WorldWideScience

Sample records for nonmetallic arc electrode

  1. Characteristics of Arcs Between Porous Carbon Electrodes

    OpenAIRE

    Carvou, Erwann; Le Garrec, Jean-Luc; Mitchell, Brian

    2013-01-01

    International audience; Arcs between carbon electrodes present some specific differences compared with metallic arcs. The arc voltage is higher, but does not attain a stable value displaying large fluctuations. Indeed, the arcs are produced by the direct sublimation of the electrodes, without passing through a molten phase. The arc production is also facilitated by both circuit breaking and electric field breakdown. In this paper, arcing has been examined under various conditions (voltage, cu...

  2. Gas tungsten arc welder with electrode grinder

    Science.gov (United States)

    Christiansen, David W.; Brown, William F.

    1984-01-01

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  3. Electrode Evaporation Effects on Air Arc Behavior

    Institute of Scientific and Technical Information of China (English)

    LI Xingwen; CHEN Degui; LI Rui; WU Yi; NIU Chunping

    2008-01-01

    A numerical study of the effects of copper and silver vapours on the air arc behavior is performed. The commercial software FLUENT is adapted and modified to develop a two-dimensional magneto-hydrodynamic (MHD) models of arc with the thermodynamic properties and transport coefficients, net emission coefficient for the radiation model of 99% ai-1% Cu, 99% air-1% Ag, and pure air, respectively. The simulation result demonstrates that vaporization of the electrode material may cool the arc center region and reduce the arc velocity. The effects of Ag vapour are stronger compared to those of Cu vapour.

  4. Thermal analysis of an arc heater electrode with a rotating arc foot

    Science.gov (United States)

    Milos, Frank S.; Shepard, Charles E.

    1993-01-01

    A smoothly rotating arc foot and an arc foot that jumps between multiple sticking points were analyzed using analytic formulations and numerical solution procedures. For each case the temperature distribution for a copper electrode was obtained for the plausible range of operating conditions. It is shown that the smoothly rotating arc foot is an extremely safe mode of operation, whereas the jumping arc foot produces excessively high electrode surface temperatures which are not greatly alleviated by increasing the average rotational frequency of the arc foot. It is suggested to eliminate arc-foot rotation and rely on the distribution of fixed electrodes with stationary arc attachment to avoid electrode failure at high current.

  5. Electrode voltage fall and total voltage of a transient arc

    Science.gov (United States)

    Valensi, F.; Ratovoson, L.; Razafinimanana, M.; Masquère, M.; Freton, P.; Gleizes, A.

    2016-06-01

    This paper deals with an experimental study of the components of a transient arc total voltage with duration of a few tens of ms and a current peak close to 1000 A. The cathode tip is made of graphite whereas the flat anode is made either of copper or of graphite; the electrodes gap is a few mm. The analysis of the electrical parameters is supported and validated by fast imaging and by two models: the first one is a 2D physical model of the arc allowing to calculate both the plasma temperature field and the arc voltage; the second model is able to estimate the transient heating of the graphite electrode. The main aim of the study was to detect the possible change of the cathode voltage fall (CVF) during the first instants of the arc. Indeed it is expected that during the first ms the graphite cathode is rather cool and the main mechanism of the electron emission should be the field effect emission, whereas after several tens of ms the cathode is strongly heated and thermionic emission should be predominant. We have observed some change in the apparent CVF but we have shown that this apparent change can be attributed to the variation of the solid cathode resistance. On the other hand, the possible change of CVF corresponding to the transition between a ‘cold’ and a ‘hot’ cathode should be weak and could not be characterized considering our measurement uncertainty of about 2 V. The arc column voltage (ACV) was estimated by subtracting the electrode voltage fall from the total arc voltage. The experimental transient evolution of the ACV is in very good agreement with the theoretical variation predicted by the model, showing the good ability of the model to study this kind of transient arc.

  6. Effect of arc current on droplet ejection from tungsten-based electrode in multiphase AC arc

    Science.gov (United States)

    Hashizume, Taro; Tanaka, Manabu; Watanabe, Takayuki

    2017-05-01

    The dynamic behavior of droplet ejection from a tungsten electrode was successfully visualized using a high-speed camera and an appropriate band-pass filter. The effect of arc current on droplet ejection was investigated to understand the electrode erosion mechanism in the multiphase AC arc. The rate of erosion by droplet ejection increased with increasing current. This result was examined on the basis of the time variation in forces on a pending droplet at the electrode tip during the AC cycle. The relationship among electromagnetic force, surface tension, and ion pressure on the molten tip during the cathodic period is crucial for controling droplet ejection. The molten tip becomes hemispherical forming the pending droplet with an increase in the instantaneous value of arc current during the AC cycle. The pending droplet detaches from the electrode surface when electromagnetic force becomes the dominant force. Consequently, a higher rate of erosion by droplet ejection with a higher arc current resulted from a stronger electromagnetic force.

  7. Graphite electrode arc melter demonstration Phase 2 test results

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; O`Connor, W.K.; Oden, L.L.; Turner, P.C.

    1996-06-01

    Several U.S. Department of Energy organizations and the U.S. Bureau of Mines have been collaboratively conducting mixed waste treatment process demonstration testing on the near full-scale graphite electrode submerged arc melter system at the Bureau`s Albany (Oregon) Research Center. An initial test series successfully demonstrated arc melter capability for treating surrogate incinerator ash of buried mixed wastes with soil. The conceptual treatment process for that test series assumed that buried waste would be retrieved and incinerated, and that the incinerator ash would be vitrified in an arc melter. This report presents results from a recently completed second series of tests, undertaken to determine the ability of the arc melter system to stably process a wide range of {open_quotes}as-received{close_quotes} heterogeneous solid mixed wastes containing high levels of organics, representative of the wastes buried and stored at the Idaho National Engineering Laboratory (INEL). The Phase 2 demonstration test results indicate that an arc melter system is capable of directly processing these wastes and could enable elimination of an up-front incineration step in the conceptual treatment process.

  8. Modelling and simulation of unsteady dc electric arcs and their interactions with electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chemartin, L; Lalande, P [ONERA, 29, Avenue de la division Leclerc, 92322 Chatillon (France); Delalondre, C [EDF R and D, 6 quai Watier 78400 Chatou (France); Cheron, B [CORIA, UMR 6614, 76801 Saint Etienne du Rouvray (France); Lago, F, E-mail: laurent.chemartin@onera.fr [DGA, Aeronautical Systems, 47 route de St Jean, 31130 Balma (France)

    2011-05-18

    This paper is devoted to the study of unsteady electric arcs and the effects of electrodes on their dynamics. One of the objectives is to simulate and understand the three-dimensional behaviour of arcs in complex geometries, which create important fluctuations of the column and reattachments on the electrodes. The usual methods to solve the problem of arc-electrodes coupling are not suitable to simulate three-dimensional unsteady arcs. We propose a numerical development to simulate both steady-state and unsteady arcs without additional assumptions. The method is based on the incorporation of electrodes into the computational domain. It is validated with measurements from the literature, in the case of a point-plane steady-state argon arc. The model is used to study the lightning certification test device, which simulates in laboratory the effects of lightning arcs on fuselage panels. The results bring to light, in agreement with the observations in laboratory, the fundamental role of the electrodes on the three-dimensional behaviour of the arc column. The model is also used to simulate the development of the free jet of a plasma on an aluminium planar anode. The objective is to characterize the interaction region and the thermal constraint of the arc.

  9. Electrode fall voltage of arc between deion plates during direct-current interruption period

    Science.gov (United States)

    Yokomizu, Y.; Ueda, Y.; Matsumura, T.; Ichikawa, T.; Niwa, Y.; Sakaguchi, W.

    2017-07-01

    A direct-current low-voltage circuit breaker has an arc chute that consists of a stack of several metallic deion plates. The deion plate is also called a splitter plate. The function of the deion plates is to split the arc into several series short-gap arcs. This phenomenon leads to the emergence of electrode fall voltages in the arc chute, eventually contributing to rise in the total arc-voltage in the circuit breaker and to successful current-interruption. The electrode fall voltage therefore plays an important role for successful current-interruption. The present paper describes the estimation result for the electrode fall voltage {{v}\\text{ele}} of the arc between steel deion plates. The estimation is performed by using a newly devised method. This method utilizes the voltage {{v}\\text{chute}} measured across the arc chute and eventually derives {{v}\\text{ele}} on the basis of the statistics: a correlation coefficient between an arc-column electric-field strength {{E}\\text{col}} and an arc current i. Adopting the devised method enabled us to derive 19 V as {{v}\\text{ele}} . Verification is furthermore made to show the validity of the determined electrode-fall voltage, 19 V.

  10. ELECTRIC ARC WELDING DEPOSITION OF METALLIC SURFACES BY VIBRATING ELECTRODE IN PROTECTIVE GAS MEDIUM

    OpenAIRE

    N. Spiridonov; A. Кudina; V. Кurash

    2013-01-01

    The paper presents methods for obtaining qualitative metallic surfaces by electric arc welding deposition while using consumable electrode in a protective gas medium and executing regularized drop transfer of electrode metal. The drop transfer efficiency of electrode metal and productivity of welding deposition are significantly increased due to excitation of lateral vibrations in the consumable electrode with preset amplitude. The paper describes a method and a device for welding deposition ...

  11. Estimation of dynamic properties of attractors observed in hollow copper electrode atmospheric pressure arc plasma system

    Indian Academy of Sciences (India)

    S Ghorul; S N Sahasrabudhe; P S S Murthy; A K Das; N Venkatramani

    2002-07-01

    Understanding of the basic nature of arc root fluctuation is still one of the unsolved problems in thermal arc plasma physics. It has direct impact on myriads of thermal plasma applications being implemented at present. Recently, chaotic nature of arc root behavior has been reported through the analysis of voltages, acoustic and optical signals which are generated from a hollow copper electrode arc plasma torch. In this paper we present details of computations involved in the estimation process of various dynamic properties and show how they reflect chaotic behavior of arc root in the system.

  12. Novel plasma arc reactor with molted metal electrodes for coal gasification technology

    Energy Technology Data Exchange (ETDEWEB)

    Predtechensky, M.R.; Kuropyatnik, I.N.; Tukhto, O.M. [International Scientific Center on Thermophysics and Energetics, Novosibirsk, Russia Institute of Thermophysics SB RAS, Novosibirsk (Russian Federation)

    2001-07-01

    The process of steam gasification of coal has been studied using the new type of plasma chemical reactor with molten metal electrodes. Using of molten metal electrodes allows to increase significantly the continuous operation of the plasma arc reactor and to realize some additional advantages. (authors)

  13. ELECTRIC ARC WELDING DEPOSITION OF METALLIC SURFACES BY VIBRATING ELECTRODE IN PROTECTIVE GAS MEDIUM

    Directory of Open Access Journals (Sweden)

    N. Spiridonov

    2013-01-01

    Full Text Available The paper presents methods for obtaining qualitative metallic surfaces by electric arc welding deposition while using consumable electrode in a protective gas medium and executing regularized drop transfer of electrode metal. The drop transfer efficiency of electrode metal and productivity of welding deposition are significantly increased due to excitation of lateral vibrations in the consumable electrode with preset amplitude. The paper describes a method and a device for welding deposition of metallic surfaces by vibrating  electrode where vibrations are excited by ultrasound.

  14. production of manual arc welding electrodes with local raw materials

    African Journals Online (AJOL)

    CHUKSSUCCESS 4 LOVE

    effectively with titanium dioxide based electrode (a foreign electrode) with tensile strength of. 606.7N/mm . ... composition and mechanical properties as ... bead from oxidation during welding. ... Manganese (Mn), Slag, Silicon (Si) and Iron. 2. 3.

  15. Evolution of weld metal microstructure in shielded metal arc welding of X70 HSLA steel with cellulosic electrodes: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Ghomashchi, Reza, E-mail: reza.ghomashchi@adelaide.edu.au; Costin, Walter; Kurji, Rahim

    2015-09-15

    The microstructure of weld joint in X70 line pipe steel resulted from shielded metal arc welding with E6010 cellulosic electrodes is characterized using optical and electron microscopy. A range of ferritic morphologies have been identified ranging from polygonal inter- and intra-prior austenite grains allotriomorphic, idiomorphic ferrites to Widmanstätten, acicular and bainitic ferrites. Electron Backscatter Diffraction (EBSD) analysis using Image Quality (IQ) and Inverse Pole Figure (IPF) maps through superimposition of IQ and IPF maps and measurement of percentages of high and low angle grain boundaries was identified to assist in differentiation of acicular ferrite from Widmanstätten and bainitic ferrite morphologies. In addition two types of pearlitic structures were identified. There was no martensite detected in this weld structure. The morphology, size and chemistry of non-metallic inclusions are also discussed briefly. - Highlights: • Application of EBSD reveals orientation relationships in a range of phases for shielded metal arc welding of HSLA steel. • Nucleation sites of various ferrite morphologies identified • Formation of upper and lower bainite and their morphologies.

  16. Observations of melt rate as a function of arc power, CO pressure, and electrode gap during vacuum consumable arc remelting of Inconel 718

    Science.gov (United States)

    Zanner, F. J.; Bertram, L. A.; Adasczik, C.; O'Brien, T.

    1984-01-01

    Statistically designed experiments were conducted at two different production melt shops to evaluate the influence of arc power, CO pressure, and electrode gap on melt rate. Approximately 11,000 kg of Inconel 718 alloy 0.4 m diameter electrodes were vacuum consumable arc remelted into 0.5 m diameter ingots. Analysis of the experimental results revealed that melting efficiency (melting rate/kW) was maximized when CO pressure and electrode gap were held at low levels. Under these conditions, the heat distribution (created by the vacuum arc) on the electrode tip and the molten pool exhibited macro uniformity. Increased CO pressure and/or electrode gap depressed the melt rate, and at 13.3 Pa (100 microns) and a 0.050 m electrode gap, this depression exceeds 46 pct. Increasing these parameters also changed the arc behavior to that of a constricted arc with a highly localized heat input. It is hypothesized that the change from the usual diffuse arc to this constricted arc results in intense Lorentz pumping in a localized region of the molten pool atop the ingot causing fluid flow transients. These transients could, in turn, create solidification defects.

  17. A study of arc stability of basic electrode in view of uniform design method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In order to develop a basic electrode with low fume and good usability, a new slag system has been designed after analyzing several basic electrode slag systems. Then in view of uniform design method, arranging the experiment points by it, the influenced laws of the new system coating components on the arc stability had been searched. In the formula, nine coating components were taken as independent variables and they were divided into six levels in all twenty-four experiments. The arc stability was taken as function and taken down the data when welding and then put them into the computer to be processed statistically. The analysis results give the mathematical model and trend diagrams between independent variables and the function. They indicate that the effects of many coating components on the arc stability are in the mutual form. The mutual effects between CaCO3 and BaF2, BaF2 and BaCO3, increases the arc stability separately. While the mutual effects between CaF2 and iron powder, the square item of iron powder itself decreases the arc stability separately.

  18. Treatment of simulated INEL buried wastes using a graphite electrode DC arc furnace

    Energy Technology Data Exchange (ETDEWEB)

    Surma, J.E.; Lawrence, W.E. [Pacific Northwest Lab., Richland, WA (United States); Titus, C.H. [T& R Associates, Wayne, PA (United States); Wittle, J.K.; Hamilton, R.A. [Electro-Pyrolysis, Inc., Wayne, PA (United States); Cohn, D.R.; Rhea, D.; Thomas, P.; Woskov, P.P. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1994-08-01

    A program has been established under the auspices of the Department of Energy (DOE), Office of Technology Development (OTD), to develop the graphite electrode DC arc technology for the application of treating buried heterogenous solid wastes. A three way {open_quotes}National Laboratory-University-Industry{close_quotes} partnership was formed to develop this technology in the most timely and cost effective manner. This program is presently testing a newly fabricated pilot-scale DC arc furnace with associated diagnostics at the Plasma Fusion Center at the Massachusetts Institute of Technology. Initial testing in a smaller engineering scale furnace has established the viability of this technology for the treatment of solid heterogeneous wastes. Two diagnostic tools were developed under this program which support the evaluation of the DC arc technology. The diagnostics provide for both spatially resolved temperature measurements within the furnace and real time monitoring of the furnace metal emissions.

  19. Effects of electrode properties on transition limit to big-arcs in combustion gas plasma boundary layer. Nensho gas plasma kyokaisonai deno daidenryu kyodai arc hassei genkai ni oyobosu denkyoku bussei no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, K.; Okumura, Y. (Tokyo Institute of Technology, Tokyo (Japan)); Kokumai, M.; Yoshikawa, N. (Toyohashi University of Technology, Aichi (Japan))

    1994-05-25

    The effect of physical properties of electrode on the transition from micro-arc to big-arc in the boundary layer of combustion gas plasma such as MHD power generation, the method for preventing the occurrence of big-arc at the electrode surface side, and the possibility of small dispersion of micro-arc are experimentally investigated. The critical current for transition from micro-arc to big-arc is mainly determined by the main part temperature. It is also affected by the electrode properties. This is due to the change in arc shape caused by the heat transfer to the electrode surface and the melting and evaporation of the electrode. In the case of electrode which is likely to give rise to the abrupt gushing of metal vapor, the transition from micro-arc to big-arc is likely to occur because the boundary layer is easily broken as the momentum of the gushing vapor directed rectangularly to the electrode surface which is generating the micro-arc is large. For the prevention of transition from micro-arc to big-arc even at a large current density, it is important to select the electrode material which is characterized by high thermal conductivity, high boiling point, and high latent heat of evaporation. 17 refs., 15 figs., 1 tab.

  20. A simple arc column model that accounts for the relationship between voltage, current and electrode gap during VAR

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, R.L. [Sandia National Labs., Albuquerque, NM (United States). Liquid Metal Processing Lab.

    1997-02-01

    Mean arc voltage is a process parameter commonly used in vacuum arc remelting (VAR) control schemes. The response of this parameter to changes in melting current (I) and electrode gap (g{sub e}) at constant pressure may be accurately described by an equation of the form V = V{sub 0} + c{sub 1}g{sub e}I + c{sub 2}g{sub e}{sup 2} + c{sub 3}I{sup 2}, where c{sub 1}, c{sub 2} and c{sub 3} are constants, and where the non-linear terms generally constitute a relatively small correction. If the non-linear terms are ignored, the equation has the form of Ohm`s law with a constant offset (V{sub 0}), c{sub 1}g{sub e} playing the role of resistance. This implies that the arc column may be treated approximately as a simple resistor during constant current VAR, the resistance changing linearly with g{sub e}. The VAR furnace arc is known to originate from multiple cathode spot clusters situated randomly on the electrode tip surface. Each cluster marks a point of exist for conduction electrons leaving the cathode surface and entering the electrode gap. Because the spot clusters re highly localized on the cathode surface, each gives rise to an arc column that may be considered to operate independently of other local arc columns. This approximation is used to develop a model that accounts for the observed arc voltage dependence on electrode gap at constant current. Local arc column resistivity is estimated from elementary plasma physics and used to test the model for consistency by using it to predict local column heavy particle density. Furthermore, it is shown that the local arc column resistance increases as particle density increases. This is used to account for the common observation that the arc stiffens with increasing current, i.e. the arc voltage becomes more sensitive to changes in electrode gap as the melting current is increased. This explains why arc voltage is an accurate electrode gap indicator for high current VAR processes but not low current VAR processes.

  1. Evaluation of the graphite electrode arc melter for processing heterogeneous waste

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, William K.; Turner, Paul C.; Soelberg, N.R. (Idaho National Engineering Laboratory); Anderson, G.L. (Idaho National Engineering Laboratory)

    1996-01-01

    The U.S. Bureau of Mines (USBM) conducted a series of 4 demonstration melting tests in a 3-phase AC graphite electrode arc furnace at its Albany Research Center (ALRC) thermal treatment facility in Albany, Oregon (now part of the U.S. Department of Energy, DOE). The scope of these tests provides a unique opportunity to evaluate a single melting technology regarding its applicability to the treatment of several different heterogeneous mixed wastes. The current system can continuously process combustible-bearing wastes at feedrates to 682 kg/h (1,500 lb/h), continuously tap slag or glass, and intermittently tap metal products, and includes a close-coupled thermal oxidizer and air pollution control system (APCS). The 4 demonstration melting tests were conducted in cooperation with the American Society of Mechanical Engineers (ASME), the Idaho National Engineering Laboratory (INEL), and the Westinghouse Hanford Company (WHC).

  2. Synthesis of carbon nanotubes by laser ablation in graphite substrate of industrial arc electrodes

    Science.gov (United States)

    Guerrero, A.; Puerta, J.; Gomez, F.; Blanco, F.

    2008-10-01

    In this work, an inexpensive and simple technique for the synthesis of carbon nanotubes (CNTs) by using graphite as the target for IR laser radiation is presented. This graphite material is obtained from the recycled graphite electrode core of an electric arc furnace. The experiment was carried out in a reaction chamber in an argon atmosphere at a low pressure. For laser ablation, a Lumonics TEA CO2 laser beam (7 J; 0.05-50 μs pulse length) was used in multimode operation. Products were collected on free mica sheets. The substrates were characterized by scanning electron microscopy (SEM) and the products were characterized (collected as powder) by transmission electron microscopy (TEM). They showed significant amounts of high-quality dense filaments (CNTs) that were morphologically not aligned.

  3. Transition in velocity and grouping of arc spot on different nanostructured tungsten electrodes

    OpenAIRE

    Dogyun Hwangbo; Shin Kajita; Sergey A. Barengolts; Mikhail M. Tsventoukh; Noriyasu Ohno

    2014-01-01

    Behavior of arc spots was investigated in detail using a nanostructured tungsten specimen with different thicknesses of the nanostructured layer. From the observation using a fast framing camera, it was found that the velocity of the arc spots significantly altered as passing the boundary of the two layers. The changes in spot velocity and spot width were discussed theoretically using the ecton model. The fractal dimension of the arc trail evaluated by using a box-counting method was signific...

  4. Transition in velocity and grouping of arc spot on different nanostructured tungsten electrodes

    Directory of Open Access Journals (Sweden)

    Dogyun Hwangbo

    2014-01-01

    Full Text Available Behavior of arc spots was investigated in detail using a nanostructured tungsten specimen with different thicknesses of the nanostructured layer. From the observation using a fast framing camera, it was found that the velocity of the arc spots significantly altered as passing the boundary of the two layers. The changes in spot velocity and spot width were discussed theoretically using the ecton model. The fractal dimension of the arc trail evaluated by using a box-counting method was significantly changed. Also, the width of arc trail was increased with the nanostructured layer thickness. From the SEM analysis of the specimen, the amount of tungsten eroded by arcing for two different thickness cases was estimated, and the erosion rates were discussed.

  5. Pulse electrical arc stimulator based on single-electrode for active exercise in tail-suspension rat

    Institute of Scientific and Technical Information of China (English)

    孙联文; 谢添; 樊瑜波; 张晓薇; 孙瑶; 杨肖

    2008-01-01

    To make rat do active exercise to counteract bone loss in the rat tail-suspension model, a pulse electrical stimulator based on single-electrode with a low-current and a high-voltage was designed. The stimulator was controlled by SCM (single chip micyoco) that could accurately control the stimulation duration and the interval between stimulations, and cease the operation after the recorded number of stimulation had reached the value set by the program. With the help of posture estimation part, the device would operate intelligently by determining whether to stimulate or not, depending on the posture of rat’s limb. Software was developed to make operator control the stimulator using computer, save the experiment data and print the report. In practical experiment, the voltaic arc is generated by the stimulator, and impacted on the rat’s thenar. This induced pain to the rat and the rat would actively contract its hindlimb to evade the pain, so active exercise was carried out. The tail-suspension rats were trained twice every day for 14 d. At the 0 and 14th day, bone mineral density of rat femurs was determined by dual energy X-ray absorptiometry (DXA). The results show that the active exercise stimulated by the pulse electrical arc stimulator can attenuate weightlessness-induced bone loss, and this device is a convenient steady performance electrical stimulator that can surely induce rat’s hindlimb to do active exercise.

  6. USE OF BATTERY CARBON AS ELECTRODES IN ARC DISCHARGE METHOD FOR FABRICATION OF CARBON-MODIFIED TIO2

    Directory of Open Access Journals (Sweden)

    Isya Fitria Andhika

    2016-09-01

    Full Text Available Fabrication with carbon-modified TiO2 by arc discharge method in liquid medium has been studied. This research was performed in two steps including fabrication and characterization. This fabrication was done by arcdischarge method with graphite electrodes from dry cell batteries and liquid medium suspension of TiO2 in ethanol 30, 50 and 70 %. A strong current was applied to electrode as 10 -50 A (20-40 V. Nanocomposites formed on the liquid medium surface were collected and characterized using X-ray diffraction (XRD,scanning electron microscope (SEM dan energy dispersive spectroscopy (EDS to determine crystallinity, surface morphology and the constituent elements, respectively. XRD data shows that the most effective fabrication TiO2/Karbon by liquid medium in ethanol 50 % indicated from the formation of a new peak with high intensity of TiC on 2Ɵ= 36.02 °. SEM data shows that the morphology of each aggregated TiO2/Karbon compared to the morphology of TiO2. In addition, EDS data shows the presence of the element carbon, titanium and oxygen in the same area indicating that the successful formation of composite material between TiO2 dan carbon.

  7. Simulation of Weld Depth in A-TIG Welding with Unified Arc-electrode model

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Calculations have been made for weld depths occurring for TIG welding activated by a flux over the surface of the weld pool. In this case, the flux introduces an electrically insulating layer over the outer regions of the weld-pool surface. There is then an increase in the current density at the surface of the centre of the weld-pool with a consequent increase in the J×B forces, which drive a strong convective flow of the molten metal downwards, tending to make a deep weld. For a flux which produces an insulating layer for all but a central region of radius 2 mm, the calculated weld-depth is 7 mm, and an arc spot is predicted at the centre of the weld-pool surface. As yet we have not resolved the reason for significant differences that exist between our measurements of weld depth and the theoretical predictions.

  8. Vitrification of surrogate mixed wastes in a graphite electrode arc melter

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, N.R.; Chambers, A.G.; Ball, L. [and others

    1995-11-01

    Demonstration tests for vitrifying mixed wastes and contaminated soils have been conducted using a small (800 kVA), industrial-scale, three-phase AC, graphite electrode furnace located at the Albany Research Center of the United States Bureau of Mines (USBM). The feed mixtures were non-radioactive surrogates of various types of mixed (radioactive and hazardous), transuranic-contaminated wastes stored and buried at the Idaho National Engineering Laboratory (INEL). The feed mixtures were processed with added soil from the INEL. Objectives being evaluated include (1) equipment capability to achieve desired process conditions and vitrification products for different feed compositions, (2) slag and metals tapping capability, (3) partitioning of transuranic elements and toxic metals among the furnace products, (4) slag, fume, and metal products characteristics, and (5) performance of the feed, furnace and air pollution control systems. The tests were successfully completed in mid-April 1995. A very comprehensive process monitoring, sampling and analysis program was included in the test program. Sample analysis, data reduction, and results evaluation are currently underway. Initial results indicate that the furnace readily processed around 20,000 lb of widely ranging feed mixtures at feedrates of up to 1,100 lb/hr. Continuous feeding and slag tapping was achieved. Molten metal was also tapped twice during the test program. Offgas emissions were efficiently controlled as expected by a modified air pollution control system.

  9. Effects of the use of a flat wire electrode in gas metal arc welding and fuzzy logic model for the prediction of weldment shape profile

    Energy Technology Data Exchange (ETDEWEB)

    Karuthapandi, Sripriyan; Thyla, P. R. [PSG College of Technology, Coimbatore (India); Ramu, Murugan [Amrita University, Ettimadai (India)

    2017-05-15

    This paper describes the relationships between the macrostructural characteristics of weld beads and the welding parameters in Gas metal arc welding (GMAW) using a flat wire electrode. Bead-on-plate welds were produced with a flat wire electrode and different combinations of input parameters (i.e., welding current, welding speed, and flat wire electrode orientation). The macrostructural characteristics of the weld beads, namely, deposition, bead width, total bead width, reinforcement height, penetration depth, and depth of HAZ were investigated. A mapping technique was employed to measure these characteristics in various segments of the weldment zones. Results show that the use of a flat wire electrode improves the depth-to-width (D/W) ratio by 16.5 % on average compared with the D/W ratio when a regular electrode is used in GMAW. Furthermore, a fuzzy logic model was established to predict the effects of the use of a flat electrode on the weldment shape profile with varying input parameters. The predictions of the model were compared with the experimental results.

  10. Overview spectra and axial distribution of spectral line intensities in a high-current vacuum arc with CuCr electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lisnyak, M.; Pipa, A. V.; Gorchakov, S., E-mail: gorchakov@inp-greifswald.de, E-mail: weltmann@inp-greifswald.de; Iseni, S.; Franke, St.; Khapour, A.; Methling, R.; Weltmann, K.-D., E-mail: gorchakov@inp-greifswald.de, E-mail: weltmann@inp-greifswald.de [Leibniz-Institut für Plasmaforschung und Technologie e.V., Felix-Hausdorff-Straße 2, 17489 Greifswald (Germany)

    2015-09-28

    Spectroscopic investigations of free-burning vacuum arcs in diffuse mode with CuCr electrodes are presented. The experimental conditions of the investigated arc correspond to the typical system for vacuum circuit breakers. Spectra of six species Cu I, Cu II, Cu III, Cr I, Cr II, and Cr III have been analyzed in the wavelength range 350–810 nm. The axial intensity distributions were found to be strongly dependent on the ionization stage of radiating species. Emission distributions of Cr II and Cu II can be distinguished as well as the distributions of Cr III and Cu III. Information on the axial distribution was used to identify the spectra and for identification of overlapping spectral lines. The overview spectra and some spectral windows recorded with high resolution are presented. Analysis of axial distributions of emitted light, which originates from different ionization states, is presented and discussed.

  11. Size of Non-Metallic Inclusions in High-Grade Medium Carbon Steel

    Directory of Open Access Journals (Sweden)

    Lipiński T.

    2014-12-01

    Full Text Available Non-metallic inclusions found in steel can affect its performance characteristics. Their impact depends not only on their quality, but also, among others, on their size and distribution in the steel volume. The literature mainly describes the results of tests on hard steels, particularly bearing steels. The amount of non-metallic inclusions found in steel with a medium carbon content melted under industrial conditions is rarely presented in the literature. The tested steel was melted in an electric arc furnace and then desulfurized and argonrefined. Seven typical industrial melts were analyzed, in which ca. 75% secondary raw materials were used. The amount of non-metallic inclusions was determined by optical and extraction methods. The test results are presented using stereometric indices. Inclusions are characterized by measuring ranges. The chemical composition of steel and contents of inclusions in every melts are presented. The results are shown in graphical form. The presented analysis of the tests results on the amount and size of non-metallic inclusions can be used to assess them operational strength and durability of steel melted and refined in the desulfurization and argon refining processes.

  12. Mathematical model on heat transfer of water-cooling steel-stick bottom electrode of DC electric arc furnace

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    For predicting and controlling the melted depth of bottom electrode during the process of steelmaking, the water-cooling steel-stick electrode is taken as an example, to analyze the process of heat transfer, then 3D mathematical model by control capacity method is built. At the same time, the measurement on the melted depth of bottom electrode is conducted which verified the correctness of the built mathematical model. On the base of verification, all kinds of key parameters are calculated through the application and a series of results are simulated. Finally, the optimum parameters are found and the service lifeof bottom electrode is prolonged.

  13. 46 CFR 182.720 - Nonmetallic piping materials.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Nonmetallic piping materials. 182.720 Section 182.720... TONS) MACHINERY INSTALLATION Piping Systems § 182.720 Nonmetallic piping materials. (a) Rigid... systems where permitted by paragraph (e) of this section. (c) Nonmetallic piping must not be used...

  14. 46 CFR 119.720 - Nonmetallic piping materials.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Nonmetallic piping materials. 119.720 Section 119.720 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... Piping Systems § 119.720 Nonmetallic piping materials. Nonmetallic piping materials,...

  15. 49 CFR 193.2187 - Nonmetallic membrane liner.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Nonmetallic membrane liner. 193.2187 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Lng Storage Tanks § 193.2187 Nonmetallic membrane liner. A flammable nonmetallic membrane liner may not be used as an inner container in a storage tank....

  16. Mathematical Model on heat transfer of water—cooling steel—stick bottom electrode of DC electric arc furnace

    Institute of Scientific and Technical Information of China (English)

    HaiXu; XiaoLiu; 等

    2002-01-01

    For predicting and controlling the melted depth of bottom electrode during the process of steelmaking,the water-cooling steel stick electrode is taken as an example.to analyze the process of heat transfer,then 3D mathematical model by control capacity method is built.At the same time,the measurement on the melted depth of bottom electrode is conducted which verified the correctness of the built mathematical model.On the base of verification,all kinds of key parameters are calculated through the application and a series of results are simulated.Finally,the optimum parameters are found and the service life of bottom electrode is prolonged.

  17. Modeling of Arc Force in Plasma Arc Welding

    Institute of Scientific and Technical Information of China (English)

    GAO Zhonglin; HU Shengsun; YIN Fengliang; WANG Rui

    2008-01-01

    A three. dimensional mathematical model for the transferred-type argon arc was developed to describe arc force on the anode surface. The software ANSYS was employed to solve the model. The model includes a part of torch and tungsten electrode to achieve m ore reasonable results. The arc temperature and flow fields were derived. And the influences of welding parameters on arc force were also studied. The simulated results show that arc pressure at the anode are dependent on the welding current, plasma gas flow rate and electrode neck-in, while not sensitive to arc length.

  18. Non-metallic inclusions structure dimension in high quality steel with medium carbon contents

    Directory of Open Access Journals (Sweden)

    T. Lipiński

    2009-07-01

    Full Text Available The experimental material consisted of semi-finished products of high-grade, medium-carbon structural steel. The production process involved two melting technologies: steel melting in a 140-ton basic arc furnace with desulfurization and argon refining variants, and in a 100-ton oxygen converter. Billet samples were collected to analyze the content of non-metallic inclusions with the use of an optical microscope and a video inspection microscope. The results were processed and presented in graphic form.

  19. Gas tungsten arc welder

    Science.gov (United States)

    Christiansen, D.W.; Brown, W.F.

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  20. Controllability of arc jet from arc horns with slits. Slit tsuki arc horn no arc jet seigyo tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sunabe, K.; Inaba, T.; Fukagawa, H. (Central Research Institute of Electric Power Industry, Tokyo (Japan)); Kito, Y. (Nagoya University, Nagoya (Japan))

    1993-09-20

    To improve the corona discharge characteristics, test preparation was made of hollow rod form horns with slits for the overhead power transmission line use. Two types of horn electrode were prepared. The first horn electrode is of a hollow hemisphere fitted with and divided by slits on its tip. The second horn electrode is the first one which is further fitted with rod form electrode at the center of its tip. In experiment, relation was obtained between the deflection angle of arc jet and arc current, electrode diameter, etc., through an observation of arc jet by high speed camera. Melting loss of electrode was also made clear. The following knowledge was obtained: For the first horn electrode, the deflection angle can be limited to a narrow range by a division with slits, e.g., within 30 degrees under the condition of 5kA in arc current, 4 in number of sectors and 200mm in diameter. For the second horn electrode, the deflection angle can be limited to within 20 degrees under the condition of 5kA in arc current and 4 in number of sectors. The arc current is also limited to below 5kA by an addition of 50mm diameter central electrode. As a conclusion for the first electrode, the arc jet control characteristics excels in the stronger arc current range than 5kA, while for the second electrode, they are effective in the weaker arc current range than 5kA. 6 refs., 19 figs., 1 tab.

  1. Research for Multiple-electrode Submerged Arc Welding Process with Low Heat Input%低热输入多丝埋弧焊工艺研究

    Institute of Scientific and Technical Information of China (English)

    孙宏; 田鹏; 宗秋丽; 刘振伟; 纪鹏蕊

    2016-01-01

    研究开发出了一种新型高强度、 大壁厚UOE钢管埋弧焊工艺.该工艺采用小直径焊丝作为多丝焊的前丝(第1丝),将焊接热输入降低25%,细化了热影响区原始奥氏体的晶粒尺寸,从而提高了API X65钢级大壁厚管线钢管焊缝热影响区的韧性.试验结果表明,该工艺可以实现焊接接头完全焊透,同时具有充足的熔敷金属,达到了与传统方法相同的熔深.通过超声波和射线检测,焊缝均未发现未焊透、 夹渣等焊接缺陷,焊缝形貌良好.%It developed a new submerged arc welding (SAW) process for high-strength and heavy wall thickness UOE pipes. A new SAW process which can reduce heat input of 25% due to its high deposition rate and deep penetration is performed with multiple electrode SAW using small diameter welding wire on lead electrode. The results show that improvement of heat affected zone(HAZ) toughness in seam welding on API X65 heavy wall linepipe and refinement of prior austenite grain size in HAZ was achieved in order to reduce its heat input by the new process. This process can achieve full penetration of welded joint, has plenty of deposited metal, which can obtain the same penetration as the traditional method. By ultrasonic and X-ray testing, not found defects in weld such as lack of penetration, slag and so on, the weld appearance is good.

  2. MODELING PARAMETERS OF ARC OF ELECTRIC ARC FURNACE

    Directory of Open Access Journals (Sweden)

    R.N. Khrestin

    2015-08-01

    Full Text Available Purpose. The aim is to build a mathematical model of the electric arc of arc furnace (EAF. The model should clearly show the relationship between the main parameters of the arc. These parameters determine the properties of the arc and the possibility of optimization of melting mode. Methodology. We have built a fairly simple model of the arc, which satisfies the above requirements. The model is designed for the analysis of electromagnetic processes arc of varying length. We have compared the results obtained when testing the model with the results obtained on actual furnaces. Results. During melting in real chipboard under the influence of changes in temperature changes its properties arc plasma. The proposed model takes into account these changes. Adjusting the length of the arc is the main way to regulate the mode of smelting chipboard. The arc length is controlled by the movement of the drive electrode. The model reflects the dynamic changes in the parameters of the arc when changing her length. We got the dynamic current-voltage characteristics (CVC of the arc for the different stages of melting. We got the arc voltage waveform and identified criteria by which possible identified stage of smelting. Originality. In contrast to the previously known models, this model clearly shows the relationship between the main parameters of the arc EAF: arc voltage Ud, amperage arc id and length arc d. Comparison of the simulation results and experimental data obtained from real particleboard showed the adequacy of the constructed model. It was found that character of change of magnitude Md, helps determine the stage of melting. Practical value. It turned out that the model can be used to simulate smelting in EAF any capacity. Thus, when designing the system of control mechanism for moving the electrode, the model takes into account changes in the parameters of the arc and it can significantly reduce electrode material consumption and energy consumption

  3. STUDY ON THE PRESSURE IN PLASMA ARC

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The axial pressure in plasma arc is measured under different conditions. The effects of the parameters, such as welding current, plasma gas flow rate, electrode setback and arc length, on the pressure in plasma arc are investigated and quantitative analyzed to explain the relationship between the quality of weld and the matching of parameters in plasma arc welding process.

  4. Rotating Drive for Electrical-Arc Machining

    Science.gov (United States)

    Fransen, C. D.

    1986-01-01

    Rotating drive improves quality of holes made by electrical-arc machining. Mechanism (Uni-tek, rotary head, or equivalent) attached to electrical-arc system. Drive rotates electrode as though it were mechanical drill, while an arc disintegrates metal in workpiece, thereby creating hole. Rotating electrode method often used in electric-discharge machining. NASA innovation is application of technique to electrical-arc machining.

  5. Sustainable Non-Metallic Building Materials

    Directory of Open Access Journals (Sweden)

    Svetlana Tretsiakova-McNally

    2010-01-01

    Full Text Available Buildings are the largest energy consumers and greenhouse gases emitters, both in the developed and developing countries. In continental Europe, the energy use in buildings alone is responsible for up to 50% of carbon dioxide emission. Urgent changes are, therefore, required relating to energy saving, emissions control, production and application of materials, use of renewable resources, and to recycling and reuse of building materials. In addition, the development of new eco-friendly building materials and practices is of prime importance owing to the growing environmental concerns. This review reflects the key tendencies in the sector of sustainable building materials of a non-metallic nature that have occurred over the past decade or so.

  6. Welding arc plasma physics

    Science.gov (United States)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  7. Gas Tungsten Arc Welding and Plasma Arc Cutting. Teacher Edition.

    Science.gov (United States)

    Fortney, Clarence; And Others

    This welding curriculum guide treats two topics in detail: the care of tungsten electrodes and the entire concept of contamination control and the hafnium electrode and its importance in dual-air cutting systems that use compressed shop air for plasma arc cutting activities. The guide contains three units of instruction that cover the following…

  8. Gliding arc triggered microwave plasma arc at atmospheric pressure for coal gasification application

    Science.gov (United States)

    Jain, Vishal; Visani, A.; Patil, C.; Patel, B. K.; Sharma, P. K.; John, P. I.; Nema, S. K.

    2014-08-01

    Plasma torch is device that efficiently converts electrical energy in to thermal energy for various high temperature applications. The conventional plasma torch comprises of consumable electrodes namely anode and cathode electrodes. The replacement of these electrodes is a complex process owing to its cooling and process shut down requirements. However, microwave plasma arc is electrode-less plasma arc system that is an alternative method to conventional arc technology for generating plasma arc. In this technique, microwave power is efficiently coupled to generate plasma arc by using the property of polar molecule to absorb microwave power. The absorption of microwave power is in form of losses due to intermolecular friction and high collisions between the molecules. This is an efficient method because all microwave power can be absorbed by plasma arc. The main feature of microwave plasma arc is its large uniform high temperature column which is not possible with conventional arc discharge methods. Such type of plasma discharge is very useful in applications where sufficient residence time for treat materials is required. Microwave arc does not require any consumable electrodes and hence, it can be operated continuously that makes it very useful for hazardous effluent treatment applications. Further, microwave cannot ionize neutral particles at atmospheric pressure and hence, a gliding arc is initiated between two thin electrodes in the cavity by applying very low power high voltage (3kV) AC source. In this report, the method for generating microwave arc of 1kW power using commercial microwave oven is elaborated.

  9. Non-metallic inclusions in high manganese austenitic alloys

    OpenAIRE

    A. Grajcar; L. Bulkowski; U. Galisz

    2011-01-01

    Purpose: The aim of the paper is to identify the type, fraction and chemical composition of non-metallic inclusions modified by rare-earth elements in an advanced group of high-manganese austenitic C-Mn-Si-Al-type steels with Nb and Ti microadditions.Design/methodology/approach: The heats of 3 high-Mn steels of a various content of Si, Al and Ti were melted in a vacuum induction furnace and a modification of non-metallic inclusions was carried out by the mischmetal in the amount of 0.87 g or ...

  10. Arcing phenomena in fusion devices workshop

    Energy Technology Data Exchange (ETDEWEB)

    Clausing, R.E.

    1979-01-01

    The workshop on arcing phenomena in fusion devices was organized (1) to review the pesent status of our understanding of arcing as it relates to confinement devices, (2) to determine what informaion is needed to suppress arcing and (3) to define both laboratory and in-situ experiments which can ultimately lead to reduction of impurities in the plasma caused by arcing. The workshop was attended by experts in the area of vacuum arc electrode phenomena and ion source technology, materials scientists, and both theoreticians and experimentalists engaged in assessing the importance of unipolar arcing in today's tokamaks. Abstracts for papers presented at the workshop are included.

  11. Interaction mechanism of non-metallic particles with crystallization front

    Directory of Open Access Journals (Sweden)

    Żak P. L.

    2017-03-01

    Full Text Available The process of steel solidification in the CCS mould is accompanied by a number of phenomena relating to the formation of non-metallic phase, as well as the mechanism of its interaction with the existing precipitations and the advancing crystallization front. In the solidification process the non-metallic inclusions may be absorbed or repelled by the moving front. As a result a specific distribution of non-metallic inclusions is obtained in the solidified ingot, and their distribution is a consequence of these processes. The interaction of a non-metallic inclusion with the solidification front was analyzed for alumina, for different values of the particle radius. The simulation was performed with the use of own computer program. Each time a balance of forces acting on a particle in its specific position was calculated. On this basis the change of position of alumina particle in relation to the front was defined for a specific radius and original location of the particle with respect to the front.

  12. Test plan for the irradiation of nonmetallic materials.

    Energy Technology Data Exchange (ETDEWEB)

    Brush, Laurence H.; Farnum, Cathy Ottinger; Dahl, M.; Joslyn, C. C.; Venetz, T. J.

    2013-05-01

    A comprehensive test program to evaluate nonmetallic materials use in the Hanford tank farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.

  13. Test plan for the irradiation of nonmetallic materials.

    Energy Technology Data Exchange (ETDEWEB)

    Brush, Laurence H.; Farnum, Cathy Ottinger; Gelbard, Fred; Dahl, M.; Joslyn, C. C.; Venetz, T. J.

    2013-03-01

    A comprehensive test program to evaluate nonmetallic materials use in the Hanford Tank Farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.

  14. RESEARCH ON ELECTRIC ARC REDUCTION OF CARBON DIOXIDE,

    Science.gov (United States)

    CARBON DIOXIDE , REDUCTION(CHEMISTRY), ELECTRIC ARCS, CHEMICAL REACTIONS, HEAT OF REACTION, GAS FLOW, OXYGEN, CARBON COMPOUNDS, MONOXIDES, ELECTRODES, LABORATORY EQUIPMENT, HIGH TEMPERATURE, PLASMAS(PHYSICS), ENERGY.

  15. Application of Fuzzy Control Based on SIEMENS PLC in Electrode Regulating System of Electric Arc Furnace%基于西门子PLC的模糊控制在电弧炉电极调节中的应用

    Institute of Scientific and Technical Information of China (English)

    刘文远; 毛一之; 杨子亮

    2012-01-01

    Aiming at the electrode regulating system of electric arc furnace have the characteristics of non-linearity, long time lag , time variable, etc .proposed that the advanced fuzzy control was applied to electric arc furnace electrode regulator system to improve the system performance. Proved by mathematical that the simulation of fuzzy control regulation is superior to the original dead-time control. According to the features of PLC and the principle of fuzzy control, proposed the method of realizing fuzzy control through software programming based on Siemens S7 -400. So on the basis of the original system can improve the regulation, without additional hardware, to reduce the cost of renovation.%针对电弧炉电极调节系统具有非线性、大时滞及时变性等特点,提出将先进的模糊控制应用到电弧炉电极调节系统中来改善系统的调节性能.通过数学仿真证明模糊控制调节性能明显优于原来的死区控制.结合PLC的特点以及模糊控制原理,提出了将模糊控制在西门子S7-400中通过软件编程来实现的方法.这样在原来的基础上既能改善系统的调节性能,又不增加硬件设备,降低改造成本.

  16. Electric-arc synthesis of soot with high content of higher fullerenes in parallel arc

    Science.gov (United States)

    Dutlov, A. E.; Nekrasov, V. M.; Sergeev, A. G.; Bubnov, V. P.; Kareev, I. E.

    2016-12-01

    Soot with a relatively high content of higher fullerenes (C76, C78, C80, C82, C84, C86, etc.) is synthesized in a parallel arc upon evaporation of pure carbon electrodes. The content of higher fullerenes in soot extract amounts to 13.8 wt % when two electrodes are simultaneously burnt in electric-arc reactor. Such a content is comparable with the content obtained upon evaporation of composite graphite electrodes with potassium carbonate impurity.

  17. Cutting of nonmetallic materials using Nd:YAG laser beam

    Institute of Scientific and Technical Information of China (English)

    Bashir Ahmed Tahir; Rashid Ahmed; M. G. B. Ashiq; Afaq Ahmed; M. A. Saeed

    2012-01-01

    This study deals with Nd:YAG laser cutting nonmetallic materials,which is one of the most important and popular industrial applications of laser.The main theme is to evaluate the effects of Nd:YAG laser beam power besides work piece scanning speed.For approximate cutting depth,a theoretical study is conducted in terms of material property and cutting speed.Results show a nonlinear relation between the cutting depth and input energy.There is no significant effect of speed on cutting depth with the speed being larger than 30 mm/s.An extra energy is utilized in the deep cutting.It is inferred that as the laser power increases,cutting depth increases.The experimental outcomes are in good agreement with theoretical results.This analysis will provide a guideline for laser-based industry to select a suitable laser for cutting,scribing,trimming,engraving,and marking nonmetallic materials.

  18. System definition study of deployable, non-metallic space structures

    Science.gov (United States)

    Stimler, F. J.

    1984-01-01

    The state of the art for nonmetallic materials and fabrication techniques suitable for future space structures are summarized. Typical subsystems and systems of interest to the space community that are reviewed include: (1) inflatable/rigidized space hangar; (2) flexible/storable acoustic barrier; (3) deployable fabric bulkhead in a space habitat; (4) extendible tunnel for soft docking; (5) deployable space recovery/re-entry systems for personnel or materials; (6) a manned habitat for a space station; (7) storage enclosures external to the space station habitat; (8) attachable work stations; and (9) safe haven structures. Performance parameters examined include micrometeoroid protection; leakage rate prediction and control; rigidization of flexible structures in the space environment; flammability and offgassing; lifetime for nonmetallic materials; crack propagation prevention; and the effects of atomic oxygen and space debris. An expandable airlock for shuttle flight experiments and potential tethered experiments from shuttle are discussed.

  19. Synthesis of aromatic nitriles using nonmetallic cyano-group sources.

    Science.gov (United States)

    Kim, Jinho; Kim, Hyun Jin; Chang, Sukbok

    2012-11-26

    Aromatic nitriles are prepared efficiently through transition-metal-mediated cyanation of aryl (pseudo)halides with metallic cyano-group sources, such as CuCN, KCN, NaCN, Zn(CN)(2), TMSCN, or K(4) [Fe(CN)(6)]. However, this approach often suffers from drawbacks, such as the formation of stoichiometric amounts of metal waste, the poisoning of the metal catalysts, or the generation of toxic HCN gas. As a result, a range of "nonmetallic" organic cyano-group sources have been explored for the cyanation of aryl halides and arene C-H bonds. This Minireview summarizes types of nonmetallic cyano-group sources and their applications in the preparation of aryl nitriles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A study on non-metallic structure of heliostat

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiaobin; Zang Chuncheng; Zhang Xiliang; Wang Yangzhong; Du Fengli [Himin Solar Energy Group Co., Ltd, Dezhou City (China); Wang Zhifeng [Inst. of Electrical Engineering, CAS, BJ (China)

    2008-07-01

    Heliostat constitutes a very important component in the solar power tower system. Its importance derives from three aspects: one is the large proportion in the total cost, accounting for about 50% of the whole, the other is its concentration efficiency and reflectivity heavily determining the power conversion from solar thermal energy to electrical energy, another is itself power consumption amount highly expressing failure or success of the power plant. Therefore, serious efforts and considerations from the structure, motion and control mode to material selection have to be given in the design and optimization of heliostat. In the present paper, the mechanical and aging performance of non-metallic materials is investigated and compared. The possibility of these non-metallic materials in the application of heliostat structure is discussed. (orig.)

  1. Electrode assemblies, plasma apparatuses and systems including electrode assemblies, and methods for generating plasma

    Science.gov (United States)

    Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D

    2013-09-17

    Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.

  2. Cathodic arcs

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  3. Cathodic arcs

    OpenAIRE

    Anders, Andre

    2003-01-01

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas stand out due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bia...

  4. Optical diagnostics of a gliding arc

    DEFF Research Database (Denmark)

    Sun, Z.W.; Zhu, J.J.; Li, Z.S.;

    2013-01-01

    Dynamic processes in a gliding arc plasma generated between two diverging electrodes in ambient air driven by 31.25 kHz AC voltage were investigated using spatially and temporally resolved optical techniques. The life cycles of the gliding arc were tracked in fast movies using a high-speed camera...

  5. Measurement of an Electric Arc Spectra

    OpenAIRE

    Šimek, D.

    2015-01-01

    Article is focused on electric arc spectroscopy diagnostics related to electric low voltage apparatuses. The first attempts of spectroscopy measurements are dealt with. An example of radiation spectra of the electric arc burning between copper electrodes is presented. The problems connected with the measurements are discussed.

  6. Investigation of Voltage Unbalance Problems In Electric Arc Furnace Operation Model

    OpenAIRE

    Yacine DJEGHADER; Hocine LABAR

    2013-01-01

    In modern steel industry, Electric Arc Furnaces are widely used for iron and scarp melting. The operation of electric arc furnace causes many power quality problems such as harmonics, unbalanced voltage and flicker. The factors that affect Electric arc furnace operation are the melting or refining materials, melting stage, electrodes position (arc length), electrode arm control and short circuit power of the feeder, so, arc voltages, current and power are defined as a nonlinear function of ar...

  7. 29 CFR 1926.351 - Arc welding and cutting.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Arc welding and cutting. 1926.351 Section 1926.351 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Welding and Cutting § 1926.351 Arc welding and cutting. (a) Manual electrode holders. (1) Only manual electrode holders which are specifically...

  8. Hooded arc ion-source

    CERN Multimedia

    1972-01-01

    The positioning system for the hooded arc ion-source, shown prior to mounting, consists of four excentric shafts to locate the ion-source and central electrodes. It will be placed on the axis of the SC and introduced into the vacuum tank via the air locks visible in the foreground.

  9. Non-metallic Inclusions in Continuously Cast Aluminum Killed Steels

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In aluminum killed steels, the size, shape, quantity and formation of non-metallic inclusions in ladle steel (before and after RH vacuum treatment) and in tundish as well as in slabs were studied by EPMA (Electron Probe Microanalysis) and by analyzing the total oxygen. The results showed that in the slabs the total oxygen was quite low and the inclusions discovered were mainly small-sized angular alumina inclusions. This indicates that most inclusions have been removed by floating out during the continuous casting process. In addition, the countermeasures were discussed to decrease the alumina inclusions in the slabs further.

  10. Testing theOdour Quality of Non-Metallic Materials

    Directory of Open Access Journals (Sweden)

    AVIJIT SINGH GANGWAR

    2014-10-01

    Full Text Available This report has been compiled on the completion of 3 week summer training at ICAT. It discusses about a very necessary and least popular part of the Automotive Industry i.e. Testing and Certification. It discusses about one of the government notified Testing body ICAT which is one of just 6 such organisations in India.This report deals with the odour quality testing of non-metallic materials that are used for automobile compartment and parts associated with the compartment.

