Nonlinear effects in water waves
International Nuclear Information System (INIS)
Janssen, P.A.E.M.
1989-05-01
This set of lecture notes on nonlinear effects in water waves was written on the occasion of the first ICTP course on Ocean Waves and Tides held from 26 September until 28 October 1988 in Trieste, Italy. It presents a summary and unification of my knowledge on nonlinear effects of gravity waves on an incompressible fluid without vorticity. The starting point of the theory is the Hamiltonian for water waves. The evolution equations of both weakly nonlinear, shallow water and deep water gravity waves are derived by suitable approximation of the energy of the waves, resulting in the Korteweg-de Vries equation and the Zakharov equation, respectively. Next, interesting properties of the KdV equation (solitons) and the Zakharov equation (instability of a finite amplitude wave train) are discussed in some detail. Finally, the evolution of a homogeneous, random wave field due to resonant four wave processes is considered and the importance of this process for ocean wave prediction is pointed out. 38 refs, 21 figs
2016-01-01
This volume brings together four lecture courses on modern aspects of water waves. The intention, through the lectures, is to present quite a range of mathematical ideas, primarily to show what is possible and what, currently, is of particular interest. Water waves of large amplitude can only be fully understood in terms of nonlinear effects, linear theory being not adequate for their description. Taking advantage of insights from physical observation, experimental evidence and numerical simulations, classical and modern mathematical approaches can be used to gain insight into their dynamics. The book presents several avenues and offers a wide range of material of current interest. Due to the interdisciplinary nature of the subject, the book should be of interest to mathematicians (pure and applied), physicists and engineers. The lectures provide a useful source for those who want to begin to investigate how mathematics can be used to improve our understanding of water wave phenomena. In addition, some of the...
Nonlinear water waves: introduction and overview
Constantin, A.
2017-12-01
For more than two centuries progress in the study of water waves proved to be interdependent with innovative and deep developments in theoretical and experimental directions of investigation. In recent years, considerable progress has been achieved towards the understanding of waves of large amplitude. Within this setting one cannot rely on linear theory as nonlinearity becomes an essential feature. Various analytic methods have been developed and adapted to come to terms with the challenges encountered in settings where approximations (such as those provided by linear or weakly nonlinear theory) are ineffective. Without relying on simpler models, progress becomes contingent upon the discovery of structural properties, the exploitation of which requires a combination of creative ideas and state-of-the-art technical tools. The successful quest for structure often reveals unexpected patterns and confers aesthetic value on some of these studies. The topics covered in this issue are both multi-disciplinary and interdisciplinary: there is a strong interplay between mathematical analysis, numerical computation and experimental/field data, interacting with each other via mutual stimulation and feedback. This theme issue reflects some of the new important developments that were discussed during the programme `Nonlinear water waves' that took place at the Isaac Newton Institute for Mathematical Sciences (Cambridge, UK) from 31st July to 25th August 2017. A cross-section of the experts in the study of water waves who participated in the programme authored the collected papers. These papers illustrate the diversity, intensity and interconnectivity of the current research activity in this area. They offer new insight, present emerging theoretical methodologies and computational approaches, and describe sophisticated experimental results. This article is part of the theme issue 'Nonlinear water waves'.
An efficient flexible-order model for 3D nonlinear water waves
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Bingham, Harry B.; Lindberg, Ole
2009-01-01
The flexible-order, finite difference based fully nonlinear potential flow model described in [H.B. Bingham, H. Zhang, On the accuracy of finite difference solutions for nonlinear water waves, J. Eng. Math. 58 (2007) 211-228] is extended to three dimensions (3D). In order to obtain an optimal......, robustness and energy conservation are presented together with demonstrations of grid independent iteration count and optimal scaling of the solution effort. Calculations are made for 3D nonlinear wave problems for steep nonlinear waves and a shoaling problem which show good agreement with experimental...
Computation of nonlinear water waves with a high-order Boussinesq model
DEFF Research Database (Denmark)
Fuhrman, David R.; Madsen, Per A.; Bingham, Harry
2005-01-01
Computational highlights from a recently developed high-order Boussinesq model are shown. The model is capable of treating fully nonlinear waves (up to the breaking point) out to dimensionless depths of (wavenumber times depth) kh \\approx 25. Cases considered include the study of short......-crested waves in shallow/deep water, resulting in hexagonal/rectangular surface patterns; crescent waves, resulting from unstable perturbations of plane progressive waves; and highly-nonlinear wave-structure interactions. The emphasis is on physically demanding problems, and in eachcase qualitative and (when...
Energy Technology Data Exchange (ETDEWEB)
Chabchoub, A., E-mail: achabchoub@swin.edu.au [Centre for Ocean Engineering Science and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Kibler, B.; Finot, C.; Millot, G. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS, Université de Bourgogne, 21078 Dijon (France); Onorato, M. [Dipartimento di Fisica, Università degli Studi di Torino, Torino 10125 (Italy); Istituto Nazionale di Fisica Nucleare, INFN, Sezione di Torino, Torino 10125 (Italy); Dudley, J.M. [Institut FEMTO-ST, UMR 6174 CNRS- Université de Franche-Comté, 25030 Besançon (France); Babanin, A.V. [Centre for Ocean Engineering Science and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)
2015-10-15
The dynamics of waves in weakly nonlinear dispersive media can be described by the nonlinear Schrödinger equation (NLSE). An important feature of the equation is that it can be derived in a number of different physical contexts; therefore, analogies between different fields, such as for example fiber optics, water waves, plasma waves and Bose–Einstein condensates, can be established. Here, we investigate the similarities between wave propagation in optical Kerr media and water waves. In particular, we discuss the modulation instability (MI) in both media. In analogy to the water wave problem, we derive for Kerr-media the Benjamin–Feir index, i.e. a nondimensional parameter related to the probability of formation of rogue waves in incoherent wave trains.
Analysis of efficient preconditioned defect correction methods for nonlinear water waves
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter
2014-01-01
Robust computational procedures for the solution of non-hydrostatic, free surface, irrotational and inviscid free-surface water waves in three space dimensions can be based on iterative preconditioned defect correction (PDC) methods. Such methods can be made efficient and scalable to enable...... prediction of free-surface wave transformation and accurate wave kinematics in both deep and shallow waters in large marine areas or for predicting the outcome of experiments in large numerical wave tanks. We revisit the classical governing equations are fully nonlinear and dispersive potential flow...... equations. We present new detailed fundamental analysis using finite-amplitude wave solutions for iterative solvers. We demonstrate that the PDC method in combination with a high-order discretization method enables efficient and scalable solution of the linear system of equations arising in potential flow...
An efficient flexible-order model for 3D nonlinear water waves
Engsig-Karup, A. P.; Bingham, H. B.; Lindberg, O.
2009-04-01
The flexible-order, finite difference based fully nonlinear potential flow model described in [H.B. Bingham, H. Zhang, On the accuracy of finite difference solutions for nonlinear water waves, J. Eng. Math. 58 (2007) 211-228] is extended to three dimensions (3D). In order to obtain an optimal scaling of the solution effort multigrid is employed to precondition a GMRES iterative solution of the discretized Laplace problem. A robust multigrid method based on Gauss-Seidel smoothing is found to require special treatment of the boundary conditions along solid boundaries, and in particular on the sea bottom. A new discretization scheme using one layer of grid points outside the fluid domain is presented and shown to provide convergent solutions over the full physical and discrete parameter space of interest. Linear analysis of the fundamental properties of the scheme with respect to accuracy, robustness and energy conservation are presented together with demonstrations of grid independent iteration count and optimal scaling of the solution effort. Calculations are made for 3D nonlinear wave problems for steep nonlinear waves and a shoaling problem which show good agreement with experimental measurements and other calculations from the literature.
An efficient flexible-order model for 3D nonlinear water waves
International Nuclear Information System (INIS)
Engsig-Karup, A.P.; Bingham, H.B.; Lindberg, O.
2009-01-01
The flexible-order, finite difference based fully nonlinear potential flow model described in [H.B. Bingham, H. Zhang, On the accuracy of finite difference solutions for nonlinear water waves, J. Eng. Math. 58 (2007) 211-228] is extended to three dimensions (3D). In order to obtain an optimal scaling of the solution effort multigrid is employed to precondition a GMRES iterative solution of the discretized Laplace problem. A robust multigrid method based on Gauss-Seidel smoothing is found to require special treatment of the boundary conditions along solid boundaries, and in particular on the sea bottom. A new discretization scheme using one layer of grid points outside the fluid domain is presented and shown to provide convergent solutions over the full physical and discrete parameter space of interest. Linear analysis of the fundamental properties of the scheme with respect to accuracy, robustness and energy conservation are presented together with demonstrations of grid independent iteration count and optimal scaling of the solution effort. Calculations are made for 3D nonlinear wave problems for steep nonlinear waves and a shoaling problem which show good agreement with experimental measurements and other calculations from the literature
Identification of nonlinear coupling in wave turbulence at the surface of water
Campagne, Antoine; Hassaini, Roumaissa; Redor, Ivan; Aubourg, Quentin; Sommeria, Joël; Mordant, Nicolas
2017-11-01
The Weak Turbulence Theory is a theory, in the limit of vanishing nonlinearity, that derive analytically statistical features of wave turbulence. The stationary spectrum for the surface elevation in the case of gravity waves, is predicted to E(k) k - 5 / 2 . This spectral exponent -5/2 remains elusive in all experiments. in which the measured exponent is systematically lower than the prediction. Furthermore in the experiments the weaker the nonlinearity the further the spectral exponent is from the prediction. In order to investigate the reason for this observation we developed an experiment in the CORIOLIS facility in Grenoble. It is a 13m-diameter circular pool filled with water with a 70 cm depth. We generate wave turbulence by using two wedge wavemakers. Surface elevation measurements are performed by a stereoscopic optical technique and by capacitive probes. The nonlinear coupling at work in this system are analyzed by computing 3- and 4-wave correlations of the Fourier wave amplitudes in frequency. Theory predicts that coupling should occur through 4-wave resonant interaction. In our data, strong 3-wave correlations are observed in addition to the 4-wave correlation. Most our observations are consistent with field observation in the Black Sea (Leckler et al. 2015). This project has received funding from the European Research Council (ERC, Grant Agreement No 647018-WATU).
Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes
DEFF Research Database (Denmark)
Zhang, H.W.; Schäffer, Hemming Andreas
2007-01-01
An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoe unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done...... by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application....
Nonlinear wave collapse and strong turbulence
International Nuclear Information System (INIS)
Robinson, P.A.
1997-01-01
The theory and applications of wave self-focusing, collapse, and strongly nonlinear wave turbulence are reviewed. In the last decade, the theory of these phenomena and experimental realizations have progressed rapidly. Various nonlinear wave systems are discussed, but the simplest case of collapse and strong turbulence of Langmuir waves in an unmagnetized plasma is primarily used in explaining the theory and illustrating the main ideas. First, an overview of the basic physics of linear waves and nonlinear wave-wave interactions is given from an introductory perspective. Wave-wave processes are then considered in more detail. Next, an introductory overview of the physics of wave collapse and strong turbulence is provided, followed by a more detailed theoretical treatment. Later sections cover numerical simulations of Langmuir collapse and strong turbulence and experimental applications to space, ionospheric, and laboratory plasmas, including laser-plasma and beam-plasma interactions. Generalizations to self-focusing, collapse, and strong turbulence of waves in other systems are also discussed, including nonlinear optics, solid-state systems, magnetized auroral and astrophysical plasmas, and deep-water waves. The review ends with a summary of the main ideas of wave collapse and strong-turbulence theory, a collection of open questions in the field, and a brief discussion of possible future research directions. copyright 1997 The American Physical Society
A stabilised nodal spectral element method for fully nonlinear water waves
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Eskilsson, C.; Bigoni, Daniele
2016-01-01
can cause severe aliasing problems and consequently numerical instability for marginally resolved or very steep waves. We show how the scheme can be stabilised through a combination of over-integration of the Galerkin projections and a mild spectral filtering on a per element basis. This effectively......We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al. (1998) [5], although...... the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global L2 projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions...
Linear superposition solutions to nonlinear wave equations
International Nuclear Information System (INIS)
Liu Yu
2012-01-01
The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic, triangle, and exponential functions, and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics. The linear superposition solutions to the generalized KdV equation K(2,2,1), the Oliver water wave equation, and the k(n, n) equation are given. The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed, and the reason why the solutions with the forms of hyperbolic, triangle, and exponential functions can form the linear superposition solutions is also discussed
Nonlinear elastic waves in materials
Rushchitsky, Jeremiah J
2014-01-01
The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...
Nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating embedded in water
Energy Technology Data Exchange (ETDEWEB)
Jiménez, N.; Picó, R. [Instituto de Investigación para la Gestión Integrada de zonas Costeras, Universitat Politècnica de València, Paranimf 1, 46730 Grao de Gandia, València (Spain); Romero-García, V. [LUNAM Université, Université du Maine, LAUM UMR CNRS 6613, Av. O. Messiaen, 72085 Le Mans (France); Garcia-Raffi, L. M. [Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 València (Spain); Staliunas, K. [ICREA, Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom, 11, E-08222 Terrassa, Barcelona (Spain)
2015-11-16
We report the nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating immersed in water. In the linear regime, the system presents high focal gain (32 dB), with a narrow beam-width and intense side lobes as it is common in focusing by Fresnel-like lenses. Activating the nonlinearity of the host medium by using high amplitude incident waves, the focusing properties of the lens dramatically change. Theoretical predictions show that the focal gain of the system extraordinary increases in the strongly nonlinear regime (Mach number of 6.1 × 10{sup −4}). Particularly, the harmonic generation is locally activated at the focal spot, and the second harmonic beam is characterized by strongly reduced side-lobes and an excellent beam profile as experiments show in agreement with theory. The results can motivate applications in medical therapy or second harmonic imaging.
A Fast GPU-accelerated Mixed-precision Strategy for Fully NonlinearWater Wave Computations
DEFF Research Database (Denmark)
Glimberg, Stefan Lemvig; Engsig-Karup, Allan Peter; Madsen, Morten G.
2011-01-01
We present performance results of a mixed-precision strategy developed to improve a recently developed massively parallel GPU-accelerated tool for fast and scalable simulation of unsteady fully nonlinear free surface water waves over uneven depths (Engsig-Karup et.al. 2011). The underlying wave......-preconditioned defect correction method. The improved strategy improves the performance by exploiting architectural features of modern GPUs for mixed precision computations and is tested in a recently developed generic library for fast prototyping of PDE solvers. The new wave tool is applicable to solve and analyze...
A third-order asymptotic solution of nonlinear standing water waves in Lagrangian coordinates
International Nuclear Information System (INIS)
Yang-Yih, Chen; Hung-Chu, Hsu
2009-01-01
Asymptotic solutions up to third-order which describe irrotational finite amplitude standing waves are derived in Lagrangian coordinates. The analytical Lagrangian solution that is uniformly valid for large times satisfies the irrotational condition and the pressure p = 0 at the free surface, which is in contrast with the Eulerian solution existing under a residual pressure at the free surface due to Taylor's series expansion. In the third-order Lagrangian approximation, the explicit parametric equation and the Lagrangian wave frequency of water particles could be obtained. In particular, the Lagrangian mean level of a particle motion that is a function of vertical label is found as a part of the solution which is different from that in an Eulerian description. The dynamic properties of nonlinear standing waves in water of a finite depth, including particle trajectory, surface profile and wave pressure are investigated. It is also shown that the Lagrangian solution is superior to an Eulerian solution of the same order for describing the wave shape and the kinematics above the mean water level. (general)
Modeling the SAR Signature of Nonlinear Internal Waves
National Research Council Canada - National Science Library
Lettvin, Ellen E
2008-01-01
Nonlinear Internal Waves are pervasive globally, particularly in coastal waters. The currents and displacements associated with internal waves influence acoustic propagation and underwater navigation, as well as ocean transport and mixing...
Generation of Caustics and Rogue Waves from Nonlinear Instability.
Safari, Akbar; Fickler, Robert; Padgett, Miles J; Boyd, Robert W
2017-11-17
Caustics are phenomena in which nature concentrates the energy of waves and may exhibit rogue-type behavior. Although they are known mostly in optics, caustics are intrinsic to all wave phenomena. As we demonstrate in this Letter, the formation of caustics and consequently rogue events in linear systems requires strong phase fluctuations. We show that nonlinear phase shifts can generate sharp caustics from even small fluctuations. Moreover, in that the wave amplitude increases dramatically in caustics, nonlinearity is usually inevitable. We perform an experiment in an optical system with Kerr nonlinearity, simulate the results based on the nonlinear Schrödinger equation, and achieve perfect agreement. As the same theoretical framework is used to describe other wave systems such as large-scale water waves, our results may also aid the understanding of ocean phenomena.
Propagation of nonlinear waves over submerged step: wave separation and subharmonic generation
Monsalve, Eduardo; Maurel, Agnes; Pagneux, Vincent; Petitjeans, Philippe
2015-11-01
Water waves can be described in simplified cases by the Helmholtz equation. However, even in these cases, they present a high complexity, among which their dispersive character and their nonlinearities are the subject of the present study. Using Fourier Transform Profilometry, we study experimentally the propagation of waves passing over a submerged step. Because of the small water depth after the step, the wave enters in a nonlinear regime. In the shallow water region, the second harmonic leads to two types of waves: bound waves which are slaves of the fundamental frequency with wavenumber 2 k (ω) , and free waves which propagate according to the usual dispersion relation with wavenumber k (2 ω) . Because of the presence of these two waves, beats are produced at the second harmonic with characteristic beat length. In this work, for the first time we extended this analysis to the third and higher harmonics. Next, the region after the step is limited to a finite size L with a reflecting wall. For certain frequencies and L- values, the spectral component becomes involved, with the appearance of sub harmonics. This regime is analyzed in more details, suggesting a transition to a chaotic and quasi-periodic wave behavior.
DEFF Research Database (Denmark)
Stroescu, Ionut Emanuel; Sørensen, Lasse; Frigaard, Peter Bak
2016-01-01
A non-linear stretching method was implemented for stream function theory to solve wave kinematics for physical conditions close to breaking waves in shallow waters, with wave heights limited by the water depth. The non-linear stretching method proves itself robust, efficient and fast, showing good...
Optical tsunamis: shoaling of shallow water rogue waves in nonlinear fibers with normal dispersion
International Nuclear Information System (INIS)
Wabnitz, Stefan
2013-01-01
In analogy with ocean waves running up towards the beach, shoaling of pre-chirped optical pulses may occur in the normal group-velocity dispersion regime of optical fibers. We present exact Riemann wave solutions of the optical shallow water equations and show that they agree remarkably well with the numerical solutions of the nonlinear Schrödinger equation, at least up to the point where a vertical pulse front develops. We also reveal that extreme wave events or optical tsunamis may be generated in dispersion tapered fibers in the presence of higher-order dispersion. (paper)
A nonlinear model for the fluidization of marine mud by waves
Energy Technology Data Exchange (ETDEWEB)
Foda, M.A.; Hunt, J.R.; Chou, Hsien-Ter (Univ. of California, Berkeley (United States))
1993-04-15
The authors consider the problem of fluidization of mud deposits in shallow waters due to interactions with water waves. This is of increasing interest because of concerns that water pollutants, including heavy metals, pesticides, etc., are often found near surfaces of mud deposits. The authors look at the question of whether the cohesive properties of mud deposits exhibit nonlinear properties when they experience strains from water wave interactions. It is obvious that with large enough wave interactions the deposits become fluidized, and are not in that case truly nonlinear. In their modeling efforts they try to incorporate these ideas into a cohesive model where the magnitude of the water wave-sediment interaction has an influence on the type of response within the system.
Rogue waves in nonlinear science
International Nuclear Information System (INIS)
Yan Zhenya
2012-01-01
Rogue waves, as a special type of solitary waves, play an important role in nonlinear optics, Bose-Einstein condensates, ocean, atmosphere, and even finance. In this report, we mainly review on the history of the rogue wave phenomenon and recent development of rogue wave solutions in some nonlinear physical models arising in the fields of nonlinear science.
Collapse of nonlinear Langmuir waves
International Nuclear Information System (INIS)
Malkin, V.M.
1986-01-01
The dispersion of sufficiently intensive Langmuir waves is determined by intrinsic (electron) nonlinearity. During Langmuir collapse the wave energy density required for the appearance of electron nonlinearity is attained, generally speaking, prior to the development of dissipative processes. Up to now, the effect of electron nonlinearity on the collapse dynamics and spectrum of strong Langmuir turbulence ( which may be very appreciable ) has not been studied extensively because of the difficulty of describing nonlinear Langmuir waves. In the present paper the positive determinacy of the electron nonlinear hamiltonian is proven, the increment of modulation instability of a nonlinear Langmuir wave cluster localized in a cavity is calculated, and the universal law of their collapse is found
Nonlinear surface Alfven waves
International Nuclear Information System (INIS)
Cramer, N.F.
1991-01-01
The problem of nonlinear surface Alfven waves propagating on an interface between a plasma and a vacuum is discussed, with dispersion provided by the finite-frequency effect, i.e. the finite ratio of the frequency to the ion-cyclotron frequency. A set of simplified nonlinear wave equations is derived using the method of stretched co-ordinates, and another approach uses the generation of a second-harmonic wave and its interaction with the first harmonic to obtain a nonlinear dispersion relation. A nonlinear Schroedinger equation is then derived, and soliton solutions found that propagate as solitary pulses in directions close to parallel and antiparallel to the background magnetic field. (author)
Non-dispersive traveling waves in inclined shallow water channels
International Nuclear Information System (INIS)
Didenkulova, Ira; Pelinovsky, Efim
2009-01-01
Existence of traveling waves propagating without internal reflection in inclined water channels of arbitrary slope is demonstrated. It is shown that traveling non-monochromatic waves exist in both linear and nonlinear shallow water theories in the case of a uniformly inclined channel with a parabolic cross-section. The properties of these waves are studied. It is shown that linear traveling waves should have a sign-variable shape. The amplitude of linear traveling waves in a channel satisfies the same Green's law, which is usually derived from the energy flux conservation for smoothly inhomogeneous media. Amplitudes of nonlinear traveling waves deviate from the linear Green's law, and the behavior of positive and negative amplitudes are different. Negative amplitude grows faster than positive amplitude in shallow water. The phase of nonlinear waves (travel time) is described well by the linear WKB approach. It is shown that nonlinear traveling waves of any amplitude always break near the shoreline if the boundary condition of the full absorption is applied.
Wave transmission in nonlinear lattices
International Nuclear Information System (INIS)
Hennig, D.; Tsironis, G.P.
1999-01-01
The interplay of nonlinearity with lattice discreteness leads to phenomena and propagation properties quite distinct from those appearing in continuous nonlinear systems. For a large variety of condensed matter and optics applications the continuous wave approximation is not appropriate. In the present review we discuss wave transmission properties in one dimensional nonlinear lattices. Our paradigmatic equations are discrete nonlinear Schroedinger equations and their study is done through a dynamical systems approach. We focus on stationary wave properties and utilize well known results from the theory of dynamical systems to investigate various aspects of wave transmission and wave localization. We analyze in detail the more general dynamical system corresponding to the equation that interpolates between the non-integrable discrete nonlinear Schroedinger equation and the integrable Albowitz-Ladik equation. We utilize this analysis in a nonlinear Kronig-Penney model and investigate transmission and band modification properties. We discuss the modifications that are effected through an electric field and the nonlinear Wannier-Stark localization effects that are induced. Several applications are described, such as polarons in one dimensional lattices, semiconductor superlattices and one dimensional nonlinear photonic band gap systems. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)
International Nuclear Information System (INIS)
Adcock, T. A. A.; Taylor, P. H.
2016-01-01
The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest which leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum
On the pressure field of nonlinear standing water waves
Schwartz, L. W.
1980-01-01
The pressure field produced by two dimensional nonlinear time and space periodic standing waves was calculated as a series expansion in the wave height. The high order series was summed by the use of Pade approximants. Calculations included the pressure variation at great depth, which was considered to be a likely cause of microseismic activity, and the pressure distribution on a vertical barrier or breakwater.
Separation of variables for the nonlinear wave equation in polar coordinates
International Nuclear Information System (INIS)
Shermenev, Alexander
2004-01-01
Some classical types of nonlinear wave motion in polar coordinates are studied within quadratic approximation. When the nonlinear quadratic terms in the wave equation are arbitrary, the usual perturbation techniques used in polar coordinates leads to overdetermined systems of linear algebraic equations for the unknown coefficients. However, we show that these overdetermined systems are compatible with the special case of the nonlinear shallow water equation and express explicitly the coefficients of the first two harmonics as polynomials of the Bessel functions of radius and of the trigonometric functions of angle. It gives a series of solutions to the nonlinear shallow water equation that are periodic in time and found with the same accuracy as the equation is derived
Modelization of highly nonlinear waves in coastal regions
Gouin, Maïté; Ducrozet, Guillaume; Ferrant, Pierre
2015-04-01
The proposed work deals with the development of a highly non-linear model for water wave propagation in coastal regions. The accurate modelization of surface gravity waves is of major interest in ocean engineering, especially in the field of marine renewable energy. These marine structures are intended to be settled in coastal regions where the effect of variable bathymetry may be significant on local wave conditions. This study presents a numerical model for the wave propagation with complex bathymetry. It is based on High-Order Spectral (HOS) method, initially limited to the propagation of non-linear wave fields over flat bottom. Such a model has been developed and validated at the LHEEA Lab. (Ecole Centrale Nantes) over the past few years and the current developments will enlarge its application range. This new numerical model will keep the interesting numerical properties of the original pseudo-spectral approach (convergence, efficiency with the use of FFTs, …) and enable the possibility to propagate highly non-linear wave fields over long time and large distance. Different validations will be provided in addition to the presentation of the method. At first, Bragg reflection will be studied with the proposed approach. If the Bragg condition is satisfied, the reflected wave generated by a sinusoidal bottom patch should be amplified as a result of resonant quadratic interactions between incident wave and bottom. Comparisons will be provided with experiments and reference solutions. Then, the method will be used to consider the transformation of a non-linear monochromatic wave as it propagates up and over a submerged bar. As the waves travel up the front slope of the bar, it steepens and high harmonics are generated due to non-linear interactions. Comparisons with experimental data will be provided. The different test cases will assess the accuracy and efficiency of the method proposed.
Li, Tatsien
2017-01-01
This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.
Water waves generated by underwater explosion
Mehaute, Bernard Le
1996-01-01
This is the first book on explosion-generated water waves. It presents the theoretical foundations and experimental results of the generation and propagation of impulsively generated waves resulting from underwater explosions. Many of the theories and concepts presented herein are applicable to other types of water waves, in particular, tsunamis and waves generated by the fall of a meteorite. Linear and nonlinear theories, as well as experimental calibrations, are presented for cases of deep and shallow water explosions. Propagation of transient waves on dissipative, nonuniform bathymetries to
Nonlinear waves in solar plasmas - a review
International Nuclear Information System (INIS)
Ballai, I
2006-01-01
Nonlinearity is a direct consequence of large scale dynamics in the solar plasmas. When nonlinear steepening of waves is balanced by dispersion, solitary waves are generated. In the vicinity of resonances, waves can steepen into nonlinear waves influencing the efficiency of energy deposition. Here we review recent theoretical breakthroughs that have lead to a greater understanding of many aspects of nonlinear waves arising in homogeneous and inhomogeneous solar plasmas
Nonlinear modulation of ionization waves
International Nuclear Information System (INIS)
Bekki, Naoaki
1981-01-01
In order to investigate the nonlinear characteristics of ionization waves (moving-striations) in the positive column of glow discharge, a nonlinear modulation of ionization waves in the region of the Pupp critical current is analysed by means of the reductive perturbation method. The modulation of ionization waves is described by a nonlinear Schroedinger type equation. The coefficients of the equation are evaluated using the data of the low pressure Argon-discharge, and the simple solutions (plane wave and envelope soliton type solutions) are presented. Under a certain condition an envelope soliton is propagated through the positive column. (author)
Nonlinear lattice waves in heterogeneous media
International Nuclear Information System (INIS)
Laptyeva, T V; Ivanchenko, M V; Flach, S
2014-01-01
We discuss recent advances in the understanding of the dynamics of nonlinear lattice waves in heterogeneous media, which enforce complete wave localization in the linear wave equation limit, especially Anderson localization for random potentials, and Aubry–André localization for quasiperiodic potentials. Additional nonlinear terms in the wave equations can either preserve the phase-coherent localization of waves, or destroy it through nonintegrability and deterministic chaos. Spreading wave packets are observed to show universal features in their dynamics which are related to properties of nonlinear diffusion equations. (topical review)
Periodic waves in nonlinear metamaterials
International Nuclear Information System (INIS)
Liu, Wen-Jun; Xiao, Jing-Hua; Yan, Jie-Yun; Tian, Bo
2012-01-01
Periodic waves are presented in this Letter. With symbolic computation, equations for monochromatic waves are studied, and analytic periodic waves are obtained. Factors affecting properties of periodic waves are analyzed. Nonlinear metamaterials, with the continuous distribution of the dielectric permittivity obtained, are different from the ones with the discrete distribution. -- Highlights: ► Equations for the monochromatic waves in transverse magnetic polarization have been studied. ► Analytic periodic waves for the equations have been obtained. ► Periodic waves are theoretically presented and studied in the nonlinear metamaterials.
Nonlinear wave forces on large ocean structures
Huang, Erick T.
1993-04-01
This study explores the significance of second-order wave excitations on a large pontoon and tests the feasibility of reducing a nonlinear free surface problem by perturbation expansions. A simulation model has been developed based on the perturbation expansion technique to estimate the wave forces. The model uses a versatile finite element procedure for the solution of the reduced linear boundary value problems. This procedure achieves a fair compromise between computation costs and physical details by using a combination of 2D and 3D elements. A simple hydraulic model test was conducted to observe the wave forces imposed on a rectangle box by Cnoidal waves in shallow water. The test measurements are consistent with the numerical predictions by the simulation model. This result shows favorable support to the perturbation approach for estimating the nonlinear wave forces on shallow draft vessels. However, more sophisticated model tests are required for a full justification. Both theoretical and experimental results show profound second-order forces that could substantially impact the design of ocean facilities.
Nonlinear waves and pattern dynamics
Pelinovsky, Efim; Mutabazi, Innocent
2018-01-01
This book addresses the fascinating phenomena associated with nonlinear waves and spatio-temporal patterns. These appear almost everywhere in nature from sand bed forms to brain patterns, and yet their understanding still presents fundamental scientific challenges. The reader will learn here, in particular, about the current state-of-the art and new results in: Nonlinear water waves: resonance, solitons, focusing, Bose-Einstein condensation, as well as and their relevance for the sea environment (sea-wind interaction, sand bed forms, fiber clustering) Pattern formation in non-equilibrium media: soap films, chimera patterns in oscillating media, viscoelastic Couette-Taylor flow, flow in the wake behind a heated cylinder, other pattern formation. The editors and authors dedicate this book to the memory of Alexander Ezersky, Professor of Fluid Mechanics at the University of Caen Normandie (France) from September 2007 to July 2016. Before 2007, he had served as a Senior Scientist at the Institute of Applied Physi...
Nonlinear waves and weak turbulence
Zakharov, V E
1997-01-01
This book is a collection of papers on dynamical and statistical theory of nonlinear wave propagation in dispersive conservative media. Emphasis is on waves on the surface of an ideal fluid and on Rossby waves in the atmosphere. Although the book deals mainly with weakly nonlinear waves, it is more than simply a description of standard perturbation techniques. The goal is to show that the theory of weakly interacting waves is naturally related to such areas of mathematics as Diophantine equations, differential geometry of waves, Poincaré normal forms, and the inverse scattering method.
Nonlinear attenuation of S-waves and Love waves within ambient rock
Sleep, Norman H.; Erickson, Brittany A.
2014-04-01
obtain scaling relationships for nonlinear attenuation of S-waves and Love waves within sedimentary basins to assist numerical modeling. These relationships constrain the past peak ground velocity (PGV) of strong 3-4 s Love waves from San Andreas events within Greater Los Angeles, as well as the maximum PGV of future waves that can propagate without strong nonlinear attenuation. During each event, the shaking episode cracks the stiff, shallow rock. Over multiple events, this repeated damage in the upper few hundred meters leads to self-organization of the shear modulus. Dynamic strain is PGV divided by phase velocity, and dynamic stress is strain times the shear modulus. The frictional yield stress is proportional to depth times the effective coefficient of friction. At the eventual quasi-steady self-organized state, the shear modulus increases linearly with depth allowing inference of past typical PGV where rock over the damaged depth range barely reaches frictional failure. Still greater future PGV would cause frictional failure throughout the damaged zone, nonlinearly attenuating the wave. Assuming self-organization has taken place, estimated maximum past PGV within Greater Los Angeles Basins is 0.4-2.6 m s-1. The upper part of this range includes regions of accumulating sediments with low S-wave velocity that may have not yet compacted, rather than having been damaged by strong shaking. Published numerical models indicate that strong Love waves from the San Andreas Fault pass through Whittier Narrows. Within this corridor, deep drawdown of the water table from its currently shallow and preindustrial levels would nearly double PGV of Love waves reaching Downtown Los Angeles.
DEFF Research Database (Denmark)
Bigoni, Daniele; Engsig-Karup, Allan Peter; Eskilsson, Claes
2016-01-01
A major challenge in next-generation industrial applications is to improve numerical analysis by quantifying uncertainties in predictions. In this work we present a formulation of a fully nonlinear and dispersive potential flow water wave model with random inputs for the probabilistic description...... at different points in the parameter space, allowing for the reuse of existing simulation software. The choice of the applied methods is driven by the number of uncertain input parameters and by the fact that finding the solution of the considered model is computationally intensive. We revisit experimental...... benchmarks often used for validation of deterministic water wave models. Based on numerical experiments and assumed uncertainties in boundary data, our analysis reveals that some of the known discrepancies from deterministic simulation in comparison with experimental measurements could be partially explained...
Nonlinear Waves in Complex Systems
DEFF Research Database (Denmark)
2007-01-01
The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations, it is the ......The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations...
Toward a scalable flexible-order model for 3D nonlinear water waves
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Ducrozet, Guillaume; Bingham, Harry B.
For marine and coastal applications, current work are directed toward the development of a scalable numerical 3D model for fully nonlinear potential water waves over arbitrary depths. The model is high-order accurate, robust and efficient for large-scale problems, and support will be included...... for flexibility in the description of structures by the use of curvilinear boundary-fitted meshes. The mathematical equations for potential waves in the physical domain is transformed through $\\sigma$-mapping(s) to a time-invariant boundary-fitted domain which then becomes a basis for an efficient solution...... strategy on a time-invariant mesh. The 3D numerical model is based on a finite difference method as in the original works \\cite{LiFleming1997,BinghamZhang2007}. Full details and other aspects of an improved 3D solution can be found in \\cite{EBL08}. The new and improved approach for three...
Nonlinear Electron Waves in Strongly Magnetized Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans; Juul Rasmussen, Jens
1980-01-01
Weakly nonlinear dispersive electron waves in strongly magnetized plasma are considered. A modified nonlinear Schrodinger equation is derived taking into account the effect of particles resonating with the group velocity of the waves (nonlinear Landau damping). The possibility of including the ion...... dynamics in the analysis is also demonstrated. As a particular case the authors investigate nonlinear waves in a strongly magnetized plasma filled wave-guide, where the effects of finite geometry are important. The relevance of this problem to laboratory experiments is discussed....
Shen, Yujia; Wen, Zichao; Yan, Zhenya; Hang, Chao
2018-04-01
We study the three-wave interaction that couples an electromagnetic pump wave to two frequency down-converted daughter waves in a quadratic optical crystal and P T -symmetric potentials. P T symmetric potentials are shown to modulate stably nonlinear modes in two kinds of three-wave interaction models. The first one is a spatially extended three-wave interaction system with odd gain-and-loss distribution in the channel. Modulated by the P T -symmetric single-well or multi-well Scarf-II potentials, the system is numerically shown to possess stable soliton solutions. Via adiabatical change of system parameters, numerical simulations for the excitation and evolution of nonlinear modes are also performed. The second one is a combination of P T -symmetric models which are coupled via three-wave interactions. Families of nonlinear modes are found with some particular choices of parameters. Stable and unstable nonlinear modes are shown in distinct families by means of numerical simulations. These results will be useful to further investigate nonlinear modes in three-wave interaction models.
On the interaction of small-scale linear waves with nonlinear solitary waves
Xu, Chengzhu; Stastna, Marek
2017-04-01
In the study of environmental and geophysical fluid flows, linear wave theory is well developed and its application has been considered for phenomena of various length and time scales. However, due to the nonlinear nature of fluid flows, in many cases results predicted by linear theory do not agree with observations. One of such cases is internal wave dynamics. While small-amplitude wave motion may be approximated by linear theory, large amplitude waves tend to be solitary-like. In some cases, when the wave is highly nonlinear, even weakly nonlinear theories fail to predict the wave properties correctly. We study the interaction of small-scale linear waves with nonlinear solitary waves using highly accurate pseudo spectral simulations that begin with a fully nonlinear solitary wave and a train of small-amplitude waves initialized from linear waves. The solitary wave then interacts with the linear waves through either an overtaking collision or a head-on collision. During the collision, there is a net energy transfer from the linear wave train to the solitary wave, resulting in an increase in the kinetic energy carried by the solitary wave and a phase shift of the solitary wave with respect to a freely propagating solitary wave. At the same time the linear waves are greatly reduced in amplitude. The percentage of energy transferred depends primarily on the wavelength of the linear waves. We found that after one full collision cycle, the longest waves may retain as much as 90% of the kinetic energy they had initially, while the shortest waves lose almost all of their initial energy. We also found that a head-on collision is more efficient in destroying the linear waves than an overtaking collision. On the other hand, the initial amplitude of the linear waves has very little impact on the percentage of energy that can be transferred to the solitary wave. Because of the nonlinearity of the solitary wave, these results provide us some insight into wave-mean flow
Nonlinear hyperbolic waves in multidimensions
Prasad, Phoolan
2001-01-01
The propagation of curved, nonlinear wavefronts and shock fronts are very complex phenomena. Since the 1993 publication of his work Propagation of a Curved Shock and Nonlinear Ray Theory, author Phoolan Prasad and his research group have made significant advances in the underlying theory of these phenomena. This volume presents their results and provides a self-contained account and gradual development of mathematical methods for studying successive positions of these fronts.Nonlinear Hyperbolic Waves in Multidimensions includes all introductory material on nonlinear hyperbolic waves and the theory of shock waves. The author derives the ray theory for a nonlinear wavefront, discusses kink phenomena, and develops a new theory for plane and curved shock propagation. He also derives a full set of conservation laws for a front propagating in two space dimensions, and uses these laws to obtain successive positions of a front with kinks. The treatment includes examples of the theory applied to converging wavefronts...
DG-FEM solution for nonlinear wave-structure interaction using Boussinesq-type equations
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Hesthaven, Jan; Bingham, Harry B.
2008-01-01
equations in complex and curvilinear geometries which amends the application range of previous numerical models that have been based on structured Cartesian grids. The Boussinesq method provides the basis for the accurate description of fully nonlinear and dispersive water waves in both shallow and deep...... waters within the breaking limit. To demonstrate the current applicability of the model both linear and mildly nonlinear test cases are considered in two horizontal dimensions where the water waves interact with bottom-mounted fully reflecting structures. It is established that, by simple symmetry...... considerations combined with a mirror principle, it is possible to impose weak slip boundary conditions for both structured and general curvilinear wall boundaries while maintaining the accuracy of the scheme. As is standard for current high-order Boussinesq-type models, arbitrary waves can be generated...
A Numerical Implementation of a Nonlinear Mild Slope Model for Shoaling Directional Waves
Directory of Open Access Journals (Sweden)
Justin R. Davis
2014-02-01
Full Text Available We describe the numerical implementation of a phase-resolving, nonlinear spectral model for shoaling directional waves over a mild sloping beach with straight parallel isobaths. The model accounts for non-linear, quadratic (triad wave interactions as well as shoaling and refraction. The model integrates the coupled, nonlinear hyperbolic evolution equations that describe the transformation of the complex Fourier amplitudes of the deep-water directional wave field. Because typical directional wave spectra (observed or produced by deep-water forecasting models such as WAVEWATCH III™ do not contain phase information, individual realizations are generated by associating a random phase to each Fourier mode. The approach provides a natural extension to the deep-water spectral wave models, and has the advantage of fully describing the shoaling wave stochastic process, i.e., the evolution of both the variance and higher order statistics (phase correlations, the latter related to the evolution of the wave shape. The numerical implementation (a Fortran 95/2003 code includes unidirectional (shore-perpendicular propagation as a special case. Interoperability, both with post-processing programs (e.g., MATLAB/Tecplot 360 and future model coupling (e.g., offshore wave conditions from WAVEWATCH III™, is promoted by using NetCDF-4/HD5 formatted output files. The capabilities of the model are demonstrated using a JONSWAP spectrum with a cos2s directional distribution, for shore-perpendicular and oblique propagation. The simulated wave transformation under combined shoaling, refraction and nonlinear interactions shows the expected generation of directional harmonics of the spectral peak and of infragravity (frequency <0.05 Hz waves. Current development efforts focus on analytic testing, development of additional physics modules essential for applications and validation with laboratory and field observations.
Electron non-linearities in Langmuir waves with application to beat-wave experiments
International Nuclear Information System (INIS)
Bell, A.R.; Gibbon, P.
1988-01-01
Non-linear Langmuir waves are examined in the context of the beat-wave accelerator. With a background of immobile ions the waves in one dimension are subject to the relativistic non-linearity of Rosenbluth, M.N. and Liu, C.S., Phys. Rev. Lett., 1972, 29, 701. In two or three dimensions, other electron non-linearities occur which involve electric and magnetic fields. The quasi-linear equations for these non-linearities are developed and solved numerically in a geometry representative of laser-driven beat waves. (author)
Nonlinear coupled Alfven and gravitational waves
International Nuclear Information System (INIS)
Kaellberg, Andreas; Brodin, Gert; Bradley, Michael
2004-01-01
In this paper we consider nonlinear interaction between gravitational and electromagnetic waves in a strongly magnetized plasma. More specifically, we investigate the propagation of gravitational waves with the direction of propagation perpendicular to a background magnetic field and the coupling to compressional Alfven waves. The gravitational waves are considered in the high-frequency limit and the plasma is modeled by a multifluid description. We make a self-consistent, weakly nonlinear analysis of the Einstein-Maxwell system and derive a wave equation for the coupled gravitational and electromagnetic wave modes. A WKB-approximation is then applied and as a result we obtain the nonlinear Schroedinger equation for the slowly varying wave amplitudes. The analysis is extended to 3D wave pulses, and we discuss the applications to radiation generated from pulsar binary mergers. It turns out that the electromagnetic radiation from a binary merger should experience a focusing effect, that in principle could be detected
Nonlinear ultrasonic imaging with X wave
Du, Hongwei; Lu, Wei; Feng, Huanqing
2009-10-01
X wave has a large depth of field and may have important application in ultrasonic imaging to provide high frame rate (HFR). However, the HFR system suffers from lower spatial resolution. In this paper, a study of nonlinear imaging with X wave is presented to improve the resolution. A theoretical description of realizable nonlinear X wave is reported. The nonlinear field is simulated by solving the KZK nonlinear wave equation with a time-domain difference method. The results show that the second harmonic field of X wave has narrower mainlobe and lower sidelobes than the fundamental field. In order to evaluate the imaging effect with X wave, an imaging model involving numerical calculation of the KZK equation, Rayleigh-Sommerfeld integral, band-pass filtering and envelope detection is constructed to obtain 2D fundamental and second harmonic images of scatters in tissue-like medium. The results indicate that if X wave is used, the harmonic image has higher spatial resolution throughout the entire imaging region than the fundamental image, but higher sidelobes occur as compared to conventional focus imaging. A HFR imaging method with higher spatial resolution is thus feasible provided an apodization method is used to suppress sidelobes.
