 days for P. castanella. The fungi presented growth up to 30 days. The C/N ratio of the inocula showed little variation. The use among 10 and 15-day-old inoculum is adequate since sufficient nutrients are left to guarantee survival of the fungus, vigorous colonization of the substrate, a growing biomass and an active enzymatic system, thus permitting fungal growth in soil.Estudos indicam capacidade de basidiomicetos em degradar organopoluentes recalcitrantes. Porém, ainda não foi padronizada a idade do inóculo fúngico a ser aplicado para que ocorra uma degradação mais efetiva. O critério utilizado é colonização total do substrato. Psilocybe castanella CCB444 e Lentinus crinitus CCB274 têm sido avaliados em solos com hexaclorobenzeno. No presente trabalho, foram caracterizadas as condições fisiológicas dos inóculos fúngicos em substrato sólido (bagaço de cana-de-açúcar , amido e farinha de soja. Determinou-se a colonização do substrato, perda de matéria org

  18. Fungal Genomics for Energy and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2013-03-11

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Sequencing Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 200 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  19. Fungal Endocarditis: Update on Diagnosis and Management.

    Science.gov (United States)

    Pasha, Ahmed Khurshid; Lee, Justin Z; Low, See-Wei; Desai, Hem; Lee, Kwan S; Al Mohajer, Mayar

    2016-10-01

    Fungal endocarditis is an extremely debilitating disease associated with high morbidity and mortality. Candida spp. are the most common isolated organisms in fungal endocarditis. It is most prevalent in patients who are immunosuppressed and intravenous drug users. Most patients present with constitutional symptoms, which are indistinguishable from bacterial endocarditis, hence a high index of suspicion is required for pursuing diagnosis. Diagnosis of fungal endocarditis can be very challenging: most of the time, blood cultures are negative or take a long time to yield growth. Fungal endocarditis mandates an aggressive treatment strategy. A medical and surgical combined approach is the cornerstone of therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Effects of shading on photosynthesis, plant organic nitrogen uptake and root fungal colonization in a subarctic mire ecosystem

    DEFF Research Database (Denmark)

    Olsrud, Hanna Maria Kerstin; Michelsen, Anders

    2009-01-01

    Arctic dwarf shrub ecosystems are predicted to be exposed to lower light intensity in a changing climate where mountain birch forests are expanding. We investigated how shading at 0%, 65%, and 97% affects photosynthesis, organic N uptake, C and N allocation patterns in plants, and root fungal...... ecosystems are capable of taking up organic N as intact glycine both under high irradiance levels and under shaded conditions when photosynthesis is strongly reduced. The allocation of 15N to green leaves of Rubus chamaemorus L. increased with shading, whereas the allocation of 13C to leaves of both...

  1. Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities.

    Science.gov (United States)

    Alvarez, Maricel; Huygens, Dries; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Drought stress conditions (DC) reduce plant growth and nutrition, restraining the sustainable reestablishment of Nothofagus dombeyi in temperate south Chilean forest ecosystems. Ectomycorrhizal symbioses have been documented to enhance plant nitrogen (N) and phosphorus (P) uptake under drought, but the regulation of involved assimilative enzymes remains unclear. We studied 1-year-old N. dombeyi (Mirb.) Oerst. plants in association with the ectomycorrhizal fungi Pisolithus tinctorius (Pers.) Coker & Couch. and Descolea antartica Sing. In greenhouse experiments, shoot and root dry weights, mycorrhizal colonization, foliar N and P concentrations, and root enzyme activities [glutamate synthase (glutamine oxoglutarate aminotransferase (GOGAT), EC 1.4.1.13-14), glutamine synthetase (GS, EC 6.3.1.2), glutamate dehydrogenase (GDH, EC 1.4.1.2-4), nitrate reductase (NR, EC 1.6.6.1), and acid phosphomonoesterase (PME, EC 3.1.3.1-2)] were determined as a function of soil-water content. Inoculation of N. dombeyi with P. tinctorius and D. antartica significantly stimulated plant growth and increased plant foliar N and P concentrations, especially under DC. Ectomycorrhizal inoculation increased the activity of all studied enzymes relative to non-mycorrhizal plants under drought. We speculate that GDH is a key enzyme involved in the enhancement of ectomycorrhizal carbon (C) availability by fuelling the tricarboxylic acid (TCA) cycle under conditions of drought-induced carbon deficit. All studied assimilative enzymes of the ectomycorrhizal associations, involved in C, N, and P transfers, are closely interlinked and interdependent. The up-regulation of assimilative enzyme activities by ectomycorrhizal fungal root colonizers acts as a functional mechanism to increase seedling endurance to drought. We insist upon incorporating ectomycorrhizal inoculation in existing Chilean afforestation programs.

  2. Fungal infections in neutropenic cancer patients

    International Nuclear Information System (INIS)

    Parvez, T.

    2003-01-01

    Invasive fungal infections are important causes of morbidity and mortality in cancer patients with prolonged neutropenia following chemotherapy. Recent trends indicate a change toward infections by Aspergillus species, non-albicans species of Candida, and previously uncommon fungal pathogens. These have decreased susceptibility to current antifungal agents. In the last decade there has been much effort to find solutions for these changing trends. This article reviews current approaches to prevention and treatment of opportunistic fungal infections in postchemotherapy neutropenic patients and discussion future antifungal approaches and supportive methods. (author)

  3. The burden of serious fungal diseases in Russia.

    Science.gov (United States)

    Klimko, N; Kozlova, Y; Khostelidi, S; Shadrivova, O; Borzova, Y; Burygina, E; Vasilieva, N; Denning, D W

    2015-10-01

    The incidence and prevalence of fungal infections in Russia is unknown. We estimated the burden of fungal infections in Russia according to the methodology of the LIFE program (www.LIFE-worldwide.org). The total number of patients with serious and chronic mycoses in Russia in 2011 was three million. Most of these patients (2,607,494) had superficial fungal infections (recurrent vulvovaginal candidiasis, oral and oesophageal candidiasis with HIV infection and tinea capitis). Invasive and chronic fungal infections (invasive candidiasis, invasive and chronic aspergillosis, cryptococcal meningitis, mucormycosis and Pneumocystis pneumonia) affected 69,331 patients. The total number of adults with allergic bronchopulmonary aspergillosis and severe asthma with fungal sensitisation was 406,082. © 2015 Blackwell Verlag GmbH.

  4. High resolution visualization and exo-proteomics reveal the physiological role of XlnR and AraR in plant biomass colonization and degradation by Aspergillus niger.

    Science.gov (United States)

    Kowalczyk, Joanna E; Khosravi, Claire; Purvine, Samuel; Dohnalkova, Alice; Chrisler, William B; Orr, Galya; Robinson, Errol; Zink, Erika; Wiebenga, Ad; Peng, Mao; Battaglia, Evy; Baker, Scott; de Vries, Ronald P

    2017-11-01

    In A. niger, two transcription factors, AraR and XlnR, regulate the production of enzymes involved in degradation of arabinoxylan and catabolism of the released l-arabinose and d-xylose. Deletion of both araR and xlnR in leads to reduced production of (hemi)cellulolytic enzymes and reduced growth on arabinan, arabinogalactan and xylan. In this study, we investigated the colonization and degradation of wheat bran by the A. niger reference strain CBS 137562 and araR/xlnR regulatory mutants using high-resolution microscopy and exo-proteomics. We discovered that wheat bran flakes have a 'rough' and 'smooth' surface with substantially different affinity towards fungal hyphae. While colonization of the rough side was possible for all strains, the xlnR mutants struggled to survive on the smooth side of the wheat bran particles after 20 and 40 h post inoculation. Impaired colonization ability of the smooth surface of wheat bran was linked to reduced potential of ΔxlnR to secrete arabinoxylan and cellulose-degrading enzymes and indicates that XlnR is the major regulator that drives colonization of wheat bran in A. niger. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Fungal cultivation on glass-beads

    DEFF Research Database (Denmark)

    Droce, Aida; Sørensen, Jens Laurids; Giese, Henriette

    Transcription of various bioactive compounds and enzymes are dependent on fungal cultivation method. In this study we cultivate Fusarium graminearum and Fusarium solani on glass-beads with liquid media in petri dishes as an easy and inexpensive cultivation method, that resembles in secondary...... metabolite production to agar-cultivation but with an easier and more pure RNA-extraction of total fungal mycelia....

  6. UV-guided isolation of fungal metabolites by HSCCC

    DEFF Research Database (Denmark)

    Dalsgaard, P.W.; Nielsen, K.F.; Larsen, Thomas Ostenfeld

    2005-01-01

    Analytical standardised reversed phase liquid chromatography (RPLC) data can be helpful in finding a suitable solvent combination for isolation of fungal metabolites by high-speed counter current chromatography. Analysis of the distribution coefficient (K-D) of fungal metabolites in a series...... peptides from a crude fungal extract....

  7. Histone Acetylation in Fungal Pathogens of Plants

    Directory of Open Access Journals (Sweden)

    Junhyun Jeon

    2014-03-01

    Full Text Available Acetylation of histone lysine residues occurs in different organisms ranging from yeast to plants and mammals for the regulation of diverse cellular processes. With the identification of enzymes that create or reverse this modification, our understanding on histone acetylation has expanded at an amazing pace during the last two decades. In fungal pathogens of plants, however, the importance of such modification has only just begun to be appreciated in the recent years and there is a dearth of information on how histone acetylation is implicated in fungal pathogenesis. This review covers the current status of research related to histone acetylation in plant pathogenic fungi and considers relevant findings in the interaction between fungal pathogens and host plants. We first describe the families of histone acetyltransferases and deacetylases. Then we provide the cases where histone acetylation was investigated in the context of fungal pathogenesis. Finally, future directions and perspectives in epigenetics of fungal pathogenesis are discussed.

  8. Autoreactive T Cells and Chronic Fungal Infection Drive Esophageal Carcinogenesis

    Science.gov (United States)

    Zhu, Feng; Willette-Brown, Jami; Song, Na-Young; Lomada, Dakshayani; Song, Yongmei; Xue, Liyan; Gray, Zane; Zhao, Zitong; Davis, Sean R.; Sun, Zhonghe; Zhang, Peilin; Wu, Xiaolin; Zhan, Qimin; Richie, Ellen R.; Hu, Yinling

    2018-01-01

    SUMMARY Humans with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), a T cell–driven autoimmune disease caused by impaired central tolerance, are susceptible to developing chronic fungal infection and esophageal squamous cell carcinoma (ESCC). However, the relationship between autoreactive T cells and chronic fungal infection in ESCC development remains unclear. We find that kinase-dead Ikkα knockin mice develop phenotypes reminiscent of APECED, including impaired central tolerance, autoreactive T cells, chronic fungal infection, and ESCCs expressing specific human ESCC markers. Using this model, we investigated the potential link between ESCC and fungal infection. Autoreactive CD4 T cells permit fungal infection and incite tissue injury and inflammation. Antifungal treatment or depletion of autoreactive CD4 T cells rescues, whereas oral fungal administration promotes, ESCC development. Inhibition of inflammation or EGFR activity decreases fungal burden. Importantly, fungal infection is highly associated with ESCCs in non-autoimmune human patients. Therefore, autoreactive T cells and chronic fungal infection, fostered by inflammation and epithelial injury, promote ESCC development. PMID:28407484

  9. Fungal polyketide azaphilone pigments as future natural food colorants?

    DEFF Research Database (Denmark)

    Mapari, Sameer Shamsuddin; Thrane, Ulf; Meyer, Anne S.

    2010-01-01

    The recent approval of fungal carotenoids as food colorants by the European Union has strengthened the prospects for fungal cell factories for the production of polyketide pigments. Fungal production of colorants has the main advantage of making the manufacturer independent of the seasonal supply...... functionality and to expand the color palette of contemporary natural food colorants.......The recent approval of fungal carotenoids as food colorants by the European Union has strengthened the prospects for fungal cell factories for the production of polyketide pigments. Fungal production of colorants has the main advantage of making the manufacturer independent of the seasonal supply...... of raw materials, thus minimizing batch-to-batch variations. Here, we review the potential of polyketide pigments produced from chemotaxonomically selected non-toxigenic fungal strains (e.g. Penicillium and Epicoccum spp.) to serve as food colorants. We argue that the production of polyketide azaphilone...

  10. Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars.

    Science.gov (United States)

    Wierzchos, J; Cámara, B; de Los Ríos, A; Davila, A F; Sánchez Almazo, I M; Artieda, O; Wierzchos, K; Gómez-Silva, B; McKay, C; Ascaso, C

    2011-01-01

    The scarcity of liquid water in the hyperarid core of the Atacama Desert makes this region one of the most challenging environments for life on Earth. The low numbers of microbial cells in the soils suggest that within the Atacama Desert lies the dry limit for life on our planet. Here, we show that the Ca-sulfate crusts of this hyperarid core are the habitats of lithobiontic micro-organisms. This microporous, translucent substrate is colonized by epilithic lichens, as well as endolithic free-living algae, fungal hyphae, cyanobacteria and non photosynthetic bacteria. We also report a novel type of endolithic community, "hypoendoliths", colonizing the undermost layer of the crusts. The colonization of gypsum crusts within the hyperarid core appears to be controlled by the moisture regime. Our data shows that the threshold for colonization is crossed within the dry core, with abundant colonization in gypsum crusts at one study site, while crusts at a drier site are virtually devoid of life. We show that the cumulative time in 1 year of relative humidity (RH) above 60% is the best parameter to explain the difference in colonization between both sites. This is supported by controlled humidity experiments, where we show that colonies of endolithic cyanobacteria in the Ca-sulfate crust undergo imbibition process at RH >60%. Assuming that life once arose on Mars, it is conceivable that Martian micro-organisms sought refuge in similar isolated evaporite microenvironments during their last struggle for life as their planet turned arid. © 2010 Blackwell Publishing Ltd.

  11. Air Contamination With Fungals In Museum

    Science.gov (United States)

    Scarlat, Iuliana; Haiducu, Maria; Stepa, Raluca

    2015-07-01

    The aim of the studies was to determine the level and kind of fungal contamination of air in museum, deposits patrimony, restoration and conservation laboratories and their effects on health of workers. Microbiological air purity was measured with a SAS-100 Surface Air System impactor. The fungal contamination was observed in all 54 rooms where we made determinations. The highest levels of fungal were recorded at rooms with hygroscopic patrimony objects, eg carpets, chairs, upholstered chairs, books etc. The most species identified included under common allergens: Aspergillus, Penicillium, and Mucor. There fungal species belonging to the genus identified in this study, can trigger serious diseases museum workers, such as for example Aspergillus fumigatus, known allergies and toxic effects that may occur. In some places of the museum, occupational exposure limit values to fungi present in the air in the work environment, recommended by the specialized literature, have been overcome.

  12. Establishment of fungal entomopathogens Beauveria bassiana and Bionectria ochroleuca (Ascomycota: Hypocreales) as endophytes on artichoke Cynara scolymus.

    Science.gov (United States)

    Guesmi-Jouini, J; Garrido-Jurado, I; López-Díaz, C; Ben Halima-Kamel, M; Quesada-Moraga, E

    2014-06-01

    Entomopathogenic fungi (EPF) are commonly found in diverse habitats and are known to cause mycoses in many different taxa of arthropods. Various unexpected roles have been recently reported for fungal entomopathogens, including their presence as fungal endophytes, plant disease antagonists, rhizosphere colonizers and plant growth promoting fungi. In Tunisia, a wide range of indigenous EPF isolates from different species, such as Beauveria bassiana and Bionectria ochroleuca, were found to occur in the soil, and to be pathogenic against the artichoke aphid Capitophorus elaeagni (Hemiptera: Aphididae). Since endophytic fungi are recently regarded as plant-defending mutualists and their presence in internal plant tissue has been discussed as an adaptive protection against insects, we were interested on elucidating the possible endophytic behavior of B. bassiana and B. ochroleuca on artichoke, Cynara scolymus, after foliar spraying tehcnique. The leaf spray inoculation method was effective in introducing the inoculated fungi into the plant tissues and showed, then, an endophytic activity on artichoke even 10 days later. According S-N-K test, there was significant differences between the two fungal treatments, B. ochroleuca (84% a) and B. bassiana (78% a), and controls (0% b). Likewise, the inoculated entomopathogenic fungi were also isolated from new leaves even though with significant differences respectively between controls (0% c), B. bassiana (56% b) and B. ochroleuca (78% a). These results reveals significant new data on the interaction of inoculated fungi with artichoke plant as ecological roles that can be exploited for the protection of plants. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Arbuscular mycorrhizal fungi can decrease the uptake of uranium by subterranean clover grown at high levels of uranium in soil

    International Nuclear Information System (INIS)

    Rufyikiri, Gervais; Huysmans, Lien; Wannijn, Jean; Hees, May van; Leyval, Corinne; Jakobsen, Iver

    2004-01-01

    Subterranean clover inoculated or not with the arbuscular mycorrhizal (AM) fungus Glomus intraradices was grown on soil containing six levels of 238 U in the range 0-87 mg kg -1 . Increasing U concentration in soil enhanced the U concentration in roots and shoots of both mycorrhizal and nonmycorrhizal plants but had no significant effects on plant dry matter production or root AM colonization. Mycorrhizas increased the shoot dry matter and P concentration in roots and shoots, while in most cases, it decreased the Ca, Mg and K concentrations in plants. The AM fungus influenced U concentration in plants only in the treatment receiving 87 mg U kg -1 soil. In this case, U concentration in shoots of nonmycorrhizal plants was 1.7 times that of shoots of mycorrhizal plants. These results suggested that mycorrhizal fungi can limit U accumulation by plants exposed to high levels of U in soil. - Plant mycorrhization may decrease U concentration in shoots of plants grown at high level of U in soil

  14. An alternative anionic bio-sustainable anti-fungal agent: Investigation of its mode of action on the fungal cell membrane.

    Science.gov (United States)

    Stenbæk, Jonas; Löf, David; Falkman, Peter; Jensen, Bo; Cárdenas, Marité

    2017-07-01

    The potential of a lactylate (the sodium caproyl lactylate or C10 lactylate), a typical food grade emulsifier, as an anionic environmental friendly anti-fungal additive was tested in growth medium and formulated in a protective coating for exterior wood. Different laboratory growth tests on the blue stain fungus Aureobasidium pullulans were performed and its interactions on a model fungal cell membrane were studied. Promising short term anti-fungal effects in growth tests were observed, although significant but less dramatic effects took place in coating test on wood panels. Scanning electron microscope analysis shows clear differences in the amount of fungal slime on the mycelium of Aureobasidium pullulans when the fungus was exposed of C10 lactylate. This could indicate an effect on the pullulan and melanin production by the fungus. Moreover, the interaction studies on model fungal cell membranes show that C10 lactylate affects the phospholipid bilayer in a similar manner to other negative charged detergents. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Fungal infection knowledge gap in Ethiopia

    African Journals Online (AJOL)

    EPHA USER33

    receiving immunosuppressive therapy, and patients with chronic obstructive lung disease (1). Fungi also play a role in allergic fungal disease such as allergic broncho- pulmonary Aspergilosis (ABPA) and chronic or deep tissue infections. The laboratory diagnosis of fungal infection starts with a simple potassium hydroxide.

  16. Fungal endophytes: modifiers of plant disease.

    Science.gov (United States)

    Busby, Posy E; Ridout, Mary; Newcombe, George

    2016-04-01

    Many recent studies have demonstrated that non-pathogenic fungi within plant microbiomes, i.e., endophytes ("endo" = within, "phyte" = plant), can significantly modify the expression of host plant disease. The rapid pace of advancement in endophyte ecology warrants a pause to synthesize our understanding of endophyte disease modification and to discuss future research directions. We reviewed recent literature on fungal endophyte disease modification, and here report on several emergent themes: (1) Fungal endophyte effects on plant disease span the full spectrum from pathogen antagonism to pathogen facilitation, with pathogen antagonism most commonly reported. (2) Agricultural plant pathosystems are the focus of research on endophyte disease modification. (3) A taxonomically diverse group of fungal endophytes can influence plant disease severity. And (4) Fungal endophyte effects on plant disease severity are context-dependent. Our review highlights the importance of fungal endophytes for plant disease across a broad range of plant pathosystems, yet simultaneously reveals that complexity within plant microbiomes presents a significant challenge to disentangling the biotic environmental factors affecting plant disease severity. Manipulative studies integrating eco-evolutionary approaches with emerging molecular tools will be poised to elucidate the functional importance of endophytes in natural plant pathosystems that are fundamental to biodiversity and conservation.

  17. CT in colon cancer

    International Nuclear Information System (INIS)

    Fujita, Nobuyuki; Hasegawa, Takashi; Kubo, Kozo; Ogawa, Hajime; Sato, Yukihiko; Tomita, Masayoshi; Hanawa, Makoto; Matsuzawa, Tohru; Nishioka, Ken

    1990-01-01

    CT pictures from 59 lesions of advanced colon cancer including rectal cancer were reviewed to evaluate a role of CT in preoperative staging diagnosis. CT findings were recorded following general rules for clinical and pathological studies on cancer of colon rectum and anus, proposed by Japanese society for cancer of colon and rectum. Tumors were detected in 90% of advanced colon cancers. Sensitivity in local extension (S factor) was 58.0%. Sensitivity in lymphonode involvement (N factor) was 50.0%. Sensitivity in final staging diagnosis, dividing colon cancer into two groups below st II and above st III, was 63.3%. Further study should be necessitated to provide useful information for preoperative staging diagnosis of colon cancer. (author)

  18. Subseafloor basalts as fungal habitats

    Directory of Open Access Journals (Sweden)

    M. Ivarsson

    2012-09-01

    Full Text Available The oceanic crust is believed to host the largest potential habitat for microbial life on Earth, yet, still we lack substantial information about the abundance, diversity, and consequence of its biosphere. The last two decades have involved major research accomplishments within this field and a change in view of the ocean crust and its potential to harbour life. Here fossilised fungal colonies in subseafloor basalts are reported from three different seamounts in the Pacific Ocean. The fungal colonies consist of various characteristic structures interpreted as fungal hyphae, fruit bodies and spores. The fungal hyphae are well preserved with morphological characteristics such as hyphal walls, septa, thallic conidiogenesis, and hyphal tips with hyphal vesicles within. The fruit bodies consist of large (∼50–200 µm in diameter body-like structures with a defined outer membrane and an interior filled with calcite. The fruit bodies have at some stage been emptied of their contents of spores and filled by carbonate-forming fluids. A few fruit bodies not filled by calcite and with spores still within support this interpretation. Spore-like structures (ranging from a few µm to ∼20 µm in diameter are also observed outside of the fruit bodies and in some cases concentrated to openings in the membrane of the fruit bodies. The hyphae, fruit bodies and spores are all closely associated with a crust lining the vein walls that probably represent a mineralized biofilm. The results support a fungal presence in deep subseafloor basalts and indicate that such habitats were vital between ∼81 and 48 Ma.

  19. Burden of serious fungal infections in Guatemala.

    Science.gov (United States)

    Medina, N; Samayoa, B; Lau-Bonilla, D; Denning, D W; Herrera, R; Mercado, D; Guzmán, B; Pérez, J C; Arathoon, E

    2017-06-01

    Guatemala is a developing country in Central America with a high burden of HIV and endemic fungal infections; we attempted to estimate the burden of serious fungal infections for the country. A full literature search was done to identify epidemiology papers reporting fungal infections from Guatemala. We used specific populations at risk and fungal infection frequencies in the population to estimate national rates. The population of Guatemala in 2013 was 15.4 million; 40% were younger than 15 and 6.2% older than 60. There are an estimated 53,000 adults with HIV infection, in 2015, most presenting late. The estimated cases of opportunistic fungal infections were: 705 cases of disseminated histoplasmosis, 408 cases of cryptococcal meningitis, 816 cases of Pneumocystis pneumonia, 16,695 cases of oral candidiasis, and 4,505 cases of esophageal candidiasis. In the general population, an estimated 5,568 adult asthmatics have allergic bronchopulmonary aspergillosis (ABPA) based on a 2.42% prevalence of asthma and a 2.5% ABPA proportion. Amongst 2,452 pulmonary tuberculosis patients, we estimated a prevalence of 495 for chronic pulmonary aspergillosis in this group, and 1,484 for all conditions. An estimated 232,357 cases of recurrent vulvovaginal candidiasis is likely. Overall, 1.7% of the population are affected by these conditions. The true fungal infection burden in Guatemala is unknown. Tools and training for improved diagnosis are needed. Additional research on prevalence is needed to employ public health measures towards treatment and improving the reported data of fungal diseases.

  20. Alleviation of drought stress by mycorrhizas is related to increased root H2O2 efflux in trifoliate orange.

    Science.gov (United States)

    Huang, Yong-Ming; Zou, Ying-Ning; Wu, Qiang-Sheng

    2017-02-08

    The Non-invasive Micro-test Technique (NMT) is used to measure dynamic changes of specific ions/molecules non-invasively, but information about hydrogen peroxide (H 2 O 2 ) fluxes in different classes of roots by mycorrhiza is scarce in terms of NMT. Effects of Funneliformis mosseae on plant growth, H 2 O 2 , superoxide radical (O 2 ·- ), malondialdehyde (MDA) concentrations, and H 2 O 2 fluxes in the taproot (TR) and lateral roots (LRs) of trifoliate orange seedlings under well-watered (WW) and drought stress (DS) conditions were studied. DS strongly inhibited mycorrhizal colonization in the TR and LRs, whereas mycorrhizal inoculation significantly promoted plant growth and biomass production. H 2 O 2 , O 2 ·- , and MDA concentrations in leaves and roots were dramatically lower in mycorrhizal seedlings than in non-mycorrhizal seedlings under DS. Compared with non-mycorrhizal seedlings, mycorrhizal seedlings had relatively higher net root H 2 O 2 effluxes in the TR and LRs especially under WW, as well as significantly higher total root H 2 O 2 effluxes in the TR and LRs under WW and DS. Total root H 2 O 2 effluxes were significantly positively correlated with root colonization but negatively with root H 2 O 2 and MDA concentrations. It suggested that mycorrhizas induces more H 2 O 2 effluxes of the TR and LRs, thus, alleviating oxidative damage of DS in the host plant.

  1. Whole-cell fungal transformation of precursors into dyes

    Directory of Open Access Journals (Sweden)

    Jarosz-Wilkołazka Anna

    2010-07-01

    Full Text Available Abstract Background Chemical methods of producing dyes involve extreme temperatures and unsafe toxic compounds. Application of oxidizing enzymes obtained from fungal species, for example laccase, is an alternative to chemical synthesis of dyes. Laccase can be replaced by fungal biomass acting as a whole-cell biocatalyst with properties comparable to the isolated form of the enzyme. The application of the whole-cell system simplifies the transformation process and reduces the time required for its completion. In the present work, four fungal strains with a well-known ability to produce laccase were tested for oxidation of 17 phenolic and non-phenolic precursors into stable and non-toxic dyes. Results An agar-plate screening test of the organic precursors was carried out using four fungal strains: Trametes versicolor, Fomes fomentarius, Abortiporus biennis, and Cerrena unicolor. Out of 17 precursors, nine were transformed into coloured substances in the presence of actively growing fungal mycelium. The immobilized fungal biomass catalyzed the transformation of 1 mM benzene and naphthalene derivatives in liquid cultures yielding stable and non-toxic products with good dyeing properties. The type of fungal strain had a large influence on the absorbance of the coloured products obtained after 48-hour transformation of the selected precursors, and the most effective was Fomes fomentarius (FF25. Whole-cell transformation of AHBS (3-amino-4-hydroxybenzenesulfonic acid into a phenoxazinone dye was carried out in four different systems: in aqueous media comprising low amounts of carbon and nitrogen source, in buffer, and in distilled water. Conclusions This study demonstrated the ability of four fungal strains belonging to the ecological type of white rot fungi to transform precursors into dyes. This paper highlights the potential of fungal biomass for replacing isolated enzymes as a cheaper industrial-grade biocatalyst for the synthesis of dyes and other

  2. A novel class of fungal lipoxygenases

    NARCIS (Netherlands)

    Heshof, R.; Jylhä, S.; Haarmann, T.; Jørgensen, A.L.W.; Dalsgaard, T.K.; Graaff, de L.H.

    2014-01-01

    Lipoxygenases (LOXs) are well-studied enzymes in plants and mammals. However, fungal LOXs are less studied. In this study, we have compared fungal LOX protein sequences to all known characterized LOXs. For this, a script was written using Shell commands to extract sequences from the NCBI database

  3. Colonic locomotion

    NARCIS (Netherlands)

    Dodou, D.

    2006-01-01

    The most effective screening method for colonic cancer is colonoscopy. However, colonoscopy cannot be easily embraced by the population because of the related pain intensity. Robotic devices that pull themselves forward through the colon are a possible alternative. The main challenge for such

  4. Fungal symbiosis unearthed

    Science.gov (United States)

    Daniel Cullen

    2008-01-01

    Associations between plant roots and fungi are a feature of many terrestrial ecosystems. The genome sequence of a prominent fungal partner opens new avenues for studying such mycorrhizal interactions....

  5. Colonic diverticulosis is not a risk factor for colonic adenoma.

    Science.gov (United States)

    Hong, Wandong; Dong, Lemei; Zippi, Maddalena; Stock, Simon; Geng, Wujun; Xu, Chunfang; Zhou, Mengtao

    2018-01-01

    Colonic diverticulosis may represent a risk factor for colonic adenomas by virtue of the fact that evolving data suggest that these 2 conditions may share common risk factors such as Western dietary pattern and physical inactivity. This study aims to investigate the association between colonic diverticulosis and colonic adenomas in mainland China. We conducted a cross-sectional study on patients who underwent colonoscopic examination between October 2013 and December 2014 in a university hospital in mainland China. Age, gender, colonic adenomas, advanced adenomas, and distribution of diverticulosis were recorded during the procedures. Multivariate logistic regression and stratified analysis were used to evaluate the associations between the prevalence of diverticulosis and age, sex, and presence of colonic adenomas and advanced adenomas. A total of 17,456 subjects were enrolled. The prevalence of colonic diverticulosis and adenoma was 2.4% and 13.2%, respectively. With regard to distribution of diverticula, most (365/424, 86.1%) were right-sided. Multiple logistic regression analysis suggested that age and male gender were independent risk factors for adenoma and advanced adenoma. There was no relationship between diverticulosis or location of diverticulosis and presence of adenoma and advanced adenoma adjusting by age and gender. In a stratified analysis according to age and gender, similar results were also noted. There was no statistical relationship between diverticulosis and the risk of adenoma and advanced adenoma. Our results may not be generalized to the Western population due to the fact that left-sided diverticular cases were very small in our study.

  6. UNTANGLING THE FUNGAL NICHE: A TRAIT-BASED APPROACH

    Directory of Open Access Journals (Sweden)

    Thomas W Crowther

    2014-10-01

    Full Text Available Fungi are prominent components of most terrestrial ecosystems, both in terms of biomass and ecosystem functioning, but the hyper-diverse nature of most communities has obscured the search for unifying principles governing community organization. In particular, unlike plants and animals, observational studies provide little evidence for the existence of niche processes in structuring fungal communities at broad spatial scales. This limits our capacity to predict how communities, and their functioning, vary across landscapes. We outline how a shift in focus, from taxonomy towards functional traits, might prove to be valuable in the search for general patterns in fungal ecology. We build on theoretical advances in plant and animal ecology to provide an empirical framework for a trait-based approach in fungal community ecology. Drawing upon specific characteristics of the fungal system, we highlight the significance of drought stress and combat in structuring free-living fungal communities. We propose a conceptual model to formalize how trade-offs between stress-tolerance and combative dominance are likely to organize communities across environmental gradients. Given that the survival of a fungus in a given environment is contingent on its ability to tolerate antagonistic competitors, measuring variation in combat trait expression along environmental gradients provides a means of elucidating realized, from fundamental niche spaces. We conclude that, using a trait-based understanding of how niche processes structure fungal communities across time and space, we can ultimately link communities with ecosystem functioning. Our trait-based framework highlights fundamental uncertainties that require testing in the fungal system, given their potential to uncover general mechanisms in fungal ecology.

  7. Darkness: A Crucial Factor in Fungal Taxol Production

    Directory of Open Access Journals (Sweden)

    Sameh S. M. Soliman

    2018-03-01

    Full Text Available Fungal Taxol acquired lots of attention in the last few decades mainly because of the hope that fungi could be manipulated more easily than yew trees to scale up the production level of this valuable anticancer drug. Several researchers have studied diverse factors to enhance fungal Taxol production. However, up to date fungal Taxol production has never been enhanced to the commercial level. We have hypothesized that optimization of fungal Taxol production may require clear understanding of the fungal habitat in its original host plant. One major feature shared by all fungal endophytes is that they are located in the internal plant tissues where darkness is prominent; hence here the effect of light on fungal Taxol production was tested. Incubation of Taxol-producing endophytic SSM001 fungus in light prior to inoculation in Taxol production culture media showed dramatic loss of Taxol accumulation, significant reduction in Taxol-containing resin bodies and reduction in the expression of genes known to be involved in Taxol biosynthesis. The loss of Taxol production was accompanied by production of dark green pigments. Pigmentation is a fungal protection mechanism which is photoreceptor mediated and induced by light. Opsin, a known photoreceptor involved in light perception and pigment production, was identified in SSM001 by genome sequencing. SSM001 opsin gene expression was induced by white light. The results from this study indicated that the endophytic fungus SSM001 required the dark habitat of its host plant for Taxol production and hence this biosynthetic pathway shows a negative response to light.

  8. Colonic angiodysplasia

    International Nuclear Information System (INIS)

    Vallee, C.; Legmann, P.; Garnier, T.; Levesque, M.

    1984-01-01

    The main clinical, endoscopic and radiographic findings in thirty documented cases of colonic angiodysplasia or vacular ectasia are described. We emphasise the association with colonic diverticulosis and cardiovascular pathology, describe the histological changes, summarize the present physiopathological hypothesis, and consider the various therapeutic approaches. (orig.)

  9. A prognostic analysis of 895 cases of stage III colon cancer in different colon subsites.

    Science.gov (United States)

    Zhang, Yan; Ma, Junli; Zhang, Sai; Deng, Ganlu; Wu, Xiaoling; He, Jingxuan; Pei, Haiping; Shen, Hong; Zeng, Shan

    2015-09-01

    Stage III colon cancer is currently treated as an entity with a unified therapeutic principle. The aim of the retrospective study is to explore the clinicopathological characteristics and outcomes of site-specific stage III colon cancers and the influences of tumor location on prognosis. Eight hundred ninety-five patients with stage III colon cancer treated with radical operation and subsequent adjuvant chemotherapy (5-fluorouracil/oxaliplatin) were divided into seven groups according to colon segment (cecum, ascending colon, hepatic flexure, transverse colon, splenic flexure, descending colon, and sigmoid colon). Expression of excision repair cross-complementing group 1 (ERCC1) and thymidylate synthase (TS) was examined by immunohistochemistry. We assessed if differences exist in patient characteristics and clinic outcomes between the seven groups. There were significant differences in tumor differentiation (P Cancer (AJCC) tumor-node-metastasis (TNM) stage (P colon. Cox regression analyses identified that tumor location was an independent prognostic factor for RFS and OS. Stage III colon cancer located proximally carried a poorer survival than that located distally. Different efficacies of FOLFOX adjuvant chemotherapy may be an important factor affecting survival of site-specific stage III colon cancers.

