Using domain walls to perform non-local measurements with high spin signal amplitudes
Savero Torres, W.; Pham, V.-T.; Zahnd, G.; Laczkowski, P.; Nguyen, V.-D.; Beigné, C.; Notin, L.; Jamet, M.; Marty, A.; Vila, L.; Attané, J.-P.
2016-07-01
Standard non-local measurements require lateral spin-valves with two different ferromagnetic electrodes, to create and to detect the spin accumulation. Here we show that non-local measurements can also be performed in a cross-shaped nanostructure, made of a single ferromagnetic wire connected to an orthogonal non-magnetic wire. A magnetic domain wall located underneath the ferromagnetic/non-magnetic interface is used to control the magnetizations of the injection and detection zones. As these zones can be very close, our results display spin signals possessing amplitudes larger than those obtained in conventional non-local measurements. We also show that this method can be used as a domain wall detection technique.
Film edge nonlocal spin valves.
McCallum, Andrew T; Johnson, Mark
2009-06-01
Spintronics is a new paradigm for integrated digital electronics. Recently established as a niche for nonvolatile magnetic random access memory (MRAM), it offers new functionality while demonstrating low-power and high-speed performance. However, to reach high density spintronic technology must make a transition to the nanometer scale. Prototype devices are presently made using a planar geometry and have an area determined by the lithographic feature size, currently about 100 nm. Here we present a new nonplanar geometry in which one lateral dimension is given by a film thickness, on the order of 10 nm. With this new approach, cell sizes can shrink by an order of magnitude. The geometry is demonstrated with a nonlocal spin valve, where we study devices with an injector/detector separation much less than the spin diffusion length.
Analysis and design of nonlocal spin devices with electric-field-induced spin-transport acceleration
Energy Technology Data Exchange (ETDEWEB)
Takamura, Yota, E-mail: takamura@spin.pe.titech.ac.jp [Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, Yokohama (Japan); Department of Physical Electronics, Tokyo Institute of Technology, Tokyo (Japan); Akushichi, Taiju; Shuto, Yusuke; Sugahara, Satoshi, E-mail: sugahara@isl.titech.ac.jp [Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, Yokohama (Japan)
2015-05-07
We apply electric-field-induced acceleration for spin transport to a four-terminal nonlocal device and theoretically analyze its Hanle-effect signals. The effect of the ferromagnetic contact widths of the spin injector and detector on the signals is carefully discussed. Although Hanle-effect signals are randomized owing to the effect of the contact widths, this can be excluded by selecting an appropriate electric field for acceleration of spin transport. Spin lifetime can be correctly extracted by nonlocal devices with electric-field acceleration even using the spin injector and detector with finite contact widths.
Analysis and design of nonlocal spin devices with electric-field-induced spin-transport acceleration
Takamura, Yota; Akushichi, Taiju; Shuto, Yusuke; Sugahara, Satoshi
2015-05-01
We apply electric-field-induced acceleration for spin transport to a four-terminal nonlocal device and theoretically analyze its Hanle-effect signals. The effect of the ferromagnetic contact widths of the spin injector and detector on the signals is carefully discussed. Although Hanle-effect signals are randomized owing to the effect of the contact widths, this can be excluded by selecting an appropriate electric field for acceleration of spin transport. Spin lifetime can be correctly extracted by nonlocal devices with electric-field acceleration even using the spin injector and detector with finite contact widths.
Hojem, A.; Wesenberg, D.; Zink, B. L.
2016-07-01
We present measurements of thermal and electrical spin injection in nanoscale metallic nonlocal spin valve structures. Informed by measurements of the Seebeck coefficient and thermal conductivity of representative films made using a micromachined Si-N thermal isolation platform, we use simple analytical and finite-element thermal models to determine limits on the thermal gradient driving thermal spin injection and calculate the spin-dependent Seebeck coefficient to be -0.5 μ V /K >Ss>-1.6 μ V /K . This is comparable in terms of the fraction of the absolute Seebeck coefficient to previous results, despite dramatically smaller electrical spin injection signals. Since the small electrical spin signals are likely caused by interfacial effects, we conclude that thermal spin injection is less sensitive to the ferromagnetic/nonmagnetic interface, and possibly benefits from the presence of oxidized ferromagnets, which further stimulates interest in thermal spin injection for applications in sensors and pure spin current sources.
Interplay of Peltier and Seebeck Effects in Nanoscale Nonlocal Spin Valves
Bakker, F. L.; Slachter, A.; Adam, J.-P.; van Wees, B. J.
2010-09-01
We have experimentally studied the role of thermoelectric effects in nanoscale nonlocal spin valve devices. A finite element thermoelectric model is developed to calculate the generated Seebeck voltages due to Peltier and Joule heating in the devices. By measuring the first, second, and third harmonic voltage response nonlocally, the model is experimentally examined. The results indicate that the combination of Peltier and Seebeck effects contributes significantly to the nonlocal baseline resistance. Moreover, we found that the second and third harmonic response signals can be attributed to Joule heating and temperature dependencies of both the Seebeck coefficient and resistivity.
Nonlocal Spin Diffusion Driven by Giant Spin Hall Effect at Oxide Heterointerfaces.
Jin, Mi-Jin; Moon, Seon Young; Park, Jungmin; Modepalli, Vijayakumar; Jo, Junhyeon; Kim, Shin-Ik; Koo, Hyun Cheol; Min, Byoung-Chul; Lee, Hyun-Woo; Baek, Seung-Hyub; Yoo, Jung-Woo
2017-01-11
A two-dimensional electron gas emerged at a LaAlO3/SrTiO3 interface is an ideal system for "spin-orbitronics" as the structure itself strongly couple the spin and orbital degree of freedom through the Rashba spin-orbit interaction. One of core experiments toward this direction is the nonlocal spin transport measurement, which has remained elusive due to the low spin injection efficiency to this system. Here we bypass the problem by generating a spin current not through the spin injection from outside but instead through the inherent spin Hall effect and demonstrate the nonlocal spin transport. The analysis on the nonlocal spin voltage, confirmed by the signature of a Larmor spin precession and its length dependence, displays that both D'yakonov-Perel' and Elliott-Yafet mechanisms involve in the spin relaxation at low temperature. Our results show that the oxide heterointerface is highly efficient in spin-charge conversion with exceptionally strong spin Hall coefficient γ ∼ 0.15 ± 0.05 and could be an outstanding platform for the study of coupled charge and spin transport phenomena and their electronic applications.
Resonance measurement of nonlocal spin torque in a three-terminal magnetic device.
Xue, Lin; Wang, Chen; Cui, Yong-Tao; Liu, Luqiao; Swander, A; Sun, J Z; Buhrman, R A; Ralph, D C
2012-04-06
A pure spin current generated within a nonlocal spin valve can exert a spin-transfer torque on a nanomagnet. This nonlocal torque enables new design schemes for magnetic memory devices that do not require the application of large voltages across tunnel barriers that can suffer electrical breakdown. Here we report a quantitative measurement of this nonlocal spin torque using spin-torque-driven ferromagnetic resonance. Our measurement agrees well with the prediction of an effective circuit model for spin transport. Based on this model, we suggest strategies for optimizing the strength of nonlocal torque.
Nonlocal spin-transport measurement of superconductor-ferromagnet nanostructures
Energy Technology Data Exchange (ETDEWEB)
Kolenda, Stefan; Wolf, Michael J.; Huebler, Florian; Beckmann, Detlef [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (Germany)
2015-07-01
We present measurements of the nonlocal conductance of nanostructures with several ferromagnetic electrodes lying perpendicular on a superconducting wire. In these structures nonlocal conductance is mostly given by diffusion of quasiparticles, which are injected by one of the electrodes and detected by an other one. Applying a magnetic field induces a Zeeman splitting in the quasiparticles density of states, which suppresses the relaxation of injected spin imbalance, thus spin transport over distances of several micrometers is found. While in the previous experiments the magnetic field was aligned parallel to the ferromagnetic electrodes, we also show measurements applying the magnetic field noncollinear with the magnetization of the ferromagnetic electrodes. We compare our results to the previous case.
Microscopic studies of nonlocal spin dynamics and spin transport (invited)
Energy Technology Data Exchange (ETDEWEB)
Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris, E-mail: hammel@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)
2015-05-07
Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.
Microscopic studies of nonlocal spin dynamics and spin transport (invited)
Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris
2015-05-01
Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.
Non-Local Signal in Quasi-2DEG of LAO/STO
Jin, Mi-Jin; Moon, Seon Young; Modepalli, Vijayakumar; Jo, Junhyeon; Park, Jungmin; Baek, Seung-Hyub; Yoo, Jung-Woo
2015-03-01
Electron gas arizen at the insulating oxide interfaces exhibits high electron mobility, tunable carrier densities and related unique behaviors such as coexistence of superconductivity and ferromagnetism, Kondo resistance, etc. Itinerant electrons at the oxide hetero-interface are predicted to have long spin diffusion length, while they are under the relatively strong Rashba-type spin orbit coupling due to inversion symmetry breaking. We studied non-local spin signal induced by spin orbit coupling with additional gate-controlled Rashba field in quasi-2DEG of LaAlO3/SrTiO (LAO/STO) interface. We fabricated simple hall-bar like geometry to measure non-local signal with the variation of channel length (2 ~ 10 μm). Cleaned sample was patterned using e-beam lithography and reactive ion etching followed by oxygen treatment to anneal out oxygen vacancies. When an electric current flows one line of the hall bar structure, spin orbit coupling will induce the current flow away from the source current channel via spin hall and inverse spin hall effects. The non-local signals were studied under different angles of magnetic field and the variation of applied gate voltage. This work was supported by a grant from (No. 1.140092.01) funded by the Ulsan National Institute of Science and Technology.
Thermal engineering of non-local resistance in lateral spin valves
Energy Technology Data Exchange (ETDEWEB)
Kasai, S., E-mail: KASAI.Shinya@nims.go.jp; Takahashi, Y. K. [National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Hirayama, S.; Mitani, S.; Hono, K. [National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0006 (Japan); Adachi, H.; Ieda, J.; Maekawa, S. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195 (Japan); CREST, Japan Science and Technology Agency, Sanbancho, Tokyo 102-0075 (Japan)
2014-04-21
We study the non-local spin transport in Permalloy/Cu lateral spin valves (LSVs) fabricated on thermally oxidized Si and MgO substrates. While these LSVs show the same magnitude of spin signals, significant substrate dependence of the baseline resistance was observed. The baseline resistance shows much weaker dependence on the inter-electrode distance than that of the spin transport observed in the Cu wires. A simple analysis of voltage-current characteristics in the baseline resistance indicates the observed result can be explained by a combination of the Peltier and Seebeck effects at the injector and detector junctions, suggesting the usage of high thermal conductivity substrate (or under-layer) is effective to reduce the baseline resistance.
Kondo Physics at Interfaces in Metallic Non-Local Spin Transport Devices
Leighton, Chris
2015-03-01
Despite the maturity of metallic spintronics there remain large gaps in our understanding of spin transport in metals, particularly with injection of spins across ferromagnetic/non-magnetic (FM/NM) interfaces, and their subsequent diffusion and relaxation. Unresolved issues include the limits of applicability of Elliott-Yafet spin relaxation, quantification of the influence of defects, surfaces, and interfaces on spin relaxation at nanoscopic dimensions, and the importance of magnetic and spin-orbit scattering. The non-local spin-valve is an enabling device in this context as, in addition to offering potentially disruptive applications, it allows for the separation of charge and spin currents. One particularly perplexing issue in metallic non-local spin valves is the widely observed non-monotonicity in the T-dependent spin accumulation, where the spin signal actually decreases at low T, in contrast to simple expectations. In this work, by studying an expanded range of FM/NM combinations (encompassing Ni80Fe20, Ni, Fe, Co, Cu, and Al), we demonstrate that this effect is not a property of a given FM or NM, but rather of the FM/NM pair. The non-monotonicity is in fact strongly correlated with the ability of the FM to form a dilute local magnetic moment in the NM. We show that local moments, resulting in this case from the ppm-level tail of the FM/NM interdiffusion profile, suppress the injected spin polarization and diffusion length via a novel manifestation of the Kondo effect, explaining all observations associated with the low T downturn in spin accumulation. We further show: (a) that this effect can be promoted by thermal annealing, at which point the conventional charge transport Kondo effect is simultaneously detected in the NM, and (b) that this suppression in spin accumulation can be quenched, even at interfaces that are highly susceptible to the effect, by insertion of a thin non-moment-supporting interlayer. Important implications for room temperature
Aging effect of spin accumulation in non-local spin valves
Zhao, Bing; Zhang, Ziyu; Chen, Xiaobing; Zhang, Xiaohan; Pan, Jiahui; Ma, Jiajun; Li, Juan; Wang, Zhicheng; Wang, Le; Xu, Xiaoguang; Jiang, Yong
2017-06-01
A temporal evolution of spin accumulation of Co/MgO/Ag spin valves have been studied by using the nonlocal spin detection technique over almost a 3-month period in the ambient environment after the fabrication of the devices. Three different stages of the spin accumulation are first observed due to aging effect. The aging effect comes from two contributions-the gradual oxidation of the Ag/MgO and MgO/Co interfaces at the junctions' areas which arises from the annealing process and the oxidation of the side surfaces of the Ag channels. The theories of S. Takahashi and A. Fert are introduced to evaluate the different evolution stages of spin accumulation.
On the no-signaling approach to quantum nonlocality
Energy Technology Data Exchange (ETDEWEB)
Méndez, J. M., E-mail: manolo@ifisica.uaslp.mx; Urías, Jesús, E-mail: jurias@ifisica.uaslp.mx [Instituto de Física, UASLP, San Luis Potosí, San Luis Potosí (Mexico)
2015-03-15
The no-signaling approach to nonlocality deals with separable and inseparable multiparty correlations in the same set of probability states without conflicting causality. The set of half-spaces describing the polytope of no-signaling probability states that are admitted by the most general class of Bell scenarios is formulated in full detail. An algorithm for determining the skeleton that solves the no-signaling description is developed upon a new strategy that is partially pivoting and partially incremental. The algorithm is formulated rigorously and its implementation is shown to be effective to deal with the highly degenerate no-signaling descriptions. Several applications of the algorithm as a tool for the study of quantum nonlocality are mentioned. Applied to a large set of bipartite Bell scenarios, we found that the corresponding no-signaling polytopes have a striking high degeneracy that grows up exponentially with the size of the Bell scenario.
Non-local thermal spin injection to study spin diffusion in yttrium iron garnet
Giles, Brandon; Yang, Zihao; Jamison, John; Myers, Roberto
Understanding the generation, detection, and manipulation of spin current is critical for the development of devices that depend on spin transport for information processing and storage. Recent studies have shown that spin transport over long distances is possible in the magnetic insulator yttrium iron garnet (YIG) through the diffusion of non-equilibrium magnons. Electrically excited magnons have been shown to diffuse up to 40um at room temperature, while thermally injected magnons were detected at ranges greater than 125um at 23K. However, much work is still required to fully understand the processes responsible for magnon diffusion. Here, we present an in-depth study of the diffusion of magnons in YIG. By using the non-local thermal spin detection method, we analyze spin transport as a function of temperature. Spin diffusion maps, which can be used to experimentally determine the spin diffusion length in YIG as a function of temperature, are presented Work supported by the Army Research Office MURI W911NF-14-1-0016.
Fragility of Nonlocal Edge-Mode Transport in the Quantum Spin Hall State
Mani, Arjun; Benjamin, Colin
2016-07-01
Nonlocal currents and voltages are better at withstanding the deleterious effects of dephasing than local currents and voltages in nanoscale systems. This hypothesis is known to be true in quantum Hall setups. We test this hypothesis in a four-terminal quantum spin Hall setup wherein we compare the local resistance measurement with the nonlocal one. In addition to inelastic-scattering-induced dephasing, we also test the resilience of the resistance measurements in the aforesaid setups to disorder and spin-flip scattering. We find the axiom that nonlocal resistance is less affected by the detrimental effects of disorder and dephasing to be untrue, in general, for the quantum spin Hall case. This has important consequences since it is widely communicated that nonlocal transport through edge channels in topological insulators have potential applications in low-power information processing.
Nonlocal entanglement and noise between spin qubits induced by Majorana bound states
Energy Technology Data Exchange (ETDEWEB)
Ke, Sha-Sha [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Lü, Hai-Feng, E-mail: lvhf81@gmail.com [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Yang, Hua-Jun [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Guo, Yong [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Zhang, Huai-Wu [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)
2015-01-23
We propose a scheme to create nonlocal entanglement between two spatially separated electron spin qubits by coupling them with a pair of Majorana bound states (MBSs). The spin qubits are based on the spins of electrons confined in quantum dots. It is shown that spin entanglement between two dots could be generated by the nonlocality of MBSs. We also demonstrate that in the transport regime, the current noise cross correlation can serve as a good indicator of spin entanglement. The Majorana-dot coupling not only induces an indirect interaction between qubits, but also produces spin localization in the strong coupling limit. These two competing effects lead to a nonmonotonic dependence of current cross-correlation and entanglement on the Majorana-qubit coupling strength. - Highlights: • We propose a scheme to create nonlocal entanglement between two spatially separated electron spin qubits by coupling them with a pair of Majorana bound states. • Spin entanglement between two dots could be generated by the nonlocality of MBSs. • The current noise cross correlation can serve as a good indicator of spin entanglement.
Hidaka, S.; Kondo, T.; Akabori, M.; Yamada, S.
2013-12-01
We performed electrical spin injection into In0.75Ga0.25As two-dimensional electron gases from Co0.8Fe0.2 electrodes by four-terminal non-local spin-valve (NLSV) measurement. We observed clear SV signals in NL resistance at 1.5 K. From the electrode spacing dependence of the signals, we estimated spin diffusion length and spin polarization to be ˜5.1 μm and ˜5.7 %, respectively. These are larger than those reported in similar systems.
Energy Technology Data Exchange (ETDEWEB)
Hidaka, S.; Kondo, T.; Akabori, M.; Yamada, S. [Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), Asahidai, Nomi, Ishikawa 923-1292 (Japan)
2013-12-04
We performed electrical spin injection into In{sub 0.75}Ga{sub 0.25}As two-dimensional electron gases from Co{sub 0.8}Fe{sub 0.2} electrodes by four-terminal non-local spin-valve (NLSV) measurement. We observed clear SV signals in NL resistance at 1.5 K. From the electrode spacing dependence of the signals, we estimated spin diffusion length and spin polarization to be ∼5.1 μm and ∼5.7 %, respectively. These are larger than those reported in similar systems.
Hidden-variable models for the spin singlet: I. Non-local theories reproducing quantum mechanics
Di Lorenzo, Antonio
2011-01-01
A non-local hidden variable model reproducing the quantum mechanical probabilities for a spin singlet is presented. The non-locality is concentrated in the distribution of the hidden variables. The model otherwise satisfies both the hypothesis of outcome independence, made in the derivation of Bell inequality, and of compliance with Malus's law, made in the derivation of Leggett inequality. It is shown through the prescription of a protocol that the non-locality can be exploited to send information instantaneously provided that the hidden variables can be measured, even though they cannot be controlled.
Spin Hall Effect and Origins of Nonlocal Resistance in Adatom-Decorated Graphene.
Van Tuan, D; Marmolejo-Tejada, J M; Waintal, X; Nikolić, B K; Valenzuela, S O; Roche, S
2016-10-21
Recent experiments reporting an unexpectedly large spin Hall effect (SHE) in graphene decorated with adatoms have raised a fierce controversy. We apply numerically exact Kubo and Landauer-Büttiker formulas to realistic models of gold-decorated disordered graphene (including adatom clustering) to obtain the spin Hall conductivity and spin Hall angle, as well as the nonlocal resistance as a quantity accessible to experiments. Large spin Hall angles of ∼0.1 are obtained at zero temperature, but their dependence on adatom clustering differs from the predictions of semiclassical transport theories. Furthermore, we find multiple background contributions to the nonlocal resistance, some of which are unrelated to the SHE or any other spin-dependent origin, as well as a strong suppression of the SHE at room temperature. This motivates us to design a multiterminal graphene geometry which suppresses these background contributions and could, therefore, quantify the upper limit for spin-current generation in two-dimensional materials.
Nonlocal Quantum Information Transfer Without Superluminal Signalling and Communication
Walleczek, Jan; Grössing, Gerhard
2016-09-01
It is a frequent assumption that—via superluminal information transfers—superluminal signals capable of enabling communication are necessarily exchanged in any quantum theory that posits hidden superluminal influences. However, does the presence of hidden superluminal influences automatically imply superluminal signalling and communication? The non-signalling theorem mediates the apparent conflict between quantum mechanics and the theory of special relativity. However, as a `no-go' theorem there exist two opposing interpretations of the non-signalling constraint: foundational and operational. Concerning Bell's theorem, we argue that Bell employed both interpretations, and that he finally adopted the operational position which is associated often with ontological quantum theory, e.g., de Broglie-Bohm theory. This position we refer to as "effective non-signalling". By contrast, associated with orthodox quantum mechanics is the foundational position referred to here as "axiomatic non-signalling". In search of a decisive communication-theoretic criterion for differentiating between "axiomatic" and "effective" non-signalling, we employ the operational framework offered by Shannon's mathematical theory of communication, whereby we distinguish between Shannon signals and non-Shannon signals. We find that an effective non-signalling theorem represents two sub-theorems: (1) Non-transfer-control (NTC) theorem, and (2) Non-signification-control (NSC) theorem. Employing NTC and NSC theorems, we report that effective, instead of axiomatic, non-signalling is entirely sufficient for prohibiting nonlocal communication. Effective non-signalling prevents the instantaneous, i.e., superluminal, transfer of message-encoded information through the controlled use—by a sender-receiver pair —of informationally-correlated detection events, e.g., in EPR-type experiments. An effective non-signalling theorem allows for nonlocal quantum information transfer yet—at the same time
Interplay of Peltier and Seebeck Effects in Nanoscale Nonlocal Spin Valves
Bakker, F. L.; Slachter, A.; Adam, J-P; van Wees, B. J.
2010-01-01
We have experimentally studied the role of thermoelectric effects in nanoscale nonlocal spin valve devices. A finite element thermoelectric model is developed to calculate the generated Seebeck voltages due to Peltier and Joule heating in the devices. By measuring the first, second, and third harmon
Optical characterization of nonlocal spin transfer torque acting on a single nanomagnet
Keatley, P. S.; Aziz, A.; Ali, M.; Hickey, B. J.; Blamire, M. G.; Hicken, R. J.
2014-03-01
Time-resolved scanning Kerr microscopy (TRSKM) has been used to examine the effect of nonlocal spin transfer torque (NL-STT) within a two-terminal current perpendicular-to-plane nonlocal spin valve. A combination of Oersted field and NL-STT was used to excite and control the magnetization dynamics. By comparison with a macrospin model, the strength of the NL-STT was quantified and found to be comparable to that achieved by direct injection of spin-polarized current. The sensitivity of the magneto-optical probe to small out-of-plane deflections of the magnetization also allows the NL-STT to be quantified in quasi-dc measurements, greatly simplifying the investigation of STT phenomena.
Unsharp spin observables, non-locality and Fry, Walther and Li experiment
Indian Academy of Sciences (India)
Sisir Roy
2001-02-01
Recently it has been demonstrated that Bell inequalities for spin 1/2 particles must be modiﬁed if unsharp spin observables are considered, and furthermore, the modiﬁed Bell inequalities may not be violated by quantum mechanics if the observables are sufﬁciently unsharp. In case of massive particles there may be more imperfection than seems to appear in the photon EPR experiments. So the experiment proposed by Fry, Walther and Li can place experimental limits on the unsharpness of spin variables. It sheds new light on the much debated issues like non-local correlations in quantum mechanics.
High-output tri-magnetic terminal-based non-local spin valves
Shirotori, Satoshi; Hashimoto, Susumu; Takagishi, Masayuki; Kamiguchi, Yuzo; Iwasaki, Hitoshi
2015-12-01
We propose tri-magnetic terminal-based non-local spin valves (TM-NLSVs) for lateral structures. A lateral structure has dual spin injector terminals with an anti-parallel spin configuration. The accumulated spin is detected as the voltage between the free layer and one side of the spin injector. Numerical investigation revealed that the output voltage of the TM-NLSV is 2.4-fold higher than that of the conventional four-terminal structure. A further 3.7-fold increase is expected by increasing the injector area by a factor of 9. These results indicate the possibility of obtaining an output voltage that is almost the same as that of conventional (non-lateral) spin valves.
Spectral non-uniform temperature and non-local heat transfer in the spin Seebeck effect.
Tikhonov, Konstantin S; Sinova, Jairo; Finkel'stein, Alexander M
2013-01-01
Recently discovered spin-dependent thermoelectric effects have merged spin, charge, and thermal physics, known as spin caloritronics, of which the spin Seebeck effect is its most puzzling. Here we present a theory of this effect driven by subthermal non-local phonon heat transfer and spectral non-uniform temperature. The theory explains its non-local behaviour from the fact that phonons that store the energy (thermal) and the phonons that transfer it (subthermal) are located in different parts of the spectrum and have different kinetics. This gives rise to a spectral phonon distribution that deviates from local equilibrium along the substrate and is sensitive to boundary conditions. The theory also predicts a non-magnon origin of the effect in ferromagnetic metals in agreement with observations in recent experiments. Equilibration of the heat flow from the substrate to the Pt probe and backwards leads to a vertical spin current produced by the spin-polarized electrons dragged by the thermal phonons.
Spin-Hall Non-Local Transport Mediated by a Magnetic Insulator
Ramezani Masir, Massoud; Chen, Hua; Sodemann, Inti; MacDonald, Allan. H.
Magnetic systems with easy-plane order support dissipationless spin supercurrents that can lead to non-local coupling between electrically separated conductors. Recently the electrical properties of a system containing two magnetic multilayer stacks with perpendicular magnetic anisotropy electrodes and a shared easy-plane magnetic layer have been discussed. In this research we discuss a closely related system in which the two conducting channels that are coupled by the easy-plane magnetic layer are co-planar thin film metals with large spin Hall effects. We theoretically explained the non-local relationship between the current-voltage relationships of two thin film metallic conductors. Coupling occurs because both conductors inject spins into the magnetic insulator and because this information is communicated between conductors via exchange interactions within the magnetic system. We investigate the non-local transport properties of the system in the macrospin and long thin nanomagnet limits, deriving conditions for the critical currents and using solutions to the Landau-Liftshitz-Gilbert equation to characterize the dynamic steady state case. This work was supported by as part of SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # SC0012670.
Xu, Yong; Uddin, Salah; Wang, Jun; Wu, Jiansheng; Liu, Jun-Feng
2017-08-08
We have studied numerically the penetration depth of quantum spin hall edge states in chiral honeycomb nanoribbons based on the Green's function method. The changing of edge orientation from armchair to zigzag direction decreases the penetration depth drastically. The penetration depth is used to estimate the gap opened for the finite-size effect. Beside this, we also proposed a nonlocal transistor based on the zigzag-like chiral ribbons in which the current is carried at one edge and the manipulation is by the edge magnetization at the other edge. The difficulty that the edge magnetization is unstable in the presence of a ballistic current can be removed by this nonlocal manipulation.
Energy as a Detector of Nonlocality of Many-Body Spin Systems
Directory of Open Access Journals (Sweden)
J. Tura
2017-04-01
Full Text Available We present a method to show that low-energy states of quantum many-body interacting systems in one spatial dimension are nonlocal. We assign a Bell inequality to the Hamiltonian of the system in a natural way and we efficiently find its classical bound using dynamic programing. The Bell inequality is such that its quantum value for a given state, and for appropriate observables, corresponds to the energy of the state. Thus, the presence of nonlocal correlations can be certified for states of low enough energy. The method can also be used to optimize certain Bell inequalities: in the translationally invariant (TI case, we provide an exponentially faster computation of the classical bound and analytically closed expressions of the quantum value for appropriate observables and Hamiltonians. The power and generality of our method is illustrated through four representative examples: a tight TI inequality for eight parties, a quasi-TI uniparametric inequality for any even number of parties, ground states of spin-glass systems, and a nonintegrable interacting XXZ-like Hamiltonian. Our work opens the possibility for the use of low-energy states of commonly studied Hamiltonians as multipartite resources for quantum information protocols that require nonlocality.
Katanin, A. A.; Belozerov, A. S.; Anisimov, V. I.
2016-01-01
We consider nonlocal correlations in iron in the vicinity of the $\\alpha$-$\\gamma$ phase transition within the spin-rotationally-invariant dynamical mean-field theory (DMFT) approach, combined with the recently proposed spin-fermion model of iron. The obtained nonlocal corrections to DMFT yield a decrease of the Curie temperature of the $\\alpha$ phase, leading to an agreement with its experimental value. We show that the corresponding nonlocal corrections to the energy of the $\\alpha$ phase a...
Soh, Wee Tee; Peng, Bin; Ong, C. K.
2015-08-01
The spin rectification effect (SRE), a phenomenon that generates dc voltages from ac microwave fields incident onto a conducting ferromagnet, has attracted widespread attention due to its high sensitivity to ferromagnetic resonance (FMR) as well as its relevance to spintronics. Here, we report the non-local detection of yttrium iron garnet (YIG) spin dynamics by measuring SRE voltages from an adjacent conducting NiFe layer up to 200 nm thick. In particular, we detect, within the NiFe layer, SRE voltages stemming from magnetostatic surface spin waves (MSSWs) of the adjacent bulk YIG which are excited by a shorted coaxial probe. These non-local SRE voltages within the NiFe layer that originates from YIG MSSWs are present even in 200 nm-thick NiFe films with a 50 nm thick SiO2 spacer between NiFe and YIG, thus strongly ruling out the mechanism of spin-pumping induced inverse spin Hall effect in NiFe as the source of these voltages. This long-range influence of YIG dynamics is suggested to be mediated by dynamic fields generated from YIG spin precession near YIG/NiFe interface, which interacts with NiFe spins near the simultaneous resonance of both spins, to generate a non-local SRE voltage within the NiFe layer.
Directory of Open Access Journals (Sweden)
Wee Tee Soh
2015-08-01
Full Text Available The spin rectification effect (SRE, a phenomenon that generates dc voltages from ac microwave fields incident onto a conducting ferromagnet, has attracted widespread attention due to its high sensitivity to ferromagnetic resonance (FMR as well as its relevance to spintronics. Here, we report the non-local detection of yttrium iron garnet (YIG spin dynamics by measuring SRE voltages from an adjacent conducting NiFe layer up to 200 nm thick. In particular, we detect, within the NiFe layer, SRE voltages stemming from magnetostatic surface spin waves (MSSWs of the adjacent bulk YIG which are excited by a shorted coaxial probe. These non-local SRE voltages within the NiFe layer that originates from YIG MSSWs are present even in 200 nm-thick NiFe films with a 50 nm thick SiO2 spacer between NiFe and YIG, thus strongly ruling out the mechanism of spin-pumping induced inverse spin Hall effect in NiFe as the source of these voltages. This long-range influence of YIG dynamics is suggested to be mediated by dynamic fields generated from YIG spin precession near YIG/NiFe interface, which interacts with NiFe spins near the simultaneous resonance of both spins, to generate a non-local SRE voltage within the NiFe layer.
Energy Technology Data Exchange (ETDEWEB)
Soh, Wee Tee, E-mail: a0046479@u.nus.edu; Ong, C. K. [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Peng, Bin [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)
2015-08-15
The spin rectification effect (SRE), a phenomenon that generates dc voltages from ac microwave fields incident onto a conducting ferromagnet, has attracted widespread attention due to its high sensitivity to ferromagnetic resonance (FMR) as well as its relevance to spintronics. Here, we report the non-local detection of yttrium iron garnet (YIG) spin dynamics by measuring SRE voltages from an adjacent conducting NiFe layer up to 200 nm thick. In particular, we detect, within the NiFe layer, SRE voltages stemming from magnetostatic surface spin waves (MSSWs) of the adjacent bulk YIG which are excited by a shorted coaxial probe. These non-local SRE voltages within the NiFe layer that originates from YIG MSSWs are present even in 200 nm-thick NiFe films with a 50 nm thick SiO{sub 2} spacer between NiFe and YIG, thus strongly ruling out the mechanism of spin-pumping induced inverse spin Hall effect in NiFe as the source of these voltages. This long-range influence of YIG dynamics is suggested to be mediated by dynamic fields generated from YIG spin precession near YIG/NiFe interface, which interacts with NiFe spins near the simultaneous resonance of both spins, to generate a non-local SRE voltage within the NiFe layer.
Ang, Yee Sin; Ang, Lay Kee; Zhang, Chao; Ma, Zhongshui
In graphene-magnetic-insulator hybrid structure such as graphene-Europium-oxide, proximity induced exchange interaction opens up a spin-dependent bandgap and spin splitting in the Dirac band. We show that such band topology allows pure crossed Andreev reflection to be generated exclusively without the parasitic local Andreev reflection and elastic cotunnelling over a wide range of bias and Fermi levels. We model the charge transport in an EuO-graphene/superconductor/EuO-graphene three-terminal device and found that the pure non-local conductance exhibits rapid on/off switching characteristic with a minimal subthreshold swing of ~ 20 mV. Non-local conductance oscillation is observed when the Fermi levels in the superconducting lead is varied. The oscillatory behavior is directly related to the quasiparticle propagation in the superconducting lead and hence can be used as a tool to probe the subgap quasiparticle mode in superconducting graphene. The non-local current is 100% spin-polarized and is highly tunable in our proposed device. This opens up the possibility of highly tunable graphene-based spin transistor that operates purely in the non-local transport regime.
Tripartite states Bell-nonlocality sudden death in a spin environment with multisite interaction
Institute of Scientific and Technical Information of China (English)
Xie Li-Jun; Zhang Deng-Yu; Wang Xin-wen; Zhan Xiao-Gui; Tang Shi-Qing; Gao Feng
2011-01-01
Tis paper demonstrates that multipartite Bell-inequality violations can be fully destroyed in a finite time in three-qubit states coupled to a general XY spin-chain with a three-site interaction environment.The Mermin-Ardehali-Belinksii-Klyshko inequality is used to detect the degree of nonlocality,as measured by the extent of their violations.The effects of system-environment couplings,the size of degrees of freedom of the environment and the strength of the three-site interaction on the Bell-inequality violations are given.The results indicate that the Bell-inequality violations of the tripartite states will be completely destroyed by decoherence under certain conditions for the GHZ state.The decoherence-free subspaces of our model are identified and the entanglement of quantum states is also discussed.
Kim, Joon-Il; Kountouriotis, K.; Liu, T.; von Molnar, S.; Xiong, P.; Lu, J.; Yu, X. Z.; Zhao, J. H.
3-terminal (3T) and nonlocal 4-terminal (4T) Hanle measurements have been performed on a spin injection/detection device with patterned Fe electrodes and Al0.3Ga0.7As:Si, a persistent photoconductor, as the channel. The persistent photoconductivity facilitates in situ incremental photo-doping of the AlGaAs channel, which enables direct comparisons of the 3T and 4T Hanle results on the same device over a broad range of carrier densities across the insulator-metal transition. Although their magnitudes differ by about an order of magnitude, the 3T and 4T Hanle signals exhibit broad similarities in their dependencies on the injection current and carrier density, as well as the resulting spin lifetimes. Specifically, at each bias current, the magnitudes of both the 3T and 4T Hanle signals are observed to decrease exponentially with increasing carrier density of the AlGaAs deep into the metallic state. The spin lifetimes extracted from the 3T and 4T Hanle curves, both via the FWHM of the Lorentzian fit and the 1D spin drift-diffusion model analysis, show similar values and evolution with the carrier density. Work supported by NSF Grant DMR-1308613.
Spin Seebeck Effect Signals from Antiferromagnets
Prakash, Arati; Brangham, Jack; Yang, Fengyuan; Heremans, Joseph
The Longitudinal Spin Seebeck Effect (LSSE), in which a heat current stimulates spin propagation across an interface between a magnetic material and a normal metal, is well established and observed in ferromagnetic systems. Data have been presented indicating that antiferromagnetic systems could also give rise to LSSE signals. We report here on LSSE signal measured on the Pt/NiO/YIG structure, where NiO is an antiferromagnet. This system is reported to exhibit antiferromagnonic transport. We explore the dependence of the signal on the thickness of the NiO and YIG layers. We also report its temperature dependence, which was not explored before. The results are interpreted in terms of the temperature dependence of the magnon density of states. It appears that magnon modes with energies below about 40 K are most involved in the process, as was the case to the LSSE on YIG itself. Preliminary results using other antiferromagnets and other inverse spin-Hall layers look promising and will also be reported Work supported by ARO- MURI W911NF-14-1-0016.
Nonlocal Coulomb interaction in the two-dimensional spin-1/2 Falicov–Kimball model
Indian Academy of Sciences (India)
S K Bhowmick; N K Ghosh
2012-02-01
The two-dimensional (2D) extended Falicov–Kimball model has been studied to observe the role of nonlocal Coulomb interaction (nc) using an exact diagonalization technique. The f-state occupation ($n^f$), the f–d intersite correlation function (fd), the speciﬁc heat (), entropy () and the speciﬁc heat coefﬁcient () have been examined. Nonlocal Coulomb interaction-induced discontinuous insulator-to-metal transition occurs at a critical f-level energy. More ordered state is obtained with the increase of nc. In the speciﬁc heat curves, two-peak structure as well as a singlepeak structure appears. At low-temperature region, a sharp rise in the speciﬁc heat coefﬁcient is observed. The peak value of shifts to the higher temperature region with nc.
Berkovitz, Joseph
In this paper and its sequel, I consider the significance of Jarrett's and Shimony's analyses of the so-called factorisability (Bell-locality) condition for clarifying the nature of quantum non-locality. In this paper, I focus on four types of non-locality: superluminal signalling, action-at-a-distance, non-separability and holism. In the second paper, I consider a fifth type of non-locality: superluminal causation according to 'logically weak' concepts of causation, where causal dependence requires neither action nor signalling. In this connection, I pay special attention to the difficulties that superluminal causation raises in relativistic space-time. I conclude by evaluating the relevance of Jarrett's and Shimony's analyses for clarifying the question of the compatibility of quantum non-locality with relativity theory. My main conclusions are, first: these analyses are significant for clarifying the questions of superluminal signalling in quantum phenomena and for the compatibility of these phenomena with relativity. But, second, by contrast: these analyses are not very significant for the study of action-at-a distance, superluminal causation, non-separability and holism in quantum phenomena.
Energy Technology Data Exchange (ETDEWEB)
Tiwari, Ajay, E-mail: ajay1.tiwari@toshiba.co.jp; Inokuchi, Tomoaki; Ishikawa, Mizue; Sugiyama, Hideyuki; Saito, Yoshiaki [Corporate Research & Development Center, Toshiba Corporation, 1 Komukai-Toshiba, Kawasaki, Kanagawa 212-8582 (Japan); Tezuka, Nobuki [Department of Materials Science, Tohoku University, 6-6-02 Aramaki-Aza-Aoba, 980-8579 Sendai (Japan)
2016-07-15
The post annealing temperature dependence of spin accumulation and transport signals in Co{sub 2}FeSi/MgO/n{sup +}-Si on insulator were investigated. The spin signals were detected using 3- and 4-terminal Hanle, 2-terminal local and 4-terminal nonlocal magnetoresistance measurements. The post annealing temperature (T{sub A}) dependence of the magnitude in 3-terminal narrow Hanle signals is nearly constant up to T{sub A} < 400°C, however a slight decrease above T{sub A} ≥ 400°C is observed. This behavior is consistent with the T{sub A} dependence of the magnitude of 4-terminal nonlocal magnetoresistance (MR) signals. The spin polarization estimated from the 3-terminal narrow Hanle signals and the magnitude of 2-terminal local MR signals show a slight improvement with increasing post annealing temperature with a peak at around 325°C and then start reducing slowly. The slight increase in the spin signal would be due to high spin polarization of Co{sub 2}FeSi as a result of structural ordering. The 2-terminal local MR signals do not vary significantly by annealing between as-deposited and T{sub A} = 400°C, indicating the robustness of our device. This result would be useful for future Si spintronics devices.
Nonlocally sensing the magnetic states of nanoscale antiferromagnets with an atomic spin sensor
Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A. J.; Droghetti, Andrea; Rubio, Angel; Loth, Sebastian
2017-01-01
The ability to sense the magnetic state of individual magnetic nano-objects is a key capability for powerful applications ranging from readout of ultradense magnetic memory to the measurement of spins in complex structures with nanometer precision. Magnetic nano-objects require extremely sensitive sensors and detection methods. We create an atomic spin sensor consisting of three Fe atoms and show that it can detect nanoscale antiferromagnets through minute, surface-mediated magnetic interaction. Coupling, even to an object with no net spin and having vanishing dipolar stray field, modifies the transition matrix element between two spin states of the Fe atom–based spin sensor that changes the sensor’s spin relaxation time. The sensor can detect nanoscale antiferromagnets at up to a 3-nm distance and achieves an energy resolution of 10 μeV, surpassing the thermal limit of conventional scanning probe spectroscopy. This scheme permits simultaneous sensing of multiple antiferromagnets with a single-spin sensor integrated onto the surface. PMID:28560346
Notes on nonlocal projective measurements in relativistic systems
Lin, Shih-Yuin
2013-01-01
In quantum mechanical bipartite systems, naive extensions of von Neumann's projective measurement to nonlocal variables can produce superluminal signals and thus violate causality. We analyze the projective quantum nondemolition state-verification in a two-spin system and see how the projection introduces nonlocality without entanglement. For the ideal measurements of "R-nonlocal" variables, we argue that causality violation can be resolved by introducing further restrictions on the post-measurement states, which makes the measurement "Q-nonlocal". After we generalize these ideas to quantum mechanical harmonic oscillators, we look into the projective measurements of the particle number of a single mode or a wave-packet of a relativistic quantum field in Minkowski space. It turns out that the causality-violating terms in the expectation values of the local operators, generated either by the ideal measurement of the "R-nonlocal" variable or the quantum nondemolition verification of a Fock state, are all suppres...
Energy Technology Data Exchange (ETDEWEB)
Bodek, K.; Rozpędzik, D.; Zejma, J. [Jagiellonian University, Faculty of Physics, Astronomy and Applied Informatics, Reymonta 4, 30059 Kraków (Poland); Caban, P.; Rembieliński, J.; Włodarczyk, M. [University of Łódź, Faculty of Physics and Applied Informatics, Pomorska 149/153, 90236 Łódź (Poland); Ciborowski, J. [University of Warsaw, Faculty of Physics, Hoza 69, 00681 Warsaw (Poland); Enders, J.; Köhler, A. [Technische Universität Darmstadt, Institut für Kernphysik, Schlossgartenstraße 9, 64289 Darmstadt (Germany); Kozela, A. [Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31342 Kraków (Poland)
2013-11-07
The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass.
Saito, Y.; Ishikawa, M.; Sugiyama, H.; Inokuchi, T.; Hamaya, K.; Tezuka, N.
2015-05-01
Correlation between the amplitude of the spin accumulation signals and the effective barrier height estimated from the slope of the log (RA) - tMgO plot (RA: resistance area product, tMgO: thickness of MgO tunnel barrier) in CoFe/MgO/n+-Si junctions was investigated. The amplitude of spin accumulation signals increases with increasing effective barrier heights. This increase of the amplitude of spin accumulation is originated from the increase of the spin polarization ( P S i ) in Si. The estimated absolute values of P S i using three-terminal Hanle signals are consistent with those estimated by four-terminal nonlocal-magnetoresistance (MR) and two-terminal local-MR. To demonstrate large spin accumulation in Si bulk band and enhance the local-MR through Si channel, these results indicate that the increase of the effective barrier height at ferromagnet/(tunnel barrier)/n+-Si junction electrode is important.
Fully nonlocal quantum correlations
Aolita, Leandro; Acín, Antonio; Chiuri, Andrea; Vallone, Giuseppe; Mataloni, Paolo; Cabello, Adán
2011-01-01
Quantum mechanics is a nonlocal theory, but not as nonlocal as the no-signalling principle allows. However, there exist quantum correlations that exhibit maximal nonlocality: they are as nonlocal as any non-signalling correlations and thus have a local content, quantified by the fraction $p_L$ of events admitting a local description, equal to zero. Previous examples of maximal quantum nonlocality between two parties require an infinite number of measurements, and the corresponding Bell violation is not robust against noise. We show how every proof of the Kochen-Specker theorem gives rise to maximally nonlocal quantum correlations that involve a finite number of measurements and are robust against noise. We perform the experimental demonstration of a Bell test originating from the Peres-Mermin Kochen-Specker proof, providing an upper bound on the local content $p_L\\lesssim 0.22$.
STIC: Development of a System of Nonlocally Interconnected Spin Qubits for Quantum Computation
2012-09-23
Taylor, W. Dür, P. Zoller, A. Yacoby, C. Marcus, M. Lukin. Solid-State Circuit for Spin Entanglement Generation and Purification, Physical Review Letters , (06...Triplet Qubit, Physical Review Letters , (10 2009): 160503. doi: 10.1103/PhysRevLett.103.160503 2012/09/04 08:13:52 16 D. J. Reilly, J. M. Taylor, J...Double Quantum Dot, Physical Review Letters , (07 2006): 0. doi: 10.1103/PhysRevLett.97.056801 2012/09/04 02:25:07 7 J. Taylor, J. Petta, A. Johnson, A
Kamalakar, M. Venkata; Dankert, André; Kelly, Paul J.; Dash, Saroj P.
2016-02-01
Two dimensional atomically thin crystals of graphene and its insulating isomorph hexagonal boron nitride (h-BN) are promising materials for spintronic applications. While graphene is an ideal medium for long distance spin transport, h-BN is an insulating tunnel barrier that has potential for efficient spin polarized tunneling from ferromagnets. Here, we demonstrate the spin filtering effect in cobalt|few layer h-BN|graphene junctions leading to a large negative spin polarization in graphene at room temperature. Through nonlocal pure spin transport and Hanle precession measurements performed on devices with different interface barrier conditions, we associate the negative spin polarization with high resistance few layer h-BN|ferromagnet contacts. Detailed bias and gate dependent measurements reinforce the robustness of the effect in our devices. These spintronic effects in two-dimensional van der Waals heterostructures hold promise for future spin based logic and memory applications.
Theory of Spin-State Selective Nonlocal Screening in Co 2p X-ray Photoemission Spectrum of LaCoO3
Hariki, Atsushi; Yamanaka, Akihiro; Uozumi, Takayuki
2015-07-01
The Co 2p X-ray photoemission spectrum (XPS) of LaCoO3 is investigated using a dp model simulating Co 3d and O 2p orbitals by means of a dynamical mean-field approach under the perovskite crystal structure. Across the spin-state transition from the low-spin to the high-spin state, the Co 2p3/2 main-line structure is substantially changed beyond expectation of a CoO6 cluster model calculation. In addition to the Coulombic multiplet effect, the origin of the spectral change is attributed to the nonlocal screening (NLS) from the correlated 3d band located on the top of the valence band to the core-excited Co site in the final state, where the NLS is practically active only for the high-spin state. The spin-state selectivity of the NLS is closely related to not only the spin state of the core-excited Co ion but also the spin and orbital character of the occupied Co 3d band in crystals. We emphasize that the Co 2p XPS can be an informative probe to investigate the spin state of Co ions in Co oxides, such as LaCoO3.
Observers in Spacetime and Nonlocality
Mashhoon, B
2012-01-01
Characteristics of observers in relativity theory are critically examined. For field measurements in Minkowski spacetime, the Bohr-Rosenfeld principle implies that the connection between actual (i.e., noninertial) and inertial observers must be nonlocal. Nonlocal electrodynamics of non-uniformly rotating observers is discussed and the consequences of this theory for the phenomenon of spin-rotation coupling are briefly explored.
Mashhoon, Bahram
2017-01-01
Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...
Perspectives of using spin waves for computing and signal processing
Energy Technology Data Exchange (ETDEWEB)
Csaba, György, E-mail: gcsaba@gmail.com [Center for Nano Science and Technology, University of Notre Dame (United States); Faculty for Information Technology and Bionics, Pázmány Péter Catholic University (Hungary); Papp, Ádám [Center for Nano Science and Technology, University of Notre Dame (United States); Faculty for Information Technology and Bionics, Pázmány Péter Catholic University (Hungary); Porod, Wolfgang [Center for Nano Science and Technology, University of Notre Dame (United States)
2017-05-03
Highlights: • We give an overview of spin wave-based computing with emphasis on non-Boolean signal processors. • Spin waves can combine the best of electronics and photonics and do it in an on-chip and integrable way. • Copying successful approaches from microelectronics may not be the best way toward spin-wave based computing. • Practical devices can be constructed by minimizing the number of required magneto-electric interconnections. - Abstract: Almost all the world's information is processed and transmitted by either electric currents or photons. Now they may get a serious contender: spin-wave-based devices may just perform some information-processing tasks in a lot more efficient and practical way. In this article, we give an engineering perspective of the potential of spin-wave-based devices. After reviewing various flavors for spin-wave-based processing devices, we argue that the niche for spin-wave-based devices is low-power, compact and high-speed signal-processing devices, where most traditional electronics show poor performance.
Shan, Juan; Cornelissen, Ludo J.; Vlietstra, Nynke; Ben Youssef, Jamal; Kuschel, Timo; Duine, Rembert A.; van Wees, Bart J.
2016-11-01
We studied the nonlocal transport behavior of both electrically and thermally excited magnons in yttrium iron garnet (YIG) as a function of its thickness. For electrically injected magnons, the nonlocal signals decrease monotonically as the YIG thickness increases. For the nonlocal behavior of the thermally generated magnons, or the nonlocal spin Seebeck effect (SSE), we observed a sign reversal which occurs at a certain heater-detector distance, and it is influenced by both the opacity of the YIG/heater interface and the YIG thickness. Our nonlocal SSE results can be qualitatively explained by the bulk-driven SSE mechanism together with the magnon diffusion model. Using a two-dimensional finite element model (2D-FEM), we estimated the bulk spin Seebeck coefficient of YIG at room temperature. The quantitative disagreement between the experimental and modeled results indicates more complex processes going on in addition to magnon diffusion and relaxation, especially close to the contacts.