Nonlinear evolution of astrophysical Alfven waves
Spangler, S. R.
1984-01-01
Nonlinear Alfven waves were studied using the derivative nonlinear Schrodinger equation as a model. The evolution of initial conditions, such as envelope solitons, amplitude-modulated waves, and band-limited noise was investigated. The last two furnish models for naturally occurring Alfven waves in an astrophysical plasma. A collapse instability in which a wave packet becomes more intense and of smaller spatial extent was analyzed. It is argued that this instability leads to enhanced plasma heating. In studies in which the waves are amplified by an electron beam, the instability tends to modestly inhibit wave growth.
Lagrangian analysis of nonlinear wave-wave interactions in bounded plasmas
International Nuclear Information System (INIS)
Carr, A.R.
1979-01-01
In a weakly turbulent nonlinear wave-supporting medium, one of the important nonlinear processes which may occur is resonant three-wave interaction. Whitham's averaged Lagrangian method provides a general formulation of wave evolution laws which is easily adapted to nonlinear dispersive media. In this thesis, the strength of nonlinear interactions between three coherent, axisymmetric, low frequency, magnetohydrodynamic (Alfven) waves propagating in resonance along a cold cylindrical magnetized plasma column is calculated. Both a uniform and a parabolic density distribution have been considered. To account for a non-zero plasma temperature, pressure effects have been included. Distinctive features of the work are the use of cylindrical geometry, the presence of a finite rather than an infinite axial magnetic field, the treatment of a parabolic density distribution, and the inclusion of both ion and electron contributions in all expressions. Two astrophysical applications of the presented theory have been considered. In the first, the possibility of resonant three-wave coupling between geomagnetic micropulsations, which propagate as Alfven or magnetosonic waves along the Earth's magnetic field lines, has been investigated. The second case is the theory of energy transport through the solar chromosphere by upward propagating magnetohydrodynamic waves, which may then couple to heavily damped waves in the corona, causing the observed excess heating in that region
Nonlinear waves in plasma with negative ion
International Nuclear Information System (INIS)
Saito, Maki; Watanabe, Shinsuke; Tanaca, Hiroshi.
1984-01-01
The propagation of nonlinear ion wave is investigated theoretically in a plasma with electron, positive ion and negative ion. The ion wave of long wavelength is described by a modified K-dV equation instead of a K-dV equation when the nonlinear coefficient of the K-dV equation vanishes at the critical density of negative ion. In the vicinity of the critical density, the ion wave is described by a coupled K-dV and modified K-dV equation. The transition from a compressional soliton to a rarefactive soliton and vice versa are examined by the coupled equation as a function of the negative ion density. The ion wave of short wavelength is described by a nonlinear Schroedinger equation. In the plasma with a negative ion, the nonlinear coefficient of the nonlinear Schroedinger equation changes the sign and the ion wave becomes modulationally unstable. (author)
Nonlinear VLF Wave Physics in the Radiation Belts
Crabtree, C. E.; Tejero, E. M.; Ganguli, G.; Mithaiwala, M.; Rudakov, L.; Hospodarsky, G. B.; Kletzing, C.
2014-12-01
Electromagnetic VLF waves, such as whistler mode waves, both control the lifetime of trapped electrons in the radiation belts by pitch-angle scattering and are responsible for the energization of electrons during storms. Traditional approaches to understanding the influence of waves on trapped electrons have assumed that the wave characteristics (frequency spectrum, wave-normal angle distribution, etc.) were both stationary in time and amplitude independent from event to event. In situ data from modern satellite missions, such as the Van Allen probes, are showing that this assumption may not be justified. In addition, recent theoretical results [Crabtree et al. 2012] show that the threshold for nonlinear wave scattering can often be met by naturally occurring VLF waves in the magnetosphere, with wave magnetic fields of the order of 50-100 pT inside the plasmapause. Nonlinear wave scattering (Nonlinear Landau Damping) is an amplitude dependent mechanism that can strongly alter VLF wave propagation [Ganguli et al. 2010], primarily by altering the direction of propagation. Laboratory results have confirmed the dramatic change in propagation direction when the pump wave has sufficient amplitude to exceed the nonlinear threshold [Tejero et al. 2014]. Nonlinear scattering can alter the macroscopic dynamics of waves in the radiation belts leading to the formation of a long-lasting wave-cavity [Crabtree et al. 2012] and, when amplification is present, a multi-pass amplifier [Ganguli et al., 2012]. Such nonlinear wave effects can dramatically reduce electron lifetimes. Nonlinear wave dynamics such as these occur when there are more than one wave present, such a condition necessarily violates the assumption of traditional wave-normal analysis [Santolik et al., 2003] which rely on the plane wave assumption. To investigate nonlinear wave dynamics using modern in situ data we apply the maximum entropy method [Skilling and Bryan, 1984] to solve for the wave distribution function
On shallow water waves in a medium with time-dependent
Directory of Open Access Journals (Sweden)
Hamdy I. Abdel-Gawad
2015-07-01
Full Text Available In this paper, we studied the progression of shallow water waves relevant to the variable coefficient Korteweg–de Vries (vcKdV equation. We investigated two kinds of cases: when the dispersion and nonlinearity coefficients are proportional, and when they are not linearly dependent. In the first case, it was shown that the progressive waves have some geometric structures as in the case of KdV equation with constant coefficients but the waves travel with time dependent speed. In the second case, the wave structure is maintained when the nonlinearity balances the dispersion. Otherwise, water waves collapse. The objectives of the study are to find a wide class of exact solutions by using the extended unified method and to present a new algorithm for treating the coupled nonlinear PDE’s.
Solitary waves on nonlinear elastic rods. I
DEFF Research Database (Denmark)
Sørensen, Mads Peter; Christiansen, Peter Leth; Lomdahl, P. S.
1984-01-01
Acoustic waves on elastic rods with circular cross section are governed by improved Boussinesq equations when transverse motion and nonlinearity in the elastic medium are taken into account. Solitary wave solutions to these equations have been found. The present paper treats the interaction betwe...... nonlinearity. The balance between dispersion and nonlinearity in the equation is investigated.......Acoustic waves on elastic rods with circular cross section are governed by improved Boussinesq equations when transverse motion and nonlinearity in the elastic medium are taken into account. Solitary wave solutions to these equations have been found. The present paper treats the interaction between...... the solitary waves numerically. It is demonstrated that the waves behave almost like solitons in agreement with the fact that the improved Boussinesq equations are nearly integrable. Thus three conservation theorems can be derived from the equations. A new subsonic quasibreather is found in the case of a cubic...
Non-Linear Excitation of Ion Acoustic Waves
DEFF Research Database (Denmark)
Michelsen, Poul; Hirsfield, J. L.
1974-01-01
The excitation of ion acoustic waves by nonlinear coupling of two transverse magnetic waves generated in a microwave cavity was investigated. Measurements of the wave amplitude showed good agreement with calculations based on the Vlasov equation.......The excitation of ion acoustic waves by nonlinear coupling of two transverse magnetic waves generated in a microwave cavity was investigated. Measurements of the wave amplitude showed good agreement with calculations based on the Vlasov equation....
Nonlinear physics of shear Alfvén waves
International Nuclear Information System (INIS)
Zonca, Fulvio; Chen, Liu
2014-01-01
Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These 'nonlinear equilibria' or 'phase-space zonal structures' dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results
Nonlinear physics of shear Alfvén waves
Zonca, Fulvio; Chen, Liu
2014-02-01
Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These "nonlinear equilibria" or "phase-space zonal structures" dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results.
Nonlinear extraordinary wave in dense plasma
Energy Technology Data Exchange (ETDEWEB)
Krasovitskiy, V. B., E-mail: krasovit@mail.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Turikov, V. A. [Russian University of Peoples’ Friendship (Russian Federation)
2013-10-15
Conditions for the propagation of a slow extraordinary wave in dense magnetized plasma are found. A solution to the set of relativistic hydrodynamic equations and Maxwell’s equations under the plasma resonance conditions, when the phase velocity of the nonlinear wave is equal to the speed of light, is obtained. The deviation of the wave frequency from the resonance frequency is accompanied by nonlinear longitudinal-transverse oscillations. It is shown that, in this case, the solution to the set of self-consistent equations obtained by averaging the initial equations over the period of high-frequency oscillations has the form of an envelope soliton. The possibility of excitation of a nonlinear wave in plasma by an external electromagnetic pulse is confirmed by numerical simulations.
Simulation of Irregular Waves and Wave Induced Loads on Wind Power Plants in Shallow Water
Energy Technology Data Exchange (ETDEWEB)
Trumars, Jenny [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Water Environment Transport
2004-05-01
The essay gives a short introduction to waves and discusses the problem with non-linear waves in shallow water and how they effect an offshore wind energy converter. The focus is on the realisation of non-linear waves in the time domain from short-term statistics in the form of a variance density spectrum of the wave elevation. For this purpose the wave transformation from deep water to the near to shore site of a wind energy farm at Bockstigen has been calculated with the use of SWAN (Simulating Waves Near Shore). The result is a wave spectrum, which can be used as input to the realisation. The realisation of waves is done by perturbation theory to the first and second-order. The properties calculated are the wave elevation, water particle velocity and acceleration. The wave heights from the second order perturbation equations are higher than those from the first order perturbation equations. This is also the case for the water particle kinematics. The increase of variance is significant between the first order and the second order realisation. The calculated wave elevation exhibits non-linear features as the peaks become sharper and the troughs flatter. The resulting forces are calculated using Morison's equation. For second order force and base moment there is an increase in the maximum values. The force and base moment are largest approximately at the zero up and down crossing of the wave elevation. This indicates an inertia dominated wave load. So far the flexibility and the response of the structure have not been taken into account. They are, however, of vital importance. For verification of the wave model the results will later on be compared with measurements at Bockstigen off the coast of Gotland in the Baltic Sea.
Initial-value problem for the Gardner equation applied to nonlinear internal waves
Rouvinskaya, Ekaterina; Kurkina, Oxana; Kurkin, Andrey; Talipova, Tatiana; Pelinovsky, Efim
2017-04-01
The Gardner equation is a fundamental mathematical model for the description of weakly nonlinear weakly dispersive internal waves, when cubic nonlinearity cannot be neglected. Within this model coefficients of quadratic and cubic nonlinearity can both be positive as well as negative, depending on background conditions of the medium, where waves propagate (sea water density stratification, shear flow profile) [Rouvinskaya et al., 2014, Kurkina et al., 2011, 2015]. For the investigation of weakly dispersive behavior in the framework of nondimensional Gardner equation with fixed (positive) sign of quadratic nonlinearity and positive or negative cubic nonlinearity {eq1} partial η/partial t+6η( {1± η} )partial η/partial x+partial ^3η/partial x^3=0, } the series of numerical experiments of initial-value problem was carried out for evolution of a bell-shaped impulse of negative polarity (opposite to the sign of quadratic nonlinear coefficient): {eq2} η(x,t=0)=-asech2 ( {x/x0 } ), for which amplitude a and width x0 was varied. Similar initial-value problem was considered in the paper [Trillo et al., 2016] for the Korteweg - de Vries equation. For the Gardner equation with different signs of cubic nonlinearity the initial-value problem for piece-wise constant initial condition was considered in detail in [Grimshaw et al., 2002, 2010]. It is widely known, for example, [Pelinovsky et al., 2007], that the Gardner equation (1) with negative cubic nonlinearity has a family of classic solitary wave solutions with only positive polarity,and with limiting amplitude equal to 1. Therefore evolution of impulses (2) of negative polarity (whose amplitudes a were varied from 0.1 to 3, and widths at the level of a/2 were equal to triple width of solitons with the same amplitude for a 1) was going on a universal scenario with the generation of nonlinear Airy wave. For the Gardner equation (1) with the positive cubic nonlinearity coefficient there exist two one-parametric families of
Gurbatov, S N; Saichev, A I
2012-01-01
"Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is...
DEFF Research Database (Denmark)
Schløer, Signe; Bredmose, Henrik; Bingham, Harry B.
2016-01-01
The response of an offshore wind turbine tower and its monopile foundation has been investigated when exposed to linear and fully nonlinear irregular waves on four different water depths. The investigation focuses on the consequences of including full nonlinearity in the wave kinematics. The line...
Oscillating nonlinear acoustic shock waves
DEFF Research Database (Denmark)
Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth
2016-01-01
We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....
Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains
Przedborski, Michelle; Anco, Stephen C.
2017-09-01
A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.
On the interaction of deep water waves and exponential shear currents
Cheng, Jun; Cang, Jie; Liao, Shi-Jun
2009-05-01
A train of periodic deep-water waves propagating on a steady shear current with a vertical distribution of vorticity is investigated by an analytic method, namely the homotopy analysis method (HAM). The magnitude of the vorticity varies exponentially with the magnitude of the stream function, while remaining constant on a particular streamline. The so-called Dubreil-Jacotin transformation is used to transfer the original exponentially nonlinear boundary-value problem in an unknown domain into an algebraically nonlinear boundary-value problem in a known domain. Convergent series solutions are obtained not only for small amplitude water waves on a weak current but also for large amplitude waves on a strong current. The nonlinear wave-current interaction is studied in detail. It is found that an aiding shear current tends to enlarge the wave phase speed, sharpen the wave crest, but shorten the maximum wave height, while an opposing shear current has the opposite effect. Besides, the amplitude of waves and fluid velocity decay over the depth more quickly on an aiding shear current but more slowly on an opposing shear current than that of waves on still water. Furthermore, it is found that Stokes criteria of wave breaking is still valid for waves on a shear current: a train of propagating waves on a shear current breaks as the fiuid velocity at crest equals the wave phase speed. Especially, it is found that the highest waves on an opposing shear current are even higher and steeper than that of waves on still water. Mathematically, this analytic method is rather general in principle and can be employed to solve many types of nonlinear partial differential equations with variable coefficients in science, finance and engineering.
Evans functions and bifurcations of nonlinear waves of some nonlinear reaction diffusion equations
Zhang, Linghai
2017-10-01
The main purposes of this paper are to accomplish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear system of reaction diffusion equations ut =uxx + α [ βH (u - θ) - u ] - w, wt = ε (u - γw) and to establish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ], under different conditions on the model constants. To establish the bifurcation for the system, we will study the existence and instability of a standing pulse solution if 0 1; the existence and instability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and 0 traveling wave front as well as the existence and instability of a standing pulse solution if 0 traveling wave front as well as the existence and instability of an upside down standing pulse solution if 0 traveling wave back of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ] -w0, where w0 = α (β - 2 θ) > 0 is a positive constant, if 0 motivation to study the existence, stability, instability and bifurcations of the nonlinear waves is to study the existence and stability/instability of infinitely many fast/slow multiple traveling pulse solutions of the nonlinear system of reaction diffusion equations. The existence and stability of infinitely many fast multiple traveling pulse solutions are of great interests in mathematical neuroscience.
Benoit, Michel; Yates, Marissa L.; Raoult, Cécile
2017-04-01
Efficient and accurate numerical models simulating wave propagation are required for a variety of engineering projects including the evaluation of coastal risks, the design of protective coastal structures, and the estimation of the potential for marine renewable energy devices. Nonlinear and dispersive effects are particularly significant in the coastal zone where waves interact with the bottom, the shoreline, and coastal structures. The main challenge in developing a numerical models is finding a compromise between computational efficiency and the required accuracy of the simulated wave field. Here, a potential approach is selected and the (fully nonlinear) water wave problem is formulated using the Euler-Zakharov equations (Zakharov, 1968) describing the temporal evolution of the free surface elevation and velocity potential. The proposed model (Yates and Benoit, 2015) uses a spectral approach in the vertical (i.e. the vertical variation of the potential is approximated by a linear combination of the first NT+1 Chebyshev polynomials, following the work of Tian and Sato (2008)). The Zakharov equations are integrated in time using a fourth-order Runge-Kutta scheme with a constant time step. At each sub-timestep, the Laplace Boundary Value Problem (BVP) is solved to estimate the free surface vertical velocity using the spectral approach, with typical values of NT between 5 to 8 for practical applications. The 1DH version of the code is validated with comparisons to the experimental data set of Becq-Girard et al. (1999), which studied the propagation of irregular waves over a beach profile with a submerged bar. The nonlinear and dispersive capacities of the model are verified with the correct representation of wave-wave interactions, in particular the transfer of energy between different harmonic components during wave propagation (analysis of the transformation of the variance spectrum along the channel). Evolution of wave skewness, asymmetry and kurtosis along the
Wave modulation in a nonlinear dispersive medium
International Nuclear Information System (INIS)
Kim, Y.C.; Khadra, L.; Powers, E.J.
1980-01-01
A model describing the simultaneous amplitude and phase modulation of a carrier wave propagating in a nonlinear dispersive medium is developed in terms of nonlinear wave-wave interactions between the sidebands and a low frequency wave. It is also shown that the asymmetric distribution of sidebands is determined by the wavenumber dependence of the coupling coefficient. Digital complex demodulation techniques are used to study modulated waves in a weakly ionized plasma and the experimental results support the analytical model
Modulated Langmuir waves and nonlinear Landau damping
International Nuclear Information System (INIS)
Yajima, Nobuo; Oikawa, Masayuki; Satsuma, Junkichi; Namba, Chusei.
1975-01-01
The nonlinear Schroedinger euqation with an integral term, iusub(t)+P/2.usub(xx)+Q/u/ 2 u+RP∫sub(-infinity)sup(infinity)[/u(x',t)/ 2 /(x-x')]dx'u=0, which describes modulated Langmuir waves with the nonlinear Landau damping effect, is solved by numerical calculations. Especially, the effects of nonlinear Landau damping on solitary wave solutions are studied. For both cases, PQ>0 and PQ<0, the results show that the solitary waves deform in an asymmetric way changing its velocity. (auth.)
Force-controlled absorption in a fully-nonlinear numerical wave tank
International Nuclear Information System (INIS)
Spinneken, Johannes; Christou, Marios; Swan, Chris
2014-01-01
An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank. In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain. The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes
Fernández, Leandro; Monbaliu, Jaak; Onorato, Miguel; Toffoli, Alessandro
2014-05-01
This research is focused on the study of nonlinear evolution of irregular wave fields in water of arbitrary depth by comparing field measurements and numerical simulations.It is now well accepted that modulational instability, known as one of the main mechanisms for the formation of rogue waves, induces strong departures from Gaussian statistics. However, whereas non-Gaussian properties are remarkable when wave fields follow one direction of propagation over an infinite water depth, wave statistics only weakly deviate from Gaussianity when waves spread over a range of different directions. Over finite water depth, furthermore, wave instability attenuates overall and eventually vanishes for relative water depths as low as kh=1.36 (where k is the wavenumber of the dominant waves and h the water depth). Recent experimental results, nonetheless, seem to indicate that oblique perturbations are capable of triggering and sustaining modulational instability even if khthe aim of this research is to understand whether the combined effect of directionality and finite water depth has a significant effect on wave statistics and particularly on the occurrence of extremes. For this purpose, numerical experiments have been performed solving the Euler equation of motion with the Higher Order Spectral Method (HOSM) and compared with data of short crested wave fields for different sea states observed at the Lake George (Australia). A comparative analysis of the statistical properties (i.e. density function of the surface elevation and its statistical moments skewness and kurtosis) between simulations and in-situ data provides a confrontation between the numerical developments and real observations in field conditions.
On nonlinear periodic drift waves
International Nuclear Information System (INIS)
Kauschke, U.; Schlueter, H.
1990-09-01
Nonlinear periodic drift waves are investigated on the basis of a simple perturbation scheme for both the amplitude and inverse frequency. The coefficients for the generation of the forced harmonics are derived, a nonlinear dispersion relation is suggested and a criterion for the onset of the modulational instability is obtained. The results are compared with the ones obtained with the help of a standard KBM-treatment. Moreover cnoidal drift waves are suggested and compared to an experimental observation. (orig.)
Nonlinear effects on mode-converted lower-hybrid waves
International Nuclear Information System (INIS)
Kuehl, H.H.
1976-01-01
Nonlinear ponderomotive force effects on mode-converted lower-hybrid waves are considered. The nonlinear distortion of these waves is shown to be governed by the cubic nonlinear Schroedinger equation. The threshold condition for self-focusing and filamentation is derived
Nonlinear self-modulation of ion-acoustic waves
International Nuclear Information System (INIS)
Ikezi, H.; Schwarzenegger, K.; Simons, A.L.; Ohsawa, Y.; Kamimura, T.
1978-01-01
The nonlinear evolution of an ion-acoustic wave packet is studied. Experimentally, it is found that (i) nonlinear phase modulation develops in the wave packet; (ii) the phase modulation, together with the dispersion effect, causes expansion and breaking of the wave packet; (iii) the ions trapped in the troughs of the wave potential introduce self-phase modulation; and (iv) the ion-acoustic wave is stable with respect to the modulational instability. Computer simulations have reproduced the experimental results. The physical picture and the model equation describing the wave evolution are discussed
New exact travelling wave solutions of nonlinear physical models
International Nuclear Information System (INIS)
Bekir, Ahmet; Cevikel, Adem C.
2009-01-01
In this work, we established abundant travelling wave solutions for some nonlinear evolution equations. This method was used to construct travelling wave solutions of nonlinear evolution equations. The travelling wave solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions. The ((G ' )/G )-expansion method presents a wider applicability for handling nonlinear wave equations.
Nonlinear wave beams in a piezo semiconducting layer
International Nuclear Information System (INIS)
Bagdoev, A.G.; Shekoyan, A.V.; Danoyan, Z.N.
1997-01-01
The propagation of quasi-monochromatic nonlinear wave in a piezo semiconducting layer taking into account electron-concentration nonlinearity is considered. For such medium the evolution equations for incoming and reflected waves are derived. Nonlinear Schroedinger equations and solutions for narrow beams are obtained. It is shown that symmetry of incoming and reflected waves does not take place. The focusing of beams is investigated.18 refs
Nonlinear acoustic waves in micro-inhomogeneous solids
Nazarov, Veniamin
2014-01-01
Nonlinear Acoustic Waves in Micro-inhomogeneous Solids covers the broad and dynamic branch of nonlinear acoustics, presenting a wide variety of different phenomena from both experimental and theoretical perspectives. The introductory chapters, written in the style of graduate-level textbook, present a review of the main achievements of classic nonlinear acoustics of homogeneous media. This enables readers to gain insight into nonlinear wave processes in homogeneous and micro-inhomogeneous solids and compare it within the framework of the book. The subsequent eight chapters covering: Physical m
Linear and Nonlinear Electrostatic Waves in Unmagnetized Dusty Plasmas
International Nuclear Information System (INIS)
Mamun, A. A.; Shukla, P. K.
2010-01-01
A rigorous and systematic theoretical study has been made of linear and nonlinear electrostatic waves propagating in unmagnetized dusty plasmas. The basic features of linear and nonlinear electrostatic waves (particularly, dust-ion-acoustic and dust-acoustic waves) for different space and laboratory dusty plasma conditions are described. The experimental observations of such linear and nonlinear features of dust-ion-acoustic and dust-acoustic waves are briefly discussed.
Nonlinear interactions of counter-travelling waves
International Nuclear Information System (INIS)
Matsuuchi, Kazuo
1980-01-01
Nonlinear interactions between two waves travelling in opposite directions are investigated. When a nonlinear Klein-Gordon equation is adopted as a model equation, it is shown that such a wave system is governed by a simple set of equations for their complex amplitudes. Steady progressive waves governed by this set are investigated for various cases classified according to the signs of the coefficients. It is then found that one wave travelling in one direction appears from a certain point and the other travelling in the opposite direction has a constant amplitude from that point. This phenomenon may be regarded as a sort of reflection in spite of no rigid boundary. (author)
Propagation of nonlinear ion acoustic wave with generation of long-wavelength waves
International Nuclear Information System (INIS)
Ohsawa, Yukiharu; Kamimura, Tetsuo
1978-01-01
The nonlinear propagation of the wave packet of an ion acoustic wave with wavenumber k 0 asymptotically equals k sub(De) (the electron Debye wavenumber) is investigated by computer simulations. From the wave packet of the ion acoustic wave, waves with long wavelengths are observed to be produced within a few periods for the amplitude oscillation of the original wave packet. These waves are generated in the region where the original wave packet exists. Their characteristic wavelength is of the order of the length of the wave packet, and their propagation velocity is almost equal to the ion acoustic speed. The long-wavelength waves thus produced strongly affect the nonlinear evolution of the original wave packet. (auth.)
Initial-Boundary Value Problem Solution of the Nonlinear Shallow-water Wave Equations
Kanoglu, U.; Aydin, B.
2014-12-01
The hodograph transformation solutions of the one-dimensional nonlinear shallow-water wave (NSW) equations are usually obtained through integral transform techniques such as Fourier-Bessel transforms. However, the original formulation of Carrier and Greenspan (1958 J Fluid Mech) and its variant Carrier et al. (2003 J Fluid Mech) involve evaluation integrals. Since elliptic integrals are highly singular as discussed in Carrier et al. (2003), this solution methodology requires either approximation of the associated integrands by smooth functions or selection of regular initial/boundary data. It should be noted that Kanoglu (2004 J Fluid Mech) partly resolves this issue by simplifying the resulting integrals in closed form. Here, the hodograph transform approach is coupled with the classical eigenfunction expansion method rather than integral transform techniques and a new analytical model for nonlinear long wave propagation over a plane beach is derived. This approach is based on the solution methodology used in Aydın & Kanoglu (2007 CMES-Comp Model Eng) for wind set-down relaxation problem. In contrast to classical initial- or boundary-value problem solutions, here, the NSW equations are formulated to yield an initial-boundary value problem (IBVP) solution. In general, initial wave profile with nonzero initial velocity distribution is assumed and the flow variables are given in the form of Fourier-Bessel series. The results reveal that the developed method allows accurate estimation of the spatial and temporal variation of the flow quantities, i.e., free-surface height and depth-averaged velocity, with much less computational effort compared to the integral transform techniques such as Carrier et al. (2003), Kanoglu (2004), Tinti & Tonini (2005 J Fluid Mech), and Kanoglu & Synolakis (2006 Phys Rev Lett). Acknowledgments: This work is funded by project ASTARTE- Assessment, STrategy And Risk Reduction for Tsunamis in Europe. Grant 603839, 7th FP (ENV.2013.6.4-3 ENV
Evolution Of Nonlinear Waves in Compressing Plasma
International Nuclear Information System (INIS)
Schmit, P.F.; Dodin, I.Y.; Fisch, N.J.
2011-01-01
Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size Δ during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches Δ. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.
Evolution Of Nonlinear Waves in Compressing Plasma
Energy Technology Data Exchange (ETDEWEB)
P.F. Schmit, I.Y. Dodin, and N.J. Fisch
2011-05-27
Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size {Delta} during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches {Delta}. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.
Nonlinear electrostatic solitary waves in electron-positron plasmas
Lazarus, I. J.; Bharuthram, R.; Moolla, S.; Singh, S. V.; Lakhina, G. S.
2016-02-01
The generation of nonlinear electrostatic solitary waves (ESWs) is explored in a magnetized four component two-temperature electron-positron plasma. Fluid theory is used to derive a set of nonlinear equations for the ESWs, which propagate obliquely to an external magnetic field. The electric field structures are examined for various plasma parameters and are shown to yield sinusoidal, sawtooth and bipolar waveforms. It is found that an increase in the densities of the electrons and positrons strengthen the nonlinearity while the periodicity and nonlinearity of the wave increases as the cool-to-hot temperature ratio increases. Our results could be useful in understanding nonlinear propagation of waves in astrophysical environments and related laboratory experiments.
Nonlinear ion-acoustic waves and solitons in a magnetized plasma
International Nuclear Information System (INIS)
Lee, L.C.; Kan, J.R.
1981-01-01
A unified formulation is presented to study the nonlinear low-frequency electrostatic waves in a magnetized low-β plasma. It is found that there exist three types of nonlinear waves; (1) nonlinear ion-cyclotron periodic waves with a wave speed V/sub p/ > C/sub s/ (ion-acoustic velocity); (2) nonlinear ion-acoustic periodic waves with V/sub p/ < C/sub s/ costheta; and (3) ion-acoustic solitons with C/sub s/ costheta < V/sub p/ < C/sub s/, where theta is the angle between the wave vector and the magnetic field
Nonlinear dynamics of resistive electrostatic drift waves
DEFF Research Database (Denmark)
Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.
1999-01-01
The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... polarity, i.e. a pair of electrostatic convective cells....
Nonlinear Waves in the Terrestrial Quasiparallel Foreshock.
Hnat, B; Kolotkov, D Y; O'Connell, D; Nakariakov, V M; Rowlands, G
2016-12-02
We provide strongly conclusive evidence that the cubic nonlinearity plays an important part in the evolution of the large amplitude magnetic structures in the terrestrial foreshock. Large amplitude nonlinear wave trains at frequencies above the proton cyclotron frequency are identified after nonharmonic slow variations are filtered out by applying the empirical mode decomposition. Numerical solutions of the derivative nonlinear Schrödinger equation, predicted analytically by the use of a pseudopotential approach, are found to be consistent with the observed wave forms. The approximate phase speed of these nonlinear waves, indicated by the parameters of numerical solutions, is of the order of the local Alfvén speed. We suggest that the feedback of the large amplitude fluctuations on background plasma is reflected in the evolution of the pseudopotential.
Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele
2016-01-01
We introduce a new stabilized high-order and unstructured numerical model for modeling fully nonlinear and dispersive water waves. The model is based on a nodal spectral element method of arbitrary order in space and a -transformed formulation due to Cai, Langtangen, Nielsen and Tveito (1998). In...
A general theory of two-wave mixing in nonlinear media
DEFF Research Database (Denmark)
Chi, Mingjun; Huignard, Jean-Pierre; Petersen, Paul Michael
2009-01-01
A general theory of two-wave mixing in nonlinear media is presented. Assuming a gain (or absorption) grating and a refractive index grating are generated because of the nonlinear process in a nonlinear medium, the coupled-wave equations of two-wave mixing are derived based on the Maxwell’s wave e...
Nonlinear dead water resistance at subcritical speed
Grue, John
2015-08-01
The dead water resistance F 1 = /1 2 C d w ρ S U 2 (ρ fluid density, U ship speed, S wetted body surface, Cdw resistance coefficient) on a ship moving at subcritical speed along the upper layer of a two-layer fluid is calculated by a strongly nonlinear method assuming potential flow in each layer. The ship dimensions correspond to those of the Polar ship Fram. The ship draught, b0, is varied in the range 0.25h0-0.9h0 (h0 the upper layer depth). The calculations show that Cdw/(b0/h0)2 depends on the Froude number only, in the range close to critical speed, Fr = U/c0 ˜ 0.875-1.125 (c0 the linear internal long wave speed), irrespective of the ship draught. The function Cdw/(b0/h0)2 attains a maximum at subcritical Froude number depending on the draught. Maximum Cdw/(b0/h0)2 becomes 0.15 for Fr = 0.76, b0/h0 = 0.9, and 0.16 for Fr = 0.74, b0/h0 = 1, where the latter extrapolated value of the dead water resistance coefficient is about 60 times higher than the frictional drag coefficient and relevant for the historical dead water observations. The nonlinear Cdw significantly exceeds linear theory (Fr < 0.85). The ship generated waves have a wave height comparable to the upper layer depth. Calculations of three-dimensional wave patterns at critical speed compare well to available laboratory experiments. Upstream solitary waves are generated in a wave tank of finite width, when the layer depths differ, causing an oscillation of the force. In a wide ocean, a very wide wave system develops at critical speed. The force approaches a constant value for increasing time.
Manipulating acoustic wave reflection by a nonlinear elastic metasurface
Guo, Xinxin; Gusev, Vitalyi E.; Bertoldi, Katia; Tournat, Vincent
2018-03-01
The acoustic wave reflection properties of a nonlinear elastic metasurface, derived from resonant nonlinear elastic elements, are theoretically and numerically studied. The metasurface is composed of a two degree-of-freedom mass-spring system with quadratic elastic nonlinearity. The possibility of converting, during the reflection process, most of the fundamental incoming wave energy into the second harmonic wave is shown, both theoretically and numerically, by means of a proper design of the nonlinear metasurface. The theoretical results from the harmonic balance method for a monochromatic source are compared with time domain simulations for a wave packet source. This protocol allows analyzing the dynamics of the nonlinear reflection process in the metasurface as well as exploring the limits of the operating frequency bandwidth. The reported methodology can be applied to a wide variety of nonlinear metasurfaces, thus possibly extending the family of exotic nonlinear reflection processes.
Wave propagation in elastic medium with heterogeneous quadratic nonlinearity
International Nuclear Information System (INIS)
Tang Guangxin; Jacobs, Laurence J.; Qu Jianmin
2011-01-01
This paper studies the one-dimensional wave propagation in an elastic medium with spatially non-uniform quadratic nonlinearity. Two problems are solved analytically. One is for a time-harmonic wave propagating in a half-space where the displacement is prescribed on the surface of the half-space. It is found that spatial non-uniformity of the material nonlinearity causes backscattering of the second order harmonic, which when combined with the forward propagating waves generates a standing wave in steady-state wave motion. The second problem solved is the reflection from and transmission through a layer of finite thickness embedded in an otherwise linearly elastic medium of infinite extent, where it is assumed that the layer has a spatially non-uniform quadratic nonlinearity. The results show that the transmission coefficient for the second order harmonic is proportional to the spatial average of the nonlinearity across the thickness of the layer, independent of the spatial distribution of the nonlinearity. On the other hand, the coefficient of reflection is proportional to a weighted average of the nonlinearity across the layer thickness. The weight function in this weighted average is related to the propagating phase, thus making the coefficient of reflection dependent on the spatial distribution of the nonlinearity. Finally, the paper concludes with some discussions on how to use the reflected and transmitted second harmonic waves to evaluate the variance and autocorrelation length of nonlinear parameter β when the nonlinearity distribution in the layer is a stochastic process.
Nonlinear Whistler Wave Physics in the Radiation Belts
Crabtree, Chris
2016-10-01
Wave particle interactions between electrons and whistler waves are a dominant mechanism for controlling the dynamics of energetic electrons in the radiation belts. They are responsible for loss, via pitch-angle scattering of electrons into the loss cone, and energization to millions of electron volts. It has previously been theorized that large amplitude waves on the whistler branch may scatter their wave-vector nonlinearly via nonlinear Landau damping leading to important consequences for the global distribution of whistler wave energy density and hence the energetic electrons. It can dramatically reduce the lifetime of energetic electrons in the radiation belts by increasing the pitch angle scattering rate. The fundamental building block of this theory has now been confirmed through laboratory experiments. Here we report on in situ observations of wave electro-magnetic fields from the EMFISIS instrument on board NASA's Van Allen Probes that show the signatures of nonlinear scattering of whistler waves in the inner radiation belts. In the outer radiation belts, whistler mode chorus is believed to be responsible for the energization of electrons from 10s of Kev to MeV energies. Chorus is characterized by bursty large amplitude whistler mode waves with frequencies that change as a function of time on timescales corresponding to their growth. Theories explaining the chirping have been developed for decades based on electron trapping dynamics in a coherent wave. New high time resolution wave data from the Van Allen probes and advanced spectral techniques are revealing that the wave dynamics is highly structured, with sub-elements consisting of multiple chirping waves with discrete frequency hops between sub-elements. Laboratory experiments with energetic electron beams are currently reproducing the complex frequency vs time dynamics of whistler waves and in addition revealing signatures of wave-wave and beat-wave nonlinear wave-particle interactions. These new data
Nonlinear diffuse scattering of the random-phased wave
International Nuclear Information System (INIS)
Kato, Yoshiaki; Arinaga, Shinji; Mima, Kunioki.
1983-01-01
First experimental observation of the nonlinear diffuse scattering is reported. This new effect was observed in the propagation of the random-phased wave through a nonlinear dielectric medium. This effect is ascribed to the diffusion of the wavevector of the electro-magnetic wave to the lateral direction due to the randomly distributed nonlinear increase in the refractive index. (author)
Directional nonlinear guided wave mixing: Case study of counter-propagating shear horizontal waves
Hasanian, Mostafa; Lissenden, Cliff J.
2018-04-01
While much nonlinear ultrasonics research has been conducted on higher harmonic generation, wave mixing provides the potential for sensitive measurements of incipient damage unencumbered by instrumentation nonlinearity. Studies of nonlinear ultrasonic wave mixing, both collinear and noncollinear, for bulk waves have shown the robust capability of wave mixing for early damage detection. One merit of bulk wave mixing lies in their non-dispersive nature, but guided waves enable inspection of otherwise inaccessible material and a variety of mixing options. Co-directional guided wave mixing was studied previously, but arbitrary direction guided wave mixing has not been addressed until recently. Wave vector analysis is applied to study variable mixing angles to find wave mode triplets (two primary waves and a secondary wave) resulting in the phase matching condition. As a case study, counter-propagating Shear Horizontal (SH) guided wave mixing is analyzed. SH wave interactions generate a secondary Lamb wave mode that is readily receivable. Reception of the secondary Lamb wave mode is compared for an angle beam transducer, an air coupled transducer, and a laser Doppler vibrometer (LDV). Results from the angle beam and air coupled transducers are quite consistent, while the LDV measurement is plagued by variability issues.
Interpretation of nonlinearity in wind generated ocean surface waves
Digital Repository Service at National Institute of Oceanography (India)
Varkey, M.J.
of sinusoidal component waves; a consequent idea arising out of Fourier analysis. It is hypothesised that a sea state which is always nonlinear to various degrees is a result of interaction, both linear and nonlinear, between nonlinear component waves...
Asymptotic approach for the nonlinear equatorial long wave interactions
International Nuclear Information System (INIS)
Ramirez Gutierrez, Enver; Silva Dias, Pedro L; Raupp, Carlos
2011-01-01
In the present work we use an asymptotic approach to obtain the long wave equations. The shallow water equation is put as a function of an external parameter that is a measure of both the spatial scales anisotropy and the fast to slow time ratio. The values given to the external parameters are consistent with those computed using typical values of the perturbations in tropical dynamics. Asymptotically, the model converge toward the long wave model. Thus, it is possible to go toward the long wave approximation through intermediate realizable states. With this approach, the resonant nonlinear wave interactions are studied. To simplify, the reduced dynamics of a single resonant triad is used for some selected equatorial trios. It was verified by both theoretical and numerical results that the nonlinear energy exchange period increases smoothly as we move toward the long wave approach. The magnitude of the energy exchanges is also modified, but in this case depends on the particular triad used and also on the initial energy partition among the triad components. Some implications of the results for the tropical dynamics are discussed. In particular, we discuss the implications of the results for El Nino and the Madden-Julian in connection with other scales of time and spatial variability.
New approaches to nonlinear waves
2016-01-01
The book details a few of the novel methods developed in the last few years for studying various aspects of nonlinear wave systems. The introductory chapter provides a general overview, thematically linking the objects described in the book. Two chapters are devoted to wave systems possessing resonances with linear frequencies (Chapter 2) and with nonlinear frequencies (Chapter 3). In the next two chapters modulation instability in the KdV-type of equations is studied using rigorous mathematical methods (Chapter 4) and its possible connection to freak waves is investigated (Chapter 5). The book goes on to demonstrate how the choice of the Hamiltonian (Chapter 6) or the Lagrangian (Chapter 7) framework allows us to gain a deeper insight into the properties of a specific wave system. The final chapter discusses problems encountered when attempting to verify the theoretical predictions using numerical or laboratory experiments. All the chapters are illustrated by ample constructive examples demonstrating the app...
Nonlinear surface waves at ferrite-metamaterial waveguide structure
Hissi, Nour El Houda; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Shabat, Mohammed Musa; Atangana, Jacques
2016-09-01
A new ferrite slab made of a metamaterial (MTM), surrounded by a nonlinear cover cladding and a ferrite substrate, was shown to support unusual types of electromagnetic surface waves. We impose the boundary conditions to derive the dispersion relation and others necessary to formulate the proposed structure. We analyse the dispersion properties of the nonlinear surface waves and we calculate the associated propagation index and the film-cover interface nonlinearity. In the calculation, several sets of the permeability of the MTM are considered. Results show that the waves behaviour depends on the values of the permeability of the MTM, the thickness of the waveguide and the film-cover interface nonlinearity. It is also shown that the use of the singular solutions to the electric field equation allows to identify several new properties of surface waves which do not exist in conventional waveguide.
Nonlinear Scattering of VLF Waves in the Radiation Belts
Crabtree, Chris; Rudakov, Leonid; Ganguli, Guru; Mithaiwala, Manish
2014-10-01
Electromagnetic VLF waves, such as whistler mode waves, control the lifetime of trapped electrons in the radiation belts by pitch-angle scattering. Since the pitch-angle scattering rate is a strong function of the wave properties, a solid understanding of VLF wave sources and propagation in the magnetosphere is critical to accurately calculate electron lifetimes. Nonlinear scattering (Nonlinear Landau Damping) is a mechanism that can strongly alter VLF wave propagation [Ganguli et al. 2010], primarily by altering the direction of propagation, and has not been accounted for in previous models of radiation belt dynamics. Laboratory results have confirmed the dramatic change in propagation direction when the pump wave has sufficient amplitude to exceed the nonlinear threshold [Tejero et al. 2014]. Recent results show that the threshold for nonlinear scattering can often be met by naturally occurring VLF waves in the magnetosphere, with wave magnetic fields of the order of 50-100 pT inside the plasmapause. Nonlinear scattering can then dramatically alter the macroscopic dynamics of waves in the radiation belts leading to the formation of a long-lasting wave-cavity [Crabtree et al. 2012] and, when amplification is present, a multi-pass amplifier [Ganguli et al. 2012]. By considering these effects, the lifetimes of electrons can be dramatically reduced. This work is supported by the Naval Research Laboratory base program.
Nonlinear evolution equations for waves in random media
International Nuclear Information System (INIS)
Pelinovsky, E.; Talipova, T.