  11. The Measurement of Hardness and Elastic Modulus of non-Metallic Inclusions in Steely Welding Joints

    Directory of Open Access Journals (Sweden)

    Ignatova Anna

    2015-08-01

    Full Text Available Trunk pipelines work under a cyclic dynamical mechanical load because when oil or gas is pumped, the pressure constantly changes - pulsates. Therefore, the fatigue phenomenon is a common reason of accidents. The fatigue phenomenon more often happens in the zone of non-metallic inclusions concentration. To know how the characteristics of nonmetallic inclusions influence the probability of an accident the most modern research methods should be used. It is determined with the help of the modern research methods that the accident rate of welded joints of pipelines is mostly influenced by their morphological type, composition and size of nonmetallic inclusions, this effect is more important than the common level of pollution by non-metallic inclusions. The article presents the results of the investigations of welded joints, obtained after the use of different common welding materials. We used the methods, described in the state standards: scanning electronic microscopy, spectral microprobe analysis and nano-indentation. We found out that non-metallic inclusions act like stress concentrators because they shrink, forming a blank space between metal and nonmetallic inclusions; it strengthens the differential properties on this boundary. Nonmetallic inclusion is not fixed, it can move. The data that we have received mean that during welded joints’ contamination (with non-metallic inclusions monitoring process, more attention should be paid to the content of definite inclusions, but not to total contamination.

  12. Economic impact of using nonmetallic materials in low to intermediate temperature geothermal well construction

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Four appendices are included. The first covers applications of low-temperature geothermal energy including industrial processes, agricultural and related processes, district heating and cooling, and miscellaneous. The second discusses hydrogeologic factors affecting the design and construction of low-temperature geothermal wells: water quality, withdrawal rate, water depth, water temperature, basic well designs, and hydrogeologic provinces. In the third appendix, properties of metallic and nonmetallic materials are described, including: specific gravity, mechanical strength properties, resistance to physical and biological attack, thermal properties of nonmetallics, fluid flow characteristics, corrosion resistance, scaling resistance, weathering resistance of nonmetallics, and hydrolysis resistance of nonmetallics. Finally, special considerations in the design and construction of low-temperature geothermal wells using nonmetallics materials are covered. These include; drilling methods, joining methods, methods of casing and screen installation, well cementing, and well development. (MHR)

  13. Metals purification by improved vacuum arc remelting

    Science.gov (United States)

    Zanner, Frank J.; Williamson, Rodney L.; Smith, Mark F.

    1994-12-13

    The invention relates to improved apparatuses and methods for remelting metal alloys in furnaces, particularly consumable electrode vacuum arc furnaces. Excited reactive gas is injected into a stationary furnace arc zone, thus accelerating the reduction reactions which purify the metal being melted. Additionally, a cooled condensation surface is disposed within the furnace to reduce the partial pressure of water in the furnace, which also fosters the reduction reactions which result in a purer produced ingot. Methods and means are provided for maintaining the stationary arc zone, thereby reducing the opportunity for contaminants evaporated from the arc zone to be reintroduced into the produced ingot.

  14. Influence of metal vapour on arc temperatures in gas-metal arc welding: convection versus radiation

    Science.gov (United States)

    Murphy, Anthony B.

    2013-06-01

    The presence of metal vapour in gas-metal arc welding has been shown to have two strong effects on the arc plasma: a decrease in temperature throughout the arc, and the formation of a local temperature minimum near the arc axis. These effects have been attributed, on the basis of different computational models, to either the increased radiative emission associated with the presence of metal vapour in the arc plasma, or the influence of the metal vapour influx on convective flow in the arc. This question is investigated using a three-dimensional computational model in which the production and the transport of metal vapour are taken into account self-consistently. Parameters relevant to welding of thin sheets of aluminum are examined. For these conditions, it is found that the first effect (the decrease in temperature throughout the arc) is due to both the increased radiative emission and the influence of the metal vapour influx on flow. The second effect (the local temperature minimum, which in this case occurs just below the wire electrode) is a consequence of the influence of aluminum vapour produced from the wire electrode on flow in the arc. By examining published results and the energy balance in the plasma, it is shown that for welding of steel with higher arc currents, the increased radiative emission can lead to a local temperature minimum at a greater distance from the wire electrode.

  15. A RISK MANAGEMENT METHODOLOGY FOR NON-METALLIC PROCESS EQUIPMENT

    Directory of Open Access Journals (Sweden)

    J.J. Viviers

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Many companies in South Africa have implemented the risk-based inspection (RBI methodology as a maintenance strategy. The risk involved in operating a piece of equipment, past history, non-destructive examination techniques, failure modes, and many other aspects determine the frequency of inspections required to meet legislation. The main purpose of the RBI methodology is to prevent failures of process equipment. The methodology for risk-based inspection for metal equipment is well-established and has been proven in industry, becoming the norm nationally and internationally. However, it is not possible to apply all the techniques to nonmetallic equipment owing to vast differences between the two types of materials. This paper discusses the results of data gathered on the RBI methodology for nonmetallic equipment, and proposes a risk-based model that can be used to perform a risk assessment for non-metallic equipment in a process plant. The risk assessment can be used to formulate the next inspection interval for the asset.

    AFRIKAANSE OPSOMMING: Verskeie maatskappye in Suid-Afrika het reeds die metodologie van risikogebaseeerde inspeksie (RBI geïmplementeer as deel van ‘n omvattende instandhoudingstrategie. Die risiko betrokke by ‘n fisiese item, bedryfsgeskiedenis, nie-vernietigende toetstegnieke, falingsmodusse, en vele ander aspekte bepaal die frekwensie van inspeksies wat benodig word om aan wetlike vereistes te voldoen. Die hoofdoel van die risiko-gebaseerde metodologie is om faling van prosestoerusting te verhinder. Die metodologie vir risiko-gebaseerde inspeksie van metaaltoerusting is goed bekend en word suksesvol toegepas in die industrie. Dis is egter nie moontlik om al die tegnieke toe te pas op nie-metaaltoerusting nie weens die groot verskeidenheid van materiaaltipes. Hierdie artikel bespreek die data wat ingewin is op die risiko-gebaseerde metodologie vir nie-metaaltipeprosestoerusting, en stel

  16. Arc Statistics

    CERN Document Server

    Meneghetti, M; Dahle, H; Limousin, M

    2013-01-01

    The existence of an arc statistics problem was at the center of a strong debate in the last fifteen years. With the aim to clarify if the optical depth for giant gravitational arcs by galaxy clusters in the so called concordance model is compatible with observations, several studies were carried out which helped to significantly improve our knowledge of strong lensing clusters, unveiling their extremely complex internal structure. In particular, the abundance and the frequency of strong lensing events like gravitational arcs turned out to be a potentially very powerful tool to trace the structure formation. However, given the limited size of observational and theoretical data-sets, the power of arc statistics as a cosmological tool has been only minimally exploited so far. On the other hand, the last years were characterized by significant advancements in the field, and several cluster surveys that are ongoing or planned for the near future seem to have the potential to make arc statistics a competitive cosmo...

  17. Radiation damage in nonmetallic solids under dense electronic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Noriaki; Tanimura, Katsumi; Nakai, Yasuo (Dept. of Physics, Nagoya Univ. (Japan))

    1992-03-01

    Basic processes of radiation damage of insulators by dense electronic excitation are reviewed. First it is pointed out that electronic excitation of nonmetallic solids produces the self-trapped excitons and defect-related metastable states having relatively long lifetimes, and that the excitation of these metastable states, produces stable defects. The effects of irradiation with heavy ions, including track registration, are surveyed on the basis of the microscopic studies. It is pointed out also that the excitation of the metastable states plays a role in laser-induced damage at relatively low fluences, while the laser damage has been reported to be governed by heating of free electrons produced by multiphoton excitation. Difference in the contributions of the excitation of metastable defects to laser-induced damage of surfaces, or laser ablation, and laser-induced bulk damage is stressed. (orig.).

  18. On arc efficiency in gas tungsten arc welding

    Directory of Open Access Journals (Sweden)

    Nils Stenbacka

    2013-12-01

    Full Text Available The aim of this study was to review the literature on published arc efficiency values for GTAW and, if possible, propose a narrower band. Articles between the years 1955 - 2011 have been found. Published arc efficiency values for GTAW DCEN show to lie on a wide range, between 0.36 to 0.90. Only a few studies covered DCEP - direct current electrode positive and AC current. Specific information about the reproducibility in calorimetric studies as well as in modeling and simulation studies (considering that both random and systematic errors are small was scarce. An estimate of the average arc efficiency value for GTAW DCEN indicates that it should be about 0.77. It indicates anyway that the GTAW process with DCEN is an efficient welding method. The arc efficiency is reduced when the arc length is increased. On the other hand, there are conflicting results in the literature as to the influence of arc current and travel speed.

  19. Effect of the conditions of REM microalloying of steel on the corrosion activity of nonmetallic inclusions

    Science.gov (United States)

    Movenko, D. A.; Kotel'nikov, G. I.; Pavlov, A. V.; Bytsenko, O. A.

    2015-11-01

    Experimental heats of low-alloy steel are performed under various conditions of rare-earth metal microalloying and aluminum and calcium deoxidation. Electron-probe microanalysis of nonmetallic inclusions and a metallographic investigation of a metal are used to show that, when interacting with water, nonmetallic cerium oxide inclusions do not form hydrates and, correspondingly, are not aggressive. When aluminum, calcium, and cerium additions are sequentially introduced into a melt, a continuous cerium oxide shell forms on calcium aluminates, protects corrosive nonmetallic inclusions against interaction with water, and weakens local metal corrosion.

  20. Molten pool surface height measurement proj ection system of small current tungsten electrode argon arc welding%小电流钨极氩弧焊熔池表面高度测量投影系统

    Institute of Scientific and Technical Information of China (English)

    范定环; 魏昇; 刘南生

    2013-01-01

    The molten pool deformed grating stripe with enough quantity and good modulation degree was demand when we measured the molten pool surface by Fourier transform profilometry.The area of tung-sten electrode argon arc welding molten pool is small and reflecting property of liquid metal surface is com-plexity that company with strong electric arc interference.The proj ection system with good performance had designed by the overall consideration about the relationship of grating pitch,molten pool surface reflec-tion,arc interference and optical system parameters.Our study had demonstrated that the molten pool con-cussion had caused the dynamic change of normal direction of liquid metal tiny surface element that has the scattering effect on light beam.Therefore,the molten pool images can be captured by use of surface scatter-ing randomly of specular reflection light.The rectangular raster with pitch of 0.4 mm had projected on welding pool surface out of focus with angle of 30 degree.The obtained deformed laser stripes had pro-cessed by computer to acquire pool surface height preliminary.%利用傅里叶变换轮廓术的基本原理测量小电流钨极氩弧焊熔池表面高度,需要获得数量足够,调制度好的熔池变形光栅条纹。钨极氩弧焊熔池面积小,液态金属表面反射性能复杂,有强烈电弧光干扰,要综合考虑光栅节距、熔池表面反射、弧光干扰与光学系统参数之间的关系,设计好投影系统。研究表明,小电流钨极氩弧焊熔池振荡造成液态金属表面各微面元法线方向动态变化,对光束有散射效应,对于投射的结构光束,可以通过随机表面散射的镜面反射光拍摄熔池图像。将节距为0.4 mm的矩形光栅以30°左右的掠射角离焦投射到钨极氩弧焊熔池表面,可获得较好的熔池变形光栅条纹,经后续处理,可初步测量出熔池表面高度。

  1. Modeling Arcs

    CERN Document Server

    Insepov, Zeke; Veitzer, Seth; Mahalingam, Sudhakar

    2011-01-01

    Although vacuum arcs were first identified over 110 years ago, they are not yet well understood. We have since developed a model of breakdown and gradient limits that tries to explain, in a self-consistent way: arc triggering, plasma initiation, plasma evolution, surface damage and gra- dient limits. We use simple PIC codes for modeling plasmas, molecular dynamics for modeling surface breakdown, and surface damage, and mesoscale surface thermodynamics and finite element electrostatic codes for to evaluate surface properties. Since any given experiment seems to have more variables than data points, we have tried to consider a wide variety of arcing (rf structures, e beam welding, laser ablation, etc.) to help constrain the problem, and concentrate on common mechanisms. While the mechanisms can be comparatively simple, modeling can be challenging.

  2. A study on consumable aided tungsten indirect arc welding

    Institute of Scientific and Technical Information of China (English)

    Wang Jun; Wang Yuxin; Feng Jicai

    2009-01-01

    A consumable aided tungsten indirect arc welding method has been studied. This method is different from the traditional TIG welding because it introduces an MIG welding torch into the traditional TIG welding system. An indirect arc is generated between the consumable electrode of the MIG welding torch and the tungsten electrode of the TIG welding torch, but not generated between the tungsten electrode of the welding torch and the base metal. Welding current flows from the consumable electrode to the tungsten electrode in the free-burning indirect arc. The consumable aided tungsten indirect arc welding not only rapidly melts the welding wire but also effectively restrains the excessive fusion of the base metal. The welding experiment and the theoretical analysis confirm that this method can obtain a high deposition rate and a low dilution ratio during the welding process.

  3. Encapsulation of nonmetallic fractions recovered from printed circuit boards waste with thermoplastic.

    Science.gov (United States)

    Muniyandi, Shantha Kumari; Sohaili, Johan; Hassan, Azman

    2014-09-01

    The present work includes a process for encapsulation by combining substantially simultaneously dry nonmetallic printed circuit boards (PCBs) powder and recycled high-density polyethylene (rHDPE) in an extruder to form a homogenous matrix. The extruded materials were then molded into standard tensile, flexural, and impact properties testing specimens. Nonmetallic PCB mainly consists of large amount of glass fiber-reinforced epoxy resin materials. Incorporation of 50 wt% nonmetallic PCB in rHDPE matrix had increased the flexural strength and modulus by 35% and 130%, respectively. Tensile strength reported to be constant without much improvement. However, the Young's modulus has increased by 180%, with incorporation of 50 wt% nonmetallic PCB. The addition of 6 phr (parts per hundred) maleated polyethylene (MAPE) resulted in 2-fold increase in tensile and flexural strength. Regarding the leaching properties, Cu was identified as the metal that leached at the highest level from the raw nonmetallic PCB, at 59.09 mg/L. However, after the nonmetallic PCB was filled in rHDPE/PCB composites, the concentration of Cu was reduced far below the regulatory limit, to only 3 mg/L. Thermal properties of composites were studied, and it was found out that incorporation of nonmetallic PCB fillers in rHDPE resulted in low thermal conductivity, whereas mechanical strength of the composites showed maximum improvements at 220 degrees C. Overall, the encapsulation technique using nonmetallic PCB waste has formed a monolithic waste form that provides a barrier to the dispersion of wastes into the environment. Implications: Nonmetallic materials reclaimed from waste PCBs were used to analyze the chemical composition, and it was found that nonmetalllic PCBs mainly consist of glass fiber-reinforced epoxy resin materials. With such millions of glass fibers in nonmetallic PCBs, there are mass-excellent supporting bodies that enhance the mechanical properties of composites. In fact, utilization

  4. Converting non-metallic printed circuit boards waste into a value added product

    OpenAIRE

    Shantha Kumari Muniyandi; Johan Sohaili; Azman Hassan; Siti Suhaila Mohamad

    2013-01-01

    The aim of this study was to investigate the feasibility of using nonmetallic printed circuit board (PCB) waste as filler in recycled HDPE (rHDPE) in production of rHDPE/PCB composites. Maleic anhydride modified linear low-density polyethylene (MAPE) was used as compatibilizer. In particular, the effects of nonmetallic PCB and MAPE on mechanical properties of the composites were assessed through tensile, flexural and impact testing. Scanning electron microscope (SEM) was used to study the dis...

  5. Size of Non-Metallic Inclusions in High-Grade Medium Carbon Steel

    OpenAIRE

    Lipiński T.; Wach A.

    2014-01-01

    Non-metallic inclusions found in steel can affect its performance characteristics. Their impact depends not only on their quality, but also, among others, on their size and distribution in the steel volume. The literature mainly describes the results of tests on hard steels, particularly bearing steels. The amount of non-metallic inclusions found in steel with a medium carbon content melted under industrial conditions is rarely presented in the literature. The tested steel was melted in an el...

  6. The Effect of Different Non-Metallic Inclusions on the Machinability of Steel

    OpenAIRE

    Niclas Ånmark; Andrey Karasev; Pär Göran Jönsson

    2015-01-01

    Considerable research has been conducted over recent decades on the role of non-metallic inclusions and their link to the machinability of different steels. The present work reviews the mechanisms of steel fractures during different mechanical machining operations and the behavior of various non-metallic inclusions in a cutting zone. More specifically, the effects of composition, size, number and morphology of inclusions on machinability factors (such as cutting tool wear, power consumption, ...

  7. Interaction of silicene and germanene with non-metallic substrates

    Science.gov (United States)

    Houssa, M.; Scalise, E.; van den Broek, B.; Lu, A.; Pourtois, G.; Afanas'ev, V. V.; Stesmans, A.

    2015-01-01

    By using first-principles simulations, we investigate the interaction of silicene and germanene with various non-metallic substrates. We first consider weak van der Waals interactions between the 2D layers and dichalcogenide substrates, like MoX2 (X=S, Se, Te). The buckling of the silicene or germanene layer is correlated to the lattice mismatch between the 2D material and the MoX2 template. The electronic properties of silicene or germanene on these different templates then largely depend on the buckling of the 2D material layer: highly buckled silicene or germanene on MoS2 are predicted to be metallic, while low buckled silicene on MoTe2 is predicted to be semi-metallic, with preserved Dirac cones at the K points. We next study the covalent bonding of silicene and germanene on (0001) ZnS and ZnSe surfaces. On these substrates, silicene or germanene are found to be semiconducting. Remarkably, the nature and magnitude of their energy band gap can be controlled by an out-of-plane electric field.

  8. High pressure neon arc lamp

    Science.gov (United States)

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  9. Particle tracking velocimetry of a gliding arc discharge

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas;

    2014-01-01

    A 35 kHz AC gliding arc discharge at atmospheric pressure is generated between two diverging electrodes and extended by an air flow. The gas flow velocity is measured by particle tracking velocimetry (PTV) while the moving velocity of the plasma column of the gliding arc discharge is measured...... by analyzing the movie taken by a high-speed camera. The two-dimensional velocity vector of the gas flow and of the gliding arc in the imaging plane was determined....

  10. Ultrafast-Contactless Flash Sintering using Plasma Electrodes

    OpenAIRE

    Theo Saunders; Salvatore Grasso; Reece, Michael J.

    2016-01-01

    This paper presents a novel derivative of flash sintering, in which contactless flash sintering (CFS) is achieved using plasma electrodes. In this setup, electrical contact with the sample to be sintered is made by two arc plasma electrodes, one on either side, allowing current to pass through the sample. This opens up the possibility of continuous throughput flash sintering. Preheating, a usual precondition for flash sintering, is provided by the arc electrodes which heat the sample to 1400 ...

  11. Converting non-metallic printed circuit boards waste into a value added product.

    Science.gov (United States)

    Muniyandi, Shantha Kumari; Sohaili, Johan; Hassan, Azman; Mohamad, Siti Suhaila

    2013-01-01

    The aim of this study was to investigate the feasibility of using nonmetallic printed circuit board (PCB) waste as filler in recycled HDPE (rHDPE) in production of rHDPE/PCB composites. Maleic anhydride modified linear low-density polyethylene (MAPE) was used as compatibilizer. In particular, the effects of nonmetallic PCB and MAPE on mechanical properties of the composites were assessed through tensile, flexural and impact testing. Scanning electron microscope (SEM) was used to study the dispersion of nonmetallic PCB and MAPE in the matrix. Nonmetallic PCB was blended with rHDPE from 0-30 wt% and prepared by counter-rotating twin screw extruder followed by molding into test samples via hot press for analysis. A good balance between stiffness, strength and toughness was achieved for the system containing 30 wt% PCB. Thus, this system was chosen in order to investigate the effect of the compatibilizer on the mechanical properties of the composites. The results indicate that MAPE as a compatiblizer can effectively promote the interfacial adhesion between nonmetallic PCB and rHDPE. The addition of 6 phr MAPE increased the flexural strength, tensile strength and impact strength by 71%, 98% and 44% respectively compared to the uncompatibilized composites.

  12. Modification of Non-Metallic Inclusions by Rare-Earth Elements in Microalloyed Steels

    Directory of Open Access Journals (Sweden)

    M. Opiela

    2012-04-01

    Full Text Available The modification of the chemical composition of non-metallic inclusions by rare-earth elements in the new-developed microalloyed steels was discussed in the paper. The investigated steels are assigned to production of forged elements by thermo- mechanical treatment. The steels were melted in a vaccum induction furnace and modification of non-metallic inclusions was carried out by the michmetal in the amount of 2.0 g per 1 kg of steel. It was found that using material charge of high purity and a realization of metallurgical process in vacuous conditions result in a low concentration of sulfur (0.004%, phosphorus (from 0.006 to 0.008% and oxygen (6 ppm. The high metallurgical purity is confirmed by a small fraction of non-metallic inclusions averaging 0.075%. A large majority of non-metallic inclusions are fine, globular oxide-sulfide or sulfide particles with a mean size 17m2. The chemical composition and morphology of non-metallic inclusions was modified by Ce, La and Nd, what results a small deformability of non- metallic inclusions during hot-working.

  13. Converting Non-Metallic Printed Circuit Boards Waste Into A Value Added Product

    Directory of Open Access Journals (Sweden)

    Shantha Kumari Muniyandi

    2013-05-01

    Full Text Available The aim of this study was to investigate the feasibility of using nonmetallic printed circuit board (PCB waste as filler in recycled HDPE (rHDPE in production of rHDPE/PCB composites. Maleic anhydride modified linear low-density polyethylene (MAPE was used as compatibilizer. In particular, the effects of nonmetallic PCB and MAPE on mechanical properties of the composites were assessed through tensile, flexural and impact testing. Scanning electron microscope (SEM was used to study the dispersion of nonmetallic PCB and MAPE in the matrix. Nonmetallic PCB was blended with rHDPE from 0--30 wt% and prepared by counter-rotating twin screw extruder followed by molding into test samples via hot press for analysis. A good balance between stiffness, strength and toughness was achieved for the system containing 30 wt% PCB. Thus, this system was chosen in order to investigate the effect of the compatibilizer on the mechanical properties of the composites. The results indicate that MAPE as a compatiblizer can effectively promote the interfacial adhesion between nonmetallic PCB and rHDPE. The addition of 6 phr MAPE increased the flexural strength, tensile strength and impact strength by 71%, 98% and 44% respectively compared to the uncompatibilized composites.

  14. Remote electrical arc suppression by laser filamentation

    CERN Document Server

    Schubert, Elise; Kasparian, Jérôme; Wolf, Jean-Pierre

    2015-01-01

    We investigate the interaction of narrow plasma channels formed in the filamentation of ultrashort laser pulses, with a DC high voltage. The laser filaments prevent electrical arcs by triggering corona that neutralize the high-voltage electrodes. This phenomenon, due to the electric field modulation and free electron release around the filament, opens new prospects to lightning and over-voltage mitigation.

  15. Stability of alternating current gliding arcs

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Salewski, Mirko; Leipold, Frank;

    2014-01-01

    that the critical length can be increased by increasing the AC frequency, decreasing the serial resistance and lowering the gas flow rate. The predicted dependence of gas flow rate on the arc length is experimentally demonstrated. The gap width is varied to study an optimal electrode design, since the extended non...

  16. Fatigue Strength Prediction of Drilling Materials Based on the Maximum Non-metallic Inclusion Size

    Science.gov (United States)

    Zeng, Dezhi; Tian, Gang; Liu, Fei; Shi, Taihe; Zhang, Zhi; Hu, Junying; Liu, Wanying; Ouyang, Zhiying

    2015-12-01

    In this paper, the statistics of the size distribution of non-metallic inclusions in five drilling materials were performed. Based on the maximum non-metallic inclusion size, the fatigue strength of the drilling material was predicted. The sizes of non-metallic inclusions in drilling materials were observed to follow the inclusion size distribution rule. Then the maximum inclusion size in the fatigue specimens was deduced. According to the prediction equation of the maximum inclusion size and fatigue strength proposed by Murakami, fatigue strength of drilling materials was obtained. Moreover, fatigue strength was also measured through rotating bending tests. The predicted fatigue strength was significantly lower than the measured one. Therefore, according to the comparison results, the coefficients in the prediction equation were revised. The revised equation allowed the satisfactory prediction results of fatigue strength of drilling materials at the fatigue life of 107 rotations and could be used in the fast prediction of fatigue strength of drilling materials.

  17. Modelling of non-metallic particles motion process in foundry alloys

    Directory of Open Access Journals (Sweden)

    P. L. Żak

    2015-04-01

    Full Text Available The behaviour of non-metallic particles in the selected composites was analysed, in the current study. The calculations of particles floating in liquids differing in viscosity were performed. Simulations based on the Stokes equation were made for spherical SiC particles and additionally the particle size influence on Reynolds number was analysed.The movement of the particles in the liquid metal matrix is strictly connected with the agglomerate formation problem.Some of collisions between non-metallic particles lead to a permanent connection between them. Creation of the two spherical particles and a metallic phase system generates the adhesion force. It was found that the adhesion force mainly depends on the surface tension of the liquid alloy and radius of non-metallic particles.

  18. Products Made from Nonmetallic Materials Reclaimed from Waste Printed Circuit Boards

    Institute of Scientific and Technical Information of China (English)

    MOU Peng; XIANG Dong; DUAN Guanghong

    2007-01-01

    Printed circuit boards (PCBs) are in all electronic equipment, so with the sharp increase of electronic waste, the recovery of PCB components has become a critical research field. This paper presents a study of the reclaimation and reuse of nonmetallic materials recovered from waste PCBs. Mechanical processes, such as crushing, milling, and separation, were used to process waste PCBs. Nonmetallic materials in the PCBs were separated using density-based separation with separation rates in excess of 95%. The recovered nonmetals were used to make models, construction materials, composite boards, sewer grates,and amusement park boats. The PCB nonmetal products have better mechanical characteristics and durability than traditional materials and fillers. The flexural strength of the PCB nonmetallic material composite boards is 30% greater than that of standard products. Products derived from PCB waste processing have been brought into industrial production. The study shows that PCB nonmetals can be reused in profitable and environmentally friendly ways.

  19. Investigation of Voltage Unbalance Problems In Electric Arc Furnace Operation Model

    Directory of Open Access Journals (Sweden)

    Yacine DJEGHADER

    2013-06-01

    Full Text Available In modern steel industry, Electric Arc Furnaces are widely used for iron and scarp melting. The operation of electric arc furnace causes many power quality problems such as harmonics, unbalanced voltage and flicker. The factors that affect Electric arc furnace operation are the melting or refining materials, melting stage, electrodes position (arc length, electrode arm control and short circuit power of the feeder, so, arc voltages, current and power are defined as a nonlinear function of arc length. This study focuses on investigation of unbalanced voltage due to Electrics Arc Furnace operation mode. The simulation results show the major problem of unbalanced voltage affecting secondary of furnace transformer is caused by the different continues movement of electrodes.

  20. The Effect of Different Non-Metallic Inclusions on the Machinability of Steels.

    Science.gov (United States)

    Ånmark, Niclas; Karasev, Andrey; Jönsson, Pär Göran

    2015-02-16

    Considerable research has been conducted over recent decades on the role of non‑metallic inclusions and their link to the machinability of different steels. The present work reviews the mechanisms of steel fractures during different mechanical machining operations and the behavior of various non-metallic inclusions in a cutting zone. More specifically, the effects of composition, size, number and morphology of inclusions on machinability factors (such as cutting tool wear, power consumption, etc.) are discussed and summarized. Finally, some methods for modification of non-metallic inclusions in the liquid steel are considered to obtain a desired balance between mechanical properties and machinability of various steel grades.

  1. Modification of Non-Metallic Inclusions by Rare-Earth Elements in Microalloyed Steels

    OpenAIRE

    Opiela M.; Grajcar A.

    2012-01-01

    The modification of the chemical composition of non-metallic inclusions by rare-earth elements in the new-developed microalloyed steels was discussed in the paper. The investigated steels are assigned to production of forged elements by thermo- mechanical treatment. The steels were melted in a vaccum induction furnace and modification of non-metallic inclusions was carried out by the michmetal in the amount of 2.0 g per 1 kg of steel. It was found that using material charge of high purity and...

  2. The Effect of Different Non-Metallic Inclusions on the Machinability of Steels

    Directory of Open Access Journals (Sweden)

    Niclas Ånmark

    2015-02-01

    Full Text Available Considerable research has been conducted over recent decades on the role of non‑metallic inclusions and their link to the machinability of different steels. The present work reviews the mechanisms of steel fractures during different mechanical machining operations and the behavior of various non-metallic inclusions in a cutting zone. More specifically, the effects of composition, size, number and morphology of inclusions on machinability factors (such as cutting tool wear, power consumption, etc. are discussed and summarized. Finally, some methods for modification of non-metallic inclusions in the liquid steel are considered to obtain a desired balance between mechanical properties and machinability of various steel grades.

  3. Three-dimensional modelling of electric-arc development in a low-voltage circuit-breaker

    Energy Technology Data Exchange (ETDEWEB)

    Piqueras, L.; Henry, D.; Jeandel, D.; Scott, J. [Laboratoire de Mecanique des Fluides et d' Acoustique, CNRS/Universite de Lyon, Ecole Centrale de Lyon/Universite Lyon 1/INSA de Lyon, ECL, 36 avenue Guy de Collongue, 69134 Ecully Cedex (France); Wild, J. [Schneider Electric, 37 quai Merlin, 38050 Grenoble Cedex 9 (France)

    2008-09-15

    This article describes direct numerical simulation of the first three milliseconds following ignition of the arc in a low-voltage circuit-breaker using a computational-fluid-dynamics code adapted for electric-arc modelling. The mobile electrode is allowed for by a moving mesh. The results describe the evolution of the arc with time in terms of its detailed electrical, thermal and fluid dynamic properties. They allow the identification of several phases during the overall arc development process studied here: arc initialisation in the widening electrode gap, arc-thermal expansion, displacement of the arc towards the tip of the mobile electrode, and the beginning of commutation to the fixed electrode. (author)

  4. Comportamiento del tiempo de duración, la frecuencia de los cortocircuitos y la conductividad eléctrica durante el reencendido del arco en la soldadura SMAW (AC con electrodos E6013 Behavior of short-circuit frequency and duration time and electrical conductivity on arc turn- on during SMAW (AC with E6013 electrodes

    Directory of Open Access Journals (Sweden)

    Alejandro García Rodríguez

    2009-03-01

    Full Text Available El presente trabajo tiene como objetivo la evaluación del comportamiento del tiempo de duración, la frecuencia de los cortocircuitos y la conductividad durante el reencendido del arco en el proceso de soldadura SMAW (Shielded Metal Arc Welding, con corriente alterna y electrodos E6013. El análisis estadístico no-paramétrico garantiza un procesamiento robusto de los datos, atenuando la influencia de valores atípicos y errores derivados del empleo de aproximaciones a distribuciones continuas conocidas. La mediana y la mediana de la desviación absoluta (MAD, respecto a la mediana de los datos, constituyen los estimadores de localización y dispersión utilizados, respectivamente. El electrodo, en el régimen de 160 A, presenta una mayor estabilidad, en el aporte metálico, dada por el menor valor del MAD promedio del período de cortocircuito (39,36 ms y de la duración del cortocircuito (1,43 ms, reafirmada con la presencia de una mayor conductividad eléctrica durante el reencendido (1766,17x10-3 S·s-1.The objective of this work is the valuation of the behavior of short-circuits frequency and duration time and electrical conductivity on arc reigniting in SMAW (Shielded Metal Arc Welding process with alternate current and E6013 electrodes. The non parametric statistic analysis realize a robust data processing, minimizing the outliers influence and mistakes derivates about employ of approximations to well know continues distributions. The median and the median absolute deviation (MAD respect to median of the data are the localization and dispersion estimators used, respectively. The electrode at 160 A present a better stability on metal transference supported on the most little value of MAD for the period of transference (39,36 ms, and the MAD of the short-circuit duration (1,43 ms, according with the presence of a major electric conductivity during the arc reigniting (1766,17x10-3 S·s-1.

  5. Stepped-Frequency Ground-Penetrating Radar for Detection of Small Non-metallic Buried Objects

    DEFF Research Database (Denmark)

    Jakobsen, Kaj Bjarne; Sørensen, Helge Bjarup Dissing; Nymann, Ole

    1997-01-01

    A monostatic amplitude and phase stepped-frequency radar approach have been proposed to detect small non-metallic buried anti-personnel (AP) mines. An M-56 AP-mine with a diameter of 54 mm and height of 40 mm, only, has been successfully detected and located in addition to small metallic mine...

  6. CHARACTERIZATION OF EMISSIONS FROM THE SIMULATED OPEN-BURNING OF NON-METALLIC AUTOMOBILE SHREDDER RESIDUE

    Science.gov (United States)

    The report gives results of a study in which the open combustion of a nonmetallic waste product called "fluff" was simulated and the resulting emissions collected and characterized to gain insight into the types and quantities of these air pollutants. (NOTE: The reclamation proce...

  7. Soil effects on GPR detection of buried non-metallic mines

    NARCIS (Netherlands)

    Hendrickx, J.M.H.; Hong, S.H.; Miller, T.; Borchers, B.; Rhebergen, J.B.

    2003-01-01

    Landmines are a major problem in many areas of the world. In spite of the fact that many different types of landmine sensors have been developed, the detection of non-metallic landmines remains very difficult. The objective of this contribution is to synthesize our work related to the effects of soi

  8. Economic impact of using nonmetallic materials in low to intermediate temperature geothermal well construction. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The results are presented of an exhaustive literature search and evaluation concerning the properties and economics of commercially available nonmetallic well casing and screens. These materials were studied in terms of their use in low to intermediate temperature geothermal well construction.

  9. Plasma arc cutting technology: simulation and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Cantoro, G; Colombo, V; Concetti, A; Ghedini, E; Sanibondi, P; Zinzani, F; Rotundo, F [Department of Mechanical Engineering (D.I.E.M.) and Research Center for Applied Mathematics (C.I.R.A.M.), Alma Mater Studiorum-Universita di Bologna, Via Saragozza 8, 40123 Bologna (Italy); Dallavalle, S; Vancini, M, E-mail: emanuele.ghedini@unibo.it [Cebora S.p.A., Via Andrea Costa 24, 40057 Cadriano di Granarolo (Italy)

    2011-01-01

    Transferred arc plasma torches are widely used in industrial processes for cutting of metallic materials because of their ability to cut a wide range of metals with very high productivity. The process is characterized by a transferred electric arc established between an electrode inside the torch (the cathode) and another electrode, the metallic workpiece to be cut (the anode). In order to obtain a high quality cut and a high productivity, the plasma jet must be as collimated as possible and must have the higher achievable power density. Plasma modelling and numerical simulation can be very useful tools for the designing and optimizing these devices, but research is still in the making for finding a link between simulation of the plasma arc and a consistent prevision of cut quality. Numerical modelling of the behaviour of different types of transferred arc dual gas plasma torches can give an insight on the physical reasons for the industrial success of various design and process solutions that have appeared over the last years. Diagnostics based on high speed imaging and Schlieren photography can play an important role for investigating piercing, dross generation, pilot arcing and anode attachment location. Also, the behaviour of hafnium cathodes at high current levels at the beginning of their service life can been experimentally investigated, with the final aim of understanding the phenomena that take place during those initial piercing and cutting phases and optimizing the initial shape of the surface of the emissive insert exposed to plasma atmosphere.

  10. Gas arc constriction for plasma arc welding

    Science.gov (United States)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  11. Evaluation of Characteristics of Non-Metallic Inclusions in P/M Ni-Base Superalloy by Automatic Image Analysis

    Institute of Scientific and Technical Information of China (English)

    Li; Xinggang; Ge; Changchun; Shen; Weiping

    2007-01-01

    Non-metallic inclusions,especially the large ones,within P/M Ni-base superalloy have a major influence on fatigue characteristics,but are not directly measurable by routine inspection.In this paper,a method,automatic image analysis,is proposed for estimation of the content,size and amount of non-metallic inclusions in superalloy.The methodology for the practical application of this method is described and the factors affecting the precision of the estimation are discussed.In the experiment,the characteristics of the non-metallic inclusions in Ni-base P/M superalloy are analyzed.

  12. Magnetohydrodynamic electrode

    Science.gov (United States)

    Boquist, Carl W.; Marchant, David D.

    1978-01-01

    A ceramic-metal composite suitable for use in a high-temperature environment consists of a refractory ceramic matrix containing 10 to 50 volume percent of a continuous high-temperature metal reinforcement. In a specific application of the composite, as an electrode in a magnetohydrodynamic generator, the one surface of the electrode which contacts the MHD fluid may have a layer of varying thickness of nonreinforced refractory ceramic for electrode temperature control. The side walls of the electrode may be coated with a refractory ceramic insulator. Also described is an electrode-insulator system for a MHD channel.

  13. Physics characteristic of coupling arc of twin-tungsten TIG welding

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guang-jun; LENG Xue-song; WU Lin

    2006-01-01

    Twin-tungsten TIG welding was developed, in which two electrodes were placed in a single welding torch. In order to master this process, the arc physics characteristic was studied. The twin-tungsten coupling arc shape was observed by using CCD camera, and the arc pressure was measured. The results show that the coupling arc includes two arcs that pull each other according to Lorentz force and one big coupling arc is formed; the coupling arc pressure is much lower than that of conventional TIG arc. In the end, a simple welding experiment was carried out. This proves that stable welding process can be achieved by twin-tungsten TIG at higher current than that of conventional TIG because of its low arc pressure and the high efficiency welding is realized.

  14. The Discharge Development and Arc Modes in Vacuum at A Long Gap Distance in Vacuum Interrupters

    Institute of Scientific and Technical Information of China (English)

    CHENG Shaoyong; XIU Shixin; WANG Jimei; SHEN Zhengchao

    2007-01-01

    The influence of an arc current on the discharge development and the arc modes of a single coil type axial magnetic field (AMF) electrode were investigated by a high-speed charge couple device (CCD) video camera in a long gap distance of 40 mm. The distribution of the axial magnetic field of the single coil type AMF electrode was computed. By computational results, the single coil type AMF electrode could generate higher axial magnetic flux density than the slot type AMF electrode. It was found that the single coil type AMF electrode could perform better than the slot type AMF electrode with the same designing parameters. And the development of the arc modes experienced diffuse mode, constricted but unstable mode, and constricted and stable mode with the amplitude of the arc current increasing. The correlation between the vacuum arc and the noise components of arc voltage was investigated too. The interruption capability could be known in a practical commercial vacuum interrupter by the test results in a demountable vacuum interrupter (DVC) with a electrode diameter of 50 mm and a gap distance of 40mm.The test results could provide reference to design the high voltage vacuum interrupter adopting the single coil type AMF electrode.

  15. Laser -Based Joining of Metallic and Non-metallic Materials

    Science.gov (United States)

    Padmanabham, G.; Shanmugarajan, B.

    Laser as a high intensity heat source can be effectively used for joining of materials by fusion welding and brazing in autogenous or in hybrid modes. In autogenous mode, welding is done in conduction , deep penetration , and keyhole mode. However, due to inherently high energy density available from a laser source, autogenous keyhole welding is the most popular laser welding mode. But, it has certain limitations like need for extremely good joint fit-up, formation of very hard welds in steel , keyhole instability, loss of alloying elements, etc. To overcome these limitations, innovative variants such as laser-arc hybrid welding , induction-assisted welding , dual beam welding , etc., have been developed. Using laser heat, brazing can be performed by melting a filler to fill the joints, without melting the base materials. Accomplishing laser-based joining as mentioned above requires appropriate choice of laser source, beam delivery system, processing head with appropriate optics and accessories. Basic principles of various laser-based joining processes, laser system technology, process parameters, metallurgical effects on different base materials, joint performance, and applications are explained in this chapter.

  16. Effects of shielding gas on weld shape and arc characteristic in laser+twin-electrode MAG hybrid welding%保护气体对激光+双丝MAG复合焊焊缝形貌和电弧特性的影响

    Institute of Scientific and Technical Information of China (English)

    李明利

    2012-01-01

    在激光+单电弧复合焊工艺的基础上,通过再添加一个电孤的方式,形成激光+双丝脉冲MAG复合焊工艺.研究了保护气体为φ(Ar)80%+φ(CO2)20%(情况A)和φ(Ar)40%+φ(CO2)10%+φ(He)50%(情况B)时对激光+双丝MAG复合焊焊缝表面成形和电弧特性的影响.利用LabVIEW信号采集系统和高速摄像系统同步采集焊接电流、电孤电压波形和电弧形态.结果表明,在焊缝表面和焊道两侧边缘处,肉眼可见斑点状、不连续的氧化物,情况A与情况B相比,情况A氧化物含量高,熔宽小;而情况B焊道平整,鱼鳞纹清晰.情况A中由于CO2含量较高,使其对电弧的冷却作用增强,减弱了激光对电弧的稳定作用,断弧次数比情况B多.%Based on laser+single are welding,the laser-rtwin-electiode MAG hybrid welding is developed by adding the other arc.With the shielding gas of y (Ar)80%+φ(CO2)20%(condition A) and φ(Ar)40%+φ(He)50%+φ(CO2)10%(condition B),the effects of the varying ratio of C02 on weld shape and arc characteristic are studied in laser+twin-electrode MAG hybrid welding.The LabVIEW signal acquisition system and high-speed photography system are used to monitor welding current,arc voltage and arc behavior.The results show that spotted and discontinuous oxides are visible on the surface and both sides of the weld.Compared condition A with condition B,the oxides content under condition A is high and the weld width is small.Then under condition B,the weld is smooth and scaly figure is distinct.Due to the high CO; ratio in condition A.the effect of cooling arcs is enhanced and the effect of stabilizing arcs is weakened.The arc interruption times under condition A is more than under condition B.

  17. Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hao; ZHU Fengsen; TU Xin; BO Zheng; CEN Kefa; LI Xiaodong

    2016-01-01

    In this work,a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions.The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals,high speed photography,and optical emission spectroscopic diagnostics.Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g.,10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone,in this RGA system,a lower gas flow rate (e.g.,2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions.Two different motion patterns can be clearly observed in the N2 and air RGA plasmas.The time-resolved arc voltage signals show that three different arc dynamic modes,the arc restrike mode,takeover mode,and combined modes,can be clearly identified in the RGA plasmas.The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate.

  18. Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas

    Science.gov (United States)

    Zhang, Hao; Zhu, Fengsen; Tu, Xin; Bo, Zheng; Cen, Kefa; Li, Xiaodong

    2016-05-01

    In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate. supported by National Natural Science Foundation of China (No. 51576174), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120101110099) and the Fundamental Research Funds for the Central Universities (No. 2015FZA4011)

  19. Thermal action of an electric arc on the wall of a planar gap

    Energy Technology Data Exchange (ETDEWEB)

    Gubkevich, V.A.; Demidovich, A.B.; Zolotovskii, A.I.; Kabashnikov, V.P.; Shimanovich, V.D.

    1986-10-01

    For purposes of optimizing the energy efficiency of the plasma arc spraying of metal coatings the authors investigate the distribution of heat flux from a dc arc located between two dielectric electrode walls and study the thermodynamics of ablation and evaporation of the silicate material used for the electrodes. The intensity of ablation and evaporation was controlled by changing the rate of electrode displacement relative to the arc generated by the plasmatron. Nitrogen was used as the plasmatron working gas. Results are presented for the ultimate porosity and microstructure of the deposited material as a consequence of various efficiency parameters. A computer simulation is constructed from the experimental data.

  20. Non-metallic, non-Fermi-liquid resistivity of FeCrAs from 0 to 17 GPa.

    Science.gov (United States)

    Tafti, F F; Wu, W; Julian, S R

    2013-09-25

    An unusual, non-metallic resistivity of the 111 iron-pnictide compound FeCrAs is shown to be relatively unchanged under pressures of up to 17 GPa. Combined with our previous finding that this non-metallic behaviour persists from at least 80 mK to 800 K, this shows that the non-metallic phase is exceptionally robust. Antiferromagnetic order, with a Néel temperature TN ∼ 125 K at ambient pressure, is suppressed by pressure at a rate of 7.0 ± 0.4 K GPa(-1), falling to ∼50 K at 10 GPa. We conclude that the formation of a spin-density-wave gap at TN does not play an important role in the non-metallic resistivity of FeCrAs at low temperatures.

  1. Controllability of arc jet from arc horns with slits. Suritto tsuki aku hon no aku jetto seigyo tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sunabe, Kinya; Fukagawa, Hirotada.; (Central Research Inst. of Electric Power Industry, Tokyo, Japan)

    1989-05-01

    New horns in jumper of steel tower for ultra-super high tension transmission line were developed to experiment the retaining performance of the arc jet. A type horn has the hemispherical tip with slits and B type horn has additionally the electrode in the central part. If the division number of slits are 4 or 6 in the A type horn, the occurrence distribution of the angle(theta)between two axes of the arc jet and of the electrode can be limited between 16 and 12 degree respectively at conditions of the electrode of 200mm diameter and 5kA arc current. Especially, the arc jet controllability is superior at heavy current area of 5kA or more. The thickness of diameter cannot result any difference. The slit division number in the B type cannot result any difference. That is, theta can be limited to less than 20 degree at the rate of 90% or more at 5kA or less but theta widens to 40 degree at 10kA or more. This means that B type is excellent in smaller current area where theta can be limited to the tip area around the central electrode. It may appear better that the horn has the flat tip shape, 4 to 6 slits, thick central electrode and large gap between the external electrode. 3 refs., 23 figs., 1 tab.

  2. Direct Current Electric Arc-Electroslag Ladle Furnace

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to solve the high consumption problem of small capacity ladle furnace (LF), the operation principle and control method of the DC arc and electroslag heating ladle furnace are introduced. With only one arcing electrode, the distance between the arc and the wall of ladle is enlarged, and consequently the consumption of the ladle refractory is decreased. In the invention, a signal electrode is embedded in the refractory lining of the ladle, which contacts directly with the liquid steel and the ladle shell. Two graphite anode ends are submerged in the slag layer. The signal electrode is used as voltage reference during refining process. The electroslag voltage between anode end and liquid steel is applied to control the depth of anode end in the slag layer during the refining process with this ladle furnace.

  3. Numerical and experimental study of transferred arcs in argon

    Energy Technology Data Exchange (ETDEWEB)

    Bini, R [Department of Mechanical Engineering, Politecnico di Milano, Via Bonardi 9, 20133 Milan (Italy); Monno, M [Department of Mechanical Engineering, Politecnico di Milano, Via Bonardi 9, 20133 Milan (Italy); Boulos, M I [Centre de Recherche en Energie, Plasma et Electrochimie (CREPE), Department de Genie Chimique Universite de Sherbrooke, 2500 Boul. Universite, Sherbrooke, J1K1R2 (Canada)

    2006-08-07

    The bidimensional model of the electric arc is enhanced with the plasma-electrodes interaction to predict the properties and the energy distribution of an argon arc operating with current intensities between 100 and 200 A and electrode gaps of 10 and 20 mm. An adaptive numerical insulation is applied to the cathode, to properly simulate its thermionic emission mechanism and overcome the dependence on empirical distributions of the current density at its tip. The numerical results are quantitatively compared with the data obtained from calorimetric and spectroscopical measurements, performed on a device which generates a transferred arc between a water cooled copper anode and a thoriated tungsten cathode enclosed in a stainless steel chamber. The calculation of the heat fluxes towards the electrodes permits to determine the amount of power delivered to each component of the arc system (the anode, the cathode assembly and the chamber) and to evaluate the overall efficiency of the process for different configurations. The agreement between theory and data, over the range of parameters investigated, is sensible both in the temperature profiles and in the energy distributions. In such configurations, the conduction from the hot gas is the most relevant term in the overall heat transferred to the anode, but it is the electron transfer which rules the heat transfer in the arc attachment zone. The arc attachment radius is also dependent on the process parameters and increases with the arc current (from approximately 5 mm at 100 A to 7 mm at 200 A) and the arc length. However the maximum heat flux reached on the axis decreases increasing the gap between the electrodes, although more power is delivered to the anode due to the radial spreading of the plasma. A 10 mm 200 A argon arc releases to the anode about 2.6 kW, which corresponds to 75% of the total arc power available. If the arc is extended to 20 mm the power transferred rises by nearly 350 W, but the overall

  4. Computer Simulation of the Formation of Non-Metallic Precipitates During a Continuous Casting of Steel

    Directory of Open Access Journals (Sweden)

    Kalisz D.

    2016-03-01

    Full Text Available The authors own computer software, based on the Ueshima mathematical model with taking into account the back diffusion, determined from the Wołczyński equation, was developed for simulation calculations. The applied calculation procedure allowed to determine the chemical composition of the non-metallic phase in steel deoxidised by means of Mn, Si and Al, at the given cooling rate. The calculation results were confirmed by the analysis of samples taken from the determined areas of the cast ingot. This indicates that the developed computer software can be applied for designing the steel casting process of the strictly determined chemical composition and for obtaining the required non-metallic precipitates.

  5. Injury experience in nonmetallic mineral mining (except stone and coal), 1992

    Energy Technology Data Exchange (ETDEWEB)

    Reich, R.B; Hugler, E.C.

    1994-05-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of nonmetallic mineral mining (except stone and coal) in the United States for 1992. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  6. Injury experience in nonmetallic mineral mining (except stone and coal), 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of nonmetallic mineral mining (except stone and coal) in the United States for 1989. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report. 3 figs., 46 tabs.

  7. Non-metallic catalysts for diamond synthesis under high pressure and high temperature

    Institute of Scientific and Technical Information of China (English)

    孙力玲; 吴奇; 戴道扬; 张君; 秦志成; 王文魁

    1999-01-01

    Recent results on conversion from graphite to diamond by aid of non-metallic catalysts are reviewed. The current status of experimental advances is presented and typical examples from relevant literature are provided for understanding the mechanism of the graphite-diamond conversion by aid of these non-metallic catalysts. Furthermore, a tendency of graphite-diamond transformation assisted by carbonates, sulfates or phosphorus under high pressure and high temperature has been investigated by calculating the activation energy and transformation probability of the carbon atoms over a potential barrier. It was found that the activation energy is highly sensitive to the catalyst chosen. The probability sequence of graphite-diamond transformation with these catalysts was put forward.

  8. Motion behavior of non-metallic particles under high frequency magnetic field

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhong-tao; GUO Qing-tao; YU Feng-yun; LI Jie; ZHANG Jian; LI Ting-ju

    2009-01-01

    Non-metallic particles, especially alumina, are the main inclusions in aluminum and its alloys. Numerical simulation and the corresponding experiments were carried out to study the motion behavior of alumina particles in commercial pure aluminum under high frequency magnetic field. At the meantime, multi-pipe experiment was also done to discuss the prospect of continuous elimination of non-metallic particles under high frequency magnetic field. It is shown that: 1) results of numerical simulation are in good agreement with the experimental results, which certificates the rationality of the simulation model; 2) when the intensity of high frequency magnetic field is 0.06 T, the 30 μm alumina particles in melt inner could migrate to the edge and be removed within 2 s; 3) multi-pipe elimination of alumina particles under high frequency magnetic field is also effective and has a good prospect in industrial application.

  9. Next generation high productivity submerged arc welding

    OpenAIRE

    LANGENOJA, MARKUS; Öhrvall Karlsson, Vincent

    2012-01-01

    The task of designing concepts for the next generation of submerged arc welding heads was given by ESAB. ESAB is a global company manufacturing welding equipment for a wide span of industries and uses. In October 2011, ESAB introduced a new technology called Integrated Cold Electrode™, abbreviated and trademarked as ICE™. ICE™ is a technique which utilizes three electrodes in a highly productive and stable process. The current state of the ICE™ technique focuses on welding thick plates with c...

  10. NON-METALLIC IMPURITIES AND FORMING OF THE STRUCTURE OF THE MODIFIED HIGH-MANGANESE STEEL

    Directory of Open Access Journals (Sweden)

    A. I. Garost

    2006-01-01

    Full Text Available The composition and morphology of chemical associations (non-metallic impurities and other ‘‘secondary” phases at modification of high-manganese steel by nitrogen and nitrideforming elements (vanadium are investigated. The optimal compositions of steel for production of castings are offered. The technology of the steel wear-resistance modification by vanadium of waste of industrial enterprises is worked out.

  11. ANALISA ELECTRODE CONSUMABLE TYPE OK AUTROD 12.10 PENGELASAN SUBMERGED ARC WELDING PADA BLOK-BLOK KAPAL DCV 18500 DWT DI PT. JASA MARINA INDAH UNIT II SEMARANG

    Directory of Open Access Journals (Sweden)

    Sukanto Jatmiko

    2012-07-01

    Full Text Available In this globalization era technological advances growed very fast. In shipping industry of development process shipbuilding of principal feedstock to used steel plate, with construction tacking on using welder method.In this research purpose of lifted is know number of requirement (consumable electrode for welder SAW at block-block ship DCV 18500 DWT in PT. Jasa Marina Indah Semarang.At this experiment specimen applied is low carbon steel of type ST 42 with thickness of 12, 13, 14, 17, 19 dan 24 mm. Research is done by the way of making specimen at every plate thickness. Then is done path measurement of length, used electrode length, and weight flux applied at the welder.From result of gauging and data calculation welder at block DB 5(p/c/s, SS5A(p/s, SS 5B(p/s, UD 5C, and TB 102 (p/c/s will be known number of electrodes applied in welder SAW and number of flux used.