Ferromagnetic tunnel contacts to graphene: Contact resistance and spin signal
Energy Technology Data Exchange (ETDEWEB)
Cubukcu, M.; Laczkowski, P.; Vergnaud, C.; Marty, A.; Attané, J.-P.; Notin, L.; Vila, L., E-mail: laurent.vila@cea.fr; Jamet, M. [University Grenoble Alpes, CEA, INAC-SP2M, F-38054 Grenoble (France); Martin, M.-B.; Seneor, P.; Anane, A.; Deranlot, C.; Fert, A. [Unité Mixte de Physique CNRS-Thales, F-91767 Palaiseau (France); Auffret, S. [University Grenoble Alpes, CNRS, CEA, INAC-SPINTEC, Grenoble F-38054 (France); Ducruet, C. [Crocus Technology, 4 place Robert Schuman, 38000 Grenoble (France)
2015-02-28
We report spin transport in CVD graphene-based lateral spin valves using different magnetic contacts. We compared the spin signal amplitude measured on devices where the cobalt layer is directly in contact with the graphene to the one obtained using tunnel contacts. Although a sizeable spin signal (up to ∼2 Ω) is obtained with direct contacts, the signal is strongly enhanced (∼400 Ω) by inserting a tunnel barrier. In addition, we studied the resistance-area product (R.A) of a variety of contacts on CVD graphene. In particular, we compared the R.A products of alumina and magnesium oxide tunnel barriers grown by sputtering deposition of aluminum or magnesium and subsequent natural oxidation under pure oxygen atmosphere or by plasma. When using an alumina tunnel barrier on CVD graphene, the R.A product is high and exhibits a large dispersion. This dispersion can be highly reduced by using a magnesium oxide tunnel barrier, as for the R.A value. This study gives insight in the material quest for reproducible and efficient spin injection in CVD graphene.
Nonlocality, No-Signalling and Bell's Theorem investigated by Weyl's Conformal Differential Geometry
De Martini, Francesco; Santamato, Enrico
2014-01-01
The principles and methods of the Conformal Quantum Geometrodynamics (CQG) based on the Weyl's differential geometry are presented. The theory applied to the case of the relativistic single quantum spin 1/2 leads a novel and unconventional derivation of Dirac's equation. The further extension of the theory to the case of two spins 1/2 in EPR entangled state and to the related violation of Bell's inequalities leads, by an exact albeit non relativistic analysis, to an insightful resolution of a...
Spin drift in highly doped n-type Si
Kameno, Makoto; Ando, Yuichiro; Shinjo, Teruya; Koike, Hayato; Sasaki, Tomoyuki; Oikawa, Tohru; Suzuki, Toshio; Shiraishi, Masashi
2014-03-01
A quantitative estimation of spin drift velocity in highly doped n-type silicon (Si) at 8 K is presented in this letter. A local two-terminal Hanle measurement enables the detection of a modulation of spin signals from the Si as a function of an external electric field, and this modulation is analyzed by using a spin drift-diffusion equation and an analytical solution of the Hanle-type spin precession. The analyses reveal that the spin drift velocity is linearly proportional to the electric field. The contribution of the spin drift effect to the spin signals is crosschecked by introducing a modified nonlocal four-terminal method.
Spin drift in highly doped n-type Si
Energy Technology Data Exchange (ETDEWEB)
Kameno, Makoto; Ando, Yuichiro; Shinjo, Teruya [Graduate School of Engineering Science, Osaka University Osaka (Japan); Koike, Hayato; Sasaki, Tomoyuki; Oikawa, Tohru [Advanced Technology Development Center, TDK Cooperation, Chiba (Japan); Suzuki, Toshio [AIT, Akita Research Institute of Advanced Technology, Akita (Japan); Shiraishi, Masashi, E-mail: mshiraishi@kuee.kyoto-u.ac.jp [Graduate School of Engineering Science, Osaka University Osaka (Japan); Graduate School of Engineering, Kyoto University, Kyoto (Japan)
2014-03-03
A quantitative estimation of spin drift velocity in highly doped n-type silicon (Si) at 8 K is presented in this letter. A local two-terminal Hanle measurement enables the detection of a modulation of spin signals from the Si as a function of an external electric field, and this modulation is analyzed by using a spin drift-diffusion equation and an analytical solution of the Hanle-type spin precession. The analyses reveal that the spin drift velocity is linearly proportional to the electric field. The contribution of the spin drift effect to the spin signals is crosschecked by introducing a modified nonlocal four-terminal method.
Inversion of electron spin resonance signal in coals
Poklonski, N. A.; Vyrko, S. A.; Poklonskaya, O. N.; Lapchuk, N. M.; Munkhtsetseg, S.
2013-07-01
Samples of coal from the Donetsk basin (carbon content ~90 mass%) in both lump and powder forms were studied by continuous-wave electron spin resonance (ESR) at room temperature in air. Inversion of the ESR signal (being in phase with modulation of the constant magnetic field) with an increase of lump size along the magnetic component of the microwave field was observed in the cavity of the radiospectrometer.
Separating spin and charge transport in single-wall carbon nanotubes
Tombros, N; van der Molen, SJ; van Wees, BJ
2006-01-01
We demonstrate spin injection and detection in single wall carbon nanotubes using a four-terminal nonlocal geometry. This measurement geometry completely separates the charge and spin circuits. Hence all spurious magnetoresistance effects are eliminated and the measured signal is due to spin accumul
Energy Technology Data Exchange (ETDEWEB)
Saito, Y., E-mail: yoshiaki.saito@toshiba.co.jp; Ishikawa, M.; Sugiyama, H.; Inokuchi, T. [Corporate Research and Development Center, Toshiba Corporation, 1, Komukai-Toshiba-cho, 212-8582 Kawasaki (Japan); Hamaya, K. [Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyama-cho, Toyonaka city, Osaka 560-8531 (Japan); Tezuka, N. [Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan)
2015-05-07
Correlation between the amplitude of the spin accumulation signals and the effective barrier height estimated from the slope of the log (RA) - t{sub MgO} plot (RA: resistance area product, t{sub MgO}: thickness of MgO tunnel barrier) in CoFe/MgO/n{sup +}-Si junctions was investigated. The amplitude of spin accumulation signals increases with increasing effective barrier heights. This increase of the amplitude of spin accumulation is originated from the increase of the spin polarization (P{sub Si}) in Si. The estimated absolute values of P{sub Si} using three-terminal Hanle signals are consistent with those estimated by four-terminal nonlocal-magnetoresistance (MR) and two-terminal local-MR. To demonstrate large spin accumulation in Si bulk band and enhance the local-MR through Si channel, these results indicate that the increase of the effective barrier height at ferromagnet/(tunnel barrier)/n{sup +}-Si junction electrode is important.
Evidence of Non-local Chemical, Thermal and Gravitational Effects
Directory of Open Access Journals (Sweden)
Hu H.
2007-04-01
Full Text Available Quantum entanglement is ubiquitous in the microscopic world and manifests itself macroscopically under some circumstances. But common belief is that it alone cannot be used to transmit information nor could it be used to produce macroscopic non- local effects. Yet we have recently found evidence of non-local effects of chemical substances on the brain produced through it. While our reported results are under independent verifications by other groups, we report here our experimental findings of non-local chemical, thermal and gravitational effects in simple physical systems such as reservoirs of water quantum-entangled with water being manipulated in a remote reservoir. With the aids of high-precision instruments, we have found that the pH value, temperature and gravity of water in the detecting reservoirs can be non-locally affected through manipulating water in the remote reservoir. In particular, the pH value changes in the same direction as that being manipulated; the temperature can change against that of local environment; and the gravity apparently can also change against local gravity. These non-local effects are all reproducible and can be used for non-local signalling and many other purposes. We suggest that they are mediated by quantum entanglement between nuclear and/or electron spins in treated water and discuss the implications of these results.
TOPICAL REVIEW: Spin current, spin accumulation and spin Hall effect
Directory of Open Access Journals (Sweden)
Saburo Takahashi and Sadamichi Maekawa
2008-01-01
Full Text Available Nonlocal spin transport in nanostructured devices with ferromagnetic injector (F1 and detector (F2 electrodes connected to a normal conductor (N is studied. We reveal how the spin transport depends on interface resistance, electrode resistance, spin polarization and spin diffusion length, and obtain the conditions for efficient spin injection, spin accumulation and spin current in the device. It is demonstrated that the spin Hall effect is caused by spin–orbit scattering in nonmagnetic conductors and gives rise to the conversion between spin and charge currents in a nonlocal device. A method of evaluating spin–orbit coupling in nonmagnetic metals is proposed.
Barnaby, Neil
2008-01-01
We consider the possibility of realizing inflation in nonlocal field theories containing infinitely many derivatives. Such constructions arise naturally in string field theory and also in a number of toy models, such as the p-adic string. After reviewing the complications (ghosts and instabilities) that arise when working with high derivative theories we discuss the initial value problem and perturbative stability of theories with infinitely many derivatives. Next, we examine the inflationary dynamics and phenomenology of such theories. Nonlocal inflation can proceed even when the potential is naively too steep and generically predicts large nongaussianity in the Cosmic Microwave Background.
Nonlocal Anomalous Hall Effect
Zhang, Steven S.-L.; Vignale, Giovanni
2016-04-01
The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect—the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt /YIG structures.
Nonlocal Anomalous Hall Effect.
Zhang, Steven S-L; Vignale, Giovanni
2016-04-01
The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect-the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt/YIG structures.
Singh, Simranjeet; Katoch, Jyoti; Xu, Jinsong; Tan, Cheng; Zhu, Tiancong; Amamou, Walid; Hone, James; Kawakami, Roland
2016-09-01
We present an experimental study of spin transport in single layer graphene using atomic sheets of hexagonal boron nitride (h-BN) as a tunnel barrier for spin injection. While h-BN is expected to be favorable for spin injection, previous experimental studies have been unable to achieve spin relaxation times in the nanosecond regime, suggesting potential problems originating from the contacts. Here, we investigate spin relaxation in graphene spin valves with h-BN barriers and observe room temperature spin lifetimes in excess of a nanosecond, which provides experimental confirmation that h-BN is indeed a good barrier material for spin injection into graphene. By carrying out measurements with different thicknesses of h-BN, we show that few layer h-BN is a better choice than monolayer for achieving high non-local spin signals and longer spin relaxation times in graphene.
Giddings, Steven B
2012-01-01
If quantum mechanics governs nature, black holes must evolve unitarily, providing a powerful constraint on the dynamics of quantum gravity. Such evolution apparently must in particular be nonlocal, when described from the usual semiclassical geometric picture, in order to transfer quantum information into the outgoing state. While such transfer from a disintegrating black hole has the dangerous potential to be violent to generic infalling observers, this paper proposes the existence of a more innocuous form of information transfer, to relatively soft modes in the black hole atmosphere. Simplified models for such nonlocal transfer are described and parameterized, within a possibly more basic framework of a Hilbert tensor network. Sufficiently sensitive measurements by infalling observers may detect departures from Hawking's predictions, and in generic models black holes decay more rapidly. Constraints of consistency -- internally and with known and expected features of physics -- restrict the form of informati...
Spin currents injected electrically and thermally from highly spin polarized Co{sub 2}MnSi
Energy Technology Data Exchange (ETDEWEB)
Pfeiffer, Alexander; Reeve, Robert M.; Kronenberg, Alexander; Jourdan, Martin; Kläui, Mathias, E-mail: klaeui@uni-mainz.de [Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz (Germany); Hu, Shaojie [Research Center for Quantum Nano-Spin Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Kimura, Takashi [Research Center for Quantum Nano-Spin Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan)
2015-08-24
We demonstrate the injection and detection of electrically and thermally generated spin currents probed in Co{sub 2}MnSi/Cu lateral spin valves. Devices with different electrode separations are patterned to measure the non-local signal as a function of the electrode spacing and we determine a relatively high effective spin polarization α of Co{sub 2}MnSi to be 0.63 and the spin diffusion length of Cu to be 500 nm at room temperature. The electrically generated non-local signal is measured as a function of temperature and a maximum signal is observed for a temperature of 80 K. The thermally generated non-local signal is measured as a function of current density and temperature in a second harmonic measurement detection scheme. We find different temperature dependences for the electrically and thermally generated non-local signals, which allows us to conclude that the temperature dependence of the signals is not just dominated by the transport in the Cu wire, but there is a crucial contribution from the different generation mechanisms, which has been largely disregarded till date.
Spin relaxation through lateral spin transport in heavily doped n -type silicon
Ishikawa, M.; Oka, T.; Fujita, Y.; Sugiyama, H.; Saito, Y.; Hamaya, K.
2017-03-01
We experimentally study temperature-dependent spin relaxation including lateral spin diffusion in heavily doped n -type silicon (n+-Si ) layers by measuring nonlocal magnetoresistance in small-sized CoFe/MgO/Si lateral spin-valve (LSV) devices. Even at room temperature, we observe large spin signals, 50-fold the magnitude of those in previous works on n+-Si . By measuring spin signals in LSVs with various center-to-center distances between contacts, we reliably evaluate the temperature-dependent spin diffusion length (λSi) and spin lifetime (τSi). We find that the temperature dependence of τSi is affected by that of the diffusion constant in the n+-Si layers, meaning that it is important to understand the temperature dependence of the channel mobility. A possible origin of the temperature dependence of τSi is discussed in terms of the recent theories by Dery and co-workers.
Compression gain of spin wave signals in a magnonic YIG waveguide with thermal non-uniformity
Kolokoltsev, O.; Gómez-Arista, Ivan; Qureshi, N.; Acevedo, A.; Ordóñez-Romero, César L.; Grishin, A.
2015-03-01
We report on the observation of the compression gain of the signals carried by surface spin waves (MSSWs) in yittrium iron garnet films as a result of non-uniform optical heating of the spin wave medium. Efficient gain takes place if a frequency downshift of the spin wave spectrum induced by the heating is compensated by the corresponding non-uniformity of the bias magnetic field. It is proposed that the effect can be understood in part as an interaction between spin waves and a thermally induced potential well in the sample.
The histone code reader SPIN1 controls RET signaling in liposarcoma.
Franz, Henriette; Greschik, Holger; Willmann, Dominica; Ozretić, Luka; Jilg, Cordula Annette; Wardelmann, Eva; Jung, Manfred; Buettner, Reinhard; Schüle, Roland
2015-03-10
The histone code reader Spindlin1 (SPIN1) has been implicated in tumorigenesis and tumor growth, but the underlying molecular mechanisms remain poorly understood. Here, we show that reducing SPIN1 levels strongly impairs proliferation and increases apoptosis of liposarcoma cells in vitro and in xenograft mouse models. Combining signaling pathway, genome-wide chromatin binding, and transcriptome analyses, we found that SPIN1 directly enhances expression of GDNF, an activator of the RET signaling pathway, in cooperation with the transcription factor MAZ. Accordingly, knockdown of SPIN1 or MAZ results in reduced levels of GDNF and activated RET explaining diminished liposarcoma cell proliferation and survival. In line with these observations, levels of SPIN1, GDNF, activated RET, and MAZ are increased in human liposarcoma compared to normal adipose tissue or lipoma. Importantly, a mutation of SPIN1 within the reader domain interfering with chromatin binding reduces liposarcoma cell proliferation and survival. Together, our data describe a molecular mechanism for SPIN1 function in liposarcoma and suggest that targeting SPIN1 chromatin association with small molecule inhibitors may represent a novel therapeutic strategy.
Diboson Signals via Fermi Scale Spin-One States
DEFF Research Database (Denmark)
Franzosi, Diogo Buarque; Frandsen, Mads T.; Sannino, Francesco
2015-01-01
ATLAS and CMS observe deviations from the expected background in diboson invariant mass searches of new resonances around 2 TeV. We provide a general analysis of the results in terms of spin-one resonances and find that Fermi scale composite dynamics can be the culprit. The analysis and methodolo...
Totality of Subquantum Nonlocal Correlations
Khrennikov, Andrei
2011-01-01
In a series of previous papers we developed a purely field model of microphenomena, so called prequantum classical statistical field theory (PCSFT). This model not only reproduces important probabilistic predictions of QM including correlations for entangled systems, but it also gives a possibility to go beyond quantum mechanics (QM), i.e., to make predictions of phenomena which could be observed at the subquantum level. In this paper we discuss one of such predictions - existence of nonlocal correlations between prequantum random fields corresponding to {\\it all} quantum systems. (And by PCSFT quantum systems are represented by classical Gaussian random fields and quantum observables by quadratic forms of these fields.) The source of these correlations is the common background field. Thus all prequantum random fields are "entangled", but in the sense of classical signal theory. On one hand, PCSFT demystifies quantum nonlocality by reducing it to nonlocal classical correlations based on the common random back...
Popov, Alexander A.; Lukina, Ekaterina A.; Rapatskiy, Leonid; Kulik, Leonid V.
2017-03-01
Temporal shape of electron spin echo (ESE) signal of photoinduced spin-correlated radical pairs (SCRP) in composite of conductive polymer P3HT and substituted fullerene PCBM is studied in details. ESE signals of radical pairs (RP) P3HT+/PCBM- are calculated in realistic model, taking into account finite microwave pulse length. Inhomogeneous broadening of resonant lines and interradical distance distribution are included. Experimentally observed ESE time-domain shape was found to contradict predictions of conventional SCRP theory, which would be valid in the case of very fast electron transfer. Thus, instantaneous formation of singlet SCRP is not the case for P3HT+/PCBM- pair, and spin system has enough time to evolve coherently during sequential electron transfer. While it is impossible to reproduce experimental data within simple singlet SCRP model, assumption of presence of additional - with respect to what is predicted by singlet SCRP theory - AE (absorption/emission) spin polarization gives convincing accordance with the experiment. Density matrix of RP P3HT+/PCBM- is a superposition of two contributions, namely the parts reflecting (i) antiphase polarization of original singlet-born SCRP and (ii) additional AE-polarization which is generated during initial stage of charge separation. AE-polarization affects experimental ESEEM (electron spin echo envelope modulation) traces, as well as ESE shape, making impossible their interpretation via simple singlet SCRP model. However, this effect can be eliminated by averaging of ESEEM traces over EPR spectral positions. Finally, choosing the optimal gate for ESE time-domain integration and proper microwave detection phase tuning are considered.
Diboson Signals via Fermi Scale Spin-One States
DEFF Research Database (Denmark)
Franzosi, Diogo Buarque; Frandsen, Mads T.; Sannino, Francesco
2015-01-01
ATLAS and CMS observe deviations from the expected background in diboson invariant mass searches of new resonances around 2 TeV. We provide a general analysis of the results in terms of spin-one resonances and find that Fermi scale composite dynamics can be the culprit. The analysis and methodolo...... can be employed for future searches at run two of the Large Hadron Collider....
Diboson Signals via Fermi Scale Spin-One States
Franzosi, Diogo Buarque; Sannino, Francesco
2015-01-01
ATLAS and CMS observe deviations from the expected background in diboson invariant mass searches of new resonances around 2 TeV. We provide a general analysis of the results in terms of spin-one resonances and find that Fermi scale composite dynamics can be the culprit. The analysis and methodology can be employed for future searches at run two of the Large Hadron Collider.
Detection of spin pumping from YIG by spin-charge conversion in a Au /Ni80Fe20 spin-valve structure
Vlietstra, N.; van Wees, B. J.; Dejene, F. K.
2016-07-01
Many experiments have shown the detection of spin currents driven by radio-frequency spin pumping from yttrium iron garnet (YIG), by making use of the inverse spin-Hall effect, which is present in materials with strong spin-orbit coupling, such as Pt. Here we show that it is also possible to directly detect the resonance-driven spin current using Au|permalloy (Py, Ni80Fe20 ) devices, where Py is used as a detector for the spins pumped across a YIG|Au interface. This detection mechanism is equivalent to the spin-current detection in metallic nonlocal spin-valve devices. By finite element modeling we compare the pumped spin current from a reference Pt strip with the detected signals from the Au|Py devices. We find that for one series of Au|Py devices the calculated spin pumping signals mostly match the measurements, within 20%, whereas for a second series of devices additional signals are present which are up to a factor 10 higher than the calculated signals from spin pumping. We also identify contributions from thermoelectric effects caused by the resonant (spin-related) and nonresonant heating of the YIG. Thermocouples are used to investigate the presence of these thermal effects and to quantify the magnitude of the spin-(dependent-)Seebeck effect. Several additional features are observed, which are also discussed.
Entanglement and nonlocality in multi-particle systems
Reid, M D; Drummond, P D
2011-01-01
Entanglement, the Einstein-Podolsky-Rosen (EPR) paradox and Bell's failure of local-hidden-variable (LHV) theories are three historically famous forms of "quantum nonlocality". We give experimental criteria for these three forms of nonlocality in multi-particle systems, with the aim of better understanding the transition from microscopic to macroscopic nonlocality. We examine the nonlocality of N separated spin J systems. First, we obtain multipartite Bell inequalities that address the correlation between spin values measured at each site, and then we review spin squeezing inequalities that address the degree of reduction in the variance of collective spins. The latter have been particularly useful as a tool for investigating entanglement in Bose-Einstein condensates (BEC). We present solutions for two topical quantum states: multi-qubit Greenberger-Horne-Zeilinger (GHZ) states, and the ground state of a two-well BEC.
Large local Hall effect in pin-hole dominated multigraphene spin-valves.
Muduli, P K; Barzola-Quiquia, J; Dusari, S; Ballestar, A; Bern, F; Böhlmann, W; Esquinazi, P
2013-01-11
We report local and non-local measurements in pin-hole dominated mesoscopic multigraphene spin-valves. Local spin-valve measurements show spurious switching behavior in resistance during magnetic field sweeping similar to the signal observed due to spin injection into multigraphene. The switching behavior has been explained in terms of a local Hall effect due to a thickness irregularity of the tunnel barrier. The local Hall effect appears due to a large local magnetostatic field produced near the roughness in the AlO(x) tunnel barrier. In our samples the resistance change due to the local Hall effect remains negligibly small above 75 K. A strong local Hall effect might hinder spin injection into multigraphene, resulting in no spin signal in non-local measurements.
Filk, Thomas
2013-04-01
In this article I investigate several possibilities to define the concept of "temporal non-locality" within the standard framework of quantum theory. In particular, I analyze the notions of "temporally non-local states", "temporally non-local events" and "temporally non-local observables". The idea of temporally non-local events is already inherent in the standard formalism of quantum mechanics, and Basil Hiley recently defined an operator in order to measure the degree of such a temporal non-locality. The concept of temporally non-local states enters as soon as "clock-representing states" are introduced in the context of special and general relativity. It is discussed in which way temporally non-local measurements may find an interesting application for experiments which test temporal versions of Bell inequalities.
DEFF Research Database (Denmark)
Krolikowski, Wieslaw; Bang, Ole; Wyller, John
2004-01-01
We investigate the propagation of partially coherent beams in spatially nonlocal nonlinear media with a logarithmic type of nonlinearity. We derive analytical formulas for the evolution of the beam parameters and conditions for the formation of nonlocal incoherent solitons.......We investigate the propagation of partially coherent beams in spatially nonlocal nonlinear media with a logarithmic type of nonlinearity. We derive analytical formulas for the evolution of the beam parameters and conditions for the formation of nonlocal incoherent solitons....
NONLOCAL SYMMETRIES AND NONLOCAL RECURSION OPERATORS
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
An expose about covering method on differential equations was given. The general formulae to determine nonlocal symmetries were derived which are analogous to the prolongation formulae of generalized symmetries. In addition, a new definition of nonlocal recursion operators was proposed, which gave a satisfactory explalnation in covering theory for the integro-differcntial recursion operators.
Gupta, A.; Hacquebard, L.; Childress, L.
2016-03-01
Room-temperature fluorescence detection of the nitrogen-vacancy center electronic spin typically has low signal to noise, requiring long experiments to reveal an averaged signal. Here, we present a simple approach to analysis of time-resolved fluorescence data that permits an improvement in measurement precision through signal processing alone. Applying our technique to experimental data reveals an improvement in signal to noise equivalent to a 14% increase in photon collection efficiency. We further explore the dependence of the signal to noise ratio on excitation power, and analyze our results using a rate equation model. Our results provide a rubric for optimizing fluorescence spin detection, which has direct implications for improving precision of nitrogen-vacancy-based sensors.
Maximum quantum nonlocality between systems that never interacted
Energy Technology Data Exchange (ETDEWEB)
Cabello, Adán, E-mail: adan@us.es [Departamento de Física Aplicada II, Universidad de Sevilla, E-41012 Sevilla (Spain)
2012-12-03
We show that there is a stronger form of bipartite quantum nonlocality in which systems that never interacted are as nonlocal as allowed by no-signaling. For this purpose, we first show that nonlocal boxes, theoretical objects that violate a bipartite Bell inequality as much as the no-signaling principle allows and which are physically impossible for most scenarios, are feasible if the two parties have 3 measurements with 4 outputs. Then we show that, in this case, entanglement swapping allows us to prepare mixtures of nonlocal boxes using systems that never interacted. -- Highlights: ► We show quantum correlations as nonlocal as allowed by no-signaling between systems that never interacted. ► We show that nonlocal boxes are feasible if 2 parties have 3 measurements with 4 outputs. ► Experimental implementations of 1 and 2 are proposed.
Enhanced spin Seebeck effect signal due to spin-momentum locked topological surface states
Jiang, Zilong; Chang, Cui-Zu; Masir, Massoud Ramezani; Tang, Chi; Xu, Yadong; Moodera, Jagadeesh S.; MacDonald, Allan H.; Shi, Jing
2016-05-01
Spin-momentum locking in protected surface states enables efficient electrical detection of magnon decay at a magnetic-insulator/topological-insulator heterojunction. Here we demonstrate this property using the spin Seebeck effect (SSE), that is, measuring the transverse thermoelectric response to a temperature gradient across a thin film of yttrium iron garnet, an insulating ferrimagnet, and forming a heterojunction with (BixSb1-x)2Te3, a topological insulator. The non-equilibrium magnon population established at the interface can decay in part by interactions of magnons with electrons near the Fermi energy of the topological insulator. When this decay channel is made active by tuning (BixSb1-x)2Te3 into a bulk insulator, a large electromotive force emerges in the direction perpendicular to the in-plane magnetization of yttrium iron garnet. The enhanced, tunable SSE which occurs when the Fermi level lies in the bulk gap offers unique advantages over the usual SSE in metals and therefore opens up exciting possibilities in spintronics.
Saito, Tatsuya; Tezuka, Nobuki; Matsuura, Masashi; Sugimoto, Satoshi
2013-10-01
We observed spin-valve signals and Hanle signals in four-terminal nonlocal measurements on a lateral spin transport device with Co2FeAl0.5Si0.5(CFAS)/n-GaAs Schottky tunnel junctions. The estimated spin injection/detection efficiency was 0.06 at 4.2 K, which is larger than those of the devices with Fe and CoFe electrodes [Nature Physics 3 (2007) 197 and Appl. Phys. Lett. 99 (2011) 082108]. The spin diffusion length estimated from Hanle signals was consistent with the gap length dependency of the spin-valve signals. Furthermore, the spin-valve signals were observed at up to 290 K. This is the first demonstration of detecting spin accumulation in semiconductor with full-Heusler alloys electrodes at room temperature.
Rinaldi, C.; Bertoli, S.; Asa, M.; Baldrati, L.; Manzoni, C.; Marangoni, M.; Cerullo, G.; Bianchi, M.; Sordan, R.; Bertacco, R.; Cantoni, M.
2016-10-01
The measurement of the spin diffusion length and/or lifetime in semiconductors is a key issue for the realisation of spintronic devices, exploiting the spin degree of freedom of carriers for storing and manipulating information. In this paper, we address such parameters in germanium (0 0 1) at room temperature (RT) by three different measurement methods. Exploiting optical spin orientation in the semiconductor and spin filtering across an insulating MgO barrier, the dependence of the resistivity on the spin of photo-excited carriers in Fe/MgO/Ge spin photodiodes (spin-PDs) was electrically detected. A spin diffusion length of 0.9 ± 0.2 µm was obtained by fitting the photon energy dependence of the spin signal by a mathematical model. Electrical techniques, comprising non-local four-terminal and Hanle measurements performed on CoFeB/MgO/Ge lateral devices, led to spin diffusion lengths of 1.3 ± 0.2 µm and 1.3 ± 0.08 µm, respectively. Despite minor differences due to experimental details, the order of magnitude of the spin diffusion length is the same for the three techniques. Although standard electrical methods are the most employed in semiconductor spintronics for spin diffusion length measurements, here we demonstrate optical spin orientation as a viable alternative for the determination of the spin diffusion length in semiconductors allowing for optical spin orientation.
I. Advances in NMR Signal Processing. II. Spin Dynamics in Quantum Dissipative Systems
Energy Technology Data Exchange (ETDEWEB)
Lin, Yung-Ya [Univ. of California, Berkeley, CA (United States)
1998-11-01
Part I. Advances in IVMR Signal Processing. Improvements of sensitivity and resolution are two major objects in the development of NMR/MRI. A signal enhancement method is first presented which recovers signal from noise by a judicious combination of a priordmowledge to define the desired feasible solutions and a set theoretic estimation for restoring signal properties that have been lost due to noise contamination. The effect of noise can be significantly mitigated through the process of iteratively modifying the noisy data set to the smallest degree necessary so that it possesses a collection of prescribed properties and also lies closest to the original data set. A novel detection-estimation scheme is then introduced to analyze noisy and/or strongly damped or truncated FIDs. Based on exponential modeling, the number of signals is detected based on information estimated using the matrix pencil method. theory and the spectral parameters are Part II. Spin Dynamics in body dipole-coupled systems Quantum Dissipative Systems. Spin dynamics in manyconstitutes one of the most fundamental problems in magnetic resonance and condensed-matter physics. Its many-spin nature precludes any rigorous treatment. ‘Therefore, the spin-boson model is adopted to describe in the rotating frame the influence of the dipolar local fields on a tagged spin. Based on the polaronic transform and a perturbation treatment, an analytical solution is derived, suggesting the existence of self-trapped states in the. strong coupling limit, i.e., when transverse local field >> longitudinal local field. Such nonlinear phenomena originate from the joint action of the lattice fluctuations and the reaction field. Under semiclassical approximation, it is found that the main effect of the reaction field is the renormalization of the Hamiltonian of interest. Its direct consequence is the two-step relaxation process: the spin is initially localized in a quasiequilibrium state, which is later detrapped by
Spin precession in anisotropic media
Raes, B.; Cummings, A. W.; Bonell, F.; Costache, M. V.; Sierra, J. F.; Roche, S.; Valenzuela, S. O.
2017-02-01
We generalize the diffusive model for spin injection and detection in nonlocal spin structures to account for spin precession under an applied magnetic field in an anisotropic medium, for which the spin lifetime is not unique and depends on the spin orientation. We demonstrate that the spin precession (Hanle) line shape is strongly dependent on the degree of anisotropy and on the orientation of the magnetic field. In particular, we show that the anisotropy of the spin lifetime can be extracted from the measured spin signal, after dephasing in an oblique magnetic field, by using an analytical formula with a single fitting parameter. Alternatively, after identifying the fingerprints associated with the anisotropy, we propose a simple scaling of the Hanle line shapes at specific magnetic field orientations that results in a universal curve only in the isotropic case. The deviation from the universal curve can be used as a complementary means of quantifying the anisotropy by direct comparison with the solution of our generalized model. Finally, we applied our model to graphene devices and find that the spin relaxation for graphene on silicon oxide is isotropic within our experimental resolution.
Srivastava, Madhur; Georgieva, Elka R; Freed, Jack H
2017-03-30
We adapt a new wavelet-transform-based method of denoising experimental signals to pulse-dipolar electron-spin resonance spectroscopy (PDS). We show that signal averaging times of the time-domain signals can be reduced by as much as 2 orders of magnitude, while retaining the fidelity of the underlying signals, in comparison with noiseless reference signals. We have achieved excellent signal recovery when the initial noisy signal has an SNR ≳ 3. This approach is robust and is expected to be applicable to other time-domain spectroscopies. In PDS, these time-domain signals representing the dipolar interaction between two electron spin labels are converted into their distance distribution functions P(r), usually by regularization methods such as Tikhonov regularization. The significant improvements achieved by using denoised signals for this regularization are described. We show that they yield P(r)'s with more accurate detail and yield clearer separations of respective distances, which is especially important when the P(r)'s are complex. Also, longer distance P(r)'s, requiring longer dipolar evolution times, become accessible after denoising. In comparison to standard wavelet denoising approaches, it is clearly shown that the new method (WavPDS) is superior.
Optimisation of geometrical ratchets for spin-current amplification
Energy Technology Data Exchange (ETDEWEB)
Abdullah, Ranjdar M. [Department of Electronics, University of York, Heslington, York YO10 5DD (United Kingdom); Vick, Andrew J. [Department of Electronics, University of York, Heslington, York YO10 5DD (United Kingdom); Department of Physics, University of York, York YO10 5DD (United Kingdom); Murphy, Benedict A. [Department of Physics, University of York, York YO10 5DD (United Kingdom); Hirohata, Atsufumi, E-mail: atsufumi.hirohata@york.ac.uk [Department of Electronics, University of York, Heslington, York YO10 5DD (United Kingdom); PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012 (Japan)
2015-05-07
A two-dimensional model is used to study the geometrical effects of a nonmagnetic (NM) nanowire upon a spin-polarised electron current in a lateral spin-valve structure. We found that the implemented ratchet shapes at the centre of the NM have a crucial effect on the diffusive rate for up- and down-spin electrons along the wire, which leads to the amplification of non-local spin-current signals. By using our simple model, the geometries have been optimised. The calculated spin-current signals are in good qualitative agreement with our recent experimental results [Abdullah et al., J. Phys. D: Appl. Phys. 47, 482001(FTC) (2014)]. Our model may be very useful to evaluate such a geometrical effect on spin-polarised electron transport.
A Spin-Dependent Interpretation for Possible Signals of Light Dark Matter
Buckley, Matthew R
2013-01-01
Signals broadly compatible with light (7-10 GeV) dark matter have been reported in three direct detection experiments: CoGeNT, DAMA/LIBRA, and CDMS-II silicon. These possible signals have been interpreted in the context of spin-independent interactions between the target nuclei and dark matter, although there is tension with null results, particularly from xenon-based experiments. In this paper, we demonstrate that the CoGeNT and CDMS-II silicon results are also compatible assuming a spin-dependent neutron interaction, though this is in tension with xenon-based experiments and PICASSO. The tension with the null results from XENON100 and XENON10 is approximately the same as for the spin-independent coupling. All three experimental signals can be made compatible through a combination of spin-dependent interactions with both the proton and neutron, although such a scenario increases the conflict with the null results of other experiments.
Anomalous Fiber Optic Gyroscope Signals Observed above Spinning Rings at Low Temperature
Tajmar, M; Seifert, B
2008-01-01
Precision fiber optic gyroscopes were mounted mechanically de-coupled above spinning rings inside a cryostat. Below a critical temperature (typically <30 K), the gyroscopes measure a significant deviation from their usual Earth rotation offset proportional to the applied angular ring velocity with maximum signals towards lower temperatures. The anomalous gyroscope signal is about 8 orders of magnitude smaller then the applied angular ring velocity, compensating about one third of the Earth rotation offset at an angular top speed of 420 rad/s. Moreover, our data shows a parity violation as the effect appears to be dominant for rotation against the Earth's spin. No systematic effect was found to explain this effect including the magnetic environment, vibration and helium gas friction suggesting that our observation is a new low temperature phenomenon. Tests in various configurations suggest that the anomalous signals is originating from the rotating helium in our facilities.
Anomalous fiber optic gyroscope signals observed above spinning rings at low temperature
Energy Technology Data Exchange (ETDEWEB)
Tajmar, M; Plesescu, F; Seifert, B [Space Propulsion and Advanced Concepts, Austrian Research Centers GmbH - ARC, A-2444 Seibersdorf (Austria)], E-mail: martin.tajmar@arcs.ac.at
2009-02-01
Precision fiber optic gyroscopes were mounted mechanically de-coupled above spinning rings inside a cryostat. Below a critical temperature (typically <30 K), the gyroscopes measure a significant deviation from their usual offset due to Earth's rotation. This deviation is proportional to the applied angular ring velocity with maximum signals towards lower temperatures. The anomalous gyroscope signal is about 8 orders of magnitude smaller then the applied angular ring velocity, compensating about one third of the Earth rotation offset at an angular top speed of 420 rad/s. Moreover, our data shows a parity violation as the effect appears to be dominant for rotation against the Earth's spin. No systematic effect was found to explain this effect including the magnetic environment, vibration and helium gas friction suggesting that our observation is a new low temperature phenomenon. Tests in various configurations suggest that the rotating low temperature helium may be the source of our anomalous signals.
Mashhoon, B
2014-01-01
A brief account of the present status of the recent nonlocal generalization of Einstein's theory of gravitation is presented. The main physical assumptions that underlie this theory are described. We clarify the physical meaning and significance of Weitzenb\\"ock's torsion, and emphasize its intimate relationship with the gravitational field, characterized by the Riemannian curvature of spacetime. In this theory, nonlocality can simulate dark matter; in fact, in the Newtonian regime, we recover the phenomenological Tohline-Kuhn approach to modified gravity. To account for the observational data regarding dark matter, nonlocality is associated with a characteristic length scale of order 1 kpc. The confrontation of nonlocal gravity with observation is briefly discussed.
Compression gain of spin wave signals in a magnonic YIG waveguide with thermal non-uniformity
Energy Technology Data Exchange (ETDEWEB)
Kolokoltsev, O.; Gómez-Arista, Ivan; Qureshi, N.; Acevedo, A. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, CU 04510 D.F. (Mexico); Ordóñez-Romero, César L. [Instituto de Física, Universidad Nacional Autónoma de México, CU 04510 D.F. (Mexico); Grishin, A. [Condensed Matter Physics, Royal Institute of Technology, SE-164 40 Stockholm, Kista (Sweden)
2015-03-01
We report on the observation of the compression gain of the signals carried by surface spin waves (MSSWs) in yittrium iron garnet films as a result of non-uniform optical heating of the spin wave medium. Efficient gain takes place if a frequency downshift of the spin wave spectrum induced by the heating is compensated by the corresponding non-uniformity of the bias magnetic field. It is proposed that the effect can be understood in part as an interaction between spin waves and a thermally induced potential well in the sample. - Highlights: • In this manuscript we describe the case when thermal control of the magnetization profile leads to significant improvement of characteristics of a spin wave delay line element. • We believe that this technology can be used to realize reconfigurable magnonic crystals or waveguiding structures induced in the ferromagnets by scanning optic systems integrated with a semiconductor lasers. • It should be noted, in metallic systems thermal response times are of order of picoseconds.
Non-resonant wave front reversal of spin waves used for microwave signal processing
Energy Technology Data Exchange (ETDEWEB)
Vasyuchka, V I; Chumak, A V; Hillebrands, B [Fachbereich Physik and Forschungszentrum OPTIMAS, Technische Universitaet Kaiserslautern, 67663 Kaiserslautern (Germany); Melkov, G A; Moiseienko, V A [Department of Radiophysics, National Taras Shevchenko University of Kiev, 01033 Kiev (Ukraine); Slavin, A N, E-mail: vasyuchka@physik.uni-kl.d [Department of Physics, Oakland University, Rochester, MI 48309 (United States)
2010-08-18
It is demonstrated that non-resonant ({omega}{sub s} {ne} {omega}{sub p}/2) wave front reversal (WFR) of spin-wave pulses (carrier frequency {omega}{sub s}) caused by pulsed parametric pumping (carrier frequency {omega}{sub p}) can be effectively used for microwave signal processing. When the spectral width {Omega}{sub s} of the signal is wider than the frequency band {Omega}{sub p} of signal amplification by pumping ({Omega}{sub s} >> {Omega}{sub p}), the non-resonant WFR can be used for the analysis of the signal spectrum. In the opposite case ({Omega}{sub s} << {Omega}{sub p}) the non-resonant WFR can be used for active (with amplification) filtering of the input signal.
Orbital- and spin-order sensitive nonlocal screening in Mn 2p X-ray photoemission of La1-xSrxMnO3
Hariki, A.; Yamanaka, A.; Uozumi, T.
2016-04-01
The Mn 2p X-ray photoemission spectra (XPS) of LaMnO3 (LMO) and hole-doped La0.7Sr0.3MnO3 (LSMO) are investigated using a dp model simulating Mn 3d and O 2p electrons under the perovskite-type crystal structure. The observed 2p XPS features, especially the low-binding-energy structure (LBES) of the 2p3/2 main line, are reproduced well using an impurity Anderson model optimized from the dp model within the dynamical mean-field approximation. The LBES in both compounds is due to the nonlocal screening (NLS) between the neighboring Mn ions in the final state, but the screening character is quite different: The NLS in LSMO directly reflects the character of the ferromagnetic metal, while that in undoped LMO the C-type orbital order between 3x^2-r2 and 3y^2-r2 orbitals in the ab-plane. We emphasize the directive nature of the NLS in the orbital order system, which can be a sensitive probe to the order pattern.
Quantum Nonlocality and Reality
Bell, Mary; Gao, Shan
2016-09-01
Preface; Part I. John Stewart Bell: The Physicist: 1. John Bell: the Irish connection Andrew Whitaker; 2. Recollections of John Bell Michael Nauenberg; 3. John Bell: recollections of a great scientist and a great man Gian-Carlo Ghirardi; Part II. Bell's Theorem: 4. What did Bell really prove? Jean Bricmont; 5. The assumptions of Bell's proof Roderich Tumulka; 6. Bell on Bell's theorem: the changing face of nonlocality Harvey R. Brown and Christopher G. Timpson; 7. Experimental tests of Bell inequalities Marco Genovese; 8. Bell's theorem without inequalities: on the inception and scope of the GHZ theorem Olival Freire, Jr and Osvaldo Pessoa, Jr; 9. Strengthening Bell's theorem: removing the hidden-variable assumption Henry P. Stapp; Part III. Nonlocality: Illusions or Reality?: 10. Is any theory compatible with the quantum predictions necessarily nonlocal? Bernard d'Espagnat; 11. Local causality, probability and explanation Richard A. Healey; 12. Bell inequality and many-worlds interpretation Lev Vaidman; 13. Quantum solipsism and non-locality Travis Norsen; 14. Lessons of Bell's theorem: nonlocality, yes; action at a distance, not necessarily Wayne C. Myrvold; 15. Bell non-locality, Hardy's paradox and hyperplane dependence Gordon N. Fleming; 16. Some thoughts on quantum nonlocality and its apparent incompatibility with relativity Shan Gao; 17. A reasonable thing that just might work Daniel Rohrlich; 18. Weak values and quantum nonlocality Yakir Aharonov and Eliahu Cohen; Part IV. Nonlocal Realistic Theories: 19. Local beables and the foundations of physics Tim Maudlin; 20. John Bell's varying interpretations of quantum mechanics: memories and comments H. Dieter Zeh; 21. Some personal reflections on quantum non-locality and the contributions of John Bell Basil J. Hiley; 22. Bell on Bohm Sheldon Goldstein; 23. Interactions and inequality Philip Pearle; 24. Gravitation and the noise needed in objective reduction models Stephen L. Adler; 25. Towards an objective
Non-local magnetoresistance in YIG/Pt nanostructures
Energy Technology Data Exchange (ETDEWEB)
Goennenwein, Sebastian T. B., E-mail: goennenwein@wmi.badw.de; Pernpeintner, Matthias; Gross, Rudolf; Huebl, Hans [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799 München (Germany); Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Schlitz, Richard; Ganzhorn, Kathrin [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Althammer, Matthias [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany)
2015-10-26
We study the local and non-local magnetoresistance of thin Pt strips deposited onto yttrium iron garnet. The local magnetoresistive response, inferred from the voltage drop measured along one given Pt strip upon current-biasing it, shows the characteristic magnetization orientation dependence of the spin Hall magnetoresistance. We simultaneously also record the non-local voltage appearing along a second, electrically isolated, Pt strip, separated from the current carrying one by a gap of a few 100 nm. The corresponding non-local magnetoresistance exhibits the symmetry expected for a magnon spin accumulation-driven process, confirming the results recently put forward by Cornelissen et al. [“Long-distance transport of magnon spin information in a magnetic insulator at room temperature,” Nat. Phys. (published online 14 September 2015)]. Our magnetotransport data, taken at a series of different temperatures as a function of magnetic field orientation, rotating the externally applied field in three mutually orthogonal planes, show that the mechanisms behind the spin Hall and the non-local magnetoresistance are qualitatively different. In particular, the non-local magnetoresistance vanishes at liquid Helium temperatures, while the spin Hall magnetoresistance prevails.
Robust non-local median filter
Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji
2017-04-01
This paper describes a novel image filter with superior performance on detail-preserving removal of random-valued impulse noise superimposed on natural gray-scale images. The non-local means filter is in the limelight as a way of Gaussian noise removal with superior performance on detail preservation. By referring the fundamental concept of the non-local means, we had proposed a non-local median filter as a specialized way for random-valued impulse noise removal so far. In the non-local processing, the output of a filter is calculated from pixels in blocks which are similar to the block centered at a pixel of interest. As a result, aggressive noise removal is conducted without destroying the detailed structures in an original image. However, the performance of non-local processing decreases enormously in the case of high noise occurrence probability. A cause of this problem is that the superimposed noise disturbs accurate calculation of the similarity between the blocks. To cope with this problem, we propose an improved non-local median filter which is robust to the high level of corruption by introducing a new similarity measure considering possibility of being the original signal. The effectiveness and validity of the proposed method are verified in a series of experiments using natural gray-scale images.
Spinning Disk Confocal Microscopy of Calcium Signalling in Blood Vessel Walls
Nelson, Mark; Ledoux, Jonathan; Taylor, Mark; Bonev, Adrian; Hannah, Rachael; Solodushko, Viktoriya; Shui, Bo; Tallini, Yvonne; Kotlikoff, Michael
2010-01-01
Spinning disk confocal laser microscopy systems can be used for observing fast events occurring in a small volume when they include a sensitive electron-multiplying CCD camera. Such a confocal system was recently used to capture the first pictures of intracellular calcium signalling within the projections of endothelial cells to the adjacent smooth muscle cells in the blood vessel wall. Detection of these calcium signals required high spatial and temporal resolution. A newly developed calcium ion (Ca2+) biosensor was also used. This exclusively expressed in the endothelium and fluoresced when Ca2+ concentrations increased during signalling. This work gives insights into blood vessel disease because Ca2+ signalling is critical for blood flow and pressure regulation. PMID:22506097
Detrimental nonlocality in luminescence measurements
Pluska, Mariusz; Czerwinski, Andrzej
2017-08-01
Luminescence studies are used to investigate the local properties of various light-emitting materials. A critical issue of these studies is presented that the signals often lack all advantages of luminescence-studies of high locality, and may originate from an extended spatial region of even a few millimeters in size or the whole sample, i.e., places other than intended for investigation. This is a key problem for research and development in photonics. Due to this nonlocality, information indicating defects, irregularities, nonuniformities and inhomogeneities is lost. The issue refers to typical structures with a strong built-in electric field. Such fields exist intentionally in most photonic structures and occur unintentionally in many other materials investigated by applied physics. We reveal [using test samples prepared with focused ion beam (FIB) on an AlGaAs/GaAs laser heterostructure with an InGaAs quantum well (QW)] that nonlocality increases at low temperatures. This is contrary to the widely expected outcome, as low-temperature luminescence measurements are usually assumed to be free from disturbances. We explain many effects observed due to nonlocality in luminescence studies and prove that separation of the investigated area by focused ion beam milling is a practical solution enabling truly local luminescence measurements. All conclusions drawn using the example of cathodoluminescence are useful for other luminescence techniques.
Investigation of defects in In–Ga–Zn oxide thin film using electron spin resonance signals
Energy Technology Data Exchange (ETDEWEB)
Nonaka, Yusuke; Kurosawa, Yoichi; Komatsu, Yoshihiro; Ishihara, Noritaka; Oota, Masashi; Nakashima, Motoki; Hirohashi, Takuya; Takahashi, Masahiro; Yamazaki, Shunpei [Semiconductor Energy Laboratory Co., Ltd., 398 Hase, Atsugi, Kanagawa 243-0036 (Japan); Obonai, Toshimitsu; Hosaka, Yasuharu; Koezuka, Junichi [Advanced Film Device, Inc., 161-2 Masuzuka, Tsuga-machi, Tochigi, Tochigi 328-0114 (Japan); Yamauchi, Jun [Semiconductor Energy Laboratory Co., Ltd., 398 Hase, Atsugi, Kanagawa 243-0036 (Japan); Emeritus Professor of Kyoto University, Oiwake-cho, Kitashirakawa, Kyoto 606-8502 (Japan)
2014-04-28
In–Ga–Zn oxide (IGZO) is a next-generation semiconductor material seen as an alternative to silicon. Despite the importance of the controllability of characteristics and the reliability of devices, defects in IGZO have not been fully understood. We investigated defects in IGZO thin films using electron spin resonance (ESR) spectroscopy. In as-sputtered IGZO thin films, we observed an ESR signal which had a g-value of g = 2.010, and the signal was found to disappear under thermal treatment. Annealing in a reductive atmosphere, such as N{sub 2} atmosphere, generated an ESR signal with g = 1.932 in IGZO thin films. The temperature dependence of the latter signal suggests that the signal is induced by delocalized unpaired electrons (i.e., conduction electrons). In fact, a comparison between the conductivity and ESR signal intensity revealed that the signal's intensity is related to the number of conduction electrons in the IGZO thin film. The signal's intensity did not increase with oxygen vacancy alone but also with increases in both oxygen vacancy and hydrogen concentration. In addition, first-principle calculation suggests that the conduction electrons in IGZO may be generated by defects that occur when hydrogen atoms are inserted into oxygen vacancies.