1994-01-01
The scope of this paper is to highlight the main ideas of asymptotical methods applying in modern approaches of description of nonlinear wave propagation in random media. We start with the discussion of the classical conception of ''mean field''. Then an exactly solvable model describing nonlinear wave propagation in the medium with fluctuating parameters is considered in order to demonstrate that the ''mean field'' method is not correct. We develop new asymptotic procedures of obtaining the nonlinear evolution equations for the wave fields in random media. (author). 16 refs
Solitons and nonlinear waves in space plasmas
International Nuclear Information System (INIS)
Stasiewicz, K.
2005-01-01
Recent measurements made on the ESA/NASA Cluster mission to the Earth's magnetosphere have provided first detailed measurements of magnetosonic solitons in space. The solitons represent localized enhancements of the magnetic field by a factor of 2-10, or depressions down to 10% of the ambient field. The magnetic field signatures are associated with density depressions/enhancements A two-fluid model of nonlinear electron and ion inertial waves in anisotropic plasmas explains the main properties of these structures. It is shown that warm plasmas support four types of nonlinear waves, which correspond to four linear modes: Alfvenic, magnetosonic, sound, and electron inertial waves. Each of these nonlinear modes has slow and fast versions. It is shown by direct integration that the exponential growth rate of nonlinear modes is balanced by the ion and electron dispersion leading to solutions in the form of trains of solitons or cnoidal waves. By using a novel technique of phase portraits it is shown how the dispersive properties of electron and ion inertial waves change at the transition between warm and hot plasmas, and how trains of solitons ('' mirror modes '') are produced in a hot, anisotropic plasma. The applicability of the model is illustrated with data from Cluster spacecraft. (author)
Variational Boussinesq model for strongly nonlinear dispersive waves
Lawrence, C.; Adytia, D.; van Groesen, E.
2018-01-01
For wave tank, coastal and oceanic applications, a fully nonlinear Variational Boussinesq model with optimized dispersion is derived and a simple Finite Element implementation is described. Improving a previous weakly nonlinear version, high waves over flat and varying bottom are shown to be
Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium
Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying
2015-01-01
A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066
Nonlinear interaction of waves in an inhomogeneous plasma
International Nuclear Information System (INIS)
Istomin, Ya.N.
1988-01-01
Nonlinear wave processes in a weakly inhomogeneous plasma are considered. A quasilinear equation is derived which takes into account the effect of the waves on resonance particles, provided that the inhomogeneity appreciably affects the nature of the resonance interaction. Three-wave interaction is investigated under the same conditions. As an example, the nonlinear interaction in a relativistic plasma moving along a strong curvilinear magnetic field is considered
Nonlinear wave equation with intrinsic wave particle dualism
International Nuclear Information System (INIS)
Klein, J.J.
1976-01-01
A nonlinear wave equation derived from the sine-Gordon equation is shown to possess a variety of solutions, the most interesting of which is a solution that describes a wave packet travelling with velocity usub(e) modulating a carrier wave travelling with velocity usub(c). The envelop and carrier wave speeds agree precisely with the group and phase velocities found by de Broglie for matter waves. No spreading is exhibited by the soliton, so that it behaves exactly like a particle in classical mechanics. Moreover, the classically computed energy E of the disturbance turns out to be exactly equal to the frequency ω of the carrier wave, so that the Planck relation is automatically satisfied without postulating a particle-wave dualism. (author)
Zhang, Xian-tao; Yang, Jian-min; Xiao, Long-fei
2016-07-01
Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.
Nonlinear Wave Propagation and Solitary Wave Formation in Two-Dimensional Heterogeneous Media
Luna, Manuel
2011-05-01
Solitary wave formation is a well studied nonlinear phenomenon arising in propagation of dispersive nonlinear waves under suitable conditions. In non-homogeneous materials, dispersion may happen due to effective reflections between the material interfaces. This dispersion has been used along with nonlinearities to find solitary wave formation using the one-dimensional p-system. These solitary waves are called stegotons. The main goal in this work is to find two-dimensional stegoton formation. To do so we consider the nonlinear two-dimensional p-system with variable coefficients and solve it using finite volume methods. The second goal is to obtain effective equations that describe the macroscopic behavior of the variable coefficient system by a constant coefficient one. This is done through a homogenization process based on multiple-scale asymptotic expansions. We compare the solution of the effective equations with the finite volume results and find a good agreement. Finally, we study some stability properties of the homogenized equations and find they and one-dimensional versions of them are unstable in general.
DEFF Research Database (Denmark)
Schløer, Signe
2013-01-01
wind farms. As wind farms are being moved further offshore the wave loads become larger compared to the wind loads and therefore more important in the design of offshore wind turbines. Yet, the water depth is still only shallow or intermediate where the waves should be described by nonlinear irregular...
Soomere, T.
2010-07-01
Most of the processes resulting in the formation of unexpectedly high surface waves in deep water (such as dispersive and geometrical focusing, interactions with currents and internal waves, reflection from caustic areas, etc.) are active also in shallow areas. Only the mechanism of modulational instability is not active in finite depth conditions. Instead, wave amplification along certain coastal profiles and the drastic dependence of the run-up height on the incident wave shape may substantially contribute to the formation of rogue waves in the nearshore. A unique source of long-living rogue waves (that has no analogues in the deep ocean) is the nonlinear interaction of obliquely propagating solitary shallow-water waves and an equivalent mechanism of Mach reflection of waves from the coast. The characteristic features of these processes are (i) extreme amplification of the steepness of the wave fronts, (ii) change in the orientation of the largest wave crests compared with that of the counterparts and (iii) rapid displacement of the location of the extreme wave humps along the crests of the interacting waves. The presence of coasts raises a number of related questions such as the possibility of conversion of rogue waves into sneaker waves with extremely high run-up. Also, the reaction of bottom sediments and the entire coastal zone to the rogue waves may be drastic.
Rogue and shock waves in nonlinear dispersive media
Resitori, Stefania; Baronio, Fabio
2016-01-01
This self-contained set of lectures addresses a gap in the literature by providing a systematic link between the theoretical foundations of the subject matter and cutting-edge applications in both geophysical fluid dynamics and nonlinear optics. Rogue and shock waves are phenomena that may occur in the propagation of waves in any nonlinear dispersive medium. Accordingly, they have been observed in disparate settings – as ocean waves, in nonlinear optics, in Bose-Einstein condensates, and in plasmas. Rogue and dispersive shock waves are both characterized by the development of extremes: for the former, the wave amplitude becomes unusually large, while for the latter, gradients reach extreme values. Both aspects strongly influence the statistical properties of the wave propagation and are thus considered together here in terms of their underlying theoretical treatment. This book offers a self-contained graduate-level text intended as both an introduction and reference guide for a new generation of scientists ...
Nonlinear Electrostatic Wave Equations for Magnetized Plasmas
DEFF Research Database (Denmark)
Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans
1984-01-01
The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....
Nonlinear ion-acoustic cnoidal waves in a dense relativistic degenerate magnetoplasma.
El-Shamy, E F
2015-03-01
The complex pattern and propagation characteristics of nonlinear periodic ion-acoustic waves, namely, ion-acoustic cnoidal waves, in a dense relativistic degenerate magnetoplasma consisting of relativistic degenerate electrons and nondegenerate cold ions are investigated. By means of the reductive perturbation method and appropriate boundary conditions for nonlinear periodic waves, a nonlinear modified Korteweg-de Vries (KdV) equation is derived and its cnoidal wave is analyzed. The various solutions of nonlinear ion-acoustic cnoidal and solitary waves are presented numerically with the Sagdeev potential approach. The analytical solution and numerical simulation of nonlinear ion-acoustic cnoidal waves of the nonlinear modified KdV equation are studied. Clearly, it is found that the features (amplitude and width) of nonlinear ion-acoustic cnoidal waves are proportional to plasma number density, ion cyclotron frequency, and direction cosines. The numerical results are applied to high density astrophysical situations, such as in superdense white dwarfs. This research will be helpful in understanding the properties of compact astrophysical objects containing cold ions with relativistic degenerate electrons.
Nonlinear instability and chaos in plasma wave-wave interactions, I., Introduction
International Nuclear Information System (INIS)
Kueny, C.S.; Morrison, P.J.
1994-11-01
Conventional linear stability analyses may fail for fluid systems with an indefinite free energy functional. When such a system is linearly stable, it is said to possess negative energy modes. Instability may then occur either via dissipation of the negative energy modes, or nonlinearly via resonant wave-wave coupling, leading to explosive growth. In the dissipationless case, it is conjectured that intrinsic chaotic behavior may allow initially nonresonant systems to reach resonance by diffusion in phase space. In this and a companion paper [submitted to Physics of Plasmas], this phenomenon is demonstrated for a simple equilibrium involving cold counterstreaming ions. The system is described in the fluid approximation by a Hamiltonian functional and associated noncanonical Poisson bracket. By Fourier decomposition and appropriate coordinate transformations, the Hamiltonian for the perturbed energy is expressed in action-angle form. The normal modes correspond to Doppler-shifted ion-acoustic waves of positive and negative energy. Nonlinear coupling leads to decay instability via two-wave interactions, and to either decay or explosive instability via three-wave interactions. These instabilities are described for various (integrable) systems of waves interacting via single nonlinear terms. This discussion provides the foundation for the treatment of nonintegrable systems in the companion paper
Nonlinear instability and chaos in plasma wave--wave interactions. I. Introduction
International Nuclear Information System (INIS)
Kueny, C.S.; Morrison, P.J.
1995-01-01
Conventional linear stability analyses may fail for fluid systems with an indefinite free-energy functional. When such a system is linearly stable, it is said to possess negative energy modes. Instability may then occur either via dissipation of the negative energy modes, or nonlinearly via resonant wave--wave coupling, leading to explosive growth. In the dissipationless case, it is conjectured that intrinsic chaotic behavior may allow initially nonresonant systems to reach resonance by diffusion in phase space. In this and a companion paper (submitted to Phys. Plasmas), this phenomenon is demonstrated for a simple equilibrium involving cold counterstreaming ions. The system is described in the fluid approximation by a Hamiltonian functional and associated noncanonical Poisson bracket. By Fourier decomposition and appropriate coordinate transformations, the Hamiltonian for the perturbed energy is expressed in action-angle form. The normal modes correspond to Doppler-shifted ion-acoustic waves of positive and negative energy. Nonlinear coupling leads to decay instability via two-wave interactions, and to either decay or explosive instability via three-wave interactions. These instabilities are described for various integrable systems of waves interacting via single nonlinear terms. This discussion provides the foundation for the treatment of nonintegrable systems in the companion paper. copyright 1995 American Institute of Physics
Nonlocal description of X waves in quadratic nonlinear materials
DEFF Research Database (Denmark)
Larsen, Peter Ulrik Vingaard; Sørensen, Mads Peter; Bang, Ole
2006-01-01
We study localized light bullets and X-waves in quadratic media and show how the notion of nonlocality can provide an alternative simple physical picture of both types of multi-dimensional nonlinear waves. For X-waves we show that a local cascading limit in terms of a nonlinear Schrodinger equation...
Nonlinear propagation of short wavelength drift-Alfven waves
DEFF Research Database (Denmark)
Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens
1986-01-01
Making use of a kinetic ion and a hydrodynamic electron description together with the Maxwell equation, the authors derive a set of nonlinear equations which governs the dynamics of short wavelength ion drift-Alfven waves. It is shown that the nonlinear drift-Alfven waves can propagate as two-dim...
Nonlocal nonlinear coupling of kinetic sound waves
Directory of Open Access Journals (Sweden)
O. Lyubchyk
2014-11-01
Full Text Available We study three-wave resonant interactions among kinetic-scale oblique sound waves in the low-frequency range below the ion cyclotron frequency. The nonlinear eigenmode equation is derived in the framework of a two-fluid plasma model. Because of dispersive modifications at small wavelengths perpendicular to the background magnetic field, these waves become a decay-type mode. We found two decay channels, one into co-propagating product waves (forward decay, and another into counter-propagating product waves (reverse decay. All wavenumbers in the forward decay are similar and hence this decay is local in wavenumber space. On the contrary, the reverse decay generates waves with wavenumbers that are much larger than in the original pump waves and is therefore intrinsically nonlocal. In general, the reverse decay is significantly faster than the forward one, suggesting a nonlocal spectral transport induced by oblique sound waves. Even with low-amplitude sound waves the nonlinear interaction rate is larger than the collisionless dissipation rate. Possible applications regarding acoustic waves observed in the solar corona, solar wind, and topside ionosphere are briefly discussed.
Variation principle for nonlinear wave propagation
International Nuclear Information System (INIS)
Watanabe, T.; Lee, Y.C.; Nishikawa, Kyoji; Hojo, H.; Yoshida, Y.
1976-01-01
Variation principle is derived which determines stationary nonlinear propagation of electrostatic waves in the self-consistent density profile. Example is given for lower-hybrid waves and the relation to the variation principle for the Lagrangian density of electromagnetic fluids is discussed
Qualitative aspects of nonlinear wave motion: Complexity and simplicity
International Nuclear Information System (INIS)
Engelbrecht, J.
1993-01-01
The nonlinear wave processes possess many qualitative properties which cannot be described by linear theories. In this presentation, an attempt is made to systematize the main aspects of this fascinating area. The sources of nonlinearities are analyzed in order to understand why and how the nonlinear mathematical models are formulated. The technique of evolution equations is discussed then as a main mathematical tool to separate multiwave processes into single waves. The evolution equations give concise but in many cases sufficient description of wave processes in solids permitting to analyze spectral changes, phase changes and velocities, coupling of waves, and interaction of nonlinearities with other physical effects of the same order. Several new problems are listed. Knowing the reasons, the seemingly complex problems can be effectively analyzed. 61 refs
Computer simulations on the nonlinear frequency shift and nonlinear modulation of ion-acoustic waves
International Nuclear Information System (INIS)
Ohsawa, Yukiharu; Kamimura, Tetsuo.
1976-11-01
The nonlinear behavior of ion-acoustic waves with rather short wave-length, k lambda sub(De) asymptotically equals 1, is investigated by computer sumulations. It is observed that the nonlinear frequency shift is negative and is proportional to square root of the initial wave amplitude when the amplitude is not too large. This proportionality breaks down and the frequency shift can become positive (for large Te/Ti), when (n tilde sub(i)/n 0 )sup(1/2)>0.25, where n tilde sub(i) is the ion density perturbation and n 0 the average plasma density. Nonlinear modulation of the wave-packet is clearly seen; however, modulational instability was not observed. The importance of the effects of trapped ions to these phenomena is emphasized. (auth.)
Lamb Wave Technique for Ultrasonic Nonlinear Characterization in Elastic Plates
International Nuclear Information System (INIS)
Lee, Tae Hun; Kim, Chung Seok; Jhang, Kyung Young
2010-01-01
Since the acoustic nonlinearity is sensitive to the minute variation of material properties, the nonlinear ultrasonic technique(NUT) has been considered as a promising method to evaluate the material degradation or fatigue. However, there are certain limitations to apply the conventional NUT using the bulk wave to thin plates. In case of plates, the use of Lamb wave can be considered, however, the propagation characteristics of Lamb wave are completely different with the bulk wave, and thus the separate study for the nonlinearity of Lamb wave is required. For this work, this paper analyzed first the conditions of mode pair suitable for the practical application as well as for the cumulative propagation of quadratic harmonic frequency and summarized the result in for conditions: phase matching, non-zero power flux, group velocity matching, and non-zero out-of-plane displacement. Experimental results in aluminum plates showed that the amplitude of the secondary Lamb wave and nonlinear parameter grew up with increasing propagation distance at the mode pair satisfying the above all conditions and that the ration of nonlinear parameters measured in Al6061-T6 and Al1100-H15 was closed to the ratio of the absolute nonlinear parameters
On the so called rogue waves in nonlinear Schrodinger equations
Directory of Open Access Journals (Sweden)
Y. Charles Li
2016-04-01
Full Text Available The mechanism of a rogue water wave is still unknown. One popular conjecture is that the Peregrine wave solution of the nonlinear Schrodinger equation (NLS provides a mechanism. A Peregrine wave solution can be obtained by taking the infinite spatial period limit to the homoclinic solutions. In this article, from the perspective of the phase space structure of these homoclinic orbits in the infinite dimensional phase space where the NLS defines a dynamical system, we examine the observability of these homoclinic orbits (and their approximations. Our conclusion is that these approximate homoclinic orbits are the most observable solutions, and they should correspond to the most common deep ocean waves rather than the rare rogue waves. We also discuss other possibilities for the mechanism of a rogue wave: rough dependence on initial data or finite time blow up.
Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface
Energy Technology Data Exchange (ETDEWEB)
Kim, No Hyu; Yang, Seung Yong [Korea University of Technology and Education, Cheonan (Korea, Republic of)
2007-12-15
Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness
Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface
International Nuclear Information System (INIS)
Kim, No Hyu; Yang, Seung Yong
2007-01-01
Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness
Nonlinear propagation of intense electromagnetic waves in weakly-ionized plasmas
International Nuclear Information System (INIS)
Shukla, P.K.
1993-01-01
The nonlinear propagation of intense electromagnetic waves in weakly-ionized plasmas is considered. Stimulated scattering mechanisms involving electromagnetic and acoustic waves in an unmagnetized plasma are investigated. The growth rate and threshold for three-wave decay interactions as well as modulational and filamentation instabilities are presented. Furthermore, the electromagnetic wave modulation theory is generalized for weakly ionized collisional magnetoplasmas. Here, the radiation envelope is generally governed by a nonlinear Schroedinger equation. Accounting for the dependence of the attachment frequency on the radiation intensity, ponderomotive force, as well as the differential Joule heating nonlinearity, the authors derive the equations for the nonthermal electron density and temperature perturbations. The various nonlinear terms in the electron motion are compared. The problems of self-focusing and wave localization are discussed. The relevance of the investigation to ionospheric modification by powerful electromagnetic waves is pointed out
Topics in nonlinear wave theory with applications
International Nuclear Information System (INIS)
Tracy, E.R.
1984-01-01
Selected topics in nonlinear wave theory are discussed, and applications to the study of modulational instabilities are presented. A historical survey is given of topics relating to solitons and modulational problems. A method is then presented for generating exact periodic and quasi-periodic solutions to several nonlinear wave equations, which have important physical applications. The method is then specialized for the purposes of studying the modulational instability of a plane wave solution of the nonlinear Schroedinger equation, an equation with general applicability in one-dimensional modulational problems. Some numerical results obtained in conjunction with the analytic study are presented. The analytic approach explains the recurrence phenomena seen in the numerical studies, and the numerical work of other authors. The method of solution (related to the inverse scattering method) is then analyzed within the context of Hamiltonian dynamics where it is shown that the method can be viewed as simply a pair of canonical transformations. The Abel Transformation, which appears here and in the work of other authors, is shown to be a special form of Liouville's transformation to action-angle variables. The construction of closed form solutions of these nonlinear wave equations, via the solution of Jacobi's inversion problem, is surveyed briefly
Statistical properties of nonlinear one-dimensional wave fields
Directory of Open Access Journals (Sweden)
D. Chalikov
2005-01-01
Full Text Available A numerical model for long-term simulation of gravity surface waves is described. The model is designed as a component of a coupled Wave Boundary Layer/Sea Waves model, for investigation of small-scale dynamic and thermodynamic interactions between the ocean and atmosphere. Statistical properties of nonlinear wave fields are investigated on a basis of direct hydrodynamical modeling of 1-D potential periodic surface waves. The method is based on a nonstationary conformal surface-following coordinate transformation; this approach reduces the principal equations of potential waves to two simple evolutionary equations for the elevation and the velocity potential on the surface. The numerical scheme is based on a Fourier transform method. High accuracy was confirmed by validation of the nonstationary model against known solutions, and by comparison between the results obtained with different resolutions in the horizontal. The scheme allows reproduction of the propagation of steep Stokes waves for thousands of periods with very high accuracy. The method here developed is applied to simulation of the evolution of wave fields with large number of modes for many periods of dominant waves. The statistical characteristics of nonlinear wave fields for waves of different steepness were investigated: spectra, curtosis and skewness, dispersion relation, life time. The prime result is that wave field may be presented as a superposition of linear waves is valid only for small amplitudes. It is shown as well, that nonlinear wave fields are rather a superposition of Stokes waves not linear waves. Potential flow, free surface, conformal mapping, numerical modeling of waves, gravity waves, Stokes waves, breaking waves, freak waves, wind-wave interaction.
Statistical properties of nonlinear one-dimensional wave fields
Chalikov, D.
2005-06-01
A numerical model for long-term simulation of gravity surface waves is described. The model is designed as a component of a coupled Wave Boundary Layer/Sea Waves model, for investigation of small-scale dynamic and thermodynamic interactions between the ocean and atmosphere. Statistical properties of nonlinear wave fields are investigated on a basis of direct hydrodynamical modeling of 1-D potential periodic surface waves. The method is based on a nonstationary conformal surface-following coordinate transformation; this approach reduces the principal equations of potential waves to two simple evolutionary equations for the elevation and the velocity potential on the surface. The numerical scheme is based on a Fourier transform method. High accuracy was confirmed by validation of the nonstationary model against known solutions, and by comparison between the results obtained with different resolutions in the horizontal. The scheme allows reproduction of the propagation of steep Stokes waves for thousands of periods with very high accuracy. The method here developed is applied to simulation of the evolution of wave fields with large number of modes for many periods of dominant waves. The statistical characteristics of nonlinear wave fields for waves of different steepness were investigated: spectra, curtosis and skewness, dispersion relation, life time. The prime result is that wave field may be presented as a superposition of linear waves is valid only for small amplitudes. It is shown as well, that nonlinear wave fields are rather a superposition of Stokes waves not linear waves. Potential flow, free surface, conformal mapping, numerical modeling of waves, gravity waves, Stokes waves, breaking waves, freak waves, wind-wave interaction.
Weakly nonlinear electron plasma waves in collisional plasmas
DEFF Research Database (Denmark)
Pecseli, H. L.; Rasmussen, J. Juul; Tagare, S. G.
1986-01-01
The nonlinear evolution of a high frequency plasma wave in a weakly magnetized, collisional plasma is considered. In addition to the ponderomotive-force-nonlinearity the nonlinearity due to the heating of the electrons is taken into account. A set of nonlinear equations including the effect...
Nonlinear plasma waves excited near resonance
International Nuclear Information System (INIS)
Cohen, B.I.; Kaufman, A.N.
1977-01-01
The nonlinear resonant response of a uniform plasma to an external plane-wave field is formulated in terms of the mismatch Δ/sub n l/ between the driving frequency and the time-dependent, complex, nonlinear normal mode frequency at the driving wavenumber. This formalism is applied to computer simulations of this process, yielding a deduced nonlinear frequency shift. The time dependence of the nonlinear phenomena, at frequency Δ/sub n l/ and at the bounce frequency of the resonant particles, is analyzed. The interdependence of the nonlinear features is described by means of energy and momentum relations
Nonlinear low frequency (LF) waves - Comets and foreshock phenomena
Tsurutani, Bruce T.
1991-01-01
A review is conducted of LF wave nonlinear properties at comets and in the earth's foreshock, engaging such compelling questions as why there are no cometary cyclotron waves, the physical mechanism responsible for 'dispersive whiskers', and the character of a general description of linear waves. Attention is given to the nonlinear properties of LF waves, whose development is illustrated by examples of waves and their features at different distances from the comet, as well as by computer simulation results. Also discussed is a curious wave mode detected from Comet Giacobini-Zinner, both at and upstream of the bow shock/wave.
Optical rogue waves generation in a nonlinear metamaterial
Onana Essama, Bedel Giscard; Atangana, Jacques; Biya-Motto, Frederick; Mokhtari, Bouchra; Cherkaoui Eddeqaqi, Noureddine; Kofane, Timoleon Crepin
2014-11-01
We investigate the behavior of electromagnetic wave which propagates in a metamaterial for negative index regime. The optical pulse propagation is described by the nonlinear Schrödinger equation with cubic-quintic nonlinearities, second- and third-order dispersion effects. The behavior obtained for negative index regime is compared to that observed for positive index regime. The characterization of electromagnetic wave uses some pulse parameters obtained analytically and called collective coordinates such as amplitude, temporal position, width, chirp, frequency shift and phase. Six frequency ranges have been pointed out where a numerical evolution of collective coordinates and their stability are studied under a typical example to verify our analysis. It appears that a robust soliton due to a perfect compensation process between second-order dispersion and cubic-nonlinearity is presented at each frequency range for both negative and positive index regimes. Thereafter, the stability of the soliton pulse and physical conditions leading to optical rogue waves generation are discussed at each frequency range for both regimes, when third-order dispersion and quintic-nonlinearity come into play. We have demonstrated that collective coordinates give much useful information on external and internal behavior of rogue events. Firstly, we determine at what distance begins the internal excitation leading to rogue waves. Secondly, what kind of internal modification and how it modifies the system in order to build-up rogue events. These results lead to a best comprehension of the mechanism of rogue waves generation. So, it clearly appears that the rogue wave behavior strongly depends on nonlinearity strength of distortion, frequency and regime considered.
Ganguli, G.; Crabtree, C. E.; Rudakov, L.; Mithaiwala, M.
2014-12-01
Velocity ring instabilities are a common naturally occuring magnetospheric phenomenon that can also be generated by man made ionospheric experiments. These instabilities are known to generate lower-hybrid waves, which generally cannot propagte out of the source region. However, nonlinear wave physics can convert these linearly driven electrostatic lower-hybrid waves into electromagnetic waves that can escape the source region. These nonlinearly generated waves can be an important source of VLF turbulence that controls the trapped electron lifetime in the radiation belts. We develop numerical solutions to the wave-kinetic equation in a periodic box including the effects of nonlinear (NL) scattering (nonlinear Landau damping) of Lower-hybrid waves giving the evolution of the wave-spectra in wavenumber space. Simultaneously we solve the particle diffusion equation of both the background plasma particles and the ring ions, due to both linear and nonlinear Landau resonances. At initial times for cold ring ions, an electrostatic beam mode is excited, while the kinetic mode is stable. As the instability progresses the ring ions heat, the beam mode is stabilized, and the kinetic mode destabilizes. When the amplitude of the waves becomes sufficient the lower-hybrid waves are scattered (by either nearly unmagnetized ions or magnetized electrons) into electromagnetic magnetosonic waves [Ganguli et al 2010]. The effect of NL scattering is to limit the amplitude of the waves, slowing down the quasilinear relaxation time and ultimately allowing more energy from the ring to be liberated into waves [Mithaiwala et al. 2011]. The effects of convection out of the instability region are modeled, additionally limiting the amplitude of the waves, allowing further energy to be liberated from the ring [Scales et al., 2012]. Results are compared to recent 3D PIC simulations [Winske and Duaghton 2012].
Nonlinear instability and chaos in plasma wave-wave interactions
International Nuclear Information System (INIS)
Kueny, C.S.
1993-01-01
Conventional linear stability analysis may fail for fluid systems with an indefinite free energy functional. When such a system is linearly stable, it is said to possess negative energy modes. Instability may then occur either via dissipation of the negative energy modes. Instability may then occur either via dissipation of the negative energy modes. Instability may then occur either via dissipitation of the negative energy modes, or nonlinearly via resonant wave-wave coupling, which leads to explosive growth. In the dissipationaless case, it is conjectured that intrinsic chaotic behavior may allow initially non-resonant systems to reach resonance by diffusion in phase space. This is illustrated for a simple equilibrium involving cold counter-streaming ions. The system is described in the fluid approximation by a Hamilitonian functional and associated noncanonical Poisson bracket. By Fourier decomposition and appropriate coordinate transformations, the Hamilitonian for the perturbed energy is expressed in action-angle form. The normal modes correspond to Doppler-shifted ion-acoustic waves of positive and negative energy. Nonlinear coupling leads to decay instability via two-wave interactions, which occur generically for long enough wavelengths. Three-wave interactions which occur in isolated, but numerous, regions of parameter space can drive either decay instability or explosive instability. When the resonance for explosive growth is detuned, a stable region exists around the equilibrium point in phase space, while explosive growth occurs outside of a separatrix. These interactions may be described exactly if only one resonance is considered, while multiple nonlinear terms make the Hamiltonian nonintegradable. Simple Hamiltonians of two and three degrees of freedom are studied numerically using symplectic integration algorithms, including an explicit algorithm derived using Lie algebraic methods
Radiation from nonlinear coupling of plasma waves
International Nuclear Information System (INIS)
Fung, S.F.
1986-01-01
The author examines the generation of electromagnetic radiation by nonlinear resonant interactions of plasma waves in a cold, uniformly magnetized plasma. In particular, he considers the up-conversion of two electrostatic wave packets colliding to produce high frequency electromagnetic radiation. Efficient conversion of electrostatic to electromagnetic wave energy occurs when the pump amplitudes approach and exceed the pump depletion threshold. Results from the inverse scattering transform analysis of the three-wave interaction equations are applied. When the wave packets are initially separated, the fully nonlinear set of coupling equations, which describe the evolution of the wave packets, can be reduced to three separate eigenvalue problems; each can be considered as a scattering problem, analogous to eh Schroedinger equation. In the scattering space, the wave packet profiles act as the scattering potentials. When the wavepacket areas approach (or exceed) π/2, the wave functions are localized (bound states) and the scattering potentials are said to contain solitons. Exchange of solitons occurs during the interaction. The transfer of solitons from the pump waves to the electromagnetic wave leads to pump depletion and the production of strong radiation. The emission of radio waves is considered by the coupling of two upper-hybrid branch wave packets, and an upper-hybrid and a lower hybrid branch wave packet
Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas
Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.
1997-01-01
We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.
Nonlinear Alfvén Waves in a Vlasov Plasma
DEFF Research Database (Denmark)
Bell, T.F.
1965-01-01
Stationary solutions to the nonlinear Vlasov—Boltzmann equations are considered which represent one-dimensional electromagnetic waves in a hot magnetoplasma. These solutions appear in arbitrary reference frames as circularly polarized, sinusoidal waves of unlimited amplitude, i.e., as nonlinear...... Alfvén waves. Solutions are found implicitly by deriving a set of integral dispersion relations which link the wave characteristics with the particle distribution functions. A physical discussion is given of the way in which the Alfvén waves can trap particles, and it is shown that the presence...
Ma, Li-Yuan; Ji, Jia-Liang; Xu, Zong-Wei; Zhu, Zuo-Nong
2018-03-01
We study a nonintegrable discrete nonlinear Schrödinger (dNLS) equation with the term of nonlinear nearest-neighbor interaction occurred in nonlinear optical waveguide arrays. By using discrete Fourier transformation, we obtain numerical approximations of stationary and travelling solitary wave solutions of the nonintegrable dNLS equation. The analysis of stability of stationary solitary waves is performed. It is shown that the nonlinear nearest-neighbor interaction term has great influence on the form of solitary wave. The shape of solitary wave is important in the electric field propagating. If we neglect the nonlinear nearest-neighbor interaction term, much important information in the electric field propagating may be missed. Our numerical simulation also demonstrates the difference of chaos phenomenon between the nonintegrable dNLS equation with nonlinear nearest-neighbor interaction and another nonintegrable dNLS equation without the term. Project supported by the National Natural Science Foundation of China (Grant Nos. 11671255 and 11701510), the Ministry of Economy and Competitiveness of Spain (Grant No. MTM2016-80276-P (AEI/FEDER, EU)), and the China Postdoctoral Science Foundation (Grant No. 2017M621964).
DEFF Research Database (Denmark)
Guo, Hairun; Zeng, Xianglong; Zhou, Binbin
2013-01-01
We interpret the purely spectral forward Maxwell equation with up to third-order induced polarizations for pulse propagation and interactions in quadratic nonlinear crystals. The interpreted equation, also named the nonlinear wave equation in the frequency domain, includes quadratic and cubic...... nonlinearities, delayed Raman effects, and anisotropic nonlinearities. The full potential of this wave equation is demonstrated by investigating simulations of solitons generated in the process of ultrafast cascaded second-harmonic generation. We show that a balance in the soliton delay can be achieved due...
Nonlinear dynamics of resonant electrons interacting with coherent Langmuir waves
Tobita, Miwa; Omura, Yoshiharu
2018-03-01
We study the nonlinear dynamics of resonant particles interacting with coherent waves in space plasmas. Magnetospheric plasma waves such as whistler-mode chorus, electromagnetic ion cyclotron waves, and hiss emissions contain coherent wave structures with various discrete frequencies. Although these waves are electromagnetic, their interaction with resonant particles can be approximated by equations of motion for a charged particle in a one-dimensional electrostatic wave. The equations are expressed in the form of nonlinear pendulum equations. We perform test particle simulations of electrons in an electrostatic model with Langmuir waves and a non-oscillatory electric field. We solve equations of motion and study the dynamics of particles with different values of inhomogeneity factor S defined as a ratio of the non-oscillatory electric field intensity to the wave amplitude. The simulation results demonstrate deceleration/acceleration, thermalization, and trapping of particles through resonance with a single wave, two waves, and multiple waves. For two-wave and multiple-wave cases, we describe the wave-particle interaction as either coherent or incoherent based on the probability of nonlinear trapping.
Nonlinear Evolution of Alfvenic Wave Packets
Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.
1998-01-01
Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.
Numerical simulation of the nonlinear dynamics of packets of spiral density waves
International Nuclear Information System (INIS)
Korchagin, V.I.
1987-01-01
In a numerical experiment, the behavior of nonlinear packets of spiral density waves in a gas disk has been investigated for different initial wave amplitudes. If the amplitude of the density perturbations is small (<5%), the wave packet is drawn toward the center or toward the periphery of the disk in accordance with the linear theory. The behavior of linear packets of waves with wavelength comparable to the disk radius (R/sub d//lambda = 4) exhibits good agreement with the conclusions of the linear theory of tightly wound spiral waves. The dynamics of wave packets with initial density amplitudes 16, 30, 50% demonstrates the nonlinear nature of the behavior. THe behavior is governed by whether or not the nonlinear effects of higher than third order in the wave amplitude play a part. If the wave packet dynamics is determined by the cubic nonlinearity, the results of the numerical experiment are in qualitative and quantitative agreement with the nonlinear theory of short waves, although the characteristic scale of the packet and the wavelength are of the order of the disk radius. In the cases when the nonlinear effects of higher orders in the amplitude play an important part, the behavior of a packet does not differ qualitatively from the behavior predicted by the theory of cubic nonlinearity, but the nonlinear spreading of the packet takes place more rapidly
Nonlinear drift waves in a dusty plasma with sheared flows
Energy Technology Data Exchange (ETDEWEB)
Vranjes, J. [K.U. Leuven (Belgium). Center for Plasma Astrophysics; Shukla, R.K. [Ruhr-Univ. Bochum (Germany). Inst. fuer Theoretische Physik IV
2002-01-01
Nonlinear properties of dust-modified drift waves and dust-drift waves in a dusty magnetoplasma with equilibrium sheared flows are examined. For this purpose, the relevant nonlinear equations for drift waves are analyzed for various profiles of the perpendicular and parallel plasma flows, and a variety of nonlinear solutions (viz. single and double vortex chains accompanied with zonal flows, tripolar and global vortices), which are driven by nommiform shear flows and nommiform dust density, is presented.
Nonlinear drift waves in a dusty plasma with sheared flows
International Nuclear Information System (INIS)
Vranjes, J.; Shukla, R.K.
2002-01-01
Nonlinear properties of dust-modified drift waves and dust-drift waves in a dusty magnetoplasma with equilibrium sheared flows are examined. For this purpose, the relevant nonlinear equations for drift waves are analyzed for various profiles of the perpendicular and parallel plasma flows, and a variety of nonlinear solutions (viz. single and double vortex chains accompanied with zonal flows, tripolar and global vortices), which are driven by nommiform shear flows and nommiform dust density, is presented
The propagation of nonlinear rayleigh waves in layered elastic half-space
International Nuclear Information System (INIS)
Ahmetolan, S.
2004-01-01
In this work, the propagation of small but finite amplitude generalized Rayleigh waves in an elastic half-space covered by a different elastic layer of uniform and finite thickness is considered. The constituent materials are assumed to be homogeneous, isotropic, compressible hyperelastic. Excluding the harmonic resonance phenomena, it is shown that the nonlinear self modulation of generalized Rayleigh waves is governed asymptotically by a nonlinear Schrodinger (NLS) equation. The stability of the solutions and the existence of solitary wave-type solutions a NLS are strongly depend on the sign of the product of the coefficients of the nonlinear and dipersion terms of the equation.Therefore the analysis continues with the examination of dependence of these coefficients on the nonlinear material parameters. Three different models have been considered which are nonlinear layer-nonlinear half space, linear layer-nonlinear half space and nonlinear layer-linear half space. The behavior of the coefficients of the NLS equation was also analyzed the limit as h(thickness of the layer) goes to zero and k(the wave number) is constant. Then conclusions are drawn about the effect of nonlinear material parameters on the wave modulation. In the numerical investigations both hypothetical and real material models are used
Acoustic nonlinear periodic waves in pair-ion plasmas
Mahmood, Shahzad; Kaladze, Tamaz; Ur-Rehman, Hafeez
2013-09-01
Electrostatic acoustic nonlinear periodic (cnoidal) waves and solitons are investigated in unmagnetized pair-ion plasmas consisting of same mass and oppositely charged ion species with different temperatures. Using reductive perturbation method and appropriate boundary conditions, the Korteweg-de Vries (KdV) equation is derived. The analytical solutions of both cnoidal wave and soliton solutions are discussed in detail. The phase plane plots of cnoidal and soliton structures are shown. It is found that both compressive and rarefactive cnoidal wave and soliton structures are formed depending on the temperature ratio of positive and negative ions in pair-ion plasmas. In the special case, it is revealed that the amplitude of soliton may become larger than it is allowed by the nonlinear stationary wave theory which is equal to the quantum tunneling by particle through a potential barrier effect. The serious flaws in the earlier published results by Yadav et al., [PRE 52, 3045 (1995)] and Chawla and Misra [Phys. Plasmas 17, 102315 (2010)] of studying ion acoustic nonlinear periodic waves are also pointed out.
Effect of Forcing Function on Nonlinear Acoustic Standing Waves
Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce
2003-01-01
Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.
Parameter spaces for linear and nonlinear whistler-mode waves
International Nuclear Information System (INIS)
Summers, Danny; Tang, Rongxin; Omura, Yoshiharu; Lee, Dong-Hun
2013-01-01
We examine the growth of magnetospheric whistler-mode waves which comprises a linear growth phase followed by a nonlinear growth phase. We construct time-profiles for the wave amplitude that smoothly match at the transition between linear and nonlinear wave growth. This matching procedure can only take place over a limited “matching region” in (N h /N 0 ,A T )-space, where A T is the electron thermal anisotropy, N h is the hot (energetic) electron number density, and N 0 is the cold (background) electron number density. We construct this matching region and determine how the matching wave amplitude varies throughout the region. Further, we specify a boundary in (N h /N 0 ,A T )-space that separates a region where only linear chorus wave growth can occur from the region in which fully nonlinear chorus growth is possible. We expect that this boundary should prove of practical use in performing computationally expensive full-scale particle simulations, and in interpreting experimental wave data
Nonlinear spin wave coupling in adjacent magnonic crystals
Energy Technology Data Exchange (ETDEWEB)
Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Grishin, S. V.; Sheshukova, S. E. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation)
2016-07-25
We have experimentally studied the coupling of spin waves in the adjacent magnonic crystals. Space- and time-resolved Brillouin light-scattering spectroscopy is used to demonstrate the frequency and intensity dependent spin-wave energy exchange between the side-coupled magnonic crystals. The experiments and the numerical simulation of spin wave propagation in the coupled periodic structures show that the nonlinear phase shift of spin wave in the adjacent magnonic crystals leads to the nonlinear switching regime at the frequencies near the forbidden magnonic gap. The proposed side-coupled magnonic crystals represent a significant advance towards the all-magnonic signal processing in the integrated magnonic circuits.
Nonlinear spin wave coupling in adjacent magnonic crystals
International Nuclear Information System (INIS)
Sadovnikov, A. V.; Nikitov, S. A.; Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Grishin, S. V.; Sheshukova, S. E.
2016-01-01
We have experimentally studied the coupling of spin waves in the adjacent magnonic crystals. Space- and time-resolved Brillouin light-scattering spectroscopy is used to demonstrate the frequency and intensity dependent spin-wave energy exchange between the side-coupled magnonic crystals. The experiments and the numerical simulation of spin wave propagation in the coupled periodic structures show that the nonlinear phase shift of spin wave in the adjacent magnonic crystals leads to the nonlinear switching regime at the frequencies near the forbidden magnonic gap. The proposed side-coupled magnonic crystals represent a significant advance towards the all-magnonic signal processing in the integrated magnonic circuits.
Ion-acoustic nonlinear periodic waves in electron-positron-ion plasma
International Nuclear Information System (INIS)
Chawla, J. K.; Mishra, M. K.
2010-01-01
Ion-acoustic nonlinear periodic waves, namely, ion-acoustic cnoidal waves have been studied in electron-positron-ion plasma. Using reductive perturbation method and appropriate boundary condition for nonlinear periodic waves, the Korteweg-de Vries (KdV) equation is derived for the system. The cnoidal wave solution of the KdV equation is discussed in detail. It is found that the frequency of the cnoidal wave is a function of its amplitude. It is also found that the positron concentration modifies the properties of the ion-acoustic cnoidal waves. The existence regions for ion-acoustic cnoidal wave in the parameters space (p,σ), where p and σ are the positron concentration and temperature ratio of electron to positron, are discussed in detail. In the limiting case these ion-acoustic cnoidal waves reduce to the ion-acoustic soliton solutions. The effect of other parameters on the characteristics of the nonlinear periodic waves is also discussed.
Creep Damage Evaluation of Titanium Alloy Using Nonlinear Ultrasonic Lamb Waves
International Nuclear Information System (INIS)
Xiang Yan-Xun; Xuan Fu-Zhen; Deng Ming-Xi; Chen Hu; Chen Ding-Yue
2012-01-01
The creep damage in high temperature resistant titanium alloys Ti60 is measured using the nonlinear effect of an ultrasonic Lamb wave. The results show that the normalised acoustic nonlinearity of a Lamb wave exhibits a variation of the 'increase-decrease' tendency as a function of the creep damage. The influence of microstructure evolution on the nonlinear Lamb wave propagation has been analyzed based on metallographic studies, which reveal that the normalised acoustic nonlinearity increases due to a rising of the precipitation volume fraction and the dislocation density in the early stage, and it decreases as a combined result of dislocation change and micro-void initiation in the material. The nonlinear Lamb wave exhibits the potential for the assessment of the remaining creep life in metals
Topological horseshoes in travelling waves of discretized nonlinear wave equations
International Nuclear Information System (INIS)
Chen, Yi-Chiuan; Chen, Shyan-Shiou; Yuan, Juan-Ming
2014-01-01
Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes
Topological horseshoes in travelling waves of discretized nonlinear wave equations
Energy Technology Data Exchange (ETDEWEB)
Chen, Yi-Chiuan, E-mail: YCChen@math.sinica.edu.tw [Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan (China); Chen, Shyan-Shiou, E-mail: sschen@ntnu.edu.tw [Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Yuan, Juan-Ming, E-mail: jmyuan@pu.edu.tw [Department of Financial and Computational Mathematics, Providence University, Shalu, Taichung 43301, Taiwan (China)
2014-04-15
Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes.