  10. Colonic lipoma

    International Nuclear Information System (INIS)

    Siddiqui, M.S.; Khatri, A.R.; Quraishy, M.S.; Fatima, L.; Muzaffar, S.

    2003-01-01

    Lipoma of the colon is rare and may lead to intestinal obstruct. We have presented two cases of colonic lipoma. Both were elderly females, one presented with diarrhea and the other with sub-acute intestinal obstruction. After colonoscopy surgical removal was done. Histopathology revealed lipoma. (author)

  11. Fungal keratitis - improving diagnostics by confocal microscopy

    DEFF Research Database (Denmark)

    Nielsen, Esben; Heegaard, S; Prause, J U

    2013-01-01

    Purpose: Introducing a simple image grading system to support the interpretation of in vivo confocal microscopy (IVCM) images in filamentous fungal keratitis. Setting: Clinical and confocal studies took place at the Department of Ophthalmology, Aarhus University Hospital, Denmark. Histopathological...... analysis was performed at the Eye Pathology Institute, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark. Methods: A recent series of consecutive patients with filamentous fungal keratitis is presented to demonstrate the results from in-house IVCM. Based upon our experience...... with IVCM and previously published images, we composed a grading system for interpreting IVCM images of filamentous fungal keratitis. Results: A recent case series of filamentous fungal keratitis from 2011 to 2012 was examined. There were 3 male and 3 female patients. Mean age was 44.5 years (range 12...

  12. Anti-inflammatory Effects of Fungal Metabolites in Mouse Intestine as Revealed by In vitro Models

    Directory of Open Access Journals (Sweden)

    Dominik Schreiber

    2017-08-01

    Full Text Available Inflammatory bowel diseases (IBD, which include Crohn's disease and ulcerative colitis, are chronic inflammatory disorders that can affect the whole gastrointestinal tract or the colonic mucosal layer. Current therapies aiming to suppress the exaggerated immune response in IBD largely rely on compounds with non-satisfying effects or side-effects. Therefore, new therapeutical options are needed. In the present study, we investigated the anti-inflammatory effects of the fungal metabolites, galiellalactone, and dehydrocurvularin in both an in vitro intestinal inflammation model, as well as in isolated myenteric plexus and enterocyte cells. Administration of a pro-inflammatory cytokine mix through the mesenteric artery of intestinal segments caused an up-regulation of inflammatory marker genes. Treatment of the murine intestinal segments with galiellalactone or dehydrocurvularin by application through the mesenteric artery significantly prevented the expression of pro-inflammatory marker genes on the mRNA and the protein level. Comparable to the results in the perfused intestine model, treatment of primary enteric nervous system (ENS cells from the murine intestine with the fungal compounds reduced expression of cytokines such as IL-6, TNF-α, IL-1β, and inflammatory enzymes such as COX-2 and iNOS on mRNA and protein levels. Similar anti-inflammatory effects of the fungal metabolites were observed in the human colorectal adenocarcinoma cell line DLD-1 after stimulation with IFN-γ (10 ng/ml, TNF-α (10 ng/ml, and IL-1β (5 ng/ml. Our results show that the mesenterially perfused intestine model provides a reliable tool for the screening of new therapeutics with limited amounts of test compounds. Furthermore, we could characterize the anti-inflammatory effects of two novel active compounds, galiellalactone, and dehydrocurvularin which are interesting candidates for studies with chronic animal models of IBD.

  13. Responses of fungal root colonization, plant cover and leaf nutrients to long-term exposure to elevated atmospheric CO2 and warming in a subarctic birch forest understory

    DEFF Research Database (Denmark)

    Olsrud, Maria; Carlsson, Bengt Å.; Svensson, Brita M.

    2010-01-01

    Responses of the mycorrhizal fungal community in terrestrial ecosystems to global change factors are not well understood. However, virtually all land plants form symbiotic associations with mycorrhizal fungi, with approximately 20% of the plants' net primary production transported down...... by mycorrhizal and other root-associated fungi to global change factors of all the fungal types studied could have broad implications for plant community structure and biogeochemistry of subarctic ecosystems....

  14. Regulation of Plant Growth, Photosynthesis, Antioxidation and Osmosis by an Arbuscular Mycorrhizal Fungus in Watermelon Seedlings under Well-Watered and Drought Conditions

    Science.gov (United States)

    Mo, Yanling; Wang, Yongqi; Yang, Ruiping; Zheng, Junxian; Liu, Changming; Li, Hao; Ma, Jianxiang; Zhang, Yong; Wei, Chunhua; Zhang, Xian

    2016-01-01

    Drought stress has become an increasingly serious environmental issue that influences the growth and production of watermelon. Previous studies found that arbuscular mycorrhizal (AM) colonization improved the fruit yield and water use efficiency (WUE) of watermelon grown under water stress; however, the exact mechanisms remain unknown. In this study, the effects of Glomus versiforme symbiosis on the growth, physio-biochemical attributes, and stress-responsive gene expressions of watermelon seedlings grown under well-watered and drought conditions were investigated. The results showed that AM colonization did not significantly influence the shoot growth of watermelon seedlings under well-watered conditions but did promote root development irrespective of water treatment. Drought stress decreased the leaf relative water content and chlorophyll concentration, but to a lesser extent in the AM plants. Compared with the non-mycorrhizal seedlings, mycorrhizal plants had higher non-photochemical quenching values, which reduced the chloroplast ultrastructural damage in the mesophyll cells and thus maintained higher photosynthetic efficiency. Moreover, AM inoculation led to significant enhancements in the enzyme activities and gene expressions of superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, and monodehydroascorbate reductase in watermelon leaves upon drought imposition. Consequently, AM plants exhibited lower accumulation of MDA, H2O2 and O2− compared with non-mycorrhizal plants. Under drought stress, the soluble sugar and proline contents were significantly increased, and further enhancements were observed by pre-treating the drought-stressed plants with AM. Taken together, our findings indicate that mycorrhizal colonization enhances watermelon drought tolerance through a stronger root system, greater protection of photosynthetic apparatus, a more efficient antioxidant system and improved osmoregulation. This study contributes to advances

  15. Characterization of ApB73, a virulence factor important for colonization of Zea mays by the smut Ustilago maydis.

    Science.gov (United States)

    Stirnberg, Alexandra; Djamei, Armin

    2016-12-01

    The biotrophic fungus Ustilago maydis, the causal agent of corn smut disease, uses numerous small secreted effector proteins to suppress plant defence responses and reshape the host metabolism. However, the role of specific effectors remains poorly understood. Here, we describe the identification of ApB73 (Apathogenic in B73), an as yet uncharacterized protein essential for the successful colonization of maize by U. maydis. We show that apB73 is transcriptionally induced during the biotrophic stages of the fungal life cycle. The deletion of the apB73 gene results in cultivar-specific loss of gall formation in the host. The ApB73 protein is conserved among closely related smut fungi. However, using virulence assays, we show that only the orthologue of the maize-infecting head smut Sporisorium reilianum can complement the mutant phenotype of U. maydis. Although microscopy shows that ApB73 is secreted into the biotrophic interface, it seems to remain associated with fungal cell wall components or the fungal plasma membrane. Taken together, the results show that ApB73 is a conserved and important virulence factor of U. maydis that localizes to the interface between the pathogen and its host Zea mays. © 2016 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  16. Stem Cell Transplant Patients and Fungal Infections

    Science.gov (United States)

    ... Foodborne, Waterborne, and Environmental Diseases Mycotic Diseases Branch Stem Cell Transplant Patients and Fungal Infections Recommend on Facebook ... Mold . Top of Page Preventing fungal infections in stem cell transplant patients Fungi are difficult to avoid because ...

  17. Delftia tsuruhatensis WGR-UOM-BT1, a novel rhizobacterium with PGPR properties from Rauwolfia serpentina (L.) Benth. ex Kurz also suppresses fungal phytopathogens by producing a new antibiotic-AMTM.

    Science.gov (United States)

    Prasannakumar, S P; Gowtham, H G; Hariprasad, P; Shivaprasad, K; Niranjana, S R

    2015-11-01

    The bacterial strain designated as WGR-UOM-BT1 isolated from rhizosphere of Rauwolfia serpentina exhibited broad-spectrum antifungal activity and also improved early plant growth. Based on morphological, biochemical and 16S rRNA gene sequence analyses, the strain BT1 was identified as Delftia tsuruhatensis (KF727978). Under in vitro conditions, the strain BT1 suppressed the growth of wide range of fungal phytopathogens. Purified antimicrobial metabolite from the strain BT1 was identified as nitrogen-containing heterocyclic compound, 'amino(5-(4-methoxyphenyl)-2-methyl-2-(thiophen-2-yl)-2,3-dihydrofuran-3-yl)methanol' (AMTM), with molecular mass of 340•40 and molecular formula of C17 H19 NO3 S. The strain BT1 was positive for rhizosphere colonization (tomato), IAA production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity and phosphate solubilization. Under laboratory and greenhouse conditions, the strain BT1 promoted plant growth and suppressed foliar and root fungal pathogens of tomato. Therefore, antimicrobial and disease protection properties of strain BT1 could serve as an effective biological control candidate against devastating fungal pathogens of vegetable plants. Besides, the production of IAA, P solubilization and ACC deaminase activity enhance its potential as a biofertilizer and may stabilize the plant performance under fluctuating environmental conditions. In this study, we reported that Delftia tsuruhatensis WGR-UOM-BT1 strain has the plant growth promotion activities such as rhizosphere colonization (tomato), IAA production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity and phosphate solubilization. This bacterial strain was found producing an antimicrobial nitrogen-containing heterocyclic compound identified as 'amino(5-(4-methoxyphenyl)-2-methyl-2-(thiophen-2-yl)-2,3-dihydrofuran-3-yl)methanol' [C17 H19 NO3 S] (AMTM), which is new to the bacterial world. © 2015 The Society for Applied Microbiology.

  18. Management of Colonic Volvulus

    Science.gov (United States)

    Gingold, Daniel; Murrell, Zuri

    2012-01-01

    Colonic volvulus is a common cause of large bowel obstruction worldwide. It can affect all parts of the colon, but most commonly occurs in the sigmoid and cecal areas. This disease has been described for centuries, and was studied by Hippocrates himself. Currently, colonic volvulus is the third most common cause of large bowel obstruction worldwide, and is responsible for ∼15% of large bowel obstructions in the United States. This article will discuss the history of colonic volvulus, and the predisposing factors that lead to this disease. Moreover, the epidemiology and diagnosis of each type of colonic volvulus, along with the various treatment options will be reviewed. PMID:24294126

  19. Ocular fungal flora from healthy horses in Iran.

    Science.gov (United States)

    Khosravi, A R; Nikaein, D; Sharifzadeh, A; Gharagozlou, F

    2014-03-01

    This study was carried out in order to isolate and identify the normal conjunctival fungal flora from Caspian miniature, Thoroughbred, Turkmen and Persian Arab breeds in Tehran, Iran. A total of seventy-two adult healthy horses were studied. Ocular samples were collected from right and left eyes by using sterile cotton swabs; samples were cultured on Sabouraud dextrose agar and incubated at 30°C for 7-10 days. Molds and yeasts were identified using macro and micro-morphological and physiological characteristics. Number of fungal colonies per eye varied between 0 and 123 colony forming units (CFUs). The most predominant fungal isolates were Aspergillus (19.9%), Rhizopus (15.9%) and Penicillium (15.1%). No significant differences were observed between types of eye fungal floras in different breeds. Caspian miniature horses had significantly the highest number of fungal isolates in compare with other breeds (P<0.001), however no significant difference was observed among other breeds under study. The fungal isolates were almost the same as with studies performed in other countries, although differences in species isolated could be related to geographic and climate difference. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Characterization of Bacterial and Fungal Community Dynamics by High-Throughput Sequencing (HTS Metabarcoding during Flax Dew-Retting

    Directory of Open Access Journals (Sweden)

    Christophe Djemiel

    2017-10-01

    Full Text Available Flax dew-retting is a key step in the industrial extraction of fibers from flax stems and is dependent upon the production of a battery of hydrolytic enzymes produced by micro-organisms during this process. To explore the diversity and dynamics of bacterial and fungal communities involved in this process we applied a high-throughput sequencing (HTS DNA metabarcoding approach (16S rRNA/ITS region, Illumina Miseq on plant and soil samples obtained over a period of 7 weeks in July and August 2014. Twenty-three bacterial and six fungal phyla were identified in soil samples and 11 bacterial and four fungal phyla in plant samples. Dominant phyla were Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes (bacteria and Ascomycota, Basidiomycota, and Zygomycota (fungi all of which have been previously associated with flax dew-retting except for Bacteroidetes and Basidiomycota that were identified for the first time. Rare phyla also identified for the first time in this process included Acidobacteria, CKC4, Chlorobi, Fibrobacteres, Gemmatimonadetes, Nitrospirae and TM6 (bacteria, and Chytridiomycota (fungi. No differences in microbial communities and colonization dynamics were observed between early and standard flax harvests. In contrast, the common agricultural practice of swath turning affects both bacterial and fungal community membership and structure in straw samples and may contribute to a more uniform retting. Prediction of community function using PICRUSt indicated the presence of a large collection of potential bacterial enzymes capable of hydrolyzing backbones and side-chains of cell wall polysaccharides. Assignment of functional guild (functional group using FUNGuild software highlighted a change from parasitic to saprophytic trophic modes in fungi during retting. This work provides the first exhaustive description of the microbial communities involved in flax dew-retting and will provide a valuable benchmark in future studies aiming

  1. CT findings of colonic diverticulitis

    International Nuclear Information System (INIS)

    Sasaki, Shigeru; Ohba, Satoru; Mizutani, Masaru

    1998-01-01

    Although colonic diverticulitis has no indication for operation, but in some mistaken cases were operated with a diagnosis of acute appendicitis. We evaluated the CT findings of colonic diverticulitis about 19 cases and of asymptomatic colonic diverticula about 15 cases retrospectively. Diagnosis was confirmed of barium enema and operation. CT are complementary methods of examination that can delineated the range of thickening of the colon and the extension of inflammatory changes around the colon. We also believe that CT findings of colonic diverticulitis are useful for differentiating from a diagnosis of appendicitis. (author)

  2. Molecular Diagnostics for Soilborne Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    E.J. Paplomatas

    2004-08-01

    Full Text Available Several classical approaches have been developed to detect and identify soil fungal inhabitants through the years. Selective media have been devised to exclude the large number of soil organisms and allow growth of target fungi. However the advent of molecular biology has offered a number of revolutionary insights into the detection and enumeration of soilborne fungal pathogens and also has started to provide information on the identification of unknown species from DNA sequences. This review paper focuses on the application of various molecular techniques in the detection, identification, characterization and quantification of soilborne fungal plant pathogens. This is based on information from the literature and is combined with personal research findings of the author.

  3. From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism.

    Science.gov (United States)

    Zouari, Inès; Salvioli, Alessandra; Chialva, Matteo; Novero, Mara; Miozzi, Laura; Tenore, Gian Carlo; Bagnaresi, Paolo; Bonfante, Paola

    2014-03-21

    Tomato (Solanum lycopersicum) establishes a beneficial symbiosis with arbuscular mycorrhizal (AM) fungi. The formation of the mycorrhizal association in the roots leads to plant-wide modulation of gene expression. To understand the systemic effect of the fungal symbiosis on the tomato fruit, we used RNA-Seq to perform global transcriptome profiling on Moneymaker tomato fruits at the turning ripening stage. Fruits were collected at 55 days after flowering, from plants colonized with Funneliformis mosseae and from control plants, which were fertilized to avoid responses related to nutrient deficiency. Transcriptome analysis identified 712 genes that are differentially expressed in fruits from mycorrhizal and control plants. Gene Ontology (GO) enrichment analysis of these genes showed 81 overrepresented functional GO classes. Up-regulated GO classes include photosynthesis, stress response, transport, amino acid synthesis and carbohydrate metabolism functions, suggesting a general impact of fungal symbiosis on primary metabolisms and, particularly, on mineral nutrition. Down-regulated GO classes include cell wall, metabolism and ethylene response pathways. Quantitative RT-PCR validated the RNA-Seq results for 12 genes out of 14 when tested at three fruit ripening stages, mature green, breaker and turning. Quantification of fruit nutraceutical and mineral contents produced values consistent with the expression changes observed by RNA-Seq analysis. This RNA-Seq profiling produced a novel data set that explores the intersection of mycorrhization and fruit development. We found that the fruits of mycorrhizal plants show two transcriptomic "signatures": genes characteristic of a climacteric fleshy fruit, and genes characteristic of mycorrhizal status, like phosphate and sulphate transporters. Moreover, mycorrhizal plants under low nutrient conditions produce fruits with a nutrient content similar to those from non-mycorrhizal plants under high nutrient conditions

  4. Expression of cytokines in aqueous humor from fungal keratitis patients.

    Science.gov (United States)

    Zhang, Yingnan; Liang, Qingfeng; Liu, Yang; Pan, Zhiqiang; Baudouin, Christophe; Labbé, Antoine; Lu, Qingxian

    2018-04-19

    Although a series of reports on corneal fungal infection have been published, studies on pathogenic mechanisms and inflammation-associated cytokines remain limited. In this study, aqueous humor samples from fungal keratitis patients were collected to examine cytokine patterns and cellular profile for the pathogenesis of fungal keratitis. The aqueous humor samples were collected from ten patients with advanced stage fungal keratitis. Eight aqueous humor samples from patients with keratoconus or corneal dystrophy were taken as control. Approximately 100 μl to 300 μl of aqueous humor in each case were obtained for examination. The aqueous humor samples were centrifuged and the cells were stained and examined under optical microscope. Bacterial and fungal cultures were performed on the aqueous humor and corneal buttons of all patients. Cytokines related to inflammation including IL-1β, IL-6, IL-8, IL-10, TNF-α, and IFN-γ were examined using multiplex bead-based Luminex liquid protein array systems. Fungus infection was confirmed in these ten patients by smear stains and/or fungal cultures. Bacterial and fungal cultures revealed negative results in all aqueous humor specimens. Polymorphonuclear leukocytes were the predominant infiltrating cells in the aqueous humor of fungal keratitis. At the advanced stages of fungal keratitis, the levels of IL-1β, IL-6, IL-8, and IFN-γ in the aqueous humor were significantly increased when compared with control (phumor was associated with fungal keratitis.

  5. Fungal Skin Infections

    Science.gov (United States)

    ... Abbreviations Weights & Measures ENGLISH View Professional English Deutsch Japanese Espaniol Find information on medical topics, symptoms, drugs, ... touching the infected area. Diagnosis Skin scrapings or cultures Doctors may suspect a fungal infection when they ...

  6. Study of Malformin C, a Fungal Source Cyclic Pentapeptide, as an Anti-Cancer Drug.

    Directory of Open Access Journals (Sweden)

    Jing Wang

    Full Text Available Malformin C, a fungal cyclic pentapeptide, has been claimed to have anti-cancer potential, but no in vivo study was available to substantiate this property. Therefore, we conducted in vitro and in vivo experiments to investigate its anti-cancer effects and toxicity. Our studies showed Malformin C inhibited Colon 38 and HCT 116 cell growth dose-dependently with an IC50 of 0.27±0.07μM and 0.18±0.023μM respectively. This inhibition was explicated by Malformin C's effect on G2/M arrest. Moreover, we observed up-regulated expression of phospho-histone H2A.X, p53, cleaved CASPASE 3 and LC3 after Malformin C treatment, while the apoptosis assay indicated an increased population of necrotic and late apoptotic cells. In vivo, the pathological study exhibited the acute toxicity of Malformin C at lethal dosage in BDF1 mice might be caused by an acute yet subtle inflammatory response, consistent with elevated IL-6 in the plasma cytokine assay. Further anti-tumor and toxicity experiments proved that 0.3mg/kg injected weekly was the best therapeutic dosage of Malformin C in Colon 38 xenografted BDF1 mice, whereas 0.1mg/kg every other day showed no effect with higher resistance, and 0.9mg/kg per week either led to fatal toxicity in seven-week old mice or displayed no advantage over 0.3mg/kg group in nine-week old mice. Overall, we conclude that Malformin C arrests Colon 38 cells in G2/M phase and induces multiple forms of cell death through necrosis, apoptosis and autophagy. Malformin C has potent cell growth inhibition activity, but the therapeutic index is too low to be an anti-cancer drug.

  7. The Interface between Fungal Biofilms and Innate Immunity

    Directory of Open Access Journals (Sweden)

    John F. Kernien

    2018-01-01

    Full Text Available Fungal biofilms are communities of adherent cells surrounded by an extracellular matrix. These biofilms are commonly found during infection caused by a variety of fungal pathogens. Clinically, biofilm infections can be extremely difficult to eradicate due to their resistance to antifungals and host defenses. Biofilm formation can protect fungal pathogens from many aspects of the innate immune system, including killing by neutrophils and monocytes. Altered immune recognition during this phase of growth is also evident by changes in the cytokine profiles of monocytes and macrophages exposed to biofilm. In this manuscript, we review the host response to fungal biofilms, focusing on how these structures are recognized by the innate immune system. Biofilms formed by Candida, Aspergillus, and Cryptococcus have received the most attention and are highlighted. We describe common themes involved in the resilience of fungal biofilms to host immunity and give examples of biofilm defenses that are pathogen-specific.

  8. Colon Trauma: Evidence-Based Practices.

    Science.gov (United States)

    Yamamoto, Ryo; Logue, Alicia J; Muir, Mark T

    2018-01-01

    Colon injury is not uncommon and occurs in about a half of patients with penetrating hollow viscus injuries. Despite major advances in the operative management of penetrating colon wounds, there remains discussion regarding the appropriate treatment of destructive colon injuries, with a significant amount of scientific evidence supporting segmental resection with primary anastomosis in most patients without comorbidities or large transfusion requirement. Although literature is sparse concerning the management of blunt colon injuries, some studies have shown operative decision based on an algorithm originally defined for penetrating wounds should be considered in blunt colon injuries. The optimal management of colonic injuries in patients requiring damage control surgery (DCS) also remains controversial. Studies have recently reported that there is no increased risk compared with patients treated without DCS if fascial closure is completed on the first reoperation, or that a management algorithm for penetrating colon wounds is probably efficacious for colon injuries in the setting of DCS as well.

  9. Colonic Diverticulitis in the Elderly

    Directory of Open Access Journals (Sweden)

    Chien-Kuo Liu

    2009-03-01

    Full Text Available Diverticular disease of the colon is a disease that mainly affects the elderly and presents in 50–70% of those aged 80 years or older. The most common complication is colonic diverticulitis. Eighty percent of patients who present with colonic diverticulitis are aged 50 years and older. Diagnosis and treatment of colonic diverticulitis in the elderly is more difficult and complicated owing to more comorbid conditions. Computed tomography is recommended for diagnosis when colonic diverticulitis is suspected. Most patients admitted with acute colonic diverticulitis respond to conservative treatment, but 15–30% of patients require surgery. Because surgery for acute colonic diverticulitis carries significant rates of morbidity and mortality, conservative treatment is recommended in the elderly. Conservative treatment of colonic diverticulitis with antibiotics, bowel rest, possibly including parenteral alimentation, is usually applied for 1–2 weeks. In the absence of a response to conservative treatment, frequent recurrence or complications (abscesses, fistulas, bowel obstructions, and free perforations, surgery is indicated.

  10. High turnover of fungal hyphae in incubation experiments.

    Science.gov (United States)

    de Vries, Franciska T; Bååth, Erland; Kuyper, Thom W; Bloem, Jaap

    2009-03-01

    Soil biological studies are often conducted on sieved soils without the presence of plants. However, soil fungi build delicate mycelial networks, often symbiotically associated with plant roots (mycorrhizal fungi). We hypothesized that as a result of sieving and incubating without plants, the total fungal biomass decreases. To test this, we conducted three incubation experiments. We expected total and arbuscular mycorrhizal (AM) fungal biomass to be higher in less fertilized soils than in fertilized soils, and thus to decrease more during incubation. Indeed, we found that fungal biomass decreased rapidly in the less fertilized soils. A shift towards thicker hyphae occurred, and the fraction of septate hyphae increased. However, analyses of phospholipid fatty acids (PLFAs) and neutral lipid fatty acids could not clarify which fungal groups were decreasing. We propose that in our soils, there was a fraction of fungal biomass that was sensitive to fertilization and disturbance (sieving, followed by incubation without plants) with a very high turnover (possibly composed of fine hyphae of AM and saprotrophic fungi), and a fraction that was much less vulnerable with a low turnover (composed of saprotrophic fungi and runner hyphae of AMF). Furthermore, PLFAs might not be as sensitive in detecting changes in fungal biomass as previously thought.

  11. Sensitization to fungal allergens: Resolved and unresolved issues

    Directory of Open Access Journals (Sweden)

    Yuma Fukutomi

    2015-10-01

    Despite its importance in the management of allergic diseases, precise recognition of species-specific IgE sensitization to fungal allergens is often challenging because the majority of fungal extracts exhibit broad cross-reactivity with taxonomically unrelated fungi. Recent progress in gene technology has contributed to the identification of specific and cross-reactive allergen components from different fungal sources. However, data demonstrating the clinical relevance of IgE reactivity to these allergen components are still insufficient.

  12. Generation of an inducible colon-specific Cre enzyme mouse line for colon cancer research.

    Science.gov (United States)

    Tetteh, Paul W; Kretzschmar, Kai; Begthel, Harry; van den Born, Maaike; Korving, Jeroen; Morsink, Folkert; Farin, Henner; van Es, Johan H; Offerhaus, G Johan A; Clevers, Hans

    2016-10-18

    Current mouse models for colorectal cancer often differ significantly from human colon cancer, being largely restricted to the small intestine. Here, we aim to develop a colon-specific inducible mouse model that can faithfully recapitulate human colon cancer initiation and progression. Carbonic anhydrase I (Car1) is a gene expressed uniquely in colonic epithelial cells. We generated a colon-specific inducible Car1 CreER knock-in (KI) mouse with broad Cre activity in epithelial cells of the proximal colon and cecum. Deletion of the tumor suppressor gene Apc using the Car1 CreER KI caused tumor formation in the cecum but did not yield adenomas in the proximal colon. Mutation of both Apc and Kras yielded microadenomas in both the cecum and the proximal colon, which progressed to macroadenomas with significant morbidity. Aggressive carcinomas with some invasion into lymph nodes developed upon combined induction of oncogenic mutations of Apc, Kras, p53, and Smad4 Importantly, no adenomas were observed in the small intestine. Additionally, we observed tumors from differentiated Car1-expressing cells with Apc/Kras mutations, suggesting that a top-down model of intestinal tumorigenesis can occur with multiple mutations. Our results establish the Car1 CreER KI as a valuable mouse model to study colon-specific tumorigenesis and metastasis as well as cancer-cell-of-origin questions.

  13. Structure and biosynthesis of fungal alpha-glucans

    NARCIS (Netherlands)

    Grün, Christian Hugo

    2003-01-01

    The fungal cell wall is unique among eukaryotes and therefore it forms an ideal target for the development of novel antifungal drugs. Fungal cell morphology and integrity depend on a cell-surrounding wall, which is composed of glycoproteins and polysaccharides. Disrupting enzymes that are involved

  14. Fungal endophytes characterization from four species of Diplazium Swartz

    Science.gov (United States)

    Affina-Eliya, A. A.; Noraini, T.; Nazlina, I.; Ruzi, A. R.

    2014-09-01

    Four species on genus Diplazium namely Diplazium tomentosum, D. sorzogonense, D. asperum and D. accedens of Peninsular Malaysia were studied for presence of fungal endophyte. The objective of this study is to characterize fungal endophytes in the rhizome of four Diplazium species. The rhizome was surface sterilized and incubated to isolate fungal endophytes. Characterization of the colonies was performed by macroscopic morphological, microscopic identification, types of hyphae and mycelium, and spore structure. For isolation that produces spores, the structure of conidiophores and conidia were identified. From this study, four fungal have been isolated and determined as Aspergillus sp. (isolates AE 1), Aspergillus fumigatus (isolates AE 2), Aspergillus versicolor (isolates AE 3) and Verticillium sp. (isolates AE 4). The fungal isolates from this study were classified from the same family Moniliaceae.

  15. Adaptations in bacterial and fungal communities to termite fungiculture

    DEFF Research Database (Denmark)

    Otani, Saria

    in the bacterial and fungal communities. To do this, we used pyrosequencing, fluorescent in situ hybridisation, light and confocal microscopy, enzymatic assays, chemical extractions, in vitro assays, and feeding experiments in this thesis work to elucidate these predicted changes in fungus-growing termite...... in the proportion of fungal material provided to the cockroaches. However, gut microbiotas remained distinct from those of termites after Termitomyces-feeding, indicating that a fungal diet can play a role in structuring gut community composition, but at the same time exemplifies how original community compositions......, and possibly gut microenvironment constrain the magnitude of change. This thesis also characterises the fungus comb fungal communities (mycobiotas) in fungusgrowing termites, and shows that non-Termitomyces fungi were essentially absent in combs, and that Termitomyces fungal crops are maintained...

  16. CT scan findings of fungal pneumonia

    International Nuclear Information System (INIS)

    Heckmann, M.; Uder, M.; Bautz, W.; Heinrich, M.

    2008-01-01

    The importance of fungal infection of the lung in immunocompromised patients has increased substantially during the last decades. Numerically the most patients are those with neutropenia, e.g. patients with malignancies or solid organ and stem cell transplantation, chemotherapy, corticosteroid use and HIV infection. Although fungal infections can occur in immunocompetent patients, their frequency in this population is rare. The clinical symptoms such as fever accompanied with non-productive cough are unspecific. In some patients progression to hypoxemia and dyspnea may occur rapidly. In spite of improved antifungal therapy morbidity and mortality of these infections are still high. Therefore an early and non-invasive diagnosis is very important. That is why CT and even better High-Resolution-CT (HR-CT) is a very important modality in examining immunocompromised patients with a probability of fungal infection. CT is everywhere available and, as a non-invasive method, able to give the relevant diagnose efficiently. This paper should give an overview about the radiologic findings and possible differential diagnosis of diverse pulmonary fungal infections in CT. Pneumonias caused by Aspergillus, Cryptococcus, Candida, Histoplasma, Mucor and Geotrichum capitatum are illustrated. (orig.)

  17. 50-plus years of fungal viruses

    Energy Technology Data Exchange (ETDEWEB)

    Ghabrial, Said A., E-mail: saghab00@email.uky.edu [Plant Pathology Department, University of Kentucky, Lexington, KY (United States); Castón, José R. [Department of Structure of Macromolecules, Centro Nacional Biotecnologıa/CSIC, Campus de Cantoblanco, Madrid (Spain); Jiang, Daohong [State Key Lab of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province (China); Nibert, Max L. [Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA (United States); Suzuki, Nobuhiro [Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama (Japan)

    2015-05-15

    Mycoviruses are widespread in all major taxa of fungi. They are transmitted intracellularly during cell division, sporogenesis, and/or cell-to-cell fusion (hyphal anastomosis), and thus their life cycles generally lack an extracellular phase. Their natural host ranges are limited to individuals within the same or closely related vegetative compatibility groups, although recent advances have established expanded experimental host ranges for some mycoviruses. Most known mycoviruses have dsRNA genomes packaged in isometric particles, but an increasing number of positive- or negative-strand ssRNA and ssDNA viruses have been isolated and characterized. Although many mycoviruses do not have marked effects on their hosts, those that reduce the virulence of their phytopathogenic fungal hosts are of considerable interest for development of novel biocontrol strategies. Mycoviruses that infect endophytic fungi and those that encode killer toxins are also of special interest. Structural analyses of mycoviruses have promoted better understanding of virus assembly, function, and evolution. - Highlights: • Historical perspective of fungal virus research. • Description, classification and diversity of fungal virus families. • Structural features of fungal virus particles. • Hypovirulence and exploitation of mycoviruses in biological control of plant pathogenic fungi.

  18. Transverse loop colostomy and colonic motility.

    Science.gov (United States)

    Pucciani, F; Ringressi, M N; Maltinti, G; Bechi, P

    2014-11-01

    The motility of the defunctionalized colon, distal to transverse loop colostomy, has never been studied "in vivo." The aim of our study was to evaluate the influence of transverse loop colostomy on colonic motility. Thirteen patients were examined before stoma closure by means of clinical evaluation and colonic manometry; we studied both the right and distal colon in both fasting and fed patients in order to detect motor activity. Quantitative and qualitative manometric analyses showed that the diverted colon had motor activity even if no regular colonic motor pattern was observed. The spreading of aboral propagated contractions (PCs) was sometimes recorded from the right colon to the distal colon. The response of the proximal and distal colon to a standard meal, when compared to fasting values, increased more than 40 and 35 %, respectively. Stool and gas ejections from the colostomy were never related to a particular type of colonic motility: Motor quiescence such as PCs was chaotically related to stool escape. In conclusion, motility of the defunctionalized colon is preserved in patients with transverse loop colostomy.

  19. Phylogenetic structure of arbuscular mycorrhizal fungal communities along an elevation gradient.

    Science.gov (United States)

    Egan, Cameron P; Callaway, Ragan M; Hart, Miranda M; Pither, Jason; Klironomos, John

    2017-04-01

    Despite the importance of arbuscular mycorrhizal (AM) fungi within terrestrial ecosystems, we know little about how natural AM fungal communities are structured. To date, the majority of studies examining AM fungal community diversity have focused on single habitats with similar environmental conditions, with relatively few studies having assessed the diversity of AM fungi over large-scale environmental gradients. In this study, we characterized AM fungal communities in the soil along a high-elevation gradient in the North American Rocky Mountains. We focused on phylogenetic patterns of AM fungal communities to gain insight into how AM fungal communities are naturally assembled. We found that alpine AM fungal communities had lower phylogenetic diversity relative to lower elevation communities, as well as being more heterogeneous in composition than either treeline or subalpine communities. AM fungal communities were phylogenetically clustered at all elevations sampled, suggesting that environmental filtering, either selection by host plants or fungal niches, is the primary ecological process structuring communities along the gradient.

  20. Plasma membrane lipids and their role in fungal virulence.

    Science.gov (United States)

    Rella, Antonella; Farnoud, Amir M; Del Poeta, Maurizio

    2016-01-01

    There has been considerable evidence in recent years suggesting that plasma membrane lipids are important regulators of fungal pathogenicity. Various glycolipids have been shown to impart virulent properties in several fungal species, while others have been shown to play a role in host defense. In addition to their role as virulence factors, lipids also contribute to other virulence mechanisms such as drug resistance, biofilm formation, and release of extracellular vesicles. In addition, lipids also affect the mechanical properties of the plasma membrane through the formation of packed microdomains composed mainly of sphingolipids and sterols. Changes in the composition of lipid microdomains have been shown to disrupt the localization of virulence factors and affect fungal pathogenicity. This review gathers evidence on the various roles of plasma membrane lipids in fungal virulence and how lipids might contribute to the different processes that occur during infection and treatment. Insight into the role of lipids in fungal virulence can lead to an improved understanding of the process of fungal pathogenesis and the development of new lipid-mediated therapeutic strategies. Published by Elsevier Ltd.