  12. Doped Graphene as Non-Metallic Catalyst for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Adriana MARINOIU

    2017-05-01

    Full Text Available Aiming a commercial development of proton exchange membrane fuel cells (PEMFC, a low cost, sustainable and high performance electrocatalyst for oxygen reduction reaction (ORR with capability to replace/reduce rare metals, are high desirable. In this paper, we present a class of doped graphene, namely iodinated graphene with highly ORR electrochemical performances, synthesized by using the electrophilic substitution method. The prepared samples were characterized by different techniques, including Scanning Electron Microscopy SEM, X-ray photoelectron spectroscopy XPS, Raman spectroscopy, surface area measurement by BET method, that revealed the structure and morphology. The most highly iodinated graphene was tested in a single cell by measuring the cyclic voltammetry. The electrochemical performances were evaluated and compared with a typical PEMFC configuration, when a single cathodic peak at 0.2 V with a current density of – 3.67 mA cm-2 for the Pt/C electrode was obtained. The best electrochemical performances in terms of electrochemical active area, was obtained for a new concept of cathode composed from Pt/C – iodine doped graphene, when a well-defined peak centred at 0.23 V with a current density of approx. – 9.1 mA cm-2 was obtained, indicating a high catalytic activity for ORR.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.16216

  13. Behavior of Non-metallic Inclusions in Centrifugal Induction Electroslag Castings

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    (para)In order to know the behavior of non-metallic inclusions in centrifugal induction electroslag castings (CIESC), non-metallic inclusions in 5CrMnMo and 4Cr5MoSiV1 were qualitatively and quantitatively analyzed. The largest size of inclusions in the casting and the thermodynamic possibility of TiN precipitation in steel were also calculated. The results show that sulfide inclusions are evenly distributed and the content is low. The amount of oxide inclusions in CIESC 4Cr5MoSiV1 steel is close to the ESR steel and lower than that in the EAF steel, and there are some differences along radial direction. Nitride inclusions are fine and the diameter of the largest one is 3~4um. With the increase of the centrifugal machine's rotational speed, the ratio of round inclusions increases and the ratio of sharp inclusions decreases. According to the experiment and the calculation results, it is pointed out that the largest diameter of non-metallic inclusions in the CIESC 4Cr5MoSiV1 casting is only 6.6mu, and [N%][Ti%] in 4Cr5MoSiV1 steel should be controlled less than 4.4~#U00d7tex010^{-5} in order to further reduce the amount and size of TiN inclusions.

  14. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    Science.gov (United States)

    Grady, Joseph E.

    2015-01-01

    The Non-Metallic Gas Turbine Engine project, funded by NASA Aeronautics Research Institute, represents the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. This will be achieved by assessing the feasibility of using additive manufacturing technologies to fabricate polymer matrix composite and ceramic matrix composite turbine engine components. The benefits include: 50 weight reduction compared to metallic parts, reduced manufacturing costs, reduced part count and rapid design iterations. Two high payoff metallic components have been identified for replacement with PMCs and will be fabricated using fused deposition modeling (FDM) with high temperature polymer filaments. The CMC effort uses a binder jet process to fabricate silicon carbide test coupons and demonstration articles. Microstructural analysis and mechanical testing will be conducted on the PMC and CMC materials. System studies will assess the benefits of fully nonmetallic gas turbine engine in terms of fuel burn, emissions, reduction of part count, and cost. The research project includes a multidisciplinary, multiorganization NASA - industry team that includes experts in ceramic materials and CMCs, polymers and PMCs, structural engineering, additive manufacturing, engine design and analysis, and system analysis.

  15. Fullerenes synthesis by combined resistive heating and arc discharge techniques.

    Science.gov (United States)

    Kyesmen, Pannan Isa; Onoja, Audu; Amah, Alexander Nwabueze

    2016-01-01

    The two main electrode techniques for fullerenes production; the direct arc technique and the resistive heating of graphite rod were employed in this work. One of the electrodes was resistively heated to high temperature and subjected to arc discharge along its length by the second graphite rod. Fullerenes solid were extracted from carbon soot samples collected from an installed arc discharge system using the solvent extraction method. The fullerenes solid obtained from carbon soot collected for 2 min of arc discharge run when one of the electrodes was resistively heated at different voltages all gave higher yields (maximum of 67 % higher, at 150 A arc current and 200 Torr chamber pressure) compared to when no resistive heating was carried out. Scanning electron microscopy and ultraviolet visible spectroscopy analysis carried out on all fullerenes solid indicated the presence of fullerenes. The enhancement of fullerenes production by combined resistive and direct arc techniques shows prospect for possible use at industrial level for large scale production.

  16. Innovation approaches to controlling the electric regimes of electric arc furnaces

    Science.gov (United States)

    Bikeev, R. A.; Serikov, V. A.; Ognev, A. M.; Rechkalov, A. V.; Cherednichenko, V. S.

    2015-12-01

    The processes of current passage in an ac electric arc furnace (EAF) are subjected to industrial experiments and mathematical simulation. It is shown that, when a charge is melted, arcs between charge fragments exist in series with main arc discharges, and these arcs influence the stability of the main arc discharges. The measurement of instantaneous currents and voltages allowed us to perform a real-time calculation of the electrical characteristics of a three-phase circuit and to determine the θ parameter, which characterizes the nonlinearity of the circuit segment between electrodes. Based on these studies, we created an advanced system for controlling the electric regime of EAF.

  17. Fluid Flow Modeling of Arc Plasma and Bath Circulation in DC Electric Arc Furnace

    Institute of Scientific and Technical Information of China (English)

    WANG Feng-hua; JIN Zhi-jian; ZHU Zi-shu

    2006-01-01

    A mathematical model describing the flow field, heat transfer and the electromagnetic phenomenon in a DC electric arc furnace has been developed. First the governing equations in the arc plasma region are solved and the calculated results of heat transfer, current density and shear stresses on the anode surface are used as boundary conditions in a model of molten bath. Then a two-dimensional time-dependent model is used to describe the flow field and electromagnetic phenomenon in the molten bath. Moreover, the effect of bottom electrode diameter on the circulation of molten bath is studied.

  18. Energy Balance in DC Arc Plasma Melting Furnace

    Institute of Scientific and Technical Information of China (English)

    ZHAO Peng; MENG Yuedong; YU Xinyao; CHEN Longwei; JIANG Yiman; NI Guohua; CHEN Mingzhou

    2009-01-01

    In order to treat hazardous municipal solid waste incinerator's (MSWI) fly ash, a new DC arc plasma furnace was developed. Taking an arc of 100 V/1000 A DC as an example,the heat transfer characteristics of the DC arc plasma, ablation of electrodes, heat properties of the fly ash during melting, heat transfer characteristics of the flue gas, and heat loss of the furnace were analyzed based on the energy conservation law, so as to achieve the total heat information and energy balance during plasma processing, and to provide a theoretical basis for an optimized design of the structure and to improve energy efficiency.

  19. Influence of non-metallic inclusions on the strength properties of screws made of 35B2+Cr steel after softening

    OpenAIRE

    Krawczyk, J.; Pawłowski, B

    2012-01-01

    Purpose: This paper presents the results of the research on the influence of non-metallic inclusions on strength properties of 35B2+Cr steel screws.Design/methodology/approach: The investigations were carried out on screws after softening. The investigated steels with different fraction of non-metallic inclusions were delivered by three different suppliers.Findings: It was proved, that in spite of the level of fraction of non-metallic inclusions compatible with the corresponding standards, th...

  20. Mathematical Modeling of Metal Active Gas (MAG) Arc Welding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the present paper, a numerical model for MAG (metal active gas) arc welding of thin plate has been developed. In MAG arc welding, the electrode wire is melted and supplied into the molten pool intermittently. Accordingly, it is assumed on the modeling that the thermal energy enters the base-plates through two following mechanisms, i.e., direct heating from arc plasma and “indirect” heating from the deposited metal. In the second part of the paper, MAG arc welding process is numerically analyzed by using the model, and the calculated weld bead dimension and surface profile have been compared with the experimental MAG welds on steel plate. As the result, it is made clear that the model is capable of predicting the bead profile of thin-plate MAG arc welding , including weld bead with undercutting.

  1. Simulation of the Influences of the Pressure Ratio and Cu Vapour on SF6 Arc Characteristics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian; JIA Shenli; LI Xingwen; SHI Zongqian; WANG Lijun

    2009-01-01

    The inlet and outlet pressure of the SF6 high voltage circuit-breaker nozzle are of importance in determining the thermal interruption capability of a breaker.Besides,electrode evaporation is inevitable during the arcing process,which may affect the SF6 arc behaviour significantly.In this study a numerical investigation on the arc characteristics of a supersonic nozzle is carried out,by considering the influence of the pressure ratio between the inlet and outlet,and the Cu vapour.It is demonstrated that a lower inlet pressure may result in a higher arc temperature,a lower arc voltage and a smaller mach number,and Cu vapour from electrode evaporation may cool the arc significantly.

  2. Wire + Arc Additive Manufacturing

    OpenAIRE

    Williams, Stewart W.; Martina, Filomeno; Addison, Adrian C.; Ding, Jialuo; Pardal, Goncalo; Colegrove, Paul A.

    2016-01-01

    Depositing large components (>10 kg) in titanium, aluminium, steel and other metals is possible using Wire + Arc Additive Manufacturing. This technology adopts arc welding tools and wire as feedstock for additive manufacturing purposes. High deposition rates, low material and equipment costs, and good structural integrity make Wire+Arc Additive Manufacturing a suitable candidate for replacing the current method of manufacturing from solid billets or large forgings, especially with regards to ...

  3. A Fully Non-metallic Gas Turbine Engine Enabled by Additive Manufacturing

    Science.gov (United States)

    Grady, Joseph E.

    2014-01-01

    The Non-Metallic Gas Turbine Engine project, funded by NASA Aeronautics Research Institute (NARI), represents the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. This will be achieved by assessing the feasibility of using additive manufacturing technologies for fabricating polymer matrix composite (PMC) and ceramic matrix composite (CMC) gas turbine engine components. The benefits of the proposed effort include: 50 weight reduction compared to metallic parts, reduced manufacturing costs due to less machining and no tooling requirements, reduced part count due to net shape single component fabrication, and rapid design change and production iterations. Two high payoff metallic components have been identified for replacement with PMCs and will be fabricated using fused deposition modeling (FDM) with high temperature capable polymer filaments. The first component is an acoustic panel treatment with a honeycomb structure with an integrated back sheet and perforated front sheet. The second component is a compressor inlet guide vane. The CMC effort, which is starting at a lower technology readiness level, will use a binder jet process to fabricate silicon carbide test coupons and demonstration articles. The polymer and ceramic additive manufacturing efforts will advance from monolithic materials toward silicon carbide and carbon fiber reinforced composites for improved properties. Microstructural analysis and mechanical testing will be conducted on the PMC and CMC materials. System studies will assess the benefits of fully nonmetallic gas turbine engine in terms of fuel burn, emissions, reduction of part count, and cost. The proposed effort will be focused on a small 7000 lbf gas turbine engine. However, the concepts are equally applicable to large gas turbine engines. The proposed effort includes a multidisciplinary, multiorganization NASA - industry team that includes experts in

  4. New technology for recovering residual metals from nonmetallic fractions of waste printed circuit boards.

    Science.gov (United States)

    Zhang, Guangwen; He, Yaqun; Wang, Haifeng; Zhang, Tao; Wang, Shuai; Yang, Xing; Xia, Wencheng

    2017-03-23

    Recycling of waste printed circuit boards is important for environmental protection and sustainable resource utilization. Corona electrostatic separation has been widely used to recycle metals from waste printed circuit boards, but it has poor separation efficiency for finer sized fractions. In this study, a new process of vibrated gas-solid fluidized bed was used to recycle residual metals from nonmetallic fractions, which were treated using the corona electrostatic separation technology. The effects of three main parameters, i.e., vibration frequency, superficial air flow velocity, and fluidizing time on gravity segregation, were investigated using a vibrating gas-solid fluidized bed. Each size fraction had its own optimum parameters. Corresponding to their optimal segregation performance, the products from each experiment were analyzed using an X-ray fluorescence (XRF) and a scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS). From the results, it can be seen that the metal recoveries of -1+0.5mm, -0.5+0.25mm, and -0.25mm size fractions were 86.39%, 82.22% and 76.63%, respectively. After separation, each metal content in the -1+0.5 or -0.5+0.25mm size fraction reduced to 1% or less, while the Fe and Cu contents are up to 2.57% and 1.50%, respectively, in the -0.25mm size fraction. Images of the nonmetallic fractions with a size of -0.25mm indicated that a considerable amount of clavate glass fibers existed in these nonmetallic fractions, which may explain why fine particles had the poorest segregation performance.

  5. Coexistence of metallic and nonmetallic charge transport in PrBa2Cu3O7

    Science.gov (United States)

    Lee, Mark; Suzuki, Y.; Geballe, T. H.

    1995-06-01

    Magnetotransport measurements on highly oriented thin films of PrBa2Cu3O7 demonstrate a unique coexistence of nonmetallic hopping conduction with metallic Boltzmann transport. At high temperature (T>10 K) hopping transport dominates, but when the inelastic conduction freezes out at low temperature, metallic behavior can be distinguished. The hopping conduction is assigned to the CuO2 planes, while the Boltzmann transport arises from the CuO chain structure, in agreement with recent electronic-structure calculations.

  6. The Effect of Fine Non-Metallic Inclusions on the Fatigue Strength of Structural Steel

    Directory of Open Access Journals (Sweden)

    Lipiński T.

    2015-04-01

    Full Text Available The article discusses the results of a study investigating the effect of the number of fine non-metallic inclusions (up to 2 µm in size on the fatigue strength of structural steel during rotary bending. The study was performed on 21 heats produced in an industrial plant. Fourteen heats were produced in 140 ton electric furnaces, and 7 heats were performed in a 100 ton oxygen converter. All heats were desulfurized. Seven heats from electrical furnaces were refined with argon, and heats from the converter were subjected to vacuum circulation degassing.

  7. Separation of the metallic and non-metallic fraction from printed circuit boards employing green technology.

    Science.gov (United States)

    Estrada-Ruiz, R H; Flores-Campos, R; Gámez-Altamirano, H A; Velarde-Sánchez, E J

    2016-07-05

    The generation of electrical and electronic waste is increasing day by day; recycling is attractive because of the metallic fraction containing these. Nevertheless, conventional techniques are highly polluting. The comminution of the printed circuit boards followed by an inverse flotation process is a clean technique that allows one to separate the metallic fraction from the non-metallic fraction. It was found that particle size and superficial air velocity are the main variables in the separation of the different fractions. In this way an efficient separation is achieved by avoiding the environmental contamination coupled with the possible utilization of the different fractions obtained. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. WSTF electrical arc projects

    Science.gov (United States)

    Linley, Larry

    1994-09-01

    The objectives of these projects include the following: validate method used to screen wire insulation with arc tracking characteristics; determine damage resistance to arc as a function of source voltage and insulation thickness; investigate propagation characteristics of Kapton at low voltages; and investigate pyrolytic properties of polyimide insulated (Kapton) wire for low voltage (less than 35 VDC) applications. Supporting diagrams and tables are presented.

  9. Heat Transfer Analysis for Industrial AC Electric Arc Furnace

    Institute of Scientific and Technical Information of China (English)

    (U)nal (C)amdali; Murat Tun(c)

    2005-01-01

    The heat transfer analysis was performed for an AC electric arc furnace (EAF). Heat losses by conduction, convection and radiation from outer surface, roof, bottom and electrodes of EAF were determined in detail. Some suggestions about decreasing heat losses were presented.

  10. Electric-Arc Plasma Installation for Preparing Nanodispersed Carbon Structures

    Institute of Scientific and Technical Information of China (English)

    P. STEFANOV; D. GARLANOV; G. VISSOKOV

    2008-01-01

    An electric-arc plasma installation operated in the hidden anode arrangement is constructed and used for the preparation of carbon nanostructures. A contracted plasma arc gen-erated by a plasma torch using an inert gas is used as heat source. The average mass temperature of arc is higher than 104 K, while its power density, which is directly transferred onto the electrode (anode), is ~ 2 kW/mm2. The anode contact area formed on the electrode moves against the arc by way of shifting the electrode and is hidden completely in the interior of plasma gas stream moving towards it. As a result of both the direct plasma attack and the opposite movement of streams in the hidden anode contact area, a temperature higher than 6000 K is reached. Thus, intensive vaporization takes place, which forms a saturated plasma-gas-aerosol phase of the initial material of electrode (anode). This gas phase is mixed in and carried by the plasma stream. Over that mixed plasma stream, a controlled process of quenching (fixation) is carried out by twisted turbulent fluid streams. After the fixation, the resultant carbon nano-structures are caught by a filter and collected in a bunker.

  11. An electric arc in the magnetic field of a solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Ungurs, I.A.; Shilova, Ye.I.

    1982-01-01

    A qualitative experiment is described, enabling investigation of the structure of the arc discharge between rod and ring electrodes, and evaluation of the speed of the axial flux created by electromagnetic forces. It is shown that placement of the plasma stream during discharge in the magnetic field of the solenoid provides the possibility of controlling this stream.

  12. Optical diagnostics of a gliding arc.

    Science.gov (United States)

    Sun, Z W; Zhu, J J; Li, Z S; Aldén, M; Leipold, F; Salewski, M; Kusano, Y

    2013-03-11

    Dynamic processes in a gliding arc plasma generated between two diverging electrodes in ambient air driven by 31.25 kHz AC voltage were investigated using spatially and temporally resolved optical techniques. The life cycles of the gliding arc were tracked in fast movies using a high-speed camera with framing rates of tens to hundreds of kHz, showing details of ignition, motion, pulsation, short-cutting, and extinction of the plasma column. The ignition of a new discharge occurs before the extinction of the previous discharge. The developed, moving plasma column often short-cuts its current path triggered by Townsend breakdown between the two legs of the gliding arc. The emission from the plasma column is shown to pulsate at a frequency of 62.5 kHz, i.e., twice the frequency of the AC power supply. Optical emission spectra of the plasma radiation show the presence of excited N2, NO and OH radicals generated in the plasma and the dependence of their relative intensities on both the distance relative to the electrodes and the phase of the driving AC power. Planar laser-induced fluorescence of the ground-state OH radicals shows high intensity outside the plasma column rather than in the center suggesting that ground-state OH is not formed in the plasma column but in its vicinity.

  13. Improving the technology of deposition using strip electrode

    Directory of Open Access Journals (Sweden)

    Сергій Володимирович Гулаков

    2017-07-01

    Full Text Available The behavior of the arc at the strip electrode tip is studied. It is shown that the arc is moving along the electrode tip due to periodic short-circuits of the arc gap. Thus, a new arc is excited at the point where short circuit occurred after a conductive bridge formed by molten metal is vanished due to a high welding current. This leads to an increase in the probability of defect formation in the deposited layer of workpiece under treatment. To improve deposited layer quality, it is suggested to identify the moments of short-circuits of the electrode to the base metal and to discharge the pre-charged capacitorat these instants, connecting it between the electrode and the product. High discharge current pulse speeds up the destruction of the molten metal bridge between electrode tip and workpiece, thus lowering the time needed for arc re-ignition and improving depostion process stability. A special automated equipment has been developed to implement this process. Capacitor discharge is done using power thyristor with series-connected inductance for limiting discharging current rate of rise and for limiting discharge current peak value such that it is not impairing thyristor reliability. The pre-charging of the capacitor is done by an auxiliary power supply. Several thyristor-capacitor networks can be used in parallel to allow for multiple current pulses mode and to reduce RMS currents in capacitors

  14. [An optical-fiber-sensor-based spectrophotometer for soil non-metallic nutrient determination].

    Science.gov (United States)

    He, Dong-xian; Hu, Juan-xiu; Lu, Shao-kun; He, Hou-yong

    2012-01-01

    In order to achieve rapid, convenient and efficient soil nutrient determination in soil testing and fertilizer recommendation, a portable optical-fiber-sensor-based spectrophotometer including immersed fiber sensor, flat field holographic concave grating, and diode array detector was developed for soil non-metallic nutrient determination. According to national standard of ultraviolet and visible spectrophotometer with JJG 178-2007, the wavelength accuracy and repeatability, baseline stability, transmittance accuracy and repeatability measured by the prototype instrument were satisfied with the national standard of III level; minimum spectral bandwidth, noise and excursion, and stray light were satisfied with the national standard of IV level. Significant linear relationships with slope of closing to 1 were found between the soil available nutrient contents including soil nitrate nitrogen, ammonia nitrogen, available phosphorus, available sulfur, available boron, and organic matter measured by the prototype instrument compared with that measured by two commercial single-beam-based and dual-beam-based spectrophotometers. No significant differences were revealed from the above comparison data. Therefore, the optical-fiber-sensor-based spectrophotometer can be used for rapid soil non-metallic nutrient determination with a high accuracy.

  15. Solution behavior of hydrogen isotopes and other non-metallic elements in liquid lithium

    Energy Technology Data Exchange (ETDEWEB)

    Maroni, V.A.; Calaway, W.F.; Veleckis, E.; Yonco, R.M.

    1976-01-01

    Results of experimental studies to measure selected thermodynamic properties for systems of lithium with non-metallic elements are reported. Investigations of the Li-H, Li-D, and Li-T systems have led to the elucidation of the dilute solution behavior and the H/D/T isotope effects. In the case of the Li-H and Li-D systems, the principal features of the respective phase diagrams have been delineated. The solubility of Li-D in liquid lithium has been measured down to 200/sup 0/C. The solubility of Li/sub 3/N in liquid lithium and the thermal decomposition of Li/sub 3/N have also been studied. From these data, the free energy of formation of Li/sub 3/N and the Sieverts' constant for dissolution of nitrogen in lithium have been determined. Based on studies of the distribution of non-metallic elements between liquid lithium and selected molten salts, it appears that molten salt extraction offers promise as a means of removing these impurity elements (e.g., H, D, T, O, N, C) from liquid lithium.

  16. Bacterial assimilation reduction of iron in the treatment of non-metallics

    Directory of Open Access Journals (Sweden)

    Peter Malachovský

    2005-11-01

    Full Text Available Natural non-metallics, including granitoide and quartz sands, often contain iron which decreases the whiteness of these raw materials. Insoluble Fe3+ in these samples could be reduced to soluble Fe2+ by bacteria of Bacillus spp. and Saccharomyces spp. The leaching effect, observed by the measurement of Fe2+concentration in a solution, showed higher activities of a bacterial kind isolated from the Bajkal lake and also by using of yeast Saccharomyces sp. during bioleaching of quartz sands. However, allkinds of Bacillus spp. isolated from the Slovak deposit and from Bajkal lake were very active in the iron reduction during bioleaching of the feldspar raw material. This metal was efficiently removed from quartz sands as documented by the Fe2O3 decrease (from 0,317 % to 0,126 % and from feldpars raw materials by the Fe2O3 decrease (from 0,288 % to 0,115 % after bioleaching. The whiteness of these non-metallics was increased during a visual comparison of samples before and after bioleaching but samples contain selected magnetic particles. A removal of iron as well as a release of iron minerals from silicate matrix should increase the effect of the magnetic separation and should give a product which is suitable for industrial applications.

  17. PVC-based composite material containing recycled non-metallic printed circuit board (PCB) powders.

    Science.gov (United States)

    Wang, Xinjie; Guo, Yuwen; Liu, Jingyang; Qiao, Qi; Liang, Jijun

    2010-12-01

    The study is directed to the use of non-metallic powders obtained from comminuted recycled paper-based printed circuit boards (PCBs) as an additive to polyvinyl chloride (PVC) substrate. The physical properties of the non-metallic PCB (NMPCB) powders were measured, and the morphological, mechanical and thermal properties of the NMPCB/PVC composite material were investigated. The results show that recycled NMPCB powders, when added below a threshold, tended to increase the tensile strength and bending strength of PVC. When 20 wt% NMPCB powders (relative to the substrate PVC) of an average diameter of 0.08 mm were added, the composite tensile strength and bending strength reached 22.6 MPa and 39.83 MPa, respectively, representing 107.2% and 123.1% improvement over pure PVC. The elongation at break of the composite material reached 151.94% of that of pure PVC, while the Vicat softening temperature of the composite material did not increase significantly compared to the pure PVC. The above results suggest that paper-based NMPCB powders, when used at appropriate amounts, can be effective for toughening PVC. Thus, this study suggests a new route for reusing paper-based NMPCB, which may have a significant beneficial environmental impact.

  18. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    Science.gov (United States)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  19. Standard practice for extreme value analysis of nonmetallic inclusions in steel and other microstructural features

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice describes a methodology to statistically characterize the distribution of the largest indigenous nonmetallic inclusions in steel specimens based upon quantitative metallographic measurements. The practice is not suitable for assessing exogenous inclusions. 1.2 Based upon the statistical analysis, the nonmetallic content of different lots of steels can be compared. 1.3 This practice deals only with the recommended test methods and nothing in it should be construed as defining or establishing limits of acceptability. 1.4 The measured values are stated in SI units. For measurements obtained from light microscopy, linear feature parameters shall be reported as micrometers, and feature areas shall be reported as micrometers. 1.5 The methodology can be extended to other materials and to other microstructural features. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish app...

  20. Nonmetallic Inclusion Control of 350 km/h High Speed Rail Steel

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ke-wen; ZENG Jian-hua; WANG Xin-hua

    2009-01-01

    Inclusion has an important effect on quality of high speed rail steel.In consideration of the lower acceptance percentage of the inclusion and its constraint against the requirement for large scale production of 350 km/h high speed rail steel in Panzhihua Iron and Steel (Group) Co,the technology of nonmetallic inclusion control for 350 km/h high speed rail steel was studied.An optimized model of the argon-blowing in ladle furnace (LF),the control of the components of the ladle slag,and the technique of calcium treatment for the molten steel was brought forward.Using the researched technology,the removal ratio of the inclusion was increased and the components,distribution,and shape of the inclusion in the rail steel were changed,which resulted in a reduction in the average total oxygen content to 10.17×10-6 and an increase in the comprehensive acceptance percentage of the nonmetallic inclusion from 48.21% to 98.1%.Test has shown that this metallurgical technology can meet the requirement for large scale production of 350 km/h high speed steel in Panzhihua Iron and Steel (Group) Co.

  1. Circular-Arc Cartograms

    CERN Document Server

    Kämper, Jan-Hinrich; Nöllenburg, Martin

    2011-01-01

    We present a new circular-arc cartogram model in which countries are drawn with circular arcs instead of straight-line segments. Given a geographic map and values associated with each country in the map, the cartogram is a new map in which the areas of the countries represent the corresponding values. In the circular-arc cartogram model straight-line segments can be replaced with circular arcs in order to achieve the desired areas, while the corners of the polygons defining each country remain fixed. The countries in circular-arc cartograms have the aesthetically pleasing appearance of clouds or snowflakes, depending on whether their edges are bent outwards or inwards. This makes is easy to determine whether a country has grown or shrunk, just by its overall shape. We show that determining whether a given map and area-values can be realized with a circular-arc cartogram is an NP-hard problem. Next we describe a heuristic method for constructing circular-arc cartograms, which uses a max-flow computation on the...

  2. Modeling of Fume Formation from Shielded Metal Arc Welding Process

    Science.gov (United States)

    Sivapirakasam, S. P.; Mohan, Sreejith; Santhosh Kumar, M. C.; Surianarayanan, M.

    2017-04-01

    In this study, a semi-empirical model of fume formation rate (FFR) from a shielded metal arc welding (SMAW) process has been developed. The model was developed for a DC electrode positive (DCEP) operation and involves the calculations of droplet temperature, surface area of the droplet, and partial vapor pressures of the constituents of the droplet to predict the FFR. The model was further extended for predicting FFR from nano-coated electrodes. The model estimates the FFR for Fe and Mn assuming constant proportion of other elements in the electrode. Fe FFR was overestimated, while Mn FFR was underestimated. The contribution of spatters and other mechanism in the arc responsible for fume formation were neglected. A good positive correlation was obtained between the predicted and experimental FFR values which highlighted the usefulness of the model.

  3. Modeling of Fume Formation from Shielded Metal Arc Welding Process

    Science.gov (United States)

    Sivapirakasam, S. P.; Mohan, Sreejith; Santhosh Kumar, M. C.; Surianarayanan, M.

    2017-01-01

    In this study, a semi-empirical model of fume formation rate (FFR) from a shielded metal arc welding (SMAW) process has been developed. The model was developed for a DC electrode positive (DCEP) operation and involves the calculations of droplet temperature, surface area of the droplet, and partial vapor pressures of the constituents of the droplet to predict the FFR. The model was further extended for predicting FFR from nano-coated electrodes. The model estimates the FFR for Fe and Mn assuming constant proportion of other elements in the electrode. Fe FFR was overestimated, while Mn FFR was underestimated. The contribution of spatters and other mechanism in the arc responsible for fume formation were neglected. A good positive correlation was obtained between the predicted and experimental FFR values which highlighted the usefulness of the model.

  4. Microvoltammetric Electrodes.

    Science.gov (United States)

    1985-09-25

    Microvoltammetric Electrodes, J. 0. Howell, R. M. Wightman, Anal. Chem., 56, 524-529 (1984). 2. Flow Rate Independent Amperometric Cell , W. L. Caudill...Electroanal. Chem., 182, 113-122 (1985). C. List of all publications 1. Flow Rate Independent Amperometric Cell , W. L. Caudill, J. 0. Howell, R. M

  5. Pulsed plasma arc cladding

    Institute of Scientific and Technical Information of China (English)

    龙; 白钢; 李振民; 张赋升; 杨思乾

    2004-01-01

    A prototype of Pulsed Plasma Arc Cladding system was developed, in which single power source supplies both transferred plasma arc (TPA) and non-transferred plasma arc (N-TPA). Both plasmas work in turn in a high frequency controlled by an IGBT connecting nozzle and workpiece. The working frequency of IGBT ranges from 50 ~ 7000Hz, in which the plasmas can work in turn smoothly. Higher than 500 Hz of working frequency is suggested for promotion of cladding quality and protection of IGBT. Drag phenomenon of TPA intensifies as the frequency goes up, which tends to increase the current proportion of TPA and suppress N-TPA. The occupation ratio of IGBT can be regulated from 5% ~ 95%, which balances the power supplies of both plasmas. An occupation ratio higher than 50% gives adequate proportion of arc current for N-TPA to preheat powder.

  6. Filtered cathodic arc source

    Science.gov (United States)

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  7. A study of many-body phenomena in metal nanoclusters (Au, Cu) close to their transition to the nonmetallic state

    NARCIS (Netherlands)

    Borman, VD; Borisyuk, PV; Lebid'ko, VV; Pushkin, AA; Tronin, VN; Troyan, [No Value; Antonov, DA; Filatov, DO

    2006-01-01

    The results of a study of many-body phenomena in gold and copper nanoclusters are presented. The measured conductivity as a function of nanocluster height h was found to have a minimum at h approximate to 0.6 nm. Conductivity was local in character at nanocluster sizes l infinity) to nonmetallic (ep

  8. Efficient Terahertz Photoconductive Emitters with Improved Electrode Structures

    Institute of Scientific and Technical Information of China (English)

    Ying-Xin Wang; Yi-Jie Niu; Wei Cheng; Zhi-Qiang Li; Zi-Ran Zhao

    2014-01-01

    We present the design, fabrication, and characterization of two new types of terahertz photoconductive emitters. One has an asymmetric four-contact electrode structure and the other has an arc-shaped electrode structure, which are all modified from a traditional strip line antenna. Numerical simulations and real experiments confirm the good performance of the proposed antennas. An amplitude increase of about 40% is experimentally observed for the terahertz signals generated from the new structures. The special electrode structure and its induced local bias field enhancement are responsible for this radiation efficiency improvement. Our work demonstrates the feasibility of developing highly efficient terahertz photoconductive emitters by optimizing the electrode structure.

  9. Arc reattachment driven by a turbulent boundary layer: implications for the sweeping of lightning arcs along aircraft

    Science.gov (United States)

    Guerra-Garcia, C.; Nguyen, N. C.; Peraire, J.; Martinez-Sanchez, M.

    2016-09-01

    A lightning channel attached to an aircraft in flight will be swept along the aircraft’s surface in response to the relative velocity between the arc’s root (attached to a moving electrode) and the bulk of the arc, which is stationary with respect to the air. During this process, the reattachment of the arc to new locations often occurs. The detailed description of this swept stroke is still at an early stage of research, and it entails the interaction between an electrical arc and the flow boundary layer. In this paper we examine the implications of the structure of the boundary layer for the arc sweeping and reattachment process by considering different velocity profiles, both for laminar and turbulent flow, as well as a high fidelity description, using large eddy simulation, of transitional flow over an airfoil. It is found that the local velocity fluctuations in a turbulent flow may be important contributors to the reattachment of the arc, through a combination of an increased potential drop along the arc and local approaches of the arc to the surface. Specific flow features, such as the presence of a laminar recirculation bubble, can also contribute to the possibility of reattachment.

  10. SiO2 and CaF2 Behavior During Shielded Metal Arc Welding and Their Effect on Slag Detachability of the CaO-CaF2-SiO2 Type ENiCrFe-7-Covered Electrode

    Science.gov (United States)

    Wang, Huang; Qin, Renyao; He, Guo

    2016-09-01

    The metallurgical behavior during shielded metal arc welding (SMAW) and the slag detachability of the CaO-CaF2-SiO2 type ENiCrFe-7-covered electrodes was investigated. The results indicated that the slag detachability could be improved as the SiO2 in the flux coatings decreased. When the SiO2 in the flux coating was 10.9 pct, about 28.3 pct CaF2 resulted in the best slag detachability. The CaF2 and SiO2 in the flux coating interacted during SMAW to form gaseous SiF4 to be evacuated. In the reactions, one SiO2 consumed two CaF2, leading to the reduction of the ratio of CaF2/SiO2. After comparing the slag compositions, the best slag detachability was obtained at CaO:CaF2:SiO2 = 1.7:1.8:1, but the worst slag detachability appeared at CaO:CaF2:SiO2 = 1.3:0.9:1. The XRD analysis revealed that the oxides and fluorides in the slags preferred to gather together to form cuspidine and other complex phases. If the CaF2 was dominant in the slags, they intended to form homogenous porous microstructures that were relatively strong and would most likely detach from the weld metal in blocks, exhibiting good slag detachability. If the cuspidine phase was dominant, the slags exhibited a `rock strata'-like microstructure in the intergranular area. Such microstructure was very fragile and could be broken into fine powders that were easily embedded in the weld ripples, leading to slag adhesions. This work provides the researcher with a wealth of information and data, which will also be beneficial to the welding material producers and users.

  11. Calculating the Carrying Capacity of Flexural Prestressed Concrete Beams with Non-Metallic Reinforcement

    Directory of Open Access Journals (Sweden)

    Mantas Atutis

    2011-04-01

    Full Text Available The article reviews moment resistance design methods of prestressed concrete beams with fibre-reinforced polymer (FRP reinforcement. FRP tendons exhibit linear elastic response to rupture without yielding and thus failure is expected to be brittle. The structural behaviour of beams prestressed with FRP tendons is different from beams with traditional steel reinforcement. Depending on the reinforcement ratio, the flexural behaviour of the beam can be divided into several groups. The numerical results show that depending on the nature of the element failure, moment resistance calculation results are different by using reviewed methods. It was found, that the use of non-metallic reinforcement in prestressed concrete structures is effective: moment capacity is about 5% higher than that of the beams with conventional steel reinforcement.Article in Lithuanian

  12. Complex Nonmetallic Inclusions Formed in Billets Heated for Rolling and Characteristics of Structural Steels

    Science.gov (United States)

    Zaitsev, A. I.; Koldaev, A. V.; Arutyunyan, N. A.; Shaposhnikov, N. G.; Dunaev, S. F.

    2017-03-01

    Complex bimetallic inclusions formed in billets from steels 09G2S and K52 during heating for rolling are studied by methods of electron microscopy and local x-ray spectrum analysis. To check the established evolution of oxide inclusions based on aluminomagnesium spinel and other oxide compositions, individual inclusions of manganese sulfide and complex oxide-sulfide inclusions, a method developed by the Severstal'Company and the Karpov NIFKhI for determining the content of corrosion-active nonmetallic inclusions (CANI) as a function of the heating mode is applied to the steels studied. It is recommended to increase the temperature and duration of heating of billets for hot rolling in order to lower the content of CANI and to raise the resistance of the steels to local corrosion.

  13. Capacitance probe for detection of anomalies in non-metallic plastic pipe

    Science.gov (United States)

    Mathur, Mahendra P.; Spenik, James L.; Condon, Christopher M.; Anderson, Rodney; Driscoll, Daniel J.; Fincham, Jr., William L.; Monazam, Esmail R.

    2010-11-23

    The disclosure relates to analysis of materials using a capacitive sensor to detect anomalies through comparison of measured capacitances. The capacitive sensor is used in conjunction with a capacitance measurement device, a location device, and a processor in order to generate a capacitance versus location output which may be inspected for the detection and localization of anomalies within the material under test. The components may be carried as payload on an inspection vehicle which may traverse through a pipe interior, allowing evaluation of nonmetallic or plastic pipes when the piping exterior is not accessible. In an embodiment, supporting components are solid-state devices powered by a low voltage on-board power supply, providing for use in environments where voltage levels may be restricted.

  14. Ambipolar surface state transport in nonmetallic stoichiometric Bi2Se3 crystals

    Science.gov (United States)

    Syers, Paul; Paglione, Johnpierre

    2017-01-01

    Achieving true bulk insulating behavior in Bi2Se3 , the archetypal topological insulator with a simplistic one-band electronic structure and sizable band gap, has been prohibited by a well-known self-doping effect caused by selenium vacancies, whose extra electrons shift the chemical potential into the bulk conduction band. We report a synthesis method for achieving stoichiometric Bi2Se3 crystals that exhibit nonmetallic behavior in electrical transport down to low temperatures. Hall-effect measurements indicate the presence of both electron- and holelike carriers, with the latter identified with surface state conduction and the achievement of ambipolar transport in bulk Bi2Se3 crystals without gating techniques. With carrier mobilities surpassing the highest values yet reported for topological surface states in this material, the achievement of ambipolar transport via upward band bending is found to provide a key method to advancing the potential of this material for future study and applications.

  15. Combined nonmetallic electronegativity equalisation and point-dipole interaction model for the frequency-dependent polarisability

    Science.gov (United States)

    Smalø, Hans S.; Åstrand, Per-Olof; Mayer, Alexandre

    2013-07-01

    A molecular mechanics model for the frequency-dependent polarisability is presented. It is a combination of a recent model for the frequency dependence in a charge-dipole model [Nanotechnology 19, 025203, 2008] and a nonmetallic modification of the electronegativity equalisation model rephrased as atom-atom charge-transfer terms [J. Chem. Phys. 131, 044101, 2009]. An accurate model for the frequency-dependent polarisability requires a more accurate partitioning into charge and dipole contributions than the static polarisability, which has resulted in several modifications of the charge-transfer model. Results are presented for hydrocarbons, including among others, alkanes, polyenes and aromatic systems. Although their responses to an electric field are quite different in terms of the importance of charge-transfer contributions, it is demonstrated that their frequency-dependent polarisabilities can be described with the same model and the same set of atom-type parameters.

  16. Quantitative Study on Nonmetallic Inclusion Particles in Steels by Automatic Image Analysis With Extreme Values Method

    Institute of Scientific and Technical Information of China (English)

    Cássio Barbosa; José Brant de Campos; J(ǒ)neo Lopes do Nascimento; Iêda Maria Vieira Caminha

    2009-01-01

    The presence of nonmetallic inclusion particles which appear during steelmaking process is harmful to the properties of steels, which is mainly as a function of some aspects such as size, volume fraction, shape, and distribution of these particles. The automatic image analysis technique is one of the most important tools for the quantitative determination of these parameters. The classical Student approach and the Extreme Values Method (EVM) were used for the inclusion size and shape determination and the evaluation of distance between the inclusion particles. The results thus obtained indicated that there were significant differences in the characteristics of the inclusion particles in the analyzed products. Both methods achieved results with some differences, indicating that EVM could be used as a faster and more reliable statistical methodology.

  17. The share of non-metallic inclusions in high-grade steel for machine parts

    Directory of Open Access Journals (Sweden)

    T. Lipiński

    2010-10-01

    Full Text Available The aim of this work was to compare the differences in the purity steel in the dimensions of inclusion particles as dependent on various steel production processes. The experimental material consisted of semi-finished products of high-grade, medium-carbon constructional steel with: manganese, chromium, nickel, molybdenum and boron. The impurity content of steel was low as phosphorus and sulphur levels did not exceed 0.025%. The experimental material consisted of steel products obtained in three metallurgical processes: electric, electric with argon refining and oxygen converter with vacuum degassing of steel. Billet samples were collected to determine: chemical composition, relative volume of non-metallic inclusions, dimensions of impurities. The results were processed and presented in graphic form.

  18. Morphology and Orientation Selection of Non-metallic Inclusions in Electrified Molten Metal

    Science.gov (United States)

    Zhao, Z. C.; Qin, R. S.

    2017-10-01

    The effect of electric current on morphology and orientation selection of non-metallic inclusions in molten metal has been investigated using theoretical modeling and numerical calculation. Two geometric factors, namely the circularity ( fc ) and alignment ratio ( fe ) were introduced to describe the inclusions shape and configuration. Electric current free energy was calculated and the values were used to determine the thermodynamic preference between different microstructures. Electric current promotes the development of inclusion along the current direction by either expatiating directional growth or enhancing directional agglomeration. Reconfiguration of the inclusions to reduce the system electric resistance drives the phenomena. The morphology and orientation selection follow the routine to reduce electric free energy. The numerical results are in agreement with our experimental observations.

  19. Industrial application of liquid steel filtration out of dispersed nonmetallic phase in the continuous casting machine

    Directory of Open Access Journals (Sweden)

    K. Janiszewski

    2013-01-01

    Full Text Available Hitherto existing investigations concerning the ceramic filter use in the steel making processes (both of laboratory and industrial scale have given good results. The obtained results of filtration (in the laboratory have proved that this method may be used as an effective and cheap way of steel filtration from non-metallic inclusions. Placing filters in the tundish is the best location in consideration of limiting the possibility of secondary pollution of steel. Yet, the results presented in this paper, of an experiment prepared and carried out in the industrial environment, are the only positive results obtained, which are connected with so much quantities of liquid steel processed with use of the multi-hole ceramic filters.

  20. Efficient and durable hydrogen evolution electrocatalyst based on nonmetallic nitrogen doped hexagonal carbon

    Science.gov (United States)

    Liu, Yanming; Yu, Hongtao; Quan, Xie; Chen, Shuo; Zhao, Huimin; Zhang, Yaobin

    2014-10-01

    The feasibility of renewable energy technology, hydrogen production by water electrolysis, depends on the design of efficient and durable electrocatalyst composed of earth-abundant elements. Herein, a highly active and stable nonmetallic electrocatalyst, nitrogen doped hexagonal carbon (NHC), was developed for hydrogen production. It exhibited high activity for hydrogen evolution with a low overpotential of only 65 mV, an apparent exchange current density of 5.7 × 10-2 mA cm-2 and a high hydrogen production rate of 20.8 mL cm-2 h-1 at -0.35 V. The superior hydrogen evolution activity of NHC stemmed from the intrinsic electrocatalytic property of hexagonal nanodiamond, the rapid charge transfer and abundance of electrocatalytic sites after nitrogen doping. Moreover, NHC was stable in a corrosive acidic solution during electrolysis under high current density.

  1. Magnetohydrodynamic study of electromagnetic separation of nonmetallic inclusions from aluminum melt

    Institute of Scientific and Technical Information of China (English)

    SHU; Da(疏达); SUN; Baode(孙宝德); WANG; Jun(王俊); ZHANG; Xueping(张雪萍); ZHOU; Yaohe(周尧和)

    2002-01-01

    Magnetohydrodynamic flow around the nonmetallic inclusions in aluminum melt and the force exerted on the inclusions were explored by dimensional analysis and numerical calculations. Dimensional analysis shows that the invariant characterizes the force exerted on the inclusions and the flow intensity of the melt. The physical significance of A is represented as a modified particle Reynolds number that reflects the effects of electromagnetic force. The fluid flow around the particle becomes unstable when A>2×103. It is shown that the neglect of the inertial terms has little effect on the force exerted on the inclusions in the range of A≤1×106. However, the analytical solution of the maximum velocity inside the melt does not apply due to the appearance of turbulent flow in the case of A>2×103.

  2. Analysis and simulation of non-metallic inclusions in spheroidal graphite iron

    Science.gov (United States)

    Pustal, B.; Schelnberger, B.; Bührig-Polaczek, A.

    2016-03-01

    Non-metallic inclusions in spheroidal cast iron (SGI) reduce fatigue strength and yield strength. This type of inclusion usually accumulates at grain boundaries. Papers addressing this topic show the overall impact of both the fraction of so-called white (carbides) and black (non-metallic) inclusions on mechanical properties. In the present work we focus on the origin and the formation conditions of black Mg-bearing inclusions, further distinguishing between Si-bearing and non-Si-bearing Mg inclusions. The formation was simulated applying thermodynamic approaches. Moreover, appropriate experiments have been carried out and a large number of particles have been studied applying innovative feature analysis with regard to shape, size, and composition. Magnesium silicates are predicted at elevated oxygen concentrations, whereas at low levels of oxygen sulphides and carbides appear at a late stage of solidification. Experiments with three consecutive flow obstacles show that the amount of magnesium silicates decrease after each of the three obstacles, whereas the fraction of non-Si-bearing inclusions remains approximately constant. The size of inclusions divides in halves over the flow path and the number of particles increases accordingly. We point out that based on feature analysis Mg-O-C bearing inclusion show disadvantageous form factors for which reason this kind of inclusions may be extremely harmful in terms of crack initiation. All results obtained indicate that magnesium silicates are entrapped on mould filling, whereas Mg-(O, C, S, P, N) bearing particles are precipitates at late stages of solidification. Consequently, the only avoidance strategy is setting up optimum retained magnesium content.

  3. Water-cooled non-thermal gliding arc for adhesion improvement of glass-fibre-reinforced polyester

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Sørensen, Bent F.; Løgstrup Andersen, Tom;

    2013-01-01

    -fibre-reinforced polyester plates were treated using an atmospheric pressure gliding-arc discharge with air flow to improve adhesion with a vinylester adhesive. The electrodes were water-cooled so as to operate the gliding arc continually. The treatment improved wettability and increased the density of oxygen...

  4. Control of arc plasma torches: compensation of operational enthalpy drifts

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, D H; Alexieva, J; Djakov, B E; Enikov, R [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Dimitrov, D [Centre of Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia (Bulgaria)], E-mail: dick.oliver@gmail.com

    2008-05-01

    In arc plasma torches electrode wear is the main reason for slow changes in the electrical and thermal torch characteristics. Such effects hinder technological applications of this type of plasma torches whenever the enthalpy must be maintained at a fixed level, or varied as needed. To solve this problem, a new method and algorithm for torch control are proposed. The time evolution of the arc current, voltage and thermal power loss of the torch are recorded. The values measured are used to find the required value of the enthalpy.

  5. Vacuum arc melting of tungsten-hafnium-carbon alloy

    Science.gov (United States)

    Ammon, R. L.; Buckman, R. W., Jr.

    1974-01-01

    The vacuum arc casting of tungsten alloys, which contain carbon as an alloy addition, require special melting procedures in order to produce melts of consistent controlled levels of alloy content. A melting procedure will be described in which elemental components of a tungsten 0.35% HfC alloy are assembled to form an electrode for ac vacuum arc melting to produce 3-in.-diam ingots. Melting procedures and analytical chemistry are discussed and compared with data for ingots produced by other techniques.

  6. Arc Plasma Torch Modeling

    CERN Document Server

    Trelles, J P; Vardelle, A; Heberlein, J V R

    2013-01-01

    Arc plasma torches are the primary components of various industrial thermal plasma processes involving plasma spraying, metal cutting and welding, thermal plasma CVD, metal melting and remelting, waste treatment and gas production. They are relatively simple devices whose operation implies intricate thermal, chemical, electrical, and fluid dynamics phenomena. Modeling may be used as a means to better understand the physical processes involved in their operation. This paper presents an overview of the main aspects involved in the modeling of DC arc plasma torches: the mathematical models including thermodynamic and chemical non-equilibrium models, turbulent and radiative transport, thermodynamic and transport property calculation, boundary conditions and arc reattachment models. It focuses on the conventional plasma torches used for plasma spraying that include a hot-cathode and a nozzle anode.

  7. Arc Behavior and Droplet Transfer of CWW CO2 Welding

    Institute of Scientific and Technical Information of China (English)

    Zhi-dong YANG; Chen-fu FANG; Yong CHEN; Guo-xiang XU; Qing-xian HU; Xiao-yan GU

    2016-01-01

    Cable-type welding wire (CWW)CO2 welding is an innovative process arc welding with high quality,high efficiency and energy saving,in which CWW is used as consumable electrode.The CWW is composed of seven wires with a diameter of 1.2 mm.One is in the center,while others uniformly distribute around it.The diameter of twisted wire is up to 3.6 mm,which can increase the deposition rate significantly.With continual wire-feeding and melting of CWW,the formed rotating arc improved welding quality obviously.The arc behavior and droplet transfer were ob-served by the electrical signal waveforms and corresponding synchronous images,based on the high speed digital camera and electrical signal system.The results showed that the shape of welding arc changed from bell arc to beam arc with the increase of welding parameter.The droplet transfer mode changed from repelled transfer,globular transfer to projected transfer in turn.Droplet transfer frequency increased from 18.17 Hz to 119.05 Hz,while the droplet diameter decreased from 1.5 times to 0.3 times of the CWW diameter.

  8. Polymer Photovoltaic Cell Using TiO2/G-PEDOT Nanocomplex Film as Electrode

    Directory of Open Access Journals (Sweden)

    F. X. Xie

    2008-01-01

    Full Text Available Using TiO2/G-PEDOT (PEDOT/PSS doped with glycerol nanocomplex film as a substitute for metal electrode in organic photovoltaic cell is described. Indium tin oxide (ITO worked as cathode and TiO2/G-PEDOT nanocomplex works as anode. The thickness of TiO2 layer in nanocomplex greatly affects the act of this nonmetallic electrode of the device. To enhance its performance, this inverted organic photovoltaic cell uses another TiO2 layer as electron selective layer contacted to ITO coated glass substrates. All films made by solution processing techniques are coated on the transparent substrate (glass with a conducting film ITO. The efficiency of this solar cell is compared with the conventional device using Al as electrode.

  9. Numerical 2D and 3D Investigation of Non-Metallic (Glass, Carbon) Fiber Pull-Out Micromechanics 9in Concrete Matrix)

    OpenAIRE

    Khabaz, A; Krasņikovs, A; Kononova, O; Mačanovskis, A

    2010-01-01

    Short non-metallic (glass, carbon) fibre use for concrete disperse reinforcment is of particular interest, because of much higher fibre/matrix interface area value comparing to industrially produced steel fibres.

  10. Arc Heated Scramjet Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Arc Heated Scramjet Test Facility is an arc heated facility which simulates the true enthalpy of flight over the Mach number range of about 4.7 to 8 for free-jet...

  11. ARc Welding (Industrial Processing Series).

    Science.gov (United States)

    ARC WELDING , *BIBLIOGRAPHIES), (*ARC WELDS, BIBLIOGRAPHIES), ALUMINUM ALLOYS, TITANIUM ALLOYS, CHROMIUM ALLOYS, METAL PLATES, SPOT WELDING , STEEL...INERT GAS WELDING , MARAGING STEELS, MICROSTRUCTURE, HEAT RESISTANT ALLOYS, HEAT RESISTANT METALS, WELDABILITY, MECHANICAL PROPERTIES, MOLYBDENUM ALLOYS, NICKEL ALLOYS, RESISTANCE WELDING

  12. Variable polarity arc welding

    Science.gov (United States)

    Bayless, E. O., Jr.

    1991-01-01

    Technological advances generate within themselves dissatisfactions that lead to further advances in a process. A series of advances in welding technology which culminated in the Variable Polarity Plasma Arc (VPPA) Welding Process and an advance instituted to overcome the latest dissatisfactions with the process: automated VPPA welding are described briefly.

  13. Thermal Arc Spray Overview

    Science.gov (United States)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  14. ALICE: ARC integration

    CERN Document Server

    Anderlik, C; Kleist, J; Peters, A; Saiz, P

    2008-01-01

    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a modu...

  15. ALICE-ARC integration

    DEFF Research Database (Denmark)

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva;

    2008-01-01

    Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The interoperation has two aspects, one is the data...

  16. Optimization of a transferred arc reactor for metal nanoparticle synthesis

    Science.gov (United States)

    Stein, Matthias; Kruis, Frank Einar

    2016-09-01

    The demand for metal nanoparticles is increasing strongly. Transferred arc synthesis is a promising process in this respect, as it shows high production rates, good quality particles and the ability of up-scaling. The influence of several process parameters on the performance of the process in terms of production rate and particle size is investigated. These parameters are the electrode design and adjustment, the gas flow rate and power input. A novel feeding mechanism allows process operation over an extended time period. It is shown that the process is capable of producing pure metal nanoparticles with variable primary particle sizes and comparatively high production rates. Optimal process conditions for a single transferred arc electrode pair are found, which allow further scale-up by numbering up.

  17. 非金属矿物在医药行业的应用与前景%Medicinal Application and Prospect of Non-metallic Mineral

    Institute of Scientific and Technical Information of China (English)

    鲍康德; 周春晖

    2012-01-01

    Deep procession of non-metallic mineral and application on bio-/medicinal area is a new high-technical industry. This paper summarizes the appl ication history and status in quo of non-metallic minerals in pharmaceutical industry; identification, classification and development tendency of non-metallic minerals for pharmaceutical use. The focus is to introduce the development history of non-metallic minerals for pharmaceutical use, and explore the application prospect of non-metallic minerals in pharmaceutical industry, so as to provide theory basis for sufficiently exploring the potential of non-metallic minerals.%非金属矿物深加工并被用于生物医药领域系高新技术产业.本文综述了非金属矿物的医药应用历史、现状;药用非金属矿物的鉴别、分类和发展趋势.重点介绍了非金属矿物的药用开发历程,并展望了非金属矿物在医药行业的应用前景,以期为充分发掘非金属矿物的潜能提供理论指导.

  18. Numerical analysis of the non-metallic inclusions distribution and separation in a two-strand tundish

    Directory of Open Access Journals (Sweden)

    T. Merder

    2013-04-01

    Full Text Available The tundish plays an important role in the challenging task of a “clean steel” production process. The flow of the liquid steel in tundish has a crucial influence on non-metallic inclusions distribution and separation. The article presents computational studies of non-metallic inclusions separation in a two-strand industrial tundish during steady-state casting. Tundish capacity is 7,5 t. First, flow structure in the tundish was investigated using water model of the industrial tundish in a 1:2 scale. The experimental results, regarding RTD characteristics were used to validate numerical model. With validated model, particle distribution and separation in the two-strand tundish were investigated numerically. For modelling the separation of particles at the fluid surface, a modified boundary condition has been implemented.

