Pancharatnam geometric phase originating from successive partial ...
Indian Academy of Sciences (India)
Pancharatnam connection [1,2] dictates that ψp is in phase ψ0. The partial projection effects a ... up to a real multiplier. Here again, ψf is in phase with ψp but relative to ψ0, has a .... For the third partial projection of strength t3 and an azimuth angle φ13 to effect a triangle closure for both initial states |z〉 and | − z〉, we derive ...
Optical integration of Pancharatnam-Berry phase lens and dynamical phase lens
International Nuclear Information System (INIS)
Ke, Yougang; Liu, Yachao; Zhou, Junxiao; Liu, Yuanyuan; Luo, Hailu; Wen, Shuangchun
2016-01-01
In the optical system, most elements such as lens, prism, and optical fiber are made of silica glass. Therefore, integrating Pancharatnam-Berry phase elements into silica glass has potential applications in the optical system. In this paper, we take a lens, for example, which integrates a Pancharatnam-Berry phase lens into a conventional plano-convex lens. The spin states and positions of focal points can be modulated by controlling the polarization states of the incident beam. The proposed lens has a high transmission efficiency, and thereby acts as a simple and powerful tool to manipulate spin photons. Furthermore, the method can be conveniently extended to the optical fiber and laser cavity, and may provide a route to the design of the spin-photonic devices.
High Efficiency Large-Angle Pancharatnam Phase Deflector Based on Dual Twist Design
2016-12-16
construction and characterization of a ±40° beam steering device with 90% diffraction efficiency based on our dual-twist design at 633nm wavelength...N. & Escuti, M. J. Achromatic Wollaston prism beam splitter using polarization gratings. Opt. Lett. 41, 4461–4463 (2016). 13. Slussarenko, S., et...High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design Kun Gao1, Colin McGinty1, Harold Payson2, Shaun Berry2, Joseph
Sui, Sai; Ma, Hua; Lv, Yueguang; Wang, Jiafu; Li, Zhiqiang; Zhang, Jieqiu; Xu, Zhuo; Qu, Shaobo
2018-01-22
Arbitrary control of electromagnetic waves remains a significant challenge although it promises many important applications. Here, we proposed a fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry (PB) phase, of which the elements are non-absorptive and capable of predicting the wideband and smooth phase-shift. In our design method, the metasurface is composed of low-Q-factor resonant elements without using the PB phase, and is optimized by the genetic algorithm and nonlinear fitting method, having the advantages that the far field scattering patterns can be quickly synthesized by the hybrid array patterns. To validate the design method, a wideband low radar cross section metasurface is demonstrated, showing good feasibility and performance of wideband RCS reduction. This work reveals an opportunity arising from a metasurface in effective manipulation of microwave and flexible fast optimal design method.
Measuring Pancharatnam's relative phase for SO(3) evolutions using spin polarimetry
International Nuclear Information System (INIS)
Larsson, Peter; Sjoeqvist, Erik
2003-01-01
In polarimetry, a superposition of internal quantal states is exposed to a single Hamiltonian and information about the evolution of the quantal states is inferred from projection measurements on the final superposition. In this framework, we here extend the polarimetric test of Pancharatnam's relative phase for spin-(1/2) proposed by Wagh and Rakhecha [Phys. Lett. A 197, 112 (1995)] to spin j≥1 undergoing noncyclic SO(3) evolution. We demonstrate that the output intensity for higher spin values is a polynomial function of the corresponding spin-(1/2) intensity. We further propose a general method to extract the noncyclic SO(3) phase and visibility by rigid translation of two π/2 spin flippers. Polarimetry on higher spin states may in practice be done with spin polarized atomic beams
Energy Technology Data Exchange (ETDEWEB)
Arvind, E-mail: arvind@iisermohali.ac.in [Department of Physical Sciences, Indian Institute of Science Education & Research (IISER) Mohali, Sector 81 SAS Nagar, Manauli PO 140306, Punjab (India); Chaturvedi, S., E-mail: subhash@iiserbhopal.ac.in [Department of Physics, Indian Institute of Science Education & Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066 (India); Mukunda, N., E-mail: nmukunda@gmail.com [Indian Academy of Sciences, C V Raman Avenue, Sadashivanagar, Bangalore 560080 (India)
2017-04-11
Highlights: • Pancharatnam-like phase in HBT correlations. • Mach–Zehnder type setup to clarify that the phases involved are not geometric phases. • No nonlocality involved since the treatment is classical. - Abstract: We examine a recent proposal to show the presence of nonlocal Pancharatnam type geometric phases in a quantum mechanical treatment of intensity interferometry measurements upon inclusion of polarizing elements in the setup. It is shown that a completely classical statistical treatment of such effects is adequate for practical purposes. Further we show that the phase angles that appear in the correlations, while at first sight appearing to resemble Pancharatnam phases in their mathematical structure, cannot actually be interpreted in that manner. We also describe a simpler Mach–Zehnder type setup where similar effects can be observed without use of the paraxial approximation.
International Nuclear Information System (INIS)
Arvind; Chaturvedi, S.; Mukunda, N.
2017-01-01
Highlights: • Pancharatnam-like phase in HBT correlations. • Mach–Zehnder type setup to clarify that the phases involved are not geometric phases. • No nonlocality involved since the treatment is classical. - Abstract: We examine a recent proposal to show the presence of nonlocal Pancharatnam type geometric phases in a quantum mechanical treatment of intensity interferometry measurements upon inclusion of polarizing elements in the setup. It is shown that a completely classical statistical treatment of such effects is adequate for practical purposes. Further we show that the phase angles that appear in the correlations, while at first sight appearing to resemble Pancharatnam phases in their mathematical structure, cannot actually be interpreted in that manner. We also describe a simpler Mach–Zehnder type setup where similar effects can be observed without use of the paraxial approximation.
International Nuclear Information System (INIS)
Niv, A.; Biener, G.; Kleiner, V.; Hasman, E.
2004-01-01
Full Text:Propagation-invariant scalar fields have been extensively studied both theoretically and experimentally, since they were proposed by Durnin et al. These fields were employed in applications such as optical tweezers and for transport and guiding of microspheres. Although there has recently been considerable theoretical interest in propagation-invariant vectorial beams, experimental studies of such beams have remained somewhat limited. One of the most interesting types of propagation-invariant vectorial beam is the linearly polarized axially symmetric beam (LPASB) [l]. Recently, we introduced and experimentally demonstrated propagation-invariant vectorial Bessel beams with linearly polarized axial symmetry based on quantized Pancharatnam-Berry phase optical elements (QPBOEs) [21 and an axicon. QP-BOEs utilize the geometric phase that accompanies space-variant polarization manipulations to achieve a desired phase modification [31. To test our approach we formed QPBOEs with different polarization orders as computer-generated space-variant sub wavelength gratings upon GaAs wafers for use with 10.6 micron laser radiation. The resultant beams were also transmitted through a polarizer that produced a unique propagation-invariant scalar beam. This beam has a propeller-shaped intensity pattern that can be rotated by simple rotation of the polarizer. We therefore have demonstrated the formation of a vectorial Bessel beam by using simple, lightweight thin elements and exploited that beam to perform a controlled rotation of a propeller-shaped intensity pattern that can be suitable for optical tweezers
A nonlocal phase-field system with inertial term
Czech Academy of Sciences Publication Activity Database
Grasselli, M.; Petzeltová, Hana; Schimperna, G.
2007-01-01
Roč. 65, č. 3 (2007), s. 451-469 ISSN 0033-569X R&D Projects: GA AV ČR(CZ) IAA100190606 Institutional research plan: CEZ:AV0Z10190503 Keywords : nonlocal phase-field system * Lojasiewicz inequality * convergence to equilibria Subject RIV: BA - General Mathematics Impact factor: 0.463, year: 2007
Persistent chimera states in nonlocally coupled phase oscillators
Suda, Yusuke; Okuda, Koji
2015-01-01
Chimera states in the systems of nonlocally coupled phase oscillators are considered stable in the continuous limit of spatially distributed oscillators. However, it is reported that in the numerical simulations without taking such limit, chimera states are chaotic transient and finally collapse into the completely synchronous solution. In this Rapid Communication, we numerically study chimera states by using the coupling function different from the previous studies and obtain the result that...
Chiral phase transition in a covariant nonlocal NJL model
International Nuclear Information System (INIS)
General, I.; Scoccola, N.N.
2001-01-01
The properties of the chiral phase transition at finite temperature and chemical potential are investigated within a nonlocal covariant extension of the NJL model based on a separable quark-quark interaction. We find that for low values of T the chiral transition is always of first order and, for finite quark masses, at certain end point the transition turns into a smooth crossover. Our predictions for the position of this point is similar, although somewhat smaller, than previous estimates. (author)
Breathing multichimera states in nonlocally coupled phase oscillators
Suda, Yusuke; Okuda, Koji
2018-04-01
Chimera states for the one-dimensional array of nonlocally coupled phase oscillators in the continuum limit are assumed to be stationary states in most studies, but a few studies report the existence of breathing chimera states. We focus on multichimera states with two coherent and incoherent regions and numerically demonstrate that breathing multichimera states, whose global order parameter oscillates temporally, can appear. Moreover, we show that the system exhibits a Hopf bifurcation from a stationary multichimera to a breathing one by the linear stability analysis for the stationary multichimera.
Chimera states in nonlocally coupled phase oscillators with biharmonic interaction
Cheng, Hongyan; Dai, Qionglin; Wu, Nianping; Feng, Yuee; Li, Haihong; Yang, Junzhong
2018-03-01
Chimera states, which consist of coexisting domains of coherent and incoherent parts, have been observed in a variety of systems. Most of previous works on chimera states have taken into account specific form of interaction between oscillators, for example, sinusoidal coupling or diffusive coupling. Here, we investigate chimera dynamics in nonlocally coupled phase oscillators with biharmonic interaction. We find novel chimera states with features such as that oscillators in the same coherent cluster may split into two groups with a phase difference around π/2 and that oscillators in adjacent coherent clusters may have a phase difference close to π/2. The different impacts of the coupling ranges in the first and the second harmonic interactions on chimera dynamics are investigated based on the synchronous dynamics in globally coupled phase oscillators. Our study suggests a new direction in the field of chimera dynamics.
S Pancharatnam (1934–1969): Three Phases
Indian Academy of Sciences (India)
IAS Admin
stood near Panchan for sometime and then hugged him! – Kausalya ... It was quite an unusual experience on the first day to start it with a prayer ... He was a young man—only 35 years old—when he died in Oxford on 28 May 1969. At that time.
Non-local two phase flow momentum transport in S BWR
International Nuclear Information System (INIS)
Espinosa P, G.; Salinas M, L.; Vazquez R, A.
2015-09-01
The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)
Non-local two phase flow momentum transport in S BWR
Energy Technology Data Exchange (ETDEWEB)
Espinosa P, G.; Salinas M, L.; Vazquez R, A., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Apdo. Postal 55-535, 09340 Ciudad de Mexico (Mexico)
2015-09-15
The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)
Vibration analysis of rotating nanobeam systems using Eringen's two-phase local/nonlocal model
Khaniki, Hossein Bakhshi
2018-05-01
Due to the inability of differential form of nonlocal elastic theory in modelling cantilever beams and inaccurate results for some type of boundaries, in this study, a reliable investigation on transverse vibrational behavior of rotating cantilever size-dependent beams is presented. Governing higher order equations are written in the framework of Eringen's two-phase local/nonlocal model and solved using a modified generalized differential quadrature method. In order to indicate the influence of different material and scale parameters, a comprehensive parametric study is presented. It is shown that increasing the nonlocality term leads to lower natural frequency terms for cantilever nanobeams especially for the fundamental frequency parameter which differential nonlocal model is unable to track appropriately. Moreover, it is shown that rotating speed and hub radius have a remarkable effect in varying the mechanical behavior of rotating cantilever nanobeams. This study is a step forward in analyzing nanorotors, nanoturbines, nanoblades, etc.
Choe, Chol-Ung; Kim, Ryong-Son; Ri, Ji-Song
2017-09-01
We consider a ring of phase oscillators with nonlocal coupling strength and heterogeneous phase lags. We analyze the effects of heterogeneity in the phase lags on the existence and stability of a variety of steady states. A nonlocal coupling with heterogeneous phase lags that allows the system to be solved analytically is suggested and the stability of solutions along the Ott-Antonsen invariant manifold is explored. We present a complete bifurcation diagram for stationary patterns including the uniform drift and modulated drift states as well as chimera state, which reveals that the stable modulated drift state and a continuum of metastable drift states could occur due to the heterogeneity of the phase lags. We verify our theoretical results using the direct numerical simulations of the model system.
Controllable soliton propagation based on phase-front curvature in asymmetrical nonlocal media
Zhang, Huafeng; Lü, Hua; Luo, Jianghua; Sun, Lihui
2016-08-01
The influence of phase-front curvature on the dynamical behavior of the fundamental mode soliton during its transmission in asymmetrical nonlocal media is studied in detail and the phase-front curvature can be imposed on the fundamental mode soliton by reshaping or phase imprinting technologies. By changing the phase-front curvature or its imposed position, controllable soliton propagation in asymmetrical nonlocal media can be achieved. Project supported by the National Natural Science Foundation of China (Grants Nos. 11547007 and 11304024), the Innovation Personnel Training Plan for Excellent Youth of Guangdong University Project (Grant No. 2013LYM_0023), and the Yangtze Fund for Youth Teams of Science and Technology Innovation (Grant No. 2015cqt03).
Wilson loop's phase transition probed by non-local observable
Directory of Open Access Journals (Sweden)
Hui-Ling Li
2018-04-01
Full Text Available In order to give further insights into the holographic Van der Waals phase transition, it would be of great interest to investigate the behavior of Wilson loop across the holographic phase transition for a higher dimensional hairy black hole. We offer a possibility to proceed with a numerical calculation in order to discussion on the hairy black hole's phase transition, and show that Wilson loop can serve as a probe to detect a phase structure of the black hole. Furthermore, for a first order phase transition, we calculate numerically the Maxwell's equal area construction; and for a second order phase transition, we also study the critical exponent in order to characterize the Wilson loop's phase transition.
Convergence of solutions of a non-local phase-field system
Czech Academy of Sciences Publication Activity Database
Londen, S.-O.; Petzeltová, Hana
2011-01-01
Roč. 4, č. 3 (2011), s. 653-670 ISSN 1937-1632 R&D Projects: GA AV ČR(CZ) IAA100190606 Institutional research plan: CEZ:AV0Z10190503 Keywords : non-local phase-field systems * separation property * convergence to equilibria Subject RIV: BA - General Mathematics http://www.aimsciences.org/journals/displayArticles.jsp?paperID=5698
Zhang, Tao; Kamlah, Marc
2018-01-01
A nonlocal species concentration theory for diffusion and phase changes is introduced from a nonlocal free energy density. It can be applied, say, to electrode materials of lithium ion batteries. This theory incorporates two second-order partial differential equations involving second-order spatial derivatives of species concentration and an additional variable called nonlocal species concentration. Nonlocal species concentration theory can be interpreted as an extension of the Cahn-Hilliard theory. In principle, nonlocal effects beyond an infinitesimal neighborhood are taken into account. In this theory, the nonlocal free energy density is split into the penalty energy density and the variance energy density. The thickness of the interface between two phases in phase segregated states of a material is controlled by a normalized penalty energy coefficient and a characteristic interface length scale. We implemented the theory in COMSOL Multiphysics^{circledR } for a spherically symmetric boundary value problem of lithium insertion into a Li_xMn_2O_4 cathode material particle of a lithium ion battery. The two above-mentioned material parameters controlling the interface are determined for Li_xMn_2O_4 , and the interface evolution is studied. Comparison to the Cahn-Hilliard theory shows that nonlocal species concentration theory is superior when simulating problems where the dimensions of the microstructure such as phase boundaries are of the same order of magnitude as the problem size. This is typically the case in nanosized particles of phase-separating electrode materials. For example, the nonlocality of nonlocal species concentration theory turns out to make the interface of the local concentration field thinner than in Cahn-Hilliard theory.
Single particle nonlocality, geometric phases and time-dependent boundary conditions
Matzkin, A.
2018-03-01
We investigate the issue of single particle nonlocality in a quantum system subjected to time-dependent boundary conditions. We discuss earlier claims according to which the quantum state of a particle remaining localized at the center of an infinite well with moving walls would be specifically modified by the change in boundary conditions due to the wall’s motion. We first prove that the evolution of an initially localized Gaussian state is not affected nonlocally by a linearly moving wall: as long as the quantum state has negligible amplitude near the wall, the boundary motion has no effect. This result is further extended to related confined time-dependent oscillators in which the boundary’s motion is known to give rise to geometric phases: for a Gaussian state remaining localized far from the boundaries, the effect of the geometric phases is washed out and the particle dynamics shows no traces of a nonlocal influence that would be induced by the moving boundaries.
Nonlocal optical response in topological phase transitions in the graphene family
Rodriguez-Lopez, Pablo; Kort-Kamp, Wilton J. M.; Dalvit, Diego A. R.; Woods, Lilia M.
2018-01-01
We investigate the electromagnetic response of staggered two-dimensional materials of the graphene family, including silicene, germanene, and stanene, as they are driven through various topological phase transitions using external fields. Utilizing Kubo formalism, we compute their optical conductivity tensor taking into account the frequency and wave vector of the electromagnetic excitations, and study its behavior over the full electronic phase diagram of the materials. In particular, we find that the resonant behavior of the nonlocal Hall conductivity is strongly affected by the various topological phases present in these materials. We also consider the plasmon excitations in the graphene family and find that nonlocality in the optical response can affect the plasmon dispersion spectra of the various phases. We find a regime of wave vectors for which the plasmon relations for phases with trivial topology are essentially indistinguishable, while those for phases with nontrivial topology are distinct and are redshifted as the corresponding Chern number increases. The expressions for the conductivity components are valid for the entire graphene family and can be readily used by others.
Bogomolov, Sergey A.; Slepnev, Andrei V.; Strelkova, Galina I.; Schöll, Eckehard; Anishchenko, Vadim S.
2017-02-01
We explore the bifurcation transition from coherence to incoherence in ensembles of nonlocally coupled chaotic systems. It is firstly shown that two types of chimera states, namely, amplitude and phase, can be found in a network of coupled logistic maps, while only amplitude chimera states can be observed in a ring of continuous-time chaotic systems. We reveal a bifurcation mechanism by analyzing the evolution of space-time profiles and the coupling function with varying coupling coefficient and formulate the necessary and sufficient conditions for realizing the chimera states in the ensembles.
International Nuclear Information System (INIS)
Xue, Liyuan; Yu, Yanxia; Cai, Xiaoya; Pan, Hui; Wang, Zisheng
2016-01-01
Highlights: • We find that the Pancharatnam phases include the information of quantum correlations. • We show that the sudden died and alive phenomena of quantum entanglement is original in the transition of Pancharatnam phase. • We find that the faster the Pancharatnam phases change, the slower the quantum correlations decay. • We find that a subspace of quantum entanglement can exist in the Y-state. • Our results provide a useful approach experimentally to implement the time-dependent geometric quantum computation. - Abstract: We investigate time-dependent Pancharatnam phases and the relations between such geometric phases and quantum correlations, i.e., quantum discord and concurrence, of superconducting two-qubit coupling system in dissipative environment with the mixture effects of four different eigenstates of density matrix. We find that the time-dependent Pancharatnam phases not only keep the motion memory of such a two-qubit system, but also include the information of quantum correlations. We show that the sudden died and alive phenomena of quantum entanglement are intrinsic in the transition of Pancharatnam phase in the X-state and the complex oscillations of Pancharatnam phase in the Y-state. The faster the Pancharatnam phases change, the slower the quantum correlations decay. In particular, we find that a subspace of quantum entanglement can exist in the Y-state by choosing suitable coupling parameters between two-qubit system and its environment, or initial conditions.
Time-dependent weak values and their intrinsic phases of evolution
International Nuclear Information System (INIS)
Parks, A D
2008-01-01
The equation of motion for a time-dependent weak value of a quantum-mechanical observable is known to contain a complex valued energy factor (the weak energy of evolution) that is defined by the dynamics of the pre-selected and post-selected states which specify the observable's weak value. In this paper, the mechanism responsible for the creation of this energy is identified and it is shown that the cumulative effect over time of this energy is manifested as dynamical phases and pure geometric phases (the intrinsic phases of evolution) which govern the evolution of the weak value during its measurement process. These phases are simply related to a Pancharatnam phase and Fubini-Study metric distance defined by the Hilbert space evolution of the associated pre-selected and post-selected states. A characterization of time-dependent weak value evolution as Pancharatnam phase angle rotations and Fubini-Study distance scalings of a vector in the Argand plane is discussed as an application of this relationship. The theory of weak values is also reviewed and simple 'gedanken experiments' are used to illustrate both the time-independent and the time-dependent versions of the theory. It is noted that the direct experimental observation of the weak energy of evolution would strongly support the time-symmetric paradigm of quantum mechanics and it is suggested that weak value equations of motion represent a new category of nonlocal equations of motion
Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
2016-06-01
This paper investigates a nonlocal version of a model for phase separation on an atomic lattice that was introduced by P. Podio-Guidugli (2006) [36]. The model consists of an initial-boundary value problem for a nonlinearly coupled system of two partial differential equations governing the evolution of an order parameter ρ and the chemical potential μ. Singular contributions to the local free energy in the form of logarithmic or double-obstacle potentials are admitted. In contrast to the local model, which was studied by P. Podio-Guidugli and the present authors in a series of recent publications, in the nonlocal case the equation governing the evolution of the order parameter contains in place of the Laplacian a nonlocal expression that originates from nonlocal contributions to the free energy and accounts for possible long-range interactions between the atoms. It is shown that just as in the local case the model equations are well posed, where the technique of proving existence is entirely different: it is based on an application of Tikhonov's fixed point theorem in a rather unusual separable and reflexive Banach space.
Mashhoon, Bahram
2017-01-01
Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...
International Nuclear Information System (INIS)
Zhu Yun; Zheng Zhi-Gang; Yang Jun-Zhong
2013-01-01
Dynamics of a one-dimensional array of non-locally coupled Kuramoto phase oscillators with an external potential is studied. A four-cluster chimera state is observed for the moderate strength of the external potential. Different from the clustered chimera states studied before, the instantaneous frequencies of the oscillators in a synchronized cluster are different in the presence of the external potential. As the strength of the external potential increases, a bifurcation from the two-cluster chimera state to the four-cluster chimera states can be found. These phenomena are well predicted analytically with the help of the Ott—Antonsen ansatz. (general)
Phase structure of the Born-Infeld-anti-de Sitter black holes probed by non-local observables
Energy Technology Data Exchange (ETDEWEB)
Zeng, Xiao-Xiong [Chongqing Jiaotong University, School of Material Science and Engineering, Chongqing (China); Chinese Academy of Sciences, Institute of Theoretical Physics, Beijing (China); Liu, Xian-Ming [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA (United States); Hubei University for Nationalities, Center for Theoretical Physics, School of Sciences, Enshi, Hubei (China); Li, Li-Fang [Chinese Academy of Sciences, State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Beijing (China)
2016-11-15
With the non-local observables such as two point correlation function and holographic entanglement entropy, we probe the phase structure of the Born-Infeld-anti-de Sitter black holes. For the case bQ > 0.5, where b is the Born-Infeld parameter and Q is the charge of the black hole, the phase structure is found to be similar to that of the Van der Waals phase transition, namely the black hole undergoes a first order phase transition and a second order phase transition before it reaches a stable phase. While for the case bQ < 0.5, a new phase branch emerges besides the Van der Waals phase transition. For the first order phase transition, the equal area law is checked, and for the second order phase transition, the critical exponent of the heat capacity is obtained. All these results are found to be the same as that observed in the entropy-temperature plane. (orig.)
Directory of Open Access Journals (Sweden)
David A. Grandy
2007-08-01
Full Text Available Nonlocality is a puzzling issue in modern physics. I propose that, aside from the experimental determination of nonlocality, the concept of atomistic lightmdash;discrete, self-bounded photonsmdash;breaks down toward something like nonlocality when subjected to philosophical scrutiny. Louis de Broglie made a similar argument regarding the material atom: the concept of the classical atom, when interrogated, collapses upon itself to offer a glimpse of wave-particle duality. Light atoms or photons, I argue, similarly collapse toward the contradictory possibility of nonlocality.
Phase-correcting non-local means filtering for diffusion-weighted imaging of the spinal cord.
Kafali, Sevgi Gokce; Çukur, Tolga; Saritas, Emine Ulku
2018-02-09
DWI suffers from low SNR when compared to anatomical MRI. To maintain reasonable SNR at relatively high spatial resolution, multiple acquisitions must be averaged. However, subject motion or involuntary physiological motion during diffusion-sensitizing gradients cause phase offsets among acquisitions. When the motion is localized to a small region, these phase offsets become particularly problematic. Complex averaging of acquisitions lead to cancellations from these phase offsets, whereas magnitude averaging results in noise amplification. Here, we propose an improved reconstruction for multi-acquisition DWI that effectively corrects for phase offsets while reducing noise. Each acquisition is processed with a refocusing reconstruction for global phase correction and a partial k-space reconstruction via projection-onto-convex-sets (POCS). The proposed reconstruction then embodies a new phase-correcting non-local means (PC-NLM) filter. PC-NLM is performed on the complex-valued outputs of the POCS algorithm aggregated across acquisitions. The PC-NLM filter leverages the shared structure among multiple acquisitions to simultaneously alleviate nuisance factors including phase offsets and noise. Extensive simulations and in vivo DWI experiments of the cervical spinal cord are presented. The results demonstrate that the proposed reconstruction improves image quality by mitigating signal loss because of phase offsets and reducing noise. Importantly, these improvements are achieved while preserving the accuracy of apparent diffusion coefficient maps. An improved reconstruction incorporating a PC-NLM filter for multi-acquisition DWI is presented. This reconstruction can be particularly beneficial for high-resolution or high-b-value DWI acquisitions that suffer from low SNR and phase offsets from local motion. © 2018 International Society for Magnetic Resonance in Medicine.
Viswanathan, Balakrishnan; Gea-Banacloche, Julio
2018-03-01
It has been suggested that second-order nonlinearities could be used for quantum logic at the single-photon level. Specifically, successive two-photon processes in principle could accomplish the phase shift (conditioned on the presence of two photons in the low-frequency modes) |011 〉→i |100 〉→-|011 〉 . We have analyzed a recent scheme proposed by Xia et al. [Phys. Rev. Lett. 116, 023601 (2016)], 10.1103/PhysRevLett.116.023601 to induce such a conditional phase shift between two single-photon pulses propagating at different speeds through a nonlinear medium with a nonlocal response. We present here an analytical solution for the most general case, i.e., for an arbitrary response function, initial state, and pulse velocity, which supports their numerical observation that a π phase shift with unit fidelity is possible, in principle, in an appropriate limit. We also discuss why this is possible in this system, despite the theoretical objections to the possibility of conditional phase shifts on single photons that were raised some time ago by Shapiro [Phys. Rev. A 73, 062305 (2006)], 10.1103/PhysRevA.73.062305 and by Gea-Banacloche [Phys. Rev. A 81, 043823 (2010)], 10.1103/PhysRevA.81.043823 one of us.
Nonlocal diffusion and applications
Bucur, Claudia
2016-01-01
Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.
Energy Technology Data Exchange (ETDEWEB)
Wang, Y. B. [Department of Mathematics, ShaoXing University, No.900, ChengNan Avenue 312000, ShaoXing, Zhejiang (China); Zhu, X. W., E-mail: xiaowuzhu1026@znufe.edu.cn [School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073 (China); Dai, H. H. [Department of Mathematics, City University of HongKong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong (China)
2016-08-15
Though widely used in modelling nano- and micro- structures, Eringen’s differential model shows some inconsistencies and recent study has demonstrated its differences between the integral model, which then implies the necessity of using the latter model. In this paper, an analytical study is taken to analyze static bending of nonlocal Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model. Firstly, a reduction method is proved rigorously, with which the integral equation in consideration can be reduced to a differential equation with mixed boundary value conditions. Then, the static bending problem is formulated and four types of boundary conditions with various loadings are considered. By solving the corresponding differential equations, exact solutions are obtained explicitly in all of the cases, especially for the paradoxical cantilever beam problem. Finally, asymptotic analysis of the exact solutions reveals clearly that, unlike the differential model, the integral model adopted herein has a consistent softening effect. Comparisons are also made with existing analytical and numerical results, which further shows the advantages of the analytical results obtained. Additionally, it seems that the once controversial nonlocal bar problem in the literature is well resolved by the reduction method.
International Nuclear Information System (INIS)
Wang, Y. B.; Zhu, X. W.; Dai, H. H.
2016-01-01
Though widely used in modelling nano- and micro- structures, Eringen’s differential model shows some inconsistencies and recent study has demonstrated its differences between the integral model, which then implies the necessity of using the latter model. In this paper, an analytical study is taken to analyze static bending of nonlocal Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model. Firstly, a reduction method is proved rigorously, with which the integral equation in consideration can be reduced to a differential equation with mixed boundary value conditions. Then, the static bending problem is formulated and four types of boundary conditions with various loadings are considered. By solving the corresponding differential equations, exact solutions are obtained explicitly in all of the cases, especially for the paradoxical cantilever beam problem. Finally, asymptotic analysis of the exact solutions reveals clearly that, unlike the differential model, the integral model adopted herein has a consistent softening effect. Comparisons are also made with existing analytical and numerical results, which further shows the advantages of the analytical results obtained. Additionally, it seems that the once controversial nonlocal bar problem in the literature is well resolved by the reduction method.
Ring vortex solitons in nonlocal nonlinear media
DEFF Research Database (Denmark)
Briedis, D.; Petersen, D.E.; Edmundson, D.
2005-01-01
We study the formation and propagation of two-dimensional vortex solitons, i.e. solitons with a phase singularity, in optical materials with a nonlocal focusing nonlinearity. We show that nonlocality stabilizes the dynamics of an otherwise unstable vortex beam. This occurs for either single...... or higher charge fundamental vortices as well as higher order (multiple ring) vortex solitons. Our results pave the way for experimental observation of stable vortex rings in other nonlocal nonlinear systems including Bose-Einstein condensates with pronounced long-range interparticle interaction....
International Nuclear Information System (INIS)
Maltsev, A Ya
2005-01-01
We consider the special type of field-theoretical symplectic structures called weakly nonlocal. The structures of this type are, in particular, very common for integrable systems such as KdV or NLS. We introduce here the special class of weakly nonlocal symplectic structures which we call weakly nonlocal symplectic structures of hydrodynamic type. We investigate then the connection of such structures with the Whitham averaging method and propose the procedure of 'averaging' the weakly nonlocal symplectic structures. The averaging procedure gives the weakly nonlocal symplectic structure of hydrodynamic type for the corresponding Whitham system. The procedure also gives 'action variables' corresponding to the wave numbers of m-phase solutions of the initial system which give the additional conservation laws for the Whitham system
Mohamed, Abdel-Baset A.
2017-10-01
An analytical solution of the master equation that describes a superconducting cavity containing two coupled superconducting charge qubits is obtained. Quantum-mechanical correlations based on Wigner-Yanase skew information, as local quantum uncertainty and uncertainty-induced quantum non-locality, are compared to the concurrence under the effects of the phase decoherence. Local quantum uncertainty exhibits sudden changes during its time evolution and revival process. Sudden death and sudden birth occur only for entanglement, depending on the initial state of the two coupled charge qubits, while the correlations of skew information does not vanish. The quantum correlations of skew information are found to be sensitive to the dephasing rate, the photons number in the cavity, the interaction strength between the two qubits, and the qubit distribution angle of the initial state. With a proper initial state, the stationary correlation of the skew information has a non-zero stationary value for a long time interval under the phase decoherence, that it may be useful in quantum information and computation processes.
International Nuclear Information System (INIS)
Krasnikov, N.V.
1987-01-01
Nonlocal gauge theories including gravity are considered. It is shown that the introduction of the additional nonlocal interaction makes γ 5 -anomalous theories meaningful. The introduction of such interaction leads to macrocausal unitary theory, which describes the interaction of massive vector fields with fermion fields. It is shown that nonlocal gauge theories with nonlocal scale Λ nl ≤(1-10) TeV can solve the gauge hierarchy problem. An example of nonlinear grand unified gauge model in which topologically nontrivial finite energy monopole solutions are absent is found
Can EPR non-locality be geometrical?
International Nuclear Information System (INIS)
Ne'eman, Y.
1995-01-01
The presence in Quantum Mechanics of non-local correlations is one of the two fundamentally non-intuitive features of that theory. The non-local correlations themselves fall into two classes: EPR and Geometrical. The non-local characteristics of the geometrical type are well-understood and are not suspected of possibly generating acausal features, such as faster-than-light propagation of information. This has especially become true since the emergence of a geometrical treatment for the relevant gauge theories, i.e. Fiber Bundle geometry, in which the quantum non-localities are seen to correspond to pure homotopy considerations. This aspect is reviewed in section 2. Contrary-wise, from its very conception, the EPR situation was felt to be paradoxical. It has been suggested that the non-local features of EPR might also derive from geometrical considerations, like all other non-local characteristics of QM. In[7], one of the authors was able to point out several plausibility arguments for this thesis, emphasizing in particular similarities between the non-local correlations provided by any gauge field theory and those required by the preservation of the quantum numbers of the original EPR state-vector, throughout its spatially-extended mode. The derivation was, however, somewhat incomplete, especially because of the apparent difference between, on the one hand, the closed spatial loops arising in the analysis of the geometrical non-localities, from Aharonov-Bohm and Berry phases to magnetic monopoles and instantons, and on the other hand, in the EPR case, the open line drawn by the positions of the two moving decay products of the disintegrating particle. In what follows, the authors endeavor to remove this obstacle and show that as in all other QM non-localities, EPR is somehow related to closed loops, almost involving homotopy considerations. They develop this view in section 3
Quantum Nonlocality and Reality
Bell, Mary; Gao, Shan
2016-09-01
Preface; Part I. John Stewart Bell: The Physicist: 1. John Bell: the Irish connection Andrew Whitaker; 2. Recollections of John Bell Michael Nauenberg; 3. John Bell: recollections of a great scientist and a great man Gian-Carlo Ghirardi; Part II. Bell's Theorem: 4. What did Bell really prove? Jean Bricmont; 5. The assumptions of Bell's proof Roderich Tumulka; 6. Bell on Bell's theorem: the changing face of nonlocality Harvey R. Brown and Christopher G. Timpson; 7. Experimental tests of Bell inequalities Marco Genovese; 8. Bell's theorem without inequalities: on the inception and scope of the GHZ theorem Olival Freire, Jr and Osvaldo Pessoa, Jr; 9. Strengthening Bell's theorem: removing the hidden-variable assumption Henry P. Stapp; Part III. Nonlocality: Illusions or Reality?: 10. Is any theory compatible with the quantum predictions necessarily nonlocal? Bernard d'Espagnat; 11. Local causality, probability and explanation Richard A. Healey; 12. Bell inequality and many-worlds interpretation Lev Vaidman; 13. Quantum solipsism and non-locality Travis Norsen; 14. Lessons of Bell's theorem: nonlocality, yes; action at a distance, not necessarily Wayne C. Myrvold; 15. Bell non-locality, Hardy's paradox and hyperplane dependence Gordon N. Fleming; 16. Some thoughts on quantum nonlocality and its apparent incompatibility with relativity Shan Gao; 17. A reasonable thing that just might work Daniel Rohrlich; 18. Weak values and quantum nonlocality Yakir Aharonov and Eliahu Cohen; Part IV. Nonlocal Realistic Theories: 19. Local beables and the foundations of physics Tim Maudlin; 20. John Bell's varying interpretations of quantum mechanics: memories and comments H. Dieter Zeh; 21. Some personal reflections on quantum non-locality and the contributions of John Bell Basil J. Hiley; 22. Bell on Bohm Sheldon Goldstein; 23. Interactions and inequality Philip Pearle; 24. Gravitation and the noise needed in objective reduction models Stephen L. Adler; 25. Towards an objective
Nonlocality in Bohmian mechanics
Ghafar, Zati Amalina binti Mohd Abdul; Radiman, Shahidan bin; Siong, Ch'ng Han
2018-04-01
The Einstein-Podolsky-Rosen (EPR) paradox demonstrates that entangled particles can interact in such a way that it is possible to measure both their position and momentum instantaneously. The position or momentum of one particle can be determined by measuring another identical particle that exists in another space. This instantaneous action is actually called nonlocality. The nonlocality has been proved by Bell's theorem that states that all quantum theories must be nonlocal. The Bell's theorem gives a strong support to the hidden variable theory, i.e. Bohmian mechanics. Using nonlocality, we present that the velocity field of one particle can be obtained by measuring the velocity of other particles. The trajectory of these particles is perhaps surrealistic trajectory due to the nonlocality.
Nonlocal teleparallel cosmology.
Bahamonde, Sebastian; Capozziello, Salvatore; Faizal, Mir; Nunes, Rafael C
2017-01-01
Even though it is not possible to differentiate general relativity from teleparallel gravity using classical experiments, it could be possible to discriminate between them by quantum gravitational effects. These effects have motivated the introduction of nonlocal deformations of general relativity, and similar effects are also expected to occur in teleparallel gravity. Here, we study nonlocal deformations of teleparallel gravity along with its cosmological solutions. We observe that nonlocal teleparallel gravity (like nonlocal general relativity) is consistent with the present cosmological data obtained by SNe Ia + BAO + CC + [Formula: see text] observations. Along this track, future experiments probing nonlocal effects could be used to test whether general relativity or teleparallel gravity gives the most consistent picture of gravitational interaction.
Nonlocal teleparallel cosmology
Energy Technology Data Exchange (ETDEWEB)
Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom); Capozziello, Salvatore [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Compl. Univ. di Monte S. Angelo, Naples (Italy); INFN, Napoli (Italy); Faizal, Mir [University of British Columbia - Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Nunes, Rafael C. [Universidade Federal de Juiz de Fora, Departamento de Fisica, Juiz de Fora, MG (Brazil)
2017-09-15
Even though it is not possible to differentiate general relativity from teleparallel gravity using classical experiments, it could be possible to discriminate between them by quantum gravitational effects. These effects have motivated the introduction of nonlocal deformations of general relativity, and similar effects are also expected to occur in teleparallel gravity. Here, we study nonlocal deformations of teleparallel gravity along with its cosmological solutions. We observe that nonlocal teleparallel gravity (like nonlocal general relativity) is consistent with the present cosmological data obtained by SNe Ia + BAO + CC + H{sub 0} observations. Along this track, future experiments probing nonlocal effects could be used to test whether general relativity or teleparallel gravity gives the most consistent picture of gravitational interaction. (orig.)
Nonlocal hidden variables and nonlocal gauge theories
International Nuclear Information System (INIS)
Boiteux, M.
1984-01-01
A possible unification of classical fundamental interactions together with quantum interactions is proposed, based on an extension of the concept of local gauge invariance to a nonlocal gauge invariance. As an example this new concept is developed for the particular case of the electromagnetic field. (Auth.)
On the nonexistence of degenerate phase-shift discrete solitons in a dNLS nonlocal lattice
Penati, T.; Sansottera, M.; Paleari, S.; Koukouloyannis, V.; Kevrekidis, P. G.
2018-05-01
We consider a one-dimensional discrete nonlinear Schrödinger (dNLS) model featuring interactions beyond nearest neighbors. We are interested in the existence (or nonexistence) of phase-shift discrete solitons, which correspond to four-site vortex solutions in the standard two-dimensional dNLS model (square lattice), of which this is a simpler variant. Due to the specific choice of lengths of the inter-site interactions, the vortex configurations considered present a degeneracy which causes the standard continuation techniques to be non-applicable. In the present one-dimensional case, the existence of a conserved quantity for the soliton profile (the so-called density current), together with a perturbative construction, leads to the nonexistence of any phase-shift discrete soliton which is at least C2 with respect to the small coupling ɛ, in the limit of vanishing ɛ. If we assume the solution to be only C0 in the same limit of ɛ, nonexistence is instead proved by studying the bifurcation equation of a Lyapunov-Schmidt reduction, expanded to suitably high orders. Specifically, we produce a nonexistence criterion whose efficiency we reveal in the cases of partial and full degeneracy of approximate solutions obtained via a leading order expansion.
Nonlocal continuum field theories
2002-01-01
Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...
Multipartite nonlocality distillation
International Nuclear Information System (INIS)
Hsu, Li-Yi; Wu, Keng-Shuo
2010-01-01
The stronger nonlocality than that allowed in quantum theory can provide an advantage in information processing and computation. Since quantum entanglement is distillable, can nonlocality be distilled in the nonsignalling condition? The answer is positive in the bipartite case. In this article the distillability of the multipartite nonlocality is investigated. We propose a distillation protocol solely exploiting xor operations on output bits. The probability-distribution vectors and matrix are introduced to tackle the correlators. It is shown that only the correlators with extreme values can survive the distillation process. As the main result, the amplified nonlocality cannot maximally violate any Bell-type inequality. Accordingly, a distillability criterion in the postquantum region is proposed.
A nonlocal potential form for s-wave α-α scattering
International Nuclear Information System (INIS)
Amos, K.; Bennett, M.T.
1997-01-01
Low energy s-wave α-α phase shifts that agree well with the measured set, have been extracted using a nonlocal interaction formed by folding (local real) nucleon -α particle interactions with density matrix elements of the (projectile) α particle. The resultant nonlocal s-wave α-α interaction is energy dependent and has a nonlocality range of about 2 fm
Controllable nonlocal behaviour by cascaded second-harmonic generation of fs pulses
DEFF Research Database (Denmark)
Bache, Morten; Bang, Ole; Krolikowski, Wieslaw
2008-01-01
Second-harmonic generation (SHG) of ultra-short pulses can act as a prototypical nonlocal nonlinear model, since the strength and nature of the temporal nonlocality can be controlled through the phase-mismatch parameter. The presence of a group-velocity mismatch namely implies that when the phase...... mismatch is small the nonlocal response function becomes oscillatory, while for large phase mismatch it becomes localized. In the transition between the two regimes the strength of the nonlocality diverges, and the system goes from a weakly nonlocal to a strongly nonlocal state. When simulating soliton...... compression to few-cycle pulses in the cascaded quadratic soliton compressor, the spectral content of the full coupled SHG model is predicted by the nonlocal model even when few-cycle pulses are interacting....
A generalized nonlocal vector calculus
Alali, Bacim; Liu, Kuo; Gunzburger, Max
2015-10-01
A nonlocal vector calculus was introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A formulation is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal integration by parts formula and Green's identities. The nonlocal vector calculus introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) is shown to be recoverable from the general formulation as a special example. This special nonlocal vector calculus is used to reformulate the peridynamics equation of motion in terms of the nonlocal gradient operator and its adjoint. A new example of nonlocal vector calculus operators is introduced, which shows the potential use of the general formulation for general nonlocal models.
Quantum Nonlocality and Beyond: Limits from Nonlocal Computation
Linden, Noah; Popescu, Sandu; Short, Anthony J.; Winter, Andreas
2007-11-01
We address the problem of “nonlocal computation,” in which separated parties must compute a function without any individual learning anything about the inputs. Surprisingly, entanglement provides no benefit over local classical strategies for such tasks, yet stronger nonlocal correlations allow perfect success. This provides intriguing insights into the limits of quantum information processing, the nature of quantum nonlocality, and the differences between quantum and stronger-than-quantum nonlocal correlations.
Nonlocal Quantum Effects in Cosmology
Directory of Open Access Journals (Sweden)
Yurii V. Dumin
2014-01-01
Full Text Available Since it is commonly believed that the observed large-scale structure of the universe is an imprint of quantum fluctuations existing at the very early stage of its evolution, it is reasonable to pose the question: do the effects of quantum nonlocality, which are well established now by the laboratory studies, manifest themselves also in the early universe? We try to answer this question by utilizing the results of a few experiments, namely, with the superconducting multi-Josephson-junction loops and the ultracold gases in periodic potentials. Employing a close analogy between the above-mentioned setups and the simplest one-dimensional Friedmann-Robertson-Walker cosmological model, we show that the specific nonlocal correlations revealed in the laboratory studies might be of considerable importance also in treating the strongly nonequilibrium phase transitions of Higgs fields in the early universe. Particularly, they should substantially reduce the number of topological defects (e.g., domain walls expected due to independent establishment of the new phases in the remote spatial regions. This gives us a hint on resolving a long-standing problem of the excessive concentration of topological defects, inconsistent with observational constraints. The same effect may be also relevant to the recent problem of the anomalous behavior of cosmic microwave background fluctuations at large angular scales.
Energy Technology Data Exchange (ETDEWEB)
Kimura, Tetsuji [Research and Education Center for Natural Sciences, Keio University,Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521 (Japan); Department of Physics, Tokyo Institute of Technology,Tokyo 152-8551 (Japan); Mazumdar, Anupam [Consortium for Fundamental Physics, Physics Department, Lancaster University,Lancaster LA1 4YB (United Kingdom); Kapteyn Astronomical Institute, University of Groningen,9700 AV Groningen (Netherlands); Noumi, Toshifumi [Institute for Advanced Study, Hong Kong University of Science and Technology,Clear Water Bay (Hong Kong); Department of Physics, Kobe University,Kobe 657-8501 (Japan); Yamaguchi, Masahide [Department of Physics, Tokyo Institute of Technology,Tokyo 152-8551 (Japan)
2016-10-05
We construct N=1 supersymmetric nonlocal theories in four dimension. We discuss higher derivative extensions of chiral and vector superfields, and write down generic forms of Kähler potential and superpotential up to quadratic order. We derive the condition in which an auxiliary field remains non-dynamical, and the dynamical scalars and fermions are free from the ghost degrees of freedom. We also investigate the nonlocal effects on the supersymmetry breaking and find that supertrace (mass) formula is significantly modified even at the tree level.
Mermin Non-Locality in Abstract Process Theories
Directory of Open Access Journals (Sweden)
Stefano Gogioso
2015-11-01
Full Text Available The study of non-locality is fundamental to the understanding of quantum mechanics. The past 50 years have seen a number of non-locality proofs, but its fundamental building blocks, and the exact role it plays in quantum protocols, has remained elusive. In this paper, we focus on a particular flavour of non-locality, generalising Mermin's argument on the GHZ state. Using strongly complementary observables, we provide necessary and sufficient conditions for Mermin non-locality in abstract process theories. We show that the existence of more phases than classical points (aka eigenstates is not sufficient, and that the key to Mermin non-locality lies in the presence of certain algebraically non-trivial phases. This allows us to show that fRel, a favourite toy model for categorical quantum mechanics, is Mermin local. We show Mermin non-locality to be the key resource ensuring the device-independent security of the HBB CQ (N,N family of Quantum Secret Sharing protocols. Finally, we challenge the unspoken assumption that the measurements involved in Mermin-type scenarios should be complementary (like the pair X,Y, opening the doors to a much wider class of potential experimental setups than currently employed. In short, we give conditions for Mermin non-locality tests on any number of systems, where each party has an arbitrary number of measurement choices, where each measurement has an arbitrary number of outcomes and further, that works in any abstract process theory.
Geometric phase from dielectric matrix
International Nuclear Information System (INIS)
Banerjee, D.
2005-10-01
The dielectric property of the anisotropic optical medium is found by considering the polarized photon as two component spinor of spherical harmonics. The Geometric Phase of a polarized photon has been evaluated in two ways: the phase two-form of the dielectric matrix through a twist and the Pancharatnam phase (GP) by changing the angular momentum of the incident polarized photon over a closed triangular path on the extended Poincare sphere. The helicity in connection with the spin angular momentum of the chiral photon plays the key role in developing these phase holonomies. (author)
International Nuclear Information System (INIS)
Efimov, G.V.
1976-01-01
The basic ideas for creating the theory of nonlocal interactions of a scalar one-component field are presented. Lagrangian describing a non-interacting field is the ordinary one so that non-interacting particles are described by standard methods of the Fock space. Form factors introduced have been chosen from a class of analytic functionals and quantized. Conditions of microcausality have been considered in detail. The convergence of all integrals corresponding to the arbitrary Feynman diagrams in spinor electrodynamics is guaranteed in the frame of the rules formulated. It is noted in conclusion that the spinor electrodynamics with nonlocal interaction contains no ultraviolet divergencies and satisfies all the requirements of the quantum field theory; in this sense it is mathematically more consistent than its local version
Nonlocal transformation optics.
Castaldi, Giuseppe; Galdi, Vincenzo; Alù, Andrea; Engheta, Nader
2012-02-10
We show that the powerful framework of transformation optics may be exploited for engineering the nonlocal response of artificial electromagnetic materials. Relying on the form-invariant properties of coordinate-transformed Maxwell's equations in the spectral domain, we derive the general constitutive "blueprints" of transformation media yielding prescribed nonlocal field-manipulation effects and provide a physically incisive and powerful geometrical interpretation in terms of deformation of the equifrequency contours. In order to illustrate the potentials of our approach, we present an example of application to a wave-splitting refraction scenario, which may be implemented via a simple class of artificial materials. Our results provide a systematic and versatile framework which may open intriguing venues in dispersion engineering of artificial materials.
International Nuclear Information System (INIS)
Partovi, M.H.
1982-01-01
From a generalization of the covariant derivative, nonlocal gauge theories are developed. These theories enjoy local gauge invariance and associated Ward identities, a corresponding locally conserved current, and a locally conserved energy-momentum tensor, with the Ward identities implying the masslessness of the gauge field as in local theories. Their ultraviolet behavior allows the presence as well as the absence of the Adler-Bell-Jackiw anomaly, the latter in analogy with lattice theories
Self-organization analysis for a nonlocal convective Fisher equation
Energy Technology Data Exchange (ETDEWEB)
Cunha, J.A.R. da [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil); Penna, A.L.A. [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil)], E-mail: penna.andre@gmail.com; Vainstein, M.H. [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil); Morgado, R. [International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil); Departamento de Matematica, Universidade de Brasilia, 70910-900 Brasilia DF (Brazil); Oliveira, F.A. [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil)
2009-02-02
Using both an analytical method and a numerical approach we have investigated pattern formation for a nonlocal convective Fisher equation with constant and spatial velocity fields. We analyze the limits of the influence function due to nonlocal interaction and we obtain the phase diagram of critical velocities v{sub c} as function of the width {mu} of the influence function, which characterize the self-organization of a finite system.
Hartman effect and nonlocality in quantum networks
International Nuclear Information System (INIS)
Bandopadhyay, Swarnali; Jayannavar, A.M.