Nonlocality from Local Contextuality
Liu, Bi-Heng; Hu, Xiao-Min; Chen, Jiang-Shan; Huang, Yun-Feng; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can; Cabello, Adán
2016-11-01
We experimentally show that nonlocality can be produced from single-particle contextuality by using two-particle correlations which do not violate any Bell inequality by themselves. This demonstrates that nonlocality can come from an a priori different simpler phenomenon, and connects contextuality and nonlocality, the two critical resources for, respectively, quantum computation and secure communication. From the perspective of quantum information, our experiment constitutes a proof of principle that quantum systems can be used simultaneously for both quantum computation and secure communication.
Nonlocality from Local Contextuality.
Liu, Bi-Heng; Hu, Xiao-Min; Chen, Jiang-Shan; Huang, Yun-Feng; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can; Cabello, Adán
2016-11-25
We experimentally show that nonlocality can be produced from single-particle contextuality by using two-particle correlations which do not violate any Bell inequality by themselves. This demonstrates that nonlocality can come from an a priori different simpler phenomenon, and connects contextuality and nonlocality, the two critical resources for, respectively, quantum computation and secure communication. From the perspective of quantum information, our experiment constitutes a proof of principle that quantum systems can be used simultaneously for both quantum computation and secure communication.
High-performance spinning device for DVD-based micromechanical signal transduction
Hwu, En-Te; Chen, Ching-Hsiu; Bosco, Filippo G.; Wang, Wei-Min; Ko, Hsien-Chen; Hwang, Ing-Shouh; Boisen, Anja; Huang, Kuang-Yuh
2013-04-01
Here we report a high-throughput spinning device for nanometric scale measurements of microstructures with instrumentation details and experimental results. The readout technology implemented in the designed disc-like device is based on a DVD data storage optical pick-up unit (OPU). With a spinning mechanism, this device can simultaneously measure surface topography, mechanical deflections and resonance frequencies of several microfabricated beams at a high speed. In biochemical sensing applications, the OPU can measure bending changes of functionalized microcantilevers, providing a statistically robust and label-free bio-detection analysis of multiple compounds. The signal-to-noise ratio (S/N) is demonstrated from statistical measurements as 1.2 with arginine detection at 750 nM concentration. Practically, the OPU can measure up to 480 individual cantilever sensors per second with nanometer resolution. The opto-mechanical optimization of the device design and settings for biochemical detection are described.
High-Density Physical Random Number Generator Using Spin Signals in Multidomain Ferromagnetic Layer
Directory of Open Access Journals (Sweden)
Sungwoo Chun
2015-01-01
Full Text Available A high-density random number generator (RNG based on spin signals in a multidomain ferromagnetic layer in a magnetic tunnel junction (MTJ is proposed and fabricated. Unlike conventional spin-based RNGs, the proposed method does not require one to control an applied current, leading to a time delay in the system. RNG demonstrations are performed at room temperature. The randomness of the bit sequences generated by the proposed RNG is verified using the FIPS 140-2 statistical test suite provided by the NIST. The test results validate the effectiveness of the proposed RNGs. Our results suggest that we can obtain high-density, ultrafast RNGs if we can achieve high integration on the chip.
Absence of detectable MOKE signals from spin Hall effect in metals
Su, Yudan; Wang, Hua; Li, Jie; Tian, Chuanshan; Wu, Ruqian; Jin, Xiaofeng; Shen, Y. R.
2017-01-01
Recently, observation of the magneto-optical Kerr effect (MOKE) from the spin Hall effect (SHE) in beta-tungsten (β-W) and platinum (Pt) films was reported in the literature. This is most interesting, as it would provide an alternative means to probe the SHE in metals. However, despite repeated attempts on different samples, we were unable to find a true SHE-induced MOKE signal from β-W and Pt even with a current density of 2.5 × 105 A/cm2. The results indicate that the MOKE signal from the SHE in metals ought to be very weak, below the detection limit of currently available MOKE setups (0.08 mdeg). Our theoretical calculation shows that in order to observe an SHE-induced MOKE signal of 0.1 mdeg in β-W, one would need a driving current density of ˜108 A/cm2.
Millen, James
2016-04-01
George Musser's book Spooky Action at a Distance focuses on one of quantum physics' more challenging concepts, nonlocality, and its multitude of implications, particularly its assault on space itself.
Nonlocal continuum field theories
2002-01-01
Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...
Compressive Sensing via Nonlocal Smoothed Rank Function.
Fan, Ya-Ru; Huang, Ting-Zhu; Liu, Jun; Zhao, Xi-Le
2016-01-01
Compressive sensing (CS) theory asserts that we can reconstruct signals and images with only a small number of samples or measurements. Recent works exploiting the nonlocal similarity have led to better results in various CS studies. To better exploit the nonlocal similarity, in this paper, we propose a non-convex smoothed rank function based model for CS image reconstruction. We also propose an efficient alternating minimization method to solve the proposed model, which reduces a difficult and coupled problem to two tractable subproblems. Experimental results have shown that the proposed method performs better than several existing state-of-the-art CS methods for image reconstruction.
Persistent free radical ESR signals in marine bivalve tissues. [Electron Spin Resonance (ESR)
Energy Technology Data Exchange (ETDEWEB)
Mehlorn, R.J. (California Univ., Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering); Mendez, A.T. (Fundacion Educativa Ana G. Mendez, Rio Piedras (Puerto Rico)); Higashi, R. (California Univ., Bodega Bay, CA (United States). Bodega Marine Lab.); Fan, T. (California Univ., Davis, CA (United States))
1992-08-01
Freeze-dried homogenates of the oyster Crassostrea rhizophorae collected from waters in Puerto Rico near urban and industrial sites as well as at relatively pristine locations yielded electron spin resonance (ESR) spectra characteristic of free radicals as well as spectral components of transition metal ions, dominated by manganese. The magnitudes of these ESR signals and the concentrations of trace elements (determined by X-ray fluorescence) varied considerably among oyster samples, masking any potential correlation with polluted waters. Laboratory studies were initiated to identify the factors controlling the magnitudes of the tissue free radical ESR signals. Another mollusc, Mytilus californianus collected at the Bodega Marine laboratory in northern California, was fractionated into goneds and remaining tissue. Freeze-dried homogenates of both fractions exhibited ESR signals that increased gradually with time. ESR signals were observed in freeze-dried perchloric acid (PCA) precipitates of the homogenates, delipidated PCA precipitates, and in chloroform extracts of these precipitates. Acid hydrolysis to degrade proteins to amino acids produced a residue, which yielded much larger ESR free radical signals after freeze-drying. Freshly thawed homogenates of Crassostrea rhizophorae also exhibited ESR signals. A laboratory model of copper stress in Crassostrea rhizophorae was developed to study the effect of this transition metal on dssue free radicals. Preliminary results suggested that sublethal copper exposure had little effect on tissue fire radicals, except possibly for a signal enhancement in an oyster fraction that was enriched in kidney granules. Since kidney granules are known to accumulate heavy metals in mussels and probably other marine bivalves, this signal enhancement may prove to be an indicator of free radical processes associated with heavy metal deposition in molluscs.
Signal-background interference for a singlet spin-0 digluon resonance at the LHC
Martin, Stephen P
2016-01-01
Dijet mass distributions can be used to search for spin-0 resonances that couple to two gluons. I show that there is a substantial impact on such searches from the interference between the resonant signal and the continuum QCD background amplitudes. The signal dijet mass distribution is qualitatively modified by this interference, compared to the naive expectation from considering only the pure resonant contribution, even if the total width of the resonance is minimal and very small compared to the experimental dijet mass resolution. The impact becomes more drastic as the total width of the resonance increases. These considerations are illustrated using examples relevant to the 750 GeV diphoton excess recently observed at the LHC.
Clark, Susan M; Fu, Kai-Mei C; Ladd, Thaddeus D; Yamamoto, Yoshihisa
2007-07-27
We describe a fast quantum computer based on optically controlled electron spins in charged quantum dots that are coupled to microcavities. This scheme uses broadband optical pulses to rotate electron spins and provide the clock signal to the system. Nonlocal two-qubit gates are performed by phase shifts induced by electron spins on laser pulses propagating along a shared waveguide. Numerical simulations of this scheme demonstrate high-fidelity single-qubit and two-qubit gates with operation times comparable to the inverse Zeeman frequency.
Prospects for Measuring Planetary Spin and Frame-Dragging in Spacecraft Timing Signals
Directory of Open Access Journals (Sweden)
Andreas Schärer
2017-09-01
Full Text Available Satellite tracking involves sending electromagnetic signals to Earth. Both the orbit of the spacecraft and the electromagnetic signals themselves are affected by the curvature of spacetime. The arrival time of the pulses is compared to the ticks of local clocks to reconstruct the orbital path of the satellite to high accuracy, and implicitly measure general relativistic effects. In particular, Schwarzschild space curvature (static and frame-dragging (stationary due to the planet's spin affect the satellite's orbit. The dominant relativistic effect on the path of the signal photons is Shapiro delays due to static space curvature. We compute these effects for some current and proposed space missions, using a Hamiltonian formulation in four dimensions. For highly eccentric orbits, such as in the Juno mission and in the Cassini Grand Finale, the relativistic effects have a kick-like nature, which could be advantageous for detecting them if their signatures are properly modeled as functions of time. Frame-dragging appears, in principle, measurable by Juno and Cassini, though not by Galileo 5 and 6. Practical measurement would require disentangling frame-dragging from the Newtonian “foreground” such as the gravitational quadrupole which has an impact on both the spacecraft's orbit and the signal propagation. The foreground problem remains to be solved.
Non-local geometry inside Lifshitz horizon
Hu, Qi; Lee, Sung-Sik
2017-07-01
Based on the quantum renormalization group, we derive the bulk geometry that emerges in the holographic dual of the fermionic U( N ) vector model at a nonzero charge density. The obstruction that prohibits the metallic state from being smoothly deformable to the direct product state under the renormalization group flow gives rise to a horizon at a finite radial coordinate in the bulk. The region outside the horizon is described by the Lifshitz geometry with a higher-spin hair determined by microscopic details of the boundary theory. On the other hand, the interior of the horizon is not described by any Riemannian manifold, as it exhibits an algebraic non-locality. The non-local structure inside the horizon carries the information on the shape of the filled Fermi sea.
Nonlocal diffusion and applications
Bucur, Claudia
2016-01-01
Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.
Disentangling Nonlocality and Teleportation
Hardy, L
1999-01-01
Quantum entanglement can be used to demonstrate nonlocality and to teleport a quantum state from one place to another. The fact that entanglement can be used to do both these things has led people to believe that teleportation is a nonlocal effect. In this paper it is shown that teleportation is conceptually independent of nonlocality. This is done by constructing a toy local theory in which cloning is not possible (without a no-cloning theory teleportation makes limited sense) but teleportation is. Teleportation in this local theory is achieved in an analogous way to the way it is done with quantum theory. This work provides some insight into what type of process teleportation is.
Kimura, Tetsuji; Noumi, Toshifumi; Yamaguchi, Masahide
2016-01-01
We construct $\\mathcal{N}=1$ supersymmetric nonlocal theories in four dimension. We discuss higher derivative extensions of chiral and vector superfields, and write down generic forms of K\\"ahler potential and superpotential up to quadratic order. We derive the condition in which an auxiliary field remains non-dynamical, and the dynamical scalars and fermions are free from the ghost degrees of freedom. We also investigate the nonlocal effects on the supersymmetry breaking and find that supertrace (mass) formula is significantly modified even at the tree level.
Shan, Juan; Cornelissen, Ludo J.; Vlietstra, Nynke; Ben Youssef, Jamal; Kuschel, Timo; Duine, Rembert; Van Wees, Bart J.
2016-01-01
We studied the nonlocal transport behavior of both electrically and thermally excited magnons in yttrium iron garnet (YIG) as a function of its thickness. For electrically injected magnons, the nonlocal signals decrease monotonically as the YIG thickness increases. For the nonlocal behavior of the t
Hobson, Art
2012-01-01
Nonlocality arises from the unified "all or nothing" interactions of a spatially extended field quantum such as a photon or an electron. In the double-slit experiment with light, for example, each photon comes through both slits and arrives at the viewing screen as an extended but unified energy bundle or "field quantum." When the photon interacts…
Hobson, Art
2012-01-01
Nonlocality arises from the unified "all or nothing" interactions of a spatially extended field quantum such as a photon or an electron. In the double-slit experiment with light, for example, each photon comes through both slits and arrives at the viewing screen as an extended but unified energy bundle or "field quantum." When the photon interacts…
Indian Academy of Sciences (India)
Aurelien Drezet
2007-03-01
In a paper by Home and Agarwal [1], it is claimed that quantum nonlocality can be revealed in a simple interferometry experiment using only single particles. A critical analysis of the concept of hidden variable used by the authors of [1] shows that the reasoning is not correct.
The relation between Hardy's non-locality and violation of Bell inequality
Xiang, Yang
2011-06-01
We give an analytic quantitative relation between Hardy's non-locality and Bell operator. We find that Hardy's non-locality is a sufficient condition for the violation of Bell inequality, the upper bound of Hardy's non-locality allowed by information causality just corresponds to Tsirelson bound of Bell inequality and the upper bound of Hardy's non-locality allowed by the principle of no-signaling just corresponds to the algebraic maximum of Bell operator. Then we study the Cabello's argument of Hardy's non-locality (a generalization of Hardy's argument) and find a similar relation between it and violation of Bell inequality. Finally, we give a simple derivation of the bound of Hardy's non-locality under the constraint of information causality with the aid of the above derived relation between Hardy's non-locality and Bell operator.
Quantifying absolute spin polarization with non-magnetic contacts in FM/ n-GaAs heterostructures
Geppert, Chad; Wienkes, Lee; Christie, Kevin; Patel, Sahil; Palmstrøm, Chris; Crowell, Paul
2014-03-01
We report on a novel method of quantifying spin accumulation in Co2MnSi/ n-GaAs and Fe/ n-GaAs heterostructures using a non-magnetic probe. The presence of a non-equilibrium spin polarization generates a large electrostatic potential shift relative to the equilibrium state. This is due to the combination of (1) the parabolic (non-constant) density of states and (2) the population imbalance between the two spin sub-bands. We observe this shift as a Hanle effect in a non-local, non-magnetic semiconducting contact. Since this signal depends only on experimentally accessible parameters of the bulk semiconductor, its magnitude may be used to quantify the injected spin polarization in absolute terms. By comparison with the (smaller) spin-valve signal observed with a second ferromagnetic contact, we demonstrate that this electrostatic shift scales quadratically with spin polarization, dephases in the presence of both applied and hyperfine fields, and is observable to higher temperatures than traditional non-local measurements. Quantitative modeling allows extraction of absolute polarizations in excess of 50 % at low temperatures, and further indicates that this contribution constitutes a large fraction of the three-terminal signal observed in these devices. Supported by NSF DMR-1104951; by STARnet, a SRC program sponsored by MARCO and DARPA; and by the NSF MRSEC program.
Energy Technology Data Exchange (ETDEWEB)
Bhattacharya, Aniruddha; Baten, Md Zunaid; Bhattacharya, Pallab, E-mail: pkb@umich.edu [Center for Photonic and Multiscale Nanomaterials, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)
2016-01-25
We report the measurement of diffusive electronic spin transport characteristics in an epitaxial wurtzite GaN lateral spin valve at room temperature. Hanle spin precession and non-local spin accumulation measurements have been performed with the spin valves fabricated with FeCo/MgO spin contacts. Electron spin relaxation length and spin-flip lifetime of 176 nm and 37 ps, respectively, are derived from analysis of results obtained from four-terminal Hanle spin precession measurements at 300 K. The role of dislocations and defects in bulk GaN has also been examined in the context of electronic spin relaxation dynamics.
Bhattacharya, Aniruddha; Baten, Md Zunaid; Bhattacharya, Pallab
2016-01-01
We report the measurement of diffusive electronic spin transport characteristics in an epitaxial wurtzite GaN lateral spin valve at room temperature. Hanle spin precession and non-local spin accumulation measurements have been performed with the spin valves fabricated with FeCo/MgO spin contacts. Electron spin relaxation length and spin-flip lifetime of 176 nm and 37 ps, respectively, are derived from analysis of results obtained from four-terminal Hanle spin precession measurements at 300 K. The role of dislocations and defects in bulk GaN has also been examined in the context of electronic spin relaxation dynamics.
Propagation of pulsed surface spin-wave signals at millikelvin temperatures
van Loo, Arjan; Morris, Richard; Karenowska, Alexy
Propagating microwave-frequency magnons in magnetic films attract increasing attention on account of their potential interface with superconducting quantum circuit and qubit systems. Their rich dynamics and slow speeds make magnons an interesting addition to the circuit quantum electrodynamics toolbox and, at the same time, superconducting circuit technology promises to be a powerful tool in the investigation of their quantum properties. We have studied the propagation of pulsed surface spin-wave signals over millimeter distances in yttrium iron garnet waveguides at ~ 10 mK . Input microwave pulses and pulse trains with various envelope shapes were applied to an inductive input antenna, and the resulting magnons were detected by an output antenna of identical design. The shape of the output signal was observed to depend on the frequency content (carrier and pulse shape) of the input pulse. By performing measurements at varying frequencies and magnetic fields we have been able to map out the dispersion relation for surface magnon modes. These experiments were undertaken as a first step towards coupling propagating magnons in thin films to other quantum systems with microwave-frequency transition energies, and superconducting qubits in particular. The authors acknowledge support from the EPSRC (EP/K032690/1).
Electronic spin transport and spin precession in single graphene layers at room temperature.
Tombros, Nikolaos; Jozsa, Csaba; Popinciuc, Mihaita; Jonkman, Harry T; van Wees, Bart J
2007-08-02
Electronic transport in single or a few layers of graphene is the subject of intense interest at present. The specific band structure of graphene, with its unique valley structure and Dirac neutrality point separating hole states from electron states, has led to the observation of new electronic transport phenomena such as anomalously quantized Hall effects, absence of weak localization and the existence of a minimum conductivity. In addition to dissipative transport, supercurrent transport has also been observed. Graphene might also be a promising material for spintronics and related applications, such as the realization of spin qubits, owing to the low intrinsic spin orbit interaction, as well as the low hyperfine interaction of the electron spins with the carbon nuclei. Here we report the observation of spin transport, as well as Larmor spin precession, over micrometre-scale distances in single graphene layers. The 'non-local' spin valve geometry was used in these experiments, employing four-terminal contact geometries with ferromagnetic cobalt electrodes making contact with the graphene sheet through a thin oxide layer. We observe clear bipolar (changing from positive to negative sign) spin signals that reflect the magnetization direction of all four electrodes, indicating that spin coherence extends underneath all of the contacts. No significant changes in the spin signals occur between 4.2 K, 77 K and room temperature. We extract a spin relaxation length between 1.5 and 2 mum at room temperature, only weakly dependent on charge density. The spin polarization of the ferromagnetic contacts is calculated from the measurements to be around ten per cent.
Nonlocal transformation optics
Castaldi, Giuseppe; Alu', Andrea; Engheta, Nader
2011-01-01
We show that the powerful framework of transformation optics may be exploited for engineering the nonlocal response of artificial electromagnetic materials. Relying on the form-invariant properties of coordinate-transformed Maxwell's equations in the spectral domain, we derive the general constitutive "blueprints" of transformation media yielding prescribed nonlocal field-manipulation effects, and provide a physically-incisive and powerful geometrical interpretation in terms of deformation of the equi-frequency contours. In order to illustrate the potentials of our approach, we present an example of application to a wave-splitting refraction scenario, which may be implemented via a simple class of artificial materials. Our results provide a systematic and versatile framework which may open intriguing venues in dispersion engineering of artificial materials.
Nonlocality of quantum correlations
Streltsov, A; Roga, W; Bruß, D; Illuminati, F
2012-01-01
We show that only those composite quantum systems possessing nonvanishing quantum correlations have the property that any nontrivial local unitary evolution changes their global state. This type of nonlocality occurs also for states that do not violate a Bell inequality, such as, for instance, Werner states with a low degree of entanglement. We derive the exact relation between the global state change induced by local unitary evolutions and the amount of quantum correlations. We prove that the minimal change coincides with the geometric measure of discord, thus providing the latter with an operational interpretation in terms of the capability of a local unitary dynamics to modify a global state. We establish rigorously that Werner states are the maximally quantum correlated two-qubit states, and thus are the ones that maximize this novel type of nonlocality.
Entanglement without hidden nonlocality
Hirsch, Flavien; Túlio Quintino, Marco; Bowles, Joseph; Vértesi, Tamás; Brunner, Nicolas
2016-11-01
We consider Bell tests in which the distant observers can perform local filtering before testing a Bell inequality. Notably, in this setup, certain entangled states admitting a local hidden variable model in the standard Bell scenario can nevertheless violate a Bell inequality after filtering, displaying so-called hidden nonlocality. Here we ask whether all entangled states can violate a Bell inequality after well-chosen local filtering. We answer this question in the negative by showing that there exist entangled states without hidden nonlocality. Specifically, we prove that some two-qubit Werner states still admit a local hidden variable model after any possible local filtering on a single copy of the state.
Energy Technology Data Exchange (ETDEWEB)
Machon, Peter; Belzig, Wolfgang [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Eschrig, Matthias [SEPnet and Hubbard Theory Consortium, Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX (United Kingdom)
2013-07-01
We study thermal and charge transport in a three-terminal setup consisting of a superconducting and two ferromagnetic contacts. We predict that the simultaneous presence of spin-filtering and of spin-dependent scattering phase shifts at each of the two interfaces will lead to very large nonlocal thermoelectric effects both in clean and in disordered systems. The symmetries of thermal and electric transport coefficients are related to fundamental thermodynamic principles by the Onsager reciprocity. Our results show that a nonlocal version of the Onsager relations for thermoelectric currents holds in a three terminal quantum coherent ferromagnet-superconductor heterostructure including spin-dependent crossed Andreev reflection and coherent electron transfer processes.
Acausality in Nonlocal Gravity Theory
Zhang, Ying-li; Sasaki, Misao; Zhao, Gong-Bo
2016-01-01
We investigate the nonlocal gravity theory by deriving nonlocal equations of motion using the traditional variation principle in a homogeneous background. We focus on a class of models with a linear nonlocal modification term in the action. It is found that the resulting equations of motion contain the advanced Green's function, implying that there is an acausality problem. As a consequence, a divergence arises in the solutions due to contributions from the future infinity unless the Universe will go back to the radiation dominated era or become the Minkowski spacetime in the future. We also discuss the relation between the original nonlocal equations and its biscalar-tensor representation and identify the auxiliary fields with the corresponding original nonlocal terms. Finally, we show that the acusality problem cannot be avoided by any function of nonlocal terms in the action.
Understanding quantum non-locality through pseudo-telepathy game
Kunkri, Samir
2006-11-01
Usually by quantum non-locality we mean that quantum mechanics can not be replaced by local realistic theory. On the other hand this nonlocal feature of quantum mechanics can not be used for instantaneous communication and hence it respect Einstein's special theory of relativity. But still it is not trivial as proved by various quantum information processing using entangled states. Recently there have been studies of hypothetical non-local system again respecting no-signalling which is beyond quantum mechanics. Here we study the power of such a hypothetical nonlocal box first suggested by Popescu et.al. in the context of recently suggested pseudo-telepathy game constructed from a Kochen-Specker set.
Local orthogonality provides a tight upper bound for Hardy's nonlocality
Das, Subhadipa; Banik, Manik; Gazi, Md. Rajjak; Rai, Ashutosh; Kunkri, Samir
2013-12-01
The amount of nonlocality in quantum theory is limited compared to that allowed in generalized no-signaling theory [S. Popescu and D. Rohrlich, Found. Phys.FNDPA40015-901810.1007/BF02058098 24, 379 (1994)]. This feature, for example, gets manifested in the amount of Bell inequality violation as well as in the degree of success probability of Hardy's (Cabello's) nonlocality argument. Physical principles like information causality and macroscopic locality have been proposed for analyzing restricted nonlocality in quantum mechanics, viz. explaining the Cirel'son bound. However, these principles are not very successful in explaining the maximum success probability of Hardy's as well as Cabello's argument in quantum theory. Here we show that a recently proposed physical principle, namely local orthogonality, does better by providing a tighter upper bound on the success probability for Hardy's nonlocality. This bound is relatively closer to the corresponding quantum value compared to the bounds achieved from other principles.
Tu, Tsang-Wei; Budde, Matthew D; Xie, Mingqiang; Chen, Ying-Jr; Wang, Qing; Quirk, James D; Song, Sheng-Kwei
2014-12-01
To improve signal-noise-ratio of in vivo mouse spinal cord diffusion tensor imaging using-phase aligned multiple spin-echo technique. In vivo mouse spinal cord diffusion tensor imaging maps generated by multiple spin-echo and conventional spin-echo diffusion weighting were examined to demonstrate the efficacy of multiple spin-echo diffusion sequence to improve image quality and throughput. Effects of signal averaging using complex, magnitude and phased images from multiple spin-echo diffusion weighting were also assessed. Bayesian probability theory was used to generate phased images by moving the coherent signals to the real channel to eliminate the effect of phase variation between echoes while preserving the Gaussian noise distribution. Signal averaging of phased multiple spin-echo images potentially solves both the phase incoherence problem and the bias of the elevated Rician noise distribution in magnitude image. The proposed signal averaging with Bayesian phase-aligned multiple spin-echo images approach was compared to the conventional spin-echo data acquired with doubling the scan time. The diffusion tensor imaging parameters were compared in the mouse contusion spinal cord injury. Significance level (p-value) and effect size (Cohen's d) were reported between the control and contused spinal cord to inspect the sensitivity of each approach in detecting white matter pathology. Compared to the spin-echo image, the signal-noise-ratio increased to 1.84-fold using the phased image averaging and to 1.30-fold using magnitude image averaging in the spinal cord white matter. Multiple spin-echo phased image averaging showed improved image quality of the mouse spinal cord among the tested methods. Diffusion tensor imaging metrics obtained from multiple spin-echo phased images using three echoes and two averages closely agreed with those derived by spin-echo magnitude data with four averages (two times more in acquisition time). The phased image averaging correctly
A simple nonlocal model for exchange.
Janesko, Benjamin G
2009-12-21
This work presents a new nonlocal model for the exchange energy density. The model is obtained from the product of the Kohn-Sham one-particle density matrix used to construct exact [Hartree-Fock-like (HF)] exchange, and an approximate density matrix used to construct local spin-density approximation (LSDA) exchange. The proposed exchange energy density has useful formal properties, including correct spin and coordinate scaling and the correct uniform limit. It can readily be evaluated in finite basis sets, with a computational scaling intermediate between HF exchange and semilocal quantities such as the noninteracting kinetic energy density. Applications to representative systems indicate that its properties are typically intermediate between HF and LSDA exchange, and often similar to global hybrids of HF and LSDA exchange. The model is proposed as a novel "Rung 3.5" ingredient for constructing approximate exchange-correlation functionals.
Causality, Nonlocality, and Negative Refraction.
Forcella, Davide; Prada, Claire; Carminati, Rémi
2017-03-31
The importance of spatial nonlocality in the description of negative refraction in electromagnetic materials has been put forward recently. We develop a theory of negative refraction in homogeneous and isotropic media, based on first principles, and that includes nonlocality in its full generality. The theory shows that both dissipation and spatial nonlocality are necessary conditions for the existence of negative refraction. It also provides a sufficient condition in materials with weak spatial nonlocality. These fundamental results should have broad implications in the theoretical and practical analyses of negative refraction of electromagnetic and other kinds of waves.
Nonlocal gravity: Conformally flat spacetimes
Bini, Donato
2016-01-01
The field equations of the recent nonlocal generalization of Einstein's theory of gravitation are presented in a form that is reminiscent of general relativity. The implications of the nonlocal field equations are studied in the case of conformally flat spacetimes. Even in this simple case, the field equations are intractable. Therefore, to gain insight into the nature of these equations, we investigate the structure of nonlocal gravity in two-dimensional spacetimes. While any smooth 2D spacetime is conformally flat and satisfies Einstein's field equations, only a subset containing either a Killing vector or a homothetic Killing vector can satisfy the field equations of nonlocal gravity.
Analytical theory of dark nonlocal solitons
DEFF Research Database (Denmark)
Kong, Qian; Wang, Qi; Bang, Ole;
2010-01-01
We investigate properties of dark solitons in nonlocal materials with an arbitrary degree of nonlocality. We employ the variational technique and describe dark solitons, for the first time to our knowledge, in the whole range of degree of nonlocality.......We investigate properties of dark solitons in nonlocal materials with an arbitrary degree of nonlocality. We employ the variational technique and describe dark solitons, for the first time to our knowledge, in the whole range of degree of nonlocality....
Optical Beams in Nonlocal Nonlinear Media
DEFF Research Database (Denmark)
Królikowski, W.; Bang, Ole; Wyller, J.
2003-01-01
We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons.......We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons....
Energy Technology Data Exchange (ETDEWEB)
Chejanovsky, N.; Sharoni, A., E-mail: amos.sharoni@biu.ac.il [Department of Physics and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan 590002 (Israel)
2014-08-21
Lateral spin valves (LSVs) are efficient structures for characterizing spin currents in spintronics devices. Most LSVs are based on ferromagnetic (FM) electrodes for spin-injection and detection. While there are advantages for using perpendicular magnetic anisotropy (PMA) FM, e.g., stability to nano-scaling, these have almost not been studied. This is mainly due to difficulties in fabricating PMA FMs in a lateral geometry. We present here an efficient method, based on ion-milling through an AlN mask, for fabrication of LSVs with multi-layered PMA FMs such as Co/Pd and Co/Ni. We demonstrate, using standard permalloy FMs, that the method enables efficient spin injection. We show the multi-layer electrodes retain their PMA properties as well as spin injection and detection in PMA LSVs. In addition, we find a large asymmetric voltage signal which increases with current. We attribute this to a Nernst-Ettingshausen effect caused by local Joule heating and the perpendicular magnetic easy axis.
Energy Technology Data Exchange (ETDEWEB)
Joseph, D. Paul [Department of Physics, National Institute of Technology, Warangal, Telangana-506 004 (India); Lin, J. G., E-mail: jglin@ntu.edu.tw [Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan (China)
2015-06-24
Non-local electrical properties of pulsed laser deposited La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}/La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (L-B-L) coplanar tri-layer is investigated under different wiring configurations. Long range super-current of Bi-2212 penetrating into LSMO is dependent on geometry of spin injection. From qualitative analysis of structural, magnetic and electrical data, long range super-current is suggested to pass through domain walls and/or grain boundaries of LSMO.
High-performance spinning device for DVD-based micromechanical signal transduction
DEFF Research Database (Denmark)
Hwu, En-Te; Chen, Ching-Hsiu; Bosco, Filippo
2013-01-01
Here we report a high-throughput spinning device for nanometric scale measurements of microstructures with instrumentation details and experimental results. The readout technology implemented in the designed disc-like device is based on a DVD data storage optical pick-up unit (OPU). With a spinning...
Manallah, B.
1986-02-01
A delayed double resonance experiment was carried out using a Robinson-type continuous wave spectrometer. The sample chosen was s-triazine at liquid helium temperature, where the relaxation times are of the order of ten hours. Line pairings between the two Nitrogen-14 NQR sites were confirmed. Emission signals from ν- transitions were observed after successively saturating first the ν- line and then the ν+ line. The results are understood in terms of a simple model of spin population dynamics.
Senno, Gabriel; Bendersky, Ariel; Figueira, Santiago
2016-07-01
The concepts of randomness and non-locality are intimately intertwined outcomes of randomly chosen measurements over entangled systems exhibiting non-local correlations are, if we preclude instantaneous influence between distant measurement choices and outcomes, random. In this paper, we survey some recent advances in the knowledge of the interplay between these two important notions from a quantum information science perspective.
Quadratic solitons as nonlocal solitons
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov; Neshev, D.; Bang, Ole
2003-01-01
We show that quadratic solitons are equivalent to solitons of a nonlocal Kerr medium. This provides new physical insight into the properties of quadratic solitons, often believed to be equivalent to solitons of an effective saturable Kerr medium. The nonlocal analogy also allows for analytical...
Furtner, J; Schöpf, V; Schewzow, K; Kasprian, G; Weber, M; Woitek, R; Asenbaum, U; Preusser, M; Marosi, C; Hainfellner, J A; Widhalm, G; Wolfsberger, S; Prayer, D
2014-03-01
Pulsed arterial spin-labeling is a noninvasive MR imaging perfusion method performed with the use of water in the arterial blood as an endogenous contrast agent. The purpose of this study was to determine the inversion time with the largest difference in normalized intratumoral signal intensity between high-grade and low-grade astrocytomas. Thirty-three patients with gliomas, histologically classified as low-grade (n = 7) or high-grade astrocytomas (n = 26) according to the World Health Organization brain tumor classification, were included. A 3T MR scanner was used to perform pulsed arterial spin-labeling measurements at 8 different inversion times (370 ms, 614 ms, 864 ms, 1114 ms, 1364 ms, 1614 ms, 1864 ms, and 2114 ms). Normalized intratumoral signal intensity was calculated, which was defined by the signal intensity ratio of the tumor and the contralateral normal brain tissue for all fixed inversion times. A 3-way mixed ANOVA was used to reveal potential differences in the normalized vascular intratumoral signal intensity between high-grade and low-grade astrocytomas. The difference in normalized vascular intratumoral signal intensity between high-grade and low-grade astrocytomas obtained the most statistically significant results at 370 ms (P = .003, other P values ranged from .012-.955). The inversion time by which to differentiate high-grade and low-grade astrocytomas by use of normalized vascular intratumoral signal intensity was 370 ms in our study. The normalized vascular intratumoral signal intensity values at this inversion time mainly reflect the labeled intra-arterial blood bolus and therefore could be referred to as normalized vascular intratumoral signal intensity. Our data indicate that the use of normalized vascular intratumoral signal intensity values allows differentiation between low-grade and high-grade astrocytomas and thus may serve as a new, noninvasive marker for astrocytoma grading.
An operational framework for nonlocality
Gallego, Rodrigo; Acín, Antonio; Navascués, Miguel
2011-01-01
Due to the importance of entanglement for quantum information purposes, a framework has been developed for its characterization and quantification as a resource based on the following operational principle: entanglement among $N$ parties cannot be created by local operations and classical communication, even when $N-1$ parties collaborate. More recently, nonlocality has been identified as another resource, alternative to entanglement and necessary for device-independent quantum information protocols. We introduce an operational framework for nonlocality based on a similar principle: nonlocality among $N$ parties cannot be created by local operations and allowed classical communication even when $N-1$ parties collaborate. We then show that the standard definition of multipartite nonlocality, due to Svetlichny, is inconsistent with this operational approach: according to it, genuine tripartite nonlocality could be created by two collaborating parties. We finally discuss alternative definitions for which consist...
Nonlocal and quasilocal field theories
Tomboulis, E. T.
2015-12-01
We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasilocal (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasilocal kernels all acausal effects are confined within the compact support regions. We briefly discuss the extension to other types of fields and prospects of such theories.
Heikkinen, M O J; Kim, D-H; Troyer, M; Törmä, P
2014-10-31
We study fermionic superfluidity in strongly anisotropic optical lattices with attractive interactions utilizing the cluster dynamical mean-field theory method, and focusing in particular on the role of nonlocal quantum fluctuations. We show that nonlocal quantum fluctuations impact the BCS superfluid transition dramatically. Moreover, we show that exotic superfluid states with a delicate order parameter structure, such as the Fulde-Ferrell-Larkin-Ovchinnikov phase driven by spin population imbalance, can emerge even in the presence of such strong fluctuations.
Nikiforaki, K; Manikis, G C; Boursianis, T; Marias, K; Karantanas, A; Maris, T G
2017-05-01
This study aimed to assess the effect of echo spacing in transverse magnetization (T2) signal decay of gel and fat (oil) samples. Additionally, we assess the feasibility of using spin coupling as a determinant of fat content. Phantoms of known T2 values, as well as vegetable oil phantoms, were scanned at 1.5T scanner with a multi echo FSE sequence of variable echo spacing above and below the empirical threshold of 20ms for echo train signal modulation (6.7, 13.6, 26.8, and 40ms). T2 values were calculated from monoexponential fitting of the data. Relative signal loss between the four acquisitions of different echo spacing was calculated. Agreement in the T2 values of water gel phantom was observed in all acquisitions as opposed to fat phantom (oil) samples. Relative differences in signal intensity between two successive sequences of different echo spacing on composite fat/water regions of interest was found to be linearly correlated to fat fraction of the ROI. The sample specific degree of signal loss that was observed between different fat samples (vegetable oils) can be attributed to the composition of each sample in J coupled fat components. Hence, spin coupling may be used as a determinant of fat content. Copyright © 2016 Elsevier Inc. All rights reserved.
Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith, P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain, M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.; Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burmeister, O.; Busby, D.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Castaldi, G.; Cepeda, C.; Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini, F.; Christensen, N.; Clark, J.; Cochrane, P.; Cokelaer, T.; Coldwell, R.; Conte, R.; Cook, D.; Corbitt, T.; Coyne, D.; Creighton, J. D. E.; Croce, R. P.; Crooks, D. R. M.; Cruise, A. M.; Cumming, A.; Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Debra, D.; Degallaix, J.; Degree, M.; Demma, T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; di Credico, A.; Diederichs, G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.; Dumas, J.-C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos, N.; Franzen, A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L. M.; González, G.; Gossler, S.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito, M.; Itoh, Y.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lei, M.; Leiner, J.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.; Longo, M.; Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.; Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason, K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McWilliams, S.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger, C. J.; Meyers, D.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mowlowry, C.; Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Newton, G.; Nishizawa, A.; Numata, K.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi, M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov, M.; Ramsunder, M.; Ray-Majumder, S.; Re, V.; Rehbein, H.; Reid, S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi, M.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.; Savov, P.; Schediwy, S.; Schilling, R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.; Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun, K.-X.; Sung, M.
2008-08-01
We report on the methods and results of the first dedicated search for gravitational waves emitted during the inspiral of compact binaries with spinning component bodies. We analyze 788 hours of data collected during the third science run (S3) of the LIGO detectors. We searched for binary systems using a detection template family specially designed to capture the effects of the spin-induced precession of the orbital plane. We present details of the techniques developed to enable this search for spin-modulated gravitational waves, highlighting the differences between this and other recent searches for binaries with nonspinning components. The template bank we employed was found to yield high matches with our spin-modulated target waveform for binaries with masses in the asymmetric range 1.0M⊙
Does Quantum Nonlocality Exist? Bell's Theorem and the Many-Worlds Interpretation
Tipler, F J
2000-01-01
Quantum nonlocality may be an artifact of the assumption that observers obey the laws of classical mechanics, while observed systems obey quantum mechanics. I show that, at least in the case of Bell's Theorem, locality is restored if observed and observer are both assumed to obey quantum mechanics, as in the Many-Worlds Interpretation. Using the MWI, I shall show that the apparently "non-local" expectation value for the product of the spins of two widely separated particles --- the "quantum" part of Bell's Theorem --- is really due to a series of three purely local measurements. Thus, experiments confirming "nonlocality" are actually confirming the MWI.
Institute of Scientific and Technical Information of China (English)
Ouyang Shi-Gen; Guo Qi; Lan Sheng; Wu Li-Jun
2007-01-01
The fundamental and second order strongly nonlocal solitons of the nonlocal nonlinear Schr(o)dinger equation for several types of nonlocal responses are calculated by Ritz's variational method.For a specific type of nonlocal response, the solutions of the strongly nonlocal solitons with the same beam width but difierent degrees of nonlocality are identical except for an amplitude factor.For a nonlocal case where the nonlocal response function decays in direct proportion to the ruth power of the distance near the source point,the power and the phase constant of the strongly nonlocal soliton are in inverse proportion to the(m+2)th power of its beam width.
Abbott, B; Adhikari, R; Agresti, J; Ajith, P; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Arain, M; Araya, M; Armandula, H; Ashley, M; Aston, S; Aufmuth, P; Aulbert, C; Babak, S; Ballmer, S; Bantilan, H; Barish, B C; Barker, C; Barker, D; Barr, B; Barriga, P; Barton, M A; Bayer, K; Betzwieser, J; Beyersdorf, P T; Bhawal, B; Bilenko, I A; Billingsley, G; Biswas, R; Black, E; Blackburn, K; Blackburn, L; Blair, D; Bland, B; Bogenstahl, J; Bogue, L; Bork, R; Boschi, V; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brinkmann, M; Brooks, A; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burmeister, O; Busby, D; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cantley, C A; Cao, J; Cardenas, L; Castaldi, G; Cepeda, C; Chalkley, E; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chiadini, F; Christensen, N; Clark, J; Cochrane, P; Cokelaer, T; Coldwell, R; Conte, R; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Croce, R P; Crooks, D R M; Cruise, A M; Cumming, A; Dalrymple, J; D'Ambrosio, E; Danzmann, K; Davies, G; De Bra, D; Degallaix, J; Degree, M; Demma, T; Dergachev, V; Desai, S; DeSalvo, R; Dhurandhar, S; Daz, M; Dickson, J; Di Credico, A; Diederichs, G; Dietz, A; Doomes, E E; Drever, R W P; Dumas, J C; Dupuis, R J; Dwyer, J G; Ehrens, P; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fan, Y; Fazi, D; Fejer, M M; Finn, L S; Fiumara, V; Fotopoulos, N; Franzen, A; Franzen, K Y; Freise, A; Frey, R; Fricke, T; Fritschel, P; Frolov, V V; Fyffe, M; Galdi, V; Garofoli, J; Gholami, I; Giaime, J A; Giampanis, S; Giardina, K D; Goda, K; Goetz, E; Goggin, L M; González, G; Gossler, S; Grant, A; Gras, S; Gray, C; Gray, M; Greenhalgh, J; Gretarsson, A M; Grosso, R; Grote, H; Grünewald, S; Günther, M; Gustafson, R; Hage, B; Hammer, D; Hanna, C; Hanson, J; Harms, J; Harry, G; Harstad, E; Hayler, T; Heefner, J; Heng, I S; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hosken, D; Hough, J; Hoyland, D; Huttner, S H; Ingram, D; Innerhofer, E; Ito, M; Itoh, Y; Ivanov, A; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, Peter Ignaz Paul; Kalogera, V; Kasprzyk, D; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalili, F Ya; Kim, C; King, P; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Kopparapu, R K; Kozak, D; Krishnan, B; Kwee, P; Lam, P K; Landry, M; Lantz, B; Lazzarini, A; Lei, M; Leiner, J; Leonhardt, V; Leonor, I; Libbrecht, K; Lindquist, P; Lockerbie, N A; Longo, M; Lormand, M; Lubinski, M; Luck, H; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Malec, M; Mandic, V; Marano, S; Marka, S; Markowitz, J; Maros, E; Martin, I; Marx, J N; Mason, K; Matone, L; Matta, V; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McHugh, M; McKenzie, K; McWilliams, S; Meier, T; Melissinos, A; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C J; Meyers, D; Mikhailov, E; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Mohanty, S; Moreno, G; Mossavi, K; Mow Lowry, C; Moylan, A; Mudge, D; Müller, G; Mukherjee, S; Muller-Ebhardt, H; Munch, J; Murray, P; Myers, E; Myers, J; Nash, T; Newton, G; Nishizawa, A; Numata, K; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Patel, P; Pedraza, M; Penn, S; Pierro, V; Pinto, I M; Pitkin, M; Pletsch, H; Plissi, M V; Postiglione, F; Prix, R; Quetschke, V; Raab, F; Rabeling, D; Radkins, H; Rahkola, R; Rainer, N; Rakhmanov, M; Ramsunder, M; Ray-Majumder, S; Re, V; Rehbein, H; Reid, S; Reitze, D H; Ribichini, L; Riesen, R; Riles, K; Rivera, B; Robertson, N A; Robinson, C; Robinson, E L; Roddy, S; Rodríguez, A; Rogan, A M; Rollins, J; Romano, J D; Romie, J; Route, R; Rowan, S; Rüdiger, A; Ruet, L; Russell, P; Ryan, K; Sakata, S; Samidi, M; Sanchodela Jordana, L; Sandberg, V; Sannibale, V; Saraf, S; Sarin, P; Sathyaprakash, B S; Sato, S; Saulson, P R; Savage, R; Savov, P; Schediwy, S; Schilling, R; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Searle, A C; Sears, B; Seifert, F; Sellers, D; Sengupta, A S; Shawhan, P; Shoemaker, D H; Sibley, A; Sidles, J A; Siemens, X; Sigg, D; Sinha, S; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Somiya, K; Strain, K A; Strom, D M; Stuver, A; Summerscales, T Z; Sun, K X; Sung, M; Sutton, P J; Takahashi, H; Tanner, D B; Taylor, R; Taylor, R; Thacker, J; Thorne, K A; Thorne, K S; Thüring, A; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Trias, M; Tyler, W; Ugolini, D; Urbanek, K; Vahlbruch, H; Vallisneri, M; Van Den Broeck, C; Varvella, M; Vass, S; Vecchio, A; Veitch, J; Veitch, P; Villar, A; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Ward, H; Ward, R; Watts, K; Weidner, A; Weinert, M; Weinstein, A; Weiss, R; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F
2007-01-01
We report on the first dedicated search for gravitational waves emitted during the inspiral of compact binaries with spinning component bodies. We analyze 788 hours of data collected during the third science run (S3) of the LIGO detectors. We searched for binary systems using a detection template family designed specially to capture the effects of spin-induced precession. The template bank we employed was found to yield high matches with our spin-modulated target waveform for binaries with masses in the asymmetric range 1.0 M_{\\odot} < m_1 < 3.0 M_{\\odot} and 12.0 M_{\\odot} < m_{2} < 20.0 M_{\\odot} which is where we would expect the spin of the binary's components to have significant effect. We find that our search of S3 LIGO data had good sensitivity to binaries in the Milky Way and to a small fraction of binaries in M31 and M33 with masses in the range 1.0 M_{\\odot} < m_{1}, m_{2} < 20.0 M_{\\odot}. No gravitational wave signals were identified during this search. Assuming a binary populati...
Entanglement and nonlocality of a single relativistic particle
Dunningham, Jacob; Vedral, Vlatko
2009-01-01
Recent work has argued that the concepts of entanglement and nonlocality must be taken seriously even in systems consisting of only a single particle. These treatments, however, are nonrelativistic and, if single particle entanglement is fundamental, it should also persist in a relativistic description. Here we consider a spin-1/2 particle in a superposition of two different velocities as viewed by an observer in a different relativistically-boosted inertial frame. We show that the entangleme...
Optimal measurements for nonlocal correlations
Schwarz, Sacha; Stefanov, André; Wolf, Stefan; Montina, Alberto
2016-08-01
A problem in quantum information theory is to find the experimental setup that maximizes the nonlocality of correlations with respect to some suitable measure such as the violation of Bell inequalities. There are however some complications with Bell inequalities. First and foremost it is unfeasible to determine the whole set of Bell inequalities already for a few measurements and thus unfeasible to find the experimental setup maximizing their violation. Second, the Bell violation suffers from an ambiguity stemming from the choice of the normalization of the Bell coefficients. An alternative measure of nonlocality with a direct information-theoretic interpretation is the minimal amount of classical communication required for simulating nonlocal correlations. In the case of many instances simulated in parallel, the minimal communication cost per instance is called nonlocal capacity, and its computation can be reduced to a convex-optimization problem. This quantity can be computed for a higher number of measurements and turns out to be useful for finding the optimal experimental setup. Focusing on the bipartite case, we present a simple method for maximizing the nonlocal capacity over a given configuration space and, in particular, over a set of possible measurements, yielding the corresponding optimal setup. Furthermore, we show that there is a functional relationship between Bell violation and nonlocal capacity. The method is illustrated with numerical tests and compared with the maximization of the violation of CGLMP-type Bell inequalities on the basis of entangled two-qubit as well as two-qutrit states. Remarkably, the anomaly of nonlocality displayed by qutrits turns out to be even stronger if the nonlocal capacity is employed as a measure of nonlocality.
Cavalcanti, Eric G.; Wiseman, Howard M.
2012-10-01
The 1964 theorem of John Bell shows that no model that reproduces the predictions of quantum mechanics can simultaneously satisfy the assumptions of locality and determinism. On the other hand, the assumptions of signal locality plus predictability are also sufficient to derive Bell inequalities. This simple theorem, previously noted but published only relatively recently by Masanes, Acin and Gisin, has fundamental implications not entirely appreciated. Firstly, nothing can be concluded about the ontological assumptions of locality or determinism independently of each other—it is possible to reproduce quantum mechanics with deterministic models that violate locality as well as indeterministic models that satisfy locality. On the other hand, the operational assumption of signal locality is an empirically testable (and well-tested) consequence of relativity. Thus Bell inequality violations imply that we can trust that some events are fundamentally unpredictable, even if we cannot trust that they are indeterministic. This result grounds the quantum-mechanical prohibition of arbitrarily accurate predictions on the assumption of no superluminal signalling, regardless of any postulates of quantum mechanics. It also sheds a new light on an early stage of the historical debate between Einstein and Bohr.
Towards LHC physics with nonlocal Standard Model
Tirthabir Biswas; Nobuchika Okada
2015-01-01
We take a few steps towards constructing a string-inspired nonlocal extension of the Standard Model. We start by illustrating how quantum loop calculations can be performed in nonlocal scalar field theory. In particular, we show the potential to address the hierarchy problem in the nonlocal framework. Next, we construct a nonlocal abelian gauge model and derive modifications of the gauge interaction vertex and field propagators. We apply the modifications to a toy version of the nonlocal Stan...
Nonlocal order parameters for the 1D Hubbard model.