Nonlinear MHD Waves in a Prominence Foot
Ofman, L.; Knizhnik, K.; Kucera, T.; Schmieder, B.
2015-11-01
We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ˜ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5-11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5-14 G. For the typical prominence density the corresponding fast magnetosonic speed is ˜20 km s-1, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.
NONLINEAR MHD WAVES IN A PROMINENCE FOOT
Energy Technology Data Exchange (ETDEWEB)
Ofman, L. [Catholic University of America, Washington, DC 20064 (United States); Knizhnik, K.; Kucera, T. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Schmieder, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris-Diderot, Sorbonne Paris Cit, 5 place Jules Janssen, F-92195 Meudon (France)
2015-11-10
We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ∼ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5–11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5–14 G. For the typical prominence density the corresponding fast magnetosonic speed is ∼20 km s{sup −1}, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.
Numerical Simulation of Freak Waves Based on the Four-Order Nonlinear Schr(o)dinger Equation
Institute of Scientific and Technical Information of China (English)
ZHANG Yun-qiu; ZHANG Ning-chuan; PEI Yu-guo
2007-01-01
A numerical wave model based on the modified four-order nonlinear Schrodinger (NLS) equation in deep water is developed to simulate freak waves. A standard split-step, pseudo-spectral method is used to solve NLS equation. The validation of the model is firstly verified, and then the simulation of freak waves is performed by changing sideband conditions. Results show that freak waves entirely consistent with the definition in the evolution of wave trains are obtained. The possible occurrence mechanism of freak waves is discussed and the relevant characteristics are also analyzed.
Symbolic computation of nonlinear wave interactions on MACSYMA
International Nuclear Information System (INIS)
Bers, A.; Kulp, J.L.; Karney, C.F.F.
1976-01-01
In this paper the use of a large symbolic computation system - MACSYMA - in determining approximate analytic expressions for the nonlinear coupling of waves in an anisotropic plasma is described. MACSYMA was used to implement the solutions of a fluid plasma model nonlinear partial differential equations by perturbation expansions and subsequent iterative analytic computations. By interacting with the details of the symbolic computation, the physical processes responsible for particular nonlinear wave interactions could be uncovered and appropriate approximations introduced so as to simplify the final analytic result. Details of the MACSYMA system and its use are discussed and illustrated. (Auth.)
Some remarks on coherent nonlinear coupling of waves in plasmas
International Nuclear Information System (INIS)
Wilhelmsson, H.
1976-01-01
The analysis of nonlinear processes in plasma physics has given rise to a basic set of coupled equations. These equations describe the coherent nonlinear evolution of plasma waves. In this paper various possibilities of analysing these equations are discussed and inherent difficulties in the description of nonlinear interactions between different types of waves are pointed out. Specific examples of stimulated excitation of waves are considered. These are the parametric excitation of hybrid resonances in hot magnetized multi-ion component plasma and laser-plasma interactions. (B.D.)
International Nuclear Information System (INIS)
Bhattacharyya, B.; Chakraborty, B.
1979-01-01
Nonlinear corrections of a left and a right circularly polarized electromagnetic wave of the same frequency, propagating in the direction of a static and uniform magnetic field in a cold and collisionally damped two-component plasma, have been evaluated. The nonlinearly correct dispersion relation, self-generating nonlinear precessional rotation of the polarization ellipse of the wave and the shift in a wave parameter depend on linear combinations of products of the amplitude components taken two at a time and hence on the energies of the waves. Both in the low frequency resonance (that is when the ion cyclotron frequency equals the wave frequency) and in the high frequency resonance (that is when the electron cyclotron frequency equals the wave frequency), the self-precessional rate and wavenumber shift are found to be large and so have the possibility of detection in laboratory experiments. Moreover, for the limit leading to Alfven waves, these nonlinear effects have been found to have some interesting and significant properties. (Auth.)
Gusev, Vitalyi E; Ni, Chenyin; Lomonosov, Alexey; Shen, Zhonghua
2015-08-01
Theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous material on flexural wave in the plates of continuously varying thickness is developed. For the wedges with thickness increasing as a power law of distance from its edge strong modifications of the wave dynamics with propagation distance are predicted. It is found that nonlinear absorption progressively disappearing with diminishing wave amplitude leads to complete attenuation of acoustic waves in most of the wedges exhibiting black hole phenomenon. It is also demonstrated that black holes exist beyond the geometrical acoustic approximation. Applications include nondestructive evaluation of micro-inhomogeneous materials and vibrations damping. Copyright © 2015 Elsevier B.V. All rights reserved.
Solitons and Weakly Nonlinear Waves in Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans
1985-01-01
Theoretical descriptions of solitons and weakly nonlinear waves propagating in plasma media are reviewed, with particular attention to the Korteweg-de Vries (KDV) equation and the Nonlinear Schrödinger equation (NLS). The modifications of these basic equations due to the effects of resonant...
Spectro-spatial analysis of wave packet propagation in nonlinear acoustic metamaterials
Zhou, W. J.; Li, X. P.; Wang, Y. S.; Chen, W. Q.; Huang, G. L.
2018-01-01
The objective of this work is to analyze wave packet propagation in weakly nonlinear acoustic metamaterials and reveal the interior nonlinear wave mechanism through spectro-spatial analysis. The spectro-spatial analysis is based on full-scale transient analysis of the finite system, by which dispersion curves are generated from the transmitted waves and also verified by the perturbation method (the L-P method). We found that the spectro-spatial analysis can provide detailed information about the solitary wave in short-wavelength region which cannot be captured by the L-P method. It is also found that the optical wave modes in the nonlinear metamaterial are sensitive to the parameters of the nonlinear constitutive relation. Specifically, a significant frequency shift phenomenon is found in the middle-wavelength region of the optical wave branch, which makes this frequency region behave like a band gap for transient waves. This special frequency shift is then used to design a direction-biased waveguide device, and its efficiency is shown by numerical simulations.
NONLINEAR EVOLUTION OF GLOBAL HYDRODYNAMIC SHALLOW-WATER INSTABILITY IN THE SOLAR TACHOCLINE
International Nuclear Information System (INIS)
Dikpati, Mausumi
2012-01-01
We present a fully nonlinear hydrodynamic 'shallow-water' model of the solar tachocline. The model consists of a global spherical shell of differentially rotating fluid, which has a deformable top, thus allowing motions in radial directions along with latitudinal and longitudinal directions. When the system is perturbed, in the course of its nonlinear evolution it can generate unstable low-frequency shallow-water shear modes from the differential rotation, high-frequency gravity waves, and their interactions. Radiative and overshoot tachoclines are characterized in this model by high and low effective gravity values, respectively. Building a semi-implicit spectral scheme containing very low numerical diffusion, we perform nonlinear evolution of shallow-water modes. Our first results show that (1) high-latitude jets or polar spin-up occurs due to nonlinear evolution of unstable hydrodynamic shallow-water disturbances and differential rotation, (2) Reynolds stresses in the disturbances together with changing shell thickness and meridional flow are responsible for the evolution of differential rotation, (3) disturbance energy primarily remains concentrated in the lowest longitudinal wavenumbers, (4) an oscillation in energy between perturbed and unperturbed states occurs due to evolution of these modes in a nearly dissipation-free system, and (5) disturbances are geostrophic, but occasional nonadjustment in geostrophic balance can occur, particularly in the case of high effective gravity, leading to generation of gravity waves. We also find that a linearly stable differential rotation profile remains nonlinearly stable.
Colosi, John A
2008-09-01
While many results have been intuited from numerical simulation studies, the precise connections between shallow-water acoustic variability and the space-time scales of nonlinear internal waves (NLIWs) as well as the background environmental conditions have not been clearly established analytically. Two-dimensional coupled mode propagation through NLIWs is examined using a perturbation series solution in which each order n is associated with nth-order multiple scattering. Importantly, the perturbation solution gives resonance conditions that pick out specific NLIW scales that cause coupling, and seabed attenuation is demonstrated to broaden these resonances, fundamentally changing the coupling behavior at low frequency. Sound-speed inhomogeneities caused by internal solitary waves (ISWs) are primarily considered and the dependence of mode coupling on ISW amplitude, range width, depth structure, location relative to the source, and packet characteristics are delineated as a function of acoustic frequency. In addition, it is seen that significant energy transfer to modes with initially low or zero energy involves at least a second order scattering process. Under moderate scattering conditions, comparisons of first order, single scattering theoretical predictions to direct numerical simulation demonstrate the accuracy of the approach for acoustic frequencies upto 400 Hz and for single as well as multiple ISW wave packets.
Nonlinear theory of localized standing waves
Denardo, Bruce; Larraza, Andrés; Putterman, Seth; Roberts, Paul
1992-01-01
An investigation of the nonlinear dispersive equations of continuum mechanics reveals localized standing-wave solutions that are domain walls between regions of different wave number. These states can appear even when the dispersion law is a single-valued function of the wave number. In addition, we calculate solutions for kinks in cutoff and noncutoff modes, as well as cutoff breather solitons. Division of Engineering and Geophysics of the Office of Basic Energy Science of U.S. DOE for su...
Experimental investigation of gravity wave turbulence and of non-linear four wave interactions..
Berhanu, Michael
2017-04-01
Using the large basins of the Ecole Centrale de Nantes (France), non-linear interactions of gravity surface waves are experimentally investigated. In a first part we study statistical properties of a random wave field regarding the insights from the Wave Turbulence Theory. In particular freely decaying gravity wave turbulence is generated in a closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonl-inear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, non-linear and dissipative time scales to test the time scale separation. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant of the weak turbulence theory is evaluated. In a second part, resonant interactions of oblique surface gravity waves in a large basin are studied. We generate two oblique waves crossing at an acute angle. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory. L. Deike, B. Miquel, P. Gutiérrez, T. Jamin, B. Semin, M. Berhanu, E. Falcon and F. Bonnefoy, Role of the basin boundary conditions in gravity wave turbulence, Journal of Fluid Mechanics 781, 196 (2015) F. Bonnefoy, F. Haudin, G. Michel, B. Semin, T. Humbert, S. Aumaître, M. Berhanu and E. Falcon, Observation of resonant interactions among surface gravity waves, Journal of Fluid Mechanics (Rapids) 805, R3 (2016)
Nonlinear modulation of torsional waves in elastic rod. [Instability
Energy Technology Data Exchange (ETDEWEB)
Hirao, M; Sugimoto, N [Osaka Univ., Toyonaka (Japan). Faculty of Engineering Science
1977-06-01
Nonlinear Schroedinger equation, which describes the nonlinear modulation of dispersive torsional waves in an elastic rod of circular cross-section, is derived by the derivative expansion method. It is found, for the lowest dispersive mode, that the modulational instability occurs except in the range of the carrier wavenumber, 2.799
Beach steepness effects on nonlinear infragravity-wave interactions : A numerical study
de Bakker, A. T M; Tissier, M. F S; Ruessink, B. G.
2016-01-01
The numerical model SWASH is used to investigate nonlinear energy transfers between waves for a diverse set of beach profiles and wave conditions, with a specific focus on infragravity waves. We use bispectral analysis to study the nonlinear triad interactions, and estimate energy transfers to
Alfven wave resonances and flow induced by nonlinear Alfven waves in a stratified atmosphere
International Nuclear Information System (INIS)
Stark, B. A.; Musielak, Z. E.; Suess, S. T.
1996-01-01
A nonlinear, time-dependent, ideal MHD code has been developed and used to compute the flow induced by nonlinear Alfven waves propagating in an isothermal, stratified, plane-parallel atmosphere. The code is based on characteristic equations solved in a Lagrangian frame. Results show that resonance behavior of Alfven waves exists in the presence of a continuous density gradient and that the waves with periods corresponding to resonant peaks exert considerably more force on the medium than off-resonance periods. If only off-peak periods are considered, the relationship between the wave period and induced longitudinal velocity shows that short period WKB waves push more on the background medium than longer period, non-WKB, waves. The results also show the development of the longitudinal waves induced by finite amplitude Alfven waves. Wave energy transferred to the longitudinal mode may provide a source of localized heating
Energy Technology Data Exchange (ETDEWEB)
Torello, David [GW Woodruff School of Mechanical Engineering, Georgia Tech (United States); Kim, Jin-Yeon [School of Civil and Environmental Engineering, Georgia Tech (United States); Qu, Jianmin [Department of Civil and Environmental Engineering, Northwestern University (United States); Jacobs, Laurence J. [School of Civil and Environmental Engineering, Georgia Tech and GW Woodruff School of Mechanical Engineering, Georgia Tech (United States)
2015-03-31
This research considers the effects of diffraction, attenuation, and the nonlinearity of generating sources on measurements of nonlinear ultrasonic Rayleigh wave propagation. A new theoretical framework for correcting measurements made with air-coupled and contact piezoelectric receivers for the aforementioned effects is provided based on analytical models and experimental considerations. A method for extracting the nonlinearity parameter β{sub 11} is proposed based on a nonlinear least squares curve-fitting algorithm that is tailored for Rayleigh wave measurements. Quantitative experiments are conducted to confirm the predictions for the nonlinearity of the piezoelectric source and to demonstrate the effectiveness of the curve-fitting procedure. These experiments are conducted on aluminum 2024 and 7075 specimens and a β{sub 11}{sup 7075}/β{sub 11}{sup 2024} measure of 1.363 agrees well with previous literature and earlier work.
Nonlinear coherent structures of Alfvén wave in a collisional plasma
International Nuclear Information System (INIS)
Jana, Sayanee; Chakrabarti, Nikhil; Ghosh, Samiran
2016-01-01
The Alfvén wave dynamics is investigated in the framework of two-fluid approach in a compressible collisional magnetized plasma. In the finite amplitude limit, the dynamics of the nonlinear Alfvén wave is found to be governed by a modified Korteweg-de Vries Burgers equation (mKdVB). In this mKdVB equation, the electron inertia is found to act as a source of dispersion, and the electron-ion collision serves as a dissipation. The collisional dissipation is eventually responsible for the Burgers term in mKdVB equation. In the long wavelength limit, this weakly nonlinear Alfvén wave is shown to be governed by a damped nonlinear Schrödinger equation. Furthermore, these nonlinear equations are analyzed by means of analytical calculation and numerical simulation to elucidate the various aspects of the phase-space dynamics of the nonlinear wave. Results reveal that nonlinear Alfvén wave exhibits the dissipation mediated shock, envelope, and breather like structures. Numerical simulations also predict the formation of dissipative Alfvénic rogue wave, giant breathers, and rogue wave holes. These results are discussed in the context of the space plasma.
Nonlinear coherent structures of Alfvén wave in a collisional plasma
Energy Technology Data Exchange (ETDEWEB)
Jana, Sayanee; Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Ghosh, Samiran [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India)
2016-07-15
The Alfvén wave dynamics is investigated in the framework of two-fluid approach in a compressible collisional magnetized plasma. In the finite amplitude limit, the dynamics of the nonlinear Alfvén wave is found to be governed by a modified Korteweg-de Vries Burgers equation (mKdVB). In this mKdVB equation, the electron inertia is found to act as a source of dispersion, and the electron-ion collision serves as a dissipation. The collisional dissipation is eventually responsible for the Burgers term in mKdVB equation. In the long wavelength limit, this weakly nonlinear Alfvén wave is shown to be governed by a damped nonlinear Schrödinger equation. Furthermore, these nonlinear equations are analyzed by means of analytical calculation and numerical simulation to elucidate the various aspects of the phase-space dynamics of the nonlinear wave. Results reveal that nonlinear Alfvén wave exhibits the dissipation mediated shock, envelope, and breather like structures. Numerical simulations also predict the formation of dissipative Alfvénic rogue wave, giant breathers, and rogue wave holes. These results are discussed in the context of the space plasma.
Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Cathignol, Dominique
2004-05-01
A classical effect of nonlinear acoustics is that a plane sinusoidal acoustic wave propagating in a nonlinear medium transforms to a sawtooth wave with one shock per cycle. However, the waveform evolution can be quite different in the near field of a plane source due to diffraction. Previous numerical simulations of nonlinear acoustic waves in the near field of a circular piston source predict the development of two shocks per wave cycle [Khokhlova et al., J. Acoust. Soc. Am. 110, 95-108 (2001)]. Moreover, at some locations the peak pressure may be up to 4 times the source amplitude. The motivation of this work was to experimentally verify and further explain the phenomena of the nonlinear waveform distortion. Measurements were conducted in water with a 47-mm-diameter unfocused transducer, working at 1-MHz frequency. For pressure amplitudes higher than 0.5 MPa, two shocks per cycle were observed in the waveform beyond the last minimum of the fundamental harmonic amplitude. With the increase of the observation distance, these two shocks collided and formed one shock (per cycle), i.e., the waveform developed into the classical sawtooth wave. The experimental results were in a very good agreement with the modeling based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation.
Energy Technology Data Exchange (ETDEWEB)
Zuo, Peng; Fan, Zheng, E-mail: ZFAN@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Zhou, Yu [Advanced Remanufacturing and Technology Center (ARTC), 3 Clean Tech Loop, CleanTech Two, Singapore 637143 (Singapore)
2016-07-15
Nonlinear guided waves have been investigated widely in simple geometries, such as plates, pipe and shells, where analytical solutions have been developed. This paper extends the application of nonlinear guided waves to waveguides with arbitrary cross sections. The criteria for the existence of nonlinear guided waves were summarized based on the finite deformation theory and nonlinear material properties. Numerical models were developed for the analysis of nonlinear guided waves in complex geometries, including nonlinear Semi-Analytical Finite Element (SAFE) method to identify internal resonant modes in complex waveguides, and Finite Element (FE) models to simulate the nonlinear wave propagation at resonant frequencies. Two examples, an aluminum plate and a steel rectangular bar, were studied using the proposed numerical model, demonstrating the existence of nonlinear guided waves in such structures and the energy transfer from primary to secondary modes.
Beach steepness effects on nonlinear infragravity-wave interactions : A numerical study
De Bakker, A. T M; Tissier, M.F.S.; Ruessink, B. G.
2016-01-01
The numerical model SWASH is used to investigate nonlinear energy transfers between waves for a diverse set of beach profiles and wave conditions, with a specific focus on infragravity waves. We use bispectral analysis to study the nonlinear triad interactions, and estimate energy transfers to
Analytical and numerical investigation of nonlinear internal gravity waves
Directory of Open Access Journals (Sweden)
S. P. Kshevetskii
2001-01-01
Full Text Available The propagation of long, weakly nonlinear internal waves in a stratified gas is studied. Hydrodynamic equations for an ideal fluid with the perfect gas law describe the atmospheric gas behaviour. If we neglect the term Ͽ dw/dt (product of the density and vertical acceleration, we come to a so-called quasistatic model, while we name the full hydro-dynamic model as a nonquasistatic one. Both quasistatic and nonquasistatic models are used for wave simulation and the models are compared among themselves. It is shown that a smooth classical solution of a nonlinear quasistatic problem does not exist for all t because a gradient catastrophe of non-linear internal waves occurs. To overcome this difficulty, we search for the solution of the quasistatic problem in terms of a generalised function theory as a limit of special regularised equations containing some additional dissipation term when the dissipation factor vanishes. It is shown that such solutions of the quasistatic problem qualitatively differ from solutions of a nonquasistatic nature. It is explained by the fact that in a nonquasistatic model the vertical acceleration term plays the role of a regularizator with respect to a quasistatic model, while the solution qualitatively depends on the regularizator used. The numerical models are compared with some analytical results. Within the framework of the analytical model, any internal wave is described as a system of wave modes; each wave mode interacts with others due to equation non-linearity. In the principal order of a perturbation theory, each wave mode is described by some equation of a KdV type. The analytical model reveals that, in a nonquasistatic model, an internal wave should disintegrate into solitons. The time of wave disintegration into solitons, the scales and amount of solitons generated are important characteristics of the non-linear process; they are found with the help of analytical and numerical investigations. Satisfactory
2015-09-30
Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves...interaction of surface and internal gravity waves in the South China Sea. We will seek answers to the following questions: 1) How does the wind-wave
On Maximally Dissipative Shock Waves in Nonlinear Elasticity
Knowles, James K.
2010-01-01
Shock waves in nonlinearly elastic solids are, in general, dissipative. We study the following question: among all plane shock waves that can propagate with a given speed in a given one-dimensional nonlinearly elastic bar, which one—if any—maximizes the rate of dissipation? We find that the answer to this question depends strongly on the qualitative nature of the stress-strain relation characteristic of the given material. When maximally dissipative shocks do occur, they propagate according t...
Nonlinear density waves in a marginally stable gravitating disk
International Nuclear Information System (INIS)
Korchagin, V.I.
1986-01-01
The evolution of short nonlinear density waves in a disk at the stability limit is studied for arbitrary values of the radial wave number k/sub r/. For waves with wave numbers that do not lie at the minimum of the dispersion curve, the behavior of the amplitude is described by a nonlinear parabolic equation; however, stationary soliton solutions cannot exist in such a system since there is no dispersion spreading of a packet. For wave numbers lying at the minimum of the dispersion curve, soliton structures with determined amplitude are possible. In stable gravitating disks and in a disk at the stability limit, two physically different types of soliton can exist
Constrained non-linear waves for offshore wind turbine design
International Nuclear Information System (INIS)
Rainey, P J; Camp, T R
2007-01-01
Advancements have been made in the modelling of extreme wave loading in the offshore environment. We give an overview of wave models used at present, and their relative merits. We describe a method for embedding existing non-linear solutions for large, regular wave kinematics into linear, irregular seas. Although similar methods have been used before, the new technique is shown to offer advances in computational practicality, repeatability, and accuracy. NewWave theory has been used to constrain the linear simulation, allowing best possible fit with the large non-linear wave. GH Bladed was used to compare the effect of these models on a generic 5 MW turbine mounted on a tripod support structure
A new type of surface acoustic waves in solids due to nonlinear elasticity
International Nuclear Information System (INIS)
Mozhaev, V.G.
1988-12-01
It is shown that in nonlinear elastic semi-infinite medium possessing a property of self focusing of shear waves, besides bulk non-linear shear waves, new surface acoustic waves exist, localization of which near the boundary is entirely due to nonlinear effects. (author). 8 refs
Nonlinear periodic space-charge waves in plasma
International Nuclear Information System (INIS)
Kovalev, V. A.
2009-01-01
A solution is obtained in the form of coupled nonlinear periodic space-charge waves propagating in a magnetoactive plasma. The wave spectrum in the vicinity of the critical point, where the number of harmonics increases substantially, is found to fall with harmonic number as ∝ s -1/3 . Periodic space-charge waves are invoked to explain the zebra pattern in the radio emission from solar flares.
Stability of nonlinear waves and patterns and related topics
Ghazaryan, Anna; Lafortune, Stephane; Manukian, Vahagn
2018-04-01
Periodic and localized travelling waves such as wave trains, pulses, fronts and patterns of more complex structure often occur in natural and experimentally built systems. In mathematics, these objects are realized as solutions of nonlinear partial differential equations. The existence, dynamic properties and bifurcations of those solutions are of interest. In particular, their stability is important for applications, as the waves that are observable are usually stable. When the waves are unstable, further investigation is warranted of the way the instability is exhibited, i.e. the nature of the instability, and also coherent structures that appear as a result of an instability of travelling waves. A variety of analytical, numerical and hybrid techniques are used to study travelling waves and their properties. This article is part of the theme issue `Stability of nonlinear waves and patterns and related topics'.
Directory of Open Access Journals (Sweden)
S.-D. Zhang
2000-10-01
Full Text Available By analyzing the results of the numerical simulations of nonlinear propagation of three Gaussian gravity-wave packets in isothermal atmosphere individually, the nonlinear effects on the characteristics of gravity waves are studied quantitatively. The analyses show that during the nonlinear propagation of gravity wave packets the mean flows are accelerated and the vertical wavelengths show clear reduction due to nonlinearity. On the other hand, though nonlinear effects exist, the time variations of the frequencies of gravity wave packets are close to those derived from the dispersion relation and the amplitude and phase relations of wave-associated disturbance components are consistent with the predictions of the polarization relation of gravity waves. This indicates that the dispersion and polarization relations based on the linear gravity wave theory can be applied extensively in the nonlinear region.Key words: Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides
Zhao, J. S.; Voitenko, Y.; De Keyser, J.; Wu, D. J.
2018-04-01
We study the decay of Alfvén waves in the solar wind, accounting for the joint operation of two-dimensional (2D) scalar and three-dimensional (3D) vector nonlinear interactions between Alfvén and slow waves. These interactions have previously been studied separately in long- and short-wavelength limits where they lead to 2D scalar and 3D vector decays, correspondingly. The joined action of the scalar and vector interactions shifts the transition between 2D and 3D decays to significantly smaller wavenumbers than was predicted by Zhao et al. who compared separate scalar and vector decays. In application to the broadband Alfvén waves in the solar wind, this means that the vector nonlinear coupling dominates in the extended wavenumber range 5 × 10‑4 ≲ ρ i k 0⊥ ≲ 1, where the decay is essentially 3D and nonlocal, generating product Alfvén and slow waves around the ion gyroscale. Here ρ i is the ion gyroradius, and k 0⊥ is the pump Alfvén wavenumber. It appears that, except for the smallest wavenumbers at and below {ρ }i{k}0\\perp ∼ {10}-4 in Channel I, the nonlinear decay of magnetohydrodynamic Alfvén waves propagating from the Sun is nonlocal and cannot generate counter-propagating Alfvén waves with similar scales needed for the turbulent cascade. Evaluation of the nonlinear frequency shift shows that product Alfvén waves can still be approximately described as normal Alfvénic eigenmodes. On the contrary, nonlinearly driven slow waves deviate considerably from normal modes and are therefore difficult to identify on the basis of their phase velocities and/or polarization.
Directory of Open Access Journals (Sweden)
Yu-Hua Zhang
2017-01-01
Full Text Available Residual stress has significant influence on the performance of mechanical components, and the nondestructive estimation of residual stress is always a difficult problem. This study applies the relative nonlinear coefficient of critical refraction longitudinal (LCR wave to nondestructively characterize the stress state of materials; the feasibility of residual stress estimation using the nonlinear property of LCR wave is verified. The nonlinear ultrasonic measurements based on LCR wave are conducted on components with known stress state to calculate the relative nonlinear coefficient. Experimental results indicate that the relative nonlinear coefficient monotonically increases with prestress and the increment of relative nonlinear coefficient is about 80%, while the wave velocity only decreases about 0.2%. The sensitivity of the relative nonlinear coefficient for stress is much higher than wave velocity. Furthermore, the dependence between the relative nonlinear coefficient and deformation state of components is found. The stress detection resolution based on the nonlinear property of LCR wave is 10 MPa, which has higher resolution than wave velocity. These results demonstrate that the nonlinear property of LCR wave is more suitable for stress characterization than wave velocity, and this quantitative information could be used for residual stress estimation.
NONLINEAR GRAVITATIONAL-WAVE MEMORY FROM BINARY BLACK HOLE MERGERS
International Nuclear Information System (INIS)
Favata, Marc
2009-01-01
Some astrophysical sources of gravitational waves can produce a 'memory effect', which causes a permanent displacement of the test masses in a freely falling gravitational-wave detector. The Christodoulou memory is a particularly interesting nonlinear form of memory that arises from the gravitational-wave stress-energy tensor's contribution to the distant gravitational-wave field. This nonlinear memory contributes a nonoscillatory component to the gravitational-wave signal at leading (Newtonian-quadrupole) order in the waveform amplitude. Previous computations of the memory and its detectability considered only the inspiral phase of binary black hole coalescence. Using an 'effective-one-body' (EOB) approach calibrated to numerical relativity simulations, as well as a simple fully analytic model, the Christodoulou memory is computed for the inspiral, merger, and ringdown. The memory will be very difficult to detect with ground-based interferometers, but is likely to be observable in supermassive black hole mergers with LISA out to redshifts z ∼< 2. Detection of the nonlinear memory could serve as an experimental test of the ability of gravity to 'gravitate'.
Nonlinear interaction of fast particles with Alfven waves in toroidal plasmas
International Nuclear Information System (INIS)
Candy, J.; Borba, D.; Huysmans, G.T.A.; Kerner, W.; Berk, H.L.
1996-01-01
A numerical algorithm to study the nonlinear, resonant interaction of fast particles with Alfven waves in tokamak geometry has been developed. The scope of the formalism is wide enough to describe the nonlinear evolution of fishbone modes, toroidicity-induced Alfven eigenmodes and ellipticity-induced Alfven eigenmodes, driven by both passing and trapped fast ions. When the instability is sufficiently weak, it is known that the wave-particle trapping nonlinearity will lead to mode saturation before wave-wave nonlinearities are appreciable. The spectrum of linear modes can thus be calculated using a magnetohydrodynamic normal-mode code, then nonlinearly evolved in time in an efficient way according to a two-time-scale Lagrangian dynamical wave model. The fast particle kinetic equation, including the effect of orbit nonlinearity arising from the mode perturbation, is simultaneously solved of the deviation, δf = f - f 0 , from an initial analytic distribution f 0 . High statistical resolution allows linear growth rates, frequency shifts, resonance broadening effects, and nonlinear saturation to be calculated quickly and precisely. The results have been applied to an ITER instability scenario. Results show that weakly-damped core-localized modes alone cause negligible alpha transport in ITER-like plasmas--even with growth rates one order of magnitude higher than expected values. However, the possibility of significant transport in reactor-type plasmas due to weakly unstable global modes remains an open question
Sharifian, Mohammad Kazem; Kesserwani, Georges; Hassanzadeh, Yousef
2018-05-01
This work extends a robust second-order Runge-Kutta Discontinuous Galerkin (RKDG2) method to solve the fully nonlinear and weakly dispersive flows, within a scope to simultaneously address accuracy, conservativeness, cost-efficiency and practical needs. The mathematical model governing such flows is based on a variant form of the Green-Naghdi (GN) equations decomposed as a hyperbolic shallow water system with an elliptic source term. Practical features of relevance (i.e. conservative modeling over irregular terrain with wetting and drying and local slope limiting) have been restored from an RKDG2 solver to the Nonlinear Shallow Water (NSW) equations, alongside new considerations to integrate elliptic source terms (i.e. via a fourth-order local discretization of the topography) and to enable local capturing of breaking waves (i.e. via adding a detector for switching off the dispersive terms). Numerical results are presented, demonstrating the overall capability of the proposed approach in achieving realistic prediction of nearshore wave processes involving both nonlinearity and dispersion effects within a single model.
International Nuclear Information System (INIS)
Zhang Zaiyun; Liu Zhenhai; Miao Xiujin; Chen Yuezhong
2011-01-01
In this Letter, we investigate the perturbed nonlinear Schroedinger's equation (NLSE) with Kerr law nonlinearity. All explicit expressions of the bounded traveling wave solutions for the equation are obtained by using the bifurcation method and qualitative theory of dynamical systems. These solutions contain bell-shaped solitary wave solutions, kink-shaped solitary wave solutions and Jacobi elliptic function periodic solutions. Moreover, we point out the region which these periodic wave solutions lie in. We present the relation between the bounded traveling wave solution and the energy level h. We find that these periodic wave solutions tend to the corresponding solitary wave solutions as h increases or decreases. Finally, for some special selections of the energy level h, it is shown that the exact periodic solutions evolute into solitary wave solution.
Energy Technology Data Exchange (ETDEWEB)
Mitsotakis, Dimitrios, E-mail: dmitsot@gmail.com [Victoria University of Wellington, School of Mathematics, Statistics and Operations Research, PO Box 600, Wellington 6140 (New Zealand); Dutykh, Denys, E-mail: Denys.Dutykh@univ-savoie.fr [LAMA, UMR 5127 CNRS, Université Savoie Mont Blanc, Campus Scientifique, F-73376 Le Bourget-du-Lac Cedex (France); Assylbekuly, Aydar, E-mail: asylbekuly@mail.ru [Khoja Akhmet Yassawi International Kazakh–Turkish University, Faculty of Natural Science, Department of Mathematics, 161200 Turkestan (Kazakhstan); Zhakebayev, Dauren, E-mail: daurjaz@mail.ru [Al-Farabi Kazakh National University, Faculty of Mechanics and Mathematics, Department of Mathematical and Computer Modelling, 050000 Almaty (Kazakhstan)
2017-05-25
In this Letter we consider long capillary–gravity waves described by a fully nonlinear weakly dispersive model. First, using the phase space analysis methods we describe all possible types of localized travelling waves. Then, we especially focus on the critical regime, where the surface tension is exactly balanced by the gravity force. We show that our long wave model with a critical Bond number admits stable travelling wave solutions with a singular crest. These solutions are usually referred to in the literature as peakons or peaked solitary waves. They satisfy the usual speed-amplitude relation, which coincides with Scott–Russel's empirical formula for solitary waves, while their decay rate is the same regardless their amplitude. Moreover, they can be of depression or elevation type independent of their speed. The dynamics of these solutions are studied as well. - Highlights: • A model for long capillary–gravity weakly dispersive and fully nonlinear water waves is derived. • Shallow capillary–gravity waves are classified using phase plane analysis. • Peaked travelling waves are found in the critical regime. • The dynamics of peakons in Serre–Green–Naghdi equations is studied numerically.
Sadovnikov, A. V.; Odintsov, S. A.; Beginin, E. N.; Sheshukova, S. E.; Sharaevskii, Yu. P.; Nikitov, S. A.
2017-10-01
We demonstrate that the nonlinear spin-wave transport in two laterally parallel magnetic stripes exhibit the intensity-dependent power exchange between the adjacent spin-wave channels. By the means of Brillouin light scattering technique, we investigate collective nonlinear spin-wave dynamics in the presence of magnetodipolar coupling. The nonlinear intensity-dependent effect reveals itself in the spin-wave mode transformation and differential nonlinear spin-wave phase shift in each adjacent magnetic stripe. The proposed analytical theory, based on the coupled Ginzburg-Landau equations, predicts the geometry design involving the reduction of power requirement to the all-magnonic switching. A very good agreement between calculation and experiment was found. In addition, a micromagnetic and finite-element approach has been independently used to study the nonlinear behavior of spin waves in adjacent stripes and the nonlinear transformation of spatial profiles of spin-wave modes. Our results show that the proposed spin-wave coupling mechanism provides the basis for nonlinear magnonic circuits and opens the perspectives for all-magnonic computing architecture.
Directory of Open Access Journals (Sweden)
Xiao-Fang Zhong
2017-12-01
Full Text Available The irregular wave disturbance attenuation problem for jacket-type offshore platforms involving the nonlinear characteristics is studied. The main contribution is that a digital-control-based approximation of optimal wave disturbances attenuation controller (AOWDAC is proposed based on iteration control theory, which consists of a feedback item of offshore state, a feedforward item of wave force and a nonlinear compensated component with iterative sequences. More specifically, by discussing the discrete model of nonlinear offshore platform subject to wave forces generated from the Joint North Sea Wave Project (JONSWAP wave spectrum and linearized wave theory, the original wave disturbances attenuation problem is formulated as the nonlinear two-point-boundary-value (TPBV problem. By introducing two vector sequences of system states and nonlinear compensated item, the solution of introduced nonlinear TPBV problem is obtained. Then, a numerical algorithm is designed to realize the feasibility of AOWDAC based on the deviation of performance index between the adjacent iteration processes. Finally, applied the proposed AOWDAC to a jacket-type offshore platform in Bohai Bay, the vibration amplitudes of the displacement and the velocity, and the required energy consumption can be reduced significantly.
DEFF Research Database (Denmark)
Schløer, Signe; Bredmose, Henrik; Bingham, Harry B.
2013-01-01
The effect from fully nonlinear irregular wave forcing on the fatigue life of the foundation and tower of an offshore wind turbine is investigated through aeroelastic calculations. Five representative sea states with increasing significant wave height are considered in a water depth of 40 m....... The waves are both linear and fully nonlinear irregular 2D waves. The wind turbine is the NREL 5-MW reference wind turbine. Fatigue analysis is performed in relation to analysis of the sectional forces in the tower and monopile. Impulsive excitation of the sectional force at the bottom of the tower is seen...
Dynamics of electron wave packet in a disordered chain with delayed nonlinear response
International Nuclear Information System (INIS)
Zhu Hongjun; Xiong Shijie
2010-01-01
We investigate the dynamics of one electron wave packet in a linear chain with random on-site energies and a nonadiabatic electron-phonon interaction which is described by a delayed cubic nonlinear term in the time-dependent Schroedinger equation. We show that in the regime where the wave packet is delocalized in the case with only the delayed nonlinearity, the wave packet becomes localized when the disorder is added and the localization is enhanced by increasing the disorder. In the regime where the self-trapping phenomenon occurs in the case with only the delayed nonlinearity, by adding the disorder the general dynamical features of the wave packet do not change if the nonlinearity parameter is small, but the dynamics shows the subdiffusive behavior if the nonlinearity parameter is large. The numerical results demonstrate complicated wave packet dynamics of systems with both the disorder and nonlinearity.
Nonlinear steady-state coupling of LH waves
International Nuclear Information System (INIS)
Ko, K.; Krapchev, V.B.
1981-02-01
The coupling of lower hybrid waves at the plasma edge by a two waveguide array with self-consistent density modulation is solved numerically. For a linear density profile, the governing nonlinear Klein-Gordon equation for the electric field can be written as a system of nonlinearly modified Airy equations in Fourier k/sub z/-space. Numerical solutions to the nonlinear system satisfying radiation condition are obtained. Spectra broadening and modifications to resonance cone trajectories are observed with increase of incident power
Nonlinear acoustic/seismic waves in earthquake processes
International Nuclear Information System (INIS)
Johnson, Paul A.
2012-01-01
Nonlinear dynamics induced by seismic sources and seismic waves are common in Earth. Observations range from seismic strong ground motion (the most damaging aspect of earthquakes), intense near-source effects, and distant nonlinear effects from the source that have important consequences. The distant effects include dynamic earthquake triggering—one of the most fascinating topics in seismology today—which may be elastically nonlinearly driven. Dynamic earthquake triggering is the phenomenon whereby seismic waves generated from one earthquake trigger slip events on a nearby or distant fault. Dynamic triggering may take place at distances thousands of kilometers from the triggering earthquake, and includes triggering of the entire spectrum of slip behaviors currently identified. These include triggered earthquakes and triggered slow, silent-slip during which little seismic energy is radiated. It appears that the elasticity of the fault gouge—the granular material located between the fault blocks—is key to the triggering phenomenon.
Nonlinear problems in fluid dynamics and inverse scattering: Nonlinear waves and inverse scattering
Ablowitz, Mark J.
1994-12-01
Research investigations involving the fundamental understanding and applications of nonlinear wave motion and related studies of inverse scattering and numerical computation have been carried out and a number of significant results have been obtained. A class of nonlinear wave equations which can be solved by the inverse scattering transform (IST) have been studied, including the Kadaomtsev-Petviashvili (KP) equation, the Davey-Stewartson equation, and the 2+1 Toda system. The solutions obtained by IST correspond to the Cauchy initial value problem with decaying initial data. We have also solved two important systems via the IST method: a 'Volterra' system in 2+1 dimensions and a new one dimensional nonlinear equation which we refer to as the Toda differential-delay equation. Research in computational chaos in moderate to long time numerical simulations continues.
Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria
International Nuclear Information System (INIS)
Frieman, E.A.; Chen, L.
1981-10-01
A nonlinear gyrokinetic formalism for low-frequency (less than the cyclotron frequency) microscopic electromagnetic perturbations in general magnetic field configurations is developed. The nonlinear equations thus derived are valid in the strong-turbulence regime and contain effects due to finite Larmor radius, plasma inhomogeneities, and magentic field geometries. The specific case of axisymmetric tokamaks is then considered, and a model nonlinear equation is derived for electrostatic drift waves. Also, applying the formalism to the shear Alfven wave heating sceme, it is found that nonlinear ion Landau damping of kinetic shear-Alfven waves is modified, both qualitatively and quantitatively, by the diamagnetic drift effects. In particular, wave energy is found to cascade in wavenumber instead of frequency
Nonlinear Passive Control of a Wave Energy Converter Subject to Constraints in Irregular Waves
Directory of Open Access Journals (Sweden)
Liguo Wang
2015-06-01
Full Text Available This paper investigates a passive control method of a point absorbing wave energy converter by considering the displacement and velocity constraints under irregular waves in the time domain. A linear generator is used as a power take-off unit, and the equivalent damping force is optimized to improve the power production of the wave energy converter. The results from nonlinear and linear passive control methods are compared, and indicate that the nonlinear passive control method leads to the excitation force in phase with the velocity of the converter that can significantly improve the energy production of the converter.
Nonlinear dynamics of rotating shallow water methods and advances
Zeitlin, Vladimir
2007-01-01
The rotating shallow water (RSW) model is of wide use as a conceptual tool in geophysical fluid dynamics (GFD), because, in spite of its simplicity, it contains all essential ingredients of atmosphere and ocean dynamics at the synoptic scale, especially in its two- (or multi-) layer version. The book describes recent advances in understanding (in the framework of RSW and related models) of some fundamental GFD problems, such as existence of the slow manifold, dynamical splitting of fast (inertia-gravity waves) and slow (vortices, Rossby waves) motions, nonlinear geostrophic adjustment and wa
New travelling wave solutions for nonlinear stochastic evolution ...
Indian Academy of Sciences (India)
expansion method to look for travelling wave solutions of nonlinear partial differential equations. It is interesting to mention that, in this method the sign of the parameters can be used to judge the numbers and types of travelling wave solutions.
DEFF Research Database (Denmark)
Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich
2011-01-01
A wave equation including nonlinear terms up to the second order for a thermoviscous Newtonian fluid is proposed. In the lossless case this equation results from an expansion to third order of the Lagrangian for the fundamental non-dissipative fluid dynamical equations. Thus it preserves the Hami...... is proposed. The dynamics of the rarefaction wave is approximated by a collective coordinate approach in the energy balance equation. © 2010 Springer Science+Business Media B.V.......A wave equation including nonlinear terms up to the second order for a thermoviscous Newtonian fluid is proposed. In the lossless case this equation results from an expansion to third order of the Lagrangian for the fundamental non-dissipative fluid dynamical equations. Thus it preserves...... the Hamiltonian structure, in contrast to the Kuznetsov equation, a model often used in nonlinear acoustics. An exact traveling wave front solution is derived from a generalized traveling wave assumption for the velocity potential. Numerical studies of the evolution of a number of arbitrary initial conditions...
Observations of linear and nonlinear processes in the foreshock wave evolution
Directory of Open Access Journals (Sweden)
Y. Narita
2007-07-01
Full Text Available Waves in the foreshock region are studied on the basis of a hypothesis that the linear process first excites the waves and further wave-wave nonlinearities distribute scatter the energy of the primary waves into a number of daughter waves. To examine this wave evolution scenario, the dispersion relations, the wave number spectra of the magnetic field energy, and the dimensionless cross helicity are determined from the observations made by the four Cluster spacecraft. The results confirm that the linear process is the ion/ion right-hand resonant instability, but the wave-wave interactions are not clearly identified. We discuss various reasons why the test for the wave-wave nonlinearities fails, and conclude that the higher order statistics would provide a direct evidence for the wave coupling phenomena.