2005-01-01
We study the phase time for various quantum mechanical networks having potential barriers in their arms to find the generic presence of Hartman effect. In such systems it is possible to control the 'super arrival' time in one of the arms by changing parameters on another, spatially separated from it. This is yet another quantum nonlocal effect. Negative time delays (time advancement) and 'ultra Hartman effect' with negative saturation times have been observed in some parameter regimes
Multipartite fully nonlocal quantum states
International Nuclear Information System (INIS)
Almeida, Mafalda L.; Cavalcanti, Daniel; Scarani, Valerio; Acin, Antonio
2010-01-01
We present a general method for characterizing the quantum correlations obtained after local measurements on multipartite systems. Sufficient conditions for a quantum system to be fully nonlocal according to a given partition, as well as being (genuinely) multipartite fully nonlocal, are derived. These conditions allow us to identify all completely connected graph states as multipartite fully nonlocal quantum states. Moreover, we show that this feature can also be observed in mixed states: the tensor product of five copies of the Smolin state, a biseparable and bound entangled state, is multipartite fully nonlocal.
Entanglement without nonlocality
International Nuclear Information System (INIS)
Hewitt-Horsman, C.; Vedral, V.
2007-01-01
We consider the characterization of entanglement from the perspective of a Heisenberg formalism. We derive a two-party generalized separability criterion, and from this describe a physical understanding of entanglement. We find that entanglement may be considered as fundamentally a local effect, and therefore as a separate computational resource from nonlocality. We show how entanglement differs from correlation physically, and explore the implications of this concept of entanglement for the notion of classicality. We find that this understanding of entanglement extends naturally to multipartite cases
Nonlocal higher order evolution equations
Rossi, Julio D.; Schö nlieb, Carola-Bibiane
2010-01-01
In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove
Nonlocality and short-range wetting phenomena.
Parry, A O; Romero-Enrique, J M; Lazarides, A
2004-08-20
We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.
Nonlocality and Short-Range Wetting Phenomena
Parry, A. O.; Romero-Enrique, J. M.; Lazarides, A.
2004-08-01
We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.
Extent of multiparticle quantum nonlocality
International Nuclear Information System (INIS)
Jones, Nick S.; Linden, Noah; Massar, Serge
2005-01-01
It is well known that entangled quantum states are nonlocal: the corrrelations between local measurements carried out on these states cannot be reproduced by local hidden variable models. Svetlichny, followed by others, showed that multipartite quantum states are more nonlocal than bipartite ones in the sense that even some nonlocal classical models with (super-luminal) communication between some of the parties cannot reproduce the quantum correlations. Here we study in detail the kinds of nonlocality present in quantum states. More precisely, we enquire what kinds of classical communication patterns cannot reproduce quantum correlations. By studying the extremal points of the space of all multiparty probability distributions, in which all parties can make one of a pair of measurements each with two possible outcomes, we find a necessary condition for classical nonlocal models to reproduce the statistics of all quantum states. This condition extends and generalizes work of Svetlichny and others in which it was showed that a particular class of classical nonlocal models, the 'separable' models, cannot reproduce the statistics of all multiparticle quantum states. Our condition shows that the nonlocality present in some entangled multiparticle quantum states is much stronger than previously thought. We also study the sufficiency of our condition
Li, Yanna; Gessner, Manuel; Li, Weidong; Smerzi, Augusto
2018-02-01
The controlled generation and identification of quantum correlations, usually encoded in either qubits or continuous degrees of freedom, builds the foundation of quantum information science. Recently, more sophisticated approaches, involving a combination of two distinct degrees of freedom, have been proposed to improve on the traditional strategies. Hyperentanglement describes simultaneous entanglement in more than one distinct degree of freedom, whereas hybrid entanglement refers to entanglement shared between a discrete and a continuous degree of freedom. In this work we propose a scheme that allows us to combine the two approaches, and to extend them to the strongest form of quantum correlations. Specifically, we show how two identical, initially separated particles can be manipulated to produce Bell nonlocality among their spins, among their momenta, as well as across their spins and momenta. We discuss possible experimental realizations with atomic and photonic systems.
Local and non-local equivalent potentials for p-12C scattering
International Nuclear Information System (INIS)
Lovell, A.; Amos, K.
2000-01-01
A Newton-Sabatier fixed energy inversion scheme has been used to equate inherently non-local p- 12 C potentials at a variety of energies to pion threshold, with exactly phase equivalent local ones. Those energy dependent local potentials then have been recast in the form of non-local Frahn-Lemmer interactions
Nonlocal heat transfer in nanostructures
International Nuclear Information System (INIS)
Kanavin, A.P.; Uryupin, S.A.
2008-01-01
Kinetics of electrons in a degenerate conductor heated up by absorption of a high-frequency field localized in a region of about hundred nanometers has been studied. A new law for nonlocal electron thermal flux has been predicted
Non-local quantal Noether identities and their applications
International Nuclear Information System (INIS)
Li Ziping
2002-01-01
Based on the phase-space generating functional for a system with a singular high-order Lagrangian, the quantal canonical Noether identities under the local and non-local transformation in phase space for such system have been derived. For a gauge-invariant system with a higher-order Lagrangian, the quantal Noether identities under the local and non-local transformation in configuration space have also been derived. it has been pointed out that in certain cases the quantal Noether identities may be converted to the conservation laws at the quantum level. This algorithm to derive the quantal conservation laws is significantly different from the first quantal Noether theorem. The applications to the non-Abelian CS theories with higher-order derivatives are given. The conserved quantities at the quantum level for some local and non-local transformation are found respectively
Nonlocal gravity simulates dark matter
Hehl, Friedrich W.; Mashhoon, Bahram
2009-01-01
A nonlocal generalization of Einstein's theory of gravitation is constructed within the framework of the translational gauge theory of gravity. In the linear approximation, the nonlocal theory can be interpreted as linearized general relativity but in the presence of "dark matter" that can be simply expressed as an integral transform of matter. It is shown that this approach can accommodate the Tohline-Kuhn treatment of the astrophysical evidence for dark matter.
Nonlocal Intracranial Cavity Extraction
Manjón, José V.; Eskildsen, Simon F.; Coupé, Pierrick; Romero, José E.; Collins, D. Louis; Robles, Montserrat
2014-01-01
Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV) is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden. PMID:25328511
Nonlocal Intracranial Cavity Extraction
Directory of Open Access Journals (Sweden)
José V. Manjón
2014-01-01
Full Text Available Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden.
Towards LHC physics with nonlocal Standard Model
Energy Technology Data Exchange (ETDEWEB)
Biswas, Tirthabir, E-mail: tbiswas@loyno.edu [Department of Physics, Loyola University, 6363 St. Charles Avenue, Box 92, New Orleans, LA 70118 (United States); Okada, Nobuchika, E-mail: okadan@ua.edu [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487-0324 (United States)
2015-09-15
We take a few steps towards constructing a string-inspired nonlocal extension of the Standard Model. We start by illustrating how quantum loop calculations can be performed in nonlocal scalar field theory. In particular, we show the potential to address the hierarchy problem in the nonlocal framework. Next, we construct a nonlocal abelian gauge model and derive modifications of the gauge interaction vertex and field propagators. We apply the modifications to a toy version of the nonlocal Standard Model and investigate collider phenomenology. We find the lower bound on the scale of nonlocality from the 8 TeV LHC data to be 2.5–3 TeV.
On the Activation of Quantum Nonlocality
Directory of Open Access Journals (Sweden)
Andrés Felipe Ducuara
2016-05-01
Full Text Available We report on some quantum properties of physical systems, namely, entanglement, nonlocality, k-copy nonlocality (superactivation of nonlocality, hidden nonlocality (activation of nonlocality through local filtering and the activation of nonlocality through tensoring and local filtering. The aim of this work is two-fold. First, we provide a review of the numerical procedures that must be followed in order to calculate the aforementioned properties, in particular, for any two-qubit system, and reproduce the bounds for two-qudit Werner states. Second, we use such numerical tools to calculate new bounds of these properties for two-qudit Isotropic states and two-qubit Hirsch states.
Multiclustered chimeras in large semiconductor laser arrays with nonlocal interactions
Shena, J.; Hizanidis, J.; Hövel, P.; Tsironis, G. P.
2017-09-01
The dynamics of a large array of coupled semiconductor lasers is studied numerically for a nonlocal coupling scheme. Our focus is on chimera states, a self-organized spatiotemporal pattern of coexisting coherence and incoherence. In laser systems, such states have been previously found for global and nearest-neighbor coupling, mainly in small networks. The technological advantage of large arrays has motivated us to study a system of 200 nonlocally coupled lasers with respect to the emerging collective dynamics. Moreover, the nonlocal nature of the coupling allows us to obtain robust chimera states with multiple (in)coherent domains. The crucial parameters are the coupling strength, the coupling phase and the range of the nonlocal interaction. We find that multiclustered chimera states exist in a wide region of the parameter space and we provide quantitative characterization for the obtained spatiotemporal patterns. By proposing two different experimental setups for the realization of the nonlocal coupling scheme, we are confident that our results can be confirmed in the laboratory.
Electrovacuum solutions in nonlocal gravity
Fernandes, Karan; Mitra, Arpita
2018-05-01
We consider the coupling of the electromagnetic field to a nonlocal gravity theory comprising of the Einstein-Hilbert action in addition to a nonlocal R □-2R term associated with a mass scale m . We demonstrate that in the case of the minimally coupled electromagnetic field, real corrections about the Reissner-Nordström background only exist between the inner Cauchy horizon and the event horizon of the black hole. This motivates us to consider the modified coupling of electromagnetism to this theory via the Kaluza ansatz. The Kaluza reduction introduces nonlocal terms involving the electromagnetic field to the pure gravitational nonlocal theory. An iterative approach is provided to perturbatively solve the equations of motion to arbitrary order in m2 about any known solution of general relativity. We derive the first-order corrections and demonstrate that the higher order corrections are real and perturbative about the external background of a Reissner-Nordström black hole. We also discuss how the Kaluza reduced action, through the inclusion of nonlocal electromagnetic fields, could also be relevant in quantum effects on curved backgrounds with horizons.
Nonlocal symmetries and nonlocal conservation laws of Maxwell's equations
International Nuclear Information System (INIS)
Anco, S.C.; Bluman, G.
1997-01-01
Nonlocal symmetries are obtained for Maxwell's equations in three space-time dimensions through the use of two potential systems involving scalar and vector potentials for the electromagnetic field. Corresponding nonlocal conservation laws are derived from these symmetries. The conservation laws yield nine functionally independent constants of motion which cannot be expressed in terms of the constants of motion arising from local conservation laws for space-time symmetries. These nine constants of motion represent additional conserved quantities for the electromagnetic field in three space endash time dimensions. copyright 1997 American Institute of Physics
Topological phase in two flavor neutrino oscillations
International Nuclear Information System (INIS)
Mehta, Poonam
2009-01-01
We show that the phase appearing in neutrino flavor oscillation formulae has a geometric and topological contribution. We identify a topological phase appearing in the two flavor neutrino oscillation formula using Pancharatnam's prescription of quantum collapses between nonorthogonal states. Such quantum collapses appear naturally in the expression for appearance and survival probabilities of neutrinos. Our analysis applies to neutrinos propagating in vacuum or through matter. For the minimal case of two flavors with CP conservation, our study shows for the first time that there is a geometric interpretation of the neutrino oscillation formulae for the detection probability of neutrino species.
Nonlocal higher order evolution equations
Rossi, Julio D.
2010-06-01
In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove that the solutions of the nonlocal problem converge to the solution of the higher order problem with the right-hand side given by powers of the Laplacian when the kernel J is rescaled in an appropriate way. Moreover, we prove that solutions to both equations have the same asymptotic decay rate as t goes to infinity. © 2010 Taylor & Francis.
Stable rotating dipole solitons in nonlocal media
DEFF Research Database (Denmark)
Lopez-Aguayo, Servando; Skupin, Stefan; Desyatnikov, Anton S.
2006-01-01
We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons.......We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons....
Certifying the absence of quantum nonlocality
Miller, Carl A.; Shi, Yaoyun
2016-01-01
Quantum nonlocality is an inherently non-classical feature of quantum mechanics and manifests itself through violation of Bell inequalities for nonlocal games. We show that in a fairly general setting, a simple extension of a nonlocal game can certify instead the absence of quantum nonlocality. Through contraposition, our result implies that a super-classical performance for such a game ensures that a player's output is unpredictable to the other player. Previously such output unpredictabilit...
Bell inequality, nonlocality and analyticity
International Nuclear Information System (INIS)
Socolovsky, M.
2003-01-01
The Bell and the Clauser-Horne-Shimony-Holt inequalities are shown to hold for both the cases of complex and real analytic nonlocality in the setting parameters of Einstein-Podolsky-Rosen-Bohm experiments for spin ((1)/(2)) particles and photons, in both the deterministic and stochastic cases. Therefore, the theoretical and experimental violation of the inequalities by quantum mechanics excludes all hidden variables theories with that kind of nonlocality. In particular, real analyticity leads to negative definite correlations, in contradiction with quantum mechanics
Bell inequality, nonlocality and analyticity
Energy Technology Data Exchange (ETDEWEB)
Socolovsky, M
2003-09-15
The Bell and the Clauser-Horne-Shimony-Holt inequalities are shown to hold for both the cases of complex and real analytic nonlocality in the setting parameters of Einstein-Podolsky-Rosen-Bohm experiments for spin ((1)/(2)) particles and photons, in both the deterministic and stochastic cases. Therefore, the theoretical and experimental violation of the inequalities by quantum mechanics excludes all hidden variables theories with that kind of nonlocality. In particular, real analyticity leads to negative definite correlations, in contradiction with quantum mechanics.
Closed sets of nonlocal correlations
International Nuclear Information System (INIS)
Allcock, Jonathan; Linden, Noah; Brunner, Nicolas; Popescu, Sandu; Skrzypczyk, Paul; Vertesi, Tamas
2009-01-01
We present a fundamental concept - closed sets of correlations - for studying nonlocal correlations. We argue that sets of correlations corresponding to information-theoretic principles, or more generally to consistent physical theories, must be closed under a natural set of operations. Hence, studying the closure of sets of correlations gives insight into which information-theoretic principles are genuinely different, and which are ultimately equivalent. This concept also has implications for understanding why quantum nonlocality is limited, and for finding constraints on physical theories beyond quantum mechanics.
More nonlocality with less purity.
Bandyopadhyay, Somshubhro
2011-05-27
Quantum information is nonlocal in the sense that local measurements on a composite quantum system, prepared in one of many mutually orthogonal states, may not reveal in which state the system was prepared. It is shown that in the many copy limit this kind of nonlocality is fundamentally different for pure and mixed quantum states. In particular, orthogonal mixed states may not be distinguishable by local operations and classical communication, no matter how many copies are supplied, whereas any set of N orthogonal pure states can be perfectly discriminated with m copies, where miff the set is not conclusively locally distinguishable with multiple copies. © 2011 American Physical Society
Modulational instability in nonlocal nonlinear Kerr media
DEFF Research Database (Denmark)
Krolikowski, Wieslaw; Bang, Ole; Juul Rasmussen, Jens
2001-01-01
We study modulational instability (MI) of plane waves in nonlocal nonlinear Kerr media. For a focusing nonlinearity we show that, although the nonlocality tends to suppress MI, it can never remove it completely, irrespective of the particular profile of the nonlocal response function. For a defoc...
Optical Beams in Nonlocal Nonlinear Media
DEFF Research Database (Denmark)
Królikowski, W.; Bang, Ole; Wyller, J.
2003-01-01
We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons....
Nonlocal Response in Plasmonic Nanostructures
DEFF Research Database (Denmark)
Wubs, Martijn; Mortensen, N. Asger
2016-01-01
After a brief overview of nanoplasmonics experiments that defy explanation with classical electrodynamics, we introduce nonlocal response as a main reason for non-classical effects. This concept is first introduced phenomenologically, and afterwards based on the semi-classical hydrodynamic Drude...
Quantum nonlocality does not exist.
Tipler, Frank J
2014-08-05
Quantum nonlocality is shown to be an artifact of the Copenhagen interpretation, in which each observed quantity has exactly one value at any instant. In reality, all physical systems obey quantum mechanics, which obeys no such rule. Locality is restored if observed and observer are both assumed to obey quantum mechanics, as in the many-worlds interpretation (MWI). Using the MWI, I show that the quantum side of Bell's inequality, generally believed nonlocal, is really due to a series of three measurements (not two as in the standard, oversimplified analysis), all three of which have only local effects. Thus, experiments confirming "nonlocality" are actually confirming the MWI. The mistaken interpretation of nonlocality experiments depends crucially on a question-begging version of the Born interpretation, which makes sense only in "collapse" versions of quantum theory, about the meaning of the modulus of the wave function, so I use the interpretation based on the MWI, namely that the wave function is a world density amplitude, not a probability amplitude. This view allows the Born interpretation to be derived directly from the Schrödinger equation, by applying the Schrödinger equation to both the observed and the observer.
Nonlocal quasilinear damped differential inclusions
Directory of Open Access Journals (Sweden)
Mouffak Benchohra
2002-01-01
Full Text Available In this paper we investigate the existence of mild solutions to second order initial value problems for a class of damped differential inclusions with nonlocal conditions. By using suitable fixed point theorems, we study the case when the multivalued map has convex and nonconvex values.
Nonlocal interactions and Bell's inequality
International Nuclear Information System (INIS)
Garuccio, A.; Selleri, F.
1976-01-01
It is shown that natural extensions of the local hidden variable theories to include nonlocal effects still lead to a full validity of Bell's inequality. It is conjectured that the essential point expressed by this inequality is not locality, but the wave-particle dualism
Extreme nonlocality with one photon
Energy Technology Data Exchange (ETDEWEB)
Heaney, Libby; Vedral, Vlatko [Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU (United Kingdom); Cabello, Adan [Departamento de Fisica Aplicada II, Universidad de Sevilla, E-41012 Sevilla (Spain); Santos, Marcelo Franca, E-mail: l.heaney1@physics.ox.ac.uk, E-mail: adan@us.es [Departamento de Fisica, Universidade Federal de Minas Gerais, Belo Horizonte, Caixa Postal 702, 30123-970, MG (Brazil)
2011-05-15
Quantum nonlocality is typically assigned to systems of two or more well-separated particles, but nonlocality can also exist in systems consisting of just a single particle when one considers the subsystems to be distant spatial field modes. Single particle nonlocality has been confirmed experimentally via a bipartite Bell inequality. In this paper, we introduce an N-party Hardy-like proof of the impossibility of local elements of reality and a Bell inequality for local realistic theories in the case of a single particle superposed symmetrically over N spatial field modes (i.e. N qubit W state). We show that, in the limit of large N, the Hardy-like proof effectively becomes an all-versus-nothing (or Greenberger-Horne-Zeilinger (GHZ)-like) proof, and the quantum-classical gap of the Bell inequality tends to be the same as that in a three-particle GHZ experiment. We describe how to test the nonlocality in realistic systems.
Geometric phases in singlemode fiber lightguides and fiber ring interferometers
International Nuclear Information System (INIS)
Malykin, Grigorii B; Pozdnyakova, Vera I
2004-01-01
We consider various geometric phases (GPs) in singlemode fiber lightguides (SMFs) and in fiber ring interferometers (FRIs): the Pancharatnam phase stemming from the cyclic evolution of the polarization state of radiation (RP state) in SMF, the Rytov-Vladimirskii phase (RV phase) stemming from the Rytov effect (specifically, rotation of the polarization plane due to noncoplanar winding of SMFs), as well as the nonreciprocal phase difference of counterpropagating waves (NPDCW) and nonreciprocal geometric phase of counterpropagating waves (NGPCW), which are caused by polarization nonreciprocity (PN) in FRIs. We show that in the general case, the Pancharatnam phase for an arbitrary RP state is inconsistent with the real phase change of light fluctuations in media that possess not only circular but also linear birefringence. We show that the RV phase, having a geometric origin, can in principle be considered as a dynamic phase (DP). We also show that the NGPCW can be considered as an effect of the evolution of the RP state mapped on the Poincare sphere in Ginzburg's orthogonal screw polarization modes (GSPMs) of SMFs in the FRI contour. We analyze a number of experiments in which geometric phases were detected in FRIs: changing the RV phase and Rytov's angle (RA) in response to change of the pitch of helicoidal winding of SMFs. (methodological notes)
Generalized ward identities for non-local transformation
International Nuclear Information System (INIS)
Li Ziping; Li Ruijie
2002-01-01
Based on the phase-space generating functional of Green function for a system with a singular higher-order Lagrangian, the generalized canonical Ward identities under the local and non-local transformation in phase space for such a system have been derived. Starting from the configuration-space generating functional for a gauge-invariant system, the generalized Ward identities were deduced under the local, non-local and global transformation, respectively. The applications to the non-Abelian Chern-Simons theories with higher derivatives were given. Some relationships among the proper vertices have been deduced, in which one does not need to carry out the integration over canonical momenta in phase-space generating functional. The Ward-Takahashi identities for BRS transformation are also obtained
On nonlocality in quantum physics
International Nuclear Information System (INIS)
Spasskij, B.I.; Moskovskij, A.V.
1984-01-01
The properties of nonlocality of quantum objects are considered on the example of the Aharonov-Bohm, effect Brown-Twiss effect, Einstein-Podolsky-Rosen paradox. These effects demonstrate inherent features of specific integrity in quantum objects. The term ''nonlocality'' is considered as a ''quantum analog'' of the notion of long range. Experiments on checking the Bell inequalities for fulfilment are described. The inequalities permit to solve which of the quantum mechanics interpretations is correct either the Einstein interpretation according to which the quantum system properties exist as elements of physical reality irrespective of their observation, or the Copenhagen one, according to which the microsystem properties described by noncommuting operators do not exist irrespective of measurement means
Boundary fluxes for nonlocal diffusion
Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio D.; Wolanski, Noemi
We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.
Temporal nonlocality in bistable perception
Atmanspacher, Harald; Filk, Thomas
2012-12-01
A novel conceptual framework for theoretical psychology is presented and illustrated for the example of bistable perception. A basic formal feature of this framework is the non-commutativity of operations acting on mental states. A corresponding model for the bistable perception of ambiguous stimuli, the Necker-Zeno model, is sketched and some empirical evidence for it so far is described. It is discussed how a temporal nonlocality of mental states, predicted by the model, can be understood and tested.
International Nuclear Information System (INIS)
Du, Qiang; Yang, Jiang
2017-01-01
This work is concerned with the Fourier spectral approximation of various integral differential equations associated with some linear nonlocal diffusion and peridynamic operators under periodic boundary conditions. For radially symmetric kernels, the nonlocal operators under consideration are diagonalizable in the Fourier space so that the main computational challenge is on the accurate and fast evaluation of their eigenvalues or Fourier symbols consisting of possibly singular and highly oscillatory integrals. For a large class of fractional power-like kernels, we propose a new approach based on reformulating the Fourier symbols both as coefficients of a series expansion and solutions of some simple ODE models. We then propose a hybrid algorithm that utilizes both truncated series expansions and high order Runge–Kutta ODE solvers to provide fast evaluation of Fourier symbols in both one and higher dimensional spaces. It is shown that this hybrid algorithm is robust, efficient and accurate. As applications, we combine this hybrid spectral discretization in the spatial variables and the fourth-order exponential time differencing Runge–Kutta for temporal discretization to offer high order approximations of some nonlocal gradient dynamics including nonlocal Allen–Cahn equations, nonlocal Cahn–Hilliard equations, and nonlocal phase-field crystal models. Numerical results show the accuracy and effectiveness of the fully discrete scheme and illustrate some interesting phenomena associated with the nonlocal models.
Patterning in systems driven by nonlocal external forces.
Luneville, L; Mallick, K; Pontikis, V; Simeone, D
2016-11-01
This work focuses on systems displaying domain patterns resulting from competing external and internal dynamics. To this end, we introduce a Lyapunov functional capable of describing the steady states of systems subject to external forces, by adding nonlocal terms to the Landau Ginzburg free energy of the system. Thereby, we extend the existing methodology treating long-range order interactions, to the case of external nonlocal forces. By studying the quadratic term of this Lyapunov functional, we compute the phase diagram in the temperature versus external field and we determine all possible modulated phases (domain patterns) as a function of the external forces and the temperature. Finally, we investigate patterning in chemical reactive mixtures and binary mixtures under irradiation, and we show that the last case opens the path toward micro-structural engineering of materials.
Hyperbolic metamaterial lens with hydrodynamic nonlocal response
Yan, Wei; Mortensen, N. Asger; Wubs, Martijn
2013-01-01
We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion cu...
Frustrated Brownian Motion of Nonlocal Solitary Waves
International Nuclear Information System (INIS)
Folli, V.; Conti, C.
2010-01-01
We investigate the evolution of solitary waves in a nonlocal medium in the presence of disorder. By using a perturbational approach, we show that an increasing degree of nonlocality may largely hamper the Brownian motion of self-trapped wave packets. The result is valid for any kind of nonlocality and in the presence of nonparaxial effects. Analytical predictions are compared with numerical simulations based on stochastic partial differential equations.
Unified criteria for multipartite quantum nonlocality
Energy Technology Data Exchange (ETDEWEB)
Cavalcanti, E. G. [Centre for Quantum Dynamics, Griffith University, Brisbane, Queensland 4111 (Australia); He, Q. Y.; Reid, M. D. [Centre for Atom Optics and Ultrafast Spectroscopy and Centre for Quantum-Atom Optics (Australian Research Council), Swinburne University of Technology, Melbourne (Australia); Wiseman, H. M. [Centre for Quantum Dynamics, Griffith University, Brisbane, Queensland 4111 (Australia); Centre for Quantum Computation and Communication Technology (Australian Research Council), Griffith University, Brisbane, Queensland 4111 (Australia)
2011-09-15
Wiseman and co-workers [H. M. Wiseman, S. J. Jones, and A. C. Doherty, Phys. Rev. Lett. 98, 140402, (2007)] proposed a distinction among the nonlocality classes of Bell's nonlocality, Einstein-Podolsky-Rosen (EPR) paradox or steering, and entanglement based on whether or not an overseer trusts each party in a bipartite scenario where they are asked to demonstrate entanglement. Here we extend that concept to the multipartite case and derive inequalities that progressively test for those classes of nonlocality, with different thresholds for each level. This framework includes the three classes of nonlocality above in special cases and introduces a family of others.
Unified criteria for multipartite quantum nonlocality
International Nuclear Information System (INIS)
Cavalcanti, E. G.; He, Q. Y.; Reid, M. D.; Wiseman, H. M.
2011-01-01
Wiseman and co-workers [H. M. Wiseman, S. J. Jones, and A. C. Doherty, Phys. Rev. Lett. 98, 140402, (2007)] proposed a distinction among the nonlocality classes of Bell's nonlocality, Einstein-Podolsky-Rosen (EPR) paradox or steering, and entanglement based on whether or not an overseer trusts each party in a bipartite scenario where they are asked to demonstrate entanglement. Here we extend that concept to the multipartite case and derive inequalities that progressively test for those classes of nonlocality, with different thresholds for each level. This framework includes the three classes of nonlocality above in special cases and introduces a family of others.
Robustness of multiparty nonlocality to local decoherence
International Nuclear Information System (INIS)
Jang, Sung Soon; Cheong, Yong Wook; Kim, Jaewan; Lee, Hai-Woong
2006-01-01
We investigate the robustness of multiparty nonlocality under local decoherence, acting independently and equally on each subsystem. To be specific, we consider an N-qubit Greenberger-Horne-Zeilinger (GHZ) state under a depolarization, dephasing, or dissipation channel, and examine nonlocality by testing violation of the Mermin-Klyshko inequality, which is one of Bell's inequalities for multiqubit systems. The results show that the robustness of nonlocality increases with the number of qubits, and that the nonlocality of an N-qubit GHZ state with even N is extremely persistent against dephasing
Non-Local Effects in Kaonic Atoms
International Nuclear Information System (INIS)
Lutz, M.; Florkowski, W.
2000-01-01
Optical potentials with non-local (gradient) terms are used to describe the spectra of kaonic atoms. The strength of the non-local terms is determined from a many-body calculation of the kaon self energy in nuclear matter. We find that the non-local terms are quantitatively important and the results depend strongly on the way the gradient terms are arranged. Phenomenologically successful description is obtained for p-wave like optical potentials. It is suggested that the microscopic form of the non-local interaction terms is obtained systematically by means of a semi-classical expansion of the nucleus structure. (author)
Nonlocal kinetic energy functionals by functional integration
Mi, Wenhui; Genova, Alessandro; Pavanello, Michele
2018-05-01
Since the seminal studies of Thomas and Fermi, researchers in the Density-Functional Theory (DFT) community are searching for accurate electron density functionals. Arguably, the toughest functional to approximate is the noninteracting kinetic energy, Ts[ρ], the subject of this work. The typical paradigm is to first approximate the energy functional and then take its functional derivative, δ/Ts[ρ ] δ ρ (r ) , yielding a potential that can be used in orbital-free DFT or subsystem DFT simulations. Here, this paradigm is challenged by constructing the potential from the second-functional derivative via functional integration. A new nonlocal functional for Ts[ρ] is prescribed [which we dub Mi-Genova-Pavanello (MGP)] having a density independent kernel. MGP is constructed to satisfy three exact conditions: (1) a nonzero "Kinetic electron" arising from a nonzero exchange hole; (2) the second functional derivative must reduce to the inverse Lindhard function in the limit of homogenous densities; (3) the potential is derived from functional integration of the second functional derivative. Pilot calculations show that MGP is capable of reproducing accurate equilibrium volumes, bulk moduli, total energy, and electron densities for metallic (body-centered cubic, face-centered cubic) and semiconducting (crystal diamond) phases of silicon as well as of III-V semiconductors. The MGP functional is found to be numerically stable typically reaching self-consistency within 12 iterations of a truncated Newton minimization algorithm. MGP's computational cost and memory requirements are low and comparable to the Wang-Teter nonlocal functional or any generalized gradient approximation functional.
Aspects of Nonlocality in Quantum Field Theory, Quantum Gravity and Cosmology
Barvinsky, A O
2015-01-01
This paper contains a collection of essays on nonlocal phenomena in quantum field theory, gravity and cosmology. Mechanisms of nonlocal contributions to the quantum effective action are discussed within the covariant perturbation expansion in field strengths and spacetime curvatures and the nonperturbative method based on the late time asymptotics of the heat kernel. Euclidean version of the Schwinger-Keldysh technique for quantum expectation values is presented as a special rule of obtaining the nonlocal effective equations of motion for the mean quantum field from the Euclidean effective action. This rule is applied to a new model of ghost free nonlocal cosmology which can generate the de Sitter stage of cosmological evolution at an arbitrary value of $\\varLambda$ -- a model of dark energy with its scale played by the dynamical variable that can be fixed by a kind of a scaling symmetry breaking mechanism. This model is shown to interpolate between the superhorizon phase of gravity theory mediated by a scala...
Nonlocal conductivity in type-II superconductors
International Nuclear Information System (INIS)
Mou, C.; Wortis, R.; Dorsey, A.T.; Huse, D.A.
1995-01-01
Multiterminal transport measurements on YBa 2 Cu 2 O 7 crystals in the vortex liquid regime have shown nonlocal conductivity on length scales up to 50 microns. Motivated by these results we explore the wave vector (k) dependence of the dc conductivity tensor, σ μν (k), in the Meissner, vortex lattice, and disordered phases of a type-II superconductor. Our results are based on time-dependent Ginzburg-Landau (TDGL) theory and on phenomenological arguments. We find four qualitatively different types of behavior. First, in the Meissner phase, the conductivity is infinite at k=0 and is a continuous function of k, monotonically decreasing with increasing k. Second, in the vortex-lattice phase, in the absence of pinning, the conductivity is finite (due to flux flow) at k=0; it is discontinuous there and remains qualitatively like the Meissner phase for k>0. Third, in the vortex liquid regime in a magnetic field and at low temperature, the conductivity is finite, smooth and nonmonotonic, first increasing with k at small k and then decreasing at larger k. This third behavior is expected to apply at temperatures just above the melting transition of the vortex lattice, where the vortex liquid shows strong short-range order and a large viscosity. Finally, at higher temperatures in the disordered phase, the conductivity is finite, smooth and again monotonically decreasing with k. This last, monotonic behavior applies in zero magnetic field for the entire disordered phase, i.e., at all temperatures above T c , while in a field the nonmonotonic behavior may occur in a low-temperature portion of the disordered phase
A nonlocal inhomogeneous dispersal process
Cortázar, C.; Coville, J.; Elgueta, M.; Martínez, S.
This article in devoted to the study of the nonlocal dispersal equation u(x,t)=∫R J({x-y}/{g(y)}){u(y,t)}/{g(y)} dy-u(x,t) in R×[0,∞), and its stationary counterpart. We prove global existence for the initial value problem, and under suitable hypothesis on g and J, we prove that positive bounded stationary solutions exist. We also analyze the asymptotic behavior of the finite mass solutions as t→∞, showing that they converge locally to zero.
Attraction of nonlocal dark optical solitons
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov; Neshev, Dragomir; Krolikowski, Wieslaw
2004-01-01
We study the formation and interaction of spatial dark optical solitons in materials with a nonlocal nonlinear response. We show that unlike in local materials, where dark solitons typically repel, the nonlocal nonlinearity leads to a long-range attraction and formation of stable bound states...
Chimera states and the interplay between initial conditions and non-local coupling
Kalle, Peter; Sawicki, Jakub; Zakharova, Anna; Schöll, Eckehard
2017-03-01
Chimera states are complex spatio-temporal patterns that consist of coexisting domains of coherent and incoherent dynamics. We study chimera states in a network of non-locally coupled Stuart-Landau oscillators. We investigate the impact of initial conditions in combination with non-local coupling. Based on an analytical argument, we show how the coupling phase and the coupling strength are linked to the occurrence of chimera states, flipped profiles of the mean phase velocity, and the transition from a phase- to an amplitude-mediated chimera state.
Nonlocality of the original Einstein-Podolsky-Rosen state
Cohen, O.
1997-11-01
We examine the properties and behavior of the original Einstein-Podolsky-Rosen (EPR) wave function [Phys. Rev. 47, 777 (1935)] and related Gaussian-correlated wave functions. We assess the degree of entanglement of these wave functions and consider an argument of Bell [Ann. (N.Y.) Acad. Sci. 480, 263 (1986)] based on the Wigner phase-space distribution [Phys. Rev. 40, 749 (1932)], which implies that the original EPR correlations can accommodate a local hidden-variable description. We extend Bell's analysis to the related Gaussian wave functions. We then show that it is possible to identify definite nonlocal aspects for the original EPR state and related states. We describe possible experiments that would demonstrate these nonlocal features through violations of Bell inequalities. The implications of our results, and in particular their relevance for the causal interpretation of quantum mechanics, are considered.
Cosmological perturbations in non-local higher-derivative gravity
International Nuclear Information System (INIS)
Craps, Ben; Jonckheere, Tim De; Koshelev, Alexey S.
2014-01-01
We study cosmological perturbations in a non-local higher-derivative model of gravity introduced by Biswas, Mazumdar and Siegel. We extend previous work, which had focused on classical scalar perturbations around a cosine hyperbolic bounce solution, in three ways. First, we point out the existence of a Starobinsky solution in this model, which is more attractive from a phenomenological point of view (even though it has no bounce). Second, we study classical vector and tensor pertuxsxrbations. Third, we show how to quantize scalar and tensor perturbations in a de Sitter phase (for choices of parameters such that the model is ghost-free). Our results show that the model is well-behaved at this level, and are very similar to corresponding results in local f(R) models. In particular, for the Starobinsky solution of non-local higher-derivative gravity, we find the same tensor-to-scalar ratio as for the conventional Starobinsky model
Nonlocality and localizability in quantum mechanics
International Nuclear Information System (INIS)
Matsuno, K.
1989-01-01
Nonlocality of simultaneous spatial correlation of a quantum phenomenon as demonstrated in various versions of Einstein-Podolsky-Rosen type experiment reduces to nonlocality of the measurement apparatus in the sense that the eigen-wavefunctions for the apparatus are completely specified in a manner of being independent of whatever object it may measure. Nonlocality of the measurement apparatus however serves as no more than a good approximation to reality at best. The theoretical imposition of nonlocality of the measurement apparatus as an approximation is compatible with the actual locality of quantum mechanics that dispenses with an agent claiming globally simultaneous specifiability of boundary conditions, though the genuine locality of quantum mechanics has to be examined without employing the nonlocality of the measurement apparatus. The actual locality of quantum mechanics is intrinsically irreversible in its development
Hyperbolic metamaterial lens with hydrodynamic nonlocal response
DEFF Research Database (Denmark)
Yan, Wei; Mortensen, N. Asger; Wubs, Martijn
2013-01-01
We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves...... of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens...... in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we...
Nonlocal Galileons and self-acceleration
Energy Technology Data Exchange (ETDEWEB)
Gabadadze, Gregory; Yu, Siqing, E-mail: sy1430@nyu.edu
2017-05-10
A certain class of nonlocal theories eliminates an arbitrary cosmological constant (CC) from a universe that can be perceived as our world. Dark energy then cannot be explained by a CC; it could however be due to massive gravity. We calculate the new corrections, which originate from the nonlocal terms that eliminate the CC, to the decoupling limit Lagrangian of massive gravity. The new nonlocal terms also have internal field space Galilean symmetry and are referred here as “nonlocal Galileons.” We then study a self-accelerated solution and show that the new nonlocal terms change the perturbative stability analysis. In particular, small fluctuations are now stable and non-superluminal for some simple parameter choices, whereas for the same choices the pure massive gravity fluctuations are unstable. We also study stable spherically symmetric solutions on this background.
Virial Theorem in Nonlocal Newtonian Gravity
Directory of Open Access Journals (Sweden)
Bahram Mashhoon
2016-05-01
Full Text Available Nonlocal gravity is the recent classical nonlocal generalization of Einstein’s theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for “isolated” astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy’s baryonic diameter D 0 —namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time—is predicted to be larger than the effective dark matter fraction f D M times a universal length that is the basic nonlocality length scale λ 0 ≈ 3 ± 2 kpc.
Hyperbolic metamaterial lens with hydrodynamic nonlocal response.
Yan, Wei; Mortensen, N Asger; Wubs, Martijn
2013-06-17
We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.
Non-local effects in kaonic atoms
International Nuclear Information System (INIS)
Lutz, M.; Florkowski, W.
2000-04-01
Optical potentials with non-local (gradient) terms are used to describe the spectra of kaonic atoms. The strength of the non-local terms is determined from a many-body calculation of the kaon self-energy in nuclear matter. The optical potentials show strong non-linearities in the nucleon density and sizeable non-local terms. We find that the non-local terms are quantitatively important and the results depend strongly on the way the gradient terms are arranged. Phenomenologically successful fits are obtained for p-wave like optical potentials. It is suggested that the microscopic form of the non-local interaction terms is obtained systematically by means of a semi-classical expansion of the nucleus structure. We conclude that a microscopic description of kaonic atom data requires further detailed studies of the microscopic K - nuclear dynamics. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Machon, Peter; Belzig, Wolfgang [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Eschrig, Matthias [SEPnet and Hubbard Theory Consortium, Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX (United Kingdom)
2013-07-01
We study thermal and charge transport in a three-terminal setup consisting of a superconducting and two ferromagnetic contacts. We predict that the simultaneous presence of spin-filtering and of spin-dependent scattering phase shifts at each of the two interfaces will lead to very large nonlocal thermoelectric effects both in clean and in disordered systems. The symmetries of thermal and electric transport coefficients are related to fundamental thermodynamic principles by the Onsager reciprocity. Our results show that a nonlocal version of the Onsager relations for thermoelectric currents holds in a three terminal quantum coherent ferromagnet-superconductor heterostructure including spin-dependent crossed Andreev reflection and coherent electron transfer processes.
Experimental many-pairs nonlocality
Poh, Hou Shun; Cerè, Alessandro; Bancal, Jean-Daniel; Cai, Yu; Sangouard, Nicolas; Scarani, Valerio; Kurtsiefer, Christian
2017-08-01
Collective measurements on large quantum systems together with a majority voting strategy can lead to a violation of the Clauser-Horne-Shimony-Holt Bell inequality. In the presence of many entangled pairs, this violation decreases quickly with the number of pairs and vanishes for some critical pair number that is a function of the noise present in the system. Here we show that a different binning strategy can lead to a more substantial Bell violation when the noise is sufficiently small. Given the relation between the critical pair number and the source noise, we then present an experiment where the critical pair number is used to quantify the quality of a high visibility photon pair source. Our results demonstrate nonlocal correlations using collective measurements operating on clusters of more than 40 photon pairs.
Bell's theorem, accountability and nonlocality
International Nuclear Information System (INIS)
Vona, Nicola; Liang, Yeong-Cherng
2014-01-01
Bell's theorem is a fundamental theorem in physics concerning the incompatibility between some correlations predicted by quantum theory and a large class of physical theories. In this paper, we introduce the hypothesis of accountability, which demands that it is possible to explain the correlations of the data collected in many runs of a Bell experiment in terms of what happens in each single run. Under this assumption, and making use of a recent result by Colbeck and Renner (2011 Nature Commun. 2 411), we then show that any nontrivial account of these correlations in the form of an extension of quantum theory must violate parameter independence. Moreover, we analyze the violation of outcome independence of quantum mechanics and show that it is also a manifestation of nonlocality. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell's theorem’. (paper)
Critical thresholds in flocking hydrodynamics with non-local alignment.
Tadmor, Eitan; Tan, Changhui
2014-11-13
We study the large-time behaviour of Eulerian systems augmented with non-local alignment. Such systems arise as hydrodynamic descriptions of agent-based models for self-organized dynamics, e.g. Cucker & Smale (2007 IEEE Trans. Autom. Control 52, 852-862. (doi:10.1109/TAC.2007.895842)) and Motsch & Tadmor (2011 J. Stat. Phys. 144, 923-947. (doi:10.1007/s10955-011-0285-9)) models. We prove that, in analogy with the agent-based models, the presence of non-local alignment enforces strong solutions to self-organize into a macroscopic flock. This then raises the question of existence of such strong solutions. We address this question in one- and two-dimensional set-ups, proving global regularity for subcritical initial data. Indeed, we show that there exist critical thresholds in the phase space of the initial configuration which dictate the global regularity versus a finite-time blow-up. In particular, we explore the regularity of non-local alignment in the presence of vacuum. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Reassessment of the nonlocality of correlation boxes
Energy Technology Data Exchange (ETDEWEB)
Costa, A.P.; Parisio, Fernando, E-mail: parisio@df.ufpe.br
2017-01-15
Correlation boxes are hypothetical systems usually designed to produce the maximal algebraic violation of a Bell inequality, beyond the quantum bound and without superluminal signalling. The fact that these systems show stronger correlations than those presented by maximally entangled quantum states, as the spin singlet, has been regarded as a demonstration that the former are more nonlocal than the latter. By applying an alternative, consistent measure of nonlocality to a family of correlation boxes, we show that this conclusion is not necessarily true. Complementarily, we define a class of systems displaying subquantum correlations which, nevertheless, are more nonlocal than the singlet state, showing that the extent of the numeric violation of an inequality may have little to do with the degree of nonlocality, especially in the case of correlation boxes.
Unified criteria for multipartite quantum nonlocality
Cavalcanti, E. G.; He, Q. Y.; Reid, M. D.; Wiseman, H. M.
2011-09-01
Wiseman and co-workers [H. M. Wiseman, S. J. Jones, and A. C. Doherty, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.98.140402 98, 140402, (2007)] proposed a distinction among the nonlocality classes of Bell's nonlocality, Einstein-Podolsky-Rosen (EPR) paradox or steering, and entanglement based on whether or not an overseer trusts each party in a bipartite scenario where they are asked to demonstrate entanglement. Here we extend that concept to the multipartite case and derive inequalities that progressively test for those classes of nonlocality, with different thresholds for each level. This framework includes the three classes of nonlocality above in special cases and introduces a family of others.
Revealing Hidden Einstein-Podolsky-Rosen Nonlocality
Walborn, S. P.; Salles, A.; Gomes, R. M.; Toscano, F.; Souto Ribeiro, P. H.
2011-04-01
Steering is a form of quantum nonlocality that is intimately related to the famous Einstein-Podolsky-Rosen (EPR) paradox that ignited the ongoing discussion of quantum correlations. Within the hierarchy of nonlocal correlations appearing in nature, EPR steering occupies an intermediate position between Bell nonlocality and entanglement. In continuous variable systems, EPR steering correlations have been observed by violation of Reid’s EPR inequality, which is based on inferred variances of complementary observables. Here we propose and experimentally test a new criterion based on entropy functions, and show that it is more powerful than the variance inequality for identifying EPR steering. Using the entropic criterion our experimental results show EPR steering, while the variance criterion does not. Our results open up the possibility of observing this type of nonlocality in a wider variety of quantum states.
Nanoplasmonics: Exploring nonlocal and quantum effects
DEFF Research Database (Denmark)
Mortensen, N. Asger
2016-01-01
Plasmonics is commonly understood within classical electrodynamics with local-response constitutive relations. However, possibilities for nonlocal dynamics and quantum effects emerge with strong spatial confinement in plasmonic nanostructures. This talks reviews recent theory and experiments...
Some generalizations of the nonlocal transformations approach
Directory of Open Access Journals (Sweden)
V. A. Tychynin
2015-02-01
Full Text Available Some generalizations of a method of nonlocal transformations are proposed: a connection of given equations via prolonged nonlocal transformations and finding of an adjoint solution to the solutions of initial equation are considered. A concept of nonlocal transformation with additional variables is introduced, developed and used for searching symmetries of differential equations. A problem of inversion of the nonlocal transformation with additional variables is investigated and in some cases solved. Several examples are presented. Derived technique is applied for construction of the algorithms and formulae of generation of solutions. The formulae derived are used for construction of exact solutions of some nonlinear equations.
Employee Travel Data (Non-Local)
Montgomery County of Maryland — ‘This dataset provides information regarding the total approved actual expenses incurred by Montgomery County government employees traveling non-locally (over 75...
Plasmonic nanostructures: local versus nonlocal response
DEFF Research Database (Denmark)
Toscano, Giuseppe; Wubs, Martijn; Xiao, Sanshui
2010-01-01
, and hence it is sensitive to possible narrow resonances that may arise due to strong electronic quantum confinement in the metal. This feature allows us to accurately determine which geometries are strongly affected by nonlocal response, for example regarding applications based on electric field enhancement......We study the importance of taking the nonlocal optical response of metals into account for accurate determination of optical properties of nanoplasmonic structures. Here we focus on the computational physics aspects of this problem, and in particular we report on the nonlocal-response package...... that we wrote for state-of the art numerical software, enabling us to take into account the nonlocal material response of metals for any arbitrarily shaped nanoplasmonic structures, without much numerical overhead as compared to the standard local response. Our method is a frequency-domain method...
Exploring nonlocal observables in shock wave collisions
Energy Technology Data Exchange (ETDEWEB)
Ecker, Christian; Grumiller, Daniel; Stanzer, Philipp; Stricker, Stefan A. [Institut für Theoretische Physik, Technische Universität Wien,Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria); Schee, Wilke van der [Center for Theoretical Physics, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge, MA 02139 (United States)
2016-11-09
We study the time evolution of 2-point functions and entanglement entropy in strongly anisotropic, inhomogeneous and time-dependent N=4 super Yang-Mills theory in the large N and large ’t Hooft coupling limit using AdS/CFT. On the gravity side this amounts to calculating the length of geodesics and area of extremal surfaces in the dynamical background of two colliding gravitational shockwaves, which we do numerically. We discriminate between three classes of initial conditions corresponding to wide, intermediate and narrow shocks, and show that they exhibit different phenomenology with respect to the nonlocal observables that we determine. Our results permit to use (holographic) entanglement entropy as an order parameter to distinguish between the two phases of the cross-over from the transparency to the full-stopping scenario in dynamical Yang-Mills plasma formation, which is frequently used as a toy model for heavy ion collisions. The time evolution of entanglement entropy allows to discern four regimes: highly efficient initial growth of entanglement, linear growth, (post) collisional drama and late time (polynomial) fall off. Surprisingly, we found that 2-point functions can be sensitive to the geometry inside the black hole apparent horizon, while we did not find such cases for the entanglement entropy.
Black hole information, unitarity, and nonlocality
Giddings, Steven B.
2006-01-01
The black hole information paradox apparently indicates the need for a fundamentally new ingredient in physics. The leading contender is nonlocality. Possible mechanisms for the nonlocality needed to restore unitarity to black hole evolution are investigated. Suggestions that such dynamics arises from ultra-planckian modes in Hawking's derivation are investigated and found not to be relevant, in a picture using smooth slices spanning the exterior and interior of the horizon. However, no simul...
Gauging Non-local Quark Models
International Nuclear Information System (INIS)
Broniowski, W.
1999-09-01
The gauge effective quark model with non-local interactions is considered. It is shown how this approach regularize the theory in such a way that the anomalies are preserved and charges are properly quantized. With non-local interactions the effective action is finite to all orders in the loop expansion and there is no need to introduce the quark momentum cut-off parameter
Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation
Du, Qiang; Ju, Lili; Li, Xiao; Qiao, Zhonghua
2018-06-01
Comparing with the well-known classic Cahn-Hilliard equation, the nonlocal Cahn-Hilliard equation is equipped with a nonlocal diffusion operator and can describe more practical phenomena for modeling phase transitions of microstructures in materials. On the other hand, it evidently brings more computational costs in numerical simulations, thus efficient and accurate time integration schemes are highly desired. In this paper, we propose two energy-stable linear semi-implicit methods with first and second order temporal accuracies respectively for solving the nonlocal Cahn-Hilliard equation. The temporal discretization is done by using the stabilization technique with the nonlocal diffusion term treated implicitly, while the spatial discretization is carried out by the Fourier collocation method with FFT-based fast implementations. The energy stabilities are rigorously established for both methods in the fully discrete sense. Numerical experiments are conducted for a typical case involving Gaussian kernels. We test the temporal convergence rates of the proposed schemes and make a comparison of the nonlocal phase transition process with the corresponding local one. In addition, long-time simulations of the coarsening dynamics are also performed to predict the power law of the energy decay.
Robust non-local median filter
Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji
2017-04-01
This paper describes a novel image filter with superior performance on detail-preserving removal of random-valued impulse noise superimposed on natural gray-scale images. The non-local means filter is in the limelight as a way of Gaussian noise removal with superior performance on detail preservation. By referring the fundamental concept of the non-local means, we had proposed a non-local median filter as a specialized way for random-valued impulse noise removal so far. In the non-local processing, the output of a filter is calculated from pixels in blocks which are similar to the block centered at a pixel of interest. As a result, aggressive noise removal is conducted without destroying the detailed structures in an original image. However, the performance of non-local processing decreases enormously in the case of high noise occurrence probability. A cause of this problem is that the superimposed noise disturbs accurate calculation of the similarity between the blocks. To cope with this problem, we propose an improved non-local median filter which is robust to the high level of corruption by introducing a new similarity measure considering possibility of being the original signal. The effectiveness and validity of the proposed method are verified in a series of experiments using natural gray-scale images.