  1. Percutaneous drainage of colonic diverticular abscess: is colon resection necessary?

    Science.gov (United States)

    Gaertner, Wolfgang B; Willis, David J; Madoff, Robert D; Rothenberger, David A; Kwaan, Mary R; Belzer, George E; Melton, Genevieve B

    2013-05-01

    Recurrent diverticulitis has been reported in up to 30% to 40% of patients who recover from an episode of colonic diverticular abscess, so elective interval resection is traditionally recommended. The aim of this study was to review the outcomes of patients who underwent percutaneous drainage of colonic diverticular abscess without subsequent operative intervention. This was an observational study. This investigation was conducted at a tertiary care academic medical center and a single-hospital health system. Patients treated for symptomatic colonic diverticular abscess from 2002 through 2007 were included. The primary outcomes measured were complications, recurrence, and colectomy-free survival. Two hundred eighteen patients underwent percutaneous drainage of colonic diverticular abscesses. Thirty-two patients (15%) did not undergo subsequent colonic resection. Abscess location was pelvic (n = 9) and paracolic (n = 23), the mean abscess size was 4.2 cm, and the median duration of percutaneous drainage was 20 days. The comorbidities of this group of patients included severe cardiac disease (n = 16), immunodeficiency (n = 7), and severe pulmonary disease (n = 6). Freedom from recurrence at 7.4 years was 0.58 (95% CI 0.42-0.73). All recurrences were managed nonoperatively. Recurrence was significantly associated with an abscess size larger than 5 cm. Colectomy-free survival at 7.4 years was 0.17 (95% CI 0.13-0.21). This study was limited by its retrospective, nonexperimental design and short follow-up. In selected patients, observation after percutaneous drainage of colonic diverticular abscess appears to be a safe and low-risk management option.

  2. Laparoscopic colectomy for transverse colon carcinoma.

    Science.gov (United States)

    Zmora, O; Bar-Dayan, A; Khaikin, M; Lebeydev, A; Shabtai, M; Ayalon, A; Rosin, D

    2010-03-01

    Laparoscopic resection of transverse colon carcinoma is technically demanding and was excluded from most of the large trials of laparoscopic colectomy. The aim of this study was to assess the safety, feasibility, and outcome of laparoscopic resection of carcinoma of the transverse colon. A retrospective review was performed to identify patients who underwent laparoscopic resection of transverse colon carcinoma. These patients were compared to patients who had laparoscopic resection for right and sigmoid colon carcinoma. In addition, they were compared to a historical series of patients who underwent open resection for transverse colon cancer. A total of 22 patients underwent laparoscopic resection for transverse colon carcinoma. Sixty-eight patients operated for right colon cancer and 64 operated for sigmoid colon cancer served as comparison groups. Twenty-four patients were identified for the historical open group. Intraoperative complications occurred in 4.5% of patients with transverse colon cancer compared to 5.9% (P = 1.0) and 7.8% (P = 1.0) of patients with right and sigmoid colon cancer, respectively. The early postoperative complication rate was 45, 50 (P = 1.0), and 37.5% (P = 0.22) in the three groups, respectively. Conversion was required in 1 (5%) patient in the laparoscopic transverse colon group. The conversion rate and late complications were not significantly different in the three groups. There was no significant difference in the number of lymph nodes harvested in the laparoscopic and open groups. Operative time was significantly longer in the laparoscopic transverse colectomy group when compared to all other groups (P = 0.001, 0.008, and transverse colectomy, respectively). The results of laparoscopic colon resection for transverse colon carcinoma are comparable to the results of laparoscopic resection of right or sigmoid colon cancer and open resection of transverse colon carcinoma. These results suggest that laparoscopic resection of transverse

  3. Global Analysis of the Fungal Microbiome in Cystic Fibrosis Patients Reveals Loss of Function of the Transcriptional Repressor Nrg1 as a Mechanism of Pathogen Adaptation.

    Directory of Open Access Journals (Sweden)

    Sang Hu Kim

    2015-11-01

    Full Text Available The microbiome shapes diverse facets of human biology and disease, with the importance of fungi only beginning to be appreciated. Microbial communities infiltrate diverse anatomical sites as with the respiratory tract of healthy humans and those with diseases such as cystic fibrosis, where chronic colonization and infection lead to clinical decline. Although fungi are frequently recovered from cystic fibrosis patient sputum samples and have been associated with deterioration of lung function, understanding of species and population dynamics remains in its infancy. Here, we coupled high-throughput sequencing of the ribosomal RNA internal transcribed spacer 1 (ITS1 with phenotypic and genotypic analyses of fungi from 89 sputum samples from 28 cystic fibrosis patients. Fungal communities defined by sequencing were concordant with those defined by culture-based analyses of 1,603 isolates from the same samples. Different patients harbored distinct fungal communities. There were detectable trends, however, including colonization with Candida and Aspergillus species, which was not perturbed by clinical exacerbation or treatment. We identified considerable inter- and intra-species phenotypic variation in traits important for host adaptation, including antifungal drug resistance and morphogenesis. While variation in drug resistance was largely between species, striking variation in morphogenesis emerged within Candida species. Filamentation was uncoupled from inducing cues in 28 Candida isolates recovered from six patients. The filamentous isolates were resistant to the filamentation-repressive effects of Pseudomonas aeruginosa, implicating inter-kingdom interactions as the selective force. Genome sequencing revealed that all but one of the filamentous isolates harbored mutations in the transcriptional repressor NRG1; such mutations were necessary and sufficient for the filamentous phenotype. Six independent nrg1 mutations arose in Candida isolates from

  4. Colon and rectal cancer survival by tumor location and microsatellite instability: the Colon Cancer Family Registry.

    Science.gov (United States)

    Phipps, Amanda I; Lindor, Noralane M; Jenkins, Mark A; Baron, John A; Win, Aung Ko; Gallinger, Steven; Gryfe, Robert; Newcomb, Polly A

    2013-08-01

    Cancers in the proximal colon, distal colon, and rectum are frequently studied together; however, there are biological differences in cancers across these sites, particularly in the prevalence of microsatellite instability. We assessed the differences in survival by colon or rectal cancer site, considering the contribution of microsatellite instability to such differences. This is a population-based prospective cohort study for cancer survival. This study was conducted within the Colon Cancer Family Registry, an international consortium. Participants were identified from population-based cancer registries in the United States, Canada, and Australia. Information on tumor site, microsatellite instability, and survival after diagnosis was available for 3284 men and women diagnosed with incident invasive colon or rectal cancer between 1997 and 2002, with ages at diagnosis ranging from 18 to 74. Cox regression was used to calculate hazard ratios for the association between all-cause mortality and tumor location, overall and by microsatellite instability status. Distal colon (HR, 0.59; 95% CI, 0.49-0.71) and rectal cancers (HR, 0.68; 95% CI, 0.57-0.81) were associated with lower mortality than proximal colon cancer overall. Compared specifically with patients with proximal colon cancer exhibiting no/low microsatellite instability, patients with distal colon and rectal cancers experienced lower mortality, regardless of microsatellite instability status; patients with proximal colon cancer exhibiting high microsatellite instability had the lowest mortality. Study limitations include the absence of stage at diagnosis and cause-of-death information for all but a subset of study participants. Some patient groups defined jointly by tumor site and microsatellite instability status are subject to small numbers. Proximal colon cancer survival differs from survival for distal colon and rectal cancer in a manner apparently dependent on microsatellite instability status. These

  5. Clinical use of fungal PCR from deep tissue samples in the diagnosis of invasive fungal diseases: a retrospective observational study.

    Science.gov (United States)

    Ala-Houhala, M; Koukila-Kähkölä, P; Antikainen, J; Valve, J; Kirveskari, J; Anttila, V-J

    2018-03-01

    To assess the clinical use of panfungal PCR for diagnosis of invasive fungal diseases (IFDs). We focused on the deep tissue samples. We first described the design of panfungal PCR, which is in clinical use at Helsinki University Hospital. Next we retrospectively evaluated the results of 307 fungal PCR tests performed from 2013 to 2015. Samples were taken from normally sterile tissues and fluids. The patient population was nonselected. We classified the likelihood of IFD according to the criteria of the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG), comparing the fungal PCR results to the likelihood of IFD along with culture and microscopy results. There were 48 positive (16%) and 259 negative (84%) PCR results. The sensitivity and specificity of PCR for diagnosing IFDs were 60.5% and 91.7%, respectively, while the negative predictive value and positive predictive value were 93.4% and 54.2%, respectively. The concordance between the PCR and the culture results was 86% and 87% between PCR and microscopy, respectively. Of the 48 patients with positive PCR results, 23 had a proven or probable IFD. Fungal PCR can be useful for diagnosing IFDs in deep tissue samples. It is beneficial to combine fungal PCR with culture and microscopy. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  6. Fungal effector proteins: past, present and future

    NARCIS (Netherlands)

    Wit, de P.J.G.M.; Mehrabi, R.; Burg, van den H.A.; Stergiopoulos, I.

    2009-01-01

    The pioneering research of Harold Flor on flax and the flax rust fungus culminated in his gene-for-gene hypothesis. It took nearly 50 years before the first fungal avirulence (Avr) gene in support of his hypothesis was cloned. Initially, fungal Avr genes were identified by reverse genetics and

  7. Plant mycorrhizal traits in Europe in relation to climatic and edaphic gradients

    Science.gov (United States)

    Guillermo Bueno, C.; Gerz, Maret; Zobel, Martin; Moora, Mari

    2017-04-01

    Around 90% of plant species associate with mycorrhizal fungi. The symbiosis is known to provide plants with soil N, P and water, and fungi with plant photosynthesized carbohydrates. However, not all mycorrhizal symbioses are identical. The identity of associated plant and fungal species differs, as does the effect of the symbiosis on nutrient cycling and ecosystems more generally. In this study, we analysed the European distribution of two plant mycorrhizal traits in relation to climatic and edaphic drivers. We used the European distribution of the frequency of mycorrhizal colonization (plant mycorrhizal status); whether mycorrhizal fungi either always (obligately mycorrhizal, OM), or sometimes (facultatively mycorrhizal, FM) colonize plant roots, and the four main plant mycorrhizal types; arbuscular (AM), ecto-(ECM), ericoid (ERM), and non-mycorrhizal (NM) plants. We expected AM species to predominate in ecosystems where most soil nutrients occur in inorganic forms (lower latitudes) and those with higher soil pH. By contrast, due to the saprophytic abilities of ECM and ERM fungi, we expected ECM and ERM plants to predominate in ecosystems where nutrients are bound to organic compounds (higher latitudes) and those with lower soil pH. NM plant species are known to be common in disturbed habitats or in extremely phosphorus poor ecosystems, such as the Arctic tundra. Our results showed that the distribution of mycorrhizal types was driven by temperature and soil pH, with increases of NM, ECM and ERM, and decreases of AM, with latitude. FM predominated over OM species and this difference increased with latitude and was dependent on temperature drivers only. These results represent the first evidence at a European scale of plant mycorrhizal distribution patterns linked with climatic and edaphic gradients, supporting the idea of a tight relationship between the mycorrhizal symbiosis and nutrient cycling.

  8. Identification & Characterization of Fungal Ice Nucleation Proteins

    Science.gov (United States)

    Scheel, Jan Frederik; Kunert, Anna Theresa; Kampf, Christopher Johannes; Mauri, Sergio; Weidner, Tobias; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2016-04-01

    Freezing of water at relatively warm subfreezing temperatures is dependent on ice nucleation catalysis facilitated by ice nuclei (IN). These IN can be of various origins and although extensive research was done and progress was achieved, the nature and mechanisms leading to an effective IN are to date still poorly understood. Some of the most important processes of our geosphere like the water cycle are highly dependent on effective ice nucleation at temperatures between -2°C - -8°C, a temperature range which is almost exclusively covered by biological IN (BioIN). BioIN are usually macromolecular structures of biological polymers. Sugars as well as proteins have been reported to serve as IN and the best characterized BioIN are ice nucleation proteins (IN-P) from gram negative bacteria. Fungal strains from Fusarium spp. were described to be effective IN at subfreezing temperatures up to -2°C already 25 years ago and more and more fungal species are described to serve as efficient IN. Fungal IN are also thought to be proteins or at least contain a proteinaceous compound, but to date the fungal IN-P primary structure as well as their coding genetic elements of all IN active fungi are unknown. The aim of this study is a.) to identify the proteins and their coding genetic elements from IN active fungi (F. acuminatum, F. avenaceum, M. alpina) and b.) to characterize the mechanisms by which fungal IN serve as effective IN. We designed an interdisciplinary approach using biological, analytical and physical methods to identify fungal IN-P and describe their biological, chemical, and physical properties.

  9. Assessment of relevant fungal species in clinical solid wastes.

    Science.gov (United States)

    Noman, Efaq Ali; Al-Gheethi, A A; Rahman, Nik Norulaini Nik Ab; Nagao, H; Ab Kadir, M O

    2016-10-01

    The study aimed to determine the fungal diversity in clinical waste samples from a healthcare facility in Penang Malaysia. Different fungi species were detected in 83.75 % of the 92 clinical waste samples that were screened from different sections of the healthcare facility. One hundred fifty fungal isolates comprising of 8 genera and 36 species were obtained. They were purified by using single spore isolation technique. Subsequently, the isolates were identified by phenotypic method based on morphological and culture characteristics on different culture media. Among all fungal isolates, Aspergillus spp. in section Nigri 10.2 %, Aspergillus niger 9.5 %, Aspergillus fumigatus 8.8 %, Penicillium. simplicissium 8 %, Aspergillus tubingensis 7.3 %, Aspergillus terreus var. terreus 6.6 %, Penicillium waksmanii 5.9 % and Curvularia lunata 6.5 % were the most frequent. Among five sections of the Wellness Centre, the clinical wastes collected from the diagnostic labs of haematology section had the highest numbers of fungal species (29 species). Glove wastes had the highest numbers of fungal species (19 species) among 17 types of clinical wastes screened. Among all fungal species, Aspergillus spp. exhibited higher growth at 37 °C than at 28 °C, indicating the potential of these opportunistic fungi to cause diseases in human. These results indicated the potential of hospital wastes as reservoirs for fungal species.

  10. Primary renal candidiasis: fungal mycetomas in the kidney

    International Nuclear Information System (INIS)

    Morris, B.S.; Chudgar, P.D.; Manejwala, O.

    2002-01-01

    Fungal infections of the urinary tract have a predilection for drainage structures rather than for the renal parenchyma. Of the causal factors, diabetes mellitus, immunosuppressed states, AIDS and prematurity are those most commonly encountered. The case of a young, diabetic man whose chief clinical presentation was dysuria is described. On further examination he was found to harbour fungal balls in the right kidney. Radiological manifestations of acute pyelonephritis were also present. Although primary renal candidiasis is often commensurate with systemic fungaemia, he displayed none of the clinical features of disseminate infection and, hence, was treated conservatively with oral antifungal agents. Fortuitously, spontaneous passage of fungal particulate matter in urine was later reported. A significant increase in the incidence of fungal cystitis has been found in recent years; however, the patient presents with many non-specific features of cystitis. Both sonography and CT show thickening of the bladder wall but, again, this lacks specificity. In the rare instance of prostate involvement, low attenuation foci on CT are seen within the gland. Despite the existence of a large number of fungal species, only a few are pathogenic to humans. Of those that cause disease in the urinary tract, Candida albicans is the most frequently encountered. A highly characteristic finding in such infections is of fungal balls, which are made up of aggregates of mycelia. However, care should be exercised in interpretation as a host of other conditions can mimic fungal bezoars. Although a CT scan at initial examination may qualify as the more descriptive, sonography provides a serial non-invasive means of evaluating the urinary tract. When in doubt, a urine culture clinches the diagnosis. Copyright (2002) Blackwell Science Pty Ltd

  11. Root colonization of bait plants by indigenous arbuscular mycorrhizal fungal communities is not a suitable indicator of agricultural land-use legacy

    Czech Academy of Sciences Publication Activity Database

    Jansa, Jan; Řezáčová, Veronika; Šmilauer, P.; Oberholzer, H.-R.; Egli, S.

    2016-01-01

    Roč. 231, SEPTEMBER (2016), s. 310-319 ISSN 0167-8809 R&D Projects: GA ČR GAP504/12/1665; GA MŠk(CZ) LK11224 Institutional support: RVO:61388971 Keywords : Arbuscular mycorrhiza * Geography * Root colonization Subject RIV: EE - Microbiology, Virology Impact factor: 4.099, year: 2016

  12. An Act of Colonization

    DEFF Research Database (Denmark)

    Rasmussen, Anders Bo

    When Gideon Welles, U.S. Secretary of the Navy, sat down to write his diary entry on September 26, 1862, his thoughts turned once more to colonization. President Lincoln was an ardent proponent of colonization, “the government-promoted settlement of black Americans in Africa or some other location....... Croix. Thus, when the Lincoln administration seriously considered colonization plans in 1862, Danish Charge d’Affaires Waldemar Raasløff offered free transport for freedmen to the Caribbean island, where there was a “distinct lack of laborers.” As a small first step towards colonization, Denmark...

  13. MALToma of the Transverse colon, Ascending colon and Caecum: A ...

    African Journals Online (AJOL)

    TNHJOURNALPH

    RESULT. We herein report a case of a 40-year-old male with mucosa - associated lymphoid tissue. [MALT] lymphoma of the transverse colon, ascending colon and caecum. He presented with severe abdominal pains and a centrally located huge abdominal mass for which a surgical resection was done. Histologically.

  14. Phylogenetic distribution of fungal sterols.

    Directory of Open Access Journals (Sweden)

    John D Weete

    Full Text Available BACKGROUND: Ergosterol has been considered the "fungal sterol" for almost 125 years; however, additional sterol data superimposed on a recent molecular phylogeny of kingdom Fungi reveals a different and more complex situation. METHODOLOGY/PRINCIPAL FINDINGS: The interpretation of sterol distribution data in a modern phylogenetic context indicates that there is a clear trend from cholesterol and other Delta(5 sterols in the earliest diverging fungal species to ergosterol in later diverging fungi. There are, however, deviations from this pattern in certain clades. Sterols of the diverse zoosporic and zygosporic forms exhibit structural diversity with cholesterol and 24-ethyl -Delta(5 sterols in zoosporic taxa, and 24-methyl sterols in zygosporic fungi. For example, each of the three monophyletic lineages of zygosporic fungi has distinctive major sterols, ergosterol in Mucorales, 22-dihydroergosterol in Dimargaritales, Harpellales, and Kickxellales (DHK clade, and 24-methyl cholesterol in Entomophthorales. Other departures from ergosterol as the dominant sterol include: 24-ethyl cholesterol in Glomeromycota, 24-ethyl cholest-7-enol and 24-ethyl-cholesta-7,24(28-dienol in rust fungi, brassicasterol in Taphrinales and hypogeous pezizalean species, and cholesterol in Pneumocystis. CONCLUSIONS/SIGNIFICANCE: Five dominant end products of sterol biosynthesis (cholesterol, ergosterol, 24-methyl cholesterol, 24-ethyl cholesterol, brassicasterol, and intermediates in the formation of 24-ethyl cholesterol, are major sterols in 175 species of Fungi. Although most fungi in the most speciose clades have ergosterol as a major sterol, sterols are more varied than currently understood, and their distribution supports certain clades of Fungi in current fungal phylogenies. In addition to the intellectual importance of understanding evolution of sterol synthesis in fungi, there is practical importance because certain antifungal drugs (e.g., azoles target reactions in

  15. Generation of an inducible colon-specific Cre enzyme mouse line for colon cancer research

    NARCIS (Netherlands)

    Tetteh, Paul W.; Kretzschmar, Kai; Begthel, Harry; Van Den Born, Maaike; Korving, Jeroen; Morsink, Folkert; Farin, Henner; Van Es, Johan H.; Offerhaus, G. Johan A; Clevers, Hans

    2016-01-01

    Current mouse models for colorectal cancer often differ significantly from human colon cancer, being largely restricted to the small intestine. Here, we aim to develop a colon-specific inducible mouse model that can faithfully recapitulate human colon cancer initiation and progression. Carbonic

  16. Effects of land use on arbuscular mycorrhizal fungal communities in Estonia.

    Science.gov (United States)

    Sepp, Siim-Kaarel; Jairus, Teele; Vasar, Martti; Zobel, Martin; Öpik, Maarja

    2018-04-01

    Arbuscular mycorrhizal (AM) fungal communities vary across habitat types, as well as across different land use types. Most relevant research, however, has focused on agricultural or other severely human-impacted ecosystems. Here, we compared AM fungal communities across six habitat types: calcareous grassland, overgrown ungrazed calcareous grassland, wooded meadow, farmyard lawn, boreonemoral forest, and boreonemoral forest clear-cut, exhibiting contrasting modes of land use. AM fungi in the roots of a single host plant species, Prunella vulgaris, and in its rhizosphere soil were identified using 454-sequencing from a total of 103 samples from 12 sites in Estonia. Mean AM fungal taxon richness per sample did not differ among habitats. AM fungal community composition, however, was significantly different among habitat types. Both abandonment and land use intensification (clearcutting; trampling combined with frequent mowing) changed AM fungal community composition. The AM fungal communities in different habitat types were most similar in the roots of the single host plant species and most distinct in soil samples, suggesting a non-random pattern in host-fungal taxon interactions. The results show that AM fungal taxon composition is driven by habitat type and land use intensity, while the plant host may act as an additional filter between the available and realized AM fungal species pool.

  17. Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision

    Directory of Open Access Journals (Sweden)

    Felix Bongomin

    2017-10-01

    Full Text Available Fungal diseases kill more than 1.5 million and affect over a billion people. However, they are still a neglected topic by public health authorities even though most deaths from fungal diseases are avoidable. Serious fungal infections occur as a consequence of other health problems including asthma, AIDS, cancer, organ transplantation and corticosteroid therapies. Early accurate diagnosis allows prompt antifungal therapy; however this is often delayed or unavailable leading to death, serious chronic illness or blindness. Recent global estimates have found 3,000,000 cases of chronic pulmonary aspergillosis, ~223,100 cases of cryptococcal meningitis complicating HIV/AIDS, ~700,000 cases of invasive candidiasis, ~500,000 cases of Pneumocystis jirovecii pneumonia, ~250,000 cases of invasive aspergillosis, ~100,000 cases of disseminated histoplasmosis, over 10,000,000 cases of fungal asthma and ~1,000,000 cases of fungal keratitis occur annually. Since 2013, the Leading International Fungal Education (LIFE portal has facilitated the estimation of the burden of serious fungal infections country by country for over 5.7 billion people (>80% of the world’s population. These studies have shown differences in the global burden between countries, within regions of the same country and between at risk populations. Here we interrogate the accuracy of these fungal infection burden estimates in the 43 published papers within the LIFE initiative.

  18. Evolving colon injury management: a review.

    Science.gov (United States)

    Greer, Lauren T; Gillern, Suzanne M; Vertrees, Amy E

    2013-02-01

    The colon is the second most commonly injured intra-abdominal organ in penetrating trauma. Management of traumatic colon injuries has evolved significantly over the past 200 years. Traumatic colon injuries can have a wide spectrum of severity, presentation, and management options. There is strong evidence that most non-destructive colon injuries can be successfully managed with primary repair or primary anastomosis. The management of destructive colon injuries remains controversial with most favoring resection with primary anastomosis and others favor colonic diversion in specific circumstances. The historical management of traumatic colon injuries, common mechanisms of injury, demographics, presentation, assessment, diagnosis, management, and complications of traumatic colon injuries both in civilian and military practice are reviewed. The damage control revolution has added another layer of complexity to management with continued controversy.

  19. Are bacterial volatile compounds poisonous odors to a fungal pathogen Botrytis cinerea, alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both?

    Directory of Open Access Journals (Sweden)

    Choong-Min eRyu

    2016-02-01

    colonization. This study provides new evidence for bacterial VOC-elicited plant ISR that protects Arabidopsis plants from infection by the necrotrophic fungus B. cinerea. Our work reveals that bacterial VOCs primarily act via an indirect mechanism to elicit plant ISR, and have a major role in biocontrol against fungal pathogens.

  20. The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Abdallah, Cosette; Valot, Benoit; Guillier, Christelle; Mounier, Arnaud; Balliau, Thierry; Zivy, Michel; van Tuinen, Diederik; Renaut, Jenny; Wipf, Daniel; Dumas-Gaudot, Eliane; Recorbet, Ghislaine

    2014-08-28

    Arbuscular mycorrhizal (AM) symbiosis that associates roots of most land plants with soil-borne fungi (Glomeromycota), is characterized by reciprocal nutritional benefits. Fungal colonization of plant roots induces massive changes in cortical cells where the fungus differentiates an arbuscule, which drives proliferation of the plasma membrane. Despite the recognized importance of membrane proteins in sustaining AM symbiosis, the root microsomal proteome elicited upon mycorrhiza still remains to be explored. In this study, we first examined the qualitative composition of the root membrane proteome of Medicago truncatula after microsome enrichment and subsequent in depth analysis by GeLC-MS/MS. The results obtained highlighted the identification of 1226 root membrane protein candidates whose cellular and functional classifications predispose plastids and protein synthesis as prevalent organelle and function, respectively. Changes at the protein abundance level between the membrane proteomes of mycorrhizal and nonmycorrhizal roots were further monitored by spectral counting, which retrieved a total of 96 proteins that displayed a differential accumulation upon AM symbiosis. Besides the canonical markers of the periarbuscular membrane, new candidates supporting the importance of membrane trafficking events during mycorrhiza establishment/functioning were identified, including flotillin-like proteins. The data have been deposited to the ProteomeXchange with identifier PXD000875. During arbuscular mycorrhizal symbiosis, one of the most widespread mutualistic associations in nature, the endomembrane system of plant roots is believed to undergo qualitative and quantitative changes in order to sustain both the accommodation process of the AM fungus within cortical cells and the exchange of nutrients between symbionts. Large-scale GeLC-MS/MS proteomic analysis of the membrane fractions from mycorrhizal and nonmycorrhizal roots of M. truncatula coupled to spectral counting

  1. Fungal NRPS-dependent siderophores: From function to prediction

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Knudsen, Michael; Hansen, Frederik Teilfeldt

    2014-01-01

    discuss the function of siderophores in relation to fungal iron uptake mechanisms and their importance for coexistence with host organisms. The chemical nature of the major groups of siderophores and their regulation is described along with the function and architecture of the large multi-domain enzymes...... responsible for siderophore synthesis, namely the non-ribosomal peptide synthetases (NRPSs). Finally, we present the most recent advances in our understanding of the structural biology of fungal NRPSs and discuss opportunities for the development of a fungal NRPS prediction server...

  2. Impact of metal pollution on fungal diversity and community structures.

    Science.gov (United States)

    Op De Beeck, Michiel; Lievens, Bart; Busschaert, Pieter; Rineau, Francois; Smits, Mark; Vangronsveld, Jaco; Colpaert, Jan V

    2015-06-01

    The impact of metal pollution on plant communities has been studied extensively in the past, but little is known about the effects of metal pollution on fungal communities that occur in metal-polluted soils. Metal-tolerant ecotypes of the ectomycorrhizal fungus Suillus luteus are frequently found in pioneer pine forests in the Campine region in Belgium on metal-polluted soils. We hypothesized that metal pollution would play an important role in shaping below-ground fungal communities that occur in these soils and that Suillus luteus would be a dominant player. To test these hypotheses, the fungal communities in a young pine plantation in soil polluted with zinc, and cadmium were studied using 454 amplicon pyrosequencing. Results show that zinc, cadmium and soil organic matter content were strongly correlated with the fungal community composition, but no effects on fungal diversity were observed. As hypothesized, S. luteus was found to be a dominant member of the studied fungal communities. However, other dominant fungal species, such as Sistotrema sp., Wilcoxina mikolae and Cadophora finlandica were found as well. Their presence in metal-polluted sites is discussed. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. A biotechnology perspective of fungal proteases

    Directory of Open Access Journals (Sweden)

    Paula Monteiro de Souza

    2015-06-01

    Full Text Available Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.

  4. Comparison on the sensitivity of laboratory diagnosis technology in the diagnosis of fungal keratitis

    Directory of Open Access Journals (Sweden)

    Peng-Fei Chen

    2015-08-01

    Full Text Available AIM: To analyze the correlation and clinical significance of fungal smear, fungal culture and pathological examination in the diagnosis of fungalkeratitis. METHODS:One hundred and ten cases(110 eyeswith fungal keratitis from January 2012 to December 2014 were collected. The results of fungal smear, fungal culture and pathological examination results were analyzed retrospectively. Fungal smear was detected by 10% KOH wet microscopy and gram staining microscopy. Fungal culture was used potato dextrose agar(PDAmedium. The specimens of pathological examination were from corneal transplantation surgery. paraffin section, HE and hexamine silver and PAS staining was used in the pathological examination. RESULTS:Of the 110 cases of fungal keratitis, fungal smear positive were observed in 50 cases(45.5%, fungal culture positive were observed in 55 cases(50.0%; pathological examination positive were observed in 88 cases(80.0%. Fifty cases were both fungal smear and pathological examination positive and 22 cases were both fungal smear and pathological examination negative. The coincidence rate of fungal smear and pathologic examination was 65.5%. Fifty-five cases were both fungal culture and pathological examination positive and 22 cases were both fungal culture and pathological examination negative. The coincidence rate of fungal culture and pathologic examination was 70.0%. In the 60 cases of fungal smear negative results, 38 cases(63.3%were confirmed positive through pathological examination. In the 55 cases of fungus culture negative results, 33 cases(60.0%were confirmed positive by pathological examination. CONCLUSION:The accuracy of pathological examination is the highest. The combined application of fungal smear, fungal culture and pathological examination can improve the diagnostic accuracy of fungal keratitis.

  5. Eucalypt NADP-Dependent Isocitrate Dehydrogenase1

    Science.gov (United States)

    Boiffin, Vincent; Hodges, Michael; Gálvez, Susana; Balestrini, Raffaella; Bonfante, Paola; Gadal, Pierre; Martin, Francis

    1998-01-01

    NADP-dependent isocitrate dehydrogenase (NADP-ICDH) activity is increased in roots of Eucalyptus globulus subsp. bicostata ex Maiden Kirkp. during colonization by the ectomycorrhizal fungus Pisolithus tinctorius Coker and Couch. To investigate the regulation of the enzyme expression, a cDNA (EgIcdh) encoding the NADP-ICDH was isolated from a cDNA library of E. globulus-P. tinctorius ectomycorrhizae. The putative polypeptide sequence of EgIcdh showed a high amino acid similarity with plant NADP-ICDHs. Because the deduced EgICDH protein lacks an amino-terminal targeting sequence and shows highest similarity to plant cytosolic ICDHs, it probably represents a cytoplasmic isoform. RNA analysis showed that the steady-state level of EgIcdh transcripts was enhanced nearly 2-fold in ectomycorrhizal roots compared with nonmycorrhizal roots. Increased accumulation of NADP-ICDH transcripts occurred as early as 2 d after contact and likely led to the observed increased enzyme activity. Indirect immunofluorescence microscopy indicated that NADP-ICDH was preferentially accumulated in the epidermis and stele parenchyma of nonmycorrhizal and ectomycorrhizal lateral roots. The putative role of cytosolic NADP-ICDH in ectomycorrhizae is discussed. PMID:9662536

  6. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus angustifolia Seedlings.

    Science.gov (United States)

    Chang, Wei; Sui, Xin; Fan, Xiao-Xu; Jia, Ting-Ting; Song, Fu-Qiang

    2018-01-01

    Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K + , Ca 2+ , and Mg 2+ , but also maintained higher K + :Na + ratios in the leaves and lower Ca 2+ :Mg 2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China.

  7. The Fungal Kingdom

    NARCIS (Netherlands)

    Heitman, Joseph; Howlett, B.J.; Crous, P.W.; Stukenbrock, E.H.; James, T.Y.; Gow, N.A.R.

    2017-01-01

    Fungi research and knowledge grew rapidly following recent advances in genetics and genomics. This book synthesizes new knowledge with existing information to stimulate new scientific questions and propel fungal scientists on to the next stages of research. This book is a comprehensive guide on

  8. Fungal diversity associated with Hawaiian Drosophila host plants.

    Directory of Open Access Journals (Sweden)

    Brian S Ort

    Full Text Available Hawaiian Drosophila depend primarily, sometimes exclusively, on specific host plants for oviposition and larval development, and most specialize further on a particular decomposing part of that plant. Differences in fungal community between host plants and substrate types may establish the basis for host specificity in Hawaiian Drosophila. Fungi mediate decomposition, releasing plant micronutrients and volatiles that can indicate high quality substrates and serve as cues to stimulate oviposition. This study addresses major gaps in our knowledge by providing the first culture-free, DNA-based survey of fungal diversity associated with four ecologically important tree genera in the Hawaiian Islands. Three genera, Cheirodendron, Clermontia, and Pisonia, are important host plants for Drosophila. The fourth, Acacia, is not an important drosophilid host but is a dominant forest tree. We sampled fresh and rotting leaves from all four taxa, plus rotting stems from Clermontia and Pisonia. Based on sequences from the D1/D2 domain of the 26S rDNA gene, we identified by BLAST search representatives from 113 genera in 13 fungal classes. A total of 160 operational taxonomic units, defined on the basis of ≥97% genetic similarity, were identified in these samples, but sampling curves show this is an underestimate of the total fungal diversity present on these substrates. Shannon diversity indices ranged from 2.0 to 3.5 among the Hawaiian samples, a slight reduction compared to continental surveys. We detected very little sharing of fungal taxa among the substrates, and tests of community composition confirmed that the structure of the fungal community differed significantly among the substrates and host plants. Based on these results, we hypothesize that fungal community structure plays a central role in the establishment of host preference in the Hawaiian Drosophila radiation.

  9. Fungal contamination assessment in Portuguese elderly care centers.

    Science.gov (United States)

    Viegas, C; Almeida-Silva, M; Gomes, A Quintal; Wolterbeek, H T; Almeida, S M

    2014-01-01

    Individuals spend 80-90% of their day indoors and elderly subjects are likely to spend even a greater amount of time indoors. Thus, indoor air pollutants such as bioaerosols may exert a significant impact on this age group. The aim of this study was to characterize fungal contamination within Portuguese elderly care centers. Fungi were measured using conventional as well as molecular methods in bedrooms, living rooms, canteens, storage areas, and outdoors. Bioaerosols were evaluated before and after the microenvironments' occupancy in order to understand the role played by occupancy in fungal contamination. Fungal load results varied from 32 colony-forming units CFU m(-3) in bedrooms to 228 CFU m(-3) in storage areas. Penicillium sp. was the most frequently isolated (38.1%), followed by Aspergillus sp. (16.3%) and Chrysonilia sp. (4.2%). With respect to Aspergillus genus, three different fungal species in indoor air were detected, with A. candidus (62.5%) the most prevalent. On surfaces, 40 different fungal species were isolated and the most frequent was Penicillium sp. (22.2%), followed by Aspergillus sp. (17.3%). Real-time polymerase chain reaction did not detect the presence of A. fumigatus complex. Species from Penicillium and Aspergillus genera were the most abundant in air and surfaces. The species A. fumigatus was present in 12.5% of all indoor microenvironments assessed. The living room was the indoor microenvironment with lowest fungal concentration and the storage area was highest.