Montorsi, Arianna; Roncaglia, Marco
2012-12-07
We characterize the Mott-insulator and Luther-Emery phases of the 1D Hubbard model through correlators that measure the parity of spin and charge strings along the chain. These nonlocal quantities order in the corresponding gapped phases and vanish at the critical point U(c)=0, thus configuring as hidden order parameters. The Mott insulator consists of bound doublon-holon pairs, which in the Luther-Emery phase turn into electron pairs with opposite spins, both unbinding at U(c). The behavior of the parity correlators is captured by an effective free spinless fermion model.
Solutions of Nonlocal -Laplacian Equations
Directory of Open Access Journals (Sweden)
Mustafa Avci
2013-01-01
Full Text Available In view of variational approach we discuss a nonlocal problem, that is, a Kirchhoff-type equation involving -Laplace operator. Establishing some suitable conditions, we prove the existence and multiplicity of solutions.
Spontaneous Emission in Nonlocal Materials
Ginzburg, Pavel; Nasir, Mazhar E; Olvera, Paulina Segovia; Krasavin, Alexey V; Levitt, James; Hirvonen, Liisa M; Wells, Brian; Suhling, Klaus; Richards, David; Podolskiy, Viktor A; Zayats, Anatoly V
2016-01-01
Light-matter interactions can be dramatically modified by the surrounding environment. Here we report on the first experimental observation of molecular spontaneous emission inside a highly nonlocal metamaterial based on a plasmonic nanorod assembly. We show that the emission process is dominated not only by the topology of its local effective medium dispersion, but also by the nonlocal response of the composite, so that metamaterials with different geometric parameters but the same local effective medium properties exhibit different Purcell factors. A record-high enhancement of a decay rate is observed, in agreement with the developed quantitative description of the Purcell effect in a nonlocal medium. An engineered material nonlocality introduces an additional degree of freedom into quantum electrodynamics, enabling new applications in quantum information processing, photo-chemistry, imaging, and sensing.
Classical and Quantum Nonlocal Supergravity
Giaccari, Stefano
2016-01-01
We derive the N=1 supersymmetric extension for a class of weakly nonlocal four dimensional gravitational theories.The construction is explicitly done in the superspace and the tree-level perturbative unitarity is explicitly proved both in the superfield formalism and in field components. For the minimal nonlocal supergravity the spectrum is the same as in the local theory and in particular it is ghost-free. The supersymmetric extension of the super-renormalizable Starobinsky theory and of two alternative massive nonlocal supergravities are found as straightforward applications of the formalism. Power-counting arguments ensure super-renormalizability with milder requirement for the asymptotic behavior of form factors than in ordinary nonlocal gravity. The most noteworthy result, common to ordinary supergravity, is the absence of quantum corrections to the cosmological constant in any regularization procedure. We cannot exclude the usual one-loop quadratic divergences. However, local vertices in the superfields...
Study of Nonlocal Optical Potential
Institute of Scientific and Technical Information of China (English)
TIAN; Yuan
2013-01-01
It is generally known that nuclear optical potentials are theoretically expected to be non-local.The non-locality arises from the exchange of particles between the projectile and target and from coupling tonon-elastic channels.This non-locality was first introduced by Frahn and Lemmer,and developed further by Perey and Buck(PB).The kernel is of the form
Understanding quantum interference in General Nonlocality
Wanng, Hai-Jhun
2010-01-01
In this paper we attempt to give an understanding of quantum double-slit interference of fermions in the framework of General Nonlocality (GN) [J. Math. Phys. 49, 033513 (2008)] by studying the self-interaction of matter wave. From the metric of the GN, we derive a special formalism to interpret the interference contrast when the self-interaction is perturbative. According to the formalism, the characteristic of interference pattern is in agreement with experiment qualitatively. As examples, we apply the formalism to the cases governed by Schr\\"odinger current and Dirac current respectively, both of which are relevant to topology. The gap between these two cases corresponds to a spin-current effect, which is possible to test in the near future. In addition, a general interference formalism for both perturbative and non-perturbative self-interactions is presented. By analyzing the general formalism we predict that in the nonperturbative limit there is no interference at all.
Bound on Hardy's nonlocality from the principle of information causality
Ahanj, Ali; Kunkri, Samir; Rai, Ashutosh; Rahaman, Ramij; Joag, Pramod S.
2010-03-01
Recently, the principle of nonviolation of information causality [Nature 461, 1101 (2009)] has been proposed as one of the foundational properties of nature. We explore the Hardy’s nonlocality theorem for two-qubit systems, in the context of generalized probability theory, restricted by the principle of nonviolation of information causality. Applying a sufficient condition for information causality violation, we derive an upper bound on the maximum success probability of Hardy’s nonlocality argument. We find that the bound achieved here is higher than that allowed by quantum mechanics but still much less than what the no-signaling condition permits. We also study the Cabello type nonlocality argument (a generalization of Hardy’s argument) in this context.
Nonlocal optical response in metallic nanostructures.
Raza, Søren; Bozhevolnyi, Sergey I; Wubs, Martijn; Asger Mortensen, N
2015-05-13
This review provides a broad overview of the studies and effects of nonlocal response in metallic nanostructures. In particular, we thoroughly present the nonlocal hydrodynamic model and the recently introduced generalized nonlocal optical response (GNOR) model. The influence of nonlocal response on plasmonic excitations is studied in key metallic geometries, such as spheres and dimers, and we derive new consequences due to the GNOR model. Finally, we propose several trajectories for future work on nonlocal response, including experimental setups that may unveil further effects of nonlocal response.
Nonlocal optical response in metallic nanostructures
DEFF Research Database (Denmark)
Raza, Søren; Bozhevolnyi, Sergey I.; Wubs, Martijn
2015-01-01
This review provides a broad overview of the studies and effects of nonlocal response in metallic nanostructures. In particular, we thoroughly present the nonlocal hydrodynamic model and the recently introduced generalized nonlocal optical response (GNOR) model. The influence of nonlocal response...... on plasmonic excitations is studied in key metallic geometries, such as spheres and dimers, and we derive new consequences due to the GNOR model. Finally, we propose several trajectories for future work on nonlocal response, including experimental setups that may unveil further effects of nonlocal response....
Charge and spin transport in mesoscopic superconductors
Directory of Open Access Journals (Sweden)
M. J. Wolf
2014-02-01
Full Text Available Background: Non-equilibrium charge transport in superconductors has been investigated intensely in the 1970s and 1980s, mostly in the vicinity of the critical temperature. Much less attention has been paid to low temperatures and the role of the quasiparticle spin.Results: We report here on nonlocal transport in superconductor hybrid structures at very low temperatures. By comparing the nonlocal conductance obtained by using ferromagnetic and normal-metal detectors, we discriminate charge and spin degrees of freedom. We observe spin injection and long-range transport of pure, chargeless spin currents in the regime of large Zeeman splitting. We elucidate charge and spin transport by comparison to theoretical models.Conclusion: The observed long-range chargeless spin transport opens a new path to manipulate and utilize the quasiparticle spin in superconductor nanostructures.
Nonlocal Measurements via Quantum Erasure.
Brodutch, Aharon; Cohen, Eliahu
2016-02-19
Nonlocal observables play an important role in quantum theory, from Bell inequalities and various postselection paradoxes to quantum error correction codes. Instantaneous measurement of these observables is known to be a difficult problem, especially when the measurements are projective. The standard von Neumann Hamiltonian used to model projective measurements cannot be implemented directly in a nonlocal scenario and can, in some cases, violate causality. We present a scheme for effectively generating the von Neumann Hamiltonian for nonlocal observables without the need to communicate and adapt. The protocol can be used to perform weak and strong (projective) measurements, as well as measurements at any intermediate strength. It can also be used in practical situations beyond nonlocal measurements. We show how the protocol can be used to probe a version of Hardy's paradox with both weak and strong measurements. The outcomes of these measurements provide a nonintuitive picture of the pre- and postselected system. Our results shed new light on the interplay between quantum measurements, uncertainty, nonlocality, causality, and determinism.
O'Brien, L.; Spivak, D.; Krueger, N.; Peterson, T. A.; Erickson, M. J.; Bolon, B.; Geppert, C. C.; Leighton, C.; Crowell, P. A.
2016-09-01
In the nonlocal spin valve (NLSV) geometry, four-terminal electrical Hanle effect measurements have the potential to provide a particularly simple determination of the lifetime (τs) and diffusion length (λN) of spins injected into nonmagnetic (N) materials. Recent papers, however, have demonstrated that traditional models typically used to fit such data provide an inaccurate measurement of τs in ferromagnet (FM)/N metal devices with low interface resistance, particularly when the separation of the source and detector contacts is small. In the transparent limit, this shortcoming is due to the back diffusion and subsequent relaxation of spins within the FM contacts, which is not properly accounted for in standard models of the Hanle effect. Here we have used the separation dependence of the spin accumulation signal in NLSVs with multiple FM/N combinations, and interfaces in the diffusive limit, to determine λN in traditional spin valve measurements. We then compare these results to Hanle measurements as analyzed using models that either include or exclude spin sinking. We demonstrate that differences between the spin valve and Hanle measurements of λN can be quantitatively modelled provided that both the FM contact-induced isotropic spin sinking and the full three-dimensional geometry of the devices, which is particularly important at small contact separations, are accounted for. We find, however, that considerable difficulties persist, in particular due to the sensitivity of fitting to the contact interface resistance and the FM contact magnetization rotation, in precisely determining λN with the Hanle technique alone, particularly at small contact separations.
Energy Technology Data Exchange (ETDEWEB)
Sogabe, Shu; Satomi, Junichiro; Tada, Yoshiteru; Kanematsu, Yasuhisa; Kuwayama, Kazuyuki; Yagi, Kenji; Yoshioka, Shotaro; Mizobuchi, Yoshifumi; Mure, Hideo; Yamaguchi, Izumi; Kitazato, Keiko T.; Nagahiro, Shinji [Tokushima University Graduate School, Department of Neurosurgery, Tokushima (Japan); Abe, Takashi; Harada, Masafumi [Tokushima University Graduate School, Department of Radiology, Tokushima (Japan); Yamamoto, Nobuaki; Kaji, Ryuji [Tokushima University Graduate School, Department of Clinical Neurosciences, Institute of Biomedical Biosciences, Tokushima (Japan)
2017-06-15
Arterial spin labeling (ASL) involves perfusion imaging using the inverted magnetization of arterial water. If the arterial arrival times are longer than the post-labeling delay, labeled spins are visible on ASL images as bright, high intra-arterial signals (IASs); such signals were found within occluded vessels of patients with acute ischemic stroke. The identification of the occluded segment in the internal carotid artery (ICA) is crucial for endovascular treatment. We tested our hypothesis that high IASs on ASL images can predict the occluded segment. Our study included 13 patients with acute ICA occlusion who had undergone angiographic and ASL studies within 48 h of onset. We retrospectively identified the high IAS on ASL images and angiograms and recorded the occluded segment and the number of high IAS-positive slices on ASL images. The ICA segments were classified as cervical (C1), petrous (C2), cavernous (C3), and supraclinoid (C4). Of seven patients with intracranial ICA occlusion, five demonstrated high IASs at C1-C2, suggesting that high IASs could identify stagnant flow proximal to the occluded segment. Among six patients with extracranial ICA occlusion, five presented with high IASs at C3-C4, suggesting that signals could identify the collateral flow via the ophthalmic artery. None had high IASs at C1-C2. The mean number of high IAS-positive slices was significantly higher in patients with intra- than extracranial ICA occlusion. High IASs on ASL images can identify slow stagnant and collateral flow through the ophthalmic artery in patients with acute ICA occlusion and help to predict the occlusion site. (orig.)
Nonlocal optical response in metallic nanostructures
Raza, Søren; Bozhevolnyi, Sergey I.; Wubs, Martijn; Mortensen, N. Asger
2014-01-01
This review provides a broad overview of the studies and effects of nonlocal response in metallic nanostructures. In particular, we thoroughly present the nonlocal hydrodynamic model and the recently introduced generalized nonlocal optical response (GNOR) model. The influence of nonlocal response on plasmonic excitations is studied in key metallic geometries, such as spheres and dimers, and we derive new consequences due to the GNOR model. Finally, we propose several trajectories for future w...
Nonlocal higher order evolution equations
Rossi, Julio D.
2010-06-01
In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove that the solutions of the nonlocal problem converge to the solution of the higher order problem with the right-hand side given by powers of the Laplacian when the kernel J is rescaled in an appropriate way. Moreover, we prove that solutions to both equations have the same asymptotic decay rate as t goes to infinity. © 2010 Taylor & Francis.
Anderson Localization in Nonlocal Nonlinear Media
Folli, Viola; 10.1364/OL.37.000332
2012-01-01
The effect of focusing and defocusing nonlinearities on Anderson localization in highly nonlocal media is theoretically and numerically investigated. A perturbative approach is developed to solve the nonlocal nonlinear Schroedinger equation in the presence of a random potential, showing that nonlocality stabilizes Anderson states.
Solitons in nonlocal nonlinear media: Exact solutions
DEFF Research Database (Denmark)
Krolikowski, Wieslaw; Bang, Ole
2001-01-01
We investigate the propagation of one-dimensional bright and dark spatial solitons in a nonlocal Kerr-like media, in which the nonlocality is of general form. We find an exact analytical solution to the nonlinear propagation equation in the case of weak nonlocality. We study the properties...
Exact Solutions in Nonlocal Linear Models
Vernov, S. Yu.
2008-01-01
A general class of cosmological models driven by a nonlocal scalar field inspired by the string field theory is studied. Using the fact that the considering linear nonlocal model is equivalent to an infinite number of local models we have found an exact special solution of the nonlocal Friedmann equations. This solution describes a monotonically increasing Universe with the phantom dark energy.
Nonlocally Centralized Simultaneous Sparse Coding
Institute of Scientific and Technical Information of China (English)
雷阳; 宋占杰
2016-01-01
The concept of structured sparse coding noise is introduced to exploit the spatial correlations and nonlo-cal constraint of the local structure. Then the model of nonlocally centralized simultaneous sparse coding(NC-SSC)is proposed for reconstructing the original image, and an algorithm is proposed to transform the simultaneous sparse coding into reweighted low-rank approximation. Experimental results on image denoisng, deblurring and super-resolution demonstrate the advantage of the proposed NC-SSC method over the state-of-the-art image resto-ration methods.
Energy Technology Data Exchange (ETDEWEB)
Maccari, A. [Istituto Tecnico `G. Cardano`, Monterotondo, Rome (Italy)
1996-08-01
The most important characteristics of the non-local oscillator, an oscillator subjected to an additional non-local force, are extensively studied by means of a new asymptotic perturbation method that is able to furnish an approximate solution of weakly non-linear differential equations. The resulting motion is doubly periodic, because a second little frequency appears, in addition to the fundamental harmonic frequency. Comparison with the numerical solution obtained by the Runge-Kitta method confirms the validity of the asymptotic perturbation method and its importance for the study of non-linear dynamical systems.
Analysis of time-domain signals of piezoelectric strain sensors on slow spinning planetary gearboxes
Noll, Martin-Christopher; Godfrey, Julian William; Schelenz, Ralf; Jacobs, Georg
2016-05-01
Currently, condition monitoring of gearboxes mainly relies on signals of mechanical vibrations (mostly acceleration; fewer velocity and distance) or very high-frequency acoustic emissions as well as oil particle and temperature data. Strains are rarely used, since the common measuring technique employing strain gauges can cause problems in harsh environmental conditions. In the following, time-domain signals of robust piezoelectric strain sensors applied on the surface of the ring gear of a gearbox are analyzed regarding their mechanical basics, measurement chains and inferable information. The gearbox specimen is a main gearbox of a wind energy converter (WEC), which is deployed on a WEC system test rig. It can be shown that the surface strain on fixed ring gears in tangential direction is mainly influenced by the transferred tooth forces between planets and ring gear but also by the stiffnesses and geometries of the ring gear itself and the supporting gearbox structure. A direct comparison of sensor connection in AC- and DC-coupling shows that with the utilized piezoelectric sensors in DC-coupling surface strain signals with very low frequencies down to 0.002 Hz can be obtained. The acquired signals show a very high signal-to-noise-ratio and high repeatability even at very low revolution speeds. Furthermore a direct correlation to the dynamic torque, which is transferred by the gearbox, and to the planetary load sharing is found.
Nonlocal Response in Plasmonic Nanostructures
DEFF Research Database (Denmark)
Wubs, Martijn; Mortensen, N. Asger
2016-01-01
After a brief overview of nanoplasmonics experiments that defy explanation with classical electrodynamics, we introduce nonlocal response as a main reason for non-classical effects. This concept is first introduced phenomenologically, and afterwards based on the semi-classical hydrodynamic Drude ...
Quantum nonlocality does not exist.
Tipler, Frank J
2014-08-05
Quantum nonlocality is shown to be an artifact of the Copenhagen interpretation, in which each observed quantity has exactly one value at any instant. In reality, all physical systems obey quantum mechanics, which obeys no such rule. Locality is restored if observed and observer are both assumed to obey quantum mechanics, as in the many-worlds interpretation (MWI). Using the MWI, I show that the quantum side of Bell's inequality, generally believed nonlocal, is really due to a series of three measurements (not two as in the standard, oversimplified analysis), all three of which have only local effects. Thus, experiments confirming "nonlocality" are actually confirming the MWI. The mistaken interpretation of nonlocality experiments depends crucially on a question-begging version of the Born interpretation, which makes sense only in "collapse" versions of quantum theory, about the meaning of the modulus of the wave function, so I use the interpretation based on the MWI, namely that the wave function is a world density amplitude, not a probability amplitude. This view allows the Born interpretation to be derived directly from the Schrödinger equation, by applying the Schrödinger equation to both the observed and the observer.
A nonlocal discretization of fields
Campos, R G; Pimentel, L O; Campos, Rafael G.; Tututi, Eduardo S.
2001-01-01
A nonlocal method to obtain discrete classical fields is presented. This technique relies on well-behaved matrix representations of the derivatives constructed on a non--equispaced lattice. The drawbacks of lattice theory like the fermion doubling or the breaking of chiral symmetry for the massless case, are absent in this method.
Learning Non-Local Dependencies
Kuhn, Gustav; Dienes, Zoltan
2008-01-01
This paper addresses the nature of the temporary storage buffer used in implicit or statistical learning. Kuhn and Dienes [Kuhn, G., & Dienes, Z. (2005). Implicit learning of nonlocal musical rules: implicitly learning more than chunks. "Journal of Experimental Psychology-Learning Memory and Cognition," 31(6) 1417-1432] showed that people could…
Learning Non-Local Dependencies
Kuhn, Gustav; Dienes, Zoltan
2008-01-01
This paper addresses the nature of the temporary storage buffer used in implicit or statistical learning. Kuhn and Dienes [Kuhn, G., & Dienes, Z. (2005). Implicit learning of nonlocal musical rules: implicitly learning more than chunks. "Journal of Experimental Psychology-Learning Memory and Cognition," 31(6) 1417-1432] showed that people could…
Extreme nonlocality with one photon
Energy Technology Data Exchange (ETDEWEB)
Heaney, Libby; Vedral, Vlatko [Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU (United Kingdom); Cabello, Adan [Departamento de Fisica Aplicada II, Universidad de Sevilla, E-41012 Sevilla (Spain); Santos, Marcelo Franca, E-mail: l.heaney1@physics.ox.ac.uk, E-mail: adan@us.es [Departamento de Fisica, Universidade Federal de Minas Gerais, Belo Horizonte, Caixa Postal 702, 30123-970, MG (Brazil)
2011-05-15
Quantum nonlocality is typically assigned to systems of two or more well-separated particles, but nonlocality can also exist in systems consisting of just a single particle when one considers the subsystems to be distant spatial field modes. Single particle nonlocality has been confirmed experimentally via a bipartite Bell inequality. In this paper, we introduce an N-party Hardy-like proof of the impossibility of local elements of reality and a Bell inequality for local realistic theories in the case of a single particle superposed symmetrically over N spatial field modes (i.e. N qubit W state). We show that, in the limit of large N, the Hardy-like proof effectively becomes an all-versus-nothing (or Greenberger-Horne-Zeilinger (GHZ)-like) proof, and the quantum-classical gap of the Bell inequality tends to be the same as that in a three-particle GHZ experiment. We describe how to test the nonlocality in realistic systems.
Collapse arrest and soliton stabilization in nonlocal nonlinear media
DEFF Research Database (Denmark)
Bang, Ole; Krolikowski, Wieslaw; Wyller, John
2002-01-01
We investigate the properties of localized waves in cubic nonlinear materials with a symmetric nonlocal nonlinear response of arbitrary shape and degree of nonlocality, described by a general nonlocal nonlinear Schrodinger type equation. We prove rigorously by bounding the Hamiltonian that nonloc......We investigate the properties of localized waves in cubic nonlinear materials with a symmetric nonlocal nonlinear response of arbitrary shape and degree of nonlocality, described by a general nonlocal nonlinear Schrodinger type equation. We prove rigorously by bounding the Hamiltonian...
Topological Effects on Quantum Phase Slips in Superfluid Spin Transport
Kim, Se Kwon; Tserkovnyak, Yaroslav
2016-03-01
We theoretically investigate effects of quantum fluctuations on superfluid spin transport through easy-plane quantum antiferromagnetic spin chains in the large-spin limit. Quantum fluctuations result in the decaying spin supercurrent by unwinding the magnetic order parameter within the easy plane, which is referred to as phase slips. We show that the topological term in the nonlinear sigma model for the spin chains qualitatively differentiates the decaying rate of the spin supercurrent between the integer versus half-odd-integer spin chains. An experimental setup for a magnetoelectric circuit is proposed, in which the dependence of the decaying rate on constituent spins can be verified by measuring the nonlocal magnetoresistance.
Positive cosmological constant, non-local gravity and horizon entropy
Energy Technology Data Exchange (ETDEWEB)
Solodukhin, Sergey N., E-mail: Sergey.Solodukhin@lmpt.univ-tours.fr [Laboratoire de Mathematiques et Physique Theorique, Universite Francois-Rabelais Tours, Federation Denis Poisson - CNRS, Parc de Grandmont, 37200 Tours (France)
2012-08-21
We discuss a class of (local and non-local) theories of gravity that share same properties: (i) they admit the Einstein spacetime with arbitrary cosmological constant as a solution; (ii) the on-shell action of such a theory vanishes and (iii) any (cosmological or black hole) horizon in the Einstein spacetime with a positive cosmological constant does not have a non-trivial entropy. The main focus is made on a recently proposed non-local model. This model has two phases: with a positive cosmological constant {Lambda}>0 and with zero {Lambda}. The effective gravitational coupling differs essentially in these two phases. Generalizing the previous result of Barvinsky we show that the non-local theory in question is free of ghosts on the background of any Einstein spacetime and that it propagates a standard spin-2 particle. Contrary to the phase with a positive {Lambda}, where the entropy vanishes for any type of horizon, in an Einstein spacetime with zero cosmological constant the horizons have the ordinary entropy proportional to the area. We conclude that, somewhat surprisingly, the presence of any, even extremely tiny, positive cosmological constant should be important for the proper resolution of the entropy problem and, possibly, the information puzzle.
Positive cosmological constant, non-local gravity and horizon entropy
Solodukhin, Sergey N.
2012-08-01
We discuss a class of (local and non-local) theories of gravity that share same properties: (i) they admit the Einstein spacetime with arbitrary cosmological constant as a solution; (ii) the on-shell action of such a theory vanishes and (iii) any (cosmological or black hole) horizon in the Einstein spacetime with a positive cosmological constant does not have a non-trivial entropy. The main focus is made on a recently proposed non-local model. This model has two phases: with a positive cosmological constant Λ>0 and with zero Λ. The effective gravitational coupling differs essentially in these two phases. Generalizing the previous result of Barvinsky we show that the non-local theory in question is free of ghosts on the background of any Einstein spacetime and that it propagates a standard spin-2 particle. Contrary to the phase with a positive Λ, where the entropy vanishes for any type of horizon, in an Einstein spacetime with zero cosmological constant the horizons have the ordinary entropy proportional to the area. We conclude that, somewhat surprisingly, the presence of any, even extremely tiny, positive cosmological constant should be important for the proper resolution of the entropy problem and, possibly, the information puzzle.
Positive cosmological constant, non-local gravity and horizon entropy
Solodukhin, Sergey N
2012-01-01
We discuss a class of (local and non-local) theories of gravity that share same properties: i) they admit the Einstein spacetime with arbitrary cosmological constant as a solution; ii) the on-shell action of such a theory vanishes and iii) any (cosmological or black hole) horizon in the Einstein spacetime with a positive cosmological constant does not have a non-trivial entropy. The main focus is made on a recently proposed non-local model. This model has two phases: with a positive cosmological constant $\\Lambda>0$ and with zero $\\Lambda$. The effective gravitational coupling differs essentially in these two phases. Generalizing the previous result of Barvinsky we show that the non-local theory in question is free of ghosts on the background of any Einstein spacetime and that it propagates a standard spin-2 particle. Contrary to the phase with a positive $\\Lambda$, where the entropy vanishes for any type of horizon, in an Einstein spacetime with zero cosmological constant the horizons have the ordinary entro...
Transverse Spin Seebeck Effect on YIG/Pt
Prakash, Arati; Boona, Stephen; Jin, Hyungyu; Heremans, Joseph
2015-03-01
The existence of the longitudinal spin-Seebeck effect (LSSE) is well established and supported by theory. Much more controversial is the nature of the signals observed in the transverse spin-Seebeck (TSSE) geometry, where the heat current (x) is orthogonal to the direction of spin current propagation (y). TSSE has been described as simply non-local thermal spin-injection, but questions remain about the fact that the effect is observed at macroscopic length scales. To explore possible explanations for the observed TSSE signals, we report data from new TSSE measurements on the YIG/Pt system. The system studied has multiple Pt strips deposited in series upon bulk single crystals of YIG. We investigate the TSSE coefficient as a function of four variables: (1) sample temperature; (2) magnitude of the temperature gradient; (3) position of Pt strips along x; and (4) width of Pt strips along x. We consider nonlinear effects and the role of magnon density in the interpretation of our results. Work supported by the ARO- MURI Grant W911NF-14-1-0016 and NSF MRSEC program, Grant No. DMR 1420451.
Bell's Inequalities for Any Spin
González-Robles, V. M.
John Ju Sakurai's classical book in quantum mechanics makes a very illuminative presentation that studies entangled states in a two spin s=1/2 particles system in a singlet state. A Bell's inequality emerges as a consequence. Bell's inequality is a relationship among observables that discriminates between Einstein's locality principle and the nonlocal point of view of orthodox quantum mechanics. Following Sakurai's style we propose, by making natural induction, a generalization for Bell's inequality for any two spin-s particles in a singlet state (s integer or half-integer). This inequality is expressed as a function of a θ parameter, which is a measure of the angle between two possible directions in which the spin is measured. Besides the expression for this general inequality we have found that - (a) for any finite half-integer spin Bell's inequality is violated for some interval of the θ-parameter. The right limit of this interval is fixed and equal to π/2, while the left one comes closer and closer to this value as spin number grows. A function fit shows clearly that the size of this θ-interval over which Bell's inequality is violated diminishes asymptotically to zero as 1/s1/2; (b) an analogous behavior for any finite integer spin. For large spins the disagreement between Einstein's locality principle and the nonlocal point of view in orthodox quantum mechanics disappears.
Entanglement: A myth introducing non-locality in any quantum theory
Prikas, Athanasios
2007-01-01
The purposes of the present article are: a) To show that non-locality leads to the transfer of certain amounts of energy and angular momentum at very long distances, in an absolutely strange and unnatural manner, in any model reproducing the quantum mechanical results. b) To prove that non-locality is the result only of the zero spin state assumption for distant particles, which explains its presence in any quantum mechanical model. c) To reintroduce locality, simply by denying the existence of the zero spin state in nature (the so-called highly correlated, or EPR singlet state) for particles non-interacting with any known field. d) To propose a realizable experiment to clarify if two remote (and thus non-interacting with a known field) particles, supposed to be correlated as in Bell-type experiments, are actually in zero spin state.
Cornelissen, L. J.; Shan, J.; van Wees, B. J.
2016-11-01
We present a systematic study of the temperature dependence of diffusive magnon spin transport using nonlocal devices fabricated on a 210-nm yttrium iron garnet film on a gadolinium gallium garnet substrate. In our measurements, we detect spin signals arising from electrical and thermal magnon generation, and we directly extract the magnon spin diffusion length λm for temperatures from 2 to 293 K. Values of λm obtained from electrical and thermal generation agree within the experimental error with λm=9.6 ±0.9 μ m at room temperature to a minimum of λm=5.5 ±0.7 μ m at 30 K. Using a two-dimensional finite element model to fit the data obtained for electrical magnon generation we extract the magnon spin conductivity σm as a function of temperature, which is reduced from σm=3.7 ±0.3 ×105S /m at room temperature to σm=0.9 ±0.6 ×104S /m at 5 K. Finally, we observe an enhancement of the signal originating from thermally generated magnons for low temperatures where a maximum is observed around T =7 K . An explanation for this low-temperature enhancement is however still missing and requires additional investigation.
Low-spin models for higher-spin Lagrangians
Francia, Dario
2011-01-01
Higher-spin theories are most commonly modelled on the example of spin 2. While this is appropriate for the description of free irreducible spin-s particles, alternative options could be equally interesting. In particular Maxwell's equations provide the effective model for maximally reducible theories of higher spins inspired by the tensionless limit of the open string. For both options, as well as for their fermionic counterparts, one can extend the analogy beyond the equations for the gauge potentials, formulating the corresponding Lagrangians in terms of higher-spin curvatures. The associated non-localities are effectively due to the elimination of auxiliary fields and do not modify the spectrum. Massive deformations of these theories are also possible, and in particular in this contribution we propose a generalisation of the Proca Lagrangian for the Maxwell-inspired geometric theories.
Chaudhury, Kunal N; Singer, Amit
2012-11-01
In this letter, we note that the denoising performance of Non-Local Means (NLM) can be improved at large noise levels by replacing the mean by the Euclidean median. We call this new denoising algorithm the Non-Local Euclidean Medians (NLEM). At the heart of NLEM is the observation that the median is more robust to outliers than the mean. In particular, we provide a simple geometric insight that explains why NLEM performs better than NLM in the vicinity of edges, particularly at large noise levels. NLEM can be efficiently implemented using iteratively reweighted least squares, and its computational complexity is comparable to that of NLM. We provide some preliminary results to study the proposed algorithm and to compare it with NLM.
Extreme nonlocality with one photon
Heaney, Libby; Santos, Marcelo F; Vedral, Vlatko
2009-01-01
The bizarre concept of nonlocality appears in quantum mechanics because the properties of two or more particles may be assigned globally and are not always pinned to each particle individually. Experiments using two, three, or more of these entangled particles have strongly rejected a local realist interpretation of nature. Nonlocality is also argued to be an intrinsic property of a quantum field, implying that just one excitation, a photon for instance, could also by itself violate local realism. Here we show that one photon superposed symmetrically over many distant sites (which in quantum information terms is a W-state) can give a stunning all-versus-nothing demolition of local realism in an identical manner to the GHZ class of states. The elegance of this result is that it is due solely to the wave-particle duality of light and matter. We present experimental implementations capable of testing our predictions.
Percolation transitions with nonlocal constraint.
Shim, Pyoung-Seop; Lee, Hyun Keun; Noh, Jae Dong
2012-09-01
We investigate percolation transitions in a nonlocal network model numerically. In this model, each node has an exclusive partner and a link is forbidden between two nodes whose r-neighbors share any exclusive pair. The r-neighbor of a node x is defined as a set of at most N(r) neighbors of x, where N is the total number of nodes. The parameter r controls the strength of a nonlocal effect. The system is found to undergo a percolation transition belonging to the mean-field universality class for r1/2, the system undergoes a peculiar phase transition from a nonpercolating phase to a quasicritical phase where the largest cluster size G scales as G~N(α) with α=0.74(1). In the marginal case with r=1/2, the model displays a percolation transition that does not belong to the mean-field universality class.
Horikis, Theodoros P
2016-01-01
The generation of rogue waves is investigated via a nonlocal nonlinear Schrodinger (NLS) equation. In this system, modulation instability is suppressed and is usually expected that rogue wave formation would also be limited. On the contrary, a parameter regime is identified where the instability is suppressed but nevertheless the number and amplitude of the rogue events increase, as compared to the standard NLS (which is a limit of the nonlocal system). Furthermore, the nature of these waves is investigated; while no analytical solutions are known to model these events, numerically it is shown that they differ significantly from either the rational (Peregrine) or soliton solution of the limiting NLS equation. As such, these findings may also help in rogue wave realization experimentally in these media.
Nonlocal Quantum Effects in Cosmology
Dumin, Yurii V
2014-01-01
Since it is commonly believed that the observed large-scale structure of the Universe is an imprint of quantum fluctuations existing at the very early stage of its evolution, it is reasonable to pose the question: Do the effects of quantum nonlocality, which are well established now by the laboratory studies, manifest themselves also in the early Universe? We try to answer this question by utilizing the results of a few experiments, namely, with the superconducting multi-Josephson-junction loops and the ultracold gases in periodic potentials. Employing a close analogy between the above-mentioned setups and the simplest one-dimensional Friedmann-Robertson-Walker cosmological model, we show that the specific nonlocal correlations revealed in the laboratory studies might be of considerable importance also in treating the strongly-nonequilibrium phase transitions of Higgs fields in the early Universe. Particularly, they should substantially reduce the number of topological defects (e.g., domain walls) expected du...
Nonlocal reflection by photonic barriers
Vetter, R. -M.; A. Haibel; Nimtz, G.
2001-01-01
The time behaviour of microwaves undergoing partial reflection by photonic barriers was measured in the time and in the frequency domain. It was observed that unlike the duration of partial reflection by dielectric layers, the measured reflection duration of barriers is independent of their length. The experimental results point to a nonlocal behaviour of evanescent modes at least over a distance of some ten wavelengths. Evanescent modes correspond to photonic tunnelling in quantum mechanics.
Diaz, Pablo; Walton, Mark
2016-01-01
With the aim of investigating the relation between gravity and non-locality at the classical level, we study a bilocal scalar field model. Bilocality introduces new (internal) degrees of freedom that can potentially reproduce gravity. We show that the equations of motion of the massless branch of the free bilocal model match those of linearized gravity. We also discuss higher orders of perturbation theory, where there is self-interaction in both gravity and the bilocal field sectors.
Boundary fluxes for nonlocal diffusion
Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio D.; Wolanski, Noemi
We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.
Modulational instability in nonlocal nonlinear Kerr media
DEFF Research Database (Denmark)
Krolikowski, Wieslaw; Bang, Ole; Juul Rasmussen, Jens
2001-01-01
We study modulational instability (MI) of plane waves in nonlocal nonlinear Kerr media. For a focusing nonlinearity we show that, although the nonlocality tends to suppress MI, it can never remove it completely, irrespective of the particular profile of the nonlocal response function....... For a defocusing nonlinearity the stability properties depend sensitively on the response function profile: for a smooth profile (e.g., a Gaussian) plane waves are always stable, but MI may occur for a rectangular response. We also find that the reduced model for a weak nonlocality predicts MI in defocusing media...... for arbitrary response profiles, as long as the intensity exceeds a certain critical value. However, it appears that this regime of MI is beyond the validity of the reduced model, if it is to represent the weakly nonlocal limit of a general nonlocal nonlinearity, as in optics and the theory of Bose...
Towards LHC physics with nonlocal Standard Model
Directory of Open Access Journals (Sweden)
Tirthabir Biswas
2015-09-01
Full Text Available We take a few steps towards constructing a string-inspired nonlocal extension of the Standard Model. We start by illustrating how quantum loop calculations can be performed in nonlocal scalar field theory. In particular, we show the potential to address the hierarchy problem in the nonlocal framework. Next, we construct a nonlocal abelian gauge model and derive modifications of the gauge interaction vertex and field propagators. We apply the modifications to a toy version of the nonlocal Standard Model and investigate collider phenomenology. We find the lower bound on the scale of nonlocality from the 8 TeV LHC data to be 2.5–3 TeV.
Nonlocal transport in superconducting oxide nanostructures
Veazey, Joshua; Cheng, Guanglei; Lu, Shicheng; Tomczyk, Michelle; Irvin, Patrick; Huang, Mengchen; Wung Bark, Chung; Ryu, Sangwoo; Eom, Chang-Beom; Levy, Jeremy
2013-03-01
We report nonlocal transport signatures in the superconducting state of nanostructures formed[2] at the LaAlO3/SrTiO3 interface using conductive AFM lithography. Nonlocal resistances (nonlocal voltage divided by current) are as large as 200 Ω when 2-10 μm separate the current-carrying segments from the voltage-sensing leads. The nonlocal resistance reverses sign at the local critical current of the superconducting state. Features observed in the nonlocal V-I curves evolve with back gate voltage and magnetic field, and are correlated with the local four-terminal V-I curves. We discuss how nonlocal and local transport effects in LaAlO3/SrTiO3 nanostructures may result from the electronic phase separation and superconducting inhomogeneity reported by others in planar structures[3]. This work is supported by AFOSR (FA9550-10-1-0524) and NSF DMR-0906443
Modesto, Leonardo
2013-01-01
We present a general covariant action for massive gravity merging together a class of "non-polynomial" and super-renormalizable or finite theories of gravity with the non-local theory of gravity recently proposed by Jaccard, Maggiore and Mitsou (arXiv:1305.3034 [hep-th]). Our diffeomorphism invariant action gives rise to the equations of motion appearing in non-local massive massive gravity plus quadratic curvature terms. Not only the massive graviton propagator reduces smoothly to the massless one without a vDVZ discontinuity, but also our finite theory of gravity is unitary at tree level around the Minkowski background. We also show that, as long as the graviton mass $m$ is much smaller the today's Hubble parameter $H_0$, a late-time cosmic acceleration can be realized without a dark energy component due to the growth of a scalar degree of freedom. In the presence of the cosmological constant $\\Lambda$, the dominance of the non-local mass term leads to a kind of "degravitation" for $\\Lambda$ at the late cos...
Nonlocal response of hyperbolic metasurfaces.
Correas-Serrano, D; Gomez-Diaz, J S; Tymchenko, M; Alù, A
2015-11-16
We analyze and model the nonlocal response of ultrathin hyperbolic metasurfaces (HMTSs) by applying an effective medium approach. We show that the intrinsic spatial dispersion in the materials employed to realize the metasurfaces imposes a wavenumber cutoff on the hyperbolic isofrequency contour, inversely proportional to the Fermi velocity, and we compare it with the cutoff arising from the structure granularity. In the particular case of HTMSs implemented by an array of graphene nanostrips, we find that graphene nonlocality can become the dominant mechanism that closes the hyperbolic contour - imposing a wavenumber cutoff at around 300k(0) - in realistic configurations with periodicity Lnonlocal response is mainly relevant in hyperbolic metasurfaces and metamaterials with periodicity below a few nm, being very weak in practical scenarios. In addition, we investigate how spatial dispersion affects the spontaneous emission rate of emitters located close to HMTSs. Our results establish an upper bound set by nonlocality to the maximum field confinement and light-matter interactions achievable in practical HMTSs, and may find application in the practical development of hyperlenses, sensors and on-chip networks.
Making nonlocal reality compatible with relativity
Nikolic, H.
2010-01-01
It is often argued that hypothetic nonlocal reality responsible for nonlocal quantum correlations between entangled particles cannot be consistent with relativity. I review the most frequent arguments of that sort, explain how they can all be circumvented, and present an explicit Bohmian model of nonlocal reality (compatible with quantum phenomena) that fully obeys the principle of relativistic covariance and does not involve a preferred Lorentz frame.
Sviridenko, Fyodor B; Stass, Dmitri V; Kobzeva, Tatyana V; Tretyakov, Evgeny V; Klyatskaya, Svetlana V; Mshvidobadze, Elena V; Vasilevsky, Sergey F; Molin, Yuri N
2004-03-10
This contribution reports the design and synthesis of a series of spin-labeled charge acceptors to produce three-spin systems of "radical ion/biradical ion" type in X-irradiated alkane liquids. This opens the way to study spin triads in experimental conditions, in which short-lived radical ion pairs are conventionally studied, thus offering optically detected techniques such as magneto-resonance OD ESR and level-crossing MARY spectroscopy. The structure of the synthesized 2-imidazoline-1-oxyl derivatives is A-Sp-R, where A is a positive or negative charge acceptor, R is a stable radical, and Sp is a hydrocarbon bridge. The set of 20+ compounds represent a convenient tool to construct experimental three-spin systems with various properties, e.g. with the "third" spin introduced into one or the other partner of the radical ion pair. The degree of exchange coupling between the two paramagnetic fragments in the biradical ion has been demonstrated to strongly depend on the type of the radical fragment R and the structure of the bridge Sp. As a result, a series of acceptors with systematically reduced exchange interaction has been synthesized, and optimal systems for the observation of low magnetic field effect have been found. In the most favorable case, an OD ESR signal from a spin triad living as short as ca. 100 ns has been registered as a single unresolved line. The exchange integral for this biradical anion (9) was estimated from OD ESR and ESR experiments to be ca. 10(3) G by the order of magnitude, which is much greater than the hyperfine couplings in the biradical ion but much smaller than the thermal energy kT.
Nonlocal Gravity in the Solar System
Chicone, C
2015-01-01
The implications of the recent classical nonlocal generalization of Einstein's theory of gravitation for gravitational physics in the Solar System are investigated. In this theory, the nonlocal character of gravity simulates dark matter. Nonlocal gravity in the Newtonian regime involves a reciprocal kernel with three spatial parameters, of which two have already been determined from the rotation curves of spiral galaxies and the internal dynamics of clusters of galaxies. However, the short-range parameter a_0 remains to be determined. In this connection, the nonlocal contribution to the perihelion precession of a planetary orbit is estimated and a preliminary lower limit on a_0 is determined.
Nonlocal gravity in the solar system
Chicone, C.; Mashhoon, B.
2016-04-01
The implications of the recent classical nonlocal generalization of Einstein’s theory of gravitation for gravitational physics in the solar system are investigated. In this theory, the nonlocal character of gravity appears to simulate dark matter. Nonlocal gravity in the Newtonian regime involves a reciprocal kernel with three spatial parameters, of which two have already been determined from the rotation curves of spiral galaxies and the internal dynamics of clusters of galaxies. However, the short-range parameter a 0 remains to be determined. In this connection, the nonlocal contribution to the perihelion precession of a planetary orbit is estimated and a preliminary lower limit on a 0 is determined.
Origin of Dynamical Quantum Non-locality
Pachon, Cesar E.; Pachon, Leonardo A.
2014-03-01
Non-locality is one of the hallmarks of quantum mechanics and is responsible for paradigmatic features such as entanglement and the Aharonov-Bohm effect. Non-locality comes in two ``flavours'': a kinematic non-locality- arising from the structure of the Hilbert space- and a dynamical non-locality- arising from the quantum equations of motion-. Kinematic non-locality is unable to induce any change in the probability distributions, so that the ``action-at-a-distance'' cannot manifest. Conversely, dynamical non-locality does create explicit changes in probability, though in a ``causality-preserving'' manner. The origin of non-locality of quantum measurements and its relations to the fundamental postulates of quantum mechanics, such as the uncertainty principle, have been only recently elucidated. Here we trace the origin of dynamical non-locality to the superposition principle. This relation allows us to establish and identify how the uncertainty and the superposition principles determine the non-local character of the outcome of a quantum measurement. Being based on group theoretical and path integral formulations, our formulation admits immediate generalizations and extensions to to, e.g., quantum field theory. This work was supported by the Departamento Administrativo de Ciencia, Tecnologia e Innovacion -COLCIENCIAS- of Colombia under the grant number 111556934912.
Perturbative loop corrections and nonlocal gravity
Maggiore, Michele
2016-01-01
Nonlocal gravity has been shown to provide a phenomenologically viable infrared modification of GR. A natural question is whether the required nonlocality can emerge from perturbative quantum loop corrections due to light particles. We show that this is not the case. For the value of the mass scale of the non-local models required by cosmology, the perturbative form factors obtained from the loop corrections, in the present cosmological epoch, are in the regime where they are local. The mechanism behind the generation of the required nonlocality must be more complex, possibly related to strong infrared effects and non-perturbative mass generation for the conformal mode.
Local and Nonlocal Regularization to Image Interpolation
Directory of Open Access Journals (Sweden)
Yi Zhan
2014-01-01
Full Text Available This paper presents an image interpolation model with local and nonlocal regularization. A nonlocal bounded variation (BV regularizer is formulated by an exponential function including gradient. It acts as the Perona-Malik equation. Thus our nonlocal BV regularizer possesses the properties of the anisotropic diffusion equation and nonlocal functional. The local total variation (TV regularizer dissipates image energy along the orthogonal direction to the gradient to avoid blurring image edges. The derived model efficiently reconstructs the real image, leading to a natural interpolation which reduces blurring and staircase artifacts. We present experimental results that prove the potential and efficacy of the method.
Causality, Non-Locality and Negative Refraction
Forcella, Davide; Carminati, Rémi
2016-01-01
The importance of spatial non-locality in the description of negative refraction in electromagnetic materials has been put forward recently. We develop a theory of negative refraction in homogeneous and isotropic media, based on first principles, and that includes non-locality in its full generality. The theory shows that both dissipation and spatial non-locality are necessary conditions for the existence of negative refraction. It also provides a sufficient condition in materials with weak spatial non-locality. These fundamental results should have broad implications in the theoretical and practical analyses of negative refraction of electromagnetic and other kinds of waves.
Spin currents in metallic nanostructures
Energy Technology Data Exchange (ETDEWEB)
Czeschka, Franz Dominik
2011-09-05
A pure spin current, i.e., a flow of angular momentum without accompanying net charge current, is a key ingredient in the field of spintronics. In this thesis, we experimentally investigated two different concepts for pure spin current sources suggested by theory. The first is based on a time-dependent magnetization precession which ''pumps'' a pure spin current into an adjacent non-magnetic conductor. Our experiments quantitatively corroborated important predictions expected theoretically for this approach, including the dependence of the spin current on the sample geometry and the microwave power. Even more important, we could show for the first time that the spin pumping concept is viable in a large variety of ferromagnetic materials and that it only depends on the magnetization damping. Therefore, our experiments established spin pumping as generic phenomenon and demonstrated that it is a powerful way to generate pure spin currents. The second theoretical concept is based on the conversion of charge currents into spin currents in non-magnetic nanostructures via the spin Hall effect. We experimentally investigated this approach in H-shaped, metallic nanodevices, and found that the predictions are linked to requirements not realizable with the present experimental techniques, neither in sample fabrication nor in measurement technique. Indeed, our experimental data could be consistently understood by a spin-independent transport model describing the transition from diffusive to ballistic transport. In addition, the implementation of advanced fabrication and measurement techniques allowed to discover a new non-local phenomenon, the non-local anisotropic magnetoresistance. Finally, we also studied spin-polarized supercurrents carried by spin-triplet Cooper pairs. We found that low resistance interfaces are a key requirement for further experiments in this direction. (orig.)
Spin Injection in Indium Arsenide
Directory of Open Access Journals (Sweden)
Mark eJohnson
2015-08-01
Full Text Available In a two dimensional electron system (2DES, coherent spin precession of a ballistic spin polarized current, controlled by the Rashba spin orbit interaction, is a remarkable phenomenon that’s been observed only recently. Datta and Das predicted this precession would manifest as an oscillation in the source-drain conductance of the channel in a spin-injected field effect transistor (Spin FET. The indium arsenide single quantum well materials system has proven to be ideal for experimental confirmation. The 2DES carriers have high mobility, low sheet resistance, and high spin orbit interaction. Techniques for electrical injection and detection of spin polarized carriers were developed over the last two decades. Adapting the proposed Spin FET to the Johnson-Silsbee nonlocal geometry was a key to the first experimental demonstration of gate voltage controlled coherent spin precession. More recently, a new technique measured the oscillation as a function of channel length. This article gives an overview of the experimental phenomenology of the spin injection technique. We then review details of the application of the technique to InAs single quantum well (SQW devices. The effective magnetic field associated with Rashba spin-orbit coupling is described, and a heuristic model of coherent spin precession is presented. The two successful empirical demonstrations of the Datta Das conductance oscillation are then described and discussed.
Allmendinger, F; Doll, M; Grasdijk, O; Heil, W; Jungmann, K; Karpuk, S; Krause, H -J; Offenhäusser, A; Repetto, M; Schmidt, U; Sobolev, Yu; Tullney, K; Willmann, L; Zimmer, S
2016-01-01
We report on precise measurements of magnetic field gradients extracted from transverse relaxation rates of precessing spin samples. The experimental approach is based on the free precession of gaseous, nuclear spin polarized $^3$He and $^{129}$Xe atoms in a spherical cell inside a magnetic guiding field of about 400 nT using LT$_C$ SQUIDs as low-noise magnetic flux detectors. The transverse relaxation rates of both spin species are simultaneously monitored as magnetic field gradients are varied. For transverse relaxation times reaching 100 h, the residual longitudinal field gradient across the spin sample could be deduced to be$|\\vec{\
Uncertainty estimation in diffusion MRI using the nonlocal bootstrap.
Yap, Pew-Thian; An, Hongyu; Chen, Yasheng; Shen, Dinggang
2014-08-01
In this paper, we propose a new bootstrap scheme, called the nonlocal bootstrap (NLB) for uncertainty estimation. In contrast to the residual bootstrap, which relies on a data model, or the repetition bootstrap, which requires repeated signal measurements, NLB is not restricted by the data structure imposed by a data model and obviates the need for time-consuming multiple acquisitions. NLB hinges on the observation that local imaging information recurs in an image. This self-similarity implies that imaging information coming from spatially distant (nonlocal) regions can be exploited for more effective estimation of statistics of interest. Evaluations using in silico data indicate that NLB produces distribution estimates that are in closer agreement with those generated using Monte Carlo simulations, compared with the conventional residual bootstrap. Evaluations using in vivo data demonstrate that NLB produces results that are in agreement with our knowledge on white matter architecture.