Local and nonlocal order parameters in the Kitaev chain
Chitov, Gennady Y.
2018-02-01
We have calculated order parameters for the phases of the Kitaev chain with interaction and dimerization at a special symmetric point applying the Jordan-Wigner and other duality transformations. We use string order parameters (SOPs) defined via the correlation functions of the Majorana string operators. The SOPs are mapped onto the local order parameters of some dual Hamiltonians and easily calculated. We have shown that the phase diagram of the interacting dimerized chain comprises the phases with the conventional local order as well as the phases with nonlocal SOPs. From the results for the critical indices, we infer the two-dimensional Ising universality class of criticality at the particular symmetry point where the model is exactly solvable.
Nonlocal response in thin-film waveguides: Loss versus nonlocality and breaking of complementarity
DEFF Research Database (Denmark)
Raza, Søren; Christensen, Thomas; Wubs, Martijn
2013-01-01
the Thomas-Fermi internal kinetic energy of the free electrons in the metal. We derive the nonlocal dispersion relations of the three waveguide structures taking into account also retardation and interband effects, and examine the delicate interplay between nonlocal response and absorption losses...
Nonlocality and entanglement in qubit systems
Energy Technology Data Exchange (ETDEWEB)
Batle, J [Departament de Fisica, Universitat de les Illes Balears, 07122 Palma de Mallorca (Spain); Casas, M, E-mail: vdfsjbv4@uib.es [Departament de Fisica and IFISC-CSIC, Universitat de les Illes Balears, 07122 Palma de Mallorca (Spain)
2011-11-04
Nonlocality and quantum entanglement constitute two special aspects of the quantum correlations existing in quantum systems, which are of paramount importance in quantum-information theory. Traditionally, they have been regarded as identical (equivalent, in fact, for pure two qubit states, that is, Gisin's Theorem), yet they constitute different resources. Describing nonlocality by means of the violation of several Bell inequalities, we obtain by direct optimization those states of two qubits that maximally violate a Bell inequality, in terms of their degree of mixture as measured by either their participation ratio R = 1/Tr({rho}{sup 2}) or their maximum eigenvalue {lambda}{sub max}. This optimum value is obtained as well, which coincides with previous results. Comparison with entanglement is performed too. An example of an application is given in the XY model. In this novel approximation, we also concentrate on the nonlocality for linear combinations of pure states of two qubits, providing a closed form for their maximal nonlocality measure. The case of Bell diagonal mixed states of two qubits is also extensively studied. Special attention concerning the connection between nonlocality and entanglement for mixed states of two qubits is paid to the so-called maximally entangled mixed states. Additional aspects for the case of two qubits are also described in detail. Since we deal with qubit systems, we will perform an analogous study for three qubits, employing similar tools. Relation between distillability and nonlocality is explored quantitatively for the whole space of states of three qubits. We finally extend our analysis to four-qubit systems, where nonlocality for generalized Greenberger-Horne-Zeilinger states of arbitrary number of parties is computed. (paper)
Interaction of chimera states in a multilayered network of nonlocally coupled oscillators
Goremyko, M. V.; Maksimenko, V. A.; Makarov, V. V.; Ghosh, D.; Bera, B.; Dana, S. K.; Hramov, A. E.
2017-08-01
The processes of formation and evolution of chimera states in the model of a multilayered network of nonlinear elements with complex coupling topology are studied. A two-layered network of nonlocally intralayer-coupled Kuramoto-Sakaguchi phase oscillators is taken as the object of investigation. Different modes implemented in this system upon variation of the degree of interlayer interaction are demonstrated.
Bound dipole solitary solutions in anisotropic nonlocal self-focusing media
DEFF Research Database (Denmark)
Mamaev, A.V.; Zozulya, A.A.; Mezentsev, V.K.
1997-01-01
We find and analyze bound dipole solitary solutions in media with anisotropic nonlocal photorefractive material response. The dipole solutions consist of two elliptically shaped Gaussian-type beams separated by several diameters, and with a pi phase shift between their fields. Spatial evolution...
Chimera Type Behavior in Nonlocal Coupling System with Two Different Inherent Frequencies
Lin, Larry; Li, Ping-Cheng; Tseng, Hseng-Che
2014-03-01
From the research of Kuramoto and Strogatz, arrays of identical oscillators can display a remarkable pattern, named chimera state, in which phase-locked oscillators coexist with drifting ones in nonlocal coupling oscillator system. We consider further in this study, two groups of oscillators with different inherent frequencies and arrange them in a ring. When the difference of the inherent frequencies is within some specific parameter range, oscillators of nonlocal coupling system show two distinct chimera states. When the parameter value exceeds some threshold value, two chimera states disappear. They show different features. The statistical dynamic behavior of the system can be described by Kuramoto theory.
Quantum nonlocal theory of topological Fermi arc plasmons in Weyl semimetals
Andolina, Gian Marcello; Pellegrino, Francesco M. D.; Koppens, Frank H. L.; Polini, Marco
2018-03-01
The surface of a Weyl semimetal (WSM) displays Fermi arcs, i.e., disjoint segments of a two-dimensional Fermi contour. We present a quantum-mechanical nonlocal theory of chiral Fermi arc plasmons in WSMs with broken time-reversal symmetry. These are collective excitations constructed from topological Fermi arc and bulk electron states and arising from electron-electron interactions, which are treated in the realm of the random phase approximation. Our theory includes quantum effects associated with the penetration of the Fermi arc surface states into the bulk and dissipation, which is intrinsically nonlocal in nature and arises from decay processes mainly involving bulk electron-hole pair excitations.
International Nuclear Information System (INIS)
Chernichenko, Yu.D.
2005-01-01
Within the relativistic quasipotential approach to quantum field theory, the relativistic inverse scattering problem is solved for the case where the total quasipotential describing the interaction of two relativistic spinless particles having different masses is a superposition of a nonlocal separable and a local quasipotential. It is assumed that the local component of the total quasipotential is known and that there exist bound states in this local component. It is shown that the nonlocal separable component of the total interaction can be reconstructed provided that the local component, an increment of the phase shift, and the energies of bound states are known
More about the comparison of local and non-local NN interaction models
International Nuclear Information System (INIS)
Amghar, A.; Desplanques, B.
2003-01-01
The effect of non-locality in the NN interaction with an off-energy shell character has been studied in the past in relation with the possibility that some models could be approximately phase-shifts equivalent. This work is extended to a non-locality implying terms that involve an anticommutator with the operator p 2 . It includes both scalar and tensor components. The most recent 'high accuracy' models are considered in the analysis. After studying the deuteron wave functions, electromagnetic properties of various models are compared with the idea that these ones differ by their non-locality but are equivalent up to a unitary transformation. It is found that the extra non-local tensor interaction considered in this work tends to re-enforce the role of the term considered in previous works, allowing one to explain almost completely the difference in the deuteron D-state probabilities evidenced by the comparison of the Bonn-QB and Paris models for instance. Conclusions for the effect of the non-local scalar interaction are not so clear. In many cases, it was found that these terms could explain part of the differences that the comparison of predictions for various models evidences but cases where they could not were also found. Some of these last ones have been analyzed in order to pointing out the origin of the failure
A Generalized Nonlocal Calculus with Application to the Peridynamics Model for Solid Mechanics
Alali, Bacim; Liu, Kuo; Gunzburger, Max
2014-01-01
A nonlocal vector calculus was introduced in [2] that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A generalization is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal...
Constraining generalized non-local cosmology from Noether symmetries.
Bahamonde, Sebastian; Capozziello, Salvatore; Dialektopoulos, Konstantinos F
2017-01-01
We study a generalized non-local theory of gravity which, in specific limits, can become either the curvature non-local or teleparallel non-local theory. Using the Noether symmetry approach, we find that the coupling functions coming from the non-local terms are constrained to be either exponential or linear in form. It is well known that in some non-local theories, a certain kind of exponential non-local couplings is needed in order to achieve a renormalizable theory. In this paper, we explicitly show that this kind of coupling does not need to be introduced by hand, instead, it appears naturally from the symmetries of the Lagrangian in flat Friedmann-Robertson-Walker cosmology. Finally, we find de Sitter and power-law cosmological solutions for different non-local theories. The symmetries for the generalized non-local theory are also found and some cosmological solutions are also achieved using the full theory.
Constraining generalized non-local cosmology from Noether symmetries
Energy Technology Data Exchange (ETDEWEB)
Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom); Capozziello, Salvatore [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Complesso di Monte Sant' Angelo, Naples (Italy); INFN Sezione di Napoli, Naples (Italy); Dialektopoulos, Konstantinos F. [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Complesso di Monte Sant' Angelo, Naples (Italy); INFN Sezione di Napoli, Naples (Italy)
2017-11-15
We study a generalized non-local theory of gravity which, in specific limits, can become either the curvature non-local or teleparallel non-local theory. Using the Noether symmetry approach, we find that the coupling functions coming from the non-local terms are constrained to be either exponential or linear in form. It is well known that in some non-local theories, a certain kind of exponential non-local couplings is needed in order to achieve a renormalizable theory. In this paper, we explicitly show that this kind of coupling does not need to be introduced by hand, instead, it appears naturally from the symmetries of the Lagrangian in flat Friedmann-Robertson-Walker cosmology. Finally, we find de Sitter and power-law cosmological solutions for different non-local theories. The symmetries for the generalized non-local theory are also found and some cosmological solutions are also achieved using the full theory. (orig.)
NLOM - a program for nonlocal optical model calculations
International Nuclear Information System (INIS)
Kim, B.T.; Kyum, M.C.; Hong, S.W.; Park, M.H.; Udagawa, T.
1992-01-01
A FORTRAN program NLOM for nonlocal optical model calculations is described. It is based on a method recently developed by Kim and Udagawa, which utilizes the Lanczos technique for solving integral equations derived from the nonlocal Schroedinger equation. (orig.)
Coupling of nonlocal and local continuum models by the Arlequinapproach
Han, Fei; Lubineau, Gilles
2011-01-01
for the 'fine scale' description in which nonlocal interactions are considered to have non-negligible effects. Classical continuum mechanics only involving local contact forces is introduced for the rest of the structure where these nonlocal effects can
Accurate nonlocal theory for cascaded quadratic soliton compression
DEFF Research Database (Denmark)
Bache, Morten; Bang, Ole; Moses, Jeffrey
2007-01-01
We study soliton compression in bulk quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion....
Black hole information, unitarity, and nonlocality
International Nuclear Information System (INIS)
Giddings, Steven B.
2006-01-01
The black hole information paradox apparently indicates the need for a fundamentally new ingredient in physics. The leading contender is nonlocality. Possible mechanisms for the nonlocality needed to restore unitarity to black hole evolution are investigated. Suggestions that such dynamics arise from ultra-Planckian modes in Hawking's derivation are investigated and found not to be relevant, in a picture using smooth slices spanning the exterior and interior of the horizon. However, no simultaneous description of modes that have fallen into the black hole and outgoing Hawking modes can be given without appearance of a large kinematic invariant, or other dependence on ultra-Planckian physics. This indicates that a reliable argument for information loss has not been constructed, and that strong gravitational dynamics is important. Such dynamics has been argued to be fundamentally nonlocal in extreme situations, such as those required to investigate the fate of information
Spiraling solitons and multipole localized modes in nonlocal nonlinear media
International Nuclear Information System (INIS)
Buccoliero, Daniel; Lopez-Aguayo, Servando; Skupin, Stefan; Desyatnikov, Anton S.; Bang, Ole; Krolikowski, Wieslaw; Kivshar, Yuri S.
2007-01-01
We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two different models of nonlocal nonlinearity and suggest that the stabilization mechanism is a generic property of a spatial nonlocal nonlinear response independent of its particular functional form
Spiralling solitons and multipole localized modes in nonlocal nonlinear media
DEFF Research Database (Denmark)
Buccoliero, Daniel; Lopez-Aguayo, Servando; Skupin, Stefan
2007-01-01
We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two differe...... models of nonlocal nonlinearity and suggest that the stabilization mechanism is a generic property of a spatial nonlocal nonlinear response independent of its particular functional form....
Reversed rainbow with a nonlocal metamaterial
Energy Technology Data Exchange (ETDEWEB)
Morgado, Tiago A., E-mail: tiago.morgado@co.it.pt; Marcos, João S.; Silveirinha, Mário G., E-mail: mario.silveirinha@co.it.pt [Department of Electrical Engineering, Instituto de Telecomunicações, University of Coimbra, 3030 Coimbra (Portugal); Costa, João T. [CST AG, Bad Nauheimer Strasse 19, 64289 Darmstadt (Germany); Costa, Jorge R. [Instituto de Telecomunicações and Instituto Universitário de Lisboa (ISCTE-IUL), 1649-026 Lisboa (Portugal); Fernandes, Carlos A. [Instituto de Telecomunicações, and Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)
2014-12-29
One of the intriguing potentials of metamaterials is the possibility to realize a nonlocal electromagnetic reaction, such that the effective medium response at a given point is fundamentally entangled with the macroscopic field distribution at long distances. Here, it is experimentally and numerically verified that a microwave nonlocal metamaterial formed by crossed metallic wires enables a low-loss broadband anomalous material response such that the refractive index decreases with frequency. Notably, it is shown that an electromagnetic beam refracted by our metamaterial prism creates a reversed microwave rainbow.
On nonlocal modeling in continuum mechanics
Directory of Open Access Journals (Sweden)
Adam Martowicz
2018-01-01
Full Text Available The objective of the paper is to provide an overview of nonlocal formulations for models of elastic solids. The author presents the physical foundations for nonlocal theories of continuum mechanics, followed by various analytical and numerical techniques. The characteristics and range of practical applications for the presented approaches are discussed. The results of numerical simulations for the selected case studies are provided to demonstrate the properties of the described methods. The paper is illustrated with outcomes from peridynamic analyses. Fatigue and axial stretching were simulated to show the capabilities of the developed numerical tools.
Hyperbolic metamaterials: Nonlocal response regularizes broadband supersingularity
DEFF Research Database (Denmark)
Yan, Wei; Wubs, Martijn; Mortensen, N. Asger
2012-01-01
We study metamaterials known as hyperbolic media that in the usual local-response approximation exhibit hyperbolic dispersion and an associated broadband singularity in the density of states. Instead, from the more microscopic hydrodynamic Drude theory we derive qualitatively different optical...... properties of these metamaterials, due to the free-electron nonlocal optical response of their metal constituents. We demonstrate that nonlocal response gives rise to a large-wavevector cutoff in the dispersion that is inversely proportional to the Fermi velocity of the electron gas, but also for small...
International Nuclear Information System (INIS)
Namsrai, Kh.; Nyamtseren, N.
1994-09-01
A model of the extended electron is constructed by using definition of the d-operation. Gauge invariance of the nonlocal theory is proved. We use the Efimov approach to describe the nonlocal interaction of quantized fields. (author). 4 refs
Classification of scalar and dyadic nonlocal optical response models
DEFF Research Database (Denmark)
Wubs, Martijn
2015-01-01
Nonlocal optical response is one of the emerging effects on the nanoscale for particles made of metals or doped semiconductors. Here we classify and compare both scalar and tensorial nonlocal response models. In the latter case the nonlocality can stem from either the longitudinal response...
Collapse arrest and soliton stabilization in nonlocal nonlinear media
DEFF Research Database (Denmark)
Bang, Ole; Krolikowski, Wieslaw; Wyller, John
2002-01-01
that nonlocality of the nonlinearity prevents collapse in, e.g., Bose-Einstein condensates and optical Kerr media in all physical dimensions. The nonlocal nonlinear response must be symmetric and have a positive definite Fourier spectrum, but can otherwise be of completely arbitrary shape and degree of nonlocality...
DEFF Research Database (Denmark)
Esbensen, B.K.; Bache, Morten; Krolikowski, W.
2012-01-01
We employ the formal analogy between quadratic and nonlocal solitons to investigate analytically the properties of solitons and soliton bound states in second-harmonic generation in the regime of negative diffraction or dispersion of the second harmonic. We show that in the nonlocal description...... this regime corresponds to a periodic nonlocal response function. We then use the strongly nonlocal approximation to find analytical solutions of the families of single bright solitons and their bound states in terms of Mathieu functions....
Semenova, N. I.; Strelkova, G. I.; Anishchenko, V. S.; Zakharova, A.
2017-06-01
We describe numerical results for the dynamics of networks of nonlocally coupled chaotic maps. Switchings in time between amplitude and phase chimera states have been first established and studied. It has been shown that in autonomous ensembles, a nonstationary regime of switchings has a finite lifetime and represents a transient process towards a stationary regime of phase chimera. The lifetime of the nonstationary switching regime can be increased to infinity by applying short-term noise perturbations.
Sahmani, S; Fattahi, A M
2017-08-01
New ceramic materials containing nanoscaled crystalline phases create a main object of scientific interest due to their attractive advantages such as biocompatibility. Zirconia as a transparent glass ceramic is one of the most useful binary oxides in a wide range of applications. In the present study, a new size-dependent plate model is constructed to predict the nonlinear axial instability characteristics of zirconia nanosheets under axial compressive load. To accomplish this end, the nonlocal continuum elasticity of Eringen is incorporated to a refined exponential shear deformation plate theory. A perturbation-based solving process is put to use to derive explicit expressions for nonlocal equilibrium paths of axial-loaded nanosheets. After that, some molecular dynamics (MD) simulations are performed for axial instability response of square zirconia nanosheets with different side lengths, the results of which are matched with those of the developed nonlocal plate model to capture the proper value of nonlocal parameter. It is demonstrated that the calibrated nonlocal plate model with nonlocal parameter equal to 0.37nm has a very good capability to predict the axial instability characteristics of zirconia nanosheets, the accuracy of which is comparable with that of MD simulation. Copyright © 2017 Elsevier Inc. All rights reserved.
Nonlocality, Entanglement Witnesses and Supra-correlations
2012-04-01
quantum non-locality, non-signaling theories, Popescu-Rohrlich boxes, EPR 1. INTRODUCTION Physics imposes limits on the correlations that can be...References [1] J.S. Bell, “On the Einstein Podolsky Rosen paradox ,” Physics 1, 195 (1964). [2] B. Tsirelson, “Quantum Generalizations of Bell’s
Energy dependence of nonlocal optical potentials
Lovell, A. E.; Bacq, P.-L.; Capel, P.; Nunes, F. M.; Titus, L. J.
2017-11-01
Recently, a variety of studies have shown the importance of including nonlocality in the description of reactions. The goal of this work is to revisit the phenomenological approach to determining nonlocal optical potentials from elastic scattering. We perform a χ2 analysis of neutron elastic scattering data off 40Ca, 90Zr, and 208Pb at energies E ≈5 -40 MeV, assuming a Perey and Buck [Nucl. Phys. 32, 353 (1962), 10.1016/0029-5582(62)90345-0] or Tian et al. [Int. J. Mod. Phys. E 24, 1550006 (2015), 10.1142/S0218301315500068] nonlocal form for the optical potential. We introduce energy and asymmetry dependencies in the imaginary part of the potential and refit the data to obtain a global parametrization. Independently of the starting point in the minimization procedure, an energy dependence in the imaginary depth is required for a good description of the data across the included energy range. We present two parametrizations, both of which represent an improvement over the original potentials for the fitted nuclei as well as for other nuclei not included in our fit. Our results show that, even when including the standard Gaussian nonlocality in optical potentials, a significant energy dependence is required to describe elastic-scattering data.
Nonlocal study of ultimate plasmon hybridization
DEFF Research Database (Denmark)
Raza, Søren; Wubs, Martijn; Bozhevolnyi, Sergey I.
2015-01-01
the transition from separated dimers via touching dimers to finally overlapping dimers. In particular, we focus on the touching case, showing a fundamental limit on the hybridization of the bonding plasmon modes due to nonlocality. Using transformation optics, we determine a simple analytical equation...
The statistical strength of nonlocality proofs
Dam, van W.; Gill, R.D.; Grünwald, P.D.
2005-01-01
There exist numerous proofs of Bell's theorem, stating that quantum mechanics is incompatible with local realistic theories of nature. Here the strength of such nonlocality proofs is defined in terms of the amount of evidence against local realism provided by the corresponding experiments.
Quantum Nonlocality with Spins in Diamond
Hensen, B.J.
2016-01-01
In this thesis we experimentally investigate quantum nonlocality: entangled states of spatially separated objects. Entanglement is one of the most striking consequences of the quantum formalism developed in the 1920's; the predicted outcomes of independent measurements on entangled objects reveal
Local and nonlocal space-time singularities
International Nuclear Information System (INIS)
Konstantinov, M.Yu.
1985-01-01
The necessity to subdivide the singularities into two classes: local and nonlocal, each of them to be defined independently, is proved. Both classes of the singularities are defined, and the relation between the definitions introduced and the standard definition of singularities, based on space-time, incompleteness, is established. The relation between definitions introduced and theorems on the singularity existence is also established
Testing nonlocal realism with entangled coherent states
International Nuclear Information System (INIS)
Paternostro, Mauro; Jeong, Hyunseok
2010-01-01
We investigate the violation of nonlocal realism using entangled coherent states (ECSs) under nonlinear operations and homodyne measurements. We address recently proposed Leggett-type inequalities, including a class of optimized incompatibility inequalities proposed by Branciard et al. [Nature Phys. 4, 681 (2008)], and thoroughly assess the effects of detection inefficiency.
International Nuclear Information System (INIS)
Blasone, Massimo; Jizba, Petr
2004-01-01
By using the Feynman-Hibbs prescription for the evolution amplitude, we quantize the system of a damped harmonic oscillator coupled to its time-reversed image, known as Bateman's dual system. The time-dependent quantum states of such a system are constructed and discussed entirely in the framework of the classical theory. The corresponding geometric (Pancharatnam) phase is calculated and found to be directly related to the ground-state energy of the 1D linear harmonic oscillator to which the 2D system reduces under appropriate constraint
Nonlocal gravity. Conceptual aspects and cosmological predictions
Belgacem, Enis; Dirian, Yves; Foffa, Stefano; Maggiore, Michele
2018-03-01
Even if the fundamental action of gravity is local, the corresponding quantum effective action, that includes the effect of quantum fluctuations, is a nonlocal object. These nonlocalities are well understood in the ultraviolet regime but much less in the infrared, where they could in principle give rise to important cosmological effects. Here we systematize and extend previous work of our group, in which it is assumed that a mass scale Λ is dynamically generated in the infrared, giving rise to nonlocal terms in the quantum effective action of gravity. We give a detailed discussion of conceptual aspects related to nonlocal gravity (including causality, degrees of freedom, ambiguities related to the boundary conditions of the nonlocal operator, scenarios for the emergence of a dynamical scale in the infrared) and of the cosmological consequences of these models. The requirement of providing a viable cosmological evolution severely restricts the form of the nonlocal terms, and selects a model (the so-called RR model) that corresponds to a dynamical mass generation for the conformal mode. For such a model: (1) there is a FRW background evolution, where the nonlocal term acts as an effective dark energy with a phantom equation of state, providing accelerated expansion without a cosmological constant. (2) Cosmological perturbations are well behaved. (3) Implementing the model in a Boltzmann code and comparing with observations we find that the RR model fits the CMB, BAO, SNe, structure formation data and local H0 measurements at a level statistically equivalent to ΛCDM. (4) Bayesian parameter estimation shows that the value of H0 obtained in the RR model is higher than in ΛCDM, reducing to 2.0σ the tension with the value from local measurements. (5) The RR model provides a prediction for the sum of neutrino masses that falls within the limits set by oscillation and terrestrial experiments (in contrast to ΛCDM, where letting the sum of neutrino masses vary as a free
Nonlocal astrophysics dark matter, dark energy and physical vacuum
Alexeev, Boris V
2017-01-01
Non-Local Astrophysics: Dark Matter, Dark Energy and Physical Vacuum highlights the most significant features of non-local theory, a highly effective tool for solving many physical problems in areas where classical local theory runs into difficulties. The book provides the fundamental science behind new non-local astrophysics, discussing non-local kinetic and generalized hydrodynamic equations, non-local parameters in several physical systems, dark matter, dark energy, black holes and gravitational waves. Devoted to the solution of astrophysical problems from the position of non-local physics Provides a solution for dark matter and dark energy Discusses cosmological aspects of the theory of non-local physics Includes a solution for the problem of the Hubble Universe expansion, and of the dependence of the orbital velocity from the center of gravity
Generating functional and large N limit of nonlocal 2D generalized Yang-Mills theories (nlgYM2's)
International Nuclear Information System (INIS)
Saaidi, K.; Sajadi, H.M.
2001-01-01
Using the path integral method, we calculate the partition function and the generating functional (of the field strengths) on nonlocal generalized 2D Yang-Mills theories (nlgYM 2 's), which are nonlocal in the auxiliary field. This has been considered before by Saaidi and Khorrami. Our calculations are done for general surfaces. We find a general expression for the free energy of W(φ) =φ 2k in nlgYM 2 theories at the strong coupling phase (SCP) regime (A > A c ) for large groups. In the specific φ 4 model, we show that the theory has a third order phase transition. (orig.)
DEFF Research Database (Denmark)
Zhou, Binbin; Guo, Hairun; Bache, Morten
2014-01-01
Experimental data of femtosecond thick-crystal second-harmonic generation show that when tuning away from phase matching, a dominating narrow spectral peak appears in the second harmonic that can be tuned over hundreds of nanometers by changing the phase-mismatch parameter. Traditional theory...... and the nonlocal theory indirectly proves that we have observed a soliton-induced nonlocal resonance. The soliton exists in the self-defocusing regime of the cascaded nonlinear interaction and in the normal dispersion regime of the crystal, and needs high input intensities to become excited....
Nonlocal inhomogeneous broadening in plasmonic nanoparticle ensembles
DEFF Research Database (Denmark)
Tserkezis, Christos; Maack, Johan Rosenkrantz; Liu, Z.
Nonclassical effects are increasingly more relevant in plasmonics as modern nanofabrication techniques rapidly approach the extreme nanoscale limits, for which departing from classical electrodynamics becomes important. One of the largest-scale necessary corrections towards this direction...... is to abandon the local response approximation (LRA) and take the nonlocal response of the metal into account, typically through the simple hydrodynamic Drude model (HDM), which predicts a sizedependent deviation of plasmon modes from the quasistatic (QS) limit. While this behaviour has been explored for simple...... metallic nanoparticles (NPs) or NP dimers, the possibility of inhomogeneous resonance broadening due to size variation in a large NP collection and the resulting spectral overlap of modes (as depicted in Fig. 1), has been so far overlooked. Here we study theoretically the effect of nonlocality on ensemble...
Nonlocal synchronization in nearest neighbour coupled oscillators
International Nuclear Information System (INIS)
El-Nashar, H.F.; Elgazzar, A.S.; Cerdeira, H.A.
2002-02-01
We investigate a system of nearest neighbour coupled oscillators. We show that the nonlocal frequency synchronization, that might appear in such a system, occurs as a consequence of the nearest neighbour coupling. The power spectra of nonadjacent oscillators shows that there is no complete coincidence between all frequency peaks of the oscillators in the nonlocal cluster, while the peaks for neighbouring oscillators approximately coincide even if they are not yet in a cluster. It is shown that nonadjacent oscillators closer in frequencies, share slow modes with their adjacent oscillators which are neighbours in space. It is also shown that when a direct coupling between non-neighbours oscillators is introduced explicitly, the peaks of the spectra of the frequencies of those non-neighbours coincide. (author)
Evidence and concepts for nonlocal transport
International Nuclear Information System (INIS)
Callen, J.D.; Kissick, M.W.
1997-08-01
Up until a few years ago, most transient transport studies observed primarily diffusive plasma transport responses to fast, localized perturbations. Recently, a number of experiments have, in addition, observed nonlocal electron heat responses. Most remarkably, in cold pulse experiments the abrupt edge cooling via radiative processes can induce both a diffusive cooling response moving in from the edge, and simultaneously a rising electron temperature in the central core of tokamak plasmas--an opposite response even before the diffusive cooling from the edge reaches the center. These and other nonlocal electron heat transport conundrums from recent experiments are reviewed. Also, models and physical processes being advanced to explain these puzzling phenomena are discussed. The importance of resolving this transport enigma is emphasized
Nonlocal transport in hot plasma. Part I
International Nuclear Information System (INIS)
Brantov, A. V.; Bychenkov, V. Yu.
2013-01-01
The problem of describing charged particle transport in hot plasma under the conditions in which the ratio of the electron mean free path to the gradient length is not too small is one of the key problems of plasma physics. However, up to now, there was a deficit of the systematic interpretation of the current state of this problem, which, in most studies, is formulated as the problem of nonlocal transport. In this review, we fill this gap by presenting a self-consistent linear theory of nonlocal transport for small plasma perturbations and an arbitrary collisionality from the classical highly collisional hydrodynamic regime to the collisionless regime. We describe a number of nonlinear transport models and demonstrate the application of the nonclassical transport theory to the solution of some problems of plasma physics, first of all for plasmas produced by nanosecond laser pulses with intensities of 10 13 –10 16 W/cm 2
Nonlocal Operational Calculi for Dunkl Operators
Directory of Open Access Journals (Sweden)
Ivan H. Dimovski
2009-03-01
Full Text Available The one-dimensional Dunkl operator $D_k$ with a non-negative parameter $k$, is considered under an arbitrary nonlocal boundary value condition. The right inverse operator of $D_k$, satisfying this condition is studied. An operational calculus of Mikusinski type is developed. In the frames of this operational calculi an extension of the Heaviside algorithm for solution of nonlocal Cauchy boundary value problems for Dunkl functional-differential equations $P(D_ku = f$ with a given polynomial $P$ is proposed. The solution of these equations in mean-periodic functions reduces to such problems. Necessary and sufficient condition for existence of unique solution in mean-periodic functions is found.
EPR paradox, quantum nonlocality and physical reality
International Nuclear Information System (INIS)
Kupczynski, M
2016-01-01
Eighty years ago Einstein, Podolsky and Rosen demonstrated that instantaneous reduction of wave function, believed to describe completely a pair of entangled physical systems, led to EPR paradox. The paradox disappears in statistical interpretation of quantum mechanics (QM) according to which a wave function describes only an ensemble of identically prepared physical systems. QM predicts strong correlations between outcomes of measurements performed on different members of EPR pairs in far-away locations. Searching for an intuitive explanation of these correlations John Bell analysed so called local realistic hidden variable models and proved that correlations consistent with these models satisfy Bell inequalities which are violated by some predictions of QM and by experimental data. Several different local models were constructed and inequalities proven. Some eminent physicists concluded that Nature is definitely nonlocal and that it is acting according to a law of nonlocal randomness. According to these law perfectly random, but strongly correlated events, can be produced at the same time in far away locations and a local and causal explanation of their occurrence cannot be given. We strongly disagree with this conclusion and we prove the contrary by analysing in detail some influential finite sample proofs of Bell and CHSH inequalities and so called Quantum Randi Challenges. We also show how one can win so called Bell's game without violating locality of Nature. Nonlocal randomness is inconsistent with local quantum field theory, with standard model in elementary particle physics and with causal laws and adaptive dynamics prevailing in the surrounding us world. The experimental violation of Bell-type inequalities does not prove the nonlocality of Nature but it only confirms a contextual character of quantum observables and gives a strong argument against counterfactual definiteness and against a point of view according to which experimental outcomes are
EPR paradox, quantum nonlocality and physical reality
Kupczynski, M.
2016-03-01
Eighty years ago Einstein, Podolsky and Rosen demonstrated that instantaneous reduction of wave function, believed to describe completely a pair of entangled physical systems, led to EPR paradox. The paradox disappears in statistical interpretation of quantum mechanics (QM) according to which a wave function describes only an ensemble of identically prepared physical systems. QM predicts strong correlations between outcomes of measurements performed on different members of EPR pairs in far-away locations. Searching for an intuitive explanation of these correlations John Bell analysed so called local realistic hidden variable models and proved that correlations consistent with these models satisfy Bell inequalities which are violated by some predictions of QM and by experimental data. Several different local models were constructed and inequalities proven. Some eminent physicists concluded that Nature is definitely nonlocal and that it is acting according to a law of nonlocal randomness. According to these law perfectly random, but strongly correlated events, can be produced at the same time in far away locations and a local and causal explanation of their occurrence cannot be given. We strongly disagree with this conclusion and we prove the contrary by analysing in detail some influential finite sample proofs of Bell and CHSH inequalities and so called Quantum Randi Challenges. We also show how one can win so called Bell's game without violating locality of Nature. Nonlocal randomness is inconsistent with local quantum field theory, with standard model in elementary particle physics and with causal laws and adaptive dynamics prevailing in the surrounding us world. The experimental violation of Bell-type inequalities does not prove the nonlocality of Nature but it only confirms a contextual character of quantum observables and gives a strong argument against counterfactual definiteness and against a point of view according to which experimental outcomes are produced
Boundary fluxes for non-local diffusion
Cortazar, C.; Elgueta, M.; Rossi, J. D.; Wolanski, N.
2006-01-01
We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.
Using nonlocal coherence to quantify quantum correlation
Pei, Pei; Wang, Wei; Li, Chong; Song, He-Shan
2010-01-01
We reexamine quantum correlation from the fundamental perspective of its consanguineous quantum property, the coherence. We emphasize the importance of specifying the tensor product structure of the total state space before discussing quantum correlation. A measure of quantum correlation for arbitrary dimension bipartite states using nonlocal coherence is proposed, and it can be easily generalized to the multipartite case. The quantification of non-entangled component within quantum correlati...
Nonlocal Boltzmann theory of plasma channels
International Nuclear Information System (INIS)
Yu, S.S.; Melendez, R.E.
1983-01-01
The mathematical framework for the LLNL code NUTS is developed. This code is designed to study the evolution of an electron-beam-generated plasma channel at all pressures. The Boltzmann treatment of the secondary electrons presented include all inertial, nonlocal, electric and magnetic effects, as well as effects of atomic collisions. Field equations are advanced simultaneously and self-consistently with the evolving plasma currents
Switching non-local vector median filter
Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji
2016-04-01
This paper describes a novel image filtering method that removes random-valued impulse noise superimposed on a natural color image. In impulse noise removal, it is essential to employ a switching-type filtering method, as used in the well-known switching median filter, to preserve the detail of an original image with good quality. In color image filtering, it is generally preferable to deal with the red (R), green (G), and blue (B) components of each pixel of a color image as elements of a vectorized signal, as in the well-known vector median filter, rather than as component-wise signals to prevent a color shift after filtering. By taking these fundamentals into consideration, we propose a switching-type vector median filter with non-local processing that mainly consists of a noise detector and a noise removal filter. Concretely, we propose a noise detector that proactively detects noise-corrupted pixels by focusing attention on the isolation tendencies of pixels of interest not in an input image but in difference images between RGB components. Furthermore, as the noise removal filter, we propose an extended version of the non-local median filter, we proposed previously for grayscale image processing, named the non-local vector median filter, which is designed for color image processing. The proposed method realizes a superior balance between the preservation of detail and impulse noise removal by proactive noise detection and non-local switching vector median filtering, respectively. The effectiveness and validity of the proposed method are verified in a series of experiments using natural color images.
Yang, Hui; Deng, Yan
2017-12-01
All-dielectric metasurfaces for wavefront deflecting and optical vortex generating with broadband and high efficiency are demonstrated. The unit cell of the metasurfaces is optimized to function as a half wave-plate with high polarization conversion efficiency (94%) and transmittance (94.5%) at the telecommunication wavelength. Under such a condition, we can get rid of the complicated parameter sweep process for phase shift selecting. Hence, a phase coverage ranges from 0 to 2 π can be easily obtained by introducing the Pancharatnam-Berry phase. Metasurfaces composed of the two pre-designed super cells are demonstrated for optical beam deflecting and vortex beam generating. It is found that the metasurfaces with more phase shift sampling points (small phase shift increment) exhibit better performance. Moreover, optical vortex beams can be generated by the designed metasurfaces within a wavelength range of 200 nm. These results will provide a viable route for designing broadband and high efficiency devices related to phase modulation.
Nonlocal Gravity and Structure in the Universe
Energy Technology Data Exchange (ETDEWEB)
Dodelson, Scott [Chicago U., Astron. Astrophys. Ctr.; Park, Sohyun [Penn State U., University Park, IGC
2014-08-26
The observed acceleration of the Universe can be explained by modifying general relativity. One such attempt is the nonlocal model of Deser and Woodard. Here we fix the background cosmology using results from the Planck satellite and examine the predictions of nonlocal gravity for the evolution of structure in the universe, confronting the model with three tests: gravitational lensing, redshift space distortions, and the estimator of gravity $E_G$. Current data favor general relativity (GR) over nonlocal gravity: fixing primordial cosmology with the best fit parameters from Planck leads to weak lensing results favoring GR by 5.9 sigma; redshift space distortions measurements of the growth rate preferring GR by 7.8 sigma; and the single measurement of $E_G$ favoring GR, but by less than 1-sigma. The significance holds up even after the parameters are allowed to vary within Planck limits. The larger lesson is that a successful modified gravity model will likely have to suppress the growth of structure compared to general relativity.
Gap solitons under competing local and nonlocal nonlinearities
International Nuclear Information System (INIS)
Kuo, Kuan-Hsien; Lin Yuanyao; Lee, Ray-Kuang; Malomed, Boris A.
2011-01-01
We analyze the existence, bifurcations, and shape transformations of one-dimensional gap solitons (GSs) in the first finite band gap induced by a periodic potential built into materials with local self-focusing and nonlocal self-defocusing nonlinearities. Originally stable on-site GS modes become unstable near the upper edge of the band gap with the introduction of the nonlocal self-defocusing nonlinearity with a small nonlocality radius. Unstable off-site GSs bifurcate into a new branch featuring single-humped, double-humped, and flat-top modes due to the competition between local and nonlocal nonlinearities. The mechanism underlying the complex bifurcation pattern and cutoff effects (termination of some bifurcation branches) is illustrated in terms of the shape transformation under the action of the varying degree of the nonlocality. The results of this work suggest a possibility of optical-signal processing by means of the competing nonlocal and local nonlinearities.
International Nuclear Information System (INIS)
Colombant, Denis; Manheimer, Wallace
2010-01-01
Flux limitation and preheat are important processes in electron transport occurring in laser produced plasmas. The proper calculation of both of these has been a subject receiving much attention over the entire lifetime of the laser fusion project. Where nonlocal transport (instead of simple single flux limit) has been modeled, it has always been with what we denote the equivalent diffusion solution, namely treating the transport as only a diffusion process. We introduce here a new approach called the nonlocal source solution and show it is numerically viable for laser produced plasmas. It turns out that the equivalent diffusion solution generally underestimates preheat. Furthermore, the advance of the temperature front, and especially the preheat, can be held up by artificial 'thermal barriers'. The nonlocal source method of solution, on the other hand more accurately describes preheat and can stably calculate the solution for the temperature even if the heat flux is up the gradient.
Experimental demonstration of conflicting interest nonlocal games using superconducting qubits
Situ, Haozhen; Li, Lvzhou; Huang, Zhiming; He, Zhimin; Zhang, Cai
2018-06-01
Conflicting interest nonlocal games are special Bayesian games played by noncooperative players without communication. In recent years, some conflicting interest nonlocal games have been proposed where quantum advice can help players to obtain higher payoffs. In this work we perform an experiment of six conflicting interest nonlocal games using the IBM quantum computer made up of five superconducting qubits. The experimental results demonstrate quantum advantage in four of these games, whereas the other two games fail to showcase quantum advantage in the experiment.
Modulational instability and nonlocality management in coupled NLS systems
International Nuclear Information System (INIS)
Doktorov, Evgeny V; Molchan, Maxim A
2007-01-01
The modulational instability of two interacting waves in a nonlocal Kerr-type medium is considered analytically and numerically. For a generic choice of wave amplitudes, we give a complete description of stable/unstable regimes for zero group-velocity mismatch. It is shown that nonlocality suppresses considerably the growth rate and bandwidth of instability. For nonzero group-velocity mismatch we perform a geometrical analysis of a nonlocality management which can provide stability of waves otherwise unstable in a local medium
Local versus nonlocal αα interactions in a 3α description of 12C
International Nuclear Information System (INIS)
Suzuki, Y.; Matsumura, H.; Orabi, M.; Fujiwara, Y.; Descouvemont, P.; Theeten, M.; Baye, D.
2008-01-01
Local αα potentials reproducing the αα phase shifts fail to describe 12 C as a 3α system. Nonlocal αα potentials that renormalize the energy-dependent kernel of the resonating group method allow interpreting simultaneously the ground state and 0 2 + resonance of 12 C as 3α states. A comparison with fully microscopic calculations provides a measure of the importance of three-cluster exchanges in those states
Nonlocal effects on dynamic damage accumulation in brittle solids
Energy Technology Data Exchange (ETDEWEB)
Chen, E.P.
1995-12-01
This paper presents a nonlocal analysis of the dynamic damage accumulation processes in brittle solids. A nonlocal formulation of a microcrack based continuum damage model is developed and implemented into a transient dynamic finite element computer code. The code is then applied to the study of the damage accumulation process in a concrete plate with a central hole and subjected to the action of a step tensile pulse applied at opposite edges of the plate. Several finite element discretizations are used to examine the mesh size effect. Comparisons between calculated results based on local and nonlocal formulations are made and nonlocal effects are discussed.
Survey on nonlocal games and operator space theory
International Nuclear Information System (INIS)
Palazuelos, Carlos; Vidick, Thomas
2016-01-01
This review article is concerned with a recently uncovered connection between operator spaces, a noncommutative extension of Banach spaces, and quantum nonlocality, a striking phenomenon which underlies many of the applications of quantum mechanics to information theory, cryptography, and algorithms. Using the framework of nonlocal games, we relate measures of the nonlocality of quantum mechanics to certain norms in the Banach and operator space categories. We survey recent results that exploit this connection to derive large violations of Bell inequalities, study the complexity of the classical and quantum values of games and their relation to Grothendieck inequalities, and quantify the nonlocality of different classes of entangled states
Survey on nonlocal games and operator space theory
Energy Technology Data Exchange (ETDEWEB)
Palazuelos, Carlos, E-mail: cpalazue@mat.ucm.es [Instituto de Ciencias Matemáticas (ICMAT), Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Madrid (Spain); Vidick, Thomas, E-mail: vidick@cms.caltech.edu [Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California 91125 (United States)
2016-01-15
This review article is concerned with a recently uncovered connection between operator spaces, a noncommutative extension of Banach spaces, and quantum nonlocality, a striking phenomenon which underlies many of the applications of quantum mechanics to information theory, cryptography, and algorithms. Using the framework of nonlocal games, we relate measures of the nonlocality of quantum mechanics to certain norms in the Banach and operator space categories. We survey recent results that exploit this connection to derive large violations of Bell inequalities, study the complexity of the classical and quantum values of games and their relation to Grothendieck inequalities, and quantify the nonlocality of different classes of entangled states.
2010-03-01
homa pilots are representative of u.S. pilots in general. Presumably, they are similar but, so far, this has not been directly investigated. Since...1 Training Product 2 Control Combined group n Age FH % IR n Age FH % IR n Age FH % IR N Age FH % IR Phase 1 16 39 280 53 16 38 235.5 47 18 42 262.5 50 50
Zhen, Ya-Xin
2017-02-01
In this paper, the transverse wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes is investigated based on nonlocal elasticity theory with consideration of surface effect. The governing equation is formulated utilizing nonlocal Euler-Bernoulli beam theory and Kelvin-Voigt model. Explicit wave dispersion relation is developed and wave phase velocities and frequencies are obtained. The effect of the fluid flow velocity, structural damping, surface effect, small scale effects and tube diameter on the wave propagation properties are discussed with different wave numbers. The wave frequency increases with the increase of fluid flow velocity, but decreases with the increases of tube diameter and wave number. The effect of surface elasticity and residual surface tension is more significant for small wave number and tube diameter. For larger values of wave number and nonlocal parameters, the real part of frequency ratio raises.
The nonlocal elastomagnetoelectrostatics of disordered micropolar media
International Nuclear Information System (INIS)
Kabychenkov, A. F.; Lisiovskii, F. V.
2016-01-01
The interactions of electric, magnetic, and elastic subsystems in nonlinear disordered micropolar media that possess a bending–torsion tensor and an nonsymmetric strain tensor have been studied in the framework of phenomenological elastomagnetoelectrostatics. A system of nonlinear equations for determining the ground state of these media has been obtained by the variational method. It is shown that nonuniform external and internal rotations not only create elastic stresses, but also generate additional electric and magnetic fields, while nonuniform elastic stresses and external fields induce internal rotations. The nonlocal character of the micropolar media significantly influences elementary excitations and nonlinear dynamic processes.
Some loopholes to save quantum nonlocality
Accardi, Luigi
2005-02-01
The EPR-chameleon experiment has closed a long standing debate between the supporters of quantum nonlocality and the thesis of quantum probability according to which the essence of the quantum pecularity is non Kolmogorovianity rather than non locality. The theory of adaptive systems (symbolized by the chameleon effect) provides a natural intuition for the emergence of non-Kolmogorovian statistics from classical deterministic dynamical systems. These developments are quickly reviewed and in conclusion some comments are introduced on recent attempts to "reconstruct history" on the lines described by Orwell in "1984".
Pion polarizability in nonlocal quark model
International Nuclear Information System (INIS)
Efimov, G.V.; Okhlopkova, V.A.
1978-01-01
The γγ→ππ amplitude was calculated in nonlocal quark model in the fourth order on the perturbation theory. The coefficients of electric[a) and magnetic polarizability (β) determined are equal in magnitude and opposite in sign αsub(π+-)=βsub(π+-)=+0.014α/msub(π)sup(3), αsub(πsup(0))=-βsub(πsup(0))=-0.07α/msub(π)sup(3). The results have been compared with calculations in other models
Non-local Effects of Conformal Anomaly
Meissner, Krzysztof A.; Nicolai, Hermann
2018-03-01
It is shown that the nonlocal anomalous effective actions corresponding to the quantum breaking of the conformal symmetry can lead to observable modifications of Einstein's equations. The fact that Einstein's general relativity is in perfect agreement with all observations including cosmological or recently observed gravitational waves imposes strong restrictions on the field content of possible extensions of Einstein's theory: all viable theories should have vanishing conformal anomalies. It is shown that a complete cancellation of conformal anomalies in D=4 for both the C^2 invariant and the Euler (Gauss-Bonnet) invariant can only be achieved for N-extended supergravity multiplets with N ≥ 5.
Spectral tunneling of lattice nonlocal solitons
International Nuclear Information System (INIS)
Kartashov, Yaroslav V.; Torner, Lluis; Vysloukh, Victor A.
2010-01-01
We address spectral tunneling of walking spatial solitons in photorefractive media with nonlocal diffusion component of the nonlinear response and an imprinted shallow optical lattice. In contrast to materials with local nonlinearities, where solitons traveling across the lattice close to the Bragg angle suffer large radiative losses, in photorefractive media with diffusion nonlinearity resulting in self-bending, solitons survive when their propagation angle approaches and even exceeds the Bragg angle. In the spatial frequency domain this effect can be considered as tunneling through the band of spatial frequencies centered around the Bragg frequency where the spatial group velocity dispersion is positive.
Hyperspherical effective interaction for nonlocal potentials
International Nuclear Information System (INIS)
Barnea, N.; Leidemann, W.; Orlandini, G.
2010-01-01
The effective interaction hyperspherical-harmonics method, formulated for local forces, is generalized to accommodate nonlocal interactions. As for local potentials this formulation retains the separation of the hyper-radial part leading solely to a hyperspherical effective interaction. By applying the method to study ground-state properties of 4 He with a modern effective-field-theory nucleon-nucleon potential model (Idaho-N3LO), one finds a substantial acceleration in the convergence rate of the hyperspherical-harmonics series. Also studied are the binding energies of the six-body nuclei 6 He and 6 Li with the JISP16 nuclear force. Again an excellent convergence is observed.
Non-local modeling of materials
DEFF Research Database (Denmark)
Niordson, Christian Frithiof
2002-01-01
Numerical studies of non-local plasticity effects on different materials and problems are carried out. Two different theories are used. One is of lower order in that it retains the structure of a conventional plasticity boundary value problem, while the other is of higher order and employs higher...... order stresses as work conjugates to higher order strains and uses higher order boundary conditions. The influence of internal material length parameters is studied, and the effects of higher order boundary conditions are analyzed. The focus of the thesis is on metal-matrix composites, and non...
A nonlocal model of chiral dynamics
International Nuclear Information System (INIS)
Holdom, B.; Terning, J.; Verbeek, K.
1989-01-01
We consider a nonlocal generalization of the nonlinear σ model. Our chirally symmetric model couples quarks with self-energy Σ(p) to Goldstone bosons (GBs). By integrating out the quarks we obtain a chiral lagrangian, the parameters of which are finite integrals of Σ(p). We find that chiral symmetry is not sufficient to derive the well-known Pagels-Stokar formula for the GB decay constant. We reproduce the Wess-Zumino term and we illustrate the dependence of other four derivative coefficients on Σ(p). (orig.)
Nonlinear Dynamics of Silicon Nanowire Resonator Considering Nonlocal Effect.
Jin, Leisheng; Li, Lijie
2017-12-01
In this work, nonlinear dynamics of silicon nanowire resonator considering nonlocal effect has been investigated. For the first time, dynamical parameters (e.g., resonant frequency, Duffing coefficient, and the damping ratio) that directly influence the nonlinear dynamics of the nanostructure have been derived. Subsequently, by calculating their response with the varied nonlocal coefficient, it is unveiled that the nonlocal effect makes more obvious impacts at the starting range (from zero to a small value), while the impact of nonlocal effect becomes weaker when the nonlocal term reaches to a certain threshold value. Furthermore, to characterize the role played by nonlocal effect in exerting influence on nonlinear behaviors such as bifurcation and chaos (typical phenomena in nonlinear dynamics of nanoscale devices), we have calculated the Lyapunov exponents and bifurcation diagram with and without nonlocal effect, and results shows the nonlocal effect causes the most significant effect as the device is at resonance. This work advances the development of nanowire resonators that are working beyond linear regime.
Discussion record of the workshop on nonlocal transport
International Nuclear Information System (INIS)
Itoh, K.; Itoh, S.-I.; Stroth, U.; Iwasaki, T.; Yagi, M.; Fukuyama, A.
1997-06-01
The discussion on the problem of the transient response and nonlocal transport is reported. Problem of the transient response is surveyed, and several approaches are reviewed. The formulation based on the nonlocal transport is discussed. Example of the analysis is presented. Future study is identified. (author)
Greenberger-Horne-Zeilinger nonlocality in arbitrary even dimensions
International Nuclear Information System (INIS)
Lee, Jinhyoung; Lee, Seung-Woo; Kim, M. S.