  10. Clinical characteristics and distribution of pathogens in fungal keratitis

    Directory of Open Access Journals (Sweden)

    Tian Tian

    2016-01-01

    Full Text Available AIM:To investigate the clinical characteristics and distribution of pathogens in patients with fungal keratitis and to provide evidence for diagnosis and treatment of this disease.METHODS:The clinical data of 98 cases(98 eyeswith fungal keratitis from January 2012 to July 2015 in the First Affiliated Hospital of Yangtze University were retrospectively reviewed.RESULTS:The main cause for fungal keratitis was corneal injury by plants. The inappropriate use of contact lenses and glucocorticoids therapy were the next cause. Almost all of the patients had hyphae moss, pseudopodia, immune ring, and satellite signs. A few of patients had endothelial plaque and anterior chamber empyema. The majority pathogens of fungal keratitis was Fusarium spp(73.5%,followed by Aspergillus spp(13.2%,Candida spp(9.2%and others(4.1%.Sixty-five patients(65 eyestreated with 5% natamycin were cured. The condition of 15 patients was improved. Eighteen patients were invalid, in which 13 patients became better and 5 patients became worse after voriconazole was added into the therapy, leading to amniotic membrance cover in 3 patients and eyeball removal in 2 patients at last.CONCLUSION:Fusarium genus is the predominant pathogen for fungal keratitis in Jingzhou. Natamycin can be used as the preferred drug for the prevention and treatment for fungal keratitis. The clinicians should pay attention to the fungal keratitis, in order to early diagnosis and timely treatment.

  11. Mites as selective fungal carriers in stored grain habitats.

    Science.gov (United States)

    Hubert, Jan; Stejskal, Václav; Kubátová, Alena; Munzbergová, Zuzana; Vánová, Marie; Zd'árková, Eva

    2003-01-01

    Mites are well documented as vectors of micromycetes in stored products. Since their vectoring capacity is low due to their small size, they can be serious vectors only where there is selective transfer of a high load of specific fungal species. Therefore the aim of our work was to find out whether the transfer of fungi is selective. Four kinds of stored seeds (wheat, poppy, lettuce, mustard) infested by storage mites were subjected to mycological analysis. We compared the spectrum of micromycete species isolated from different species of mites (Acarus siro, Lepidoglyphus destructor, Tyrophagus putrescentiae, Caloglyphus rhizoglyphoides and Cheyletus malaccensis) and various kinds of stored seeds. Fungi were separately isolated from (a) the surface of mites, (b) the mites' digestive tract (= faeces), and (c) stored seeds and were then cultivated and determined. The fungal transport via mites is selective. This conclusion is supported by (i) lower numbers of isolated fungal species from mites than from seeds; (ii) lower Shannon-Weaver diversity index in the fungal communities isolated from mites than from seeds; (iii) significant effect of mites/seeds as environmental variables on fungal presence in a redundancy analysis (RDA); (iv) differences in composition of isolated fungi between mite species shown by RDA. The results of our work support the hypothesis that mite-fungal interactions are dependent on mite species. The fungi attractive to mites seem to be dispersed more than others. The selectivity of fungal transport via mites enhances their pest importance.

  12. Fungal farming in a non-social beetle.

    Directory of Open Access Journals (Sweden)

    Wataru Toki

    Full Text Available Culturing of microbes for food production, called cultivation mutualism, has been well-documented from eusocial and subsocial insects such as ants, termites and ambrosia beetles, but poorly described from solitary, non-social insects. Here we report a fungal farming in a non-social lizard beetle Doubledaya bucculenta (Coleoptera: Erotylidae: Languriinae, which entails development of a special female structure for fungal storage/inoculation, so-called mycangium, and also obligate dependence of the insect on the fungal associate. Adult females of D. bucculenta bore a hole on a recently-dead bamboo culm with their specialized mandibles, lay an egg into the internode cavity, and plug the hole with bamboo fibres. We found that the inner wall of the bamboo internode harboring a larva is always covered with a white fungal layer. A specific Saccharomycetes yeast, Wickerhamomyces anomalus ( = Pichia anomala, was consistently isolated from the inner wall of the bamboo internodes and also from the body surface of the larvae. Histological examination of the ovipositor of adult females revealed an exoskeletal pocket on the eighth abdominal segment. The putative mycangium contained yeast cells, and W. anomalus was repeatedly detected from the symbiotic organ. When first instar larvae were placed on culture media inoculated with W. anomalus, they grew and developed normally to adulthood. By contrast, first instar larvae placed on either sterile culture media or autoclaved strips of bamboo inner wall exhibited arrested growth at the second instar, and addition of W. anomalus to the media resumed growth and development of the larvae. These results strongly suggest a mutualistic nature of the D. bucculenta-W. anomalus association with morphological specialization and physiological dependence. Based on these results, we compare the fungal farming of D. bucculenta with those of social and subsocial insects, and discuss ecological factors relevant to the

  13. A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans.

    Directory of Open Access Journals (Sweden)

    Jeffrey Tomalka

    2011-12-01

    Full Text Available Candida sp. are opportunistic fungal pathogens that colonize the skin and oral cavity and, when overgrown under permissive conditions, cause inflammation and disease. Previously, we identified a central role for the NLRP3 inflammasome in regulating IL-1β production and resistance to dissemination from oral infection with Candida albicans. Here we show that mucosal expression of NLRP3 and NLRC4 is induced by Candida infection, and up-regulation of these molecules is impaired in NLRP3 and NLRC4 deficient mice. Additionally, we reveal a role for the NLRC4 inflammasome in anti-fungal defenses. NLRC4 is important for control of mucosal Candida infection and impacts inflammatory cell recruitment to infected tissues, as well as protects against systemic dissemination of infection. Deficiency in either NLRC4 or NLRP3 results in severely attenuated pro-inflammatory and antimicrobial peptide responses in the oral cavity. Using bone marrow chimeric mouse models, we show that, in contrast to NLRP3 which limits the severity of infection when present in either the hematopoietic or stromal compartments, NLRC4 plays an important role in limiting mucosal candidiasis when functioning at the level of the mucosal stroma. Collectively, these studies reveal the tissue specific roles of the NLRP3 and NLRC4 inflammasome in innate immune responses against mucosal Candida infection.

  14. Modified atmospheric conditions controlling fungal growth on cheese

    DEFF Research Database (Denmark)

    Nielsen, Per Væggemose

    1997-01-01

    Effective control of fungal growth on cheese under storage conditions is of great concern for the dairy industry. Therefore we designed a research project together with the Danish dairy industry on modelling fungal growth on cheese as affected by the combined effect of storage conditions (O2 and CO......2 level, relative humidity and temperature) and the composition of the cheese. All fungal species commonly found on cheese, starter cultures as well as contaminants, were examined.The most important factors influencing fungal growth are temperature, water activity of the medium and the carbon...... a competitive advantage over other fungi in moist conditions with high carbon dioxide levels, such as inside a roquefort cheese or in gas tight grain storage. The key to success in food packaging is to recognise the food ecosystem, as it enables us to identify which micro...

  15. Evolution and genome architecture in fungal plant pathogens.

    Science.gov (United States)

    Möller, Mareike; Stukenbrock, Eva H

    2017-12-01

    The fungal kingdom comprises some of the most devastating plant pathogens. Sequencing the genomes of fungal pathogens has shown a remarkable variability in genome size and architecture. Population genomic data enable us to understand the mechanisms and the history of changes in genome size and adaptive evolution in plant pathogens. Although transposable elements predominantly have negative effects on their host, fungal pathogens provide prominent examples of advantageous associations between rapidly evolving transposable elements and virulence genes that cause variation in virulence phenotypes. By providing homogeneous environments at large regional scales, managed ecosystems, such as modern agriculture, can be conducive for the rapid evolution and dispersal of pathogens. In this Review, we summarize key examples from fungal plant pathogen genomics and discuss evolutionary processes in pathogenic fungi in the context of molecular evolution, population genomics and agriculture.

  16. Fungal biology and agriculture: revisiting the field

    Science.gov (United States)

    Yarden, O.; Ebbole, D.J.; Freeman, S.; Rodriguez, R.J.; Dickman, M. B.

    2003-01-01

    Plant pathology has made significant progress over the years, a process that involved overcoming a variety of conceptual and technological hurdles. Descriptive mycology and the advent of chemical plant-disease management have been followed by biochemical and physiological studies of fungi and their hosts. The later establishment of biochemical genetics along with the introduction of DNA-mediated transformation have set the stage for dissection of gene function and advances in our understanding of fungal cell biology and plant-fungus interactions. Currently, with the advent of high-throughput technologies, we have the capacity to acquire vast data sets that have direct relevance to the numerous subdisciplines within fungal biology and pathology. These data provide unique opportunities for basic research and for engineering solutions to important agricultural problems. However, we also are faced with the challenge of data organization and mining to analyze the relationships between fungal and plant genomes and to elucidate the physiological function of pertinent DNA sequences. We present our perspective of fungal biology and agriculture, including administrative and political challenges to plant protection research.

  17. Natural re-establishment of vesicular-arbuscular mycorrhizae following stripmine reclamation in Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Allen, E.B.; Allen, M.F. (University of Wyoming, Laramie, WY (USA))

    1980-01-01

    The % root infection of {ital Agropyron smithii} and {ital A. intermedium} by vesicular-arbuscular mycorrhizae was measured and spoil spores were counted in six reclaimed stripmine sites in Wyoming. On 2- and 3-yr old sites % infection and spore counts were c. 50% or less than native prairie levels. Spore counts of a 3-yr old disked prairie site were not different from the undisturbed prairie level, but infection was significantly lower. Spore counts of the reclimed sites were not highly correlated with % root infection. Five of seven annuals which colonized the reclaimed and disked sites were non-mycorrhizal. 43 refs., 3 tabs.

  18. Natural occurrence of fungi and fungal metabolites in moldy tomatoes

    DEFF Research Database (Denmark)

    Andersen, B.; Frisvad, Jens Christian

    2004-01-01

    Fresh tomatoes, homegrown and from supermarkets, with developing fungal lesions were collected. Each lesion was sampled, and the resulting fungal cultures were identified morphologically, and extracted for analyzes of secondary metabolites. The tomatoes were incubated at 25 degreesC for a week....... extracted, and analyzed for fungal metabolites. Extracts from pure cultures were compared with extracts from the moldy tomatoes and fungal metabolite standards in two HPLC systems with DAD and FLD detection. The results showed that Penicillium tularense, Stemphylium eturmiunum. and S. cf. lycopersici were...

  19. Subseafloor basalts as fungal habitats

    Science.gov (United States)

    Ivarsson, M.; Bengtson, S.

    2013-12-01

    The oceanic crust makes up the largest potential habitat for life on Earth, yet next to nothing is known about the abundance, diversity and ecology of its biosphere. Our understanding of the deep biosphere of subseafloor crust is, with a few exceptions, based on a fossil record. Surprisingly, a majority of the fossilized microorganisms have been interpreted or recently re-interpreted as remnants of fungi rather than prokaryotes. Even though this might be due to a bias in fossilization the presence of fungi in these settings can not be neglected. We have examined fossilized microorganisms in drilled basalt samples collected at the Emperor Seamounts in the Pacific Ocean. Synchrotron-radiation X-ray tomography microscopy (SRXTM) studies has revealed a complex morphology and internal structure that corresponds to characteristic fungal morphology. Chitin was detected in the fossilized hyphae, which is another strong argument in favour of a fungal interpretation. Chitin is absent in prokaryotes but a substantial constituent in fungal cell walls. The fungal colonies consist of both hyphae and yeast-like growth states as well as resting structures and possible fruit bodies, thus, the fungi exist in vital colonies in subseafloor basalts. The fungi have also been involved in extensive weathering of secondary mineralisations. In terrestrial environments fungi are known as an important geobiological agent that promotes mineral weathering and decomposition of organic matter, and they occur in vital symbiosis with other microorganisms. It is probable to assume that fungi would play a similar role in subseafloor basalts and have great impact on the ecology and on biogeochemical cycles in such environments.

  20. Plant and fungal biodiversity from metal mine wastes under remediation at Zimapan, Hidalgo, Mexico.

    Science.gov (United States)

    Ortega-Larrocea, María del Pilar; Xoconostle-Cázares, Beatriz; Maldonado-Mendoza, Ignacio E; Carrillo-González, Rogelio; Hernández-Hernández, Jani; Garduño, Margarita Díaz; López-Meyer, Melina; Gómez-Flores, Lydia; González-Chávez, Ma del Carmen A

    2010-05-01

    Plant establishment, presence of arbuscular mycorrhizal fungi (AMF) and other rhizospheric fungi were studied in mine wastes from Zimapan, Hidalgo state, Mexico, using a holistic approach. Two long-term afforested and three non-afforested mine tailings were included in this research. Fifty-six plant species belonging to 29 families were successfully established on the afforested sites, while unmanaged tailings had only a few native plant species colonizing the surrounding soils. Almost all plant roots collected were associated to AMF in these sites. The genus Glomus was the most abundant AMF species found in their rhizosphere; however, the Acaulospora genus was also observed. Other rhizospheric fungi were identified by 18S rDNA sequencing analysis. Their role in these substrates, i.e. biocontrol, pollutant- and organic matter-degradation, and aides that increase plant metal tolerance is discussed. Our results advance the understanding of fungal diversity in sites polluted with metals and present alternative plants for remediation use. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Carotenoids and colon cancer.

    Science.gov (United States)

    Slattery, M L; Benson, J; Curtin, K; Ma, K N; Schaeffer, D; Potter, J D

    2000-02-01

    Carotenoids have numerous biological properties that may underpin a role for them as chemopreventive agents. However, except for beta-carotene, little is known about how dietary carotenoids are associated with common cancers, including colon cancer. The objective of this study was to evaluate associations between dietary alpha-carotene, beta-carotene, lycopene, lutein, zeaxanthin, and beta-cryptoxanthin and the risk of colon cancer. Data were collected from 1993 case subjects with first primary incident adenocarcinoma of the colon and from 2410 population-based control subjects. Dietary data were collected from a detailed diet-history questionnaire and nutrient values for dietary carotenoids were obtained from the US Department of Agriculture-Nutrition Coordinating Center carotenoid database (1998 updated version). Lutein was inversely associated with colon cancer in both men and women [odds ratio (OR) for upper quintile of intake relative to lowest quintile of intake: 0.83; 95% CI: 0.66, 1.04; P = 0.04 for linear trend]. The greatest inverse association was observed among subjects in whom colon cancer was diagnosed when they were young (OR: 0.66; 95% CI: 0.48, 0.92; P = 0.02 for linear trend) and among those with tumors located in the proximal segment of the colon (OR: 0.65; 95% CI: 0.51, 0.91; P lettuce, tomatoes, oranges and orange juice, carrots, celery, and greens. These data suggest that incorporating these foods into the diet may help reduce the risk of developing colon cancer.

  2. Burden of Serious Fungal Infections in Jordan

    Directory of Open Access Journals (Sweden)

    Jamal Wadi

    2018-01-01

    Full Text Available Objective: To estimate the burden of fungal infections in Jordan for the first time. Material and Methods: Population data was from UN 2011 statistics and TB cases from WHO in 2012. Fewer than 100 patients with HIV were recorded in Jordan in 2013. Approximately 100 renal transplants and eight liver transplants are performed annually. There were 12,233 major surgical procedures in Jordan in 2013, of which 5.3% were major abdominal surgeries; candidemia was estimated in 5% of the population based on other countries, with 33% occurring in the ICU. Candida peritonitis/intra-abdominal candidiasis was estimated to affect 50% of the number of ICU candidemia cases. No adult asthma rates have been recorded for Jordan, so the rate from the Holy Land (8.54% clinical asthma from To et al. has been used. There are an estimated 49,607 chronic obstructive pulmonary disease (COPD patients in Jordan, with 64% symptomatic, 25% Gold stage 3% or 4%, and 7% (3472 are assumed to be admitted to hospital each year. No cystic fibrosis cases have been recorded. Literature searches on fungal infections revealed few data and no prevalence data on fungal keratitis or tinea capitis, even though tinea capitis comprised 34% of patients with dermatophytoses in Jordan. Results: Jordan has 6.3 million inhabitants (65% adults, 6% are >60 years old. The current burden of serious fungal infections in Jordan was estimated to affect ~119,000 patients (1.9%, not including any cutaneous fungal infections. Candidemia was estimated at 316 cases and invasive aspergillosis in leukemia, transplant, and COPD patients at 84 cases. Chronic pulmonary aspergillosis prevalence was estimated to affect 36 post-TB patients, and 175 in total. Allergic bronchopulmonary aspergillosis (ABPA and severe asthma with fungal sensitization (SAFS prevalence in adults with asthma were estimated at 8900 and 11,748 patients. Recurrent vulvovaginal candidiasis was estimated to affect 97,804 patients, using a 6

  3. Physicochemical Properties of Fungal Detoxified Cassava Mash and ...

    African Journals Online (AJOL)

    The physicochemical properties of fungal detoxified cassava mash and sensory characteristics of wheat-detoxified cassava composite doughnuts were investigated. Fungal isolates from soils collected at cassava processing sites were isolated, quantified and identified. Cassava mash from grated tuber was partially ...

  4. Colon diversion versus primary colonic repair in gunshot abdomen with penetrating colon injury in Libyan revolution conflict 2011 (a single center experience).

    Science.gov (United States)

    Mansor, Salah; Bendardaf, Rashed; Bougrara, Muftah; Hagam, Mohamed

    2014-09-01

    The objective of this study is comparing colon diversion versus primary repair in penetrating colon gunshot injuries. A retrospective study of 63 cases of gunshot abdomen with penetrating colon injury were admitted to Al-jalla Hospital in 2011 in Benghazi, Libya. After surgical intervention, these patients were observed for any postoperative complications. During the study period, 63 eligible patients included, 62 (98.4%) were males and 1 (1.6%) was female. And the mean age was 29.24 years. Eighteen patients had an injury on the right side of the colon, while 16, 6, 11, 6, 2, 3, and 1 patients had an injury on the transverse, left, sigmoid, rectum, right transverse, left transverse, and total colonic injury, respectively. In the first group, 23 patients (36.5%) was treated with colon diversion, (2 with Hartmann's operation, 21 with loop colostomy). In the second group, 40 patients (63.4 %) was treated with primary repair. Eighteen (28.5%) with right hemicolectomy, 5 (7.9%) with transverse colon resection and anastomosis, and 17 (26.9%) with simple repair. We evaluate the rate of postoperative complication and compare the postoperative morbidity between both groups. In our study, there was no significant statistical difference between types of operations and rate of complications (P = 0.18). We could not see any advantage of the diversion over the primary repair. To reduce risk of the psychological trauma, complications of colostomy, unnecessary repeated hospitalization, decrease of economic cost, and complications of stoma revision operation, we should consider that the primary repair of penetrating colon injuries is an acceptable alternative method of treatment over the colostomy.

  5. Fungal biogeography. Global diversity and geography of soil fungi.

    Science.gov (United States)

    Tedersoo, Leho; Bahram, Mohammad; Põlme, Sergei; Kõljalg, Urmas; Yorou, Nourou S; Wijesundera, Ravi; Villarreal Ruiz, Luis; Vasco-Palacios, Aída M; Thu, Pham Quang; Suija, Ave; Smith, Matthew E; Sharp, Cathy; Saluveer, Erki; Saitta, Alessandro; Rosas, Miguel; Riit, Taavi; Ratkowsky, David; Pritsch, Karin; Põldmaa, Kadri; Piepenbring, Meike; Phosri, Cherdchai; Peterson, Marko; Parts, Kaarin; Pärtel, Kadri; Otsing, Eveli; Nouhra, Eduardo; Njouonkou, André L; Nilsson, R Henrik; Morgado, Luis N; Mayor, Jordan; May, Tom W; Majuakim, Luiza; Lodge, D Jean; Lee, Su See; Larsson, Karl-Henrik; Kohout, Petr; Hosaka, Kentaro; Hiiesalu, Indrek; Henkel, Terry W; Harend, Helery; Guo, Liang-dong; Greslebin, Alina; Grelet, Gwen; Geml, Jozsef; Gates, Genevieve; Dunstan, William; Dunk, Chris; Drenkhan, Rein; Dearnaley, John; De Kesel, André; Dang, Tan; Chen, Xin; Buegger, Franz; Brearley, Francis Q; Bonito, Gregory; Anslan, Sten; Abell, Sandra; Abarenkov, Kessy

    2014-11-28

    Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and biogeographic patterns remain poorly understood. Using DNA metabarcoding data from hundreds of globally distributed soil samples, we demonstrate that fungal richness is decoupled from plant diversity. The plant-to-fungus richness ratio declines exponentially toward the poles. Climatic factors, followed by edaphic and spatial variables, constitute the best predictors of fungal richness and community composition at the global scale. Fungi show similar latitudinal diversity gradients to other organisms, with several notable exceptions. These findings advance our understanding of global fungal diversity patterns and permit integration of fungi into a general macroecological framework. Copyright © 2014, American Association for the Advancement of Science.

  6. Root-associated fungal communities in three Pyroleae species and their mycobiont sharing with surrounding trees in subalpine coniferous forests on Mount Fuji, Japan.

    Science.gov (United States)

    Jia, Shuzheng; Nakano, Takashi; Hattori, Masahira; Nara, Kazuhide

    2017-11-01

    Pyroleae species are perennial understory shrubs, many of which are partial mycoheterotrophs. Most fungi colonizing Pyroleae roots are ectomycorrhizal (ECM) and share common mycobionts with their Pyroleae hosts. However, such mycobiont sharing has neither been examined in depth before nor has the interspecific variation in sharing among Pyroleae species. Here, we examined root-associated fungal communities in three co-existing Pyroleae species, including Pyrola alpina, Pyrola incarnata, and Orthilia secunda, with reference to co-existing ECM fungi on the surrounding trees in the same soil blocks in subalpine coniferous forests. We identified 42, 75, and 18 fungal molecular operational taxonomic units in P. alpina, P. incarnata, and O. secunda roots, respectively. Mycobiont sharing with surrounding trees, which was defined as the occurrence of the same mycobiont between Pyroleae and surrounding trees in each soil block, was most frequent among P. incarnata (31 of 44 plants). In P. alpina, sharing was confirmed in 12 of 37 plants, and the fungal community was similar to that of P. incarnata. Mycobiont sharing was least common in O. secunda, found in only 5 of 32 plants. Root-associated fungi of O. secunda were dominated by Wilcoxina species, which were absent from the surrounding ECM roots in the same soil blocks. These results indicate that mycobiont sharing with surrounding trees does not equally occur among Pyroleae plants, some of which may develop independent mycorrhizal associations with ECM fungi, as suggested in O. secunda at our research sites.

  7. Fungal atopy in adult cystic fibrosis.

    LENUS (Irish Health Repository)

    Henry, M

    2012-02-03

    This study set out to estimate the prevalence of atopy to a variety of common ubiquitous fungi, including A. fumigatus, in cystic fibrosis (CF), and to evaluate the investigations by which the diagnosis was made. Particular attention was paid to the usefulness of skin testing and immunoassays in detecting which patients had simple fungal atopy, and which patients were at high risk of developing allergic bronchopulmonary mycoses. This cross-sectional study included 21 adult CF patients and 20 matched controls. Serum samples were taken for the measurement of total serum IgE and specific serum IgE to nine common fungi. Immediate hypersensitivity skin prick testing to each of the fungi was also performed. Simple fungal atopy was described in subjects fulfilling the following criteria: total serum IgE > 100 KU l(-1) with specific radioimmunoassay > or = grade 1 to at least one fungus and a positive skin prick test (SPT) > or = 3 mm to the same fungus. \\'High risk\\' for developing allergic bronchopulmonary mycosis (ABPM) was described in subjects fulfilling the following criteria: total serum IgE > 200 KU l(-1) with specific radioimmunoassay > or = grade 2 to at least one fungus and a positive skin prick test (SPT) > or = 6 mm to the same fungus. The adult CF group had a significantly higher total SPT score (P=0.005) and mean total serum IgE (P<0.05) than controls. Forty-three percent of CF patients fulfilled the criteria for fungal atopy to at least a single fungus. Over half this group had an atopic tendency to more than one fungus. Nineteen percent of the CF group were at least \\'high risk\\' of developing ABPM. Skin prick testing is a better marker of fungal atopy and a better predictor of those adult CF patients at higher risk of developing ABPM than specific radioimmunoassay serum testing. There is a high prevalence of fungal atopy in the adult CF population. Total serum IgE and skin prick testing are good predictors of fungal atopy and help predict those at

  8. Transplant tourism and invasive fungal infection

    Directory of Open Access Journals (Sweden)

    I. Al Salmi

    2018-04-01

    Full Text Available Background: Deceased and live-related renal transplants (RTXs are approved procedures that are performed widely throughout the world. In certain regions, commercial RTX has become popular, driven by financial greed. Methods: This retrospective, descriptive study was performed at the Royal Hospital from 2013 to 2015. Data were collected from the national kidney transplant registry of Oman. All transplant cases retrieved were divided into two groups: live-related RTX performed in Oman and commercial-unrelated RTX performed abroad. These groups were then divided again into those with and without evidence of fungal infection, either in the wound or renal graft. Results: A total of 198 RTX patients were identified, of whom 162 (81.8% had undergone a commercial RTX that was done abroad. Invasive fungal infections (IFIs were diagnosed in 8% of patients who had undergone a commercial RTX; of these patients, 76.9% underwent a nephrectomy and 23.1% continued with a functioning graft. None of the patients with RTXs performed at the Royal Hospital contracted an IFI. The most common fungal isolates were Aspergillus species (including Aspergillus flavus, Aspergillus fumigatus, Aspergillus nidulans, and Aspergillus nigricans, followed by Zygomycetes. However, there was no evidence of fungal infection including Aspergillus outside the graft site. Computed tomography (CT findings showed infarction of the graft, renal artery thrombosis, aneurysmal dilatation of the external iliac artery, fungal ball, or just the presence of a perigraft collection. Of the total patients with IFIs, 23.1% died due to septic shock and 53.8% were alive and on hemodialysis. The remaining 23.1% who did not undergo nephrectomy demonstrated acceptable graft function. Conclusions: This is the largest single-center study on commercial RTX reporting the highest number of patients with IFI acquired over a relatively short period of time. Aspergillus spp were the main culprit fungi, with no

  9. Pyrosequencing Reveals Fungal Communities in the Rhizosphere of Xinjiang Jujube

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2015-01-01

    Full Text Available Fungi are important soil components as both decomposers and plant symbionts and play a major role in ecological and biogeochemical processes. However, little is known about the richness and structure of fungal communities. DNA sequencing technologies allow for the direct estimation of microbial community diversity, avoiding culture-based biases. We therefore used 454 pyrosequencing to investigate the fungal communities in the rhizosphere of Xinjiang jujube. We obtained no less than 40,488 internal transcribed spacer (ITS rDNA reads, the number of each sample was 6943, 6647, 6584, 6550, 6860, and 6904, and we used bioinformatics and multivariate statistics to analyze the results. The index of diversity showed greater richness in the rhizosphere fungal community of a 3-year-old jujube than in that of an 8-year-old jujube. Most operational taxonomic units belonged to Ascomycota, and taxonomic analyses identified Hypocreales as the dominant fungal order. Our results demonstrated that the fungal orders are present in different proportions in different sampling areas. Redundancy analysis (RDA revealed a significant correlation between soil properties and the abundance of fungal phyla. Our results indicated lower fungal diversity in the rhizosphere of Xinjiang jujube than that reported in other studies, and we hope our findings provide a reference for future research.

  10. INCIDENCE OF ALLERGIC FUNGAL SINUSITIS AMONG PATIENTS WITH CHRONIC RHINOSINUSITIS

    Directory of Open Access Journals (Sweden)

    Vivek Gupta

    2017-09-01

    Full Text Available BACKGROUND This study aims to evaluate the incidence of allergic fungal sinusitis among patients with chronic rhinosinusitis. Chronic rhinosinusitis (CRS is a widely prevalent condition globally as well as in India. Fungal rhinosinusitis is classified into two subgroups: three invasive forms (acute necrotizing, chronic invasive, granulomatous invasive, and two noninvasive forms (fungal ball and allergic fungal. MATERIALS AND METHODS Patients attending the Department of ENT at Adesh institute of medical science & research, Bathinda (Punjab between Jan 2016 and Dec 2016 one year duration 82 cases were included in this retrospective analysis with features suggestive of chronic rhinosinusitis. Based on clinical, endoscopic and radiological parameters, 82 cases were diagnosed to have rhinosinusitis. In these cases, postoperatively after HPE examination, 16 cases were confirmed to have mycotic infection. RESULTS Out of 16 cases, In Allergic fungal rhino sinusitis(AFRS, Aspergillus flavus (A. flavus was the most common fungus isolated ten cases (71.42%.. In fungal ball, A. flavus was isolated in two cases (14.25% and Aspergillus niger (A. niger was isolated in two cases (14.25%. In invasive fungal rhinosinusitis (IFRS mucormycosis was isolated in two cases (12.5%. CONCLUSION The incidence of ARFS is about 12.2% of chronic rhinosinusitis. The commonest age group is second & third decade

  11. Pectin-based colon-specific drug delivery

    OpenAIRE

    Shailendra Shukla; Deepak Jain; Kavita Verma; Shiddarth Verma

    2011-01-01

    Colon-specific drug delivery have a great importance in the delivery of drugs for the treatment of local colonic, as well as systemic diseases like Crohn′s disease, ulcerative colitis, colorectal cancer, amoebiasis, asthma, arthritis and inflammation which can be achieved by targeted delivery of drug to colon. Specific systemic absorption in the colon gave interesting possibilities for the delivery of protein and peptides. It contains relatively less proteolytic enzyme activities in the colon...

  12. First genomic survey of human skin fungal diversity

    Science.gov (United States)

    Fungal infections of the skin affect 29 million people in the United States. In the first study of human fungal skin diversity, National Institutes of Health researchers sequenced the DNA of fungi that thrive at different skin sites of healthy adults to d

  13. Arbuscular Mycorrhizal Colonization Alters Subcellular Distribution and Chemical Forms of Cadmium in Medicago sativa L. and Resists Cadmium Toxicity

    Science.gov (United States)

    Gao, Yanzheng

    2012-01-01

    Some plants can tolerate and even detoxify soils contaminated with heavy metals. This detoxification ability may depend on what chemical forms of metals are taken up by plants and how the plants distribute the toxins in their tissues. This, in turn, may have an important impact on phytoremediation. We investigated the impact of arbuscular mycorrhizal (AM) fungus, Glomus intraradices, on the subcellular distribution and chemical forms of cadmium (Cd) in alfalfa (Medicago sativa L.) that were grown in Cd-added soils. The fungus significantly colonized alfalfa roots by day 25 after planting. Colonization of alfalfa by G. intraradices in soils contaminated with Cd ranged from 17% to 69% after 25–60 days and then decreased to 43%. The biomass of plant shoots with AM fungi showed significant 1.7-fold increases compared to no AM fungi addition under the treatment of 20 mg·kg−1 Cd. Concentrations of Cd in the shoots of alfalfa under 0.5, 5, and 20 mg·kg−1 Cd without AM fungal inoculation are 1.87, 2.92, and 2.38 times higher, respectively, than those of fungi-inoculated plants. Fungal inoculation increased Cd (37.2–80.5%) in the cell walls of roots and shoots and decreased in membranes after 80 days of incubation compared to untreated plants. The proportion of the inactive forms of Cd in roots was higher in fungi-treated plants than in controls. Furthermore, although fungi-treated plants had less overall Cd in subcellular fragments in shoots, they had more inactive Cd in shoots than did control plants. These results provide a basis for further research on plant-microbe symbioses in soils contaminated with heavy metals, which may potentially help us develop management regimes for phytoremediation. PMID:23139811

  14. Pyrosequencing assessment of rhizosphere fungal communities from a soybean field.

    Science.gov (United States)

    Sugiyama, Akifumi; Ueda, Yoshikatsu; Takase, Hisabumi; Yazaki, Kazufumi

    2014-10-01

    Soil fungal communities play essential roles in soil ecosystems, affecting plant growth and health. Rhizosphere bacterial communities have been shown to undergo dynamic changes during plant growth. This study utilized 454 pyrosequencing to analyze rhizosphere fungal communities during soybean growth. Members of the Ascomycota and Basiodiomycota dominated in all soils. There were no statistically significant changes at the phylum level among growth stages or between bulk and rhizosphere soils. In contrast, the relative abundance of small numbers of operational taxonomic units, 4 during growth and 28 between bulk and rhizosphere soils, differed significantly. Clustering analysis revealed that rhizosphere fungal communities were different from bulk fungal communities during growth stages of soybeans. Taken together, these results suggest that in contrast to rhizosphere bacterial communities, most constituents of rhizosphere fungal communities remained stable during soybean growth.

  15. A novel model of invasive fungal rhinosinusitis in rats.

    Science.gov (United States)

    Zhang, Fang; An, Yunfang; Li, Zeqing; Zhao, Changqing

    2013-01-01

    Invasive fungal rhinosinusitis (IFRS) is a life-threatening inflammatory disease that affects immunocompromised patients, but animal models of the disease are scarce. This study aimed to develop an IFRS model in neutropenic rats. The model was established in three consecutive steps: unilateral nasal obstruction with Merocel sponges, followed by administration of cyclophosphamide (CPA), and, finally, nasal inoculation with Aspergillus fumigatus. Fifty healthy Wistar rats were randomly divided into five groups, with group I as the controls, group II undergoing unilateral nasal obstruction alone, group III undergoing nasal obstruction with fungal inoculation, group IV undergoing nasal obstruction with administration of CPA, and group V undergoing nasal obstruction with administration of CPA and fungal inoculation. Hematology, histology, and mycology investigations were performed. The changes in the rat absolute neutrophil counts (ANCs) were statistically different across the groups. The administration of CPA decreased the ANCs, whereas nasal obstruction with fungal inoculation increased the ANCs, and nasal obstruction did not change them. Histological examination of the rats in group V revealed the hyphal invasion of sinus mucosa and bone, thrombosis, and tissue infarction. No pathology indicative of IFRS was observed in the remaining groups. Positive rates of fungal culture in tissue homogenates from the maxillary sinus (62.5%) and lung (25%) were found in group V, whereas groups I, II, III, and IV showed no fungal culture in the homogenates. A rat IFRS model was successfully developed through nasal obstruction, CPA-induced neutropenia, and fungal inoculation. The disease model closely mimics the pathophysiology of anthropic IFRS.