  19. An aviation security (AVSEC) screening demonstrator for the detection of non-metallic threats at 28-33 GHz

    Science.gov (United States)

    Salmon, Neil A.; Bowring, Nick; Hutchinson, Simon; Southgate, Matthew; O'Reilly, Dean

    2013-10-01

    The unique selling proposition of millimetre wave technology for security screening is that it provides a stand-off or portal scenario sensing capability for non-metallic threats. The capabilities to detect some non-metallic threats are investigated in this paper, whilst recommissioning the AVSEC portal screening system at the Manchester Metropolitan University. The AVSEC system is a large aperture (1.6 m) portal screening imager which uses spatially incoherent illumination at 28-33 GHz from mode scrambling cavities to illuminate the subject. The imaging capability is critically analysed in terms of this illumination. A novel technique for the measurement of reflectance, refractive index and extinction coefficient is investigated and this then use to characterise the signatures of nitromethane, hexane, methanol, bees wax and baking flour. Millimetre wave images are shown how these liquids in polycarbonate bottles and the other materials appear against the human body.

  20. Probing Pulsed Current Gas Metal Arc Welding for Modified 9Cr-1Mo Steel

    Science.gov (United States)

    Krishnan, S.; Kulkarni, D. V.; De, A.

    2015-04-01

    Modified 9Cr-1Mo steels are commonly welded using gas tungsten arc welding process for its superior control over the rate of heat input and vaporization loss of the key alloying elements although the rate electrode deposition remains restricted. Recent developments in pulsed current gas metal arc welding have significantly improved its ability to enhance the rate of electrode deposition with a controlled heat input rate while its application for welding of modified 9Cr-1Mo steels is scarce. The present work reports a detailed experimental study on the pulsed current gas metal arc welding of modified 9Cr-1Mo steels. The effect of the shielding gas, welding current, and speed on the weld bead profile, microstructure and mechanical properties are examined. The results show that the pulsed current gas metal arc welding with appropriate welding conditions can provide acceptable bead profile and mechanical properties in welds of modified 9Cr-1Mo steels.

  1. Motion of polar cap arcs

    Science.gov (United States)

    Hosokawa, K.; Moen, J. I.; Shiokawa, K.; Otsuka, Y.

    2011-01-01

    A statistics of motion of polar cap arcs is conducted by using 5 years of optical data from an all-sky imager at Resolute Bay, Canada (74.73°N, 265.07°E). We identified 743 arcs by using an automated arc detection algorithm and statistically examined their moving velocities as estimated by the method of Hosokawa et al. (2006). The number of the arcs studied is about 5 times larger than that in the previous statistics of polar cap arcs by Valladares et al. (1994); thus, we could expect to obtain more statistically significant results. Polar cap arcs are found to fall into two distinct categories: the By-dependent and By-independent arcs. The motion of the former arcs follows the rule reported by Valladares et al. (1994), who showed that stable polar cap arcs move in the direction of the interplanetary magnetic field (IMF) By. About two thirds of the arcs during northward IMF conditions belong to this category. The latter arcs always move poleward irrespective of the sign of the IMF By, which possibly correspond to the poleward moving arcs in the morning side reported by Shiokawa et al. (1997). At least one third of the arcs belong to this category. The By-dependent arcs tend to move faster when the magnitude of the IMF By is larger, suggesting that the transport of open flux by lobe reconnection from one polar cap compartment to the other controls their motion. In contrast, the speed of the By-independent arcs does not correlate with the magnitude of the By. The motions of both the By-dependent and By-independent arcs are most probably caused by the magnetospheric convection. Convection in the region of By-dependent arcs is affected by the IMF By, which indicates that their sources may be on open field lines or in the closed magnetosphere adjacent to the open-closed boundary, whereas By-independent arcs seem to be well on closed field lines. Hence, the magnetospheric source of the two types of arc may be different. This implies that the mechanisms causing the

  2. Toward environmentally-benign utilization of nonmetallic fraction of waste printed circuit boards as modifier and precursor

    Energy Technology Data Exchange (ETDEWEB)

    Hadi, Pejman; Ning, Chao; Ouyang, Weiyi; Xu, Meng [Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region (Hong Kong); Lin, Carol S.K. [School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); McKay, Gordon, E-mail: kemckayg@ust.hk [Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region (Hong Kong); Division of Sustainable Development, College of Science, Engineering and Technology, Hamad bin Khalifa University, Doha (Qatar)

    2015-01-15

    Highlights: • Environmental impacts of electronic waste and specifically waste printed circuit boards. • Review of the recycling techniques of waste printed circuit boards. • Advantages of physico-mechanical recycling techniques over chemical methods. • Utilization of nonmetallic fraction of waste printed circuit boards as modifier/filler. • Recent advances in the use of nonmetallic fraction of waste printed circuit boards as precursor. - Abstract: Electronic waste, including printed circuit boards, is growing at an alarming rate due to the accelerated technological progress and the shorter lifespan of the electronic equipment. In the past decades, due to the lack of proper economic and environmentally-benign recycling technologies, a major fraction of e-waste generated was either destined to landfills or incinerated with the sole intention of its disposal disregarding the toxic nature of this waste. Recently, with the increasing public awareness over their environment and health issues and with the enaction of more stringent regulations, environmentally-benign recycling has been driven to be an alternative option partially replacing the traditional eco-unfriendly disposal methods. One of the most favorable green technologies has been the mechanical separation of the metallic and nonmetallic fraction of the waste printed circuit boards. Although metallic fraction, as the most profitable component, is used to generate the revenue of the separation process, the nonmetallic fraction (NMF) has been left isolated. Herein, the recent developments in the application of NMF have been comprehensively reviewed and an eco-friendly emerging usage of NMF as a value-added material for sustainable remediation has been introduced.

  3. A computer controlled mass spectrometer system for investigating the decomposition of non-metallic materials under atmospheric conditions

    Science.gov (United States)

    Thompson, J. M.

    1985-01-01

    A PDP 11/23 quadrupole mass spectrometer system was coupled to a nondiscriminating gas inlet system permitting gases at atmospheric pressure to be admitted into a high vacuum chamber containing the ion source of the mass spectrometer without separation of the gaseous components. The resolution of related software problems has resulted in a convenient computer-mass spectrometer system capable of generating masses, relative intensities and related data on the gaseous products resulting from the atmospheric thermal decomposition of nonmetallic materials.

  4. A computer controlled mass spectrometer system for investigating the decomposition of non-metallic materials under atmospheric conditions

    Science.gov (United States)

    Thompson, J. M.

    1985-01-01

    A PDP 11/23 quadrupole mass spectrometer system was coupled to a nondiscriminating gas inlet system permitting gases at atmospheric pressure to be admitted into a high vacuum chamber containing the ion source of the mass spectrometer without separation of the gaseous components. The resolution of related software problems has resulted in a convenient computer-mass spectrometer system capable of generating masses, relative intensities and related data on the gaseous products resulting from the atmospheric thermal decomposition of nonmetallic materials.

  5. Carbon Nanotubes Synthesis via Arc Discharge with a Yttria Catalyst

    OpenAIRE

    M. I. Mohammad; Ahmed A. Moosa; J.H. Potgieter; Mustafa K. Ismael

    2013-01-01

    A facile method is proposed to use a computer controlled Arc discharge gap between graphite electrodes together with an yttria-nickel catalyst to synthesize carbon nanotubes under an Ar-H2 gases mixture atmosphere by applying different DC currents and pressure. This produces carbon nanotubes with decreased diameters and increased length. XRD evidence indicated a shift toward higher crystallinity nanotubes. Yields of the CNTs after purification were also enhanced.

  6. Characterization of impact damage in metallic/nonmetallic composites using x-ray computed tomography imaging

    Science.gov (United States)

    Green, William H.; Wells, Joseph M.

    1999-12-01

    Characterizing internal impact damage in composites can be difficult, especially in structurally complex composites or those consisting of many materials. Many methods for nondestructive inspection/nondestructive testing (NDI/NDT) of materials have been known and in use for many years, including x-ray film, real-time, and digital radiographic techniques, and ultrasonic techniques. However, these techniques are generally not capable of three-dimensional (3D) mapping of complex damage patterns, which is necessary to visualize and understand damage cracking modes. Conventional x-ray radiography suffers from the loss of 3D information. Structural complexity and signal dispersion in materials with many interfaces significantly effect ultrasonic inspection techniques. This makes inspection scan interpretation difficult, especially in composites containing a number of different materials (i.e., polymer, ceramic, and metallic). X-ray computed tomography (CT) is broadly applicable to any material or test object through which a beam of penetrating radiation may be passed and detected, including metals, plastics, ceramics, metallic/nonmetallic composites, and assemblies. The principal advantage of CT is that it provides densitometric (that is, radiological density and geometry) images of thin cross sections through an object. Because of the absence of structural superposition, images are much easier to interpret than conventional radiological images. The user can quickly learn to read CT data because images correspond more closely to the way the human mind visualizes 3D structures than projection radiology (that is, film radiography, real-time radiography (RTR), and digital radiography (DR)). Any number of CT images, or slices, from scanning an object can be volumetrically reconstructed to produce a 3D attenuation map of the object. The 3D attenuation data can be rendered using multiplanar or 3D solid visualization. In multiplanar visualization there are four planes of view

  7. Formation of a deposit on workpiece surface in polishing nonmetallic materials

    Science.gov (United States)

    Filatov, Yu. D.; Monteil, G.; Sidorko, V. I.; Filatov, O. Y.

    2013-05-01

    During the last decades in the theory of machining nonmetallic materials some serious advances have been achieved in the field of applying fundamental scientific approaches to the grinding and polishing technologies for high-quality precision surfaces of electronic components, optical systems, and decorative articles made of natural and synthetic stone [1-9]. These achievements include a cluster model of material removal in polishing dielectric workpieces [1-3, 6-7] and a physical-statistical model of formation of debris (wear) particles and removal thereof from a workpiece surface [8-10]. The aforesaid models made it possible to calculate, without recourse to Preston's linear law, the removal rate in polishing nonmetallic materials and the wear intensity for bound-abrasive tools. Equally important for the investigation of the workpiece surface generation mechanism and formation of debris particles are the kinetic functions of surface roughness and reflectance of glass and quartz workpiece surfaces, which have been established directly in the course of polishing. During the in situ inspection of a workpiece surface by laser ellipsometry [11] and reflectometry [12] it was found out that the periodic change of the light reflection coefficient of a workpiece surface being polished is attributed to the formation of fragments of a deposit consisting of work material particles (debris particles) and tool wear particles [13, 14]. The subsequent studies of the mechanism of interaction between the debris particles and wear particles in the tool-workpiece contact zone, which were carried out based on classical concepts [15, 16], yielded some unexpected results. It was demonstrated that electrically charged debris and wear particles, which are located in the coolant-filled gap between a tool and a workpiece, move by closed circular trajectories enclosed in spheres measuring less than one fifth of the gap thickness. This implies that the probability of the debris and wear

  8. Determinants of Electricity Demand in Nonmetallic Mineral Products Industry: Evidence from a Comparative Study of Japan and China

    Directory of Open Access Journals (Sweden)

    Gang Du

    2015-06-01

    Full Text Available Electricity intensity is an important indicator for measuring production efficiency. A comparative study could offer a new perspective on investigating determinants of electricity demand. The Japanese non-metallic mineral products industry is chosen as the object for comparison considering its representative position in production efficiency. By adopting the cointegration model, this paper examines influencing factors of electricity demand in Japanese and Chinese non-metallic mineral products industries under the same framework. Results indicate that although economic growth and industrial development stages are different between the two countries, major factors that affect the sectoral energy consumption are the same. Specifically, economic growth and industrial activity contribute to the growth of sectoral electricity consumption, while R&D intensity, per capita productivity and electricity price are contributors to the decline of sectoral electricity consumption. Finally, in order to further investigate the development trend of sectoral electricity demand, future electricity consumption and conservation potential are predicted under different scenarios. Electricity demand of the Chinese non-metallic mineral products industry is predicted to be 680.53 TWh (terawatt-hours in 2020 and the sectoral electricity conservation potentials are estimated to be 118.26 TWh and 216.25 TWh under the moderate and advanced electricity-saving scenarios, respectively.

  9. VALIDATION OF AN ALGORITHM FOR NONMETALLIC INTRAOCULAR FOREIGN BODIES' COMPOSITION IDENTIFICATION BASED ON COMPUTED TOMOGRAPHY AND MAGNETIC RESONANCE IMAGING.

    Science.gov (United States)

    Moisseiev, Elad; Barequet, Dana; Zunz, Eran; Barak, Adiel; Mardor, Yael; Last, David; Goez, David; Segal, Zvi; Loewenstein, Anat

    2015-09-01

    To validate and evaluate the accuracy of an algorithm for the identification of nonmetallic intraocular foreign body composition based on computed tomography and magnetic resonance imaging. An algorithm for the identification of 10 nonmetallic materials based on computed tomography and magnetic resonance imaging has been previously determined in an ex vivo porcine model. Materials were classified into 4 groups (plastic, glass, stone, and wood). The algorithm was tested by 40 ophthalmologists, which completed a questionnaire including 10 sets of computed tomography and magnetic resonance images of eyes with intraocular foreign bodies and were asked to use the algorithm to identify their compositions. Rates of exact material identification and group identification were measured. Exact material identification was achieved in 42.75% of the cases, and correct group identification in 65%. Using the algorithm, 6 of the materials were exactly identified by over 50% of the participants, and 7 were correctly classified according to their groups by over 75% of the materials. The algorithm was validated and was found to enable correct identification of nonmetallic intraocular foreign body composition in the majority of cases. This is the first study to report and validate a clinical tool allowing intraocular foreign body composition based on their appearance in computed tomography and magnetic resonance imaging, which was previously impossible.

  10. Electromagnetic Characteristic of Twin-wire Indirect Arc Welding

    Institute of Scientific and Technical Information of China (English)

    SHI Chuanwei; ZOU Yong; ZOU Zengda; WU Dongting

    2015-01-01

    Traditional welding methods are limited in low heat input to workpiece and high welding wire melting rate. Twin-wire indirect arc(TWIA) welding is a new welding method characterized by high melting rate and low heat input. This method uses two wires:one connected to the negative electrode and another to the positive electrode of a direct-current(DC) power source. The workpiece is an independent, non-connected unit. A three dimensional finite element model of TWIA is devised. Electric and magnetic fields are calculated and their influence upon TWIA behavior and the welding process is discussed. The results show that with a 100 A welding current, the maximum temperature reached is 17 758 K, arc voltage is 14.646 V while maximum current density was 61 A/mm2 with a maximum Lorene force of 84.5mN. The above mentioned arc parameters near the cathode and anode regions are far higher than those in the arc column region. The Lorene force is the key reason for plasma velocity direction deviated and charged particles flowed in the channel formed by the cathode, anode and upper part of arc column regions. This led to most of the energy being supplied to the polar and upper part of arc column regions. The interaction between electric and magnetic fields is a major determinant in shaping TWIA as well as heat input on the workpiece. This is a first study of electromagnetic characteristics and their influences in the TWIA welding process, and it is significant in both a theoretical and practical sense.

  11. Some features of horizontally oriented low-current electric arc in air

    Energy Technology Data Exchange (ETDEWEB)

    Tazmeev, Kh. K., E-mail: tazmeevh@mail.ru [Kazan (Volga Region) Federal University, Naberezhnye Chelny Institute (Russian Federation); Tazmeev, B. Kh., E-mail: tazmeevb@mail.ru [National Research Technical University, Naberezhnye Chelny Branch (Russian Federation)

    2016-01-15

    The properties of an electric arc operating in open air at currents of lower than 1 A were studied experimentally. The rod cathode was oriented horizontally. Cylindrical rods and plane plates either installed strictly vertically in front of the cathode end or tilted at a certain angle served as the anode. It is shown that, with such an electrode configuration, it is possible to form a discharge channel much longer than the electrode gap length. Regimes of regular oscillations are revealed, and conditions for their appearance are established. The electric field strength in the arc column and the electron temperature near the anode are calculated.

  12. Activity concentration of natural radioactive nuclides in nonmetallic industrial raw materials in Japan.

    Science.gov (United States)

    Iwaoka, Kazuki; Tabe, Hiroyuki; Yonehara, Hidenori

    2014-11-01

    Natural materials such as rock, ore, and clay, containing natural radioactive nuclides are widely used as industrial raw materials in Japan. If these are high concentrations, the workers who handle the material can be unknowingly exposed to radiation at a high level. In this study, about 80 nonmetallic natural materials frequently used as industrial raw materials in Japan were comprehensively collected from several industrial companies, and the activity concentrations of (238)U series, (232)Th series and (40)K in the materials was determined by ICP-MS (inductively-coupled plasma mass spectrometer) and gamma ray spectrum analyses. Effective doses to workers handling them were estimated by using methods for dose estimation given in the RP 122. We found the activity concentrations to be lower than the critical values defined by regulatory requirements as described in the IAEA Safety Guide. The maximum estimated effective dose to workers handling these materials was 0.16 mSv y(-1), which was lower than the reference level (1-20 mSv y(-1)) for existing situation given in the ICRP Publ.103.

  13. Absorption of non-metallic inclusions by steelmaking slags—a review

    Directory of Open Access Journals (Sweden)

    Bruno Henrique Reis

    2014-04-01

    Full Text Available The formation of non-metallic inclusions during steelmaking is inevitable and, when not properly controlled, can cause performance and production problems. Slag is one of the resources available to carry out this control. In steelmaking, it is generally understood that inclusions are naturally absorbed by slag when flotation is sufficient. However, separation and dissolution may define the inclusion absorption capacity of slag. The discussion in this review explains the relationship between separation and the contact angle at the steel/inclusion interface, which differentiates the mechanism from liquid and solid inclusions. Whereas liquid particles show more predictable behavior in experimental observations, thermodynamic analysis is necessary in order to describe the removal of solid particles. Among other findings, it is evident that slag viscosity and the formation of compounds at the inclusion/slag interface strongly influence inclusion dissolution capacity. Following a detailed description of findings in the literature, this review considers the most influential factors to aid in optimizing slags for inclusion absorption.

  14. Strength and deformability of concrete beams reinforced by non-metallic fiber and composite rebar

    Science.gov (United States)

    Kudyakov, K. L.; Plevkov, V. S.; Nevskii, A. V.

    2015-01-01

    Production of durable and high-strength concrete structures with unique properties has always been crucial. Therefore special attention has been paid to non-metallic composite and fiber reinforcement. This article describes the experimental research of strength and deformability of concrete beams with dispersed and core fiber-based reinforcement. As composite reinforcement fiberglass reinforced plastic rods with diameters 6 mm and 10 mm are used. Carbon and basalt fibers are used as dispersed reinforcement. The developed experimental program includes designing and production of flexural structures with different parameters of dispersed fiber and composite rebar reinforcement. The preliminary testing of mechanical properties of these materials has shown their effectiveness. Structures underwent bending testing on a special bench by applying flexural static load up to complete destruction. During the tests vertical displacements were recorded, as well as value of actual load, slippage of rebars in concrete, crack formation. As a result of research were obtained structural failure and crack formation graphs, value of fracture load and maximum displacements of the beams at midspan. Analysis of experimental data showed the effectiveness of using dispersed reinforcement of concrete and the need for prestressing of fiberglass composite rebar.

  15. Stepped-Frequency Ground-Penetrating Radar for Detection of Small Non-metallic Buried Objects

    DEFF Research Database (Denmark)

    Jakobsen, Kaj Bjarne; Sørensen, Helge Bjarup Dissing; Nymann, Ole

    1997-01-01

    to an HP8753C Network Analyzer through a 5 m long Sucoflex coaxial cable. The data are collected automatically using an HPIB interface. The collected data contains both the amplitude and phase information of the reflection coefficient. Data are measured at up to a maximum of 401 different frequencies...... at each measurement point using a mesh-grid with a resolution down to 1 mm by 1 mm. The size of the scan area is 1410 mm by 210 mm. Measurements have been performed on loamy soil containing a buried M-56, a non-metallic AP-mine, and various other mine-like objects made of solid plastic, brass, aluminum......, steel, and wood. The presented results are based on probe-data measured at 100 different frequencies at each measurement point and a coarser mesh-grid of 10 mm by 10 mm, since it is found that less probe-data is needed. Our experiments show that even less amount of probe-data may be necessary....

  16. Modeling rf breakdown arcs

    CERN Document Server

    Insepov, Zeke; Huang, Dazhang; Mahalingam, Sudhakar; Veitzer, Seth

    2010-01-01

    We describe breakdown in 805 MHz rf accelerator cavities in terms of a number of mechanisms. We devide the breakdown process into three stages: (1) we model surface failure using molecular dynamics of fracture caused by electrostatic tensile stress, (2) we model the ionization of neutrals responsible for plasma initiation and plasma growth using a particle in cell code, and (3) we model surface damage by assuming a process similar to unipolar arcing. Although unipolar arcs are strictly defined with equipotential boundaries, we find that the cold, dense plasma in contact with the surface produces very small Debye lengths and very high electric fields over a large area. These high fields produce strong erosion mechanisms, primarily self sputtering, compatible with the crater formation that we see. Results from the plasma simulation are included as a guide to experimental verification of this model.

  17. ALICE - ARC integration

    DEFF Research Database (Denmark)

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva;

    AliEn or Alice Environment is the Gridware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic...... Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The interoperation has two aspects, one is the data...... management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. dCache provides support for several data management tools (among them for xrootd the tools used by AliEn) using the so called "doors". Therefore, we will concentrate on the second...

  18. The ARCS radial collimator

    OpenAIRE

    Stone M.B.; Niedziela J.L.; Overbay M.A.; Abernathy D.L.

    2015-01-01

    We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. W...

  19. Circular arc structures

    KAUST Repository

    Bo, Pengbo

    2011-07-01

    The most important guiding principle in computational methods for freeform architecture is the balance between cost efficiency on the one hand, and adherence to the design intent on the other. Key issues are the simplicity of supporting and connecting elements as well as repetition of costly parts. This paper proposes so-called circular arc structures as a means to faithfully realize freeform designs without giving up smooth appearance. In contrast to non-smooth meshes with straight edges where geometric complexity is concentrated in the nodes, we stay with smooth surfaces and rather distribute complexity in a uniform way by allowing edges in the shape of circular arcs. We are able to achieve the simplest possible shape of nodes without interfering with known panel optimization algorithms. We study remarkable special cases of circular arc structures which possess simple supporting elements or repetitive edges, we present the first global approximation method for principal patches, and we show an extension to volumetric structures for truly threedimensional designs. © 2011 ACM.

  20. Analysis of the Carbon Nano-Structures Formation in Liquid Arcing

    Institute of Scientific and Technical Information of China (English)

    XING Gang; JIA Shen-li; XING Jian; SHI Zong-qian

    2007-01-01

    Graphite electrodes were used for the direct current (DC) arc discharge in water.And high-resolution transmission electron microscopy (HRTEM) was used to investigate the products.Based on the experimental phenomena and nano-structure products,arc plasma characteristics in water were analyzed theoretically.Two growth regions and relevant growth modes were proposed to interpret the formation mechanisms of nano-struetures by are discharge in water.Furthermore,liquid nitrogen and cross magnetic field was applied to change the arcing state respectively,and new carbon nano-struetures were obtained.Their formation mechanisms were also analyzed correspondingly.

  1. Arc-preserving subsequences of arc-annotated sequences

    CERN Document Server

    Popov, Vladimir Yu

    2011-01-01

    Arc-annotated sequences are useful in representing the structural information of RNA and protein sequences. The longest arc-preserving common subsequence problem has been introduced as a framework for studying the similarity of arc-annotated sequences. In this paper, we consider arc-annotated sequences with various arc structures. We consider the longest arc preserving common subsequence problem. In particular, we show that the decision version of the 1-{\\sc fragment LAPCS(crossing,chain)} and the decision version of the 0-{\\sc diagonal LAPCS(crossing,chain)} are {\\bf NP}-complete for some fixed alphabet $\\Sigma$ such that $|\\Sigma| = 2$. Also we show that if $|\\Sigma| = 1$, then the decision version of the 1-{\\sc fragment LAPCS(unlimited, plain)} and the decision version of the 0-{\\sc diagonal LAPCS(unlimited, plain)} are {\\bf NP}-complete.

  2. A development of arc discharge drawing silica nanowires

    Science.gov (United States)

    Kowong, Rattanachai; Putchana, Wuttichai; Ratanavis, Amarin

    2015-07-01

    The Arc Discharge Drawing (ADD) technique offers a promising alternative for fabricating silica nanowires. In the previous study, ADD technique was based on the creation of a high voltage glow discharge between two electrodes. Such a configuration provides the heat zone that occurs perpendicularly to the fiber. With ADD technique, silica wires with diameters as small as 50 nm were achieved. Despite these successes the further development is meant to be continued. In this paper, ADD technique is improved by adding a pair of electrodes. The arc discharge apparatus consisting of four electrodes is proposed. The arranged two pairs of electrodes offer the sandwich-heat source configuration. The computer-controlled stage allows the drawing speeds in the range of 12 mm/s to 25 mm/s. The nanowires can be produced by varying the voltage in the range of 4 kV to 5 kV. The optimum operational voltage is investigated by the scanning electron microscope (SEM) images of the fabricated nanowires. This result strongly suggests further improvements in glass fiber drawing technology to produce nanowires.

  3. electrode of an arbitrary shape

    Directory of Open Access Journals (Sweden)

    P. A. Krutitskii

    1999-01-01

    Full Text Available A problem on electric current in a semiconductor film from an electrode of an arbitrary shape is studied in the presence of a magnetic field. This situation describes the Hall effect, which indicates the deflection of electric, current from electric field in a semiconductor. From mathematical standpoint we consider the skew derivative problem for harmonic functions in the exterior of an open arc in a plane. By means of potential theory the problem is reduced to the Cauchy singular integral equation and next to the Fredholm equation of the 2nd kind which is uniquely solvable. The solution of the integral equation can be computed by standard codes by discretization and inversion of the matrix. The uniqueness and existence theorems are formulated.

  4. A Carbon Arc Apparatus For Production Of Nanotubes In Microgravity

    Science.gov (United States)

    Alford, J. M.; Mason, G. R.; Feikema, D. A.

    2003-01-01

    Although many methods are available for production of single-walled carbon nanotubes (SWNTs), the conventional carbon arc process remains the most popular due to its simplicity and large production rate. However, high temperatures inside the carbon arc generate strong buoyancy driven convection, and it is hypothesized that the non-uniform environment created by this flow will have large effects on the growth and morphology of SWNTs produced by the arc process. Indeed, using normal gravity experiments, Marin et al. have demonstrated that changes in the buoyant convection plume produced by altering the arc electrode orientation can be used to change the diameter distribution of the SWNTs produced; an effect they attribute to changes in the temperature of the local nanotube growth environment. While these experiments present convincing evidence that buoyant convection has a strong effect on nanotube growth, normal gravity experiments are severely limited in scope. The ideal way to study the effect of buoyancy on SWNT production is to remove it completely. Toward this goal, a microgravity carbon arc reactor has been designed for use in the NASA Glenn 2.2 and 5 second drop towers. Although simple in principle, conventional carbon arc machines, which generally employ large reaction chambers and require heavy duty welding power supplies capable of supplying kilowatts of power, are not suitable for microgravity experiments. Here we describe a miniature carbon arc machine for SWNT production that fits into a conventional drop rig for use on the NASA Glenn 2.2 and 5 second drop towers, but that has a performance (production rate) that is better than most large ground-based machines.

  5. Microstructure and pitting corrosion of shielded metal arc welded high nitrogen stainless steel

    OpenAIRE

    Raffi Mohammed; G. Madhusudhan Reddy; K. Srinivasa Rao

    2015-01-01

    The present work is aimed at studying the microstructure and pitting corrosion behaviour of shielded metal arc welded high nitrogen steel made of Cromang-N electrode. Basis for selecting this electrode is to increase the solubility of nitrogen in weld metal due to high chromium and manganese content. Microscopic studies were carried out using optical microscopy (OM) and field emission scanning electron microscopy (FESEM). Energy back scattered diffraction (EBSD) method was used to determine t...

  6. Small angle x-ray scattering and electron microscopy of nanoparticles formed in an electrical arc

    OpenAIRE

    Carvou, E; J. L. Le Garrec; Pérez, J.(University Autonoma Madrid, Department of Theoretical Physics, Madrid, Spain); J. Praquin; M. Djeddi; Mitchell, J.B.A.

    2013-01-01

    Small Angle X-ray Scattering has been used to characterize nanoparticles generated by electrical arcing between metallic (AgSnO2) electrodes. The particles are found to have diameters between 30 and 40 nm and display smooth surfaces suggesting that they are either in liquid form or have solidified from the liquid state. Particles collected around the electrodes were analyzed by Transmission Electron Microscopy and were seen to be much larger than those seen in the SAXS measurement, to be sphe...

  7. Calculation of the Arc Velocity Along the Polluted Surface of Short Glass Plates Considering the Air Effect

    Directory of Open Access Journals (Sweden)

    Tao Yuan

    2012-03-01

    Full Text Available To investigate the microphysics mechanism and the factors that influence arc development along a polluted surface, the arc was considered as a plasma fluid. Based on the image method and the collision ionization theory, the electric field of the arc needed to maintain movement with different degrees of pollution was calculated. According to the force of the charged particle in an arc plasma stressed under an electric field, a calculation model of arc velocity, which is dependent on the electric field of the arc head that incorporated the effects of airflow around the electrode and air resistance is presented. An experiment was carried out to measure the arc velocity, which was then compared with the calculated value. The results of the experiment indicated that the lighter the pollution is, the larger the electric field of the arc head and arc velocity is; when the pollution is heavy, the effect of thermal buoyancy that hinders arc movement increases, which greatly reduces the arc velocity.

  8. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  9. Generation of metallic arc spectrum of pumping discharge of XeCl laser; XeCl ekishima laser reiki hoden ni okeru arc iko to kinzoku supekutoru no hassei

    Energy Technology Data Exchange (ETDEWEB)

    Koike, H.; Yukimura, K. [Doshisha University, Kyoto (Japan)

    1997-12-20

    An arc generation of a long-pulse spiker-sustainer excimer laser with about 250ns of pulse width , is discussed by using time-varying spectroscopic method. First arcing occurs during a main discharge for laser excitation and shows XeII spectrum, while a glow-like discharge represents only XeI spectrum, the metallic spectrum such as Nil caused by vaporization of electrode material begins to appear just after the termination of the main discharge. Second arcing occurs after about 2{mu}s, which brings strong intensity of Nil spectrum. It means that the reignition arc might be produced in a metallic vapor that appears during the main discharge. Accordingly, it is concluded that the reignition arc is inherently metallic, which is different from the main arc with rare gas plasma. 9 refs., 9 figs.

  10. Correlation methods in cutting arcs

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L; Kelly, H, E-mail: prevosto@waycom.com.ar [Grupo de Descargas Electricas, Departamento Ing. Electromecanica, Universidad Tecnologica Nacional, Regional Venado Tuerto, Laprida 651, Venado Tuerto (2600), Santa Fe (Argentina)

    2011-05-01

    The present work applies similarity theory to the plasma emanating from transferred arc, gas-vortex stabilized plasma cutting torches, to analyze the existing correlation between the arc temperature and the physical parameters of such torches. It has been found that the enthalpy number significantly influence the temperature of the electric arc. The obtained correlation shows an average deviation of 3% from the temperature data points. Such correlation can be used, for instance, to predict changes in the peak value of the arc temperature at the nozzle exit of a geometrically similar cutting torch due to changes in its operation parameters.

  11. Detection of Non-metallic Inclusions in Centrifugal Continuous Casting Steel Billets

    Science.gov (United States)

    Wang, Qiangqiang; Zhang, Lifeng; Seetharaman, Sridhar; Yang, Shufeng; Yang, Wen; Wang, Yi

    2016-06-01

    In the current study, automated particle analysis was employed to detect non-metallic inclusions in steel during a centrifugal continuous casting process of a high-strength low alloy steel. The morphology, composition, size, area fraction, amount, and spatial distribution of inclusions in steel were obtained. Etching experiment was performed to reveal the dendrite structure of the billet and to discuss the effect of centrifugal force on the distribution of oxide inclusions in the final solidified steel by comparing the solidification velocity with the critical velocity reported in literature. It was found that the amount of inclusions was highest in samples from the tundish (~250 per mm2), followed by samples from the mold (~200 per mm2), and lowest in billet samples (~86 per mm2). In all samples, over 90 pct of the inclusions were smaller than 2μm. In steel billets, the content of oxides, dual-phase oxide-sulfides, and sulfides in inclusions were found to be 10, 30, and 60 pct, respectively. The dual-phase inclusions were oxides with sulfides precipitated on the outer surface. Oxide inclusions consisted of high Al2O3 and high MnO which were solid at the molten steel temperature, implying that the calcium treatment was insufficient. Small oxide inclusions very uniformly distributed on the cross section of the billet, while there were more sulfide inclusions showing a banded structure at the outside 25 mm layer of the billet. The calculated solidification velocity was higher than the upper limit at which inclusions were entrapped by the solidifying front, revealing that for oxide inclusions smaller than 8μm in this study, the centrifugal force had little influence on its final distribution in billets. Instead, oxide inclusions were rapidly entrapped by solidifying front.

  12. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review.

    Science.gov (United States)

    Wang, Ruixue; Xu, Zhenming

    2014-08-01

    The world's waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite before the reutilization of the cathode ray tube (CRT) funnel glass, and the recycling of liquid crystal display (LCD) glass is economically viable for the containing of precious metals (indium and tin). However, the environmental assessment of the recycling process is essential and important before the industrialized production stage. For example, noise and dust should be evaluated during the glass cutting process. This study could contribute

  13. Peat and its modification products as sorbents for remeval of metals, metalloids and nonmetallic elements

    Science.gov (United States)

    Klavins, Maris; Ansone, Linda; Robalds, Artis; Dudare, Diana

    2013-04-01

    For remediation of soils and purification of waters biosorbents might be considered as an prospective group of materials and amongst them peat have a special role due to low cost, biodegradability, high number of functional groups, well developed surface area and combination of hydrophilic/hydrophobic structural elements. We have demonstrated the possibilities to use peat and its thermal treatment products for oil sorption. Peat as an oil sorbent has poor buoyancy characteristics, relatively low oil sorption capacity and low hydrophobicity. However, thermal treatment (low-temperature pyrolysis and synthesis of peat-based active coal) helps to significantly improve its sorptive characteristics. The processes and structural changes taking place during low-temperature pyrolysis have been studied by means of IR spectroscopy, thermogravimetry and scanning electron microscopy. Peat can be used also as an efficient sorbent for sorption of metallic elements as it has been demonstrated on example of Tl+, Cu2+, Cr3+, however sorption capacity in respect to nonmetallic (anionic species) elements is low. To develop such application possibilities peat, peat modified with iron compounds, iron humates were prepared and tested for sorption of arsenic and phosphorous compounds in comparison with weakly basic anionites. The highest sorption capacity was observed when peat sorbents modified with iron compounds were used. Sorption of different arsenic speciation forms onto iron-modified peat sorbents was investigated as a function of pH and temperature. It was established that sorption capacity increases with a rise in temperature, and the calculation of sorption process thermodynamic parameters indicates the spontaneity of sorption process and its endothermic nature.

  14. Joan of Arc.

    Science.gov (United States)

    Foote-Smith, E; Bayne, L

    1991-01-01

    For centuries, romantics have praised and historians and scientists debated the mystery of Joan of Arc's exceptional achievements. How could an uneducated farmer's daughter, raised in harsh isolation in a remote village in medieval France, have found the strength and resolution to alter the course of history? Hypotheses have ranged from miraculous intervention to creative psychopathy. We suggest, based on her own words and the contemporary descriptions of observers, that the source of her visions and convictions was in part ecstatic epileptic auras and that she joins the host of creative religious thinkers suspected or known to have epilepsy, from St. Paul and Mohammed to Dostoevsky, who have changed western civilization.

  15. The ARCS radial collimator

    Directory of Open Access Journals (Sweden)

    Stone M.B.

    2015-01-01

    Full Text Available We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. We present here characterization of the collimator's performance and methodologies for its effective use.

  16. The ARCS radial collimator

    Science.gov (United States)

    Stone, M. B.; Niedziela, J. L.; Overbay, M. A.; Abernathy, D. L.

    2015-01-01

    We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. We present here characterization of the collimator's performance and methodologies for its effective use.

  17. Influence of Welding Current and Focal Position on the Resonant Absorption of Laser Radiation in a TIG Welding Arc

    Science.gov (United States)

    Emde, B.; Huse, M.; Hermsdorf, J.; Kaierle, S.; Wesling, V.; Overmeyer, L.

    The work presents the influence of welding current and focal position on the resonant absorption of diode laser radiation in a TIG welding arc. The laser beam is guided perpendicular to the electrical arc to avoid an interaction with the electrodes. Laser power measurements have shown a reduction of the measured laser power up to 18% after passing the electrical arc. This reduction results from the interaction of argon shielding gas atoms and laser radiation at 810.4 nm and 811.5 nm. The interaction is strongly affected by the adjusted welding current and the adjustment of the laser beam and the electrical arc. Lowering the welding current or shifting the laser beam out of the centerline of the electrical arc reduces the ionization probability. An increased ionization is necessary to decrease the resistance of the electrical arc.

  18. Influence of Low-Alloy Cast Steel Modification on Primary Structure Refinement, Type and Shape of Non-Metallic Inclusions

    Directory of Open Access Journals (Sweden)

    Bartocha D.

    2015-04-01

    Full Text Available In the article there are presented methods and results of investigation which main aim were determination of influence of melting technology (gas extraction, vacuum refining, slag refining and extraction, deoxidation and degassing and type of used modifiers on the type and shape of non-metallic inclusions and the primary structure refining. Low alloy cast steel melted in laboratory conditions, in an inductive furnace was investigated. Additions of FeNb, FeV, FeTi and FeZr modifiers were applied. The contents of oxygen and nitrogen in obtained cast steel were determined.

  19. Electrical characteristics of TIG arcs in argon from non-equilibrium modelling and experiment

    Science.gov (United States)

    Baeva, Margarita; Uhrlandt, Dirk; Siewert, Erwan

    2016-09-01

    Electric arcs are widely used in industrial processes so that a thorough understanding of the arc characteristics is highly important to industrial research and development. TIG welding arcs operated with pointed electrodes made of tungsten, doped with cerium oxide, have been studied in order to analyze in detail the electric field and the arc voltage. Newly developed non-equilibrium model of the arc is based on a complete diffusion treatment of particle fluxes, a generalized form of Ohm's law, and boundary conditions accounting for the space-charge sheaths within the magneto-hydrodynamic approach. Experiments have been carried out for electric currents in the range 5-200 A. The electric arc has been initiated between a WC20 cathode and a water-cooled copper plate placed 0.8 mm from each other. The arc length has been continuously increased by 0.1 mm up to 15 mm and the arc voltage has been simultaneously recorded. Modelling and experimental results will be presented and discussed.

  20. Influence of Copper Vapor on Low-Voltage Circuit Breaker Arcs During Stationary and Moving States

    Institute of Scientific and Technical Information of China (English)

    MA Qiang; RONG Mingzhe; WU Yi; XU Tiejun; SUN Zhiqiang

    2008-01-01

    The influence of copper vapor on the low-voltage circuit breaker arcs is studied. A three-dimensional (3-D) magnetohydrodynamics(MHD) model of arc motion under the effect of external magnetic field is built up. By adopting the commercial computational fluid dynamics (CFD) package FLUENT based on control-volume method, the above MHD model is solved. For the mediums of air-1% Cu and air-10% Cu, the distributions of stationary temperature, pressure, electrical potential and the arc motion processes are compared with those of a pure air arc. The copper vapor diffusion process in the arc chamber and the distribution of copper vapor mass concentration are also simulated. The results shows that the copper vapor has a cooling effect on the arc plasma and can decrease the stationary voltage as well. Moreover, the presence of copper vapor can decelerate the arc motion in the quenching chambers. The maximal copper vapor concentration locates behind the arc root because of the existence of a "double vortex" near the electrodes.

  1. Multiwalled Carbon Nanotube Synthesis Using Arc Discharge with Hydrocarbon as Feedstock

    Directory of Open Access Journals (Sweden)

    K. T. Chaudhary

    2013-01-01

    Full Text Available Synthesis of multiwalled carbon nanotube (MWCNT by arc discharge process is investigated with methane (CH4 as background and feedstock gas. The arc discharge is carried out between two graphite electrodes for ambient pressures 100, 300, and 500 torr and arc currents 50, 70, and 90 A. Plasma kinetics such as the density and temperature for arc discharge carbon plasma is determined to find out the contribution of physical parameters as arc current and ambient pressure on the plasma dynamics and growth of MWCNT. With increase in applied arc current and ambient pressure, an increase in plasma temperature and density is observed. The synthesized samples of MWCNT at different experimental conditions are characterized by transmission electron microscopy, scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. A decrease in the diameter and improvement in structure quality and growth of MWCNT are observed with increase in CH4 ambient pressure and arc current. For CH4 ambient pressure 500 torr and arc current 90 A, the well-aligned and straight MWCNT along with graphene stakes are detected.

  2. Alternating-Polarity Arc Welding

    Science.gov (United States)

    Schwinghamer, R. J.

    1987-01-01

    Brief reversing polarity of welding current greatly improves quality of welds. NASA technical memorandum recounts progress in art of variable-polarity plasma-arc (VPPA) welding, with emphasis on welding of aluminum-alloy tanks. VPPA welders offer important advantages over conventional single-polarity gas/tungsten arc welders.

  3. The radiological risk in arc welding; El riesgo radiologico en la soldadura por arco

    Energy Technology Data Exchange (ETDEWEB)

    Alegria, N.; Campos, M.; Carrion, A.; Herranz, M.; Idoeta, R.; Legarda, F.; Nunez-Lagos, R.; Perez, C.; Rodriguez, S.; Rozas, S.; Sanchez, P.

    2011-07-01

    We present the current status of a project funded by the Nuclear Safety Council, for the study of the potential radiological risk in arc welding. In the coating of filler material of the electrodes and the soul of the continuous tubular wire welding material are located NORM who present a radioactive activity.

  4. The influence of arc plasma parameters on the form of a welding pool

    Science.gov (United States)

    Frolov, V. Ya.; Toropchin, A. I.

    2015-07-01

    The influence of the Marangoni force on the form of a welding pool has been considered. Results of computer simulation of the processes of welding arc generation with a non-consumable tungsten electrode in inert gas are shown. The experimental results are reported and comparatively analyzed. The calculations were carried out in a package of applied programs at various currents.

  5. Cold starting of fluorescent lamps - part II: experiments on glow times and electrode damaging

    Science.gov (United States)

    Langer, Reinhard; Paul, Irina; Hilscher, Achim; Horn, Siegfried; Tidecks, Reinhard

    2017-01-01

    In the present work we present experiments on cold start and the resulting electrode damaging (reducing lamp life) of AC driven fluorescent lamps. The crucial parameter is the glow time, determined from time resolved measurements of lamp voltage and current. The relation between the energy consumed during glow phase and the glow time is studied. It turns out that there is no common threshold of energy until the glow-to-arc transition takes place, but strong energy input into the lamp yields short glow times. The transient behaviour from the glow to the arc regime is investigated and the stable operation points of the arc discharge are determined, yielding an arc discharge voltage-current characteristics of the lamp type investigated. The electrode damage is investigated as a function of the open source voltage and the ballast resistance. Subsequent cold starts lead to an increase of the glow time due to electrode damaging, i.e., the electrode damage accumulates. Different regeneration procedures and their effectiveness are compared. Regeneration burning turns out to be more effective than heating up the electrode. A criterion for avoiding high electrode damage is obtained, indicating that the average power during glow time should exceed 20 W.

  6. FUEL CELL ELECTRODE MATERIALS

    Science.gov (United States)

    FUEL CELL ELECTRODE MATERIALS. RAW MATERIAL SELECTION INFLUENCES POLARIZATION BUT IS NOT A SINGLE CONTROLLING FACTOR. AVAILABLE...DATA INDICATES THAT AN INTERRELATIONSHIP OF POROSITY, AVERAGE PORE VOLUME, AND PERMEABILITY CONTRIBUTES TO ELECTRODE FUEL CELL BEHAVIOR.

  7. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): A review

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixue; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2014-08-15

    Highlights: • NMFs from WEEE were treated by incineration or land filling in the past. • Environmental risks such as heavy metals and BFRs will be the major problems during the NMFs recycling processes. • Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glasses are reviewed. • More environmental impact assessment should be carried out to evaluate the environmental risks of the recycling products. - Abstract: The world’s waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite

  8. X-ray detection of ingested non-metallic foreign bodies.

    Science.gov (United States)

    Saps, Miguel; Rosen, John M; Ecanow, Jacob

    2014-05-08

    To determine the utility of X-ray in identifying non-metallic foreign body (FB) and assess inter-radiologist agreement in identifying non-metal FB. Focus groups of nurses, fellows, and attending physicians were conducted to determine commonly ingested objects suitable for inclusion. Twelve potentially ingested objects (clay, plastic bead, crayon, plastic ring, plastic army figure, glass bead, paperclip, drywall anchor, eraser, Lego™, plastic triangle toy, and barrette) were embedded in a gelatin slab placed on top of a water-equivalent phantom to simulate density of a child's abdomen. The items were selected due to wide availability and appropriate size for accidental pediatric ingestion. Plain radiography of the embedded FBs was obtained. Five experienced radiologists blinded to number and types of objects were asked to identify the FBs. The radiologist was first asked to count the number of items that were visible then to identify the shape of each item and describe it to a study investigator who recorded all responses. Overall inter-rater reliability was analyzed using percent agreement and κ coefficient. We calculated P value to assess the probability of error involved in accepting the κ value. Fourteen objects were radiographed including 12 original objects and 2 duplicates. The model's validity was supported by clear identification of a radiolucent paperclip as a positive control, and lack of identification of plastic beads (negative control) despite repeated inclusion. Each radiologist identified 7-9 of the 14 objects (mean 8, 67%). Six unique objects (50%) were identified by all radiologists and four unique objects (33%) were not identified by any radiologist (plastic bead, Lego™, plastic triangle toy, and barrette). Identification of objects that were not present, false-positives, occurred 1-2 times per radiologist (mean 1.4). An additional 17% of unique objects were identified by less than half of the radiologists. Agreement between radiologists was

  9. Study on Non-Metallic Inclusions in Laser-Welded TRIP-Aided Nb-Microalloyed Steel

    Directory of Open Access Journals (Sweden)

    Grajcar A.

    2014-10-01

    Full Text Available The work concerns the studies on non-metallic inclusions occuring in laser-welded Si-Al TRIP steel containing Nb and Ti microadditions. Laser welding tests of 2 mm thick thermomechanically rolled sheets were carried out using keyhole welding and a solid-state laser. The results of laser welding in the air atmosphere for the heat input value of 0.048 kJ/mm are included. The distribution, type and chemical composition of non-metallic inclusions formed in the base metal, heat-affected zone, and fusion zone are analysed in detail. It was found that the base metal contains rare, fine oxysulphides. Their chemical composition was modified by rare earth elements. Numerous oxide inclusions of a various size and a chemical composition occur in the fusion zone. The dependence between a size of particles and their chemical composition was observed. A microstructure of steel was assessed using light microscopy and scanning electron microscopy techniques.

  10. Non-Metallic Inclusions and Hot-Working Behaviour of Advanced High-Strength Medium-Mn Steels

    Directory of Open Access Journals (Sweden)

    Grajcar A.

    2016-06-01

    Full Text Available The work addresses the production of medium-Mn steels with an increased Al content. The special attention is focused on the identification of non-metallic inclusions and their modification using rare earth elements. The conditions of the thermomechanical treatment using the metallurgical Gleeble simulator and the semi-industrial hot rolling line were designed for steels containing 3 and 5% Mn. Hot-working conditions and controlled cooling strategies with the isothermal holding of steel at 400°C were selected. The effect of Mn content on the hot-working behaviour and microstructure of steel was addressed. The force-energetic parameters of hot rolling were determined. The identification of structural constituents was performed using light microscopy and scanning electron microscopy methods. The addition of rare earth elements led to the total modification of non-metallic inclusions, i.e., they replaced Mn and Al forming complex oxysulphides. The Mn content in a range between 3 and 5% does not affect the inclusion type and the hot-working behaviour. In contrast, it was found that Mn has a significant effect on a microstructure.

  11. Effects of Zr, Ti, and Al Additions on Nonmetallic Inclusions and Impact Toughness of Cast Low-Alloy Steel

    Science.gov (United States)

    Bizyukov, Pavel V.; Giese, Scott R.

    2017-03-01

    A microalloying of the low-carbon and low-alloy cast steel was conducted with Zr, Ti, and Al that were added to the steel in four combinations. After heat treatment, the samples were tested for impact toughness at room temperature using the Charpy method. The highest values of impact toughness were obtained in the group treated with Zr, while Zr-Ti and Zr-Ti-Al groups showed moderate toughness values; the lowest values were observed in the Zr-Al group. Difference among the treatment groups was observed in the fracture mechanisms, morphology, and area distribution of the inclusions. High toughness values achieved in the trials treated with zirconium corresponded with smooth ductile fracture. The metal treated with a combination of zirconium and titanium had a relatively small area occupied by inclusions, but its toughness was also moderate. Lowest impact toughness values corresponded with the larger area occupied by the inclusions in the trials treated with aluminum. Also, a connection between the solubility product [Al][N] and impact toughness was established. The study also provides a qualitative description and quantitative analysis of the nonmetallic inclusions formation as a result of microalloying treatment. The precipitation sequence of the inclusions was described based on the thermochemical calculations for the nonmetallic compounds discovered in the experimental steel. A description of the size distribution, morphology, and composition was conducted for the oxides, nitrides, sulfides, and multiphase particles.

  12. Toward environmentally-benign utilization of nonmetallic fraction of waste printed circuit boards as modifier and precursor.

    Science.gov (United States)

    Hadi, Pejman; Ning, Chao; Ouyang, Weiyi; Xu, Meng; Lin, Carol S K; McKay, Gordon

    2015-01-01

    Electronic waste, including printed circuit boards, is growing at an alarming rate due to the accelerated technological progress and the shorter lifespan of the electronic equipment. In the past decades, due to the lack of proper economic and environmentally-benign recycling technologies, a major fraction of e-waste generated was either destined to landfills or incinerated with the sole intention of its disposal disregarding the toxic nature of this waste. Recently, with the increasing public awareness over their environment and health issues and with the enaction of more stringent regulations, environmentally-benign recycling has been driven to be an alternative option partially replacing the traditional eco-unfriendly disposal methods. One of the most favorable green technologies has been the mechanical separation of the metallic and nonmetallic fraction of the waste printed circuit boards. Although metallic fraction, as the most profitable component, is used to generate the revenue of the separation process, the nonmetallic fraction (NMF) has been left isolated. Herein, the recent developments in the application of NMF have been comprehensively reviewed and an eco-friendly emerging usage of NMF as a value-added material for sustainable remediation has been introduced. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Effectiveness of Shot Peening In Suppressing Fatigue Cracking At Non-Metallic Inclusions In Udimet(Registered Trademark)720

    Science.gov (United States)

    Barrie, Robert L.; Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; Prescenzi, Anthony; Biles, T.; Bonacuse, P. J.

    2006-01-01

    The fatigue lives of modern powder metallurgy disk alloys can be reduced over an order of magnitude by cracking at inherent non-metallic inclusions. The objective of this work was to study the effectiveness of shot peening in suppressing LCF crack initiation and growth at surface nonmetallic inclusions. Inclusions were carefully introduced at elevated levels during powder metallurgy processing of the nickel-base disk superalloy Udimet 720. Multiple strain-controlled fatigue tests were then performed on machined specimens with and without shot peened test sections at 427 C and 650 C. The low cycle fatigue lives and failure initiation sites varied as functions of inclusion content, shot peening, and fatigue conditions. A large majority of the failures in as-machined specimens with the introduced inclusions occurred at cracks initiating from inclusions intersecting the specimen surface. These inclusions reduced fatigue life by up to 100X, when compared to lives of material without inclusions residing at specimen surface. Large inclusions produced the greatest reductions in life for tests at low strain ranges and high strain ratios. Shot peening improved life in many cases by reducing the most severe effects of inclusions.

  14. Effectiveness of Shot Peening in Suppressing Fatigue Cracking at Non-Metallic Inclusions in Udimet(trademark) 720

    Science.gov (United States)

    Barrie, Robert L.; Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; Prescenzi, Anthony; Biles, Tiffany; Bonacuse, Peter J.

    2005-01-01

    The fatigue lives of modern powder metallurgy disk alloys can be reduced by over an order of magnitude by surface cracking at inherent non-metallic inclusions. The objective of this work was to study the effectiveness of shot peening in suppressing LCF crack initiation and growth at surface nonmetallic inclusions. Inclusions were carefully introduced at elevated levels during powder metallurgy processing of the nickel-base disk superalloy Udimet 720. Multiple strain-controlled fatigue tests were then performed on machined specimens at 427 and 650 C in peened and unpeened conditions. Analyses were performed to compare the low cycle fatigue lives and failure initiation sites as a function of inclusion content, shot peening, and fatigue conditions. A large majority of the failures in as-machined specimens with introduced inclusions occurred at cracks initiating from inclusions intersecting the specimen surface. The inclusions could reduce fatigue life by up to 100X. Large inclusions had the greatest effect on life in tests at low strain ranges and high strain ratios. Shot peening can be used to improve life in these conditions by reducing the most severe effects of inclusions.

  15. AES and SIMS analysis of non-metallic inclusions in a low-carbon chromium-steel.

    Science.gov (United States)

    Gammer, Katharina; Rosner, M; Poeckl, G; Hutter, H

    2003-05-01

    In the final step of secondary metallurgical steel processing, calcium is added. Besides Mg, Ca is the most powerful deoxidiser and desulfurisation agent. It reacts with dissolved oxygen and sulfur and reduces oxides and sulfides thereby forming non-metallic inclusions. Within this paper we present the analysis of such inclusions in a low-carbon chromium-steel. Depending on the time of quenching of the steel sample, different structures were revealed by REM, Auger and SIMS: If the steel was quenched immediately after Ca-addition, non-metallic inclusions that appeared to have "cavities" could be detected with SEM. SIMS investigations of these particles showed ring-shaped structures and revealed that the ring is made up of Al, Ca, Mg, O and S. No secondary ions however could be retrieved from the core inside the ring, thus leaving the nature of the "cavities" unclear. If the steel sample was quenched 3 min after Ca addition, inclusions did not have a ring-shaped structure but a compact one.