2006-01-01
We generalize Greenberger-Horne-Zeilinger (GHZ) nonlocality to every even-dimensional and odd-partite system. For the purpose we employ concurrent observables that are incompatible and nevertheless have a common eigenstate. It is remarkable that a tripartite system can exhibit the genuinely high-dimensional GHZ nonlocality
On nonlocal symmetries of some shallow water equations
Energy Technology Data Exchange (ETDEWEB)
Reyes, Enrique G [Departamento de Matematicas y Ciencia de la Computacion, Universidad de Santiago de Chile, Casilla 307 Correo 2 Santiago (Chile)
2007-04-27
A recent construction of nonlocal symmetries for the Korteweg-de Vries, Camassa-Holm and Hunter-Saxton equations is reviewed, and it is pointed out that-in the Camassa-Holm and Hunter-Saxton case-these symmetries can be considered as (nonlocal) symmetries of integro-differential equations.
Geometric phases and quantum computation
International Nuclear Information System (INIS)
Vedral, V.
2005-01-01
Full text: In my lectures I will talk about the notion of the geometric phase and explain its relevance for both fundamental quantum mechanics as well as quantum computation. The phase will be at first introduced via the idea of Pancharatnam which involves interference of three or more light beams. This notion will then be generalized to the evolving quantum systems. I will discuss both pure and mixed states as well as unitary and non-unitary evolutions. I will also show how the concept of the vacuum induced geometric phase arises in quantum optics. A simple measurement scheme involving a Mach Zehnder interferometer will be presented and will be used to illustrate all the concepts in the lecture. Finally, I will expose a simple generalization of the geometric phase to evolving degenerate states. This will be seen to lead to the possibility of universal quantum computation using geometric effects only. Moreover, this contains a promise of intrinsically fault tolerant quantum information processing, whose prospects will be outlined at the end of the lecture. (author)
Quantum Noether identities for non-local transformations in higher-order derivatives theories
International Nuclear Information System (INIS)
Li, Z.P.; Long, Z.W.
2003-01-01
Based on the phase-space generating functional of the Green function for a system with a regular/singular higher-order Lagrangian, the quantum canonical Noether identities (NIs) under a local and non-local transformation in phase space have been deduced, respectively. For a singular higher-order Lagrangian, one must use an effective canonical action I eff P in quantum canonical NIs instead of the classical I P in classical canonical NIs. The quantum NIs under a local and non-local transformation in configuration space for a gauge-invariant system with a higher-order Lagrangian have also been derived. The above results hold true whether or not the Jacobian of the transformation is equal to unity or not. It has been pointed out that in certain cases the quantum NIs may be converted to conservation laws at the quantum level. This algorithm to derive the quantum conservation laws is significantly different from the quantum first Noether theorem. The applications of our formulation to the Yang-Mills fields and non-Abelian Chern-Simons (CS) theories with higher-order derivatives are given, and the conserved quantities at the quantum level for local and non-local transformations are found, respectively. (orig.)
A new treatment of nonlocality in scattering process
Upadhyay, N. J.; Bhagwat, A.; Jain, B. K.
2018-01-01
Nonlocality in the scattering potential leads to an integro-differential equation. In this equation nonlocality enters through an integral over the nonlocal potential kernel. The resulting Schrödinger equation is usually handled by approximating r,{r}{\\prime }-dependence of the nonlocal kernel. The present work proposes a novel method to solve the integro-differential equation. The method, using the mean value theorem of integral calculus, converts the nonhomogeneous term to a homogeneous term. The effective local potential in this equation turns out to be energy independent, but has relative angular momentum dependence. This method is accurate and valid for any form of nonlocality. As illustrative examples, the total and differential cross sections for neutron scattering off 12C, 56Fe and 100Mo nuclei are calculated with this method in the low energy region (up to 10 MeV) and are found to be in reasonable accord with the experiments.
Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators.
Belenchia, Alessio; Benincasa, Dionigi M T; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello
2016-04-22
Several quantum gravity scenarios lead to physics below the Planck scale characterized by nonlocal, Lorentz invariant equations of motion. We show that such nonlocal effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of optomechanical quantum oscillators is characterized by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the nonlocality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology.
Protecting nonlocality of multipartite states by feed-forward control
Li, Xiao-Gang; Zou, Jian; Shao, Bin
2018-06-01
Nonlocality is a useful resource in quantum communication and quantum information processing. In practical quantum communication, multipartite entangled states must be distributed between different users in different places through a channel. However, the channel is usually inevitably disturbed by the environment in quantum state distribution processing and then the nonlocality of states will be weakened and even lost. In this paper, we use a feed-forward control scheme to protect the nonlocality of the Bell and GHZ states against dissipation. We find that this protection scheme is very effective, specifically, for the Bell state, we can increase the noise threshold from 0.5 to 0.98, and for GHZ state from 0.29 to 0.96. And we also find that entanglement is relatively easier to be protected than nonlocality. For our scheme, protecting entanglement is equivalent to protecting the state in the case of Bell state, while protecting nonlocality is not.
Nonlocal nonlinear coupling of kinetic sound waves
Directory of Open Access Journals (Sweden)
O. Lyubchyk
2014-11-01
Full Text Available We study three-wave resonant interactions among kinetic-scale oblique sound waves in the low-frequency range below the ion cyclotron frequency. The nonlinear eigenmode equation is derived in the framework of a two-fluid plasma model. Because of dispersive modifications at small wavelengths perpendicular to the background magnetic field, these waves become a decay-type mode. We found two decay channels, one into co-propagating product waves (forward decay, and another into counter-propagating product waves (reverse decay. All wavenumbers in the forward decay are similar and hence this decay is local in wavenumber space. On the contrary, the reverse decay generates waves with wavenumbers that are much larger than in the original pump waves and is therefore intrinsically nonlocal. In general, the reverse decay is significantly faster than the forward one, suggesting a nonlocal spectral transport induced by oblique sound waves. Even with low-amplitude sound waves the nonlinear interaction rate is larger than the collisionless dissipation rate. Possible applications regarding acoustic waves observed in the solar corona, solar wind, and topside ionosphere are briefly discussed.
Buonomano against Bell: Nonergodicity or nonlocality?
Khrennikov, Andrei
The aim of this note is to attract attention of the quantum foundational community to the fact that in Bell’s arguments, one cannot distinguish two hypotheses: (a) quantum mechanics is nonlocal, (b) quantum mechanics is nonergodic. Therefore, experimental violations of Bell’s inequality can be as well interpreted as supporting the hypothesis that stochastic processes induced by quantum measurements are nonergodic. The latter hypothesis was discussed actively by Buonomano since 1980. However, in contrast to Bell’s hypothesis on nonlocality, it did not attract so much attention. The only experiment testing the hypothesis on nonergodicity was performed in neutron interferometry (by Summhammer, in 1989). This experiment can be considered as rejecting this hypothesis. However, it cannot be considered as a decisive experiment. New experiments are badly needed. We point out that a nonergodic model can be realistic, i.e. the distribution of hidden (local!) variables is well-defined. We also discuss coupling of violation of the Bell inequality with violation of the condition of weak mixing for ergodic dynamical systems.
Feature-Based Nonlocal Polarimetric SAR Filtering
Directory of Open Access Journals (Sweden)
Xiaoli Xing
2017-10-01
Full Text Available Polarimetric synthetic aperture radar (PolSAR images are inherently contaminated by multiplicative speckle noise, which complicates the image interpretation and image analyses. To reduce the speckle effect, several adaptive speckle filters have been developed based on the weighted average of the similarity measures commonly depending on the model or probability distribution, which are often affected by the distribution parameters and modeling texture components. In this paper, a novel filtering method introduces the coefficient of variance ( CV and Pauli basis (PB to measure the similarity, and the two features are combined with the framework of the nonlocal mean filtering. The CV is used to describe the complexity of various scenes and distinguish the scene heterogeneity; moreover, the Pauli basis is able to express the polarimetric information in PolSAR image processing. This proposed filtering combines the CV and Pauli basis to improve the estimation accuracy of the similarity weights. Then, the similarity of the features is deduced according to the test statistic. Subsequently, the filtering is proceeded by using the nonlocal weighted estimation. The performance of the proposed filter is tested with the simulated images and real PolSAR images, which are acquired by AIRSAR system and ESAR system. The qualitative and quantitative experiments indicate the validity of the proposed method by comparing with the widely-used despeckling methods.
Nonlocal kinetic-energy-density functionals
International Nuclear Information System (INIS)
Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E.
1996-01-01
In this paper we present nonlocal kinetic-energy functionals T[n] within the average density approximation (ADA) framework, which do not require any extra input when applied to any electron system and recover the exact kinetic energy and the linear response function of a homogeneous system. In contrast with previous ADA functionals, these present good behavior of the long-range tail of the exact weight function. The averaging procedure for the kinetic functional (averaging the Fermi momentum of the electron gas, instead of averaging the electron density) leads to a functional without numerical difficulties in the calculation of extended systems, and it gives excellent results when applied to atoms and jellium surfaces. copyright 1996 The American Physical Society
Steering, Entanglement, Nonlocality, and the EPR Paradox
Wiseman, Howard; Jones, Steve; Andrew, Doherty
2007-06-01
The concept of steering was introduced by Schroedinger in 1935 as a generalization of the EPR paradox for arbitrary pure bipartite entangled states and arbitrary measurements by one party. Until now, it has never been rigorously defined, so it has not been known (for example) what mixed states are steerable (that is, can be used to exhibit steering). We provide an operational definition, from which we prove (by considering Werner states and Isotropic states) that steerable states are a strict subset of the entangled states, and a strict superset of the states that can exhibit Bell-nonlocality. For arbitrary bipartite Gaussian states we derive a linear matrix inequality that decides the question of steerability via Gaussian measurements, and we relate this to the original EPR paradox.
Certainty relations between local and nonlocal observables
International Nuclear Information System (INIS)
Diaz, R Garcia; Romero, J L; Bjoerk, G; Bourennane, M
2005-01-01
We point out that for an arbitrary number of identical particles, each defined on a Hilbert space of arbitrary dimension, there exists a whole ladder of relations of complementarity between certain local and nonlocal measurements corresponding to every conceivable grouping of the particles, e.g., the more accurately we can know (by a measurement) some joint property of three qubits (projecting the state onto a tripartite-entangled state), the less accurate some other property, local to the three qubits, becomes. We investigate the relation between these complementarity relations and a similar relation based on interference visibilities. We also show that the complementarity relations are particularly tight for particles defined on prime dimensional Hilbert spaces
Switching non-local median filter
Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji
2015-06-01
This paper describes a novel image filtering method for removal of random-valued impulse noise superimposed on grayscale images. Generally, it is well known that switching-type median filters are effective for impulse noise removal. In this paper, we propose a more sophisticated switching-type impulse noise removal method in terms of detail-preserving performance. Specifically, the noise detector of the proposed method finds out noise-corrupted pixels by focusing attention on the difference between the value of a pixel of interest (POI) and the median of its neighboring pixel values, and on the POI's isolation tendency from the surrounding pixels. Furthermore, the removal of the detected noise is performed by the newly proposed median filter based on non-local processing, which has superior detail-preservation capability compared to the conventional median filter. The effectiveness and the validity of the proposed method are verified by some experiments using natural grayscale images.
The quantum handshake entanglement, nonlocality and transactions
Cramer, John G
2016-01-01
This book shines bright light into the dim recesses of quantum theory, where the mysteries of entanglement, nonlocality, and wave collapse have motivated some to conjure up multiple universes, and others to adopt a "shut up and calculate" mentality. After an extensive and accessible introduction to quantum mechanics and its history, the author turns attention to his transactional model. Using a quantum handshake between normal and time-reversed waves, this model provides a clear visual picture explaining the baffling experimental results that flow daily from the quantum physics laboratories of the world. To demonstrate its powerful simplicity, the transactional model is applied to a collection of counter-intuitive experiments and conceptual problems.
Relativistic dynamical reduction models and nonlocality
International Nuclear Information System (INIS)
Ghirardi, G.C.; Grassi, R.
1990-09-01
We discuss some features of continuous dynamical models yielding state vector reduction and we briefly sketch some recent attempts to get a relativistic generalization of them. Within the relativistic context we analyze in detail the local an nonlocal features of the reduction mechanism and we investigate critically the possibility of attributing objective properties to individual systems in the micro and macroscopic cases. At the nonrelativistic level, two physically equivalent versions of continuous reduction mechanisms have been presented. However, only one of them can be taken as a starting point for the above considered relativistic generalization. By resorting to counterfactual arguments we show that the reason for this lies in the fact that the stochasticity involved in the two approaches has different conceptual implications. (author). 7 refs, 4 figs
Graphene plasmons: Impurities and nonlocal effects
Viola, Giovanni; Wenger, Tobias; Kinaret, Jari; Fogelström, Mikael
2018-02-01
This work analyzes how impurities and vacancies on the surface of a graphene sample affect its optical conductivity and plasmon excitations. The disorder is analyzed in the self-consistent Green's function formulation and nonlocal effects are fully taken into account. It is shown that impurities modify the linear spectrum and give rise to an impurity band whose position and width depend on the two parameters of our model, the density and the strength of impurities. The presence of the impurity band strongly influences the electromagnetic response and the plasmon losses. Furthermore, we discuss how the impurity-band position can be obtained experimentally from the plasmon dispersion relation and discuss this in the context of sensing.
A nonlocal spatial model for Lyme disease
Yu, Xiao; Zhao, Xiao-Qiang
2016-07-01
This paper is devoted to the study of a nonlocal and time-delayed reaction-diffusion model for Lyme disease with a spatially heterogeneous structure. In the case of a bounded domain, we first prove the existence of the positive steady state and a threshold type result for the disease-free system, and then establish the global dynamics for the model system in terms of the basic reproduction number. In the case of an unbound domain, we obtain the existence of the disease spreading speed and its coincidence with the minimal wave speed. At last, we use numerical simulations to verify our analytic results and investigate the influence of model parameters and spatial heterogeneity on the disease infection risk.
Ermakov's Superintegrable Toy and Nonlocal Symmetries
Leach, P. G. L.; Karasu Kalkanli, A.; Nucci, M. C.; Andriopoulos, K.
2005-11-01
We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.
Ermakov's Superintegrable Toy and Nonlocal Symmetries
Directory of Open Access Journals (Sweden)
P.G.L. Leach
2005-11-01
Full Text Available We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R. The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.
Ebrahimi, Farzad; Dabbagh, Ali
2017-02-01
Main object of the present research is an exact investigation of wave propagation responses of smart rotating magneto-electro-elastic (MEE) graded nanoscale plates. In addition, effective material properties of functionally graded (FG) nanoplate are presumed to be calculated using the power-law formulations. Also, it has been tried to cover both softening and stiffness-hardening behaviors of nanostructures by the means of employing nonlocal strain gradient theory (NSGT). Due to increasing the accuracy of the presented model in predicting shear deformation effects, a refined higher-order plate theory is introduced. In order to cover the most enormous circumstances, maximum amount of load generated by plate’s rotation is considered. Furthermore, utilizing a developed form of Hamilton’s principle, containing magneto-electric effects, the nonlocal governing equations of MEE-FG rotating nanoplates are derived. An analytical solution is obtained to solve the governing equations and validity of the solution method is proven by comparing results from present method with those of former attempts. At last, outcomes are plotted in the framework of some figures to show the influences of various parameters such as wave number, nonlocality, length scale parameter, magnetic potential, electric voltage, gradient index and angular velocity on wave frequency, phase velocity and escape frequency of the examined nanoplate.
Nonlocal plasmonic response of doped and optically pumped graphene, MoS2, and black phosphorus
Petersen, René; Pedersen, Thomas Garm; Javier García de Abajo, F.
2017-11-01
Plasmons in two-dimensional (2D) materials have emerged as a new source of physical phenomena and optoelectronic applications due in part to the relatively small number of charge carriers on which they are supported. Unlike conventional plasmonic materials, they possess a large Fermi wavelength, which can be comparable with the plasmon wavelength, thus leading to unusually strong nonlocal effects. Here, we study the optical response of a selection of 2D crystal layers (graphene, MoS2, and black phosphorus) with inclusion of nonlocal and thermal effects. We extensively analyze their plasmon dispersion relations and focus on the Purcell factor for the decay of an optical emitter in close proximity to the material as a way to probe nonlocal and thermal effects, with emphasis placed on the interplay between temperature and doping. The results are based on tight-binding modeling of the electronic structure combined with the random-phase approximation response function in which the temperature enters through the Fermi-Dirac electronic occupation distribution. Our study provides a route map for the exploration and exploitation of the ultrafast optical response of 2D materials.
International Nuclear Information System (INIS)
Oppenheim, Jonathan; Horodecki, Karol; Horodecki, Michal; Horodecki, Ryszard; Horodecki, Pawel
2003-01-01
Complex physical systems contain information which, under some well-defined processes can differentiate between local and nonlocal information. Both these fundamental aspects of information are defined operationally. Local information is locally accessible and allows one to perform processes, such as physical work, while nonlocal information allows one to perform processes such as teleportation. It is shown that these two kinds of information are complementary in the sense that two parties can either gain access to the nonlocal information or to the local information but not both. This complementarity has a form similar to that expressed by entropic uncertainty relations. For pure states, the entanglement plays the role of Planck's constant. We also find another class of complementarity relations which applies to operators and is induced when two parties can only perform local operations and communicate classical (LOCC). In particular, observables such as the parity and phase of two qubits commute but under LOCC, they are complementary observables. It is also found this complementarity is pure in the sense that it can be ''decoupled'' from the uncertainty principle. It is suggested that these complementarities represent an essential extension of Bohr's complementarity to complex (distributed) systems which are entangled
Global solution branches for a nonlocal Allen-Cahn equation
Kuto, Kousuke; Mori, Tatsuki; Tsujikawa, Tohru; Yotsutani, Shoji
2018-05-01
We consider the Neumann problem of a 1D stationary Allen-Cahn equation with nonlocal term. Our previous paper [4] obtained a local branch of asymmetric solutions which bifurcates from a point on the branch of odd-symmetric solutions. This paper derives the global behavior of the branch of asymmetric solutions, and moreover, determines the set of all solutions to the nonlocal Allen-Cahn equation. Our proof is based on a level set analysis for an integral map associated with the nonlocal term.
Torsion of cracked nanorods using a nonlocal elasticity model
International Nuclear Information System (INIS)
Loya, J A; Aranda-Ruiz, J; Fernández-Sáez, J
2014-01-01
This paper presents a nonlocal cracked-rod model from which we have analysed the torsional vibrations of a carbon nanotube with a circumferential crack. Several types of boundary conditions, including the consideration of a buckyball at the end of the nanotube, have been studied. The nonlocal Eringen elasticity theory is used to formulate the problem. The cracked rod is modelled by dividing the cracked element into two segments connected by a torsional linear spring whose stiffness is related to the crack severity. The effect of the nonlocal small-scale parameter, crack severity, cracked section position, different boundary conditions and attached mass are examined in this work. (paper)
Fractional diffusion models of nonlocal transport
International Nuclear Information System (INIS)
Castillo-Negrete, D. del
2006-01-01
A class of nonlocal models based on the use of fractional derivatives (FDs) is proposed to describe nondiffusive transport in magnetically confined plasmas. FDs are integro-differential operators that incorporate in a unified framework asymmetric non-Fickian transport, non-Markovian ('memory') effects, and nondiffusive scaling. To overcome the limitations of fractional models in unbounded domains, we use regularized FDs that allow the incorporation of finite-size domain effects, boundary conditions, and variable diffusivities. We present an α-weighted explicit/implicit numerical integration scheme based on the Grunwald-Letnikov representation of the regularized fractional diffusion operator in flux conserving form. In sharp contrast with the standard diffusive model, the strong nonlocality of fractional diffusion leads to a linear in time response for a decaying pulse at short times. In addition, an anomalous fractional pinch is observed, accompanied by the development of an uphill transport region where the 'effective' diffusivity becomes negative. The fractional flux is in general asymmetric and, for steady states, it has a negative (toward the core) component that enhances confinement and a positive component that increases toward the edge and leads to poor confinement. The model exhibits the characteristic anomalous scaling of the confinement time, τ, with the system's size, L, τ∼L α , of low-confinement mode plasma where 1<α<2 is the order of the FD operator. Numerical solutions of the model with an off-axis source show that the fractional inward transport gives rise to profile peaking reminiscent of what is observed in tokamak discharges with auxiliary off-axis heating. Also, cold-pulse perturbations to steady sates in the model exhibit fast, nondiffusive propagation phenomena that resemble perturbative experiments
Nonlocality in many-body quantum systems detected with two-body correlators
Energy Technology Data Exchange (ETDEWEB)
Tura, J., E-mail: jordi.tura@icfo.es [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Augusiak, R.; Sainz, A.B. [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Lücke, B.; Klempt, C. [Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover (Germany); Lewenstein, M.; Acín, A. [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); ICREA—Institució Catalana de Recerca i Estudis Avançats, Lluis Campanys 3, 08010 Barcelona (Spain)
2015-11-15
Contemporary understanding of correlations in quantum many-body systems and in quantum phase transitions is based to a large extent on the recent intensive studies of entanglement in many-body systems. In contrast, much less is known about the role of quantum nonlocality in these systems, mostly because the available multipartite Bell inequalities involve high-order correlations among many particles, which are hard to access theoretically, and even harder experimentally. Standard, “theorist- and experimentalist-friendly” many-body observables involve correlations among only few (one, two, rarely three...) particles. Typically, there is no multipartite Bell inequality for this scenario based on such low-order correlations. Recently, however, we have succeeded in constructing multipartite Bell inequalities that involve two- and one-body correlations only, and showed how they revealed the nonlocality in many-body systems relevant for nuclear and atomic physics [Tura et al., Science 344 (2014) 1256]. With the present contribution we continue our work on this problem. On the one hand, we present a detailed derivation of the above Bell inequalities, pertaining to permutation symmetry among the involved parties. On the other hand, we present a couple of new results concerning such Bell inequalities. First, we characterize their tightness. We then discuss maximal quantum violations of these inequalities in the general case, and their scaling with the number of parties. Moreover, we provide new classes of two-body Bell inequalities which reveal nonlocality of the Dicke states—ground states of physically relevant and experimentally realizable Hamiltonians. Finally, we shortly discuss various scenarios for nonlocality detection in mesoscopic systems of trapped ions or atoms, and by atoms trapped in the vicinity of designed nanostructures.
Geometric phases and hidden local gauge symmetry
International Nuclear Information System (INIS)
Fujikawa, Kazuo
2005-01-01
The analysis of geometric phases associated with level crossing is reduced to the familiar diagonalization of the Hamiltonian in the second quantized formulation. A hidden local gauge symmetry, which is associated with the arbitrariness of the phase choice of a complete orthonormal basis set, becomes explicit in this formulation (in particular, in the adiabatic approximation) and specifies physical observables. The choice of a basis set which specifies the coordinate in the functional space is arbitrary in the second quantization, and a subclass of coordinate transformations, which keeps the form of the action invariant, is recognized as the gauge symmetry. We discuss the implications of this hidden local gauge symmetry in detail by analyzing geometric phases for cyclic and noncyclic evolutions. It is shown that the hidden local symmetry provides a basic concept alternative to the notion of holonomy to analyze geometric phases and that the analysis based on the hidden local gauge symmetry leads to results consistent with the general prescription of Pancharatnam. We however note an important difference between the geometric phases for cyclic and noncyclic evolutions. We also explain a basic difference between our hidden local gauge symmetry and a gauge symmetry (or equivalence class) used by Aharonov and Anandan in their definition of generalized geometric phases
A nonlocal phase-field model with nonconstant specific heat
Czech Academy of Sciences Publication Activity Database
Krejčí, Pavel; Rocca, E.; Sprekels, J.
2007-01-01
Roč. 9, č. 2 (2007), s. 285-306 ISSN 1463-9963 Institutional research plan: CEZ:AV0Z10190503 Keywords : existence * uniqueness * global boundedness Subject RIV: BA - General Mathematics Impact factor: 1.000, year: 2007
Nonlocal microscopic theory of quantum friction between parallel metallic slabs
International Nuclear Information System (INIS)
Despoja, Vito; Echenique, Pedro M.; Sunjic, Marijan
2011-01-01
We present a new derivation of the friction force between two metallic slabs moving with constant relative parallel velocity, based on T=0 quantum-field theory formalism. By including a fully nonlocal description of dynamically screened electron fluctuations in the slab, and avoiding the usual matching-condition procedure, we generalize previous expressions for the friction force, to which our results reduce in the local limit. Analyzing the friction force calculated in the two local models and in the nonlocal theory, we show that for physically relevant velocities local theories using the plasmon and Drude models of dielectric response are inappropriate to describe friction, which is due to excitation of low-energy electron-hole pairs, which are properly included in nonlocal theory. We also show that inclusion of dissipation in the nonlocal electronic response has negligible influence on friction.
Size-dependent nonlocal effects in plasmonic semiconductor particles
DEFF Research Database (Denmark)
Maack, Johan Rosenkrantz; Mortensen, N. Asger; Wubs, Martijn
2017-01-01
Localized surface plasmons (LSP) in semiconductor particles are expected to exhibit spatial nonlocal response effects as the geometry enters the nanometer scale. To investigate these nonlocal effects, we apply the hydrodynamic model to nanospheres of two different semiconductor materials: intrinsic...... InSb and n-doped GaAs. Our results show that the semiconductors indeed display nonlocal effects, and that these effects are even more pronounced than in metals. In a 150 nm InSb particle at 300 K, the LSP frequency is blueshifted 35%, which is orders of magnitude larger than the blueshift in a metal...... particle of the same size. This property, together with their tunability, makes semiconductors a promising platform for experiments in nonlocal effects. Copyright (C)EPLA, 2017...
Entanglement and nonlocality in multi-particle systems
Reid, Margaret D.; He, Qiong-Yi; Drummond, Peter D.
2012-02-01
Entanglement, the Einstein-Podolsky-Rosen (EPR) paradox and Bell's failure of local-hiddenvariable (LHV) theories are three historically famous forms of "quantum nonlocality". We give experimental criteria for these three forms of nonlocality in multi-particle systems, with the aim of better understanding the transition from microscopic to macroscopic nonlocality. We examine the nonlocality of N separated spin J systems. First, we obtain multipartite Bell inequalities that address the correlation between spin values measured at each site, and then we review spin squeezing inequalities that address the degree of reduction in the variance of collective spins. The latter have been particularly useful as a tool for investigating entanglement in Bose-Einstein condensates (BEC). We present solutions for two topical quantum states: multi-qubit Greenberger-Horne-Zeilinger (GHZ) states, and the ground state of a two-well BEC.
Identification of the Diffusion Parameter in Nonlocal Steady Diffusion Problems
Energy Technology Data Exchange (ETDEWEB)
D’Elia, M., E-mail: mdelia@fsu.edu, E-mail: mdelia@sandia.gov [Sandia National Laboratories (United States); Gunzburger, M. [Florida State University (United States)
2016-04-15
The problem of identifying the diffusion parameter appearing in a nonlocal steady diffusion equation is considered. The identification problem is formulated as an optimal control problem having a matching functional as the objective of the control and the parameter function as the control variable. The analysis makes use of a nonlocal vector calculus that allows one to define a variational formulation of the nonlocal problem. In a manner analogous to the local partial differential equations counterpart, we demonstrate, for certain kernel functions, the existence of at least one optimal solution in the space of admissible parameters. We introduce a Galerkin finite element discretization of the optimal control problem and derive a priori error estimates for the approximate state and control variables. Using one-dimensional numerical experiments, we illustrate the theoretical results and show that by using nonlocal models it is possible to estimate non-smooth and discontinuous diffusion parameters.
Non-local means filter for trim statics
Huang, Yunsong; Wang, Xin; Schuster, Gerard T.
2014-01-01
this problem, we propose a trim statics inspired by the non-local means algorithm originally developed for image denoising. This method differs from the conventional one in two fundamental respects. First, the trim statics are computed by comparing image
A single variable shear deformable nonlocal theory for transversely ...
Indian Academy of Sciences (India)
Rameshchandra P Shimpi
2018-05-11
May 11, 2018 ... Abstract. In this paper, a simple single variable shear deformable nonlocal theory for bending of micro- and ... the models based upon continuum mechanics are widely .... of the body. ...... Elsevier Science Ltd, Oxford, UK. pp.
Nonlocality versus complementarity: a conservative approach to the information problem
International Nuclear Information System (INIS)
Giddings, Steven B
2011-01-01
A proposal for resolution of the information paradox is that 'nice slice' states, which have been viewed as providing a sharp argument for information loss, do not in fact do so as they do not give a fully accurate description of the quantum state of a black hole. This however leaves an information problem, which is to provide a consistent description of how information escapes when a black hole evaporates. While a rather extreme form of nonlocality has been advocated in the form of complementarity, this paper argues that is not necessary, and more modest nonlocality could solve the information problem. One possible distinguishing characteristic of scenarios is the information retention time. The question of whether such nonlocality implies acausality, and particularly inconsistency, is briefly addressed. The need for such nonlocality, and its apparent tension with our empirical observations of local quantum field theory, may be a critical missing piece in understanding the principles of quantum gravity.
Cosmological evolution of generalized non-local gravity
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xue; Wu, Ya-Bo; Liu, Yu-Chen; Chen, Bo-Hai; Chai, Yun-Tian; Shu, Shuang [Department of Physics, Liaoning Normal University, Dalian 116029 (China); Li, Song, E-mail: zxue0128@163.com, E-mail: ybwu61@163.com, E-mail: sli@cnu.edu.cn, E-mail: wuli11liuyuchen@163.com, E-mail: bchenphy@163.com, E-mail: chaiyuntian1881@sina.com, E-mail: sshu1230@163.com [Department of Physics, Capital Normal University, Beijing 100048 (China)
2016-07-01
We construct a class of generalized non-local gravity (GNLG) model which is the modified theory of general relativity (GR) obtained by adding a term m {sup 2} {sup n} {sup -2} R □{sup -} {sup n} R to the Einstein-Hilbert action. Concretely, we not only study the gravitational equation for the GNLG model by introducing auxiliary scalar fields, but also analyse the classical stability and examine the cosmological consequences of the model for different exponent n . We find that the half of the scalar fields are always ghost-like and the exponent n must be taken even number for a stable GNLG model. Meanwhile, the model spontaneously generates three dominant phases of the evolution of the universe, and the equation of state parameters turn out to be phantom-like. Furthermore, we clarify in another way that exponent n should be even numbers by the spherically symmetric static solutions in Newtonian gauge. It is worth stressing that the results given by us can include ones in refs. [28, 34] as the special case of n =2.
Energy Technology Data Exchange (ETDEWEB)
Wang, Yu; Wang, Yi-Ze [School of Astronautics, Harbin Institute of Technology, P. O. Box 137, Harbin 150001 (China); Li, Feng-Ming, E-mail: fmli@bjut.edu.cn [School of Astronautics, Harbin Institute of Technology, P. O. Box 137, Harbin 150001 (China); College of Mechanical Engineering, Beijing University of Technology, Beijing 100124 (China)
2015-06-15
The nonlinear dynamical equations are established for the double layered viscoelastic nanoplates (DLNP) subjected to in-plane excitation based on the nonlocal theory and von Kármán large deformation theory. The extended high dimensional homoclinic Melnikov method is employed to study the homoclinic phenomena and chaotic motions for the parametrically excited DLNP system. The criteria for the homoclinic transverse intersection for both the asynchronous and synchronous buckling cases are proposed. Lyapunov exponents and phase portraits are obtained to verify the Melnikov-type analysis. The influences of structural parameters on the transverse homoclinic orbits and homoclinic bifurcation sets are discussed for the two buckling cases. Some novel phenomena are observed in the investigation. It should be noticed that the nonlocal effect on the homoclinic behaviors and chaotic motions is quite remarkable. Hence, the small scale effect should be taken into account for homoclinic and chaotic analysis for nanostructures. It is significant that the nonlocal effect on the homoclinic phenomena for the asynchronous buckling case is quite different from that for the synchronous buckling case. Moreover, due to the van der Walls interaction between the layers, the nonlocal effect on the homoclinic behaviors and chaotic motions for high order mode is rather tiny under the asynchronous buckling condition.
Wang, Yu; Li, Feng-Ming; Wang, Yi-Ze
2015-06-01
The nonlinear dynamical equations are established for the double layered viscoelastic nanoplates (DLNP) subjected to in-plane excitation based on the nonlocal theory and von Kármán large deformation theory. The extended high dimensional homoclinic Melnikov method is employed to study the homoclinic phenomena and chaotic motions for the parametrically excited DLNP system. The criteria for the homoclinic transverse intersection for both the asynchronous and synchronous buckling cases are proposed. Lyapunov exponents and phase portraits are obtained to verify the Melnikov-type analysis. The influences of structural parameters on the transverse homoclinic orbits and homoclinic bifurcation sets are discussed for the two buckling cases. Some novel phenomena are observed in the investigation. It should be noticed that the nonlocal effect on the homoclinic behaviors and chaotic motions is quite remarkable. Hence, the small scale effect should be taken into account for homoclinic and chaotic analysis for nanostructures. It is significant that the nonlocal effect on the homoclinic phenomena for the asynchronous buckling case is quite different from that for the synchronous buckling case. Moreover, due to the van der Walls interaction between the layers, the nonlocal effect on the homoclinic behaviors and chaotic motions for high order mode is rather tiny under the asynchronous buckling condition.
A Systems-Theoretical Generalization of Non-Local Correlations
von Stillfried, Nikolaus
Non-local correlations between quantum events are not due to a causal interaction in the sense of one being the cause for the other. In principle, the correlated events can thus occur simultaneously. Generalized Quantum Theory (GQT) formalizes the idea that non-local phenomena are not exclusive to quantum mechanics, e.g. due to some specific properties of (sub)atomic particles, but that they instead arise as a consequence of the way such particles are arranged into systems. Non-local phenomena should hence occur in any system which fulfils the necessary systems-theoretical parameters. The two most important parameters with respect to non-local correlations seem to be a conserved global property of the system as a whole and sufficient degrees of freedom of the corresponding property of its subsystems. Both factors place severe limitations on experimental observability of the phenomena, especially in terms of replicability. It has been suggested that reported phenomena of a so-called synchronistic, parapsychological or paranormal kind could be understood as instances of systems-inherent non-local correlations. From a systems-theoretical perspective, their phenomenology (including the favorable conditions for their occurrence and their lack of replicability) displays substantial similarities to non-local correlations in quantum systems and matches well with systems-theoretical parameters, thus providing circumstantial evidence for this hypothesis.
Coupling of nonlocal and local continuum models by the Arlequinapproach
Han, Fei
2011-08-09
The objective of this work is to develop and apply the Arlequin framework to couple nonlocal and local continuum mechanical models. A mechanically-based model of nonlocal elasticity, which involves both contact and long-range forces, is used for the \\'fine scale\\' description in which nonlocal interactions are considered to have non-negligible effects. Classical continuum mechanics only involving local contact forces is introduced for the rest of the structure where these nonlocal effects can be neglected. Both models overlap in a coupling subdomain called the \\'gluing area\\' in which the total energy is separated into nonlocal and local contributions by complementary weight functions. A weak compatibility is ensured between kinematics of both models using Lagrange multipliers over the gluing area. The discrete formulation of this specific Arlequin coupling framework is derived and fully described. The validity and limits of the technique are demonstrated through two-dimensional numerical applications and results are compared against those of the fully nonlocal elasticity method. © 2011 John Wiley & Sons, Ltd.
Algebraic Traveling Wave Solutions of a Non-local Hydrodynamic-type Model
International Nuclear Information System (INIS)
Chen, Aiyong; Zhu, Wenjing; Qiao, Zhijun; Huang, Wentao
2014-01-01
In this paper we consider the algebraic traveling wave solutions of a non-local hydrodynamic-type model. It is shown that algebraic traveling wave solutions exist if and only if an associated first order ordinary differential system has invariant algebraic curve. The dynamical behavior of the associated ordinary differential system is analyzed. Phase portraits of the associated ordinary differential system is provided under various parameter conditions. Moreover, we classify algebraic traveling wave solutions of the model. Some explicit formulas of smooth solitary wave and cuspon solutions are obtained
Glueball phenomenology within a nonlocal approach
International Nuclear Information System (INIS)
Giacosa, F.
2005-01-01
In this thesis we describe the properties of glueball phenomenology within a nonlocal covariant constituent approach. The search for glueballs, their theoretical description and the mixing with quarkonia mesons is an active and unsolved issue of hadronic QCD. Different models and assignments have been proposed, but up to now no certain statement about their existence can be done. After introducing the theoretical framework in which we will work in, the attention will be focused on the problem of the scalar glueball, which lattice QCD predicts to be the lightest gluonic state with a mass between 1.4-1.8 GeV. In the same mass region one encounters many scalar resonances; mixing between the bare glueball and quarkonia states is therefore likely. In a covariant constituent approach one cannot define rigorously a mixing matrix connecting the bare to physical fields. However, we propose a definition which satisfies the correct requirements and which can be compared to other phenomenological studies. The two-photon decay of isoscalar-scalar states is believed to be crucial to pin down the flavor content of the resonances between 1 and 2 GeV. We discuss and calculate the two-photon decay rates of the mixed states glueball-quarkonia, getting results which are consistent with the current experimental upper limits
Causality and local determinism versus quantum nonlocality
International Nuclear Information System (INIS)
Kupczynski, M
2014-01-01
The entanglement and the violation of Bell and CHSH inequalities in spin polarization correlation experiments (SPCE) is considered to be one of the biggest mysteries of Nature and is called quantum nonlocality. In this paper we show once again that this conclusion is based on imprecise terminology and on the lack of understanding of probabilistic models used in various proofs of Bell and CHSH theorems. These models are inconsistent with experimental protocols used in SPCE. This is the only reason why Bell and CHSH inequalities are violated. A probabilistic non-signalling description of SPCE, consistent with quantum predictions, is possible and it depends explicitly on the context of each experiment. It is also deterministic in the sense that the outcome is determined by supplementary local parameters describing both physical signals and measuring instruments. The existence of such description gives additional arguments that quantum theory is emergent from some more detailed theory respecting causality and local determinism. If quantum theory is emergent then there exist perhaps some fine structures in time-series of experimental data which were not predicted by quantum theory. In this paper we explain how a systematic search for such fine structures can be done. If such reproducible fine structures were found it would show that quantum theory is not predictably complete, which would be a major discovery.
PET reconstruction via nonlocal means induced prior.
Hou, Qingfeng; Huang, Jing; Bian, Zhaoying; Chen, Wufan; Ma, Jianhua
2015-01-01
The traditional Bayesian priors for maximum a posteriori (MAP) reconstruction methods usually incorporate local neighborhood interactions that penalize large deviations in parameter estimates for adjacent pixels; therefore, only local pixel differences are utilized. This limits their abilities of penalizing the image roughness. To achieve high-quality PET image reconstruction, this study investigates a MAP reconstruction strategy by incorporating a nonlocal means induced (NLMi) prior (NLMi-MAP) which enables utilizing global similarity information of image. The present NLMi prior approximates the derivative of Gibbs energy function by an NLM filtering process. Specially, the NLMi prior is obtained by subtracting the current image estimation from its NLM filtered version and feeding the residual error back to the reconstruction filter to yield the new image estimation. We tested the present NLMi-MAP method with simulated and real PET datasets. Comparison studies with conventional filtered backprojection (FBP) and a few iterative reconstruction methods clearly demonstrate that the present NLMi-MAP method performs better in lowering noise, preserving image edge and in higher signal to noise ratio (SNR). Extensive experimental results show that the NLMi-MAP method outperforms the existing methods in terms of cross profile, noise reduction, SNR, root mean square error (RMSE) and correlation coefficient (CORR).
Experimental nonlocal steering of Bohmian trajectories.
Xiao, Ya; Kedem, Yaron; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can
2017-06-26
Interpretations of quantum mechanics (QM), or proposals for underlying theories, that attempt to present a definite realist picture, such as Bohmian mechanics, require strong non-local effects. Naively, these effects would violate causality and contradict special relativity. However if the theory agrees with QM the violation cannot be observed directly. Here, we demonstrate experimentally such an effect: we steer the velocity and trajectory of a Bohmian particle using a remote measurement. We use a pair of photons and entangle the spatial transverse position of one with the polarization of the other. The first photon is sent to a double-slit-like apparatus, where its trajectory is measured using the technique of Weak Measurements. The other photon is projected to a linear polarization state. The choice of polarization state, and the result, steer the first photon in the most intuitive sense of the word. The effect is indeed shown to be dramatic, while being easy to visualize. We discuss its strength and what are the conditions for it to occur.
Understanding quantum interference in general nonlocality
International Nuclear Information System (INIS)
Wang Haijun
2011-01-01
In this paper we attempt to give a new understanding of quantum double-slit interference of fermions in the framework of general nonlocality (GN) [J. Math. Phys. 49, 033513 (2008)] by studying the self-(inter)action of matter wave. From the metric of the GN, we derive a special formalism to interpret the interference contrast when the self-action is perturbative. According to the formalism, the characteristic of interference pattern is in agreement with experiment qualitatively. As examples, we apply the formalism to the cases governed by Schroedinger current and Dirac current, respectively, both of which are relevant to topology. The gap between these two cases corresponds to the fermion magnetic moment, which is possible to test in the near future. In addition, a general interference formalism for both perturbative and nonperturbative self-actions is presented. By analyzing the general formalism we predict that in the nonperturbative limit there is no interference at all. And by comparison with the special formalism of Schroedinger current, the coupling strength of self-action in the limit is found to be ∞. In the perturbative case, the interference from self-action turns out to be the same as that from the standard approach of quantum theory. Then comparing the corresponding coefficients quantitatively we conclude that the coupling strength of self-action in this case falls in the interval [0, 1].
Evidence of Non-local Chemical, Thermal and Gravitational Effects
Directory of Open Access Journals (Sweden)
Hu H.
2007-04-01
Full Text Available Quantum entanglement is ubiquitous in the microscopic world and manifests itself macroscopically under some circumstances. But common belief is that it alone cannot be used to transmit information nor could it be used to produce macroscopic non- local effects. Yet we have recently found evidence of non-local effects of chemical substances on the brain produced through it. While our reported results are under independent verifications by other groups, we report here our experimental findings of non-local chemical, thermal and gravitational effects in simple physical systems such as reservoirs of water quantum-entangled with water being manipulated in a remote reservoir. With the aids of high-precision instruments, we have found that the pH value, temperature and gravity of water in the detecting reservoirs can be non-locally affected through manipulating water in the remote reservoir. In particular, the pH value changes in the same direction as that being manipulated; the temperature can change against that of local environment; and the gravity apparently can also change against local gravity. These non-local effects are all reproducible and can be used for non-local signalling and many other purposes. We suggest that they are mediated by quantum entanglement between nuclear and/or electron spins in treated water and discuss the implications of these results.
On a non-local gas dynamics like integrable hierarchy
International Nuclear Information System (INIS)
Brunelli, Jose Carlos; Das, Ashok
2004-01-01
We study a new hierarchy of equations derived from the system of isentropic gas dynamics equations where the pressure is a non-local function of the density. We show that the hierarchy of equations is integrable. We construct the two compatible Hamiltonian structures and show that the first structure has three distinct Casimirs while the second has one. The existence of Casimirs allows us to extend the flows to local ones. We construct an infinite series of commuting local Hamiltonians as well as three infinite series (related to the three Casimirs) of non-local charges. We discuss the zero curvature formulation of the system where we obtain a simple expression for the non-local conserved charges, which also clarifies the existence of the three series from a Lie algebraic point of view. We point out that the non-local hierarchy of Hunter-Zheng equations can be obtained from our non-local flows when the dynamical variables are properly constrained. (author)
Localized solutions for a nonlocal discrete NLS equation
Energy Technology Data Exchange (ETDEWEB)
Ben, Roberto I. [Instituto de Desarrollo Humano, Universidad Nacional de General Sarmiento, J.M. Gutiérrez 1150, 1613 Los Polvorines (Argentina); Cisneros Ake, Luís [Department of Mathematics, ESFM, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos Edificio 9, 07738 México D.F. (Mexico); Minzoni, A.A. [Depto. Matemáticas y Mecánica, I.I.M.A.S.-U.N.A.M., Apdo. Postal 20-726, 01000 México D.F. (Mexico); Panayotaros, Panayotis, E-mail: panos@mym.iimas.unam.mx [Depto. Matemáticas y Mecánica, I.I.M.A.S.-U.N.A.M., Apdo. Postal 20-726, 01000 México D.F. (Mexico)
2015-09-04
We study spatially localized time-periodic solutions of breather type for a cubic discrete NLS equation with a nonlocal nonlinearity that models light propagation in a liquid crystal waveguide array. We show the existence of breather solutions in the limit where both linear and nonlinear intersite couplings vanish, and in the limit where the linear coupling vanishes with arbitrary nonlinear intersite coupling. Breathers of this nonlocal regime exhibit some interesting features that depart from what is seen in the NLS breathers with power nonlinearity. One property we see theoretically is the presence of higher amplitude at interfaces between sites with zero and nonzero amplitude in the vanishing linear coupling limit. A numerical study also suggests the presence of internal modes of orbitally stable localized modes. - Highlights: • Show existence of spatially localized solutions in nonlocal discrete NLS model. • Study spatial properties of localized solutions for arbitrary nonlinear nonlocal coupling. • Present numerical evidence that nonlocality leads to internal modes around stable breathers. • Present theoretical and numerical evidence for amplitude maxima at interfaces.
Localized solutions for a nonlocal discrete NLS equation
International Nuclear Information System (INIS)
Ben, Roberto I.; Cisneros Ake, Luís; Minzoni, A.A.; Panayotaros, Panayotis
2015-01-01
We study spatially localized time-periodic solutions of breather type for a cubic discrete NLS equation with a nonlocal nonlinearity that models light propagation in a liquid crystal waveguide array. We show the existence of breather solutions in the limit where both linear and nonlinear intersite couplings vanish, and in the limit where the linear coupling vanishes with arbitrary nonlinear intersite coupling. Breathers of this nonlocal regime exhibit some interesting features that depart from what is seen in the NLS breathers with power nonlinearity. One property we see theoretically is the presence of higher amplitude at interfaces between sites with zero and nonzero amplitude in the vanishing linear coupling limit. A numerical study also suggests the presence of internal modes of orbitally stable localized modes. - Highlights: • Show existence of spatially localized solutions in nonlocal discrete NLS model. • Study spatial properties of localized solutions for arbitrary nonlinear nonlocal coupling. • Present numerical evidence that nonlocality leads to internal modes around stable breathers. • Present theoretical and numerical evidence for amplitude maxima at interfaces
Non-local magnetoresistance in YIG/Pt nanostructures
Energy Technology Data Exchange (ETDEWEB)
Goennenwein, Sebastian T. B., E-mail: goennenwein@wmi.badw.de; Pernpeintner, Matthias; Gross, Rudolf; Huebl, Hans [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799 München (Germany); Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Schlitz, Richard; Ganzhorn, Kathrin [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Althammer, Matthias [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany)
2015-10-26
We study the local and non-local magnetoresistance of thin Pt strips deposited onto yttrium iron garnet. The local magnetoresistive response, inferred from the voltage drop measured along one given Pt strip upon current-biasing it, shows the characteristic magnetization orientation dependence of the spin Hall magnetoresistance. We simultaneously also record the non-local voltage appearing along a second, electrically isolated, Pt strip, separated from the current carrying one by a gap of a few 100 nm. The corresponding non-local magnetoresistance exhibits the symmetry expected for a magnon spin accumulation-driven process, confirming the results recently put forward by Cornelissen et al. [“Long-distance transport of magnon spin information in a magnetic insulator at room temperature,” Nat. Phys. (published online 14 September 2015)]. Our magnetotransport data, taken at a series of different temperatures as a function of magnetic field orientation, rotating the externally applied field in three mutually orthogonal planes, show that the mechanisms behind the spin Hall and the non-local magnetoresistance are qualitatively different. In particular, the non-local magnetoresistance vanishes at liquid Helium temperatures, while the spin Hall magnetoresistance prevails.
Nonlocal non-Markovian effects in dephasing environments
International Nuclear Information System (INIS)
Xie Dong; Wang An-Min
2014-01-01
We study the nonlocal non-Markovian effects through local interactions between two subsystems and the corresponding two environments. It has been found that the initial correlations between two environments can turn a Markovian to a non-Markovian regime with extra control on the local interaction time. We further research the nonlocal non-Markovian effects from two situations: without extra control, the nonlocal non-Markovian effects only appear under the condition that two local dynamics are non-Markovian–non-Markovian (both of the two local dynamics are non-Markovian) or Markovian–non-Markovian, but not under the condition of Markovian–Markovian; with extra control, the nonlocal non-Markovian effects can occur under the condition of Markovian–Markovian. It shows that the function of correlations between two environments has an upper bound, which makes a flow of information from the environment back to the global system beginning finitely earlier than that back to one of the two local systems, not infinitely. Then, we proposed two special ways to distribute classical correlations between two environments without initial correlations. Finally, from numerical solutions in the spin star configuration, we found that the self-correlation (internal correlation) of each environment promotes the nonlocal non-Markovian effects. (general)
Random access codes and nonlocal resources
Chaturvedi, Anubhav; Pawlowski, Marcin; Horodecki, Karol
2017-08-01
This work explores the notion of inter-convertibility between a cryptographic primitive: the random access code (RAC) and bipartite no-signaling nonlocal resources. To this end we introduce two generalizations of the Popescu-Rohrlich box (PR) and investigate their relation with the corresponding RACs. The first generalization is based on the number of Alice's input bits; we refer to it as the Bn-box. We show that the no-signaling condition imposes an equivalence between the Bn-box and the (n →1 ) RAC (encoding of n input bits to 1 bit of message). As an application we show that (n -1 ) PRs supplemented with one bit communication are necessary and sufficient to win a (n →1 ) RAC with certainty. Furthermore, we present a signaling instant of a perfectly working (n →1 ) RAC which cannot simulate the Bn-box, thus showing that it is weaker than its no-signaling counterpart. For the second generalization we replace Alice's input bits with d its (d -leveled classical systems); we call this the Bnd-box. In this case the no-signaling condition is not enough to enforce an equivalence between the Bnd-box and (n →1 ,d ) RAC (encoding of n input d its to 1 d it of message); i.e., while the Bnd-box can win a (n →1 ,d ) RAC with certainty, not all no-signaling instances of a (n →1 ,d ) RAC can simulate the Bnd-box. We use resource inequalities to quantitatively capture these results.