Nonlinear response and bistability of driven ion acoustic waves
Akbari-Moghanjoughi, M.
2017-08-01
The hydrodynamic model is used to obtain a generalized pseudoforce equation through which the nonlinear response of periodically driven ion acoustic waves is studied in an electron-ion plasma with isothermal and adiabatic ion fluids. The pseudotime series, corresponding to different driving frequencies, indicates that nonlinearity effects appear more strongly for smaller frequency values. The existence of extra harmonic resonances in the nonlinear amplitude spectrum is a clear indication of the interaction of an external force with harmonic components of the nonlinear ion acoustic waves. It is shown that many plasma parameters significantly and differently affect the nonlinear resonance spectrum of ion acoustic excitations. A heuristic but accurate model for the foldover effect is used which quite satisfactorily predicts the bistability of driven plasma oscillations. It is remarked that the characteristic resonance peak of isothermal ion plasma oscillations appears at lower frequencies but is stronger compared to that of adiabatic ions. Comparison of the exact numerical results for fully nonlinear and approximate (weakly nonlinear) models indicates that a weakly nonlinear model exaggerates the hysteresis and jump phenomenon for higher values of the external force amplitude.
New travelling wave solutions for nonlinear stochastic evolution
Indian Academy of Sciences (India)
The nonlinear stochastic evolution equations have a wide range of applications in physics, chemistry, biology, economics and finance from various points of view. In this paper, the (′/)-expansion method is implemented for obtaining new travelling wave solutions of the nonlinear (2 + 1)-dimensional stochastic ...
Nonlinear wave chaos: statistics of second harmonic fields.
Zhou, Min; Ott, Edward; Antonsen, Thomas M; Anlage, Steven M
2017-10-01
Concepts from the field of wave chaos have been shown to successfully predict the statistical properties of linear electromagnetic fields in electrically large enclosures. The Random Coupling Model (RCM) describes these properties by incorporating both universal features described by Random Matrix Theory and the system-specific features of particular system realizations. In an effort to extend this approach to the nonlinear domain, we add an active nonlinear frequency-doubling circuit to an otherwise linear wave chaotic system, and we measure the statistical properties of the resulting second harmonic fields. We develop an RCM-based model of this system as two linear chaotic cavities coupled by means of a nonlinear transfer function. The harmonic field strengths are predicted to be the product of two statistical quantities and the nonlinearity characteristics. Statistical results from measurement-based calculation, RCM-based simulation, and direct experimental measurements are compared and show good agreement over many decades of power.
Symmetry, phase modulation and nonlinear waves
Bridges, Thomas J
2017-01-01
Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background results in mathematics, such as Hamiltonian systems, symplectic geometry, conservation laws, Noether theory, Lagrangian field theory and analysis, all of which combine to generate the new theory of phase modulation. While the build-up of theory can be intensive, the resulting emergent partial differential equations are relatively simple. A key outcome of the theory is that the coefficients in the emergent modulation equations are universal and easy to calculate. This book gives several examples of the implications in the theory of fluid mechanics and points to a wide range of new applications.
Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report
International Nuclear Information System (INIS)
Tataronis, J. A.
2004-01-01
This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfven continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named ''accumulation continuum'' and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory
Periodic and solitary wave solutions of cubic–quintic nonlinear ...
Indian Academy of Sciences (India)
Hence, most of the real nonlinear physical equations possess variable ... evolution of the system with time and second term represents the convective flux term. The ... Travelling wave solutions of nonlinear reaction-diffusion equations are.
Energy Technology Data Exchange (ETDEWEB)
Tsuchiya, T [Dia Consultants Company, Tokyo (Japan)
1996-10-01
Nonlinear full-wave tomography (FWT) is under investigation to improve the estimation accuracy of Vp/Vs distributions. Full-wave tomography is one of the underground structure exploration methods mainly using Tarantola`s nonlinear local optimization method (LOM). Numerical experiment for FWT was carried out assuming relatively weak nonlinear underground structure. In the case of inversion by local optimization method, adequate preconditioning is important. Utilization of geological information is also effective in estimating low-frequency components of a model. As far as data are obtained under proper observation arrangement, even in actual field, precise estimation of Vp/Vs distributions is possible by FWT using explosion in a hole as wave source. In full-wave tomography, selection of observation arrangement is essential for both Vp and Vs. However, the proper arrangement is different between Vp and Vs. Approach to different analyses for Vp and Vs is also necessary by using only proper data for Vp and Vs among obtained data sets. 4 figs.
Nonlinear reflection of shock shear waves in soft elastic media.
Pinton, Gianmarco; Coulouvrat, François; Gennisson, Jean-Luc; Tanter, Mickaël
2010-02-01
For fluids, the theoretical investigation of shock wave reflection has a good agreement with experiments when the incident shock Mach number is large. But when it is small, theory predicts that Mach reflections are physically unrealistic, which contradicts experimental evidence. This von Neumann paradox is investigated for shear shock waves in soft elastic solids with theory and simulations. The nonlinear elastic wave equation is approximated by a paraxial wave equation with a cubic nonlinear term. This equation is solved numerically with finite differences and the Godunov scheme. Three reflection regimes are observed. Theory is developed for shock propagation by applying the Rankine-Hugoniot relations and entropic constraints. A characteristic parameter relating diffraction and non-linearity is introduced and its theoretical values are shown to match numerical observations. The numerical solution is then applied to von Neumann reflection, where curved reflected and Mach shocks are observed. Finally, the case of weak von Neumann reflection, where there is no reflected shock, is examined. The smooth but non-monotonic transition between these three reflection regimes, from linear Snell-Descartes to perfect grazing case, provides a solution to the acoustical von Neumann paradox for the shear wave equation. This transition is similar to the quadratic non-linearity in fluids.
Nonlinear Wave Mixing Technique for Nondestructive Assessment of Infrastructure Materials
Ju, Taeho
To operate safely, structures and components need to be inspected or monitored either periodically or in real time for potential failure. For this purpose, ultrasonic nondestructive evaluation (NDE) techniques have been used extensively. Most of these ultrasonic NDE techniques utilize only the linear behavior of the ultrasound. These linear techniques are effective in detecting discontinuities in materials such as cracks, voids, interfaces, inclusions, etc. However, in many engineering materials, it is the accumulation of microdamage that leads to degradation and eventual failure of a component. Unfortunately, it is difficult for linear ultrasonic NDE techniques to characterize or quantify such damage. On the other hand, the acoustic nonlinearity parameter (ANLP) of a material is often positively correlated with such damage in a material. Thus, nonlinear ultrasonic NDE methods have been used in recently years to characterize cumulative damage such as fatigue in metallic materials, aging in polymeric materials, and degradation of cement-based materials due to chemical reactions. In this thesis, we focus on developing a suit of novel nonlinear ultrasonic NDE techniques based on the interactions of nonlinear ultrasonic waves, namely wave mixing. First, a noncollinear wave mixing technique is developed to detect localized damage in a homogeneous material by using a pair of noncollinear a longitudinal wave (L-wave) and a shear wave (S-wave). This pair of incident waves make it possible to conduct NDE from a single side of the component, a condition that is often encountered in practical applications. The proposed noncollinear wave mixing technique is verified experimentally by carrying out measurements on aluminum alloy (AA 6061) samples. Numerical simulations using the Finite Element Method (FEM) are also conducted to further demonstrate the potential of the proposed technique to detect localized damage in structural components. Second, the aforementioned nonlinear
New Exact Travelling Wave and Periodic Solutions of Discrete Nonlinear Schroedinger Equation
International Nuclear Information System (INIS)
Yang Qin; Dai Chaoqing; Zhang Jiefang
2005-01-01
Some new exact travelling wave and period solutions of discrete nonlinear Schroedinger equation are found by using a hyperbolic tangent function approach, which was usually presented to find exact travelling wave solutions of certain nonlinear partial differential models. Now we can further extend the new algorithm to other nonlinear differential-different models.
Cumulative Second Harmonic Generation in Lamb Waves for the Detection of Material Nonlinearities
International Nuclear Information System (INIS)
Bermes, Christian; Jacobs, Laurence J.; Kim, Jin-Yeon; Qu, Jianmin
2007-01-01
An understanding of the generation of higher harmonics in Lamb waves is of critical importance for applications such as remaining life prediction of plate-like structural components. The objective of this work is to use nonlinear Lamb waves to experimentally investigate inherent material nonlinearities in aluminum plates. These nonlinearities, e.g. lattice anharmonicities, precipitates or vacancies, cause higher harmonics to form in propagating Lamb waves. The amplitudes of the higher harmonics increase with increasing propagation distance due to the accumulation of nonlinearity while the Lamb wave travels along its path. Special focus is laid on the second harmonic, and a relative nonlinearity parameter is defined as a function of the fundamental and second harmonic amplitude. The experimental setup uses an ultrasonic transducer and a wedge for the Lamb wave generation, and laser interferometry for detection. The experimentally measured Lamb wave signals are processed with a short-time Fourier transformation (STFT), which yields the amplitudes at different frequencies as functions of time, allowing the observation of the nonlinear behavior of the material. The increase of the relative nonlinearity parameter with propagation distance as an indicator of cumulative second harmonic generation is shown in the results for the alloy aluminum 1100-H14
Dynamical criteria for rogue waves in nonlinear Schrödinger models
International Nuclear Information System (INIS)
Calini, Annalisa; Schober, Constance M
2012-01-01
We investigate rogue waves in deep water in the framework of the nonlinear Schrödinger (NLS) and Dysthe equations. Amongst the homoclinic orbits of unstable NLS Stokes waves, we seek good candidates to model actual rogue waves. In this paper we propose two selection criteria: stability under perturbations of initial data, and persistence under perturbations of the NLS model. We find that requiring stability selects homoclinic orbits of maximal dimension. Persistence under (a particular) perturbation selects a homoclinic orbit of maximal dimension all of whose spatial modes are coalesced. These results suggest that more realistic sea states, described by JONSWAP power spectra, may be analyzed in terms of proximity to NLS homoclinic data. In fact, using the NLS spectral theory, we find that rogue wave events in random oceanic sea states are well predicted by proximity to homoclinic data of the NLS equation. (invited article)
Relativistic effects on large amplitude nonlinear Langmuir waves in a two-fluid plasma
International Nuclear Information System (INIS)
Nejoh, Yasunori
1994-07-01
Large amplitude relativistic nonlinear Langmuir waves are analyzed by the pseudo-potential method. The existence conditions for nonlinear Langmuir waves are confirmed by considering relativistic high-speed electrons in a two-fluid plasma. The significant feature of this investigation is that the propagation of nonlinear Langmuir waves depends on the ratio of the electron streaming velocity to the velocity of light, the normalized potential and the ion mass to electron mass ratio. The constant energy is determined by the specific range of the relativistic effect. In the non-relativistic limit, large amplitude relativistic Langmuir waves do not exist. The present investigation predicts new findings of large amplitude nonlinear Langmuir waves in space plasma phenomena in which relativistic electrons are important. (author)
Nonlinear frequency shift of finite-amplitude electrostatic surface waves
International Nuclear Information System (INIS)
Stenflo, L.
1989-01-01
The problem concerning the appropriate form for the nonlinear frequency shift arising from slow density modulations of electrostatic surface waves in a semi-infinite unmagnetized plasma is reconsidered. The spatial dependence of the wave amplitude normal to the surface is kept general in order to allow for possible nonlinear attenuation behaviour of the surface waves. It is found that if the frequency shift is expressed as a function of the density and its gradient then the result is identical with that of Zhelyazkov, I. Proceedings International Conference on Plasma Physics, Kiev, 1987, Vol. 2, p. 694, who assumed a linear exponential attenuation behaviour. (author)
Exact travelling wave solutions for some important nonlinear
Indian Academy of Sciences (India)
The two-dimensional nonlinear physical models and coupled nonlinear systems such as Maccari equations, Higgs equations and Schrödinger–KdV equations have been widely applied in many branches of physics. So, finding exact travelling wave solutions of such equations are very helpful in the theories and numerical ...
Phase velocity of nonlinear plasma waves in the laser beat-wave accelerator
International Nuclear Information System (INIS)
Spence, W.L.
1985-01-01
The suggested plasma-laser accelerator is an attempt to achieve a very high energy gradient by resonantly exciting a longitudinal wave traveling at close to the speed of light in cold plasma by means of the beat-wave generated by the transverse fields in two laser beams. Previous calculations to all orders in v/sub z/ have been done essentially from the laboratory frame point of view and have treated the plasma wave as having sharply defined phase velocity equal to the speed of light. However a high energy particle beam undergoing acceleration sees the plasma wave from a nearly light-like frame of reference and hence is very sensitive to small deviations in its phase velocity. Here the authors introduce a calculational scheme that includes all orders in v/sub z/ and in the plasma density, and additionally takes into account the influence of plasma nonlinearities on the wave's phase velocity. The main assumption is that the laser frequencies are very large compared to the plasma frequency - under which they are able to in essence formally sum up all orders of forward Raman scattering. They find that the nonlinear plasma wave does not have simply a single phase velocity - it is really a superposition of many - but that the beat-wave which drives it is usefully described by a non-local effective phase velocity function
Propagation of Quasi-plane Nonlinear Waves in Tubes
Directory of Open Access Journals (Sweden)
P. Koníček
2002-01-01
Full Text Available This paper deals with possibilities of using the generalized Burgers equation and the KZK equation to describe nonlinear waves in circular ducts. A new method for calculating of diffraction effects taking into account boundary layer effects is described. The results of numerical solutions of the model equations are compared. Finally, the limits of validity of the used model equations are discussed with respect to boundary conditions and the radius of the circular duct. The limits of applicability of the KZK equation and the GBE equation for describing nonlinear waves in tubes are discussed.
Lin, Shangfei; Sheng, Jinyu
2017-12-01
Depth-induced wave breaking is the primary dissipation mechanism for ocean surface waves in shallow waters. Different parametrizations were developed for parameterizing depth-induced wave breaking process in ocean surface wave models. The performance of six commonly-used parameterizations in simulating significant wave heights (SWHs) is assessed in this study. The main differences between these six parameterizations are representations of the breaker index and the fraction of breaking waves. Laboratory and field observations consisting of 882 cases from 14 sources of published observational data are used in the assessment. We demonstrate that the six parameterizations have reasonable performance in parameterizing depth-induced wave breaking in shallow waters, but with their own limitations and drawbacks. The widely-used parameterization suggested by Battjes and Janssen (1978, BJ78) has a drawback of underpredicting the SWHs in the locally-generated wave conditions and overpredicting in the remotely-generated wave conditions over flat bottoms. The drawback of BJ78 was addressed by a parameterization suggested by Salmon et al. (2015, SA15). But SA15 had relatively larger errors in SWHs over sloping bottoms than BJ78. We follow SA15 and propose a new parameterization with a dependence of the breaker index on the normalized water depth in deep waters similar to SA15. In shallow waters, the breaker index of the new parameterization has a nonlinear dependence on the local bottom slope rather than the linear dependence used in SA15. Overall, this new parameterization has the best performance with an average scatter index of ∼8.2% in comparison with the three best performing existing parameterizations with the average scatter index between 9.2% and 13.6%.
International Nuclear Information System (INIS)
Liu, Y.; Ecke, R.E.
1999-01-01
We present experimental measurements of a sidewall traveling wave in rotating Rayleigh-Bacute enard convection. The fluid, water with Prandtl number about 6.3, was confined in a 1-cm-high cylindrical cell with radius-to-height ratio Γ=5. We used simultaneous optical-shadowgraph, heat-transport, and local temperature measurements to determine the stability and characteristics of the traveling-wave state for dimensionless rotation rates 60<Ω<420. The state is well described by the one-dimensional complex Ginzburg-Landau (CGL) equation for which the linear and nonlinear coefficients were determined for Ω=274. The Eckhaus-Benjamin-Feir-stability boundary was established and the phase-diffusion coefficient and nonlinear group velocity were determined in the stable regime. Higher-order corrections to the CGL equation were also investigated. copyright 1999 The American Physical Society
Four Wave Mixing using Intermodal Nonlinearities
DEFF Research Database (Denmark)
Rishøj, Lars Søgaard
The nonlinear process of four-wave mixing (FWM) enables coupling of energy between wavelengths. This is useful for both optical amplification and wavelength conversion. A crucial prerequisite for the process is phase matching. This PhD project investigates how higher order modes (HOMs) in fibers...
Controllable behaviours of rogue wave triplets in the nonautonomous nonlinear and dispersive system
International Nuclear Information System (INIS)
Dai Chaoqing; Tian Qing; Zhu Shiqun
2012-01-01
A similarity transformation connecting the variable coefficient nonlinear Schrödinger equation with the standard nonlinear Schrödinger equation is constructed. The self-similar rogue wave triplet solutions (rational solutions) are analytically obtained for the nonautonomous nonlinear and dispersive system. The controllable behaviours of rogue wave triplets in two typical soliton management systems are discussed. In the exponential dispersion decreasing fibre, three kinds of rogue wave triplets with controllable behaviours are analysed. In the periodic distributed system, the rogue wave triplets recur periodically in the form of a cluster. (paper)
Stability of Nonlinear Wave Patterns to the Bipolar Vlasov-Poisson-Boltzmann System
Li, Hailiang; Wang, Yi; Yang, Tong; Zhong, Mingying
2018-04-01
The main purpose of the present paper is to investigate the nonlinear stability of viscous shock waves and rarefaction waves for the bipolar Vlasov-Poisson-Boltzmann (VPB) system. To this end, motivated by the micro-macro decomposition to the Boltzmann equation in Liu and Yu (Commun Math Phys 246:133-179, 2004) and Liu et al. (Physica D 188:178-192, 2004), we first set up a new micro-macro decomposition around the local Maxwellian related to the bipolar VPB system and give a unified framework to study the nonlinear stability of the basic wave patterns to the system. Then, as applications of this new decomposition, the time-asymptotic stability of the two typical nonlinear wave patterns, viscous shock waves and rarefaction waves are proved for the 1D bipolar VPB system. More precisely, it is first proved that the linear superposition of two Boltzmann shock profiles in the first and third characteristic fields is nonlinearly stable to the 1D bipolar VPB system up to some suitable shifts without the zero macroscopic mass conditions on the initial perturbations. Then the time-asymptotic stability of the rarefaction wave fan to compressible Euler equations is proved for the 1D bipolar VPB system. These two results are concerned with the nonlinear stability of wave patterns for Boltzmann equation coupled with additional (electric) forces, which together with spectral analysis made in Li et al. (Indiana Univ Math J 65(2):665-725, 2016) sheds light on understanding the complicated dynamic behaviors around the wave patterns in the transportation of charged particles under the binary collisions, mutual interactions, and the effect of the electrostatic potential forces.
Periodic solutions for one dimensional wave equation with bounded nonlinearity
Ji, Shuguan
2018-05-01
This paper is concerned with the periodic solutions for the one dimensional nonlinear wave equation with either constant or variable coefficients. The constant coefficient model corresponds to the classical wave equation, while the variable coefficient model arises from the forced vibrations of a nonhomogeneous string and the propagation of seismic waves in nonisotropic media. For finding the periodic solutions of variable coefficient wave equation, it is usually required that the coefficient u (x) satisfies ess infηu (x) > 0 with ηu (x) = 1/2 u″/u - 1/4 (u‧/u)2, which actually excludes the classical constant coefficient model. For the case ηu (x) = 0, it is indicated to remain an open problem by Barbu and Pavel (1997) [6]. In this work, for the periods having the form T = 2p-1/q (p , q are positive integers) and some types of boundary value conditions, we find some fundamental properties for the wave operator with either constant or variable coefficients. Based on these properties, we obtain the existence of periodic solutions when the nonlinearity is monotone and bounded. Such nonlinearity may cross multiple eigenvalues of the corresponding wave operator. In particular, we do not require the condition ess infηu (x) > 0.
Identification and determination of solitary wave structures in nonlinear wave propagation
International Nuclear Information System (INIS)
Newman, W.I.; Campbell, D.K.; Hyman, J.M.
1991-01-01
Nonlinear wave phenomena are characterized by the appearance of ''solitary wave coherent structures'' traveling at speeds determined by their amplitudes and morphologies. Assuming that these structures are briefly noninteracting, we propose a method for the identification of the number of independent features and their respective speeds. Using data generated from an exact two-soliton solution to the Korteweg-de-Vries equation, we test the method and discuss its strengths and limitations. 41 refs., 2 figs
Two-dimensional linear and nonlinear Talbot effect from rogue waves.
Zhang, Yiqi; Belić, Milivoj R; Petrović, Milan S; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Lu, Keqing; Zhang, Yanpeng
2015-03-01
We introduce two-dimensional (2D) linear and nonlinear Talbot effects. They are produced by propagating periodic 2D diffraction patterns and can be visualized as 3D stacks of Talbot carpets. The nonlinear Talbot effect originates from 2D rogue waves and forms in a bulk 3D nonlinear medium. The recurrences of an input rogue wave are observed at the Talbot length and at the half-Talbot length, with a π phase shift; no other recurrences are observed. Differing from the nonlinear Talbot effect, the linear effect displays the usual fractional Talbot images as well. We also find that the smaller the period of incident rogue waves, the shorter the Talbot length. Increasing the beam intensity increases the Talbot length, but above a threshold this leads to a catastrophic self-focusing phenomenon which destroys the effect. We also find that the Talbot recurrence can be viewed as a self-Fourier transform of the initial periodic beam that is automatically performed during propagation. In particular, linear Talbot effect can be viewed as a fractional self-Fourier transform, whereas the nonlinear Talbot effect can be viewed as the regular self-Fourier transform. Numerical simulations demonstrate that the rogue-wave initial condition is sufficient but not necessary for the observation of the effect. It may also be observed from other periodic inputs, provided they are set on a finite background. The 2D effect may find utility in the production of 3D photonic crystals.
Effect of weak nonlinearities on the plane waves in a plasma stream
International Nuclear Information System (INIS)
Seshadri, S.R.
1976-01-01
The effect of weak nonlinearities on the monochromatic plane waves in a cold infinite plasma stream is investigated for the case in which the waves are progressing parallel to the drift velocity. The fast and the slow space-charge waves undergo amplitude-dependent frequency and wave number shifts. There is a long time slow modulation of the amplitude of the electromagnetic mode which becomes unstable to this nonlinear wave modulation. The importance of using the relativistically correct equation of motion for predicting correctly the modulational stability of the electromagnetic mode is pointed out. (author)
Nonlinearly driven oscillations in the gyrotron traveling-wave amplifier
International Nuclear Information System (INIS)
Chiu, C. C.; Pao, K. F.; Yan, Y. C.; Chu, K. R.; Barnett, L. R.; Luhmann, N. C. Jr.
2008-01-01
By delivering unprecedented power and gain, the gyrotron traveling-wave amplifier (gyro-TWT) offers great promise for advanced millimeter wave radars. However, the underlying physics of this complex nonlinear system is yet to be fully elucidated. Here, we report a new phenomenon in the form of nonlinearly driven oscillations. A zero-drive stable gyro-TWT is shown to be susceptible to a considerably reduced dynamic range at the band edge, followed by a sudden transition into driven oscillations and then a hysteresis effect. An analysis of this unexpected behavior and its physical interpretation are presented.
Wave Loads on Ships Sailing in Restricted Water Depth
DEFF Research Database (Denmark)
Vidic-Perunovic, Jelena; Jensen, Jørgen Juncher
2003-01-01
depth for a container vessel. The results show that if the water depth is less than two times the draft of the vessel, the wave-induced bending moment becomes significant larger than in deep water with the same sea state description. The peak in the frequency response function for the wave bending......The wave-induced bending moment in ships is the most important sea load parameter for ships larger than 100m in length. Hence, any rational ship design procedure must include a reasonable accurate determination of this load and a large amount of various hydrodynamic formulations have been published......, ranging from semi-empirical formulas to three-dimensional non-linear procedures. A review of the state-of-the art can be found in ISSC.VI.1 (2000). These procedures must be combined with operational and sea state information to predict the probability distribution of the maximum wave-induced bending...
Basic principles approach for studying nonlinear Alfven wave-alpha particle dynamics
International Nuclear Information System (INIS)
Berk, H.L.; Breizman, B.N.; Pekker, M.
1994-01-01
An analytical model and a numerical procedure are presented which give a kinetic nonlinear description of the Alfven-wave instabilities driven by the source of energetic particles in a plasma. The steady-state and bursting nonlinear scenarios predicted by the analytical theory are verified in the test numerical simulation of the bump-on-tail instability. A mathematical similarity between the bump-on-tail problem for plasma waves and the Alfven wave problem gives a guideline for the interpretation of the bursts in the wave energy and fast particle losses observed in the tokamak experiments with neutral beam injection
Nonlinear waves in reaction-diffusion systems: The effect of transport memory
International Nuclear Information System (INIS)
Manne, K. K.; Hurd, A. J.; Kenkre, V. M.
2000-01-01
Motivated by the problem of determining stress distributions in granular materials, we study the effect of finite transport correlation times on the propagation of nonlinear wave fronts in reaction-diffusion systems. We obtain results such as the possibility of spatial oscillations in the wave-front shape for certain values of the system parameters and high enough wave-front speeds. We also generalize earlier known results concerning the minimum wave-front speed and shape-speed relationships stemming from the finiteness of the correlation times. Analytic investigations are made possible by a piecewise linear representation of the nonlinearity. (c) 2000 The American Physical Society
Nonlinear waves in reaction-diffusion systems: The effect of transport memory
Manne, K. K.; Hurd, A. J.; Kenkre, V. M.
2000-04-01
Motivated by the problem of determining stress distributions in granular materials, we study the effect of finite transport correlation times on the propagation of nonlinear wave fronts in reaction-diffusion systems. We obtain results such as the possibility of spatial oscillations in the wave-front shape for certain values of the system parameters and high enough wave-front speeds. We also generalize earlier known results concerning the minimum wave-front speed and shape-speed relationships stemming from the finiteness of the correlation times. Analytic investigations are made possible by a piecewise linear representation of the nonlinearity.
Nonlinear radial propagation of drift wave turbulence
International Nuclear Information System (INIS)
Prakash, M.
1985-01-01
We study the linear and the nonlinear radial propagation of drift wave energy in an inhomogeneous plasma. The drift mode excited in such a plasma is dispersive in nature. The drift wave energy spreads out symmetrically along the direction of inhomogeneity with a finite group velocity. To study the effect of the nonlinear coupling on the propagation of energy in a collision free plasma, we solve the Hasegawa-Mima equation as a mixed initial boundary-value problem. The solutions of the linearized equation are used to check the reliability of our numerical calculations. Additional checks are also performed on the invariants of the system. Our results reveal that a pulse gets distorted as it propagates through the medium. The peak of the pulse propagates with a finite velocity that depends on the amplitude of the initial pulse. The polarity of propagation depends on the initial parameters of the pulse. We have also studied drift wave propagation in a resistive plasma. The Hasegawa-Wakatani equations are used to investigate this problem
Optical rogue waves and soliton turbulence in nonlinear fibre optics
DEFF Research Database (Denmark)
Genty, G.; Dudley, J. M.; de Sterke, C. M.
2009-01-01
We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required.......We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required....
Nonlinear positron acoustic solitary waves
International Nuclear Information System (INIS)
Tribeche, Mouloud; Aoutou, Kamel; Younsi, Smain; Amour, Rabia
2009-01-01
The problem of nonlinear positron acoustic solitary waves involving the dynamics of mobile cold positrons is addressed. A theoretical work is presented to show their existence and possible realization in a simple four-component plasma model. The results should be useful for the understanding of the localized structures that may occur in space and laboratory plasmas as new sources of cold positrons are now well developed.
Optimization of nonlinear wave function parameters
International Nuclear Information System (INIS)
Shepard, R.; Minkoff, M.; Chemistry
2006-01-01
An energy-based optimization method is presented for our recently developed nonlinear wave function expansion form for electronic wave functions. This expansion form is based on spin eigenfunctions, using the graphical unitary group approach (GUGA). The wave function is expanded in a basis of product functions, allowing application to closed-shell and open-shell systems and to ground and excited electronic states. Each product basis function is itself a multiconfigurational function that depends on a relatively small number of nonlinear parameters called arc factors. The energy-based optimization is formulated in terms of analytic arc factor gradients and orbital-level Hamiltonian matrices that correspond to a specific kind of uncontraction of each of the product basis functions. These orbital-level Hamiltonian matrices give an intuitive representation of the energy in terms of disjoint subsets of the arc factors, they provide for an efficient computation of gradients of the energy with respect to the arc factors, and they allow optimal arc factors to be determined in closed form for subspaces of the full variation problem. Timings for energy and arc factor gradient computations involving expansion spaces of > 10 24 configuration state functions are reported. Preliminary convergence studies and molecular dissociation curves are presented for some small molecules
Nonlinear propagation of electromagnetic waves in negative-refraction-index composite materials.
Kourakis, I; Shukla, P K
2005-07-01
We investigate the nonlinear propagation of electromagnetic waves in left-handed materials. For this purpose, we consider a set of coupled nonlinear Schrödinger (CNLS) equations, which govern the dynamics of coupled electric and magnetic field envelopes. The CNLS equations are used to obtain a nonlinear dispersion, which depicts the modulational stability profile of the coupled plane-wave solutions in left-handed materials. An exact (in)stability criterion for modulational interactions is derived, and analytical expressions for the instability growth rate are obtained.
Current structure of strongly nonlinear interfacial solitary waves
Semin, Sergey; Kurkina, Oxana; Kurkin, Andrey; Talipova, Tatiana; Pelinovsky, Efim; Churaev, Egor
2015-04-01
The characteristics of highly nonlinear solitary internal waves (solitons) in two-layer flow are computed within the fully nonlinear Navier-Stokes equations with use of numerical model of the Massachusetts Institute of Technology (MITgcm). The verification and adaptation of the model is based on the data from laboratory experiments [Carr & Davies, 2006]. The present paper also compares the results of our calculations with the computations performed in the framework of the fully nonlinear Bergen Ocean Model [Thiem et al, 2011]. The comparison of the computed soliton parameters with the predictions of the weakly nonlinear theory based on the Gardner equation is given. The occurrence of reverse flow in the bottom layer directly behind the soliton is confirmed in numerical simulations. The trajectories of Lagrangian particles in the internal soliton on the surface, on the interface and near the bottom are computed. The results demonstrated completely different trajectories at different depths of the model area. Thus, in the surface layer is observed the largest displacement of Lagrangian particles, which can be more than two and a half times larger than the characteristic width of the soliton. Located at the initial moment along the middle pycnocline fluid particles move along the elongated vertical loop at a distance of not more than one third of the width of the solitary wave. In the bottom layer of the fluid moves in the opposite direction of propagation of the internal wave, but under the influence of the reverse flow, when the bulk of the velocity field of the soliton ceases to influence the trajectory, it moves in the opposite direction. The magnitude of displacement of fluid particles in the bottom layer is not more than the half-width of the solitary wave. 1. Carr, M., and Davies, P.A. The motion of an internal solitary wave of depression over a fixed bottom boundary in a shallow, two-layer fluid. Phys. Fluids, 2006, vol. 18, No. 1, 1 - 10. 2. Thiem, O., Carr
Nonlinear waves in waveguides with stratification
Leble, Sergei B
1991-01-01
S.B. Leble's book deals with nonlinear waves and their propagation in metallic and dielectric waveguides and media with stratification. The underlying nonlinear evolution equations (NEEs) are derived giving also their solutions for specific situations. The reader will find new elements to the traditional approach. Various dispersion and relaxation laws for different guides are considered as well as the explicit form of projection operators, NEEs, quasi-solitons and of Darboux transforms. Special points relate to: 1. the development of a universal asymptotic method of deriving NEEs for guide propagation; 2. applications to the cases of stratified liquids, gases, solids and plasmas with various nonlinearities and dispersion laws; 3. connections between the basic problem and soliton- like solutions of the corresponding NEEs; 4. discussion of details of simple solutions in higher- order nonsingular perturbation theory.
Nonlinear Bloch waves in metallic photonic band-gap filaments
International Nuclear Information System (INIS)
Kaso, Artan; John, Sajeev
2007-01-01
We demonstrate the occurrence of nonlinear Bloch waves in metallic photonic crystals (PCs). These periodically structured filaments are characterized by an isolated optical pass band below an effective plasma gap. The pass band occurs in a frequency range where the metallic filament exhibits a negative, frequency-dependent dielectric function and absorption loss. The metallic losses are counterbalanced by gain in two models of inhomogeneously broadened nonlinear oscillators. In the first model, we consider close-packed quantum dots that fill the void regions of a two-dimensional (2D) metallic PC, and whose inhomogeneously broadened emission spectrum spans the original optical pass band of the bare filament. In the second model, we consider thin (10-50 nm) layers of inhomogeneously broadened two-level resonators, with large dipole oscillator strength, that cover the interior surfaces of 2D metallic (silver and tungsten) PCs. These may arise from localized surface plasmon resonances due to small metal particles or an otherwise rough metal surface. For simplicity, we treat electromagnetic modes with electric field perpendicular to the plane of metal periodicity. In both models, a pumping threshold of the resonators is found, above which periodic nonlinear solutions of Maxwell's equations with purely real frequency within the optical pass band emerge. These nonlinear Bloch waves exhibit a laserlike input pumping to output amplitude characteristic. For strong surface resonances, these nonlinear waves may play a role in light emission from a hot tungsten (suitably microstructured) filament
Nonlinear Bloch waves in metallic photonic band-gap filaments
Kaso, Artan; John, Sajeev
2007-11-01
We demonstrate the occurrence of nonlinear Bloch waves in metallic photonic crystals (PCs). These periodically structured filaments are characterized by an isolated optical pass band below an effective plasma gap. The pass band occurs in a frequency range where the metallic filament exhibits a negative, frequency-dependent dielectric function and absorption loss. The metallic losses are counterbalanced by gain in two models of inhomogeneously broadened nonlinear oscillators. In the first model, we consider close-packed quantum dots that fill the void regions of a two-dimensional (2D) metallic PC, and whose inhomogeneously broadened emission spectrum spans the original optical pass band of the bare filament. In the second model, we consider thin (10 50 nm) layers of inhomogeneously broadened two-level resonators, with large dipole oscillator strength, that cover the interior surfaces of 2D metallic (silver and tungsten) PCs. These may arise from localized surface plasmon resonances due to small metal particles or an otherwise rough metal surface. For simplicity, we treat electromagnetic modes with electric field perpendicular to the plane of metal periodicity. In both models, a pumping threshold of the resonators is found, above which periodic nonlinear solutions of Maxwell’s equations with purely real frequency within the optical pass band emerge. These nonlinear Bloch waves exhibit a laserlike input pumping to output amplitude characteristic. For strong surface resonances, these nonlinear waves may play a role in light emission from a hot tungsten (suitably microstructured) filament.
Nonlinear Dispersive Elastic Waves in Solids: Exact, Approximate, and Numerical Solutions
Khajehtourian, Romik
Wave motion lies at the heart of many disciplines in the physical sciences and engineering. For example, problems and applications involving light, sound, heat, or fluid flow are all likely to involve wave dynamics at some level. A particular class of problems is concerned with the propagation of elastic waves in a solid medium, such as a fiber-reinforced composite material responding to vibratory excitations, or soil and rock admitting seismic waves moments after the onset of an earthquake, or phonon transport in a semiconducting crystal like silicon. Regardless of the type of wave, the dispersion relation provides a fundamental characterization of the elastodynamic properties of the medium. The first part of the dissertation examines the propagation of a large-amplitude elastic wave in a one-dimensional homogeneous medium with a focus on the effects of inherent nonlinearities on the dispersion relation. Considering a thin rod, where the thickness is small compared to the wavelength, an exact, closed-form formulation is presented for the treatment of two types of nonlinearity in the strain-displacement gradient relation: Green-Lagrange and Hencky. The derived relation is then verified by direct time-domain simulations, examining both instantaneous dispersion (by direct observation) and short-term, pre-breaking dispersion (by Fourier transformation). A high-order perturbation analysis is also conducted yielding an explicit analytical space-time solution, which is shown to be spectrally accurate. The results establish a perfect match between theory and simulation and reveal that regardless of the strength of the nonlinearity, the dispersion relation fully embodies all information pertaining to the nonlinear harmonic generation mechanism that unfolds as an arbitrary-profiled wave evolves in the medium. In the second part of the dissertation, the analysis is extended to a continuous periodic thin rod exhibiting multiple phases or embedded local resonators. The
Nonlinear wave particle interaction in the Earth's foreshock
Mazelle, C.; LeQueau, D.; Meziane, K.; Lin, R. P.; Parks, G.; Reme, H.; Sanderson, T.; Lepping, R. P.
1997-01-01
The possibility that ion beams could provide a free energy source for driving an ion/ion instability responsible for the ULF wave occurrence is investigated. For this, the wave dispersion relation with the observed parameters is solved. Secondly, it is shown that the ring-like distributions could then be produced by a coherent nonlinear wave-particle interaction. It tends to trap the ions into narrow cells in velocity space centered around a well-defined pitch-angle, directly related to the saturation wave amplitude in the analytical theory. The theoretical predictions with the observations are compared.
Quantum X waves with orbital angular momentum in nonlinear dispersive media
Ornigotti, Marco; Conti, Claudio; Szameit, Alexander
2018-06-01
We present a complete and consistent quantum theory of generalised X waves with orbital angular momentum in dispersive media. We show that the resulting quantised light pulses are affected by neither dispersion nor diffraction and are therefore resilient against external perturbations. The nonlinear interaction of quantised X waves in quadratic and Kerr nonlinear media is also presented and studied in detail.
Nonlinear ultrasonic wave modulation for online fatigue crack detection
Sohn, Hoon; Lim, Hyung Jin; DeSimio, Martin P.; Brown, Kevin; Derriso, Mark
2014-02-01
This study presents a fatigue crack detection technique using nonlinear ultrasonic wave modulation. Ultrasonic waves at two distinctive driving frequencies are generated and corresponding ultrasonic responses are measured using permanently installed lead zirconate titanate (PZT) transducers with a potential for continuous monitoring. Here, the input signal at the lower driving frequency is often referred to as a 'pumping' signal, and the higher frequency input is referred to as a 'probing' signal. The presence of a system nonlinearity, such as a crack formation, can provide a mechanism for nonlinear wave modulation, and create spectral sidebands around the frequency of the probing signal. A signal processing technique combining linear response subtraction (LRS) and synchronous demodulation (SD) is developed specifically to extract the crack-induced spectral sidebands. The proposed crack detection method is successfully applied to identify actual fatigue cracks grown in metallic plate and complex fitting-lug specimens. Finally, the effect of pumping and probing frequencies on the amplitude of the first spectral sideband is investigated using the first sideband spectrogram (FSS) obtained by sweeping both pumping and probing signals over specified frequency ranges.
Rogue waves generation in a left-handed nonlinear transmission line with series varactor diodes
Onana Essama, B. G.; Atangana, J.; Biya Motto, F.; Mokhtari, B.; Cherkaoui Eddeqaqi, N.; Kofane, Timoleon C.
2014-07-01
We investigate the electromagnetic wave behavior and its characterization using collective variables technique. Second-order dispersion, first- and second-order nonlinearities, which strongly act in a left-handed nonlinear transmission line with series varactor diodes, are taken into account. Four frequency ranges have been found. The first one gives the so-called energetic soliton due to a perfect combination of second-order dispersion and first-order nonlinearity. The second frequency range presents a dispersive soliton leading to the collapse of the electromagnetic wave at the third frequency range. But the fourth one shows physical conditions which are able to provoke the appearance of wave trains generation with some particular waves, the rogue waves. Moreover, we demonstrate that the number of rogue waves increases with frequency. The soliton, thereafter, gains a relative stability when second-order nonlinearity comes into play with some specific values in the fourth frequency range. Furthermore, the stability conditions of the electromagnetic wave at high frequencies have been also discussed.
Effect of nonlinear wave-particle interaction on electron-cyclotron absorption
Energy Technology Data Exchange (ETDEWEB)
Tsironis, C; Vlahos, L [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)
2006-09-15
We perform a self-consistent analysis of the nonlinear interaction of magnetized plasmas with electron-cyclotron (EC) waves. A closed set of equations is derived, which consists of the relativistic equations of motion under the wave field and the wave equation for the vector potential. The plasma is described in terms of ensembles of electrons which collectively determine the evolution of the wave amplitude and frequency through the current response. This description allows for effects of the electron motions on the efficiency of the wave absorption, for example, the asynchrony between the wave phase and the gyroperiod. As an application, we study the absorption of an EC wave beam in a simplified tokamak geometry, for plasma parameters relevant to current and future fusion experiments. We conclude that, within the limits of our model, there are cases where the linear theory for the absorption of EC waves, used widely in the current literature, may overestimate the energy deposition. In such cases, nonlinear effects are essential for the accurate estimation of the plasma-wave coupling and their inclusion should be considered, especially when the wave power is dramatically increased as in the case of ITER.
Effect of nonlinear wave-particle interaction on electron-cyclotron absorption
International Nuclear Information System (INIS)
Tsironis, C; Vlahos, L
2006-01-01
We perform a self-consistent analysis of the nonlinear interaction of magnetized plasmas with electron-cyclotron (EC) waves. A closed set of equations is derived, which consists of the relativistic equations of motion under the wave field and the wave equation for the vector potential. The plasma is described in terms of ensembles of electrons which collectively determine the evolution of the wave amplitude and frequency through the current response. This description allows for effects of the electron motions on the efficiency of the wave absorption, for example, the asynchrony between the wave phase and the gyroperiod. As an application, we study the absorption of an EC wave beam in a simplified tokamak geometry, for plasma parameters relevant to current and future fusion experiments. We conclude that, within the limits of our model, there are cases where the linear theory for the absorption of EC waves, used widely in the current literature, may overestimate the energy deposition. In such cases, nonlinear effects are essential for the accurate estimation of the plasma-wave coupling and their inclusion should be considered, especially when the wave power is dramatically increased as in the case of ITER
Nonlinear damping of drift waves by strong flow curvature
International Nuclear Information System (INIS)
Sidikman, K.L.; Carreras, B.A.; Garcia, L.; Diamond, P.H.