  16. Arc Interference Behavior during Twin Wire Gas Metal Arc Welding Process

    Directory of Open Access Journals (Sweden)

    Dingjian Ye

    2013-01-01

    Full Text Available In order to study arc interference behavior during twin wire gas metal arc welding process, the synchronous acquisition system has been established to acquire instantaneous information of arc profile including dynamic arc length variation as well as relative voltage and current signals. The results show that after trailing arc (T-arc is added to the middle arc (M-arc in a stable welding process, the current of M arc remains unchanged while the agitation increases; the voltage of M arc has an obvious increase; the shape of M arc changes, with increasing width, length, and area; the transfer frequency of M arc droplet increases and the droplet itself becomes smaller. The wire extension length of twin arc turns out to be shorter than that of single arc welding.

  17. Killing the Electron Cloud Effect in the LHC Arcs

    CERN Document Server

    McIntyre, Peter M

    2005-01-01

    A getter/electrode assembly has been devised to suppress the regeneration mechanism of the electron cloud effect in the arc dipoles of LHC. The assembly consists of a copper foil electrode, supported through an insulating layer on a stainless steel skid, which would rest upon the flat bottom of the beam screen. The electrode is coated with NEG to provide effective pumping of all non-inert gases from the vacuum. Pumping should be enhanced by electron bombardment. By biasing the electrode ~+100 V secondary electrons produced on the surface would be fully re-absorbed, killing the regeneration mechanism. The NEG surface can be regenerated by passing a current through the electrode to heat it to ~240 C. The heat transfer (radiant + conductive) to the beam screen during regeneration is estimated ~10 W/m, within limits to maintain the beam screen at nominal 20 K temperature during regeneration. The entire assembly has been designed so that installation does not require modification of any hardware currently being bu...

  18. Microresonator electrode design

    Science.gov (United States)

    Olsson, III, Roy H.; Wojciechowski, Kenneth; Branch, Darren W.

    2016-05-10

    A microresonator with an input electrode and an output electrode patterned thereon is described. The input electrode includes a series of stubs that are configured to isolate acoustic waves, such that the waves are not reflected into the microresonator. Such design results in reduction of spurious modes corresponding to the microresonator.

  19. A Simple Hydrogen Electrode

    Science.gov (United States)

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  20. The Composite Insertion Electrode

    DEFF Research Database (Denmark)

    Atlung, Sven; Zachau-Christiansen, Birgit; West, Keld

    1984-01-01

    The specific energy obtainable by discharge of porous insertion electrodes is limited by electrolyte depletion in thepores. This can be overcome using a solid ion conductor as electrolyte. The term "composite" is used to distinguishthese electrodes from porous electrodes with liquid electrolyte...

  1. A Simple Hydrogen Electrode

    Science.gov (United States)

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  2. Insulated ECG electrodes

    Science.gov (United States)

    Portnoy, W. M.; David, R. M.

    1973-01-01

    Insulated, capacitively coupled electrode does not require electrolyte paste for attachment. Other features of electrode include wide range of nontoxic material that may be employed for dielectric because of sputtering technique used. Also, electrode size is reduced because there is no need for external compensating networks with FET operational amplifier.

  3. Steam Reforming of Dimethyl Ether by Gliding Arc Gas Discharge Plasma for Hydrogen Production

    Institute of Scientific and Technical Information of China (English)

    王保伟; 孙启梅; 吕一军; 杨美琳; 闫文娟

    2014-01-01

    Gliding arc gas discharge plasma was used for the generation of hydrogen from steam reforming of di-methyl ether (DME). A systemic procedure was employed to determine the suitable experimental conditions. It was found that DME conversion first increased up to the maximum and then decreased slightly with the increase of added water and air. The increase of total feed gas flow rate resulted in the decrease of DME conversion and hy-drogen yield, but hydrogen energy consumption dropped down to the lowest as total feed gas flow rate increased to 76 ml·min-1. Larger electrode gap and higher discharge voltage were advantageous. Electrode shape had an impor-tant effect on the conversion of DME and production of H2. Among the five electrodes, electrode 2# with valid length of 55 mm and the radian of 34 degrees of the top electrode section was the best option, which enhanced ob-viously the conversion of DME.

  4. Convergent evolution of the arginine deiminase pathway: the ArcD and ArcE arginine/ornithine exchangers.

    Science.gov (United States)

    Noens, Elke E E; Lolkema, Juke S

    2017-02-01

    The arginine deiminase (ADI) pathway converts L-arginine into L-ornithine and yields 1 mol of ATP per mol of L-arginine consumed. The L-arginine/L-ornithine exchanger in the pathway takes up L-arginine and excretes L-ornithine from the cytoplasm. Analysis of the genomes of 1281 bacterial species revealed the presence of 124 arc gene clusters encoding the pathway. About half of the clusters contained the gene encoding the well-studied L-arginine/L-ornithine exchanger ArcD, while the other half contained a gene, termed here arcE, encoding a membrane protein that is not a homolog of ArcD. The arcE gene product of Streptococcus pneumoniae was shown to take up L-arginine and L-ornithine with affinities of 0.6 and 1 μmol/L, respectively, and to catalyze metabolic energy-independent, electroneutral exchange. ArcE of S. pneumoniae could replace ArcD in the ADI pathway of Lactococcus lactis and provided the cells with a growth advantage. In contrast to ArcD, ArcE catalyzed translocation of the pathway intermediate L-citrulline with high efficiency. A short version of the ADI pathway is proposed for L-citrulline catabolism and the presence of the evolutionary unrelated arcD and arcE genes in different organisms is discussed in the context of the evolution of the ADI pathway.

  5. Arc spot grouping: An entanglement of arc spot cells

    Energy Technology Data Exchange (ETDEWEB)

    Kajita, Shin, E-mail: kajita.shin@nagoya-u.jp [EcoTopia Science Institute, Nagoya University, Nagoya 464-8603 (Japan); Hwangbo, Dogyun; Ohno, Noriyasu [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Tsventoukh, Mikhail M. [Lebedev Physical Institute, Russian Academy of Sciences, Moscow 119991 (Russian Federation); Barengolts, Sergey A. [Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow 119991 (Russian Federation)

    2014-12-21

    In recent experiments, clear transitions in velocity and trail width of an arc spot initiated on nanostructured tungsten were observed on the boundary of the thick and thin nanostructured layer regions. The velocity of arc spot was significantly decreased on the thick nanostructured region. It was suggested that the grouping decreased the velocity of arc spot. In this study, we try to explain the phenomena using a simple random walk model that has properties of directionality and self-avoidance. And grouping feature was added by installing an attractive force between spot cells with dealing with multi-spots. It was revealed that an entanglement of arc spot cells decreased the spot velocity, and spot cells tend to stamp at the same location many times.

  6. The influence of the structure of the metal load removal from liquid steel in electric arc furnaces

    Science.gov (United States)

    Pǎcurar, Cristina; Hepuť, Teodor; Crisan, Eugen

    2016-06-01

    One of the main technical and economic indicators in the steel industry and steel respectively the development it is the removal of liquid steel. This indicator depends on several factors, namely technology: the structure and the quality metal load, the degree of preparedness of it, and the content of non-metallic material accompanying the unit of drawing up, the technology for the elaboration, etc. research has been taken into account in drawing up steel electric arc furnace type spring EBT (Electric Bottom taping), seeking to load and removing components of liquid steel. Metal load has been composed of eight metal grades, in some cases with great differences in terms of quality. Data obtained were processed in the EXCEL spreadsheet programs and MATLAB, the results obtained being presented both graphically and analytically. On the basis of the results obtained may opt for a load optimal structure metal.

  7. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  8. Synthesis of aluminium nanoparticles by arc evaporation of an aluminium cathode surface

    Indian Academy of Sciences (India)

    M Gazanfari; M Karimzadeh; S Ghorbani; M R Sadeghi; G Azizi; H Karimi; N Fattahi; Z Karimzadeh

    2014-06-01

    Aluminium nanoparticles (Al Nps) are synthesized using arc discharge method by applying direct current between aluminium electrodes in liquid environment without any use of vacuum equipment, heat exchangers, high temperatures furnaces and inert gases. After synthesis of Al Nps, in situ coating process on the nanoparticles was performed immediately. The effects of media on the yield and morphology of aluminium nanoparticles were investigated. Analysis result of the samples indicated that particle size was less than 30 nm, when 120 A/cm2 arc current was used. In addition, coating agent can affect arc velocity, arc stability, morphology and composition of the nanoparticles. Resultant nanoparticles were identified using X-ray powder diffraction (XRD), also their surface morphology was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and finally the accuracy of coating was assessed with infrared (IR) spectroscopy.

  9. Gliding arc surface treatment of glass fibre reinforced polyester enhanced by ultrasonic irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Bardenshtein, Alexander

    2010-01-01

    of approximately 150 dB were introduced vertically to the GFRP surface through a cylindrical waveguide. The water contact angle of the GFRP surface dropped markedly with no ultrasonic irradiation, and tended to decrease furthermore at higher power. Ultrasonic irradiation during the plasma treatment consistently...... onto the surface. In the present work glass fibre reinforced polyester (GFRP) plates are treated using an atmospheric pressure gliding arc discharge with and without ultrasonic irradiation to study adhesion improvement. The gliding arc was generated between divergent electrodes by utilizing...... improved the wettability. The polar component of the surface energy changed from 12 mJ m-2 to approximately 66 - 74 mJ m-2 after the gliding arc treatment, and increased by up to approximately 10 mJ m-2 with ultrasonic irradiation, but showed no significant change at different arc powers. It is seen...

  10. Effects of anchoring and arc structure on the control authority of a rail plasma actuator

    Science.gov (United States)

    Choi, Young-Joon; Gray, Miles; Sirohi, Jayant; Raja, Laxminarayan L.

    2017-09-01

    Experiments were conducted on a rail plasma actuator (RailPAc) with different electrode cross sections (rails or rods) to assess methods to improve the actuation authority, defined as the impulse generated for a given electrical input. The arc was characterized with electrical measurements and high-speed images, while impulse measurements quantified the actuation authority. A RailPAc power supply capable of delivering  ∼1 kA of current at  ∼100 V was connected to rod electrodes (free-floating with circular cross-section) and rail electrodes (flush-mounted in a flat plate with rectangular cross-section). High-speed images show that the rail electrodes cause the arc to anchor itself to the anode electrode and transit in discrete jumps, while rod electrodes permit the arc to transit smoothly without anchoring. The impulse measurements reveal that the anchoring reduces the actuation authority by  ∼21% compared to a smooth transit, and the effect of anchoring can be suppressed by reducing the gap between the rails to 2 mm. The study further demonstrates that if a smooth transit is achieved, the control authority can be increased with a larger gap and larger arc current. In conclusion, the actuation authority of a RailPAc can be maximized by carefully choosing a gap width that prevents anchoring. Further study is warranted to increase the RailPAc actuation authority by introducing multiple turns of wires beneath the RailPAc to augment the induced magnetic field.

  11. Energy Consumption and Carbon Dioxide Emissions of China’s Non-Metallic Mineral Products Industry: Present State, Prospects and Policy Analysis

    Directory of Open Access Journals (Sweden)

    Hui Hu

    2014-11-01

    Full Text Available China is the largest non-metallic mineral producer in the world and one of the key consumers of four major non-metallic mineral products, including cement, refractories, plate glass and ceramics. The non-metallic mineral products industry’s rapid growth has brought about a large demand for energy. The present study provides an overview of China’s non-metallic mineral products industry in terms of production, energy consumption and carbon dioxide emissions. In this industry, the energy efficiency is relatively low and the level of carbon dioxide emission is much higher than developed countries’ average. This study interprets the effects of some newly issued policies and analyses the influential factors in achieving energy conservation and emission reduction goals. It also discusses the prospects for saving energy and emission reduction in the industry. Retrofitting facilities and using new production technologies is imperative. Additionally, implementing market-based policies, promoting industrial transformation and effective international cooperation would help decrease carbon dioxide emissions and energy consumption.

  12. Effect of Calcium Treatment on Non-Metallic Inclusions in Ultra-Low Oxygen Steel Refined by High Basicity High Al2O3 Sla

    Institute of Scientific and Technical Information of China (English)

    YANG Jun; WANG Xin-hua; JIANG Min; WANG Wan-jun

    2011-01-01

    The influence of calcium treatment on non-metallic inclusions had been studied when control technology of refining top slag in ladle furnace was used in ultra-low oxygen steelmaking. A sufficient amount aluminium was added to experimental heats for final

  13. Effect of the structural parameters changes in the multi-strand tundish on the non-metallic inclusions distribution and separation

    Directory of Open Access Journals (Sweden)

    M. Warzecha

    2014-10-01

    Full Text Available The aim of presented studies was to investigate the fluid flow change and non-metallic inclusions removal changes due to tundish construction modifications. In presented study, numerical simulations were used. Numerical simulations are carried out with the finite-volume commercial code ANSYS Fluent. Steady-state casting conditions for the flow structure and the inclusions removal process are analysed.

  14. Probabilistic modelling of the high-pressure arc cathode spot displacement dynamic

    CERN Document Server

    Coulombe, S

    2003-01-01

    A probabilistic modelling approach for the study of the cathode spot displacement dynamic in high-pressure arc systems is developed in an attempt to interpret the observed voltage fluctuations. The general framework of the model allows to define simple, probabilistic displacement rules, the so-called cathode spot dynamic rules, for various possible surface states (un-arced metal, arced, contaminated) and to study the resulting dynamic of the cathode spot displacements over one or several arc passages. The displacements of the type-A cathode spot (macro-spot) in a magnetically rotating arc using concentric electrodes made up of either clean or contaminated metal surfaces is considered. Experimental observations for this system revealed a 1/f sup - sup t sup i sup l sup d sup e sup 1 signature in the frequency power spectrum (FPS) of the arc voltage for anchoring arc conditions on the cathode (e.g. clean metal surface), while it shows a 'white noise' signature for conditions favouring a smooth movement (e.g. ox...

  15. Numerical Simulation of the Eddy Current Effects on the Arc Splitting Process

    Institute of Scientific and Technical Information of China (English)

    杨飞; 荣命哲; 吴翊; 孙昊; 马瑞光; 纽春萍

    2012-01-01

    This paper focuses on a numerical simulation of the arc plasma behavior in the arc splitting process, considering the eddy currents in the electrodes and the splitter plate. Based on three-dimensional (3D) magneto-hydrodynamic (MHD) theory, a thin layer of nonlinear electrical resistance elements is used in the model to represent the voltage drop of plasma sheath and the formation of new arc root in order to include the arc splitting process in the simulation. In the arcing process, eddy currents in metal parts are generated by a time-varying magnetic field. The arc model is calculated with the time-varying magnetic field term, so that the eddy current effects can be considered. The effect of nonlinear permeability of a ferromagnetic material is also involved in the calculation. Using the simulation results for the temperature, velocity and current density distribution, the arc splitting process is analyzed in detail. The calculated results are compared with the simulation neglecting eddy currents.

  16. Arc of opportunity.

    Science.gov (United States)

    Delaney, Adam Vai

    2011-07-01

    Born in Port Moresby, Papua New Guinea, the author had a 20 year career in diplomacy, political affairs, and development policy analysis at the Pacific Islands Forum, the United Nations in New York; the Prime Minister's Department in Papua New Guinea (PNG) and in the Foreign Ministry of PNG. He has also been involved in theatre for over a decade in PNG, and participated in a three-month program at the Eugene O'Neill Theatre Center in Connecticut, USA. He is currently the Business Development Manager at the Torres Strait Regional Authority (Commonwealth) on Thursday Island. Since 1975 the Australian government's overseas development policy has supported various sectoral programs in its neighbouring countries, in particular Papua New Guinea and the Solomon Islands. The "creative" field has not been prominent in this strategy. While natural resources and the sports sectors have gained much greater attention, in terms of being viable international commercial enterprises, the arts, have remained stagnant. In this paper the need for joint programs genuinely supporting "wellbeing" and promoting social enterprise throughout the "arc of opportunity" is described to harness Melanesian creativity to compete successfully in world-markets, starting with penetration of the largest economy at its door-step: Australia.

  17. Expanding sheath in a bounded plasma in the context of the post-arc phase of a vacuum arc

    Energy Technology Data Exchange (ETDEWEB)

    Sarrailh, P [LAboratoire PLAsma et Conversion de l' Energie (LAPLACE), UMR5213, Universite Paul Sabatier, bat. 3R2, 118 route de Narbonne, 31062 Toulouse cedex 4 (France); Garrigues, L [LAboratoire PLAsma et Conversion de l' Energie (LAPLACE), UMR5213, Universite Paul Sabatier, bat. 3R2, 118 route de Narbonne, 31062 Toulouse cedex 4 (France); Hagelaar, G J M [LAboratoire PLAsma et Conversion de l' Energie (LAPLACE), UMR5213, Universite Paul Sabatier, bat. 3R2, 118 route de Narbonne, 31062 Toulouse cedex 4 (France); Sandolache, G [Schneider Electric Centre de Recherche, 38 TEC, 38050 Grenoble Cedex 09 (France); Rowe, S [Schneider Electric Centre de Recherche, 38 TEC, 38050 Grenoble Cedex 09 (France); Jusselin, B [Schneider Electric Centre de Recherche, 38 TEC, 38050 Grenoble Cedex 09 (France); Boeuf, J P [LAboratoire PLAsma et Conversion de l' Energie (LAPLACE), UMR5213, Universite Paul Sabatier, bat. 3R2, 118 route de Narbonne, 31062 Toulouse cedex 4 (France)

    2008-01-07

    A numerical model of sheath expansion and plasma decay in a bounded plasma subjected to a linearly increasing voltage has been developed. Numerical results obtained with a hybrid-MB model (Maxwell-Boltzmann electrons, particle ions and Poisson's equations) are compared with analytical theory and results from particle-in-cell (PIC) simulations. The hybrid-MB model is similar to models used for plasma immersion ion implantation except that plasma decay due to particle losses to the electrodes is taken into account. The comparisons with more accurate and much more time consuming PIC models show that the hybrid-MB model provides a very satisfactory description of the sheath expansion and plasma decay even for conditions where the grid spacing is much larger than the Debye length. The model is used for high plasma density conditions, corresponding to the post-arc phase of a vacuum arc circuit breaker where a vacuum gap is subject to a transient recovery voltage (TRV) after it has ceased to sustain a vacuum arc. The results show that the plasma sheath expansion is subsonic under these conditions, and that the plasma starts to decay exponentially after two rarefaction waves from the cathode and anode merge in the centre of the gap. A parametric study also shows the strong influence of the TRV rise rate and initial plasma density on the plasma decay time and on the ion current collected by each electrode. The effect of collisions between charged particles and metal atoms resulting for the electrode evaporation is also discussed.

  18. Electrodos austeníticos inoxidables semisintéticos para la soldadura manual por arco eléctrico: Una variante económica para las pequeñas y medianas empresas (PIME. // Semi-synthetic austenitics stainless steel electrodes for shielded metal arc welding: A

    Directory of Open Access Journals (Sweden)

    A. Paz Iglesias

    2002-09-01

    Full Text Available En el presente trabajo se brinda una valoración económica para la producción de electrodos austeníticos inoxidables tiposE308L, E309, E312 y E316L en las pequeñas y medianas empresas (PIME. Lo significativo de la presente valoración esque se brindan los resultados obtenidos al fabricar los electrodos de forma semisintética; es decir, utilizando un solo tipo dealambre inoxidable (308L y añadiendo las ferroaleaciones necesarias en el revestimiento. Los resultados que se muestranestán basados en las experiencias de investigación, producción y comercialización de una planta con capacidad para 200toneladas al año, a la cual le es muy difícil insertarse en el mercado utilizando los mismos procedimientos tecnológicos yfinancieros de una gran empresa con grandes capitales y recursos.Palabras claves: Electrodos austeníticos inoxidables, electrodos sintéticos, ferroaleaciones, electrodossemisintéticos, electrodos convencionales, metal depositado.___________________________________________________________________Abstract.This paper offers an economic valuation for the production of stainless electrodes type E308L, E309, E312 and E316L,for small and middle companies (PIME. The significant part of the present valuation gives the results obtained in theproduction of semi-synthetic electrodes; using just one type of stainless wire (308L and adding the ferroalloys neededin the coat. The results shown are based on investigation experiences, production and trading of companies with acapacity for 200 T/year, so it is very difficult to enter in the market using the same technological procedures of a bigcompany with higher capital and financial resources.Key words: Nonrusting austenistic electrodes, sintetic electrodes, semisintetic electrodes, iron alloy,conventional electrodes, metal deposition.

  19. Experimental Investigation on the Influence of Axial Magnetic Field Distribution on Resisting the Constriction of a High-Current Vacuum Arc

    Institute of Scientific and Technical Information of China (English)

    SHI Zongqian; LIU Zhigang; JIA Shenli; SONG Xiaochuan; WANG Lijun

    2009-01-01

    Effect of the axial magnetic field (AMF) on resisting the constriction of a high-current vacuum arc is studied in this paper. Two typical AMF distributions were investigated, i.e., the traditional bell-shaped AMF, and the saddle-shaped AMF. Experiments were conducted in a detachable vacuum chamber with a rms arc current in the range of 10 kA to 25 kA. The arc column was photographed by a high-speed digital camera with an exposure time of 2 microseconds. The constriction of the vacuum arc was compared by processing the images of the arc column under the two different field configurations and numerically determining the dimensions of the arc column near the electrodes. It was also confirmed that the AMF distribution had a signifcant influence on its effectiveness in resisting arc constriction, Furthermore, the AMF strength near the periphery of the arc is more influential than that at the centre of the electrodes in resisting arc constriction.

  20. Minerogenic System of Magnesian Nonmetallic Deposits in Early Proterozoic Mg-rich Carbonate Formations in Eastern Liaoning Province

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In the early Proterozoic the Liryu Formation and Dashiqiao Formation of eastern Liaoning province, China, there are distributed Mg-rich carbonate rock formations, in which large to superlarge deposits of boron, magnesite, talc, Xiuyan jade etc. occur. The formation of these magnesian nonmetallic deposits was related to early Proterozoic evaporates; then these deposits underwent reworking of regional metamorphism and hydrothermal metasomatism during the Lüliang orogeny and tectono-magmatism during the Indosinian-Yanshanian. Among other things, the Mg-rich carbonates formations, minerogenetic structures and ore-forming fluids played a controlling role in the formation of the mineral deposits. The refore, it can be concluded that the mineral deposits are products of combined processes of the coupling of ore source field, fluid field, thermal field (energy field) and stress field under certain time-space conditions in the early Proterozoic and the late-stage superimposed reworking of tectono-magmatism.

  1. Estimation of the ionic charge of non-metallic species into an electrical discharge through a web application

    Science.gov (United States)

    Pérez Gutiérrez, B. R.; Vera-Rivera, F. H.; Niño, E. D. V.

    2016-08-01

    Estimate the ionic charge generated in electrical discharges will allow us to know more accurately the concentration of ions implanted on the surfaces of nonmetallic solids. For this reason, in this research a web application was developed to allow us to calculate the ionic charge generated in an electrical discharge from the experimental parameters established in an ion implantation process performed in the JUPITER (Joint Universal Plasma and Ion Technologies Experimental Reactor) reactor. The estimated value of the ionic charge will be determined from data acquired on an oscilloscope, during startup and shutdown of electrical discharge, which will then be analyzed and processed. The study will provide best developments with regard to the application of ion implantation in various industrial sectors.

  2. A comparative study of sliding wear of nonmetallic dental restorative materials with emphasis on micromechanical wear mechanisms.

    Science.gov (United States)

    Dupriez, Nataliya Deyneka; von Koeckritz, Ann-Kristin; Kunzelmann, Karl-Heinz

    2015-05-01

    The purpose of this study is to investigate the in vitro tribological behavior of modern nonmetallic restorative materials. Specimen prepared of IPS e.max Press lithium disilicate glass ceramic, IPS Empress Esthetic leucite-reinforced glass ceramic, Everest ZS Blanks yttria-stabilized zirconia and Lava Ultimate composite were subjected to wear using a wear machine designed to simulate occlusal loads. The wear of the investigated materials and antagonists were evaluated by a three-dimensional surface scanner. The quantitative wear test results were used to compare and rank the materials. Specimens were divided into two groups with steatite and alumina antagonists. For each antagonist material an analysis of variance was applied. As a post hoc test of the significant differences, Tukey's honest significant difference test was used. With steatite antagonist: wear of zirconia materials mechanical properties (hardness and fracture toughness) and with materials microstructure. Wear mechanisms are discussed. © 2014 Wiley Periodicals, Inc.

  3. Effect of Non-metallic Inclusions in Fe-Al-Ti-O-N-S Alloy on Grain Size

    Science.gov (United States)

    Choi, Wonjin; Matsuura, Hiroyuki; Tsukihashi, Fumitaka

    2016-06-01

    The effect of characteristics of non-metallic inclusions in Fe-Al-Ti-O-N-S alloys with various compositions at 1473 K (1200 °C) on the microstructure was studied. The ASTM grain size number was determined in as-cast and heated samples by the optical microscopy, and the inclusion types in each sample were determined from composition analysis by field-emission scanning electron microscope with energy-dispersive spectroscopy. The TiN-based inclusions certainly had a positive effect on the grain refinement. On the other hand, TiS-based inclusions exhibited no influence on the decrease of grain size. In addition, the formation and evolution behavior of inclusions by heating solid-state Fe-Al-Ti-O-N-S alloys with those locations were clarified. A different change of inclusions in alloys was observed depending on the distribution and composition of inclusions.

  4. Characteristics and Modification of Non-metallic Inclusions in Titanium-Stabilized AISI 409 Ferritic Stainless Steel

    Science.gov (United States)

    Kruger, Dirk; Garbers-Craig, Andrie

    2017-06-01

    This study describes an investigation into the improvement of castability, final surface quality and formability of titanium-stabilized AISI 409 ferritic stainless steel on an industrial scale. Non-metallic inclusions found in this industrially produced stainless steel were first characterized using SEM-EDS analyses through the INCA-Steel software platform. Inclusions were found to consist of a MgO·Al2O3 spinel core, which acted as heterogeneous nucleation site for titanium solubility products. Plant-scale experiments were conducted to either prevent the formation of spinel, or to modify it by calcium treatment. Modification to spherical dual-phase spinel-liquid matrix inclusions was achieved with calcium addition, which eliminated submerged entry nozzle clogging for this grade. Complete modification to homogeneous liquid calcium aluminates was achieved at high levels of dissolved aluminum. A mechanism was suggested to explain the extent of modification achieved.

  5. Detection of Surface and Subsurface Cracks in Metallic and Non-Metallic Materials Using a Complementary Split-Ring Resonator

    Directory of Open Access Journals (Sweden)

    Ali Albishi

    2014-10-01

    Full Text Available Available microwave techniques for crack detection have some challenges, such as design complexity and working at a high frequency. These challenges make the sensing apparatus design complex and relatively very expensive. This paper presents a simple method for surface and subsurface crack detection in metallic and non-metallic materials based on complementary split-ring resonators (CSRRs. A CSRR sensor can be patterned on the ground plane of a microstrip line and fabricated using printed circuit board technology. Compared to available microwave techniques for sub-millimeter crack detection, the methods presented here show distinct advantages, such as high spatial resolution, high sensitivity and design simplicity. The response of the CSRR as a sensor for crack detection is studied and analysed numerically. Experimental validations are also presented.

  6. Characteristics and Modification of Non-metallic Inclusions in Titanium-Stabilized AISI 409 Ferritic Stainless Steel

    Science.gov (United States)

    Kruger, Dirk; Garbers-Craig, Andrie

    2017-02-01

    This study describes an investigation into the improvement of castability, final surface quality and formability of titanium-stabilized AISI 409 ferritic stainless steel on an industrial scale. Non-metallic inclusions found in this industrially produced stainless steel were first characterized using SEM-EDS analyses through the INCA-Steel software platform. Inclusions were found to consist of a MgO·Al2O3 spinel core, which acted as heterogeneous nucleation site for titanium solubility products. Plant-scale experiments were conducted to either prevent the formation of spinel, or to modify it by calcium treatment. Modification to spherical dual-phase spinel-liquid matrix inclusions was achieved with calcium addition, which eliminated submerged entry nozzle clogging for this grade. Complete modification to homogeneous liquid calcium aluminates was achieved at high levels of dissolved aluminum. A mechanism was suggested to explain the extent of modification achieved.

  7. Standard practice for process compensated resonance testing via swept sine input for metallic and Non-Metallic parts

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice describes a general procedure for using the process compensated resonance testing (PCRT) via swept sine input method to identify metallic and non-metallic parts’ resonant pattern differences that can be used to indentify parts with anomalies causing deficiencies in the expected performance of the part in service. This practice is intended for use with instruments capable of exciting, measuring, recording, and analyzing multiple whole body mechanical vibration resonant frequencies within parts exhibiting acoustical ringing in the audio, or ultrasonic, resonant frequency ranges, or both. PCRT is used in the presence of manufacturing process variance to distinguish acceptable parts from those containing significant anomalies in physical characteristics expected to significantly alter the performance. Such physical characteristics include, but are not limited to, cracks, voids, porosity, shrink, inclusions, discontinuities, grain and crystalline structure differences, density related anomalies...

  8. Plasma Processes : Arc root dynamics in high power plasma torches – Evidence of chaotic behavior

    Indian Academy of Sciences (India)

    A K Das

    2000-11-01

    Although plasma torches have been commercially available for about 50 years, areas such as plasma gun design, process efficiency, reproducibility, plasma stability, torch lives etc. have remained mostly unattended. Recent torch developments have been focusing on the basic understanding of the plasma column and its dynamics inside the plasma torch, the interaction of plasma jet and the powders, the interaction of the plasma jet with surroundings and the impingement of the jet on the substrate. Two of the major causes of erratic and poor performance of a variety of thermal plasma processes are currently identified as the fluctuations arising out of the arc root movement on the electrodes inside the plasma torch and the fluid dynamic instabilities arising out of entrainment of the air into the plasma jet. This paper reviews the current state of understanding of these fluctuations as well as the dynamics of arc root movement in plasma torches. The work done at the author’s laboratory on studying the fluctuations in arc voltage, arc current, acoustic emissions and optical emissions are also presented. These fluctuations are observed to be chaotic and interrelated. Real time monitoring and controlling the arc instabilities through chaos characterization parameters can greatly contribute to the understanding of electrode erosion as well as improvement of plasma torch lifetime.

  9. Improved Electrochemical Performance of Surface-Modified Metal Hydride Electrodes

    Institute of Scientific and Technical Information of China (English)

    YANG Kai; WU Feng; CHEN Shi; ZHANG Cun-zhong

    2005-01-01

    A novel plating process was applied to the surface modification of the metal hydride (MH) electrode of the MH/Ni batteries. The electrode was plated with a thin nickel film about 0.1 μm thick by using multi-arc ion plating technique. The X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM) were used to analyze the electrodes. Influence of the surface modification on the performance of the MH/Ni batteries was studied. It is shown that the surface modification could enhance the electrode conductivity and decrease the batteries ohimic resistance by 28.2 %. After surface modification, the discharge capacity of modification also improves the cyclic durability of the batteries. The inner pressure of the batteries with modified electrode during overcharging is much lower than that with unmodified electrode. The experimental results demonstrate that this process is an effective way for the surface modification of the electrode of MH/Ni batteries.

  10. The uncertainties calculation of acoustic method for measurement of dissipative properties of heterogeneous non-metallic materials

    Directory of Open Access Journals (Sweden)

    Мaryna O. Golofeyeva

    2015-12-01

    Full Text Available The effective use of heterogeneous non-metallic materials and structures needs measurement of reliable values of dissipation characteristics, as well as common factors of their change during the loading process. Aim: The aim of this study is to prepare the budget for measurement uncertainty of dissipative properties of composite materials. Materials and Methods: The method used to study the vibrational energy dissipation characteristics based on coupling of vibrations damping decrement and acoustic velocity in a non-metallic heterogeneous material is reviewed. The proposed method allows finding the dependence of damping on vibrations amplitude and frequency of strain-stress state of material. Results: Research of the accuracy of measurement method during the definition of decrement attenuation of fluctuations in synthegran was performed. The international approach for evaluation of measurements quality is used. It includes the common practice international rules for uncertainty expression and their summation. These rules are used as internationally acknowledged confidence measure to the measurement results, which includes testing. The uncertainties budgeting of acoustic method for measurement of dissipative properties of materials were compiled. Conclusions: It was defined that there are two groups of reasons resulting in errors during measurement of materials dissipative properties. The first group of errors contains of parameters changing of calibrated bump in tolerance limits, displacement of sensor in repeated placement to measurement point, layer thickness variation of contact agent because of irregular hold-down of resolvers to control surface, inaccuracy in reading and etc. The second group of errors is linked with density and Poisson’s ratio measurement errors, distance between sensors, time difference between signals of vibroacoustic sensors.

  11. Effect of Acid-Soluble Aluminum on the Evolution of Non-metallic Inclusions in Spring Steel

    Science.gov (United States)

    Wang, Yong; Tang, Haiyan; Wu, Tuo; Wu, Guanghui; Li, Jingshe

    2017-04-01

    The content of acidic soluble aluminum in molten steel ([Al]s) is of significance to the control of total oxygen (TO), the formation of non-metallic inclusions, and the improvement of the surface quality of billets. Industrial trials and thermodynamic calculations were performed to study the effects of [Al]s content on the TO and the evolution of non-metallic inclusions in 60Si2Mn-Cr spring steel that was deoxidized by Si-Mn ((low aluminum process (LAP)) and Si-Mn-Al (high aluminum process (HAP)). The results show that the [Al]s contents in billets are within 0.0060 to 0.0069 mass pct in the LAP and 0.016 to 0.055 mass pct in the HAP. The TO content at each station of the LAP is higher than that in the HAP; the inclusions of billets were mainly of the CaO-Al2O3-SiO2 type in the former, and of the CaO-Al2O3-MgO and CaS-Al2O3-MgO types in the latter. A tendency is found that the higher the [Al]s, the easier it is to deviate from the low melting point region of the inclusion distribution and the larger the size of the inclusions. The relationships between [Al]s and the melting point of the oxide inclusions and the Al2O3 content in the oxide inclusions are also discussed in terms of experiment and calculation.

  12. Pocket ECG electrode

    Science.gov (United States)

    Lund, Gordon F. (Inventor)

    1982-01-01

    A low-noise electrode suited for sensing electrocardiograms when chronically and subcutaneously implanted in a free-ranging subject. The electrode comprises a pocket-shaped electrically conductive member with a single entrance adapted to receive body fluids. The exterior of the member and the entrance region is coated with electrical insulation so that the only electrolyte/electrode interface is within the member remote from artifact-generating tissue. Cloth straps are bonded to the member to permit the electrode to be sutured to tissue and to provide electrical lead flexure relief.

  13. Handbook of reference electrodes

    CERN Document Server

    Inzelt, György; Scholz, Fritz

    2013-01-01

    Reference Electrodes are a crucial part of any electrochemical system, yet an up-to-date and comprehensive handbook is long overdue. Here, an experienced team of electrochemists provides an in-depth source of information and data for the proper choice and construction of reference electrodes. This includes all kinds of applications such as aqueous and non-aqueous solutions, ionic liquids, glass melts, solid electrolyte systems, and membrane electrodes. Advanced technologies such as miniaturized, conducting-polymer-based, screen-printed or disposable reference electrodes are also covered. Essen

  14. Fast-imaging and spectroscopic analysis of atmospheric argon streamers for large gap arc breakdown

    Science.gov (United States)

    Pachuilo, Michael; Stefani, Francis; Bengtson, Roger; Raja, Laxminarayan

    2014-10-01

    A non-equilibrium plasma source has been developed to assist in the low-voltage arc breakdown of large electrode gaps. The source consists of a dielectric embedded wire helically wound around a confining cylindrical quartz chamber. Annular electrodes cap the ends of the quartz chamber. An argon feed gas is used to provide a uniform environment and exhausts to ambient atmospheric conditions. A negative polarity 50 kV trigger pulse is applied to the embedded trigger wire to initiate the arc breakdown. Application of the trigger pulse produces a localized coronal discharges along the inner surface of the quartz tube. The corona provides seed electrons through which streamers propagate from one of the main discharge electrode along the quartz surface until it reaches the opposite electrode to bridge the gap. Once the gap is bridged a spark over occurs and robust arc discharge is formed in the chamber volume. Fast imaging of the streamer propagation establishes its velocity in the range of ~ 100 km/s. Spectroscopy of the streamer discharge in atmospheric argon has been conducted and electron temperature and number density estimated from a collision radiative model. Argon spectrum is dominated by neutral argon lines in the 650--950 nm range, and singly ionized argon lines are observed in the ultra-violet to near UV (300--400 nm). Research was performed in connection with AFOSR Contract FA9550-11-1-0062.

  15. Distribution of Cathode Spots in Vacuum Arc Under Nonuniform Axial Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    SHI Zong-qian; JIA Shen-li; WANG Li-jun; LI Xing-wen; WANG Zheng

    2007-01-01

    Recent results on the distribution of vacuum arc cathode spots (CSs) in nonuniform axial magnetic field (AMF) are presented.Based on previous studies,we deem that two contrary influences of AMF,inward effect and outward effect,are attributed to CSs distribution.With this notion,we have analyzed the controlling effectiveness of nonuniform AMF on CSs distribution. Experiments were conducted in a detachable vacuum chamber with iron-style AMF electrodes.Images of vacuum arc column and the distribution of CSs were photographed with a high-speed charge coupled device (CCD) camera. Experimental results agreed well with the theoretical analysis.

  16. The modeling of heat affected zone (HAZ in submerged arc welding (SAW surfacing steel element

    Directory of Open Access Journals (Sweden)

    J. Winczek

    2016-04-01

    Full Text Available In the work the bimodal heat source model in the description of the temperature field is presented. The electric arc was treated physically as one heat source, whose heat was divided: part of the heat is transferred by the direct impact of the electric arc, but another part of the heat is transferred to the weld by the melted material of the electrode. Computations of the temperature field during SAW surfacing of S355 steel element are carried out. The macrographic and metallographic analysis of the weld confirmed the depth and shapes of the fusion line and HAZ defined by the numerical simulation.

  17. Laser Thomson scattering in a pulsed atmospheric arc discharge

    Science.gov (United States)

    Sommers, Bradley; Adams, Steven

    2015-09-01

    Laser scattering measurements, including Rayleigh, Raman, and Thomson scattering have been performed on an atmospheric pulsed arc discharge. Such laser scattering techniques offer a non-invasive diagnostic to measure gas temperature, electron temperature, and electron density in atmospheric plasma sources, particularly those with feature sizes approaching 1 mm. The pulsed discharge is ignited in a pin to pin electrode geometry using a 6 kV pulse with 10 ns duration. The electrodes are housed in a glass vacuum chamber filled with argon gas. The laser signal is produced by a Nd:Yag laser supply, repetitively pulsed at 10 Hz and frequency quadrupled to operate at 266 nm. The scattered laser signal is imaged onto a triple grating spectrometer, which is used to suppress the Rayleigh scatter signal in order to measure the low amplitude Thomson and Raman signals. Preliminary results include measurements of electron temperature and electron density in the plasma column taken during the evolution of the discharge. The laser system is also used to measure the Rayleigh scattering signal, which provides space and time resolved measurements of gas temperature in the arc discharge.

  18. Catalytic technology for water treatment by micro arc oxidation on Ti–Al alloy

    Science.gov (United States)

    Zhiyu, YAN; Xin, WANG; Bing, SUN; Mi, WEN; Yue, HAN

    2017-03-01

    The feasibility of the formation of a liquid plasma catalysis system through micro arc oxidation (MAO) under AC power with titanium–aluminum alloy electrodes was investigated. In the decolorization of organic dyeing wastewater simulated with Rhodamine B, Ti–Al alloy electrodes were superior over Ti electrodes and Al electrodes. The optimal molar percentage of Ti in alloy electrodes was 70% and the optimal decolorization rate was up to 88.9% if the additive suitable for Al was added into the solution to be treated. The decolorization rates were the same in the case of the alloy–alloy electrodes and alloy–Al electrodes. The proportion of the effects of plasma, TiO2 catalyzer during MAO and H2O2 after MAO in decolorization has been obtained. With the catalysis of TiO2 formed on the electrodes, the reaction rate was improved by a maximum of 95% and the decolorization rate was improved by a maximum of 71.6%. Based on the spectral analysis, the plasma catalysis mechanism has been studied.

  19. Durable fuel electrode

    DEFF Research Database (Denmark)

    2017-01-01

    the composite. The invention also relates to the use of the composite as a fuel electrode, solid oxide fuel cell, and/or solid oxide electrolyser. The invention discloses a composite for an electrode, comprising a three-dimensional network of dispersed metal particles, stabilised zirconia particles and pores...

  20. Membrane Bioprobe Electrodes

    Science.gov (United States)

    Rechnitz, Garry A.

    1975-01-01

    Describes the design of ion selective electrodes coupled with immobilized enzymes which operate either continuously or on drop-sized samples. Cites techniques for urea, L-phenylalanine and amygdalin. Micro size electrodes for use in single cells are discussed. (GH)

  1. Membrane Bioprobe Electrodes

    Science.gov (United States)

    Rechnitz, Garry A.

    1975-01-01

    Describes the design of ion selective electrodes coupled with immobilized enzymes which operate either continuously or on drop-sized samples. Cites techniques for urea, L-phenylalanine and amygdalin. Micro size electrodes for use in single cells are discussed. (GH)

  2. A semiconductor based electrode

    Energy Technology Data Exchange (ETDEWEB)

    Khamatani, A.; Kobayasi, K.

    1983-03-30

    The semiconductor electrode is submerged into an electrolyte which is held in the illuminated chamber. The other electrode is placed in a dark chamber connected with the channel to be illuminated, which has a partition in the form of a membrane. An electric current flows in the external circuit of the element with illumination of the first electrode. The illuminated electrode is covered with a thin film of a substance which is stable with the action of the electrolyte. The film is made of Si02, A1203, GaN or A1N. The protective coating makes it possible to use materials less stable than Ti02 in a rutile modification, but which have higher characteristics than the GaP, GaAs, CdS and InP, for making the electrode.

  3. Another Explanation for Neptune's Ring Arcs

    Science.gov (United States)

    Namouni, F.; Porco, C.

    2001-11-01

    Recent HST and Earth-based observations (Dumas et al 1999, Nature 400, 733; Sicardy et al 1999, Nature 400, 731) indicate that Neptune's ring arcs are not located at the corotation resonance with Galatea thought to be responsible for the azimuthal confinement of the arc system (Porco, 1991 Science 253, 995). Although small (5x 10-3od-1), the new observed mean motion offset puts the arcs near the resonance separatrix where the particles' semimajor axes would experience chaotic motion leading to the azimuthal spreading of the arcs within months, thereby calling into question their very existence. We have found a new resonant structure, dependent on the arcs having a small fraction of the mass of Galatea, in which Galatea's 43:42 eccentric corotation resonance, located (in the massless case) ~ 3 km inside the arcs' orbit, is made coincident with the arcs' semimajor axis. The arcs are primarily confined by this resonance, which is stronger ( e Galatea) than the inclined corotation resonance ( I2 Galatea) invoked in the Porco model. Moreover, the coupling of all the resonances in the arcs' neighborhood (eccentric corotation, inclined corotation and Lindblad resonances) modifies the interaction potential, creating smaller structures at the arcs' location. Consequently, this new confinement mechanism can simultaneously explain the arcs' confinement, the general spacing of the arcs, the Fraternité arc length of ~ 10o, and smaller-scale features seen in the arc system. Finally, the possibility of non-massless arcs supports an earlier suggestion by Porco et al (1991, in Neptune and Triton, the University of Arizona Series) that the rapid expected radial migration of the arc system, due to Galatea's secular torques, can be slowed down if the arcs have substantial mass.

  4. SURFACING ELECTRODE WITH CRACKING RESISTANCE AND WEARABILITY

    Institute of Scientific and Technical Information of China (English)

    Yang Shanglei; Lu Xueqin; Lou Songnian; Zou Zengda

    2005-01-01

    A new surfacing electrode is developed with cracking resistance and wearability based on high microhardness of TiC and VC, carbides of Ti and V are formed in deposited metal by means of high temperature arc metallurgic reaction. The results show the hardness of surfacing metal increases with the increase of ferrotitanium (Fe-Ti), ferrovanadium (Fe-V) and graphite in the coat. However,when graphite reaches the volume fraction of 11%, the hardness reaches its peak value, and when beyond 11%, the hardness falls off. As Fe-Ti, Fe-V and graphite increase, the cracking resistance of deposited metal and usability of electrode declines. Carbides are dispersedly distributed in the matrix structure. The matrix microstructure of deposited metal is lath martensite. Carbides present irregular block. When using the researched surfacing electrode to continue weld with non-preheated, no seeable crack or only a few micro-cracks can be observed in the surface of deposited metal. The hardness is above 60 HRC. The wear resistance is better than that of EDZCr-C-15.

  5. In-process electrical discharge dressing of arc-shaped metal bonded diamond wheels

    Science.gov (United States)

    Wang, Kai; Fan, Fei; Tian, Guoyu; Zhang, Feihu; Liu, Zhongde

    2016-10-01

    Due to the high hardness of SiC ceramics, the wear of the arc-shaped metal bonded diamond wheels is very serious during the grinding process of large-aperture aspheric SiC mirrors. The surface accuracy and surface/sub-surface quality of the aspheric mirror will be affected seriously if the grinding wheel is not timely dressed. Therefore, this paper focus on the in-process dressing of the arc-shaped metal bonded diamond wheels. In this paper, the application of the asymmetric arc profile grinding wheel in the grinding of aspheric mirrors is discussed first. Then a rotating cup-shaped electrode in-process electro discharge dressing device for the arc-shaped wheels is developed based on the analysis. The dressing experiments are carried out with the device. The experimental results show that the in-process dressing device can did the dressing for the asymmetric and symmetric arc-shaped wheel. The profile error of the arc can reach to 3μm with the in-process dressing device.

  6. Characterization of the behaviour of the electric arc during VAR of a Ti alloy

    Science.gov (United States)

    Chapelle, P.; Noël, C.; Risacher, A.; Jourdan, J.; Jourdan, J.; Jardy, A.

    2016-07-01

    In this paper, we report experimental results based on the direct observation of the electric arc behaviour during vacuum arc remelting of a Ti alloy. These results were obtained in a specifically instrumented industrial furnace using high speed framing camera and optical emission spectroscopy, for a current density level of the order of 10 A/cm2 and a gap length of a few centimetres. It was observed that the arc exhibits a similar operating regime to that described in the literature for the case of Inconel 718 and Zr alloy electrodes. The arc structure corresponds essentially to that of a diffuse metal vapor arc with separate and rapidly moving cathode spots. Several critical parameters of the cathode spots, including their current, size and velocity, and of the interelectrode plasma were evaluated. Also, the interactions between the arc operation and the transfer of metal drops in the interelectrode gap were investigated. Three modes of transfer of the liquid metal drops in the interelectrode gap have been identified depending on the gap length: drop falling, drip short and drop erosion induced by the cathode spots.

  7. Electrical and thermal finite element modeling of arc faults in photovoltaic bypass diodes.

    Energy Technology Data Exchange (ETDEWEB)

    Bower, Ward Isaac; Quintana, Michael A.; Johnson, Jay

    2012-01-01

    Arc faults in photovoltaic (PV) modules have caused multiple rooftop fires. The arc generates a high-temperature plasma that ignites surrounding materials and subsequently spreads the fire to the building structure. While there are many possible locations in PV systems and PV modules where arcs could initiate, bypass diodes have been suspected of triggering arc faults in some modules. In order to understand the electrical and thermal phenomena associated with these events, a finite element model of a busbar and diode was created. Thermoelectrical simulations found Joule and internal diode heating from normal operation would not normally cause bypass diode or solder failures. However, if corrosion increased the contact resistance in the solder connection between the busbar and the diode leads, enough voltage potentially would be established to arc across micron-scale electrode gaps. Lastly, an analytical arc radiation model based on observed data was employed to predicted polymer ignition times. The model predicted polymer materials in the adjacent area of the diode and junction box ignite in less than 0.1 seconds.

  8. The Investigation of EDM Parameters on Electrode Wear Ratio

    Directory of Open Access Journals (Sweden)

    Reza Atefi

    2012-05-01

    Full Text Available Electrical Discharge Machining (EDM is a well-established machining option for manufacturing geometrically complex or hard material parts that are extremely difficult-to-machine by conventional machining processes. The non-contact machining technique has been continuously evolving from a mere tool and die making process. In this study, the influence of different electro discharge machining parameters (current, pulse on-time, pulse off-time, arc voltage on the electrode wear ratio as a result of application copper electrode to hot work steel DIN1.2344 has been investigated. Design of the experiment was chosen as full factorial. Artificial neural network has been used to choose proper machining parameters and to reach certain electrode wear ratio. Finally a hybrid model has been designed to reduce the artificial neural network errors. The experiment results indicated a good performance of proposed method in optimization of such a complex and non-linear problems.

  9. The temporal nature of forces acting on metal drops in gas metal arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Jones, L.A.; Eagar, T.W.; Lang, J.H. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1996-12-31

    At moderate and high welding currents, the most important forces in gas metal arc welding acting on the molten electrode are magnetic forces arising from the interaction between the welding current and its own magnetic field. These forces drive the dynamic evolution of the drop and also depend on the instantaneous shape of the drop. In this paper, experimentally observed manifestations of magnetic forces are shown, and a technique for approximating the temporal evolution of these forces from experimentally measured drop shapes is reported. The technique provides quantitative data illustrating the large increase in the magnetic forces as a drop detaches from the electrode.

  10. Carbon and Nickel Oxide/Carbon Composites as Electrodes for Supercapacitors

    Institute of Scientific and Technical Information of China (English)

    Liutauras Marcinauskas; Zydrunas Kavaliauskas; Vitas Valincius

    2012-01-01

    The carbon and nickel oxide/carbon composite electrodes were prepared by plasma jet and magnetron sput-tering techniques. The investigations were performed to evaluate the influence of the Ar/C2H2 ratio on the specific capacitance values of carbon and NiO/carbon electrodes. The obtained electrodes were investigated by scanning electron microscopy, Raman scattering spectroscopy (RS), and X-ray diffraction techniques. The surface of the carbon electrodes became less porous and more homogenous with increasing Ar/C2H2. The RS results indicated that the fraction of the sp2 carbon sites increased with increasing Ar/C2H2 ratio. The increase of the Ar/C2H2 ratio increased the capacitance values from 0.73 up to 3.8 F/g. Meanwhile, after the deposition of the nickel oxide on the carbon, the capacitance increased ten and more times and varied in the range of 7.6-86.1 F/g.

  11. 废弃电路板中非金属组分的回收利用%Recycling of non-metallic fractions from waste printed circuit boards

    Institute of Scientific and Technical Information of China (English)

    刘旸; 刘静欣; 江晓健; 郭学益

    2016-01-01

    废弃电路板是电子废弃物的重要组成部分。目前工业生产及工艺开发多针对极具经济回收价值的电路板金属组分。然而,占电路板质量分数70%的非金属组分却关注较少。文章分析了废弃电路板非金属组分的组成及其有害组分,其含有树脂及玻璃纤维等有价成分和溴、夹杂重金属等污染环境的物质,其回收利用对于资源循环利用及环境保护均有重要意义。非金属组分回收利用主要有物理处理和化学处理2种技术:物理处理技术主要将非金属组分用作结构材料填料、塑料改性剂和建筑材料改性剂;化学处理技术通过焚烧将非金属组分用作燃料和熔剂或通过热解回收或溶剂分解回收可将非金属组分转化为化工产品。这2种技术在非金属组分资源化利用上各有优势,都已有部分工业化应用。%Waste printed circuit boards (WPCBs) are important parts in the electronic waste. Nowadays, recov-ering metals from WPCBs are developed but non-metallic fractions which accounts for 70% of waste printed circuit boards have not been effectively utilized. The non-metallic fractions and hazards in waste printed cir-cuit boards were analyzed in this paper. The results show that resins and glass fiber in non-metallic fractions can be recycled and bromine and heavy metals could pollute environment. Recovering non-metallic fractions are important to recycling and environment, which can be divided into physical recycling technology and chemical recycling technology, with the formal using non-metallic fractions as the filler materials, plastic modifier or building material modifiers, and the latter using non-metallic fractions as the fuel and smelting flux through incineration or convert non-metallic fractions into chemical products through pyrolysis or solvent decomposition. Both technologies have their own advantages in resource utilization of non-metallic fractions, and partly

  12. 非金属制品石棉检测预处理方法的研究%Samples Preparation of Nonmetallic Material for Testing Asbestos

    Institute of Scientific and Technical Information of China (English)

    虞接华; 袁坤珍; 甘浩; 刘斌

    2015-01-01

    通过对非金属材料中石棉检测的预处理方法进行实验探索,发现“灰化法”+“研磨法”操作简便、效果明显,成本低廉,对于一般样品是一种比较理想的石棉检测试样的处理方法,灰化处理的温度为480℃、时间为3 h。%Samples preparations of nonmetallic material for testing asbestos were studied. The ashing+milling method was a simple, effective, low cost, and a ideal means of pretreatment nonmetallic material samples for testing asbestos. Testing showed that ashing temperature should be 480 ℃ for 3 h.

  13. Vacuum Gas Tungsten Arc Welding

    Science.gov (United States)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  14. Warm storage for arc magmas.

    Science.gov (United States)

    Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K; Harrison, T Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-12-06

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the "cold storage" model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.