Time-nonlocal kinetic equations, jerk and hyperjerk in plasmas and solar physics
El-Nabulsi, Rami Ahmad
2018-06-01
The simulation and analysis of nonlocal effects in fluids and plasmas is an inherently complicated problem due to the massive breadth of physics required to describe the nonlocal dynamics. This is a multi-physics problem that draws upon various miscellaneous fields, such as electromagnetism and statistical mechanics. In this paper we strive to focus on one narrow but motivating mathematical way: the derivation of nonlocal plasma-fluid equations from a generalized nonlocal Liouville derivative operator motivated from Suykens's nonlocal arguments. The paper aims to provide a guideline toward modeling nonlocal effects occurring in plasma-fluid systems by means of a generalized nonlocal Boltzmann equation. The generalized nonlocal equations of fluid dynamics are derived and their implications in plasma-fluid systems are addressed, discussed and analyzed. Three main topics were discussed: Landau damping in plasma electrodynamics, ideal MHD and solar wind. A number of features were revealed, analyzed and confronted with recent research results and observations.
Global stability and pattern formation in a nonlocal diffusive Lotka-Volterra competition model
Ni, Wenjie; Shi, Junping; Wang, Mingxin
2018-06-01
A diffusive Lotka-Volterra competition model with nonlocal intraspecific and interspecific competition between species is formulated and analyzed. The nonlocal competition strength is assumed to be determined by a diffusion kernel function to model the movement pattern of the biological species. It is shown that when there is no nonlocal intraspecific competition, the dynamics properties of nonlocal diffusive competition problem are similar to those of classical diffusive Lotka-Volterra competition model regardless of the strength of nonlocal interspecific competition. Global stability of nonnegative constant equilibria are proved using Lyapunov or upper-lower solution methods. On the other hand, strong nonlocal intraspecific competition increases the system spatiotemporal dynamic complexity. For the weak competition case, the nonlocal diffusive competition model may possess nonconstant positive equilibria for some suitably large nonlocal intraspecific competition coefficients.
Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load
International Nuclear Information System (INIS)
Li, C; Yu, J L; Lim, C W
2011-01-01
This paper investigates the natural frequency, steady-state resonance and stability for the transverse vibrations of a nanobeam subjected to a variable initial axial force, including axial tension and axial compression, based on nonlocal elasticity theory. It is reported that the nonlocal nanoscale has significant effects on vibration behavior, which results in a new effective nonlocal bending moment different to but dependent on the corresponding nonlocal bending moment. The effects of nonlocal nanoscale and the variation of initial axial force on the natural frequency as well as the instability regions are analyzed by the perturbation method. It concludes that both the nonlocal nanoscale and the initial tension, including static and dynamic tensions, cause an increase in natural frequency, while an initial compression causes the natural frequency to decrease. Instability regions are also greatly influenced by the nonlocal nanoscale and initial tension and they become smaller with stronger nonlocal effects or larger initial tension
Supporting the search for the CEP location with nonlocal PNJL models constrained by lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Contrera, Gustavo A. [IFLP, UNLP, CONICET, Facultad de Ciencias Exactas, La Plata (Argentina); Gravitation, Astrophysics and Cosmology Group, FCAyG, UNLP, La Plata (Argentina); CONICET, Buenos Aires (Argentina); Grunfeld, A.G. [CONICET, Buenos Aires (Argentina); Comision Nacional de Energia Atomica, Departamento de Fisica, Buenos Aires (Argentina); Blaschke, David [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); Joint Institute for Nuclear Research, Moscow Region (Russian Federation); National Research Nuclear University (MEPhI), Moscow (Russian Federation)
2016-08-15
We investigate the possible location of the critical endpoint in the QCD phase diagram based on nonlocal covariant PNJL models including a vector interaction channel. The form factors of the covariant interaction are constrained by lattice QCD data for the quark propagator. The comparison of our results for the pressure including the pion contribution and the scaled pressure shift Δ P/T {sup 4} vs. T/T{sub c} with lattice QCD results shows a better agreement when Lorentzian form factors for the nonlocal interactions and the wave function renormalization are considered. The strength of the vector coupling is used as a free parameter which influences results at finite baryochemical potential. It is used to adjust the slope of the pseudocritical temperature of the chiral phase transition at low baryochemical potential and the scaled pressure shift accessible in lattice QCD simulations. Our study, albeit presently performed at the mean-field level, supports the very existence of a critical point and favors its location within a region that is accessible in experiments at the NICA accelerator complex. (orig.)
Park, Sohyun
2018-02-01
We examine the origin of two opposite results for the growth of perturbations in the Deser-Woodard (DW) nonlocal gravity model. One group previously analyzed the model in its original nonlocal form and showed that the growth of structure in the DW model is enhanced compared to general relativity (GR) and thus concluded that the model was ruled out. Recently, however, another group has reanalyzed it by localizing the model and found that the growth in their localized version is suppressed even compared to the one in GR. The question was whether the discrepancy originates from an intrinsic difference between the nonlocal and localized formulations or is due to their different implementations of the subhorizon limit. We show that the nonlocal and local formulations give the same solutions for the linear perturbations as long as the initial conditions are set the same. The different implementations of the subhorizon limit lead to different transient behaviors of some perturbation variables; however, they do not affect the growth of matter perturbations at the sub-horizon scale much. In the meantime, we also report an error in the numerical calculation code of the former group and verify that after fixing the error the nonlocal version also gives the suppressed growth. Finally, we discuss two alternative definitions of the effective gravitational constant taken by the two groups and some open problems.
Nonlocal Free Energy of a Spatially Inhomogeneous Superconductor
International Nuclear Information System (INIS)
Grigorishin, K.V.; Lev, B.I.
2012-01-01
The microscopic approach is developed for obtaining of the free energy of a superconductor based on direct calculation of the vacuum amplitude. The free energy functional of the spatially inhomogeneous superconductor in a magnetic field is obtained with help of the developed approach. The obtained functional is generalization of Ginzburg-Landau functionals for any temperature, for arbitrary spatial variations of the order parameter and for the nonlocality of a magnetic response and the order parameter. Moreover, the nonlocality of the magnetic response is the consequence of order parameter's nonlocality. The extremals of this functional are considered in the explicit form in the low- and high-temperature limit at the condition of slowness of spatial variations of the order parameter. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Nonlocal superconducting correlations in graphene in the quantum Hall regime
Beconcini, Michael; Polini, Marco; Taddei, Fabio
2018-05-01
We study Andreev processes and nonlocal transport in a three-terminal graphene-superconductor hybrid system under a quantizing perpendicular magnetic field [G.-H. Lee et al., Nat. Phys. 13, 693 (2017), 10.1038/nphys4084]. We find that the amplitude of the crossed Andreev reflection (CAR) processes crucially depends on the orientation of the lattice. By employing Landauer-Büttiker scattering theory, we find that CAR is generally very small for a zigzag edge, while for an armchair edge it can be larger than the normal transmission, thereby resulting in a negative nonlocal resistance. In the case of an armchair edge and with a wide superconducting region (as compared to the superconducting coherence length), CAR exhibits large oscillations as a function of the magnetic field due to interference effects. This results in sign changes of the nonlocal resistance.
Nonlocal surface plasmons by Poisson Green's function matching
International Nuclear Information System (INIS)
Morgenstern Horing, Norman J
2006-01-01
The Poisson Green's function for all space is derived for the case in which an interface divides space into two separate semi-infinite media, using the Green's function matching method. Each of the separate semi-infinite constituent parts has its own dynamic, nonlocal polarizability, which is taken to be unaffected by the presence of the interface and is represented by the corresponding bulk response property. While this eliminates Friedel oscillatory phenomenology near the interface with p ∼ 2p F , it is nevertheless quite reasonable and useful for a broad range of lower (nonvanishing) wavenumbers, p F . The resulting full-space Poisson Green's function is dynamic, nonlocal and spatially inhomogeneous, and its frequency pole yields the surface plasmon dispersion relation, replete with dynamic and nonlocal features. It also accommodates an ambient magnetic field
Non-local charges in local quantum field theory
International Nuclear Information System (INIS)
Buchholz, D.; Lopuszanski, J.T.; Rabsztyn, S.
1985-05-01
Non-local charges are studied in the general setting of local quantum field theory. It is shown, that these charges can be represented as polynomials in the incoming respectively outgoing fields with coefficients (kernels) which are subject to specific constraints. For the restricted class of models of a scalar, massive, self interacting particle in four dimensions, a more detailed analysis shows that all non-local charges of the generic type (genus 2) are products of generators of the Poincare group. This analysis, which is based on the macroscopic causality properties of the S-matrix, seems to indicate that less trivial examples of non-local charges can only exist in two dimensions. (orig.)
Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams
Ebrahimi, Farzad; Reza Barati, Mohammad
2016-09-01
In this work, a size-dependent curved beam model is developed to take into account the effects of nonlocal stresses on the buckling behavior of curved magneto-electro-elastic FG nanobeams for the first time. The governing differential equations are derived based on the principle of virtual work and Euler-Bernoulli beam theory. The power-law function is employed to describe the spatially graded magneto-electro-elastic properties. By extending the radius of the curved nanobeam to infinity, the results of straight nonlocal FG beams can be rendered. The effects of magnetic potential, electric voltage, opening angle, nonlocal parameter, power-law index and slenderness ratio on buckling loads of curved MEE-FG nanobeams are studied.
A non-local variable for general relativity
International Nuclear Information System (INIS)
Kozameh, C.N.; Newman, E.T.
1983-01-01
The usual description of differential geometry and general relativity is in terms of local fields, e.g. the metric, the curvature tensor, etc, which satisfy local differential equations. The authors introduce a new non-local field (Z) from which the local fields can be derived. Basically Z, though it is non-local, should be thought of as a function on the bundle of null directions on a space-time. The program can be divided into two parts; first the authors want to show the geometric meaning of and the relationship between Z and the local field. Then they want to provide field equations (non-local) for Z which will be equivalent to the vacuum Einstein equations for the local field. (Auth.)
Non-locality of non-Abelian anyons
International Nuclear Information System (INIS)
Brennen, G K; Iblisdir, S; Pachos, J K; Slingerland, J K
2009-01-01
Entangled states of quantum systems can give rise to measurement correlations of separated observers that cannot be described by local hidden variable theories. Usually, it is assumed that entanglement between particles is generated due to some distance-dependent interaction. Yet anyonic particles in two dimensions have a nontrivial interaction that is purely topological in nature. In other words, it does not depend on the distance between two particles, but rather on their exchange history. The information encoded in anyons is inherently non-local even in the single subsystem level making the treatment of anyons non-conventional. We describe a protocol to reveal the non-locality of anyons in terms of correlations in the outcomes of measurements in two separated regions. This gives a clear operational measure of non-locality for anyonic states and it opens up the possibility to test Bell inequalities in quantum Hall liquids or spin lattices.
Non-locality of non-Abelian anyons
Brennen, G. K.; Iblisdir, S.; Pachos, J. K.; Slingerland, J. K.
2009-10-01
Entangled states of quantum systems can give rise to measurement correlations of separated observers that cannot be described by local hidden variable theories. Usually, it is assumed that entanglement between particles is generated due to some distance-dependent interaction. Yet anyonic particles in two dimensions have a nontrivial interaction that is purely topological in nature. In other words, it does not depend on the distance between two particles, but rather on their exchange history. The information encoded in anyons is inherently non-local even in the single subsystem level making the treatment of anyons non-conventional. We describe a protocol to reveal the non-locality of anyons in terms of correlations in the outcomes of measurements in two separated regions. This gives a clear operational measure of non-locality for anyonic states and it opens up the possibility to test Bell inequalities in quantum Hall liquids or spin lattices.
Poisson-Fermi Formulation of Nonlocal Electrostatics in Electrolyte Solutions
Directory of Open Access Journals (Sweden)
Liu Jinn-Liang
2017-10-01
Full Text Available We present a nonlocal electrostatic formulation of nonuniform ions and water molecules with interstitial voids that uses a Fermi-like distribution to account for steric and correlation efects in electrolyte solutions. The formulation is based on the volume exclusion of hard spheres leading to a steric potential and Maxwell’s displacement field with Yukawa-type interactions resulting in a nonlocal electric potential. The classical Poisson-Boltzmann model fails to describe steric and correlation effects important in a variety of chemical and biological systems, especially in high field or large concentration conditions found in and near binding sites, ion channels, and electrodes. Steric effects and correlations are apparent when we compare nonlocal Poisson-Fermi results to Poisson-Boltzmann calculations in electric double layer and to experimental measurements on the selectivity of potassium channels for K+ over Na+.
Shape Changing Nonlocal Molecular Deformations in a Nematic Liquid Crystal
International Nuclear Information System (INIS)
Kavitha, L.; Venkatesh, M.; Gopi, D.
2010-07-01
The nature of nonlinear molecular deformations in a homeotropically aligned nematic liquid crystal (NLC) is presented. We start from the basic dynamical equation for the director axis of a NLC with elastic deformation mapped onto an integro-differential perturbed Nonlinear Schroedinger equation which includes the nonlocal term. By invoking the modified extended tangent hyperbolic function method aided with symbolic computation, we obtain a series of solitary wave solutions. Under the influence of the nonlocality induced by the reorientation nonlinearity due to fluctuations in the molecular orientation, the solitary wave exhibits shape changing property for different choices of parameters. This intriguing property, as a result of the relation between the coherence of the solitary deformation and the nonlocality, reveals a strong need for deeper understanding in the theory of self-localization in NLC systems. (author)
On the measurement of time-dependent quantum phases
International Nuclear Information System (INIS)
Barut, A.O.; Bozic, M.; Klarsfeld, S.; Maric, Z.
1991-11-01
We have evaluated the exact (Pancharatnam) phase differences between the final state l ψ(t) > and various initial states for a spin 1/2-particle in a rotating magnetic field B(t). For the initial states l n; B ef (0) >, which are eigenstates of the spin component along the direction of the initial effective field B ef (0), the exact phase has an energy dependent part, and an energy independent part. It is shown that these states l n; B ef (0) > are cyclic and their corresponding Aharonov-Anandan phases are evaluated. In the adiabatic limit we discuss different choices of time-dependent bases and the relationship between the exact phase, the Born-Fock-Schiff phase and Berry's phase. We propose experiments (neutron) to verify separately the exact and the adiabatic evolution laws, as well as to measure the adiabatic phases associated with different choices of time-dependent basis vectors. (author). 37 refs, 5 figs, 1 tab
Strong Local-Nonlocal Coupling for Integrated Fracture Modeling
Energy Technology Data Exchange (ETDEWEB)
Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silling, Stewart A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, John A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seleson, Pablo D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Daniel Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burnett, Damon J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ostien, Jakob [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gunzburger, Max [Florida State Univ., Tallahassee, FL (United States)
2015-09-01
Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling," completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for
Nonlocal Poisson-Fermi model for ionic solvent.
Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob
2016-07-01
We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.
Nonlocal, yet translation invariant, constraints for rotationally invariant slave bosons
Ayral, Thomas; Kotliar, Gabriel
The rotationally-invariant slave boson (RISB) method is a lightweight framework allowing to study the low-energy properties of complex multiorbital problems currently out of the reach of more comprehensive, yet more computationally demanding methods such as dynamical mean field theory. In the original formulation of this formalism, the slave-boson constraints can be made nonlocal by enlarging the unit cell and viewing the quantum states enclosed in this new unit cell as molecular levels. In this work, we extend RISB to constraints which are nonlocal while preserving translation invariance. We apply this extension to the Hubbard model.
Nonlocal and nonlinear electrostatics of a dipolar Coulomb fluid.
Sahin, Buyukdagli; Ralf, Blossey
2014-07-16
We study a model Coulomb fluid consisting of dipolar solvent molecules of finite extent which generalizes the point-like dipolar Poisson-Boltzmann model (DPB) previously introduced by Coalson and Duncan (1996 J. Phys. Chem. 100 2612) and Abrashkin et al (2007 Phys. Rev. Lett. 99 077801). We formulate a nonlocal Poisson-Boltzmann equation (NLPB) and study both linear and nonlinear dielectric response in this model for the case of a single plane geometry. Our results shed light on the relevance of nonlocal versus nonlinear effects in continuum models of material electrostatics.
Local models and hidden nonlocality in Quantum Theory
Guerini, Leonardo
2014-01-01
This Master's thesis has two central subjects: the simulation of correlations generated by local measurements on entangled quantum states by local hidden-variables models and the revelation of hidden nonlocality. We present and detail the Werner's local model and the hidden nonlocality of some Werner states of dimension $d\\geq5$, the Gisin-Degorre's local model for a Werner state of dimension $d=2$ and the local model of Hirsch et al. for mixtures of the singlet state and noise, all of them f...
Local and Nonlocal Parallel Heat Transport in General Magnetic Fields
International Nuclear Information System (INIS)
Castillo-Negrete, D. del; Chacon, L.
2011-01-01
A novel approach for the study of parallel transport in magnetized plasmas is presented. The method avoids numerical pollution issues of grid-based formulations and applies to integrable and chaotic magnetic fields with local or nonlocal parallel closures. In weakly chaotic fields, the method gives the fractal structure of the devil's staircase radial temperature profile. In fully chaotic fields, the temperature exhibits self-similar spatiotemporal evolution with a stretched-exponential scaling function for local closures and an algebraically decaying one for nonlocal closures. It is shown that, for both closures, the effective radial heat transport is incompatible with the quasilinear diffusion model.
Nonlocal thermoelectric symmetry relations in ferromagnet-superconductor proximity structures
Energy Technology Data Exchange (ETDEWEB)
Machon, Peter; Belzig, Wolfgang [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Eschrig, Matthias [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Department of Physics, Royal Holloway, University of London, Egham Hill, EGHAM, TW20 0EX (United Kingdom)
2012-07-01
The symmetries of thermal and electric transport coefficients in quantum coherent structures are related to fundamental thermodynamic principles by the Onsager reciprocity. We generalize Onsager's symmetry relation to nonlocal thermoelectric currents in a three terminal ferromagnet-superconductor heterostructure including spin-dependent crossed Andreev reflection and direct electron transfer processes. We proof this general symmetry by applying spin-dependent boundary conditions for quasi-classical Green's functions in both the clean and the dirty limit. We predict an anomalously large local thermopower and a nonlocal Seebeck effect, which can be explained by the spin-dependent spectral properties.
To the non-local theory of cold nuclear fusion.
Alexeev, Boris V
2014-10-01
In this paper, we revisit the cold fusion (CF) phenomenon using the generalized Bolzmann kinetics theory which can represent the non-local physics of this CF phenomenon. This approach can identify the conditions when the CF can take place as the soliton creation under the influence of the intensive sound waves. The vast mathematical modelling leads to affirmation that all parts of soliton move with the same velocity and with the small internal change of the pressure. The zone of the high density is shaped on the soliton's front. It means that the regime of the 'acoustic CF' could be realized from the position of the non-local hydrodynamics.
Faithful test of nonlocal realism with entangled coherent states
International Nuclear Information System (INIS)
Lee, Chang-Woo; Jeong, Hyunseok; Paternostro, Mauro
2011-01-01
We investigate the violation of Leggett's inequality for nonlocal realism using entangled coherent states and various types of local measurements. We prove mathematically the relation between the violation of the Clauser-Horne-Shimony-Holt form of Bell's inequality and Leggett's one when tested by the same resources. For Leggett inequalities, we generalize the nonlocal realistic bound to systems in Hilbert spaces larger than bidimensional ones and introduce an optimization technique that allows one to achieve larger degrees of violation by adjusting the local measurement settings. Our work describes the steps that should be performed to produce a self-consistent generalization of Leggett's original arguments to continuous-variable states.
One-loop effective action for non-local modified Gauss-Bonnet gravity in de Sitter space
Energy Technology Data Exchange (ETDEWEB)
Cognola, Guido; Zerbini, Sergio [Universita di Trento (Italy); Istituto Nazionale di Fisica Nucleare Gruppo Collegato di Trento, Dipartimento di Fisica, Trento (Italy); Elizalde, Emilio [Consejo Superior de Investigaciones Cientificas (ICE/CSIC) and Institut d' Estudis Espacials de Catalunya (IEEC), Facultat Ciencies, Bellaterra (Barcelona) (Spain); Nojiri, Shin' ichi [Nagoya University, Department of Physics, Nagoya (Japan); Odintsov, Sergei D. [Consejo Superior de Investigaciones Cientificas (ICE/CSIC) and Institut d' Estudis Espacials de Catalunya (IEEC), Facultat Ciencies, Bellaterra (Barcelona) (Spain); ICREA, Barcelona (Spain); TSPU, Center of Theor. Phys., Tomsk (Russian Federation)
2009-12-15
We discuss the classical and quantum properties of non-local modified Gauss-Bonnet gravity in de Sitter space, using its equivalent representation via string-inspired local scalar-Gauss-Bonnet gravity with a scalar potential. A classical, multiple de Sitter universe solution is found where one of the de Sitter phases corresponds to the primordial inflationary epoch, while the other de Sitter space solution - the one with the smallest Hubble rate - describes the late-time acceleration of our universe. A Chameleon scenario for the theory under investigation is developed, and it is successfully used to show that the theory complies with gravitational tests. An explicit expression for the one-loop effective action for this non-local modified Gauss-Bonnet gravity in the de Sitter space is obtained. It is argued that this effective action might be an important step towards the solution of the cosmological constant problem. (orig.)
International Nuclear Information System (INIS)
Toi, Kazuo
2002-01-01
Experimental evidence and underlying physical processes of nonlocal characters and structural formation in magnetically confined toroidal plasmas are reviewed. Radial profiles of the plasmas exhibit characteristic structures, depending on the various confinement regimes. Profile stiffness subjected to some global constraint and rapid plasma responses to applied plasma perturbation result from nonlocal transport. Once the plasma is free from the constraint, the plasma state can be changed to a new state exhibiting various types of prominent structural formation such as an internal transport barrier. (author)
Non-local coexistence of multiple spiral waves with independent frequencies
International Nuclear Information System (INIS)
Zhan Meng; Luo Jinming
2009-01-01
The interactions of several spiral waves with different independent rotation frequencies are studied in a model of two-dimensional complex Ginzburg-Laudau equation. We find a general coexistence phenomenon, non-local non-phase-locking-invasion coexistence, that is, the non-slowest spiral wave can survive and not be killed by the fastest spiral wave as it is insulated from the fastest one with the sacrifice of the slowest one, which stays in the spatial position between the fastest spiral and the non-slowest one. Both the parameter non-monotonicity and the non-phase-locking invasion between the fastest and the slowest spiral waves play key roles in this phenomenon. Importantly, the results could give a general idea for extensively observed coexistence of spiral waves in various inhomogeneous circumstances.
On a nonlocal Cauchy problem for differential inclusions
Directory of Open Access Journals (Sweden)
Y. G. Sficas
2004-05-01
Full Text Available We establish sufficient conditions for the existence of solutions for semilinear differential inclusions, with nonlocal conditions. We rely on a fixed-point theorem for contraction multivalued maps due to Covitz and Nadler andon the Schaefer's fixed-point theorem combined with lower semicontinuous multivalued operators with decomposable values.
Entanglement, Einstein-Podolsky-Rosen correlations, Bell nonlocality, and steering
International Nuclear Information System (INIS)
Jones, S. J.; Wiseman, H. M.; Doherty, A. C.
2007-01-01
In a recent work [Phys. Rev. Lett. 98, 140402 (2007)] we defined 'steering', a type of quantum nonlocality that is logically distinct from both nonseparability and Bell nonlocality. In the bipartite setting, it hinges on the question of whether Alice can affect Bob's state at a distance through her choice of measurement. More precisely and operationally, it hinges on the question of whether Alice, with classical communication, can convince Bob that they share an entangled state under the circumstances that Bob trusts nothing that Alice says. We argue that if she can, then this demonstrates the nonlocal effect first identified in the famous Einstein-Podolsky-Rosen paper [Phys. Rev. 47, 777 (1935)] as a universal effect for pure entangled states. This ability of Alice to remotely prepare Bob's state was subsequently called steering by Schroedinger, whose terminology we adopt. The phenomenon of steering has been largely overlooked, and prior to our work had not even been given a rigorous definition that is applicable to mixed states as well as pure states. Armed with our rigorous definition, we proved that steerable states are a strict subset of the entangled states, and a strict superset of the states that can exhibit Bell nonlocality. In this work we expand on these results and provide further examples of steerable states. We also elaborate on the connection with the original EPR paradox
Entanglement, Einstein-Podolsky-Rosen correlations, Bell nonlocality, and steering
Jones, S. J.; Wiseman, H. M.; Doherty, A. C.
2007-11-01
In a recent work [Phys. Rev. Lett. 98, 140402 (2007)] we defined “steering,” a type of quantum nonlocality that is logically distinct from both nonseparability and Bell nonlocality. In the bipartite setting, it hinges on the question of whether Alice can affect Bob’s state at a distance through her choice of measurement. More precisely and operationally, it hinges on the question of whether Alice, with classical communication, can convince Bob that they share an entangled state under the circumstances that Bob trusts nothing that Alice says. We argue that if she can, then this demonstrates the nonlocal effect first identified in the famous Einstein-Podolsky-Rosen paper [Phys. Rev. 47, 777 (1935)] as a universal effect for pure entangled states. This ability of Alice to remotely prepare Bob’s state was subsequently called steering by Schrödinger, whose terminology we adopt. The phenomenon of steering has been largely overlooked, and prior to our work had not even been given a rigorous definition that is applicable to mixed states as well as pure states. Armed with our rigorous definition, we proved that steerable states are a strict subset of the entangled states, and a strict superset of the states that can exhibit Bell nonlocality. In this work we expand on these results and provide further examples of steerable states. We also elaborate on the connection with the original EPR paradox.
Nonlocal elasticity tensors in dislocation and disclination cores
International Nuclear Information System (INIS)
Taupin, V.; Gbemou, K.; Fressengeas, C.; Capolungo, L.
2017-01-01
We introduced nonlocal elastic constitutive laws for crystals containing defects such as dislocations and disclinations. Additionally, the pointwise elastic moduli tensors adequately reflect the elastic response of defect-free regions by relating stresses to strains and couple-stresses to curvatures, elastic cross-moduli tensors relating strains to couple-stresses and curvatures to stresses within convolution integrals are derived from a nonlocal analysis of strains and curvatures in the defects cores. Sufficient conditions are derived for positive-definiteness of the resulting free energy, and stability of elastic solutions is ensured. The elastic stress/couple stress fields associated with prescribed dislocation/disclination density distributions and solving the momentum and moment of momentum balance equations in periodic media are determined by using a Fast Fourier Transform spectral method. Here, the convoluted cross-moduli bring the following results: (i) Nonlocal stresses and couple stresses oppose their local counterparts in the defects core regions, playing the role of restoring forces and possibly ensuring spatio-temporal stability of the simulated defects, (ii) The couple stress fields are strongly affected by nonlocality. Such effects favor the stability of the simulated grain boundaries and allow investigating their elastic interactions with extrinsic defects, (iii) Driving forces inducing grain growth or refinement derive from the self-stress and couple stress fields of grain boundaries in nanocrystalline configurations.
Tomograms and the quest for single particle nonlocality
International Nuclear Information System (INIS)
Anisimov, M A; Caponigro, M; Mancini, S; Man'ko, V I
2007-01-01
By using a tomographic approach to quantum states, we rise the problem of nonlocality within a single particle (single degree of freedom). We propose a possible way to look for such effects on a qubit. Although a conclusive answer is far from being reached, we provide some reflections on the foundational ground
Robustness of the Rabi Splitting under Nonlocal Corrections in Plexcitonics
DEFF Research Database (Denmark)
Tserkezis, Christos; Wubs, Martijn; Mortensen, N. Asger
2018-01-01
separations, either coated with or encapsulating an excitonic layer. Through detailed simulations based on the generalized nonlocal optical response theory, which simultaneously accounts both for modal shifts due to screening and for surface-enhanced Landau damping, we show that, contrary to expectations...... architectures with ultrafine geometrical details....
On nonlocal semi linear elliptic problem with an indefinite term
International Nuclear Information System (INIS)
Yechoui, Akila
2007-08-01
The aim of this paper is to investigate the existence of solutions of a nonlocal semi linear elliptic equation with an indefinite term. The monotone method, the method of upper and lower solutions and the classical maximum principle are used to obtain our results. (author)
Robustness of the Rabi Splitting under Nonlocal Corrections in Plexcitonics
DEFF Research Database (Denmark)
Tserkezis, Christos; Wubs, Martijn; Mortensen, N. Asger
2018-01-01
, the influence of nonlocality is rather limited, as in most occasions the width of the Rabi splitting remains largely unaffected and the two hybrid modes are well distinguishable. We discuss how this behavior can be understood in view of the popular coupled-harmonic-oscillator model, while we also provide...
Non-local model analysis of heat pulse propagation
International Nuclear Information System (INIS)
Iwasaki, Takuya; Itoh, Sanae-I.; Yagi, Masatoshi
1998-01-01
A new theoretical model equation which includes the non-local effect in the heat flux is proposed to study the transient transport phenomena. A non-local heat flux, which is expressed in terms of the integral equation, is superimposed on the conventional form of the heat flux. This model is applied to describe the experimental results from the power switching [Stroth U, et al 1996 Plasma Phys. Control. Fusion 38 1087] and the power modulation experiments [Giannone L, et al 1992 Nucl. Fusion 32 1985] in the W7-AS stellarator. A small fraction of non-local component in the heat flux is found to be very effective in modifying the response against an external modulation. The transient feature of the transport property, which are observed in the response of heat pulse propagation, are qualitatively reproduced by the transport simulations based on this model. A possibility is discussed to determine the correlation length of the non-local effect experimentally by use of the results of transport simulations. (author)
Effect of nonlocal dispersion on self-interacting excitations
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Rasmussen, Kim; Gaididei, Yu.B.
1996-01-01
The dynamics of self-interacting quasiparticles in 1Dsystems with long-range dispersive interactions isexpressed in terms of a nonlocal nonlinear Schrödingerequation. Two branches of stationary solutions are found.The new branch which contains a cusp soliton is shown to beunstable and blowup...
Nonlocal formalism for nanoplasmonics: Phenomenological and semi-classical considerations
DEFF Research Database (Denmark)
Mortensen, N. Asger
2013-01-01
. Without specifying further details of the underlying physical mechanism we show how this leads to a Laplacian correction term in the electromagnetic wave equation. Within the hydrodynamic model we demonstrate this explicitly and we identify the characteristic nonlocal range to be ξNL∼vF/ω where v...
Nonlocal transport in the presence of transport barriers
Del-Castillo-Negrete, D.
2013-10-01
There is experimental, numerical, and theoretical evidence that transport in plasmas can, under certain circumstances, depart from the standard local, diffusive description. Examples include fast pulse propagation phenomena in perturbative experiments, non-diffusive scaling in L-mode plasmas, and non-Gaussian statistics of fluctuations. From the theoretical perspective, non-diffusive transport descriptions follow from the relaxation of the restrictive assumptions (locality, scale separation, and Gaussian/Markovian statistics) at the foundation of diffusive models. We discuss an alternative class of models able to capture some of the observed non-diffusive transport phenomenology. The models are based on a class of nonlocal, integro-differential operators that provide a unifying framework to describe non- Fickian scale-free transport, and non-Markovian (memory) effects. We study the interplay between nonlocality and internal transport barriers (ITBs) in perturbative transport including cold edge pulses and power modulation. Of particular interest in the nonlocal ``tunnelling'' of perturbations through ITBs. Also, flux-gradient diagrams are discussed as diagnostics to detect nonlocal transport processes in numerical simulations and experiments. Work supported by the US Department of Energy.
Sparse representation based image interpolation with nonlocal autoregressive modeling.
Dong, Weisheng; Zhang, Lei; Lukac, Rastislav; Shi, Guangming
2013-04-01
Sparse representation is proven to be a promising approach to image super-resolution, where the low-resolution (LR) image is usually modeled as the down-sampled version of its high-resolution (HR) counterpart after blurring. When the blurring kernel is the Dirac delta function, i.e., the LR image is directly down-sampled from its HR counterpart without blurring, the super-resolution problem becomes an image interpolation problem. In such cases, however, the conventional sparse representation models (SRM) become less effective, because the data fidelity term fails to constrain the image local structures. In natural images, fortunately, many nonlocal similar patches to a given patch could provide nonlocal constraint to the local structure. In this paper, we incorporate the image nonlocal self-similarity into SRM for image interpolation. More specifically, a nonlocal autoregressive model (NARM) is proposed and taken as the data fidelity term in SRM. We show that the NARM-induced sampling matrix is less coherent with the representation dictionary, and consequently makes SRM more effective for image interpolation. Our extensive experimental results demonstrate that the proposed NARM-based image interpolation method can effectively reconstruct the edge structures and suppress the jaggy/ringing artifacts, achieving the best image interpolation results so far in terms of PSNR as well as perceptual quality metrics such as SSIM and FSIM.
Nonlocal ultrafast magnetization dynamics in the high fluence limit
Kuiper, K.C.; Malinowski, G.; Dalla Longa, F.; Koopmans, B.
2011-01-01
In order to explain a number of recent experimental observations of laser-induced femtosecond demagnetization in the large fluence limit, we discuss the consequences of a recently proposed nonlocal approach. A microscopic description of spin flip scattering is implemented in an effective three
Hard-type nonlocality proof for two maximally entangled particles
International Nuclear Information System (INIS)
Kalamidas, D.
2005-01-01
Full text: We present, for the first time, a Hardy-type proof of nonlocality for two maximally entangled particles in a four-dimensional total Hilbert space. Furthermore, the violation of local realistic predictions occurs for 25 % of trials, exceeding the 9 % maximum obtained by Hardy for nonmaximally entangled states. (author)
Nonlocal description of X waves in quadratic nonlinear materials
DEFF Research Database (Denmark)
Larsen, Peter Ulrik Vingaard; Sørensen, Mads Peter; Bang, Ole
2006-01-01
We study localized light bullets and X-waves in quadratic media and show how the notion of nonlocality can provide an alternative simple physical picture of both types of multi-dimensional nonlinear waves. For X-waves we show that a local cascading limit in terms of a nonlinear Schrodinger equation...
Quantifying multipartite nonlocality via the size of the resource
Curchod, Florian John; Gisin, Nicolas; Liang, Yeong-Cherng
2015-01-01
The generation of (Bell-)nonlocal correlations, i.e., correlations leading to the violation of a Bell-like inequality, requires the usage of a nonlocal resource, such as an entangled state. When given a correlation (a collection of conditional probability distributions) from an experiment or from a theory, it is desirable to determine the extent to which the participating parties would need to collaborate nonlocally for its (re)production. Here, we propose to achieve this via the minimal group size (MGS) of the resource, i.e., the smallest number of parties that need to share a given type of nonlocal resource for the above-mentioned purpose. In addition, we provide a general recipe—based on the lifting of Bell-like inequalities—to construct MGS witnesses for nonsignaling resources starting from any given ones. En route to illustrating the applicability of this recipe, we also show that when restricted to the space of full-correlation functions, nonsignaling resources are as powerful as unconstrained signaling resources. Explicit examples of correlations where their MGS can be determined using this recipe and other numerical techniques are provided.
Second Order Impulsive Retarded Differential Inclusions with Nonlocal Conditions
Directory of Open Access Journals (Sweden)
Hernán R. Henríquez
2014-01-01
Full Text Available In this work we establish some existence results for abstract second order Cauchy problems modeled by a retarded differential inclusion involving nonlocal and impulsive conditions. Our results are obtained by using fixed point theory for the measure of noncompactness.
Nonlocal response in plasmonic waveguiding with extreme light confinement
DEFF Research Database (Denmark)
Toscano, Giuseppe; Raza, Søren; Yan, Wei
2013-01-01
We present a novel wave equation for linearized plasmonic response, obtained by combining the coupled real-space differential equations for the electric field and current density. Nonlocal dynamics are fully accounted for, and the formulation is very well suited for numerical implementation, allo...
Formulation analysis and computation of an optimization-based local-to-nonlocal coupling method.
Energy Technology Data Exchange (ETDEWEB)
D' Elia, Marta [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Computing Research; Bochev, Pavel Blagoveston [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Computing Research
2017-01-01
In this paper, we present an optimization-based coupling method for local and nonlocal continuum models. Our approach couches the coupling of the models into a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the local and nonlocal problem domains, and the virtual controls are the nonlocal volume constraint and the local boundary condition. We present the method in the context of Local-to-Nonlocal di usion coupling. Numerical examples illustrate the theoretical properties of the approach.
International Nuclear Information System (INIS)
Pradeep, R Gladwin; Chandrasekar, V K; Senthilvelan, M; Lakshmanan, M
2011-01-01
In this paper, we devise a systematic procedure to obtain nonlocal symmetries of a class of scalar nonlinear ordinary differential equations (ODEs) of arbitrary order related to linear ODEs through nonlocal relations. The procedure makes use of the Lie point symmetries of the linear ODEs and the nonlocal connection to deduce the nonlocal symmetries of the corresponding nonlinear ODEs. Using these nonlocal symmetries, we obtain reduction transformations and reduced equations to specific examples. We find that the reduced equations can be explicitly integrated to deduce the general solutions for these cases. We also extend this procedure to coupled higher order nonlinear ODEs with specific reference to second-order nonlinear ODEs. (paper)
A non-local shell model of hydrodynamic and magnetohydrodynamic turbulence
Energy Technology Data Exchange (ETDEWEB)
Plunian, F [Laboratoire de Geophysique Interne et Tectonophysique, CNRS, Universite Joseph Fourier, Maison des Geosciences, BP 53, 38041 Grenoble Cedex 9 (France); Stepanov, R [Institute of Continuous Media Mechanics, Korolyov 1, 614013 Perm (Russian Federation)
2007-08-15
We derive a new shell model of magnetohydrodynamic (MHD) turbulence in which the energy transfers are not necessarily local. Like the original MHD equations, the model conserves the total energy, magnetic helicity, cross-helicity and volume in phase space (Liouville's theorem) apart from the effects of external forcing, viscous dissipation and magnetic diffusion. The model of hydrodynamic (HD) turbulence is derived from the MHD model setting the magnetic field to zero. In that case the conserved quantities are the kinetic energy and the kinetic helicity. In addition to a statistically stationary state with a Kolmogorov spectrum, the HD model exhibits multiscaling. The anomalous scaling exponents are found to depend on a free parameter {alpha} that measures the non-locality degree of the model. In freely decaying turbulence, the infra-red spectrum also depends on {alpha}. Comparison with theory suggests using {alpha} = -5/2. In MHD turbulence, we investigate the fully developed turbulent dynamo for a wide range of magnetic Prandtl numbers in both kinematic and dynamic cases. Both local and non-local energy transfers are clearly identified.
Su, Zhaofeng; Li, Lvzhou; Ling, Jie
2018-04-01
Nonlocality is an important resource for quantum information processing. Genuine tripartite nonlocality, which is sufficiently confirmed by the violation of Svetlichny inequality, is a kind of more precious resource than the standard one. The genuine tripartite nonlocality is usually quantified by the amount of maximal violation of Svetlichny inequality. The problem of detecting and quantifying the genuine tripartite nonlocality of quantum states is of practical significance but still open for the case of general three-qubit quantum states. In this paper, we quantitatively investigate the genuine nonlocality of three-qubit states, which not only include pure states but also include mixed states. Firstly, we derive a simplified formula for the genuine nonlocality of a general three-qubit state, which is a function of the corresponding three correlation matrices. Secondly, we develop three properties of the genuine nonlocality which can help us to analyze the genuine nonlocality of complex states and understand the nature of quantum nonlocality. Further, we get analytical results of genuine nonlocality for two classes of three-qubit states which have special correlation matrices. In particular, the genuine nonlocality of generalized three-qubit GHZ states, which is derived by Ghose et al. (Phys. Rev. Lett. 102, 250404, 2009), and that of three-qubit GHZ-symmetric states, which is derived by Paul et al. (Phys. Rev. A 94, 032101, 2016), can be easily derived by applying the strategy and properties developed in this paper.
Rationale for switching to nonlocal functionals in density functional theory.
Lazić, P; Atodiresei, N; Caciuc, V; Brako, R; Gumhalter, B; Blügel, S
2012-10-24
Density functional theory (DFT) has been steadily improving over the past few decades, becoming the standard tool for electronic structure calculations. The early local functionals (LDA) were eventually replaced by more accurate semilocal functionals (GGA) which are in use today. A major persisting drawback is the lack of the nonlocal correlation which is at the core of dispersive (van der Waals) forces, so that a large and important class of systems remains outside the scope of DFT. The vdW-DF correlation functional of Langreth and Lundqvist, published in 2004, was the first nonlocal functional which could be easily implemented. Beyond expectations, the nonlocal functional has brought significant improvement to systems that were believed not to be sensitive to nonlocal correlations. In this paper, we use the example of graphene nanodomes growing on the Ir(111) surface, where with an increase of the size of the graphene islands the character of the bonding changes from strong chemisorption towards almost pure physisorption. We demonstrate how the seamless character of the vdW-DF functionals makes it possible to treat all regimes self-consistently, proving to be a systematic and consistent improvement of DFT regardless of the nature of bonding. We also discuss the typical surface science example of CO adsorption on (111) surfaces of metals, which shows that the nonlocal correlation may also be crucial for strongly chemisorbed systems. We briefly discuss open questions, in particular the choice of the most appropriate exchange part of the functional. As the vdW-DF begins to appear implemented self-consistently in a number of popular DFT codes, with numerical costs close to the GGA calculations, we draw the attention of the DFT community to the advantages and benefits of the adoption of this new class of functionals.
Rationale for switching to nonlocal functionals in density functional theory
International Nuclear Information System (INIS)
Lazić, P; Atodiresei, N; Caciuc, V; Blügel, S; Brako, R; Gumhalter, B
2012-01-01
Density functional theory (DFT) has been steadily improving over the past few decades, becoming the standard tool for electronic structure calculations. The early local functionals (LDA) were eventually replaced by more accurate semilocal functionals (GGA) which are in use today. A major persisting drawback is the lack of the nonlocal correlation which is at the core of dispersive (van der Waals) forces, so that a large and important class of systems remains outside the scope of DFT. The vdW-DF correlation functional of Langreth and Lundqvist, published in 2004, was the first nonlocal functional which could be easily implemented. Beyond expectations, the nonlocal functional has brought significant improvement to systems that were believed not to be sensitive to nonlocal correlations. In this paper, we use the example of graphene nanodomes growing on the Ir(111) surface, where with an increase of the size of the graphene islands the character of the bonding changes from strong chemisorption towards almost pure physisorption. We demonstrate how the seamless character of the vdW-DF functionals makes it possible to treat all regimes self-consistently, proving to be a systematic and consistent improvement of DFT regardless of the nature of bonding. We also discuss the typical surface science example of CO adsorption on (111) surfaces of metals, which shows that the nonlocal correlation may also be crucial for strongly chemisorbed systems. We briefly discuss open questions, in particular the choice of the most appropriate exchange part of the functional. As the vdW-DF begins to appear implemented self-consistently in a number of popular DFT codes, with numerical costs close to the GGA calculations, we draw the attention of the DFT community to the advantages and benefits of the adoption of this new class of functionals.
Quantum Correlations in Nonlocal Boson Sampling.
Shahandeh, Farid; Lund, Austin P; Ralph, Timothy C
2017-09-22
Determination of the quantum nature of correlations between two spatially separated systems plays a crucial role in quantum information science. Of particular interest is the questions of if and how these correlations enable quantum information protocols to be more powerful. Here, we report on a distributed quantum computation protocol in which the input and output quantum states are considered to be classically correlated in quantum informatics. Nevertheless, we show that the correlations between the outcomes of the measurements on the output state cannot be efficiently simulated using classical algorithms. Crucially, at the same time, local measurement outcomes can be efficiently simulated on classical computers. We show that the only known classicality criterion violated by the input and output states in our protocol is the one used in quantum optics, namely, phase-space nonclassicality. As a result, we argue that the global phase-space nonclassicality inherent within the output state of our protocol represents true quantum correlations.
Nonlocal transformation of the internal quantum particle structure
Directory of Open Access Journals (Sweden)
Alexey Yu. Samarin
2016-09-01
Full Text Available The analysis of the integral wave equation, having path integral kernel, has resulted, that collapse phenomenon is based on the nonlocal transformation of the internal structure of a quantum particle, considering in the form of the matter fields collection. This nonlocality allows to escape the contradiction between the reduction quantum mechanics postulate and special relativity. It is shown, that the wave function transformation, corresponding to von Neumann's reduction, has the deterministic nature and the quantum mechanics stochasticity is a consequence of a macroscopic measurer presence in the measuring process. Besides it is demonstrated, that the decogerence phenomenon has the same mechanism of the wave function transformation. EPR-type experiment is described in detail and the possibility of the faster-then light communication is proved, as well the possible rules of thumb of this communication are proposed.
Nonlocal excitonic–mechanical interaction in a nanosystem
Energy Technology Data Exchange (ETDEWEB)
Zabolotskii, A. A., E-mail: zabolotskii@iae.nsk.su [Russian Academy of Sciences, Institute of Automatics and Electrometry, Siberian Branch (Russian Federation)
2016-11-15
The dynamics of a nanoparticle during its dipole interaction with an excitonic excitation in an extended quasi-one-dimensional polarizable medium is investigated. Bundles of J-aggregates of dye molecules are considered as an example of the latter. The nonlocal excitonic–mechanical interaction between the field of an amplifying or absorbing nanoparticle and excitons in a bundle has been simulated numerically. It has been found that the interaction between the field of the induced nanoparticle dipole and the fields of the molecular dipoles in an aggregate can lead to a change in the particle trajectory and excitonic pulse shape. The possibility of controlling the nanoparticle by excitonic pulses and the reverse effect of the nanoparticle field on the dynamics of excitons due to the nonlocal excitonic–mechanical interaction has been demonstrated.
Propagation of hypergeometric Gaussian beams in strongly nonlocal nonlinear media
Tang, Bin; Bian, Lirong; Zhou, Xin; Chen, Kai
2018-01-01
Optical vortex beams have attracted lots of interest due to its potential application in image processing, optical trapping and optical communications, etc. In this work, we theoretically and numerically investigated the propagation properties of hypergeometric Gaussian (HyGG) beams in strongly nonlocal nonlinear media. Based on the Snyder-Mitchell model, analytical expressions for propagation of the HyGG beams in strongly nonlocal nonlinear media were obtained. The influence of input power and optical parameters on the evolutions of the beam width and radius of curvature is illustrated, respectively. The results show that the beam width and radius of curvature of the HyGG beams remain invariant, like a soliton when the input power is equal to the critical power. Otherwise, it varies periodically like a breather, which is the result of competition between the beam diffraction and nonlinearity of the medium.
On a class of nonlocal wave equations from applications
Beyer, Horst Reinhard; Aksoylu, Burak; Celiker, Fatih
2016-06-01
We study equations from the area of peridynamics, which is a nonlocal extension of elasticity. The governing equations form a system of nonlocal wave equations. We take a novel approach by applying operator theory methods in a systematic way. On the unbounded domain ℝn, we present three main results. As main result 1, we find that the governing operator is a bounded function of the governing operator of classical elasticity. As main result 2, a consequence of main result 1, we prove that the peridynamic solutions strongly converge to the classical solutions by utilizing, for the first time, strong resolvent convergence. In addition, main result 1 allows us to incorporate local boundary conditions, in particular, into peridynamics. This avenue of research is developed in companion papers, providing a remedy for boundary effects. As main result 3, employing spherical Bessel functions, we give a new practical series representation of the solution which allows straightforward numerical treatment with symbolic computation.
Stability issues of black hole in non-local gravity
Myung, Yun Soo; Park, Young-Jai
2018-04-01
We discuss stability issues of Schwarzschild black hole in non-local gravity. It is shown that the stability analysis of black hole for the unitary and renormalizable non-local gravity with γ2 = - 2γ0 cannot be performed in the Lichnerowicz operator approach. On the other hand, for the unitary and non-renormalizable case with γ2 = 0, the black hole is stable against the metric perturbations. For non-unitary and renormalizable local gravity with γ2 = - 2γ0 = const (fourth-order gravity), the small black holes are unstable against the metric perturbations. This implies that what makes the problem difficult in stability analysis of black hole is the simultaneous requirement of unitarity and renormalizability around the Minkowski spacetime.
Positive solutions for nonlocal dispersal equation with spatial degeneracy
Sun, Jian-Wen
2018-02-01
In this paper, we consider the positive solutions of the nonlocal dispersal equation \\int \\limits _{Ω }J(x,y)[u(y)-u(x)]dy=-λ m(x)u(x)+[c(x)+ɛ ]u^p(x) \\quad { in }\\bar{Ω }, where Ω \\subset R^N is a bounded domain, λ ,ɛ and p>1 are positive constants. The dispersal kernel J and the coefficient c( x) are nonnegative, but c( x) has a degeneracy in some subdomain of Ω . In order to study the influence of heterogeneous environment on the nonlocal system, we study the sharp spatial patterns of positive solutions as ɛ → 0. We obtain that the positive solutions always have blow-up asymptotic profiles in \\bar{Ω }. Meanwhile, we find that the profiles in degeneracy domain are different from the domain without degeneracy.
Experimental nonlocality-based randomness generation with nonprojective measurements
Gómez, S.; Mattar, A.; Gómez, E. S.; Cavalcanti, D.; Farías, O. Jiménez; Acín, A.; Lima, G.
2018-04-01
We report on an optical setup generating more than one bit of randomness from one entangled bit (i.e., a maximally entangled state of two qubits). The amount of randomness is certified through the observation of Bell nonlocal correlations. To attain this result we implemented a high-purity entanglement source and a nonprojective three-outcome measurement. Our implementation achieves a gain of 27% of randomness as compared with the standard methods using projective measurements. Additionally, we estimate the amount of randomness certified in a one-sided device-independent scenario, through the observation of Einstein-Podolsky-Rosen steering. Our results prove that nonprojective quantum measurements allow extending the limits for nonlocality-based certified randomness generation using current technology.
Wave propagation in nanostructures nonlocal continuum mechanics formulations
Gopalakrishnan, Srinivasan
2013-01-01
Wave Propagation in Nanostructures describes the fundamental and advanced concepts of waves propagating in structures that have dimensions of the order of nanometers. The book is fundamentally based on non-local elasticity theory, which includes scale effects in the continuum model. The book predominantly addresses wave behavior in carbon nanotubes and graphene structures, although the methods of analysis provided in this text are equally applicable to other nanostructures. The book takes the reader from the fundamentals of wave propagation in nanotubes to more advanced topics such as rotating nanotubes, coupled nanotubes, and nanotubes with magnetic field and surface effects. The first few chapters cover the basics of wave propagation, different modeling schemes for nanostructures and introduce non-local elasticity theories, which form the building blocks for understanding the material provided in later chapters. A number of interesting examples are provided to illustrate the important features of wave behav...