  16. Spectrum of fungal keratitis:clinicopathologic study of 44 cases

    Directory of Open Access Journals (Sweden)

    Rajpal Singh Punia

    2014-02-01

    Full Text Available AIM:To determine the causative agents of fungal keratitis and study the predisposing factors over a period of ten years in a single tertiary care hospital.METHODS:A retrospective analysis of fungal corneal ulcers was done from 2003-2012. Patients’ clinical data were noted from the file records. Correlation of histopathological diagnosis was done with the report on fungal culture.RESULTS: Mycotic keratitis was established in 44 cases by a positive fungal culture. Direct microscopic examination of potassium hydroxide (KOH mounts revealed fungal elements in 39 cases while 40 cases showed fungus on Gram stained smears. Males (54.55% were more commonly affected than the females (45.45%. The age ranged from 18 to 82 years. Most common age group to be involved was 41-60 years. Predisposing risk factors were seen in 34 (77.27% cases. Most common findings on clinical examination were anterior chamber reaction and conjunctival injection seen in all the cases. Other common findings were stromal infiltration and hypopyon seen in 20 (45.45% and 18 (40.91% cases respectively. On histopathological examination the fungus was typed, as aspergillus in 34 cases while no definite typing was possible in 10 cases. The predominant isolate was aspergillus flavus (59.09% followed by fusarium (15.91%. Mixed fungal and bacterial infection was seen in 3 (6.82% cases.CONCLUSION:Although culture is the gold standard for definitive diagnosis of fungal keratitis, direct microscopic examination of corneal scrapings or histomorphological evaluation of biopsies allow a rapid preliminary diagnosis. Early administration of antifungal treatment helps in preventing dreadful complications.

  17. Potential of small-molecule fungal metabolites in antiviral chemotherapy.

    Science.gov (United States)

    Roy, Biswajit G

    2017-08-01

    Various viral diseases, such as acquired immunodeficiency syndrome, influenza, and hepatitis, have emerged as leading causes of human death worldwide. Scientific endeavor since invention of DNA-dependent RNA polymerase of pox virus in 1967 resulted in better understanding of virus replication and development of various novel therapeutic strategies. Despite considerable advancement in every facet of drug discovery process, development of commercially viable, safe, and effective drugs for these viruses still remains a big challenge. Decades of intense research yielded a handful of natural and synthetic therapeutic options. But emergence of new viruses and drug-resistant viral strains had made new drug development process a never-ending battle. Small-molecule fungal metabolites due to their vast diversity, stereochemical complexity, and preapproved biocompatibility always remain an attractive source for new drug discovery. Though, exploration of therapeutic importance of fungal metabolites has started early with discovery of penicillin, recent prediction asserted that only a small percentage (5-10%) of fungal species have been identified and much less have been scientifically investigated. Therefore, exploration of new fungal metabolites, their bioassay, and subsequent mechanistic study bears huge importance in new drug discovery endeavors. Though no fungal metabolites so far approved for antiviral treatment, many of these exhibited high potential against various viral diseases. This review comprehensively discussed about antiviral activities of fungal metabolites of diverse origin against some important viral diseases. This also highlighted the mechanistic details of inhibition of viral replication along with structure-activity relationship of some common and important classes of fungal metabolites.

  18. Complications of acromegaly: thyroid and colon.

    Science.gov (United States)

    Tirosh, Amit; Shimon, Ilan

    2017-02-01

    In acromegaly the long-term exposure to high growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels may result in specific complications in different human organs, including the thyroid gland and the colon. We will review here the evidence available regarding the characteristic thyroid and colon complications in acromegaly. This review summarizes the published data observing noncancerous structural abnormalities (thyroid nodules, colonic polyps) and thyroid and colon cancer in patients diagnosed with acromegaly. Thyroid micro-carcinomas are probably over-diagnosed among acromegalic patients. In regard to colon cancer, there is no sufficient data to suggest that colon cancer risk is higher in acromegaly compared to the general population.

  19. External coating of colonic anastomoses

    DEFF Research Database (Denmark)

    Pommergaard, Hans-Christian; Achiam, Michael Patrick; Rosenberg, Jacob

    2012-01-01

    Colon anastomotic leakage remains both a frequent and serious complication in gastrointestinal surgery. External coating of colonic anastomoses has been proposed as a means to lower the rate of this complication. The aim of this review was to evaluate existing studies on external coating of colonic...

  20. Lead tolerance of Populus nigra in symbiosis with arbuscular mycorrhizal fungi in relation to physiological parameters

    International Nuclear Information System (INIS)

    Salehi, A.; Tabari, M.; Mohammadi Goltapeh, E.; Shirvani, A.

    2016-01-01

    With the aim to examine lead tolerance of Populus nigra (clone 62/154) in symbiosis witharbuscular mycorrhizal fungi, a greenhouse experiment was carried out in a factorial randomized complete scheme with two factors 1) fungal inoculation in 4 levels (control, inoculation with Glomus mosseae, inoculation with G. intraradices and inoculation with G. mosseae+G. intraradices) and 2) lead in 4 levels (0, 100, 500 and 1000 mg kg-1 soil). Mycorrhizal colonization and physiological parameters of plants were measured at the end of growth season. Results showed that at all Pb levels, the percentage of root mycorrhizal colonization in fungal treatments was significantly higher than that in control treatment (without fungal inoculation), however without significant differences between 3 fungal treatments. Pb treatments had no significant effect on root mycorrhizal colonization of P. nigra plants. Also, photosynthesis, stomatal conductance, transpiration, intercellular CO2 concentration and water use efficiency of P. nigra plants had no significant inhibitory effects versus the control found under Pb and fungal treatments or their interaction.The results of present study demonstrated that fungal treatments had no significant effects on physiological parameters and Pb tolerance of P. nigraplants. While, in relation to mycorrhizal colonization and physiological parameters, P. nigra clone 62/154 showeda good tolerance to Pb stress. So, in further investigations of phytoremediation of lead-contaminated soils, this clone can be considered as a proposed species.

  1. Fungal infections in animals: a patchwork of different situations

    DEFF Research Database (Denmark)

    Seyedmousavi, Seyedmojtaba; Bosco, Sandra De M G; De Hoog, Sybren

    2018-01-01

    The importance of fungal infections in both human and animals has increased over the last decades. This article represents an overview of the different categories of fungal infections that can be encountered in animals originating from environmental sources without transmission to humans....... In addition, the endemic infections with indirect transmission from the environment, the zoophilic fungal pathogens with near-direct transmission, the zoonotic fungi that can be directly transmitted from animals to humans, mycotoxicoses and antifungal resistance in animals will also be discussed....... Opportunistic mycoses are responsible for a wide range of diseases from localized infections to fatal disseminated diseases, such as aspergillosis, mucormycosis, candidiasis, cryptococcosis and infections caused by melanized fungi. The amphibian fungal disease chytridiomycosis and the Bat White-nose syndrome...

  2. Mycorrhizal fungi influence on silver uptake and membrane protein gene expression following silver nanoparticle exposure

    Energy Technology Data Exchange (ETDEWEB)

    Noori, Azam [State University of New York, College of Environmental Science and Forestry (United States); White, Jason C. [Connecticut Agricultural Experiment Station (United States); Newman, Lee A., E-mail: lanewman@esf.edu [State University of New York, College of Environmental Science and Forestry (United States)

    2017-02-15

    The rapid growth of nanotechnology and the high demand for nanomaterial use have greatly increased the risk of particle release into the environment. Understanding nanomaterial interactions with crop species and their associated microorganisms is critical to food safety and security. In the current study, tomato was inoculated with mycorrhizal fungi and subsequently exposed to 12, 24, or 36 mg/kg of 2- or 15-nm silver nanoparticles (Ag-NPs). Mycorrhizal (M) and non-mycorrhizal (NM) tomatoes exposed to 36 mg/kg of 2-nm Ag-NPs accumulated 1300 and 1600 μg/g silver in their tissues, respectively. Mycorrhizal plants accumulated 14% less silver compared to non-mycorrhizal plants. To begin to understand the mechanisms by which plants accumulate NPs, the expression of two aquaporin channel genes, the plasma membrane intrinsic protein (PIP) and the tonoplast membrane intrinsic protein (TIP), and one potassium channel (KC) gene were studied. In non-mycorrhizal plants, the expression of KC, PIP, and TIP was eight, five, and nine times higher than the control, respectively. These expressions for mycorrhizal plants were 5.8, 3.5, and 2 times higher than controls, respectively. The expression of KC and PIP, which are located on the plasma membrane, was 3.5 and 2.5, respectively, times higher than TIP, which is located on the tonoplast. PIP expression was significantly higher in NM tomatoes exposed to 12 mg/kg of 2-nm Ag-NPs compared to M plants. These results show that mycorrhizal colonization decreases Ag accumulation in NP-exposed plants and also moderates changes in expression level of membrane transport proteins.

  3. Mycorrhizal fungi influence on silver uptake and membrane protein gene expression following silver nanoparticle exposure

    International Nuclear Information System (INIS)

    Noori, Azam; White, Jason C.; Newman, Lee A.

    2017-01-01

    The rapid growth of nanotechnology and the high demand for nanomaterial use have greatly increased the risk of particle release into the environment. Understanding nanomaterial interactions with crop species and their associated microorganisms is critical to food safety and security. In the current study, tomato was inoculated with mycorrhizal fungi and subsequently exposed to 12, 24, or 36 mg/kg of 2- or 15-nm silver nanoparticles (Ag-NPs). Mycorrhizal (M) and non-mycorrhizal (NM) tomatoes exposed to 36 mg/kg of 2-nm Ag-NPs accumulated 1300 and 1600 μg/g silver in their tissues, respectively. Mycorrhizal plants accumulated 14% less silver compared to non-mycorrhizal plants. To begin to understand the mechanisms by which plants accumulate NPs, the expression of two aquaporin channel genes, the plasma membrane intrinsic protein (PIP) and the tonoplast membrane intrinsic protein (TIP), and one potassium channel (KC) gene were studied. In non-mycorrhizal plants, the expression of KC, PIP, and TIP was eight, five, and nine times higher than the control, respectively. These expressions for mycorrhizal plants were 5.8, 3.5, and 2 times higher than controls, respectively. The expression of KC and PIP, which are located on the plasma membrane, was 3.5 and 2.5, respectively, times higher than TIP, which is located on the tonoplast. PIP expression was significantly higher in NM tomatoes exposed to 12 mg/kg of 2-nm Ag-NPs compared to M plants. These results show that mycorrhizal colonization decreases Ag accumulation in NP-exposed plants and also moderates changes in expression level of membrane transport proteins.

  4. Fungal Wound Infection

    Centers for Disease Control (CDC) Podcasts

    2016-01-28

    Dr. David Tribble, acting director of the infectious disease clinical research program at Uniformed Services University of the Health Sciences, discusses fungal wound infections after combat trauma.  Created: 1/28/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 1/28/2016.

  5. Changes of AM fungal abundance along environmental gradients in the arid and semi-arid grasslands of northern China.

    Directory of Open Access Journals (Sweden)

    Yajun Hu

    Full Text Available Arbuscular mycorrhizal (AM fungi are ubiquitous symbionts of higher plants in terrestrial ecosystems, while the occurrence of the AM symbiosis is influenced by a complex set of abiotic and biotic factors. To reveal the regional distribution pattern of AM fungi as driven by multiple environmental factors, and to understand the ecological importance of AM fungi in natural ecosystems, we conducted a field investigation on AM fungal abundance along environmental gradients in the arid and semi-arid grasslands of northern China. In addition to plant parameters recorded in situ, soil samples were collected, and soil chemo-physical and biological parameters were measured in the lab. Statistical analyses were performed to reveal the relative contribution of climatic, edaphic and vegetation factors to AM fungal abundance, especially for extraradical hyphal length density (HLD in the soil. The results indicated that HLD were positively correlated with mean annual temperature (MAT, soil clay content and soil pH, but negatively correlated with both soil organic carbon (SOC and soil available N. The multiple regressions and structural equation model showed that MAT was the key positive contributor and soil fertility was the key negative contributor to HLD. Furthermore, both the intraradical AM colonization (IMC and relative abundance of AM fungi, which was quantified by real-time PCR assay, tended to decrease along the increasing SOC content. With regard to the obvious negative correlation between MAT and SOC in the research area, the positive correlation between MAT and HLD implied that AM fungi could potentially mitigate soil carbon losses especially in infertile soils under global warming. However, direct evidence from long-term experiments is still expected to support the AM fungal contribution to soil carbon pools.

  6. An investigation on non-invasive fungal sinusitis; Molecular identification of etiologic agents

    Directory of Open Access Journals (Sweden)

    Abdolrasoul Mohammadi

    2017-01-01

    Full Text Available Background: Fungal sinusitis is increasing worldwide in the past two decades. It is divided into two types including invasive and noninvasive. Noninvasive types contain allergic fungal sinusitis (AFS and fungus ball. AFS is a hypersensitivity reaction to fungal allergens in the mucosa of the sinonasal tract in atopic individuals. The fungus ball is a different type of noninvasive fungal rhinosinusitis which is delineated as an accumulation of debris and fungal elements inside a paranasal sinus. Fungal sinusitis caused by various fungi such as Aspergillus species, Penicillium, Mucor, Rhizopus, and phaeohyphomycetes. The aim of the present study is to identify fungal species isolated from noninvasive fungal sinusitis by molecular methods. Materials and Methods: During 2015–2016, a total of 100 suspected patients were examined for fungal sinusitis. Functional endoscopic sinus surgery was performed using the Messerklinger technique. Clinical samples were identified by phenotypic and molecular methods. Polymerase chain reaction (PCR sequencing of ITS1-5.8S-ITS2 region and PCR-restriction fragment length polymorphism with Msp I restriction enzyme was performed for molecular identification of molds and yeasts, respectively. Results: Twenty-seven out of 100 suspected cases (27% had fungal sinusitis. Nasal congestion (59% and headache (19% were the most common clinical signs among patients. Fifteen patients (55.5% were male and 12 patients (44.5% were female. Aspergillus flavus was the most prevalent fungal species (26%, followed by Penicillium chrysogenum (18.5% and Candida glabrata species complex (15%. Conclusion: Since clinical manifestations, computed tomography scan, endoscopy, and histopathological findings are very nonspecific in AFS and fungus ball; therefore, molecular investigations are compulsory for precise identification of etiologic agents and appropriate management of these fungal infections.

  7. Mycorrhizal Fungal Community of Poplars Growing on Pyrite Tailings Contaminated Site near the River Timok

    Directory of Open Access Journals (Sweden)

    Marina Katanić

    2015-06-01

    Full Text Available Background and Purpose: Mycorrhizal fungi are of high importance for functioning of forest ecosystems and they could be used as indicators of environmental stress. The aim of this research was to analyze ectomycorrhizal community structure and to determine root colonization rate with ectomycorrhizal, arbuscular mycorrhizal and endophytic fungi of poplars growing on pyrite tailings contaminated site near the river Timok (Eastern Serbia. Materials and Methods: Identification of ectomycorrhizal types was performed by combining morphological and anatomical characterization of ectomycorrhizae with molecular identification approach, based on sequencing of the nuclear ITS rRNA region. Also, colonization of poplar roots with ectomycorrhizal, arbuscular mycorrhizal and dark septated endophytic fungi were analysed with intersection method. Results and Conclusions: Physico-chemical analyses of soil from studied site showed unfavourable water properties of soil, relatively low pH and high content of heavy metals (copper and zinc. In investigated samples only four different ectomycorrhizal fungi were found. To the species level were identified Thelephora terrestris and Tomentella ellisi, while two types remained unidentified. Type Thelephora terrestris made up 89% of all ectomycorrhizal roots on studied site. Consequently total values of Species richness index and Shannon-Weaver diversity index were 0.80 and 0.43, respectively. No structures of arbuscular mycorrhizal fungi were recorded. Unfavourable environmental conditions prevailing on investigated site caused decrease of ectomycorrhizal types diversity. Our findings point out that mycorrhyzal fungal community could be used as an appropriate indicator of environmental changes.

  8. Soil fungal effects on floral signals, rewards, and aboveground interactions in an alpine pollination web.

    Science.gov (United States)

    Becklin, Katie M; Gamez, Guadalupe; Uelk, Bryan; Raguso, Robert A; Galen, Candace

    2011-08-01

    Plants interact with above- and belowground organisms; the combined effects of these interactions determine plant fitness and trait evolution. To better understand the ecological and evolutionary implications of multispecies interactions, we explored linkages between soil fungi, pollinators, and floral larcenists in Polemonium viscosum (Polemoniaceae). Using a fungicide, we experimentally reduced fungal colonization of krummholz and tundra P. viscosum in 2008-2009. We monitored floral signals and rewards, interactions with pollinators and larcenists, and seed set for fungicide-treated and control plants. Fungicide effects varied among traits, between interactions, and with environmental context. Treatment effects were negligible in 2008, but stronger in 2009, especially in the less-fertile krummholz habitat. There, fungicide increased nectar sugar content and damage by larcenist ants, but did not affect pollination. Surprisingly, fungicide also enhanced seed set, suggesting that direct resource costs of soil fungi exceed indirect benefits from reduced larceny. In the tundra, fungicide effects were negligible in both years. However, pooled across treatments, colonization by mycorrhizal fungi in 2009 correlated negatively with the intensity and diversity of floral volatile organic compounds, suggesting integrated above- and belowground signaling pathways. Fungicide effects on floral rewards in P. viscosum link soil fungi to ecological costs of pollinator attraction. Trait-specific linkages to soil fungi should decouple expression of sensitive and buffered floral phenotypes in P. viscosum. Overall, this study demonstrates how multitrophic linkages may lead to shifting selection pressures on interaction traits, restricting the evolution of specialization.

  9. Sinonasal Fungal Infections and Complications: A Pictorial Review

    Directory of Open Access Journals (Sweden)

    Jose Gavito-Higuera

    2016-01-01

    Full Text Available Fungal infections of the nose and paranasal sinuses can be categorized into invasive and non-invasive forms. The clinical presentation and course of the disease is primarily determined by the immune status of the host and can range from harmless or subtle presentations to life threatening complications. Invasive fungal infections are categorized into acute, chronic or chronic granulomatous entities. Immunocompromised patients with poorly controlled diabetes mellitus, HIV and patients receiving chemotherapy or chronic oral corticosteroids are mostly affected. Mycetoma and Allergic Fungal Rhinosinusitis are considered non-invasive forms. Computer tomography is the gold-standard in sinonasal imaging and is complimented by Magnetic resonance imaging (MRI as it is superior in the evaluation of intraorbital and intracranial extensions. The knowledge and identification of the characteristic imaging patterns in invasive - and non- invasive fungal rhinosinusitis is crucial and the radiologist plays an important role in refining the diagnosis to prevent a possible fatal outcome.

  10. Antimicrobial fungal endophytes from the botanical medicine goldenseal (Hydrastis canadensis).

    Science.gov (United States)

    Egan, Joseph M; Kaur, Amninder; Raja, Huzefa A; Kellogg, Joshua J; Oberlies, Nicholas H; Cech, Nadja B

    2016-09-01

    The potential of fungal endophytes to alter or contribute to plant chemistry and biology has been the topic of a great deal of recent interest. For plants that are used medicinally, it has been proposed that endophytes might play an important role in biological activity. With this study, we sought to identify antimicrobial fungal endophytes from the medicinal plant goldenseal ( Hydrastis canadensis L., Ranunculaceae), a plant used in traditional medicine to treat infection. A total of 23 fungal cultures were obtained from surface-sterilized samples of H. canadensis roots, leaves and seeds. Eleven secondary metabolites were isolated from these fungal endophytes, five of which had reported antimicrobial activity. Hydrastis canadensis plant material was then analyzed for the presence of fungal metabolites using liquid chromatography coupled to high resolving power mass spectrometry. The antimicrobial compound alternariol monomethyl ether was detected both as a metabolite of the fungal endophyte Alternaria spp. isolated from H. canadensis seeds, and as a component of an extract from the H. canadensis seed material. Notably, fungi of the Alternaria genus were isolated from three separate accessions of H. canadensis plant material collected in a time period spanning 5 years. The concentration of alternariol monomethyl ether (991 mg/kg in dry seed material) was in a similar range to that previously reported for metabolites of ecologically important fungal endophytes. The seed extracts themselves, however, did not possess antimicrobial activity.

  11. Targeting iron acquisition blocks infection with the fungal pathogens Aspergillus fumigatus and Fusarium oxysporum.

    Science.gov (United States)

    Leal, Sixto M; Roy, Sanhita; Vareechon, Chairut; Carrion, Steven deJesus; Clark, Heather; Lopez-Berges, Manuel S; Di Pietro, Antonio; diPietro, Antonio; Schrettl, Marcus; Beckmann, Nicola; Redl, Bernhard; Haas, Hubertus; Pearlman, Eric

    2013-01-01

    Filamentous fungi are an important cause of pulmonary and systemic morbidity and mortality, and also cause corneal blindness and visual impairment worldwide. Utilizing in vitro neutrophil killing assays and a model of fungal infection of the cornea, we demonstrated that Dectin-1 dependent IL-6 production regulates expression of iron chelators, heme and siderophore binding proteins and hepcidin in infected mice. In addition, we show that human neutrophils synthesize lipocalin-1, which sequesters fungal siderophores, and that topical lipocalin-1 or lactoferrin restricts fungal growth in vivo. Conversely, we show that exogenous iron or the xenosiderophore deferroxamine enhances fungal growth in infected mice. By examining mutant Aspergillus and Fusarium strains, we found that fungal transcriptional responses to low iron levels and extracellular siderophores are essential for fungal growth during infection. Further, we showed that targeting fungal iron acquisition or siderophore biosynthesis by topical application of iron chelators or statins reduces fungal growth in the cornea by 60% and that dual therapy with the iron chelator deferiprone and statins further restricts fungal growth by 75%. Together, these studies identify specific host iron-chelating and fungal iron-acquisition mediators that regulate fungal growth, and demonstrate that therapeutic inhibition of fungal iron acquisition can be utilized to treat topical fungal infections.

  12. Targeting iron acquisition blocks infection with the fungal pathogens Aspergillus fumigatus and Fusarium oxysporum.

    Directory of Open Access Journals (Sweden)

    Sixto M Leal

    Full Text Available Filamentous fungi are an important cause of pulmonary and systemic morbidity and mortality, and also cause corneal blindness and visual impairment worldwide. Utilizing in vitro neutrophil killing assays and a model of fungal infection of the cornea, we demonstrated that Dectin-1 dependent IL-6 production regulates expression of iron chelators, heme and siderophore binding proteins and hepcidin in infected mice. In addition, we show that human neutrophils synthesize lipocalin-1, which sequesters fungal siderophores, and that topical lipocalin-1 or lactoferrin restricts fungal growth in vivo. Conversely, we show that exogenous iron or the xenosiderophore deferroxamine enhances fungal growth in infected mice. By examining mutant Aspergillus and Fusarium strains, we found that fungal transcriptional responses to low iron levels and extracellular siderophores are essential for fungal growth during infection. Further, we showed that targeting fungal iron acquisition or siderophore biosynthesis by topical application of iron chelators or statins reduces fungal growth in the cornea by 60% and that dual therapy with the iron chelator deferiprone and statins further restricts fungal growth by 75%. Together, these studies identify specific host iron-chelating and fungal iron-acquisition mediators that regulate fungal growth, and demonstrate that therapeutic inhibition of fungal iron acquisition can be utilized to treat topical fungal infections.

  13. Incidence of Staphylococcus aureus nasal colonization and soft tissue infection among high school football players.

    Science.gov (United States)

    Lear, Aaron; McCord, Gary; Peiffer, Jeffrey; Watkins, Richard R; Parikh, Arpan; Warrington, Steven

    2011-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) skin and soft tissue infections have been documented with increasing frequency in both team and individual sports in recent years. It also seems that the level of MRSA skin and soft tissue infections in the general population has increased. One hundred ninety athletes from 6 local high school football teams were recruited for this prospective observational study to document nasal colonization and the potential role this plays in skin and soft tissue infections in football players and, in particular, MRSA infections. Athletes had nasal swabs done before their season started, and they filled out questionnaires regarding potential risk factors for skin and soft tissue infections. Those enrolled in the study were then observed over the course of the season for skin and soft tissue infections. Those infected had data about their infections collected. One hundred ninety of 386 available student athletes enrolled in the study. Forty-four of the subjects had nasal colonization with methicillin-susceptible S. aureus, and none were colonized with MRSA. There were 10 skin and soft tissue infections (8 bacterial and 2 fungal) documented over the course of the season. All were treated as outpatients with oral or topical antibiotics, and none were considered serious. Survey data from the preseason questionnaire showed 21% with skin infection, 11% with methicillin-susceptible S. aureus, and none with MRSA infection during the past year. Three reported a remote history of MRSA infection. We documented an overall skin infection rate of 5.3% among high school football players over a single season. Our results suggest that skin and soft tissue infection may not be widespread among high school athletes in northeast Ohio.

  14. Production of destruxins from Metarhizium spp. fungi in artificial medium and in endophytically colonized cowpea plants.

    Directory of Open Access Journals (Sweden)

    Patrícia S Golo

    Full Text Available Destruxins (DTXs are cyclic depsipeptides produced by many Metarhizium isolates that have long been assumed to contribute to virulence of these entomopathogenic fungi. We evaluated the virulence of 20 Metarhizium isolates against insect larvae and measured the concentration of DTXs A, B, and E produced by these same isolates in submerged (shaken cultures. Eight of the isolates (ARSEF 324, 724, 760, 1448, 1882, 1883, 3479, and 3918 did not produce DTXs A, B, or E during the five days of submerged culture. DTXs were first detected in culture medium at 2-3 days in submerged culture. Galleria mellonella and Tenebrio molitor showed considerable variation in their susceptibility to the Metarhizium isolates. The concentration of DTXs produced in vitro did not correlate with percent or speed of insect kill. We established endophytic associations of M. robertsii and M. acridum isolates in Vigna unguiculata (cowpeas and Cucumis sativus (cucumber plants. DTXs were detected in cowpeas colonized by M. robertsii ARSEF 2575 12 days after fungal inoculation, but DTXs were not detected in cucumber. This is the first instance of DTXs detected in plants endophytically colonized by M. robertsii. This finding has implications for new approaches to fungus-based biological control of pest arthropods.

  15. Muscarinic Receptor Signaling in Colon Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Rosenvinge, Erik C. von, E-mail: evonrose@medicine.umaryland.edu; Raufman, Jean-Pierre [University of Maryland School of Medicine, Division of Gastroenterology & Hepatology, 22 S. Greene Street, N3W62, Baltimore, MD 21201 (United States); Department of Veterans Affairs, VA Maryland Health Care System, 10 North Greene Street, Baltimore, MD 21201 (United States)

    2011-03-02

    According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer.

  16. Muscarinic Receptor Signaling in Colon Cancer

    International Nuclear Information System (INIS)

    Rosenvinge, Erik C. von; Raufman, Jean-Pierre

    2011-01-01

    According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer

  17. Muscarinic Receptor Signaling in Colon Cancer

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Raufman

    2011-03-01

    Full Text Available According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer.

  18. Diffuse hemangioma of the colon

    International Nuclear Information System (INIS)

    Reis, J.; Caseiro-Alves, F.; Cruz, L.; Moreira, A.; Rebelo, O.

    1995-01-01

    We report two cases of diffuse hemangioma of the colon in adolescent patients. One patient had multiple phleboliths at the lower pelvis identified with plain radiographs of the abdomen. Several aspects were seen on double-contrast enema: luminal narrowing, colonic-wall thickening and submucosal colonic masses that changed in appearance with the degree of colonic distension. Angiography was inconclusive in one case. Use of CT and MR provided relevant information regarding the true extent of the disease, but MR was superior in demonstrating unequivocally the vascular nature of the lesions. (orig.)

  19. Importance of neural mechanisms in colonic mucosal and muscular dysfunction in adult rats following neonatal colonic irritation.

    Science.gov (United States)

    Chaloner, A; Rao, A; Al-Chaer, E D; Greenwood-Van Meerveld, B

    2010-02-01

    Previous studies have shown that early life trauma induced by maternal separation or colonic irritation leads to hypersensitivity to colorectal distension in adulthood. We tested the hypothesis that repetitive colorectal distension in neonates leads to abnormalities in colonic permeability and smooth muscle function in the adult rat. In neonatal rats, repetitive colorectal distension was performed on days 8, 10, and 12. As adults, stool consistency was graded from 0 (formed stool) to 3 (liquid stool). Colonic tissue was isolated for histology and myeloperoxidase levels. The colonic mucosa was placed in modified Ussing chambers for measurements of permeability and short-circuit current responses to forskolin, electrical field stimulation, and carbachol. Segments of colonic musculature were placed in organ baths and contractile response to potassium chloride, electrical field stimulation, and carbachol were determined. In adult rats that experienced neonatal colonic irritation, no significant changes in colonic histology or myeloperoxidase activity were observed; however, stool consistency scores were increased. Mucosal permeability, measured as an increase in basal conductance, was significantly increased but no changes in short-circuit current responses were observed. In adulthood, rats that underwent colorectal distension as neonates exhibited an elevated smooth muscle contractile response to potassium chloride, but no changes in response to electrical field stimulation or carbachol. In summary, neonatal colonic irritation, shown previously to produce colonic hypersensitivity, leads to significant alterations in colonic mucosal and smooth muscle function characterized by loose stools, increased mucosal permeability, and increased smooth muscle contractility in the absence of colon inflammation in adulthood. Published by Elsevier Ltd.

  20. The Fungal Spores Survival Under the Low-Temperature Plasma

    Science.gov (United States)

    Soušková, Hana; Scholtz, V.; Julák, J.; Savická, D.

    This paper presents an experimental apparatus for the decontamination and sterilization of water suspension of fungal spores. The fungicidal effect of stabilized positive and negative corona discharges on four fungal species Aspergillus oryzae, Clacosporium sphaerospermum, Penicillium crustosum and Alternaria sp. was studied. Simultaneously, the slower growing of exposed fungal spores was observed. The obtained results are substantially different in comparison with those of the analogous experiments performed with bacteria. It may be concluded that fungi are more resistant to the low-temperature plasma.

  1. Piriformospora indica root colonization triggers local and systemic root responses and inhibits secondary colonization of distal roots.

    Science.gov (United States)

    Pedrotti, Lorenzo; Mueller, Martin J; Waller, Frank

    2013-01-01

    Piriformosporaindica is a basidiomycete fungus colonizing roots of a wide range of higher plants, including crop plants and the model plant Arabidopsis thaliana. Previous studies have shown that P. indica improves growth, and enhances systemic pathogen resistance in leaves of host plants. To investigate systemic effects within the root system, we established a hydroponic split-root cultivation system for Arabidopsis. Using quantitative real-time PCR, we show that initial P. indica colonization triggers a local, transient response of several defense-related transcripts, of which some were also induced in shoots and in distal, non-colonized roots of the same plant. Systemic effects on distal roots included the inhibition of secondary P. indica colonization. Faster and stronger induction of defense-related transcripts during secondary inoculation revealed that a P. indica pretreatment triggers root-wide priming of defense responses, which could cause the observed reduction of secondary colonization levels. Secondary P. indica colonization also induced defense responses in distant, already colonized parts of the root. Endophytic fungi therefore trigger a spatially specific response in directly colonized and in systemic root tissues of host plants.

  2. Characteristics and determinants of ambient fungal spores in Hualien, Taiwan

    Science.gov (United States)

    Ho, Hsiao-Man; Rao, Carol Y.; Hsu, Hsiao-Hsien; Chiu, Yueh-Hsiu; Liu, Chi-Ming; Chao, H. Jasmine

    Characteristics and determinants of ambient aeroallergens are of much concern in recent years because of the apparent health impacts of allergens. Yet relatively little is known about the complex behaviors of ambient aeroallergens. To address this issue, we monitored ambient fungal spores in Hualien, Taiwan from 1993-1996 to examine the compositions and temporal variations of fungi, and to evaluate possible determinants. We used a Burkard seven-day volumetric spore trap to collect daily fungal spores. Air pollutants, meteorological factors, and Asian dust events were included in the statistical analyses to predict fungal levels. We found that the most dominant fungal categories were ascospores, followed by Cladosporium and Aspergillus/Penicillium. The majority of the fungal categories had significant diurnal and seasonal variations. Total fungi, Cladosporium, Ganoderma, Arthrinium/Papularia, Cercospora, Periconia, Alternaria, Botrytis, and PM 10 had significantly higher concentrations ( p<0.05) during the period affected by Asian dust events. In multiple regression models, we found that temperature was consistently and positively associated with fungal concentrations. Other factors correlated with fungal concentrations included ozone, particulate matters with an aerodynamic diameter less than 10 μm (PM 10), relative humidity, rainfall, atmospheric pressure, total hydrocarbons, carbon monoxide, nitrogen dioxide, and sulfur dioxide. Most of the fungal categories had higher levels in 1994 than in 1995-96, probably due to urbanization of the study area. In this study, we demonstrated complicated interrelationships between fungi and air pollution/meteorological factors. In addition, long-range transport of air pollutants contributed significantly to local aeroallergen levels. Future studies should examine the health impacts of aeroallergens, as well as the synergistic/antagonistic effects of weather, and local and global-scale air pollutions.

  3. Invasive fungal infections in Colombian patients with systemic lupus erythematosus.

    Science.gov (United States)

    Santamaría-Alza, Y; Sánchez-Bautista, J; Fajardo-Rivero, J F; Figueroa, C L

    2018-06-01

    Introduction Systemic lupus erythematosus is an autoimmune disease with multi-organ involvement. Complications, such as invasive fungal infections usually occur in patients with a greater severity of the disease. Objective The objective of this study was to determine the prevalence and risk variables associated with invasive fungal infections in a Colombian systemic lupus erythematosus population. Materials and methods A cross-sectional, retrospective study that evaluated patients with systemic lupus erythematosus for six years. The primary outcome was invasive fungal infection. Descriptive, group comparison and bivariate analysis was performed using Stata 12.0 software. Results Two hundred patients were included in this study; 84.5% of the patients were women and the median age was 36 years; 68% of the subjects had haematological complications; 53.3% had nephropathy; 45% had pneumopathy and 28% had pericardial impairment; 7.5% of patients had invasive fungal infections and the most frequently isolated fungus was Candida albicans. Pericardial disease, cyclophosphamide use, high disease activity, elevated ESR, C3 hypocomplementemia, anaemia and lymphopenia had a significant association with invasive fungal infection ( P lupus erythematosus, which was higher than that reported in other latitudes. In this population the increase in disease activity, the presence of pericardial impairment and laboratory alterations (anaemia, lymphopenia, increased ESR and C3 hypocomplementemia) are associated with a greater possibility of invasive fungal infections. Regarding the use of drugs, unlike other studies, in the Colombian population an association was found only with the previous administration of cyclophosphamide. In addition, patients with invasive fungal infections and systemic lupus erythematosus had a higher prevalence of mortality and hospital readmission compared with patients with systemic lupus erythematosus without invasive fungal infection.