Optimizing plasmon-enhanced fluorescence with nonlocal metallic nanospheres
DEFF Research Database (Denmark)
Tserkezis, Christos; Stefanou, Nikolaos; Wubs, Martijn
nonlocal corrections, the plasmon blueshift predicted by the hydrodynamic Drude model [1] leads to a small reduction of η. If however the plasmonic mode does not coincide exactly with λem, this blueshift can tune the mode to increase η. Nevertheless, when size-dependent losses are also taken into account......The fluorescence signal η of molecules coupled to plasmonic nanoparticles (NPs) is optimized through extended simulations, taking the metal nonlocal optical response fully into account. Solid Au and Ag nanospheres, as well as SiO2/Au(Ag) core/shell NPs (of total radius R), are engineered...... to maximize the ratio of radiative to nonradiative losses and match the emitter emission wavelength, λem. For a molecule modeled as an electric dipole p, oriented parallel to the incident field E, the optimal emitter-NP distance is then identified within the local response approximation (LRA). Introducing...
Nonlocal response in thin-film waveguides: loss versus nonlocality and breaking of complementarity
Raza, Søren; Wubs, Martijn; Bozhevolnyi, Sergey I; Mortensen, N Asger
2013-01-01
We investigate the effects of nonlocal response on the surface-plasmon polariton guiding properties of the metal-insulator (MI), metal-insulator-metal (MIM), and insulator-metal-insulator (IMI) waveguides. The nonlocal effects are described by a linearized hydrodynamic model, which includes the Thomas-Fermi internal kinetic energy of the free electrons in the metal. We derive the nonlocal dispersion relations of the three waveguide structures taking into account also retardation and interband effects, and examine the delicate interplay between nonlocal response and absorption losses in the metal. We also show that nonlocality breaks the complementarity of the MIM and IMI waveguides found in the non-retarded limit.
Korotaev, S M; Kiktenko, E O; Budnev, N M; Gorohov, J V
2015-01-01
Although the general theory macroscopic quantum entanglement of is still in its infancy, consideration of the matter in the framework of action-at-a distance electrodynamics predicts for the random dissipative processes observability of the advanced nonlocal correlations. These correlations were really revealed in our previous experiments with some large-scale heliogeophysical processes as the source ones and the lab detectors as the probe ones. Recently a new experiment has been performing on the base of Baikal Deep Water Neutrino Observatory. The thick water layer is an excellent shield against any local impacts on the detectors. The first annual series 2012/2013 has demonstrated that detector signals respond to the heliogeophysical processes and causal connection of the signals directed downwards: from the Earth surface to the Baikal floor. But this nonlocal connection proved to be in reverse time. In addition advanced nonlocal correlation of the detector signal with the regional source-process: the random...
Allmendinger, Fabian; Blümler, Peter; Doll, Michael; Grasdijk, Oliver; Heil, Werner; Jungmann, Klaus; Karpuk, Sergej; Krause, Hans-Joachim; Offenhäuser, Andreas; Repetto, Maricel; Schmidt, Ulrich; Sobolev, Yuri; Tullney, Kathlyne; Willmann, Lorenz; Zimmer, Stefan
2017-01-01
We report on precise measurements of magnetic field gradients extracted from transverse relaxation rates of precessing spin samples. The experimental approach is based on the free precession of gaseous, nuclear spin polarized 3He and 129Xe atoms in a spherical cell inside a magnetic guiding field of
Nonlocality of a single particle
Dunningham, Jacob; Vedral, Vlatko
2007-01-01
There has been a great deal of debate surrounding the issue of whether it is possible for a single photon to exhibit nonlocality. A number of schemes have been proposed that claim to demonstrate this effect, but each has been met with significant opposition. The objections hinge largely on the fact that these schemes use unobservable initial states and so, it is claimed, they do not represent experiments that could actually be performed. Here we show how it is possible to overcome these objec...
Directory of Open Access Journals (Sweden)
Antoni Buades
2011-09-01
Full Text Available We present in this paper a new denoising method called non-local means. The method is based on a simple principle: replacing the color of a pixel with an average of the colors of similar pixels. But the most similar pixels to a given pixel have no reason to be close at all. It is therefore licit to scan a vast portion of the image in search of all the pixels that really resemble the pixel one wants to denoise. The paper presents two implementations of the method and displays some results.
Monotone method for nonlinear nonlocal hyperbolic problems
Directory of Open Access Journals (Sweden)
Azmy S. Ackleh
2003-02-01
Full Text Available We present recent results concerning the application of the monotone method for studying existence and uniqueness of solutions to general first-order nonlinear nonlocal hyperbolic problems. The limitations of comparison principles for such nonlocal problems are discussed. To overcome these limitations, we introduce new definitions for upper and lower solutions.
Nonlocality as Evidence for a Multiverse Cosmology
Tipler, Frank J
2010-01-01
I show that observations of quantum nonlocality can be interpreted as purely local phenomena, provided one assumes that the cosmos is a multiverse. Conversely, the observation of quantum nonlocality can be interpreted as observation evidence for a multiverse cosmology, just as observation of the setting of the Sun can be interpreted as evidence for the Earth's rotation.
Nonlocal study of ultimate plasmon hybridization
DEFF Research Database (Denmark)
Raza, Søren; Wubs, Martijn; Bozhevolnyi, Sergey I.
2015-01-01
Within our recently proposed generalized nonlocal optical response (GNOR) model, where nonlocal response is included by taking into account both convective and diffusive currents of the conduction electrons, we revisit the fundamental problem of an optically excited plasmonic dimer. We consider...
A New Model of Nonlocal Modified Gravity
Dimitrijevic, Ivan; Grujic, Jelena; Rakic, Zoran
2014-01-01
We consider a new modified gravity model with nonlocal term of the form $R^{-1} \\mathcal{F}(\\Box) R. $ This kind of nonlocality is motivated by investigation of applicability of a few unusual ans\\"atze to obtain some exact cosmological solutions. In particular, we find attractive and useful quadratic ansatz $\\Box R = q R^{2}.$
Attraction of nonlocal dark optical solitons
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov; Neshev, Dragomir; Krolikowski, Wieslaw
2004-01-01
We study the formation and interaction of spatial dark optical solitons in materials with a nonlocal nonlinear response. We show that unlike in local materials, where dark solitons typically repel, the nonlocal nonlinearity leads to a long-range attraction and formation of stable bound states...... of dark solitons. (C) 2004 Optical Society of America...
On instabilities in tensorial nonlocal gravity
Nersisyan, Henrik; Amendola, Luca; Koivisto, Tomi S; Rubio, Javier; Solomon, Adam R
2016-01-01
We discuss the cosmological implications of nonlocal modifications of general relativity containing tensorial structures. Assuming the presence of standard radiation- and matter-dominated eras, we show that, except in very particular cases, the nonlocal terms contribute a rapidly-growing energy density. These models therefore generically do not have a stable cosmological evolution.
Multipole vector solitons in nonlocal nonlinear media.
Kartashov, Yaroslav V; Torner, Lluis; Vysloukh, Victor A; Mihalache, Dumitru
2006-05-15
We show that multipole solitons can be made stable via vectorial coupling in bulk nonlocal nonlinear media. Such vector solitons are composed of mutually incoherent nodeless and multipole components jointly inducing a nonlinear refractive index profile. We found that stabilization of the otherwise highly unstable multipoles occurs below certain maximum energy flow. Such a threshold is determined by the nonlocality degree.
Creation of Entanglement with Nonlocal Operations
Institute of Scientific and Technical Information of China (English)
ZHANG Yong; CAO Wan-Cang; LONG Gui-Lu
2005-01-01
We discuss how to create more entanglement with nonlocal operations acting on two-particle states. For a given nonlocal operation, we find that some input states cannot produce entanglement and some produce the maximal entanglement, and find that any initial entangled states can produce more entanglement than initial product states.
Spectral Dimension from Causal Set Nonlocal Dynamics
Belenchia, Alessio; Marciano, Antonino; Modesto, Leonardo
2015-01-01
We investigate the spectral dimension obtained from non-local continuum d'Alembertians derived from causal sets. We find a universal dimensional reduction to 2 dimensions, in all dimensions. We conclude by discussing the validity and relevance of our results within the broader context of quantum field theories based on these nonlocal dynamics.
Nonlocal and quasi-local field theories
Tomboulis, E T
2015-01-01
We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasi-local (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasi-local kernels all acausal effects are confined within the compact support regi...
Nonlocal Galileons and self-acceleration
Gabadadze, Gregory; Yu, Siqing
2017-05-01
A certain class of nonlocal theories eliminates an arbitrary cosmological constant (CC) from a universe that can be perceived as our world. Dark energy then cannot be explained by a CC; it could however be due to massive gravity. We calculate the new corrections, which originate from the nonlocal terms that eliminate the CC, to the decoupling limit Lagrangian of massive gravity. The new nonlocal terms also have internal field space Galilean symmetry and are referred here as ;nonlocal Galileons.; We then study a self-accelerated solution and show that the new nonlocal terms change the perturbative stability analysis. In particular, small fluctuations are now stable and non-superluminal for some simple parameter choices, whereas for the same choices the pure massive gravity fluctuations are unstable. We also study stable spherically symmetric solutions on this background.
Nonlocal Galileons and self-acceleration
Directory of Open Access Journals (Sweden)
Gregory Gabadadze
2017-05-01
Full Text Available A certain class of nonlocal theories eliminates an arbitrary cosmological constant (CC from a universe that can be perceived as our world. Dark energy then cannot be explained by a CC; it could however be due to massive gravity. We calculate the new corrections, which originate from the nonlocal terms that eliminate the CC, to the decoupling limit Lagrangian of massive gravity. The new nonlocal terms also have internal field space Galilean symmetry and are referred here as “nonlocal Galileons.” We then study a self-accelerated solution and show that the new nonlocal terms change the perturbative stability analysis. In particular, small fluctuations are now stable and non-superluminal for some simple parameter choices, whereas for the same choices the pure massive gravity fluctuations are unstable. We also study stable spherically symmetric solutions on this background.
Virial Theorem in Nonlocal Newtonian Gravity
Directory of Open Access Journals (Sweden)
Bahram Mashhoon
2016-05-01
Full Text Available Nonlocal gravity is the recent classical nonlocal generalization of Einstein’s theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for “isolated” astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy’s baryonic diameter D 0 —namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time—is predicted to be larger than the effective dark matter fraction f D M times a universal length that is the basic nonlocality length scale λ 0 ≈ 3 ± 2 kpc.
Hyperbolic metamaterial lens with hydrodynamic nonlocal response
DEFF Research Database (Denmark)
Yan, Wei; Mortensen, N. Asger; Wubs, Martijn
2013-01-01
in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we......We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves...... of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens...
Hyperbolic metamaterial lens with hydrodynamic nonlocal response.
Yan, Wei; Mortensen, N Asger; Wubs, Martijn
2013-06-17
We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.
Nonlocal thermal transport in solar flares
Karpen, Judith T.; Devore, C. Richard
1987-01-01
A flaring solar atmosphere is modeled assuming classical thermal transport, locally limited thermal transport, and nonlocal thermal transport. The classical, local, and nonlocal expressions for the heat flux yield significantly different temperature, density, and velocity profiles throughout the rise phase of the flare. Evaporation of chromospheric material begins earlier in the nonlocal case than in the classical or local calculations, but reaches much lower upward velocities. Much higher coronal temperatures are achieved in the nonlocal calculations owing to the combined effects of delocalization and flux limiting. The peak velocity and momentum are roughly the same in all three cases. A more impulsive energy release influences the evolution of the nonlocal model more than the classical and locally limited cases.
Non-local parallel transport in BOUT++
Omotani, J T; Havlickova, E; Umansky, M
2015-01-01
Non-local closures allow kinetic effects on parallel transport to be included in fluid simulations. This is especially important in the scrape-off layer, but to be useful there the non-local model requires consistent kinetic boundary conditions at the sheath. A non-local closure scheme based on solution of a kinetic equation using a diagonalized moment expansion has been previously reported. We derive a method for imposing kinetic boundary conditions in this scheme and discuss their implementation in BOUT++. To make it feasible to implement the boundary conditions in the code, we are lead to transform the non-local model to a different moment basis, better adapted to describe parallel dynamics. The new basis has the additional benefit of enabling substantial optimization of the closure calculation, resulting in an O(10) speedup of the non-local code.
Virial Theorem in Nonlocal Newtonian Gravity
Mashhoon, B
2015-01-01
Nonlocal gravity is the recent classical nonlocal generalization of Einstein's theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for "isolated" astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy's baryonic diameter---namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time---is predicted to be larger than the effective dark matter fraction times a universal length that is the basic nonlocality length scale of about 3 kpc.
Virial Theorem in Nonlocal Newtonian Gravity
Mashhoon, Bahram
2016-05-01
Nonlocal gravity is the recent classical nonlocal generalization of Einstein's theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for "isolated" astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy's baryonic diameter---namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time---is predicted to be larger than the effective dark matter fraction times a universal length that is the basic nonlocality length scale of about 3 kpc.
Crowell, Paul A.; Liu, Changjiang; Patel, Sahil; Peterson, Tim; Geppert, Chad C.; Christie, Kevin; Stecklein, Gordon; Palmstrøm, Chris J.
2016-10-01
A distinguishing feature of spin accumulation in ferromagnet-semiconductor devices is its precession in a magnetic field. This is the basis for detection techniques such as the Hanle effect, but these approaches become ineffective as the spin lifetime in the semiconductor decreases. For this reason, no electrical Hanle measurement has been demonstrated in GaAs at room temperature. We show here that by forcing the magnetization in the ferromagnet to precess at resonance instead of relying only on the Larmor precession of the spin accumulation in the semiconductor, an electrically generated spin accumulation can be detected up to 300 K. The injection bias and temperature dependence of the measured spin signal agree with those obtained using traditional methods. We further show that this new approach enables a measurement of short spin lifetimes (techniques. The measurements were carried out on epitaxial Heusler alloy (Co2FeSi or Co2MnSi)/n-GaAs heterostructures. Lateral spin valve devices were fabricated by electron beam and photolithography. We compare measurements carried out by the new FMR-based technique with traditional non-local and three-terminal Hanle measurements. A full model appropriate for the measurements will be introduced, and a broader discussion in the context of spin pumping experimenments will be included in the talk. The new technique provides a simple and powerful means for detecting spin accumulation at high temperatures. Reference: C. Liu, S. J. Patel, T. A. Peterson, C. C. Geppert, K. D. Christie, C. J. Palmstrøm, and P. A. Crowell, "Dynamic detection of electron spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance," Nature Communications 7, 10296 (2016). http://dx.doi.org/10.1038/ncomms10296
Nonlocal Polarization Feedback in a Fractional Quantum Hall Ferromagnet.
Hennel, Szymon; Braem, Beat A; Baer, Stephan; Tiemann, Lars; Sohi, Pirouz; Wehrli, Dominik; Hofmann, Andrea; Reichl, Christian; Wegscheider, Werner; Rössler, Clemens; Ihn, Thomas; Ensslin, Klaus; Rudner, Mark S; Rosenow, Bernd
2016-04-01
In a quantum Hall ferromagnet, the spin polarization of the two-dimensional electron system can be dynamically transferred to nuclear spins in its vicinity through the hyperfine interaction. The resulting nuclear field typically acts back locally, modifying the local electronic Zeeman energy. Here we report a nonlocal effect arising from the interplay between nuclear polarization and the spatial structure of electronic domains in a ν=2/3 fractional quantum Hall state. In our experiments, we use a quantum point contact to locally control and probe the domain structure of different spin configurations emerging at the spin phase transition. Feedback between nuclear and electronic degrees of freedom gives rise to memristive behavior, where electronic transport through the quantum point contact depends on the history of current flow. We propose a model for this effect which suggests a novel route to studying edge states in fractional quantum Hall systems and may account for so-far unexplained oscillatory electronic-transport features observed in previous studies.
Nonlocal Quantum Effects in Cosmology
Directory of Open Access Journals (Sweden)
Yurii V. Dumin
2014-01-01
Full Text Available Since it is commonly believed that the observed large-scale structure of the universe is an imprint of quantum fluctuations existing at the very early stage of its evolution, it is reasonable to pose the question: do the effects of quantum nonlocality, which are well established now by the laboratory studies, manifest themselves also in the early universe? We try to answer this question by utilizing the results of a few experiments, namely, with the superconducting multi-Josephson-junction loops and the ultracold gases in periodic potentials. Employing a close analogy between the above-mentioned setups and the simplest one-dimensional Friedmann-Robertson-Walker cosmological model, we show that the specific nonlocal correlations revealed in the laboratory studies might be of considerable importance also in treating the strongly nonequilibrium phase transitions of Higgs fields in the early universe. Particularly, they should substantially reduce the number of topological defects (e.g., domain walls expected due to independent establishment of the new phases in the remote spatial regions. This gives us a hint on resolving a long-standing problem of the excessive concentration of topological defects, inconsistent with observational constraints. The same effect may be also relevant to the recent problem of the anomalous behavior of cosmic microwave background fluctuations at large angular scales.
Long-range spin transport in superconductors
Energy Technology Data Exchange (ETDEWEB)
Beckmann, Detlef; Wolf, Michael J. [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (Germany); Huebler, Florian [Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Loehneysen, Hilbert von [Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Physikalisches Institut, Karlsruher Institut fuer Technologie (Germany)
2012-07-01
Recently, there has been some controversy about spin-polarized quasiparticle transport and relaxation in superconductors, with reports of both anomalously short or anomalously long relaxation times as compared to the normal state. Here, we report on non-local transport in multiterminal superconductor-ferromagnet structures. We find signatures of spin transport over distances much larger than the normal-state spin-diffusion length in the presence of a large Zeeman splitting of the quasiparticle states. The relaxation length shows a nearly linear increase with magnetic field, hinting at a freeze-out of spin relaxation by the Zeeman splitting.
Band Structure Calculation of Si and Ge by Non-Local Empirical Pseudo-Potential Technique
Institute of Scientific and Technical Information of China (English)
CHEN Yong; RAVAIOLI Umberto
2005-01-01
In this paper, the princ iple of spatial nonlocal empirical pseudopotential and its detailed calculation procedure is presented. Consequently, this technique is employed to calculate the band structuresof Silicon and Germaniun. By comparing the results with photoemission experimental data, the validity and accuracy of this calculation are fully conformed for valence or conductance band,respectively. Thus it can be concluded that the spin-orbit Hamiltonian will only affect the energy band gap and another conductance or valence band structure. Therefore, this nonlocal approach without spin-orbit part is adequate for the device simulation of only one carrier transport such as metal oxide semiconductor field effect transistors (MOSFET)'s, and it can significantly reduce the complication of band structure calculation.
The neglected nonlocal effects of deforestation
Winckler, Johannes; Reick, Christian; Pongratz, Julia
2017-04-01
Deforestation changes surface temperature locally via biogeophysical effects by changing the water, energy and momentum balance. Adding to these locally induced changes (local effects), deforestation at a given location can cause changes in temperature elsewhere (nonlocal effects). Most previous studies have not considered local and nonlocal effects separately, but investigated the total (local plus nonlocal) effects, for which global deforestation was found to cause a global mean cooling. Recent modeling and observational studies focused on the isolated local effects: The local effects are relevant for local living conditions, and they can be obtained from in-situ and satellite observations. Observational studies suggest that the local effects of potential deforestation cause a warming when averaged globally. This contrast between local warming and total cooling indicates that the nonlocal effects of deforestation are causing a cooling and thus counteract the local effects. It is still unclear how the nonlocal effects depend on the spatial scale of deforestation, and whether they still compensate the local warming in a more realistic spatial distribution of deforestation. To investigate this, we use a fully coupled climate model and separate local and nonlocal effects of deforestation in three steps: Starting from a forest world, we simulate deforestation in one out of four grid boxes using a regular spatial pattern and increase the number of deforestation grid boxes step-wise up to three out of four boxes in subsequent simulations. To compare these idealized spatial distributions of deforestation to a more realistic case, we separate local and nonlocal effects in a simulation where deforestation is applied in regions where it occurred historically. We find that the nonlocal effects scale nearly linearly with the number of deforested grid boxes, and the spatial distribution of the nonlocal effects is similar for the regular spatial distribution of deforestation
Subquantum nonlocal correlations induced by the background random field
Khrennikov, Andrei
2011-10-01
We developed a purely field model of microphenomena—prequantum classical statistical field theory (PCSFT). This model not only reproduces important probabilistic predictions of quantum mechanics (QM) including correlations for entangled systems, but also gives a possibility to go beyond QM, i.e. to make predictions of phenomena that could be observed at the subquantum level. In this paper, we discuss one such prediction—the existence of nonlocal correlations between prequantum random fields corresponding to all quantum systems. (And by PCSFT, quantum systems are represented by classical Gaussian random fields and quantum observables by quadratic forms of these fields.) The source of these correlations is the common background field. Thus all prequantum random fields are 'entangled', but in the sense of classical signal theory. On the one hand, PCSFT demystifies quantum nonlocality by reducing it to nonlocal classical correlations based on the common random background. On the other hand, it demonstrates total generality of such correlations. They exist even for distinguishable quantum systems in factorizable states (by PCSFT terminology—for Gaussian random fields with covariance operators corresponding to factorizable quantum states).
On the alleged nonlocal and topological nature of the molecular Aharonov-Bohm effect
Sjöqvist, E
2003-01-01
The nonlocal and topological nature of the molecular Aharonov-Bohm (MAB) effect is examined for real electronic Hamiltonians. A notion of preferred gauge for MAB is suggested. The MAB effect in the linear + quadratic $E\\otimes \\epsilon$ Jahn-Teller system is shown to be essentially analogues to an anisotropic Aharonov-Casher effect for an electrically neutral spin$-{1/2}$ particle encircling a certain configuration of lines of charge.
Can EPR non-locality be geometrical?
Energy Technology Data Exchange (ETDEWEB)
Ne`eman, Y. [Tel-Aviv Univ. (Israel). Raymond and Beverly Sackler Faculty of Exact Sciences]|[Univ. of Texas, Austin, TX (United States). Center for Particle Physics; Botero, A. [Texas Univ., Austin, TX (United States)
1995-10-01
The presence in Quantum Mechanics of non-local correlations is one of the two fundamentally non-intuitive features of that theory. The non-local correlations themselves fall into two classes: EPR and Geometrical. The non-local characteristics of the geometrical type are well-understood and are not suspected of possibly generating acausal features, such as faster-than-light propagation of information. This has especially become true since the emergence of a geometrical treatment for the relevant gauge theories, i.e. Fiber Bundle geometry, in which the quantum non-localities are seen to correspond to pure homotopy considerations. This aspect is reviewed in section 2. Contrary-wise, from its very conception, the EPR situation was felt to be paradoxical. It has been suggested that the non-local features of EPR might also derive from geometrical considerations, like all other non-local characteristics of QM. In[7], one of the authors was able to point out several plausibility arguments for this thesis, emphasizing in particular similarities between the non-local correlations provided by any gauge field theory and those required by the preservation of the quantum numbers of the original EPR state-vector, throughout its spatially-extended mode. The derivation was, however, somewhat incomplete, especially because of the apparent difference between, on the one hand, the closed spatial loops arising in the analysis of the geometrical non-localities, from Aharonov-Bohm and Berry phases to magnetic monopoles and instantons, and on the other hand, in the EPR case, the open line drawn by the positions of the two moving decay products of the disintegrating particle. In what follows, the authors endeavor to remove this obstacle and show that as in all other QM non-localities, EPR is somehow related to closed loops, almost involving homotopy considerations. They develop this view in section 3.
Smith, John A S; Rowe, Michael D; Althoefer, Kaspar; Peirson, Neil F; Barras, Jamie
2015-10-01
In NQR detection applications signal averaging by the summation of rapidly regenerated signals from multiple pulse sequences of the pulsed spin-locking (PSL) type is often used to improve sensitivity. It is important to characterise and if possible minimise PSL sequence off-resonance effects since they can make it difficult to optimise detection performance. We illustrate this with measurements of the variation of the decay time T2e and the amplitude of PSL signal trains with pulse spacing and excitation offset frequency for the 870 kHz ν+(14)N NQR line of monoclinic TNT under carefully stabilised temperature conditions. We have also carried out a similar study of signals from monoclinic TNT and 1H-1,2,3-triazole generated by a three-pulse echo sequence and the results are shown to agree well with a theoretical treatment appropriate to polycrystalline NQR samples such as TNT for which spin I=1, asymmetry parameter η≠0 and T1≫T2. Based on this theory we derive simple models for calculating TNT PSL signal trains and hence the pulse spacing and off-resonance dependence of signal amplitude and T2e which we compare to our experimental data. We discuss the influence of PSL echo summation on off-resonance effects in detected signal intensity and show how a phase-alternated multiple pulse sequence can be used in combination with the PSL sequence to eliminate variation in detection performance due to off-resonance effects.
Hu, H; Hu, Huping; Wu, Maoxin
2002-01-01
We postulate that consciousness is connected to quantum mechanical spin since said spin is embedded in the microscopic structure of spacetime and may be more fundamental than spacetime itself. Thus, we theorize that consciousness is connected with the fabric of spacetime through spin. That is, spin is the "pixel" and "antenna" of mind. The unity of mind is achieved by non-local means within the pre-spacetime domain interfaced with spacetime. Human mind is possible because of the particular structures and dynamics of our brain postulated working as follows: The unpaired electronic spins of highly lipid-soluble and rapidly diffusing oxygen molecules extract information from the dynamical neural membranes and communicate said information through strong spin-spin couplings to the nuclear spin ensemble in the membranes for consciousness-related quantum statistical processing which survives decoherence. In turn, the dynamics of the nuclear spin ensemble has effects through spin chemistry on the classical neural act...
Local, nonlocal quantumness and information theoretic measures
Agrawal, Pankaj; Sazim, Sk; Chakrabarty, Indranil; Pati, Arun K.
2016-08-01
It has been suggested that there may exist quantum correlations that go beyond entanglement. The existence of such correlations can be revealed by information theoretic quantities such as quantum discord, but not by the conventional measures of entanglement. We argue that a state displays quantumness, that can be of local and nonlocal origin. Information theoretic measures not only characterize the nonlocal quantumness, but also the local quantumness, such as the “local superposition”. This can be a reason, why such measures are nonzero, when there is no entanglement. We consider a generalized version of the Werner state to demonstrate the interplay of local quantumness, nonlocal quantumness and classical mixedness of a state.
Nonlocal study of ultimate plasmon hybridization.
Raza, Søren; Wubs, Martijn; Bozhevolnyi, Sergey I; Mortensen, N Asger
2015-03-01
Within our recently proposed generalized nonlocal optical response (GNOR) model, where nonlocal response is included by taking into account both convective and diffusive currents of the conduction electrons, we revisit the fundamental problem of an optically excited plasmonic dimer. We consider the transition from separated dimers via touching dimers to finally overlapping dimers. In particular, we focus on the touching case, showing a fundamental limit on the hybridization of the bonding plasmon modes due to nonlocality. Using transformation optics, we determine a simple analytical equation for the resonance energies.
Nonlocal-response diffusion model of holographic recording in photopolymer
Sheridan, John T.; Lawrence, Justin R.
2000-01-01
The standard one-dimensional diffusion equation is extended to include nonlocal temporal and spatial medium responses. How such nonlocal effects arise in a photopolymer is discussed. It is argued that assuming rapid polymer chain growth, any nonlocal temporal response can be dealt with so that the response can be completely understood in terms of a steady-state nonlocal spatial response. The resulting nonlocal diffusion equation is then solved numerically, in low-harmonic approximation, to de...
Nonlocality in uniaxially polarizable media
Gorlach, Maxim A
2015-01-01
We reveal extraordinary electromagnetic properties for a general class of uniaxially polarizable media. Depending on parameters, such metamaterials may have wide range of nontrivial shapes of isofrequency contours including lemniscate, diamond and multiply connected curves with connectivity number reaching five. The possibility of the dispersion engineering paves a way to more flexible manipulation of electromagnetic waves. Employing first-principle considerations we prove that uniaxially polarizable media should be described in terms of the nonlocal permittivity tensor which by no means can be reduced to local permittivity and permeability even in the long-wavelength limit. We introduce an alternative set of local material parameters including quadrupole susceptibility capable to capture all of the second-order spatial dispersion effects.
Experimental many-pairs nonlocality
Poh, Hou Shun; Cerè, Alessandro; Bancal, Jean-Daniel; Cai, Yu; Sangouard, Nicolas; Scarani, Valerio; Kurtsiefer, Christian
2017-08-01
Collective measurements on large quantum systems together with a majority voting strategy can lead to a violation of the Clauser-Horne-Shimony-Holt Bell inequality. In the presence of many entangled pairs, this violation decreases quickly with the number of pairs and vanishes for some critical pair number that is a function of the noise present in the system. Here we show that a different binning strategy can lead to a more substantial Bell violation when the noise is sufficiently small. Given the relation between the critical pair number and the source noise, we then present an experiment where the critical pair number is used to quantify the quality of a high visibility photon pair source. Our results demonstrate nonlocal correlations using collective measurements operating on clusters of more than 40 photon pairs.
Experimental test of nonlocal causality.
Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G; Fedrizzi, Alessandro
2016-08-01
Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell's local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect.
Experimental test of nonlocal causality
Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G.; Fedrizzi, Alessandro
2016-01-01
Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell’s local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect. PMID:27532045
Nonlocal response in thin-film waveguides: Loss versus nonlocality and breaking of complementarity
DEFF Research Database (Denmark)
Raza, Søren; Christensen, Thomas; Wubs, Martijn
2013-01-01
We investigate the effects of nonlocal response on the surface-plasmon polariton guiding properties of the metal-insulator (MI), metal-insulator-metal (MIM), and insulator-metal-insulator (IMI) waveguides. The nonlocal effects are described by a linearized hydrodynamic model, which includes...... in the metal. We also show that nonlocality breaks the complementarity of the MIM and IMI waveguides found in the nonretarded limit....
Entanglement and Nonlocality in Infinite 1D Systems
Wang, Zizhu; Singh, Sukhwinder; Navascués, Miguel
2017-06-01
We consider the problem of detecting entanglement and nonlocality in one-dimensional (1D) infinite, translation-invariant (TI) systems when just near-neighbor information is available. This issue is deeper than one might think a priori, since, as we show, there exist instances of local separable states (classical boxes) which admit only entangled (nonclassical) TI extensions. We provide a simple characterization of the set of local states of multiseparable TI spin chains and construct a family of linear witnesses which can detect entanglement in infinite TI states from the nearest-neighbor reduced density matrix. Similarly, we prove that the set of classical TI boxes forms a polytope and devise a general procedure to generate all Bell inequalities which characterize it. Using an algorithm based on matrix product states, we show how some of them can be violated by distant parties conducting identical measurements on an infinite TI quantum state. All our results can be easily adapted to detect entanglement and nonlocality in large (finite, not TI) 1D condensed matter systems.
Nonlocal Drag of Magnons in a Ferromagnetic Bilayer
Liu, Tianyu; Vignale, G.; Flatté, Michael E.
2016-06-01
Quantized spin waves, or magnons, in a magnetic insulator are assumed to interact weakly with the surroundings, and to flow with little dissipation or drag, producing exceptionally long diffusion lengths and relaxation times. In analogy to Coulomb drag in bilayer two-dimensional electron gases, in which the contribution of the Coulomb interaction to the electric resistivity is studied by measuring the interlayer resistivity (transresistivity), we predict a nonlocal drag of magnons in a ferromagnetic bilayer structure based on semiclassical Boltzmann equations. Nonlocal magnon drag depends on magnetic dipolar interactions between the layers and manifests in the magnon current transresistivity and the magnon thermal transresistivity, whereby a magnon current in one layer induces a chemical potential gradient and/or a temperature gradient in the other layer. The largest drag effect occurs when the magnon current flows parallel to the magnetization; however, for oblique magnon currents a large transverse current of magnons emerges. We examine the effect for practical parameters, and find that the predicted induced temperature gradient is readily observable.
Some generalizations of the nonlocal transformations approach
Directory of Open Access Journals (Sweden)
V. A. Tychynin
2015-02-01
Full Text Available Some generalizations of a method of nonlocal transformations are proposed: a connection of given equations via prolonged nonlocal transformations and finding of an adjoint solution to the solutions of initial equation are considered. A concept of nonlocal transformation with additional variables is introduced, developed and used for searching symmetries of differential equations. A problem of inversion of the nonlocal transformation with additional variables is investigated and in some cases solved. Several examples are presented. Derived technique is applied for construction of the algorithms and formulae of generation of solutions. The formulae derived are used for construction of exact solutions of some nonlinear equations.
Dispersive shock waves with nonlocal nonlinearity
Barsi, Christopher; Sun, Can; Fleischer, Jason W
2007-01-01
We consider dispersive optical shock waves in nonlocal nonlinear media. Experiments are performed using spatial beams in a thermal liquid cell, and results agree with a hydrodynamic theory of propagation.
Dispersive shock waves with nonlocal nonlinearity.
Barsi, Christopher; Wan, Wenjie; Sun, Can; Fleischer, Jason W
2007-10-15
We consider dispersive optical shock waves in nonlocal nonlinear media. Experiments are performed using spatial beams in a thermal liquid cell, and results agree with a hydrodynamic theory of propagation.
Family of nonlocal bound entangled states
Yu, Sixia; Oh, C. H.
2017-03-01
Bound entanglement, being entangled yet not distillable, is essential to our understanding of the relations between nonlocality and entanglement besides its applications in certain quantum information tasks. Recently, bound entangled states that violate a Bell inequality have been constructed for a two-qutrit system, disproving a conjecture by Peres that bound entanglement is local. Here we construct this kind of nonlocal bound entangled state for all finite dimensions larger than two, making possible their experimental demonstration in most general systems. We propose a Bell inequality, based on a Hardy-type argument for nonlocality, and a steering inequality to identify their nonlocality. We also provide a family of entanglement witnesses to detect their entanglement beyond the Bell inequality and the steering inequality.
Employee Travel Data (Non-Local)
Montgomery County of Maryland — ‘This dataset provides information regarding the total approved actual expenses incurred by Montgomery County government employees traveling non-locally (over 75...
Symmetric states: Their nonlocality and entanglement
Energy Technology Data Exchange (ETDEWEB)
Wang, Zizhu; Markham, Damian [CNRS LTCI, Département Informatique et Réseaux, Telecom ParisTech, 23 avenue d' Italie, CS 51327, 75214 Paris CEDEX 13 (France)
2014-12-04
The nonlocality of permutation symmetric states of qubits is shown via an extension of the Hardy paradox and the extension of the associated inequality. This is achieved by using the Majorana representation, which is also a powerful tool in the study of entanglement properties of symmetric states. Through the Majorana representation, different nonlocal properties can be linked to different entanglement properties of a state, which is useful in determining the usefulness of different states in different quantum information processing tasks.
On a Nonlocal Damping Model in Ferromagnetism
Directory of Open Access Journals (Sweden)
M. Moumni
2015-01-01
Full Text Available We consider a mathematical model describing nonlocal damping in magnetization dynamics. The model consists of a modified form of the Landau-Lifshitz-Gilbert (LLG equation for the evolution of the magnetization vector in a rigid ferromagnet. We give a global existence result and characterize the long time behaviour of the obtained solutions. The sensitivity of the model with respect to large and small nonlocal damping parameters is also discussed.
Quantum theory of nonlocal nonlinear Schrodinger equation
Vyas, Vivek M
2015-01-01
Nonlocal nonlinear Schrodinger model is quantised and exactly solved using the canonical framework. It is found that the usual canonical quantisation of the model leads to a theory with pathological inner product. This problem is resolved by constructing another inner product over the vector space of the theory. The resultant theory is found to be identical to that of nonrelativistic bosons with delta function interaction potential, devoid of any nonlocality. The exact eigenstates are found using the Bethe ansatz technique.
Experimental falsification of Leggett's nonlocal variable model.
Branciard, Cyril; Ling, Alexander; Gisin, Nicolas; Kurtsiefer, Christian; Lamas-Linares, Antia; Scarani, Valerio
2007-11-23
Bell's theorem guarantees that no model based on local variables can reproduce quantum correlations. Also, some models based on nonlocal variables, if subject to apparently "reasonable" constraints, may fail to reproduce quantum physics. In this Letter, we introduce a family of inequalities, which use a finite number of measurement settings, and which therefore allow testing Leggett's nonlocal model versus quantum physics. Our experimental data falsify Leggett's model and are in agreement with quantum predictions.
Nonlocal Infrared Modifications of Gravity. A Review
Maggiore, Michele
2016-01-01
We review an approach developed in the last few years by our group in which GR is modified in the infrared, at an effective level, by nonlocal terms associated to a mass scale. We begin by recalling the notion of quantum effective action and its associated nonlocalities, illustrating some of their features with the anomaly-induced effective actions in $D=2$ and $D=4$. We examine conceptual issues of nonlocal theories such as causality, degrees of freedoms and ghosts, stressing the importance of the fact that these nonlocalities only emerge at the effective level. We discuss a particular class of nonlocal theories where the nonlocal operator is associated to a mass scale, and we show that they perform very well in the comparison with cosmological observations, to the extent that they fit CMB, supernovae, BAO and structure formation data at a level fully competitive with $\\Lambda$CDM, with the same number of free parameters. We explore some extensions of these `minimal' models, and we finally discuss some direc...
Effects of Nonlocality on Transfer Reactions
Titus, Luke J
2016-01-01
We solved the nonlocal scattering and bound state equations using the Perey-Buck type interaction, and compared to local equivalent calculations. Using the distorted wave Born approximation we construct the T-matrix for (p,d) transfer on 17O, 41Ca, 49Ca, 127Sn, 133Sn, and 209Pb at 20 and 50 MeV. Additionally we studied (p,d) reactions on 40Ca using the the nonlocal dispersive optical model. We have also included nonlocality consistently into the adiabatic distorted wave approximation and have investigated the effects of nonlocality on on (d,p) transfer reactions for deuterons impinged on 16O, 40Ca, 48Ca, 126Sn, 132Sn, 208Pb at 10, 20, and 50 MeV. We found that for bound states the Perry corrected wave functions resulting from the local equation agreed well with that from the nonlocal equation in the interior region, but discrepancies were found in the surface and peripheral regions. Overall, the Perey correction factor was adequate for scattering states, with the exception for a few partial waves. Nonlocality...
Wang, Songlin; Matsuda, Isamu; Long, Fei; Ishii, Yoshitaka
2016-02-01
This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce the ambiguity for protein main-chain signal assignments in fast magic-angle-spinning (MAS) conditions at a wide frequency range of 40-80 kHz. The approach termed HIGHLIGHT (Wang et al., in Chem Comm 51:15055-15058, 2015) combines the reverse (13)C, (15)N-isotope labeling strategy and selective signal quenching using the frequency-selective REDOR pulse sequence under fast MAS. The scheme allows one to selectively observe the signals of "highlighted" labeled amino-acid residues that precede or follow unlabeled residues through selectively quenching (13)CO or (15)N signals for a pair of consecutively labeled residues by recoupling (13)CO-(15)N dipolar couplings. Our numerical simulation results showed that the scheme yielded only ~15% loss of signals for the highlighted residues while quenching as much as ~90% of signals for non-highlighted residues. For lysine-reverse-labeled micro-crystalline GB1 protein, the 2D (15)N/(13)Cα correlation and 2D (13)Cα/(13)CO correlation SSNMR spectra by the HIGHLIGHT approach yielded signals only for six residues following and preceding the unlabeled lysine residues, respectively. The experimental dephasing curves agreed reasonably well with the corresponding simulation results for highlighted and quenched residues at spinning speeds of 40 and 60 kHz. The compatibility of the HIGHLIGHT approach with fast MAS allows for sensitivity enhancement by paramagnetic assisted data collection (PACC) and (1)H detection. We also discuss how the HIGHLIGHT approach facilitates signal assignments using (13)C-detected 3D SSNMR by demonstrating full sequential assignments of lysine-reverse-labeled micro-crystalline GB1 protein (~300 nmol), for which data collection required only 11 h. The HIGHLIGHT approach offers valuable means of signal assignments especially for larger proteins through reducing the
Energy Technology Data Exchange (ETDEWEB)
Wang, Songlin; Matsuda, Isamu; Long, Fei; Ishii, Yoshitaka, E-mail: yishii@uic.edu [University of Illinois at Chicago, Department of Chemistry (United States)
2016-02-15
This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce the ambiguity for protein main-chain signal assignments in fast magic-angle-spinning (MAS) conditions at a wide frequency range of 40–80 kHz. The approach termed HIGHLIGHT (Wang et al., in Chem Comm 51:15055–15058, 2015) combines the reverse {sup 13}C, {sup 15}N-isotope labeling strategy and selective signal quenching using the frequency-selective REDOR pulse sequence under fast MAS. The scheme allows one to selectively observe the signals of “highlighted” labeled amino-acid residues that precede or follow unlabeled residues through selectively quenching {sup 13}CO or {sup 15}N signals for a pair of consecutively labeled residues by recoupling {sup 13}CO–{sup 15}N dipolar couplings. Our numerical simulation results showed that the scheme yielded only ∼15 % loss of signals for the highlighted residues while quenching as much as ∼90 % of signals for non-highlighted residues. For lysine-reverse-labeled micro-crystalline GB1 protein, the 2D {sup 15}N/{sup 13}C{sub α} correlation and 2D {sup 13}C{sub α}/{sup 13}CO correlation SSNMR spectra by the HIGHLIGHT approach yielded signals only for six residues following and preceding the unlabeled lysine residues, respectively. The experimental dephasing curves agreed reasonably well with the corresponding simulation results for highlighted and quenched residues at spinning speeds of 40 and 60 kHz. The compatibility of the HIGHLIGHT approach with fast MAS allows for sensitivity enhancement by paramagnetic assisted data collection (PACC) and {sup 1}H detection. We also discuss how the HIGHLIGHT approach facilitates signal assignments using {sup 13}C-detected 3D SSNMR by demonstrating full sequential assignments of lysine-reverse-labeled micro-crystalline GB1 protein (∼300 nmol), for which data collection required only 11 h. The HIGHLIGHT approach offers valuable
Kunkri, Samir; Choudhary, Sujit K.; Ahanj, Ali; Joag, Pramod
2006-02-01
Here we deal with a nonlocality argument proposed by Cabello, which is more general than Hardy’s nonlocality argument, but still maximally entangled states do not respond. However, for most of the other entangled states, maximum probability of success of this argument is more than that of the Hardy’s argument.
Spiralling solitons and multipole localized modes in nonlocal nonlinear media
DEFF Research Database (Denmark)
Buccoliero, Daniel; Lopez-Aguayo, Servando; Skupin, Stefan
2007-01-01
We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two differe...... models of nonlocal nonlinearity and suggest that the stabilization mechanism is a generic property of a spatial nonlocal nonlinear response independent of its particular functional form.......We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two different...
Lapert, M; Assémat, E; Glaser, S J; Sugny, D
2015-01-28
We show to which extent the signal to noise ratio per unit time of a spin 1/2 particle can be maximized. We consider a cyclic repetition of experiments made of a measurement followed by a radio-frequency magnetic field excitation of the system, in the case of unbounded amplitude. In the periodic regime, the objective of the control problem is to design the initial state of the system and the pulse sequence which leads to the best signal to noise performance. We focus on two specific issues relevant in nuclear magnetic resonance, the crusher gradient and the radiation damping cases. Optimal control techniques are used to solve this non-standard control problem. We discuss the optimality of the Ernst angle solution, which is commonly applied in spectroscopic and medical imaging applications. In the radiation damping situation, we show that in some cases, the optimal solution differs from the Ernst one.
Energy Technology Data Exchange (ETDEWEB)
Lapert, M.; Glaser, S. J. [Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching (Germany); Assémat, E. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Université de Bourgogne, 9 Ave. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot (Israel); Sugny, D., E-mail: dominique.sugny@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Université de Bourgogne, 9 Ave. A. Savary, BP 47 870, F-21078 Dijon Cedex (France)
2015-01-28
We show to which extent the signal to noise ratio per unit time of a spin 1/2 particle can be maximized. We consider a cyclic repetition of experiments made of a measurement followed by a radio-frequency magnetic field excitation of the system, in the case of unbounded amplitude. In the periodic regime, the objective of the control problem is to design the initial state of the system and the pulse sequence which leads to the best signal to noise performance. We focus on two specific issues relevant in nuclear magnetic resonance, the crusher gradient and the radiation damping cases. Optimal control techniques are used to solve this non-standard control problem. We discuss the optimality of the Ernst angle solution, which is commonly applied in spectroscopic and medical imaging applications. In the radiation damping situation, we show that in some cases, the optimal solution differs from the Ernst one.
Thompson, Ian
2010-11-01
In all direct reactions to probe the structure of exotic nuclei at FRIB, optical potentials will be needed in the entrance and exit channels. At high energies Glauber approximations may be useful, but a low energies (5 to 20 MeV/nucleon) other approaches are required. Recent work of the UNEDF project [1] has shown that reaction cross sections at these energies can be accounted for by calculating all inelastic and transfer channels reachable by one particle-hole transitions from the elastic channel. In this model space, we may also calculate the two-step dynamic polarization potential (DPP) that adds to the bare folded potential to form the complex optical potential. Our calculations of the DPP, however, show that its non-localities are very significant, as well as the partial-wave dependence of both its real and imaginary components. The Perey factors (the wave function ratio to that from an equivalent local potential) are more than 20% different from unity, especially for partial waves inside grazing. These factors combine to suggest a reexamination of the validity of local and L-independent fitted optical potentials, especially for capture reactions that are dominated by low partial waves. Prepared by LLNL under Contract DE-AC52-07NA27344. [1] G.P.A. Nobre, F.S. Dietrich, J.E. Escher, I.J. Thompson, M. Dupuis, J. Terasaki and J. Engel, submitted to Phys. Rev. Letts., 2010.
Electrical spin injection and detection in Si nanowires with axial doping gradient
Kountouriotis, Konstantinos; Barreda, Jorge; Keiper, Tim; Zhang, Mei; Xiong, Peng
Due to the technological importance and potential long spin coherence time in silicon, there have been significant recent efforts to realize spin injection, coherent transport, and electrical spin detection in Si nanowires (NWs). The nature of the electronic transport at the interface and its resistance are crucial factors in realizing efficient spin injection/detection between a ferromagnet (FM) and a semiconductor (SC). In this work, we examine the effects on electrical spin injection and detection by FM/SC interfaces with well-defined Schottky barriers in Si NW devices. The Si NWs are synthesized via a vapor-liquid-solid method using silane and phosphine precursor gases for the growth and doping respectively, which results in a graded phosphorus doping profile along the length of the NW. The Si NWs are dispersed on a p+-Si/SiO2/SiNx substrate, and a series of CoFe electrodes are defined along a Si NW with electron beam lithography and magnetron sputtering after the removal of the native oxide by HF treatment. As a consequence of the doping gradient, the FM electrodes form Ohmic and Schottky barrier contacts of varying heights along the length of a single NW. Two-terminal local and four-terminal non-local spin-valve measurements are performed to probe spin accumulation and transport at different FM contacts, enabling a study of the dependence of the spin signals on the Schottky barrier height and interface resistance on a single device. Work supported by NSF Grant DMR-1308613.
A Generalized Nonlocal Calculus with Application to the Peridynamics Model for Solid Mechanics
Alali, Bacim; Liu, Kuo; Gunzburger, Max
2014-01-01
A nonlocal vector calculus was introduced in [2] that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A generalization is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal...
Nam, Song Hyeon; Park, Tae-Eon; Park, Youn Ho; Ihm, Hae-In; Koo, Hyun Cheol; Kim, Hyung-jun; Han, Suk Hee; Chang, Joonyeon
2016-09-01
We examined the spin accumulation in Fe/n-GaAs Schottky barriers to evaluate the accuracy of the three-terminal (3T) and four-terminal (4T) measurement geometries. A fully epitaxial Fe/n-GaAs junction was grown in situ using cluster molecular beam epitaxy without breaking the vacuum to exclude the formation of an oxide layer or surface roughness at the interface during intermixing. The spin resistance of the 4T nonlocal spin valve (ΔRNLSV = 0.71 Ω) was twice the value obtained using the 4T Hanle effect method (ΔR4TH = 0.35 Ω) at 10 K, as predicted theoretically, and this value remained constant over the temperature range examined, from 10 K to 77 K. The temperature-dependent spin lifetimes measured using the 3T and 4T Hanle effects exhibited similar behaviors. Although the spin resistance obtained using the 3T Hanle effect was enhanced compared with that obtained using the 4T effect, it was reasonable to conclude that the spin signals obtained from the 3T and 4T measurements originated from spin accumulation in n-GaAs due to the absence of an oxide tunnel barrier or a well-defined interface in our samples. These results completely ruled out any other sources of artifacts.
Hnybida, Jeff
2016-10-01
We formulate the spin foam representation of discrete SU(2) gauge theory as a product of vertex amplitudes each of which is the spin network generating function of the boundary graph dual to the vertex. In doing so the sums over spins have been carried out. The boundary data of each n-valent node is explicitly reduced with respect to the local gauge invariance and has a manifest geometrical interpretation as a framed polyhedron of fixed total area. Ultimately, sums over spins are traded for contour integrals over simple poles and recoupling theory is avoided using generating functions.
Critical dynamics of a nonlocal model and critical behavior of perovskite manganites.
Singh, Rohit; Dutta, Kishore; Nandy, Malay K
2016-05-01
We investigate the nonconserved critical dynamics of a nonlocal model Hamiltonian incorporating screened long-range interactions in the quartic term. Employing dynamic renormalization group analysis at one-loop order, we calculate the dynamic critical exponent z=2+εf_{1}(σ,κ,n)+O(ε^{2}) and the linewidth exponent w=-σ+εf_{2}(σ,κ,n)+O(ε^{2}) in the leading order of ε, where ε=4-d+2σ, with d the space dimension, n the number of components in the order parameter, and σ and κ the parameters coming from the nonlocal interaction term. The resulting values of linewidth exponent w for a wide range of σ is found to be in good agreement with the existing experimental estimates from spin relaxation measurements in perovskite manganite samples.