Quantum nonlocality in two three-level systems
International Nuclear Information System (INIS)
Acin, A.; Durt, T.; Gisin, N.; Latorre, J.I.
2002-01-01
Recently a new Bell inequality has been introduced by Collins et al. [Phys. Rev. Lett. 88, 040404 (2002)], which is strongly resistant to noise for maximally entangled states of two d-dimensional quantum systems. We prove that a larger violation, or equivalently a stronger resistance to noise, is found for a nonmaximally entangled state. It is shown that the resistance to noise is not a good measure of nonlocality and we introduce some other possible measures. The nonmaximally entangled state turns out to be more robust also for these alternative measures. From these results it follows that two von Neumann measurements per party may be not optimal for detecting nonlocality. For d=3,4, we point out some connections between this inequality and distillability. Indeed, we demonstrate that any state violating it, with the optimal von Neumann settings, is distillable
Maximum nonlocality and minimum uncertainty using magic states
Howard, Mark
2015-04-01
We prove that magic states from the Clifford hierarchy give optimal solutions for tasks involving nonlocality and entropic uncertainty with respect to Pauli measurements. For both the nonlocality and uncertainty tasks, stabilizer states are the worst possible pure states, so our solutions have an operational interpretation as being highly nonstabilizer. The optimal strategy for a qudit version of the Clauser-Horne-Shimony-Holt game in prime dimensions is achieved by measuring maximally entangled states that are isomorphic to single-qudit magic states. These magic states have an appealingly simple form, and our proof shows that they are "balanced" with respect to all but one of the mutually unbiased stabilizer bases. Of all equatorial qudit states, magic states minimize the average entropic uncertainties for collision entropy and also, for small prime dimensions, min-entropy, a fact that may have implications for cryptography.
On the compatible weakly nonlocal Poisson brackets of hydrodynamic type
Directory of Open Access Journals (Sweden)
Andrei Ya. Maltsev
2002-01-01
of hydrodynamic type (Ferapontov brackets and the corresponding integrable hierarchies. We show that, under the requirement of the nondegeneracy of the corresponding first pseudo-Riemannian metric g(0 νμ and also some nondegeneracy requirement for the nonlocal part, it is possible to introduce a canonical set of integrable hierarchies based on the Casimirs, momentum functional and some canonical Hamiltonian functions. We prove also that all the higher positive Hamiltonian operators and the negative symplectic forms have the weakly nonlocal form in this case. The same result is also true for negative Hamiltonian operators and positive symplectic structures in the case when both pseudo-Riemannian metrics g(0 νμ and g(1 νμ are nondegenerate.
Non-local energy density functionals: models plus some exact general results
International Nuclear Information System (INIS)
March, N.H.
2001-02-01
Holas and March (Phys. Rev. A51, 2040, 1995) gave a formally exact expression for the force - δV xc (r-tilde)/δr-tilde associated with the exchange-correlation potential V xc (r-tilde) of density functional theory. This forged a precise link between first- and second-order density matrices and V xc (r-tilde). Here models are presented in which these low-order matrices can be related to the ground-state electron density. This allows non-local energy density functionals to be constructed within the framework of such models. Finally, results emerging from these models have led to the derivation of some exact 'nuclear cusp' relations for exchange and correlation energy densities in molecules, clusters and condensed phases. (author)
Rational solitons in the parity-time-symmetric nonlocal nonlinear Schrödinger model
International Nuclear Information System (INIS)
Li Min; Xu Tao; Meng Dexin
2016-01-01
In this paper, via the generalized Darboux transformation, rational soliton solutions are derived for the parity-time-symmetric nonlocal nonlinear Schrödinger (NLS) model with the defocusing-type nonlinearity. We find that the first-order solution can exhibit the elastic interactions of rational antidark-antidark, dark-antidark, and antidark-dark soliton pairs on a continuous wave background, but there is no phase shift for the interacting solitons. Also, we discuss the degenerate case in which only one rational dark or antidark soliton survives. Moreover, we reveal that the second-order rational solution displays the interactions between two solitons with combined-peak-valley structures in the near-field regions, but each interacting soliton vanishes or evolves into a rational dark or antidark soliton as |z| → ∞. In addition, we numerically examine the stability of the first- and second-order rational soliton solutions. (author)
Genuinely high-dimensional nonlocality optimized by complementary measurements
International Nuclear Information System (INIS)
Lim, James; Ryu, Junghee; Yoo, Seokwon; Lee, Changhyoup; Bang, Jeongho; Lee, Jinhyoung
2010-01-01
Qubits exhibit extreme nonlocality when their state is maximally entangled and this is observed by mutually unbiased local measurements. This criterion does not hold for the Bell inequalities of high-dimensional systems (qudits), recently proposed by Collins-Gisin-Linden-Massar-Popescu and Son-Lee-Kim. Taking an alternative approach, called the quantum-to-classical approach, we derive a series of Bell inequalities for qudits that satisfy the criterion as for the qubits. In the derivation each d-dimensional subsystem is assumed to be measured by one of d possible measurements with d being a prime integer. By applying to two qubits (d=2), we find that a derived inequality is reduced to the Clauser-Horne-Shimony-Holt inequality when the degree of nonlocality is optimized over all the possible states and local observables. Further applying to two and three qutrits (d=3), we find Bell inequalities that are violated for the three-dimensionally entangled states but are not violated by any two-dimensionally entangled states. In other words, the inequalities discriminate three-dimensional (3D) entanglement from two-dimensional (2D) entanglement and in this sense they are genuinely 3D. In addition, for the two qutrits we give a quantitative description of the relations among the three degrees of complementarity, entanglement and nonlocality. It is shown that the degree of complementarity jumps abruptly to very close to its maximum as nonlocality starts appearing. These characteristics imply that complementarity plays a more significant role in the present inequality compared with the previously proposed inequality.
Multiple-Trace Operators and Non-Local String Theories
International Nuclear Information System (INIS)
Silverstein, Eva M.
2001-01-01
We propose that a novel deformation of string perturbation theory, involving non-local interactions between strings, is required to describe the gravity duals of field theories deformed by multiple-trace operators. The new perturbative expansion involves a new parameter, which is neither the string coupling nor the coefficient of a vertex operator on the worldsheet. We explore some of the properties of this deformation, focusing on a special case where the deformation in the field theory is exactly marginal
Ground state solutions for non-local fractional Schrodinger equations
Directory of Open Access Journals (Sweden)
Yang Pu
2015-08-01
Full Text Available In this article, we study a time-independent fractional Schrodinger equation with non-local (regional diffusion $$ (-\\Delta^{\\alpha}_{\\rho}u + V(xu = f(x,u \\quad \\text{in }\\mathbb{R}^{N}, $$ where $\\alpha \\in (0,1$, $N > 2\\alpha$. We establish the existence of a non-negative ground state solution by variational methods.
Detecting nonlocal Cooper pair entanglement by optical Bell inequality violation
Nigg, Simon E.; Tiwari, Rakesh P.; Walter, Stefan; Schmidt, Thomas L.
2014-01-01
Based on the Bardeen Cooper Schrieffer (BCS) theory of superconductivity, the coherent splitting of Cooper pairs from a superconductor to two spatially separated quantum dots has been predicted to generate nonlocal pairs of entangled electrons. In order to test this hypothesis, we propose a scheme to transfer the spin state of a split Cooper pair onto the polarization state of a pair of optical photons. We show that the produced photon pairs can be used to violate a Bell inequality, unambiguo...
Stable solutions of nonlocal electron heat transport equations
International Nuclear Information System (INIS)
Prasad, M.K.; Kershaw, D.S.
1991-01-01
Electron heat transport equations with a nonlocal heat flux are in general ill-posed and intrinsically unstable, as proved by the present authors [Phys. Fluids B 1, 2430 (1989)]. A straightforward numerical solution of these equations will therefore lead to absurd results. It is shown here that by imposing a minimal set of constraints on the problem it is possible to arrive at a globally stable, consistent, and energy conserving numerical solution
Non-local deformation of a supersymmetric field theory
Energy Technology Data Exchange (ETDEWEB)
Zhao, Qin [National University of Singapore, Department of Physics, Singapore (Singapore); Faizal, Mir [University of Lethbridge, Department of Physics and Astronomy, Lethbridge (Canada); University of British Columbia - Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); Shah, Mushtaq B.; Ganai, Prince A. [National Institute of Technology, Department of Physics, Srinagar, Kashmir (India); Bhat, Anha [National Institute of Technology, Department of Metallurgical and Materials Engineering, Srinagar (India); Zaz, Zaid [University of Kashmir, Department of Electronics and Communication Engineering, Srinagar, Kashmir (India); Masood, Syed; Raza, Jamil; Irfan, Raja Muhammad [International Islamic University, Department of Physics, Islamabad (Pakistan)
2017-09-15
In this paper, we will analyze a supersymmetric field theory deformed by generalized uncertainty principle and Lifshitz scaling. It will be observed that this deformed supersymmetric field theory contains non-local fractional derivative terms. In order to construct such a deformed N = 1 supersymmetric theory, a harmonic extension of functions will be used. However, the supersymmetry will only be preserved for a free theory and will be broken by the inclusion of interaction terms. (orig.)
Optimal Robust Self-Testing by Binary Nonlocal XOR Games
Miller, Carl A.; Shi, Yaoyun
2013-01-01
Self-testing a quantum apparatus means verifying the existence of a certain quantum state as well as the effect of the associated measuring devices based only on the statistics of the measurement outcomes. Robust (i.e., error-tolerant) self-testing quantum apparatuses are critical building blocks for quantum cryptographic protocols that rely on imperfect or untrusted devices. We devise a general scheme for proving optimal robust self-testing properties for tests based on nonlocal binary XOR g...
Extraordinary optical transmission through nonlocal holey metal films
DEFF Research Database (Denmark)
David, Christin; Christensen, Johan
2017-01-01
We investigate nonlocal electrodynamics based on the generalized hydrodynamic approach including electron diffusion in holey gold films, showing extraordinary optical transmission (EOT). Dramatic changes with respect to the local approximation for rather large film thicknesses t less than...... or similar to 100 nm impact both reflectance and absorbance at normal incidence. Beyond the familiar resonance blueshift with the decreasing film thickness, the interference of longitudinal pressure waves in the holey structure generates an unexpected oscillatory response with geometrical parameters...
Non-local gravity with a Weyl-square term
Cusin, Giulia; Maggiore, Michele; Mancarella, Michele
2016-01-01
Recent work has shown that modifications of General Relativity based on the addition of a non-local term $R\\,\\Box^{-2}R$ produce a dynamical model of dark energy, which is cosmologically viable both at the background level and at the level of cosmological perturbations. We explore a more general class of models based on the addition of terms proportional to $R_{\\mu\
Nonlinear degenerate cross-diffusion systems with nonlocal interaction
Di Francesco, M.; Esposito, A.; Fagioli, S.
2017-01-01
We investigate a class of systems of partial differential equations with nonlinear cross-diffusion and nonlocal interactions, which are of interest in several contexts in social sciences, finance, biology, and real world applications. Assuming a uniform "coerciveness" assumption on the diffusion part, which allows to consider a large class of systems with degenerate cross-diffusion (i.e. of porous medium type) and relaxes sets of assumptions previously considered in the literature, we prove g...
Nonlocal Regularized Algebraic Reconstruction Techniques for MRI: An Experimental Study
Directory of Open Access Journals (Sweden)
Xin Li
2013-01-01
Full Text Available We attempt to revitalize researchers' interest in algebraic reconstruction techniques (ART by expanding their capabilities and demonstrating their potential in speeding up the process of MRI acquisition. Using a continuous-to-discrete model, we experimentally study the application of ART into MRI reconstruction which unifies previous nonuniform-fast-Fourier-transform- (NUFFT- based and gridding-based approaches. Under the framework of ART, we advocate the use of nonlocal regularization techniques which are leveraged from our previous research on modeling photographic images. It is experimentally shown that nonlocal regularization ART (NR-ART can often outperform their local counterparts in terms of both subjective and objective qualities of reconstructed images. On one real-world k-space data set, we find that nonlocal regularization can achieve satisfactory reconstruction from as few as one-third of samples. We also address an issue related to image reconstruction from real-world k-space data but overlooked in the open literature: the consistency of reconstructed images across different resolutions. A resolution-consistent extension of NR-ART is developed and shown to effectively suppress the artifacts arising from frequency extrapolation. Both source codes and experimental results of this work are made fully reproducible.
Extending Newton's law from nonlocal-in-time kinetic energy
International Nuclear Information System (INIS)
Suykens, J.A.K.
2009-01-01
We study a new equation of motion derived from a context of classical Newtonian mechanics by replacing the kinetic energy with a form of nonlocal-in-time kinetic energy. It leads to a hypothetical extension of Newton's second law of motion. In a first stage the obtainable solution form is studied by considering an unknown value for the nonlocality time extent. This is done in relation to higher-order Euler-Lagrange equations and a Hamiltonian framework. In a second stage the free particle case and harmonic oscillator case are studied and compared with quantum mechanical results. For a free particle it is shown that the solution form is a superposition of the classical straight line motion and a Fourier series. We discuss the link with quanta interpretations made in Pais-Uhlenbeck oscillators. The discrete nature emerges from the continuous time setting through application of the least action principle. The harmonic oscillator case leads to energy levels that approximately correspond to the quantum harmonic oscillator levels. The solution to the extended Newton equation also admits a quantization of the nonlocality time extent, which is determined by the classical oscillator frequency. The extended equation suggests a new possible way for understanding the relationship between classical and quantum mechanics
Image fusion via nonlocal sparse K-SVD dictionary learning.
Li, Ying; Li, Fangyi; Bai, Bendu; Shen, Qiang
2016-03-01
Image fusion aims to merge two or more images captured via various sensors of the same scene to construct a more informative image by integrating their details. Generally, such integration is achieved through the manipulation of the representations of the images concerned. Sparse representation plays an important role in the effective description of images, offering a great potential in a variety of image processing tasks, including image fusion. Supported by sparse representation, in this paper, an approach for image fusion by the use of a novel dictionary learning scheme is proposed. The nonlocal self-similarity property of the images is exploited, not only at the stage of learning the underlying description dictionary but during the process of image fusion. In particular, the property of nonlocal self-similarity is combined with the traditional sparse dictionary. This results in an improved learned dictionary, hereafter referred to as the nonlocal sparse K-SVD dictionary (where K-SVD stands for the K times singular value decomposition that is commonly used in the literature), and abbreviated to NL_SK_SVD. The performance of the NL_SK_SVD dictionary is applied for image fusion using simultaneous orthogonal matching pursuit. The proposed approach is evaluated with different types of images, and compared with a number of alternative image fusion techniques. The resultant superior fused images using the present approach demonstrates the efficacy of the NL_SK_SVD dictionary in sparse image representation.
Multiscale Hybrid Nonlocal Means Filtering Using Modified Similarity Measure
Directory of Open Access Journals (Sweden)
Zahid Hussain Shamsi
2015-01-01
Full Text Available A new multiscale implementation of nonlocal means filtering (MHNLM for image denoising is proposed. The proposed algorithm also introduces a modification of the similarity measure for patch comparison. Assuming the patch as an oriented surface, the notion of a normal vectors patch is introduced. The inner product of these normal vectors patches is defined and then used in the weighted Euclidean distance of intensity patches as the weight factor. The algorithm involves two steps: the first step is a multiscale implementation of an accelerated nonlocal means filtering in the discrete stationary wavelet domain to obtain a refined version of the noisy patches for later comparison. The next step is to apply the proposed modification of standard nonlocal means filtering to the noisy image using the reference patches obtained in the first step. These refined patches contain less noise, and consequently the computation of normal vectors and partial derivatives is more precise. Experimental results show equivalent or better performance of the proposed algorithm compared to various state-of-the-art algorithms.
Nonlocal neoclassical transport in tokamak and spherical torus experiments
International Nuclear Information System (INIS)
Wang, W. X.; Rewoldt, G.; Tang, W. M.; Hinton, F. L.; Manickam, J.; Zakharov, L. E.; White, R. B.; Kaye, S.
2006-01-01
Large ion orbits can produce nonlocal neoclassical effects on ion heat transport, the ambipolar radial electric field, and the bootstrap current in realistic toroidal plasmas. Using a global δf particle simulation, it is found that the conventional local, linear gradient-flux relation is broken for the ion thermal transport near the magnetic axis. With regard to the transport level, it is found that details of the ion temperature profile determine whether the transport is higher or lower when compared with the predictions of standard neoclassical theory. Particularly, this nonlocal feature is suggested to exist in the National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, Y.-K. M. Peng et al., Nucl. Fusion 40, 557 (2000)], being consistent with NSTX experimental evidence. It is also shown that a large ion temperature gradient can increase the bootstrap current. When the plasma rotation is taken into account, the toroidal rotation gradient can drive an additional parallel flow for the ions and then additional bootstrap current, either positive or negative, depending on the gradient direction. Compared with the carbon radial force balance estimate for the neoclassical poloidal flow, our nonlocal simulation predicts a significantly deeper radial electric field well at the location of an internal transport barrier of an NSTX discharge
Comparative Assessment of Nonlocal Continuum Solvent Models Exhibiting Overscreening
Directory of Open Access Journals (Sweden)
Ren Baihua
2017-01-01
Full Text Available Nonlocal continua have been proposed to offer a more realistic model for the electrostatic response of solutions such as the electrolyte solvents prominent in biology and electrochemistry. In this work, we review three nonlocal models based on the Landau-Ginzburg framework which have been proposed but not directly compared previously, due to different expressions of the nonlocal constitutive relationship. To understand the relationships between these models and the underlying physical insights from which they are derive, we situate these models into a single, unified Landau-Ginzburg framework. One of the models offers the capacity to interpret how temperature changes affect dielectric response, and we note that the variations with temperature are qualitatively reasonable even though predictions at ambient temperatures are not quantitatively in agreement with experiment. Two of these models correctly reproduce overscreening (oscillations between positive and negative polarization charge densities, and we observe small differences between them when we simulate the potential between parallel plates held at constant potential. These computations require reformulating the two models as coupled systems of local partial differential equations (PDEs, and we use spectral methods to discretize both problems. We propose further assessments to discriminate between the models, particularly in regards to establishing boundary conditions and comparing to explicit-solvent molecular dynamics simulations.
Subquantum nonlocal correlations induced by the background random field
Energy Technology Data Exchange (ETDEWEB)
Khrennikov, Andrei, E-mail: Andrei.Khrennikov@lnu.s [International Center for Mathematical Modelling in Physics and Cognitive Sciences, Linnaeus University, Vaexjoe (Sweden); Institute of Information Security, Russian State University for Humanities, Moscow (Russian Federation)
2011-10-15
We developed a purely field model of microphenomena-prequantum classical statistical field theory (PCSFT). This model not only reproduces important probabilistic predictions of quantum mechanics (QM) including correlations for entangled systems, but also gives a possibility to go beyond QM, i.e. to make predictions of phenomena that could be observed at the subquantum level. In this paper, we discuss one such prediction-the existence of nonlocal correlations between prequantum random fields corresponding to all quantum systems. (And by PCSFT, quantum systems are represented by classical Gaussian random fields and quantum observables by quadratic forms of these fields.) The source of these correlations is the common background field. Thus all prequantum random fields are 'entangled', but in the sense of classical signal theory. On the one hand, PCSFT demystifies quantum nonlocality by reducing it to nonlocal classical correlations based on the common random background. On the other hand, it demonstrates total generality of such correlations. They exist even for distinguishable quantum systems in factorizable states (by PCSFT terminology-for Gaussian random fields with covariance operators corresponding to factorizable quantum states).
Subquantum nonlocal correlations induced by the background random field
International Nuclear Information System (INIS)
Khrennikov, Andrei
2011-01-01
We developed a purely field model of microphenomena-prequantum classical statistical field theory (PCSFT). This model not only reproduces important probabilistic predictions of quantum mechanics (QM) including correlations for entangled systems, but also gives a possibility to go beyond QM, i.e. to make predictions of phenomena that could be observed at the subquantum level. In this paper, we discuss one such prediction-the existence of nonlocal correlations between prequantum random fields corresponding to all quantum systems. (And by PCSFT, quantum systems are represented by classical Gaussian random fields and quantum observables by quadratic forms of these fields.) The source of these correlations is the common background field. Thus all prequantum random fields are 'entangled', but in the sense of classical signal theory. On the one hand, PCSFT demystifies quantum nonlocality by reducing it to nonlocal classical correlations based on the common random background. On the other hand, it demonstrates total generality of such correlations. They exist even for distinguishable quantum systems in factorizable states (by PCSFT terminology-for Gaussian random fields with covariance operators corresponding to factorizable quantum states).
Nonlocal Reformulations of Water and Internal Waves and Asymptotic Reductions
Ablowitz, Mark J.
2009-09-01
Nonlocal reformulations of the classical equations of water waves and two ideal fluids separated by a free interface, bounded above by either a rigid lid or a free surface, are obtained. The kinematic equations may be written in terms of integral equations with a free parameter. By expressing the pressure, or Bernoulli, equation in terms of the surface/interface variables, a closed system is obtained. An advantage of this formulation, referred to as the nonlocal spectral (NSP) formulation, is that the vertical component is eliminated, thus reducing the dimensionality and fixing the domain in which the equations are posed. The NSP equations and the Dirichlet-Neumann operators associated with the water wave or two-fluid equations can be related to each other and the Dirichlet-Neumann series can be obtained from the NSP equations. Important asymptotic reductions obtained from the two-fluid nonlocal system include the generalizations of the Benney-Luke and Kadomtsev-Petviashvili (KP) equations, referred to as intermediate-long wave (ILW) generalizations. These 2+1 dimensional equations possess lump type solutions. In the water wave problem high-order asymptotic series are obtained for two and three dimensional gravity-capillary solitary waves. In two dimensions, the first term in the asymptotic series is the well-known hyperbolic secant squared solution of the KdV equation; in three dimensions, the first term is the rational lump solution of the KP equation.
Conformal symmetry and nonlinear extensions of nonlocal gravity
Cusin, Giulia; Maggiore, Michele; Mancarella, Michele
2016-01-01
We study two nonlinear extensions of the nonlocal $R\\,\\Box^{-2}R$ gravity theory. We extend this theory in two different ways suggested by conformal symmetry, either replacing $\\Box^{-2}$ with $(-\\Box + R/6)^{-2}$, which is the operator that enters the action for a conformally-coupled scalar field, or replacing $\\Box^{-2}$ with the inverse of the Paneitz operator, which is a four-derivative operator that enters in the effective action induced by the conformal anomaly. We show that the former modification gives an interesting and viable cosmological model, with a dark energy equation of state today $w_{\\rm DE}\\simeq -1.01$, which very closely mimics $\\Lambda$CDM and evolves asymptotically into a de Sitter solution. The model based on the Paneitz operator seems instead excluded by the comparison with observations. We also review some issues about the causality of nonlocal theories, and we point out that these nonlocal models can be modified so to nicely interpolate between Starobinski inflation in the primordia...
Dissipation and nonlocality in a general expanding braneworld universe
International Nuclear Information System (INIS)
Remazeilles, Mathieu
2009-01-01
We study the evolution of both scalar and tensor cosmological perturbations in a Randall-Sundrum braneworld having an arbitrary expansion history. We adopt a four dimensional point of view where the degrees of freedom on the brane constitute an open quantum system coupled to an environment composed of the bulk gravitons. Because of the expansion of the universe, the brane degrees of freedom and the bulk degrees of freedom interact as they propagate forward in time. Brane excitations may decay through the emission of bulk gravitons which may escape to future infinity, leading to a sort of dissipation from the four dimensional point of view of an observer on the brane. Bulk gravitons may also be reflected off of the curved bulk and reabsorbed by the brane, thereby transformed into quanta on the brane, leading to a sort of nonlocality from the four dimensional point of view. The dissipation and the nonlocality are encoded into the retarded bulk propagator. We estimate the dissipation rates of the bound state as well as of the matter degrees of freedom at different cosmological epochs and for different sources of matter on the brane. We use a near-brane limit of the bulk geometry for the study when purely nonlocal bulk effects are encountered.
Qiao, Lei; Rimoli, Julian J; Chen, Ying; Schuh, Christopher A; Radovitzky, Raul
2011-02-25
We propose a nonlocal continuum model to describe the size-dependent superelastic effect observed in recent experiments of single crystal Cu-Al-Ni shape memory alloys. The model introduces two length scales, one in the free energy and one in the dissipation, which account for the size-dependent hardening and dissipation in the loading and unloading response of micro- and nanopillars subject to compression tests. The information provided by the model suggests that the size dependence observed in the dissipation is likely to be associated with a nonuniform evolution of the distribution of the austenitic and martensitic phases during the loading cycle. © 2011 American Physical Society
International Nuclear Information System (INIS)
Shi, Zhiwei; Li, Huagang; Guo, Qi
2012-01-01
We address multipole surface solitons occurring at the interface between a linear medium and a nonlocal nonlinear medium. We show the impact of nonlocality, the propagation constant, and the linear index difference of two media on the properties of the surface solitons. We find that there exist a threshold value of the degree of the nonlocality at the same linear index difference of two media, only when the degree of the nonlocality goes beyond the value, the multipole surface solitons can be stable. -- Highlights: ► We show the impact of nonlocality and the linear index difference of two media on the properties of the surface solitons. ► For the surface solitons, only when the degree of the nonlocality goes beyond a threshold value, they can be stable. ► The number of poles and the index difference of two media can all influence the threshold value.
Experimental Greenberger-Horne-Zeilinger-Type Six-Photon Quantum Nonlocality.
Zhang, Chao; Huang, Yun-Feng; Wang, Zhao; Liu, Bi-Heng; Li, Chuan-Feng; Guo, Guang-Can
2015-12-31
Quantum nonlocality gives us deeper insight into quantum physics. In addition, quantum nonlocality has been further recognized as an essential resource for device-independent quantum information processing in recent years. Most experiments of nonlocality are performed using a photonic system. However, until now, photonic experiments of nonlocality have involved at most four photons. Here, for the first time, we experimentally demonstrate the six-photon quantum nonlocality in an all-versus-nothing manner based on a high-fidelity (88.4%) six-photon Greenberger-Horne-Zeilinger state. Our experiment pushes multiphoton nonlocality studies forward to the six-photon region and might provide a larger photonic system for device-independent quantum information protocols.
A Morphing framework to couple non-local and local anisotropic continua
Azdoud, Yan
2013-05-01
In this article, we develop a method to couple anisotropic local continua with anisotropic non-local continua with central long-range forces. First, we describe anisotropic non-local models based on spherical harmonic descriptions. We then derive compatible classic continuum models. Finally, we apply the morphing method to these anisotropic non-local models and present three-dimensional numerical examples to validate the efficiency of the technique. © 2013 Elsevier Ltd. All rights reserved.
How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems
Cortazar, C.; Elgueta, M.; Rossi, J. D.; Wolanski, N.
2006-01-01
We present a model for nonlocal diffusion with Neumann boundary conditions in a bounded smooth domain prescribing the flux through the boundary. We study the limit of this family of nonlocal diffusion operators when a rescaling parameter related to the kernel of the nonlocal operator goes to zero. We prove that the solutions of this family of problems converge to a solution of the heat equation with Neumann boundary conditions.
Exact solutions of fractional Schroedinger-like equation with a nonlocal term
International Nuclear Information System (INIS)
Jiang Xiaoyun; Xu Mingyu; Qi Haitao
2011-01-01
We study the time-space fractional Schroedinger equation with a nonlocal potential. By the method of Fourier transform and Laplace transform, the Green function, and hence the wave function, is expressed in terms of H-functions. Graphical analysis demonstrates that the influence of both the space-fractal parameter α and the nonlocal parameter ν on the fractional quantum system is strong. Indeed, the nonlocal potential may act similar to a fractional spatial derivative as well as fractional time derivative.
Nonlocal symmetry generators and explicit solutions of some partial differential equations
International Nuclear Information System (INIS)
Qin Maochang
2007-01-01
The nonlocal symmetry of a partial differential equation is studied in this paper. The partial differential equation written as a conservation law can be transformed into an equivalent system by introducing a suitable potential. The nonlocal symmetry group generators of original partial differential equations can be obtained through their equivalent system. Further, new explicit solutions can be constructed from the newly obtained symmetry generators. The Burgers equation is chosen as an example; many new valuable explicit solutions and nonlocal symmetry generators are presented
The Havriliak-Negami susceptibility as a nonlinear and nonlocal process
International Nuclear Information System (INIS)
Miskinis, Paulius
2009-01-01
A theoretical substantiation of the Cole-Cole, Cole-Davidson and Havriliak-Negami types of susceptibilities is presented. These types of susceptibility are shown to be a manifestation of weak nonlocality and nonlinearity. The Debye susceptibility corresponds to linear and local relaxation, the Cole-Cole susceptibility being linear and nonlocal; the Cole-Davidson susceptibility is nonlinear and local and the Havriliak-Negami susceptibility corresponds to nonlinear and nonlocal relaxation.
Branciard, Cyril; Gisin, Nicolas
2011-07-08
The simulation of quantum correlations with finite nonlocal resources, such as classical communication, gives a natural way to quantify their nonlocality. While multipartite nonlocal correlations appear to be useful resources, very little is known on how to simulate multipartite quantum correlations. We present a protocol that reproduces tripartite Greenberger-Horne-Zeilinger correlations with bounded communication: 3 bits in total turn out to be sufficient to simulate all equatorial Von Neumann measurements on the tripartite Greenberger-Horne-Zeilinger state.
A space-jump derivation for non-local models of cell-cell adhesion and non-local chemotaxis.
Buttenschön, Andreas; Hillen, Thomas; Gerisch, Alf; Painter, Kevin J
2018-01-01
Cellular adhesion provides one of the fundamental forms of biological interaction between cells and their surroundings, yet the continuum modelling of cellular adhesion has remained mathematically challenging. In 2006, Armstrong et al. proposed a mathematical model in the form of an integro-partial differential equation. Although successful in applications, a derivation from an underlying stochastic random walk has remained elusive. In this work we develop a framework by which non-local models can be derived from a space-jump process. We show how the notions of motility and a cell polarization vector can be naturally included. With this derivation we are able to include microscopic biological properties into the model. We show that particular choices yield the original Armstrong model, while others lead to more general models, including a doubly non-local adhesion model and non-local chemotaxis models. Finally, we use random walk simulations to confirm that the corresponding continuum model represents the mean field behaviour of the stochastic random walk.
Non-local currents in 2D QFT: an alternative To - the quantum inverse scattering method
International Nuclear Information System (INIS)
Bernard, D.; Leclair, A.; Cornell Univ., Ithaca, NY
1990-01-01
The formalism based on non-local charges that we propose provides an alternative to the quantum inverse scattering method for solving integrable quantum field theories in 2D. The content of the paper is: 1. Introduction: historical background. 2. The NLC approach to 2D QFT: a summary. 3 Exchange algebras and on-shell conservation laws: why non-local charges are useful. 4. The lattice construction: the geometrical origin of non-local conserved currents. 5. The continuum construction: how to deal with non-local conserved currents. 6. Examples: Yangian and quantum group currents. 7 Conclusions: open problems. 22 refs., 4 figs
Van der Waals phase transition in the framework of holography
International Nuclear Information System (INIS)
Zeng, Xiao-Xiong; Li, Li-Fang
2017-01-01
Phase structure of the quintessence Reissner–Nordström–AdS black hole is probed by the nonlocal observables such as holographic entanglement entropy and two point correlation function. Our result shows that, as the case of the thermal entropy, both the observables exhibit the Van der Waals-like phase transition. To reinforce this conclusion, we further check the equal area law for the first order phase transition and critical exponent of the heat capacity for the second order phase transition. We also discuss the effect of the state parameter on the phase structure of the nonlocal observables.
Van der Waals phase transition in the framework of holography
Energy Technology Data Exchange (ETDEWEB)
Zeng, Xiao-Xiong, E-mail: xxzeng@itp.ac.cn [State School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing 400074 (China); Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Li-Fang, E-mail: lilf@itp.ac.cn [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)
2017-01-10
Phase structure of the quintessence Reissner–Nordström–AdS black hole is probed by the nonlocal observables such as holographic entanglement entropy and two point correlation function. Our result shows that, as the case of the thermal entropy, both the observables exhibit the Van der Waals-like phase transition. To reinforce this conclusion, we further check the equal area law for the first order phase transition and critical exponent of the heat capacity for the second order phase transition. We also discuss the effect of the state parameter on the phase structure of the nonlocal observables.
Van der Waals phase transition in the framework of holography
Directory of Open Access Journals (Sweden)
Xiao-Xiong Zeng
2017-01-01
Full Text Available Phase structure of the quintessence Reissner–Nordström–AdS black hole is probed by the nonlocal observables such as holographic entanglement entropy and two point correlation function. Our result shows that, as the case of the thermal entropy, both the observables exhibit the Van der Waals-like phase transition. To reinforce this conclusion, we further check the equal area law for the first order phase transition and critical exponent of the heat capacity for the second order phase transition. We also discuss the effect of the state parameter on the phase structure of the nonlocal observables.
Energy Technology Data Exchange (ETDEWEB)
Luis, Alfredo [Departamento de Optica, Facultad de Ciencias Fisicas, Universidad Complutense, 28040 Madrid (Spain)
2003-01-10
In a recent paper in this journal Fan (Fan H 2002 J. Phys. A: Math. Gen.35 1007) discards the possibility of using a genuine phase-difference operator to investigate number-phase entanglement because of the lack of unitarity of the Susskind-Glogower phase operators. However, Fan overlooked the existence of a bona fide unitary operator exponential of the phase difference. Here we find the amplitude-phase maximally entangled states as the simultaneous eigenstates of the total number and the phase-difference operators. (comment)
Luis, A
2003-01-01
In a recent paper in this journal Fan (Fan H 2002 J. Phys. A: Math. Gen.35 1007) discards the possibility of using a genuine phase-difference operator to investigate number-phase entanglement because of the lack of unitarity of the Susskind-Glogower phase operators. However, Fan overlooked the existence of a bona fide unitary operator exponential of the phase difference. Here we find the amplitude-phase maximally entangled states as the simultaneous eigenstates of the total number and the phase-difference operators. (comment)
Bardhan, Jaydeep P
2011-09-14
We study the energetics of burying charges, ion pairs, and ionizable groups in a simple protein model using nonlocal continuum electrostatics. Our primary finding is that the nonlocal response leads to markedly reduced solvent screening, comparable to the use of application-specific protein dielectric constants. Employing the same parameters as used in other nonlocal studies, we find that for a sphere of radius 13.4 Å containing a single +1e charge, the nonlocal solvation free energy varies less than 18 kcal/mol as the charge moves from the surface to the center, whereas the difference in the local Poisson model is ∼35 kcal/mol. Because an ion pair (salt bridge) generates a comparatively more rapidly varying Coulomb potential, energetics for salt bridges are even more significantly reduced in the nonlocal model. By varying the central parameter in nonlocal theory, which is an effective length scale associated with correlations between solvent molecules, nonlocal-model energetics can be varied from the standard local results to essentially zero; however, the existence of the reduction in charge-burial penalties is quite robust to variations in the protein dielectric constant and the correlation length. Finally, as a simple exploratory test of the implications of nonlocal response, we calculate glutamate pK(a) shifts and find that using standard protein parameters (ε(protein) = 2-4), nonlocal results match local-model predictions with much higher dielectric constants. Nonlocality may, therefore, be one factor in resolving discrepancies between measured protein dielectric constants and the model parameters often used to match titration experiments. Nonlocal models may hold significant promise to deepen our understanding of macromolecular electrostatics without substantially increasing computational complexity. © 2011 American Institute of Physics
Detecting nonlocal Cooper pair entanglement by optical Bell inequality violation
Energy Technology Data Exchange (ETDEWEB)
Nigg, Simon E.; Tiwari, Rakesh P.; Walter, Stefan; Schmidt, Thomas L. [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland)
2015-07-01
Based on the Bardeen Cooper Schrieffer (BCS) theory of superconductivity, the coherent splitting of Cooper pairs from a superconductor to two spatially separated quantum dots has been predicted to generate nonlocal pairs of entangled electrons. In order to test this hypothesis, we propose a scheme to transfer the spin state of a split Cooper pair onto the polarization state of a pair of optical photons. We show that the produced photon pairs can be used to violate a Bell inequality, unambiguously demonstrating the entanglement of the split Cooper pairs.
Nonlocal nature of the resistance in classical ballistic transport
International Nuclear Information System (INIS)
Sukhorukov, E.V.; Levinson, I.B.
1990-01-01
An investigation is made of the resistance of ballistic microstructures formed in the two-dimensional electron gas of a GaAs/AlGaAs heterojunction representing combinations of long channels. It is shown that the nonlocal nature of the resistance (dependence on the measurement method) is unrelated to the quantum nature of the electron behavior, but is solely due to the ballistic nature of microstructures and does not disappear in the classical limit. An analog of the Landauer equation is obtained for the resistance measured by the four-probe method allowing for the geometry of the measuring probes
Plasmon-enhanced fluorescence near nonlocal metallic nanospheres
DEFF Research Database (Denmark)
Tserkezis, Christos; Stefanou, N.; Wubs, Martijn
Spontaneous emission and fluorescence of organic molecules are known to strongly depend on the local electromagnetic environment. Plasmonic nanoparticles are widely explored as templates for controlling light-matter interactions, and can be tailored to optimize the fluorescence rate (Ȗem......) and the generalized nonlocal optical response (GNOR) theory [2] shows that a significant decrease in fluorescence enhancement is obtained for emitters close to small metallic nanospheres or thin metallic nanoshells, while the optimum emitter position is also affected. In this respect, our recent work introduces...
Nonlocal quantum field theory and stochastic quantum mechanics
International Nuclear Information System (INIS)
Namsrai, K.
1986-01-01
This volume presents a systematic development of the implications to both quantum mechanics and quantum field theory of the hypothesis of a stochastic structure of space-time. Some applications to elementary particle physics are also considered. Part 1 is concerned with nonlocal quantum field theory and, among other topics, deals with quantized fields, electromagnetic and weak processes, the Schroedinger equation, and functional methods and their applications. Part 2 presents an introduction to stochastic mechanics and many specific problems of interest are discussed. (Auth.)
Media psychology: Modern man and nonlocality of psyche.
Directory of Open Access Journals (Sweden)
Pronina E.E.
2014-12-01
Full Text Available The development of modern information technologies is causing changes in the structure of the human psyche, bringing about a new psychotype. The transition to a new level of evolution is accompanied by the growing manifestation of the psyche’s ontological features — nonlocality and self-determination. From a sample of more than 300 people, it was demonstrated that active Internet users are significantly different in a number of parameters from those who mostly use traditional media. This article examines the resources of media psychology as a new paradigm in the study of mass communication phenomena and the laws of the development of psyche.
Rhetoric, logic, and experiment in the quantum nonlocality debate
Directory of Open Access Journals (Sweden)
Graft Donald A.
2017-09-01
Full Text Available This paper argues that quantum nonlocality (QNL has not been rigorously proven, despite the existence of recent Einstein-Podolsky-Rosen-Bohm (EPRB experiments that are claimed to be ‘loophole-free’. First, readers are alerted to rhetorical arguments, which are unfortunately often appealed to in the QNL debate, to empower readers to identify and reject such arguments. Second, logical problems in QNL proofs are described and exemplified by a discussion of the projection postulate problem. Third, experimental issues are described and exemplified by a discussion of the postselection problem. The paper concludes that QNL has not been proven and that locality cannot be excluded.
(Non)perturbative gravity, nonlocality, and nice slices
International Nuclear Information System (INIS)
Giddings, Steven B.
2006-01-01
Perturbative dynamics of gravity is investigated for high-energy scattering and in black hole backgrounds. In the latter case, a straightforward perturbative analysis fails, in a close parallel to the failure of the former when the impact parameter reaches the Schwarzschild radius. This suggests a flaw in a semiclassical description of physics on spatial slices that intersect both outgoing Hawking radiation and matter that has carried information into a black hole; such slices are instrumental in a general argument for black hole information loss. This indicates a possible role for the proposal that nonperturbative gravitational physics is intrinsically nonlocal
Role of nonlocal exchange correlation in activated adsorption
DEFF Research Database (Denmark)
Hammer, Bjørk; Jacobsen, Karsten Wedel; Nørskov, Jens Kehlet
1993-01-01
The barrier for dissociative adsorption of H-2 on Al(110) has been calculated within the generalized gradient approximation. A pronounced increase of the barrier height is found compared with what is calculated in the local density approximation (LDA). The apparent LDA underestimation...... of the barrier height is shown to be intimately linked with the LDA underbinding of core electrons and we suggest it to be a general phenomenon not limited to the particular nonlocal exchange-correlation approximation used or the particular system studied....
Nonlocal plasticity effects on interaction of different size voids
DEFF Research Database (Denmark)
Tvergaard, Viggo; Niordson, Christian Frithiof
2004-01-01
A nonlocal elastic-plastic material model is used to show that the rate of void growth is significantly reduced when the voids are small enough to be comparable with a characteristic material length. For a very small void in the material between much larger voids the competition between...... dimensional array of spherical voids. It is shown that the high growth rate of very small voids predicted by conventional plasticity theory is not realistic when the effect of a characteristic length, dependent on the dislocation structure, is accounted for. (C) 2003 Elsevier Ltd. All rights reserved....
Detecting nonlocal Cooper pair entanglement by optical Bell inequality violation
Nigg, Simon E.; Tiwari, Rakesh P.; Walter, Stefan; Schmidt, Thomas L.
2015-03-01
Based on the Bardeen-Cooper-Schrieffer theory of superconductivity, the coherent splitting of Cooper pairs from a superconductor to two spatially separated quantum dots has been predicted to generate nonlocal pairs of entangled electrons. In order to test this hypothesis, we propose a scheme to transfer the spin state of a split Cooper pair onto the polarization state of a pair of optical photons. We show that the photon pairs produced can be used to violate a Bell inequality, unambiguously demonstrating the entanglement of the split Cooper pairs.
Generic features of modulational instability in nonlocal Kerr media
DEFF Research Database (Denmark)
Wyller, John; Krolikowski, Wieslaw; Bang, Ole
2002-01-01
the nonlocality tends to suppress MI, but can never remove it completely, irrespectively of the shape of the response function. For a defocusing nonlinearity the stability properties depend sensitively on the profile of the response function. For response functions with a positive-definite spectrum......, such as Gaussians and exponentials, plane waves are always stable, whereas response functions with spectra that are not positive definite (such as the rectangular) will lead to MI if sigma exceeds a certain threshold. For the square response function, in both the focusing and defocusing case, we show analytically...
Towards a test of non-locality without 'supplementary assumptions'
International Nuclear Information System (INIS)
Barbieri, M.; De Martini, F.; Di Nepi, G.; Mataloni, P.
2005-01-01
We have experimentally tested the non-local properties of the two-photon states generated by a high brilliance source of entanglement which virtually allows the direct measurement of the full set of photon pairs created by the basic QED process implied by the parametric quantum scattering. Standard Bell measurements and Bell's inequality violation test have been realized over the entire cone of emission of the degenerate pairs. By the same source we have verified Hardy's ladder theory up to the 20th step and the contradiction between the standard quantum theory and the local realism has been tested for 41% of entangled pairs
Testing Hardy's nonlocality proof with genuine energy-time entanglement
International Nuclear Information System (INIS)
Vallone, Giuseppe; Gianani, Ilaria; Inostroza, Enrique B.; Saavedra, Carlos; Lima, Gustavo; Cabello, Adan; Mataloni, Paolo
2011-01-01
We show two experimental realizations of Hardy's ladder test of quantum nonlocality using energy-time correlated photons, following the scheme proposed by Cabello et al.[Phys. Rev. Lett. 102, 040401 (2009)]. Unlike previous energy-time Bell experiments, these tests require precisely tailored nonmaximally entangled states. One of them is equivalent to the two-setting and two-outcome Bell test requiring a minimum detection efficiency. The reported experiments are still affected by the locality and detection loopholes, but are free of the post-selection loophole of previous energy-time and time-bin Bell tests.
Optimizing plasmon-enhanced fluorescence with nonlocal metallic nanospheres
DEFF Research Database (Denmark)
Tserkezis, Christos; Stefanou, Nikolaos; Wubs, Martijn
, through the recent Generalized Nonlocal Optical Response (GNOR) theory, the concurrent contribution of modal shifts and nonradiative losses, together with a reduced emitter excitation rate due to the decreased field intensity, lead always to a strong reduction of fluorescence (see Fig. 1). Finally, we...... identify situations where the common, intuitive recipe of tuning the NP modes to match λem can in fact lead to strong fluorescence quenching, instead of the anticipated enhancement. Our results highlight the necessity for careful modeling and design of plasmon-field-enhancement based applications....
Non-locality versus entanglement in the neutral kaon system
International Nuclear Information System (INIS)
Ableitinger, A.; Bertlmann, R.A.; Durstberger, K.; Hiesmayr, B.C.; Krammer, P.
2006-01-01
Full text: Particle physics has become an interesting testing ground for fundamental questions of quantum mechanics (QM). The entangled massive meson-antimeson systems are specially suitable as they offer a unique laboratory to test various aspects of particle physics (CP violation, CPT violation, . . . ) as well to test foundations of QM (local realistic theories versus QM, Bell inequalities, decoherence effects, quantum marking and erasure concepts, . . . ). For the neutral kaon system we show that nonlocality detected by the violation of a Bell inequality and entanglement are indeed different concepts. (author)
Tight Bell Inequalities and Nonlocality in Weak Measurement
Waegell, Mordecai
A general class of Bell inequalities is derived based on strict adherence to probabilistic entanglement correlations observed in nature. This derivation gives significantly tighter bounds on local hidden variable theories for the well-known Clauser-Horne-Shimony-Holt (CHSH) inequality, and also leads to new proofs of the Greenberger-Horne-Zeilinger (GHZ) theorem. This method is applied to weak measurements and reveals nonlocal correlations between the weak value and the post-selection, which rules out various classical models of weak measurement. Implications of these results are discussed. Fetzer-Franklin Fund of the John E. Fetzer Memorial Trust.
Non-local quasi-linear parabolic equations
International Nuclear Information System (INIS)
Amann, H
2005-01-01
This is a survey of the most common approaches to quasi-linear parabolic evolution equations, a discussion of their advantages and drawbacks, and a presentation of an entirely new approach based on maximal L p regularity. The general results here apply, above all, to parabolic initial-boundary value problems that are non-local in time. This is illustrated by indicating their relevance for quasi-linear parabolic equations with memory and, in particular, for time-regularized versions of the Perona-Malik equation of image processing
Are there novel resonances in nanoplasmonic structures due to nonlocal response?
DEFF Research Database (Denmark)
Wubs, Martijn; Raza, Søren; Toscano, Giuseppe
2012-01-01
In tiny metallic nanostructures, quantum confinement and nonlocal response change the collective plasmonic behaviour with resulting important consequences for e.g. field-enhancement and extinction cross sections. Here we report on nonlocal resonances in the hydrodynamical Drude model for plasmonic...
A generalized non-local optical response theory for plasmonic nanostructures
DEFF Research Database (Denmark)
Mortensen, N. Asger; Raza, Søren; Wubs, Martijn
2014-01-01
for their description. Here instead we present a comparatively simple semiclassical generalized non-local optical response theory that unifies quantum pressure convection effects and induced charge diffusion kinetics, with a concomitant complex-valued generalized non-local optical response parameter. Our theory...
Canonical approach to constructing constants of motion for nonlocal field theories
International Nuclear Information System (INIS)
Garczynski, W.; Stelmach, J.
1984-01-01
A general method of derivation of conservation laws for non-local field theories is presented. Differences in comparison with a local case are stressed. Two kinds of Lagrangians appearing in a non-local theory are examined. Canonical choice of constants of motion is made corresponding to the transformations from the conformal and gauge groups. 11 refs. (author)
Nonlocality and optics of inhomogeneous systems : The role of quantum induction
Wijers, C.M.J.; de Boeij, P.L.
2002-01-01
Nonlocal interactions play a prominent role in the optics of inhomogeneous systems. Classical discrete dipole descriptions take into account only electro-magnetic nonlocality. This is insufficient to describe correctly the inhomogeneous optical response (e.g., reflectance anisotropy) for covalently
Well-posedness of nonlocal parabolic differential problems with dependent operators.
Ashyralyev, Allaberen; Hanalyev, Asker
2014-01-01
The nonlocal boundary value problem for the parabolic differential equation v'(t) + A(t)v(t) = f(t) (0 ≤ t ≤ T), v(0) = v(λ) + φ, 0 exact estimates in Hölder norms for the solution of two nonlocal boundary value problems for parabolic equations with dependent coefficients are established.
Bosonization, dual transformation and non-local hidden symmetry in two dimensions
International Nuclear Information System (INIS)
Hata, Hiroyuki
1985-01-01
The non-local hidden symmetry is investigated in the bosonized non-abelian Thirring model and the dual representation of the chiral model. In these representations the first non-local symmetry is spontaneously broken in naive pertubation theory. (orig.)
A Monte Carlo procedure for Hamiltonians with small nonlocal correction terms
International Nuclear Information System (INIS)
Mack, G.; Pinn, K.
1986-03-01
We consider lattice field theories whose Hamiltonians contain small nonlocal correction terms. We propose to do simulations for an auxiliarly polymer system with field dependent activities. If a nonlocal correction term to the Hamiltonian is small, it need to be evaluated only rarely. (orig.)
Phase multistability in a dynamical small world network
Energy Technology Data Exchange (ETDEWEB)
Shabunin, A. V., E-mail: shabuninav@info.sgu.ru [Radiophysics and Nonlinear Dynamics Department, Saratov State University, Saratov (Russian Federation)
2015-01-15
The effect of phase multistability is explored in a small world network of periodic oscillators with diffusive couplings. The structure of the network represents a ring with additional non-local links, which spontaneously arise and vanish between arbitrary nodes. The dynamics of random couplings is modeled by “birth” and “death” stochastic processes by means of the cellular automate approach. The evolution of the network under gradual increasing of the number of random couplings goes through stages of phases fluctuations and spatial cluster formation. Finally, in the presence of non-local couplings the phase multistability “dies” and only the in-phase regime survives.
A morphing strategy to couple non-local to local continuum mechanics
Lubineau, Gilles; Azdoud, Yan; Han, Fei; Rey, Christian C.; Askari, Abe H.