  4. Ignored fungal community in activated sludge wastewater treatment plants: diversity and altitudinal characteristics.

    Science.gov (United States)

    Niu, Lihua; Li, Yi; Xu, Lingling; Wang, Peifang; Zhang, Wenlong; Wang, Chao; Cai, Wei; Wang, Linqiong

    2017-02-01

    Fungi are important contributors to the various functions of activated sludge wastewater treatment plants (WWTPs); however, the diversity and geographic characteristics of fungal populations have remained vastly unexplored. Here, quantitative polymerase chain reaction and 454 pyrosequencing were combined to investigate the abundance and diversity of the activated sludge fungal communities from 18 full-scale municipal WWTPs in China. Phylogenetic taxonomy revealed that the members of the fungal communities were assigned to 7 phyla and 195 genera. Ascomycota and Basidiomycota were the most abundant phyla, dominated by Pluteus, Wickerhamiella, and Penicillium. Twenty-three fungal genera, accounting for 50.1 % of the total reads, were shared by 18 WWTPs and constituted a core fungal community. The fungal communities presented similar community diversity but different community structures across the WWTPs. Significant distance decay relationships were observed for the dissimilarity in fungal community structure and altitudinal distance between WWTPs. Additionally, the community evenness increased from 0.25 to 0.7 as the altitude increased. Dissolved oxygen and the C/N ratio were determined to be the most dominant contributors to the variation in fungal community structure via redundancy analysis. The observed data demonstrated the diverse occurrence of fungal species and gave a marked view of fungal community characteristics based on the previously unexplored fungal communities in activated sludge WWTPs.

  5. Treatment of lingual traumatic ulcer accompanied with fungal infections

    Directory of Open Access Journals (Sweden)

    Sella Sella

    2011-09-01

    Full Text Available Background: Traumatic ulcer is a common form of ulceration occured in oral cavity caused by mechanical trauma, either acute or chronic, resulting in loss of the entire epithelium. Traumatic ulcer often occurs in children that are usually found on buccal mucosa, labial mucosa of upper and lower lip, lateral tongue, and a variety of areas that may be bitten. To properly diagnose the ulcer, dentists should evaluate the history and clinical description in detail. If the lesion is allegedly accompanied by other infections, such as fungal, bacterial or viral infections, microbiological or serological tests will be required. One of the initial therapy given for fungal infection is nystatin which aimed to support the recovery and repair processes of epithelial tissue in traumatic ulcer case. Purpose: This case report is aimed to emphasize the importance of microbiological examination in suspected cases of ulcer accompanied with traumatic fungal infection. Case: A 12-year-old girl came to the clinic of Pediatric Dentistry, Faculty of Dentistry, University of Indonesia on June 9, 2011 accompanied with her mother. The patient who had a history of geographic tongue came with complaints of injury found in the middle of the tongue. The main diagnosis was ulcer accompanied with traumatic fungal infection based on the results of swab examination. Case management: This traumatic ulcer case was treated with Dental Health Education, oral prophylaxis, as well as prescribing and usage instructions of nystatin. The recovery and repair processes of mucosal epithelium of the tongue then occured after the use of nystatin. Conclusion: It can be concluded that microbiological examination is important to diagnose suspected cases of ulcer accompanied with traumatic fungal infection. The appropriate treatment such as nystatin can be given for traumatic fungal infection.Latar belakang: Ulkus traumatic merupakan bentuk umum dari ulserasi rongga mulut yang terjadi akibat trauma

  6. Differential methods of localisation of fungal endophytes in the seagrasses

    Directory of Open Access Journals (Sweden)

    S. Raja

    2016-07-01

    Full Text Available Sections of three seagrass species (Halophila ovalis, Cymodocea serrulata and Halodule pinifolia were assessed for endophytes based on differential staining using light and fluorescence microscopy method. Acridine orange and aniline blue detected endophytic fungi in 20% and 10% of the segments, respectively, whereas lactophenol cotton blue was more sensitive to detect the fungal hyphae in 70% of the segments. Hyphae were the principal fungal structures generally observed under the cuticle, within the epidermal cells, mesophyll (Parenchyma cells and occasionally within the vascular tissue that varied in type, size and location within the leaf tissue. Present study also recorded the sporulation for the first time from the seagrass endophytes. Successfully amplified products of the ITS region of endophytic fungal DNA, directly from seagrass tissue and also from culture-dependent fungal DNA clearly depicted the presence of endophytic fungi in H. ovalis with two banding patterns (903 and 1381 bp confirming the presence of two dominant fungal genera. The fingerprinting of endophytic fungal community within the seagrass tissue was assessed using denaturing gradient gel electrophoresis (DGGE that derived with multiple bands that clarified the presence of more than one taxon within the seagrass tissue.

  7. Biogenic Synthesis, Characterization and Evaluation of Silver Nanoparticles from Aspergillus niger JX556221 Against Human Colon Cancer Cell Line HT-29.

    Science.gov (United States)

    Chengzheng, Wang; Jiazhi, Wen; Shuangjiang, Chen; Swamy, Mallappa Kumara; Sinniah, Uma Rani; Akhtar, Mohd Sayeed; Umar, Ahmad

    2018-05-01

    Nanobiotechnology has emerged as a promising technology to develop new therapeutically active nanomaterials. The present study was aimed to biosynthesize AgNPs extracellularly using Aspergillus niger JX556221 fungal extract and to evaluate their anticancer potential against colon cancer cell line, HT-29. UV-visible spectral characterization of the synthesized AgNPs showed higher absorption peak at 440 nm wavelength. Transmission Electron Microscopy (TEM) analysis revealed the monodispersed nature of synthesized AgNPs occurring in spherical shape with a size in the range of 20-25 nm. Further, characterization using Energy Dispersive Spectroscopy (EDX) confirmed the face-centred cubic crystalline structure of metallic AgNPs. FTIR data revealed the occurrence of various phytochemicals in the cell free fungal extract which substantiated the fungal extract mediated AgNPs synthesis. The cytotoxic effect of AgNPs was studied by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results evidenced the cytotoxic effect of AgNPs on HT-29 cell lines in a dose dependent manner. The highest activity was found at 100 μg/ml concentration after 24 h of incubation. Use of propidium iodide staining examination method confirmed the cytotoxic effect of AgNPs through inducing cell apoptosis. AgNPs cytotoxicity was found to be through elevating reactive oxygen species (ROS), and caspase-3 activation resulting in induced apoptosis. Therefore, this research finding provides an insight towards the development of novel anticancer agents using biological sources.

  8. Colon Cancer Detection by ‘Rendezvous Colonoscopy’: Successful Removal of Stuck Colon Capsule by Conventional Colonoscopy

    Directory of Open Access Journals (Sweden)

    István Rácz

    2010-02-01

    Full Text Available Although capsule retention is a known complication of small bowel capsule endoscopy, initial studies with colon capsule endoscopy (CCE have not reported any capsule retention or sticking neither in the small bowel nor in the colon. We report a complication of CCE when the stuck colon capsule was passed through the malignant colon stricture and removed by the aid of a flexible colonoscope. During CCE in a 76-year-old iron deficiency anemia patient the real-time viewing system indicated the colon capsule to be stuck in a malignant ascending colon stricture for more than two hours. With the aim to avoid complete capsule retention, immediate colonoscopy was performed. The stuck capsule was caught by a polypectomy snare, passed through the tumor stricture and finally removed from the large bowel. The current case describes the usefulness of the real-time viewing system. Similar situations may occur during the forthcoming spread of CCE and the present case is an example of how to manage the potentially risky stuck colon capsule condition.

  9. Production of cellulases by fungal cultures isolated from forest litter soil

    Directory of Open Access Journals (Sweden)

    A. Sri Lakshmi

    2012-06-01

    Full Text Available The aims of this study were the isolation and screening of fungal cultures from forest litter soil for cellulases production. In the present study, four fungal cultures were isolated and identified. Among these fungal cultures, three belonged to the genus Aspergillus and one belonged to the genus Pencillium. These fungal cultures were tested to find their ability to produce cellulases, that catalyze the degradation of cellulose, which is a linear polymer made of glucose subunits linked by beta-1, 4 glycosidic bonds. The fungal isolate 3 (Aspergillus sp. was noticed to show maximum zone of hydrolysis of carboxy-methyl cellulose and produce higher titers of cellulases including exoglucanase, endoglucanase and beta -D-glucosidase. The activities of the cellulases were determined by Filter paper assay (FPA, Carboxy-methly cellulase assay (CMCase and beta -D-glucosidase assay respectively. The total soluble sugar and extracellular protein contents of the fungal filtrates were also determined.

  10. Fungal communities in soils along a vegetative ecotone.

    Science.gov (United States)

    Karst, Justine; Piculell, Bridget; Brigham, Christy; Booth, Michael; Hoeksema, Jason D

    2013-01-01

    We investigated the community composition and diversity of soil fungi along a sharp vegetative ecotone between coastal sage scrub (CSS) and nonnative annual grassland habitat at two sites in coastal California. USA- We pooled soil samples across 29 m transects on either side of the ecotone at each of the two sites, and. using clone libraries of fungal ribosomal DNA, we identified 280 operational taxonomic units (OTUs) from a total 40 g soil. We combined information from partial LSU and ITS sequences and found that the majority of OTUs belonged to the phylum Ascomycota, followed by Basidiomycota. Within the Ascomycota. a quarter of OTUs were Sordariomycetes. 17% were Leotiomycet.es, 16% were Dothideomycetes and the remaining OTUs were distributed among the classes Eurotiomycetes, Pezizomycetes, Lecanoromycetes, Orbiliomycetes and Arthoniomycetes. Within the Basidiomycota. all OTUs but one belonged to the subphylum Agaricomycotina. We also sampled plant communities at the same sites to offer a point of comparison for patterns in richness of fungal communities. Fungal communities had higher alpha and beta diversity than plant communities; fungal communities were approximately 20 times as rich as plant communities and the majority of OTUs were found in single soil samples. Soils harbored a unique mycoflora that did not reveal vegetative boundaries or site differences. High alpha and beta diversity and possible sampling artifacts necessitate extensive sampling to reveal differentiation in these fungal communities.

  11. Fungal Infections in Some Economically Important Freshwater Fishes

    Directory of Open Access Journals (Sweden)

    Zafar Iqbal*, Uzma Sheikh and Rabia Mughal

    2012-06-01

    Full Text Available Aim of this study was to investigate fungal infections in four species of carps including goldfish, Carassius (C. auratus L.; silver carp, Hypophthalmichthys (H. molitrix Richardsons; rahu, Labeo (L. rohita Hamilton and Ctenopharyngodon (C. idella Valenciennes. Nine specimens of each species were studied for the presence of fungal infections. Infected fishes showed clinical signs such as fungal growth on skin, fins, eyes, eroded fins and scales, hemorrhages on body surface and abdominal distension. The specimens from infected organs of fish were inoculated on each, malt extract, Sabouraud dextrose and potato dextrose agars. The fungal colonies of white, black, green, grey and brown colors were observed in the agar plates. Slides were prepared and stained with 0.05% Trypan blue in lactophenol. C. auratus showed the highest infection rate (44.4% followed by H. molitrix and L. rohita (11.1% each. Five fungal species viz. Aspergillus (33.3%, Penicillium (22.2%, Alternaria (27.7%, Blastomyces spp (11.1% and Rhizopus (5.5% were isolated. Posterior part of the fish had significantly (P=0.05 higher (62.5% infection as compared to anterior part (37.5%. The caudal fin with 31.25% infection was the single most affected area. This study showed that most of the fungi isolated from fishes are considered as normal mycoflora, yet many fungi can cause natural infections in ponds and aquarium.

  12. Urotensin-II receptor is over-expressed in colon cancer cell lines and in colon carcinoma in humans.

    Science.gov (United States)

    Federico, Alessandro; Zappavigna, Silvia; Romano, Marco; Grieco, Paolo; Luce, Amalia; Marra, Monica; Gravina, Antonietta Gerarda; Stiuso, Paola; D'Armiento, Francesco Paolo; Vitale, Giovanni; Tuccillo, Concetta; Novellino, Ettore; Loguercio, Carmela; Caraglia, Michele

    2014-01-01

    Urotensin (U)-II receptor (UTR) has been previously reported to be over-expressed in a number of tumours. Whether UTR-related pathway plays a role in colon carcinogenesis is unknown. We evaluated UTR protein and mRNA expression in human epithelial colon cancer cell lines and in normal colon tissue, adenomatous polyps and colon cancer. U-II protein expression was assessed in cancer cell lines. Moreover, we evaluated the effects of U-II(4-11) (an UTR agonist), antagonists and knockdown of UTR protein expression through a specific shRNA, on proliferation, invasion and motility of human colon cancer cells. Cancer cell lines expressed U-II protein and UTR protein and mRNA. By immunohistochemistry, UTR was expressed in 5-30% of epithelial cells in 45 normal controls, in 30-48% in 21 adenomatous polyps and in 65-90% in 48 colon adenocarcinomas. UTR mRNA expression was increased by threefold in adenomatous polyps and eightfold in colon cancer, compared with normal colon. U-II(4-11) induced a 20-40% increase in cell growth while the blockade of the receptor with specific antagonists caused growth inhibition of 20-40%. Moreover, the knock down of UTR with a shRNA or the inhibition of UTR with the antagonist urantide induced an approximately 50% inhibition of both motility and invasion. UTR appears to be involved in the regulation of colon cancer cell invasion and motility. These data suggest that UTR-related pathway may play a role in colon carcinogenesis and that UTR may function as a target for therapeutic intervention in colon cancer. © 2013 Stichting European Society for Clinical Investigation Journal Foundation.

  13. In Winter Wheat, No-Till Increases Mycorrhizal Colonization thus Reducing the Need for Nitrogen Fertilization

    Directory of Open Access Journals (Sweden)

    Julien Verzeaux

    2016-06-01

    Full Text Available Arbuscular mycorrhizal fungi (AMF play a major role in the uptake of nutrients by agricultural plants. Nevertheless, some agricultural practices can interrupt fungal-plant signaling and thus impede the establishment of the mycorrhizal symbiosis. A field experiment performed over a 5-year period demonstrated that both the absence of tillage and of nitrogen (N fertilization improved AMF colonization of wheat roots. Moreover, under no-till conditions, N uptake and aboveground biomass production did not vary significantly between N-fertilized and N-unfertilized plots. In contrast, both N uptake and above ground biomass were much lower when N fertilizer was not added during conventional tillage. This finding strongly suggests that for wheat, no-till farming is a sustainable agricultural system that allows a gradual reduction in N fertilizer use by promoting AMF functionality and at the same time increasing N uptake.

  14. Illumina MiSeq sequencing analysis of fungal diversity in stored dates.

    Science.gov (United States)

    Al-Bulushi, Ismail M; Bani-Uraba, Muna S; Guizani, Nejib S; Al-Khusaibi, Mohammed K; Al-Sadi, Abdullah M

    2017-03-27

    Date palm has been a major fruit tree in the Middle East over thousands of years, especially in the Arabian Peninsula. Dates are consumed fresh (Rutab) or after partial drying and storage (Tamar) during off-season. The aim of the study was to provide in-depth analysis of fungal communities associated with the skin (outer part) and mesocarp (inner fleshy part) of stored dates (Tamar) of two cultivars (Khenizi and Burny) through the use of Illumina MiSeq sequencing. The study revealed the dominance of Ascomycota (94%) in both cultivars, followed by Chytridiomycota (4%) and Zygomycota (2%). Among the classes recovered, Eurotiomycetes, Dothideomycetes, Saccharomycetes and Sordariomycetes were the most dominant. A total of 54 fungal species were detected, with species belonging to Penicillium, Alternaria, Cladosporium and Aspergillus comprising more than 60% of the fungal reads. Some potentially mycotoxin-producing fungi were detected in stored dates, including Aspergillus flavus, A. versicolor and Penicillium citrinum, but their relative abundance was very limited (PerMANOVA analysis revealed the presence of insignificant differences in fungal communities between date parts or date cultivars, indicating that fungal species associated with the skin may also be detected in the mesocarp. It also indicates the possible contamination of dates from different cultivars with similar fungal species, even though if they are obtained from different areas. The analysis shows the presence of different fungal species in dates. This appears to be the first study to report 25 new fungal species in Oman and 28 new fungal species from date fruits. The study discusses the sources of fungi on dates and the presence of potentially mycotoxin producing fungi on date skin and mesocarp.

  15. A Foray into Fungal Ecology: Understanding Fungi and Their Functions Across Ecosystems

    Science.gov (United States)

    Francis, N.; Dunkirk, N. C.; Peay, K.

    2015-12-01

    Despite their incredible diversity and importance to terrestrial ecosystems, fungi are not included in a standard high school science curriculum. This past summer, however, my work for the Stanford EARTH High School Internship program introduced me to fungal ecology through experiments involving culturing, genomics and root dissections. The two fungal experiments I worked on had very different foci, both searching for answers to broad ecological questions of fungal function and physiology. The first, a symbiosis experiment, sought to determine if the partners of the nutrient exchange between pine trees and their fungal symbionts could choose one another. The second experiment, a dung fungal succession project, compared the genetic sequencing results of fungal extractions from dung versus fungal cultures from dung. My part in the symbiosis experiment involved dissection, weighing and encapsulation of root tissue samples characterized based on the root thickness and presence of ectomycorrhizal fungi. The dung fungi succession project required that I not only learn how to culture various genera of dung fungi but also learn how to extract DNA and RNA for sequencing from the fungal tissue. Although I primarily worked with dung fungi cultures and thereby learned about their unique physiologies, I also learned about the different types of genetic sequencing since the project compared sequences of cultured fungi versus Next Generation sequencing of all fungi present within a dung pellet. Through working on distinct fungal projects that reassess how information about fungi is known within the field of fungal ecology, I learned not only about the two experiments I worked on but also many past related experiments and inquiries through reading scientific papers. Thanks to my foray into fungal research, I now know not only the broader significance of fungi in ecological research but also how to design and conduct ecological experiments.

  16. Conjunctival bacterial and fungal flora in clinically normal sheep.

    Science.gov (United States)

    Bonelli, Francesca; Barsotti, Giovanni; Attili, Anna Rita; Mugnaini, Linda; Cuteri, Vincenzo; Preziuso, Silvia; Corazza, Michele; Preziuso, Giovanna; Sgorbini, Micaela

    2014-01-01

    The aim was to identify conjunctival bacterial and fungal flora in clinically normal sheep. Prospective study. Tuscany. 100 eyes from 50 adult Massese female sheep were examined. The sheep included in the study were considered free of anterior ophthalmic abnormalities. Bacteria were identified by morphological assessment, Gram staining, biochemical tests. Identification of filamentous fungi was achieved at the genus level, and Aspergillus species were identified based on keys provided by other authors. Yeast colonies were highlighted, but not identified. Positive cultures were obtained from 100/100 eyes for bacteria, and from 86/100 eyes for fungi. A total of 14 types of bacteria and 5 types of fungi were isolated. Yeasts were isolated from 13/100 eyes. The most frequent fungal isolates were saprophytic fungi. Conjunctival bacterial and fungal flora of clinically normal eyes were reported in sheep. The positivity obtained for conjunctival bacteria was higher compared to findings in the literature by other authors in the same species (100 per cent v 40 per cent), while our results were in line with a recent work performed on mouflons (Ovis Musimon) with a 100 per cent positivity for bacterial conjunctival fornix. In our survey, Gram-positive species were prevalent, as reported by other authors in different species. Few data are available in the literature regarding conjunctival fungal flora in healthy small ruminants. The prevalence of conjunctival fungal flora in this study was higher than findings reported in mouflons (86 per cent v 45 per cent). Differences in fungal prevalence may be due to different methods of managing herds, though further studies are required to verify this hypothesis. The similarities in bacterial and fungal isolates between sheep and mouflons suggest a genera pattern of conjunctival colonisation by bacteria and fungi.

  17. Evaluation of nested PCR in diagnosis of fungal rhinosinusitis.

    Science.gov (United States)

    Badiee, Parisa; Gandomi, Behrooz; Sabz, Gholamabbass; Khodami, Bijan; Choopanizadeh, Maral; Jafarian, Hadis

    2015-02-01

    Given the importance of rapid diagnosis for fungal rhinosinusitis, this study aimed to evaluate the use of nested PCR to identify Aspergillus and Mucor species in clinical samples from patients with suspected fungal rhinosinusitis. Functional endoscopic sinus surgery specimens were collected from 98 patients with rhinosinusitis from 2012 to 2013. All samples were ground and cultured on sabouraud dextrose agar. The isolated fungi were identified based on their macroscopic and microscopic features. Fungal DNA was extracted from the tissue samples and nested PCR was performed with two sets of primers for Mucor and Aspergillus. Direct microscopic showed that 5.1% contained fungal components and 9.2% exhibited growth of fungi in culture. The most common agents isolated were Aspergillus fumigatus (n= 3), Aspergillus flavus (n=2), Penicillium sp (n=3) and Alternaria sp. (n=1). Mucor sp. was identified in the pathology smear from 1 patient. Positive results for fungal rhinosinusitis were obtained for a total of 10.2% by culture or pathology smear. Positive PCR results were obtained in 72 samples for Aspergillus and 31 samples for Mucor. Our results suggest that endoscopic sinus surgery specimens are not suitable for nested PCR, probably because of the accumulation of fungi that contaminate the environmental air. This drawback is a limiting factor for diagnosis with nasal cavity specimens. Therefore, molecular methods and conventional culture techniques are helpful complementary diagnostic methods to detect fungal rhinosinusitis and determine appropriate management for these patients.

  18. Discovery of a novel dual fungal CYP51/human 5-lipoxygenase inhibitor: implications for anti-fungal therapy.

    Directory of Open Access Journals (Sweden)

    Eric K Hoobler

    Full Text Available We report the discovery of a novel dual inhibitor targeting fungal sterol 14α-demethylase (CYP51 or Erg11 and human 5-lipoxygenase (5-LOX with improved potency against 5-LOX due to its reduction of the iron center by its phenylenediamine core. A series of potent 5-LOX inhibitors containing a phenylenediamine core, were synthesized that exhibit nanomolar potency and >30-fold selectivity against the LOX paralogs, platelet-type 12-human lipoxygenase, reticulocyte 15-human lipoxygenase type-1, and epithelial 15-human lipoxygenase type-2, and >100-fold selectivity against ovine cyclooxygenase-1 and human cyclooxygnease-2. The phenylenediamine core was then translated into the structure of ketoconazole, a highly effective anti-fungal medication for seborrheic dermatitis, to generate a novel compound, ketaminazole. Ketaminazole was found to be a potent dual inhibitor against human 5-LOX (IC50 = 700 nM and CYP51 (IC50 = 43 nM in vitro. It was tested in whole blood and found to down-regulate LTB4 synthesis, displaying 45% inhibition at 10 µM. In addition, ketaminazole selectively inhibited yeast CYP51 relative to human CYP51 by 17-fold, which is greater selectivity than that of ketoconazole and could confer a therapeutic advantage. This novel dual anti-fungal/anti-inflammatory inhibitor could potentially have therapeutic uses against fungal infections that have an anti-inflammatory component.

  19. Acute fungal sinusitis in neutropenic patients of Namazi hospital/ Shiraz

    Directory of Open Access Journals (Sweden)

    Parisa Badiee

    2008-09-01

    Full Text Available Introduction: Fungal sinusitis is a well known disease in immunocompromised patients, but recently many reports have indicated an increased prevalence of fungal sinusitis in otherwise healthy individuals. The aim of this study was to assess the frequency of invasive fungal sinusitis (IFS in neutropenic patients and to determine outcome factors that may affect their survival. Methods: A total of 142 patients who were undergoing chemotherapy were followed by clinical and radiological features suggestive of fungal sinusitis. Patients with fever, headache, facial swelling and radiological finding underwent endoscopic sinus surgery. The biopsy materials were studied by mycological and histopathological methods. Results: Eleven from 142 patients were identified to have IFS. The ethiologic agents were Aspergillus flavus (5 cases, Alternaria sp. (3 cases, Aspergillus fumigatus (2 cases and mucor (1 case. Eight of 11 cases died. Conclusions: Invasive fungal sinusitis causes a high rate of mortality among immunocompromised patients. Therefore, early diagnosis with aggressive medical and surgical intervention is critical for survival.

  20. Presentation and management of allergic fungal sinusitis

    International Nuclear Information System (INIS)

    Thahim, K.; Jawaid, M.A.; Marfani, S.

    2007-01-01

    To assess the presentation of allergic fungal sinusitis and describe the line of management in our setup. Culture and sensitivity / fungal stain proven 20 cases of allergic fungal sinusitis were selected for the study, irrespective of age and gender. Data including age, gender, socioeconomic status, signs, symptoms, laboratory findings (especially Immunoglobulin E and eosinophil count) and imaging studies (Computed Tomography and /or Magnetic Resonance Imaging) were noted for the study. Pre and postoperative medical treatment, surgery performed, follow-up; residual/recurrence disease and revised surgery performed were also recorded. In this series, allergic fungal sinusitis was a disease of younger age group with an average age of 20.75 years with male dominance (70%). Poor socioeconomic status (80%), allergic rhinitis (100%) and nasal polyposis (100%) were important associated factors. Nasal obstruction (100%), nasal discharge (90%), postnasal drip (90%) and unilateral nasal and paranasal sinuses involvement (60%) were the commonest presenting features. Aspergillus (60%) was the most common etiological agent. In all cases (100%), increased eosinophil count and IgE levels were present. Orbital (20%) and intracranial (10%) involvement were also seen. Surgical management was preferred in all cases. Functional endoscopic sinus surgery in 90% cases and lateral rhinotomy in 10% cases were performed. Recurrence / residual disease was seen in 20% cases. In this series, allergic fungal sinusitis was seen in immunocompetent, young males, belonging to poor socioeconomic status, suffering from allergic rhinitis and nasal polyposis, presenting with nasal obstruction, nasal discharge and postnasal drip. Functional endoscopic sinus surgery was the most important problem solving procedure while lateral rhinotomy was reserved for extensive disease. (author)

  1. Fungal Iron Biomineralization in Río Tinto

    Directory of Open Access Journals (Sweden)

    Monike Oggerin

    2016-04-01

    Full Text Available Although there are many studies on biomineralization processes, most of them focus on the role of prokaryotes. As fungi play an important role in different geological and biogeochemical processes, it was considered of interest to evaluate their role in a natural extreme acidic environment, Río Tinto, which has a high level of fungal diversity and a high concentration of metals. In this work we report, for the first time, the generation of iron oxyhydroxide minerals by the fungal community in a specific location of the Tinto basin. Using Transmission Electron Microscopy (TEM and High Angle Angular Dark Field coupled with Scanning Transmission Electron Microscopy (HAADF-STEM and Energy-Dispersive X-ray Spectroscopy (EDX, we observed fungal structures involved in the formation of iron oxyhydroxide minerals in mineralized sediment samples from the Río Tinto basin. Although Río Tinto waters are supersaturated in these minerals, they do not precipitate due to their slow precipitation kinetics. The presence of fungi, which simply provide charged surfaces for metal binding, favors the precipitation of Fe oxyhydroxides by overcoming these kinetic barriers. These results prove that the fungal community of Río Tinto participates very actively in the geochemical processes that take place there.

  2. Fungal endophytes of sorghum in Burkina Faso

    DEFF Research Database (Denmark)

    Zida, E P; Thio, I G; Néya, B J

    2014-01-01

    A survey was conducted to assess the natural occurrence and distribution of fungal endophytes in sorghum in relation to plant performance in two distinct agro-ecological zones in Burkina Faso. Sorghum farm-saved seeds were sown in 48 farmers’ fields in Sahelian and North Sudanian zones to produce...... sorghum plants. In each field, leaf samples were collected from five well-developed (performing) and five less-developed (non-performing) plants at 3-5 leaf stage, while at plant maturity leaf, stem and root samples were collected from the same plants and fungal endophytes were isolated. A total of 39...... fungal species belonging to 25 genera were isolated. The most represented genera included Fusarium, Leptosphaeria, Curvularia, Nigrospora and Penicillium. The genera Fusarium and Penicillium occurred significantly higher in performing plants as compared to non-performing plants while the genera...

  3. Exploring the potential of symbiotic fungal endophytes in cereal disease suppression

    DEFF Research Database (Denmark)

    O'Hanlon, Karen; Knorr, Kamilla; Jørgensen, Lise Nistrup

    2012-01-01

    , and environmental and health concerns surrounding the use of chemical treatments. There is currently a demand for new disease control strategies, and one such strategy involves the use of symbiotic fungal endophytes as biological control agents against fungal pathogens in cereals. Despite the fact that biological...... control by symbiotic fungal endophytes has been documented, particularly with respect to clavicipitaceous endophytes in C3 cool-season grasses, this area remains relatively underexplored in cereals. We highlight for the first time the potential in using symbiotic fungal endophytes to control foliar cereal...

  4. Systems biology of fungal infection

    Directory of Open Access Journals (Sweden)

    Fabian eHorn

    2012-04-01

    Full Text Available Elucidation of pathogenicity mechanisms of the most important human pathogenic fungi, Aspergillus fumigatus and Candida albicans, has gained great interest in the light of the steadily increasing number of cases of invasive fungal infections.A key feature of these infections is the interaction of the different fungal morphotypes with epithelial and immune effector cells in the human host. Because of the high level of complexity, it is necessary to describe and understand invasive fungal infection by taking a systems biological approach, i.e., by a comprehensive quantitative analysis of the non-linear and selective interactions of a large number of functionally diverse, and frequently multifunctional, sets of elements, e.g., genes, proteins, metabolites, which produce coherent and emergent behaviours in time and space. The recent advances in systems biology will now make it possible to uncover the structure and dynamics of molecular and cellular cause-effect relationships within these pathogenic interactions.We review current efforts to integrate omics and image-based data of host-pathogen interactions into network and spatio-temporal models. The modelling will help to elucidate pathogenicity mechanisms and to identify diagnostic biomarkers and potential drug targets for therapy and could thus pave the way for novel intervention strategies based on novel antifungal drugs and cell therapy.

  5. Fungal genome resources at NCBI

    Science.gov (United States)

    Robbertse, B.; Tatusova, T.

    2011-01-01

    The National Center for Biotechnology Information (NCBI) is well known for the nucleotide sequence archive, GenBank and sequence analysis tool BLAST. However, NCBI integrates many types of biomolecular data from variety of sources and makes it available to the scientific community as interactive web resources as well as organized releases of bulk data. These tools are available to explore and compare fungal genomes. Searching all databases with Fungi [organism] at http://www.ncbi.nlm.nih.gov/ is the quickest way to find resources of interest with fungal entries. Some tools though are resources specific and can be indirectly accessed from a particular database in the Entrez system. These include graphical viewers and comparative analysis tools such as TaxPlot, TaxMap and UniGene DDD (found via UniGene Homepage). Gene and BioProject pages also serve as portals to external data such as community annotation websites, BioGrid and UniProt. There are many different ways of accessing genomic data at NCBI. Depending on the focus and goal of research projects or the level of interest, a user would select a particular route for accessing genomic databases and resources. This review article describes methods of accessing fungal genome data and provides examples that illustrate the use of analysis tools. PMID:22737589

  6. Human wound colonization by Lucilia eximia and Chrysomya rufifacies (Diptera: Calliphoridae): myiasis, perimortem, or postmortem colonization?

    Science.gov (United States)

    Sanford, Michelle R; Whitworth, Terry L; Phatak, Darshan R

    2014-05-01

    The infestation of human or animal tissues by fly larvae has been given distinctive terminology depending on the timing and location of colonization. Wounds and orifices colonized by Diptera in a living human or animal are typically referred to as myiasis. When the colonization occurs after death, it is referred to as postmortem colonization and can be used to estimate the minimum postmortem interval. What happens when the human, as in the case presented here, has a necrotic limb while the human remains alive, at least for a short period of time? The case presented here documents perimortem wound colonization by Lucilia eximia (Wiedemann) and Chrysomya rufifacies (Macquart) and the considerations for approximating development temperatures and estimating the time of colonization (TOC). This represents the first record of L. eximia in human myiasis in the United States and the first record of the co-occurrence of L. eximia and C. rufifacies in human myiasis in the United States. The TOC was estimated using both ambient and body temperature. Insect colonization before death complicates the estimation of TOC and minimum postmortem interval and illustrates the problem of temperature approximation in forensic entomology casework.

  7. Plant traits determine the phylogenetic structure of arbuscular mycorrhizal fungal communities.

    Science.gov (United States)

    López-García, Álvaro; Varela-Cervero, Sara; Vasar, Martti; Öpik, Maarja; Barea, José M; Azcón-Aguilar, Concepción

    2017-12-01

    Functional diversity in ecosystems has traditionally been studied using aboveground plant traits. Despite the known effect of plant traits on the microbial community composition, their effects on the microbial functional diversity are only starting to be assessed. In this study, the phylogenetic structure of arbuscular mycorrhizal (AM) fungal communities associated with plant species differing in life cycle and growth form, that is, plant life forms, was determined to unravel the effect of plant traits on the functional diversity of this fungal group. The results of the 454 pyrosequencing showed that the AM fungal community composition differed across plant life forms and this effect was dependent on the soil collection date. Plants with ruderal characteristics tended to associate with phylogenetically clustered AM fungal communities. By contrast, plants with resource-conservative traits associated with phylogenetically overdispersed AM fungal communities. Additionally, the soil collected in different seasons yielded AM fungal communities with different phylogenetic dispersion. In summary, we found that the phylogenetic structure, and hence the functional diversity, of AM fungal communities is dependent on plant traits. This finding adds value to the use of plant traits for the evaluation of belowground ecosystem diversity, functions and processes. © 2017 John Wiley & Sons Ltd.

  8. Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase.

    Science.gov (United States)

    Kumar, Vinay; Chattopadhyay, Arnab; Ghosh, Sumit; Irfan, Mohammad; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2016-06-01

    Soya bean (Glycine max) and grass pea (Lathyrus sativus) seeds are important sources of dietary proteins; however, they also contain antinutritional metabolite oxalic acid (OA). Excess dietary intake of OA leads to nephrolithiasis due to the formation of calcium oxalate crystals in kidneys. Besides, OA is also a known precursor of β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), a neurotoxin found in grass pea. Here, we report the reduction in OA level in soya bean (up to 73%) and grass pea (up to 75%) seeds by constitutive and/or seed-specific expression of an oxalate-degrading enzyme, oxalate decarboxylase (FvOXDC) of Flammulina velutipes. In addition, β-ODAP level of grass pea seeds was also reduced up to 73%. Reduced OA content was interrelated with the associated increase in seeds micronutrients such as calcium, iron and zinc. Moreover, constitutive expression of FvOXDC led to improved tolerance to the fungal pathogen Sclerotinia sclerotiorum that requires OA during host colonization. Importantly, FvOXDC-expressing soya bean and grass pea plants were similar to the wild type with respect to the morphology and photosynthetic rates, and seed protein pool remained unaltered as revealed by the comparative proteomic analysis. Taken together, these results demonstrated improved seed quality and tolerance to the fungal pathogen in two important legume crops, by the expression of an oxalate-degrading enzyme. © 2016 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Hydroxyurea therapy in sickle cell anemia patients aids to maintain oral fungal colonization balance.