Dynamical theory of spin relaxation
Field, Timothy R.; Bain, Alex D.
2013-02-01
The dynamics of a spin system is usually calculated using the density matrix. However, the usual formulation in terms of the density matrix predicts that the signal will decay to zero, and does not address the issue of individual spin dynamics. Using stochastic calculus, we develop a dynamical theory of spin relaxation, the origins of which lie in the component spin fluctuations. This entails consideration of random pure states for individual protons, and how these pure states are correctly combined when the density matrix is formulated. Both the lattice and the spins are treated quantum mechanically. Such treatment incorporates both the processes of spin-spin and (finite temperature) spin-lattice relaxation. Our results reveal the intimate connections between spin noise and conventional spin relaxation.
Dynamics in Nonlocal Cosmological Models Derived from String Field Theory
Joukovskaya, Liudmila
2007-01-01
A general class of nonlocal cosmological models is considered. A new method for solving nonlocal Friedmann equations is proposed, and solutions of the Friedmann equations with nonlocal operator are presented. The cosmological properties of these solutions are discussed. Especially indicated is $p$-adic cosmological model in which we have obtained nonsingular bouncing solution and string field theory tachyon model in which we have obtained full solution of nonlocal Friedmann equations with $w=...
Nonlocal Optics of Plasmonic Nanowire Metamaterials
Wells, Brian M; Podolskiy, Viktor A
2014-01-01
We present an analytical description of the nonlocal optical response of plasmonic nanowire metamaterials that enable negative refraction, subwavelength light manipulation, and emission lifetime engineering. We show that dispersion of optical waves propagating in nanowire media results from coupling of transverse and longitudinal electromagnetic modes supported by the composite and derive the nonlocal effective medium approximation for this dispersion. We derive the profiles of electric field across the unit cell, and use these expressions to solve the long-standing problem of additional boundary conditions in calculations of transmission and reflection of waves by nonlocal nanowire media. We verify our analytical results with numerical solutions of Maxwell's equations and discuss generalization of the developed formalism to other uniaxial metamaterials.
Transfer reaction code with nonlocal interactions
Titus, L J; Nunes, F M
2016-01-01
We present a suite of codes (NLAT for nonlocal adiabatic transfer) to calculate the transfer cross section for single-nucleon transfer reactions, $(d,N)$ or $(N,d)$, including nonlocal nucleon-target interactions, within the adiabatic distorted wave approximation. For this purpose, we implement an iterative method for solving the second order nonlocal differential equation, for both scattering and bound states. The final observables that can be obtained with NLAT are differential angular distributions for the cross sections of $A(d,N)B$ or $B(N,d)A$. Details on the implementation of the T-matrix to obtain the final cross sections within the adiabatic distorted wave approximation method are also provided. This code is suitable to be applied for deuteron induced reactions in the range of $E_d=10-70$ MeV, and provides cross sections with $4\\%$ accuracy.
Transfer reaction code with nonlocal interactions
Titus, L. J.; Ross, A.; Nunes, F. M.
2016-10-01
We present a suite of codes (NLAT for nonlocal adiabatic transfer) to calculate the transfer cross section for single-nucleon transfer reactions, (d , N) or (N , d) , including nonlocal nucleon-target interactions, within the adiabatic distorted wave approximation. For this purpose, we implement an iterative method for solving the second order nonlocal differential equation, for both scattering and bound states. The final observables that can be obtained with NLAT are differential angular distributions for the cross sections of A(d , N) B or B(N , d) A. Details on the implementation of the T-matrix to obtain the final cross sections within the adiabatic distorted wave approximation method are also provided. This code is suitable to be applied for deuteron induced reactions in the range of Ed =10-70 MeV, and provides cross sections with 4% accuracy.
Compressive sensing via nonlocal low-rank regularization.
Dong, Weisheng; Shi, Guangming; Li, Xin; Ma, Yi; Huang, Feng
2014-08-01
Sparsity has been widely exploited for exact reconstruction of a signal from a small number of random measurements. Recent advances have suggested that structured or group sparsity often leads to more powerful signal reconstruction techniques in various compressed sensing (CS) studies. In this paper, we propose a nonlocal low-rank regularization (NLR) approach toward exploiting structured sparsity and explore its application into CS of both photographic and MRI images. We also propose the use of a nonconvex log det ( X) as a smooth surrogate function for the rank instead of the convex nuclear norm and justify the benefit of such a strategy using extensive experiments. To further improve the computational efficiency of the proposed algorithm, we have developed a fast implementation using the alternative direction multiplier method technique. Experimental results have shown that the proposed NLR-CS algorithm can significantly outperform existing state-of-the-art CS techniques for image recovery.
Towards an emerging understanding of non-locality phenomena and non-local transport
Ida, K.; Shi, Z.; Sun, H. J.; Inagaki, S.; Kamiya, K.; Rice, J. E.; Tamura, N.; Diamond, P. H.; Dif-Pradalier, G.; Zou, X. L.; Itoh, K.; Sugita, S.; Gürcan, O. D.; Estrada, T.; Hidalgo, C.; Hahm, T. S.; Field, A.; Ding, X. T.; Sakamoto, Y.; Oldenbürger, S.; Yoshinuma, M.; Kobayashi, T.; Jiang, M.; Hahn, S. H.; Jeon, Y. M.; Hong, S. H.; Kosuga, Y.; Dong, J.; Itoh, S.-I.
2015-01-01
In this paper, recent progress on experimental analysis and theoretical models for non-local transport (non-Fickian fluxes in real space) is reviewed. The non-locality in the heat and momentum transport observed in the plasma, the departures from linear flux-gradient proportionality, and externally triggered non-local transport phenomena are described in both L-mode and improved-mode plasmas. Ongoing evaluation of ‘fast front’ and ‘intrinsically non-local’ models, and their success in comparisons with experimental data, are discussed
Classification of scalar and dyadic nonlocal optical response models
DEFF Research Database (Denmark)
Wubs, Martijn
2015-01-01
Nonlocal optical response is one of the emerging effects on the nanoscale for particles made of metals or doped semiconductors. Here we classify and compare both scalar and tensorial nonlocal response models. In the latter case the nonlocality can stem from either the longitudinal response...
Nonlocal regularization of abelian models with spontaneous symmetry breaking
Clayton, M. A.
2001-01-01
We demonstrate how nonlocal regularization is applied to gauge invariant models with spontaneous symmetry breaking. Motivated by the ability to find a nonlocal BRST invariance that leads to the decoupling of longitudinal gauge bosons from physical amplitudes, we show that the original formulation of the method leads to a nontrivial relationship between the nonlocal form factors that can appear in the model.
Nonlocality and entanglement as opposite properties
Vallone, G; Gómez, E S; Cañas, G; Larsson, J -A; Mataloni, P; Cabello, A
2011-01-01
We show that, for any chained Bell inequality with any number of settings, nonlocality and entanglement are not only essentially different properties but opposite ones. We first show that, in the absence of noise, the threshold detection efficiency for a loophole-free Bell test increases with the degree of entanglement, so that the closer the quantum states are to product states, the harder it is to reproduce the quantum predictions with local models. In the presence of white noise, we show that nonlocality and entanglement are simultaneously maximized only in the presence of extreme noise; in any other case, the lowest threshold detection efficiency is obtained by reducing the entanglement.
A Classical Framework for Nonlocality and Entanglement
Groessing, Gerhard; Pascasio, Johannes Mesa; Schwabl, Herbert
2012-01-01
Based on our model of quantum systems as emerging from the coupled dynamics between oscillating "bouncers" and the space-filling zero-point field, a sub-quantum account of nonlocal correlations is given. This is explicitly done for the example of the "double two-slit" variant of two-particle interferometry. However, it is also shown that the entanglement in two-particle interferometry is only a natural consequence of the fact that already a "single" two-slit experiment can be described on a sub-quantum level with the aid of "entangling currents" of a generally nonlocal nature.
Reversed rainbow with a nonlocal metamaterial
Energy Technology Data Exchange (ETDEWEB)
Morgado, Tiago A., E-mail: tiago.morgado@co.it.pt; Marcos, João S.; Silveirinha, Mário G., E-mail: mario.silveirinha@co.it.pt [Department of Electrical Engineering, Instituto de Telecomunicações, University of Coimbra, 3030 Coimbra (Portugal); Costa, João T. [CST AG, Bad Nauheimer Strasse 19, 64289 Darmstadt (Germany); Costa, Jorge R. [Instituto de Telecomunicações and Instituto Universitário de Lisboa (ISCTE-IUL), 1649-026 Lisboa (Portugal); Fernandes, Carlos A. [Instituto de Telecomunicações, and Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)
2014-12-29
One of the intriguing potentials of metamaterials is the possibility to realize a nonlocal electromagnetic reaction, such that the effective medium response at a given point is fundamentally entangled with the macroscopic field distribution at long distances. Here, it is experimentally and numerically verified that a microwave nonlocal metamaterial formed by crossed metallic wires enables a low-loss broadband anomalous material response such that the refractive index decreases with frequency. Notably, it is shown that an electromagnetic beam refracted by our metamaterial prism creates a reversed microwave rainbow.
Breather solitons in highly nonlocal media
Alberucci, Alessandro; Assanto, Gaetano
2016-01-01
We investigate the breathing of optical spatial solitons in highly nonlocal media. Generalizing the Ehrenfest theorem, we demonstrate that oscillations in beam width obey a fourth-order ordinary differential equation. Moreover, in actual highly nonlocal materials, the original accessible soliton model by Snyder and Mitchell [Science \\textbf{276}, 1538 (1997)] cannot accurately describe the dynamics of self-confined beams as the transverse size oscillations have a period which not only depends on power but also on the initial width. Modeling the nonlinear response by a Poisson equation driven by the beam intensity we verify the theoretical results against numerical simulations.
Low energy signatures of nonlocal field theories
Belenchia, Alessio; Benincasa, Dionigi M. T.; Martín-Martínez, Eduardo; Saravani, Mehdi
2016-09-01
The response of inertial particle detectors coupled to a scalar field satisfying nonlocal dynamics described by nonanalytic functions of the d'Alembertian operator □ is studied. We show that spontaneous emission processes of a low energy particle detector are very sensitive to high-energy nonlocality scales. This allows us to suggest a nuclear physics experiment (˜MeV energy scales) that outperforms the sensitivity of LHC experiments by many orders of magnitude. This may have implications for the falsifiability of theoretical proposals of quantum gravity.
Quantum spin liquids: a review
Savary, Lucile; Balents, Leon
2017-01-01
Quantum spin liquids may be considered ‘quantum disordered’ ground states of spin systems, in which zero-point fluctuations are so strong that they prevent conventional magnetic long-range order. More interestingly, quantum spin liquids are prototypical examples of ground states with massive many-body entanglement, which is of a degree sufficient to render these states distinct phases of matter. Their highly entangled nature imbues quantum spin liquids with unique physical aspects, such as non-local excitations, topological properties, and more. In this review, we discuss the nature of such phases and their properties based on paradigmatic models and general arguments, and introduce theoretical technology such as gauge theory and partons, which are conveniently used in the study of quantum spin liquids. An overview is given of the different types of quantum spin liquids and the models and theories used to describe them. We also provide a guide to the current status of experiments in relation to study quantum spin liquids, and to the diverse probes used therein.
DEFF Research Database (Denmark)
Esbensen, B.K.; Bache, Morten; Krolikowski, W.;
2012-01-01
We employ the formal analogy between quadratic and nonlocal solitons to investigate analytically the properties of solitons and soliton bound states in second-harmonic generation in the regime of negative diffraction or dispersion of the second harmonic. We show that in the nonlocal description t...... this regime corresponds to a periodic nonlocal response function. We then use the strongly nonlocal approximation to find analytical solutions of the families of single bright solitons and their bound states in terms of Mathieu functions....
Spin transport and spin-flip scattering in magnetic multilayer structures
Garzon, Samir
2006-03-01
The existence of spin-flip scattering at the interface between ferromagnetic (F) and nonmagnetic (N) layers of magnetoresistive F/N/F structures can significantly reduce the size of the magnetoresistance, limiting the sensitivity and increasing the power consumption of F/N/F devices such as GMR magnetic field sensors, magnetic read heads, and MRAM's [1]. Detecting and measuring the degree of spin flip scattering in F/N/F structures can allow further optimization in such devices as well as increase the understanding of interfacial spin transport. Our nonlocal spin injection and detection experiments on mesoscopic Co-Al2O3-Cu-Al2O3-Co spin valves provide evidence for the existence of interfacial spin-flip scattering in magnetoresistive devices [2]. By extending the conventional picture of spin-dependent interfacial resistances (R, R) to include two additional spin-flip scattering channels (R,R) [3] we have shown that the nonlocal resistance contains information about both the degree of spin polarization and the degree of spin-flip scattering at the F/N interface. The magnitudes of R and R depend on the relative orientation of the detector magnetization and the nonequilibrium magnetization in the normal metal. We have observed that the difference in spin-flip scattering between up and down channels vanishes at low temperatures, but for T>100K it increases nonlinearly with temperature. Further evidence for the presence of interfacial spin-flip scattering can be obtained from noise measurements, which are extremely sensitive to the microscopic transport details. [1] Spin Dependent Transport in Magnetic Nanostructures, edited by S. Maekawa and T. Shinjo (Taylor & Francis, New York, 2002). [2] S. Garzon, I. Zuti'c, and R. A. Webb, Phys. Rev. Lett. 94, 176601 (2005). [3] E. I. Rashba, Eur. Phys. J. B 29, 513 (2002).
Friedman, Greg
2004-01-01
This is an introduction to the construction of higher-dimensional knots by spinning methods. Simple spinning of classical knots was introduced by E. Artin in 1926, and several generalizations have followed. These include twist spinning, superspinning or p-spinning, frame spinning, roll spinning, and deform spinning. We survey these constructions and some of their most important applications, as well as some newer hybrids due to the author. The exposition, meant to be accessible to a broad aud...
Fast Non-Local Means Algorithm Based on Krawtchouk Moments
Institute of Scientific and Technical Information of China (English)
吴一全; 戴一冕; 殷骏; 吴健生
2015-01-01
Non-local means (NLM)method is a state-of-the-art denoising algorithm, which replaces each pixel with a weighted average of all the pixels in the image. However, the huge computational complexity makes it impractical for real applications. Thus, a fast non-local means algorithm based on Krawtchouk moments is proposed to improve the denoising performance and reduce the computing time. Krawtchouk moments of each image patch are calculated and used in the subsequent similarity measure in order to perform a weighted averaging. Instead of computing the Euclid-ean distance of two image patches, the similarity measure is obtained by low-order Krawtchouk moments, which can reduce a lot of computational complexity. Since Krawtchouk moments can extract local features and have a good anti-noise ability, they can classify the useful information out of noise and provide an accurate similarity measure. Detailed experiments demonstrate that the proposed method outperforms the original NLM method and other moment-based methods according to a comprehensive consideration on subjective visual quality, method noise, peak signal to noise ratio (PSNR), structural similarity (SSIM) index and computing time. Most importantly, the proposed method is around 35 times faster than the original NLM method.
Fukukawa, K.; Fujiwara, Y.
2011-05-01
The S-wave effective-range parameters of the neutron-deuteron (nd) scattering are calculated in the Faddeev formalism using a nonlocal Gaussian potential based on the quark-model baryon-baryon interaction fss2. The spin-doublet low-energy eigenphase shift is sufficiently attractive to reproduce predictions by the AV18 plus Urbana three-body force, yielding almost correct values of the scattering length and the triton binding energy without the three-nucleon force. This feature is due to the strong distortion effect of the deuteron in this spin channel, which is very sensitive to the nonlocal description of the short-range repulsion in the quark-model nucleon-nucleon interaction. We incorporate the Coulomb force by extending the framework of the Coulomb externally corrected approximation and calculate the differential cross sections of the pd scattering.
Liang, Lin-mei; Li, Cheng-zu
2005-02-01
This Letter presents nonlocality without inequalities for two-qubit mixed states. This Letter was mainly sparked by Cabello's work [Phys. Rev. A 65 (2003) 032108] and is an extension of our recent work [Phys. Lett. A 318 (2003) 300].
Interaction of Nonlocal Incoherent White-Light Solitons
Institute of Scientific and Technical Information of China (English)
HUANG Chun-Fu; GUO Qi
2007-01-01
The propagation and interaction of nonlocal incoherent white-light solitons in strongly nonlocal kerr media is investigated. Numerical simulations show that the interaction properties of nonlocal incoherent white-light solitons are different from the case in local media. The interactions of nonlocal incoherent white-light solitons are always attractive independent of their relative phase, while the other parameters such as the extent of nonlocality and the input power have a great impact on the soliton interactions. Pertinent numerical examples are presented to show their propagation and interaction behaviour further.
Consequences and applications of the completeness of Hardy's nonlocality
Mansfield, Shane
2017-02-01
Logical nonlocality is completely characterized by Hardy's "paradox" in (2 ,2 ,l ) and (2 ,k ,2 ) scenarios. We consider a variety of consequences and applications of this fact. (i) Polynomial algorithms may be given for deciding logical nonlocality in these scenarios. (ii) Bell states are the only entangled two-qubit states which are not logically nonlocal under projective measurements. (iii) It is possible to witness Hardy nonlocality with certainty in a simple tripartite quantum system. (iv) Noncommutativity of observables is necessary and sufficient for enabling logical nonlocality.
Controlling the efficiency of spin injection into graphene by carrier drift
Jozsa, C.; Popinciuc, M.; Tombros, N.; Jonkman, H. T.; van Wees, B. J.
2009-01-01
Electrical spin injection from ferromagnetic metals into graphene is hindered by the impedance mismatch between the two materials. This problem can be reduced by the introduction of a thin tunnel barrier at the interface. We present room-temperature nonlocal spin valve measurements in cobalt/aluminu
Directory of Open Access Journals (Sweden)
M. Denche
1999-01-01
Full Text Available In the present paper we study nonlocal problems for ordinary differential equations with a discontinuous coefficient for the high order derivative. We establish sufficient conditions, known as regularity conditions, which guarantee the coerciveness for both the space variable and the spectral parameter, as well as guarantee the completeness of the system of root functions. The results obtained are then applied to the study of a nonlocal parabolic transmission problem.
Nonlocality as Evidence for a Multiverse Cosmology
Tipler, Frank J.
We show that observations of quantum nonlocaltiy can be interpreted as purely local phenomena, provided one assumes that the cosmos is a multiverse. Conversely, the observation of quantum nonlocality can be interpreted as observation evidence for a multiverse cosmology, just as observation of the setting of the Sun can be interpreted as evidence for the Earth's rotation.
Nonlocal dynamics of dissipative phononic fluids
Nemati, Navid; Lee, Yoonkyung E.; Lafarge, Denis; Duclos, Aroune; Fang, Nicholas
2017-06-01
We describe the nonlocal effective properties of a two-dimensional dissipative phononic crystal made by periodic arrays of rigid and motionless cylinders embedded in a viscothermal fluid such as air. The description is based on a nonlocal theory of sound propagation in stationary random fluid/rigid media that was proposed by Lafarge and Nemati [Wave Motion 50, 1016 (2013), 10.1016/j.wavemoti.2013.04.007]. This scheme arises from a deep analogy with electromagnetism and a set of physics-based postulates including, particularly, the action-response procedures, whereby the effective density and bulk modulus are determined. Here, we revisit this approach, and clarify further its founding physical principles through presenting it in a unified formulation together with the two-scale asymptotic homogenization theory that is interpreted as the local limit. Strong evidence is provided to show that the validity of the principles and postulates within the nonlocal theory extends to high-frequency bands, well beyond the long-wavelength regime. In particular, we demonstrate that up to the third Brillouin zone including the Bragg scattering, the complex and dispersive phase velocity of the least-attenuated wave in the phononic crystal which is generated by our nonlocal scheme agrees exactly with that reproduced by a direct approach based on the Bloch theorem and multiple scattering method. In high frequencies, the effective wave and its associated parameters are analyzed by treating the phononic crystal as a random medium.
Ring vortex solitons in nonlocal nonlinear media
DEFF Research Database (Denmark)
Briedis, D.; Petersen, D.E.; Edmundson, D.;
2005-01-01
or higher charge fundamental vortices as well as higher order (multiple ring) vortex solitons. Our results pave the way for experimental observation of stable vortex rings in other nonlocal nonlinear systems including Bose-Einstein condensates with pronounced long-range interparticle interaction....
Nonlocality and discrete cellular methods in optics
Wijers, C.M.J.; Boeij, de P.L.
2001-01-01
A subdivision of space into discrete cells underlies the traditional discrete dipole model. This model presumes that only nonlocal electric interactions between cells govern the electromagnetic response of a condensed matter system. Apart from the case of simple dielectrics, this is not realistic. C
Circumferential nonlocal effect on the buckling and vibration of nanotubes
Energy Technology Data Exchange (ETDEWEB)
Wang, Cheng Yuan, E-mail: cywang@ujs.edu.cn; Li, Xiao Hu; Luo, Ying
2016-04-01
The nonlocal beam theories are widely used to study the mechanics of cylindrical nanotubes (NTs). The one-dimensional models however are unable to account for the nonlocal effect in the circumferential direction, which may substantially affect the applicability of the nonlocal beam models. To address the issue this letter examines the circumferential nonlocal effect (CNE) on the buckling and vibration of the NTs. Here the CNE is characterized by the difference between the nonlocal beam model considering the axial nonlocal effect only and the nonlocal shell model with both axial and circumferential nonlocal effects. The aspect ratio and radius-dependence of the CNE are calculated for the singlewall carbon NTs selected as a typical example. The results show that the CNE is substantial for the buckling and vibration of the NTs with small radius (e.g., <1 nm) and aspect ratio (e.g., <15). It however decreases with the rising radius and the aspect ratio, and turns out to be small for relatively wide and long NTs. The nonlocal beam theories thus may overestimate the buckling load and vibration frequency for the thin and short NTs. - Highlights: • First revealed the substantial circumferential nonlocal effect (CNE) on nanotube buckling. • Achieved radius/aspect ratio-dependence of CNE on nanotube buckling and vibration. • Located the range of applicability of the nonlocal beam theory without CNE.
Data analysis of gravitational-wave signals from spinning neutron stars; 4, An all-sky search
Astone, P; Jaranowski, P; Królak, A; Astone, Pia; Borkowski, Kazimierz M.; Jaranowski, Piotr; Kr\\'olak, Andrzej
2002-01-01
We develop a set of data analysis tools for a realistic all-sky search for continuous gravitational-wave signals. The methods that we present apply to data from both the resonant bar detectors that are currently in operation and the laser interferometric detectors that are in the final stages of construction and commissioning. We show that with our techniques we shall be able to perform an all-sky 2-day long coherent search of the narrow-band data from the resonant bar EXPLORER with no loss of signals with the dimensionless amplitude greater than $2.8\\times10^{-23}$.
Hnybida, Jeff
2015-01-01
We formulate the spin foam representation of discrete SU(2) gauge theory as a product of vertex amplitudes each of which is the spin network generating function of the boundary graph dual to the vertex. Thus the sums over spins have been carried out. We focus on the character expansion of Yang-Mills theory which is an approximate heat kernel regularization of BF theory. The boundary data of each $n$-valent node is an element of the Grassmannian Gr(2,$n$) which carries a coherent representation of U($n$) and a geometrical interpretation as a framed polyhedron of fixed total area. Ultimately, sums over spins are traded for contour integrals over simple poles and recoupling theory is avoided using generating functions.
Off-shell and nonlocal effects in proton-nucleus elastic scattering
Energy Technology Data Exchange (ETDEWEB)
Picklesimer, A.; Tandy, P.C.; Thaler, R.M.; Wolfe, D.H.
1984-04-01
The influence of off-shell and nonlocal effects in the first-order nonrelativistic microscopic optical potential is investigated for elastic proton scattering above 100 MeV. With the free nucleon-nucleon t matrix taken from the model of Love and Franey, these effects are significant only for scattering angles greater than about 60/sup 0/ and energies below about 300 MeV. The inadequacy of the standard first-order theory for predictions of spin observables at forward scattering angles remains unchanged when these effects are included and the need for higher order processes including medium and relativistic effects is reinforced.
Off-shell and nonlocal effects in proton-nucleus elastic scattering
Picklesimer, A.; Tandy, P. C.; Thaler, R. M.; Wolfe, D. H.
1984-04-01
The influence of off-shell and nonlocal effects in the first-order nonrelativistic microscopic optical potential is investigated for elastic proton scattering above 100 MeV. With the free nucleon-nucleon t matrix taken from the model of Love and Franey, these effects are significant only for scattering angles greater than about 60° and energies below about 300 MeV. The inadequacy of the standard first-order theory for predictions of spin observables at forward scattering angles remains unchanged when these effects are included and the need for higher order processes including medium and relativistic effects is reinforced.
Multipartite non-locality and entanglement signatures of a field-induced quantum phase transition
Batle, Josep; Alkhambashi, Majid; Farouk, Ahmed; Naseri, Mosayeb; Ghoranneviss, Mahmood
2017-02-01
Quantum correlation measures are limited in practice to a few number of parties, since no general theory is still capable of reaching the thermodynamic limit. In the present work we study entanglement and non-locality for a cluster of spins belonging to a compound that displays a magnetocaloric effect. A quantum phase transition (QPT) is induced by an external magnetic field B, in such a way that the corresponding quantum fluctuations are reproduced at a much smaller scale than the experimental outcomes, and then described by means of the aforementioned quantum measures.
Complementarity in Genuine Nonlocality: A device independent outlook
Sami, Sasha; Chakrabarty, Indranil
2016-01-01
The notion of complementarity or mutually exclusiveness of physical processes has always been of keen interest to the physicists whether it came from the realms of quantum mechanical processes or it arose from the information processing tasks associated with quantum information theory. In this work we show that there exists a complementary relationship in terms of the genuine non-locality as a principle between a system and its subsystems. Our approach to this problem is a device independent approach which works irrespective of any theoretical setting. We consider Svetlichny games in a multiparty binary input and output scenario with a threshold value of the winning probability as a signature of genuine multiparty non locality. We analytically show that, in the Svetlichny games setup, there exists complementary relations between Svetlichny correlations of $n$ party and Svetlichny correlations of $k\\leq n$ parties within the no-signaling framework. In other words, in general non local theories, the genuine mul...
Quantum nonlocality in weak-thermal-light interferometry
Tsang, Mankei
2011-01-01
In astronomy, interferometry of light collected by separate telescopes is often performed by physically interfering the optical paths in the form of the classic Young's double-slit experiment. Optical loss along the paths severely hampers the efficiency of this so-called direct detection method, limiting the maximum baseline between the telescopes and thus the achievable resolution. This problem motivates the fundamental question of whether one can achieve a comparable signal-to-noise performance by separate optical measurements at the two telescopes before combining the measurement results. Using quantum mechanics and estimation theory, here I show that any such spatially local measurement scheme, such as heterodyne or homodyne detection, is fundamentally inferior to coherently nonlocal measurements, such as direct detection, for estimating the mutual coherence of bipartite thermal light when the average photon flux is low. This surprising result can be regarded as a dual of Einstein-Podolsky-Rosen entanglem...
Cochrane, Corey J.
This work focuses on the development of new techniques for the study of spin dependent transport and trapping centers in fully processed micro and nanoelectronics. The first, and most interesting, technique offers a very low cost means to study spin dependent transport in microelectronics as an alternative to electrically detected magnetic resonance (EDMR). EDMR measurements generally require strong static magnetic fields, typically 3 kG or greater, and high frequency oscillating electromagnetic fields, typically 9 GHz or higher. In this work, it is demonstrated that large spin dependent recombination and tunneling signals can be detected in the absence of the oscillating electromagnetic field at zero magnetic field. The physics behind this technique is based upon the mixing of singlet and triplet energy states of the electron spin pairs involved in the spin dependent processes. In this study, we show that this technique can be applied to Si and SiC based devices. Theoretically, it can be applicable to devices of all material systems in which defects play a role in spin dependent transport, some of which include CdTe and GaN. Although the resolution of the g value is sacrificed in this new measurement, the technique can detect electron-nuclear hyperfine interactions and possibly dipolar and exchange interactions. The technique also has great promise in microelectronic device reliability studies as it is directly applicable to time dependent dielectric breakdown in thin film dielectrics and bias temperature instabilities in transistors. Other applications of this new physics include self-calibrating magnetometers, spin based memories, quantum computation, and miniature EDMR spectrometers for wafer probing stations. The second technique involves the utilization of passage effects that arise when performing magnetic field modulation in EDMR. When certain conditions are met, the higher order harmonics of the spin dependent signal can contain much useful information
Galler, Anna; Gunacker, Patrik; Tomczak, Jan; Thunström, Patrik; Held, Karsten
Recently, approaches such as the dynamical vertex approximation (D ΓA) or the dual-fermion method have been developed. These diagrammatic approaches are going beyond dynamical mean field theory (DMFT) by including nonlocal electronic correlations on all length scales as well as the local DMFT correlations. Here we present our efforts to extend the D ΓA methodology to ab-initio materials calculations (ab-initio D ΓA). Our approach is a unifying framework which includes both GW and DMFT-type of diagrams, but also important nonlocal correlations beyond, e.g. nonlocal spin fluctuations. In our multi-band implementation we are using a worm sampling technique within continuous-time quantum Monte Carlo in the hybridization expansion to obtain the DMFT vertex, from which we construct the reducible vertex function using the two particle-hole ladders. As a first application we show results for transition metal oxides. Support by the ERC project AbinitioDGA (306447) is acknowledged.
Classification of scalar and dyadic nonlocal optical response models.
Wubs, M
2015-11-30
Nonlocal optical response is one of the emerging effects on the nanoscale for particles made of metals or doped semiconductors. Here we classify and compare both scalar and tensorial nonlocal response models. In the latter case the nonlocality can stem from either the longitudinal response, the transverse response, or both. In phenomenological scalar models the nonlocal response is described as a smearing out of the commonly assumed infinitely localized response, as characterized by a distribution with a finite width. Here we calculate explicitly whether and how tensorial models, such as the hydrodynamic Drude model and generalized nonlocal optical response theory, follow this phenomenological description. We find considerable differences, for example that nonlocal response functions, in contrast to simple distributions, assume negative and complex values. Moreover, nonlocal response regularizes some but not all diverging optical near fields. We identify the scalar model that comes closest to the hydrodynamic model. Interestingly, for the hydrodynamic Drude model we find that actually only one third (1/3) of the free-electron response is smeared out nonlocally. In that sense, nonlocal response is stronger for transverse and scalar nonlocal response models, where the smeared-out fractions are 2/3 and 3/3, respectively. The latter two models seem to predict novel plasmonic resonances also below the plasma frequency, in contrast to the hydrodynamic model that predicts standing pressure waves only above the plasma frequency.
Possible detection of causality violation in a non-local scalar model
Energy Technology Data Exchange (ETDEWEB)
Haque, Asrarul; Joglekar, Satish D [Department of Physics, IIT Kanpur, Kanpur 208016 (India)], E-mail: ahaque@iitk.ac.in, E-mail: sdj@iitk.ac.in
2009-02-13
We consider the possibility that there may be causality violation detectable at higher energies. We take a scalar non-local theory containing a mass scale {lambda} as a model example and make a preliminary study of how the causality violation can be observed. We show how to formulate an observable whose detection would signal causality violation. We study the range of energies (relative to {lambda}) and couplings to which the observable can be used.
Spin injection from a normal metal into a mesoscopic superconductor
Energy Technology Data Exchange (ETDEWEB)
Wolf, Michael J.; Kolenda, Stefan [Institut fuer Nanotechnologie, KIT, 76021 Karlsruhe (Germany); Huebler, Florian [Institut fuer Nanotechnologie, KIT, 76021 Karlsruhe (Germany); Center for Functional Nanostructures, KIT, 76131 Karlsruhe (Germany); Institut fuer Festkoerperphysik, KIT, 76021 Karlsruhe (Germany); Loehneysen, Hilbert v. [Center for Functional Nanostructures, KIT, 76131 Karlsruhe (Germany); Institut fuer Festkoerperphysik, KIT, 76021 Karlsruhe (Germany); Physikalisches Institut, KIT, 76128 Karlsruhe (Germany); Beckmann, Detlef [Institut fuer Nanotechnologie, KIT, 76021 Karlsruhe (Germany); Center for Functional Nanostructures, KIT, 76131 Karlsruhe (Germany)
2013-07-01
We report on nonlocal transport in superconductor hybrid structures, with ferromagnetic as well as normal-metal tunnel junctions attached to the superconductor. In the presence of a strong Zeeman splitting of the density of states, both charge and spin imbalance is injected into the superconductor. While previous experiments demonstrated spin injection from ferromagnetic electrodes, we show that spin imbalance is also created for normal-metal injector contacts. Using the combination of ferromagnetic and normal-metal detectors allows us to directly discriminate between charge and spin injection, and demonstrate a complete separation of charge and spin imbalance. The relaxation length of the spin imbalance is of the order of several μm and is found to increase with a magnetic field, but is independent of temperature. We further discuss possible relaxation mechanisms for the explanation of the spin relaxation length.
Kelly, John V.; O'Brien, Jeff; O'Neill, Feidhlim T.; Gleeson, Michael R.; Sheridan, John T.
2004-10-01
Non-local and non-linear models of photopolymer materials, which include diffusion effects, have recently received much attention in the literature. The material response is non-local as it is assumed that monomers are polymerised to form polymer chains and that these chains grow away from a point of initiation. The non-locality is defined in terms of a spatial non-local material response function. The numerical method of solution typically involves retaining either two or four harmonics of the Fourier series of monomer concentration in the calculation. In this paper a general set of equations is derived which allows inclusion of higher number of harmonics for any response function. The numerical convergence for varying number of harmonics retained is investigated with special care being taken to note the effect of the; non-local material variance s, the power law degree k, and the rates of diffusion, D, and polymerisation F0. General non-linear material responses are also included.
Astone, Pia; Jaranowski, Piotr; Królak, Andrzej; Pietka, Maciej
2010-01-01
We present theory and algorithms to perform an all-sky coherent search for periodic signals of gravitational waves in narrow-band data of a detector. Our search is based on a statistic, commonly called the $\\mathcal{F}$-statistic, derived from the maximum-likelihood principle in Paper I of this series. We briefly review the response of a ground-based detector to the gravitational-wave signal from a rotating neuron star and the derivation of the $\\mathcal{F}$-statistic. We present several algorithms to calculate efficiently this statistic. In particular our algorithms are such that one can take advantage of the speed of fast Fourier transform (FFT) in calculation of the $\\mathcal{F}$-statistic. We construct a grid in the parameter space such that the nodes of the grid coincide with the Fourier frequencies. We present interpolation methods that approximately convert the two integrals in the $\\mathcal{F}$-statistic into Fourier transforms so that the FFT algorithm can be applied in their evaluation. We have impl...
Nonlocal Operational Calculi for Dunkl Operators
Directory of Open Access Journals (Sweden)
Ivan H. Dimovski
2009-03-01
Full Text Available The one-dimensional Dunkl operator $D_k$ with a non-negative parameter $k$, is considered under an arbitrary nonlocal boundary value condition. The right inverse operator of $D_k$, satisfying this condition is studied. An operational calculus of Mikusinski type is developed. In the frames of this operational calculi an extension of the Heaviside algorithm for solution of nonlocal Cauchy boundary value problems for Dunkl functional-differential equations $P(D_ku = f$ with a given polynomial $P$ is proposed. The solution of these equations in mean-periodic functions reduces to such problems. Necessary and sufficient condition for existence of unique solution in mean-periodic functions is found.
Nonlocal diffusion second order partial differential equations
Benedetti, I.; Loi, N. V.; Malaguti, L.; Taddei, V.
2017-02-01
The paper deals with a second order integro-partial differential equation in Rn with a nonlocal, degenerate diffusion term. Nonlocal conditions, such as the Cauchy multipoint and the weighted mean value problem, are investigated. The existence of periodic solutions is also studied. The dynamic is transformed into an abstract setting and the results come from an approximation solvability method. It combines a Schauder degree argument with an Hartman-type inequality and it involves a Scorza-Dragoni type result. The compact embedding of a suitable Sobolev space in the corresponding Lebesgue space is the unique amount of compactness which is needed in this discussion. The solutions are located in bounded sets and they are limits of functions with values in finitely dimensional spaces.
Quantum Loops in Non-Local Gravity
Talaganis, Spyridon
2015-01-01
In this proceedings, I will consider quantum aspects of a non-local, infinite-derivative scalar field theory - a ${\\it toy \\, model}$ depiction of a covariant infinite-derivative, non-local extension of Einstein's general relativity which has previously been shown to be free from ghosts around the Minkowski background. The graviton propagator in this theory gets an exponential suppression making it ${\\it asymptotically \\, free}$, thus providing strong prospects of resolving various classical and quantum divergences. In particular, I will find that at $1$-loop, the $2$-point function is still divergent, but once this amplitude is renormalized by adding appropriate counter terms, the ultraviolet (UV) behavior of all other $1$-loop diagrams as well as the $2$-loop, $2$-point function remains well under control. I will go on to discuss how one may be able to generalize our computations and arguments to arbitrary loops.
Nonlocal Condensate Model for QCD Sum Rules
Hsieh, Ron-Chou
2009-01-01
We include effects of nonlocal quark condensates into QCD sum rules (QSR) via the K$\\ddot{\\mathrm{a}}$ll$\\acute{\\mathrm{e}}$n-Lehmann representation for a dressed fermion propagator, in which a negative spectral density function manifests their nonperturbative nature. Applying our formalism to the pion form factor as an example, QSR results are in good agreement with data for momentum transfer squared up to $Q^2 \\approx 10 $ GeV$^2$. It is observed that the nonlocal quark-condensate contribution descends like $1/Q^4$, different from the exponential decrease in $Q^2$ obtained in the literature, and contrary to the linear rise in the local-condensate approximation.
Nonlocal inhomogeneous broadening in plasmonic nanoparticle ensembles
DEFF Research Database (Denmark)
Tserkezis, Christos; Maack, Johan Rosenkrantz; Liu, Z.
Nonclassical effects are increasingly more relevant in plasmonics as modern nanofabrication techniques rapidly approach the extreme nanoscale limits, for which departing from classical electrodynamics becomes important. One of the largest-scale necessary corrections towards this direction...... is to abandon the local response approximation (LRA) and take the nonlocal response of the metal into account, typically through the simple hydrodynamic Drude model (HDM), which predicts a sizedependent deviation of plasmon modes from the quasistatic (QS) limit. While this behaviour has been explored for simple...... averaging through both HDM and the recent Generalized Nonlocal Optical Response (GNOR) theory, which apart from the resonance frequency shifts accounts successfully for size-dependent damping as well. We examine NPs made of either ideal Drude-like metals [of plasmon frequency (wavelength) ωp (λp...
An Adaptive Iterated Nonlocal Interferometry Filtering Method
Directory of Open Access Journals (Sweden)
Lin Xue
2014-04-01
Full Text Available Interferometry filtering is one of the key steps in obtain high-precision Digital Elevation Model (DEM and Digital Orthophoto Map (DOM. In the case of low-correlation or complicated topography, traditional phase filtering methods fail in balancing noise elimination and phase preservation, which leads to inaccurate interferometric phase. This paper proposed an adaptive iterated nonlocal interferometry filtering method to deal with the problem. Based on the thought of nonlocal filtering, the proposed method filters the image with utilization of the image redundancy information. The smoothing parameter of the method is adaptive to the interferometry, and automatic iteration, in which the window size is adjusted, is applied to improve the filtering precision. Validity of the proposed method is verified by simulated and real data. Comparison with existed methods is given at the same time.
Nonlocal neurology: beyond localization to holonomy.
Globus, G G; O'Carroll, C P
2010-11-01
The concept of local pathology has long served neurology admirably. Relevant models include self-organizing nonlinear brain dynamics, global workspace and dynamic core theories. However such models are inconsistent with certain clinical phenomena found in Charles Bonnet syndrome, disjunctive agnosia and schizophrenia, where there is disunity of content within the unity of consciousness. This is contrasted with the split-brain case where there is disunity of content and disunity of consciousnesses. The development of quantum brain theory with it nonlocal mechanisms under the law of the whole ("holonomy") offers new possibilities for explaining disintegration within unity. Dissipative quantum brain dynamics and its approach to the binding problem, memory and consciousness are presented. A nonlocal neurology armed with a holonomic understanding might see more deeply into what clinical neurology has always aspired to: the patient as a whole.
Homoepitaxial graphene tunnel barriers for spin transport
Directory of Open Access Journals (Sweden)
Adam L. Friedman
2016-05-01
Full Text Available Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.
Surface-enhanced Raman spectroscopy: nonlocal limitations
DEFF Research Database (Denmark)
Toscano, Giuseppe; Raza, S.; Xiao, Sanshui;
2012-01-01
Giant field enhancement and field singularities are a natural consequence of the commonly employed local-response framework. We show that a more general nonlocal treatment of the plasmonic response leads to new and possibly fundamental limitations on field enhancement with important consequences ...... by periodic arrays of half-cylinders (up to 120 nm in radius), we find no enhancement factors exceeding 10 orders of magnitude (10(10)). (C) 2012 Optical Society of America...
Structure of Nonlocal Vacuum Condensate of Quarks
Institute of Scientific and Technical Information of China (English)
周丽娟; 马维兴
2003-01-01
The Dyson-Schwinger formalism is used to derive a fully dressed quark propagator. By use of the derived form of the quark propagator, the structure of non-local quark vacuum condensate is studied, and the values of local quark vacuum condensate as well as quark gluon mixed condensate are calculated. The theoretical predictions are in good agreement with the empirical one used commonly in the literature.
Popper's experiment, Copenhagen Interpretation and Nonlocality
Qureshi, T
2003-01-01
A thought experiment, proposed by Karl Popper, which has been experimentally realized recently, is critically examined. A basic flaw in Popper's argument which has also been prevailing in subsequent debates, is pointed out. It is shown that Popper's experiment can be understood easily within the Copenhagen interpretation of quantum mechanics. An alternate experiment, based on discrete variables, is proposed, which constitutes Popper's test in a clearer way. It refutes the argument of absence of nonlocality in quantum mechanics.
Nonlocal Optical Response of Plasmonic Nanowire Metamaterials
2014-01-01
exceptional properties that are not readily found in nature. There are numerous applications in modern optics which can be realized through the study and...K., R. C. McPhedran, and Vladimir M. Shalaev. " Electrodynamics of metal-dielectric composites and electromagnetic crystals." Physical Review B 62.12...16.10 (2008): 7460-7470. [41] Pokrovsky, A. L., and A. L. Efros. "Nonlocal electrodynamics of two-dimensional wire mesh photonic crystals." Physical
Dual-switching behavior of nonlocal interfaces
Sánchez-Curto, Julio; Chamorro-Posada, Pedro
2017-05-01
Nonlinear interfaces separating two diffusive Kerr-type media exhibit dual switching between total internal reflection and transmission. This property is found within a weakly nonlocal regime when both a nonparaxial treatment of the problem and a full two-dimensional model for carrier diffusion are assumed. The theoretical model is shown to predict an effective cubic-quintic nonlinearity with competing terms that produces such property. The validity of the analysis is contrasted with a full set of numerical simulations.
Nonlocal homogenization for nonlinear metamaterials
Gorlach, Maxim A; Lapine, Mikhail; Kivshar, Yuri S; Belov, Pavel A
2016-01-01
We present a consistent theoretical approach for calculating effective nonlinear susceptibilities of metamaterials taking into account both frequency and spatial dispersion. Employing the discrete dipole model, we demonstrate that effects of spatial dispersion become especially pronounced in the vicinity of effective permittivity resonance where nonlinear susceptibilities reach their maxima. In that case spatial dispersion may enable simultaneous generation of two harmonic signals with the same frequency and polarization but different wave vectors. We also prove that the derived expressions for nonlinear susceptibilities transform into the known form when spatial dispersion effects are negligible. In addition to revealing new physical phenomena, our results provide useful theoretical tools for analysing resonant nonlinear metamaterials.
Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi
2012-01-01
In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.
Fully nonlocal, monogamous and random genuinely multipartite quantum correlations
Aolita, Leandro; Cabello, Adán; Acín, Antonio
2011-01-01
Local measurements on bipartite maximally entangled states can yield correlations that are maximally nonlocal, monogamous, and associated to fully random outcomes. This makes these states ideal for bipartite cryptographic tasks. Genuine-multipartite nonlocality constitutes a stronger notion of nonlocality that appears in the multipartite case. Maximal genuine-multipartite nonlocality, monogamy and full random outcomes are thus highly desired properties for multipartite correlations in intrinsically genuine-multipartite cryptographic scenarios. We prove that local measurements on Greenberger-Horne-Zeilinger states, for all local dimension and number of parts, can produce correlations that are fully genuine-multipartite nonlocal, monogamous and with fully random outcomes. A key ingredient in our proof is a multipartite chained Bell inequality detecting genuine-multipartite nonlocality, which we introduce. Finally, we discuss the applications of our results for intrinsically genuine-multipartite cryptographic pr...
FILAMENTATION INSTABILITY OF LASER BEAMS IN NONLOCAL NONLINEAR MEDIA
Institute of Scientific and Technical Information of China (English)
文双春; 范滇元
2001-01-01
The filamentation instability of laser beams propagating in nonlocal nonlinear media is investigated. It is shown that the filamentation instability can occur in weakly nonlocal self-focusing media for any degree of nonlocality, and in defocusing media for the input light intensity exceeding a threshold related to the degree of nonlocality. A linear stability analysis is used to predict the initial growth rate of the instability. It is found that the nonlocality tends to suppress filamentation instability in self-focusing media and to stimulate filamentation instability in self-defocusing media. Numerical simulations confirm the results of the linear stability analysis and disclose a recurrence phenomenon in nonlocal self-focusing media analogous to the Fermi-Pasta-Ulam problem.
Nonlocal modeling of granular flows down inclines.
Kamrin, Ken; Henann, David L
2015-01-07
Flows of granular media down a rough inclined plane demonstrate a number of nonlocal phenomena. We apply the recently proposed nonlocal granular fluidity model to this geometry and find that the model captures many of these effects. Utilizing the model's dynamical form, we obtain a formula for the critical stopping height of a layer of grains on an inclined surface. Using an existing parameter calibration for glass beads, the theoretical result compares quantitatively to existing experimental data for glass beads. This provides a stringent test of the model, whose previous validations focused on driven steady-flow problems. For layers thicker than the stopping height, the theoretical flow profiles display a thickness-dependent shape whose features are in agreement with previous discrete particle simulations. We also address the issue of the Froude number of the flows, which has been shown experimentally to collapse as a function of the ratio of layer thickness to stopping height. While the collapse is not obvious, two explanations emerge leading to a revisiting of the history of inertial rheology, which the nonlocal model references for its homogeneous flow response.
Relativistic three-partite non-locality
Montakhab, A
2015-01-01
Bell-like inequalities have been used in order to distinguish non-local quantum pure states by various authors. The behavior of such inequalities under Lorentz transformation has been a source of debate and controversies in the past. In this paper, we consider the two most commonly studied three-particle pure states, that of W and GHZ states which exhibit distinctly different type of entanglement. We discuss the various types of three-particle inequalities used in previous studies and point to their corresponding shortcomings and strengths. Our main result is that if one uses Svetlichny's inequality as the main measure of non-locality and uses the same angles in the rest frame ($S$) as well as the moving frame ($S^{\\prime}$), then maximally violated inequality in $S$ will decrease in the moving frame, and will eventually lead to lack of non-locality ( i.e. satisfaction of inequality) in the $v \\rightarrow c$ limit. This is shown for both GHZ and W states and in two different configurations which are commonly ...
Nonlocal Gravity and Structure in the Universe
Energy Technology Data Exchange (ETDEWEB)
Dodelson, Scott [Chicago U., Astron. Astrophys. Ctr.; Park, Sohyun [Penn State U., University Park, IGC
2014-08-26
The observed acceleration of the Universe can be explained by modifying general relativity. One such attempt is the nonlocal model of Deser and Woodard. Here we fix the background cosmology using results from the Planck satellite and examine the predictions of nonlocal gravity for the evolution of structure in the universe, confronting the model with three tests: gravitational lensing, redshift space distortions, and the estimator of gravity $E_G$. Current data favor general relativity (GR) over nonlocal gravity: fixing primordial cosmology with the best fit parameters from Planck leads to weak lensing results favoring GR by 5.9 sigma; redshift space distortions measurements of the growth rate preferring GR by 7.8 sigma; and the single measurement of $E_G$ favoring GR, but by less than 1-sigma. The significance holds up even after the parameters are allowed to vary within Planck limits. The larger lesson is that a successful modified gravity model will likely have to suppress the growth of structure compared to general relativity.
Non-local correlations within dynamical mean field theory
Energy Technology Data Exchange (ETDEWEB)
Li, Gang
2009-03-15
The contributions from the non-local fluctuations to the dynamical mean field theory (DMFT) were studied using the recently proposed dual fermion approach. Straight forward cluster extensions of DMFT need the solution of a small cluster, where all the short-range correlations are fully taken into account. All the correlations beyond the cluster scope are treated in the mean-field level. In the dual fermion method, only a single impurity problem needs to be solved. Both the short and long-range correlations could be considered on equal footing in this method. The weak-coupling nature of the dual fermion ensures the validity of the finite order diagram expansion. The one and two particle Green's functions calculated from the dual fermion approach agree well with the Quantum Monte Carlo solutions, and the computation time is considerably less than with the latter method. The access of the long-range order allows us to investigate the collective behavior of the electron system, e.g. spin wave excitations. (orig.)
Quantum Monte Carlo with variable spins.