2012-01-01
A method for coupling non-local continuum models with long-range central forces to local continuum models is proposed. First, a single unified model that encompasses both local and non-local continuum representations is introduced. This model can be purely non-local, purely local or a hybrid depending on the constitutive parameters. Then, the coupling between the non-local and local descriptions is performed through a transition (morphing) affecting only the constitutive parameters. An important feature is the definition of the morphing functions, which relies on energy equivalence. This approach is useful in large-scale modeling of materials that exhibit strong non-local effects. The computational cost can be reduced while maintaining a reasonable level of accuracy. Efficiency, robustness and basic properties of the approach are discussed using one- and two-dimensional examples. © 2012 Elsevier Ltd.
A morphing strategy to couple non-local to local continuum mechanics
Lubineau, Gilles
2012-06-01
A method for coupling non-local continuum models with long-range central forces to local continuum models is proposed. First, a single unified model that encompasses both local and non-local continuum representations is introduced. This model can be purely non-local, purely local or a hybrid depending on the constitutive parameters. Then, the coupling between the non-local and local descriptions is performed through a transition (morphing) affecting only the constitutive parameters. An important feature is the definition of the morphing functions, which relies on energy equivalence. This approach is useful in large-scale modeling of materials that exhibit strong non-local effects. The computational cost can be reduced while maintaining a reasonable level of accuracy. Efficiency, robustness and basic properties of the approach are discussed using one- and two-dimensional examples. © 2012 Elsevier Ltd.
Surface effects on static bending of nanowires based on non-local elasticity theory
Directory of Open Access Journals (Sweden)
Quan Wu
2015-10-01
Full Text Available The surface elasticity and non-local elasticity effects on the elastic behavior of statically bent nanowires are investigated in the present investigation. Explicit solutions are presented to evaluate the surface stress and non-local elasticity effects with various boundary conditions. Compared with the classical Euler beam, a nanowire with surface stress and/or non-local elasticity can be either stiffer or less stiff, depending on the boundary conditions. The concept of surface non-local elasticity was proposed and its physical interpretation discussed to explain the combined effect of surface elasticity and non-local elasticity. The effect of the nanowire size on its elastic bending behavior was investigated. The results obtained herein are helpful to characterize mechanical properties of nanowires and aid nanowire-based devices design.
Shareability of correlations in multiqubit states: Optimization of nonlocal monogamy inequalities
Batle, J.; Naseri, M.; Ghoranneviss, M.; Farouk, A.; Alkhambashi, M.; Elhoseny, M.
2017-03-01
It is a well-known fact that both quantum entanglement and nonlocality (implied by the violation of Bell inequalities) constitute quantum correlations that cannot be arbitrarily shared among subsystems. They are both monogamous, albeit in a different fashion. In the present contribution we focus on nonlocality monogamy relations such as the Toner-Verstraete, the Seevinck, and a derived monogamy inequality for three parties and compare them with multipartite nonlocality measures for the whole set of pure states distributed according to the Haar measure. In this numerical endeavor, we also see that, although monogamy relations for nonlocality cannot exist for more than three parties, in practice the exploration of the whole set of states for different numbers of qubits will return effective bounds on the maximum value of all bipartite Bell violations among subsystems. Hence, we shed light on the effective nonlocality monogamy bounds in the multiqubit case.
Robustness of the far-field response of nonlocal plasmonic ensembles
DEFF Research Database (Denmark)
Tserkezis, Christos; Maack, Johan Rosenkrantz; Liu, Zhaowei
2016-01-01
Contrary to classical predictions, the optical response of few-nm plasmonic particles depends on particle size due to effects such as nonlocality and electron spill-out. Ensembles of such nanoparticles are therefore expected to exhibit a nonclassical inhomogeneous spectral broadening due to size...... distribution. For a normal distribution of free-electron nanoparticles, and within the simple nonlocal hydrodynamic Drude model, both the nonlocal blueshift and the plasmon linewidth are shown to be considerably affected by ensemble averaging. Size-variance effects tend however to conceal nonlocality...... to a lesser extent when the homogeneous size-dependent broadening of individual nanoparticles is taken into account, either through a local size-dependent damping model or through the Generalized Nonlocal Optical Response theory. The role of ensemble averaging is further explored in realistic distributions...
Nonlocal hyperconcentration on entangled photons using photonic module system
Energy Technology Data Exchange (ETDEWEB)
Cao, Cong; Wang, Tie-Jun; Mi, Si-Chen [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Zhang, Ru [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); School of Ethnic Minority Education, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Wang, Chuan, E-mail: wangchuan@bupt.edu.cn [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China)
2016-06-15
Entanglement distribution will inevitably be affected by the channel and environment noise. Thus distillation of maximal entanglement nonlocally becomes a crucial goal in quantum information. Here we illustrate that maximal hyperentanglement on nonlocal photons could be distilled using the photonic module and cavity quantum electrodynamics, where the photons are simultaneously entangled in polarization and spatial-mode degrees of freedom. The construction of the photonic module in a photonic band-gap structure is presented, and the operation of the module is utilized to implement the photonic nondestructive parity checks on the two degrees of freedom. We first propose a hyperconcentration protocol using two identical partially hyperentangled initial states with unknown coefficients to distill a maximally hyperentangled state probabilistically, and further propose a protocol by the assistance of an ancillary single photon prepared according to the known coefficients of the initial state. In the two protocols, the total success probability can be improved greatly by introducing the iteration mechanism, and only one of the remote parties is required to perform the parity checks in each round of iteration. Estimates on the system requirements and recent experimental results indicate that our proposal is realizable with existing or near-further technologies.
Real-Time Nonlocal Means-Based Despeckling.
Breivik, Lars Hofsoy; Snare, Sten Roar; Steen, Erik Normann; Solberg, Anne H Schistad
2017-06-01
In this paper, we propose a multiscale nonlocal means-based despeckling method for medical ultrasound. The multiscale approach leads to large computational savings and improves despeckling results over single-scale iterative approaches. We present two variants of the method. The first, denoted multiscale nonlocal means (MNLM), yields uniform robust filtering of speckle both in structured and homogeneous regions. The second, denoted unnormalized MNLM (UMNLM), is more conservative in regions of structure assuring minimal disruption of salient image details. Due to the popularity of anisotropic diffusion-based methods in the despeckling literature, we review the connection between anisotropic diffusion and iterative variants of NLM. These iterative variants in turn relate to our multiscale variant. As part of our evaluation, we conduct a simulation study making use of ground truth phantoms generated from clinical B-mode ultrasound images. We evaluate our method against a set of popular methods from the despeckling literature on both fine and coarse speckle noise. In terms of computational efficiency, our method outperforms the other considered methods. Quantitatively on simulations and on a tissue-mimicking phantom, our method is found to be competitive with the state-of-the-art. On clinical B-mode images, our method is found to effectively smooth speckle while preserving low-contrast and highly localized salient image detail.
A non-local computational boundary condition for duct acoustics
Zorumski, William E.; Watson, Willie R.; Hodge, Steve L.
1994-01-01
A non-local boundary condition is formulated for acoustic waves in ducts without flow. The ducts are two dimensional with constant area, but with variable impedance wall lining. Extension of the formulation to three dimensional and variable area ducts is straightforward in principle, but requires significantly more computation. The boundary condition simulates a nonreflecting wave field in an infinite duct. It is implemented by a constant matrix operator which is applied at the boundary of the computational domain. An efficient computational solution scheme is developed which allows calculations for high frequencies and long duct lengths. This computational solution utilizes the boundary condition to limit the computational space while preserving the radiation boundary condition. The boundary condition is tested for several sources. It is demonstrated that the boundary condition can be applied close to the sound sources, rendering the computational domain small. Computational solutions with the new non-local boundary condition are shown to be consistent with the known solutions for nonreflecting wavefields in an infinite uniform duct.
Aggregation patterns from nonlocal interactions: Discrete stochastic and continuum modeling
Hackett-Jones, Emily J.
2012-04-17
Conservation equations governed by a nonlocal interaction potential generate aggregates from an initial uniform distribution of particles. We address the evolution and formation of these aggregating steady states when the interaction potential has both attractive and repulsive singularities. Currently, no existence theory for such potentials is available. We develop and compare two complementary solution methods, a continuous pseudoinverse method and a discrete stochastic lattice approach, and formally show a connection between the two. Interesting aggregation patterns involving multiple peaks for a simple doubly singular attractive-repulsive potential are determined. For a swarming Morse potential, characteristic slow-fast dynamics in the scaled inverse energy is observed in the evolution to steady state in both the continuous and discrete approaches. The discrete approach is found to be remarkably robust to modifications in movement rules, related to the potential function. The comparable evolution dynamics and steady states of the discrete model with the continuum model suggest that the discrete stochastic approach is a promising way of probing aggregation patterns arising from two- and three-dimensional nonlocal interaction conservation equations. © 2012 American Physical Society.
Figure-ground segregation: A fully nonlocal approach.
Dimiccoli, Mariella
2016-09-01
We present a computational model that computes and integrates in a nonlocal fashion several configural cues for automatic figure-ground segregation. Our working hypothesis is that the figural status of each pixel is a nonlocal function of several geometric shape properties and it can be estimated without explicitly relying on object boundaries. The methodology is grounded on two elements: multi-directional linear voting and nonlinear diffusion. A first estimation of the figural status of each pixel is obtained as a result of a voting process, in which several differently oriented line-shaped neighborhoods vote to express their belief about the figural status of the pixel. A nonlinear diffusion process is then applied to enforce the coherence of figural status estimates among perceptually homogeneous regions. Computer simulations fit human perception and match the experimental evidence that several cues cooperate in defining figure-ground segregation. The results of this work suggest that figure-ground segregation involves feedback from cells with larger receptive fields in higher visual cortical areas. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nonlocal hyperconcentration on entangled photons using photonic module system
International Nuclear Information System (INIS)
Cao, Cong; Wang, Tie-Jun; Mi, Si-Chen; Zhang, Ru; Wang, Chuan
2016-01-01
Entanglement distribution will inevitably be affected by the channel and environment noise. Thus distillation of maximal entanglement nonlocally becomes a crucial goal in quantum information. Here we illustrate that maximal hyperentanglement on nonlocal photons could be distilled using the photonic module and cavity quantum electrodynamics, where the photons are simultaneously entangled in polarization and spatial-mode degrees of freedom. The construction of the photonic module in a photonic band-gap structure is presented, and the operation of the module is utilized to implement the photonic nondestructive parity checks on the two degrees of freedom. We first propose a hyperconcentration protocol using two identical partially hyperentangled initial states with unknown coefficients to distill a maximally hyperentangled state probabilistically, and further propose a protocol by the assistance of an ancillary single photon prepared according to the known coefficients of the initial state. In the two protocols, the total success probability can be improved greatly by introducing the iteration mechanism, and only one of the remote parties is required to perform the parity checks in each round of iteration. Estimates on the system requirements and recent experimental results indicate that our proposal is realizable with existing or near-further technologies.
Berry Curvature and Nonlocal Transport Characteristics of Antidot Graphene
Directory of Open Access Journals (Sweden)
Jie Pan
2017-09-01
Full Text Available Antidot graphene denotes a monolayer of graphene structured by a periodic array of holes. Its energy dispersion is known to display a gap at the Dirac point. However, since the degeneracy between the A and B sites is preserved, antidot graphene cannot be described by the 2D massive Dirac equation, which is suitable for systems with an inherent A/B asymmetry. From inversion and time-reversal-symmetry considerations, antidot graphene should therefore have zero Berry curvature. In this work, we derive the effective Hamiltonian of antidot graphene from its tight-binding wave functions. The resulting Hamiltonian is a 4×4 matrix with a nonzero intervalley scattering term, which is responsible for the gap at the Dirac point. Furthermore, nonzero Berry curvature is obtained from the effective Hamiltonian, owing to the double degeneracy of the eigenfunctions. The topological manifestation is shown to be robust against randomness perturbations. Since the Berry curvature is expected to induce a transverse conductance, we have experimentally verified this feature through nonlocal transport measurements, by fabricating three antidot graphene samples with a triangular array of holes, a fixed periodicity of 150 nm, and hole diameters of 100, 80, and 60 nm. All three samples display topological nonlocal conductance, with excellent agreement with the theory predictions.
Nonlocal quantum effective actions in Weyl-Flat spacetimes
Bautista, Teresa; Benevides, André; Dabholkar, Atish
2018-06-01
Virtual massless particles in quantum loops lead to nonlocal effects which can have interesting consequences, for example, for primordial magnetogenesis in cosmology or for computing finite N corrections in holography. We describe how the quantum effective actions summarizing these effects can be computed efficiently for Weyl-flat metrics by integrating the Weyl anomaly or, equivalently, the local renormalization group equation. This method relies only on the local Schwinger-DeWitt expansion of the heat kernel and allows for a re-summation of the anomalous leading large logarithms of the scale factor, log a( x), in situations where the Weyl factor changes by several e-foldings. As an illustration, we obtain the quantum effective action for the Yang-Mills field coupled to massless matter, and the self-interacting massless scalar field. Our action reduces to the nonlocal action obtained using the Barvinsky-Vilkovisky covariant perturbation theory in the regime R 2 ≪ ∇2 R for a typical curvature scale R, but has a greater range of validity effectively re-summing the covariant perturbation theory to all orders in curvatures. In particular, it is applicable also in the opposite regime R 2 ≫ ∇2 R, which is often of interest in cosmology.
Theory of Nonlocal Point Transformations in General Relativity
Directory of Open Access Journals (Sweden)
Massimo Tessarotto
2016-01-01
Full Text Available A discussion of the functional setting customarily adopted in General Relativity (GR is proposed. This is based on the introduction of the notion of nonlocal point transformations (NLPTs. While allowing the extension of the traditional concept of GR-reference frame, NLPTs are important because they permit the explicit determination of the map between intrinsically different and generally curved space-times expressed in arbitrary coordinate systems. For this purpose in the paper the mathematical foundations of NLPT-theory are laid down and basic physical implications are considered. In particular, explicit applications of the theory are proposed, which concern (1 a solution to the so-called Einstein teleparallel problem in the framework of NLPT-theory; (2 the determination of the tensor transformation laws holding for the acceleration 4-tensor with respect to the group of NLPTs and the identification of NLPT-acceleration effects, namely, the relationship established via general NLPT between particle 4-acceleration tensors existing in different curved space-times; (3 the construction of the nonlocal transformation law connecting different diagonal metric tensors solution to the Einstein field equations; and (4 the diagonalization of nondiagonal metric tensors.
Gauge unification, non-local breaking, open strings
International Nuclear Information System (INIS)
Trapletti, M.
2005-01-01
The issue of non-local GUT symmetry breaking is addressed in the context of open string model building. We study Z N xZ M ' orbifolds with all the GUT-breaking orbifold elements acting freely, as rotations accompanied by translations in the internal space. We consider open strings quantized on these backgrounds, distinguishing whether the translational action is parallel or perpendicular to the D-branes. GUT breaking is impossible in the purely perpendicular case, non-local GUT breaking is instead allowed in the purely parallel case. In the latter, the scale of breaking is set by the compactification moduli, and there are no fixed points with reduced gauge symmetry, where dangerous explicit GUT-breaking terms could be located. We investigate the mixed parallel+perpendicular case in a Z 2 xZ 2 ' example, having also a simplified field theory realization. It is a new S 1 /Z 2 xZ 2 ' orbifold-GUT model, with bulk gauge symmetry SU(5)xSU(5) broken locally to the Standard Model gauge group. In spite of the locality of the GUT symmetry breaking, there is no localized contribution to the running of the coupling constants, and the unification scale is completely set by the length of S 1
Nonlocal correlations as an information-theoretic resource
International Nuclear Information System (INIS)
Barrett, Jonathan; Massar, Serge; Pironio, Stefano; Linden, Noah; Popescu, Sandu; Roberts, David
2005-01-01
It is well known that measurements performed on spatially separated entangled quantum systems can give rise to correlations that are nonlocal, in the sense that a Bell inequality is violated. They cannot, however, be used for superluminal signaling. It is also known that it is possible to write down sets of 'superquantum' correlations that are more nonlocal than is allowed by quantum mechanics, yet are still nonsignaling. Viewed as an information-theoretic resource, superquantum correlations are very powerful at reducing the amount of communication needed for distributed computational tasks. An intriguing question is why quantum mechanics does not allow these more powerful correlations. We aim to shed light on the range of quantum possibilities by placing them within a wider context. With this in mind, we investigate the set of correlations that are constrained only by the no-signaling principle. These correlations form a polytope, which contains the quantum correlations as a (proper) subset. We determine the vertices of the no-signaling polytope in the case that two observers each choose from two possible measurements with d outcomes. We then consider how interconversions between different sorts of correlations may be achieved. Finally, we consider some multipartite examples
Notes on nonlocal projective measurements in relativistic systems
International Nuclear Information System (INIS)
Lin, Shih-Yuin
2014-01-01
In quantum mechanical bipartite systems, naive extensions of von Neumann’s projective measurement to nonlocal variables can produce superluminal signals and thus violate causality. We analyze the projective quantum nondemolition state-verification in a two-spin system and see how the projection introduces nonlocality without entanglement. For the ideal measurements of “R-nonlocal” variables, we argue that causality violation can be resolved by introducing further restrictions on the post-measurement states, which makes the measurement “Q-nonlocal”. After we generalize these ideas to quantum mechanical harmonic oscillators, we look into the projective measurements of the particle number of a single mode or a wave-packet of a relativistic quantum field in Minkowski space. It turns out that the causality-violating terms in the expectation values of the local operators, generated either by the ideal measurement of the “R-nonlocal” variable or the quantum nondemolition verification of a Fock state, are all suppressed by the IR and UV cutoffs of the theory. Thus relativistic quantum field theories with such projective measurements are effectively causal
Entanglement, nonlocality and multi-particle quantum correlations
Reid, Margaret D.
2018-04-01
This paper contributes to the proceedings of the Latin-American School of Physics (ELAF-2017) on Quantum Correlations, and is a brief review of quantum entanglement and nonlocality. In such a brief review, only some topics can be covered. The emphasis is on those topics relevant that may be relevant to detecting multi-particle quantum correlations arising in atomic and Bose-Einstein condensate (BEC) experiments. The paper is divided into five sections. In the first section, the historical papers of Einstein-Podolsky-Rosen (EPR), Bell, Schrodinger and Greenberger-Zeilinger-Horne (GHZ) are described in a tutorial fashion. This is followed by an introduction to entanglement and density operators. A discussion of the classes of nonlocality is given in the third section, including the modern interpretation of the correlations of the EPR paradox experiments, known as EPR steering correlations. The fourth section covers the detection and generation of so-called continuous variable entanglement and EPR steering. Various known criteria are derived with the details of the proofs given for tutorial purposes. The final section focuses on the criteria and methods that have been useful to detect quantum correlation in BEC or atomic systems. Recent results relating spin squeezing with quantum correlations, including entanglement and EPR steering, are summarised.
Energy Technology Data Exchange (ETDEWEB)
Fan, Hongyi [CCAST (World Laboratory), PO Box 8730, Beijing 100080, People' s Republic of (China); Hu, Haipeng [Department of Material Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People' s Republic of China (China)
2003-01-10
We compare and contrast our amplitude-phase entanglement with that of Luis in his comment. Luis's entangled state is defined in a finite Fock space. His comment on the operational phase operator seems to be contradicting the original meaning of Mandel et al. (reply)
Fan, H
2003-01-01
We compare and contrast our amplitude-phase entanglement with that of Luis in his comment. Luis's entangled state is defined in a finite Fock space. His comment on the operational phase operator seems to be contradicting the original meaning of Mandel et al. (reply)
Nonlocal matching condition and scale-invariant spectrum in bouncing cosmology
International Nuclear Information System (INIS)
Chu, C.-S.; Furuta, K.; Lin, F.-L.
2006-01-01
In cosmological scenarios such as the pre-big bang scenario or the ekpyrotic scenario, a matching condition between the metric perturbations in the pre-big bang phase and those in the post big bang phase is often assumed. Various matching conditions have been considered in the literature. Nevertheless obtaining a scale-invariant CMB spectrum via a concrete mechanism remains impossible. In this paper, we examine this problem from the point of view of local causality. We begin with introducing the notion of local causality and explain how it constrains the form of the matching condition. We then prove a no-go theorem: independent of the details of the matching condition, a scale-invariant spectrum is impossible as long as the local causality condition is satisfied. In our framework, it is easy to show that a violation of local causality around the bounce is needed in order to give a scale-invariant spectrum. We study a specific scenario of this possibility by considering a nonlocal effective theory inspired by noncommutative geometry around the bounce and show that a scale-invariant spectrum is possible. Moreover we demonstrate that the magnitude of the spectrum is compatible with observations if the bounce is assumed to occur at an energy scale which is a few orders of magnitude below the Planckian energy scale
Nonlocal collisionless and collisional electron transport in low temperature plasmas
Kaganovich, Igor
2009-10-01
The purpose of the talk is to describe recent advances in nonlocal electron kinetics in low-pressure plasmas. A distinctive property of partially ionized plasmas is that such plasmas are always in a non-equilibrium state: the electrons are not in thermal equilibrium with the neutral species and ions, and the electrons are also not in thermodynamic equilibrium within their own ensemble, which results in a significant departure of the electron velocity distribution function from a Maxwellian. These non-equilibrium conditions provide considerable freedom to choose optimal plasma parameters for applications, which make gas discharge plasmas remarkable tools for a variety of plasma applications, including plasma processing, discharge lighting, plasma propulsion, particle beam sources, and nanotechnology. Typical phenomena in such discharges include nonlocal electron kinetics, nonlocal electrodynamics with collisionless electron heating, and nonlinear processes in the sheaths and in the bounded plasmas. Significant progress in understanding the interaction of electromagnetic fields with real bounded plasma created by this field and the resulting changes in the structure of the applied electromagnetic field has been one of the major achievements of the last decade in this area of research [1-3]. We show on specific examples that this progress was made possible by synergy between full scale particle-in-cell simulations, analytical models, and experiments. In collaboration with Y. Raitses, A.V. Khrabrov, Princeton Plasma Physics Laboratory, Princeton, NJ, USA; V.I. Demidov, UES, Inc., 4401 Dayton-Xenia Rd., Beavercreek, OH 45322, USA and AFRL, Wright-Patterson AFB, OH 45433, USA; and D. Sydorenko, University of Alberta, Edmonton, Canada. [4pt] [1] D. Sydorenko, A. Smolyakov, I. Kaganovich, and Y. Raitses, IEEE Trans. Plasma Science 34, 895 (2006); Phys. Plasmas 13, 014501 (2006); 14 013508 (2007); 15, 053506 (2008). [0pt] [2] I. D. Kaganovich, Y. Raitses, D. Sydorenko, and
Xie, Dexuan; Volkmer, Hans W.; Ying, Jinyong
2016-04-01
The nonlocal dielectric approach has led to new models and solvers for predicting electrostatics of proteins (or other biomolecules), but how to validate and compare them remains a challenge. To promote such a study, in this paper, two typical nonlocal dielectric models are revisited. Their analytical solutions are then found in the expressions of simple series for a dielectric sphere containing any number of point charges. As a special case, the analytical solution of the corresponding Poisson dielectric model is also derived in simple series, which significantly improves the well known Kirkwood's double series expansion. Furthermore, a convolution of one nonlocal dielectric solution with a commonly used nonlocal kernel function is obtained, along with the reaction parts of these local and nonlocal solutions. To turn these new series solutions into a valuable research tool, they are programed as a free fortran software package, which can input point charge data directly from a protein data bank file. Consequently, different validation tests can be quickly done on different proteins. Finally, a test example for a protein with 488 atomic charges is reported to demonstrate the differences between the local and nonlocal models as well as the importance of using the reaction parts to develop local and nonlocal dielectric solvers.
The small length scale effect for a non-local cantilever beam: a paradox solved.
Challamel, N; Wang, C M
2008-08-27
Non-local continuum mechanics allows one to account for the small length scale effect that becomes significant when dealing with microstructures or nanostructures. This paper presents some simplified non-local elastic beam models, for the bending analyses of small scale rods. Integral-type or gradient non-local models abandon the classical assumption of locality, and admit that stress depends not only on the strain value at that point but also on the strain values of all points on the body. There is a paradox still unresolved at this stage: some bending solutions of integral-based non-local elastic beams have been found to be identical to the classical (local) solution, i.e. the small scale effect is not present at all. One example is the Euler-Bernoulli cantilever nanobeam model with a point load which has application in microelectromechanical systems and nanoelectromechanical systems as an actuator. In this paper, it will be shown that this paradox may be overcome with a gradient elastic model as well as an integral non-local elastic model that is based on combining the local and the non-local curvatures in the constitutive elastic relation. The latter model comprises the classical gradient model and Eringen's integral model, and its application produces small length scale terms in the non-local elastic cantilever beam solution.
Nold, Andreas; Goddard, Ben; Sibley, David; Kalliadasis, Serafim
2014-03-01
Multiscale effects play a predominant role in wetting phenomena such as the moving contact line. An accurate description is of paramount interest for a wide range of industrial applications, yet it is a matter of ongoing research, due to the difficulty of incorporating different physical effects in one model. Important small-scale phenomena are corrections to the attractive fluid-fluid and wall-fluid forces in inhomogeneous density distributions, which often previously have been accounted for by the disjoining pressure in an ad-hoc manner. We systematically derive a novel model for the description of a single-component liquid-vapor multiphase system which inherently incorporates these nonlocal effects. This derivation, which is inspired by statistical mechanics in the framework of colloidal density functional theory, is critically discussed with respect to its assumptions and restrictions. The model is then employed numerically to study a moving contact line of a liquid fluid displacing its vapor phase. We show how nonlocal physical effects are inherently incorporated by the model and describe how classical macroscopic results for the contact line motion are retrieved. We acknowledge financial support from ERC Advanced Grant No. 247031 and Imperial College through a DTG International Studentship.
International Nuclear Information System (INIS)
Espinosa-Paredes, Gilberto
2010-01-01
The aim of this paper is to propose a framework to obtain a new formulation for multiphase flow conservation equations without length-scale restrictions, based on the non-local form of the averaged volume conservation equations. The simplification of the local averaging volume of the conservation equations to obtain practical equations is subject to the following length-scale restrictions: d << l << L, where d is the characteristic length of the dispersed phases, l is the characteristic length of the averaging volume, and L is the characteristic length of the physical system. If the foregoing inequality does not hold, or if the scale of the problem of interest is of the order of l, the averaging technique and therefore, the macroscopic theories of multiphase flow should be modified in order to include appropriate considerations and terms in the corresponding equations. In these cases the local form of the averaged volume conservation equations are not appropriate to describe the multiphase system. As an example of the conservation equations without length-scale restrictions, the natural circulation boiling water reactor was consider to study the non-local effects on the thermal-hydraulic core performance during steady-state and transient behaviors, and the results were compared with the classic local averaging volume conservation equations.
STABLE STATIONARY STATES OF NON-LOCAL INTERACTION EQUATIONS
FELLNER, KLEMENS
2010-12-01
In this paper, we are interested in the large-time behaviour of a solution to a non-local interaction equation, where a density of particles/individuals evolves subject to an interaction potential and an external potential. It is known that for regular interaction potentials, stable stationary states of these equations are generically finite sums of Dirac masses. For a finite sum of Dirac masses, we give (i) a condition to be a stationary state, (ii) two necessary conditions of linear stability w.r.t. shifts and reallocations of individual Dirac masses, and (iii) show that these linear stability conditions imply local non-linear stability. Finally, we show that for regular repulsive interaction potential Wε converging to a singular repulsive interaction potential W, the Dirac-type stationary states ρ̄ ε approximate weakly a unique stationary state ρ̄ ∈ L∞. We illustrate our results with numerical examples. © 2010 World Scientific Publishing Company.
Explicit solution for a wave equation with nonlocal condition
Bazhlekova, Emilia; Dimovski, Ivan
2012-11-01
An initial-boundary value problem with a nonlocal boundary condition for one-dimensional wave equation is studied. Applying spectral projections, we find a series solution of the problem. The character of the solution found shows that the oscillation amplitude of the system described by this equation increases with time at any fixed x in absence of external forces. To find a representation of the solution more convenient for numerical calculation we develop a two-dimensional operational calculus for the problem. The solution is expressed as a sum of non-classical convolution products of particular solutions and the arbitrary initial functions. This result is an extension of the classical Duhamel principle for the space variable. The representation is used successfully for numerical computation and visualization of the solution. Numerical results obtained for specific test problems with known exact solutions indicate that the present technique provides accurate numerical solutions.
Sign-changing solutions for non-local elliptic equations
Directory of Open Access Journals (Sweden)
Huxiao Luo
2017-07-01
Full Text Available This article concerns the existence of sign-changing solutions for equations driven by a non-local integrodifferential operator with homogeneous Dirichlet boundary conditions, $$\\displaylines{ -\\mathcal{L}_Ku=f(x,u,\\quad x\\in \\Omega, \\cr u=0,\\quad x\\in \\mathbb{R}^n\\setminus\\Omega, }$$ where $\\Omega\\subset\\mathbb{R}^n\\; (n\\geq2$ is a bounded, smooth domain and the nonlinear term f satisfies suitable growth assumptions. By using Brouwer's degree theory and Deformation Lemma and arguing as in [2], we prove that there exists a least energy sign-changing solution. Our results generalize and improve some results obtained in [27
Dynamic crack growth in a nonlocal progressively cavitating solid
DEFF Research Database (Denmark)
Needleman, A.; Tvergaard, Viggo
1998-01-01
Dynamic crack growth is analyzed numerically using a nonlocal constitutive formulation for a porous ductile material. The delocalization relates to the void growth and coalescence mechanism and is incorporated in terms of an integral condition on the rate of increase of the void volume fraction....... The material is modeled as elastic-viscoplastic with the thermal softening due to adiabatic heating accounted for. Finite element computations are carried our for edge cracked specimens subject to tensile impact loading. Two values of the material characteristic length and two finite-element discretizations...... are used in most computations. The effect of the material characteristic length on the crack growth behavior and on the mesh sensitivity of the results is considered. For comparison purposes, results are also obtained For the corresponding local constitutive relation. The crack growth resistance is found...
Bound and scattering states with non-local potentials.
Energy Technology Data Exchange (ETDEWEB)
Viviani, M; Girlanda, L; Kievsky, A; Marcucci, L E; Rosati, S; Schiavilla, R
2007-06-01
The application of the hyperspherical harmonics method to the case of non-local potentials is described. Given the properties of the hyperspherical harmonic functions, there are no difficulties in considering the approach in both coordinate and momentum space. The results for the 3H and 4He binding energies and n - 3H scattering lengths are found to be in good agreement with those obtained with other different techniques. A study of the 4He form factor is also reported, with a careful investigation of the contribution from isospin symmetry violation. Its effect on parity violating elastic scattering of polarized electrons from 4He is investigated. In particular, a simple analysis of the recently measured left-right asymmetry at low Q2 shows that the contribution of these isospin admixture are found of comparable magnitude to that associated with strangeness components in the nucleon electric form factor.
Commutative deformations of general relativity: nonlocality, causality, and dark matter
Energy Technology Data Exchange (ETDEWEB)
De Vegvar, P.G.N. [SWK Research, Bellingham, WA (United States)
2017-01-15
Hopf algebra methods are applied to study Drinfeld twists of (3+1)-diffeomorphisms and deformed general relativity on commutative manifolds. A classical nonlocality length scale is produced above which microcausality emerges. Matter fields are utilized to generate self-consistent Abelian Drinfeld twists in a background independent manner and their continuous and discrete symmetries are examined. There is negligible experimental effect on the standard model of particles. While baryonic twist producing matter would begin to behave acausally for rest masses above ∝1-10 TeV, other possibilities are viable dark matter candidates or a right-handed neutrino. First order deformed Maxwell equations are derived and yield immeasurably small cosmological dispersion and produce a propagation horizon only for photons at or above Planck energies. This model incorporates dark matter without any appeal to extra dimensions, supersymmetry, strings, grand unified theories, mirror worlds, or modifications of Newtonian dynamics. (orig.)
Inflationary magnetogenesis and non-local actions: the conformal anomaly
Energy Technology Data Exchange (ETDEWEB)
El-Menoufi, Basem Kamal, E-mail: bmahmoud@physics.umass.edu [Department of Physics, University of Massachusetts Amherst, MA 01003 (United States)
2016-02-01
We discuss the possibility of successful magnetogenesis during inflation by employing the one-loop effective action of massless QED. The action is strictly non-local and results from the long distance fluctuations of massless charged particles present at the inflationary scale. Most importantly, it encodes the conformal anomaly of QED which is crucial to avoid the vacuum preservation in classical electromagnetism. In particular, we find a blue spectrum for the magnetic field with spectral index n{sub B} ≅ 2 − α{sub e} where α{sub e} depends on both the number of e-folds during inflation as well as the coefficient of the one-loop beta function. In particular, the sign of the beta function has important bearing on the final result. A low reheating temperature is required for the present day magnetic field to be consistent with the lower bound inferred on the field in the intergalactic medium.
Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory
Rohringer, G.; Hafermann, H.; Toschi, A.; Katanin, A. A.; Antipov, A. E.; Katsnelson, M. I.; Lichtenstein, A. I.; Rubtsov, A. N.; Held, K.
2018-04-01
Strong electronic correlations pose one of the biggest challenges to solid state theory. Recently developed methods that address this problem by starting with the local, eminently important correlations of dynamical mean field theory (DMFT) are reviewed. In addition, nonlocal correlations on all length scales are generated through Feynman diagrams, with a local two-particle vertex instead of the bare Coulomb interaction as a building block. With these diagrammatic extensions of DMFT long-range charge, magnetic, and superconducting fluctuations as well as (quantum) criticality can be addressed in strongly correlated electron systems. An overview is provided of the successes and results achieved, mainly for model Hamiltonians, and an outline is given of future prospects for realistic material calculations.
Quantum gravitational collapse: non-singularity and non-locality
International Nuclear Information System (INIS)
Greenwood, Eric; Stojkovic, Dejan
2008-01-01
We investigate gravitational collapse in the context of quantum mechanics. We take primary interest in the behavior of the collapse near the horizon and near the origin (classical singularity) from the point of view of an infalling observer. In the absence of radiation, quantum effects near the horizon do not change the classical conclusions for an infalling observer, meaning the horizon is not an obstacle for him. However, quantum effects are able to remove the classical singularity at the origin, since the wave function is non-singular at the origin. Also, near the classical singularity, some non-local effects become important. In the Schrodinger equation describing behavior near the origin, derivatives of the wave function at one point are related to the value of the wave function at some other distant point.
Dirac Mass Dynamics in Multidimensional Nonlocal Parabolic Equations
Lorz, Alexander
2011-01-17
Nonlocal Lotka-Volterra models have the property that solutions concentrate as Dirac masses in the limit of small diffusion. Is it possible to describe the dynamics of the limiting concentration points and of the weights of the Dirac masses? What is the long time asymptotics of these Dirac masses? Can several Dirac masses coexist? We will explain how these questions relate to the so-called "constrained Hamilton-Jacobi equation" and how a form of canonical equation can be established. This equation has been established assuming smoothness. Here we build a framework where smooth solutions exist and thus the full theory can be developed rigorously. We also show that our form of canonical equation comes with a kind of Lyapunov functional. Numerical simulations show that the trajectories can exhibit unexpected dynamics well explained by this equation. Our motivation comes from population adaptive evolution a branch of mathematical ecology which models Darwinian evolution. © Taylor & Francis Group, LLC.
Single image interpolation via adaptive nonlocal sparsity-based modeling.
Romano, Yaniv; Protter, Matan; Elad, Michael
2014-07-01
Single image interpolation is a central and extensively studied problem in image processing. A common approach toward the treatment of this problem in recent years is to divide the given image into overlapping patches and process each of them based on a model for natural image patches. Adaptive sparse representation modeling is one such promising image prior, which has been shown to be powerful in filling-in missing pixels in an image. Another force that such algorithms may use is the self-similarity that exists within natural images. Processing groups of related patches together exploits their correspondence, leading often times to improved results. In this paper, we propose a novel image interpolation method, which combines these two forces-nonlocal self-similarities and sparse representation modeling. The proposed method is contrasted with competitive and related algorithms, and demonstrated to achieve state-of-the-art results.
Fundamental length, bubble electrons and non-local quantum electrodynamics
International Nuclear Information System (INIS)
Hsu, J.P.; Mac, E.
1977-06-01
Based on the concept of a bubble electron and the approach of Pais and Uhlenbeck, one constructs a finite quantum electrodynamics which is relativistically invariant, macro-causal and unitary. In this model, fields and their interaction are local, but the action function of free fields is nonlocal. The propagators are modified so that a fundamental length L is naturally introduced to physics. The modified static potential is given by V(r) = e/r for r greater than L and V(r) = 0 for r less than L, which is produced by the bubble source r -1 ddelta(r-L)/dr rather than a point source. It is found that L less than 4 x 10 -15 cm. Experimental consequences and modifications of strict causality at short distances, vertical bars 2 vertical bar approximately L 2 , are discussed
Intuitive understanding of nonlocality as implied by quantum theory
International Nuclear Information System (INIS)
Bohm, D.G.; Hiley, B.J.
1975-01-01
The fact is brought out that the essential new quality implied by the quantum theory is nonlocality; i.e., that a system cannot be analyzed into parts whose basic properties do not depend on the state of the whole system. This is done in terms of the causal interpretation of the quantum theory, proposed by one of us (D.B.) in 2952, involving the introduction of the ''quantum potential.'' It is shown that this approach implies a new universal type of description, in which the standard or canonical form is always supersystem-system-subsystem; and this leads to the radically new notion of unbroken wholeness of the entire universe. Finally, some of the implications of extending these notions to the relativity domain, and in so doing, a novel concept of time, in terms of which relativity and quantum theory may eventually be brought together, is indicated
Three-player conflicting interest games and nonlocality
Bolonek-Lasoń, Katarzyna
2017-08-01
We outline the general construction of three-player games with incomplete information which fulfil the following conditions: (i) symmetry with respect to the permutations of players; (ii) the existence of an upper bound for total payoff resulting from Bell inequalities; (iii) the existence of both fair and unfair Nash equilibria saturating this bound. Conditions (i)-(iii) imply that we are dealing with conflicting interest games. An explicit example of such a game is given. A quantum counterpart of this game is considered. It is obtained by keeping the same utilities but replacing classical advisor by a quantum one. It is shown that the quantum game possesses only fair equilibria with strictly higher payoffs than in the classical case. This implies that quantum nonlocality can be used to resolve the conflict between the players.
Non-local means filter for trim statics
Huang, Yunsong
2014-08-05
Structures will be mispositioned across prestack migration gathers in the presence of inaccuracies in the velocity model. Stacking these misaligned gathers runs the risk of destroying important structures in the stacked migration image. To mitigate this problem, we propose a trim statics inspired by the non-local means algorithm originally developed for image denoising. This method differs from the conventional one in two fundamental respects. First, the trim statics are computed by comparing image patches instead of individual image traces. Second, no global pilot trace is needed because only two migration images at a time participate in trim statics and are stacked into one image. A multitude of migration images are stacked recursively in this two-to-one fashion. Tests with a Gulf of Mexico dataset show a noticeable improvement in the feature coherency of the stacked migration image.
Greenberger-Horne-Zeilinger nonlocality for continuous-variable systems
International Nuclear Information System (INIS)
Chen Zengbing; Zhang Yongde
2002-01-01
As a development of our previous work, this paper is concerned with the Greenberger-Horne-Zeilinger (GHZ) nonlocality for continuous-variable cases. The discussion is based on the introduction of a pseudospin operator, which has the same algebra as the Pauli operator, for each of the N modes of a light field. Then the Bell-Clauser-Horne-Shimony-Holt inequality is presented for the N modes, each of which has a continuous degree of freedom. Following Mermin's argument, it is demonstrated that for N-mode parity-entangled GHZ states (in an infinite-dimensional Hilbert space) of the light field, the contradictions between quantum mechanics and local realism grow exponentially with N, similarly to the usual N-spin cases
High order scheme for the non-local transport in ICF plasmas
Energy Technology Data Exchange (ETDEWEB)
Feugeas, J.L.; Nicolai, Ph.; Schurtz, G. [Bordeaux-1 Univ., Centre Lasers Intenses et Applications (UMR 5107), 33 - Talence (France); Charrier, P.; Ahusborde, E. [Bordeaux-1 Univ., MAB, 33 - Talence (France)
2006-06-15
A high order practical scheme for a model of non-local transport is here proposed to be used in multidimensional radiation hydrodynamic codes. A high order scheme is necessary to solve non-local problems on strongly deformed meshes that are on hot point or ablation front zones. It is shown that the errors made by a classical 5 point scheme on a disturbed grid can be of the same order of magnitude as the non-local effects. The use of a 9 point scheme in a simulation of inertial confinement fusion appears to be essential.
Global existence of weak solutions to dissipative transport equations with nonlocal velocity
Bae, Hantaek; Granero-Belinchón, Rafael; Lazar, Omar
2018-04-01
We consider 1D dissipative transport equations with nonlocal velocity field: where is a nonlocal operator given by a Fourier multiplier. We especially consider two types of nonlocal operators: (1) , the Hilbert transform, (2) . In this paper, we show several global existence of weak solutions depending on the range of γ, δ and α. When , we take initial data having finite energy, while we take initial data in weighted function spaces (in the real variables or in the Fourier variables), which have infinite energy, when .
Characteristics of off-waist incident anomalous vortex beams in highly nonlocal media
Directory of Open Access Journals (Sweden)
Zhen-Feng Yang
Full Text Available In this paper, we focus on the effect of the off-waist incident condition on the propagation characteristics of anomalous vortex beams (AVBs in nonlocal media. An expression is derived mathematically in order to describe the propagation dynamics of AVBs in nonlocal media under the off-waist incident condition. Typical propagation characteristics induced by the off-waist incident condition are illustrated numerically. It is found that the propagation characteristics under the off-waist incident condition are much different from those under the on-waist incident condition. Keywords: Off-waist incidence, Anomalous vortex beam, Nonlocal media
Formal framework for a nonlocal generalization of Einstein's theory of gravitation
International Nuclear Information System (INIS)
Hehl, Friedrich W.; Mashhoon, Bahram
2009-01-01
The analogy between electrodynamics and the translational gauge theory of gravity is employed in this paper to develop an ansatz for a nonlocal generalization of Einstein's theory of gravitation. Working in the linear approximation, we show that the resulting nonlocal theory is equivalent to general relativity with 'dark matter'. The nature of the predicted dark matter, which is the manifestation of the nonlocal character of gravity in our model, is briefly discussed. It is demonstrated that this approach can provide a basis for the Tohline-Kuhn treatment of the astrophysical evidence for dark matter.
2016 CIME Course on Nonlocal and Nonlinear Diffusions and Interactions : New Methods and Directions
Grillo, Gabriele
2017-01-01
Presenting a selection of topics in the area of nonlocal and nonlinear diffusions, this book places a particular emphasis on new emerging subjects such as nonlocal operators in stationary and evolutionary problems and their applications, swarming models and applications to biology and mathematical physics, and nonlocal variational problems. The authors are some of the most well-known mathematicians in this innovative field, which is presently undergoing rapid development. The intended audience includes experts in elliptic and parabolic equations who are interested in extending their expertise to the nonlinear setting, as well as Ph.D. or postdoctoral students who want to enter into the most promising research topics in the field.
Numerically robust and efficient nonlocal electron transport in 2D DRACO simulations
Cao, Duc; Chenhall, Jeff; Moses, Greg; Delettrez, Jacques; Collins, Tim
2013-10-01
An improved implicit algorithm based on Schurtz, Nicolai and Busquet (SNB) algorithm for nonlocal electron transport is presented. Validation with direct drive shock timing experiments and verification with the Goncharov nonlocal model in 1D LILAC simulations demonstrate the viability of this efficient algorithm for producing 2D lagrangian radiation hydrodynamics direct drive simulations. Additionally, simulations provide strong incentive to further modify key parameters within the SNB theory, namely the ``mean free path.'' An example 2D polar drive simulation to study 2D effects of the nonlocal flux as well as mean free path modifications will also be presented. This research was supported by the University of Rochester Laboratory for Laser Energetics.
Non-local matrix generalizations of W-algebras
International Nuclear Information System (INIS)
Bilal, A.
1995-01-01
There is a standard way to define two symplectic (hamiltonian) structures, the first and second Gelfand-Dikii brackets, on the space of ordinary m th -order linear differential operators L=-d m +U 1 d m-1 +U 2 d m-2 +..+U m . In this paper, I consider in detail the case where the U k are nxn-matrix-valued functions, with particular emphasis on the (more interesting) second Gelfand-Dikii bracket. Of particular interest is the reduction to the symplectic submanifold U 1 =0. This reduction gives rise to matrix generalizations of (the classical version of) the non-linear W m -algebras, called V n,m -algebras. The non-commutativity of the matrices leads to non-local terms in these V n,m -algebras. I show that these algebras contain a conformal Virasoro subalgebra and that combinations W k of the U k can be formed that are nxn-matrices of conformally primary fields of spin k, in analogy with the scalar case n=1. In general however, the V m,n -algebras have a much richer structure than the W m -algebras as can be seen on the examples of the non-linear and non-local Poisson brackets {(U 2 ) ab (σ),(U 2 ) cd (σ')}, {(U 2 ) ab (σ),(W 3 ) cd (σ')} and {(W 3 ) ab (σ),(W 3 ) cd (σ')} which I work out explicitly for all m and n. A matrix Miura transformation is derived, mapping these complicated (second Gelfand-Dikii) brackets of the U k to a set of much simpler Poisson brackets, providing the analogue of the free-field representation of the W m -algebras. (orig.)
Local and non-local potentials for deuteron elastic scattering
International Nuclear Information System (INIS)
Ramirez, J.A.
1976-01-01
The nucleon--nucleus local potential (central and spin--orbit) and the deuteron--nucleus nonlocal potential (central, spin--orbit, spin--radial tensor) are calculated by the folding-model (FM). Simple analytic expressions are obtained for the nucleon--nucleus potential by the use of Gaussians to represent the nucleon--nucleus potential and the charge and mass densities of the target. The analytic expressions give qualitative descriptions of phenomenological nucleon--nucleus interactions. A systematic target--mass dependence of realistic local FM deueron potentials is also included. Local-equivalent, energy-dependent, deuteron potentials are obtained from the nonlocal FM deuteron potentials and the energy dependence of the local potential parameters are presented. The local FM deuteron potential is tested for 60 Ni(d,d) 60 Ni at E/sub α/ = 15 MeV by comparing the predictions of the FM potentials with data in which all five polarization moments were measured. A qualitative fit to the data is obtained, but it overestimates the volume integral of the central potential by 7%. Energy-dependence effects are estimated by evaluating the local-equivalent potentials at E/sub α/ = 30 MeV and comparing the predictions to the E/sub α/ = 15 MeV potentials. The energy dependence of the central potential dominates the angular dependence of all five observables while the energy dependence of the spin--orbit and tensor potentials produces only scale changes (approx. 3%) in the vector and tensor analyzing powers. The scattering formalism for a spin-1 on a spin-0 target nucleus, and a description of the coupled--channels computer code DDUNC1 which treats the spin--radial tensor potential exactly, are included
A non-local model analysis of heat pulse propagation
International Nuclear Information System (INIS)
Iwasaki, T.; Itoh, S.I.; Yagi, M.; Stroth, U.
1998-01-01
The anomalous transport in high temperature plasma has been studied for a long time, from the beginning of the fusion research. Since the electron channel in stellarators and tokamaks is clearly anomalous, it is of fundamental importance to investigate the electron heat diffusivity coefficient, χ e and to understand the physical mechanism. Recently, the experimental data for the transient transport of the heat pulse propagation in fusion plasma has been accumulated. An observation was reported on W7-AS which the heat flux changes faster than the change of the temperature profile, responding to the switching on off of the central heating power. The observation on the transient response has simulated the transport modeling, e.g., the critical marginality which implies the existence of a finite threshold in ∇T for the excitation of the turbulence, or the model in which the thermal conductivity is assumed to depend on the heating power. Extensive study is made by use of these models, and the critical marginally model seems to be insufficient to explain various transient transport. The rapid change of the plasma state and its hysteresis nature were successfully modeled by a heating-power-dependent model. The foundation of this model, however, is left for future work. The development of the transport modeling remains to be an urgent problem. In this paper, we investigate the role of the non-locality of the plasma transport in the study of the heat pulse propagation. For this purpose, a model equation is proposed, in which the non-local effect is taken into account in the heat flux. The properties of this model are investigated by performing a transport simulation. The organization of this paper is as follows: In Sec. II, the model equation is proposed and the properties of the model are explained. Using the model equation, the switching on off experiment is simulated in Sec. III. Summary and discussion are given in Sec. IV. (author)
International Nuclear Information System (INIS)
Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost
2015-01-01
Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance
Silaev, Mihail; Winyard, Thomas; Babaev, Egor
2018-05-01
The London model describes strongly type-2 superconductors as massive vector field theories, where the magnetic field decays exponentially at the length scale of the London penetration length. This also holds for isotropic multiband extensions, where the presence of multiple bands merely renormalizes the London penetration length. We show that, by contrast, the magnetic properties of anisotropic multiband London models are not this simple, and the anisotropy leads to the interband phase differences becoming coupled to the magnetic field. This results in the magnetic field in such systems having N +1 penetration lengths, where N is the number of field components or bands. That is, in a given direction, the magnetic field decay is described by N +1 modes with different amplitudes and different decay length scales. For certain anisotropies we obtain magnetic modes with complex masses. That means that magnetic field decay is not described by a monotonic exponential increment set by a real penetration length but instead is oscillating. Some of the penetration lengths are shown to diverge away from the superconducting phase transition when the mass of the phase-difference mode vanishes. Finally the anisotropy-driven hybridization of the London mode with the Leggett modes can provide an effectively nonlocal magnetic response in the nominally local London model. Focusing on the two-component model, we discuss the magnetic field inversion that results from the effective nonlocality, both near the surface of the superconductor and around vortices. In the regime where the magnetic field decay becomes nonmonotonic, the multiband London superconductor is shown to form weakly-bound states of vortices.
Nonlocal Coulomb interaction in the two-dimensional spin-1/2 ...
Indian Academy of Sciences (India)
Department of Physics, University of Kalyani, Kalyani 741 235, India. ∗. Corresponding author. .... The inclusion of nonlocal Coulomb interaction with t = −1 leads .... The authors are thankful to the University of Kalyani, India, for financial help.
The influence of nonlocal hybridization on ground-state properties of the Falicov-Kimball model
International Nuclear Information System (INIS)
Farkasovsky, Pavol
2005-01-01
The density matrix renormalization group is used to examine effects of nonlocal hybridization on ground-state properties of the Falicov-Kimball model (FKM) in one dimension. Special attention is devoted to the problem of hybridization-induced insulator-metal transition. It is shown that the picture of insulator-metal transitions found for the FKM with nonlocal hybridization strongly differs from one found for the FKM without hybridization (as well as with local hybridization). The effect of nonlocal hybridization is so strong that it can induce the insulator-metal transition, even in the half-filled band case where the ground states of the FKM without hybridization are insulating for all finite Coulomb interactions. Outside the half-filled band case the metal-insulator transition driven by pressure is found for finite values of nonlocal hybridization
Impact of nonlocal electron heat transport on the high temperature plasmas of LHD
International Nuclear Information System (INIS)
Tamura, N.; Inagaki, S.; Tokuzawa, T.