    Science.gov (United States)

    Salvia, Ana Carolina Rodrigues Danzi; Figueiredo, Maria Stella; Braga, Josefina Aparecida Pellegrini; Pereira, Daniel Freitas Alves; Brighenti, Fernanda Lourenção; Koga-Ito, C Y

    2013-08-01

    The aim of this study was to evaluate the frequency of Candida species and presence of lesions in the oral cavity of patients with sickle cell anemia (SS). The study included 30 patients diagnosed with sickle cell anemia and taking hydroxyurea for at least 90 days (SS/HU+); and 39 patients with sickle cell anemia and without hydroxyurea therapy (SS/HU-). Two control groups were constituted by healthy individuals matched to the test groups in age, gender, and oral conditions (C/HU+ for SS/HU+ and C/HU- for SS/HU-). Oral clinical examination and anamnesis were performed. Yeasts were collected by oral rinses and identified by API system. Antifungal susceptibility evaluation was performed according to the CLSI methodology. Data obtained for microorganisms counts were compared by Student's t test (SS/HU+ vs. C/HU+ and SS/HU- vs. C/HU-) using MINITAB for Windows 1.4. Significance level was set at 5%. No oral candidosis lesions were detected. Significant differences in yeasts counts were observed between SS/HU- group and the respective control, but there were no differences between SS/HU+ and C/HU+. Candida albicans was the most prevalent species in all groups. Candida famata was observed both in SS and control groups. Candida dubliniensis, Candida glabrata, Candida krusei, Candida tropicalis, Candida pelliculosa, and Candida parapsilosis were observed only in SS groups. Most strains were susceptible to all antifungal agents. Hydroxyurea therapy seems to decrease candidal counts and resistance rate in sickle cell anemia patients. However, further studies should be conducted in the future to confirm this finding. Hydroxyurea therapy in sickle cell anemia patients maintains fungal species balance in oral cavity. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Changes in Soil Fungal Community Structure with Increasing Disturbance Frequency.

    Science.gov (United States)

    Cho, Hyunjun; Kim, Mincheol; Tripathi, Binu; Adams, Jonathan

    2017-07-01

    Although disturbance is thought to be important in many ecological processes, responses of fungal communities to soil disturbance have been little studied experimentally. We subjected a soil microcosm to physical disturbance, at a range of frequencies designed to simulate ecological disturbance events. We analyzed the fungal community structure using Illumina HiSeq sequencing of the ITS1 region. Fungal diversity was found to decline with the increasing disturbance frequencies, with no sign of the "humpback" pattern found in many studies of larger sedentary organisms. There is thus no evidence of an effect of release from competition resulting from moderate disturbance-which suggests that competition and niche overlap may not be important in limiting soil fungal diversity. Changing disturbance frequency also led to consistent differences in community composition. There were clear differences in OTU-level composition, with different disturbance treatments each having distinct fungal communities. The functional profile of fungal groups (guilds) was changed by the level of disturbance frequency. These predictable differences in community composition suggest that soil fungi can possess different niches in relation to disturbance frequency, or time since last disturbance. Fungi appear to be most abundant relative to bacteria at intermediate disturbance frequencies, on the time scale we studied here.

  11. An Estimate of the Burden of Fungal Disease in Norway

    Directory of Open Access Journals (Sweden)

    Ingvild Nordøy

    2018-02-01

    Full Text Available The aim of this study was to examine the burden of fungal disease in Norway, contributing to a worldwide effort to improve awareness of the needs for better diagnosis and treatment of such infections. We used national registers and actual data from the Departments of Microbiology from 2015 and estimated the incidence and/or prevalence of superficial, allergic and invasive fungal disease using published reports on specific populations at risk. One in 6 Norwegians suffered from fungal disease: Superficial skin infections (14.3%: 745,600 and recurrent vulvovaginal candidiasis in fertile women (6%: 43,123 were estimated to be the most frequent infections. Allergic fungal lung disease was estimated in 17,755 patients (341/100,000. Pneumocystis jirovecii was diagnosed in 262 patients (5/100,000, invasive candidiasis in 400 patients (7.7/100,000, invasive aspergillosis in 278 patients (5.3/100,000 and mucormycosis in 7 patients (0.1/100,000. Particular fungal infections from certain geographic areas were not observed. Overall, 1.79% of the population was estimated to be affected by serious fungal infections in Norway in 2015. Even though estimates for invasive infections are small, the gravity of such infections combined with expected demographic changes in the future emphasizes the need for better epidemiological data.

  12. Effects of Trichothecene Production on the Plant Defense Response and Fungal Physiology: Overexpression of the Trichoderma arundinaceum tri4 Gene in T. harzianum.

    Science.gov (United States)

    Cardoza, R E; McCormick, S P; Malmierca, M G; Olivera, E R; Alexander, N J; Monte, E; Gutiérrez, S

    2015-09-01

    Trichothecenes are fungal sesquiterpenoid compounds, the majority of which have phytotoxic activity. They contaminate food and feed stocks, resulting in potential harm to animals and human beings. Trichoderma brevicompactum and T. arundinaceum produce trichodermin and harzianum A (HA), respectively, two trichothecenes that show different bioactive properties. Both compounds have remarkable antibiotic and cytotoxic activities, but in addition, trichodermin is highly phytotoxic, while HA lacks this activity when analyzed in vivo. Analysis of Fusarium trichothecene intermediates led to the conclusion that most of them, with the exception of the hydrocarbon precursor trichodiene (TD), have a detectable phytotoxic activity which is not directly related to the structural complexity of the intermediate. In the present work, the HA intermediate 12,13-epoxytrichothec-9-ene (EPT) was produced by expression of the T. arundinaceum tri4 gene in a transgenic T. harzianum strain that already produces TD after transformation with the T. arundinaceum tri5 gene. Purified EPT did not show antifungal or phytotoxic activity, while purified HA showed both antifungal and phytotoxic activities. However, the use of the transgenic T. harzianum tri4 strain induced a downregulation of defense-related genes in tomato plants and also downregulated plant genes involved in fungal root colonization. The production of EPT by the transgenic tri4 strain raised levels of erg1 expression and reduced squalene accumulation while not affecting levels of ergosterol. Together, these results indicate the complex interactions among trichothecene intermediates, fungal antagonists, and host plants. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Imaging of total colonic Hirschsprung disease

    International Nuclear Information System (INIS)

    Stranzinger, Enno; DiPietro, Michael A.; Strouse, Peter J.; Teitelbaum, Daniel H.

    2008-01-01

    Hirschsprung disease (HD) is a functional obstruction of the bowel caused by the absence of intrinsic enteric ganglion cells. The diagnosis of total colonic HD (TCHD) based on contrast enemas is difficult in newborns because radiological findings vary. To evaluate the radiographic and contrast enema findings in patients with pathologically proven TCHD. From 1966 to 2007, 17 records from a total of 31 patients with TCHD were retrospectively evaluated for diameter and shape of the colon, diameter of the small bowel, bowel wall contour, ileal reflux, abdominal calcifications, pneumoperitoneum, filling defects, transitional zones and rectosigmoid index. Three colonic patterns of TCHD were found: microcolon, question-mark-shape colon and normal caliber colon. Additional findings included spasmodic colon, ileal reflux, delayed evacuation and abdominal calcifications. Colonic transitional zones were found in eight patients with TCHD. The diagnosis of TCHD is difficult to establish by contrast enema studies. The length of the aganglionic small bowel and the age of the patient can influence the radiological findings in TCHD. The transitional zone and the rectosigmoid index can be false-positive in TCHD. The colon can appear normal. Consider TCHD if the contrast enema study is normal but the patient remains symptomatic and other causes of distal bowel obstruction have been excluded. (orig.)

  14. Leaf endophyte load influences fungal garden development in leaf-cutting ants

    Directory of Open Access Journals (Sweden)

    Van Bael Sunshine A

    2012-11-01

    Full Text Available Abstract Background Previous work has shown that leaf-cutting ants prefer to cut leaf material with relatively low fungal endophyte content. This preference suggests that fungal endophytes exact a cost on the ants or on the development of their colonies. We hypothesized that endophytes may play a role in their host plants’ defense against leaf-cutting ants. To measure the long-term cost to the ant colony of fungal endophytes in their forage material, we conducted a 20-week laboratory experiment to measure fungal garden development for colonies that foraged on leaves with low or high endophyte content. Results Colony mass and the fungal garden dry mass did not differ significantly between the low and high endophyte feeding treatments. There was, however, a marginally significant trend toward greater mass of fungal garden per ant worker in the low relative to the high endophyte treatment. This trend was driven by differences in the fungal garden mass per worker from the earliest samples, when leaf-cutting ants had been foraging on low or high endophyte leaf material for only 2 weeks. At two weeks of foraging, the mean fungal garden mass per worker was 77% greater for colonies foraging on leaves with low relative to high endophyte loads. Conclusions Our data suggest that the cost of endophyte presence in ant forage material may be greatest to fungal colony development in its earliest stages, when there are few workers available to forage and to clean leaf material. This coincides with a period of high mortality for incipient colonies in the field. We discuss how the endophyte-leaf-cutter ant interaction may parallel constitutive defenses in plants, whereby endophytes reduce the rate of colony development when its risk of mortality is greatest.

  15. Colon and rectal cancer

    International Nuclear Information System (INIS)

    Saldombide, L.; Cordoba, A.

    2010-01-01

    This study is about the diagnosis, therapy and monitoring of colon cancer. The techniques used are the endoscopy with biopsy in the pre and post operative colon surgery, abdominal ultrasound, chest X-ray studies of hemogram as well as liver and renal function

  16. Release and characteristics of fungal fragments in various conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mensah-Attipoe, Jacob [Department of Environmental Science, University of Eastern Finland, Yliopistonranta 1D, P. O. Box 1627, FI-70211 Kuopio (Finland); Saari, Sampo [Department of Physics, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere (Finland); Veijalainen, Anna-Maria; Pasanen, Pertti [Department of Environmental Science, University of Eastern Finland, Yliopistonranta 1D, P. O. Box 1627, FI-70211 Kuopio (Finland); Keskinen, Jorma [Department of Physics, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere (Finland); Leskinen, Jari T.T. [SIB Labs, University of Eastern Finland, Yliopistonranta 1E, P. O. Box 1627, FI-70211, Kuopio (Finland); Reponen, Tiina, E-mail: reponeta@ucmail.uc.edu [Department of Environmental Science, University of Eastern Finland, Yliopistonranta 1D, P. O. Box 1627, FI-70211 Kuopio (Finland); Department of Environmental Health, University of Cincinnati, P.O. Box 670056, Cincinnati, OH 45267-0056 (United States)

    2016-03-15

    Intact spores and submicrometer size fragments are released from moldy building materials during growth and sporulation. It is unclear whether all fragments originate from fungal growth or if small pieces of building materials are also aerosolized as a result of microbial decomposition. In addition, particles may be formed through nucleation from secondary metabolites of fungi, such as microbial volatile organic compounds (MVOCs). In this study, we used the elemental composition of particles to characterize the origin of submicrometer fragments released from materials contaminated by fungi. Particles from three fungal species (Aspergillus versicolor, Cladosporium cladosporioides and Penicillium brevicompactum), grown on agar, wood and gypsum board were aerosolized using the Fungal Spore Source Strength Tester (FSSST) at three air velocities (5, 16 and 27 m/s). Released spores (optical size, d{sub p} ≥ 0.8 μm) and fragments (d{sub p} ≤ 0.8 μm) were counted using direct-reading optical aerosol instruments. Particles were also collected on filters, and their morphology and elemental composition analyzed using scanning electron microscopes (SEMs) coupled with an Energy-Dispersive X-ray spectroscopy (EDX). Among the studied factors, air velocity resulted in the most consistent trends in the release of fungal particles. Total concentrations of both fragments and spores increased with an increase in air velocity for all species whereas fragment–spore (F/S) ratios decreased. EDX analysis showed common elements, such as C, O, Mg and Ca, for blank material samples and fungal growth. However, N and P were exclusive to the fungal growth, and therefore were used to differentiate biological fragments from non-biological ones. Our results indicated that majority of fragments contained N and P. Because we observed increased release of fragments with increased air velocities, nucleation of MVOCs was likely not a relevant process in the formation of fungal fragments. Based

  17. The fungal consortium of Andromeda polifolia in bog habitats

    Directory of Open Access Journals (Sweden)

    N.V. Filippova

    2015-09-01

    Full Text Available (1 Andromeda polifolia (bog rosemary is a common plant species in northern circumboreal peatlands. While not a major peat-forming species in most peatlands, it is characterised by a substantial woody below-ground biomass component that contributes directly to the accumulation of organic matter below the moss surface, as well as sclerophyllous leaf litter that contributes to the accumulation of organic matter above the moss surface. Rather little is known about the fungal communities associated with this plant species. Hence, we investigated the fungal consortium of A. polifolia in three distinct vegetation communities of ombrotrophic bogs near Khanty-Mansiysk, West Siberia, Russia, in 2012 and 2013. These vegetation communities were forested bog (Tr = treed, Sphagnum-dominated lawn (Ln, and Eriophorum-Sphagnum-dominated hummock (Er. (2 In total, 37 fungal taxa, belonging to five classes and 16 families, were identified and described morphologically. Seven fungal species were previously known from Andromeda as host. Others are reported for the first time, thus considerably expanding the fungal consortium of this dwarf shrub. Most taxa were saprobic on fallen leaves of A. polifolia found amongst Sphagnum in the bog. Two taxa were parasitic on living plant tissues and one taxon was saprobic on dead twigs. Three taxa, recorded only on A. polifolia leaves and on no other plant species or materials, may be host-specific to this dwarf shrub. (3 A quantitative analysis of the frequency of occurrence of all taxa showed that one taxon (Coccomyces duplicarioides was very abundant, 64 % of the taxa occurred frequently, and 32 % of the taxa occurred infrequently. The mean Shannon diversity index of the community was 2.4. (4 There were no statistical differences in the fungal community composition of A. polifolia in the three vegetation communities investigated in this study. Redundancy analysis suggested that some fungal taxa were positively, and others

  18. Necrotizing colitis associated with carcinoma of the colon

    International Nuclear Information System (INIS)

    Woo, Seong Ku; Lim, Jae Hoon; Kim, Soon Yong; Ahn, Chi Yul

    1982-01-01

    Necrotizing colitis associated with carcinoma of the colon, known also as obstructive colitis, is a disorder characterized by anulceration and inflammation of the colon proximal to an obstructive lesion, especially carcinoma of the rectosigmoid colon, and in rare instance, leads to acute gangrene of the colon. The authors analyzed radiologic findings in four cases of necrotizing colitis associated with carcinoma of the colon. Barium enema disclosed mucosal edema, nodular filling defects, irregularity of the colonic contour and typical thumbprinting appearance of involved colon proximal to an obstructing carcinoma of the colon. The mechanism of necrotizing colitis was briefly reviewed

  19. Identification of fungal causative agents of rhinosinusitis from Mashhad, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Najafzadeh

    2017-09-01

    Full Text Available Background and Purpose: Rhinosinusitis is a common disorder, influencing approximately 20% of the population at some time of their lives. It was recognized and reported with expanding recurrence over the past two decades worldwide. Undoubtedly, correct diagnosis of fungi in patients with fungal rhinosinusitis affects the treatment planning and prognosis of the patients. Identification of the causative agents using the standard mycological procedures remains difficult and time-consuming. Materials and Methods: Based on clinical and radiological parameters, 106 patients suspected of fungal rhinosinusitis were investigated in this cross-sectional prospective study from April 2012 to March 2016 at an otorhinolaryngology department. In this study, internal transcribed spacer (ITS and calmodulin (CaM sequencing were respectively validated as reliable techniques for the identification of Mucorales and Aspergillus to species level (both agents of fungal rhinosinusitis. Results: Of these, 63 (59.4% patients were suspected of allergic fungal rhinosinusitis (AFRS, 40 (37.7% patients suspected of acute invasive fungal rhinosinusitis (AIFRS, and 3 (2.8% patients suspected of fungus ball. In patients suspected of AFRS, AIFRS, and fungus ball only 7, 29, and 1 had positive fungal culture, respectively. After ITS and CaM sequencing, Aspergillus flavus was the most common species isolated from non-invasive forms, and A. flavus and Rhizopus oryzae were more frequently isolated from invasive forms. Conclusion: Aspergillus flavus is the most common agent of fungal rhinosinusitis in Iran, unlike most other reports from throughout the world stating that A. fumigatus is the most frequent causative agent of this disease.

  20. Host plant quality mediates competition between arbuscular mycorrhizal fungi

    NARCIS (Netherlands)

    Knegt, B.; Jansa, J.; Franken, O.; Engelmoer, D.J.P.; Werner, G.D.A.; Bücking, H.; Kiers, E.T.

    2016-01-01

    Arbuscular mycorrhizal fungi exchange soil nutrients for carbon from plant hosts. Empirical works suggests that hosts may selectively provide resources to different fungal species, ultimately affecting fungal competition. However, fungal competition may also be mediated by colonization strategies of

  1. Clinicopathologic assessment of Candida colonization of oral leukoplakia.

    Science.gov (United States)

    Sarkar, Reena; Rathod, G P

    2014-01-01

    Leukoplakia is the most common premalignant lesion of the oral mucosa. We studied the colonization of Candida in oral leukoplakia using direct microscopy, culture and histopathology to determine if there is a statistical correlation between Candida invasion and the clinical appearance and presence of epithelial dysplasia in leukoplakia. Samples were collected from 40 patients with oral leukoplakia and 21 controls. The swabs collected were used to inoculate Sabouraud's dextrose agar slant and for direct microscopy with Gram's stain. Culture growths were subjected to germ tube and corn meal agar tests to differentiate between Candida albicans and non-albicans groups. Biopsies were also done in all patients for histopathological confirmation; Gomori's methanamine silver stain was used to identify fungal invasion of lesional epithelium. Nineteen cases of leukoplakia showed Candida on direct smears, compared to 3 controls. Eighteen cases and one control showed growth of Candida on culture. Non-homogenous leukoplakia showed a higher positivity rate on microscopy and culture than homogenous lesions. All these correlations were statistically significant. Forty percent of leukoplakia cases were simultaneously positive for Candida on direct microscopy, culture and histopathologic evaluation. No significant difference was found between non-dysplastic and distinctly dysplastic lesions with respect to Candida detection on microscopy or culture.

  2. Fungal/mycotic diseases of poultry-diagnosis, treatment and control: a review.

    Science.gov (United States)

    Dhama, Kuldeep; Chakraborty, Sandip; Verma, Amit Kumar; Tiwari, Ruchi; Barathidasan, Rajamani; Kumar, Amit; Singh, Shambhu Dayal

    2013-12-01

    Fungal/mycotic diseases cause significant economic losses to the poultry industry either due to their direct infectious nature or due to production of mycotoxins, the secondary fungal metabolites produced in grains or poultry feed. Several fungi have created havoc in the poultry industry and some of them cause direct harm to human health due to their zoonotic implications. They are responsible for high morbidity and mortality, especially in young birds and cause stunted growth and diarrhea; and fatal encephalitis. Mycotic dermatitis is a possible health hazard associated with poultry houses. Mycotoxins are the leading cause of producing immunosuppression in birds, which makes them prone to several bacterial and viral infections leading to huge economic losses to the poultry industry. In comparison to bacterial and viral diseases, advances in diagnosis, treatment, prevention and control of fungal diseases in poultry has not taken much attention. Recently, molecular biological tools have been explored for rapid and accurate diagnosis of important fungal infections. Effective prevention and control measures include: appropriate hygiene, sanitation and disinfection, strict biosecurity programme and regular surveillance/monitoring of fungal infections as well as following judicious use of anti-fungal drugs. Precautionary measures during crop production, harvesting and storing and in feed mixing plants can help to check the fungal infections including health hazards of mycotoxins/mycotoxicosis. The present review describes the fungal pathogens causing diseases in poultry/birds, especially focusing to their diagnosis, prevention and control measures, which would help in formulating appropriate strategies to have a check and control on these unwanted troubles to the poultry producers/farmers.

  3. The Usefulness of Intraoperative Colonic Irrigation and Primary Anastomosis in Patients Requiring a Left Colon Resection.

    Science.gov (United States)

    Hong, Youngki; Nam, Soomin; Kang, Jung Gu

    2017-06-01

    The aim of this study is to assess the short-term outcome of intraoperative colonic irrigation and primary anastomosis and to suggest the usefulness of the procedure when a preoperative mechanical bowel preparation is inappropriate. This retrospective study included 38 consecutive patients (19 male patients) who underwent intraoperative colonic irrigation and primary anastomosis for left colon disease between January 2010 and December 2016. The medical records of the patients were reviewed to evaluate the patients' characteristics, operative data, and postoperative short-term outcomes. Twenty-nine patients had colorectal cancer, 7 patients had perforated diverticulitis, and the remaining 2 patients included 1 with sigmoid volvulus and 1 with a perforated colon due to focal colonic ischemia. A diverting loop ileostomy was created in 4 patients who underwent a low anterior resection. Complications occurred in 15 patients (39.5%), and the majority was superficial surgical site infections (18.4%). Anastomotic leakage occurred in one patient (2.6%) who underwent an anterior resection due sigmoid colon cancer with obstruction. No significant difference in overall postoperative complications and superficial surgical site infections between patients with obstruction and those with peritonitis were noted. No mortality occurred during the first 30 postoperative days. The median hospital stay after surgery was 15 days (range, 8-39 days). Intraoperative colonic irrigation and primary anastomosis seem safe and feasible in selected patients. This procedure may reduce the burden of colostomy in patients requiring a left colon resection with an inappropriate preoperative mechanical bowel preparation.

  4. Chronic invasive fungal rhinosinusitis by Paecilomyces variotii: A rare case report

    Directory of Open Access Journals (Sweden)

    T Swami

    2016-01-01

    Full Text Available Fungal infection of the paranasal sinuses is an increasingly recognised entity, both in normal and immunocompromised individuals. The recent increase in mycotic nasal and paranasal infections is due to both improved diagnostic research and an increase in the conditions that favour fungal infection. Aspergillus, Candida, and Mucor species are the most common causative agents of fungal sinusitis, but infection with lesser known species have been reported across the world infrequently. This article reviews and presents a case report of chronic fungal sinusitis in an immunocompetent adult male infected with Paecilomyces variotii which is opportunistic soil saprophyte, uncommon to humans.

  5. Acute pseudo-obstruction of the colon

    International Nuclear Information System (INIS)

    Beese, M.; Heller, M.

    1988-01-01

    The radiological correlate to the pseudo-obstruction of the colon is not specific, but it does supply a pointer to the disease of it shows dilation of the caecum, colon ascendens and colon transversum with air-pockets and reflected imaging as well as a usually not dilated colon descendens with remarkably little air. To make the diagnosis quite sure we must exclude intestinal obstruction by using X-ray contrast media or by coloscopy. (orig./GDG) [de

  6. Colonic motility and enema spreading

    International Nuclear Information System (INIS)

    Hardy, J.G.; Wood, E.; Clark, A.G.; Reynolds, J.R.; Queen's Medical Centre, Nottingham

    1986-01-01

    Radiolabelled enema solution was administered to eight healthy subjects, both in fasted and fed states. Enema spreading was monitored over a 4-h period using gamma scintigraphy and colonic motility was recorded simultaneously using a pressure sensitive radiotelemetry capsule. The rate and extent of enema dispersion were unaffected by eating. Spreading could be correlated with colonic motility and was inhibited by aboral propulsion of the colonic contents. (orig.)

  7. Primary closure in colon trauma.

    Science.gov (United States)

    Salinas-Aragón, Luis Enrique; Guevara-Torres, Lorenzo; Vaca-Pérez, Enrique; Belmares-Taboada, Jaime Arístides; Ortiz-Castillo, Fátima de Guadalupe; Sánchez-Aguilar, Martín

    2009-01-01

    Primary repair of colon injuries is an accepted therapeutic option; however, controversy persists regarding its safety. Our objective was to report the evolution and presence of complications in patients with colon injury who underwent primary closure and to determine if the time interval (>6 h), degree of injury, contamination, anatomic site injured, PATI (Penetrating Abdominal Trauma Index) >25, and the presence of other injuries in colon trauma are associated with increased morbidity and mortality. This was a prospective, observational, longitudinal and descriptive study conducted at the Central Hospital "Dr. Ignacio Morones Prieto," San Luis Potosí, Mexico, from January 1, 2003 to December 31, 2007. We included patients with abdominal trauma with colon injury subjected to surgical treatment. chi(2) was used for basic statistical analysis. There were 481 patients with abdominal trauma who underwent surgery; 77(16.1%) had colon injury. Ninety percent (n = 69) were treated in the first 6 h; 91% (n = 70) were due to penetrating injuries, and gunshot wound accounted for 48% (n = 37). Transverse colon was the most frequently injured (38%) (n = 29). Grade I and II injuries accounted for 75.3% (n = 58). Procedures included primary repair (76.66 %) (n = 46); resection with anastomosis (8.3%) (n = 5); and colostomy (15%) (n = 9). Associated injuries were present in 76.6% (n = 59). There was some degree of contamination in 85.7% (n = 66); 82.8% (58) had PATI colon injury. Primary repair is a safe procedure for treatment of colon injuries. Patients with primary repair had lower morbidity (p <0.009). Surgery during the first 6 h (p <0.006) and in hemodynamically stable patients (p <0.014) had a lower risk of complications.

  8. The burden of serious human fungal infections in Brazil.

    Science.gov (United States)

    Giacomazzi, Juliana; Baethgen, Ludmila; Carneiro, Lilian C; Millington, Maria Adelaide; Denning, David W; Colombo, Arnaldo L; Pasqualotto, Alessandro C

    2016-03-01

    In Brazil, human fungal infections are prevalent, however, these conditions are not officially reportable diseases. To estimate the burden of serious fungal diseases in 1 year in Brazil, based on available data and published literature. Historical official data from fungal diseases were collected from Brazilian Unified Health System Informatics Department (DATASUS). For fungal diseases for which no official data were available, assumptions of frequencies were made by estimating based on published literature. The incidence (/1000) of hospital admissions for coccidioidomycosis was 7.12; for histoplasmosis, 2.19; and for paracoccidioidomycosis, 7.99. The estimated number of cryptococcal meningoencephalitis cases was 6832. Also, there were 4115 cases of Pneumocystis pneumonia in AIDS patients per year, 1 010 465 aspergillosis and 2 981 416 cases of serious Candida infections, including invasive and non-invasive diseases. In this study, we demonstrate that more than 3.8 million individuals in Brazil may be suffering from serious fungal infections, mostly patients with malignant cancers, transplant recipients, asthma, previous tuberculosis, HIV infection and those living in endemic areas for truly pathogenic fungi. The scientific community and the governmental agencies should work in close collaboration in order to reduce the burden of such complex, difficult-to-diagnose and hard to treat diseases. © 2015 Blackwell Verlag GmbH.

  9. CNS fungal meningitis to the "Top of the basilar"

    Institute of Scientific and Technical Information of China (English)

    Logan CS; Kirschner RC; Simonds GR

    2013-01-01

    Central nervous system(CNS) infections are a rare complication of epidural steroid injections and without strong clinical suspicion, fungal organisms may be overlooked among the long differential of causes of meningitis.Rare sequela of fungal meningitis is the development of stroke.To our knowledge, we present the first case of post epidural steroid injection(ESI) fungal meningitis leading toa basilar artery stroke, otherwise known as“top of the basilar” syndrome.We present a49-year-old female with a history ofESIs who presented to the emergency department with headache, neck stiffness, and abdominal pain.She was discharged after her labs and symptoms were deemed inconsistent with meningitis.She was eventually admitted and twelve days after her originalED visit, she was diagnosed with meningitis and started on anti-fungal treatment.She was discharged88 days later but was readmitted due to left sided weakness and mental status changes.She quickly lost motor and bulbar functions.AnMRA showed diminished distal flow through the basilar artery, suggesting near complete occlusion.Although appropriate long term anti-fungal treatment was started, the patient still succumbed to a rare vascular event.Physicians who are treating patients forESI meningitis should be aware of the potential for vasculitic and encephalitic complications.

  10. Cell-specific expression of plant nutrient transporter genes in orchid mycorrhizae.

    Science.gov (United States)

    Fochi, Valeria; Falla, Nicole; Girlanda, Mariangela; Perotto, Silvia; Balestrini, Raffaella

    2017-10-01

    Orchid mycorrhizal protocorms and roots are heterogeneous structures composed of different plant cell-types, where cells colonized by intracellular fungal coils (the pelotons) are close to non-colonized plant cells. Moreover, the fungal coils undergo rapid turnover inside the colonized cells, so that plant cells containing coils at different developmental stages can be observed in the same tissue section. Here, we have investigated by laser microdissection (LMD) the localization of specific plant gene transcripts in different cell-type populations collected from mycorrhizal protocorms and roots of the Mediterranean orchid Serapias vomeracea colonized by Tulasnella calospora. RNAs extracted from the different cell-type populations have been used to study plant gene expression, focusing on genes potentially involved in N uptake and transport and previously identified as up-regulated in symbiotic protocorms. Results clearly showed that some plant N transporters are differentially expressed in cells containing fungal coils at different developmental stages, as well as in non-colonized cells, and allowed the identification of new functional markers associated to coil-containing cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Geographic Variation in Festuca rubra L. Ploidy Levels and Systemic Fungal Endophyte Frequencies.

    Directory of Open Access Journals (Sweden)

    Serdar Dirihan

    Full Text Available Polyploidy and symbiotic Epichloë fungal endophytes are common and heritable characteristics that can facilitate environmental range expansion in grasses. Here we examined geographic patterns of polyploidy and the frequency of fungal endophyte colonized plants in 29 Festuca rubra L. populations from eight geographic sites across latitudes from Spain to northernmost Finland and Greenland. Ploidy seemed to be positively and negatively correlated with latitude and productivity, respectively. However, the correlations were nonlinear; 84% of the plants were hexaploids (2n = 6x = 42, and the positive correlation between ploidy level and latitude is the result of only four populations skewing the data. In the southernmost end of the gradient 86% of the plants were tetraploids (2n = 4x = 28, whereas in the northernmost end of the gradient one population had only octoploid plants (2n = 8x = 56. Endophytes were detected in 22 out of the 29 populations. Endophyte frequencies varied among geographic sites, and populations and habitats within geographic sites irrespective of ploidy, latitude or productivity. The highest overall endophyte frequencies were found in the southernmost end of the gradient, Spain, where 69% of plants harbored endophytes. In northern Finland, endophytes were detected in 30% of grasses but endophyte frequencies varied among populations from 0% to 75%, being higher in meadows compared to riverbanks. The endophytes were detected in 36%, 30% and 27% of the plants in Faroe Islands, Iceland and Switzerland, respectively. Practically all examined plants collected from southern Finland and Greenland were endophyte-free, whereas in other geographic sites endophyte frequencies were highly variable among populations. Common to all populations with high endophyte frequencies is heavy vertebrate grazing. We propose that the detected endophyte frequencies and ploidy levels mirror past distribution history of F. rubra after the last glaciation

  12. Bacterial colonization of colonic crypt mucous gel and disease activity in ulcerative colitis.

    LENUS (Irish Health Repository)

    Rowan, Fiachra

    2012-02-01

    OBJECTIVE: To optimize total bacterial 16S rRNA quantification in microdissected colonic crypts in healthy controls and patients with ulcerative colitis (UC) and to characterize the findings with disease activity. BACKGROUND: Microscopic and molecular techniques have recently converged to allow bacterial enumeration in remote anatomic locations [eg, crypt-associated mucous gel (CAMG)]. The aims of this study were to combine laser capture microdissection (LCM) and 16S rRNA-based quantitative polymerase chain reaction (qPCR) to determine total bacterial copy number in CAMG both in health and in UC and to characterize the findings with disease activity. METHODS: LCM was used to microdissect CAMG from colonic mucosal biopsies from controls (n = 20) and patients with acute (n = 10) or subacute (n = 10) UC. Pan-bacterial 16S rRNA copy number per millimeter square in samples from 6 locations across the large bowel was obtained by qPCR using Desulfovibrio desulfuricans as a reference strain. Copy numbers were correlated with the UC disease activity index (UCDAI) and the simple clinical colitis activity index (SCCAI). RESULTS: Bacterial colonization of CAMG was detectable in all groups. Copy numbers were significantly reduced in acute UC. In subacute colitis, there was a positive correlation between copy number and UCDAI and SCCAI in the ascending, transverse and sigmoid colon. CONCLUSIONS: This study describes a sensitive method of quantitatively assessing bacterial colonization of the colonic CAMG. A positive correlation was found between CAMG bacterial load and subacute disease activity in UC, whereas detectable bacterial load was reduced in acute UC.

  13. Multidetector CT of the colon

    International Nuclear Information System (INIS)

    Luboldt, W.; Hoepffner, N.; Holzer, K.

    2003-01-01

    Multidetector technology, enabling faster imaging, higher spatial resolution and reduction in radiation dose, increases the role of CT in colonic diagnostic. The higher spatial resolution in the z-direction also changes the way to analyze the images. Instead of reading axial sections, now the colon can be systematically assessed in 3D by scrolling through multiplanar reconstructions or in CT colonography by virtual endoscopy. With ongoing improvements in computer-aided diagnosis CT colonography becomes an alternative to fiberoptic colonocopy for screening (http://www.multiorganscreening.org). In this article we propose a CT examination protocol for the colon, describe the typical imaging findings of different colonic diseases, and summarize the current status of CT colonography. (orig.)

  14. Fermented whey as poultry feed additive to prevent fungal contamination.

    Science.gov (United States)

    Londero, Alejandra; León Peláez, María A; Diosma, Gabriela; De Antoni, Graciela L; Abraham, Analía G; Garrote, Graciela L

    2014-12-01

    Fungal contamination of poultry feed causes economic losses to industry and represents a potential risk to animal health. The aim of the present study was to analyze the effectiveness of whey fermented with kefir grains as additive to reduce fungal incidence, thus improving feed safety. Whey fermented for 24 h at 20 °C with kefir grains (100 g L(-1) ) reduced conidial germination of Aspergillus flavus, Aspergillus parasiticus, Aspergillus terreus, Aspergillus fumigatus, Penicillium crustosum, Trichoderma longibrachiatum and Rhizopus sp. Poultry feed supplemented with fermented whey (1 L kg(-1) ) was two to four times more resistant to fungal contamination than control feed depending on the fungal species. Additionally, it contained kefir microorganisms at levels of 1 × 10(8) colony-forming units (CFU) kg(-1) of lactic acid bacteria and 6 × 10(7) CFU kg(-1) of yeasts even after 30 days of storage. Fermented whey added to poultry feed acted as a biopreservative, improving its resistance to fungal contamination and increasing its shelf life. © 2014 Society of Chemical Industry.