Melton, Cody A; Bennett, M Chandler; Mitas, Lubos
2016-06-28
We investigate the inclusion of variable spins in electronic structure quantum Monte Carlo, with a focus on diffusion Monte Carlo with Hamiltonians that include spin-orbit interactions. Following our previous introduction of fixed-phase spin-orbit diffusion Monte Carlo, we thoroughly discuss the details of the method and elaborate upon its technicalities. We present a proof for an upper-bound property for complex nonlocal operators, which allows for the implementation of T-moves to ensure the variational property. We discuss the time step biases associated with our particular choice of spin representation. Applications of the method are also presented for atomic and molecular systems. We calculate the binding energies and geometry of the PbH and Sn2 molecules, as well as the electron affinities of the 6p row elements in close agreement with experiments.
Quantum Monte Carlo with Variable Spins
Melton, Cody A; Mitas, Lubos
2016-01-01
We investigate the inclusion of variable spins in electronic structure quantum Monte Carlo, with a focus on diffusion Monte Carlo with Hamiltonians that include spin-orbit interactions. Following our previous introduction of fixed-phase spin-orbit diffusion Monte Carlo (FPSODMC), we thoroughly discuss the details of the method and elaborate upon its technicalities. We present a proof for an upper-bound property for complex nonlocal operators, which allows for the implementation of T-moves to ensure the variational property. We discuss the time step biases associated with our particular choice of spin representation. Applications of the method are also presented for atomic and molecular systems. We calculate the binding energies and geometry of the PbH and Sn$_2$ molecules, as well as the electron affinities of the 6$p$ row elements in close agreement with experiments.
The frustrated Brownian motion of nonlocal solitary waves
Folli, Viola
2010-01-01
We investigate the evolution of solitary waves in a nonlocal medium in the presence of disorder. By using a perturbational approach, we show that an increasing degree of nonlocality may largely hamper the Brownian motion of self-trapped wave-packets. The result is valid for any kind of nonlocality and in the presence of non-paraxial effects. Analytical predictions are compared with numerical simulations based on stochastic partial differential equation
The non-local content of quantum operations
Collins, D; Popescu, S; Collins, Daniel; Linden, Noah; Popescu, Sandu
2000-01-01
We show that quantum operations on multi-particle systems have a non-local content; this mirrors the non-local content of quantum states. We introduce a general framework for discussing the non-local content of quantum operations, and give a number of examples. Quantitative relations between quantum actions and the entanglement and classical communication resources needed to implement these actions are also described. We also show how entanglement can catalyse classical communication from a quantum action.
A Nonlocal Model for Carbon Nanotubes under Axial Loads
Directory of Open Access Journals (Sweden)
Raffaele Barretta
2013-01-01
Full Text Available Various beam theories are formulated in literature using the nonlocal differential constitutive relation proposed by Eringen. A new variational framework is derived in the present paper by following a consistent thermodynamic approach based on a nonlocal constitutive law of gradient-type. Contrary to the results obtained by Eringen, the new model exhibits the nonlocality effect also for constant axial load distributions. The treatment can be adopted to get new benchmarks for numerical analyses.
Proposal for revealing quantum nonlocality via local contextuality.
Cabello, Adán
2010-06-04
Two distant systems can exhibit quantum nonlocality even though the correlations between them admit a local model. This nonlocality can be revealed by testing extra correlations between successive measurements on one of the systems which do not admit a noncontextual model whatever the reduced state of this system is. This shows that quantum contextuality plays a fundamental role in quantum nonlocality, and allows an experimental test of the Kochen-Specker with locality theorem.
Survey on nonlocal games and operator space theory
Energy Technology Data Exchange (ETDEWEB)
Palazuelos, Carlos, E-mail: cpalazue@mat.ucm.es [Instituto de Ciencias Matemáticas (ICMAT), Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Madrid (Spain); Vidick, Thomas, E-mail: vidick@cms.caltech.edu [Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California 91125 (United States)
2016-01-15
This review article is concerned with a recently uncovered connection between operator spaces, a noncommutative extension of Banach spaces, and quantum nonlocality, a striking phenomenon which underlies many of the applications of quantum mechanics to information theory, cryptography, and algorithms. Using the framework of nonlocal games, we relate measures of the nonlocality of quantum mechanics to certain norms in the Banach and operator space categories. We survey recent results that exploit this connection to derive large violations of Bell inequalities, study the complexity of the classical and quantum values of games and their relation to Grothendieck inequalities, and quantify the nonlocality of different classes of entangled states.
Nonlocal effects on dynamic damage accumulation in brittle solids
Energy Technology Data Exchange (ETDEWEB)
Chen, E.P.
1995-12-01
This paper presents a nonlocal analysis of the dynamic damage accumulation processes in brittle solids. A nonlocal formulation of a microcrack based continuum damage model is developed and implemented into a transient dynamic finite element computer code. The code is then applied to the study of the damage accumulation process in a concrete plate with a central hole and subjected to the action of a step tensile pulse applied at opposite edges of the plate. Several finite element discretizations are used to examine the mesh size effect. Comparisons between calculated results based on local and nonlocal formulations are made and nonlocal effects are discussed.
Implementation of nonlocal quantum swap operation on two entangled pairs
Institute of Scientific and Technical Information of China (English)
郑亦庄; 顾永建; 陈立冰; 郭光灿
2002-01-01
We propose a scheme for the implementation of nonlocal quantum swap operation on two spatially separated entangled pairs and we show that the operation can swap two qubits of these entangled pairs. We discuss the resourcesof the entangled qubits and classical communication bits required for the optimal implementation of the nonlocal quantum swap operation. We also put forward a scheme for probabilistic implementation of nonlocal swap operation via a nonmaximally entangled quantum channel. The probability of a successful nonlocal swap operation is obtained by introducing a collective unitary transformation.
Nonlocality Sudden Birth and Transfer in System and Environment
Institute of Scientific and Technical Information of China (English)
QIU Liang
2011-01-01
Dynamics of the nonlocality measured by the violation of Svetlichny's Bell-type inequality is investigated in the non-Markovian model. The phenomenon of nonlocality sudden birth for the atoms and the reservoirs is obtained.The evolution of the nonlocality among the atoms or the reservoirs depends on the choice of the atom detuning from the cavity pseudomode, the cavity pseudomode decay and the rotation angles. For the small pseudomode decay in the near-resonance regime, the initial atomic nonlocality is completely transferred to the reservoirs ultimately.
On a Nonlocal Problem Modelling Ohmic Heating in Planar Domains
Institute of Scientific and Technical Information of China (English)
Fei LIANG; Qi Lin LIU; Yu Xiang LI
2013-01-01
In this paper, we consider the nonlocal problem of the form ut-△u=λe-u/(∫Ωe-udx)2,x∈Ω,t>0 and the associated nonlocal stationary problem -△v=λe-v/(∫Ωe-vdx)2,x∈Ω, where A is a positive parameter. For Ω to be an annulus, we prove that the nonlocal stationary problem has a unique solution if and only if λ < 2|(6)Ω|2, and for A = 2|(6)Ω|2, the solution of the nonlocal parabolic problem grows up globally to infinity as t → ∞.
Nonlocal optical properties in periodic lattice of graphene layers.
Chern, Ruey-Lin; Han, Dezhuan
2014-02-24
Based on the effective medium model, nonlocal optical properties in periodic lattice of graphene layers with the period much less than the wavelength are investigated. Strong nonlocal effects are found in a broad frequency range for TM polarization, where the effective permittivity tensor exhibits the Lorentzian resonance. The resonance frequency varies with the wave vector and coincides well with the polaritonic mode. Nonlocal features are manifest on the emergence of additional wave and the occurrence of negative refraction. By examining the characters of the eigenmode, the nonlocal optical properties are attributed to the excitation of plasmons on the graphene surfaces.
Antiferromagnetic spin Seebeck effect.
Energy Technology Data Exchange (ETDEWEB)
Wu, Stephen M.; Zhang, Wei; KC, Amit; Borisov, Pavel; Pearson, John E.; Jiang, J. Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand
2016-03-03
We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2. A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF2(110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2–80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9T) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.
Antiferromagnetic Spin Seebeck Effect
Wu, Stephen M.; Zhang, Wei; KC, Amit; Borisov, Pavel; Pearson, John E.; Jiang, J. Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand
2016-03-01
We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2 . A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30 nm )/Pt (4 nm) grown by molecular beam epitaxy on a MgF2 (110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2-80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9 T ) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.
Local Spin State Measurements in Critically Doped La0 . 83Sr0 . 17CO3
Gulec, Ahmet; Klie, Robert F.
2014-03-01
Strontium doped LaCO3 has fascinating magnetic phases which are believed to be directly related to Co spin states. Critically doped La0 . 83 Sr0 . 17 CO3 undergoes a simultaneous Insulator to Metal Transition (IMT) and ferromagnetic (FM) order transition. In this work, we will utilized atomic-resolution Z-contrast imaging, annular bright field (ABF) imaging and electron energy-loss spectroscopy in the aberration-corrected JEOL JEM-ARM200CF in combination with cooling experiments to examine the local magnetic and spin-state transitions in critically doped La0 . 83 Sr0 . 17 CO3 between 80 K and 300 K. Our energy-loss magnetic circular dichroism (EMCD) experiments confirm the non-localized increase in the dichromatic signal at low temperature, associated with a change in the co-ion spin state. On the other hand, by using he ABF imaging, a distortion of the CO6 octahedral and the changes in the Co-O bond lengths within the same unit cell are observed. NSF CAREER Award DMR-0846748
Solving the Einstein Podolksy Rosen puzzle: a possible origin of non-locality
Hofer, Werner A
2011-01-01
So far no mechanism is known, which could connect the two measurements in a Bell-type experiment with a speed beyond the speed of light, commonly considered the ultimate limit of propagation of any field-like interaction. Here, we suggest such a mechanism, based on the phase of a photon field during its propagation. We show that two measurements, corresponding to two independent rotations of the fields, are connected, even if no signal passes from one point of measurement to the other. The non-local connection of a photon pair is the result of its origin at a common source, where the two fields acquire a well defined phase difference. Therefore, it is not actually a non-local effect in any conventional sense.
The origin of non-locality in Aspect-type experiments
Hofer, Werner A
2011-01-01
So far no mechanism is known, which could connect the two measurements in an Aspect-type experiment. Here, we suggest such a mechanism, based on the phase of a photon's field during propagation. We show that two polarization measurements are correlated, even if no signal passes from one point of measurement to the other. The non-local connection of a photon pair is the result of its origin at a common source, where the two fields acquire a well defined phase difference. Therefore, it is not actually a non-local effect in any conventional sense. We expect that the model and the detailed analysis it allows will have a major impact on quantum cryptography and quantum computation.
Route toward high-speed nano-magnonics provided by pure spin currents
Divinskiy, B.; Demidov, V. E.; Demokritov, S. O.; Rinkevich, A. B.; Urazhdin, S.
2016-12-01
We study experimentally the possibility to utilize pulses of pure spin current, produced via the nonlocal spin injection mechanism, to generate short packets of spin waves propagating in nanoscale magnetic waveguides. Spatially and time-resolved micro-focus Brillouin light scattering spectroscopy measurements demonstrate that the excitation by spin current results in extremely fast transient response, enabling efficient generation of short spin-wave packets with duration down to a few nanoseconds. The proposed method opens a route for the implementation of high-speed magnonic systems for transmission and processing of information on the nanoscale.
Nonlocalization of Nonlocal Symmetry and Symmetry Reductions of the Burgers Equation
Institute of Scientific and Technical Information of China (English)
金艳; 贾曼; 楼森岳
2012-01-01
Symmetry reduction method is one of the best ways to find exact solutions. In this paper, we study the possibility of symmetry reductions of the well known Burgers equation including the nonlocal symmetry. The related new group Jnvariant solutions are obtained. Especially, the interactions among solitons, Airy waves, and Kummer waves are explicitly given.
Spin-orbit hybrid entanglement of photons and quantum contextuality
Karimi, Ebrahim; Slussarenko, Sergei; Piccirillo, Bruno; Marrucci, Lorenzo; Chen, Lixiang; She, Weilong; Franke-Arnold, Sonja; Padgett, Miles J; Santamato, Enrico; 10.1103/PhysRevA.82.022115
2011-01-01
We demonstrate electromagnetic quantum states of single photons and of correlated photon pairs exhibiting "hybrid" entanglement between spin and orbital angular momentum. These states are obtained from entangled photon pairs emitted by spontaneous parametric down conversion, by employing a $q$-plate for coupling the spin and orbital degrees of freedom of a photon. Entanglement and contextual quantum behavior (that is also non-local, in the case of photon pairs) is demonstrated by the reported violation of the Clauser-Horne-Shimony-Holt inequality. In addition a classical analog of the hybrid spin-orbit photonic entanglement is reported and discussed.
Higher Spins as Rolling Tachyons in Open String Field Theory
Polyakov, Dimitri
2016-01-01
We find a simple analytic solution in open string field theory which, in the on-shell limit, generates a tower of higher spin vertex operators in bosonic string theory. The solution is related to irregular off-shell vertex operators for Gaiotto states. The wavefunctions for the irregular vertex operators are described by equations following from the cubic effective action for generalized rolling tachyons, indicating that the evolution from flat to collective higher-spin background in string field theory occurs according to cosmological pattern. We discuss the relation between nonlocalities of the rolling tachyon action and those of higher spin interactions.
Creating and manipulating nonequilibrium spins in nanoscale superconductors
Energy Technology Data Exchange (ETDEWEB)
Wolf, Michael J.; Kolenda, Stefan; Beckmann, Detlef [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (Germany); Huebler, Florian [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (Germany); Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Suergers, Christoph; Fischer, Gerda [Physikalisches Institut, Karlsruher Institut fuer Technologie (Germany); Loehneysen, Hilbert von [Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Physikalisches Institut, Karlsruher Institut fuer Technologie (Germany)
2015-07-01
We report on nonlocal transport in superconductor hybrid structures, with ferromagnetic as well as normal-metal tunnel junctions attached to the superconductor. In the presence of a strong Zeeman splitting of the density of states, we find signatures of spin transport over distances of several μm, exceeding other length scales such as the coherence length, the normal-state spin-diffusion length, and the charge-imbalance length. Using a combination of ferromagnetic and normal-metal contacts, we demonstrate spin injection from a normal metal, and show a complete separation of charge and spin imbalance. An exchange splitting induced by the ferromagnetic insulator europium sulfide enables spin transport at very small applied magnetic fields, and therefore paves the way to manipulating spin currents by local exchange fields.
de Vries, Eric Kornelis; Kamerbeek, Alexander; Koirala, Nikesh; Brahlek, Matthew; Salehi, Maryam; Oh, Seongshik; van Wees, Bart; Banerjee, Tamalika
2015-01-01
Topological insulators provide a new platform for spintronics due to the spin texture of the surface states that are topologically robust against elastic backscattering. Here we report on an investigation of the measured voltage obtained from efforts to electrically probe spin-momentum locking in
Nonlocal Transport in the Reversed Field Pinch
Energy Technology Data Exchange (ETDEWEB)
Spizzo, G.; White, R. B.; Cappello, S.; Marrelli, L.
2009-09-21
Several heuristic models for nonlocal transport in plasmas have been developed, but they have had a limited possibility of detailed comparision with experimental data. Nonlocal aspects introduced by the existence of a known spectrum of relatively stable saturated tearing modes in a low current reversed field pinch offers a unique possibility for such a study. A numerical modelling of the magnetic structure and associated particle transport is carried out for the reversed-field pinch experiment at the Consorzio RFX, Padova, Italy. A reproduction of the tearing mode spectrum with a guiding center code1 reliably reproduces the observed soft X-ray tomography. Following particle trajectories in the stochastic magnetic field shows the transport across the unperturbed flux surfaces to be due to a spectrum of Levy flights, with the details of the spectrum position dependent. The resulting transport is subdiffusive, and cannot be described by Rechester-Rosenbluth diffusion, which depends on a random phase approximation. If one attempts to fit the local transport phenomenologically, the subdiffusion can be fit with a combination of diffusion and inward pinch2. It is found that whereas passing particles explore the stochastic field and hence participate in Levy flights, the trapped particles experience normal neoclassical diffusion. A two fluid nonlocal Montroll equation is used to model this transport, with a Levy flight defined as the motion of an ion during the period that the pitch has one sign. The necessary input to the Montroll equation consists of a time distribution for the Levy flights, given by the pitch angle scattering operator, and a distribution of the flight distances, determined numerically using a guiding center code. Results are compared to experiment. The relation of this formulation to fractional kinetics is also described.
Nonlocal Crowd Dynamics Models for several Populations
Colombo, Rinaldo M
2011-01-01
This paper develops the basic analytical theory related to some recently introduced crowd dynamics models. Where well posedness was known only locally in time, it is here extended to all of $\\reali^+$. The results on the stability with respect to the equations are improved. Moreover, here the case of several populations is considered, obtaining the well posedness of systems of multi-D non-local conservation laws. The basic analytical tools are provided by the classical Kruzkov theory of scalar conservation laws in several space dimensions.
The nonlocal elastomagnetoelectrostatics of disordered micropolar media
Energy Technology Data Exchange (ETDEWEB)
Kabychenkov, A. F.; Lisiovskii, F. V., E-mail: lisf@rambler.ru [Russian Academy of Sciences, Kotel’nikov Institute of Radio Engineering and Electronics (Fryazino Branch) (Russian Federation)
2016-08-15
The interactions of electric, magnetic, and elastic subsystems in nonlinear disordered micropolar media that possess a bending–torsion tensor and an nonsymmetric strain tensor have been studied in the framework of phenomenological elastomagnetoelectrostatics. A system of nonlinear equations for determining the ground state of these media has been obtained by the variational method. It is shown that nonuniform external and internal rotations not only create elastic stresses, but also generate additional electric and magnetic fields, while nonuniform elastic stresses and external fields induce internal rotations. The nonlocal character of the micropolar media significantly influences elementary excitations and nonlinear dynamic processes.
Non-local modeling of materials
DEFF Research Database (Denmark)
Niordson, Christian Frithiof
2002-01-01
Numerical studies of non-local plasticity effects on different materials and problems are carried out. Two different theories are used. One is of lower order in that it retains the structure of a conventional plasticity boundary value problem, while the other is of higher order and employs higher...... order stresses as work conjugates to higher order strains and uses higher order boundary conditions. The influence of internal material length parameters is studied, and the effects of higher order boundary conditions are analyzed. The focus of the thesis is on metal-matrix composites, and non...
Uncertainty, non-locality and Bell's inequality
Pati, A K
1998-01-01
We derive a Bell-like inequality involving all correlations in local observables with uncertainty free states and show that the inequality is violated in quantum mechanics for EPR and GHZ states. If the uncertainties are allowed in local observables then the statistical predictions of hidden variable theory is well respected in quantum world. We argue that the uncertainties play a key role in understanding the non-locality issues in quantum world. Thus we can not rule out the possibility that a local, realistic hidden variable theory with statistical uncertainties in the observables might reproduce all the results of quantum theory.
NONLOCAL CROWD DYNAMICS MODELS FOR SEVERAL POPULATIONS
Institute of Scientific and Technical Information of China (English)
Rinaldo M. Colombo; Magali Lécureux-Mercier
2012-01-01
This paper develops the basic analytical theory related to some recently introduced crowd dynamics models.Where well posedness was known only locally in time,it is here extended to all of R+.The results on the stability with respect to the equations are improved.Moreover,here the case of several populations is considered,obtaining the well posedness of systems of multi-D non-local conservation laws.The basic analytical tools are provided by the classical Kru(z)kov theory of scalar conservation laws in several space dimensions.
Nonlocal calculation for nonstrange dibaryons and tribaryons
Mota, R D; Fernández, F; Entem, D R; Garcilazo, H
2002-01-01
We study the possible existence of nonstrange dibaryons and tribaryons by solving the bound-state problem of the two- and three-body systems composed of nucleons and deltas. The two-body systems are $NN$, $N\\Delta$, and $\\Delta\\Delta$, while the three-body systems are $NNN$, $NN\\Delta$, $N\\Delta\\Delta$, and $\\Delta\\Delta\\Delta$. We use as input the nonlocal $NN$, $N\\Delta$, and $\\Delta\\Delta$ potentials derived from the chiral quark cluster model by means of the resonating group method. We compare with previous results obtained from the local version based on the Born-Oppenheimer approximation.
Long-range spin Seebeck effect and acoustic spin pumping.
Uchida, K; Adachi, H; An, T; Ota, T; Toda, M; Hillebrands, B; Maekawa, S; Saitoh, E
2011-10-01
Imagine that a metallic wire is attached to a part of a large insulator, which itself exhibits no magnetization. It seems impossible for electrons in the wire to register where the wire is positioned on the insulator. Here we found that, using a Ni₈₁Fe₁₉/Pt bilayer wire on an insulating sapphire plate, electrons in the wire recognize their position on the sapphire. Under a temperature gradient in the sapphire, surprisingly, the voltage generated in the Pt layer is shown to reflect the wire position, although the wire is isolated both electrically and magnetically. This non-local voltage is due to the coupling of spins and phonons: the only possible carrier of information in this system. We demonstrate this coupling by directly injecting sound waves, which realizes the acoustic spin pumping. Our finding provides a persuasive answer to the long-range nature of the spin Seebeck effect, and it opens the door to 'acoustic spintronics' in which sound waves are exploited for constructing spin-based devices.
Nonlocal formalism for nanoplasmonics: Phenomenological and semi-classical considerations
DEFF Research Database (Denmark)
Mortensen, N. Asger
2013-01-01
The plasmon response of metallic nanostructures is anticipated to exhibit nonlocal dynamics of the electron gas when exploring the true nanoscale. We extend the local-response approximation (based on Ohm's law) to account for a general short-range nonlocal response of the homogeneous electron gas...
Geometric reduction of dynamical nonlocality in nanoscale quantum circuits
Strambini, E.; Makarenko, K. S.; Abulizi, G.; de Jong, M. P.; van der Wiel, W. G.
2016-01-01
Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young’s double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing.
On nonlocal symmetries of some shallow water equations
Energy Technology Data Exchange (ETDEWEB)
Reyes, Enrique G [Departamento de Matematicas y Ciencia de la Computacion, Universidad de Santiago de Chile, Casilla 307 Correo 2 Santiago (Chile)
2007-04-27
A recent construction of nonlocal symmetries for the Korteweg-de Vries, Camassa-Holm and Hunter-Saxton equations is reviewed, and it is pointed out that-in the Camassa-Holm and Hunter-Saxton case-these symmetries can be considered as (nonlocal) symmetries of integro-differential equations.
Solutions to nonlocal fractional differential equations using a noncompact semigroup
Directory of Open Access Journals (Sweden)
Shaochun Ji
2013-10-01
Full Text Available This article concerns the existence of solutions to nonlocal fractional differential equations in Banach spaces. By using a type of newly-defined measure of noncompactness, we discuss this problem in general Banach spaces without any compactness assumptions to the operator semigroup. Some existence results are obtained when the nonlocal term is compact and when is Lipschitz continuous.
Geometric reduction of dynamical nonlocality in nanoscale quantum circuits
Strambini, E.; Makarenko, K. S.; Abulizi, G.; de Jong, M. P.; van der Wiel, W. G.
2016-01-01
Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young’s double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing. PMID:26732751
Geometric reduction of dynamical nonlocality in nanoscale quantum circuits
Strambini, E.; Makarenko, K.S.; Abulizi, G.; Jong, de M.P.; Wiel, van der W.G.
2016-01-01
Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young’s double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is we
A Note on a Nonlocal Nonlinear Reaction-Diffusion Model
Walker, Christoph
2011-01-01
We give an application of the Crandall-Rabinowitz theorem on local bifurcation to a system of nonlinear parabolic equations with nonlocal reaction and cross-diffusion terms as well as nonlocal initial conditions. The system arises as steady-state equations of two interacting age-structured populations.
Nonlocal thin films in calculations of the Casimir force
Esquivel-Sirvent, R.; Svetovoy, V.B.
2005-01-01
The Casimir force is calculated between plates with thin metallic coating. Thin films are described with spatially dispersive (nonlocal) dielectric functions. For thin films the nonlocal effects are more relevant than for half-spaces. However, it is shown that even for film thickness smaller than th
Anomalous interaction of nonlocal solitons in media with competing nonlinearities
DEFF Research Database (Denmark)
Esbensen, B. K.; Bache, Morten; Bang, Ole
2012-01-01
We theoretically investigate properties of individual bright spatial solitons and their interaction in nonlocal media with competing focusing and defocusing nonlinearities. We consider the general case with both nonlinear responses characterized by different strengths and degrees of nonlocality. We...... and interaction of solitons using numerical simulations of the full model of beam propagation. The numerical simulations fully confirm our analytical results....
Spectral dimension from nonlocal dynamics on causal sets
Belenchia, Alessio; Benincasa, Dionigi M. T.; Marcianò, Antonino; Modesto, Leonardo
2016-02-01
We investigate the spectral dimension obtained from nonlocal continuum d'Alembertians derived from causal sets. We find a universal dimensional reduction to two dimensions, in all dimensions. We conclude by discussing the validity and relevance of our results within the broader context of quantum field theories based on these nonlocal dynamics.
Spin-SILC: CMB polarisation component separation with spin wavelets
Rogers, Keir K.; Peiris, Hiranya V.; Leistedt, Boris; McEwen, Jason D.; Pontzen, Andrew
2016-08-01
We present Spin-SILC, a new foreground component separation method that accurately extracts the cosmic microwave background (CMB) polarisation E and B modes from raw multifrequency Stokes Q and U measurements of the microwave sky. Spin-SILC is an internal linear combination method that uses spin wavelets to analyse the spin-2 polarisation signal P = Q + iU. The wavelets are additionally directional (non-axisymmetric). This allows different morphologies of signals to be separated and therefore the cleaning algorithm is localised using an additional domain of information. The advantage of spin wavelets over standard scalar wavelets is to simultaneously and self-consistently probe scales and directions in the polarisation signal P = Q + iU and in the underlying E and B modes, therefore providing the ability to perform component separation and E-B decomposition concurrently for the first time. We test Spin-SILC on full-mission Planck simulations and data and show the capacity to correctly recover the underlying cosmological E and B modes. We also demonstrate a strong consistency of our CMB maps with those derived from existing component separation methods. Spin-SILC can be combined with the pseudo- and pure E-B spin wavelet estimators presented in a companion paper to reliably extract the cosmological signal in the presence of complicated sky cuts and noise. Therefore, it will provide a computationally-efficient method to accurately extract the CMB E and B modes for future polarisation experiments.
Origin and effect of nonlocality in a layered composite.
Energy Technology Data Exchange (ETDEWEB)
Silling, Stewart Andrew
2014-01-01
A simple demonstration of nonlocality in a heterogeneous material is presented. By analysis of the microscale deformation of a two-component layered medium, it is shown that nonlocal interactions necessarily appear in a homogenized model of the system. Explicit expressions for the nonlocal forces are determined. The way these nonlocal forces appear in various nonlocal elasticity theories is derived. The length scales that emerge involve the constituent material properties as well as their geometrical dimen- sions. A peridynamic material model for the smoothed displacement eld is derived. It is demonstrated by comparison with experimental data that the incorporation of non- locality in modeling dramatically improves the prediction of the stress concentration in an open hole tension test on a composite plate.
Modulational instability in the nonlocal chi(2)-model
DEFF Research Database (Denmark)
Wyller, John Andreas; Krolikowski, Wieslaw; Bang, Ole
2007-01-01
We investigate in detail the linear regime of the modulational instability (MI) properties of the plane waves of the nonlocal model for chi((2))- media formulated in Nikolov et al. [N.I. Nikolov, D. Neshev, O. Bang, W.Z. Krolikowski, Quadratic solitons as nonlocal solitons, Phys. Rev. E 68 (2003...... in the parameter space for which a fundamental gain band exists, and regions for which higher order gain bands and modulational stability exist. We also show that the MI analysis for the nonlocal model is applicable in the finite walk-off case. Finally, we show that the plane waves of the nonlocal chi((2))-model...... of the nonlocal chi((2))-model, by using the singular perturbational approach. The other branch of the plane waves (i.e. the nonadiabatic branch or the optical branch) is always modulationally unstable. We compare the MI results for the adiabatic branch with the predictions obtained from the full chi((2))-model...
Origin and effect of nonlocality in a layered composite.
Energy Technology Data Exchange (ETDEWEB)
Silling, Stewart Andrew
2014-01-01
A simple demonstration of nonlocality in a heterogeneous material is presented. By analysis of the microscale deformation of a two-component layered medium, it is shown that nonlocal interactions necessarily appear in a homogenized model of the system. Explicit expressions for the nonlocal forces are determined. The way these nonlocal forces appear in various nonlocal elasticity theories is derived. The length scales that emerge involve the constituent material properties as well as their geometrical dimen- sions. A peridynamic material model for the smoothed displacement eld is derived. It is demonstrated by comparison with experimental data that the incorporation of non- locality in modeling dramatically improves the prediction of the stress concentration in an open hole tension test on a composite plate.
Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators.
Belenchia, Alessio; Benincasa, Dionigi M T; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello
2016-04-22
Several quantum gravity scenarios lead to physics below the Planck scale characterized by nonlocal, Lorentz invariant equations of motion. We show that such nonlocal effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of optomechanical quantum oscillators is characterized by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the nonlocality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology.
Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators
Belenchia, Alessio; Benincasa, Dionigi M. T.; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello
2016-04-01
Several quantum gravity scenarios lead to physics below the Planck scale characterized by nonlocal, Lorentz invariant equations of motion. We show that such nonlocal effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of optomechanical quantum oscillators is characterized by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the nonlocality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology.
Nonlocal magnetoresistance measurements of the organic zero-gap conductor α -(BEDT-TTF ) 2I3
Kamiya, Takeshi; Kawasugi, Yoshitaka; Ara, Masato; Tada, Hirokazu
2017-02-01
We prepared nonlocal spin valves based on single crystals of an organic multilayered zero-gap conductor α -(BEDT-TTF ) 2I3 and succeeded in evaluating the spin-diffusion length (1.1 μm) and relaxation time (3 ns) at 2.5 K under a static pressure of 1.6 GPa using a polyethylene naphthalate as a substrate. Although α -(BEDT-TTF ) 2I3 includes heavy atoms, such as iodine, it exhibited a rather long spin-relaxation time comparable to that of graphene. The spin-orbit interaction (SOI) estimated on the basis of the experimental values of the spin-relaxation time and carrier lifetime (1.2 ps) was 90 mK. The long spin-relaxation time and small SOI evaluated for α -(BEDT-TTF ) 2I3 are considered to originate from its layered structure in which spin scattering induced by surface defects is suppressed. In addition, the inversion asymmetry, which generates an extra term in the equation for the SOI, might be reduced in layered structures. These findings provide guiding principles for materials design in organic spintronics.
Nonlocalized cluster dynamics and nuclear molecular structure
Zhou, Bo; Horiuchi, Hisashi; Ren, Zhongzhou; Röpke, Gerd; Schuck, Peter; Tohsaki, Akihiro; Xu, Chang; Yamada, Taiichi
2013-01-01
A container picture is proposed for understanding cluster dynamics where the clusters make nonlocalized motion occupying the lowest orbit of the cluster mean-field potential characterized by the size parameter $``B"$ in the THSR (Tohsaki-Horiuchi-Schuck-R\\"{o}pke) wave function. The nonlocalized cluster aspects of the inversion-doublet bands in $^{20}$Ne which have been considered as a typical manifestation of localized clustering are discussed. So far unexplained puzzling features of the THSR wave function, namely that after angular-momentum projection for two cluster systems the prolate THSR wave function is almost 100$\\%$ equivalent to an oblate THSR wave function is clarified. It is shown that the true intrinsic two-cluster THSR configuration is nonetheless prolate. The proposal of the container picture is based on the fact that typical cluster systems, 2$\\alpha$, 3$\\alpha$, and $\\alpha$+$^{16}$O, are all well described by a single THSR wave function. It will be shown for the case of linear-chain states w...
Nonlinear structure formation in Nonlocal Gravity
Barreira, Alexandre; Hellwing, Wojciech A; Baugh, Carlton M; Pascoli, Silvia
2014-01-01
We study the nonlinear growth of structure in nonlocal gravity models with the aid of N-body simulation and the spherical collapse and halo models. We focus on a model in which the inverse-squared of the d'Alembertian operator acts on the Ricci scalar in the action. For fixed cosmological parameters, this model differs from $\\Lambda{\\rm CDM}$ by having a lower late-time expansion rate and an enhanced and time-dependent gravitational strength ($\\sim 6\\%$ larger today). Compared to $\\Lambda{\\rm CDM}$ today, in the nonlocal model, massive haloes are slightly more abundant (by $\\sim 10\\%$ at $M \\sim 10^{14} M_{\\odot}/h$) and concentrated ($\\approx 8\\%$ enhancement over a range of mass scales), but their linear bias remains almost unchanged. We find that the Sheth-Tormen formalism describes the mass function and halo bias very well, with little need for recalibration of free parameters. The fitting of the halo concentrations is however essential to ensure the good performance of the halo model on small scales. For...
Structure of nonlocality of plasma turbulence
Gürcan, Ö. D.; Vermare, L.; Hennequin, P.; Berionni, V.; Diamond, P. H.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, P.; Grandgirard, V.; McDevitt, C. J.; Morel, P.; Sarazin, Y.; Storelli, A.; Bourdelle, C.; the Tore Supra Team
2013-07-01
Various indications on the weakly nonlocal character of turbulent plasma transport both from experimental fluctuation measurements from Tore Supra and observations from the full-f, flux-driven gyrokinetic code GYSELA are reported. A simple Fisher equation model of this weakly nonlocal dynamics can be formulated in terms of an evolution equation for the turbulent entropy density, which contains the basic phenomenon of radial turbulence spreading in addition to avalanche-like dynamics via coupling to profile modulations. A derivation of this model, which contains the so-called beach effect, a diffusive and convective flux components for the flux of turbulence intensity, in addition to linear group propagation is given, starting from the drift-kinetic equation. The proposed model has the form of a transport equation for turbulence intensity, and may be considered as an addition to transport modelling. The kinetic fluxes given, can be computed using model closures, or local gyrokinetics. The model is also used in a particular setup that represents the near edge region as a relatively stable zone between the core and edge region where the energy injection is locally more substantial. It is observed that with constant, physical coefficients, the model gives a convincing qualitative profile of fluctuation intensity when the turbulence is coming from the core region with either a group velocity or a convective flux.
Non-local models for ductile failure
César de Sá, José; Azinpour, Erfan; Santos, Abel
2016-08-01
Ductile damage can be dealt with continuous descriptions of material, resorting, for example, to continuous damage mechanic descriptions or micromechanical constitutive models. When it comes to describe material behaviour near and beyond fracture these approaches are no longer sufficient or valid and continuous/discontinuous approaches can be adopted to track fracture initiation and propagation. Apart from more pragmatic solutions like element erosion or remeshing techniques more advanced approaches based on the X-FEM concept, in particular associated with non-local formulations, may be adopted to numerically model these problems. Nevertheless, very often, for practical reasons, some important aspects are somewhat left behind, specially energetic requirements to promote the necessary transition of energy release associated with material damage and fracture energy associated to a crack creation and evolution. Phase-field methods may combine advantages of regularised continuous models by providing a similar description to non-local thermodynamical continuous damage mechanics, as well as, a "continuous" approach to numerically follow crack evolution and branching
Nonlocal image restoration with bilateral variance estimation: a low-rank approach.
Dong, Weisheng; Shi, Guangming; Li, Xin
2013-02-01
Simultaneous sparse coding (SSC) or nonlocal image representation has shown great potential in various low-level vision tasks, leading to several state-of-the-art image restoration techniques, including BM3D and LSSC. However, it still lacks a physically plausible explanation about why SSC is a better model than conventional sparse coding for the class of natural images. Meanwhile, the problem of sparsity optimization, especially when tangled with dictionary learning, is computationally difficult to solve. In this paper, we take a low-rank approach toward SSC and provide a conceptually simple interpretation from a bilateral variance estimation perspective, namely that singular-value decomposition of similar packed patches can be viewed as pooling both local and nonlocal information for estimating signal variances. Such perspective inspires us to develop a new class of image restoration algorithms called spatially adaptive iterative singular-value thresholding (SAIST). For noise data, SAIST generalizes the celebrated BayesShrink from local to nonlocal models; for incomplete data, SAIST extends previous deterministic annealing-based solution to sparsity optimization through incorporating the idea of dictionary learning. In addition to conceptual simplicity and computational efficiency, SAIST has achieved highly competent (often better) objective performance compared to several state-of-the-art methods in image denoising and completion experiments. Our subjective quality results compare favorably with those obtained by existing techniques, especially at high noise levels and with a large amount of missing data.
A new correlator in quantum spin chains
Energy Technology Data Exchange (ETDEWEB)
Keating, J P; Mezzadri, F; Novaes, M [School of Mathematics, University of Bristol, Bristol BS8 1TW (United Kingdom)
2006-06-16
We propose a new correlator in one-dimensional quantum spin chains, the s-emptiness formation probability (s-EFP). This is a generalization of the emptiness formation probability (EFP), which is the probability that the first n spins of the chain are all aligned downwards. In the s-EFP we let the spins in question be separated by s sites. The usual EFP corresponds to the special case when s = 1. Taking s > 1 allows us to quantify non-local correlations. We express the s-EFP for the anisotropic XY model in a transverse magnetic field, a system with both critical and non-critical regimes, in terms of a Toeplitz determinant. For the isotropic XY model we find that the magnetic field induces an interesting length scale. (letter to the editor)
Liu, Jiulong; Ding, Huanjun; Molloi, Sabee; Zhang, Xiaoqun; Gao, Hao
2016-12-01
This work develops a material reconstruction method for spectral CT, namely Total Image Constrained Material Reconstruction (TICMR), to maximize the utility of projection data in terms of both spectral information and high signal-to-noise ratio (SNR). This is motivated by the following fact: when viewed as a spectrally-integrated measurement, the projection data can be used to reconstruct a total image without spectral information, which however has a relatively high SNR; when viewed as a spectrally-resolved measurement, the projection data can be utilized to reconstruct the material composition, which however has a relatively low SNR. The material reconstruction synergizes material decomposition and image reconstruction, i.e., the direct reconstruction of material compositions instead of a two-step procedure that first reconstructs images and then decomposes images. For material reconstruction with high SNR, we propose TICMR with nonlocal total variation (NLTV) regularization. That is, first we reconstruct a total image using spectrally-integrated measurement without spectral binning, and build the NLTV weights from this image that characterize nonlocal image features; then the NLTV weights are incorporated into a NLTV-based iterative material reconstruction scheme using spectrally-binned projection data, so that these weights serve as a high-SNR reference to regularize material reconstruction. Note that the nonlocal property of NLTV is essential for material reconstruction, since material compositions may have significant local intensity variations although their structural information is often similar. In terms of solution algorithm, TICMR is formulated as an iterative reconstruction method with the NLTV regularization, in which the nonlocal divergence is utilized based on the adjoint relationship. The alternating direction method of multipliers is developed to solve this sparsity optimization problem. The proposed TICMR method was validated using both simulated
Nonlocal Mumford-Shah regularizers for color image restoration.
Jung, Miyoun; Bresson, Xavier; Chan, Tony F; Vese, Luminita A
2011-06-01
We propose here a class of restoration algorithms for color images, based upon the Mumford-Shah (MS) model and nonlocal image information. The Ambrosio-Tortorelli and Shah elliptic approximations are defined to work in a small local neighborhood, which are sufficient to denoise smooth regions with sharp boundaries. However, texture is nonlocal in nature and requires semilocal/non-local information for efficient image denoising and restoration. Inspired from recent works (nonlocal means of Buades, Coll, Morel, and nonlocal total variation of Gilboa, Osher), we extend the local Ambrosio-Tortorelli and Shah approximations to MS functional (MS) to novel nonlocal formulations, for better restoration of fine structures and texture. We present several applications of the proposed nonlocal MS regularizers in image processing such as color image denoising, color image deblurring in the presence of Gaussian or impulse noise, color image inpainting, color image super-resolution, and color filter array demosaicing. In all the applications, the proposed nonlocal regularizers produce superior results over the local ones, especially in image inpainting with large missing regions. We also prove several characterizations of minimizers based upon dual norm formulations.
Degenerate-band-edge engineering inspired by nonlocal transformation optics
Directory of Open Access Journals (Sweden)
Moccia Massimo
2016-01-01
Full Text Available We address the engineering of degenerate-band-edge effects in nonlocal metamaterials. Our approach, inspired by nonlocal-transformation-optics concepts, is based on the approximation of analytically-derived nonlocal constitutive “blueprints”. We illustrate the synthesis procedure, and present and validate a possible implementation based on multilayered metamaterials featuring anisotropic constituents. We also elucidate the physical mechanisms underlying our approach and proposed configuration, and highlight the substantial differences with respect to other examples available in the topical literature.
Degenerate-band-edge engineering inspired by nonlocal transformation optics
Directory of Open Access Journals (Sweden)
Moccia Massimo
2016-01-01
Full Text Available We address the engineering of degenerate-band-edge effects in nonlocal metamaterials. Our approach, inspired by nonlocal-transformation-optics concepts, is based on the approximation of analytically-derived nonlocal constitutive “blueprints”. We illustrate the synthesis procedure, and present and validate a possible implementation based on multilayered metamaterials featuring anisotropic constituents. We also elucidate the physical mechanisms underlying our approach and proposed configuration, and highlight the substantial differences with respect to other examples available in the topical literature.
Large nonlocal nonlinear optical response of castor oil
Souza, Rogério F.; Alencar, Márcio A. R. C.; Meneghetti, Mario R.; Hickmann, Jandir M.
2009-09-01
The nonlocal nonlinearity of castor oil was investigated using the Z-scan technique in the CW regime at 514 nm and in femtosecond regime at 810 nm. Large negative nonlinear refractive indexes of thermal origin, thermo-optical coefficients and degree of nonlocality were obtained for both laser excitation wavelengths. The results indicate that the electronic part of the nonlinear refractive index and nonlinear absorption were negligible. Our results suggest that castor oil is promising candidate as a nonlinear medium for several nonlocal optical applications, such as in spatial soliton propagation, as well as a dispersant agent in the measurement of absorptive properties of nanoparticles.
Generic features of modulational instability in nonlocal Kerr media
DEFF Research Database (Denmark)
Wyller, John; Krolikowski, Wieslaw; Bang, Ole
2002-01-01
The modulational instability (MI) of plane waves in nonlocal Kerr media is studied for a general response function. Several generic properties are proven mathematically, with emphasis on how new gain bands are formed through a bifurcation process when the degree of nonlocality, sigma, passes...... the nonlocality tends to suppress MI, but can never remove it completely, irrespectively of the shape of the response function. For a defocusing nonlinearity the stability properties depend sensitively on the profile of the response function. For response functions with a positive-definite spectrum...
Unusual resonances in nanoplasmonic structures due to nonlocal response
DEFF Research Database (Denmark)
Raza, Søren; Toscano, Giuseppe; Jauho, Antti-Pekka
2011-01-01
We study the nonlocal response of a confined electron gas within the hydrodynamical Drude model. We address the question as to whether plasmonic nanostructures exhibit nonlocal resonances that have no counterpart in the local-response Drude model. Avoiding the usual quasistatic approximation, we...... find that such resonances do indeed occur, but only above the plasma frequency. Thus the recently found nonlocal resonances at optical frequencies for very small structures, obtained within quasistatic approximation, are unphysical. As a specific example we consider nanosized metallic cylinders...
Theory of nonlocal soliton interaction in nematic liquid crystals
DEFF Research Database (Denmark)
Rasmussen, Per Dalgaard; Bang, Ole; Krolikowski, Wieslaw
2005-01-01
We investigate interactions between spatial nonlocal bright solitons in nematic liquid crystals using an analytical “effective particle” approach as well as direct numerical simulations. The model predicts attraction of out-of-phase solitons and the existence of their stable bound state....... This nontrivial property is solely due to the nonlocal nature of the nonlinear response of the liquid crystals. We further predict and verify numerically the critical outwards angle and degree of nonlocality which determine the transition between attraction and repulsion of out-of-phase solitons....
Strain analysis of nonlocal viscoelastic Kelvin bar in tension
Institute of Scientific and Technical Information of China (English)
ZHAO Xue-chuan; LEI Yong-jun; ZHOU Jian-ping
2008-01-01
Based on viscoelastic Kelvin model and nonlocal relationship of strain and stress, a nonlocal constitutive relationship of viscoelasticity is obtained and the strain response of a bar in tension is studied. By transforming governing equation of the strain analysis into Volterra integration form and by choosing a symmetric exponential form of kernel function and adapting Neumann series, the closed-form solution of strain field of the bar is obtained. The creep process of the bar is presented. When time approaches infinite, the strain of bar is equal to the one of nonlocal elasticity.
Stochastic waves in a Brusselator model with nonlocal interaction.
Biancalani, Tommaso; Galla, Tobias; McKane, Alan J
2011-08-01
We show that intrinsic noise can induce spatiotemporal phenomena such as Turing patterns and traveling waves in a Brusselator model with nonlocal interaction terms. In order to predict and to characterize these stochastic waves we analyze the nonlocal model using a system-size expansion. The resulting theory is used to calculate the power spectra of the stochastic waves analytically and the outcome is tested successfully against simulations. We discuss the possibility that nonlocal models in other areas, such as epidemic spread or social dynamics, may contain similar stochastically induced patterns.
Non-local thin films in Casimir force calculations
Esquivel, R
2005-01-01
he Casimir force is calculated between plates with thin metallic coating. Thin films are described with spatially dispersive (nonlocal) dielectric functions. For thin films the nonlocal effects are more relevant than for half-spaces. However, it is shown that even for film thickness smaller than the mean free path for electrons, the difference between local and nonlocal calculations of the Casimir force is of the order of a few tenths of a percent. Thus the local description of thin metallic films is adequate within the current experimental precision and range of separations.
Incompressible turbulence as non-local field theory
Indian Academy of Sciences (India)
Mahendra K Verma
2005-03-01
It is well-known that incompressible turbulence is non-local in real space because sound speed is infinite in incompressible fluids. The equation in Fourier space indicates that it is non-local in Fourier space as well. However, the shell-to-shell energy transfer is local. Contrast this with Burgers equation which is local in real space. Note that the sound speed in Burgers equation is zero. In our presentation we will contrast these two equations using non-local field theory. Energy spectrum and renormalized parameters will be discussed.
Aqeel, A.; Vlietstra, N.; Heuver, J. A.; Bauer, G. E. W.; Noheda, B.; van Wees, B. J.; Palstra, T. T. M.
2015-01-01
We report on the spin-Hall magnetoresistance (SMR) and spin Seebeck effect (SSE) in multiferroic CoCr2O4 (CCO) spinel thin films with Pt contacts. We observe a large enhancement of both signals below the spin-spiral (T-s = 28 K) and the spin lock-in (Tlock-in = 14 K) transitions. The SMR and SSE res
Aqeel, A.; Vlietstra, N.; Heuver, J.A.; Bauer, G.E.W.; Noheda, B.; Van Wees, B.J.; Palstra, T.T.M.
2015-01-01
We report on the spin-Hall magnetoresistance (SMR) and spin Seebeck effect (SSE) in multiferroic CoCr2O4 (CCO) spinel thin films with Pt contacts. We observe a large enhancement of both signals below the spin-spiral (Ts=28K) and the spin lock-in (Tlock−in=14K) transitions. The SMR and SSE responses
Nonlocality Distillation and Trivial Communication Complexity for High-Dimensional Systems
Institute of Scientific and Technical Information of China (English)
Yan Li; Xiang-Jun Ye; Jing-Ling Chen
2016-01-01
A nonlocality distillation protocol for arbitrary high-dimensional systems is proposed.We study the nonlocality distillation in the 2-input d-output bi-partite case.Firstly,we give the one-parameter nonlocal boxes and their correlated distilling protocol.Then,we generalize the one-parameter nonlocality distillation protocol to the two-parameter case.Furthermore,we introduce a contracting protocol testifying that the 2-input d-output nonlocal boxes make communication complexity trivial.
Ermakov's Superintegrable Toy and Nonlocal Symmetries
Leach, P. G. L.; Karasu Kalkanli, A.; Nucci, M. C.; Andriopoulos, K.
2005-11-01
We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.
Ermakov's Superintegrable Toy and Nonlocal Symmetries
Directory of Open Access Journals (Sweden)
P.G.L. Leach
2005-11-01
Full Text Available We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R. The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.
The quantum handshake entanglement, nonlocality and transactions
Cramer, John G
2016-01-01
This book shines bright light into the dim recesses of quantum theory, where the mysteries of entanglement, nonlocality, and wave collapse have motivated some to conjure up multiple universes, and others to adopt a "shut up and calculate" mentality. After an extensive and accessible introduction to quantum mechanics and its history, the author turns attention to his transactional model. Using a quantum handshake between normal and time-reversed waves, this model provides a clear visual picture explaining the baffling experimental results that flow daily from the quantum physics laboratories of the world. To demonstrate its powerful simplicity, the transactional model is applied to a collection of counter-intuitive experiments and conceptual problems.
A nonlocal spatial model for Lyme disease
Yu, Xiao; Zhao, Xiao-Qiang
2016-07-01
This paper is devoted to the study of a nonlocal and time-delayed reaction-diffusion model for Lyme disease with a spatially heterogeneous structure. In the case of a bounded domain, we first prove the existence of the positive steady state and a threshold type result for the disease-free system, and then establish the global dynamics for the model system in terms of the basic reproduction number. In the case of an unbound domain, we obtain the existence of the disease spreading speed and its coincidence with the minimal wave speed. At last, we use numerical simulations to verify our analytic results and investigate the influence of model parameters and spatial heterogeneity on the disease infection risk.
Photonic multipartite entanglement conversion using nonlocal operations
Tashima, T.; Tame, M. S.; Özdemir, Ş. K.; Nori, F.; Koashi, M.; Weinfurter, H.