1993-01-01
A single-equation model has been used to study the effect of a fixed poloidal flow (V 0 ) on turbulent drift waves. The electron dynamics come from a laminar kinetic equation in the dissipative trapped-electron regime. In the past, the authors have assumed that the mode frequency is close to the drift-wave frequency. Trapped-electron density fluctuations are then related to potential fluctuations by an open-quotes iδclose quotes term. Flow shear (V 0 ') and curvature (V 0 double-prime) both have a stabilizing effect on linear modes for this open-quotes iδclose quotes model. However, in the nonlinear regime, single-helicity effects inhibit the flow damping. Neither V 0 ' nor V 0 double-prime produces a nonlinear damping effect. The above assumption on the frequency can be relaxed by including the electron time-response in the linear part of the evolution. In this time-dependent model, instability drive due to trapped electrons is reduced when mode frequency is greater than drift-wave frequency. Since V 0 double-prime produces such a frequency shift, its linear effect is enhanced. There is also nonlinear damping, since single-helicity effects do not eliminate the shift. Renormalized theory for this model predicts nonlinear stability for sufficiently large curvature. Single-helicity calculations have already shown nonlinear damping, and this strong V 0 double-prime regime is being explored. In the theory, the Gaussian shape of the nonlinear diffusivity is expanded to obtain a quadratic potential. The implications of this assumption will be tested by solving the full renormalized equation using a shooting method
Exact solitary and periodic wave solutions for a generalized nonlinear Schroedinger equation
International Nuclear Information System (INIS)
Sun Chengfeng; Gao Hongjun
2009-01-01
The generalized nonlinear Schroedinger equation (GNLS) iu t + u xx + β | u | 2 u + γ | u | 4 u + iα (| u | 2 u) x + iτ(| u | 2 ) x u = 0 is studied. Using the bifurcation of travelling waves of this equation, some exact solitary wave solutions were obtained in [Wang W, Sun J,Chen G, Bifurcation, Exact solutions and nonsmooth behavior of solitary waves in the generalized nonlinear Schroedinger equation. Int J Bifucat Chaos 2005:3295-305.]. In this paper, more explicit exact solitary wave solutions and some new smooth periodic wave solutions are obtained.
Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal waves.
Badiey, Mohsen; Katsnelson, Boris G; Lin, Ying-Tsong; Lynch, James F
2011-04-01
Simultaneous measurements of acoustic wave transmissions and a nonlinear internal wave packet approaching an along-shelf acoustic path during the Shallow Water 2006 experiment are reported. The incoming internal wave packet acts as a moving frontal layer reflecting (or refracting) sound in the horizontal plane. Received acoustic signals are filtered into acoustic normal mode arrivals. It is shown that a horizontal multipath interference is produced. This has previously been called a horizontal Lloyd's mirror. The interference between the direct path and the refracted path depends on the mode number and frequency of the acoustic signal. A mechanism for the multipath interference is shown. Preliminary modeling results of this dynamic interaction using vertical modes and horizontal parabolic equation models are in good agreement with the observed data.
Nonlinear wavenumber of an electron plasma wave
International Nuclear Information System (INIS)
Vidmar, P.J.; Malmberg, J.H.; Starke, T.P.
1976-01-01
The wavenumber of a large-amplitude electron plasma wave propagating on a collisionless plasma column is measured. The wavenumber is shifted from that of a small-amplitude wave of the same frequency. This nonlinear wavenumber shift, deltak/subr/, depends on position, frequency, and initial wave amplitude, Phi. The observed spatial oscillations of deltak/subr/ agree qualitatively with recent theories. Experimentally deltak/subr/proportionalk/subi/S (Phi) rootPhi where k/subi/ is the linear Landau damping coefficient, S (Phi) equivalentk/subi/(Phi)/k/subi/, and k/subi/(Phi) is the initial damping coefficient which depends on Phi
Nonlinear shear wave in a non Newtonian visco-elastic medium
Energy Technology Data Exchange (ETDEWEB)
Banerjee, D.; Janaki, M. S.; Chakrabarti, N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Chaudhuri, M. [Max-Planck-Institut fuer extraterrestrische Physik, 85741 Garching (Germany)
2012-06-15
An analysis of nonlinear transverse shear wave has been carried out on non-Newtonian viscoelastic liquid using generalized hydrodynamic model. The nonlinear viscoelastic behavior is introduced through velocity shear dependence of viscosity coefficient by well known Carreau-Bird model. The dynamical feature of this shear wave leads to the celebrated Fermi-Pasta-Ulam problem. Numerical solution has been obtained which shows that initial periodic solutions reoccur after passing through several patterns of periodic waves. A possible explanation for this periodic solution is given by constructing modified Korteweg de Vries equation. This model has application from laboratory to astrophysical plasmas as well as in biological systems.
On the Stochastic Wave Equation with Nonlinear Damping
International Nuclear Information System (INIS)
Kim, Jong Uhn
2008-01-01
We discuss an initial boundary value problem for the stochastic wave equation with nonlinear damping. We establish the existence and uniqueness of a solution. Our method for the existence of pathwise solutions consists of regularization of the equation and data, the Galerkin approximation and an elementary measure-theoretic argument. We also prove the existence of an invariant measure when the equation has pure nonlinear damping
Nonlinear magnetoacoustic wave propagation with chemical reactions
Margulies, Timothy Scott
2002-11-01
The magnetoacoustic problem with an application to sound wave propagation through electrically conducting fluids such as the ocean in the Earth's magnetic field, liquid metals, or plasmas has been addressed taking into account several simultaneous chemical reactions. Using continuum balance equations for the total mass, linear momentum, energy; as well as Maxwell's electrodynamic equations, a nonlinear beam equation has been developed to generalize the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a fluid with linear viscosity but nonlinear and diffraction effects. Thermodynamic parameters are used and not tailored to only an adiabatic fluid case. The chemical kinetic equations build on a relaxing media approach presented, for example, by K. Naugolnukh and L. Ostrovsky [Nonlinear Wave Processes in Acoustics (Cambridge Univ. Press, Cambridge, 1998)] for a linearized single reaction and thermodynamic pressure equation of state. Approximations for large and small relaxation times and for magnetohydrodynamic parameters [Korsunskii, Sov. Phys. Acoust. 36 (1990)] are examined. Additionally, Cattaneo's equation for heat conduction and its generalization for a memory process rather than a Fourier's law are taken into account. It was introduced for the heat flux depends on the temperature gradient at an earlier time to generate heat pulses of finite speed.
Directory of Open Access Journals (Sweden)
Weiguo Rui
2014-01-01
Full Text Available By using the integral bifurcation method together with factoring technique, we study a water wave model, a high-order nonlinear wave equation of KdV type under some newly solvable conditions. Based on our previous research works, some exact traveling wave solutions such as broken-soliton solutions, periodic wave solutions of blow-up type, smooth solitary wave solutions, and nonsmooth peakon solutions within more extensive parameter ranges are obtained. In particular, a series of smooth solitary wave solutions and nonsmooth peakon solutions are obtained. In order to show the properties of these exact solutions visually, we plot the graphs of some representative traveling wave solutions.
Energy Technology Data Exchange (ETDEWEB)
Huang, K.M. [Wuhan Univ. (China). School of Electronic Information; Chinese Academey of Sciences, Hefei (China). Key Lab. of Geospace Environment; Embry Riddle Aeronautical Univ., Daytona Beach, FL (United States). Dept. of Physical Science; Ministry of Education, Wuhan (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan (China); Liu, A.Z.; Li, Z. [Embry Riddle Aeronautical Univ., Daytona Beach, FL (United States). Dept. of Physical Science; Zhang, S.D.; Yi, F. [Wuhan Univ. (China). School of Electronic Information; Ministry of Education, Wuhan (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan (China)
2012-07-01
Nonlinear interactions of gravity waves are studied with a two-dimensional, fully nonlinear model. The energy exchanges among resonant and near-resonant triads are examined in order to understand the spectral energy transfer through interactions. The results show that in both resonant and near-resonant interactions, the energy exchange between two high frequency waves is strong, but the energy transfer from large to small vertical scale waves is rather weak. This suggests that the energy cascade toward large vertical wavenumbers through nonlinear interaction is inefficient, which is different from the rapid turbulence cascade. Because of considerable energy exchange, nonlinear interactions can effectively spread high frequency spectrum, and play a significant role in limiting wave amplitude growth and transferring energy into higher altitudes. In resonant interaction, the interacting waves obey the resonant matching conditions, and resonant excitation is reversible, while near-resonant excitation is not so. Although near-resonant interaction shows the complexity of match relation, numerical experiments show an interesting result that when sum and difference near-resonant interactions occur between high and low frequency waves, the wave vectors tend to approximately match in horizontal direction, and the frequency of the excited waves is also close to the matching value. (orig.)
Zhang, Jie-Fang; Li, Yi-Shen; Meng, Jianping; Wu, Lei; Malomed, Boris A.
2010-09-01
We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices (OLs). By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite set of exact soliton solutions in terms of Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite gap of the OL-induced spectrum. Starting from the particular exact solutions, we employ the relaxation method to construct generic families of soliton solutions in a numerical form. The stability of the solitons is investigated through the computation of the eigenvalues for small perturbations, and also by direct simulations. Finally, we demonstrate a virtually exact (in the numerical sense) composition relation between nonlinear Bloch waves and solitons.
International Nuclear Information System (INIS)
Zhang Jiefang; Meng Jianping; Wu Lei; Li Yishen; Malomed, Boris A.
2010-01-01
We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices (OLs). By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite set of exact soliton solutions in terms of Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite gap of the OL-induced spectrum. Starting from the particular exact solutions, we employ the relaxation method to construct generic families of soliton solutions in a numerical form. The stability of the solitons is investigated through the computation of the eigenvalues for small perturbations, and also by direct simulations. Finally, we demonstrate a virtually exact (in the numerical sense) composition relation between nonlinear Bloch waves and solitons.
Plasma heating by non-linear wave-Plasma interaction | Echi ...
African Journals Online (AJOL)
We simulate the non-linear interaction of waves with magnetized tritium plasma with the aim of determining the parameter values that characterize the response of the plasma. The wave-plasma interaction has a non-conservative Hamiltonian description. The resulting system of Hamilton's equations is integrated numerically ...
Nonlinear waves in Bose–Einstein condensates: physical relevance and mathematical techniques
International Nuclear Information System (INIS)
Carretero-González, R; Frantzeskakis, D J; Kevrekidis, P G
2008-01-01
The aim of this review is to introduce the reader to some of the physical notions and the mathematical methods that are relevant to the study of nonlinear waves in Bose–Einstein condensates (BECs). Upon introducing the general framework, we discuss the prototypical models that are relevant to this setting for different dimensions and different potentials confining the atoms. We analyse some of the model properties and explore their typical wave solutions (plane wave solutions, bright, dark, gap solitons as well as vortices). We then offer a collection of mathematical methods that can be used to understand the existence, stability and dynamics of nonlinear waves in such BECs, either directly or starting from different types of limits (e.g. the linear or the nonlinear limit or the discrete limit of the corresponding equation). Finally, we consider some special topics involving more recent developments, and experimental setups in which there is still considerable need for developing mathematical as well as computational tools. (invited article)
Nonlinear low-frequency wave aspect of foreshock density holes
Directory of Open Access Journals (Sweden)
N. Lin
2008-11-01
Full Text Available Recent observations have uncovered short-duration density holes in the Earth's foreshock region. There is evidence that the formation of density holes involves non-linear growth of fluctuations in the magnetic field and plasma density, which results in shock-like boundaries followed by a decrease in both density and magnetic field. In this study we examine in detail a few such events focusing on their low frequency wave characteristics. The propagation properties of the waves are studied using Cluster's four point observations. We found that while these density hole-structures were convected with the solar wind, in the plasma rest frame they propagated obliquely and mostly sunward. The wave amplitude grows non-linearly in the process, and the waves are circularly or elliptically polarized in the left hand sense. The phase velocities calculated from four spacecraft timing analysis are compared with the velocity estimated from δE/δB. Their agreement justifies the plane electromagnetic wave nature of the structures. Plasma conditions are found to favor firehose instabilities. Oblique Alfvén firehose instability is suggested as a possible energy source for the wave growth. Resonant interaction between ions at certain energy and the waves could reduce the ion temperature anisotropy and thus the free energy, thereby playing a stabilizing role.
Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis
Jeffrey, Alan
1971-01-01
The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)
Quantum corrections to nonlinear ion acoustic wave with Landau damping
Energy Technology Data Exchange (ETDEWEB)
Mukherjee, Abhik; Janaki, M. S. [Saha Institute of Nuclear Physics, Calcutta (India); Bose, Anirban [Serampore College, West Bengal (India)
2014-07-15
Quantum corrections to nonlinear ion acoustic wave with Landau damping have been computed using Wigner equation approach. The dynamical equation governing the time development of nonlinear ion acoustic wave with semiclassical quantum corrections is shown to have the form of higher KdV equation which has higher order nonlinear terms coming from quantum corrections, with the usual classical and quantum corrected Landau damping integral terms. The conservation of total number of ions is shown from the evolution equation. The decay rate of KdV solitary wave amplitude due to the presence of Landau damping terms has been calculated assuming the Landau damping parameter α{sub 1}=√(m{sub e}/m{sub i}) to be of the same order of the quantum parameter Q=ℏ{sup 2}/(24m{sup 2}c{sub s}{sup 2}L{sup 2}). The amplitude is shown to decay very slowly with time as determined by the quantum factor Q.
Nonlinear infragravity–wave interactions on a gently sloping laboratory beach
De Bakker, A.T.M.; Herbers, T.H.C.; Smit, P.B.; Tissier, M.F.S.; Ruessink, B.G.
2015-01-01
A high-resolution dataset of three irregular wave conditions collected on a gently sloping laboratory beach is analyzed to study nonlinear energy transfers involving infragravity frequencies. This study uses bispectral analysis to identify the dominant, nonlinear interactions and estimate energy
Nonlinear infragravity-wave interactions on a gently sloping laboratory beach
de Bakker, A. T M; Herbers, T. H C; Smit, P. B.; Tissier, M. F S; Ruessink, B. G.
2015-01-01
A high-resolution dataset of three irregular wave conditions collected on a gently sloping laboratory beach is analyzed to study nonlinear energy transfers involving infragravity frequencies. This study uses bispectral analysis to identify the dominant, nonlinear interactions and estimate energy
Nonlinear electrostatic wave equations for magnetized plasmas - II
DEFF Research Database (Denmark)
Dysthe, K. B.; Mjølhus, E.; Pécseli, H. L.
1985-01-01
For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent (electrosta......For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent...... (electrostatic) cut-off implies that various cases must be considered separately, leading to equations with rather different properties. Various equations encountered previously in the literature are recovered as limiting cases....
Hidden regularity for a strongly nonlinear wave equation
International Nuclear Information System (INIS)
Rivera, J.E.M.
1988-08-01
The nonlinear wave equation u''-Δu+f(u)=v in Q=Ωx]0,T[;u(0)=u 0 ,u'(0)=u 1 in Ω; u(x,t)=0 on Σ= Γx]0,T[ where f is a continuous function satisfying, lim |s| sup →+∞ f(s)/s>-∞, and Ω is a bounded domain of R n with smooth boundary Γ, is analysed. It is shown that there exist a solution for the presented nonlinear wave equation that satisfies the regularity condition: |∂u/∂ η|ε L 2 (Σ). Moreover, it is shown that there exist a constant C>0 such that, |∂u/∂ η|≤c{ E(0)+|v| 2 Q }. (author) [pt
Energy Technology Data Exchange (ETDEWEB)
Raphaldini, Breno; Raupp, Carlos F. M., E-mail: brenorfs@gmail.com, E-mail: carlos.raupp@iag.usp.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Departamento de Geofísica, Rua do Matão, 1226-Cidade Universitária São Paulo-SP 05508-090 (Brazil)
2015-01-20
The solar dynamo is known to be associated with several periodicities, with the nearly 11/22 yr cycle being the most pronounced one. Even though these quasiperiodic variations of solar activity have been attributed to the underlying dynamo action in the Sun's interior, a fundamental theoretical description of these cycles is still elusive. Here, we present a new possible direction in understanding the Sun's cycles based on resonant nonlinear interactions among magnetohydrodynamic (MHD) Rossby waves. The WKB theory for dispersive waves is applied to magnetohydrodynamic shallow-water equations describing the dynamics of the solar tachocline, and the reduced dynamics of a resonant triad composed of MHD Rossby waves embedded in constant toroidal magnetic field is analyzed. In the conservative case, the wave amplitudes evolve periodically in time, with periods on the order of the dominant solar activity timescale (∼11 yr). In addition, the presence of linear forcings representative of either convection or instabilities of meridionally varying background states appears to be crucial in balancing dissipation and thus sustaining the periodic oscillations of wave amplitudes associated with resonant triad interactions. Examination of the linear theory of MHD Rossby waves embedded in a latitudinally varying mean flow demonstrates that MHD Rossby waves propagate toward the equator in a waveguide from –35° to 35° in latitude, showing a remarkable resemblance to the structure of the butterfly diagram of the solar activity. Therefore, we argue that resonant nonlinear magnetohydrodynamic Rossby wave interactions might significantly contribute to the observed cycles of magnetic solar activity.
Bispectral analysis of nonlinear compressional waves in a two-dimensional dusty plasma crystal
International Nuclear Information System (INIS)
Nosenko, V.; Goree, J.; Skiff, F.
2006-01-01
Bispectral analysis was used to study the nonlinear interaction of compressional waves in a two-dimensional strongly coupled dusty plasma. A monolayer of highly charged polymer microspheres was suspended in a plasma sheath. The microspheres interacted with a Yukawa potential and formed a triangular lattice. Two sinusoidal pump waves with different frequencies were excited in the lattice by pushing the particles with modulated Ar + laser beams. Coherent nonlinear interaction of the pump waves was shown to be the mechanism of generating waves at the sum, difference, and other combination frequencies. However, coherent nonlinear interaction was ruled out for certain combination frequencies, in particular, for the difference frequency below an excitation-power threshold, as predicted by theory
NONLINEAR REFLECTION PROCESS OF LINEARLY POLARIZED, BROADBAND ALFVÉN WAVES IN THE FAST SOLAR WIND
Energy Technology Data Exchange (ETDEWEB)
Shoda, M.; Yokoyama, T., E-mail: shoda@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)
2016-04-01
Using one-dimensional numerical simulations, we study the elementary process of Alfvén wave reflection in a uniform medium, including nonlinear effects. In the linear regime, Alfvén wave reflection is triggered only by the inhomogeneity of the medium, whereas in the nonlinear regime, it can occur via nonlinear wave–wave interactions. Such nonlinear reflection (backscattering) is typified by decay instability. In most studies of decay instabilities, the initial condition has been a circularly polarized Alfvén wave. In this study we consider a linearly polarized Alfvén wave, which drives density fluctuations by its magnetic pressure force. For generality, we also assume a broadband wave with a red-noise spectrum. In the data analysis, we decompose the fluctuations into characteristic variables using local eigenvectors, thus revealing the behaviors of the individual modes. Different from the circular-polarization case, we find that the wave steepening produces a new energy channel from the parent Alfvén wave to the backscattered one. Such nonlinear reflection explains the observed increasing energy ratio of the sunward to the anti-sunward Alfvénic fluctuations in the solar wind with distance against the dynamical alignment effect.
Nonlinear Time-Reversal in a Wave Chaotic System
Frazier, Matthew; Taddese, Biniyam; Ott, Edward; Antonsen, Thomas; Anlage, Steven
2012-02-01
Time reversal mirrors are particularly simple to implement in wave chaotic systems and form the basis for a new class of sensors [1-3]. These sensors work by applying the quantum mechanical concepts of Loschmidt echo and fidelity decay to classical waves. The sensors make explicit use of time-reversal invariance and spatial reciprocity in a wave chaotic system to remotely measure the presence of small perturbations to the system. The underlying ray chaos increases the sensitivity to small perturbations throughout the volume explored by the waves. We extend our time-reversal mirror to include a discrete element with a nonlinear dynamical response. The initially injected pulse interacts with the nonlinear element, generating new frequency components originating at the element. By selectively filtering for and applying the time-reversal mirror to the new frequency components, we focus a pulse only onto the element, without knowledge of its location. Furthermore, we demonstrate transmission of arbitrary patterns of pulses to the element, creating a targeted communication channel to the exclusion of 'eavesdroppers' at other locations in the system. [1] Appl. Phys. Lett. 95, 114103 (2009) [2] J. Appl. Phys. 108, 1 (2010) [3] Acta Physica Polonica A 112, 569 (2007)
Vorotnikov, K.; Starosvetsky, Y.
2018-01-01
The present study concerns two-dimensional nonlinear mechanisms of bidirectional and unidirectional channeling of longitudinal and shear waves emerging in the locally resonant acoustic structure. The system under consideration comprises an oscillatory chain of the axially coupled masses. Each mass of the chain is subject to the local linear potential along the lateral direction and incorporates the lightweight internal rotator. In the present work, we demonstrate the emergence of special resonant regimes of complete bi- and unidirectional transitions between the longitudinal and the shear waves of the locally resonant chain. These regimes are manifested by the two-dimensional energy channeling between the longitudinal and the shear traveling waves in the recurrent as well as the irreversible fashion. We show that the spatial control of the two dimensional energy flow between the longitudinal and the shear waves is solely governed by the motion of the internal rotators. Nonlinear analysis of the regimes of a bidirectional wave channeling unveils their global bifurcation structure and predicts the zones of their spontaneous transitions from a complete bi-directional wave channeling to the one-directional entrapment. An additional regime of a complete irreversible resonant transformation of the longitudinal wave into a shear wave is analyzed in the study. The intrinsic mechanism governing the unidirectional wave reorientation is described analytically. The results of the analysis of both mechanisms are substantiated by the numerical simulations of the full model and are found to be in a good agreement.
Nonlinear interaction of the surface waves at a plasma boundary
International Nuclear Information System (INIS)
Dolgopolov, V.V.; El-Naggar, I.A.; Hussein, A.M.; Khalil, Sh.M.
1976-01-01
Amplitudes of electromagnetic waves with combination frequencies, radiating from the plasma boundary due to nonlinear interaction of the surface waves, have been found. Previous papers on this subject did not take into account that the tangential components of the electric field of waves with combination frequencies were discontinuous at the plasma boundary. (Auth.)
Effect of bottom slope on the nonlinear triad interactions in shallow water
Chen, Hongzhou; Tang, Xiaocheng; Zhang, Ri; Gao, Junliang
2018-05-01
This paper aims at investigating the effect of bottom slope to the nonlinear triad interactions for irregular waves propagating in shallow water. The physical experiments are conducted in a wave flume with respect to the transformation of waves propagating on three bottom slopes ( β = 1/15, 1/30, and 1/45). Irregular waves with different type of breaking that are mechanically generated based on JONSWAP spectra are used for the test. The obviously different variations of spectra measured on each bottom reveal a crucial role of slope effect in the energy transfer between harmonics. The wavelet-based bispectrum were used to examine the bottom slope effect on the nonlinear triad interactions. Results show that the different bottom slopes which waves are propagated on will cause a significant discrepancy of triad interactions. Then, the discussions on the summed bicoherence which denote the distribution of phase coupling on each frequency further clarify the effect of bottom slope. Furthermore, the summed of the real and imaginary parts of bispectrum which could reflect the intensity of frequency components participating in the wave skewness and asymmetry were also investigated. Results indicate that the value of these parameters will increase as the bottom slope gets steeper.
Qin, Yan-Hong; Zhao, Li-Chen; Yang, Zhan-Ying; Yang, Wen-Li
2018-01-01
We investigate linear interference effects between a nonlinear plane wave and bright solitons, which are admitted by a pair-transition coupled two-component Bose-Einstein condensate. We demonstrate that the interference effects can induce several localized waves possessing distinctive wave structures, mainly including anti-dark solitons, W-shaped solitons, multi-peak solitons, Kuznetsov-Ma like breathers, and multi-peak breathers. Specifically, the explicit conditions for them are clarified by a phase diagram based on the linear interference properties. Furthermore, the interactions between these localized waves are discussed. The detailed analysis indicates that the soliton-soliton interaction induced phase shift brings the collision between these localized waves which can be inelastic for solitons involving collision and can be elastic for breathers. These characters come from the fact that the profile of solitons depends on the relative phase between bright solitons and a plane wave, and the profile of breathers does not depend on the relative phase. These results would motivate more discussions on linear interference between other nonlinear waves. Specifically, the solitons or breathers obtained here are not related to modulational instability. The underlying reasons are discussed in detail. In addition, possibilities to observe these localized waves are discussed in a two species Bose-Einstein condensate.
Defocusing regimes of nonlinear waves in media with negative dispersion
DEFF Research Database (Denmark)
Bergé, L.; Kuznetsov, E.A.; Juul Rasmussen, J.
1996-01-01
Defocusing regimes of quasimonochromatic waves governed by a nonlinear Schrodinger equation with mixed-sign dispersion are investigated. For a power-law nonlinearity, we show that localized solutions to this equation defined at the so-called critical dimension cannot collapse in finite time...
Nonlinear modulation of ion acoustic waves in a magnetized plasma
International Nuclear Information System (INIS)
Bharuthram, R.; Shukla, P.K.
1987-01-01
The quasistatic plasma slow response to coherent ion acoustic waves in a magnetized plasma is considered. A multidimensional cubic nonlinear Schroedinger equation is derived. It is found that the ion acoustic waves remain modulationally stable against oblique perturbations
International Nuclear Information System (INIS)
Wang Lei; Zhu Yujie; Wang Ziqi; Xu Tao; Qi Fenghua; Xue Yushan
2016-01-01
We study the nonlinear localized waves on constant backgrounds of the Hirota–Maxwell–Bloch (HMB) system arising from the erbium doped fibers. We derive the asymmetric breather, rogue wave (RW) and semirational solutions of the HMB system. We show that the breather and RW solutions can be converted into various soliton solutions. Under different conditions of parameters, we calculate the locus of the eigenvalues on the complex plane which converts the breathers or RWs into solitons. Based on the second-order solutions, we investigate the interactions among different types of nonlinear waves including the breathers, RWs and solitons. (author)
Wang, Lei; Zhu, Yu-Jie; Wang, Zi-Qi; Xu, Tao; Qi, Feng-Hua; Xue, Yu-Shan
2016-02-01
We study the nonlinear localized waves on constant backgrounds of the Hirota-Maxwell-Bloch (HMB) system arising from the erbium doped fibers. We derive the asymmetric breather, rogue wave (RW) and semirational solutions of the HMB system. We show that the breather and RW solutions can be converted into various soliton solutions. Under different conditions of parameters, we calculate the locus of the eigenvalues on the complex plane which converts the breathers or RWs into solitons. Based on the second-order solutions, we investigate the interactions among different types of nonlinear waves including the breathers, RWs and solitons.
Numerical simulation of solitary waves on deep water with constant vorticity
Dosaev, A. S.; Shishina, M. I.; Troitskaya, Yu I.
2018-01-01
Characteristics of solitary deep water waves on a flow with constant vorticity are investigated by numerical simulation within the framework of fully nonlinear equations of motion (Euler equations) using the method of surface-tracking conformal coordinates. To ensure that solutions observed are stable, soliton formation as a result of disintegration of an initial pulse-like disturbance is modeled. Evidence is obtained that solitary waves with height above a certain threshold are unstable.
Causal properties of nonlinear gravitational waves in modified gravity
Suvorov, Arthur George; Melatos, Andrew
2017-09-01
Some exact, nonlinear, vacuum gravitational wave solutions are derived for certain polynomial f (R ) gravities. We show that the boundaries of the gravitational domain of dependence, associated with events in polynomial f (R ) gravity, are not null as they are in general relativity. The implication is that electromagnetic and gravitational causality separate into distinct notions in modified gravity, which may have observable astrophysical consequences. The linear theory predicts that tachyonic instabilities occur, when the quadratic coefficient a2 of the Taylor expansion of f (R ) is negative, while the exact, nonlinear, cylindrical wave solutions presented here can be superluminal for all values of a2. Anisotropic solutions are found, whose wave fronts trace out time- or spacelike hypersurfaces with complicated geometric properties. We show that the solutions exist in f (R ) theories that are consistent with Solar System and pulsar timing experiments.
Modification of 2-D Time-Domain Shallow Water Wave Equation using Asymptotic Expansion Method
Khairuman, Teuku; Nasruddin, MN; Tulus; Ramli, Marwan
2018-01-01
Generally, research on the tsunami wave propagation model can be conducted by using a linear model of shallow water theory, where a non-linear side on high order is ignored. In line with research on the investigation of the tsunami waves, the Boussinesq equation model underwent a change aimed to obtain an improved quality of the dispersion relation and non-linearity by increasing the order to be higher. To solve non-linear sides at high order is used a asymptotic expansion method. This method can be used to solve non linear partial differential equations. In the present work, we found that this method needs much computational time and memory with the increase of the number of elements.
Nonlinear excitation of geodesic acoustic modes by drift waves
International Nuclear Information System (INIS)
Chakrabarti, N.; Singh, R.; Kaw, P. K.; Guzdar, P. N.
2007-01-01
In this paper, two mode-coupling analyses for the nonlinear excitation of the geodesic acoustic modes (GAMs) in tokamak plasmas by drift waves are presented. The first approach is a coherent parametric process, which leads to a three-wave resonant interaction. This investigation allows for the drift waves and the GAMs to have comparable scales. The second approach uses the wave-kinetic equations for the drift waves, which then couples to the GAMs. This requires that the GAM scale length be large compared to the wave packet associated with the drift waves. The resonance conditions for these two cases lead to specific predictions of the radial wave number of the excited GAMs
Rogue waves in a water tank: Experiments and modeling
Lechuga, Antonio
2013-04-01
Recently many rogue waves have been reported as the main cause of ship incidents on the sea. One of the main characteristics of rogue waves is its elusiveness: they present unexpectedly and disappear in the same wave. Some authors (Zakharov and al.2010) are attempting to find the probability of their appearances apart from studyingthe mechanism of the formation. As an effort on this topic we tried the generation of rogue waves in a water wave tank using a symmetric spectrum(Akhmediev et al. 2011) as input on the wave maker. The produced waves were clearly rogue waves with a rate (maximum wave height/ Significant wave height) of 2.33 and a kurtosis of 4.77 (Janssen 2003, Onorato 2006). These results were already presented (Lechuga 2012). Similar waves (in pattern aspect, but without being extreme waves) were described as crossing waves in a water tank(Shemer and Lichter1988). To go on further the next step has been to apply a theoretical model to the envelope of these waves. After some considerations the best model has been an analogue of the Ginzburg-Landau equation. This apparently amazing result is easily explained: We know that the Ginzburg-Landau model is related to some regular structures on the surface of a liquid and also in plasmas, electric and magnetic fields and other media. Another important characteristic of the model is that their solutions are invariants with respectto the translation group. The main aim of this presentation is to extract conclusions of the model and the comparison with the measured waves in the water tank.The nonlinear structure of waves and their regularity make suitable the use of the Ginzburg-Landau model to the envelope of generated waves in the tank,so giving us a powerful tool to cope with the results of our experiment.
Raju, Thokala Soloman; Pal, Ritu
2018-05-01
We derive the analytical rogue wave solutions for the generalized inhomogeneous nonlinear Schrödinger-Maxwell-Bloch (GINLS-MB) equation describing the pulse propagation in erbium-doped fibre system. Then by suitably choosing the inhomogeneous parameters, we delineate the tunneling properties of rogue waves through dispersion and nonlinearity barriers or wells. Finally, we demonstrate the propagating characteristics of optical solitons by considering their tunneling through periodic barriers by the proper choice of external potential.
Nonlinear waves in electron–positron–ion plasmas including charge ...
Indian Academy of Sciences (India)
2017-01-04
Jan 4, 2017 ... The introduction of the Poisson equation increased the Mach number required to generate the waveforms but the driving electric field E0 was reduced. The results are compared with satellite observations. Keywords. Nonlinear waves; low frequency; ion-acoustic waves. PACS Nos 52.35.Qz; 52.35.Fp; 52.35 ...
Dynamics of nonlinear resonant slow MHD waves in twisted flux tubes
Directory of Open Access Journals (Sweden)
R. Erdélyi
2002-01-01
Full Text Available Nonlinear resonant magnetohydrodynamic (MHD waves are studied in weakly dissipative isotropic plasmas in cylindrical geometry. This geometry is suitable and is needed when one intends to study resonant MHD waves in magnetic flux tubes (e.g. for sunspots, coronal loops, solar plumes, solar wind, the magnetosphere, etc. The resonant behaviour of slow MHD waves is confined in a narrow dissipative layer. Using the method of simplified matched asymptotic expansions inside and outside of the narrow dissipative layer, we generalise the so-called connection formulae obtained in linear MHD for the Eulerian perturbation of the total pressure and for the normal component of the velocity. These connection formulae for resonant MHD waves across the dissipative layer play a similar role as the well-known Rankine-Hugoniot relations connecting solutions at both sides of MHD shock waves. The key results are the nonlinear connection formulae found in dissipative cylindrical MHD which are an important extension of their counterparts obtained in linear ideal MHD (Sakurai et al., 1991, linear dissipative MHD (Goossens et al., 1995; Erdélyi, 1997 and in nonlinear dissipative MHD derived in slab geometry (Ruderman et al., 1997. These generalised connection formulae enable us to connect solutions obtained at both sides of the dissipative layer without solving the MHD equations in the dissipative layer possibly saving a considerable amount of CPU-time when solving the full nonlinear resonant MHD problem.
International Nuclear Information System (INIS)
Dai Chaoqing; Wang Yueyue; Tian Qing; Zhang Jiefang
2012-01-01
We present, analytically, self-similar rogue wave solutions (rational solutions) of the inhomogeneous nonlinear Schrödinger equation (NLSE) via a similarity transformation connected with the standard NLSE. Then we discuss the propagation behaviors of controllable rogue waves under dispersion and nonlinearity management. In an exponentially dispersion-decreasing fiber, the postponement, annihilation and sustainment of self-similar rogue waves are modulated by the exponential parameter σ. Finally, we investigate the nonlinear tunneling effect for self-similar rogue waves. Results show that rogue waves can tunnel through the nonlinear barrier or well with increasing, unchanged or decreasing amplitudes via the modulation of the ratio of the amplitudes of rogue waves to the barrier or well height. - Highlights: ► Self-similar rogue wave solutions of the inhomogeneous NLSE are obtained.► Postponement, annihilation and sustainment of self-similar rogue waves are discussed. ► Nonlinear tunneling effects for self-similar rogue waves are investigated.
Dispersive shock waves in nonlinear and atomic optics
Directory of Open Access Journals (Sweden)
Kamchatnov Anatoly
2017-01-01
Full Text Available A brief review is given of dispersive shock waves observed in nonlinear optics and dynamics of Bose-Einstein condensates. The theory of dispersive shock waves is developed on the basis of Whitham modulation theory for various situations taking place in these two fields. In particular, the full classification is established for types of wave structures evolving from initial discontinuities for propagation of long light pulses in fibers with account of steepening effect and for dynamics of the polarization mode in two-component Bose-Einstein condensates.
Three-wave interaction in two-component quadratic nonlinear lattices
DEFF Research Database (Denmark)
Konotop, V. V.; Cunha, M. D.; Christiansen, Peter Leth
1999-01-01
We investigate a two-component lattice with a quadratic nonlinearity and find with the multiple scale technique that integrable three-wave interaction takes place between plane wave solutions when these fulfill resonance conditions. We demonstrate that. energy conversion and pulse propagation known...... from three-wave interaction is reproduced in the lattice and that exact phase matching of parametric processes can be obtained in non-phase-matched lattices by tilting the interacting plane waves with respect to each other. [S1063-651X(99)15110-9]....
On the nonlinear shaping mechanism for gravity wave spectrum in the atmosphere
Directory of Open Access Journals (Sweden)
I. P. Chunchuzov
2009-11-01
Full Text Available The nonlinear mechanism of shaping of a high vertical wave number spectral tail in the field of a few discrete internal gravity waves in the atmosphere is studied in this paper. The effects of advection of fluid parcels by interacting gravity waves are taken strictly into account by calculating wave field in Lagrangian variables, and performing a variable transformation from Lagrangian to Eulerian frame. The vertical profiles and vertical wave number spectra of the Eulerian displacement field are obtained for both the case of resonant and non-resonant wave-wave interactions. The evolution of these spectra with growing parameter of nonlinearity of the internal wave field is studied and compared to that of a broad band spectrum of gravity waves with randomly independent amplitudes and phases. The calculated vertical wave number spectra of the vertical displacements or relative temperature fluctuations are found to be consistent with the observed spectra in the middle atmosphere.
Nonlinear low-frequency wave aspect of foreshock density holes
Directory of Open Access Journals (Sweden)
N. Lin
2008-11-01
Full Text Available Recent observations have uncovered short-duration density holes in the Earth's foreshock region. There is evidence that the formation of density holes involves non-linear growth of fluctuations in the magnetic field and plasma density, which results in shock-like boundaries followed by a decrease in both density and magnetic field. In this study we examine in detail a few such events focusing on their low frequency wave characteristics. The propagation properties of the waves are studied using Cluster's four point observations. We found that while these density hole-structures were convected with the solar wind, in the plasma rest frame they propagated obliquely and mostly sunward. The wave amplitude grows non-linearly in the process, and the waves are circularly or elliptically polarized in the left hand sense. The phase velocities calculated from four spacecraft timing analysis are compared with the velocity estimated from δE/δB. Their agreement justifies the plane electromagnetic wave nature of the structures. Plasma conditions are found to favor firehose instabilities. Oblique Alfvén firehose instability is suggested as a possible energy source for the wave growth. Resonant interaction between ions at certain energy and the waves could reduce the ion temperature anisotropy and thus the free energy, thereby playing a stabilizing role.
Reduced-order prediction of rogue waves in two-dimensional deep-water waves
Sapsis, Themistoklis; Farazmand, Mohammad
2017-11-01
We consider the problem of large wave prediction in two-dimensional water waves. Such waves form due to the synergistic effect of dispersive mixing of smaller wave groups and the action of localized nonlinear wave interactions that leads to focusing. Instead of a direct simulation approach, we rely on the decomposition of the wave field into a discrete set of localized wave groups with optimal length scales and amplitudes. Due to the short-term character of the prediction, these wave groups do not interact and therefore their dynamics can be characterized individually. Using direct numerical simulations of the governing envelope equations we precompute the expected maximum elevation for each of those wave groups. The combination of the wave field decomposition algorithm, which provides information about the statistics of the system, and the precomputed map for the expected wave group elevation, which encodes dynamical information, allows (i) for understanding of how the probability of occurrence of rogue waves changes as the spectrum parameters vary, (ii) the computation of a critical length scale characterizing wave groups with high probability of evolving to rogue waves, and (iii) the formulation of a robust and parsimonious reduced-order prediction scheme for large waves. T.S. has been supported through the ONR Grants N00014-14-1-0520 and N00014-15-1-2381 and the AFOSR Grant FA9550-16-1-0231. M.F. has been supported through the second Grant.
Merkel, A; Tournat, V; Gusev, V
2014-08-01
We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption.
Some nonlinear processes relevant to the beat wave accelerator
International Nuclear Information System (INIS)
Bingham, R.; Mori, W.B.
1985-03-01
The beat wave accelerator depends on the generation of a large amplitude plasma wave with a phase velocity close to the velocity of light c. The plasma wave (ωsub(p), ksub(p)) is generated by beating colinear laser beams (ω 1 , k 1 ) and (ω 2 ,k 2 ) with ωsub(p) = ω 1 -ω 2 , ksub(p) = k 1 -k 2 . Since the process involves both large amplitude transverse and longitudinal waves, various nonlinear instabilities associated with either wave may occur. The object of the article is to discuss some of the processes that may compete with the beat wave generation listing their threshold and growth rate. (author)
International Nuclear Information System (INIS)
El Naggar, I.A.; Hussein, A.M.; Khalil, Sh.M.
1992-09-01
Electromagnetic waves radiated with combination frequencies from a semi-bounded plasma due to nonlinear interaction of radiation with surface wave (both of P-polarization) has been investigated. Waves are radiated both into vacuum and plasma are found to be P-polarized. We take into consideration the continuity at the plasma boundary of the tangential components of the electric field of the waves. The case of normal incidence of radiation and rarefield plasma layer is also studied. (author). 7 refs
Self-focusing of nonlinear waves in a relativistic plasma with positive and negative ions
International Nuclear Information System (INIS)
Mukherjee, Joydeep; Chowdhury, A.R.
1994-01-01
The phenomenon of self-focusing of nonlinear waves was analysed in a relativistic plasma consisting of both positive and negative ions, which are assumed to be hot. The effect of the inertia of the relativistic electron is also considered by treating it dynamically. A modified form of reductive perturbation is used to deduce a nonlinear Schroedinger equation describing the purely spatial variation of the nonlinear wave. Self-focusing of the wave can be ascertained by analysing the transversal stability of the solitary wave. It is shown that the zones of stability of the wave may become wider due to the mutual influence of various factors present in the plasma, thus favouring the process of self-focusing. 10 refs., 2 figs
Numerical assessment of factors affecting nonlinear internal waves in the South China Sea
Li, Qiang
2014-02-01
Nonlinear internal waves in the South China Sea exhibit diverse characteristics, which are associated with the complex conditions in Luzon Strait, such as the double ridge topography, the Earth’s rotation, variations in stratification and the background current induced by the Kuroshio. These effects are individually assessed using the MITgcm. The performance of the model is first validated through comparison with field observations. Because of in-phased ray interaction, the western ridge in Luzon Strait intensifies the semidiurnal internal tides generated from the eastern ridge, thus reinforcing the formation of nonlinear internal waves. However, the ray interaction for K1 forcing becomes anti-phased so that the K1 internal tide generation is reduced by the western ridge. Not only does the rotational dispersion suppress internal tide generation, it also inhibits nonlinear steepening and consequent internal solitary wave formation. As a joint effect, the double ridges and the rotational dispersion result in a paradoxical phenomenon: diurnal barotropic tidal forcing is dominant in Luzon Strait, but semidiurnal internal tides prevail in the deep basin of the South China Sea. The seasonal variation of the Kuroshio is consistent with the seasonal appearance of nonlinear internal waves in the South China Sea. The model results show that the westward inflow due to the Kuroshio intrusion reduces the amplitude of internal tides in the South China Sea, causing the weakening or absence of internal solitary waves. Winter stratification cannot account for the significant reduction of nonlinear internal waves, because the amplitude growth of internal tides due to increased thermocline tilting counteracts the reduced nonlinearity caused by thermocline deepening.
Energy Technology Data Exchange (ETDEWEB)
Ruderman, M S
1988-08-01
Nonlinear Alfven surface wave propagation at a magnetic interface in a compressible fluid is considered. It is supposed that the magnetic field directions at both sides of the interface and the direction of wave propagation coincide. The equation governing time-evolution of nonlinear small-amplitude waves is derived by the method of multiscale expansions. This equation is similar to the equation for nonlinear Alfven surface waves in an incompressible fluid derived previously. The numerical solution of the equation shows that a sinusoidal disturbance overturns, i.e. infinite gradients arise.
Experimental observation of azimuthal shock waves on nonlinear acoustical vortices
International Nuclear Information System (INIS)
Brunet, Thomas; Thomas, Jean-Louis; Marchiano, Regis; Coulouvrat, Francois
2009-01-01
Thanks to a new focused array of piezoelectric transducers, experimental results are reported here to evidence helical acoustical shock waves resulting from the nonlinear propagation of acoustical vortices (AVs). These shock waves have a three-dimensional spiral shape, from which both the longitudinal and azimuthal components are studied. The inverse filter technique used to synthesize AVs allows various parameters to be varied, especially the topological charge which is the key parameter describing screw dislocations. Firstly, an analysis of the longitudinal modes in the frequency domain reveals a wide cascade of harmonics (up to the 60th order) leading to the formation of the shock waves. Then, an original measurement in the transverse plane exhibits azimuthal behaviour which has never been observed until now for acoustical shock waves. Finally, these new experimental results suggest interesting potential applications of nonlinear effects in terms of acoustics spanners in order to manipulate small objects.