2006-10-01
Edge cooling experiments with a tracer-encapsulated solid pellet in the Large Helical Device (LHD) show a significant rise of core electron temperature (the maximum rise is around 1 keV) as well as in many tokamaks. This experimental result indicates the possible presence of the nonlocality of electron heat transport in plasmas where turbulence as a cause of anomalous transport is dominated. The nonlocal electron temperature rise in the LHD takes place in almost the same parametric domain (e.g. in a low density) as in the tokamaks. Meanwhile, the experimental results of LHD show some new aspects of nonlocal electron temperature rise, for example the delay of the nonlocal rise of core electron temperature relative to the pellet penetration time increases with the increase in collisionality in the core plasma and the decrease in electron temperature gradient scale length in the outer region of the plasma. (author)
The status and prospects of quantum non-local field theory
International Nuclear Information System (INIS)
Cornish, N.J.; Melbourne Univ., Parkville
1991-01-01
A critical review of the physical constraints on the form the non-locality can take is presented. The conclusion of this review is that non-locality must be restricted to interactions with the vacuum sea of virtual particles. A successful formulation of such a theory, Quantum Nonlocal Field Theory (QNFT), is applied to scalar electrodynamics and serves to illustrate how gauge invariance and manifest finiteness can be achieved. The importance of the infinite dimensional symmetry groups that occur in QNFT are discussed as an alternative to supersymmetry, the ability to generate masses by breaking the non-local symmetry with a non-invariant functional measure is given a critical assessment. To demonstrate some of the many novel applications QNFT may make possible, three disparate examples are mooted, the existence of electroweak monopoles, an mechanism for CP violation and the formulation of a finite perturbative theory of Quantum Gravity. 21 refs., ills
A practical nonlocal model for heat transport in magnetized laser plasmas
International Nuclear Information System (INIS)
Nicolaie, Ph.D.; Feugeas, J.-L.A.; Schurtz, G.P.
2006-01-01
A model of nonlocal transport for multidimensional radiation magnetohydrodynamics codes is presented. In laser produced plasmas, it is now believed that the heat transport can be strongly modified by the nonlocal nature of the electron conduction. Other mechanisms, such as self-generated magnetic fields, may also affect the heat transport. The model described in this work, based on simplified Fokker-Planck equations aims at extending the model of G. Schurtz, Ph. Nicolaie, and M. Busquet [Phys. Plasmas 7, 4238 (2000)] to magnetized plasmas. A complete system of nonlocal equations is derived from kinetic equations with self-consistent electric and magnetic fields. These equations are analyzed and simplified in order to be implemented into large laser fusion codes and coupled to other relevant physics. The model is applied to two laser configurations that demonstrate the main features of the model and point out the nonlocal Righi-Leduc effect in a multidimensional case
A practical nonlocal model for heat transport in magnetized laser plasmas
Nicolaï, Ph. D.; Feugeas, J.-L. A.; Schurtz, G. P.
2006-03-01
A model of nonlocal transport for multidimensional radiation magnetohydrodynamics codes is presented. In laser produced plasmas, it is now believed that the heat transport can be strongly modified by the nonlocal nature of the electron conduction. Other mechanisms, such as self-generated magnetic fields, may also affect the heat transport. The model described in this work, based on simplified Fokker-Planck equations aims at extending the model of G. Schurtz, Ph. Nicolaï, and M. Busquet [Phys. Plasmas 7, 4238 (2000)] to magnetized plasmas. A complete system of nonlocal equations is derived from kinetic equations with self-consistent electric and magnetic fields. These equations are analyzed and simplified in order to be implemented into large laser fusion codes and coupled to other relevant physics. The model is applied to two laser configurations that demonstrate the main features of the model and point out the nonlocal Righi-Leduc effect in a multidimensional case.
On the interplay between neoclassical tearing modes and nonlocal transport in toroidal plasmas
Ji, X. Q.; Xu, Y.; Hidalgo, C.; Diamond, P. H.; Liu, Yi; Pan, O.; Shi, Z. B.; Yu, D. L.
2016-09-01
This Letter presents the first observation on the interplay between nonlocal transport and neoclassical tearing modes (NTMs) during transient nonlocal heat transport events in the HL-2A tokamak. The nonlocality is triggered by edge cooling and large-scale, inward propagating avalanches. These lead to a locally enhanced pressure gradient at the q = 3/2 (or 2/1) rational surface and hence the onset of the NTM in relatively low β plasmas (βN < 1). The NTM, in return, regulates the nonlocal transport by truncation of avalanches by local sheared toroidal flows which develop near the magnetic island. These findings have direct implications for understanding the dynamic interaction between turbulence and large-scale mode structures in fusion plasmas.
DEFF Research Database (Denmark)
Wubs, Martijn; Yan, Wei; Amooghorban, Ehsan
2013-01-01
A well-known challenge for fabricating metamaterials is to make unit cells significantly smaller than the operating wavelength of light, so one can be sure that effective-medium theories apply. But do they apply? Here we show that nonlocal response in the metal constituents of the metamaterial...... leads to modified effective parameters for strongly subwavelength unit cells. For infinite hyperbolic metamaterials, nonlocal response gives a very large finite upper bound to the optical density of states that otherwise would diverge. Moreover, for finite hyperbolic metamaterials we show that nonlocal...... response affects their operation as superlenses, and interestingly that sometimes nonlocal theory predicts the better imaging. Finally, we discuss how to describe metamaterials effectively in quantum optics. Media with loss or gain have associated quantum noise, and the question is whether the effective...
Impact of nonlocal electron heat transport on the high temperature plasmas of LHD
International Nuclear Information System (INIS)
Tamura, N.; Inagaki, S.; Tanaka, K.; Michael, C.; Tokuzawa, T.; Shimozuma, T.; Kubo, S.; Sakamoto, R.; Ida, K.; Itoh, K.; Kalinina, D.; Sudo, S.; Nagayama, Y.; Kawahata, K.; Komori, A.
2007-01-01
Edge cooling experiments with a tracer-encapsulated solid pellet in the large helical device (LHD) show a significant rise in core electron temperature (the maximum rise is around 1 keV) as well as in many tokamaks. This experimental result indicates the possible presence of the nonlocality of electron heat transport in plasmas where turbulence as a cause of anomalous transport dominates. The nonlocal electron temperature rise in the LHD takes place in almost the same parametric domain (e.g. in a low density) as in the tokamaks. Meanwhile, the experimental results of LHD show some new aspects of nonlocal electron temperature rise, for example the delay in the nonlocal rise of core electron temperature relative to the pellet penetration time increases with the increase both in the collisionality in the core plasma and the electron temperature gradient scale length in the outer region of the plasma
Comment on ''Canonical formalism for Lagrangians with nonlocality of finite extent''
International Nuclear Information System (INIS)
Llosa, Josep
2003-01-01
The paper by Woodward [Phys. Rev. A 62, 052105 (2000)] claimed to have proved that Lagrangian theories with a nonlocality of finite extent are necessarily unstable. In this Comment we propose that this conclusion is false
Connecting Quantum Contextuality and Genuine Multipartite Nonlocality with the Quantumness Witness
International Nuclear Information System (INIS)
Chen Xu; Su Hong-Yi; Chen Jing-Ling
2016-01-01
The Clauser-Horne-Shimony-Holt-type noncontextuality inequality and the Svetlichny inequality are derived from the Alicki-van Ryn quantumness witness. Thus connections between quantumness and quantum contextuality, and between quantumness and genuine multipartite nonlocality are established. (paper)
Directory of Open Access Journals (Sweden)
Dhakne Machindra B.
2017-04-01
Full Text Available In this paper we discuss the existence of mild and strong solutions of abstract nonlinear mixed functional integrodifferential equation with nonlocal condition by using Sadovskii’s fixed point theorem and theory of fractional power of operators.
Surface-wave solitons between linear media and nonlocal nonlinear media
International Nuclear Information System (INIS)
Shi Zhiwei; Li Huagang; Guo Qi
2011-01-01
We address surface solitons at the interface between linear media and nonlocal nonlinear media in the presence of a discontinuity in refractive index at the surface of these two materials. We investigated the influence of the degree of nonlocality on the stability, energy flow, and full width at half-maximum of the surface wave solitons. It is shown that surface solitons will be stable only if the degree of nonlocality exceeds a critical value. We find that the refractive index difference can affect the power distribution of the surface solitons in the two media. Also, different boundary values at the interface can lead to different relative peak positions of the surface solitons. However, neither the refractive index nor the boundary conditions can affect the stability of the solitons, for a given degree of nonlocality.
Tripartite nonlocality for an open Dirac system in the background of Schwarzschild space-time
Ding, Zhi-Yong; Shi, Jia-Dong; Wu, Tao; He, Juan
2017-12-01
In this paper, the behavior of the tripartite nonlocality for a Dirac system in the background of Schwarzschild space-time is studied. It is shown that the nonlocality of the ultimate physical accessible state always decreases as the Hawking effect increases monotonically, which is independent of the number of particles located near the event horizon. Besides, the more particles there are located near the event horizon, the more difficult the violation of the Svetlichny inequality becomes. Furthermore, we investigate the property of these particles suffering from a non-Markovian environment, and derive that the nonlocality decreases quickly with the increasing decoherence time accompanied by damping revivals. To preserve tripartite nonlocality in the non-Markovian environment, we propose a scheme by means of prior weak measurement and post measurement reversal. It is worth noticing that the effect is better for larger measurement strengths, while it induces smaller success probability.
Nonlocal vibration of Y-shaped CNT conveying nano-magnetic viscous fluid under magnetic field
Directory of Open Access Journals (Sweden)
A. Ghorbanpour Arani
2015-06-01
Full Text Available This study deals with the vibration and stability analysis of a Y-shaped single-walled carbon nanotube (SWCNT embedded in visco-Pasternak foundation and conveying nano-magnetic viscous fluid (NMF based on nonlocal elasticity theory and Euler–Bernoulli beam model. The fluid is two-phases due to the existence of magnetic nanoparticles which its volume fraction is much little in comparison with the base fluid where the influence of 2D magnetic field is taken into account. Also, Knudsen number is used to correct the velocity profile of fluid. The Galerkin method is applied to solve the equation of motion which is obtained by employing Hamilton’s principle. The detail parametric study is conducted, focusing on the combined effects of carbon nanotube and Y-shaped junction fitted at the downstream end, fluid velocity, Knudsen number and elastic medium. The results indicate that increasing the angle between centerline of the CNT and the downstream elbows decreases stability of system.
Energy Technology Data Exchange (ETDEWEB)
Kudryavtsev, Anatoly A., E-mail: akud@ak2138.spb.edu [St. Petersburg State University, 7-9 Universitetskaya nab., 199034 St. Petersburg (Russian Federation); Stefanova, Margarita S.; Pramatarov, Petko M. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria)
2015-10-15
The collisional electron spectroscopy (CES) method, which lays the ground for a new field for analytical detection of gas impurities at high pressures, has been verified. The CES method enables the identification of gas impurities in the collisional mode of electron movement, where the advantages of nonlocal formation of the electron energy distribution function (EEDF) are fulfilled. Important features of dc negative glow microplasma and probe method for plasma diagnostics are applied. A new microplasma gas analyzer design is proposed. Admixtures of 0.2% Ar, 0.6% Kr, 0.1% N{sub 2}, and 0.05% CO{sub 2} are used as examples of atomic and molecular impurities to prove the possibility for detecting and identifying their presence in high pressure He plasma (50–250 Torr). The identification of the particles under analysis is made from the measurements of the high energy part of the EEDF, where maxima appear, resulting from the characteristic electrons released in Penning reactions of He metastable atoms with impurity particles. Considerable progress in the development of a novel miniature gas analyzer for chemical sensing in gas phase environments has been made.
Tripartite states' Bell-nonlocality sudden death in an environmental spin chain
International Nuclear Information System (INIS)
Liu Benqiong; Shao Bin; Zou Jian
2010-01-01
The tripartite nonlocality is investigated by the extent of violation of the Bell inequality in a three-qubit system coupled to an environmental Ising spin chain. In the weak-coupling region, we show that the tripartite Bell-inequality violations can be fully destroyed in a finite time under decoherence induced by the coupling with the spin environment. In addition, how the environment affects the Bell-nonlocality sudden death is demonstrated.
Observation of multi-channel non-local transport in J-TEXT plasmas
Shi, Yuejiang; Chen, Zhongyong; Yang, Zhoujun; Shi, Peng; Zhao, Kaijun; Diamond, Patrick H.; Kwon, JaeMin; Yan, Wei; Zhou, Hao; Pan, Xiaoming; Cheng, Zhifeng; Chen, Zhiping; Yang, SeongMoo; Zhang, Chi; Li, Da; Dong, Yunbo; Wang, Lu; Ding, YongHua; Liang, Yunfeng; Hahn, SangHee; Jhang, HoGun; Na, Yong-Su
2018-04-01
In cold pulse experiments in J-TEXT, not only are rapid electron temperature increases in the core observed, but also steep rises in the inner density are found. Moreover, some evidence of acceleration of the core toroidal rotation is also observed during the non-local transport process of electron temperature. These new findings of cold pulse experiments in J-TEXT suggest that turbulence spreading is a possible mechanism for the non-local transport dynamics.
Off-shell t-matrix for an exponential potential with non-local core interaction
International Nuclear Information System (INIS)
Sarkar, S.B.; Talukdar, B.; Chattarji, D.
1975-01-01
The wave function approach of Van Leeuwen and Reiner to the t-matrix is generalized to the case of a non-local potential. The transition matrix element for this potential is obtained. The results are used to compute the s-wave part of the t-matrix for a non-local square well potential combined with an outside exponential potential. (Auth.)
Gupta, Samit Kumar
2018-03-01
Dynamic wave localization phenomena draw fundamental and technological interests in optics and photonics. Based on the recently proposed (Ablowitz and Musslimani, 2013) continuous nonlocal nonlinear Schrödinger system with parity-time symmetric Kerr nonlinearity (PTNLSE), a numerical investigation has been carried out for two first order Peregrine solitons as the initial ansatz. Peregrine soliton, as an exact solution to the PTNLSE, evokes a very potent question: what effects does the interaction of two first order Peregrine solitons have on the overall optical field dynamics. Upon numerical computation, we observe the appearance of Kuznetsov-Ma (KM) soliton trains in the unbroken PT-phase when the initial Peregrine solitons are in phase. In the out of phase condition, it shows repulsive nonlinear waves. Quite interestingly, our study shows that within a specific range of the interval factor in the transverse co-ordinate there exists a string of high intensity well-localized Peregrine rogue waves in the PT unbroken phase. We note that the interval factor as well as the transverse shift parameter play important roles in the nonlinear interaction and evolution dynamics of the optical fields. This could be important in developing fundamental understanding of nonlocal non-Hermitian NLSE systems and dynamic wave localization behaviors.
Limits on nonlocal correlations from the structure of the local state space
International Nuclear Information System (INIS)
Janotta, Peter; Gogolin, Christian; Barrett, Jonathan; Brunner, Nicolas
2011-01-01
The outcomes of measurements on entangled quantum systems can be nonlocally correlated. However, while it is easy to write down toy theories allowing arbitrary nonlocal correlations, those allowed in quantum mechanics are limited. Quantum correlations cannot, for example, violate a principle known as macroscopic locality, which implies that they cannot violate Tsirelson's bound. This paper shows that there is a connection between the strength of nonlocal correlations in a physical theory and the structure of the state spaces of individual systems. This is illustrated by a family of models in which local state spaces are regular polygons, where a natural analogue of a maximally entangled state of two systems exists. We characterize the nonlocal correlations obtainable from such states. The family allows us to study the transition between classical, quantum and super-quantum correlations by varying only the local state space. We show that the strength of nonlocal correlations - in particular whether the maximally entangled state violates Tsirelson's bound or not-depends crucially on a simple geometric property of the local state space, known as strong self-duality. This result is seen to be a special case of a general theorem, which states that a broad class of entangled states in probabilistic theories-including, by extension, all bipartite classical and quantum states-cannot violate macroscopic locality. Finally, our results show that models exist that are locally almost indistinguishable from quantum mechanics, but can nevertheless generate maximally nonlocal correlations.
The Green’s functions for peridynamic non-local diffusion
Wang, L. J.; Xu, J. F.
2016-01-01
In this work, we develop the Green’s function method for the solution of the peridynamic non-local diffusion model in which the spatial gradient of the generalized potential in the classical theory is replaced by an integral of a generalized response function in a horizon. We first show that the general solutions of the peridynamic non-local diffusion model can be expressed as functionals of the corresponding Green’s functions for point sources, along with volume constraints for non-local diffusion. Then, we obtain the Green’s functions by the Fourier transform method for unsteady and steady diffusions in infinite domains. We also demonstrate that the peridynamic non-local solutions converge to the classical differential solutions when the non-local length approaches zero. Finally, the peridynamic analytical solutions are applied to an infinite plate heated by a Gauss source, and the predicted variations of temperature are compared with the classical local solutions. The peridynamic non-local diffusion model predicts a lower rate of variation of the field quantities than that of the classical theory, which is consistent with experimental observations. The developed method is applicable to general diffusion-type problems. PMID:27713658
International Nuclear Information System (INIS)
Sahmani, S.; Ansari, R.
2011-01-01
Buckling analysis of nanobeams is investigated using nonlocal continuum beam models of the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), and Levinson beam theory (LBT). To this end, Eringen's equations of nonlocal elasticity are incorporated into the classical beam theories for buckling of nanobeams with rectangular cross-section. In contrast to the classical theories, the nonlocal elastic beam models developed here have the capability to predict critical buckling loads that allowing for the inclusion of size effects. The values of critical buckling loads corresponding to four commonly used boundary conditions are obtained using state-space method. The results are presented for different geometric parameters, boundary conditions, and values of nonlocal parameter to show the effects of each of them in detail. Then the results are fitted with those of molecular dynamics simulations through a nonlinear least square fitting procedure to find the appropriate values of nonlocal parameter for the buckling analysis of nanobeams relevant to each type of nonlocal beam model and boundary conditions analysis
Energy Technology Data Exchange (ETDEWEB)
Sahmani, S.; Ansari, R. [University of Guilan, Rasht (Iran, Islamic Republic of)
2011-09-15
Buckling analysis of nanobeams is investigated using nonlocal continuum beam models of the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), and Levinson beam theory (LBT). To this end, Eringen's equations of nonlocal elasticity are incorporated into the classical beam theories for buckling of nanobeams with rectangular cross-section. In contrast to the classical theories, the nonlocal elastic beam models developed here have the capability to predict critical buckling loads that allowing for the inclusion of size effects. The values of critical buckling loads corresponding to four commonly used boundary conditions are obtained using state-space method. The results are presented for different geometric parameters, boundary conditions, and values of nonlocal parameter to show the effects of each of them in detail. Then the results are fitted with those of molecular dynamics simulations through a nonlinear least square fitting procedure to find the appropriate values of nonlocal parameter for the buckling analysis of nanobeams relevant to each type of nonlocal beam model and boundary conditions analysis.
Nonlocal Sediment Transport on Steep Lateral Moraines, Eastern Sierra Nevada, California, USA
Doane, Tyler H.; Furbish, David Jon; Roering, Joshua J.; Schumer, Rina; Morgan, Daniel J.
2018-01-01
Recent work has highlighted the significance of long-distance particle motions in hillslope sediment transport. Such motions imply that the flux at a given hillslope position is appropriately described as a weighted function of surrounding conditions that influence motions reaching the given position. Although the idea of nonlocal sediment transport is well grounded in theory, limited field evidence has been provided. We test local and nonlocal formulations of the flux and compare their ability to reproduce land surface profiles of steep moraines in California. We show that nonlocal and nonlinear models better reproduce evolved land surface profiles, notably the amount of lowering and concavity near the moraine crest and the lengthening and straightening of the depositional apron. The analysis provides the first estimates of key parameters that set sediment entrainment rates and travel distances in nonlocal formulations and highlights the importance of correctly specifying the entrainment rate when modeling land surface evolution. Moraine evolution associated with nonlocal and nonlinear transport formulations, when described in terms of the evolution of the Fourier transform of the moraine surface, displays a distinct behavior involving growth of certain wave numbers, in contrast to the decay of all wave numbers associated with linear transport. Nonlinear and nonlocal formulations share key mathematical elements yielding a nonlinear relation between the flux and the land surface slope.
Positronium annihilation in liquids in the framework of non-local interaction
International Nuclear Information System (INIS)
Mukherjee, Tapas; Dutta, Dhanadeep
2012-01-01
In the bubble model of ortho positronium (o-Ps) annihilation in liquid the origin of the trapping of o-Ps is the electron-exchange repulsive interaction between the electron of o-Ps and the electron of the medium. The corresponding effective interaction is non-local in nature. However, in the prevalent bubble model, this effective interaction is usually treated as local (model) potential (sharp or smooth). In the present study, we have taken an approach to consider this trapping interaction as non-local in nature, which is included through a model separable non-local function to tackle the problem in analytically solvable manner. The analytical calculations show that this non-local interaction effectively acts as a gauge potential in the energy of the Ps atom in parameter (bubble radius) space. The computed bubble variables obtained using experimental Ps annihilation data are shown. A comparison between the present data with the calculated results using prevalent bubble model has been presented. Discussions have been made on the input parameter dependencies of the computed data. - Highlights: ► Bubble model has been modified by considering positronium-atom non-local interaction. ► No straight forward correlation between bubble size and effective potential is observed. ► Non-local potential acts as a guage potential.
Hütter, Markus; Brader, Joseph M
2009-06-07
We examine the origins of nonlocality in a nonisothermal hydrodynamic formulation of a one-component fluid of particles that exhibit long-range correlations, e.g., due to a spherically symmetric, long-range interaction potential. In order to furnish the continuum modeling with physical understanding of the microscopic interactions and dynamics, we make use of systematic coarse graining from the microscopic to the continuum level. We thus arrive at a thermodynamically admissible and closed set of evolution equations for the densities of momentum, mass, and internal energy. From the consideration of an illustrative special case, the following main conclusions emerge. There are two different source terms in the momentum balance. The first is a body force, which in special circumstances can be related to the functional derivative of a nonlocal Helmholtz free energy density with respect to the mass density. The second source term is proportional to the temperature gradient, multiplied by the nonlocal entropy density. These two source terms combine into a pressure gradient only in the absence of long-range effects. In the irreversible contributions to the time evolution, the nonlocal contributions arise since the self-correlations of the stress tensor and heat flux, respectively, are nonlocal as a result of the microscopic nonlocal correlations. Finally, we point out specific points that warrant further discussions.
Interaction trajectory of solitons in nonlinear media with an arbitrary degree of nonlocality
International Nuclear Information System (INIS)
Dai, Zhiping; Yang, Zhenjun; Ling, Xiaohui; Zhang, Shumin; Pang, Zhaoguang
2016-01-01
The interaction trajectory of solitons in nonlocal nonlinear media is investigated. A simple differential equation describing the interaction trajectories is derived based on the light ray equation. Numerical calculations are carried out to illustrate the interaction trajectories with different parameters. The results show that the degree of nonlocality greatly affects the interaction of solitons. For a strongly nonlocal case, the interaction trajectory can be described by a cosine function. Analytical expressions describing the trajectory and the oscillation period are obtained. For generally and weakly nonlocal cases, the interaction trajectories still oscillate periodically, however it is no longer sinusoidal and the oscillation period increases with the nonlocal degree decreasing. In addition, the trajectory of two solitons launched with a relative angle at the entrance plane is investigated. It is found that there exists a critical angle. When the initial relative angle is larger than the critical angle, the two solitons do not collide on propagation. The influence of the degree of nonlocality on the critical angle is also discussed.
The nonlocal electron kinetics for a low-pressure glow discharge dusty plasma
Liang, Yonggan; Wang, Ying; Li, Hui; Tian, Ruihuan; Yuan, Chengxun; Kudryavtsev, A. A.; Rabadanov, K. M.; Wu, Jian; Zhou, Zhongxiang; Tian, Hao
2018-05-01
The nonlocal electron kinetic model based on the Boltzmann equation is developed in low-pressure argon glow discharge dusty plasmas. The additional electron-dust elastic and inelastic collision processes are considered when solving the kinetic equation numerically. The orbital motion limited theory and collision enhanced collection approximation are employed to calculate the dust surface potential. The electron energy distribution function (EEDF), effective electron temperature Teff, and dust surface potential are investigated under different plasma and dust conditions by solving the Boltzmann and the dust charging current balance equations self-consistently. A comparison of the calculation results obtained from nonlocal and local kinetic models is made. It is shown that the appearance of dust particles leads to a deviation of the EEDF from its original profile for both nonlocal and local kinetic models. With the increase in dust density and size, the effective electron temperature and dust surface potential decrease due to the high-energy electron loss on the dust surface. Meanwhile, the nonlocal and local results differ much from each other under the same calculation condition. It is concluded that, for low-pressure (PR ≤ 1 cm*Torr) glow discharge dusty plasmas, the existence of dust particles will amplify the difference of local and nonlocal EEDFs, which makes the local kinetic model more improper to determine the main parameters of the positive column. The nonlocal kinetic model should be used for the calculation of the EEDFs and dusty plasma parameters.
Discontinuity of maximum entropy inference and quantum phase transitions
International Nuclear Information System (INIS)
Chen, Jianxin; Ji, Zhengfeng; Yu, Nengkun; Zeng, Bei; Li, Chi-Kwong; Poon, Yiu-Tung; Shen, Yi; Zhou, Duanlu
2015-01-01
In this paper, we discuss the connection between two genuinely quantum phenomena—the discontinuity of quantum maximum entropy inference and quantum phase transitions at zero temperature. It is shown that the discontinuity of the maximum entropy inference of local observable measurements signals the non-local type of transitions, where local density matrices of the ground state change smoothly at the transition point. We then propose to use the quantum conditional mutual information of the ground state as an indicator to detect the discontinuity and the non-local type of quantum phase transitions in the thermodynamic limit. (paper)
HARDI denoising using nonlocal means on S2
Kuurstra, Alan; Dolui, Sudipto; Michailovich, Oleg
2012-02-01
Diffusion MRI (dMRI) is a unique imaging modality for in vivo delineation of the anatomical structure of white matter in the brain. In particular, high angular resolution diffusion imaging (HARDI) is a specific instance of dMRI which is known to excel in detection of multiple neural fibers within a single voxel. Unfortunately, the angular resolution of HARDI is known to be inversely proportional to SNR, which makes the problem of denoising of HARDI data be of particular practical importance. Since HARDI signals are effectively band-limited, denoising can be accomplished by means of linear filtering. However, the spatial dependency of diffusivity in brain tissue makes it impossible to find a single set of linear filter parameters which is optimal for all types of diffusion signals. Hence, adaptive filtering is required. In this paper, we propose a new type of non-local means (NLM) filtering which possesses the required adaptivity property. As opposed to similar methods in the field, however, the proposed NLM filtering is applied in the spherical domain of spatial orientations. Moreover, the filter uses an original definition of adaptive weights, which are designed to be invariant to both spatial rotations as well as to a particular sampling scheme in use. As well, we provide a detailed description of the proposed filtering procedure, its efficient implementation, as well as experimental results with synthetic data. We demonstrate that our filter has substantially better adaptivity as compared to a number of alternative methods.
Non-local correlations within dynamical mean field theory
Energy Technology Data Exchange (ETDEWEB)
Li, Gang
2009-03-15
The contributions from the non-local fluctuations to the dynamical mean field theory (DMFT) were studied using the recently proposed dual fermion approach. Straight forward cluster extensions of DMFT need the solution of a small cluster, where all the short-range correlations are fully taken into account. All the correlations beyond the cluster scope are treated in the mean-field level. In the dual fermion method, only a single impurity problem needs to be solved. Both the short and long-range correlations could be considered on equal footing in this method. The weak-coupling nature of the dual fermion ensures the validity of the finite order diagram expansion. The one and two particle Green's functions calculated from the dual fermion approach agree well with the Quantum Monte Carlo solutions, and the computation time is considerably less than with the latter method. The access of the long-range order allows us to investigate the collective behavior of the electron system, e.g. spin wave excitations. (orig.)
Probing the Chiral Anomaly via Nonlocal Transport in Weyl Semimetals
Parameswaran, Siddharth; Grover, Tarun; Vishwanath, Ashvin
2013-03-01
Weyl semimetals are three-dimensional analogs of graphene in which a pair of bands touch at points in momentum space, known as Weyl nodes. Electrons originating from a single Weyl node possess a definite topological charge, the chirality. Consequently, they exhibit the Adler-Jackiw-Bell anomaly, which in this condensed matter realization implies that application of parallel electric (E) and magnetic fields (B) pumps electrons between nodes of opposite chirality at a rate proportional to E . B . We argue that this pumping is measurable via transport experiments, in the limit of weak internode scattering. Specifically, we show that injecting a current in a Weyl semimetal subject to an E . B term leads to nonlocal features in transport. We acknowledge support of the Simons Foundation, NSF Grant PHY-1066293 and the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
Quantum chance nonlocality, teleportation and other quantum marvels
Gisin, Nicolas
2014-01-01
Quantum physics, which offers an explanation of the world on the smallest scale, has fundamental implications that pose a serious challenge to ordinary logic. Particularly counterintuitive is the notion of entanglement, which has been explored for the past 30 years and posits an ubiquitous randomness capable of manifesting itself simultaneously in more than one place. This amazing 'non-locality' is more than just an abstract curiosity or paradox: it has entirely down-to-earth applications in cryptography, serving for example to protect financial information; it also has enabled the demonstration of 'quantum teleportation', whose infinite possibilities even science-fiction writers can scarcely imagine. This delightful and concise exposition does not avoid the deep logical difficulties of quantum physics, but gives the reader the insights needed to appreciate them . From 'Bell's Theorem' to experiments in quantum entanglement, the reader will gain a solid understanding of one of the most fascinating ar...
QCD topological susceptibility from the nonlocal chiral quark model
Nam, Seung-Il; Kao, Chung-Wen
2017-06-01
We investigate the quantum chromodynamics (QCD) topological susceptibility χ by using the semi-bosonized nonlocal chiral-quark model (SB-NLχQM) for the leading large- N c contributions. This model is based on the liquid-instanton QCD-vacuum configuration, in which SU(3) flavor symmetry is explicitly broken by the finite current-quark mass ( m u,d, m s) ≈ (5, 135) MeV. To compute χ, we derive the local topological charge-density operator Q t( x) from the effective action of SB-NLχQM. We verify that the derived expression for χ in our model satisfies the Witten- Veneziano (WV) and the Leutwyler-Smilga (LS) formulae, and the Crewther theorem in the chiral limit by construction. Once the average instanton size and the inter-instanton distance are fixed with ρ¯ = 1/3 fm and R¯ = 1 fm, respectively, all the other parameters are determined self-consistently within the model. We obtain χ = (167.67MeV)4, which is comparable with the empirical value χ = (175±5MeV)4 whereas it turns out that χ QL = (194.30MeV)4 in the quenched limit. Thus, we conclude that the value of χ will be reduced around 10 20% by the dynamical-quark contribution.
Study on the nonlocality effects for generalized optical potentials
International Nuclear Information System (INIS)
Gurbanovich, I.S.; Zelenskaya, N.S.
1981-01-01
In previous studies the authors have ihown that the generalized optic potential (GOP) of particles interaction is a superposition of local and non local potentials (LP, NLP). On the example of α- particles scattering on the 8 Be nucleus at about 10-15 MeV the GOP nonlocal part is considered. For obtaining NLP the spectral decomposition of the Green function taking into account only contribution of relative motion of two α-particles in S-state is used. The locally-equivalent addition to central potential of α-particles scattering at 8 Be previously calculated is obtained. In a graphical form a total locally-equivalent potential and local GOP part are presented. It is shown that taking into account the nonlocallity effect in a locally energy approximation for precise wave function in S-state widen a potential hole without changing its depth. Such widening corresponds to the general character of behaviour of non local potentials calculated in the microscopic approach [ru
Non-Local Diffusion of Energetic Electrons during Solar Flares
Bian, N. H.; Emslie, G.; Kontar, E.
2017-12-01
The transport of the energy contained in suprathermal electrons in solar flares plays a key role in our understanding of many aspects of flare physics, from the spatial distributions of hard X-ray emission and energy deposition in the ambient atmosphere to global energetics. Historically the transport of these particles has been largely treated through a deterministic approach, in which first-order secular energy loss to electrons in the ambient target is treated as the dominant effect, with second-order diffusive terms (in both energy and angle) generally being either treated as a small correction or even neglected. Here, we critically analyze this approach, and we show that spatial diffusion through pitch-angle scattering necessarily plays a very significant role in the transport of electrons. We further show that a satisfactory treatment of the diffusion process requires consideration of non-local effects, so that the electron flux depends not just on the local gradient of the electron distribution function but on the value of this gradient within an extended region encompassing a significant fraction of a mean free path. Our analysis applies generally to pitch-angle scattering by a variety of mechanisms, from Coulomb collisions to turbulent scattering. We further show that the spatial transport of electrons along the magnetic field of a flaring loop can be modeled as a Continuous Time Random Walk with velocity-dependent probability distribution functions of jump sizes and occurrences, both of which can be expressed in terms of the scattering mean free path.
Black supernovae and black holes in non-local gravity
Energy Technology Data Exchange (ETDEWEB)
Bambi, Cosimo [Center for Field Theory and Particle Physics and Department of Physics, Fudan University,200433 Shanghai (China); Theoretical Astrophysics, Eberhard-Karls Universität Tübingen,72076 Tübingen (Germany); Malafarina, Daniele [Department of Physics, Nazarbayev University,010000 Astana (Kazakhstan); Modesto, Leonardo [Center for Field Theory and Particle Physics and Department of Physics, Fudan University,200433 Shanghai (China)
2016-04-22
In a previous paper, we studied the interior solution of a collapsing body in a non-local theory of gravity super-renormalizable at the quantum level. We found that the classical singularity is replaced by a bounce, after which the body starts expanding. A black hole, strictly speaking, never forms. The gravitational collapse does not create an event horizon but only an apparent one for a finite time. In this paper, we solve the equations of motion assuming that the exterior solution is static. With such an assumption, we are able to reconstruct the solution in the whole spacetime, namely in both the exterior and interior regions. Now the gravitational collapse creates an event horizon in a finite comoving time, but the central singularity is approached in an infinite time. We argue that these black holes should be unstable, providing a link between the scenarios with and without black holes. Indeed, we find a non catastrophic ghost-instability of the metric in the exterior region. Interestingly, under certain conditions, the lifetime of our black holes exactly scales as the Hawking evaporation time.
Pattern formation of a nonlocal, anisotropic interaction model
Burger, Martin
2017-11-24
We consider a class of interacting particle models with anisotropic, repulsive–attractive interaction forces whose orientations depend on an underlying tensor field. An example of this class of models is the so-called Kücken–Champod model describing the formation of fingerprint patterns. This class of models can be regarded as a generalization of a gradient flow of a nonlocal interaction potential which has a local repulsion and a long-range attraction structure. In contrast to isotropic interaction models the anisotropic forces in our class of models cannot be derived from a potential. The underlying tensor field introduces an anisotropy leading to complex patterns which do not occur in isotropic models. This anisotropy is characterized by one parameter in the model. We study the variation of this parameter, describing the transition between the isotropic and the anisotropic model, analytically and numerically. We analyze the equilibria of the corresponding mean-field partial differential equation and investigate pattern formation numerically in two dimensions by studying the dependence of the parameters in the model on the resulting patterns.
Pattern formation of a nonlocal, anisotropic interaction model
Burger, Martin; Dü ring, Bertram; Kreusser, Lisa Maria; Markowich, Peter A.; Schö nlieb, Carola-Bibiane
2017-01-01
We consider a class of interacting particle models with anisotropic, repulsive–attractive interaction forces whose orientations depend on an underlying tensor field. An example of this class of models is the so-called Kücken–Champod model describing the formation of fingerprint patterns. This class of models can be regarded as a generalization of a gradient flow of a nonlocal interaction potential which has a local repulsion and a long-range attraction structure. In contrast to isotropic interaction models the anisotropic forces in our class of models cannot be derived from a potential. The underlying tensor field introduces an anisotropy leading to complex patterns which do not occur in isotropic models. This anisotropy is characterized by one parameter in the model. We study the variation of this parameter, describing the transition between the isotropic and the anisotropic model, analytically and numerically. We analyze the equilibria of the corresponding mean-field partial differential equation and investigate pattern formation numerically in two dimensions by studying the dependence of the parameters in the model on the resulting patterns.
Non-local correlations within dynamical mean field theory
International Nuclear Information System (INIS)
Li, Gang
2009-03-01
The contributions from the non-local fluctuations to the dynamical mean field theory (DMFT) were studied using the recently proposed dual fermion approach. Straight forward cluster extensions of DMFT need the solution of a small cluster, where all the short-range correlations are fully taken into account. All the correlations beyond the cluster scope are treated in the mean-field level. In the dual fermion method, only a single impurity problem needs to be solved. Both the short and long-range correlations could be considered on equal footing in this method. The weak-coupling nature of the dual fermion ensures the validity of the finite order diagram expansion. The one and two particle Green's functions calculated from the dual fermion approach agree well with the Quantum Monte Carlo solutions, and the computation time is considerably less than with the latter method. The access of the long-range order allows us to investigate the collective behavior of the electron system, e.g. spin wave excitations. (orig.)
Front propagation and clustering in the stochastic nonlocal Fisher equation
Ganan, Yehuda A.; Kessler, David A.
2018-04-01
In this work, we study the problem of front propagation and pattern formation in the stochastic nonlocal Fisher equation. We find a crossover between two regimes: a steadily propagating regime for not too large interaction range and a stochastic punctuated spreading regime for larger ranges. We show that the former regime is well described by the heuristic approximation of the system by a deterministic system where the linear growth term is cut off below some critical density. This deterministic system is seen not only to give the right front velocity, but also predicts the onset of clustering for interaction kernels which give rise to stable uniform states, such as the Gaussian kernel, for sufficiently large cutoff. Above the critical cutoff, distinct clusters emerge behind the front. These same features are present in the stochastic model for sufficiently small carrying capacity. In the latter, punctuated spreading, regime, the population is concentrated on clusters, as in the infinite range case, which divide and separate as a result of the stochastic noise. Due to the finite interaction range, if a fragment at the edge of the population separates sufficiently far, it stabilizes as a new cluster, and the processes begins anew. The deterministic cutoff model does not have this spreading for large interaction ranges, attesting to its purely stochastic origins. We show that this mode of spreading has an exponentially small mean spreading velocity, decaying with the range of the interaction kernel.
Two-dimensional Yukawa interactions from nonlocal Proca quantum electrodynamics
Alves, Van Sérgio; Macrı, Tommaso; Magalhães, Gabriel C.; Marino, E. C.; Nascimento, Leandro O.
2018-05-01
We derive two versions of an effective model to describe dynamical effects of the Yukawa interaction among Dirac electrons in the plane. Such short-range interaction is obtained by introducing a mass term for the intermediate particle, which may be either scalar or an abelian gauge field, both of them in (3 +1 ) dimensions. Thereafter, we consider that the fermionic matter field propagates only in (2 +1 ) dimensions, whereas the bosonic field is free to propagate out of the plane. Within these assumptions, we apply a mechanism for dimensional reduction, which yields an effective model in (2 +1 ) dimensions. In particular, for the gauge-field case, we use the Stueckelberg mechanism in order to preserve gauge invariance. We refer to this version as nonlocal-Proca quantum electrodynamics (NPQED). For both scalar and gauge cases, the effective models reproduce the usual Yukawa interaction in the static limit. By means of perturbation theory at one loop, we calculate the mass renormalization of the Dirac field. Our model is a generalization of Pseudo quantum electrodynamics (PQED), which is a gauge-field model that provides a Coulomb interaction for two-dimensional electrons. Possibilities of application to Fermi-Bose mixtures in mixed dimensions, using cold atoms, are briefly discussed.
Path entanglement of photons by non-local bunching
International Nuclear Information System (INIS)
Eisenberg, H.; Hodelin, J.; Khoury, G.; Bouwmeester, D.
2005-01-01
Full Text:Path entangled photon states can be used to overcome classical limits on the accuracy of interferometric measurements such as the diffraction limit. These states are superpositions of finding n photons in one out of two (or more) paths. Using stimulated parametric down-conversion, we propose and demonstrate a method for generating heralded multiphoton path entanglement, without applying post-selection. parametric down-conversion is relatively easy to produce compared to pure Fock states as demanded by other proposals. By a special coincidence detection at one down converted arm, the photons of the second arm non-locally bunch into the desired state. Entanglement in photon number is created between two polarization modes rather than two paths. A polarization beam-splitter and a 2 wave plate can translate between the two representations. The experimental generation of a two-photon path entangled state was detected by observing interference at half the photon wavelength. The scheme is generally extendable to higher photon numbers
Revealing Bell's nonlocality for unstable systems in high energy physics
International Nuclear Information System (INIS)
Hiesmayr, Beatrix C.; Gabriel, Andreas; Huber, Marcus; Di Domenico, Antonio; Curceanu, Catalina; Larsson, Jan-Aake; Moskal, Pawel
2012-01-01
Entanglement and its consequences - in particular the violation of Bell inequalities, which defies our concepts of realism and locality - have been proven to play key roles in Nature by many experiments for various quantum systems. Entanglement can also be found in systems not consisting of ordinary matter and light, i.e. in massive meson-antimeson systems. Bell inequalities have been discussed for these systems, but up to date no direct experimental test to conclusively exclude local realism was found. This mainly stems from the fact that one only has access to a restricted class of observables and that these systems are also decaying. In this Letter we put forward a Bell inequality for unstable systems which can be tested at accelerator facilities with current technology. Herewith, the long awaited proof that such systems at different energy scales can reveal the sophisticated ''dynamical'' nonlocal feature of Nature in a direct experiment gets feasible. Moreover, the role of entanglement and CP violation, an asymmetry between matter and antimatter, is explored, a special feature offered only by these meson-antimeson systems. (orig.)
The Geometric Phase in Quantum Systems
International Nuclear Information System (INIS)
Pascazio, S
2003-01-01
The discovery of the geometric phase is one of the most interesting and intriguing findings of the last few decades. It led to a deeper understanding of the concept of phase in quantum mechanics and motivated a surge of interest in fundamental quantum mechanical issues, disclosing unexpected applications in very diverse fields of physics. Although the key ideas underlying the existence of a purely geometrical phase had already been proposed in 1956 by Pancharatnam, it was Michael Berry who revived this issue 30 years later. The clarity of Berry's seminal paper, in 1984, was extraordinary. Research on the topic flourished at such a pace that it became difficult for non-experts to follow the many different theoretical ideas and experimental proposals which ensued. Diverse concepts in independent areas of mathematics, physics and chemistry were being applied, for what was (and can still be considered) a nascent arena for theory, experiments and technology. Although collections of papers by different authors appeared in the literature, sometimes with ample introductions, surprisingly, to the best of my knowledge, no specific and exhaustive book has ever been written on this subject. The Geometric Phase in Quantum Systems is the first thorough book on geometric phases and fills an important gap in the physical literature. Other books on the subject will undoubtedly follow. But it will take a fairly long time before other authors can cover that same variety of concepts in such a comprehensive manner. The book is enjoyable. The choice of topics presented is well balanced and appropriate. The appendices are well written, understandable and exhaustive - three rare qualities. I also find it praiseworthy that the authors decided to explicitly carry out most of the calculations, avoiding, as much as possible, the use of the joke 'after a straightforward calculation, one finds...' This was one of the sentences I used to dislike most during my undergraduate studies. A student is
Various quantum nonlocality tests with a commercial two-photon entanglement source
International Nuclear Information System (INIS)
Pomarico, Enrico; Bancal, Jean-Daniel; Sanguinetti, Bruno; Rochdi, Anas; Gisin, Nicolas
2011-01-01
Nonlocality is a fascinating and counterintuitive aspect of nature, revealed by the violation of a Bell inequality. The standard and easiest configuration in which Bell inequalities can be measured has been proposed by Clauser-Horne-Shimony-Holt (CHSH). However, alternative nonlocality tests can also be carried out. In particular, Bell inequalities requiring multiple measurement settings can provide deeper fundamental insights about quantum nonlocality, as well as offering advantages in the presence of noise and detection inefficiency. In this paper we show how these nonlocality tests can be performed using a commercially available source of entangled photon pairs. We report the violation of a series of these nonlocality tests (I 3322 , I 4422 , and chained inequalities). With the violation of the chained inequality with 4 settings per side we put an upper limit at 0.49 on the local content of the states prepared by the source (instead of 0.63 attainable with CHSH). We also quantify the amount of true randomness that has been created during our experiment (assuming fair sampling of the detected events).
Bardhan, Jaydeep P; Knepley, Matthew G; Brune, Peter
2015-01-01
In this paper, we present an exact, infinite-series solution to Lorentz nonlocal continuum electrostatics for an arbitrary charge distribution in a spherical solute. Our approach relies on two key steps: (1) re-formulating the PDE problem using boundary-integral equations, and (2) diagonalizing the boundary-integral operators using the fact that their eigenfunctions are the surface spherical harmonics. To introduce this uncommon approach for calculations in separable geometries, we first re-derive Kirkwood's classic results for a protein surrounded concentrically by a pure-water ion-exclusion (Stern) layer and then a dilute electrolyte, which is modeled with the linearized Poisson-Boltzmann equation. The eigenfunction-expansion approach provides a computationally efficient way to test some implications of nonlocal models, including estimating the reasonable range of the nonlocal length-scale parameter λ. Our results suggest that nonlocal solvent response may help to reduce the need for very high dielectric constants in calculating pH-dependent protein behavior, though more sophisticated nonlocal models are needed to resolve this question in full. An open-source MATLAB implementation of our approach is freely available online.
Non-local correlation and quantum discord in two atoms in the non-degenerate model
International Nuclear Information System (INIS)
Mohamed, A.-B.A.
2012-01-01
By using geometric quantum discord (GQD) and measurement-induced nonlocality (MIN), quantum correlation is investigated for two atoms in the non-degenerate two-photon Tavis–Cummings model. It is shown that there is no asymptotic decay for MIN while asymptotic decay exists for GQD. Quantum correlations can be strengthened by introducing the dipole–dipole interaction. The evolvement period of quantum correlation gets shorter with the increase in the dipole–dipole parameter. It is found that there exists not only quantum nonlocality without entanglement but also quantum nonlocality without quantum discord. Also, the MIN and GQD are raised rather than entanglement, and also with weak initial entanglement, there are MIN and entanglement in a interval of death quantum discord. - Highlights: ► Geometric quantum discord (GQD) and measurement induced nonlocality (MIN) are used to investigate the correlations of two two-level atoms. ► There is no asymptotic decay for MIN while asymptotic decay exists for GQD. ► Quantum correlations can be strengthened by introducing the dipole–dipole interaction. ► There exists not only quantum nonlocality without entanglement but also without discord. ► Weak initial entanglement leads to MIN and entanglement in intervals of death discord.
Bardhan, Jaydeep P.; Knepley, Matthew G.; Brune, Peter
2015-01-01
In this paper, we present an exact, infinite-series solution to Lorentz nonlocal continuum electrostatics for an arbitrary charge distribution in a spherical solute. Our approach relies on two key steps: (1) re-formulating the PDE problem using boundary-integral equations, and (2) diagonalizing the boundary-integral operators using the fact that their eigenfunctions are the surface spherical harmonics. To introduce this uncommon approach for calculations in separable geometries, we first re-derive Kirkwood’s classic results for a protein surrounded concentrically by a pure-water ion-exclusion (Stern) layer and then a dilute electrolyte, which is modeled with the linearized Poisson–Boltzmann equation. The eigenfunction-expansion approach provides a computationally efficient way to test some implications of nonlocal models, including estimating the reasonable range of the nonlocal length-scale parameter λ. Our results suggest that nonlocal solvent response may help to reduce the need for very high dielectric constants in calculating pH-dependent protein behavior, though more sophisticated nonlocal models are needed to resolve this question in full. An open-source MATLAB implementation of our approach is freely available online. PMID:26273581
Foufoula-Georgiou, E.; Ganti, V. K.; Dietrich, W. E.
2009-12-01
Sediment transport on hillslopes can be thought of as a hopping process, where the sediment moves in a series of jumps. A wide range of processes shape the hillslopes which can move sediment to a large distance in the downslope direction, thus, resulting in a broad-tail in the probability density function (PDF) of hopping lengths. Here, we argue that such a broad-tailed distribution calls for a non-local computation of sediment flux, where the sediment flux is not only a function of local topographic quantities but is an integral flux which takes into account the upslope topographic “memory” of the point of interest. We encapsulate this non-local behavior into a simple fractional diffusive model that involves fractional (non-integer) derivatives. We present theoretical predictions from this nonlocal model and demonstrate a nonlinear dependence of sediment flux on local gradient, consistent with observations. Further, we demonstrate that the non-local model naturally eliminates the scale-dependence exhibited by any local (linear or nonlinear) sediment transport model. An extension to a 2-D framework, where the fractional derivative can be cast into a mixture of directional derivatives, is discussed together with the implications of introducing non-locality into existing landscape evolution models.
Multiqubit nonlocality in families of 3- and 4-qubit entangled states
Energy Technology Data Exchange (ETDEWEB)
Ghose, S; Debnath, S; Sinclair, N; Kabra, A [Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5 (Canada); Stock, R, E-mail: sghose@wlu.c [Department of Physics, University of Toronto, Ontario M5S 1A7 (Canada)
2010-11-07
We investigate genuine multiqubit nonlocality in families of entangled 3- and 4-qubit pure states by analyzing a Bell-type inequality that is violated only if all qubits are nonlocally correlated. We present detailed numerical studies of the relationship between entanglement and violation of the Svetlichny Bell-type inequality in an experimentally accessible set of 3-qubit pure states, and identify the special nonlocality property of the maximal slice states in the space of all 3-qubit pure states. We also analyze nonlocal correlations in 3-qubit generalized Greenberger-Horne-Zeilinger (GHZ) states and extend our analysis to the case of 4-qubit generalized GHZ states. We show that like the 3-qubit case, some 4-qubit generalized GHZ states do not violate a Bell inequality that tests for genuine 4-qubit nonlocality. Furthermore, the location of the boundary between the states that do violate the inequality and those that do not is the same for the 3- and 4-qubit generalized GHZ states.