  15. Nestedness in Arbuscular Mycorrhizal Fungal Communities along Soil pH Gradients in Early Primary Succession: Acid-Tolerant Fungi Are pH Generalists.

    Science.gov (United States)

    Kawahara, Ai; An, Gi-Hong; Miyakawa, Sachie; Sonoda, Jun; Ezawa, Tatsuhiro

    2016-01-01

    Soil acidity is a major constraint on plant productivity. Arbuscular mycorrhizal (AM) fungi support plant colonization in acidic soil, but soil acidity also constrains fungal growth and diversity. Fungi in extreme environments generally evolve towards specialists, suggesting that AM fungi in acidic soil are acidic-soil specialists. In our previous surveys, however, some AM fungi detected in strongly acidic soils could also be detected in a soil with moderate pH, which raised a hypothesis that the fungi in acidic soils are pH generalists. To test the hypothesis, we conducted a pH-manipulation experiment and also analyzed AM fungal distribution along a pH gradient in the field using a synthesized dataset of the previous and recent surveys. Rhizosphere soils of the generalist plant Miscanthus sinensis were collected both from a neutral soil and an acidic soil, and M. sinensis seedlings were grown at three different pH. For the analysis of field communities, rhizosphere soils of M. sinensis were collected from six field sites across Japan, which covered a soil pH range of 3.0-7.4, and subjected to soil trap culture. AM fungal community compositions were determined based on LSU rDNA sequences. In the pH-manipulation experiment the acidification of medium had a significant impact on the compositions of the community from the neutral soil, but the neutralization of the medium had no effect on those of the community from the acidic soil. Furthermore, the communities in lower -pH soils were subsets of (nested in) those in higher-pH soils. In the field communities a significant nestedness pattern was observed along the pH gradient. These observations suggest that the fungi in strongly acidic soils are pH generalists that occur not only in acidic soil but also in wide ranges of soil pH. Nestedness in AM fungal community along pH gradients may have important implications for plant community resilience and early primary succession after disturbance in acidic soils.

  16. Nestedness in Arbuscular Mycorrhizal Fungal Communities along Soil pH Gradients in Early Primary Succession: Acid-Tolerant Fungi Are pH Generalists

    Science.gov (United States)

    Kawahara, Ai; An, Gi-Hong; Miyakawa, Sachie; Sonoda, Jun

    2016-01-01

    Soil acidity is a major constraint on plant productivity. Arbuscular mycorrhizal (AM) fungi support plant colonization in acidic soil, but soil acidity also constrains fungal growth and diversity. Fungi in extreme environments generally evolve towards specialists, suggesting that AM fungi in acidic soil are acidic-soil specialists. In our previous surveys, however, some AM fungi detected in strongly acidic soils could also be detected in a soil with moderate pH, which raised a hypothesis that the fungi in acidic soils are pH generalists. To test the hypothesis, we conducted a pH-manipulation experiment and also analyzed AM fungal distribution along a pH gradient in the field using a synthesized dataset of the previous and recent surveys. Rhizosphere soils of the generalist plant Miscanthus sinensis were collected both from a neutral soil and an acidic soil, and M. sinensis seedlings were grown at three different pH. For the analysis of field communities, rhizosphere soils of M. sinensis were collected from six field sites across Japan, which covered a soil pH range of 3.0–7.4, and subjected to soil trap culture. AM fungal community compositions were determined based on LSU rDNA sequences. In the pH-manipulation experiment the acidification of medium had a significant impact on the compositions of the community from the neutral soil, but the neutralization of the medium had no effect on those of the community from the acidic soil. Furthermore, the communities in lower -pH soils were subsets of (nested in) those in higher-pH soils. In the field communities a significant nestedness pattern was observed along the pH gradient. These observations suggest that the fungi in strongly acidic soils are pH generalists that occur not only in acidic soil but also in wide ranges of soil pH. Nestedness in AM fungal community along pH gradients may have important implications for plant community resilience and early primary succession after disturbance in acidic soils. PMID

  17. Constitutive expression of fluorescent protein by Aspergillus var. niger and Aspergillus carbonarius to monitor fungal colonization in maize plants.

    Science.gov (United States)

    Palencia, Edwin Rene; Glenn, Anthony Elbie; Hinton, Dorothy Mae; Bacon, Charles Wilson

    2013-09-01

    Aspergillus niger and Aspergillus carbonarius are two species in the Aspergillus section Nigri (black-spored aspergilli) frequently associated with peanut (Arachis hypogea), maize (Zea mays), and other plants as pathogens. These infections are symptomless and as such are major concerns since some black aspergilli produce important mycotoxins, ochratoxins A, and the fumonisins. To facilitate the study of the black aspergilli-maize interactions with maize during the early stages of infections, we developed a method that used the enhanced yellow fluorescent protein (eYFP) and the monomeric red fluorescent protein (mRFP1) to transform A. niger and A. carbonarius, respectively. The results were constitutive expressions of the fluorescent genes that were stable in the cytoplasms of hyphae and conidia under natural environmental conditions. The hyphal in planta distribution in 21-day-old seedlings of maize were similar wild type and transformants of A. niger and A. carbonarius. The in planta studies indicated that both wild type and transformants internally colonized leaf, stem and root tissues of maize seedlings, without any visible disease symptoms. Yellow and red fluorescent strains were capable of invading epidermal cells of maize roots intercellularly within the first 3 days after inoculation, but intracellular hyphal growth was more evident after 7 days of inoculation. We also tested the capacity of fluorescent transformants to produce ochratoxin A and the results with A. carbonarius showed that this transgenic strain produced similar concentrations of this secondary metabolite. This is the first report on the in planta expression of fluorescent proteins that should be useful to study the internal plant colonization patterns of two ochratoxigenic species in the Aspergillus section Nigri. © 2013.

  18. Reintroduction of locally extinct vertebrates impacts arid soil fungal communities.

    Science.gov (United States)

    Clarke, Laurence J; Weyrich, Laura S; Cooper, Alan

    2015-06-01

    Introduced species have contributed to extinction of native vertebrates in many parts of the world. Changes to vertebrate assemblages are also likely to alter microbial communities through coextinction of some taxa and the introduction of others. Many attempts to restore degraded habitats involve removal of exotic vertebrates (livestock and feral animals) and reintroduction of locally extinct species, but the impact of such reintroductions on microbial communities is largely unknown. We used high-throughput DNA sequencing of the fungal internal transcribed spacer I (ITS1) region to examine whether replacing exotic vertebrates with reintroduced native vertebrates led to changes in soil fungal communities at a reserve in arid central Australia. Soil fungal diversity was significantly different between dune and swale (interdune) habitats. Fungal communities also differed significantly between sites with exotic or reintroduced native vertebrates after controlling for the effect of habitat. Several fungal operational taxonomic units (OTUs) found exclusively inside the reserve were present in scats from reintroduced native vertebrates, providing a direct link between the vertebrate assemblage and soil microbial communities. Our results show that changes to vertebrate assemblages through local extinctions and the invasion of exotic species can alter soil fungal communities. If local extinction of one or several species results in the coextinction of microbial taxa, the full complement of ecological interactions may never be restored. © 2015 John Wiley & Sons Ltd.

  19. Repression of fungal plant pathogens and fungal-related contaminants: Selected ecosystem services by soil fauna communities in agroecosystems

    Science.gov (United States)

    Meyer-Wolfarth, Friederike; Schrader, Stefan; Oldenburg, Elisabeth; Brunotte, Joachim; Weinert, Joachim

    2017-04-01

    In agroecosystems soil-borne fungal plant diseases are major yield-limiting factors which are difficult to control. Fungal plant pathogens, like Fusarium species, survive as a saprophyte in infected tissue like crop residues and endanger the health of the following crop by increasing the infection risk for specific plant diseases. In infected plant organs, these pathogens are able to produce mycotoxins. Mycotoxins like deoxynivalenol (DON) persist during storage, are heat resistant and of major concern for human and animal health after consumption of contaminated food and feed, respectively. Among fungivorous soil organisms, there are representatives of the soil fauna which are obviously antagonistic to a Fusarium infection and the contamination with mycotoxins. Specific members of the soil macro-, meso-, and microfauna provide a wide range of ecosystem services including the stimulation of decomposition processes which may result in the regulation of plant pathogens and the degradation of environmental contaminants. Investigations under laboratory conditions and in field were conducted to assess the functional linkage between soil faunal communities and plant pathogenic fungi (Fusarium culmorum). The aim was to examine if Fusarium biomass and the content of its mycotoxin DON decrease substantially in the presence of soil fauna (earthworms: Lumbricus terrestris, collembolans: Folsomia candida and nematodes: Aphelenchoides saprophilus) in a commercial cropping system managed with conservation tillage located in Northern Germany. The results of our investigations pointed out that the degradation performance of the introduced soil fauna must be considered as an important contribution to the biodegradation of fungal plant diseases and fungal-related contaminants. Different size classes within functional groups and the traits of keystone species appear to be significant for soil function and the provision of ecosystem services as in particular L. terrestris revealed to

  20. Fungal burden exposure assessment in podiatry clinics from Ireland.

    Science.gov (United States)

    Viegas, Carla; Coggins, Ann Marie; Faria, Tiago; Caetano, Liliana Aranha; Gomes, Anita Quintal; Sabino, Raquel; Verissimo, Cristina; Roberts, Nigel; Watterson, David; MacGilchrist, Claire; Fleming, Gerard T A

    2018-03-26

    Fungi are amongst the bioaerosols of most importance, as indicated by the growing interest in this field of research. The aim was to characterize the exposure to fungal burden in podiatry clinics using culture-based and molecular methods. Airborne fungi were collected using an impaction air sampler and surface samples were also performed. Fourteen air samples were collected for direct detection of fungal DNA from filamentous fungi and dermatophytes. Overall, 63.6 % of the evening samples and 46 % of the morning samples surpassed the threshold values (150 CFU/m 3 ). Molecular detection, by real time PCR, of the target fungal species/strains (Aspergillus and Stachybotrys species) was negative for all samples collected. Trichophyton rubrum was detected by PCR analysis in one DNA sample collected on day six. Results suggest the use of both culture-based and molecular methodologies are desirable for a complete evaluation of fungal burden in this particular health care setting.

  1. Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics.

    Science.gov (United States)

    Gupta, Rishi; Mehta, Girija; Khasa, Yogender Pal; Kuhad, Ramesh Chander

    2011-07-01

    The biological delignification of lignocellulosic feedstocks, Prosopis juliflora and Lantana camara was carried out with Pycnoporus cinnabarinus, a white rot fungus, at different scales under solid-state fermentation (SSF) and the fungal treated substrates were evaluated for their acid and enzymatic saccharification. The fungal fermentation at 10.0 g substrate level optimally delignified the P. juliflora by 11.89% and L. camara by 8.36%, and enriched their holocellulose content by 3.32 and 4.87%, respectively, after 15 days. The fungal delignification when scaled up from 10.0 g to 75.0, 200.0 and 500.0 g substrate level, the fungus degraded about 7.69-10.08% lignin in P. juliflora and 6.89-7.31% in L. camara, and eventually enhanced the holocellulose content by 2.90-3.97 and 4.25-4.61%, respectively. Furthermore, when the fungal fermented L. camara and P. juliflora was hydrolysed with dilute sulphuric acid, the sugar release was increased by 21.4-42.4% and the phenolics content in hydrolysate was decreased by 18.46 and 19.88%, as compared to the unfermented substrate acid hydrolysis, respectively. The reduction of phenolics in acid hydrolysates of fungal treated substrates decreased the amount of detoxifying material (activated charcoal) by 25.0-33.0% as compared to the amount required to reduce almost the same level of phenolics from unfermented substrate hydrolysates. Moreover, an increment of 21.1-25.1% sugar release was obtained when fungal treated substrates were enzymatically hydrolysed as compared to the hydrolysis of unfermented substrates. This study clearly shows that fungal delignification holds potential in utilizing plant residues for the production of sugars and biofuels.

  2. Phyto-bioconversion of hard coal in the Cynodon dactylon/coal rhizosphere.

    Science.gov (United States)

    Igbinigie, Eric E; Mutambanengwe, Cecil C Z; Rose, Peter D

    2010-03-01

    Fundamental processes involved in the microbial degradation of coal and its derivatives have been well documented. A mutualistic interaction between plant roots and certain microorganisms to aid growth of plants such as Cynodon dactylon (Bermuda grass) on hard coal dumps has recently been suggested. In the present study coal bioconversion activity of nonmycorrhizal fungi was investigated in the C. dactylon/coal rhizosphere. Fungal growth on 2% Duff-agar, gutation formation on nitric acid treated coal and submerged culture activity in nitrogen-rich and -deficient broth formed part of the screening and selection of the fungi. The selected fungal isolates were confirmed to be found in pristine C. dactylon/coal rhizosphere. To simulate bioconversion, a fungal aliquot of this rhizosphere was used as inoculum for a Perfusate fixed bed bioreactor, packed with coal. The results demonstrate an enhanced coal bioconversion facilitated by low molecular weight organics and the bioconversion of coal may be initiated by an introduction of nitrogen moieties to the coal substrate. These findings suggest a phyto-bioconversion of hard coal involving plant and microbes occurring in the rhizosphere to promote the growth of C. dactylon. An understanding of this relationship can serve as a benchmark for coal dumps rehabilitation as well as for the industrial scale bioprocessing of hard coal.

  3. Vasohibin-1 suppresses colon cancer

    OpenAIRE

    Liu, Shuai; Han, Bing; Zhang, Qunyuan; Dou, Jie; Wang, Fang; Lin, Wenli; Sun, Yuping; Peng, Guangyong

    2015-01-01

    Vasohibin-1 (VASH1) is an endogenous angiogenesis inhibitor. However, the clinical relevance of VASH1 in colon cancer and its regulations on cancer angiogenesis and cancer cell biological characteristics are still unknown. Here we showed that stromal VASH1 levels were negatively correlated with tumor size, advanced clinical stage and distant metastases in colon cancer patients. Overexpression of VASH1 in colon cancer cells induced apoptosis and senescence, inhibiting cancer cell growth and co...

  4. Temporal variation of fungal diversity in a mosaic landscape in Germany

    Directory of Open Access Journals (Sweden)

    S. Rudolph

    2018-03-01

    Full Text Available This study aims at characterizing the diversity and temporal changes of species richness and composition of fungi in an ecotone of a forest border and a meadow in the Taunus mountain range in Germany. All macroscopically visible, epigeous fungi and vascular plants were sampled monthly over three years, together with climatic variables like humidity and temperature that influence fungal diversity and composition as shown by previous studies. In this mosaic landscape, a total of 855 fungal species were collected and identified based on morphological features, the majority of which belonged to Ascomycota (51 % and Basidiomycota (45 %. Records of fungal species and plant species (218 for this area yielded a fungus to plant species ratio of 4:1, with a plant species accumulation curve that reached saturation. The three years of monitoring, however, were not sufficient to reveal the total fungal species richness and estimation factors showed that a fungus to plant species ratio of 6:1 may be reached by further sampling efforts. The effect of climatic conditions on fungal species richness differed depending on the taxonomic and ecological group, with temporal patterns of occurrence of Basidiomycota and mycorrhizal fungi being strongly associated with temperature and humidity, whereas the other fungal groups were only weakly related to abiotic conditions. In conclusion, long-term, monthly surveys over several years yield a higher diversity of macroscopically visible fungi than standard samplings of fungi in autumn. The association of environmental variables with the occurrence of specific fungal guilds may help to improve estimators of fungal richness in temperate regions. Key words: Ascomycota, Basidiomycota, Fungi, Seasonal trend decomposition, Species composition, Temporal variation

  5. Analysis of surfaces for characterization of fungal burden - Does it matter?

    Science.gov (United States)

    Viegas, Carla; Faria, Tiago; Meneses, Márcia; Carolino, Elisabete; Viegas, Susana; Gomes, Anita Quintal; Sabino, Raquel

    2016-01-01

    Mycological contamination of occupational environments can be a result of fungal spores' dispersion in the air and on surfaces. Therefore, it is very important to assess it in both types of the samples. In the present study we assessed fungal contamination in the air and in the surface samples to show relevance of surfaces sampling in complementing the results obtained in the air samples. In total, 42 settings were assessed by the analysis of air and surfaces samples. The settings were divided into settings with a high fungal load (7 poultry farms and 7 pig farms, 3 cork industries, 3 waste management plants, 2 wastewater treatment plants and 1 horse stable) and a low fungal load (10 hospital canteens, 8 college canteens and 1 maternity hospital). In addition to culture-based methods, molecular tools were also applied to detect fungal burden in the settings with a higher fungal load. From the 218 sampling sites, 140 (64.2%) presented different species in the examined surfaces when compared with the species identified in the air. A positive association in the high fungal load settings was found between the presence of different species in the air and surfaces. Wastewater treatment plants constituted the setting with the highest number of different species between the air and surface. We observed that surfaces sampling and application of molecular tools showed the same efficacy of species detection in high fungal load settings, corroborating the fact that surface sampling is crucial for a correct and complete analysis of occupational scenarios. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  6. Fungal biodiversity to biotechnology.

    Science.gov (United States)

    Chambergo, Felipe S; Valencia, Estela Y

    2016-03-01

    Fungal habitats include soil, water, and extreme environments. With around 100,000 fungus species already described, it is estimated that 5.1 million fungus species exist on our planet, making fungi one of the largest and most diverse kingdoms of eukaryotes. Fungi show remarkable metabolic features due to a sophisticated genomic network and are important for the production of biotechnological compounds that greatly impact our society in many ways. In this review, we present the current state of knowledge on fungal biodiversity, with special emphasis on filamentous fungi and the most recent discoveries in the field of identification and production of biotechnological compounds. More than 250 fungus species have been studied to produce these biotechnological compounds. This review focuses on three of the branches generally accepted in biotechnological applications, which have been identified by a color code: red, green, and white for pharmaceutical, agricultural, and industrial biotechnology, respectively. We also discuss future prospects for the use of filamentous fungi in biotechnology application.

  7. Comparative performance of two air samplers for monitoring airborne fungal propagules

    Directory of Open Access Journals (Sweden)

    L.G.F. Távora

    2003-05-01

    Full Text Available Many studies have attempted to evaluate the importance of airborne fungi in the development of invasive fungal infection, especially for immunocompromised hosts. Several kinds of instruments are available to quantitate fungal propagule levels in air. We compared the performance of the most frequently used air sampler, the Andersen sampler with six stages, with a portable one, the Reuter centrifugal sampler (RCS. A total of 84 samples were analyzed, 42 with each sampler. Twenty-eight different fungal genera were identified in samples analyzed with the Andersen instrument. In samples obtained with the RCS only seven different fungal genera were identified. The three most frequently isolated genera in samples analyzed with both devices were Penicillium, Aspergillus and Cladophialophora. In areas supplied with a high efficiency particulate air filter, fungal spore levels were usually lower when compared to areas without these filters. There was a significant correlation between total fungal propagule measurements taken with both devices on each sampling occasion (Pearson coefficient = 0.50. However, the Andersen device recovered a broader spectrum of fungi. We conclude that the RCS can be used for quantitative estimates of airborne microbiological concentrations. For qualitative studies, however, this device cannot be recommended.

  8. Fungal Endophytes as a Metabolic Fine-Tuning Regulator for Wine Grape.

    Directory of Open Access Journals (Sweden)

    Ming-Zhi Yang

    Full Text Available Endophytes proved to exert multiple effects on host plants, including growth promotion, stress resistance. However, whether endophytes have a role in metabolites shaping of grape has not been fully understood. Eight endophytic fungal strains which originally isolated from grapevines were re-inoculated to field-grown grapevines in this study, and their effects on both leaves and berries of grapevines at maturity stage were assessed, with special focused on secondary metabolites and antioxidant activities. High-density inoculation of all these endophytic fungal strains modified the physio-chemical status of grapevine to different degrees. Fungal inoculations promoted the content of reducing sugar (RS, total flavonoids (TF, total phenols (TPh, trans-resveratrol (Res and activities of phenylalanine ammonia-lyase (PAL, in both leaves and berries of grapevine. Inoculation of endophytic fungal strains, CXB-11 (Nigrospora sp. and CXC-13 (Fusarium sp. conferred greater promotion effects in grape metabolic re-shaping, compared to other used fungal strains. Additionally, inoculation of different strains of fungal endophytes led to establish different metabolites patterns of wine grape. The work implies the possibility of using endophytic fungi as fine-tuning regulator to shape the quality and character of wine grape.

  9. Changes in structure and function of fungal community in cow manure composting.

    Science.gov (United States)

    Wang, Ke; Yin, Xiangbo; Mao, Hailong; Chu, Chu; Tian, Yu

    2018-05-01

    In this study, dynamic changes in fungal communities, trophic modes and effect factors in 60 days composting of cow manure were analyzed by using high throughput sequencing, FUNGuild and Biolog FF MicroPlate, respectively. Orpinomyces (relative abundance >10.85%) predominated in feedstock, and Mycothermus became the dominating genus (relative abundance >75%) during the active phase. Aerobic composting treatment had a significant effect on fungal trophic modes with pathogenic fungi fading away and wood saprotrophs increasing over composting time. Fungal communities had the higher carbon sources utilization capabilities at the thermophilic phase and mature phase than those in the other periods. Oxidation reduction potential (ORP) significantly increased from -180 to 180 mV during the treatment. Redundancy analysis showed that the succession of fungal community during composting had a significant association with ORP (p composting treatment not only influenced fungal community structure, but also changed fungal trophic modes and metabolic characteristics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. [Response of arbuscular mycorrhizal fungal lipid metabolism to symbiotic signals in mycorrhiza].

    Science.gov (United States)

    Tian, Lei; Li, Yuanjing; Tian, Chunjie

    2016-01-04

    Arbuscular mycorrhizal (AM) fungi play an important role in energy flow and nutrient cycling, besides their wide distribution in the cosystem. With a long co-evolution, AM fungi and host plant have formed a symbiotic relationship, and fungal lipid metabolism may be the key point to find the symbiotic mechanism in arbusculart mycorrhiza. Here, we reviewed the most recent progress on the interaction between AM fungal lipid metabolism and symbiotic signaling networks, especially the response of AM fungal lipid metabolism to symbiotic signals. Furthermore, we discussed the response of AM fungal lipid storage and release to symbiotic or non-symbiotic status, and the correlation between fungal lipid metabolism and nutrient transfer in mycorrhiza. In addition, we explored the feedback of the lipolysis process to molecular signals during the establishment of symbiosis, and the corresponding material conversion and energy metabolism besides the crosstalk of fungal lipid metabolism and signaling networks. This review will help understand symbiotic mechanism of arbuscular mycorrhiza fungi and further application in ecosystem.

  11. The arbuscular mycorrhizal fungus Rhizophagus irregularis differentially regulates the copper response of two maize cultivars differing in copper tolerance.

    Science.gov (United States)

    Merlos, Miguel A; Zitka, Ondrej; Vojtech, Adam; Azcón-Aguilar, Concepción; Ferrol, Nuria

    2016-12-01

    Arbuscular mycorrhiza can increase plant tolerance to heavy metals. The effects of arbuscular mycorrhiza on plant metal tolerance vary depending on the fungal and plant species involved. Here, we report the effect of the arbuscular mycorrhizal fungus Rhizophagus irregularis on the physiological and biochemical responses to Cu of two maize genotypes differing in Cu tolerance, the Cu-sensitive cv. Orense and the Cu-tolerant cv. Oropesa. Development of the symbiosis confers an increased Cu tolerance to cv. Orense. Root and shoot Cu concentrations were lower in mycorrhizal than in non-mycorrhizal plants of both cultivars. Shoot lipid peroxidation increased with soil Cu content only in non-mycorrhizal plants of the Cu-sensitive cultivar. Root lipid peroxidation increased with soil Cu content, except in mycorrhizal plants grown at 250mg Cu kg -1 soil. In shoots of mycorrhizal plants of both cultivars, superoxide dismutase, ascorbate peroxidase, catalase and glutathione reductase activities were not affected by soil Cu content. In Cu-supplemented soils, total phytochelatin content increased in shoots of mycorrhizal cv. Orense but decreased in cv. Oropesa. Overall, these data suggest that the increased Cu tolerance of mycorrhizal plants of cv. Orense could be due to an increased induction of shoot phytochelatin biosynthesis by the symbiosis in this cultivar. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Shifts in soil fungal communities in Tuber melanosporum plantations over a 20-year transition from agriculture fields to oak woodlands

    Energy Technology Data Exchange (ETDEWEB)

    Bing, L.; Fischer, C.R.; Bonet, J.A.; Castaño, C.; Colinas, C.

    2016-07-01

    Aim of study: To explore the diversity of soil fungi found in black truffle (Tuber melanosporum) plantations following the introduction of the mycorrhizal-colonized host tree, (Quercus ilex), through the development of the brûlé and production of mature sporocarps. Area of study: This research was carried out province of Teruel, Aragon (central eastern Spain). Material and Methods: Soil samples from 6 plantations were collected beneath Q. ilex trees inoculated with T. melanosporum, of 3, 5, 7, 10, 14 and 20 years after out planting in truffle plantations. Soil DNA was extracted, PCR-amplified and sequenced to compare soil fungi present at different ages. Main results: As tree age increased, we observed an increased frequency of T. melanosporum (from 8% to 71% of sequenced colonies) and concomitant decrease in the combined frequency of Fusarium spp. and Phoma spp. (from 64% to 3%). Research highlights: There are important shifts in species richness and in functional groups in the soil fungal communities in maturing black truffle-oak woodland plantations. The observed inverse relationship between the frequency of soil endophytic and/or pathogenic fungi and that of the mycorrhizal mutualist T. melanosporum provides support to continue a deeper analysis of shifts in fungal communities and functional groups where there is a transition from agriculture fields to woodlands. (Author)

  13. Isolation, identification of antagonistic rhizobacterial strains obtained from chickpea (cicer arietinum l.) field and their in-vitro evaluation against fungal root pathogens

    International Nuclear Information System (INIS)

    Shahzaman, S.; Haq, I.U.; Mukhtar, T.; Naeem, M.

    2015-01-01

    Plant growth promoting rhizobacteria (PGPR), are associated with roots, found in the rhizosphere and can directly or indirectly enhance the plant growth. In this study soil was collected from rhizosphere of chickpea fields of different areas of Rawalpindi division of Pakistan. PGPR were isolated, screened and characterized. Eight isolates of rhizobacteria (RHA, RPG, RFJ, RC, RTR, RT and RK) were isolated from Rawalpindi division and were characterized. The antagonistic activity of these PGPR isolates against root infecting fungi (Fusarium oxysporum and Verticillium spp.,) was done and production of indole acetic acid (IAA), siderophore and P-solubilization was evaluated. The isolates RHA, RPG, RFJ, RC, RRD and RT were found to be positive in producing siderophore, IAA and P-solubilization. Furthermore, most of the isolates showed antifungal activity against Fusarium oxysporum, and Verticillium spp. The rhizobacterial isolates RHA, RPG, RFJ, RC, RRD, RTR, RT and RK were used as bio-inoculants that might be beneficial for chickpea cultivation as the rhizobacterial isolates possessed the plant growth promoting characters i.e. siderophore, IAA production, phosphate solubilization. In in vitro tests, Pseudomonas sp. and Bacillus spp. inhibited the mycelial growth of the fungal root pathogens. The isolates (RHA and RPG) also significantly increased (60-70%) seed germination, shoot length, root length of the chickpea. The incidence of fungi was reduced by the colonization of RHA and RPG which enhanced the seedling vigor index and seed germination. The observations revealed that isolates RHA and RPG is quite effective to reduce the fungal root infection in greenhouse, and also increases seed yields significantly. These rhizobacterial isolates appear to be efficient yield increasing as well as effective biocontrol agent against fungal root pathogen. (author)

  14. New perspectives towards analising fungal communities in terrestrial environments

    NARCIS (Netherlands)

    Kowalchuk, G.A.

    1999-01-01

    Fungi play key roles in numerous ecosystem functions, and recent advances in the study of fungal diversity and ecology have led to a greater appreciation of this group of microeukaryotes. The application of a variety of nucleic acid techniques to fungal classification and phylogeny has led to a

  15. ANTI-FUNGAL ACTIVITIES OF m-IODOBENZOIC ACID AND SOME ...

    African Journals Online (AJOL)

    The anti-fungal activities of alkali and alkaline earth metal iodobenzoates were studied. Calcium iodobenzoate exhibited the highest anti-fungal activities of 74.60% inhibition for 15 ppm while sodium iodobenzoate exhibited the least inhibition of 61.64%. An optimum concentration of all the metal complexes for inhibition ...

  16. Fungal disease and the developing story of bat white-nose syndrome

    Science.gov (United States)

    Blehert, David S.

    2012-01-01

    Two recently emerged cutaneous fungal diseases of wildlife, bat white-nose syndrome (WNS) and amphibian chytridiomycosis, have devastated affected populations. Fungal diseases are gaining recognition as significant causes of morbidity and mortality to plants, animals, and humans, yet fewer than 10% of fungal species are known. Furthermore, limited antifungal therapeutic drugs are available, antifungal therapeutics often have associated toxicity, and there are no approved antifungal vaccines. The unexpected emergence of WNS, the rapidity with which it has spread, and its unprecedented severity demonstrate both the impacts of novel fungal disease upon naïve host populations and challenges to effective management of such diseases.

  17. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus angustifolia Seedlings

    Directory of Open Access Journals (Sweden)

    Wei Chang

    2018-04-01

    Full Text Available Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD, catalase (CAT, and ascorbate peroxidase (APX in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K+, Ca2+, and Mg2+, but also maintained higher K+:Na+ ratios in the leaves and lower Ca2+:Mg2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China.

  18. Characterization of juvenile maritime pine (Pinus pinaster Ait.) ectomycorrhizal fungal community using morphotyping, direct sequencing and fruitbodies sampling.

    Science.gov (United States)

    Pestaña Nieto, Montserrat; Santolamazza Carbone, Serena

    2009-02-01

    Using ectomycorrhizal root tip morphotyping (anatomical and morphological identification), molecular analysis (internal transcribed spacer region amplification and sequencing), and fruitbody sampling, we assessed diversity and composition of the ectomycorrhizal fungal community colonizing juvenile Pinus pinaster Ait. under natural conditions in NW Spain. Overall, we found 15 Basidiomycetes and two Ascomycetes. Members of the family Thelephoraceae represented up to 59.4% of the samples. The most frequent species was Tomentella sublilacina followed by Thelephora terrestris, Russula drimeia, Suillus bovinus, and Paxillus involutus, while the less frequent were Pseudotomentella tristis, Lactarius subdulcis, Russula ochroleuca, and Entoloma conferendum. From October 2007 to June 2008, we sampled 208 sporocarps belonging to seven genera and nine species: Thelephora terrestris, Paxillus involutus, Suillus bovinus, Xerocomus badius, Scleroderma verrucosum, Amanita gemmata, A. rubescens, Amanita sp., and Russula sp. The species belonging to the genus Amanita, X. badius and S. verrucosum were not found on root samples. By comparing our results with a bibliographic review of papers published from 1922 to 2006, we found five genera and six species which have not been previously reported in symbiosis with P. pinaster. This is the first time that the diversity of the ectomycorrhizal fungal community associated with P. pinaster was investigated using molecular techniques. Considering that only 38% of the genera found by sequencing were found as fruitbodies, we conclude that integrating morphotyping and sporocarps surveys with molecular analysis of ectomycorrhizas is important to documenting the ectomycorrhizal fungus community.

  19. Transplant tourism and invasive fungal infection.

    Science.gov (United States)

    Al Salmi, I; Metry, A M; Al Ismaili, F; Hola, A; Al Riyami, M; Khamis, F; Al-Abri, S

    2018-04-01

    Deceased and live-related renal transplants (RTXs) are approved procedures that are performed widely throughout the world. In certain regions, commercial RTX has become popular, driven by financial greed. This retrospective, descriptive study was performed at the Royal Hospital from 2013 to 2015. Data were collected from the national kidney transplant registry of Oman. All transplant cases retrieved were divided into two groups: live-related RTX performed in Oman and commercial-unrelated RTX performed abroad. These groups were then divided again into those with and without evidence of fungal infection, either in the wound or renal graft. A total of 198 RTX patients were identified, of whom 162 (81.8%) had undergone a commercial RTX that was done abroad. Invasive fungal infections (IFIs) were diagnosed in 8% of patients who had undergone a commercial RTX; of these patients, 76.9% underwent a nephrectomy and 23.1% continued with a functioning graft. None of the patients with RTXs performed at the Royal Hospital contracted an IFI. The most common fungal isolates were Aspergillus species (including Aspergillus flavus, Aspergillus fumigatus, Aspergillus nidulans, and Aspergillus nigricans), followed by Zygomycetes. However, there was no evidence of fungal infection including Aspergillus outside the graft site. Computed tomography (CT) findings showed infarction of the graft, renal artery thrombosis, aneurysmal dilatation of the external iliac artery, fungal ball, or just the presence of a perigraft collection. Of the total patients with IFIs, 23.1% died due to septic shock and 53.8% were alive and on hemodialysis. The remaining 23.1% who did not undergo nephrectomy demonstrated acceptable graft function. This is the largest single-center study on commercial RTX reporting the highest number of patients with IFI acquired over a relatively short period of time. Aspergillus spp were the main culprit fungi, with no Candida spp being isolated. A high index of suspicion might

  20. Interaction of Vesicular-arbuscular Mycorrhizal Fungi and Phosphorus with Meloidogyne incognita on Tomato.

    Science.gov (United States)

    Cason, K M; Hussey, R S; Roncadori, R W

    1983-07-01

    The influence of two vesicular-arbuscular mycorrhizal fungi and phosphorus (P) nutrition on penetration, development, and reproduction by Meloidogyne incognita on Walter tomato was studied in the greenhouse. Inoculation with either Gigaspora margarita or Glomus mosseae 2 wk prior to nematode inoculation did not alter infection by M. incognita compared with nonmycorrhizal plants, regardless of soil P level (either 3 mug [low P] or 30 mug [high P] available P/g soil). At a given soil P level, nematode penetration and reproduction did not differ in mycorrhizal and nonmycorrhizal plants. However, plants grown in high P soil had greater root weights, increased nematode penetration and egg production per plant, and decreased colonization by mycorrhizal fungi, compared with plants grown in low P soil. The number of eggs per female nematode on mycorrhizal and nonmycorrhizal plants was not influenced by P treatment. Tomato plants with split root systems grown in double-compartment containers which had either low P soil in both sides or high P in one side and low P in the other, were inoculated at transplanting with G. margarita and 2 wk later one-half of the split root system of each plant was inoculated with M. incognita larvae. Although the mycoorhizal fungus increased the inorganic P content of the root to a level comparable to that in plants grown in high P soil, nematode penetration and reproduction were not altered. In a third series of experiments, the rate of nematode development was not influenced by either the presence of G. margarita or high soil P, compared with control plants grown in low P soil. These data indicate that supplemental P (30 mu/g soil) alters root-knot nematode infection of tomato more than G. mosseae and G. margarita.