  15. STRUVE arc and EUPOS® stations

    Science.gov (United States)

    Lasmane, Ieva; Kaminskis, Janis; Balodis, Janis; Haritonova, Diana

    2013-04-01

    The Struve Geodetic Arc was developed in Years 1816 to 1855, 200 years ago. Historic information on the points of the Struve Geodetic Arc are included in the UNESCO World Heritage list in 2005. Nevertheless, the sites of many points are still not identified nor included in the data bases nowadays. Originally STRUVE arc consisted of 258 main triangles with 265 triangulation points. Currently 34 of the original station points are identified and included in the in the UNESCO World Heritage list. identified original measurement points of the Meridian Arc are located in Sweden (7 points), Norway (15), Finland (83), Russia (1), Estonia (22), Latvia (16), Lithuania (18), Belorussia (28), Ukraine (59) and Moldova (27). In Year 2002 was initiated another large coverage project - European Position Determination System "EUPOS®". Currently there are about 400 continuously operating GNSS (Global Navigation Satellite Systems) stations covering EU countries Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Hungary, Bulgaria, Romania and East European countries Ukraine and Moldavia. EUPOS® network is a ground based GNSS augmentation system widely used for geodesy, land surveying, geophysics and navigation. It gives the opportunity for fast and accurate position determination never available before. It is an honorable task to use the EUPOS® system for research of the Struve triangulation former sites. Projects with Struve arc can popularize geodesy, geo-information and its meaning in nowadays GIS and GNSS systems. Struve Arc and its points is unique cooperation cross-border object which deserve special attention because of their natural beauty and historical value for mankind. GNSS in geodesy discovers a powerful tool for the verification and validation of the height values of geodetic leveling benchmarks established historically almost 200 years ago. The differential GNSS and RTK methods appear very useful to identify vertical displacement of landscape by means of

  16. The structure and singularities of arc complexes

    DEFF Research Database (Denmark)

    Penner, Robert

    boundary components. The main result of this paper is the determination of those arc complexes Arc(F) that are also spherical. This classification has consequences for Riemann's moduli space via its known identification with an analogous arc complex in the punctured case with no boundary. Namely...

  17. Laboratory experiments on arc deflection and instability

    Energy Technology Data Exchange (ETDEWEB)

    Zweben, S.; Karasik, M.

    2000-03-21

    This article describes experiments on arc deflection instability carried out during the past few years at the Princeton University Plasma Physics Laboratory (PPPL). The approach has been that of plasma physicists interested in arcs, but they believe these results may be useful to engineers who are responsible for controlling arc behavior in large electric steel furnaces.

  18. Making Conductive Polymers By Arc Tracking

    Science.gov (United States)

    Daech, Alfred F.

    1992-01-01

    Experimental technique for fabrication of electrically conductive polymeric filaments based on arc tracking, in which electrical arc creates conductive carbon track in material that initially was insulator. Electrically conductive polymeric structures made by arc tracking aligned along wire on which formed. Alignment particularly suited to high conductivity and desirable in materials intended for testing as candidate superconductors.

  19. Magnification Bias in Gravitational Arc Statistics

    Energy Technology Data Exchange (ETDEWEB)

    Caminha, G. B. [Rio de Janeiro, CBPF; Estrada, J. [Fermilab; Makler, M. [Rio de Janeiro, CBPF

    2013-08-29

    The statistics of gravitational arcs in galaxy clusters is a powerful probe of cluster structure and may provide complementary cosmological constraints. Despite recent progresses, discrepancies still remain among modelling and observations of arc abundance, specially regarding the redshift distribution of strong lensing clusters. Besides, fast "semi-analytic" methods still have to incorporate the success obtained with simulations. In this paper we discuss the contribution of the magnification in gravitational arc statistics. Although lensing conserves surface brightness, the magnification increases the signal-to-noise ratio of the arcs, enhancing their detectability. We present an approach to include this and other observational effects in semi-analytic calculations for arc statistics. The cross section for arc formation ({\\sigma}) is computed through a semi-analytic method based on the ratio of the eigenvalues of the magnification tensor. Using this approach we obtained the scaling of {\\sigma} with respect to the magnification, and other parameters, allowing for a fast computation of the cross section. We apply this method to evaluate the expected number of arcs per cluster using an elliptical Navarro--Frenk--White matter distribution. Our results show that the magnification has a strong effect on the arc abundance, enhancing the fraction of arcs, moving the peak of the arc fraction to higher redshifts, and softening its decrease at high redshifts. We argue that the effect of magnification should be included in arc statistics modelling and that it could help to reconcile arcs statistics predictions with the observational data.

  20. Effect of inhomogeneous distribution of non-metallic inclusions on crack path deflection in G42CrMo4 steel at different loading rates

    Directory of Open Access Journals (Sweden)

    S. Henschel

    2015-10-01

    Full Text Available An inhomogeneous distribution of non-metallic inclusions can result from the steel casting process. The aim of the present study was to investigate the damaging effect of an inhomogeneous distribution of nonmetallic inclusions on the crack extension behavior. To this end, the fracture toughness behavior in terms of quasi-static J-a curves was determined at room temperature. Additionally, dynamic fracture mechanics tests in an instrumented Charpy impact-testing machine were performed. The fracture surface of fracture mechanics specimens was analyzed by means of scanning electron microscopy. It was shown that an inhomogeneous distribution significantly affected the path and, therefore, the plane of crack growth. Especially clusters of non-metallic inclusions with a size of up to 200 μm exhibited a very low crack growth resistance. Due to the damaging effect of the clusters, the growing crack was strongly deflected towards the cluster. Furthermore, crack tip blunting was completely inhibited when inclusions were located at the fatigue precrack tip. Due to the large size of the non-metallic inclusion clusters, the height difference introduced by crack path deflection was significantly larger than the stretch zone height due to the crack tip blunting. However, the crack path deflection introduced by a cluster was not associated with a toughness increasing mechanism. The e dynamic loading ( 1 0.5 5 s MPam 10   K did not result in a transition from ductile fracture to brittle fracture. However, the crack growth resistance decreased with increased loading rate. This was attributed to the higher portion of relatively flat regions where the dimples were less distinct.

  1. The Influence of Technological Parameters of X70 Stainless Steel Ladle Refining on the Residual Content of Non-Metallic Inclusions

    Directory of Open Access Journals (Sweden)

    Babanin A.

    2015-09-01

    Full Text Available It is demonstrated that during secondary refining at the ladle furnace the carbon content of steel and the residence time of the metal in the ladle exert a significant impact on the residual content of non-metallic inclusions (NMI in steel. Mathematical calculations showed that the dynamic forces have minor effect on the motion of small sized NMI, making it difficult to penetrate deep into the slag.

  2. Analysis of Pressure Rise in a Closed Container Due to Internal Arcing

    Directory of Open Access Journals (Sweden)

    Peng Li

    2017-03-01

    Full Text Available When an arc fault occurs in a medium-voltage (MV metal enclosed switchgear, the arc heats the filling gas, resulting in a pressure rise, which may seriously damage the switchgear, the building it is contained in, or even endanger maintenance personnel. A pressure rise calculation method based on computational fluid dynamics (CFD has been put forward in this paper. The pressure rise was calculated and the arc tests between the copper electrodes were performed in the container under different gap lengths by the current source. The results show that the calculated pressure rise agrees well with the measurement, and the relative error of the average pressure rise is about 2%. Arc volume has less effect on the pressure distribution in the container. Arc voltage Root-Mean-Square (RMS has significant randomness with the change of arc current, and increases with the increase of gap length. The average arc voltage gradients measure at about 26, 20 and 16 V/cm when the gap lengths are 5, 10 and 15 cm, respectively. The proportion (thermal transfer coefficient kp of the arc energy leading to the pressure rise in the container is about 44.9%. The pressure is symmetrically distributed in the container before the pressure wave reaches the walls and the process of the energy release is similar to an explosion. The maximum overpressure in the corner is increased under the reflection and superimposition effects of the pressure wave, but the pressure waves will be of no importance any longer than a few milliseconds in the closed container.

  3. Study of the physicochemical effects on the separation of the non-metallic fraction from printed circuit boards by inverse flotation.

    Science.gov (United States)

    Flores-Campos, R; Estrada-Ruiz, R H; Velarde-Sánchez, E J

    2017-09-06

    Recycling printed circuit boards using green technology is increasingly important due to the metals these contain and the environmental care that must be taken when separating the different materials. Inverse flotation is a process that can be considered a Green Technology, which separates metallic from non-metallic fractions. The degree of separation depends on how much material is adhered to air bubbles. The contact angle measurement allows to determine, in an easy way, whether the flotation process will occur or not and thus establish a material as hydrophobic or not. With the material directly obtained from the milling process, it was found that the contact angle of the non-metallic fraction-liquid-air system increases as temperature increases. In the same way, the increments in concentration of frother in the liquid increase the contact angle of the non-metallic fraction-liquid-air system. 10ppm of Methyl Isobutyl Carbinol provides the highest contact angle as well as the highest material charging in the bubble. Copyright © 2017. Published by Elsevier Ltd.

  4. Formation of Self-Organized Anode Patterns in Arc Discharge Simulations

    CERN Document Server

    Trelles, Juan Pablo

    2013-01-01

    Pattern formation and self-organization are phenomena commonly observed experimentally in diverse types of plasma systems, including atmospheric-pressure electric arc discharges. However, numerical simulations reproducing anode pattern formation in arc discharges have proven exceedingly elusive. Time-dependent three-dimensional thermodynamic nonequilibrium simulations reveal the spontaneous formation of self-organized patterns of anode attachment spots in the free-burning arc, a canonical thermal plasma flow established by a constant DC current between an axi-symmetric electrodes configuration in the absence of external forcing. The number of spots, their size, and distribution within the pattern depend on the applied total current and on the resolution of the spatial discretization, whereas the main properties of the plasma flow, such as maximum temperatures, velocity, and voltage drop, depend only on the former. The sensibility of the solution to the spatial discretization stresses the computational require...

  5. Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Drews, Joanna Maria

    2011-01-01

    A gliding arc is a plasma generated between diverging electrodes and extended by a high speed gas flow. It can be operated in air at atmospheric pressure. It potentially enables selective chemical processing with high productivity, and is useful for adhesion improvement of material surfaces....... The efficiency of such a plasma treatment at atmospheric pressure can be further improved by ultrasonic irradiation onto the surface during the treatment. In the present work glass fiber reinforced polyester (GFRP) plates are treated using an atmospheric pressure gliding arc with and without ultrasonic...... that ultrasonic irradiation reduced the OH rotational temperature of the gliding arc. The wettability of the GFRP surface was significantly improved by the plasma treatment without ultrasonic irradiation, and tended to improve furthermore at higher power to the plasma. Ultrasonic irradiation during the plasma...

  6. The morphology of carbon-metal composite synthesized in arc discharge

    Science.gov (United States)

    Smovzh, D. V.; Sakhapov, S. Z.; Zaikovskii, A. V.

    2016-10-01

    The phase state of nanoparticles and function of distribution by size of particles, formed at joint electric arc spraying of metal (Ni/Cu/Ti/Pt/Zr) - carbon electrode, is studied. It is shown that the metal and carbide nanoparticles with the size of 2-9 nm are formed in the carbon matrix at spraying. When annealing the metal-carbon composites, the metal-containing nanoparticles oxidize and coagulate, forming the agglomerates of 100 nm or more.

  7. Note: electrode polarization of Galinstan electrodes for liquid impedance spectroscopy.

    Science.gov (United States)

    Mellor, Brett L; Kellis, Nathan A; Mazzeo, Brian A

    2011-04-01

    Electrode polarization is a significant obstacle in the impedance measurements of ionic liquids. An atomically smooth electrode surface could potentially reduce unwanted impedance contributions from electrode polarization. Liquid metal electrodes were formed by adhering Galinstan to acrylic plates in a parallel-plate capacitor arrangement. Electrode polarization was compared to a similar cell with stainless steel electrodes. The impedance of salt and protein solutions (β-lactoglobulin) was measured from 40 Hz to 110 MHz. Because of oxide layer formation, the performance of the Galinstan electrode is significantly different than the theoretical ideal.

  8. Porous Electrode Studies.

    Science.gov (United States)

    1980-07-01

    representation and analysis for their observed current distributions. Simonsson won the young author’s award of the Electrochemical Society for his paper...and T. Katan, Proc. Symp. Energy Storage and Conversion, the Electrochemical Society 77-6, 770 (1977) The optimum thickness of porous electrodes is...Chloride Electrodes; Surface Morphology on Charging and Dis- charging," T. Katan, S. Szpak, and D. N. Bennion, The Electrochemical Society , 143rd National

  9. Technique for the comparison of light spectra from natural and laboratory generated lightning current arcs

    Science.gov (United States)

    Mitchard, D.; Clark, D.; Carr, D.; Haddad, A.

    2016-08-01

    A technique was developed for the comparison of observed emission spectra from lightning current arcs generated through self-breakdown in air and the use of two types of initiation wire, aluminum bronze and nichrome, against previously published spectra of natural lightning events. A spectrograph system was used in which the wavelength of light emitted by the lightning arc was analyzed to derive elemental interactions. A lightning impulse of up to 100 kA was applied to a two hemispherical tungsten electrode configuration which allowed the effect of the lightning current and lightning arc length to be investigated. A natural lightning reference spectrum was reconstructed from literature, and generated lightning spectra were obtained from self-breakdown across a 14.0 mm air gap and triggered along initiation wires of length up to 72.4 mm. A comparison of the spectra showed that the generated lightning arc induced via self-breakdown produced a very similar spectrum to that of natural lightning, with the addition of only a few lines from the tungsten electrodes. A comparison of the results from the aluminum bronze initiation wire showed several more lines, whereas results from the nichrome initiation wire differed greatly across large parts of the spectrum. This work highlights the potential use for spectrographic techniques in the study of lightning interactions with surrounding media and materials, and in natural phenomena such as recently observed ball lightning.

  10. Technique for the comparison of light spectra from natural and laboratory generated lightning current arcs

    Energy Technology Data Exchange (ETDEWEB)

    Mitchard, D., E-mail: mitcharddr@cardiff.ac.uk; Clark, D.; Carr, D.; Haddad, A. [Morgan-Botti Lightning Laboratory, Advanced High Voltage Research Centre, School of Engineering, Cardiff University, CF24 3AA Wales (United Kingdom)

    2016-08-29

    A technique was developed for the comparison of observed emission spectra from lightning current arcs generated through self-breakdown in air and the use of two types of initiation wire, aluminum bronze and nichrome, against previously published spectra of natural lightning events. A spectrograph system was used in which the wavelength of light emitted by the lightning arc was analyzed to derive elemental interactions. A lightning impulse of up to 100 kA was applied to a two hemispherical tungsten electrode configuration which allowed the effect of the lightning current and lightning arc length to be investigated. A natural lightning reference spectrum was reconstructed from literature, and generated lightning spectra were obtained from self-breakdown across a 14.0 mm air gap and triggered along initiation wires of length up to 72.4 mm. A comparison of the spectra showed that the generated lightning arc induced via self-breakdown produced a very similar spectrum to that of natural lightning, with the addition of only a few lines from the tungsten electrodes. A comparison of the results from the aluminum bronze initiation wire showed several more lines, whereas results from the nichrome initiation wire differed greatly across large parts of the spectrum. This work highlights the potential use for spectrographic techniques in the study of lightning interactions with surrounding media and materials, and in natural phenomena such as recently observed ball lightning.

  11. Investigation of the Solution Electrical Conductivity Effect upon the Synthesis of Carbon Nanotubes by Arc Discharge Method

    Directory of Open Access Journals (Sweden)

    Asieh Dehghani Kiadehi

    2013-01-01

    Full Text Available Some techniques have been developed to produce carbon nanotubes (CNTs in sizeable quantities, including arc discharge, laser ablation and chemical vapor deposition (CVD. Arc discharge in liquid environment is a new, simple and cheap method of synthesizing CNTs. CNTs in this study were fabricated by arc discharge in liquid. The present work was undertaken to study the effect of electrical conductivity of liquid on CNTs production and was fabricated using arc discharge between two graphite electrodes submerged in different aqueous solutions of NaCl, KCl and LiCl. For comparative study, CNTs were synthesized under different electrical conductivity conditions and the results were analyzed, compared and discussed. The scanning electron microscopy (SEM, transmission electron microscopy (TEM and Raman spectroscopy were employed to study the morphology of these carbon nanostructures. Based on LiCl 0.25 N, high-crystalline and a longed multi MWCNTs, SWCNTs were synthesized by using this technique.

  12. Tectonomagmatism in continental arcs: evidence from the Sark arc complex

    Science.gov (United States)

    Gibbons, Wes; Moreno, Teresa

    2002-07-01

    The island of Sark (Channel Islands, UK) exposes syntectonic plutons and country rock gneisses within a Precambrian (Cadomian) continental arc. This Sark arc complex records sequential pulses of magmatism over a period of 7 Ma (ca. 616-609 Ma). The earliest intrusion (ca. 616 Ma) was a composite sill that shows an ultramafic base overlain by a magma-mingled net vein complex subsequently deformed at near-solidus temperatures into the amphibolitic and tonalitic Tintageu banded gneisses. The deformation was synchronous with D 2 deformation of the paragneissic envelope, with both intrusion and country rock showing flat, top-to-the-south LS fabrics. Later plutonism injected three homogeneous quartz diorite-granodiorite sheets: the Creux-Moulin pluton (150-250 m; ca. 614 Ma), the Little Sark pluton (>700 m; 611 Ma), and the Northern pluton (>500 m; 609 Ma). Similar but thinner sheets in the south (Derrible-Hogsback-Dixcart) and west (Port es Saies-Brecqhou) are interpreted as offshoots from the Creux-Moulin pluton and Little Sark pluton, respectively. All these plutons show the same LS fabric seen in the older gneisses, with rare magmatic fabrics and common solid state fabrics recording syntectonic crystallisation and cooling. The cooling rate increased rapidly with decreasing crystallisation age: >9 Ma for the oldest intrusion to cool to lower amphibolite conditions, 7-8 Ma for the Creux Moulin pluton, 5-6 Ma for the Little Sark pluton, and 10 -14 s -1) that focussed extensional deformation into the Sark area. The increased rates of extension allowed ingress of the subsequent quartz diorite-granodiorite sheets, although strain rate slowly declined as the whole complex cooled during exhumation. The regional architecture of syntectonic Cadomian arc complexes includes flat-lying "Sark-type" and steep "Guernsey-type" domains produced synchronously in shear zone networks induced by oblique subduction: a pattern seen in other continental arcs such as that running from Alaska

  13. Techniques of Electrode Fabrication

    Science.gov (United States)

    Guo, Liang; Li, Xinyong; Chen, Guohua

    Electrochemical applications using many kinds of electrode materials as an advanced oxidation/reduction technique have been a focus of research by a number of groups during the last two decades. The electrochemical approach has been adopted successfully to develop various environmental applications, mainly including water and wastewater treatment, aqueous system monitoring, and solid surface analysis. In this chapter, a number of methods for the fabrication of film-structured electrode materials were selectively reviewed. Firstly, the thermal decomposition method is briefly described, followed by introducing chemical vapor deposition (CVD) strategy. Especially, much attention was focused on introducing the methods to produce diamond novel film electrode owing to its unique physical and chemical properties. The principle and influence factors of hot filament CVD and plasma enhanced CVD preparation were interpreted by refereeing recent reports. Finally, recent developments that address electro-oxidation/reduction issues and novel electrodes such as nano-electrode and boron-doped diamond electrode (BDD) are presented in the overview.

  14. Sensor employing internal reference electrode

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same.......The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same....

  15. A Contribution to Arc Length Discussion

    Directory of Open Access Journals (Sweden)

    Stephan Egerland

    2015-09-01

    Full Text Available Abstract An investigation was raising the question: "What does 'arc length' mean?" Actually, it is considered expressing a kind of natural relationship between arc voltage and arc column shape. Statements such as "The higher the voltage the longer the arc" or "The arc voltage proves approximately proportional to the arc length", are frequently noticed in this conjunction. However, the author suggests that there is no general possibility of describing 'arc length' over the whole welding process range. Instances are represented in this paper, showing both theoretical attempts of definition and practical observations. This paper intends to contribute to a serious discussion of something trivial, indeed very well-known or used among welding experts, but actually yet hardly understood, at least as when it comes to closer examination

  16. Evolution of Ti-Based Nonmetallic Inclusions During Solution Treatment of Maraging 250 Steel: Thermodynamic Calculations and Experimental Verification

    Science.gov (United States)

    Shmulevitsh, Mati; Pinkas, Malki; Weizman, Amir; Frage, Nachum

    2011-06-01

    The evolution of Ti-based nonmetallic inclusions in Maraging 250 steel, namely Ti(CxN1-x) and Ti4C2S2, was investigated experimentally. Their stability in austenite also was analyzed by a thermodynamic analysis of the Fe-Ni-Ti-C-N-S system. It was established that the total concentration of the inclusions decreases from 0.024 pct to 0.008 pct after treatment at 1453 K (1180 °C) for 3 hours. The Ti4C2S2 inclusions completely dissolve in austenite at 1523 K (1250 °C) during 1 hour of treatment. The composition of the carbonitride inclusions is shifted toward higher TiN contents when they dissolve in austenite. Nitrogen-enriched titanium carbonitride inclusions are stable in austenite and their fraction may be reduced only by controlling nitrogen content in the steel. The experimental observations are in good agreement with the results of the thermodynamic analysis.

  17. Deformation and fracture properties of metals with non-metallic inclusions; Verformung und Bruch von Metallen mit nichtmetallischen Einschluessen

    Energy Technology Data Exchange (ETDEWEB)

    Schmauder, S.; Soppa, E. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt

    1998-12-31

    Microstructural effects due to formation of non-uniform lines of non-metallic inclusions in the matrix are examined with respect to their macro-, meso-, and micromechanical effects in the alloy Al(6061) reinforced by SiC inclusions. A comparative analysis of results obtained with various microstructures reveals essential differences in the formation of shear bands, stress peaks, and strain concentrations in the material structure. The maxima and the distribution of those field variables are determined not only by the arrangement of inclusions clusters in the stringers but also depend on the presence and number of single-particle inclusions in pure matrix material. The banding of the microstructure causes a strongly anisotropic behaviour in terms of stress and strain distributions. (orig./CB) [Deutsch] In diesem Beitrag werden Gefuegeeinfluesse aufgrund unterschiedlich starker zeiliger Anordnungen der Teilchen in der Matrix im Hinblick auf ihre makro-, meso- und mikromechanischen Auswirkungen am Beispiel einer SiC-teilchenverstaerkten Aluminiumlegierung Al(6061) untersucht. Ein Vergleich der Ergebnisse verschiedener Gefuege zeigt wesentliche Unterschiede hinsichtlich der Ausbildung von Scherbaendern, Spannungsspitzen und von Dehnungskonzentrationen im Werkstoffgefuege. Die Maxima und die Verteilung dieser Feldgroessen sind nicht nur abhaengig davon, wie die Teilchen in den Zeilen angeordnet sind, sondern auch davon, ob einzelne Teilchen in reinen Matrixbereichen vorhanden sind. Die Zeiligkeit des Gefueges fuehrt zu einem stark anisotropen Verhalten hinsichtlich Spannungs- und Dehnungsverteilungen. (orig.)

  18. Assessment of Different Turbulence Models for the Motion of Non-metallic Inclusion in Induction Crucible Furnace

    Science.gov (United States)

    Barati, H.; Wu, M.; Kharicha, A.; Ludwig, A.

    2016-07-01

    Turbulent fluid flow due to the electromagnetic forces in induction crucible furnace (ICF) is modeled using k-ɛ, k-ω SST and Large Eddy Simulation (LES) turbulence models. Fluid flow patterns calculated by different turbulence models and their effects on the motion of non-metallic inclusions (NMI) in the bulk melt have been investigated. Results show that the conventional k-ɛ model cannot solve the transient flow in ICF properly. With k-ω model transient flow and oscillation behavior of the flow pattern can be solved, and the motion of NMI can be tracked fairly well. LES model delivers the best modeling result on both details of the transient flow pattern and motion trajectories of NMI without the limitation of NMI size. The drawback of LES model is the long calculation time. Therefore, for general purpose to estimate the dynamic behavior of NMI in ICF both k-ω SST and LES are recommended. For the precise calculation of the motion of NMI smaller than 10 μm only LES model is appropriate.

  19. Yttrium modifying influence on the shape and amount of nonmetallic inclusions in the austenitic high alloy steel

    Directory of Open Access Journals (Sweden)

    Андрій Володимирович Патюпкін

    2016-07-01

    Full Text Available Yttrium influence on the form and amount of non-metallic inclusions in steel 06H23N18M5 was studied. It has been found that yttrium binds oxygen and other elements into heterogeneous compounds, it resulting in the transition of impurities into passive state. Oxide inclusions, sulfide inclusions and globules formed as a result of steel components reactions with oxygen, sulfur and nitrogen dissolved in metal are mostly found in the structure. It was found that by modifying and refining austenitic steels with yttrium service properties of the deposited layer can be adjusted. X-ray diffraction and X-ray spectrum analysis revealed that the modified steel 06H23N18M5 + 0.02% Y has a heterogeneous structure with uniformly distributed inclusions of σ-phase and composite carbides (Fe, Cr, Mo 23C6. It is possible that Y modification resulted in the appearance of chemically resistant intermetallic σ-phase in these steels, for nucleation was facilitated by increasing the number of crystallization centers as dispersed primary yttrium oxy-sulfide compounds

  20. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing, Part II: Additive Manufacturing and Characterization of Polymer Composites

    Science.gov (United States)

    Chuang, Kathy C.; Grady, Joseph E.; Arnold, Steven M.; Draper, Robert D.; Shin, Eugene; Patterson, Clark; Santelle, Tom; Lao, Chao; Rhein, Morgan; Mehl, Jeremy

    2015-01-01

    This publication is the second part of the three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimides-Ultem 9085 and experimental Ultem 1000 mixed with 10% chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25 to 31%. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties. A preliminary modeling was also initiated to predict the mechanical properties of FDM-printed Ultem 9085 coupons in relation to varied raster angles and void contents, using the GRC-developed MAC/GMC program.

  1. Analysis of the Covered Electrode Welding Process Stability on the Basis of Linear Regression Equation

    Directory of Open Access Journals (Sweden)

    Słania J.

    2014-10-01

    Full Text Available The article presents the process of production of coated electrodes and their welding properties. The factors concerning the welding properties and the currently applied method of assessing are given. The methodology of the testing based on the measuring and recording of instantaneous values of welding current and welding arc voltage is discussed. Algorithm for creation of reference data base of the expert system is shown, aiding the assessment of covered electrodes welding properties. The stability of voltage–current characteristics was discussed. Statistical factors of instantaneous values of welding current and welding arc voltage waveforms used for determining of welding process stability are presented. The results of coated electrodes welding properties are compared. The article presents the results of linear regression as well as the impact of the independent variables on the welding process performance. Finally the conclusions drawn from the research are given.

  2. Low cobalt content alloy for Ni-MH battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Cuscueta, D.J.; Ghilarducci, A.A.; Salva, H.R.; Peretti, H.A. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Centro Atomico Bariloche

    2006-07-01

    Most negative electrodes in rechargeable nickel-metal hydride (NiMH) batteries contain an AB{sub 5} type of alloy. This study provided details of a new non-stoichiometric AB{sub 4.8} type alloy which was prepared using an arc-melting technique. The alloy was based on the partial substitution of magnesium (Mg) in place of misch metal in an Ni/MH battery. A lanthanum rich alloy was obtained by melting the elements inside an electrical arc furnace several times to ensure homogeneity. Successive charge-discharge cycles were done to ensure 20 per cent more charge than the theoretical capacity of the electrodes. An energy dispersion spectroscopy (EDS) analysis showed the homogenous distribution of components along the analyzed points, and denoted the absence of Mg, which was attributed to evaporation during the arc melting procedure. Results of the study indicated that the electrochemical discharge capacity of the alloy depended on particle size and on particle surface condition. Superior performance for freshly crushed particles and for the higher particle size range was observed. Poor performance of the smaller particle size range alloy was attributed to oxidation which occurred with increases in specific surfaces. It was concluded that the stopping time between electrochemical charge/discharge cycling produced a recovery of the maximum capacity possible due to a phenomenon of hydrides stabilization. 5 refs., 2 tabs., 1 fig.

  3. Zircon Recycling in Arc Intrusions

    Science.gov (United States)

    Miller, J.; Barth, A.; Matzel, J.; Wooden, J.; Burgess, S.

    2008-12-01

    Recycling of zircon has been well established in arc intrusions and arc volcanoes, but a better understanding of where and how zircons are recycled can help illuminate how arc magma systems are constructed. To that end, we are conducting age, trace element (including Ti-in-zircon temperatures; TzrnTi) and isotopic studies of zircons from the Late Cretaceous (95-85 Ma) Tuolumne Intrusive Suite (TIS) in the Sierra Nevada Batholith (CA). Within the TIS zircons inherited from ancient basement sources and/or distinctly older host rocks are uncommon, but recycled zircon antecrysts from earlier periods of TIS-related magmatism are common and conspicuous in the inner and two most voluminous units of the TIS, the Half Dome and Cathedral Peak Granodiorites. All TIS units have low bulk Zr ([Zr]825°C), [Zr] in the TIS is a factor of 2 to 3 lower than saturation values. Low [Zr] in TIS rocks might be attributed to a very limited supply of zircon in the source, by disequilibrium melting and rapid melt extraction [1], by melting reactions involving formation of other phases that can incorporate appreciable Zr [2], or by removal of zircon at an earlier stage of magma evolution. Based on a preliminary compilation of literature data, low [Zr] is common to Late Cretaceous N.A. Cordilleran granodioritic/tonalitic intrusions (typically Tzrnsat [3]. A corollary is that slightly older zircon antecrysts that are common in the inner units of the TIS could be considered inherited if they are derived from remelting of slightly older intrusions. Remelting at such low temperatures in the arc would require a source of external water. Refs: [1] Sawyer, J.Pet 32:701-738; [2] Fraser et al, Geology 25:607-610; [3] Harrison et al, Geology 35:635- 638

  4. History of Neptune's Ring Arcs

    Science.gov (United States)

    Esposito, L. W.; Colwell, J. E.; Canup, R. M.

    1997-07-01

    The recent dynamical calculations for Neptune's Adams ring arcs by Foryta and Sicardy (1996) and Hanninen and Porco (1997) determine the basic evolutionary parameters for this system. The ring evolution is dominated by stochastic events, particularly chaotic motion that causes a migration between the corotation sites (FS96) and collisions near quadrature (HP97). A basic problem is that the high velocity collisions that produce the dusty arcs at the Galatea corotation resonances rapidly depopulate these sites (Colwell and Esposito 1990). With the new results in hand for the evolution of the ring particles over periods of less than a century, we can now calculate the long-term stochastic evolution of the Adams ring. Using a finite Markov chain as a model for this stochastic process, we follow the suggestion by FS96 that corotation sites provide preferential locations for accretion. A more general conclusion is that the longitudinal concentration of material in a few nearby sites (and that the majority of the Adams ring material is residing there) requires either an exceedingly recent event (EC92) or that the corotation sites be absorbing states of the Markov chain.In the latter case, the competing processes of chaotic diffusion and frustrated accretion can provide the arc and clump features as recurrent transient events near the Roche limit. Similar phenomena would be expected for Saturn's F and G rings.

  5. H_2O and CO_2 in magmas from the Mariana arc and back arc systems

    OpenAIRE

    Newman, Sally; Stolper, Edward; STERN, Robert

    2000-01-01

    We examined the H2O and CO2 contents of glasses from lavas and xenoliths from the Mariana arc system, an intraoceanic convergent margin in the western Pacific, which contains an active volcanic arc, an actively spreading back arc basin, and active behind-the-arc cross-chain volcanoes. Samples include (1) glass rims from Mariana arc, Mariana trough, and cross-chain submarine lavas; (2) glass inclusions in arc and trough phenocrysts; and (3) glass inclusions from a gabbro + anorthosite xenolith...

  6. Arc Root Attachment on the Anode Surface of Arc Plasma Torch Observed with a Novel Method

    Institute of Scientific and Technical Information of China (English)

    PAN Wen-Xia; LI Teng; MENG Xian; CHEN Xi; WU Cheng-Kang

    2005-01-01

    @@ The arc-root attachment on the anode surface of a dc non-transferred arc plasma torch has been successfullyobserved using a novel approach. A specially designed copper mirror with a boron nitride film coated on itssurface central-region is employed to avoid the effect of intensive light emitted from the arc column upon theobservation of weakly luminous arc root. It is found that the arc-root attachment is diffusive on the anode surfaceof the argon plasma torch, while constricted arc roots often occur when hydrogen or nitrogen is added into argonas the plasma-forming gas.

  7. Ultrafast-Contactless Flash Sintering using Plasma Electrodes

    Science.gov (United States)

    Saunders, Theo; Grasso, Salvatore; Reece, Michael J.

    2016-06-01

    This paper presents a novel derivative of flash sintering, in which contactless flash sintering (CFS) is achieved using plasma electrodes. In this setup, electrical contact with the sample to be sintered is made by two arc plasma electrodes, one on either side, allowing current to pass through the sample. This opens up the possibility of continuous throughput flash sintering. Preheating, a usual precondition for flash sintering, is provided by the arc electrodes which heat the sample to 1400 °C. The best results were produced with pre-compacted samples (bars 1.8 mm thick) of pure B4C (discharge time 2s, current 4A) and SiC:B4C 50 wt% (3s at 6A), which were fully consolidated under a heating rate approaching 20000 °C/min. For the composite a cylindrical volume of 14 mm3 was sintered to full density with limited grain growth.

  8. Coagulation of carbon nanoparticles in the acoustic field in the vicinity of the arc discharge

    Science.gov (United States)

    Shneider, Mikhail

    2016-09-01

    An arc discharge produced in a background inert gase between graphite electrodes is one of the popular methods of nanoparticle synthesis. Nanoparticles and microscopic soot particles are produced in the peripheral region of arc. Intensive soot generation significantly reduces the efficiency of the arc as the technological process for production of fullerenes and other nanoparticles. Experimental studies have shown that exposure of peripheral region of the arc to intense ultrasound leads to a noticeable increase in the efficiency of the nanoparticle synthesis and reduces the soot yield (see, e.g.), because ultrasound causes coagulation of soot particles and decrease of their concentration without affecting the nanoparticles. The paper presents theoretical study of the threshold for the ultrasound intensity required for the coagulation as a function of particle sizes and charge, and background gas parameters. The charge acquired in a thermionic emission, as a result of particles heating by radiation from the arc, is calculated self-consistently. I would like to thank Dr. Yevgeny Raitses, Dr. Igor Kaganovich, and Mr. James Mitrani for their interest in this work and fruitful discussions. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  9. Determination of Health Protection Zone Standard for Nonmetallic Mineral Production%非金属矿物制品制造业卫生防护距离研制

    Institute of Scientific and Technical Information of China (English)

    黄婵; 张文勇; 郭嘉昒; 李举

    2012-01-01

    process and location with same raw materials were selected. The quantity concentration of fugitive emission (Qc) was detected by field monitoring. The health protection zone for cement and lime industry was calculated by ground concentration inverse method, that for asbestos industry by flux method, and that for graphite industry by material balance method, to analyze the health protection zone for similar enterprises of different scales. Residential health epidemiology survey and rank sum test were adopted to give reasonable health protection zone standard. [ Results ] The health protection zone standard for nonmetallic mineral production in line with the average wind speed of recent 5 years were as follows: 300 m, 200 m and 200 m for cement industry; 400 m, 300 m and 300 m for lime industry with production scale ≤20 × 104t/a, and 500 m, 400 m and 300 m for that with production scale > 20 × 104t/a; 400 m, 300 m and 200 m for asbestos industry; 800 m, 700 m and 600 m for graphite industry with ultra high power graphite electrode < 3 × 10 4t/a, and 1 200 m, 1 200 m and 900 m for that with ultra high power graphite electrode ≥ 3 × 104t/a. A total of 347 questionnaires were available and showed significant differences of symptoms distributed in different health protection zones (P<0.05). [ Conclusion ] Wind speed and production scale are the factors considered in setting health protection zone standard. It is feasible to make the standard according to industry classification.

  10. Composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  11. Composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  12. Small angle x-ray scattering and electron microscopy of nanoparticles formed in an electrical arc

    Directory of Open Access Journals (Sweden)

    E. Carvou

    2013-03-01

    Full Text Available Small Angle X-ray Scattering has been used to characterize nanoparticles generated by electrical arcing between metallic (AgSnO2 electrodes. The particles are found to have diameters between 30 and 40 nm and display smooth surfaces suggesting that they are either in liquid form or have solidified from the liquid state. Particles collected around the electrodes were analyzed by Transmission Electron Microscopy and were seen to be much larger than those seen in the SAXS measurement, to be spherical in form and composed of silver metal with irregular tin oxide particles deposited on their surface. Mixed metal nanoparticles can have important practical applications and the use of mixed sintered electrodes may be a direct method for their production.

  13. Small angle x-ray scattering and electron microscopy of nanoparticles formed in an electrical arc

    Science.gov (United States)

    Carvou, E.; Garrec, J. L. Le; Pérez, J.; Praquin, J.; Djeddi, M.; Mitchell, J. B. A.

    2013-03-01

    Small Angle X-ray Scattering has been used to characterize nanoparticles generated by electrical arcing between metallic (AgSnO2) electrodes. The particles are found to have diameters between 30 and 40 nm and display smooth surfaces suggesting that they are either in liquid form or have solidified from the liquid state. Particles collected around the electrodes were analyzed by Transmission Electron Microscopy and were seen to be much larger than those seen in the SAXS measurement, to be spherical in form and composed of silver metal with irregular tin oxide particles deposited on their surface. Mixed metal nanoparticles can have important practical applications and the use of mixed sintered electrodes may be a direct method for their production.

  14. Ion-selective electrodes

    CERN Document Server

    Mikhelson, Konstantin N

    2013-01-01

    Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing I

  15. Single Electrode Heat Effects

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Broers, G. H. J.

    1977-01-01

    SP, of theelectrode reaction. eta is the overvoltage at the electrode. This equation is appliedto a high temperature carbonate fuel cell. It is shown that the Peltier entropyterm by far exceeds the heat production due to the irreversible losses, and thatthe main part of heat evolved at the cathode is reabsorbed......The heat evolution at a single irreversibly working electrode is treated onthe basis of the Brønsted heat principle. The resulting equation is analogous to the expression for the total heat evolution in a galvanic cellwith the exception that –DeltaS is substituted by the Peltier entropy, Delta...

  16. Stability of Neptune's ring arcs in question

    Science.gov (United States)

    Dumas, Christophe; Terrile, Richard J.; Smith, Bradford A.; Schneider, Glenn; Becklin, E. E.

    1999-08-01

    Although all four of the gas-giant planets in the Solar System have ring systems, only Neptune exhibits `ring arcs'-stable clumps of dust that are discontinuous from each other. Two basic mechanisms for confining the dust to these arcs have been proposed. The firstrelies on orbital resonances with two shepherding satellites, while the second invokes a single satellite (later suggested to be Galatea) to produce the observed ring arc structures. Here we report observations of the ring arcs and Galatea, which show that there isa mismatch between the locations of the arcs and the site of Galatea's co-rotation inclined resonance. This result calls into question Galatea's sole role in confining the arcs.

  17. FINITE DIFFERENCE SIMULATION OF LOW CARBON STEEL MANUAL ARC WELDING

    Directory of Open Access Journals (Sweden)

    Laith S Al-Khafagy

    2011-01-01

    Full Text Available This study discusses the evaluation and simulation of angular distortion in welding joints, and the ways of controlling and treating them, while welding plates of (low carbon steel type (A-283-Gr-C through using shielded metal arc welding. The value of this distortion is measured experimentally and the results are compared with the suggested finite difference method computer program. Time dependent temperature distributions are obtained using finite difference method. This distribution is used to obtain the shrinkage that causes the distortions accompanied with structural forces that act to modify these distortions. Results are compared with simple empirical models and experimental results. Different thickness of plates and welding parameters is manifested to illustrate its effect on angular distortions. Results revealed the more accurate results of finite difference method that match experimental results in comparison with empirical formulas. Welding parameters include number of passes, current, electrode type and geometry of the welding process.

  18. Gas-tungsten arc welding of aluminum alloys

    Science.gov (United States)

    Frye, Lowell D.

    1984-01-01

    A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  19. Reference Electrodes in Metal Corrosion

    Directory of Open Access Journals (Sweden)

    S. Szabó

    2010-01-01

    Full Text Available With especial regard to hydrogen electrode, the theoretical fundamentals of electrode potential, the most important reference electrodes and the electrode potential measurement have been discussed. In the case of the hydrogen electrode, it have been emphasised that there is no equilibrium between the hydrogen molecule (H2 and the hydrogen (H+, hydronium (H3O+ ion in the absence of a suitable catalyst. Taking into account the practical aspects as well, the theorectical basis of working of hydrogen, copper-copper sulphate, mercury-mercurous halide, silver-silver halide, metal-metal oxide, metal-metal sulphate and “Thalamid” electrodes, has been discussed.

  20. The effect of non-metallic inclusions on the fracture toughness master curve in high copper reactor pressure vessel welds

    Science.gov (United States)

    Oh, Yong-Jun; Lee, Bong-Sang; Hong, Jun-Hwa

    2002-03-01

    The fracture toughness of two high copper reactor pressure vessel welds having low upper shelf energy was evaluated in accordance with the master curve method of ASTM E1921. The resultant data were correlated to the metallurgical factors involved in the brittle fracture initiation to provide a metallurgical-based understanding of the master curve. The tests were performed using pre-cracked Charpy V-notched specimens and the master curve was made with an average of T0 values determined at different temperatures. In all specimens, the cleavage fracture initiated at non-metallic inclusion ranging from 0.7 to 3.5 μm in diameter showing a scatter with the specimens and testing temperatures. Temperature dependency of the triggering particle size was not found. The fracture toughness ( KJC) was inversely proportional to the square root of the triggering inclusion diameter ( di) at respective temperatures. From this relationship, we determined median KJC values which correspond to the average value of triggering inclusion diameter of all tested specimens and defined them as a modified median KJC ( K'JC(med) ). The obtained K'JC(med) values showed quite smaller deviation from the master curve at different temperatures than the experimental median KJC values. This suggests that the master curve is on the premise of a constant dimension of key microstructural factor in a material regardless of the testing temperature. But the inclusion size at trigger point played an important role in the absolute position of the master curve with temperature and the consequent T0 value.

  1. The effect of non-metallic inclusions on the fracture toughness master curve in high copper reactor pressure vessel welds

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Yong-Jun E-mail: yjoh@kaeri.re.kr; Lee, Bong-Sang; Hong, Jun-Hwa

    2002-03-01

    The fracture toughness of two high copper reactor pressure vessel welds having low upper shelf energy was evaluated in accordance with the master curve method of ASTM E1921. The resultant data were correlated to the metallurgical factors involved in the brittle fracture initiation to provide a metallurgical-based understanding of the master curve. The tests were performed using pre-cracked Charpy V-notched specimens and the master curve was made with an average of T{sub 0} values determined at different temperatures. In all specimens, the cleavage fracture initiated at non-metallic inclusion ranging from 0.7 to 3.5 {mu}m in diameter showing a scatter with the specimens and testing temperatures. Temperature dependency of the triggering particle size was not found. The fracture toughness (K{sub J{sub C}}) was inversely proportional to the square root of the triggering inclusion diameter (d{sub i}) at respective temperatures. From this relationship, we determined median K{sub J{sub C}} values which correspond to the average value of triggering inclusion diameter of all tested specimens and defined them as a modified median K{sub J{sub C}} (K{sup '}{sub J{sub C}}{sub (med)}). The obtained K{sup '}{sub J{sub C}}{sub (med)} values showed quite smaller deviation from the master curve at different temperatures than the experimental median K{sub J{sub C}} values. This suggests that the master curve is on the premise of a constant dimension of key microstructural factor in a material regardless of the testing temperature. But the inclusion size at trigger point played an important role in the absolute position of the master curve with temperature and the consequent T{sub 0} value.

  2. Agglomeration of Non-metallic Inclusions at Steel/Ar Interface: In- Situ Observation Experiments and Model Validation

    Science.gov (United States)

    Mu, Wangzhong; Dogan, Neslihan; Coley, Kenneth S.

    2017-10-01

    Better understanding of agglomeration behavior of nonmetallic inclusions in the steelmaking process is important to control the cleanliness of the steel. In this work, a revision on the Paunov simplified model has been made according to the original Kralchevsky-Paunov model. Thus, this model has been applied to quantitatively calculate the attractive capillary force on inclusions agglomerating at the liquid steel/gas interface. Moreover, the agglomeration behavior of Al2O3 inclusions at a low carbon steel/Ar interface has been observed in situ by high-temperature confocal laser scanning microscopy (CLSM). The velocity and acceleration of inclusions and attractive forces between Al2O3 inclusions of various sizes were calculated based on the CLSM video. The results calculated using the revised model offered a reasonable fit with the present experimental data for different inclusion sizes. Moreover, a quantitative comparison was made between calculations using the equivalent radius of a circle and those using the effective radius. It was found that the calculated capillary force using equivalent radius offered a better fit with the present experimental data because of the inclusion characteristics. Comparing these results with other studies in the literature allowed the authors to conclude that when applied in capillary force calculations, the equivalent radius is more suitable for inclusions with large size and irregular shape, and the effective radius is more appropriate for inclusions with small size or a large shape factor. Using this model, the effect of inclusion size on attractive capillary force has been investigated, demonstrating that larger inclusions are more strongly attracted.

  3. Tunable electronic structures of germanium monochalcogenide nanosheets via light non-metallic atom functionalization: a first-principles study.

    Science.gov (United States)

    Ding, Yi; Wang, Yanli

    2016-08-17

    Germanium monochalcogenides, i.e. GeS and GeSe sheets, are isoelectronic analogues of phosphorene, which have been synthesized in recent experiments (P. Ramasamy et al., J. Mater. Chem. C, 2016, 4, 479). Utilizing first-principles calculations, we have investigated their tunable electronic and magnetic properties via light non-metallic atom (B, C, N, O, Si, P, S) functionalization. We find that on these GeS and GeSe sheets O and S adatoms prefer to locate at the top site above the Ge atom, while the other ones like to occupy the anion site, which push the original S/Se atom to the hollow site instead. O and S adatoms slightly affect the semiconducting behaviour of the doped systems, while B, C, N, Si, P ones will drastically modify their band structures and induce versatile spintronic properties. Through the supercell calculations, B and C adatoms are found to induce a bipolar semiconducting behaviour in the decorated systems, while the N/P adatom will cause a spin-gapless-semiconducting/nearly-half-metallic feature in them. The B/C/N/Si/P-substituted GeS/GeSe sheet can be formed by removing the hollow-site S/Se atom from the adatom-decorated structures, which exhibit an opposite semiconducting/metallic behaviour to their phosphorene counterparts. A general odd-even rule is proposed for this phenomenon, which shows that an odd (even) number of valence electron difference between the substitution and host atoms would cause a metallic (semiconducting) feature in the substituted systems. Our study demonstrates that atom functionalization is an efficient way to tailor the properties of GeS and GeSe nanosheets, which have adaptable electronic properties for potential applications in nanoelectronics and spintronics.

  4. Programming ArcGIS with Python cookbook

    CERN Document Server

    Pimpler, Eric

    2015-01-01

    Programming ArcGIS with Python Cookbook, Second Edition, is written for GIS professionals who wish to revolutionize their ArcGIS workflow with Python. Whether you are new to ArcGIS or a seasoned professional, you almost certainly spend time each day performing various geoprocessing tasks. This book will teach you how to use the Python programming language to automate these geoprocessing tasks and make you a more efficient and effective GIS professional.

  5. Virtual electrodes for high-density electrode arrays

    Energy Technology Data Exchange (ETDEWEB)

    Cela, Carlos Jose; Lazzi, Gianluca

    2017-05-23

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  6. Statistical analysis of geographic information with ArcView GIS and ArcGIS

    National Research Council Canada - National Science Library

    Wong, David W. S; Lee, Jay

    2005-01-01

    ... of its capabilities for spatial-quantitative synthesis. Now, David Wong and Jay Lee update their comprehensive handbook with Statistical Analysis of Geographic Information with ArcView GIS and ArcGIS...

  7. Pengaruh Arc On dan Arc Off Time Terhadap Kekasaran Permukaan dan Laju Pembuangan Geram Hasil Pemesinan Sinking EDM

    Directory of Open Access Journals (Sweden)

    Suhardjono Suhardjono

    2004-01-01

    Full Text Available Sinking type electro discharge machine (EDM is the nwst popular non conventional machining method in the current decade based on modern CNC controlled. Although the EDM process has been used for decades, it is still widely misunderstood by many in manufacturing. The EDM is used when the work piece material is too hard, or the shape or location of the detail cannot easily be conventionally machined e.g. high precision mold and die with high surface quality. The performance of this process can be indicated by productivity and quality of product to be machined. An experiment to study the effect of machining parameter on productivity and surface quality has been done by varying the most important parameter arc on and arc off time. For this experiment a Charme Pulse CD-50M type sinking EDM machine is used to perform the machining process of tool steel SKD 11 material (55- 65 HRC with an copper electrode and esso lector 40 of dielectric fluid that having a density of 6.8 gr / cm3 and 1320C burning temperature for jet side flushing. The constant parameters are current 8 Ampere, voltage 40 volt and depth of machining 0.5 mm. The experimental data is analyzed by statistically program and the result are empirical formulas of the average roughness Ra = 0.624. A0.4. B-0.01 and the metal removal rate MRR = 0.2. A0.25.B0.53%2C where A is arc on time and B is arc off time. Abstract in Bahasa Indonesia : Electrical Discharge Machine (EDM sinking merupakan salah satu proses permesinan non konvensional yang berbasis komputer sebagai pengendali utamanya. Dimana EDM shinking digunakan untuk membuat rongga cetakan yang memiliki kontur yang kompleks dan kepresisian yang tinggi. Salah satu produk yang sering dikerjakaan oleh mesin EDM adalah dies dan mould yang memiliki kekerasan yang tinggi. Peranan dies dan mould pada proses manufaktur seperti deep drawing, forging, pengecoran dan lain-lain sangatlah berpengaruh terutama pada kualitas ketepatan dimensi, kepresisian

  8. The Confinement of Neptune's Ring Arcs

    Science.gov (United States)

    Porco, C.; Namouni, F.

    2002-09-01

    The stability of the narrow ring arcs of Neptune has been a puzzle since their discovery. First detected in 1984 from the Earth in stellar occultations and imaged by the Voyager spacecraft in 1989, the 5 arcs spanning approximately 40 deg in longitude are apparently confined against the rapid azimuthal and radial spreading that results from energy dissipation in inter-particle collisions. Voyager data were used to argue in favor of an arc confinement model (Goldreich et al. AJ 1986; Porco, Science 1991) that relies on both the vertical and mean angular motions of the nearby Neptunian moon, Galatea, to produce a pair of Lindblad (LR) and corotation inclination (CIR) resonances capable of trapping ring particles into a sequence of arcs. However, HST and Earth-based observations taken in 1998 (Dumas et al. Nature 1999; Sicardy et al. Nature 1999) indicate a revised arc mean angular motion which displaces the arcs away from the CIR, leaving their stability once again unexplained. In this presentation, we will discuss the workings of a hitherto neglected resonance which relies on Galatea's orbital eccentricity and which, together with the LR, is likely responsible for the angular confinement of the arcs. The action of this resonance, which operates through the precession of Galatea's eccentric orbit forced by the arcs' inertia, will allow a determination of the arcs' mass from future measurements of Galatea's eccentricity. We acknowledge the financial support of NASA's Planetary Geology and Geophysics Program and the Southwest Research Institute's Internal Research Grant program.

  9. The Team Orienteering Arc Routing Problem

    OpenAIRE

    Archetti, Claudia; Speranza, M. Grazia; Corberan, Angel; Sanchís Llopis, José María; Plana, Isaac

    2014-01-01

    The team orienteering arc routing problem (TOARP) is the extension to the arc routing setting of the team orienteering problem. In the TOARP, in addition to a possible set of regular customers that have to be serviced, another set of potential customers is available. Each customer is associated with an arc of a directed graph. Each potential customer has a profit that is collected when it is serviced, that is, when the associated arc is traversed. A fleet of vehicles with a given maximum trav...

  10. Class `E` protective headwear: electric arc exposure

    Energy Technology Data Exchange (ETDEWEB)

    Jones, E.

    1997-04-01

    A series of tests were conducted using electric arcs under laboratory conditions to determine what, if any, damages can be inflicted upon class `E` hard hats. Ten hard hats were subjected to different levels of arc exposure to see if the hat would ignite, melt, drip, stick to the head, etc. It was noted that there is no standard on hard hat exposure to an electric arc. It was recommended that the CSA committee revise the protective headwear standard to include a requirement for flame/arc resistance, including specification of pass/fail criteria. 1 tab., 3 figs.

  11. Miniaturized cathodic arc plasma source

    Science.gov (United States)

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  12. Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Sun, Zhiwei; Li, Zhongshan

    2014-01-01

    -state OH were investigated using planar laser-induced fluorescence. The results show that the shape, height, intensity and thickness of ground-state OH distribution vary significantly with air flow rates. Finally, UV emission of the gliding arc is measured using optical emission spectroscopy......We demonstrate a plasma discharge which is generated between two diverging electrodes and extended into a gliding arc in non-equilibrium condition by an air flow at atmospheric pressure. Effects of the air flow rates on the dynamics, ground-state OH distributions and spectral characterization of UV...

  13. Boxicity of Circular Arc Graphs

    OpenAIRE

    Bhowmick, Diptendu; Chandran, L. Sunil

    2008-01-01

    A $k$-dimensional box is the cartesian product $R_1 \\times R_2 \\times ... \\times R_k$ where each $R_i$ is a closed interval on the real line. The {\\it boxicity} of a graph $G$, denoted as $box(G)$, is the minimum integer $k$ such that $G$ can be represented as the intersection graph of a collection of $k$-dimensional boxes: that is two vertices are adjacent if and only if their corresponding boxes intersect. A circular arc graph is a graph that can be represented as the intersection graph of ...

  14. Mechanoreceptors and reflex arc in the feline shoulder.

    Science.gov (United States)

    Solomonow, M; Guanche, C; Wink, C; Knatt, T; Baratta, R V; Lu, Y

    1996-01-01

    A reflex arc from the glenohumeral capsule to the biceps, infraspinatus, supraspinatus, and subscapular muscles was shown in a feline preparation. Branches of the suprascapular and subscapular nerves terminating in the capsule were identified and then stimulated with a 100 microseconds supramaximal pulse at 10 pulses per second. Stimulation of the suprascapular articular nerve elicited electromyographic discharge in the biceps and infraspinatus muscles, whereas stimulation of the subscapular articular nerve elicited electromyographic discharge in the biceps, subscapularis, infraspinatus, and supraspinatus muscles. When the articular nerves were transected between their emergence from the main nerve trunk and the stimulation electrodes, the electromyographic discharge was abolished confirming the afferent nature of the nerves. The mean time delay ( +/- SD) from application of the stimulus to the peak of the recorded electromyographic activity was 3.2 +/- 0.27 msec. Anatomic dissection and staining of the capsule segments where the articular nerves terminated revealed mechanoreceptors consisting primarily of free nerve endings and Golgi tendon organs, Ruffini's endings, and pacinian corpuscles. The existence of a ligamento-muscular reflex arc in the glenohumeral joint extends the concept of passive and active restraints of a joint by virtue of the synergy between ligaments and muscles. That such a reflex exists may advocate modification of surgical repairs of the capsule, leading to preservation of as many neurologic structures as possible; it may also form the foundation for new postsurgical therapeutic modalities.