Compound waves in a higher order nonlinear model of thermoviscous fluids
DEFF Research Database (Denmark)
Rønne Rasmussen, Anders; Sørensen, Mads Peter; Gaididei, Yuri B.
2016-01-01
A generalized traveling wave ansatz is used to investigate compound shock waves in a higher order nonlinear model of a thermoviscous fluid. The fluid velocity potential is written as a traveling wave plus a linear function of space and time. The latter offers the possibility of predicting...
Simulations of nonlinear continuous wave pressure fields in FOCUS
Zhao, Xiaofeng; Hamilton, Mark F.; McGough, Robert J.
2017-03-01
The Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation is a parabolic approximation to the Westervelt equation that models the effects of diffraction, attenuation, and nonlinearity. Although the KZK equation is only valid in the far field of the paraxial region for mildly focused or unfocused transducers, the KZK equation is widely applied in medical ultrasound simulations. For a continuous wave input, the KZK equation is effectively modeled by the Bergen Code [J. Berntsen, Numerical Calculations of Finite Amplitude Sound Beams, in M. F. Hamilton and D. T. Blackstock, editors, Frontiers of Nonlinear Acoustics: Proceedings of 12th ISNA, Elsevier, 1990], which is a finite difference model that utilizes operator splitting. Similar C++ routines have been developed for FOCUS, the `Fast Object-Oriented C++ Ultrasound Simulator' (http://www.egr.msu.edu/˜fultras-web) to calculate nonlinear pressure fields generated by axisymmetric flat circular and spherically focused ultrasound transducers. This new routine complements an existing FOCUS program that models nonlinear ultrasound propagation with the angular spectrum approach [P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 488-499 (1991)]. Results obtained from these two nonlinear ultrasound simulation approaches are evaluated and compared for continuous wave linear simulations. The simulation results match closely in the farfield of the paraxial region, but the results differ in the nearfield. The nonlinear pressure field generated by a spherically focused transducer with a peak surface pressure of 0.2MPa radiating in a lossy medium with β = 3.5 is simulated, and the computation times are also evaluated. The nonlinear simulation results demonstrate acceptable agreement in the focal zone. These two related nonlinear simulation approaches are now included with FOCUS to enable convenient simulations of nonlinear pressure fields on desktop and laptop computers.
Integrability and Linear Stability of Nonlinear Waves
Degasperis, Antonio; Lombardo, Sara; Sommacal, Matteo
2018-03-01
It is well known that the linear stability of solutions of 1+1 partial differential equations which are integrable can be very efficiently investigated by means of spectral methods. We present here a direct construction of the eigenmodes of the linearized equation which makes use only of the associated Lax pair with no reference to spectral data and boundary conditions. This local construction is given in the general N× N matrix scheme so as to be applicable to a large class of integrable equations, including the multicomponent nonlinear Schrödinger system and the multiwave resonant interaction system. The analytical and numerical computations involved in this general approach are detailed as an example for N=3 for the particular system of two coupled nonlinear Schrödinger equations in the defocusing, focusing and mixed regimes. The instabilities of the continuous wave solutions are fully discussed in the entire parameter space of their amplitudes and wave numbers. By defining and computing the spectrum in the complex plane of the spectral variable, the eigenfrequencies are explicitly expressed. According to their topological properties, the complete classification of these spectra in the parameter space is presented and graphically displayed. The continuous wave solutions are linearly unstable for a generic choice of the coupling constants.
Nonlinear periodic waves in dusty plasma with variable dust charge
International Nuclear Information System (INIS)
Yadav, Lakhan Lal; Bharuthram, R.
2002-01-01
Using the reductive perturbation method, we present a theory of nonlinear periodic waves, viz. the cnoidal waves, in a dusty plasma consisting of electrons, ions, and cold dust grains with charge fluctuations, which in the limiting case reduce to dust acoustic solitons. It is found that the frequency of the dust acoustic cnoidal wave increases with its amplitude. The dust charge fluctuations are found to affect the characteristics of the cnoidal waves
Collisionless damping of nonlinear dust ion acoustic wave due to dust charge fluctuation
International Nuclear Information System (INIS)
Ghosh, Samiran; Chaudhuri, Tushar K.; Sarkar, Susmita; Khan, Manoranjan; Gupta, M.R.
2002-01-01
A dissipation mechanism for the damping of the nonlinear dust ion acoustic wave in a collisionless dusty plasma consisting of nonthermal electrons, ions, and variable charge dust grains has been investigated. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust ion acoustic wave propagation to be described by the damped Korteweg-de Vries equation. Due to the presence of nonthermal electrons, the dust ion acoustic wave admits both positive and negative potential and it suffers less damping than the dust acoustic wave, which admits only negative potential
Multi-fluid Approach to High-frequency Waves in Plasmas. III. Nonlinear Regime and Plasma Heating
Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume
2018-03-01
The multi-fluid modeling of high-frequency waves in partially ionized plasmas has shown that the behavior of magnetohydrodynamic waves in the linear regime is heavily influenced by the collisional interaction between the different species that form the plasma. Here, we go beyond linear theory and study large-amplitude waves in partially ionized plasmas using a nonlinear multi-fluid code. It is known that in fully ionized plasmas, nonlinear Alfvén waves generate density and pressure perturbations. Those nonlinear effects are more pronounced for standing oscillations than for propagating waves. By means of numerical simulations and analytical approximations, we examine how the collisional interaction between ions and neutrals affects the nonlinear evolution. The friction due to collisions dissipates a fraction of the wave energy, which is transformed into heat and consequently raises the temperature of the plasma. As an application, we investigate frictional heating in a plasma with physical conditions akin to those in a quiescent solar prominence.
Fatigue crack localization using laser nonlinear wave modulation spectroscopy (LNWMS)
Energy Technology Data Exchange (ETDEWEB)
Liu, Peipei; Sohn, Hoon [Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kundu, Tribikram [Dept. of Civil Engineering and Engineering Mechanics, University of Arizona, Tucson (United States)
2014-12-15
Nonlinear features of ultrasonic waves are more sensitive to the presence of a fatigue crack than their linear counterparts are. For this reason, the use of nonlinear ultrasonic techniques to detect a fatigue crack at its early stage has been widely investigated. Of the different proposed techniques, laser nonlinear wave modulation spectroscopy (LNWMS) is unique because a pulse laser is used to exert a single broadband input and a noncontact measurement can be performed. Broadband excitation causes a nonlinear source to exhibit modulation at multiple spectral peaks owing to interactions among various input frequency components. A feature called maximum sideband peak count difference (MSPCD), which is extracted from the spectral plot, measures the degree of crack-induced material nonlinearity. First, the ratios of spectral peaks whose amplitudes are above a moving threshold to the total number of peaks are computed for spectral signals obtained from the pristine and the current state of a target structure. Then, the difference of these ratios are computed as a function of the moving threshold. Finally, the MSPCD is defined as the maximum difference between these ratios. The basic premise is that the MSPCD will increase as the nonlinearity of the material increases. This technique has been used successfully for localizing fatigue cracks in metallic plates.
SCALAR AND VECTOR NONLINEAR DECAYS OF LOW-FREQUENCY ALFVÉN WAVES
Energy Technology Data Exchange (ETDEWEB)
Zhao, J. S.; Wu, D. J. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Voitenko, Y.; De Keyser, J., E-mail: js_zhao@pmo.ac.cn [Solar-Terrestrial Centre of Excellence, Space Physics Division, Belgian Institute for Space Aeronomy, Ringlaan 3 Avenue Circulaire, B-1180 Brussels (Belgium)
2015-02-01
We found several efficient nonlinear decays for Alfvén waves in the solar wind conditions. Depending on the wavelength, the dominant decay is controlled by the nonlinearities proportional to either scalar or vector products of wavevectors. The two-mode decays of the pump MHD Alfvén wave into co- and counter-propagating product Alfvén and slow waves are controlled by the scalar nonlinearities at long wavelengths ρ{sub i}{sup 2}k{sub 0⊥}{sup 2}<ω{sub 0}/ω{sub ci} (k {sub 0} is wavenumber perpendicular to the background magnetic field, ω{sub 0} is frequency of the pump Alfvén wave, ρ {sub i} is ion gyroradius, and ω {sub ci} is ion-cyclotron frequency). The scalar decays exhibit both local and nonlocal properties and can generate not only MHD-scale but also kinetic-scale Alfvén and slow waves, which can strongly accelerate spectral transport. All waves in the scalar decays propagate in the same plane, hence these decays are two-dimensional. At shorter wavelengths, ρ{sub i}{sup 2}k{sub 0⊥}{sup 2}>ω{sub 0}/ω{sub ci}, three-dimensional vector decays dominate generating out-of-plane product waves. The two-mode decays dominate from MHD up to ion scales ρ {sub i} k {sub 0} ≅ 0.3; at shorter scales the one-mode vector decays become stronger and generate only Alfvén product waves. In the solar wind the two-mode decays have high growth rates >0.1ω{sub 0} and can explain the origin of slow waves observed at kinetic scales.
Linear and nonlinear dynamics of current-driven waves in dusty plasmas
Ahmad, Ali; Ali Shan, S.; Haque, Q.; Saleem, H.
2012-09-01
The linear and nonlinear dynamics of a recently proposed plasma mode of dusty plasma is studied using kappa distribution for electrons. This electrostatic wave can propagate in the plasma due to the sheared flow of electrons and ions parallel to the external magnetic field in the presence of stationary dust. The coupling of this wave with the usual drift wave and ion acoustic wave is investigated. D'Angelo's mode is also modified in the presence of superthermal electrons. In the nonlinear regime, the wave can give rise to dipolar vortex structures if the shear in flow is weaker and tripolar vortices if the flow has steeper gradient. The results have been applied to Saturn's magnetosphere corresponding to negatively charged dust grains. But the theoretical model is applicable for positively charged dust as well. This work will be useful for future observations and studies of dusty environments of planets and comets.
Closed form solutions of two time fractional nonlinear wave equations
Akbar, M. Ali; Ali, Norhashidah Hj. Mohd.; Roy, Ripan
2018-06-01
In this article, we investigate the exact traveling wave solutions of two nonlinear time fractional wave equations. The fractional derivatives are described in the sense of conformable fractional derivatives. In addition, the traveling wave solutions are accomplished in the form of hyperbolic, trigonometric, and rational functions involving free parameters. To investigate such types of solutions, we implement the new generalized (G‧ / G) -expansion method. The extracted solutions are reliable, useful and suitable to comprehend the optimal control problems, chaotic vibrations, global and local bifurcations and resonances, furthermore, fission and fusion phenomena occur in solitons, the relativistic energy-momentum relation, scalar electrodynamics, quantum relativistic one-particle theory, electromagnetic interactions etc. The results reveal that the method is very fruitful and convenient for exploring nonlinear differential equations of fractional order treated in theoretical physics.
Closed form solutions of two time fractional nonlinear wave equations
Directory of Open Access Journals (Sweden)
M. Ali Akbar
2018-06-01
Full Text Available In this article, we investigate the exact traveling wave solutions of two nonlinear time fractional wave equations. The fractional derivatives are described in the sense of conformable fractional derivatives. In addition, the traveling wave solutions are accomplished in the form of hyperbolic, trigonometric, and rational functions involving free parameters. To investigate such types of solutions, we implement the new generalized (G′/G-expansion method. The extracted solutions are reliable, useful and suitable to comprehend the optimal control problems, chaotic vibrations, global and local bifurcations and resonances, furthermore, fission and fusion phenomena occur in solitons, the relativistic energy-momentum relation, scalar electrodynamics, quantum relativistic one-particle theory, electromagnetic interactions etc. The results reveal that the method is very fruitful and convenient for exploring nonlinear differential equations of fractional order treated in theoretical physics. Keywords: Traveling wave solution, Soliton, Generalized (G′/G-expansion method, Time fractional Duffing equation, Time fractional Riccati equation
Controlling wave propagation through nonlinear engineered granular systems
Leonard, Andrea
We study the fundamental dynamic behavior of a special class of ordered granular systems in order to design new, structured materials with unique physical properties. The dynamic properties of granular systems are dictated by the nonlinear, Hertzian, potential in compression and zero tensile strength resulting from the discrete material structure. Engineering the underlying particle arrangement of granular systems allows for unique dynamic properties, not observed in natural, disordered granular media. While extensive studies on 1D granular crystals have suggested their usefulness for a variety of engineering applications, considerably less attention has been given to higher-dimensional systems. The extension of these studies in higher dimensions could enable the discovery of richer physical phenomena not possible in 1D, such as spatial redirection and anisotropic energy trapping. We present experiments, numerical simulation (based on a discrete particle model), and in some cases theoretical predictions for several engineered granular systems, studying the effects of particle arrangement on the highly nonlinear transient wave propagation to develop means for controlling the wave propagation pathways. The first component of this thesis studies the stress wave propagation resulting from a localized impulsive loading for three different 2D particle lattice structures: square, centered square, and hexagonal granular crystals. By varying the lattice structure, we observe a wide range of properties for the propagating stress waves: quasi-1D solitary wave propagation, fully 2D wave propagation with tunable wave front shapes, and 2D pulsed wave propagation. Additionally the effects of weak disorder, inevitably present in real granular systems, are investigated. The second half of this thesis studies the solitary wave propagation through 2D and 3D ordered networks of granular chains, reducing the effective density compared to granular crystals by selectively placing wave
Simulating nonlinear steady-state traveling waves on the falling liquid film entrained by a gas flow
International Nuclear Information System (INIS)
Yu Tsvelodub, O
2016-01-01
The article is devoted to the simulation of nonlinear waves on a liquid film flowing under gravity in the known stress field at the interface. In the case of small Reynolds numbers the problem is reduced to the consideration of solutions of the nonlinear integral-differential equation for film thickness deviation from the undisturbed level. Weakly nonlinear steady-state traveling solutions of the equation with wave numbers in a vicinity of neutral wave numbers are constructed analytically. The nature of the wave branching from the undisturbed solution is investigated. Steady-state traveling solutions, whose wave numbers within the instability area are far from neutral wave numbers, are found numerically. (paper)
Ion acoustic waves in pair-ion plasma: Linear and nonlinear analyses
International Nuclear Information System (INIS)
Saeed, R.; Mushtaq, A.
2009-01-01
Linear and nonlinear properties of low frequency ion acoustic wave (IAW) in pair-ion plasma in the presence of electrons are investigated. The dispersion relation and Kadomtsev-Petviashvili equation for linear/nonlinear IAW are derived from sets of hydrodynamic equations where the ion pairs are inertial while electrons are Boltzmannian. The dispersion curves for various concentrations of electrons are discussed and compared with experimental results. The predicted linear IAW propagates at the same frequencies as those of the experimentally observed IAW if n e0 ∼10 4 cm -3 . It is found that nonlinear profile of the ion acoustic solitary waves is significantly affected by the percentage ratio of electron number density and temperature. It is also determined that rarefactive solitary waves can propagate in this system. It is hoped that the results presented in this study would be helpful in understanding the salient features of the finite amplitude localized ion acoustic solitary pulses in a laboratory fullerene plasma.
Robust Numerical Methods for Nonlinear Wave-Structure Interaction in a Moving Frame of Reference
DEFF Research Database (Denmark)
Kontos, Stavros; Lindberg, Ole
This project is focused on improving the state of the art for predicting the interaction between nonlinear ocean waves and marine structures. To achieve this goal, a flexible order finite difference potential flow solver has been extended to calculate for fully nonlinear wave-structure interaction...
International Nuclear Information System (INIS)
Lyu, L.H.; Kan, J.R.
1989-01-01
Nonlinear one-dimensional constant-profile hydromagnetic wave solutions are obtained in finite-temperature two-fluid collisionless plasmas under adiabatic equation of state. The nonlinear wave solutions can be classified according to the wavelength. The long-wavelength solutions are circularly polarized incompressible oblique Alfven wave trains with wavelength greater than hudreds of ion inertial length. The oblique wave train solutions can explain the high degree of alignment between the local average magnetic field and the wave normal direction observed in the solar wind. The short-wavelength solutions include rarefaction fast solitons, compression slow solitons, Alfven solitons and rotational discontinuities, with wavelength of several tens of ion inertial length, provided that the upstream flow speed is less than the fast-mode speed
Simulation of nonlinear wave run-up with a high-order Boussinesq model
DEFF Research Database (Denmark)
Fuhrman, David R.; Madsen, Per A.
2008-01-01
This paper considers the numerical simulation of nonlinear wave run-up within a highly accurate Boussinesq-type model. Moving wet–dry boundary algorithms based on so-called extrapolating boundary techniques are utilized, and a new variant of this approach is proposed in two horizontal dimensions....... As validation, computed results involving the nonlinear run-up of periodic as well as transient waves on a sloping beach are considered in a single horizontal dimension, demonstrating excellent agreement with analytical solutions for both the free surface and horizontal velocity. In two horizontal dimensions...... cases involving long wave resonance in a parabolic basin, solitary wave evolution in a triangular channel, and solitary wave run-up on a circular conical island are considered. In each case the computed results compare well against available analytical solutions or experimental measurements. The ability...
Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves
DEFF Research Database (Denmark)
Eldeberky, Y.; Madsen, Per A.
1999-01-01
and stochastic formulations are solved numerically for the case of cross shore motion of unidirectional waves and the results are verified against laboratory data for wave propagation over submerged bars and over a plane slope. Outside the surf zone the two model predictions are generally in good agreement......This paper presents a new and more accurate set of deterministic evolution equations for the propagation of fully dispersive, weakly nonlinear, irregular, multidirectional waves. The equations are derived directly from the Laplace equation with leading order nonlinearity in the surface boundary...... is significantly underestimated for larger wave numbers. In the present work we correct this inconsistency. In addition to the improved deterministic formulation, we present improved stochastic evolution equations in terms of the energy spectrum and the bispectrum for multidirectional waves. The deterministic...
Rogue waves and rational solutions of a (3+1)-dimensional nonlinear evolution equation
International Nuclear Information System (INIS)
Zhaqilao,
2013-01-01
A simple symbolic computation approach for finding the rogue waves and rational solutions to the nonlinear evolution equation is proposed. It turns out that many rational solutions with real and complex forms of a (3+1)-dimensional nonlinear evolution equation are obtained. Some features of rogue waves and rational solutions are graphically discussed. -- Highlights: •A simple symbolic computation approach for finding the rational solutions to the NEE is proposed. •Some rogue waves and rational solutions with real and complex forms of a (3+1)-D NEE are obtained. •Some features of rogue waves are graphically discussed
Rogue waves and rational solutions of a (3+1)-dimensional nonlinear evolution equation
Energy Technology Data Exchange (ETDEWEB)
Zhaqilao,, E-mail: zhaqilao@imnu.edu.cn
2013-12-06
A simple symbolic computation approach for finding the rogue waves and rational solutions to the nonlinear evolution equation is proposed. It turns out that many rational solutions with real and complex forms of a (3+1)-dimensional nonlinear evolution equation are obtained. Some features of rogue waves and rational solutions are graphically discussed. -- Highlights: •A simple symbolic computation approach for finding the rational solutions to the NEE is proposed. •Some rogue waves and rational solutions with real and complex forms of a (3+1)-D NEE are obtained. •Some features of rogue waves are graphically discussed.
Energy Technology Data Exchange (ETDEWEB)
Matsumoto, H.; Kimura, T.
1986-01-01
Triggered by the experimental results of the MINIX, a computer simulation study was initiated on the nonlinear excitation of electrostatic electron cyclotron waves by a monochromatic electromagnetic wave such as the transmitted microwave in the MINIX. The model used assumes that both of the excited waves and exciting (pumping) electromagnetic wave as well as the idler electromagnetic wave propagate in the direction perpendicular to the external magnetic field. The simulation code used for this study was the one-and-two-half dimensional electromagnetic particle code named KEMPO. The simulation result shows the high power electromagnetic wave produces both the backscattered electromagnetic wave and electrostatic electron cyclotron waves as a result of nonlinear parametric instability. Detailed nonlinear microphysics related to the wave excitation is discussed in terms of the nonlinear wave-wave couplings and associated ponderomotive force produced by the high power electromagnetic waves. 2 references, 4 figures.
International Nuclear Information System (INIS)
Matsumoto, H.; Kimura, T.
1986-01-01
Triggered by the experimental results of the MINIX, a computer simulation study was initiated on the nonlinear excitation of electrostatic electron cyclotron waves by a monochromatic electromagnetic wave such as the transmitted microwave in the MINIX. The model used assumes that both of the excited waves and exciting (pumping) electromagnetic wave as well as the idler electromagnetic wave propagate in the direction perpendicular to the external magnetic field. The simulation code used for this study was the one-and-two-half dimensional electromagnetic particle code named KEMPO. The simulation result shows the high power electromagnetic wave produces both the backscattered electromagnetic wave and electrostatic electron cyclotron waves as a result of nonlinear parametric instability. Detailed nonlinear microphysics related to the wave excitation is discussed in terms of the nonlinear wave-wave couplings and associated ponderomotive force produced by the high power electromagnetic waves. 2 references, 4 figures
Weak nonlinear matter waves in a trapped two-component Bose-Einstein condensates
International Nuclear Information System (INIS)
Yong Wenmei; Xue Jukui
2008-01-01
The dynamics of the weak nonlinear matter solitary waves in two-component Bose-Einstein condensates (BEC) with cigar-shaped external potential are investigated analytically by a perturbation method. In the small amplitude limit, the two-components can be decoupled and the dynamics of solitary waves are governed by a variable-coefficient Korteweg-de Vries (KdV) equation. The reduction to the KdV equation may be useful to understand the dynamics of nonlinear matter waves in two-component BEC. The analytical expressions for the evolution of soliton, emitted radiation profiles and soliton oscillation frequency are also obtained
Linear and nonlinear dynamics of current-driven waves in dusty plasmas
Energy Technology Data Exchange (ETDEWEB)
Ahmad, Ali [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Ali Shan, S.; Haque, Q. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Saleem, H. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan)
2012-09-15
The linear and nonlinear dynamics of a recently proposed plasma mode of dusty plasma is studied using kappa distribution for electrons. This electrostatic wave can propagate in the plasma due to the sheared flow of electrons and ions parallel to the external magnetic field in the presence of stationary dust. The coupling of this wave with the usual drift wave and ion acoustic wave is investigated. D'Angelo's mode is also modified in the presence of superthermal electrons. In the nonlinear regime, the wave can give rise to dipolar vortex structures if the shear in flow is weaker and tripolar vortices if the flow has steeper gradient. The results have been applied to Saturn's magnetosphere corresponding to negatively charged dust grains. But the theoretical model is applicable for positively charged dust as well. This work will be useful for future observations and studies of dusty environments of planets and comets.
International Nuclear Information System (INIS)
Abdou, M.A.
2008-01-01
The generalized F-expansion method with a computerized symbolic computation is used for constructing a new exact travelling wave solutions for the generalized nonlinear Schrodinger equation with a source. As a result, many exact travelling wave solutions are obtained which include new periodic wave solution, trigonometric function solutions and rational solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in physics
Bulk nonlinear elastic strain waves in a bar with nanosize inclusions
DEFF Research Database (Denmark)
Gula, Igor A.; Samsonov (†), Alexander M.
2018-01-01
We propose a mathematical model for propagation of the long nonlinearly elastic longitudinal strain waves in a bar, which contains nanoscale structural inclusions. The model is governed by a nonlinear doubly dispersive equation (DDE) with respect to the one unknown longitudinal strain function. We...
Solitary waves on nonlinear elastic rods. II
DEFF Research Database (Denmark)
Sørensen, Mads Peter; Christiansen, Peter Leth; Lomdahl, P. S.
1987-01-01
In continuation of an earlier study of propagation of solitary waves on nonlinear elastic rods, numerical investigations of blowup, reflection, and fission at continuous and discontinuous variation of the cross section for the rod and reflection at the end of the rod are presented. The results ar...... are compared with predictions of conservation theorems for energy and momentum....
Energy Technology Data Exchange (ETDEWEB)
Han, Jiu-Ning, E-mail: hanjiuning@126.com; He, Yong-Lin; Luo, Jun-Hua; Nan, Ya-Gong; Han, Zhen-Hai; Dong, Guang-Xing [College of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000 (China); Duan, Wen-Shan [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Li, Jun-Xiu [College of Civil Engineering, Hexi University, Zhangye 734000 (China)
2014-01-15
With the consideration of the superthermal electron distribution, we present a theoretical investigation about the nonlinear propagation of electron-acoustic solitary and shock waves in a dissipative, nonplanar non-Maxwellian plasma comprised of cold electrons, superthermal hot electrons, and stationary ions. The reductive perturbation technique is used to obtain a modified Korteweg-de Vries Burgers equation for nonlinear waves in this plasma. We discuss the effects of various plasma parameters on the time evolution of nonplanar solitary waves, the profile of shock waves, and the nonlinear structure induced by the collision between planar solitary waves. It is found that these parameters have significant effects on the properties of nonlinear waves and collision-induced nonlinear structure.
Green function formalism for nonlinear acoustic waves in layered media
International Nuclear Information System (INIS)
Lobo, A.; Tsoy, E.; De Sterke, C.M.
2000-01-01
Full text: The applications of acoustic waves in identifying defects in adhesive bonds between metallic plates have received little attention at high intensities where the media respond nonlinearly. However, the effects of reduced bond strength are more distinct in the nonlinear response of the structure. Here we assume a weak nonlinearity acting as a small perturbation, thereby reducing the problem to a linear one. This enables us to develop a specialized Green function formalism for calculating acoustic fields in layered media
Phase-space description of plasma waves. Linear and nonlinear theory
International Nuclear Information System (INIS)
Biro, T.
1992-11-01
We develop an (r,k) phase space description of waves in plasmas by introducing Gaussian window functions to separate short scale oscillations from long scale modulations of the wave fields and variations in the plasma parameters. To obtain a wave equation that unambiguously separates conservative dynamics from dissipation also in an inhomogeneous and time varying background plasma, we first discuss the proper form of the current response function. On the analogy of the particle distribution function f(v,r,t), we introduce a wave density N(k,r,t) on phase space. This function is proven to satisfy a simple continuity equation. Dissipation is also included, and this allows us to describe the damping or growth of wave density' along rays. Problems involving geometric optics of continuous media often appear simpler when viewed in phase space, since the flow of N in phase space is incompressible. Within the phase space representation, we obtain a very general formula for the second order nonlinear current in terms of the vector potential. This formula is a convenient starting point for studies of coherent as well as turbulent nonlinear processes. We derive kinetic equations for weakly inhomogeneous and turbulent plasma, including the effects of inhomogeneous turbulence, wave convection and refraction. (author)
Stable one-dimensional periodic waves in Kerr-type saturable and quadratic nonlinear media
International Nuclear Information System (INIS)
Kartashov, Yaroslav V; Egorov, Alexey A; Vysloukh, Victor A; Torner, Lluis
2004-01-01
We review the latest progress and properties of the families of bright and dark one-dimensional periodic waves propagating in saturable Kerr-type and quadratic nonlinear media. We show how saturation of the nonlinear response results in the appearance of stability (instability) bands in a focusing (defocusing) medium, which is in sharp contrast with the properties of periodic waves in Kerr media. One of the key results discovered is the stabilization of multicolour periodic waves in quadratic media. In particular, dark-type waves are shown to be metastable, while bright-type waves are completely stable in a broad range of energy flows and material parameters. This yields the first known example of completely stable periodic wave patterns propagating in conservative uniform media supporting bright solitons. Such results open the way to the experimental observation of the corresponding self-sustained periodic wave patterns
Energy Technology Data Exchange (ETDEWEB)
Arevalo, Edward, E-mail: arevalo@temf.tu-darmstadt.d [Technische Universitaet Darmstadt, Institut fuer Theorie elektromagnetischer Felder, TEMF, Schlossgartenstr. 8, D-64289 Darmstadt (Germany)
2009-09-21
The effect of instability on the propagation of solitary waves along one-dimensional discrete nonlinear Schroedinger equation with cubic nonlinearity is revisited. A self-contained quasicontinuum approximation is developed to derive closed-form expressions for small-amplitude solitary waves. The notion that the existence of nonlinear solitary waves in discrete systems is a signature of the modulation instability is used. With the help of this notion we conjecture that instability effects on moving solitons can be qualitative estimated from the analytical solutions. Results from numerical simulations are presented to support this conjecture.
Mao, Hanling; Zhang, Yuhua; Mao, Hanying; Li, Xinxin; Huang, Zhenfeng
2018-06-01
This paper presents the study of applying the nonlinear ultrasonic wave to evaluate the stress state of metallic materials under steady state. The pre-stress loading method is applied to guarantee components with steady stress. Three kinds of nonlinear ultrasonic experiments based on critically refracted longitudinal wave are conducted on components which the critically refracted longitudinal wave propagates along x, x1 and x2 direction. Experimental results indicate the second and third order relative nonlinear coefficients monotonically increase with stress, and the normalized relationship is consistent with simplified dislocation models, which indicates the experimental result is logical. The combined ultrasonic nonlinear parameter is proposed, and three stress evaluation models at x direction are established based on three ultrasonic nonlinear parameters, which the estimation error is below 5%. Then two stress detection models at x1 and x2 direction are built based on combined ultrasonic nonlinear parameter, the stress synthesis method is applied to calculate the magnitude and direction of principal stress. The results show the prediction error is within 5% and the angle deviation is within 1.5°. Therefore the nonlinear ultrasonic technique based on LCR wave could be applied to nondestructively evaluate the stress of metallic materials under steady state which the magnitude and direction are included.
Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D).
Hess, Peter; Lomonosov, Alexey M; Mayer, Andreas P
2014-01-01
The characteristic features and applications of linear and nonlinear guided elastic waves propagating along surfaces (2D) and wedges (1D) are discussed. Laser-based excitation, detection, or contact-free analysis of these guided waves with pump-probe methods are reviewed. Determination of material parameters by broadband surface acoustic waves (SAWs) and other applications in nondestructive evaluation (NDE) are considered. The realization of nonlinear SAWs in the form of solitary waves and as shock waves, used for the determination of the fracture strength, is described. The unique properties of dispersion-free wedge waves (WWs) propagating along homogeneous wedges and of dispersive wedge waves observed in the presence of wedge modifications such as tip truncation or coatings are outlined. Theoretical and experimental results on nonlinear wedge waves in isotropic and anisotropic solids are presented. Copyright © 2013 Elsevier B.V. All rights reserved.
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse
Energy Technology Data Exchange (ETDEWEB)
Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)
2017-03-15
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.
Ananthakrishnan, Palaniswamy
2012-11-01
The problem is of practical relevance in determining the motion response of multi-hull and air-cushion vehicles in high seas and in littoral waters. The linear inviscid problem without surface pressure has been well studied in the past. In the present work, the nonlinear wave-body interaction problem is solved using finite-difference methods based on boundary-fitted coordinates. The inviscid nonlinear problem is tackled using the mixed Eulerian-Lagrangian formulation and the solution of the incompressible Navier-Stokes equations governing the viscous problem using a fractional-step method. The pressure variation in the air cushion is modeled using the isentropic gas equation pVγ = Constant. Results show that viscosity and free-surface nonlinearity significantly affect the hydrodynamic force and the wave motion at the resonant Helmholtz frequency (at which the primary wave motion is the vertical oscillation of the mean surface in between the bodies). Air compressibility suppresses the Helmholtz oscillation and enhances the wave radiation. Work supported by the ONR under the grant N00014-98-1-0151.
High-order finite difference solution for 3D nonlinear wave-structure interaction
DEFF Research Database (Denmark)
Ducrozet, Guillaume; Bingham, Harry B.; Engsig-Karup, Allan Peter
2010-01-01
This contribution presents our recent progress on developing an efficient fully-nonlinear potential flow model for simulating 3D wave-wave and wave-structure interaction over arbitrary depths (i.e. in coastal and offshore environment). The model is based on a high-order finite difference scheme O...
International Nuclear Information System (INIS)
Sugaya, R.; Ue, A.; Maehara, T.; Sugawa, M.
1996-01-01
Acceleration and heating of a relativistic electron beam by cascading nonlinear Landau damping involving three or four intense electromagnetic waves in a plasma are studied theoretically based on kinetic wave equations and transport equations derived from relativistic Vlasov endash Maxwell equations. Three or four electromagnetic waves excite successively two or three nonresonant beat-wave-driven relativistic electron plasma waves with a phase velocity near the speed of light [v p =c(1-γ -2 p ) 1/2 , γ p =ω/ω pe ]. Three beat waves interact nonlinearly with the electron beam and accelerate it to a highly relativistic energy γ p m e c 2 more effectively than by the usual nonlinear Landau damping of two electromagnetic waves. It is proved that the electron beam can be accelerated to more highly relativistic energy in the plasma whose electron density decreases temporally with an appropriate rate because of the temporal increase of γ p . copyright 1996 American Institute of Physics
Electron acceleration during the decay of nonlinear Whistler waves in low-beta electron-ion plasma
International Nuclear Information System (INIS)
Umeda, Takayuki; Saito, Shinji; Nariyuki, Yasuhiro
2014-01-01
Relativistic electron acceleration through dissipation of a nonlinear, short-wavelength, and monochromatic electromagnetic whistler wave in low-beta plasma is investigated by utilizing a one-dimensional fully relativistic electromagnetic particle-in-cell code. The nonlinear (large-amplitude) parent whistler wave decays through the parametric instability which enhances electrostatic ion acoustic waves and electromagnetic whistler waves. These waves satisfy the condition of three-wave coupling. Through the decay instability, the energy of electron bulk velocity supporting the parent wave is converted to the thermal energy perpendicular to the background magnetic field. Increase of the perpendicular temperature triggers the electron temperature anisotropy instability which generates broadband whistler waves and heats electrons in the parallel direction. The broadband whistler waves are inverse-cascaded during the relaxation of the electron temperature anisotropy. In lower-beta conditions, electrons with a pitch angle of about 90° are successively accelerated by inverse-cascaded whistler waves, and selected electrons are accelerated to over a Lorentz factor of 10. The result implies that the nonlinear dissipation of a finite-amplitude and short-wavelength whistler wave plays an important role in producing relativistic nonthermal electrons over a few MeV especially at lower beta plasmas.
Thermal Aging Evaluation of Mod. 9Cr-1Mo Steel using Nonlinear Rayleigh Waves
Energy Technology Data Exchange (ETDEWEB)
Joo, Young-Sang; Kim, Hoe-Woong; Kim, Jong-Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Marino, Daniel; Kim, Jin-Yeon; Jacobs, L.J [Georgia Institute of Technology, Atlanta (United States); Ruiz, Alberto [UMSNH, Morelia (Mexico)
2014-10-15
Thermal aging can pose a high risk to decreases in the mechanical properties such as strength or creep resistance. This can lead to an unexpected failure during long term operation. Nonlinear NDE techniques are preferred over conventional NDE techniques (linear ultrasonic measurements) because nonlinear ultrasonic techniques have shown their capability to detect a microstructural damage in the structures undergoing fatigue and creep. These nonlinear ultrasonic techniques make use of the fact that the dislocation density increases, which will create a nonlinear distortion of an ultrasonic wave; this damage causes the generation of measurable higher harmonic components in an initially mono-chromatic ultrasonic signal. This study investigates the recently developed non-contact nonlinear ultrasonic technique to detect the microstructural damage of mod. 9Cr-1Mo steel based on nonlinear Rayleigh wave with varying propagation distances. Nonlinear Rayleigh surface wave measurements using a non-contact, air-coupled ultrasonic transducer have been applied for the thermal aging evaluation of modified 9Cr-1Mo ferritic-martensitic steel. Thermal aging for various heat treatment times of mod.. 9Cr-1Mo steel specimens is performed to obtain the nucleation and growth of precipitated particles in specimens. The amplitudes of the first and second harmonics are measured along the propagation distance and the relative nonlinearity parameter is obtained from these amplitudes. The relative nonlinearity parameter shows a similar trend with the Rockwell C hardness.
A nonlinear analysis of the terahertz serpentine waveguide traveling-wave amplifier
International Nuclear Information System (INIS)
Li, Ke; Cao, Miaomiao; Liu, Wenxin; Wang, Yong
2015-01-01
A nonlinear model for the numerical simulation of terahertz serpentine waveguide traveling-wave tube (SW-TWT) is described. In this model, the electromagnetic wave transmission in the SW is represented as an infinite set of space harmonics to interact with an electron beam. Analytical expressions for axial electric fields in axisymmetric interaction gaps of SW-TWTs are derived and compared with the results from CST simulation. The continuous beam is treated as discrete macro-particles with different initial phases. The beam-tunnel field equations, space-charge field equations, and motion equations are combined to solve the beam-wave interaction. The influence of backward wave and relativistic effect is also considered in the series of equations. The nonlinear model is used to design a 340 GHz SW-TWT. Several favorable comparisons of model predictions with results from a 3-D Particle-in-cell simulation code CHIPIC are presented, in which the output power versus beam voltage and interaction periods are illustrated. The relative error of the predicted output power is less than 15% in the 3 dB bandwidth and the relative error of the saturated length is less than 8%.The results show that the 1-D nonlinear analysis model is appropriate to solve the terahertz SW-TWT operation characteristics
Wave-induced extreme water levels in the Puerto Morelos fringing reef lagoon
Directory of Open Access Journals (Sweden)
A. Torres-Freyermuth
2012-12-01
Full Text Available Wave-induced extreme water levels in the Puerto Morelos fringing reef lagoon are investigated by means of a phase-resolving non-hydrostatic wave model (SWASH. This model solves the nonlinear shallow water equations including non-hydrostatic pressure. The one-dimensional version of the model is implemented in order to investigate wave transformation in fringing reefs. Firstly, the numerical model is validated with (i laboratory experiments conducted on a physical model (Demirbilek et al., 2007and (ii field observations (Coronado et al., 2007. Numerical results show good agreement with both experimental and field data. The comparison against the physical model results, for energetic wave conditions, indicates that high- and low-frequency wave transformation is well reproduced. Moreover, extreme water-level conditions measured during the passage of Hurricane Ivan in Puerto Morelos are also estimated by the numerical tool. Subsequently, the model is implemented at different along-reef locations in Puerto Morelos. Extreme water levels, wave-induced setup, and infragravity wave energy are estimated inside the reef lagoon for different storm wave conditions (H_{s} >2 m. The numerical results revealed a strong correlation between the offshore sea-swell wave energy and the setup. In contrast, infragravity waves are shown to be the result of a more complex pattern which heavily relies on the reef geometry. Indeed, the southern end of the reef lagoon provides evidence of resonance excitation, suggesting that the reef barrier may act as either a natural flood protection morphological feature, or as an inundation hazard enhancer depending on the incident wave conditions.
Nonlinear Waves in a Cigar-Shaped Bose-Einstein Condensate with Dissipation
International Nuclear Information System (INIS)
Yang Xiaoxian; Shi Yuren; Duan Wenshan
2008-01-01
We discuss the possible nonlinear waves of atomic matter waves in a cigar-shaped Bose-Einstein condensate with dissipation. The waves can be described by a KdV-type equation. The KdV-type equation has a solitary wave solution. The amplitude, speed, and width of the wave vary exponentially with time t. The dissipative term of γ plays an important role for the wave amplitude, speed, and width. Comparisons have been given between the analytical solutions and the numerical results. It is shown that both are in good agreement.
International Nuclear Information System (INIS)
Shang Yadong
2005-01-01
In this paper, the evolution equations with strong nonlinear term describing the resonance interaction between the long wave and the short wave are studied. Firstly, based on the qualitative theory and bifurcation theory of planar dynamical systems, all of the explicit and exact solutions of solitary waves are obtained by qualitative seeking the homoclinic and heteroclinic orbits for a class of Lienard equations. Then the singular travelling wave solutions, periodic travelling wave solutions of triangle functions type are also obtained on the basis of the relationships between the hyperbolic functions and that between the hyperbolic functions with the triangle functions. The varieties of structure of exact solutions of the generalized long-short wave equation with strong nonlinear term are illustrated. The methods presented here also suitable for obtaining exact solutions of nonlinear wave equations in multidimensions
A new auxiliary equation and exact travelling wave solutions of nonlinear equations
International Nuclear Information System (INIS)
Sirendaoreji
2006-01-01
A new auxiliary ordinary differential equation and its solutions are used for constructing exact travelling wave solutions of nonlinear partial differential equations in a unified way. The main idea of this method is to take full advantage of the auxiliary equation which has more new exact solutions. More new exact travelling wave solutions are obtained for the quadratic nonlinear Klein-Gordon equation, the combined KdV and mKdV equation, the sine-Gordon equation and the Whitham-Broer-Kaup equations
2010-09-30
Hyperfast Modeling of Nonlinear Ocean Waves A. R. Osborne Dipartimento di Fisica Generale, Università di Torino Via Pietro Giuria 1, 10125...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Universit?i Torino,Dipartimento di Fisica Generale,Via Pietro Giuria 1,10125 Torino, Italy, 8. PERFORMING
Nonlinear effects in Pulsations of Compact Stars and Gravitational Waves
International Nuclear Information System (INIS)
Passamonti, A
2007-01-01
Nonlinear stellar oscillations can be studied by using a multiparameter perturbative approach, which is appropriate for investigating the low and mild nonlinear dynamical regimes. We present the main properties of our perturbative framework for describing, in the time domain, the nonlinear coupling between the radial and nonradial perturbations of spherically symmetric and perfect fluid compact stars. This particular coupling can be described by gauge invariant quantities that obeys a system of partial differential equations with source terms, which are made up of product of first order radial and nonradial perturbations. We report the results of numerical simulations for both the axial and polar coupling perturbations, that exhibit in the stellar dynamics and in the associated gravitational wave signal some interesting nonlinear effects, such as combination harmonics and resonances. In particular, we concentrate on the axial case, where the linear axial perturbations describe a harmonic component of a differentially rotating neutron star. The gravitational wave signal of this stellar configuration mirrors at second perturbative order the spectral features of the linear radial normal modes. In addition, a signal amplification appears when one of the radial frequencies is close to the axial w-mode frequencies of the star
Shoji, Masafumi; Miyoshi, Yoshizumi; Katoh, Yuto; Keika, Kunihiro; Angelopoulos, Vassilis; Kasahara, Satoshi; Asamura, Kazushi; Nakamura, Satoko; Omura, Yoshiharu
2017-09-01
Electromagnetic plasma waves are thought to be responsible for energy exchange between charged particles in space plasmas. Such an energy exchange process is evidenced by phase space holes identified in the ion distribution function and measurements of the dot product of the plasma wave electric field and the ion velocity. We develop a method to identify ion hole formation, taking into consideration the phase differences between the gyromotion of ions and the electromagnetic ion cyclotron (EMIC) waves. Using this method, we identify ion holes in the distribution function and the resulting nonlinear EMIC wave evolution from Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations. These ion holes are key to wave growth and frequency drift by the ion currents through nonlinear wave-particle interactions, which are identified by a computer simulation in this study.