2016-11-01
We propose a simple setup for the conversion of multipartite entangled states in a quantum network with restricted access. The scheme uses nonlocal operations to enable the preparation of states that are inequivalent under local operations and classical communication, but most importantly does not require full access to the states. It is based on a flexible linear optical conversion gate that uses photons, which are ideally suited for distributed quantum computation and quantum communication in extended networks. In order to show the basic working principles of the gate, we focus on converting a four-qubit entangled cluster state to other locally inequivalent four-qubit states, such as the Greenberger-Horne-Zeilinger and symmetric Dicke states. We also show how the gate can be incorporated into extended graph state networks and can be used to generate variable entanglement and quantum correlations without entanglement but nonvanishing quantum discord.
A quantum loophole to Bell nonlocality
Romero-Rochin, Victor
2015-01-01
We argue that the conclusion of Bell theorem, namely, that there must be spatial non-local correlations in certain experimental situations, does not apply to typical individual measurements performed on entangled EPR pairs. Our claim is based on three points, (i) on the notion of quantum {\\it complete measurements}; (ii) on Bell results on local yet distant measurements; and (iii) on the fact that perfect simultaneity is banned by the quantum mechanics. We show that quantum mechanics indicates that, while the measurements of the pair members are indeed space-like separated, the pair measurement is actually a sequence of two complete measurements, the first one terminating the entanglement and, therefore, the second one becoming unrelated to the initial preparation of the entangled pair. The outstanding feature of these measurements is that neither of them violates the principle of locality. We discuss that the present measurement viewpoint appears to run contrary to the usual interpretation of "superposition"...
Construction of nonlocal multipartite quantum states
Zhang, Zhi-Chao; Zhang, Ke-Jia; Gao, Fei; Wen, Qiao-Yan; Oh, C. H.
2017-05-01
For general bipartite quantum systems, many sets of locally indistinguishable orthogonal product states have been constructed so far. Here, we first present a general method to construct multipartite orthogonal product states in d1⊗d2⊗⋯⊗dn(d1 ,2 ,⋯,n≥3 ,n ≥4 ) by using some locally indistinguishable bipartite orthogonal product states. And we prove that these multipartite orthogonal quantum states cannot be distinguished by local operations and classical communication. Furthermore, in d1⊗d2⊗⋯⊗dn(d1 ,2 ,⋯,n≥3 ,n ≥5 ) , we give a general method to construct a much smaller number of locally indistinguishable multipartite orthogonal product states for even and odd n separately. In addition, we also present a general method to construct complete orthogonal product bases for the multipartite quantum systems. Our results demonstrate the phenomenon of nonlocality without entanglement for the multipartite quantum systems.
Aspects of metric-like higher-spin geometry
Energy Technology Data Exchange (ETDEWEB)
Francia, D. [Centro Studi e Ricerche E. Fermi, piazza del Viminale 1, I-00184 Roma, Italy and Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, I-56126 Pisa (Italy)
2012-09-24
We consider the higher-derivative equations obtained setting to zero the divergence of the higher-spin curvatures in metric-like form, showing their equivalence to the second-order equations emerging from the tensionless limit of open string field theory, propagating reducible spectra of particles with different spins. This result can be viewed as complementary to the possibility of setting to zero a single trace of the higher-spin field strengths, yielding an equation known to imply Fronsdal's equation in the compensator form. We review the general context and results obtained in the investigation of metric-like higher-spin geometry, the structure of the corresponding non-local actions, together with their links to more conventional, local forms including a recently proposed one for higher-spin theories with transverse gauge invariance.
Fukukawa, Kenji
2010-01-01
The S-wave effective range parameters of the neutron-deuteron (nd) scattering are derived in the Faddeev formalism, using a nonlocal Gaussian potential based on the quark-model baryon-baryon interaction fss2. The spin-doublet low-energy eigenphase shift is sufficiently attractive to reproduce predictions by the AV18 plus Urbana three-nucleon force, yielding the observed value of the doublet scattering length and the correct differential cross sections below the deuteron breakup threshold. This conclusion is consistent with the previous result for the triton binding energy, which is nearly reproduced by fss2 without reinforcing it with the three-nucleon force.
GAUSSIAN PRINCIPLE COMPONENTS FOR NONLOCAL MEANS IMAGE DENOISING
Institute of Scientific and Technical Information of China (English)
Li Xiangping; Wang Xiaotian; Shi Guangming
2011-01-01
NonLocal Means (NLM),taking fully advantage of image redundancy,has been proved to be very effective in noise removal.However,high computational load limits its wide application.Based on Principle Component Analysis (PCA),Principle Neighborhood Dictionary (PND) was proposed to reduce the computational load of NLM.Nevertheless,as the principle components in PND method are computed directly from noisy image neighborhoods,they are prone to be inaccurate due to the presence of noise.In this paper,an improved scheme for image denoising is proposed.This scheme is based on PND and uses preprocessing via Gaussian filter to eliminate the influence of noise.PCA is then used to project those filtered image neighborhood vectors onto a lower-dimensional space.With the preprocessing process,the principle components computed are more accurate resulting in an improved denoising performance.A comparison with some NLM based and state-of-art denoising methods shows that the proposed method performs well in terms of Peak Signal to Noise Ratio (PSNR) as well as image visual fidelity.The experimental results demonstrate that our method outperforms existing methods both subjectively and objectively.
An Introduction to Free Higher-Spin Fields
Bouatta, N; Sagnotti, A
2004-01-01
In this article we begin by reviewing the (Fang-)Fronsdal construction and the non-local geometric equations with unconstrained gauge fields and parameters built by Francia and the senior author from the higher-spin curvatures of de Wit and Freedman. We then turn to the triplet structure of totally symmetric tensors that emerges from free String Field Theory in the $\\alpha' \\to 0$ limit and to its generalization to (A)dS backgrounds, and conclude with a discussion of a simple local compensator form of the field equations that displays the unconstrained gauge symmetry of the non-local equations. Based on the lectures presented by A. Sagnotti at the First Solvay Workshop on Higher-Spin Gauge Theories held in Brussels on May 12-14, 2004
Energy Technology Data Exchange (ETDEWEB)
Curtright, T.L., E-mail: curtright@miami.edu [Department of Physics, University of Miami, Coral Gables, FL 33124-8046 (United States); Van Kortryk, T.S., E-mail: vankortryk@gmail.com [Department of Physics, University of Miami, Coral Gables, FL 33124-8046 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439-4815 (United States); Zachos, C.K., E-mail: zachos@anl.gov [Department of Physics, University of Miami, Coral Gables, FL 33124-8046 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439-4815 (United States)
2017-02-05
The number of times spin s appears in the Kronecker product of n spin j representations is computed, and the large n asymptotic behavior of the result is obtained. Applications are briefly sketched. - Highlights: • We give a self-contained derivation of the spin multiplicities that occur in n-fold tensor products of spin-j representations. • We make use of group characters, properties of special functions, and asymptotic analysis of integrals. • We emphasize patterns that arise when comparing different values of j, and asymptotic behavior for large n. • Our methods and results should be useful for various statistical and quantum information theory calculations.
Fixed-phase vs fixed-node quantum Monte Carlo with local and nonlocal interactions
Mitas, Lubos; Melton, Cody
We study several systems that can be formulated in the fixed-phase and/or fixed-node framework in quantum Monte Carlo calculations. In particular, we try to understand the differences between the biases caused by these approximations that result from using complex vs real trial wave functions. One system is a model that enables us to construct systematically the same type of nodal errors in both real and complex formalism. The errors are comparably similar whenever trial functions are correspondingly accurate. Another aspect of the fixed-phase vs fixed-node approximations is studied for systems with nonlocal operators such as with pseudopotentials and/or spin-orbit effects. We specify how to obtain variational formulation for complex wave functions and nonlocal operators in a manner analogous to the fixed-node calculations with T-moves algorithm. In particular, we show that the fixed-phase/fixed-node is the primary condition for proving that the upper bound property holds.
Jain, Abhinav; Rojas-Sanchez, Juan-Carlos; Cubukcu, Murat; Peiro, Julian; Le Breton, Jean-Christophe; Vergnaud, Céline; Augendre, Emmanuel; Vila, Laurent; Attané, Jean-Philippe; Gambarelli, Serge; Jaffrès, Henri; George, Jean-Marie; Jamet, Matthieu
2013-04-01
Electrical spin injection into semiconductors paves the way for exploring new phenomena in the area of spin physics and new generations of spintronic devices. However the exact role of interface states in the electrical spin injection mechanism from a magnetic tunnel junction into a semiconductor is still under debate. Here we demonstrate a clear transition from spin accumulation into interface states to spin injection in the conduction band of n-Si and n-Ge using a CoFeB/MgO tunnel contact. We observe spin signal amplification at low temperature due to spin accumulation into interface states followed by a clear transition towards spin injection in the conduction band from approximately 150 K up to room temperature. In this regime, the spin signal is reduced down to a value compatible with the standard spin diffusion model. More interestingly, in the case of germanium, we demonstrate a significant modulation of the spin signal by applying a back-gate voltage to the conduction channel. We also observe the inverse spin Hall effect in Ge by spin pumping from the CoFeB electrode. Both observations are consistent with spin accumulation in the Ge conduction band.
Coherent manipulation of nuclear spins using spin injection from a half-metallic spin source
Uemura, Tetsuya; Akiho, Takafumi; Ebina, Yuya; Yamamoto, Masafumi
2016-10-01
We have developed a novel nuclear magnetic resonance (NMR) system that uses spin injection from a highly polarized spin source. Efficient spin injection into GaAs from a half-metallic spin source of Mn-rich Co2MnSi enabled an efficient dynamic nuclear polarization of Ga and As nuclei in GaAs and a sensitive detection of NMR signals. Moreover, coherent control of nuclear spins, or the Rabi oscillation between two quantum levels formed at Ga nuclei, induced by a pulsed NMR has been demonstrated at a relatively low magnetic field of ˜0.1 T. This provides a novel all-electrical solid-state NMR system with the high spatial resolution and high sensitivity needed to implement scalable nuclear-spin based qubits.
Energy Technology Data Exchange (ETDEWEB)
Chase, Hilary M.; Chen, Shunli; Fu, Li; Upshur, Mary Alice; Rudshteyn, Benjamin; Thomson, Regan J.; Wang, Hong-Fei; Batista, Victor S.; Geiger, Franz M.
2017-09-01
Inferring molecular orientations from vibrational sum frequency generation (SFG) spectra is challenging in polarization combinations that result in low signal intensities, or when the local point group symmetry approximation fails. While combining experiments with density functional theory (DFT) could overcome this problem, the scope of the combined method has yet to be established. Here, we assess its feasibility of determining the distributions of molecular orientations for one monobasic ester, two epoxides and three alcohols at the vapor/fused silica interface. We find that molecular orientations of nonlocal vibrational modes cannot be determined using polarization-resolved SFG measurements alone.
Non-local plasticity effects on fracture toughness
DEFF Research Database (Denmark)
Niordson, Christian Frithiof
2002-01-01
The Mode I fracture strength in a nonlocal elastic-plastic material is analyzed under quasi-static steady crack growth. The plastic deformations are modelled using a constitutive model, where nonlocal plasticity effects are included in the instantaneous hardening moduli through a gradient measure...... of the effective plastic strain. Fracture is modelled by a cohesive zone criterion. Results on the numerically obtained stress fields are presented, as well as results on the steady-state fracture toughness. It is shown that the nonlocal theory predicts lower steady-state fracture toughness compared to predictions...... by conventional J2-flow theory, since higher normal stresses in front of the crack tip are predicted. Furthermore, the nonlocal material description increases the range of applicability of the cohesive zone model, since steady-state crack growth is possible for significantly larger values of the maximum stress...
Discrete model of dislocations in fractional nonlocal elasticity
National Research Council Canada - National Science Library
Tarasov, Vasily E
2016-01-01
Discrete models of dislocations in fractional nonlocal materials are suggested. The proposed models are based on fractional-order differences instead of finite differences of integer orders that are usually used...
Nonlocal viscous transport and the effect on fluid stress.
Todd, B D; Hansen, J S
2008-11-01
We demonstrate that, in general, only for fluid flows in which the gradient of the strain rate is constant or zero can the classical Navier-Stokes equations with constant transport coefficients be considered exact. This is typical of two of the most common types of flow: Couette and Poiseuille. For more complicated flow fields in which the streaming velocity involves higher order nonlinear terms, the use of nonlocal constitutive equations gives an exact description of the flow. These constitutive equations involve nonlocal transport kernels. For momentum transport we demonstrate that nonlocality will be significant for any particular flow field if the even moments of the nonlocal viscosity kernel are non-negligible. This corresponds to the condition that the strain rate varies appreciably over the width of the kernel in real space. Such conditions are likely to be dominant for nanofluidic flows.
NONDENSELY DEFINED IMPULSIVE NEUTRAL FUNCTIONAL DIFFERENTIAL INCLUSIONS WITH NONLOCAL CONDITIONS
Institute of Scientific and Technical Information of China (English)
Yueju Cao; Xianlong Fu
2009-01-01
In this paper, using a fixed point theorem for condensing multi-valued maps, we investigate the existence of integral solutions to a class of nondensely defined neutral evolution impulsive differential inclusions with nonlocal conditions in Banach spaces.
Controllability of semilinear integrodifferential equations with nonlocal conditions
Directory of Open Access Journals (Sweden)
Rahima Atmania
2005-07-01
Full Text Available We establish sufficient conditions for the controllability of some semilinear integrodifferential systems with nonlocal condition in a Banach space. The results are obtained using the Schaefer fixed-point theorem and semigroup theory.
Tests of quantum-gravity-induced nonlocality via optomechanical experiments
Belenchia, Alessio; Benincasa, Dionigi M. T.; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello
2017-01-01
The nonrelativistic limit of nonlocal modifications to the Klein-Gordon operator is studied, and the experimental possibilities of casting stringent constraints on the nonlocality scale via planned and/or current optomechanical experiments are discussed. Details of the perturbative analysis and semianalytical simulations leading to the dynamic evolution of a quantum harmonic oscillator in the presence of nonlocality reported in [A. Belenchia, D. M. T. Benincasa, S. Liberati, F. Marin, F. Marino, and A. Ortolan, Phys. Rev. Lett. 116, 161303 (2016), 10.1103/PhysRevLett.116.161303] are given, together with a comprehensive account of the experimental methodology with particular regard to sensitivity limitations related to thermal decoherence time and active cooling of the oscillator. Finally, a strategy for detecting nonlocality scales of the order of 10-22÷10-26 m by means of the spontaneous time-periodic squeezing of quantum-coherent states is provided.
Controllability of impulsive functional differential systems with nonlocal conditions
Directory of Open Access Journals (Sweden)
Yansheng Liu
2013-08-01
Full Text Available In this article, we study the controllability of impulsive functional differential equations with nonlocal conditions. We establish sufficient conditions for controllability, via the measure of noncompactness and Monch fixed point theorem.
Popescu-Rohrlich correlations imply efficient instantaneous nonlocal quantum computation
Broadbent, Anne
2016-08-01
In instantaneous nonlocal quantum computation, two parties cooperate in order to perform a quantum computation on their joint inputs, while being restricted to a single round of simultaneous communication. Previous results showed that instantaneous nonlocal quantum computation is possible, at the cost of an exponential amount of prior shared entanglement (in the size of the input). Here, we show that a linear amount of entanglement suffices, (in the size of the computation), as long as the parties share nonlocal correlations as given by the Popescu-Rohrlich box. This means that communication is not required for efficient instantaneous nonlocal quantum computation. Exploiting the well-known relation to position-based cryptography, our result also implies the impossibility of secure position-based cryptography against adversaries with nonsignaling correlations. Furthermore, our construction establishes a quantum analog of the classical communication complexity collapse under nonsignaling correlations.
Non-local plasticity effects on fracture toughness
DEFF Research Database (Denmark)
Niordson, Christian Frithiof
2002-01-01
The Mode I fracture strength in a nonlocal elastic-plastic material is analyzed under quasi-static steady crack growth. The plastic deformations are modelled using a constitutive model, where nonlocal plasticity effects are included in the instantaneous hardening moduli through a gradient measure...... of the effective plastic strain. Fracture is modelled by a cohesive zone criterion. Results on the numerically obtained stress fields are presented, as well as results on the steady-state fracture toughness. It is shown that the nonlocal theory predicts lower steady-state fracture toughness compared to predictions...... by conventional J2-flow theory, since higher normal stresses in front of the crack tip are predicted. Furthermore, the nonlocal material description increases the range of applicability of the cohesive zone model, since steady-state crack growth is possible for significantly larger values of the maximum stress...
Self-adjoint integral operator for bounded nonlocal transport
Maggs, J. E.; Morales, G. J.
2016-11-01
An integral operator is developed to describe nonlocal transport in a one-dimensional system bounded on both ends by material walls. The "jump" distributions associated with nonlocal transport are taken to be Lévy α -stable distributions, which become naturally truncated by the bounding walls. The truncation process results in the operator containing a self-consistent, convective inward transport term (pinch). The properties of the integral operator as functions of the Lévy distribution parameter set [α ,γ ] and the wall conductivity are presented. The integral operator continuously recovers the features of local transport when α =2 . The self-adjoint formulation allows for an accurate description of spatial variation in the Lévy parameters in the nonlocal system. Spatial variation in the Lévy parameters is shown to result in internally generated flows. Examples of cold-pulse propagation in nonlocal systems illustrate the capabilities of the methodology.
Causal Set theory, non-locality and phenomenology
Belenchia, Alessio
2015-01-01
This proceeding is based on a talk prepared for the XIV Marcel Grossmann meeting. We review some results on causal set inspired non-local theories as well as work in progress concerning their phenomenology.
Observation of two-dimensional nonlocal gap solitons
DEFF Research Database (Denmark)
Rasmussen, Per Dalgaard; Bennett, Francis H.; Neshev, Dragomir N.
2009-01-01
We demonstrate, both theoretically and experimentally, the existence of nonlocal gap solitons in twodimensional periodic photonic structures with defocusing thermal nonlinearity. We employ liquid-infiltrated photonic crystal fibers and show how the system geometry can modify the effective respons...
Nonlocal quintic nonlinearity by cascaded THG in dispersive media
DEFF Research Database (Denmark)
Eilenberger, F.; Bache, Morten; Minardi, S.;
2011-01-01
We discuss a perturbed nonlocal cubicquintic equation describing the propagation of light pulses in a dispersive, cubic nonlinearmedium in the presence of phase and velocity mismatched third harmonic generation....
Nonlocal scalar quantum field theory from causal sets
Belenchia, Alessio; Benincasa, Dionigi M. T.; Liberati, Stefano
2015-03-01
We study a non-local scalar quantum field theory in flat spacetime derived from the dynamics of a scalar field on a causal set. We show that this non-local QFT contains a continuum of massive modes in any dimension. In 2 dimensions the Hamiltonian is positive definite and therefore the quantum theory is well-defined. In 4-dimensions, we show that the unstable modes of the non-local d'Alembertian are propagated via the so called Wheeler propagator and hence do not appear in the asymptotic states. In the free case studied here the continuum of massive mode are shown to not propagate in the asymptotic states. However the Hamiltonian is not positive definite, therefore potential issues with the quantum theory remain. Finally, we conclude with hints toward what kind of phenomenology one might expect from such non-local QFTs.
Nonlocal Scalar Quantum Field Theory from Causal Sets
Belenchia, Alessio; Liberati, Stefano
2014-01-01
We study a non-local scalar quantum field theory in flat spacetime derived from the dynamics of a scalar field on a causal set. We show that this non-local QFT contains a continuum of massive modes in any dimension. In 2 dimensions the Hamiltonian is positive definite and therefore the quantum theory is well-defined. In 4-dimensions, we show that the unstable modes of the non-local d'Alembertian are propagated via the so called Wheeler propagator and hence do not appear in the asymptotic states. In the free case studied here the continuum of massive mode are shown to not propagate in the asymptotic states. However the Hamiltonian is not positive definite, therefore potential issues with the quantum theory remain. Finally, we conclude with hints toward what kind of phenomenology one might expect from such non-local QFTs.
Isospin from Spin by Compositenes
Fauser, B; Fauser, Bertfried; Dehnen, Heinz
1999-01-01
We propose a new method to generate the internal isospin degree of freedom by non-local bound states. This can be seen as motivated by Bargmann-Wigner like considerations, which originated from local spin coupling. However, our approach is not of purely group theoretical origin, but emerges from a geometrical model. The rotational part of the Lorentz group can be seen to mutate into the internal iso-group under some additional assumptions. The bound states can thereafter be characterized by either a triple of spinors (\\xi_1, Inducing the whole dynamics from the covariant gauge coupling we arrive at an isospin gauge theory and its Lagrangian formulation. Clifford algebraic methods, especially the Hestenes approach to the geometric meaning of spinors, are the most useful concepts for such a development. The method is not restricted to isospin, which served as an example only.
Higher-Spin Geometry and String Theory
Francia, D
2006-01-01
The theory of freely-propagating massless higher spins is usually formulated via gauge fields and parameters subject to trace constraints. We summarize a proposal allowing to forego them by introducing only a pair of additional fields in the Lagrangians. In this setting, external currents satisfy usual Noether-like conservation laws, the field equations can be nicely related to those emerging from Open String Field Theory in the low-tension limit, and if the additional fields are eliminated without reintroducing the constraints a geometric, non-local description of the theory manifests itself.
A Focker-Planck description of the spin Seebeck effect
Reyes, Guillermo; Reyes, Juan Adrian
Thermally driven spin-wave spin current in a ferromagnetic material FM and the resulting electric signal in a metal probe placed on the FM are theoretically investigated by considering a thermally fluctuating spin at the interface of a FM-metal junction. We develop an analytical formulation to establish a Focker Plank equation for the probability distribution as a function of magnetization components of the material, for calculating the spin Seebeck signal detected by the metal probe, which converts spin current to charge current by the inverse spin Hall effect. The spin current is induced in the metal probe via an exchange interaction when the metal senses the temperature gradient.
Local implementation of nonlocal operations with block forms
Zhao, Ning Bo; Wang, An Min
2008-07-01
We investigate the local implementation of nonlocal operations with the block matrix form, and propose a protocol for any diagonal or offdiagonal block operation. We generalize this method to the two-party multiqubit case and the multiparty case. We also compare the local implementation of nonlocal block operations with the remote implementation of local operations [Huelga , Phys. Rev. A 63, 042303 (2001)], and point out a relation between them.
Acceleration-Induced Nonlocal Electrodynamics in Minkowski Spacetime
Muench, U; Mashhoon, B; Muench, Uwe; Hehl, Friedrich W.; Mashhoon, Bahram
2000-01-01
We discuss two nonlocal models of electrodynamics in which the nonlocality is induced by the acceleration of the observer. Such an observer actually measures an electromagnetic field that exhibits persistent memory effects. We compare Mashhoon's model with a new ansatz developed here in the framework of charge & flux electrodynamics with a constitutive law involving the Levi-Civita connection as seen from the observer's local frame and conclude that they are in partial agreement only for the case of constant acceleration.
Noether's theorem in non-local field theories
Krivoruchenko, M I
2016-01-01
Explicit expressions are constructed for a locally conserved vector current associated with a continuous internal symmetry and for energy-momentum and angular-momentum density tensors associated with the Poincar\\'e group in field theories with higher-order derivatives and in non-local field theories. An example of non-local charged scalar field equations with broken C and CPT symmetries is considered. For this case, we find simple analytical expressions for the conserved currents.
Nonlocal correlations: Fair and Unfair Strategies in Bayesian Game
Roy, Arup; Mukherjee, Amit; Guha, Tamal; Ghosh, Sibasish; Bhattacharya, Some Sankar; Banik, Manik
2016-01-01
Interesting connection has been established between two apparently unrelated concepts, namely, quantum nonlocality and Bayesian game theory. It has been shown that nonlocal correlations in the form of advice can outperform classical equilibrium strategies in common interest Bayesian games and also in conflicting interest games. However, classical equilibrium strategies can be of two types, fair and unfair. Whereas in fair equilibrium payoffs of different players are same, in unfair case they ...
Popescu-Rohrlich correlations imply efficient instantaneous nonlocal quantum computation
Broadbent, Anne
2015-01-01
In instantaneous nonlocal quantum computation, two parties cooperate in order to perform a quantum computation on their joint inputs, while being restricted to a single round of simultaneous communication. Previous results showed that instantaneous nonlocal quantum computation is possible, at the cost of an exponential amount of prior shared entanglement (in the size of the input). Here, we show that a linear amount of entanglement suffices, (in the size of the computation), as long as the pa...
Self-organization analysis for a nonlocal convective Fisher equation
Energy Technology Data Exchange (ETDEWEB)
Cunha, J.A.R. da [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil); Penna, A.L.A. [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil)], E-mail: penna.andre@gmail.com; Vainstein, M.H. [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil); Morgado, R. [International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil); Departamento de Matematica, Universidade de Brasilia, 70910-900 Brasilia DF (Brazil); Oliveira, F.A. [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil)
2009-02-02
Using both an analytical method and a numerical approach we have investigated pattern formation for a nonlocal convective Fisher equation with constant and spatial velocity fields. We analyze the limits of the influence function due to nonlocal interaction and we obtain the phase diagram of critical velocities v{sub c} as function of the width {mu} of the influence function, which characterize the self-organization of a finite system.
Twisted Backgrounds, PP-Waves and Nonlocal Field Theories
Alishahiha, M; Alishahiha, Mohsen; Ganor, Ori J.
2003-01-01
We study partially supersymmetric plane-wave like deformations of string theories and M-theory on brane backgrounds. These deformations are dual to nonlocal field theories. We calculate various expectation values of configurations of closed as well as open Wilson loops and Wilson surfaces in those theories. We also discuss the manifestation of the nonlocality structure in the supergravity backgrounds. A plane-wave like deformation of little string theory has also been studied.
Nonlocal Problems for Fractional Differential Equations via Resolvent Operators
Directory of Open Access Journals (Sweden)
Zhenbin Fan
2013-01-01
Full Text Available We discuss the continuity of analytic resolvent in the uniform operator topology and then obtain the compactness of Cauchy operator by means of the analytic resolvent method. Based on this result, we derive the existence of mild solutions for nonlocal fractional differential equations when the nonlocal item is assumed to be Lipschitz continuous and neither Lipschitz nor compact, respectively. An example is also given to illustrate our theory.
Analytic quantification of the singlet nonlocality for the first Bell inequality
Parisio, Fernando
2016-03-01
Recently an alternative way to quantifying the Bell nonlocality has been proposed [E. A. Fonseca and F. Parisio, Phys. Rev. A 92, 030101(R) (2015), 10.1103/PhysRevA.92.030101]. In this work we further develop this concept, the volume of violation, and analytically calculate its value for the spin-singlet state with respect to the settings of the first Bell inequality. These settings correspond to three directions in space, or three arbitrary points on the unit sphere. It is shown that the triples of directions that lead to violations in local causality correspond to 1 /3 of all possible configurations. From the perspective of quantum communication, this means that two distant parties that were able to align their measurements in one direction only (the remaining direction in each site being random) have a probability of about 33.3 % to certify their entanglement.
Circuit Simulation of All-Spin Logic
Alawein, Meshal
2016-05-01
With the aggressive scaling of complementary metal-oxide semiconductor (CMOS) nearing an inevitable physical limit and its well-known power crisis, the quest for an alternative/augmenting technology that surpasses the current semiconductor electronics is needed for further technological progress. Spintronic devices emerge as prime candidates for Beyond CMOS era by utilizing the electron spin as an extra degree of freedom to decrease the power consumption and overcome the velocity limit connected with the charge. By using the nonvolatility nature of magnetization along with its direction to represent a bit of information and then manipulating it by spin-polarized currents, routes are opened for combined memory and logic. This would not have been possible without the recent discoveries in the physics of nanomagnetism such as spin-transfer torque (STT) whereby a spin-polarized current can excite magnetization dynamics through the transfer of spin angular momentum. STT have expanded the available means of switching the magnetization of magnetic layers beyond old classical techniques, promising to fulfill the need for a new generation of dense, fast, and nonvolatile logic and storage devices. All-spin logic (ASL) is among the most promising spintronic logic switches due to its low power consumption, logic-in-memory structure, and operation on pure spin currents. The device is based on a lateral nonlocal spin valve and STT switching. It utilizes two nanomagnets (whereby information is stored) that communicate with pure spin currents through a spin-coherent nonmagnetic channel. By using the well-known spin physics and the recently proposed four-component spin circuit formalism, ASL can be thoroughly studied and simulated. Previous attempts to model ASL in the linear and diffusive regime either neglect the dynamic characteristics of transport or do not provide a scalable and robust platform for full micromagnetic simulations and inclusion of other effects like spin Hall
Engle, Jonathan
2013-01-01
The spin foam framework provides a way to define the dynamics of canonical loop quantum gravity in a spacetime covariant way, by using a path integral over histories of quantum states which can be interpreted as `quantum space-times'. This chapter provides a basic introduction to spin foams aimed principally at beginning graduate students and, where possible, at broader audiences.
A Systems-Theoretical Generalization of Non-Local Correlations
von Stillfried, Nikolaus
Non-local correlations between quantum events are not due to a causal interaction in the sense of one being the cause for the other. In principle, the correlated events can thus occur simultaneously. Generalized Quantum Theory (GQT) formalizes the idea that non-local phenomena are not exclusive to quantum mechanics, e.g. due to some specific properties of (sub)atomic particles, but that they instead arise as a consequence of the way such particles are arranged into systems. Non-local phenomena should hence occur in any system which fulfils the necessary systems-theoretical parameters. The two most important parameters with respect to non-local correlations seem to be a conserved global property of the system as a whole and sufficient degrees of freedom of the corresponding property of its subsystems. Both factors place severe limitations on experimental observability of the phenomena, especially in terms of replicability. It has been suggested that reported phenomena of a so-called synchronistic, parapsychological or paranormal kind could be understood as instances of systems-inherent non-local correlations. From a systems-theoretical perspective, their phenomenology (including the favorable conditions for their occurrence and their lack of replicability) displays substantial similarities to non-local correlations in quantum systems and matches well with systems-theoretical parameters, thus providing circumstantial evidence for this hypothesis.
Nonlocality and purity in atom-field coupling system
Institute of Scientific and Technical Information of China (English)
Cai Xin; Huang Guang-Ming; Li Gao-Xiang
2005-01-01
The effects of initial field state and thermal environment on quantum nonlocality and linear entropy in an atomfield coupling system are investigated. We found that if the cavity is lossless and the reservoir is in vacuum, the atom-field state can exhibit quantum nonlocality periodically and the linear entropies of the atom and the field also oscillate periodically with a period the same as that of quantum nonlocality. And if the cavity dissipation is very weak and the average photon number of the reservoir is very small, the quantum nonlocality will be lost and the linear entropies of the atom and the field oscillate with a decreasing amplitude. The rapidity of the loss of the quantum nonlocality depends on the amplitude of the initial squeezed coherent state, the cavity damping constant κ and the average photon number N of the thermal reservoir. The stronger the field and the larger the constant κ and the average photon number N could be, the more rapidly the nonlocality decreases.
On the power of non-local boxes
Broadbent, A J
2005-01-01
A non-local box is a virtual device that has the following property: given that Alice inputs a bit at her end of the device and that Bob does likewise, it produces two bits, one at Alice's end and one at Bob's end, such that the XOR of the outputs is equal to the AND of the inputs. This box, inspired from the CHSH inequality, was first proposed by Popescu and Rohrlich to examine the question: given that a maximally entangled pair of qubits is non-local, why is it not maximally non-local? We believe that understanding the power of this box will yield insight into the non-locality of quantum mechanics. It was shown recently by Cerf, Gisin, Massar and Popescu, that this imaginary device is able to simulate correlations from any measurement on a singlet state. Here, we show that the non-local box can in fact do much more: through the simulation of the magic square pseudo-telepathy game and the Mermin-GHZ pseudo-telepathy game, we show that the non-local box can simulate quantum correlations that no entangled pair...
Coupling of nonlocal and local continuum models by the Arlequinapproach
Han, Fei
2011-08-09
The objective of this work is to develop and apply the Arlequin framework to couple nonlocal and local continuum mechanical models. A mechanically-based model of nonlocal elasticity, which involves both contact and long-range forces, is used for the \\'fine scale\\' description in which nonlocal interactions are considered to have non-negligible effects. Classical continuum mechanics only involving local contact forces is introduced for the rest of the structure where these nonlocal effects can be neglected. Both models overlap in a coupling subdomain called the \\'gluing area\\' in which the total energy is separated into nonlocal and local contributions by complementary weight functions. A weak compatibility is ensured between kinematics of both models using Lagrange multipliers over the gluing area. The discrete formulation of this specific Arlequin coupling framework is derived and fully described. The validity and limits of the technique are demonstrated through two-dimensional numerical applications and results are compared against those of the fully nonlocal elasticity method. © 2011 John Wiley & Sons, Ltd.
Bovier, Anton
2007-01-01
Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.
Current Exchanges and Unconstrained Higher Spins
Francia, D; Sagnotti, A
2007-01-01
The (Fang-)Fronsdal formulation for free fully symmetric (spinor-) tensors rests on (gamma-)trace constraints on gauge fields and parameters. When these are relaxed, glimpses of the underlying geometry emerge: the field equations extend to non-local expressions involving the higher-spin curvatures, and with only a pair of additional fields an equivalent ``minimal'' local formulation is also possible. In this paper we complete the discussion of the ``minimal'' formulation for fully symmetric (spinor-) tensors, constructing one-parameter families of Lagrangians and extending them to (A)dS backgrounds. We then turn on external currents, that in this setting are subject to conventional conservation laws and, by a close scrutiny of current exchanges in the various formulations, we clarify the precise link between the local and non-local versions of the theory. To this end, we first show the equivalence of the constrained and unconstrained local formulations, and then identify a unique set of non-local Lagrangian e...
Paramagnetic Spin Seebeck Effect
Wu, Stephen M.; Pearson, John E.; Bhattacharya, Anand
2015-05-01
We report the observation of the longitudinal spin Seebeck effect in paramagnetic insulators. By using a microscale on-chip local heater, we generate a large thermal gradient confined to the chip surface without a large increase in the total sample temperature. Using this technique at low temperatures (<20 K ), we resolve the paramagnetic spin Seebeck effect in the insulating paramagnets Gd3Ga5O12 (gadolinium gallium garnet) and DyScO3 (DSO), using either W or Pt as the spin detector layer. By taking advantage of the strong magnetocrystalline anisotropy of DSO, we eliminate contributions from the Nernst effect in W or Pt, which produces a phenomenologically similar signal.
Spin transport and spin injection in mesoscopic metal and semiconductor devices
Van Wees, BJ; Jedema, FJ; Filip, AT; Martin, T; Montambaux, G; ThanhVan, JT
2001-01-01
We present our recent experiments on spin dependent transport in mesoscopic systems. First we give a basic theoretical description of spin transport in multiterminal devices. It is shown that multiterminal measurements make it possible to fully isolate the spin valve signal from other spurious (magn
Energy Technology Data Exchange (ETDEWEB)
Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae-I.; Yagi, Masatoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics
2002-09-01
Nonlocal properties of fluctuations in confined plasmas are briefly surveyed. Contributions to understanding the bifurcation phenomena, improved confinement, and transient transport problem are explained. The theoretical progress in this aspect is addressed: Namely, the fluctuations are not excited by linear instabilities but are dressed with other turbulent fluctuations or fluctuations of meso-scale. Nonlinear interactions of fluctuations with different scale lengths are essential in dictating the dynamics of turbulence and turbulent transport. There are activators and suppressers in global inhomogeneities for evolution of turbulence. Turbulent fluctuations, on the other hand, induce or destroy these global inhomogeneities. Finally, statistical nature of turbulence is addressed. (author)
Hidden Variable Theories and Quantum Nonlocality
Boozer, A. D.
2009-01-01
We clarify the meaning of Bell's theorem and its implications for the construction of hidden variable theories by considering an example system consisting of two entangled spin-1/2 particles. Using this example, we present a simplified version of Bell's theorem and describe several hidden variable theories that agree with the predictions of…
Lorentz Invariant CPT Violating Effects for a Class of Gauge-invariant Nonlocal Thirring Models
Patra, Pinaki
2013-01-01
CPT violation and Lorentz invariance can coexist in the framework of non-local field theory. Local gauge-invariance may not hold for the few non-local interaction terms. However, the gauge-invariance for the non-local interaction term can be formulated by the inclusion of Swinger non-integrable phase factor. In this article we have proposed a class of CPT violating Lorentz invariant Nonlocal Gauge-invariant models which can be termed as non-local gauge-invariant Thirring models. The inclusion of non-locality will modify the current conservation laws. Also, the possible particle antiparticle mass-splitting in this respect is discussed.
Directory of Open Access Journals (Sweden)
Mien Van
2016-01-01
Full Text Available The impulses in vibration signals are used to identify faults in the bearings of rotating machinery. However, vibration signals are usually contaminated by noise that makes the process of extracting impulse characteristic of localized defect very challenging. In order to effectively diagnose bearing with noise masking vibration signal, a new methodology is proposed using integrated (i nonlocal means- (NLM- based denoising and (ii improved morphological filter operators. NLM based denoising is first employed to eliminate or reduce the background noise with minimal signal distortion. This denoised signal is then analysed by a proposed modified morphological analysis (MMA. The MMA analysis introduces a new morphological operator which is based on Modified-Different (DIF filter to include only fault relevant impulsive characteristics of the vibration signal. To improve further performance of the methodology the length of the structure element (SE used in MMA is optimized using a particle swarm optimization- (PSO- based kurtosis criterion. The results of simulated and real vibration signal show that the integrated NLM with MMA method as well as the MMA method alone yields superior performance in extracting impulsive characteristics of vibrations signals, especially for signal with high level of noise or presence of other sources masking the fault.
Directory of Open Access Journals (Sweden)
Marco Finazzi
2016-11-01
Full Text Available In this work we address optical orientation, a process consisting in the excitation of spin polarized electrons across the gap of a semiconductor. We show that the combination of optical orientation with spin-dependent scattering leading to the inverse spin-Hall effect, i.e., to the conversion of a spin current into an electrical signal, represents a powerful tool to generate and detect spin currents in solids. We consider a few examples where these two phenomena together allow addressing the spin-dependent transport properties across homogeneous samples or metal/semiconductor Schottky junctions.
Diagnostics of nonlocal plasmas: advanced techniques
Mustafaev, Alexander; Grabovskiy, Artiom; Strakhova, Anastasiya; Soukhomlinov, Vladimir
2014-10-01
This talk generalizes our recent results, obtained in different directions of plasma diagnostics. First-method of flat single-sided probe, based on expansion of the electron velocity distribution function (EVDF) in series of Legendre polynomials. It will be demonstrated, that flat probe, oriented under different angles with respect to the discharge axis, allow to determine full EVDF in nonlocal plasmas. It is also shown, that cylindrical probe is unable to determine full EVDF. We propose the solution of this problem by combined using the kinetic Boltzmann equation and experimental probe data. Second-magnetic diagnostics. This method is implemented in knudsen diode with surface ionization of atoms (KDSI) and based on measurements of the magnetic characteristics of the KDSI in presence of transverse magnetic field. Using magnetic diagnostics we can investigate the wide range of plasma processes: from scattering cross-sections of electrons to plasma-surface interactions. Third-noncontact diagnostics method for direct measurements of EVDF in remote plasma objects by combination of the flat single-sided probe technique and magnetic polarization Hanley method.
Let's call it Nonlocal Quantum Physics
Requardt, M
2000-01-01
In the following we undertake to derive quantum theory as a stochastic low-energy and coarse-grained theory from a more primordial discrete and basically geometric theory living on the Planck scale and which (as we argue) possibly underlies also \\tit{string theory}. We isolate the so-called \\tit{ideal elements} which represent at the same time the cornerstones of the framework of ordinary quantum theory and show how and why they encode the \\tit{non-local} aspects, being ubiquituous in the quantum realm, in a, on the surface, local way. We show that the quantum non-locality emerges in our approach as a natural consequence of the underlying \\tit{two-storey} nature of space-time or the physical vacuum, that is, quantum theory turns out to be a residual effect of the geometric depth structure of space-time on the Planck scale. We indicate how the \\tit{measurement problem} and the emergence of the \\tit{macroscopic sub-regime} can be understood in this framework.
Exploring nonlocal observables in shock wave collisions
Ecker, Christian; Stanzer, Philipp; Stricker, Stefan A; van der Schee, Wilke
2016-01-01
We study the time evolution of 2-point functions and entanglement entropy in strongly anisotropic, inhomogeneous and time-dependent N=4 super Yang-Mills theory in the large N and large 't Hooft coupling limit using AdS/CFT. On the gravity side this amounts to calculating the length of geodesics and area of extremal surfaces in the dynamical background of two colliding gravitational shockwaves, which we do numerically. We discriminate between three classes of initial conditions corresponding to wide, intermediate and narrow shocks, and show that they exhibit different phenomenology with respect to the nonlocal observables that we determine. Our results permit to use (holographic) entanglement entropy as an order parameter to distinguish between the two phases of the cross-over from the transparency to the full-stopping scenario in dynamical Yang-Mills plasma formation, which is frequently used as a toy model for heavy ion collisions. The time evolution of entanglement entropy allows to discern four regimes: hi...
Nonperturbative embedding for highly nonlocal Hamiltonians
Subaşı, Yiǧit; Jarzynski, Christopher
2016-07-01
The need for Hamiltonians with many-body interactions arises in various applications of quantum computing. However, interactions beyond two-body are difficult to realize experimentally. Perturbative gadgets were introduced to obtain arbitrary many-body effective interactions using Hamiltonians with at most two-body interactions. Although valid for arbitrary k -body interactions, their use is limited to small k because the strength of interaction is k th order in perturbation theory. In this paper we develop a nonperturbative technique for obtaining effective k -body interactions using Hamiltonians consisting of at most l -body interactions with l effect of this procedure is shown to be equivalent to evolving the system with the original nonlocal Hamiltonian. This technique does not suffer from the aforementioned shortcoming of perturbative methods and requires only one ancilla qubit for each k -body interaction irrespective of the value of k . It works best for Hamiltonians with a few many-body interactions involving a large number of qubits and can be used together with perturbative gadgets to embed Hamiltonians of considerable complexity in proper subspaces of two-local Hamiltonians. We describe how our technique can be implemented in a hybrid (gate-based and adiabatic) as well as solely adiabatic quantum computing scheme.
Nonlinear and Nonlocal Feedbacks in an Aquaplanet
Feldl, N.; Roe, G.
2012-12-01
The power of the feedback framework lies in its ability to reveal the energy pathways by which the climate system adjusts to an imposed forcing. By understanding the closure of the energy budget in as much detail and precision as possible, and within as clean an experimental set-up as possible, we are also able to isolate nonlinear interactions between feedbacks. For an aquaplanet simulation under perpetual equinox conditions, we account for rapid tropospheric adjustments to CO2 and diagnose radiative kernels for this precise model set-up. We characterize the contributions of feedbacks, heat transport, and nonlinearities in controlling the meridional structure of the climate response. The presence of strongly positive subtropical feedbacks, combined with polar amplification, implies a critical role for transport and nonlinear effects, with the latter acting to substantially reduce global climate sensitivity. At the hemispheric scale, a rich picture emerges: net heat divergence away from strong positive feedbacks in the tropics; nonlinearities induced by circulation changes that cool the tropics and warm the high-latitudes; and strong ice-line feedbacks that drive further amplification of polar warming. Overall, these results highlight how spatial patterns in feedbacks affect both the local and nonlocal climate response, with implications for regional predictability.
Directional spin wavelets on the sphere
McEwen, Jason D; Büttner, Martin; Peiris, Hiranya V; Wiaux, Yves
2015-01-01
We construct a directional spin wavelet framework on the sphere by generalising the scalar scale-discretised wavelet transform to signals of arbitrary spin. The resulting framework is the only wavelet framework defined natively on the sphere that is able to probe the directional intensity of spin signals. Furthermore, directional spin scale-discretised wavelets support the exact synthesis of a signal on the sphere from its wavelet coefficients and satisfy excellent localisation and uncorrelation properties. Consequently, directional spin scale-discretised wavelets are likely to be of use in a wide range of applications and in particular for the analysis of the polarisation of the cosmic microwave background (CMB). We develop new algorithms to compute (scalar and spin) forward and inverse wavelet transforms exactly and efficiently for very large data-sets containing tens of millions of samples on the sphere. By leveraging a novel sampling theorem on the rotation group developed in a companion article, only hal...
Wang, Qiuru; Zhang, Wanli; Peng, Bin; Zhang, Wenxu
2016-11-01
The inverse spin Hall effect (ISHE) has been detected and separated from spin rectification effect (SRE) by inverting spin injection direction in metallic system. This work is based on the relation between the two effects and the spin injection direction: the sign of VISHE changes because of the reversing direction of spin injection while the VSRE is independent on it. According to the different voltage signals before and after the spin injection inverted, the pure VISHE and VSRE are calculated by utilizing the method of addition and subtraction. The signals can be separated in a wide range of frequency and power.
Quantum limited heterodyne detection of spin noise
Cronenberger, S.; Scalbert, D.
2016-09-01
Spin noise spectroscopy is a powerful technique for studying spin relaxation in semiconductors. In this article, we propose an extension of this technique based on optical heterodyne detection of spin noise, which provides several key advantages compared to conventional spin noise spectroscopy: detection of high frequency spin noise not limited by detector bandwidth or sampling rates of digitizers, quantum limited sensitivity even in case of very weak probe power, and possible amplification of the spin noise signal. Heterodyne detection of spin noise is demonstrated on insulating n-doped GaAs. From measurements of spin noise spectra up to 0.4 Tesla, we determined the distribution of g-factors, Δg/g = 0.49%.
Generalized xor games with d outcomes and the task of nonlocal computation
Ramanathan, Ravishankar; Augusiak, Remigiusz; Murta, Gláucia
2016-02-01
Two-party xor games (correlation Bell inequalities with two outcomes per party) are the most studied Bell inequalities, and one of the few classes for which the optimal quantum value is known to be exactly calculable. We study a natural generalization of the binary xor games to the class of linear games with d >2 outcomes, and propose an easily computable bound on the quantum value of these games. Many interesting properties such as the impossibility of a quantum strategy to win these games, and the quantum bound on the CHSH game generalized to d outcomes are derived. We also use the proposed bound to prove a large-alphabet generalization of the principle of no quantum advantage in nonlocal computation, showing that quantum theory provides no advantage in the task of nonlocal distributed computation of a class of functions with d outcomes for prime d , while general no-signaling boxes do. This task is one of the information-theoretic principles attempting to characterize the set of quantum correlations from amongst general no-signaling ones.
Eslahi, Nasser; Aghagolzadeh, Ali
2016-07-01
Compressive sensing (CS) is a recently emerging technique and an extensively studied problem in signal and image processing, which suggests a new framework for the simultaneous sampling and compression of sparse or compressible signals at a rate significantly below the Nyquist rate. Maybe, designing an effective regularization term reflecting the image sparse prior information plays a critical role in CS image restoration. Recently, both local smoothness and nonlocal self-similarity have led to superior sparsity prior for CS image restoration. In this paper, first, an adaptive curvelet thresholding criterion is developed, trying to adaptively remove the perturbations appeared in recovered images during CS recovery process, imposing sparsity. Furthermore, a new sparsity measure called joint adaptive sparsity regularization (JASR) is established, which enforces both local sparsity and nonlocal 3-D sparsity in transform domain, simultaneously. Then, a novel technique for high-fidelity CS image recovery via JASR is proposed-CS-JASR. To efficiently solve the proposed corresponding optimization problem, we employ the split Bregman iterations. Extensive experimental results are reported to attest the adequacy and effectiveness of the proposed method comparing with the current state-of-the-art methods in CS image restoration.
Zhang, Han; Chen, Xuefeng; Du, Zhaohui; Li, Xiang; Yan, Ruqiang
2016-04-01
Fault information of aero-engine bearings presents two particular phenomena, i.e., waveform distortion and impulsive feature frequency band dispersion, which leads to a challenging problem for current techniques of bearing fault diagnosis. Moreover, although many progresses of sparse representation theory have been made in feature extraction of fault information, the theory also confronts inevitable performance degradation due to the fact that relatively weak fault information has not sufficiently prominent and sparse representations. Therefore, a novel nonlocal sparse model (coined NLSM) and its algorithm framework has been proposed in this paper, which goes beyond simple sparsity by introducing more intrinsic structures of feature information. This work adequately exploits the underlying prior information that feature information exhibits nonlocal self-similarity through clustering similar signal fragments and stacking them together into groups. Within this framework, the prior information is transformed into a regularization term and a sparse optimization problem, which could be solved through block coordinate descent method (BCD), is formulated. Additionally, the adaptive structural clustering sparse dictionary learning technique, which utilizes k-Nearest-Neighbor (kNN) clustering and principal component analysis (PCA) learning, is adopted to further enable sufficient sparsity of feature information. Moreover, the selection rule of regularization parameter and computational complexity are described in detail. The performance of the proposed framework is evaluated through numerical experiment and its superiority with respect to the state-of-the-art method in the field is demonstrated through the vibration signals of experimental rig of aircraft engine bearings.
Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael
2004-01-01
This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...
Spin-SILC: CMB polarisation component separation with spin wavelets
Rogers, Keir K; Leistedt, Boris; McEwen, Jason D; Pontzen, Andrew
2016-01-01
We present Spin-SILC, a new foreground component separation method that accurately extracts the cosmic microwave background (CMB) polarisation $E$ and $B$ modes from raw multifrequency Stokes $Q$ and $U$ measurements of the microwave sky. Spin-SILC is an internal linear combination method that uses spin wavelets to analyse the spin-2 polarisation signal $P = Q + iU$. The wavelets are additionally directional (non-axisymmetric). This allows different morphologies of signals to be separated and therefore the cleaning algorithm is localised using an additional domain of information. The advantage of spin wavelets over standard scalar wavelets is to simultaneously and self-consistently probe scales and directions in the polarisation signal $P = Q + iU$ and in the underlying $E$ and $B$ modes, therefore providing the ability to perform component separation and $E$-$B$ decomposition concurrently for the first time. We test Spin-SILC on full-mission Planck simulations and data and show the capacity to correctly reco...