  15. Submicron electrode gaps fabricated by gold electrodeposition at interdigitated electrodes

    NARCIS (Netherlands)

    Megen, M.J.J; Olthuis, W.; Berg, van den A.

    2014-01-01

    Electrodes with submicron gaps are desired for achieving high amplification redox cycling sensors. In this contribution we report the use of electrodeposition of gold in order to decrease the inter-electrode spacing at interdigitated electrodes. Using this method submicron spacings can be obtained w

  16. Single Electrode Heat Effects

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Broers, G. H. J.

    1977-01-01

    for the oxygen electrode reaction is estimatedfrom thermodynamic data and reasonable agreement with the experimentalresults is found. It is concluded that the main contribution to the Peltierentropy arises from the transition from gaseous to liquid state, whereas thetransfer entropies of the ionic species...

  17. Dry EEG Electrodes

    Directory of Open Access Journals (Sweden)

    M. A. Lopez-Gordo

    2014-07-01

    Full Text Available Electroencephalography (EEG emerged in the second decade of the 20th century as a technique for recording the neurophysiological response. Since then, there has been little variation in the physical principles that sustain the signal acquisition probes, otherwise called electrodes. Currently, new advances in technology have brought new unexpected fields of applications apart from the clinical, for which new aspects such as usability and gel-free operation are first order priorities. Thanks to new advances in materials and integrated electronic systems technologies, a new generation of dry electrodes has been developed to fulfill the need. In this manuscript, we review current approaches to develop dry EEG electrodes for clinical and other applications, including information about measurement methods and evaluation reports. We conclude that, although a broad and non-homogeneous diversity of approaches has been evaluated without a consensus in procedures and methodology, their performances are not far from those obtained with wet electrodes, which are considered the gold standard, thus enabling the former to be a useful tool in a variety of novel applications.

  18. Feedback Linearization Based Arc Length Control for Gas Metal Arc Welding

    DEFF Research Database (Denmark)

    Thomsen, Jesper Sandberg

    2005-01-01

    In this paper a feedback linearization based arc length controller for gas metal arc welding (GMAW) is described. A nonlinear model describing the dynamic arc length is transformed into a system where nonlinearities can be cancelled by a nonlinear state feedback control part, and thus, leaving only...

  19. Single-walled Carbon Nanotubes as Electrode Materials for Supercapacitors

    Institute of Scientific and Technical Information of China (English)

    XU Bina; WU Feng; WANG Fang; CHEN Shi; CAO Gao-Ping; YANG Yu-Sheng

    2006-01-01

    Large-scale synthesized single-walled carbon nanotubes (SWNT) prepared by electric arc discharge method and a mixture of NiO and Y2O3 as catalyst have been used as electrode materials for supercapacitors. N2 adsorption/desorption measurement shows that the SWNT is a microporous and mesoporous material with specific surface area 435 m2g1.Thespecific capacitance of the nitric acid treated SWNT in aqueous electrolyte reaches as high as 105 F/g, which is a combination of electric double layer capacitance and pseudocapacitance. The SWNT-based capacitors also have good charge/discharge reversibility and cycling perdurability.

  20. Prediction of Leakage Rates Through Sealing Connections with Nonmetallic Gaskets%非金属平垫片密封连接的泄漏率预测

    Institute of Scientific and Technical Information of China (English)

    顾伯勤; 陈晔; 朱大胜

    2007-01-01

    In this work,a model of gas leakage through nonmetallic gaskets was developed in order to predict leakage rate of gasket sealing connections. The model was verified by the leakage experiments on two types of gaskets: compressed non-asbestos fiber gasket and flexible graphite gasket reinforced with tanged metal sheet. The coefficients in the leakage rate formula were obtained by regression of experimental data for each type of gasket.The model was also validated against the experimental leakage data by other researchers and shown to produce accurate predications. Furthermore,the model was applied to a bolted flanged connection in service in order to assess the tightness of the connection.

  1. Bend effect of the electrode for travelling wave integrated electro-optic modulators

    Institute of Scientific and Technical Information of China (English)

    Fuwen Zhang(张阜文); Fushen Chen(陈福深); Kun Qiu(邱昆)

    2003-01-01

    In this paper, we have studied electrode bend effects on electrical characteristics of the modulator in thethree aspects, which are arc length, characteristic impedance, and loss, applying the model in Ref. [1] andthe finite element method (FEM). The results have shown that the effect only caused by the characteristicimpedance is necessarily considered while its deviation is large, but others are negligible as we design apractical device. Finally, some transmission characteristics of coplanar line with different arc length of thebend have been tested, and the measured results are in good agreement with the theoretical analyses.

  2. Electroanalysis with carbon paste electrodes

    CERN Document Server

    Svancara, Ivan; Walcarius, Alain; Vytras, Karel

    2011-01-01

    Introduction to Electrochemistry and Electroanalysis with Carbon Paste-Based ElectrodesHistorical Survey and GlossaryField in Publication Activities and LiteratureCarbon Pastes and Carbon Paste ElectrodesCarbon Paste as the Binary MixtureClassification of Carbon Pastes and Carbon Paste ElectrodesConstruction of Carbon Paste HoldersCarbon Paste as the Electrode MaterialPhysicochemical Properties of Carbon PastesElectrochemical Characteristics of Carbon PastesTesting of Unmodified CPEsIntera

  3. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1985-01-01

    Ion-Selective Electrode Reviews, Volume 7 is a collection of papers that covers the applications of electrochemical sensors, along with the versatility of ion-selective electrodes. The coverage of the text includes solid contact in membrane ion-selective electrodes; immobilized enzyme probes for determining inhibitors; potentiometric titrations based on ion-pair formation; and application of ion-selective electrodes in soil science, kinetics, and kinetic analysis. The text will be of great use to chemists and chemical engineers.

  4. ATLAS DDM integration in ARC

    DEFF Research Database (Denmark)

    Behrmann, Gerd; Cameron, David; Ellert, Mattias;

    2008-01-01

    The Nordic Data Grid Facility (NDGF) consists of Grid resources running ARC middleware in Denmark, Finland, Norway and Sweden. These resources serve many virtual organisations and contribute a large fraction of total worldwide resources for the ATLAS experiment, whose data is distributed and mana......The Nordic Data Grid Facility (NDGF) consists of Grid resources running ARC middleware in Denmark, Finland, Norway and Sweden. These resources serve many virtual organisations and contribute a large fraction of total worldwide resources for the ATLAS experiment, whose data is distributed...... and managed by the DQ2 software. Managing ATLAS data within NDGF and between NDGF and other Grids used by ATLAS (the Enabling Grids for E-sciencE Grid and the Open Science Grid) presents a unique challenge for several reasons. Firstly, the entry point for data, the Tier 1 centre, is physically distributed...... outside the worker node environment. Also, the service used for cataloging the location of data files is different from otherGrids but must still be useable by DQ2 and ATLAS users to locate data within NDGF. This paper presents in detail how we solve these issues to allow seamless access worldwide to data...

  5. Electroformed Electrodes for Electrical-Discharge Machining

    Science.gov (United States)

    Werner, A.; Cassidenti, M.

    1984-01-01

    Copper electrodes replace graphite electrodes in many instances of electrical-discharge machining (EDM) of complex shapes. Copper electrodes wear longer and cause less contamination of EDM dielectric fluid than do graphite electrodes.

  6. Characterization of Micro-arc Oxidized Titanium

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The observation of the sparkling discharges during the micro-arc oxidation process in KOH aqueous electrolyte was achieved. The change of surface morphology was progressively observed and a plausible pore formation mechanism is proposed. Cell proliferation and ALP activity of micro-arc oxidized titanium was evaluated by human body derived osteoblasts and slightly better than those of blasted surface.

  7. Modeling and Simulation of Low Voltage Arcs

    NARCIS (Netherlands)

    Ghezzi, L.; Balestrero, A.

    2010-01-01

    Modeling and Simulation of Low Voltage Arcs is an attempt to improve the physical understanding, mathematical modeling and numerical simulation of the electric arcs that are found during current interruptions in low voltage circuit breakers. An empirical description is gained by refined electrical

  8. Implementing RapidArc into clinical routine

    DEFF Research Database (Denmark)

    Van Esch, Ann; Huyskens, Dominique P; Behrens, Claus F;

    2011-01-01

    With the increased commercial availability of intensity modulated arc therapy (IMAT) comes the need for comprehensive QA programs, covering the different aspects of this newly available technology. This manuscript proposes such a program for the RapidArc (RA) (Varian Medical Systems, Palo Alto...

  9. Are the Arcs of Neptune Really Stable?

    Science.gov (United States)

    Hanninen, J.; Porco, C.

    1994-12-01

    The Voyager mission discovered a system of rings and ring arcs around Neptune. It was later found that the arcs appear to be azimuthally and radially confined by resonant interactions with the nearby satellite, Galatea, yielding a maximum spread in ring particle semimajor axes of 0.6 km and a spread in forced eccentricities large enough to explain the arc's 15 km radial widths (Porco, 1991, Science 253, 995). We have modified an N-body simulation method (e.g. Hanninen and Salo, 1992, Icarus 97, 228) to include Neptune's second and fourth gravitational harmonics in order to be able to study the effects of collisions and self-gravity on the stability of the ring arcs. We have tested the simulation method and verified the shepherding mechanism in the collisionless and non-self-gravitational case. Preliminary simulation results with collisions over (1)/(2) a libration period indicate that collisions among putative 10-m sized source bodies within the arcs are indeed capable of arc disruption. However, whether or not collisions occur over this time scale depends, among other factors, on the number density of such bodies. We will explore the effects on arc stability of varying simulation parameters, such as the sizes and number density of the source bodies and the coefficient of restitution. Also, we will examine the effect of Galatea's previously neglected nearby vertical resonance on arc particle orbits.

  10. The structure and singularities of arc complexes

    DEFF Research Database (Denmark)

    Penner, Robert

    A classical combinatorial fact is that the simplicial complex consisting of disjointly embedded chords in a convex planar polygon is a sphere. For any surface F with non-empty boundary, there is an analogous complex Arc(F) consisting of suitable equivalence classes of arcs in F connecting its bou...

  11. Modeling and Simulation of Low Voltage Arcs

    NARCIS (Netherlands)

    Ghezzi, L.; Balestrero, A.

    2010-01-01

    Modeling and Simulation of Low Voltage Arcs is an attempt to improve the physical understanding, mathematical modeling and numerical simulation of the electric arcs that are found during current interruptions in low voltage circuit breakers. An empirical description is gained by refined electrical m

  12. The next-generation ARC middleware

    DEFF Research Database (Denmark)

    Appleton, O.; Cameron, D.; Cernak, J.

    2010-01-01

    The Advanced Resource Connector (ARC) is a light-weight, non-intrusive, simple yet powerful Grid middleware capable of connecting highly heterogeneous computing and storage resources. ARC aims at providing general purpose, flexible, collaborative computing environments suitable for a range of use...

  13. Copper coating specification for the RHIC arcs

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.

    2010-12-01

    Copper coating specifications for the RHIC arcs are given. Various upgrade scenarios are considered and calculations of resistive wall losses in the arcs are used to constrain the necessary quality and surface thickness of a copper coating. We find that 10 {mu}m of high purity copper will suffice.

  14. Decomposition of toluene in a gliding arc discharge plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Du Changming [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Yan Jianhua [Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027 (China); Cheron, Bruno [UMR 6614 (CORIA), University of Rouen, 76821 Mont Saint Aignan (France)

    2007-11-15

    The decomposition of toluene in a gliding arc discharge (glidarc) was performed and studied. Experimental results indicate that the glidarc technology can effectively decompose toluene molecules and has bright prospects of being applied as an alternative tool to decompose volatile organic compounds. It is found that a change in the electrode material had an insignificant effect on the toluene removal efficiency. The toluene removal efficiency increases with increasing inlet gas temperature. The water vapor present in the gas mixture has a favorable effect on the toluene decomposition in the plasma. The energy efficiency is 29.46 g (kWh{sup -1}) at a relative humidity of 50% and a specific energy input of 0.26 kWh m{sup -3}, which is higher than other types of non-thermal plasmas. Too much or too little oxygen content does not favor toluene decomposition. The major gas phase products detected by FT-IR from the decomposition of toluene with air participation were CO, CO{sub 2}, H{sub 2}O and NO{sub 2}. Some brown depositions were found on the surface of the electrodes, which were polar oxygenous and nitrogenous compounds determined by the GC-MS analysis, such as benzaldehyde, benzoic acid, quinine and nitrophenol from the reaction of toluene with radicals. A possible mechanism for toluene destruction via glidarc technology is proposed and summarized.

  15. Electrode models in electrical impedance tomography

    Institute of Scientific and Technical Information of China (English)

    WANG M.

    2005-01-01

    This paper presents different views on electrode modelling, which include electrode electrochemistry models for modelling the effects of electrode-electrolyte interface, electric field electrode models for modelling electrode geometry, and electrode models for modelling the effects of electrode common mode voltage and double layer capacitance. Taking the full electrode models into consideration .in electrical impedance tomography (EIT) will greatly help the optimised approach to a good solution and further understanding of the measurement principle.

  16. Numerical Study on Arc Plasma Behavior During Arc Commutation Process in Direct Current Circuit Breaker

    Institute of Scientific and Technical Information of China (English)

    杨飞; 马瑞光; 吴翊; 孙昊; 纽春萍; 荣命哲

    2012-01-01

    This paper focuses on the numerical investigation of arc plasma behavior during arc commutation process in a medium-voltage direct current circuit breaker (DCCB) contact system. A three-dimensional magneto-hydrodynamic (MHD) model of air arc plasma in the contact system of a DCCB is developed, based on commercial software FLUENT. Coupled electromagnetic and gas dynamic interactions are considered as usual, and a thin layer of nonlinear electrical resistance elements is used to represent the voltage drop of plasma sheath and the formation of new arc root. The distributions of pressure, temperature, gas flow and current density of arc plasma in arc region are calculated. The simulation results indicate that the pressure distribution related to the contact system has a strong effect on the arc commutation process, arising from the change of electrical conductivity in the arc root region. In DCCB contact system, the pressure of arc root region will be concentrated and higher if the space above the moving contact is enclosed, which is not good for arc root commutation. However, when the region is opened, the pressure distribution would be lower and more evenly, which is favorable for the arc root commutation.

  17. Arc burst pattern analysis fault detection system

    Science.gov (United States)

    Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)

    1997-01-01

    A method and apparatus are provided for detecting an arcing fault on a power line carrying a load current. Parameters indicative of power flow and possible fault events on the line, such as voltage and load current, are monitored and analyzed for an arc burst pattern exhibited by arcing faults in a power system. These arcing faults are detected by identifying bursts of each half-cycle of the fundamental current. Bursts occurring at or near a voltage peak indicate arcing on that phase. Once a faulted phase line is identified, a comparison of the current and voltage reveals whether the fault is located in a downstream direction of power flow toward customers, or upstream toward a generation station. If the fault is located downstream, the line is de-energized, and if located upstream, the line may remain energized to prevent unnecessary power outages.

  18. Low voltage arc formation in railguns

    Science.gov (United States)

    Hawke, Ronald S.

    1987-01-01

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

  19. Collisional Simulations of Neptune's Ring Arcs

    Science.gov (United States)

    Hänninen, J.; Porco, C.

    1997-03-01

    The currently accepted model for Neptune arc confinement relies on the radial and azimuthal confining perturbations due to the nearby satellite, Galatea. This model calls for arc particle orbits exhibiting a negative eccentricity gradient and crossing at quadrature, a configuration that paradoxically leads to collisions energetic enough to disrupt arc confinement. We confirm with numerical collisional N-body simulations that the confinement mechanism relying on a 42:43 corotation-inclination resonance and a 42:43 outer Lindblad resonance with Galatea is indeed capable of confining a large population of 10-m-size and bigger particles over short time scales. Moreover, we find that an 84:86 outer vertical resonance, also due to Galatea, falling within 20 m of the arcs' radial position, effectively reduces the collision frequency and relative collisional velocities and consequently stabilizes the arcs over long time scales against the disruptive effects of collisions.

  20. An explanation for Neptune's ring arcs

    Science.gov (United States)

    Porco, Carolyn C.

    1991-08-01

    The Voyager mission revealed a complex system of rings and ring arcs around Neptune and uncovered six new satellites, four of which occupy orbits well inside the ring region. Analysis of Voyager data shows that a radial distortion with an amplitude of approximately 30 kilometers is traveling through the ring arcs, a perturbation attributable to the nearby satellite Galatea. Moreover, the arcs appear to be azimuthally confined by a resonant interaction with the same satellite, yielding a maximum spread in ring particle semimajor axes of 0.6 kilometer and a spread in forced eccentricities large enough to explain the arc's 15-kilometer radial widths. Additional ring arcs discovered in the course of this study give further support to this model.

  1. Metrology in arc plasmas - A new cathode

    Science.gov (United States)

    Croche, R.

    1980-02-01

    A new radiating source consisting of an electric arc under argon pressure is described, with power varying between about 0.2 and 1.5 kW, and with the plasma furnishing a continuous spectrum between 115 and 350 nm. The arc functions from 5 to 50 A, with a voltage varying between 30 and 35 V. The cathode of the transfer arc is described in detail, including such advantages as easy igniting of the arc and the possibility of re-sharpening the tip of the cathode. Most important, the new 'knife-shaped' form of the tungsten cathode has improved the stability and reproducibility of the ultraviolet continuum emitted by the plasma of the arc, which is used at the French National Institute of Metrology as a transfer standard of spectral radiance in the vacuum ultraviolet.

  2. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1983-01-01

    Ion-Selective Electrode Reviews, Volume 5 is a collection of articles that covers ion-speciation. The book aims to present the advancements of the range and capabilities of selective ion-sensors. The topics covered in the selection are neutral carrier based ion-selective electrodes; reference electrodes and liquid junction effects in ion-selective electrode potentiometry; ion transfer across water/organic phase boundaries and analytical; and carbon substrate ion-selective electrodes. The text will be of great use to chemists and chemical engineers.

  3. Magnetohydrodynamic generator electrode

    Science.gov (United States)

    Marchant, David D.; Killpatrick, Don H.; Herman, Harold; Kuczen, Kenneth D.

    1979-01-01

    An improved electrode for use as a current collector in the channel of a magnetohydrodynamid (MHD) generator utilizes an elongated monolithic cap of dense refractory material compliantly mounted to the MHD channel frame for collecting the current. The cap has a central longitudinal channel which contains a first layer of porous refractory ceramic as a high-temperature current leadout from the cap and a second layer of resilient wire mesh in contact with the first layer as a low-temperature current leadout between the first layer and the frame. Also described is a monolithic ceramic insulator compliantly mounted to the frame parallel to the electrode by a plurality of flexible metal strips.

  4. An Arc in Saturn's G Ring

    Science.gov (United States)

    Burns, Joseph A.; Hedman, M.; Tiscareno, M.; Porco, C.; Jones, G.; Roussos, E.; Krupp, N.

    2006-09-01

    The G ring is a narrow, faint ring located between the orbits of Janus and Mimas. Approximately 4000 km wide, it has a strongly asymmetric brightness profile with a sharp inner edge between 167,000 km and 168,000 km from Saturn's center and a more diffuse outer part. In Cassini images, a portion of the ring contains a bright arc that abuts the G-ring's inner edge and extends over 30 degrees in longitude. By tracking this arc over the first two years of the Cassini Mission, we find its orbital period is 0.80813 day, corresponding to a semi-major axis of 167,496 km. Since this location places the arc within 6 km of the Mimas 7:6 Co-rotation Eccentricity Resonance and within 12 km of the Mimas 7:6 Inner Lindblad Resonance, the arc is likely confined in longitude by Mimas just as Neptune's ring arcs are held in place by Galatea. The arc's longitude relative to Mimas is consistent with this model. Cassini now has the opportunity to study the dynamics of this sort of system in detail over a period of years. The arc, which may be the debris of a fragmented moon, may also supply the particles found in the rest of the G ring; micron-sized grains drift outwards by non-gravitational processes in this region. The G-ring is responsible for a broad, relatively modest decrease in the fluxes of magnetospheric charged particles. When Cassini passed over the G ring in the vicinity of the arc, on September 5, 2005, the MIMI instrument detected a particularly sharp and deep charged particle absorption signature. Such a pronounced charged particle absorption was not seen in the other G-ring passages that occurred longitudinally far from the arc. The nature of this absorption provides constraints on the population of large particles in this arc.

  5. Electrocatalysts for oxygen electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Yeager, E.B. (Case Western Reserve Univ., Cleveland, OH (United States))

    1991-10-01

    The objectives of the research were: to develop further understanding of the factors controlling O{sub 2} reduction and generation on various electrocatalysts, including transition metal macrocycles and oxides: to use this understanding to identify and develop much higher activity catalysts, both monofunction and bifunction; and to establish how catalytic activity for a given O{sub 2} electrocatalyst depends on catalyst-support interactions and to identify stable catalyst supports for bifunctional electrodes.

  6. Composite electrodes for lithium batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Hackney, S. A.; Johnson, C. S.; Kahaian, A. J.; Kepler, K. D.; Shao-Horn, Y.; Thackeray, M. M.; Vaughey, J. T.

    1999-02-03

    The stability of composite positive and negative electrodes for rechargeable lithium batteries is discussed. Positive electrodes with spinel-type structures that are derived from orthorhombic-LiMnO{sub 2} and layered-MnO{sub 2} are significantly more stable than standard spinel Li[Mn{sub 2}]O{sub 4} electrodes when cycled electrochemically over both the 4-V and 3-V plateaus in lithium cells. Transmission electron microscope data of cycled electrodes have indicated that a composite domain structure accounts for this greater electrochemical stability. The performance of composite Cu{sub x}Sn materials as alternative negative electrodes to amorphous SnO{sub x} electrodes for lithium-ion batteries is discussed in terms of the importance of the concentration of the electrochemically inactive copper component in the electrode.

  7. Electrode Erosion of a High Energy Impulse Spark Gap Switch

    Institute of Scientific and Technical Information of China (English)

    Yao Xueling; Zeng Zhengzhong; Chen Jinliang

    2005-01-01

    Based on the principle of thermal conduction, three metal alloys (stainless steel,copper-tungsten and graphite) were chosen as the material of the high impulse current discharging switch. Experimental results indicate that the mass loss and surface erosion morphology of the electrode are related with the electrode material (conductivity σ, melting point Tm, density ρ and thermal capacity c) and the impulse transferred charge (or energy) per impulse for the same total impulse transferred charge. The experimental results indicate that the mass loss of stainless steel,copper-tungsten and graphite are 380.10 μg/C, 118.10 μg/C and 81.90 μg/C respectively under the condition of a total impulse transferred charge of 525 C and a transferred charge per impulse of 10.5 C. Under the same impulse transferred charge, the mass loss of copper-tungsten(118.10 μg/C)with the transferred charge per impulse at 10.5 C is far larger than the mass loss (38.61μg/C)at a 1.48 C transferred charge per impulse. The electrode erosion mechanism under high energy impulse arcs is analyzed briefly and it is suggested that by selecting high conductive metal or metal alloy as the electrode material of a high energy impulse spark gap switch and setting high erosion resistance material at the top of the electrode, the mass loss of the electrode can be reduced and the life of the switch prolonged.

  8. Analysis of arc emission spectra of stainless steel electric arc furnace slag affected by fluctuating arc voltage.

    Science.gov (United States)

    Aula, Matti; Mäkinen, Ari; Fabritius, Timo

    2014-01-01

    Control of chromium oxidation in the electric arc furnace (EAF) is a significant problem in stainless steel production due to variations of the chemical compositions in the EAF charge. One potential method to control chromium oxidation is to analyze the emission spectrum of the electric arc in order to find indicators of rising chromium content in slag. The purpose of this study was to determine if slag composition can be gained by utilizing electric arc emission spectra in the laboratory environment, despite electric arc voltage fluctuations and varying slag composition. The purpose of inducing voltage fluctuation was to simulate changes in the industrial EAF process. The slag samples were obtained from Outokumpu Stainless Oy Tornio Works, and three different arc currents were used. The correlation analysis showed that the emission spectra offer numerous peak ratios with high correlations to the X-ray fluorescence-measured slag CrO(x)/FeO(x) and MnO/SiO2 ratios. These ratios are useful in determining if the reduction agents have been depleted in the EAF. The results suggest that analysis of laboratory-scale electric arc emission spectra is suitable for indicating the high CrO(x) or MnO content of the slag despite the arc fluctuations. Reliable analysis of other slag components was not successful.

  9. Study of the nature of non-metallic inclusions in samples of aluminum and silicon killed low carbon steels, collected in the refining treatment and continuous casting stages

    Directory of Open Access Journals (Sweden)

    José Carlos Santos Pires

    2004-12-01

    Full Text Available The amount, distribution, size and chemical composition of non-metallic inclusions have a direct influence on steel properties. By controlling size and chemical composition of these inclusions, it is possible to get a product with good quality. The identification of the nature and the control of inclusion formation are very important for steel cleanness. The behavior of these inclusions is predictable, in some extent, by the determination of the chemical composition of non-metallic phases that form such inclusions. With the objective of studying the chemical composition, the size and the distribution of such inclusions, samples of aluminum and silicon killed low carbon steels were collected in a national steel industry in the secondary refining and continuous casting stages. These samples were analyzed in the scanning electron microscope (SEM coupled to an energy dispersive analysis system (EDS. From the results, it was possible to evaluate the nature of inclusions and to analyze the effectiveness of the refining process in the reduction of the number and area fraction of the inclusions. It was also possible to verify that the inclusions that remained after treatment, are less damage both to the steel properties as to the continuous casting process (clogging of the submerged valve.

  10. Strength and deformability of compressed concrete elements with various types of non-metallic fiber and rods reinforcement under static loading

    Science.gov (United States)

    Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.

    2015-01-01

    Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.

  11. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites

    Science.gov (United States)

    Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.; Patterson, Clark; Santelle, Tom; Mehl, Jeremy

    2015-01-01

    The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  12. ATLAS DDM integration in ARC

    DEFF Research Database (Denmark)

    Behrmann, Gerd; Cameron, David; Ellert, Mattias;

    The Nordic Data Grid Facility (NDGF) consists of Grid resources running ARC middleware in Scandinavia and other countries. These resources serve many virtual organisations and contribute a large fraction of total worldwide resources for the ATLAS experiment, whose data is distributed and managed...... by the DQ2 software. Managing ATLAS data within NDGF and between NDGF and other Grids used by ATLAS (the LHC Computing Grid and the Open Science Grid) presents a unique challenge for several reasons. Firstly, the entry point for data, the Tier 1 centre, is physically distributed among heterogeneous...... environment. Also, the service used for cataloging the location of data files is different from other Grids but must still be useable by DQ2 and ATLAS users to locate data within NDGF. This paper presents in detail how we solve these issues to allow seamless access worldwide to data within NDGF....

  13. INTERPOLATION WITH RESTRICTED ARC LENGTH

    Institute of Scientific and Technical Information of China (English)

    Petar Petrov

    2003-01-01

    For given data (ti,yi), I= 0,1,…,n,0 = t0 <t1 <…<tn = 1we study constrained interpolation problem of Favard type inf{‖f"‖∞|f∈W2∞[0,1],f(ti)=yi,i=0,…,n,l(f;[0,1])≤l0}, wherel(f";[0,1])=∫1 0 / 1+f'2(x)dx is the arc length off in [0,1]. We prove the existence of a solution f* of the above problem, that is a quadratic spline with a second derivative f"* , which coincides with one of the constants - ‖f"*‖∞,0,‖f"*‖∞ between every two consecutive knots. Thus, we extend a result ofKarlin concerning Favard problem, to the case of restricted length interpolation.

  14. Computer simulation to arc spraying

    Institute of Scientific and Technical Information of China (English)

    梁志芳; 李午申; 王迎娜

    2004-01-01

    The arc spraying process is divided into two stages: the first stage is atomization-spraying stream (ASS) and the second one is spraying deposition (SD). Then study status is described of both stages' physical model and corresponding controlling-equation. Based on the analysis of study status, the conclusion as follows is got. The heat and mass transfer models with two or three dimensions in ASS stage should be established to far deeply analyses the dynamical and thermal behavior of the overheat droplet. The statistics law of overheated droplets should be further studied by connecting simulation with experiments. More proper validation experiments should be designed for flattening simulation to modify the models in SD stage.

  15. Effect Of Dynamic Characteristics of Power Supplies on Aerosol Composition While Welding With Coated Electrodes

    Science.gov (United States)

    Il'yaschenko, D. P.; Chinakhov, D. A.; Sadikov, I. D.

    2016-08-01

    In the context of a significant increase in production output and use of welding technologies in the manufacturing of engineering products the problem of hygienic characteristics of working conditions in arc fusion welding is becoming increasingly important. The work represents how the dynamic characteristics of a power supply affect the transfer of alloying elements from a coated electrode into a base metal, a slag phase and a solid component of welding fumes. Short-circuit current limiting in inverters reduces overheating of electrode metal drops by 15%; welding fumes quantitative component - to 38%; manganese - to 30%; thermal radiation intensity - by 37%.

  16. Spectroscopic studies of plasma in a carbon arc discharge for synthesis of nanomaterials

    Science.gov (United States)

    Vekselman, Vladislav; Feurer, Matthew; Yeh, Yao-Wen; Stratton, Brentley; Raitses, Yevgeny; LaboratoryPlasma Nanosynthesis Team

    2016-09-01

    An atmospheric pressure arc discharge with graphite electrodes is commonly used for synthesis of carbon nanomaterials such as buckyballs, nanotubes and graphene. In operation, the graphite anode ablates providing a feedstock material for synthesis these carbon nanostructures. Existing models predict that nucleation and growth of these nanomaterials in an arc discharge are governed by spatial distributions of density and temperature of plasma species. Control of these distributions can potentially enable optimization of nanosynthesis processes, to achieve the best combination of synthesis selectivity at the synthesis yield. In this work, we report first detail measurements of spatial distribution of arc plasma parameters obtained with a set of in-situ diagnostics, including optical emission spectroscopy and fast framing imaging. These parameters were measured in low- and high- anode ablation modes. Results of these measurements demonstrate a strong correlation between arc plasma and synthesis processes. This work was supported by U.S. Department of Energy, Office of Science, Basic Sciences, Materials Sciences and Engineering Division.

  17. The Modification of Carbon with Iron Oxide Synthesized in Electrolysis Using the Arc Discharge Method

    Science.gov (United States)

    Endah Saraswati, Teguh; Dewi Indah Prasiwi, Oktaviana; Masykur, Abu; Handayani, Nestri; Anwar, Miftahul

    2017-02-01

    The modification of carbon-based nanomaterials with metals is widely studied due to its unique properties. Here, the modification of carbon nanomaterial with iron oxide has been successfully carried out. This modification was achieved using arc discharge in 50% ethanol liquid media. The anode used in the arc discharge was prepared from a mixture of carbon and iron oxide that was synthesized in electrolysis and was then calcined at 250°C with silicon binder with a mass ratio of 3:1:1, and the cathode used was graphite rod. Both electrodes were set in the nearest gap that could provide an arc during arc-discharging, leading to carbon-based nanoparticle formation. The diffractogram pattern of the X-ray diffraction of the fabricated nanoparticles confirmed the typical peak of carbon, iron oxide and iron. The magnetization value of the result analysis of the vibrating sample magnetometer was 9.9 emu/g. The bandgap energy measurement using diffuse reflectance ultra violet was estimated to be 2.18 eV. Using the transmission electron microscopy, the structure of the nanomaterial produced was observed as carbon-encapsulated iron compound nanoparticles.

  18. Contribution For Arc Temperature Affected By Current Increment Ratio At Peak Current In Pulsed Arc

    Science.gov (United States)

    Kano, Ryota; Mitubori, Hironori; Iwao, Toru

    2015-11-01

    Tungsten Inert Gas (TIG) Welding is one of the high quality welding. However, parameters of the pulsed arc welding are many and complicated. if the welding parameters are not appropriate, the welding pool shape becomes wide and shallow.the convection of driving force contributes to the welding pool shape. However, in the case of changing current waveform as the pulse high frequency TIG welding, the arc temperature does not follow the change of the current. Other result of the calculation, in particular, the arc temperature at the reaching time of peak current is based on these considerations. Thus, the accurate measurement of the temperature at the time is required. Therefore, the objective of this research is the elucidation of contribution for arc temperature affected by current increment ratio at peak current in pulsed arc. It should obtain a detail knowledge of the welding model in pulsed arc. The temperature in the case of increment of the peak current from the base current is measured by using spectroscopy. As a result, when the arc current increases from 100 A to 150 A at 120 ms, the transient response of the temperature didn't occur during increasing current. Thus, during the current rise, it has been verified by measuring. Therefore, the contribution for arc temperature affected by current increment ratio at peak current in pulsed arc was elucidated in order to obtain more knowledge of welding model of pulsed arc.

  19. Electric Arc Furnace Modeling with Artificial Neural Networks and Arc Length with Variable Voltage Gradient

    Directory of Open Access Journals (Sweden)

    Raul Garcia-Segura

    2017-09-01

    Full Text Available Electric arc furnaces (EAFs contribute to almost one third of the global steel production. Arc furnaces use a large amount of electrical energy to process scrap or reduced iron and are relevant to study because small improvements in their efficiency account for significant energy savings. Optimal controllers need to be designed and proposed to enhance both process performance and energy consumption. Due to the random and chaotic nature of the electric arcs, neural networks and other soft computing techniques have been used for modeling EAFs. This study proposes a methodology for modeling EAFs that considers the time varying arc length as a relevant input parameter to the arc furnace model. Based on actual voltages and current measurements taken from an arc furnace, it was possible to estimate an arc length suitable for modeling the arc furnace using neural networks. The obtained results show that the model reproduces not only the stable arc conditions but also the unstable arc conditions, which are difficult to identify in a real heat process. The presented model can be applied for the development and testing of control systems to improve furnace energy efficiency and productivity.

  20. Effect of welding speed and electrode extension on the approximate entropy of welding current in short-circuiting GMAW

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the phase space reconstruction of welding current in short-circuiting transfer arc welding under carbon dioxide, the approximate entropy of welding current and its standard deviation have been calculated and analyzed at different welding speeds and different electrode extensions respectively. The experimental and calculated results show that at a certain arc voltage, wire feeding rate and gas flow rate, welding speed and electrode extension have significant effects not only on the approximate entropy of welding current, but also on the stability of welding process. Further analysis proves that when the welding speed and electrode extension are in an appropriate range respectively, the welding current approximate entropy attains maximum and its standard deviation minimum. Just under such circumstances, the welding process is in the most stable state.

  1. Reconstruction of Late Cretaceous Magmatic Arcs in the Northern Andes: Single Versus Multiple Arc Systems

    Science.gov (United States)

    Cardona, A.; Jaramillo, J. S.; Leon, S.; Hincapie, S.; Mejia, D.; Patino, A. M.; Vanegas, J.; Zapata, S.; Valencia, V.; Jimenez, G.; Monsalve, G.

    2014-12-01

    Although magmatic rocks are major tracers of the geological evolution of convergent margins, pre-collisional events such as subduction erosion, collisional thrusting or late collisional strike slip segmentation may difficult the recognizing of multiple arc systems and therefore the existence of paleogeographic scenarios with multiple subduction systems. New field, U-Pb geochronology and whole rock geochemistry constraints from the northwestern segment of the Central Cordillera in the states of Antioquia and Caldas (Colombia) are used to understand the nature of the Late Cretaceous arc magmatism and evaluate the existence of single or multiple Pacific and Caribbean arc systems in the growth of the Northwestern Andes. The new results integrated with additional field and published information is used to suggest the existence of at least three different magmatic arcs. (1) An Eastern Continental arc built within a well defined Permian to Triassic continental crust that record a protracted 90-70 Ma magmatic evolution, (2) a 90-80 arc formed within attenuated continental crust and associated oceanic crust, (3) 90-88 Ma arc formed over a Late Cretaceous plateau crust. The eastern arcs were formed as part of double eastern vergent subduction system, where the most outboard arc represent a fringing arc formed over detached fragments of continental crust, whereas the easternmost continental arc growth by the closure an subduction of and older and broad Triassic to Early Jurassic back-arc ocean. Its closure also end up in ophiolite emplacement. The third allochtonous oceanic arc was formed over the Caribbean plateau crust and was accreted to the continental margin in the Late Cretaceous. Ongoing paleomagnetic, deformational, gravimetric and basin analysis will be integrate to test this model and understand the complex Late Cretaceous tectonic evolution of the Northern Andes.

  2. Acoustic characteristics of electric arc furnaces

    Science.gov (United States)

    Cherednichenko, V. S.; Bikeev, R. A.; Cherednichenko, A. V.; Ognev, A. M.

    2016-06-01

    A mathematical model is constructed to describe the appearance and development of the noise characteristics of superpower electric arc furnaces. The noise formation is shown to be related to the pulsation of the axial plasma flows in arc discharges because of the electrodynamic pressure oscillations caused by the interaction of the self-magnetic field with the current passing in an arc. The pressure in the arc axis changes at a frequency of 100 Hz at the maximum operating pressure of 66 kPa for an arc current of 80 kA. The main ac arc sound frequencies are multiples of 100 Hz, which is supported in the practice of operation of electric arc furnaces. The sound intensity in the furnace laboratory reaches 160 dB and is decreased to 115-120 dB in the working furnace area due to shielding by the furnace jacket, the molten metal, and the molten slag. The appropriateness of increasing the hermetic sealing of electric furnaces and creating furnaces operating at low currents and high transformer voltages is corroborated.

  3. Towards a theory for Neptune's arc rings

    Science.gov (United States)

    Goldreich, P.; Tremaine, S.; Borderies, N.

    1986-01-01

    It is proposed that the incomplete rings of Neptune consist of a number of short arcs centered on the corotation resonances of a single satellite. The satellite must have a radius of the order of 100 km or more and move on an inclined orbit. Corotation resonances are located at potential maxima. Thus, mechanical energy dissipated by interparticle collisions must be continually replenished to prevent the arcs from spreading. It is shown that each corotation resonance is associated with a nearby Lindblad resonance, which excites the ring particles' orbital eccentricity, thus supplying the energy required to maintain the arc. The ultimate energy reservoir is the satellite's orbital energy. Therefore, interaction with the arcs damps the satellite's orbital inclination. The self-gravity of the arcs limits their contraction and enforces a relation between arc length and mass. The estimated arc masses are so small, of the order of 10 to the 16th g, that the satellite's orbital inclination suffers negligible decay over the age of the solar system. The inferred surface mass densities are comparable to those found in the major rings of Saturn and Uranus.

  4. METHOD OF CONJUGATED CIRCULAR ARCS TRACING

    Directory of Open Access Journals (Sweden)

    N. Ageyev Vladimir

    2017-01-01

    Full Text Available The geometric properties of conjugated circular arcs connecting two points on the plane with set directions of tan- gent vectors are studied in the work. It is shown that pairs of conjugated circular arcs with the same conditions in frontier points create one-parameter set of smooth curves tightly filling all the plane. One of the basic properties of this set is the fact that all coupling points of circular arcs are on the circular curve going through the initially given points. The circle radius depends on the direction of tangent vectors. Any point of the circle curve, named auxiliary in this work, determines a pair of conjugated arcs with given boundary conditions. One more condition of the auxiliary circle curve is that it divides the plane into two parts. The arcs going from the initial point are out of the circle limited by this circle curve and the arcs coming to the final point are inside it. These properties are the basis for the method of conjugated circular arcs tracing pro- posed in this article. The algorithm is rather simple and allows to fulfill all the needed plottings using only the divider and ruler. Two concrete examples are considered. The first one is related to the problem of tracing of a pair of conjugated arcs with the minimal curve jump when going through the coupling point. The second one demonstrates the possibility of trac- ing of the smooth curve going through any three points on the plane under condition that in the initial and final points the directions of tangent vectors are given. The proposed methods of conjugated circular arcs tracing can be applied in solving of a wide variety of problems connected with the tracing of cam contours, for example pattern curves in textile industry or in computer-aided-design systems when programming of looms with numeric control.

  5. Recycling of nonmetallics

    Science.gov (United States)

    Amey, E.B.; Kelly, T.D.

    1996-01-01

    The first factor determining recyclability is the composition of the material itself. Metals, for example, can be reused with little or no loss in quality. Paper and rubber, by this criterion, are less recyclable. Each time paper is recycled, some cellulose fibers are broken. Shorter fibers can mean weaker paper of perceived lower quality and value. Vulcanizing is an irreversible chemical process that precludes recycling rubber in its original form. Both materials may be reused in other applications often of lower value than the original one. To be recyclable, the discarded material must have a collection infrastructure at the source of waste generation, at a central collection site, or at curbside. The recovered material must also have a market. If it is priced noncompetitively or no market exists, if it does not meet specifications, or if it requires special technology investments which cannot be recovered through future sales, the recovered material may be stockpiled or discarded rather than recycled. ?? 1996 International Association for Mathematical Geology.

  6. CARACTERIZATION OF Cu-Al-Mn ALLOYS FABRICATED USING ARC FURNACE

    Directory of Open Access Journals (Sweden)

    Diego E. Velázquez

    2016-06-01

    Full Text Available Two alloys of Cu-Al-Mn fabricated using an arc furnace built at the Instituto de Física de Materiales Tandil (IFIMAT were studied. The manufacture of alloys containing Mn is difficult, due to their high melting point and its low vapor pressure. Moreover, Mn at high temperature easily reacts with the materials used to build crucibles or capsules. In the casting arc difficulties arise to prevent volatilization, so it is very important the choice of electrode, the source setting, cooling, and the arrangement of the pure materials into the crucible. Critical temperatures of martensitic transformation and order were determined by Differential Scanning Calorimetry (DSC. Using Optical Microscopy (OM the presence of martensite phase was determined. From the results obtained it is concluded that this method is suitable for producing Cu-Al-Mn alloys.

  7. Plasma diagnostics in gas metal arc welding by optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Valensi, F; Pellerin, S; Zielinska, S [GREMI, Universite d' Orleans (Site de Bourges)/CNRS, BP 4043, 18028 Bourges cedex (France); Boutaghane, A [Universite des Sciences et de la Technologie Houari Boumediene, Alger (Algeria); Dzierzega, K [Marian Smoluchowski Institute of Physics, Jagellonian University, Krakow (Poland); Pellerin, N [CNRS, UPR3079 CEMHTI, 1D av. de la Recherche Scientifique, 45071 Orleans cedex 2 (France); Briand, F, E-mail: flavien.valensi@laplace.univ-tsle.f, E-mail: stephane.pellerin@univ-orleans.f, E-mail: aboutaghane@yahoo.f, E-mail: krzycho@netmail.if.uj.edu.p, E-mail: sylwia.zielinska@airliquide.co, E-mail: nadia.pellerin@univ-orleans.f, E-mail: francis.briand@airliquide.co [CTAS-Air Liquide Welding, Saint Ouen l' Aumone, 95315 Cergy-Pontoise cedex (France)

    2010-11-03

    The plasma column in a metal inert gas welding process is investigated by optical emission spectroscopy and high-speed imaging. The concentration and repartition of iron vapours are measured and correlated with the plasma and electrode geometric configuration. Plasma temperatures and electron densities are also measured for each studied position in the plasma. The temperatures are calculated using two different methods, allowing validation of the local thermodynamic equilibrium state of the plasma. The results show a maximum temperature of 12 500 K in the upper part of the arc, away from the arc axis. The iron concentration reaches a maximum of 0.3% close to the anode and strongly decreases along both the vertical and radial directions. The plasma thermophysical properties, calculated from this plasma composition, are then discussed regarding the metal transfer mode.

  8. Formation of the G-ring arc

    Science.gov (United States)

    Araujo, N. C. S.; Vieira Neto, E.; Foryta, D. W.

    2016-09-01

    Since 2004, the images obtained by the Cassini spacecraft's on-board cameras have revealed the existence of several small satellites in the Saturn system. Some of these small satellites are embedded in arcs of particles. While these satellites and their arcs are known to be in corotation resonances with Mimas, their origin remains unknown. This work investigates one possible process for capturing bodies into a corotation resonance, which involves increasing the eccentricity of a perturbing body. Therefore, through numerical simulations and analytical studies, we show a scenario in which the excitation of Mimas's eccentricity could capture particles in a corotation resonance. This is a possible explanation for the origin of the arcs.

  9. Formation of the G-ring arc

    CERN Document Server

    Araujo, N C S; Foryta, D W

    2016-01-01

    Since 2004, the images obtained by Cassini spacecraft's on-board cameras have revealed the existence of several small satellites in the Saturn system. Some of these small satellites are embedded in arcs of particles. While these satellites and their arcs are known to be in corotation resonances with Mimas, their origin remains unknown. This work investigates one possible process for capturing bodies into a corotation resonance, which involves raising the eccentricity of a perturbing body. Therefore, through numerical simulations and analytical studies, we show a scenario that the excitation of Mimas' eccentricity could capture particles in a corotation resonance and given a possible explanation for the origin for the arcs.

  10. The Global Array of Primitve Arc Melts

    Science.gov (United States)

    Schmidt, M. W.; Jagoutz, O. E.

    2015-12-01

    A longstanding question concerns the nature of the melts forming in the subarc mantle and giving rise to arc magmatism. The global array of primitive arc melts (1180 volcanic rocks in 25 arcs extracted from the georoc database, calculated to be in equilibrium with mantle olivine) yields five principal melt types: calc-alkaline basalts and high-Mg andesites, tholeiitic basalts and high-Mg andesites, and shoshonitic or alkaline arc melts; many arcs have more than one type. Primitive calc-alkaline basalts occur in 11 arcs but most strikingly, 8 continental arcs (incl. Aleutians, Cascades, Japan, Mexico, Kamtschatka) have a continuous range of calc-alkaline basalts to high-Mg andesites with mostly 48-58 wt% SiO2. In each arc, these are spatially congruent, trace element patterns overlap, and major elements form a continuum. Their Ca-Mg-Si systematics suggests saturation in olivine+opx+cpx. We hence interpret the large majority of high-Mg andesites as derived from primitive calc-alkaline basalts through fractionation and reaction in the shallower mantle. Removal of anhydrous mantle phases at lower pressures increases SiO2 and H2O-contents while Mg# and Ni remain buffered to mantle values. Primitive tholeiitic basalts (Cascades, Kermadec, Marianas, Izu-Bonin, Japan, Palau, Sunda) have a much lesser subduction signal (e.g. in LILE) than the calc-alkaline suite. These tholeiites have been interpreted to form through decompression melting, but also characterize young intraoceanic arcs. In the two continental arcs with both tholeiitic and calc-alkaline primitive basalts (clearly distinct in trace patterns), there is no clear spatial segregation (Casacades, Japan). Three intraoceanic arcs (Marianas, Izu-Bonin, Tonga) have primitive tholeiitic, highly depleted high-Mg andesites (boninites) with HFSE and HREE slightly above primitive mantle values. These deviate in majors from the array formed by the basalts and calc-alkaline andesites suggesting that only these formed from a

  11. Cathodic Vacuum Arc Plasma of Thallium

    OpenAIRE

    Yushkov, Georgy Yu.; Anders, Andre

    2006-01-01

    Thallium arc plasma was investigated in a vacuum arc ion source. As expected from previous consideration of cathode materials in the Periodic Table of the Elements, thallium plasma shows lead-like behavior. Its mean ion charge state exceeds 2.0 immediately after arc triggering, reaches the predicted 1.60 and 1.45 after about 100 microsec and 150 microsec, respectively. The most likely ion velocity is initially 8000 m/s and decays to 6500 m/s and 6200 m/s after 100 microsec and 150 micros...

  12. Gas sensor with multiple internal reference electrodes and sensing electrodes

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a potentiometric gas sensor, or potentiometric gas detection element, with multiple internal reference electrodes and multiple sensing electrodes for determining the concentrations of gas components in a gaseous mixture. The sensor for gas detection comprises: a solid...... electrolyte, at least two sensing electrodes (SEs) in solid contact with the electrolyte, and at least two internal reference electrodes (IREs) in solid contact with the electrolyte, wherein each IRE comprises a composite material, comprising a binary mixture of a metal and a metal oxide dispersed to form...

  13. Linear volcanic segments in the Sunda Arc, Indonesia: Implications for arc lithosphere control upon volcano distribution

    Science.gov (United States)

    Macpherson, C. G.; Pacey, A.; McCaffrey, K. J.

    2012-12-01

    The overall curvature of many subduction zones is immediately apparent and the term island arc betrays the common assumption that subduction zone magmatism occurs in curved zones. This assumption can be expressed by approximating island arcs as segments of small circles on the surface of a sphere. Such treatments predict that the location of arc volcanoes is related to their vertical separation from the slab (in fact, the depth to seismicity in the slab) and require that the primary control on the locus of magmatism lies either within the subducted slab or the mantle wedge that separates the subducted and overriding lithospheric plates. The concept of curved arcs ignores longstanding observations that magmatism in many subduction systems occurs as segments of linearly arranged volcanic centres. Further evidence for this distribution comes from the close relationship between magmatism and large scale, arc-parallel fabrics in some arcs. Similarly, exposures of deep arc crust or mantle often reveal elongation of magmatic intrusions sub-parallel to the inferred trend of the arc. The Sunda Arc forms the Indonesian islands from Sumatra to Alor and provides an important test for models of volcano distribution for several reasons. First, Sunda has hosted abundant historic volcanic activity. Second, with the notable exception of Krakatau, every volcano in the arc is subaerial from base to cone and, therefore, can be readily identified where there is a suitable extent of local mapping that can be used to ground-truth satellite imagery. Third, there are significant changes in the stress regime along the length of the arc, allowing the influence of the upper plate to be evaluated by comparison of different arc segments. Finally, much of the Sunda Arc has proved difficult to accommodate in models that try to relate volcano distribution to the depth to the subducted slab. We apply an objective line-fitting protocol; the Hough Transform, to explore the distribution of volcanoes

  14. Bench-scale arc melter for R&D in thermal treatment of mixed wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kong, P.C.; Grandy, J.D.; Watkins, A.D.; Eddy, T.L.; Anderson, G.L.

    1993-05-01

    A small dc arc melter was designed and constructed to run bench-scale investigations on various aspects of development for high-temperature (1,500-1,800{degrees}C) processing of simulated transuranic-contaminated waste and soil located at the Radioactive Waste Management Complex (RWMC). Several recent system design and treatment studies have shown that high-temperature melting is the preferred treatment. The small arc melter is needed to establish techniques and procedures (with surrogates) prior to using a similar melter with the transuranic-contaminated wastes in appropriate facilities at the site. This report documents the design and construction, starting and heating procedures, and tests evaluating the melter`s ability to process several waste types stored at the RWMC. It is found that a thin graphite strip provides reliable starting with initial high current capability for partially melting the soil/waste mixture. The heating procedure includes (1) the initial high current-low voltage mode, (2) a low current-high voltage mode that commences after some slag has formed and arcing dominates over the receding graphite conduction path, and (3) a predominantly Joule heating mode during which the current can be increased within the limits to maintain relatively quiescent operation. Several experiments involving the melting of simulated wastes are discussed. Energy balance, slag temperature, and electrode wear measurements are presented. Recommendations for further refinements to enhance its processing capabilities are identified. Future studies anticipated with the arc melter include waste form processing development; dissolution, retention, volatilization, and collection for transuranic and low-level radionuclides, as well as high vapor pressure metals; electrode material development to minimize corrosion and erosion; refractory corrosion and/or skull formation effects; crucible or melter geometry; metal oxidation; and melt reduction/oxidation (redox) conditions.

  15. Exploring high temperature phenomena related to post-detonation using an electric arc

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Z. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Crowhurst, J. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grant, C. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Knight, K. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tang, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chernov, A. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cook, E. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lotscher, J. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hutcheon, I. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-11-22

    Here, we report a study of materials recovered from a uranium-containing plasma generated by an electric arc. The device used to generate the arc is capable of sustaining temperatures of an eV or higher for up to . Samples took the form of a -thick film deposited onto 8 pairs of -thick Cu electrodes supported on a -thick Kapton backing and sandwiched between glass plates. Materials recovered from the glass plates and around the electrode tips after passage of an arc were characterized using scanning and transmission electron microscopy. Recovered materials included a variety of crystalline compounds (e.g., UO2, UC2, UCu5,) as well as mixtures of uranium and amorphous glass. Most of the materials collected on the glass plates took the form of spherules having a wide range of diameters from tens of nanometers to tens of micrometers. The composition and size of the spherules depended on location, indicating different chemical and physical environments. A theoretical analysis we have carried out suggests that the submicron spherules presumably formed by deposition during the arc discharge, while at the same time the glass plates were strongly heated due to absorption of plasma radiation mainly by islands of deposited metals (Cu, U). The surface temperature of the glass plates is expected to have risen to ~2300 K thus producing a liquefied glass layer, likely diffusions of the deposited metals on the hot glass surface and into this layer were accompanied by chemical reactions that gave rise to the observed materials. These results, together with the compact scale and relatively low cost, suggest that the experimental technique provides a practical approach to investigate the complex physical and chemical processes that occur when actinide-containing material interacts with the environment at high temperature, for example, during fallout formation following a nuclear detonation.

  16. CyberArc: a non-coplanar-arc optimization algorithm for CyberKnife

    Science.gov (United States)

    Kearney, Vasant; Cheung, Joey P.; McGuinness, Christopher; Solberg, Timothy D.

    2017-07-01

    The goal of this study is to demonstrate the feasibility of a novel non-coplanar-arc optimization algorithm (CyberArc). This method aims to reduce the delivery time of conventional CyberKnife treatments by allowing for continuous beam delivery. CyberArc uses a 4 step optimization strategy, in which nodes, beams, and collimator sizes are determined, source trajectories are calculated, intermediate radiation models are generated, and final monitor units are calculated, for the continuous radiation source model. The dosimetric results as well as the time reduction factors for CyberArc are presented for 7 prostate and 2 brain cases. The dosimetric quality of the CyberArc plans are evaluated using conformity index, heterogeneity index, local confined normalized-mutual-information, and various clinically relevant dosimetric parameters. The results indicate that the CyberArc algorithm dramatically reduces the treatment time of CyberKnife plans while simultaneously preserving the dosimetric quality of the original plans.

  17. Gold electrodes from recordable CDs

    Science.gov (United States)

    Angnes; Richter; Augelli; Kume

    2000-11-01

    Gold electrodes are widely used in electrochemistry and electroanalytical chemistry. The notable performance when used in stripping analysis of many ionic species and the extraordinary affinity of thio compounds for its surface make these electrodes very suitable for many applications. This paper reports a simple and novel way to construct gold electrodes (CDtrodes) using recordable CDs as the gold source. The nanometer thickness of the gold layer of recordable disks (50-100 nm) favors the construction of band nanoelectrodes with areas as small as 10(-6) cm2. The plane surface can be easily used for the construction of conventional-sized gold electrodes for batch or flow injection analysis or even to obtain electrodes as large as 100 cm2. The low price of commercial recordable CDs allows a "one way use". The evaluation and applicability of these electrodes in the form of nanoelectrodes, in batch and associated with flow cells, are illustrated in this paper.

  18. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica

    2017-03-30

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  19. Analysis of industry development of building materials and ore mining and dressing of non-metallic minerals%2011年建材及非金属矿采选业行业发展分析

    Institute of Scientific and Technical Information of China (English)

    何军生

    2012-01-01

    In 2011, the growth of building materials production remained stable, industrial structure contiuned to optimise, economic porfits improved. In this paper, the author firstly discusses economic operation of building materials and ore mining and dressing of non-metallic minerals in 2011, to adjust the industrial structure of building materials and ore mining and dressing of non-metallic minerals to impove the quality of the economic operation, predicts the development trend of industry of building materials and ore mining and dressing of non-metallic minerals in 2012. At last, the author puts forward to policy suggestions which accelerate industry deleopment of the building materials and ore mining and dressing of non-metallic minerals%2011年建材工业生产增长速度保持平稳,产业结构继续优化,经济效益提高.本文首先讨论了2011年建材工业经济及非金属矿采选行业经济运行情况,做到调整建材及非金属矿选行业产业结构,提高经济运行质量,预测了2012年建材及非金属矿选行业未来发展趋势,最后提出促进建材及非金属矿选行业发展的政策建议.

  20. Electrodynamic Arrays Having Nanomaterial Electrodes

    Science.gov (United States)

    Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)

    2013-01-01

    An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.

  1. Jointed Holder For Welding Electrodes

    Science.gov (United States)

    Gilbert, Jeffrey L.

    1991-01-01

    Adjustable-angle holder enables use of standard straight electrode with custom-fabricated bent gas cup for welding in difficult-to-reach places. Electrode replaced easily, without removing cup, with aid of tool loosening miniature collet nut on holder. Consumes fewer electrodes for given amount of welding. Angle of holder continuously adjustable to fit angle of gas cup or geometry of part welded. Holder made double-jointed to accommodate gas cup having compound angles.

  2. Prostate treatments, 1MRT o RapidArc; Tratamiento de prostata, IMART o RapidArc?

    Energy Technology Data Exchange (ETDEWEB)

    Castro novais, J.; Ruiz Maqueda, S.; Pardo Perez, E.; Molina Lopez, M. Y.; Cerro Penalver, E.

    2015-07-01

    Techniques that modulate the dose (as IMRT or RapidArcTM) improve dose homogeneity within the target volume decreasing the dose in healthy organs. The aim of this work is to study the dosimetric differences in prostate radiotherapy treatments with IMRT and RapidArcTM. The results of the 109 patients studied show that plans to RapidArcTM have better coverage, compliance and dose gradient outside the target volume. (Author)

  3. 49 CFR 195.226 - Welding: Arc burns.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  4. Palaeomagnetic constraints on the geodynamic evolution of the Gibraltar Arc

    NARCIS (Netherlands)

    Krijgsman, W.; Garces, M.

    2004-01-01

    Subduction zone roll-back was recently put forward as a convincing model to explain the geometry and evolution of the Gibraltar Arc. For other subduction-related arc systems of the Mediterranean, such as the Calabrian Arc and the Hellenic Arc, palaeomagnetic rotation data from Neogene extensional ba

  5. Effect of arc on radiation thermometry in welding process

    Institute of Scientific and Technical Information of China (English)

    李亮玉; 王燕; 武宝林

    2002-01-01

    The effect of arc on radiation thermometry is analyzed in a field close to the arc during the welding process, and the ratio of signal to noise and other factors are obtained for a small current arc .The method of the temperature measurement is feasible when the arc current is decreased to a smaller value in the welding process.

  6. Resistance Characteristics of Arc in Long Air Gap

    Institute of Scientific and Technical Information of China (English)

    YU Zhanqing; YU Junjie; ZENG Rong; CHEN He; PENG Xiang

    2013-01-01

    Arc resistance is an important parameter for characterizing long arcs in air,and its laboratory testing is of importance for accurate arc modeling of electromagnetic transient caused by short circuit fault.Therefore,we constructed an experimental system to study the characteristics of long AC arc in air.Driven by currents of 10 kA or 40 kA (root mean square value),the system produces arcs with different initial lengths of 1 m,2 m and 4 m,and the movement of the arcs are captured by a high-speed camera.After performing experiments using the system,we carried out analysis and comparisons of the arc resistance of arcs with different lengths and different currents,as well as a study of the relationship between the macro-morphology and the resistance of the arcs.Conclusions were drawn from the experimental results:the arc voltage had obvious saturation characteristics; the arc resistance increased with the increase of arc length and the decrease of current; the arcs bended or extended significantly in time and the peak arc voltage within a single cycle increased correspondingly; the arcs had voltage and current in the same phase.In the end,a formula of arc resistance based on the experiment results is derived.

  7. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1982-01-01

    Ion-Selective Electrode Reviews, Volume 3, provides a review of articles on ion-selective electrodes (ISEs). The volume begins with an article on methods based on titration procedures for surfactant analysis, which have been developed for discrete batch operation and for continuous AutoAnalyser use. Separate chapters deal with detection limits of ion-selective electrodes; the possibility of using inorganic ion-exchange materials as ion-sensors; and the effect of solvent on potentials of cells with ion-selective electrodes. Also included is a chapter on advances in calibration procedures, the d

  8. Electrodes for Semiconductor Gas Sensors.

    Science.gov (United States)

    Lee, Sung Pil

    2017-03-25

    The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode-semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode-semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect.

  9. Seldovia, Alaska 1 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seldovia, Alaska Elevation Grid provides bathymetric data in ASCII raster format of 1 arc-second resolution in geographic coordinates. This grid is strictly for...

  10. Seward, Alaska 1 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1 arc-second Seward Alaska Elevation Grid provides bathymetric data in ASCII raster format of .89-second resolution in geographic coordinates. This grid is...

  11. Arc tracks on nanostructured surfaces after microbreakdowns

    Science.gov (United States)

    Sinelnikov, D.; Bulgadaryan, D.; Hwangbo, D.; Kajita, S.; Kolodko, D.; Kurnaev, V.; Ohno, N.

    2016-09-01

    Studying of initial steps of unipolar arc ignition process is important for reduction of probability of arcing between the plasma and the wall in thermonuclear devices. Tungsten nano-fuzz surface formed by helium plasma irradiation at high fluences and temperatures is a perfect material for arc ignition. Snowflake-like craters were detected on the fuzzy surfaces after short micro-breakdowns. Such sort of craters have not been observed before on any other metallic surfaces. These specific traces are formed due to unique properties of the fuzz structure. The nano-fuzz could be easily melted and vaporized by micro-breakdown current, due to its porosity and bad thermal conductivity, and formation of low conducting metallic vapour under the cathode spot causes discharge movement to the nearest place. Thus, even low current arc can easily move and leave traces, which could be easily observed by a secondary electron microscope.

  12. Asymptotic Markov inequality on Jordan arcs

    Science.gov (United States)

    Totik, V.

    2017-03-01

    Markov's inequality for the derivative of algebraic polynomials is considered on C^2-smooth Jordan arcs. The asymptotically best estimate is given for the kth derivative for all k=1,2,\\dots . The best constant is related to the behaviour around the endpoints of the arc of the normal derivative of the Green's function of the complementary domain. The result is deduced from the asymptotically sharp Bernstein inequality for the kth derivative at inner points of a Jordan arc, which is derived from a recent result of Kalmykov and Nagy on the Bernstein inequality on analytic arcs. In the course of the proof we shall also need to reduce the analyticity condition in this last result to C^2-smoothness. Bibliography: 21 titles.

  13. Seward, Alaska 3 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 3 arc-second Seward Alaska Elevation Grid provides bathymetric data in ASCII raster format of 2.67-second resolution in geographic coordinates. This grid is...

  14. Laboratory arc furnace features interchangeable hearths

    Science.gov (United States)

    Armstrong, J. L.; Kruger, O. L.

    1967-01-01

    Laboratory arc furnace using rapidly interchangeable hearths gains considerable versatility in casting so that buttons or special shaped castings can be produced. It features a sight glass for observation.

  15. Arc -furnace Flicker Compensation in Ethiopia.

    African Journals Online (AJOL)

    supply system of the Ethiopian Electric Light and ... independent of the magnitude of the arc furnace load. They were intolerable ..... Weather sealing (Important in Ethi- opia). 3. .... nace currents during the worst periods of initial melt- ing down.

  16. Sensitivity of collapsed arc QA method for delivery errors in Volumetric Modulated Arc Therapy (VMAT)

    Science.gov (United States)

    Young, Tony; Xing, Aitang; Vial, Philp; Thwaites, David; Holloway, Lois; Arumugam, Sankar

    2015-01-01

    In this paper the sensitivity of an Electronic Portal Imaging Device (EPID) to detecting introduced Volumetric Arc Therapy (VMAT) treatment errors was studied using the Collapsed Arc method. Two clinical Head and Neck (H&N) and Prostate treatment plans had gantry dependent dose and MLC errors introduced to the plans. These plans were then delivered to an Elekta Synergy Linear Accelerator EPID and compared to the original treatment planning system Collapsed Arc dose matrix. With the Collapsed Arc technique the EPID was able to detect MLC errors down to 2mm and dose errors of down to 3% depending on the treatment plan complexity and gamma tolerance used.

  17. Rapid magmatic processes accompany arc-continent collision: the Western Bismarck arc, Papua New Guinea

    Science.gov (United States)

    Cunningham, Heather; Gill, Jim; Turner, Simon; Caulfield, John; Edwards, Louise; Day, Simon

    2012-11-01

    New U-Th-Ra, major and trace element, and Sr-Nd-Pb isotope data are presented for young lavas from the New Britain and Western Bismarck arcs in Papua New Guinea. New Britain is an oceanic arc, whereas the latter is the site of an arc-continent collision. Building on a recent study of the Manus Basin, contrasts between the two arcs are used to evaluate the processes and timescales of magma generation accompanying arc-continent collision and possible slab detachment. All three suites share many attributes characteristic of arc lavas that can be ascribed to the addition of a regionally uniform subduction component derived from the subducting altered oceanic crust and sediment followed by dynamic melting of the modified mantle. However, the Western Bismarck arc lavas diverge from the Pb isotope mixing array formed by the New Britain and the Manus Basin lavas toward elevated 208Pb/204Pb. We interpret this to reflect a second and subsequent addition of sediment melt at crustal depth during collision. 238U and 226Ra excesses are preserved in all of the lavas and are greatest in the Western Bismarck arc. High-Mg andesites with high Sr/Y ratios in the westernmost arc are attributed to recent shallow mantle flux melting at the slab edge. Data for two historical rhyolites are also presented. Although these rhyolites formed in quite different tectonic settings and display different geochemical and isotopic compositions, both formed from mafic parents within millennia.

  18. Arcing flow phenomena; Visualisation des ecoulements en presence d'un arc de coupure

    Energy Technology Data Exchange (ETDEWEB)

    Rachard, H.; Mottet, C. [Schneider Electric, Centre de Recherches A2, 75 - Paris (France)

    2002-06-01

    Optical diagnostic techniques have been used for studying electric arcing phenomena at Schneider Electric for many years now, and are integrated in new-product development practice. Studies have so far focused on electric arc behaviour, but today we are especially interested in studying the interaction of an electric arc with its immediate environment, i.e. gaseous medium and neighbouring materials. This article starts by discussing the specificities of electric arcs in low-voltage circuit-breakers, then goes on to examine diagnostic methods for viewing the physical phenomena of interest. After setting out and analysing the results obtained, we conclude with details on planned upgrades targeting enhanced diagnostic performance. (author)

  19. Basins in ARC-continental collisions

    Science.gov (United States)

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  20. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan

    2014-01-01

    current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column......, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light...

  1. Where exactly are the arcs of Neptune?

    Science.gov (United States)

    Horanyi, Mihaly; Porco, Carolyn C.

    1993-12-01

    A largely neglected secular perturbation that changes the effective mean motion is noted to occur on the osculating longitude at epoch, due to periodic close encounters between arc particles of Neptune and Galatea. This perturbation is here examined both analytically and numerically. It is shown that the confinement mechanism, based on single-satellite shepherding by Galatea, remains in force at the new position of the arc-confining resonances.

  2. Study on Ceramic Cutting by Plasma Arc

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Engineering ceramics are typical difficult-to-machine materials because of high hardness and brittleness. PAC (Plasma Arc Cutting) is a very important thermal cutting process and has been successfully used in cutting stainless steel and other difficult-to-machine alloys. PAC's application in cutting ceramics, however, is still limited because the most ceramics are not good electronic conducts, and transferred plasma arc cannot be produced between cathode and work-piece. So we presented a method of plasma ...

  3. New method for capturing arc of moving on switching apparatus

    Institute of Scientific and Technical Information of China (English)

    LIU Jiao-min; WANG Jing-hong

    2007-01-01

    The switching arc that occurs in contact gap when contact of low voltage apparatus closes or breaks in electric circuit is harmful to the contacts, insulation, and reliability of electrical gear because of its very high temperature. As arcing time is very short in switching gear, it is very difficult to observe arc phenomena directly for researchers. Therefore, visualization of switching arc is important for understanding arc phenomena, to analyze the arc features, and to improve the design and reliability of switching gear. Based on analyzing the visualization methods proposed by researchers, a new switching arc capturing approach is introduced in this paper. Arc image acquisition, and image processing techniques were studied. A switching arc image acquisition and visual simulation software based on high speed CCD camera hard ware system was designed and implemented to yield enhanced arc image with good visual effect.

  4. Magnesium isotope geochemistry in arc volcanism

    Science.gov (United States)

    Teng, Fang-Zhen; Hu, Yan; Chauvel, Catherine

    2016-06-01

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ26Mg of the Martinique Island lavas varies from -0.25 to -0.10, in contrast to the narrow range that characterizes the mantle (-0.25 ± 0.04, 2 SD). These high δ26Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid-mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration.

  5. Magnesium isotope geochemistry in arc volcanism.

    Science.gov (United States)

    Teng, Fang-Zhen; Hu, Yan; Chauvel, Catherine

    2016-06-28

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ(26)Mg of the Martinique Island lavas varies from -0.25 to -0.10, in contrast to the narrow range that characterizes the mantle (-0.25 ± 0.04, 2 SD). These high δ(26)Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid-mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration.

  6. Electric arc furnace models for flicker study

    Directory of Open Access Journals (Sweden)

    Catalina González Castaño

    2016-06-01

    Full Text Available Objective: The aim of this paper is to evaluate voltage fluctuations or flicker of two electric arc furnace models through comparison with real data.Method: The first proposed model is founded on the energy conservation principle, which generates a non-linear differential equation modelling the electric arc voltage – current characteristics. Voltage fluctuations are generated using a chaotic circuit that modulates the amplitude of arc voltage. The second model is based on the empirical relationship between the arc diameter or length as well as voltage and electrical current on the arc. Voltage fluctuations are considered adding a random signal in the arc length. Both models are implemented in PSCADTM.Results: The results of both models are compared with real data taken at the most critical stage of the operation of the furnace, and they show that the model based on energy conservation has a lower average mean square error in the voltages and currents 5.6 V and 1.7 kA against 27,2 V y 3.38 kA obtained with the second model.Conclusions: Both models consider the nonlinearity and random behavior present in this type of load, validating their inclusion in computer models of electric power systems.

  7. Recent ARC developments: Through modularity to interoperability

    Energy Technology Data Exchange (ETDEWEB)

    Smirnova, O; Cameron, D; Ellert, M; Groenager, M; Johansson, D; Kleist, J [NDGF, Kastruplundsgade 22, DK-2770 Kastrup (Denmark); Dobe, P; Joenemo, J; Konya, B [Lund University, Experimental High Energy Physics, Institute of Physics, Box 118, SE-22100 Lund (Sweden); Fraagaat, T; Konstantinov, A; Nilsen, J K; Saada, F Ould; Qiang, W; Read, A [University of Oslo, Department of Physics, P. O. Box 1048, Blindern, N-0316 Oslo (Norway); Kocan, M [Pavol Jozef Safarik University, Faculty of Science, Jesenna 5, SK-04000 Kosice (Slovakia); Marton, I; Nagy, Zs [NIIF/HUNGARNET, Victor Hugo 18-22, H-1132 Budapest (Hungary); Moeller, S [University of Luebeck, Inst. Of Neuro- and Bioinformatics, Ratzeburger Allee 160, D-23538 Luebeck (Germany); Mohn, B, E-mail: oxana.smirnova@hep.lu.s [Uppsala University, Department of Physics and Astronomy, Div. of Nuclear and Particle Physics, Box 535, SE-75121 Uppsala (Sweden)

    2010-04-01

    The Advanced Resource Connector (ARC) middleware introduced by NorduGrid is one of the basic Grid solutions used by scientists worldwide. While being well-proven in daily use by a wide variety of scientific applications at large-scale infrastructures like the Nordic DataGrid Facility (NDGF) and smaller scale projects, production ARC of today is still largely based on conventional Grid technologies and custom interfaces introduced a decade ago. In order to guarantee sustainability, true cross-system portability and standards-compliance based interoperability, the ARC community undertakes a massive effort of implementing modular Web Service (WS) approach into the middleware. With support from the EU KnowARC project, new components were introduced and the existing key ARC services got extended with WS technology based standard-compliant interfaces following a service-oriented architecture. Such components include the hosting environment framework, the resource-coupled execution service, the re-engineered client library, the self-healing storage solution and the peer-to-peer information system, to name a few. Gradual introduction of these new services and client tools into the production middleware releases is carried out together with NDGF and thus ensures a smooth transition to the next generation Grid middleware. Standard interfaces and modularity of the new component design are essential for ARC contributions to the planned Universal Middleware Distribution of the European Grid Initiative.

  8. Point Electrode Studies of the Solid Electrolyte-Electrode Interface

    DEFF Research Database (Denmark)

    Jacobsen, Torben

    \\parbox[t]{7.3cm}{Strong anodic activation due to computer communication error.} It is seen that as long as the electrode is kept at the equilibrium potential, the capacity pr.\\,unit area is constant, indicating a stable reaction zone. Polarising the electrode a decrease in this ratio is observed. Although......In the development of new electrode materials for high temperature Solid Oxide Fuel Cells methods are needed for the electrochemical evaluation of the catalytic properties of the materials. A major problem in the comparison of materials is how to determine the geometry and the effective length...... of the active reaction zone, the triple phase boundary. One way of solving this is by the application of point electrodes where the electrode-electrolyte contact is assumed to be circular with a radius calculated from the high frequency impedance. The perimeter is the taken as the length of the reaction zone...

  9. Making and breaking an Island arc: a new perspective from the Oligocene Kyushu-Palau arc

    Science.gov (United States)

    Ishizuka, O.; Taylor, R. N.; Yuasa, M.; Ohara, Y.

    2010-12-01

    The Kyushu-Palau Ridge (KPR) is a 2000km long remnant island arc that is separated from the active Izu-Bonin-Mariana (IBM) arc system by a series of spreading and rift basins. In this study we present 40Ar/39Ar ages and geochemical data for new samples taken from the entire length of the Kyushu-Palau arc. As such, this data provides the first comprehensive evaluation of temporal and spatial changes that are present in an Eocene-Oligocene island arc. Kyushu-Palau arc geochemistry is evaluated alongside new data from the conjugate arc which is stranded within the IBM fore-arc. Boninitic magmatism gave way to transitional arc suites including high-Mg andesites at c. 45 Ma (Ishizuka et al., 2006). After the transitional 45-41 Ma period, a mature arc system developed through the Eocene-Oligocene time: This volcanism is now preserved as the KPR. Dating results from 33 sites indicate that the KPR was active between 25 and 43 Ma, but the majority of the exposed volcanism occurred in the final phase of this arc, between 25 and 27 Ma. Unlike the IBM, the KPR has only limited systematic along-arc trends and does not include any of the strongly HIMU lavas found to the south of Izu-Bonin. Two components found along the KPR are found to have geochemistry that suggests an origin in the supra-subduction mantle rather than from the descending ocean crust. Firstly, in the south of the arc, EM-2-like lavas are present where the West Philippine Basin was in the final stages of spreading. Secondly, EM-1-like lavas are present in a restricted section of the arc, suggesting a localised heterogeneity. Subduction flux beneath the KPR generally imparted a Pb isotope vector towards low Δ8/4 (19). This is a similar trend to the Eocene/Oligocene lavas found on the eastern side of the basins which split the arc at 25Ma. Another geochemical heterogeneity is found at the KPR-Daito Ridge intersection where arc magmatism occurred on pre-existing Daito Ridge crust: a Cretaceous remnant arc

  10. Laser-induced incandescence (LII) diagnostic for in situ monitoring of nanoparticle synthesis in a high-pressure arc discharge

    Science.gov (United States)

    Yatom, Shurik; Vekselman, Vladislav; Mitrani, James; Stratton, Brentley; Raitses, Yevgeny; LaboratoryPlasma Nanosynthesis Team

    2016-10-01

    A DC arc discharge is commonly used for synthesis of carbon nanoparticles, including buckyballs, carbon nanotubes, and graphene flakes. In this work we show the first results of nanoparticles monitored during the arc discharge. The graphite electrode is vaporized by high current (60 A) in a buffer Helium gas leading to nanoparticle synthesis in a low temperature plasma. The arc was shown to oscillate, which can possibly influence the nano-synthesis. To visualize the nanoparticles in-situ we employ the LII technique. The nanoparticles with radii >50 nm, emerging from the arc area are heated with a short laser pulse and incandesce. The resulting radiation is captured with an ICCD camera, showing the location of the generated nanoparticles. The images of incandescence are studied together with temporally synchronized fast-framing imaging of C2 emission, to connect the dynamics of arc instabilities, C2 molecules concentration and nanoparticles. The time-resolved incandescence signal is analyzed with combination of ex-situ measurements of the synthesized nanoparticles and LII modeling, to provide the size distribution of produced nanoparticles. This work was supported by US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  11. Repair welding of cast iron coated electrodes

    Science.gov (United States)

    Żuk, M.; Górka, J.; Dojka, R.; Czupryński, A.

    2017-08-01

    Welding cast iron is a complex production procedure. Repair welding was used to repair damaged or poorly made castings. This is due to a tendency to cracking of the material during welding as well as after it. Welding cast iron can be carried out on hot or on cold. Hot welding requires high heat material and the use of welding material in the form of cast iron. In the case of cold welding, it is possible to use different materials. Mostly used filler metals are nickel and copper based. The work shows the course of research concerning repairmen of ductile iron with arc welding method. For the reparation process four types of ESAB company coated electrodes dedicated for cast iron were used with diameter 3.2 and 4 mm: ES 18-8-6B (4mm), EB 150 (4mm), OK NiCl, EŻM. In the cast iron examined during the testing grooves were made using plasma methods, in order to simulate the removed casting flaws. Then the welding process with coated electrodes was executed. The process utilized low welding current row of 100A, so there would only be a small amount of heat delivered to the heat affected zone (HAZ). Short stitches were made, after welding it was hammered, in order to remove stresses. After the repair welding the part of studies commenced which purpose was finding surface defects using visual testing (VT) and penetration testing (PT). In the second part, a series of macro and microscopic studies were executed witch the purpose of disclosuring the structure. Then the hardness tests for welds cross sections were performed. An important aspect of welding cast iron is the colour of the padding weld after welding, more precisely the difference between the base material and padding weld, the use of different materials extra gives the extra ability to select the best variant. The research of four types of coated electrode was executed, based on the demands the best option in terms of aesthetic, strength and hardness.

  12. Eradication of Pseudomonas aeruginosa cells by cathodic electrochemical currents delivered with graphite electrodes.

    Science.gov (United States)

    Niepa, Tagbo H R; Wang, Hao; Gilbert, Jeremy L; Ren, Dacheng

    2017-03-01

    Antibiotic resistance is a major challenge to the treatment of bacterial infections associated with medical devices and biomaterials. One important intrinsic mechanism of such resistance is the formation of persister cells that are phenotypic variants of microorganisms and highly tolerant to antibiotics. Recently, we reported a new approach to eradicating persister cells of Pseudomonas aeruginosa using low-level direct electrochemical current (DC) and synergy with the antibiotic tobramycin. To further understand the underlying mechanism and develop this technology toward possible medical applications, we investigated the electricidal activities of non-metallic biomaterial on persister and biofilm cells of P. aeruginosa using graphite-based TGON™ 805 electrodes. We employed both single and dual chamber systems to compare electrochemical factors of TGON and stainless steel 304 electrodes. The results revealed that TGON-based treatments were highly effective against P. aeruginosa persister cells. In the single chamber system, complete eradication of planktonic persister cells (corresponding to a 7-log killing) was achieved with 70μA/cm(2) DC using TGON electrodes within 40min of treatment, while the cell viability in biofilms was reduced by 2 logs within 1h. The killing effects were dose and time dependent with higher current densities requiring less time. Moreover, reduction reactions were found more effective than oxidation reactions, confirming that metal cations are not indispensable, although they may facilitate cell killing. The findings of this study can help develop electrochemical technologies to eradicate persister and biofilm cells for more effective treatment of medical device and biomaterial associated infections.

  13. Light addressable gold electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Waqas

    2011-07-01

    The main objective carried out in this dissertation was to fabricate Light Amplified Potentiometric sensors (LAPS) based upon the semiconductor nanoparticles (quantum dots) instead of its bulk form. Quantum dots (QDs) were opted for this device fabrication because of their superior fluorescent, electric and catalytic properties. Also in comparison to their bulk counterparts they will make device small, light weighted and power consumption is much lower. QDs were immobilized on a Au substrate via 1,4 benzene dithiol (BDT) molecule. Initially a self-assembled monolayer (SAM) of BDT was established on Au substrate. Because of SAM, the conductivity of Au substrate decreased dramatically. Furthermore QDs were anchored with the help of BDT molecule on Au substrate. When QDs immobilized on Au substrate (QD/Au) via BDT molecule were irradiated with UV-visible light, electron-hole pairs were generated in QDs. The surface defect states in QDs trapped the excited electrons and long lived electron-hole pairs were formed. By the application of an appropriate bias potential on Au substrate the electrons could be supplied or extracted from the QDs via tunneling through BDT. Thus a cathodic or anodic current could be observed depending upon bias potential under illumination. However without light illumination the QD/Au electrode remained an insulator. To improve the device different modifications were made, including different substrates (Au evaporated on glass, Au evaporated on mica sheets and Au sputtered on SiO{sub 2}/Si) and different dithiol molecules (capped and uncapped biphenyl 4,4' dithiol and capped and uncapped 4,4' dimercaptostilbenes) were tried. Also different QD immobilization techniques (normal incubation, spin coating, layer by layer assembly (LbL) of polyelectrolytes and heat immobilization) were employed. This device was able to detect electrochemically different analytes depending upon the QDs incorporated. For example CdS QDs were able to detect 4

  14. Sub-micrometer particles produced by a low-powered AC electric arc in liquids.

    Science.gov (United States)

    Jaworski, Jacek A; Fleury, Eric

    2012-01-01

    The article presents the report of the production of composites of sub-micrometer metal particles in matrix consisted of the metal compounds by means of an AC electric arc in water and paraffin solutions using electrodes carbon-metal and metal-metal (metal: Ni, Fe, Co, Cu). The advantage of this method is the low electric power (from 5 to 10 W) needed in comparison to standard DC arc-discharge methods (0.8 to 3 kW). This method enables the production of particles from conductive material also in wide range of temperature and in solvent which could be either transparent to light or opaque. Moreover the solvent can be electrolyte or insulating liquid. The microstructure of the composite layer was investigated by scanning electron microscopy (SEM), Electron Probe Microanalysis (EPMA) and X-ray. During particles production in water metal oxides were created. Additionally using cobalt-copper, nickel-copper as couple electrodes, insoluble in water copper (II) hydroxide crystal grains were created additionally which crystals shape was depended on transition metal. For iron-copper couple electrodes system the copper (II) hydroxide was not formed. Experiments with sequence production of Ni and Fe particles with C electrode assisting in molten paraffin let to obtain both Ni and Fe particles surrounded by paraffin. After solidification the material was insulator but if locally magnetic field influenced on the liquid solution in that place after solidification a new composite was created which was electric current conductor with resistivity around 0.1 omega x m, was attracted by magnetic field and presented magneto resistance around 0.4% in changing magnetic field in a range 150 mT. After mixing the concentrated paraffin with normal paraffin resistivity of the mixture increased and it became photosensitive and created small voltage under light influence.

  15. Restructuring of porous nickel electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lenhart, S.J.; Macdonald, D.D.; Pound, B.G.

    1984-08-01

    A transmission line model for the electrochemical impedance of porous electrodes was used to study the degradation of nickel battery plates throughout their cycle life. The model was shown to successfully account for changes in the observed electrode properties in terms of simultaneous restructuring of the active mass and rupture of particleparticle ohmic contacts.

  16. Ion-selective electrodes, 3

    Energy Technology Data Exchange (ETDEWEB)

    Pungor, E. (ed.)

    1981-01-01

    Thirty-two papers which were presented at the Third Symposium on Ion-Selective Electrodes are presented in this Proceedings. These papers dealt with standardization, fabrication, chemical properties of ion-selective electrodes and their application. Selected papers have been abstracted and indexed separately for the data base. (ATT)

  17. ELECTROCHEMISTRY OF FUEL CELL ELECTRODES.

    Science.gov (United States)

    optimization of fuel cell electrodes. Hydrogen oxidation and reduction, the reduction of oxygen, and the oxidation of formic acid, a soluble organic...substance, were selected for these studiees because of their relevance to fuel cell systems and because of their relative simplicity. The electrodes

  18. Making EDM Electrodes By Stereolithography

    Science.gov (United States)

    Barlas, Philip A.

    1988-01-01

    Stereolithography is computer-aided manufacturing technique. Used to make models and molds of electrodes for electrical-discharge machining (EDM). Eliminates intermediate steps in fabrication of plastic model of object used in making EDM electrode to manufacture object or mold for object.

  19. Gel electrolytes and electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.; Viner, Veronika G.

    2017-09-05

    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least one polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.

  20. Composite electrode/electrolyte structure

    Science.gov (United States)

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2004-01-27

    Provided is an electrode fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. Onto this electrode in the green state, a green ionic (e.g., electrolyte) film is deposited and the assembly is co-fired at a temperature suitable to fully densify the film while the substrate retains porosity. Subsequently, a catalytic material is added to the electrode structure by infiltration of a metal salt and subsequent low temperature firing. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems.

  1. Electrode for a lithium cell

    Science.gov (United States)

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2008-10-14

    This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

  2. An Electrochemical Evaluation on the Corrosion of Weld Zone in Cold Arc Welding of the Cast Iron

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Kyung Man; Lee, Myung Hoon; Kim, Ki Joon [Korea Maritime University, Busan (Korea, Republic of); Kim, Jin Gyeong [Korea Institute of Marine and Frsheries Technology, Busan (Korea, Republic of)

    2008-04-15

    Cold arc welding of cast iron has been widely used with repair welding of metal structures. However its welding is often resulted in the galvanic corrosion between weld metal zone and heat affected zone(HAZ) due to increasing of hardness. In this study, corrosion properties such as hardness, corrosion potential, surface microstructures, and variation of corrosion current density of welding zone with parameters of used electrodes for cast iron welding were investigated with an electrochemical evaluation. Hardness of HAZ showed the highest value compared to other welding zone regardless of kinds of used electrodes for cast iron welding. And its corrosion potential was also shifted to more negative direction than other welding zone. In addition, corrosion current density of WM in polarization cures was qualitatively smaller than that of HAZ. Therefore galvanic corrosion may be apparently observed at HAZ. However galvanic corrosion may be somewhat controlled by using an optimum welding electrode.

  3. Effects of process parameters on arc shape and penetration in twin-wire indirect arc welding

    Institute of Scientific and Technical Information of China (English)

    Shun-shan ZHANG; Mei-qing CAO; Dong-ting WU; Zeng-da ZOU

    2009-01-01

    In this study, the effects of variable parameters on arc shape and depth of penetration in twin-wire indirect arc gas shielded welding were investigated. The variation of arc shape caused by changes of the parameters was recorded by a high-speed camera,and the depths of penetration of specimen were measured after bead welding by an optical microscope. Experiments indicated that proper parameters give birth to a concentrated and compressed welcimg arc, which Would increase the depth of penetration as the incensement of the arc foice Several pnncipal parameters including toe distance ot twin wires intersecting point to base metal,the included angle,and the content of shielding gas were determined. The arc turned more concentrated and the depth of penetration increased obviously as the welding current increased,the arc turned brighter while unobvlous change of penetration occurred as the arc voltage increased,and the deepest penetration was obtained when the welding speed was 10.5 mm/s..

  4. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    Science.gov (United States)

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius.

  5. GUI for studying the parameters influence of the electric arc model for a three-phase electric arc furnace

    Science.gov (United States)

    Ghiormez, L.; Prostean, O.; Panoiu, M.; Panoiu, C.

    2017-01-01

    This paper presents an analysis regarding the modeling of the behavior for a three-phase electric arc furnace installation. Therefore, a block diagram is implemented in Simulink that represents the modeling of the entire electric arc furnace installation. This block diagram contains also the modeling of the electric arc which is the element that makes the electric arc furnace behaving as a nonlinear load. The values for the model parameters of the electric arc furnace installation are like the ones from the real installation taken into consideration. Other model parameters are the electric arc model ones. In order to study the influence of the parameters of the electric arc models, it is developed a Matlab program that contains the graphical user interfaces. These interfaces make connection with the models of the electric arc implemented in Simulink. The interfaces allow the user to modify parameters for each of the electric arc model. Current and voltage of the electric arc are the variables taken into account to study the influence of the parameters on the electric arc models. Waveforms for voltage and current of the electric arc are illustrated when a parameter of the model is modified in order to analyze the importance of this parameter on the electric arc model. Also, for each of the models is presented the voltage-current characteristic of the electric arc because this characteristic gives information about the behavior of the electric arc furnace installation.

  6. Advantage of four-electrode over two-electrode defibrillators

    Science.gov (United States)

    Bragard, J.; Šimić, A.; Laroze, D.; Elorza, J.

    2015-12-01

    Defibrillation is the standard clinical treatment used to stop ventricular fibrillation. An electrical device delivers a controlled amount of electrical energy via a pair of electrodes in order to reestablish a normal heart rate. We propose a technique that is a combination of biphasic shocks applied with a four-electrode system rather than the standard two-electrode system. We use a numerical model of a one-dimensional ring of cardiac tissue in order to test and evaluate the benefit of this technique. We compare three different shock protocols, namely a monophasic and two types of biphasic shocks. The results obtained by using a four-electrode system are compared quantitatively with those obtained with the standard two-electrode system. We find that a huge reduction in defibrillation threshold is achieved with the four-electrode system. For the most efficient protocol (asymmetric biphasic), we obtain a reduction in excess of 80% in the energy required for a defibrillation success rate of 90%. The mechanisms of successful defibrillation are also analyzed. This reveals that the advantage of asymmetric biphasic shocks with four electrodes lies in the duration of the cathodal and anodal phase of the shock.

  7. Method to reduce arc blow during DC arc welding of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Espina-Hernandez, J. H.; Rueda-Morales, G.L.; Caleyo, F.; Hallen, J. M. [Instituto Politecnico Nacional, Mexico, (Mexico); Lopez-Montenegro, A.; Perz-Baruch, E. [Pemex Exploracion y Produccion, Tabasco, (Mexico)

    2010-07-01

    Steel pipelines are huge ferromagnetic structures and can be easily subjected to arc blow during the DC arc welding process. The development of methods to avoid arc blow during pipeline DC arc welding is a major objective in the pipeline industry. This study developed a simple procedure to compensate the residual magnetic field in the groove during DC arc welding. A Gaussmeter was used to perform magnetic flux density measurements in pipelines in southern Mexico. These data were used to perform magnetic finite element simulations using FEMM. Different variables were studied such as the residual magnetic field in the groove or the position of the coil with respect to the groove. An empirical predictive equation was developed from these trials to compensate for the residual magnetic field. A new method of compensating for the residual magnetic field in the groove by selecting the number of coil turns and the position of the coil with respect to the groove was established.

  8. Research of Arc Chamber Optimization Techniques Based on Flow Field and Arc Joint Simulation

    Science.gov (United States)

    Zhong, Jianying; Guo, Yujing; Zhang, Hao

    2016-03-01

    The preliminary design of an arc chamber in the 550 kV SF6 circuit breaker was proposed in accordance with the technical requirements and design experience. The structural optimization was carried out according to the no-load flow field simulation results and verified by no-load pressure measurement. Based on load simulation results such as temperature field variation at the arc area and the tendency of post arc current under different recovery voltage, the second optimal design was completed and its correctness was certificated by a breaking test. Results demonstrate that the interrupting capacity of an arc chamber can be evaluated by the comparison of the gas medium recovery speed and post arc current growth rate.

  9. Overview of ArcGIS Engine Controls%ArcGIS Engine控件综述

    Institute of Scientific and Technical Information of China (English)

    刘磊

    2010-01-01

    ArcGIS Engine是ESRI公司发布的嵌入式地理信息系统软件开发包.基于ArcGIS Engine开发的应用程序一般有3类:独立非可视化应用程序、独立可视化应用程序和嵌入式应用程序,由于ArcGIS Engine提供了一套可复用、跨平台、设计良好的ArcGIS控件,因此利用控件开发可视化的GIS应用程序是一种常用的开发方式.重点探讨了ArcGIS Engine自带控件的功能、使用方法以及与伙伴控件之间的联系机制.

  10. On electrode erosion in fluorescent lamps during instant start

    Energy Technology Data Exchange (ETDEWEB)

    Hadrath, S.

    2006-09-15

    A fluorescent lamp driven with an 'instant start electronic control gear' starts in a glow mode. In the glow mode, which lasts typically for tens of milliseconds, the cathode fall exceeds hundreds of volts. This causes high energy ion bombardment of the electrode which heats the electrode, and induces a transition from glow to arc mode. In the arc mode the electrode emits thermionically and the cathode fall drops to the 12 - 15 V range. Unfortunately, the high energy ion bombardment during the glow mode leads also to intense sputtering of electrode material, including tungsten as well as emitter. Thus, instant started fluorescent lamps often suffer from early failures due to coil fracture. Therefore, the investigation of tungsten erosion during instant start is necessary and was the main goal of this work. The density of neutral atomic tungsten is determined by laser-induced fluorescence (LIF) and optical emission spectroscopy measurements (OES). Investigations are performed on a low-pressure argon dc discharge and on commercial fluorescent lamps. To include the entire temperature profile along the electrode the diffuse and spot operation modes of the dc lamp are studied experimentally and theoretically. The measured dependencies of the cathode temperature along the coil on the discharge and heating parameters are compared with the calculated results. For the first time the tungsten erosion during instant start of commercial fluorescent lamps was experimentally investigated in this work. The erosion process could be related to sputtering. A reconstruction of the temporal evolution of the absolute tungsten population density of the ground state during the glow mode was presented. The sputtered tungsten density increases immediately with the ignition, reaches a maximum where the discharge contracts at the end of the glow mode, and decreases some milliseconds before the glow-to-arc transition takes place. The maximum tungsten density was observed within a

  11. Critical Length Criterion and the Arc Chain Model for Calculating the Arcing Time of the Secondary Arc Related to AC Transmission Lines

    Science.gov (United States)

    Cong, Haoxi; Li, Qingmin; Xing, Jinyuan; Li, Jinsong; Chen, Qiang

    2015-06-01

    The prompt extinction of the secondary arc is critical to the single-phase reclosing of AC transmission lines, including half-wavelength power transmission lines. In this paper, a low-voltage physical experimental platform was established and the motion process of the secondary arc was recorded by a high-speed camera. It was found that the arcing time of the secondary arc rendered a close relationship with its arc length. Through the input and output power energy analysis of the secondary arc, a new critical length criterion for the arcing time was proposed. The arc chain model was then adopted to calculate the arcing time with both the traditional and the proposed critical length criteria, and the simulation results were compared with the experimental data. The study showed that the arcing time calculated from the new critical length criterion gave more accurate results, which can provide a reliable criterion in term of arcing time for modeling and simulation of the secondary arc related with power transmission lines. supported by National Natural Science Foundation of China (Nos. 51277061 and 51420105011)

  12. Preset Electrodes for Electrical-Discharge Machining

    Science.gov (United States)

    Coker, Bill E.

    1987-01-01

    New electrode holder for electrical-discharge machining (EDM) provides for repeatable loading and setting of many electrodes. New holder is rotating-index tool carrying six, eight, or more electrodes. Before use, all electrodes set with aid of ring surrounding tool, and locked in position with screws. When electrode replaced, EDM operator pulls spring-loaded pin on tool so it rotates about center pin. Fresh electrode then rotated into position against workpiece.

  13. BASIC THEORY AND METHOD OF WELDING ARC SPECTRAL INFORMATION

    Institute of Scientific and Technical Information of China (English)

    Li Junyue; Li Zhiyong; Li Huan; Xue Haitao

    2004-01-01

    Arc spectral information is a rising information source which can solve many problems that can not be done with arc electric information and other arc information.It is of important significance to develop automatic control technique of welding process.The basic theory and methods on it play an important role in expounding and applying arc spectral information.Using concerned equation in plasma physics and spectrum theory,a system of equations including 12 equations which serve as basic theory of arc spectral information is set up.Through analyzing of the 12 equations,a basic view that arc spectral information is the reflection of arc state and state variation,and is the most abundant information resource reflecting welding arc process is drawn.Furthermore,based on the basic theory,the basic methods of test and control of arc spectral information and points out some applications of it are discussesed.

  14. Arc Conductance and Flow Velocity Affected by Transient Recovery Voltage

    Science.gov (United States)

    Fukuoka, Reo; Ishikawa, Yuya; Ono, Seisui; Sato, Ken; Yamamoto, Shinji; Iwao, Toru

    2016-09-01

    Recently, the stable supply of electric power is indispensable. The GCB (Gas Circuit Breaker) can prevent the spread of the fault current. However, it should have the reliability more. Therefore the GCB has been researched for performance improvement of the arc interruption of abnormal fault current without the fail. Therefore, it is important to prevent the breakdown such as the re-ignition and thermal re-ignition of arc after the arc interruption. It is necessary to reduce the arc conductance in order to prevent the re-ignition of arc. The arc conductance is derived from the temperature distribution and the volume of the arc. The temperature distribution of the arc is formed by convection. In this research, the arc conductance and flow velocity affected by transient recovery voltage are elucidated. The flow rate and temperature distribution of the arc is calculated with changing transient recovery voltage. In addition, the arc conductance is calculated in order to know the extinguish arc ability. As a result, when the transient recovery voltage increases, the probability of re-ignition increases. Therefore, the arc temperature and the arc conductance were increased.

  15. HybridArc: A novel radiation therapy technique combining optimized dynamic arcs and intensity modulation

    Energy Technology Data Exchange (ETDEWEB)

    Robar, James L., E-mail: james.robar@cdha.nshealth.ca [Department of Radiation Oncology, Dalhousie University, Halifax (Canada); Department of Physics and Atmospheric Science, Dalhousie University, Halifax (Canada); Thomas, Christopher [Department of Radiation Oncology, Dalhousie University, Halifax (Canada)

    2012-01-01

    This investigation focuses on possible dosimetric and efficiency advantages of HybridArc-a novel treatment planning approach combining optimized dynamic arcs with intensity-modulated radiation therapy (IMRT) beams. Application of this technique to two disparate sites, complex cranial tumors, and prostate was examined. HybridArc plans were compared with either dynamic conformal arc (DCA) or IMRT plans to determine whether HybridArc offers a synergy through combination of these 2 techniques. Plans were compared with regard to target volume dose conformity, target volume dose homogeneity, sparing of proximal organs at risk, normal tissue sparing, and monitor unit (MU) efficiency. For cranial cases, HybridArc produced significantly improved dose conformity compared with both DCA and IMRT but did not improve sparing of the brainstem or optic chiasm. For prostate cases, conformity was improved compared with DCA but not IMRT. Compared with IMRT, the dose homogeneity in the planning target volume was improved, and the maximum doses received by the bladder and rectum were reduced. Both arc-based techniques distribute peripheral dose over larger volumes of normal tissue compared with IMRT, whereas HybridArc involved slightly greater volumes of normal tissues compared with DCA. Compared with IMRT, cranial cases required 38% more MUs, whereas for prostate cases, MUs were reduced by 7%. For cranial cases, HybridArc improves dose conformity to the target. For prostate cases, dose conformity and homogeneity are improved compared with DCA and IMRT, respectively. Compared with IMRT, whether required MUs increase or decrease with HybridArc was site-dependent.

  16. The geochemistry and petrogenesis of the Paleoproterozoic Green Mountain arc: A composite(?), bimodal, oceanic, fringing arc

    Science.gov (United States)

    Jones, D.S.; Barnes, C.G.; Premo, W.R.; Snoke, A.W.

    2011-01-01

    The inferred subduction affinity of the ~1780-Ma Green Mountain arc, a dominantly bimodal igneous terrane (together with immature marine and volcaniclastic sedimentary rocks) accreted to the southern margin of the Wyoming province, is integral to arc-accretion models of the Paleoproterozoic growth of southern Laurentia. Conversely, the dominantly bimodal nature of many putative arc-related igneous suites throughout southern Laurentia, including the Green Mountain arc, has also been used to support models of growth by extension of pre-existing crust. We report new geochemical and isotopic data from ~1780-Ma gabbroic and granodioritic to tonalitic rocks of the Big Creek Gneiss, interpreted as consanguineous with previously studied metavolcanic rocks of the Green Mountain Formation.The ~1780-Ma Big Creek Gneiss mafic rocks show clear geochemical signatures of a subduction origin and provide no supporting evidence for extensional tectonism. The ~1780-Ma Big Creek Gneiss felsic rocks are attributed to partial melting of mafic and/or mixed lower-crustal material. The bimodal nature of the suite results from the combination of arc basalts and felsic crustal melts. The lack of andesite is consistent with the observed tholeiitic differentiation trend of the mafic magmas. The lower e{open}Nd(1780Ma) values for the felsic rocks vs. the mafic rocks suggest that the unexposed lower crust of the arc may be older than the arc and that Trans-Hudson- or Penokean-aged rocks possibly form the substratum of the arc. Our results reinforce previous interpretations that arc-related magmatism played a key role in the Paleoproterozoic crustal growth of southern Laurentia, but also support the possibility of unexposed older crust as basement to the arcs. ?? 2011 Elsevier B.V.

  17. Operation of a Segmented Hall Thruster with Low-sputtering Carbon-velvet Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Raitses, Y.; Staack, D.; Dunaevsky, A.; Fisch, N.J.

    2005-12-01

    Carbon fiber velvet material provides exceptional sputtering resistance properties exceeding those for graphite and carbon composite materials. A 2 kW Hall thruster with segmented electrodes made of this material was operated in the discharge voltage range of 200–700 V. The arcing between the floating velvet electrodes and the plasma was visually observed, especially, during the initial conditioning time, which lasted for about 1 h. The comparison of voltage versus current and plume characteristics of the Hall thruster with and without segmented electrodes indicates that the magnetic insulation of the segmented thruster improves with the discharge voltage at a fixed magnetic field. The observations reported here also extend the regimes wherein the segmented Hall thruster can have a narrower plume than that of the conventional nonsegmented thruster.

  18. Gas Arcs in Comet Hyakutake: Revisited

    Science.gov (United States)

    Combi, M. R.; Harris, W. M.; Kabin, K.

    2000-10-01

    The recent break-up of the nucleus of Comet LINEAR S4 demonstrates that fragmentation is an important cometary process and that it is not a rare phenomenon. Comet Hyakutake (1996 B2) underwent an outburst of gas production on March 21, 1996. Subsequent to the outburst, fragments, or condensations as they have been called, were observed moving tailward from the position of the nucleus. Arc-shaped structures were seen in images of gas species (OH, CN and C2) providing clear evidence of production of gas from cometary nucleus debris also tailward of the nucleus. We have already (Harris et al. 1997, Science 277, 676) described observations taken with the WIYN telescope consisting of a 6-hour time sequence of images on March 26, 1996 of CN and dust continuum and a single OH image showing that the arc, and by inference it's source, was generally moving tailward with the visible condensations. The entire OH arc was reproduced using a kinetic Direct Simulation Monte Carlo (DSMC) calculation for water and all its photodissociation products. DSMC is suited to this physical environment that is in transition from fluid conditions in the inner coma to free-expansion in the outer coma. Our model asuming a string of fragments within the apex of the arc (i.e., the intersection of the arc and the tailward sun-comet line) reproduced the arc. Here we present a more extensive parameter study of the arc using DSMC and a solution of the standard perfect-fluid Euler equations. We find that a secondary source just behind the apex of the arc can reproduce the OH arc, but the location of the source must be much closer to the apex than indicated by solutions of the Navier-Stokes equations (NSE) (Rodionov et al. 1998, Icarus 136, 232). We find that we must use unrealistically large collision cross sections to reproduce the NSE results, and that the NSE results are not substantially different from a simpler Euler equation approach. This work has been supported by NASA Planetary Atmospheres

  19. Evaluation of volumetric modulated arc therapy for cranial radiosurgery using multiple noncoplanar arcs

    Energy Technology Data Exchange (ETDEWEB)

    Audet, Chantal; Poffenbarger, Brett A.; Chang, Pauling; Jackson, Paul S.; Lundahl, Robert E.; Ryu, Stephen I.; Ray, Gordon R. [Radiation Oncology Department, Palo Alto Medical Foundation, Palo Alto, California 94301 (United States); Neurosurgery Department, Palo Alto Medical Foundation, Palo Alto, California 94301 (United States); Radiation Oncology Department, Palo Alto Medical Foundation, Palo Alto, California 94301 (United States); Neurosurgery Department, Palo Alto Medical Foundation, Palo Alto, California 94301 (United States); Radiation Oncology Department, Palo Alto Medical Foundation, Palo Alto, California 94301 (United States)

    2011-11-15

    Purpose: To evaluate a commercial volumetric modulated arc therapy (VMAT), using multiple noncoplanar arcs, for linac-based cranial radiosurgery, as well as evaluate the combined accuracy of the VMAT dose calculations and delivery. Methods: Twelve patients with cranial lesions of variable size (0.1-29 cc) and two multiple metastases patients were planned (Eclipse RapidArc AAA algorithm, v8.6.15) using VMAT (1-6 noncoplanar arcs), dynamic conformal arc (DCA, {approx}4 arcs), and IMRT (nine static fields). All plans were evaluated according to a conformity index (CI), healthy brain tissue doses and volumes, and the dose to organs at risk. A 2D dose distribution was measured (Varian Novalis Tx, HD120 MLC, 1000 MU/min, 6 MV beam) for the {approx}4 arc VMAT treatment plans using calibrated film dosimetry. Results: The CI (0-1 best) average for all plans was best for {approx}4 noncoplanar arc VMAT at 0.86 compared with {approx}0.78 for IMRT and a single arc VMAT and 0.68 for DCA. The volumes of healthy brain receiving 50% of the prescribed target coverage dose or more (V{sub 50%}) were lowest for the four arc VMAT [RA(4)] and DCA plans. The average ratio of the V{sub 50%} for the other plans to the RA(4) V{sub 50%} were 1.9 for a single noncoplanar arc VMAT [RA(1nc)], 1.4 for single full coplanar arc VMAT [RA(1f)] and 1.3 for IMRT. The V{sub 50%} improved significantly for single isocenter multiple metastases plan when two noncoplanar VMAT arcs were added to a full single coplanar one. The maximum dose to 5 cc of the outer 1 cm rim of healthy brain which one may want to keep below nonconsequential doses of 300-400 cGy, was 2-3 times greater for IMRT, RA(1nc) and RA(1f) plans compared with the multiple noncoplanar arc DCA and RA(4) techniques. Organs at risk near (0-4 mm) to targets were best spared by (i) single noncoplanar arcs when the targets are lateral to the organ at risk and (ii) by skewed nonvertical planes of IMRT fields when the targets are not lateral to the

  20. Characterization of (La1-xSrx)(s)MnO3 and Doped Ceria Composite Electrodes in NOx-Containing Atmosphere with Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Werchmeister, Rebecka Maria Larsen; Kammer Hansen, Kent; Mogensen, Mogens Bjerg

    2010-01-01

    This study used electrochemical impedance spectroscopy (EIS) to characterize composite metal oxide electrodes in atmospheres containing NO, NO2, and O2. Symmetrical cells with electrodes of (La1−xSrx)sMnO3 [(x, s)=(0.15, 0.9) and (0.5, 0.99)] and doped ceria [Ce0.9Gd0.1O2 and Ce1−xGdxO2 (x=0.1, 0.......2)] were subjected to EIS while varying the temperature (from 300 to 600°C), the composition of the atmosphere, and the gas flow. The impedance spectra were fitted to equivalent circuits, and common arcs were identified and sought related to physical and chemical processes. The electrodes had a much lower...... polarization resistance (Rp) when NO or NO2 was present in the atmosphere at low temperatures (300–400°C) than in air. The impedance spectra for electrodes in 1% NO in Ar were dominated by a low frequency arc at high temperatures (500–600°C). This arc seemed to be a type of conversion arc, which is related...