International Nuclear Information System (INIS)
Yu-Lin, Feng; Xiao-Zhou, Liu; Jie-Hui, Liu; Li, Ma
2009-01-01
Based on an equivalent medium approach, this paper presents a model describing the nonlinear propagation of acoustic waves in a viscoelastic medium containing cylindrical micropores. The influences of pores' nonlinear oscillations on sound attenuation, sound dispersion and an equivalent acoustic nonlinearity parameter are discussed. The calculated results show that the attenuation increases with an increasing volume fraction of micropores. The peak of sound velocity and attenuation occurs at the resonant frequency of the micropores while the peak of the equivalent acoustic nonlinearity parameter occurs at the half of the resonant frequency of the micropores. Furthermore, multiple scattering has been taken into account, which leads to a modification to the effective wave number in the equivalent medium approach. We find that these linear and nonlinear acoustic parameters need to be corrected when the volume fraction of micropores is larger than 0.1%
Computational study of nonlinear plasma waves. I. Simulation model and monochromatic wave propagtion
International Nuclear Information System (INIS)
Matda, Y.; Crawford, F.W.
1974-12-01
An economical low noise plasma simulation model is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation, to establish the low noise features and to verify the theoretical linear dispersion relation at wave energy levels as low as 0.000,001 of the plasma thermal energy. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories. The additional phenomena of sideband instability and satellite growth, stimulated by large amplitude wave propagation and the resulting particle trapping, are described. (auth)
Metamaterials, from electromagnetic waves to water waves, bending waves and beyond
Dupont, G.
2015-08-04
We will review our recent work on metamaterials for different types of waves. Transposition of transform optics to water waves and bending waves on plates will be considered with potential applications of cloaking to water waves protection and anti-vibrating systems.
Strongly nonlinear evolution of low-frequency wave packets in a dispersive plasma
Vasquez, Bernard J.
1993-01-01
The evolution of strongly nonlinear, strongly modulated wave packets is investigated in a dispersive plasma using a hybrid numerical code. These wave packets have amplitudes exceeding the strength of the external magnetic field, along which they propagate. Alfven (left helicity) wave packets show strong steepening for p Schrodinger (DNLS) equation.
Nonlinear theory of surface-wave--particle interactions in a cylindrical plasma
International Nuclear Information System (INIS)
Dengra, A.; Palop, J.I.F.
1994-01-01
This work is an application of the specular reflection hypothesis to the study of the nonlinear surface-wave--particle interactions in a cylindrical plasma. The model is based on nonlinear resolution of the Vlasov equation by the method of characteristics. The expression obtained for the rate of increase of kinetic energy per electron has permitted us to investigate the temporal behavior of nonlinear collisionless damping for different situations as a function of the critical parameters
International Nuclear Information System (INIS)
Omura, Yoshiharu; Matsumoto, Hiroshi.
1989-01-01
Past theoretical and numerical studies of the nonlinear evolution of electromagnetic cyclotron waves are reviewed. Such waves are commonly observed in space plasmas such as Alfven waves in the solar wind or VLF whistler mode waves in the magnetosphere. The use of an electromagnetic full-particle code to study an electron cyclotron wave and of an electromagnetic hybrid code to study an ion cyclotron wave is demonstrated. Recent achievements in the simulations of nonlinear revolution of electromagnetic cyclotron waves are discussed. The inverse cascading processes of finite-amplitude whistler and Alfven waves is interpreted in terms of physical elementary processes. 65 refs
Nonlinear piezoelectricity in PZT ceramics for generating ultrasonic phase conjugate waves
Yamamoto; Kokubo; Sakai; Takagi
2000-03-01
We have succeeded in the generation of acoustic phase conjugate waves with nonlinear PZT piezoelectric ceramics and applied them to ultrasonic imaging systems. Our aim is to make a phase conjugator with 100% efficiency. For this purpose, it is important to clarify the mechanism of acoustic phase conjugation through nonlinear piezoelectricity. The process is explained by the parametric interaction via the third-order nonlinear piezoelectricity between the incident acoustic wave at angular frequency omega and the pump electric field at 2 omega. We solved the coupling equations including the third-ordered nonlinear piezoelectricity and theoretically derived the amplitude efficiency of the acoustic phase conjugation. We compared the efficiencies between the theoretical and experimental values for PZT ceramics with eight different compositions. Pb[(Zn1/3Nb2/3)(1 - x)Tix]O3 (X = 0.09, PZNT91/9) piezoelectric single crystals have been investigated for high-performance ultrasonic transducer application, because these have large piezoelectric constants, high electrical-mechanical coupling factors and high dielectric constants. We found that they have third-order nonlinear piezoelectric constants much larger than PZT and are hopeful that the material as a phase conjugator has over 100% efficiency.
PetClaw: A scalable parallel nonlinear wave propagation solver for Python
Alghamdi, Amal; Ahmadia, Aron; Ketcheson, David I.; Knepley, Matthew; Mandli, Kyle; Dalcin, Lisandro
2011-01-01
We present PetClaw, a scalable distributed-memory solver for time-dependent nonlinear wave propagation. PetClaw unifies two well-known scientific computing packages, Clawpack and PETSc, using Python interfaces into both. We rely on Clawpack to provide the infrastructure and kernels for time-dependent nonlinear wave propagation. Similarly, we rely on PETSc to manage distributed data arrays and the communication between them.We describe both the implementation and performance of PetClaw as well as our challenges and accomplishments in scaling a Python-based code to tens of thousands of cores on the BlueGene/P architecture. The capabilities of PetClaw are demonstrated through application to a novel problem involving elastic waves in a heterogeneous medium. Very finely resolved simulations are used to demonstrate the suppression of shock formation in this system.
A nonlinear wave equation in nonadiabatic flame propagation
International Nuclear Information System (INIS)
Booty, M.R.; Matalon, M.; Matkowsky, B.J.
1988-01-01
The authors derive a nonlinear wave equation from the diffusional thermal model of gaseous combustion to describe the evolution of a flame front. The equation arises as a long wave theory, for values of the volumeric heat loss in a neighborhood of the extinction point (beyond which planar uniformly propagating flames cease to exist), and for Lewis numbers near the critical value beyond which uniformly propagating planar flames lose stability via a degenerate Hopf bifurcation. Analysis of the equation suggests the possibility of a singularity developing in finite time
Nonlinear transient waves in coupled phase oscillators with inertia.
Jörg, David J
2015-05-01
Like the inertia of a physical body describes its tendency to resist changes of its state of motion, inertia of an oscillator describes its tendency to resist changes of its frequency. Here, we show that finite inertia of individual oscillators enables nonlinear phase waves in spatially extended coupled systems. Using a discrete model of coupled phase oscillators with inertia, we investigate these wave phenomena numerically, complemented by a continuum approximation that permits the analytical description of the key features of wave propagation in the long-wavelength limit. The ability to exhibit traveling waves is a generic feature of systems with finite inertia and is independent of the details of the coupling function.
Gaik*, Tay Kim; Demiray, Hilmi; Tiong, Ong Chee
In the present work, treating the artery as a prestressed thin-walled and long circularly cylindrical elastic tube with a mild symmetrical stenosis and the blood as an incompressible Newtonian fluid, we have studied the pro pagation of weakly nonlinear waves in such a composite medium, in the long wave approximation, by use of the reductive perturbation method. By intro ducing a set of stretched coordinates suitable for the boundary value type of problems and expanding the field variables into asymptotic series of the small-ness parameter of nonlinearity and dispersion, we obtained a set of nonlinear differential equations governing the terms at various order. By solving these nonlinear differential equations, we obtained the forced perturbed Korteweg-de Vries equation with variable coefficient as the nonlinear evolution equation. By use of the coordinate transformation, it is shown that this type of nonlinear evolution equation admits a progressive wave solution with variable wave speed.
Numerical Simulation of a Dual-Chamber Oscillating Water Column Wave Energy Converter
Directory of Open Access Journals (Sweden)
Dezhi Ning
2017-09-01
Full Text Available The performance of a dual-chamber Oscillating Water Column (OWC Wave Energy Converter (WEC is considered in the present study. The device has two sub-chambers with a shared orifice. A two-dimensional (2D fully nonlinear numerical wave flume based on the potential-flow theory and the time-domain higher-order boundary element method (HOBEM is applied for the simulation. The incident waves are generated by using the immerged sources and the air-fluid coupling influence is considered with a simplified pneumatic model. In the present study, the variation of the surface elevation and the water column volume in the two sub-chambers are investigated. The effects of the chamber geometry (i.e., the draft and breadth of two chambers on the surface elevation and the air pressure in the chamber are investigated, respectively. It is demonstrated that the surface elevations in the two sub-chambers are strongly dependent on the wave conditions. The larger the wavelength, the more synchronous motion of the two water columns in the two sub-chambers, thus, the lager the variation of the water column volume.
Dispersive Evolution of Nonlinear Fast Magnetoacoustic Wave Trains
Energy Technology Data Exchange (ETDEWEB)
Pascoe, D. J.; Goddard, C. R.; Nakariakov, V. M., E-mail: D.J.Pascoe@warwick.ac.uk [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)
2017-10-01
Quasi-periodic rapidly propagating wave trains are frequently observed in extreme ultraviolet observations of the solar corona, or are inferred by the quasi-periodic modulation of radio emission. The dispersive nature of fast magnetohydrodynamic waves in coronal structures provides a robust mechanism to explain the detected quasi-periodic patterns. We perform 2D numerical simulations of impulsively generated wave trains in coronal plasma slabs and investigate how the behavior of the trapped and leaky components depend on the properties of the initial perturbation. For large amplitude compressive perturbations, the geometrical dispersion associated with the waveguide suppresses the nonlinear steepening for the trapped wave train. The wave train formed by the leaky components does not experience dispersion once it leaves the waveguide and so can steepen and form shocks. The mechanism we consider can lead to the formation of multiple shock fronts by a single, large amplitude, impulsive event and so can account for quasi-periodic features observed in radio spectra.
CISM Course on Nonlinear Waves in Real Fluids
1991-01-01
The study of materials which exhibit new and unconventional properties is of central importance for the devel- opment of advanced and refined technologies in many fields of engineering science. In this connection there has been a rapidly growing interest in real fluid effects on wave phenomena in the past few years. A prominent example is provided by Bethe-Zel'dovich-Thompson (BZT) fluids which have the distinguishing feature that they exhibit negative nonlinearity over a finite range of temperature and pressures in the pure vapour phase. However, two phase flows with and without phase change are an even richer source of new unexpected and previously thought impossible phenomena. Topics covered by this volume include waves in gases near the critical point, waves in retrograde fluids, temperature waves in superfluid helium and density waves in suspensions of particles in liquids. Clearly, the aim of the various contributions is twofold. First, they are intended to provide scientists and engineers working in th...
Ion-acoustic cnoidal wave and associated non-linear ion flux in dusty plasma
Energy Technology Data Exchange (ETDEWEB)
Jain, S. L. [Poornima Group of Institution, Sitapura, Jaipur 302022 (India); Tiwari, R. S. [Regional College for Education, Research and Technology, Jaipur 302022 (India); Mishra, M. K. [Department of Physics, University of Rajasthan, Jaipur 302004 (India)
2012-10-15
Using reductive perturbation method with appropriate boundary conditions, coupled evolution equations for first and second order potentials are derived for ion-acoustic waves in a collisionless, un-magnetized plasma consisting of hot isothermal electrons, cold ions, and massive mobile charged dust grains. The boundary conditions give rise to renormalization term, which enable us to eliminate secular contribution in higher order terms. Determining the non secular solution of these coupled equations, expressions for wave phase velocity and averaged non-linear ion flux associated with ion-acoustic cnoidal wave are obtained. Variation of the wave phase velocity and averaged non-linear ion flux as a function of modulus (k{sup 2}) dependent wave amplitude are numerically examined for different values of dust concentration, charge on dust grains, and mass ratio of dust grains with plasma ions. It is found that for a given amplitude, the presence of positively (negatively) charged dust grains in plasma decreases (increases) the wave phase velocity. This behavior is more pronounced with increase in dust concentrations or increase in charge on dust grains or decrease in mass ratio of dust grains. The averaged non-linear ion flux associated with wave is positive (negative) for negatively (positively) charged dust grains in the plasma and increases (decreases) with modulus (k{sup 2}) dependent wave amplitude. For given amplitude, it increases (decreases) as dust concentration or charge of negatively (positively) charged dust grains increases in the plasma.
Directory of Open Access Journals (Sweden)
A. D. Pataraya
1997-01-01
Full Text Available Non-linear α-ω; dynamo waves existing in an incompressible medium with the turbulence dissipative coefficients depending on temperature are studied in this paper. We investigate of α-ω solar non-linear dynamo waves when only the first harmonics of magnetic induction components are included. If we ignore the second harmonics in the non-linear equation, the turbulent magnetic diffusion coefficient increases together with the temperature, the coefficient of turbulent viscosity decreases, and for an interval of time the value of dynamo number is greater than 1. In these conditions a stationary solution of the non-linear equation for the dynamo wave's amplitude exists; meaning that the magnetic field is sufficiently excited. The amplitude of the dynamo waves oscillates and becomes stationary. Using these results we can explain the existence of Maunder's minimum.
Detecting Damage in Composite Material Using Nonlinear Elastic Wave Spectroscopy Methods
Meo, Michele; Polimeno, Umberto; Zumpano, Giuseppe
2008-05-01
Modern aerospace structures make increasing use of fibre reinforced plastic composites, due to their high specific mechanical properties. However, due to their brittleness, low velocity impact can cause delaminations beneath the surface, while the surface may appear to be undamaged upon visual inspection. Such damage is called barely visible impact damage (BVID). Such internal damages lead to significant reduction in local strengths and ultimately could lead to catastrophic failures. It is therefore important to detect and monitor damages in high loaded composite components to receive an early warning for a well timed maintenance of the aircraft. Non-linear ultrasonic spectroscopy methods are promising damage detection and material characterization tools. In this paper, two different non-linear elastic wave spectroscopy (NEWS) methods are presented: single mode nonlinear resonance ultrasound (NRUS) and nonlinear wave modulation technique (NWMS). The NEWS methods were applied to detect delamination damage due to low velocity impact (<12 J) on various composite plates. The results showed that the proposed methodology appear to be highly sensitive to the presence of damage with very promising future NDT and structural health monitoring applications.
Generalized dispersive wave emission in nonlinear fiber optics.
Webb, K E; Xu, Y Q; Erkintalo, M; Murdoch, S G
2013-01-15
We show that the emission of dispersive waves in nonlinear fiber optics is not limited to soliton-like pulses propagating in the anomalous dispersion regime. We demonstrate, both numerically and experimentally, that pulses propagating in the normal dispersion regime can excite resonant dispersive radiation across the zero-dispersion wavelength into the anomalous regime.
Efficient Hybrid-Spectral Model for Fully Nonlinear Numerical Wave Tank
DEFF Research Database (Denmark)
Christiansen, Torben; Bingham, Harry B.; Engsig-Karup, Allan Peter
2013-01-01
A new hybrid-spectral solution strategy is proposed for the simulation of the fully nonlinear free surface equations based on potential flow theory. A Fourier collocation method is adopted horisontally for the discretization of the free surface equations. This is combined with a modal Chebyshev Tau...... method in the vertical for the discretization of the Laplace equation in the fluid domain, which yields a sparse and spectrally accurate Dirichletto-Neumann operator. The Laplace problem is solved with an efficient Defect Correction method preconditioned with a spectral discretization of the linearised...... wave problem, ensuring fast convergence and optimal scaling with the problem size. Preliminary results for very nonlinear waves show expected convergence rates and a clear advantage of using spectral schemes....
The instability of nonlinear surface waves in an electrified liquid jet
International Nuclear Information System (INIS)
Moatimid, Galal M
2009-01-01
We investigate the weakly nonlinear stability of surface waves of a liquid jet. In this work, the liquids are uniformly streaming through two porous media and the gravitational effects are neglected. The system is acted upon by a uniform tangential electric field, that is parallel to the jet axis. The equations of motion are linearly treated and solved in the light of nonlinear boundary conditions. Therefore, the boundary-value problem leads to a nonlinear characteristic second-order differential equation. This characterized equation has a complex nature. The nonlinearity is kept up to the third degree. It is used to judge the behavior of the surface evolution. According to the linear stability theory, we derive the dispersion relation that accounts for the growth waves. The stability criterion is discussed analytically and a stability picture is identified for a chosen sample system. Several special cases are recovered upon appropriate data choices. In order to derive the Ginsburg-Landau equation for the general case, in the nonlinear approach, we used the method of multiple timescales with the aid of the Taylor expansion. This equation describes the competition between nonlinearity and the linear dispersion relation. As a special case for non-porous media where there is no streaming, we obtained the well-known nonlinear Schroedinger equation as it has been derived by others. The stability criteria are expressed theoretically in terms of various parameters of the problem. Stability diagrams are obtained for a set of physical parameters. We found new instability regions in the parameter space. These regions are due to the nonlinear effects.
Janssen, T.T.; Herbers, T.H.C.; Battjes, J.A.
2008-01-01
We present a stochastic model for the evolution of random ocean surface waves in coastal waters with complex seafloor topography. First, we derive a deterministic coupled-mode model based on a forward scattering approximation of the nonlinear mild slope equation; this model describes the evolution
Initial boundary value problems of nonlinear wave equations in an exterior domain
International Nuclear Information System (INIS)
Chen Yunmei.
1987-06-01
In this paper, we investigate the existence and uniqueness of the global solutions to the initial boundary value problems of nonlinear wave equations in an exterior domain. When the space dimension n >= 3, the unique global solution of the above problem is obtained for small initial data, even if the nonlinear term is fully nonlinear and contains the unknown function itself. (author). 10 refs
Nonlinear acoustic waves in partially ionized collisional plasmas
International Nuclear Information System (INIS)
Rao, N.N.; Kaup, D.J.; Shukla, P.K.
1991-01-01
Nonlinear propagation of acoustic-type waves in a partially ionized three-component collisional plasma consisting of electrons, ions and neutral particles is investigated. For bidirectional propagation, it is shown that the small- but finite-amplitude waves are governed by the Boussinesq equation, which for unidirectional propagation near the acoustic speed reduces to the usual Korteweg-de Vries equation. For large-amplitude waves, it is demonstrated that the relevant fluid equations are integrable in a stationary frame, and the parameter values for the existence of finite-amplitude solutions are explicitly obtained. In both cases, the different temperatures of the individual species, are taken into account. The relevance of the results to the earth's ionospheric plasma in the lower altitude ranges is pointed out. (author)
Nonlinear and linear wave equations for propagation in media with frequency power law losses
Szabo, Thomas L.
2003-10-01
The Burgers, KZK, and Westervelt wave equations used for simulating wave propagation in nonlinear media are based on absorption that has a quadratic dependence on frequency. Unfortunately, most lossy media, such as tissue, follow a more general frequency power law. The authors first research involved measurements of loss and dispersion associated with a modification to Blackstock's solution to the linear thermoviscous wave equation [J. Acoust. Soc. Am. 41, 1312 (1967)]. A second paper by Blackstock [J. Acoust. Soc. Am. 77, 2050 (1985)] showed the loss term in the Burgers equation for plane waves could be modified for other known instances of loss. The authors' work eventually led to comprehensive time-domain convolutional operators that accounted for both dispersion and general frequency power law absorption [Szabo, J. Acoust. Soc. Am. 96, 491 (1994)]. Versions of appropriate loss terms were developed to extend the standard three nonlinear wave equations to these more general losses. Extensive experimental data has verified the predicted phase velocity dispersion for different power exponents for the linear case. Other groups are now working on methods suitable for solving wave equations numerically for these types of loss directly in the time domain for both linear and nonlinear media.
Nonlinear wave mechanics from classical dynamics and scale covariance
International Nuclear Information System (INIS)
Hammad, F.
2007-01-01
Nonlinear Schroedinger equations proposed by Kostin and by Doebner and Goldin are rederived from Nottale's prescription for obtaining quantum mechanics from classical mechanics in nondifferentiable spaces; i.e., from hydrodynamical concepts and scale covariance. Some soliton and plane wave solutions are discussed
Evidence and effects of a wave-driven nonlinear current in the equatorial electrojet
Directory of Open Access Journals (Sweden)
M. Oppenheim
1997-07-01
Full Text Available Ionospheric two-stream waves and gradient-drift waves nonlinearly drive a large-scale (D.C. current in the E-region ionosphere. This current flows parallel to, and with a comparable magnitude to, the fundamental Pedersen current. Evidence for the existence and magnitude of wave-driven currents derives from a theoretical understanding of E-region waves, supported by a series of nonlinear 2D simulations of two-stream waves and by data collected by rocket instruments in the equatorial electrojet. Wave-driven currents will modify the large-scale dynamics of the equatorial electrojet during highly active periods. A simple model shows how a wave-driven current appreciably reduces the horizontally flowing electron current of the electrojet. This reduction may account for the observation that type-I radar echoes almost always have a Doppler velocity close to the acoustic speed, and also for the rocket observation that electrojet regions containing gradient-drift waves do not appear also to contain horizontally propagating two-stream waves. Additionally, a simple model of a gradient-drift instability shows that wave-driven currents can cause nonsinusoidal electric fields similar to those measured in situ.
New method for rekindling the nonlinear solitary waves in Maxwellian complex space plasma
Das, G. C.; Sarma, Ridip
2018-04-01
Our interest is to study the nonlinear wave phenomena in complex plasma constituents with Maxwellian electrons and ions. The main reason for this consideration is to exhibit the effects of dust charge fluctuations on acoustic modes evaluated by the use of a new method. A special method (G'/G) has been developed to yield the coherent features of nonlinear waves augmented through the derivation of a Korteweg-de Vries equation and found successfully the different nature of solitons recognized in space plasmas. Evolutions have shown with the input of appropriate typical plasma parameters to support our theoretical observations in space plasmas. All conclusions are in good accordance with the actual occurrences and could be of interest to further the investigations in experiments and satellite observations in space. In this paper, we present not only the model that exhibited nonlinear solitary wave propagation but also a new mathematical method to the execution.
International Nuclear Information System (INIS)
Tang Xiaoyan; Shukla, Padma Kant
2008-01-01
Exact solutions, including the periodic travelling and non-travelling wave solutions, are presented for the nonlinear Klein-Gordon equation with imaginary mass. Some arbitrary functions are permitted in the periodic non-travelling wave solutions, which contribute to various high dimensional nonlinear structures
Liu, Lei; Tian, Bo; Wu, Xiao-Yu; Sun, Yan
2018-02-01
Under investigation in this paper is the higher-order rogue wave-like solutions for a nonautonomous nonlinear Schrödinger equation with external potentials which can be applied in the nonlinear optics, hydrodynamics, plasma physics and Bose-Einstein condensation. Based on the Kadomtsev-Petviashvili hierarchy reduction, we construct the Nth order rogue wave-like solutions in terms of the Gramian under the integrable constraint. With the help of the analytic and graphic analysis, we exhibit the first-, second- and third-order rogue wave-like solutions through the different dispersion, nonlinearity and linear potential coefficients. We find that only if the dispersion and nonlinearity coefficients are proportional to each other, heights of the background of those rogue waves maintain unchanged with time increasing. Due to the existence of complex parameters, such nonautonomous rogue waves in the higher-order cases have more complex features than those in the lower.
Khushaini, Muhammad Asif A.; Ibrahim, Abdel-Baset M. A.; Choudhury, P. K.
2018-05-01
In this paper, we provide a complete mathematical model of the phenomenon of optical bistability (OB) resulting from the degenerate two-wave mixing (TWM) process of laser beams interacting with a single nonlinear layer of ferroelectric material. Starting with the electromagnetic wave equation for optical wave propagating in nonlinear media, a nonlinear coupled wave (CW) system with both self-phase modulation (SPM) and cross-phase modulation (XPM) sources of nonlinearity are derived. The complete CW system with full nonlinearity is solved numerically and a comparison between both the cases of with and without SPM at various combinations of design parameters is given. Furthermore, to provide a reliable theoretical model for the OB via TWM process, the results obtained theoretically are compared with the available experimental data. We found that the nonlinear system without SPM fails to predict the bistable response at lower combinations of the input parameters. However, at relatively higher values, the solution without SPM shows a reduction in the switching contrast and period in the OB response. A comparison with the experimental results shows better agreement with the system with full nonlinearity.
Agapitov, O.; Drake, J. F.; Vasko, I.; Mozer, F. S.; Artemyev, A.; Krasnoselskikh, V.; Angelopoulos, V.; Wygant, J.; Reeves, G. D.
2018-03-01
Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The efficiency of wave-particle resonant interactions is defined by whistler wave properties which have been described by the approximation of plane linear waves propagating through the cold plasma of the inner magnetosphere. However, recent observations of extremely high-amplitude whistlers suggest the importance of nonlinear wave-particle interactions for the dynamics of the outer radiation belt. Oblique chorus waves observed in the inner magnetosphere often exhibit drastically nonsinusoidal (with significant power in the higher harmonics) waveforms of the parallel electric field, presumably due to the feedback from hot resonant electrons. We have considered the nature and properties of such nonlinear whistler waves observed by the Van Allen Probes and Time History of Events and Macroscale Interactions define during Substorms in the inner magnetosphere, and we show that the significant enhancement of the wave electrostatic component can result from whistler wave coupling with the beam-driven electrostatic mode through the resonant interaction with hot electron beams. Being modulated by a whistler wave, the electron beam generates a driven electrostatic mode significantly enhancing the parallel electric field of the initial whistler wave. We confirm this mechanism using a self-consistent particle-in-cell simulation. The nonlinear electrostatic component manifests properties of the beam-driven electron acoustic mode and can be responsible for effective electron acceleration in the inhomogeneous magnetic field.
High-order Boussinesq-type modelling of nonlinear wave phenomena in deep and shallow water
DEFF Research Database (Denmark)
Madsen, Per A.; Fuhrman, David R.
2010-01-01
In this work, we start with a review of the development of Boussinesq theory for water waves covering the period from 1872 to date. Previous reviews have been given by Dingemans,1 Kirby,2,3 and Madsen & Schäffer.4 Next, we present our most recent high-order Boussinesq-type formulation valid for f...... from an undular sea bed; (8) Run-up of non-breaking solitary waves on a beach; and (9) Tsunami generation from submerged landslides....
An inhomogeneous wave equation and non-linear Diophantine approximation
DEFF Research Database (Denmark)
Beresnevich, V.; Dodson, M. M.; Kristensen, S.
2008-01-01
A non-linear Diophantine condition involving perfect squares and arising from an inhomogeneous wave equation on the torus guarantees the existence of a smooth solution. The exceptional set associated with the failure of the Diophantine condition and hence of the existence of a smooth solution...
Nonlinear bounce resonances between magnetosonic waves and equatorially mirroring electrons
Chen, Lunjin; Maldonado, Armando; Bortnik, Jacob; Thorne, Richard M.; Li, Jinxing; Dai, Lei; Zhan, Xiaoya
2015-08-01
Equatorially mirroring energetic electrons pose an interesting scientific problem, since they generally cannot resonate with any known plasma waves and hence cannot be scattered down to lower pitch angles. Observationally it is well known that the flux of these equatorial particles does not simply continue to build up indefinitely, and so a mechanism must necessarily exist that transports these particles from an equatorial pitch angle of 90° down to lower values. However, this mechanism has not been uniquely identified yet. Here we investigate the mechanism of bounce resonance with equatorial noise (or fast magnetosonic waves). A test particle simulation is used to examine the effects of monochromatic magnetosonic waves on the equatorially mirroring energetic electrons, with a special interest in characterizing the effectiveness of bounce resonances. Our analysis shows that bounce resonances can occur at the first three harmonics of the bounce frequency (nωb, n = 1, 2, and 3) and can effectively reduce the equatorial pitch angle to values where resonant scattering by whistler mode waves becomes possible. We demonstrate that the nature of bounce resonance is nonlinear, and we propose a nonlinear oscillation model for characterizing bounce resonances using two key parameters, effective wave amplitude Ã and normalized wave number k~z. The threshold for higher harmonic resonance is more strict, favoring higher Ã and k~z, and the change in equatorial pitch angle is strongly controlled by k~z. We also investigate the dependence of bounce resonance effects on various physical parameters, including wave amplitude, frequency, wave normal angle and initial phase, plasma density, and electron energy. It is found that the effect of bounce resonance is sensitive to the wave normal angle. We suggest that the bounce resonant interaction might lead to an observed pitch angle distribution with a minimum at 90°.
Nonlinear damping of oblique whistler mode waves through Landau resonance
Hsieh, Y.; Omura, Y.
2017-12-01
Nonlinear trapping of electrons through Landau resonance is a characteristic dynamics in oblique whistler-mode wave particle interactions. The resonance velocity of the Landau resonance at quasi-parallel propagation becomes very close to the parallel group velocity of whistler-mode wave at frequency around 0.5 Ωe, causing a long distance of resonant interaction and strong acceleration of resonant electrons [1]. We demonstrate these effective accelerations for electrons with high equatorial pitch angle ( > 60°) by test particle simulations with parameters for the Earth's inner magnetosphere at L=5. In the simulations, we focus on slightly oblique whistler mode waves with wave normal angle 10.1002/2016JA023255.
Relativistic harmonic content of nonlinear electromagnetic waves in underdense plasmas
International Nuclear Information System (INIS)
Mori, W.B.; Decker, C.D.; Leemans, W.P.
1993-01-01
The relativistic harmonic content of large amplitude electromagnetic waves propagating in underdense plasmas is investigated. The steady state harmonic content of nonlinear linearly polarized waves is calculated for both the very underdense (w p /w o ) much-lt 1 and critical density (w p /w o ) ≅ 1 limits. For weak nonlinearities, eE o /mcw o p /w o . Arguments are given for extending these results for arbitrary wave amplitudes. The authors also show that the use of the variable x-ct and the quasi-static approximation leads to errors in both magnitude and sign when calculating the third harmonic. In the absence of damping or density gradients the third harmonic's amplitude is found to oscillate between zero and twice the steady state value. Preliminary PIC simulation results are presented. The simulation results are in basic agreement with the uniform plasma predictions for the third harmonic amplitude. However, the higher harmonics are orders of magnitude larger than expected and the presence of density ramps significantly modifies the results
Travelling wave solutions to nonlinear physical models by means
Indian Academy of Sciences (India)
This paper presents the ﬁrst integral method to carry out the integration of nonlinear partial differential equations in terms of travelling wave solutions. For illustration, three important equations of mathematical physics are analytically investigated. Through the established ﬁrst integrals, exact solutions are successfully ...
Zhang, Jie-Fang; Li, Yi-Shen; Meng, Jianping; Wu, Lei; Malomed, Boris A.
2010-01-01
We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices. By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite number of exact soliton solutions in terms of the Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite bandgap of the optical-lattice-induced spectrum. Starting from the exact solutions, we employ the relaxation met...
Dynamics of unstable sound waves in a non-equilibrium medium at the nonlinear stage
Khrapov, Sergey; Khoperskov, Alexander
2018-03-01
A new dispersion equation is obtained for a non-equilibrium medium with an exponential relaxation model of a vibrationally excited gas. We have researched the dependencies of the pump source and the heat removal on the medium thermodynamic parameters. The boundaries of sound waves stability regions in a non-equilibrium gas have been determined. The nonlinear stage of sound waves instability development in a vibrationally excited gas has been investigated within CSPH-TVD and MUSCL numerical schemes using parallel technologies OpenMP-CUDA. We have obtained a good agreement of numerical simulation results with the linear perturbations dynamics at the initial stage of the sound waves growth caused by instability. At the nonlinear stage, the sound waves amplitude reaches the maximum value that leads to the formation of shock waves system.
Nonlinear sausage-wave propagation in a magnetic slab in an incompressible fluid
International Nuclear Information System (INIS)
Ruderman, M.S.
1993-01-01
Long nonlinear sausage-wave propagation in a magnetic slab in an incompressible plasma is considered. The governing equation is derived with the aid of the reductive perturbation method. The solutions of this equation in the form of periodic waves of permanent shape are found numerically. (Author)
Yao, Yu-Qin; Han, Wei; Li, Ji; Liu, Wu-Ming
2018-05-01
Nonlinearity is one of the most remarkable characteristics of Bose–Einstein condensates (BECs). Much work has been done on one- and two-component BECs with time- or space-modulated nonlinearities, while there is little work on spinor BECs with space–time-modulated nonlinearities. In the present paper we investigate localized nonlinear waves and dynamical stability in spinor Bose–Einstein condensates with nonlinearities dependent on time and space. We solve the three coupled Gross–Pitaevskii equations by similarity transformation and obtain two families of exact matter wave solutions in terms of Jacobi elliptic functions and the Mathieu equation. The localized states of the spinor matter wave describe the dynamics of vector breathing solitons, moving breathing solitons, quasi-breathing solitons and resonant solitons. The results show that one-order vector breathing solitons, quasi-breathing solitons, resonant solitons and the moving breathing solitons ψ ±1 are all stable, but the moving breathing soliton ψ 0 is unstable. We also present the experimental parameters to realize these phenomena in future experiments.
Non-Linear Numerical Modeling and Experimental Testing of a Point Absorber Wave Energy Converter
DEFF Research Database (Denmark)
Zurkinden, Andrew Stephen; Ferri, Francesco; Beatty, S.
2014-01-01
the calculation of the non-linear hydrostatic restoring moment by a cubic polynomial function fit to laboratory test results. Moreover, moments due to viscous drag are evaluated on the oscillating hemisphere considering the horizontal and vertical drag force components. The influence on the motions of this non.......e. H/λ≤0.02. For steep waves, H/λ≥0.04 however, the relative velocities between the body and the waves increase thus requiring inclusion of the non-linear hydrostatic restoring moment to effectively predict the dynamics of the wave energy converter. For operation of the device with a passively damping...
Nonlinear interaction and wave breaking with a submerged porous structure
Hsieh, Chih-Min; Sau, Amalendu; Hwang, Robert R.; Yang, W. C.
2016-12-01
Numerical simulations are performed to investigate interactive velocity, streamline, turbulent kinetic energy, and vorticity perturbations in the near-field of a submerged offshore porous triangular structure, as Stokes waves of different heights pass through. The wave-structure interaction and free-surface breaking for the investigated flow situations are established based on solutions of 2D Reynolds Averaged Navier-Stokes equations in a Cartesian grid in combination with K-ɛ turbulent closure and the volume of fluid methodology. The accuracy and stability of the adopted model are ascertained by extensive comparisons of computed data with the existing experimental and theoretical findings and through efficient predictions of the internal physical kinetics. Simulations unfold "clockwise" and "anticlockwise" rotation of fluid below the trough and the crest of the viscous waves, and the penetrated wave energy creates systematic flow perturbation in the porous body. The interfacial growths of the turbulent kinetic energy and the vorticity appear phenomenal, around the apex of the immersed structure, and enhanced significantly following wave breaking. Different values of porosity parameter and two non-porous cases have been examined in combination with varied incident wave height to reveal/analyze the nonlinear flow behavior in regard to local spectral amplification and phase-plane signatures. The evolution of leading harmonics of the undulating free-surface and the vertical velocity exhibits dominating roles of the first and the second modes in inducing the nonlinearity in the post-breaking near-field that penetrates well below the surface layer. The study further suggests the existence of a critical porosity that can substantially enhance the wave-shoaling and interface breaking.
Artemyev, Anton V.; Neishtadt, Anatoly I.; Vasiliev, Alexei A.
2018-04-01
Accurately modelling and forecasting of the dynamics of the Earth's radiation belts with the available computer resources represents an important challenge that still requires significant advances in the theoretical plasma physics field of wave-particle resonant interaction. Energetic electron acceleration or scattering into the Earth's atmosphere are essentially controlled by their resonances with electromagnetic whistler mode waves. The quasi-linear diffusion equation describes well this resonant interaction for low intensity waves. During the last decade, however, spacecraft observations in the radiation belts have revealed a large number of whistler mode waves with sufficiently high intensity to interact with electrons in the nonlinear regime. A kinetic equation including such nonlinear wave-particle interactions and describing the long-term evolution of the electron distribution is the focus of the present paper. Using the Hamiltonian theory of resonant phenomena, we describe individual electron resonance with an intense coherent whistler mode wave. The derived characteristics of such a resonance are incorporated into a generalized kinetic equation which includes non-local transport in energy space. This transport is produced by resonant electron trapping and nonlinear acceleration. We describe the methods allowing the construction of nonlinear resonant terms in the kinetic equation and discuss possible applications of this equation.
Periodic and solitary wave solutions of cubic–quintic nonlinear ...
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 6. Periodic and solitary wave solutions of cubic–quintic nonlinear reaction-diffusion equation with variable convection coefficients. BHARDWAJ S B SINGH RAM MEHAR SHARMA KUSHAL MISHRA S C. Regular Volume 86 Issue 6 June 2016 pp 1253-1258 ...
Nonlinear travelling waves in rotating Hagen–Poiseuille flow
Pier, Benoît; Govindarajan, Rama
2018-03-01
The dynamics of viscous flow through a rotating pipe is considered. Small-amplitude stability characteristics are obtained by linearizing the Navier–Stokes equations around the base flow and solving the resulting eigenvalue problems. For linearly unstable configurations, the dynamics leads to fully developed finite-amplitude perturbations that are computed by direct numerical simulations of the complete Navier–Stokes equations. By systematically investigating all linearly unstable combinations of streamwise wave number k and azimuthal mode number m, for streamwise Reynolds numbers {{Re}}z ≤slant 500 and rotational Reynolds numbers {{Re}}{{Ω }} ≤slant 500, the complete range of nonlinear travelling waves is obtained and the associated flow fields are characterized.
The Fermi-Pasta-Ulam recurrence and related phenomena for 1D shallow-water waves in a finite basin
International Nuclear Information System (INIS)
Ruban, V. P.
2012-01-01
Different regimes of the Fermi-Pasta-Ulam (FPU) recurrence are simulated numerically for fully nonlinear “one-dimensional” potential water waves in a finite-depth flume between two vertical walls. In such systems, the FPU recurrence is closely related to the dynamics of coherent structures approximately corresponding to solitons of the integrable Boussinesq system. A simplest periodic solution of the Boussinesq model, describing a single soliton between the walls, is presented in analytic form in terms of the elliptic Jacobi functions. In the numerical experiments, it is observed that depending on the number of solitons in the flume and their parameters, the FPU recurrence can occur in a simple or complicated manner, or be practically absent. For comparison, the nonlinear dynamics of potential water waves over nonuniform beds is simulated, with initial states taken in the form of several pairs of colliding solitons. With a mild-slope bed profile, a typical phenomenon in the course of evolution is the appearance of relatively high (rogue) waves, while for random, relatively short-correlated bed profiles it is either the appearance of tall waves or the formation of sharp crests at moderate-height waves.
The Fermi-Pasta-Ulam recurrence and related phenomena for 1D shallow-water waves in a finite basin
Energy Technology Data Exchange (ETDEWEB)
Ruban, V. P., E-mail: ruban@itp.ac.ru [Russian Academy of Sciences, Landau Institute for Theoretical Physics (Russian Federation)
2012-02-15
Different regimes of the Fermi-Pasta-Ulam (FPU) recurrence are simulated numerically for fully nonlinear 'one-dimensional' potential water waves in a finite-depth flume between two vertical walls. In such systems, the FPU recurrence is closely related to the dynamics of coherent structures approximately corresponding to solitons of the integrable Boussinesq system. A simplest periodic solution of the Boussinesq model, describing a single soliton between the walls, is presented in analytic form in terms of the elliptic Jacobi functions. In the numerical experiments, it is observed that depending on the number of solitons in the flume and their parameters, the FPU recurrence can occur in a simple or complicated manner, or be practically absent. For comparison, the nonlinear dynamics of potential water waves over nonuniform beds is simulated, with initial states taken in the form of several pairs of colliding solitons. With a mild-slope bed profile, a typical phenomenon in the course of evolution is the appearance of relatively high (rogue) waves, while for random, relatively short-correlated bed profiles it is either the appearance of tall waves or the formation of sharp crests at moderate-height waves.
Energy Technology Data Exchange (ETDEWEB)
Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pegalajar-Jurado, Antonio [Technical University of Denmark; Borg, Michael [Technical University of Denmark; Bredmose, Henrik [Technical University of Denmark
2017-06-03
In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equation for the hydrodynamic forcing. The wave kinematics are computed from either theoretical or measured signals of free-surface elevation. The numerical results from each model are compared to results from wave basin tests on a scaled prototype. The comparison shows that sub and superharmonic responses can be introduced by second-order and fully nonlinear wave kinematics. The response at the wave frequency range is better reproduced when kinematics are generated from the measured surface elevation. In the future, the numerical response may be further improved by replacing the global, constant damping coefficients in the model by a more detailed, customizable definition of the user-defined numerical damping.
Non-Reciprocal Geometric Wave Diode by Engineering Asymmetric Shapes of Nonlinear Materials
Energy Technology Data Exchange (ETDEWEB)
Ren, Jie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Nianbei [Tongji Univ., Shanghai Shi (China)
2014-02-18
Unidirectional nonreciprocal transport is at the heart of many fundamental problems and applications in both science and technology. Here we study how to design the novel wave diode devices to realize the non-reciprocal wave propagations. Analytical results reveal that such non-reciprocal wave propagation can be purely induced by asymmetric geometry in nonlinear materials. The detailed numerical simulations are performed for a more realistic geometric wave diode model with typical asymmetric shape, where good non-reciprocal wave diode effect has been demonstrated. The results open a way for making wave diodes efficiently simply through shape engineering.
Hoefer, Mark A.
This thesis examines nonlinear wave phenomena, in two physical systems: a Bose-Einstein condensate (BEC) and thin film ferromagnets where the magnetization dynamics are excited by the spin momentum transfer (SMT) effect. In the first system, shock waves generated by steep gradients in the BEC wavefunction are shown to be of the disperse type. Asymptotic and averaging methods are used to determine shock speeds and structure in one spatial dimension. These results are compared with multidimensional numerical simulations and experiment showing good, qualitative agreement. In the second system, a model of magnetization dynamics due to SMT is presented. Using this model, nonlinear oscillating modes---nano-oscillators---are found numerically and analytically using perturbative methods. These results compare well with experiment. A Bose-Einstein condensate (BEC) is a quantum fluid that gives rise to interesting shock wave nonlinear dynamics. Experiments depict a BEC that exhibits behavior similar to that of a shock wave in a compressible gas, e.g. traveling fronts with steep gradients. However, the governing Gross-Pitaevskii (GP) equation that describes the mean field of a BEC admits no dissipation hence classical dissipative shock solutions do not explain the phenomena. Instead, wave dynamics with small dispersion is considered and it is shown that this provides a mechanism for the generation of a dispersive shock wave (DSW). Computations with the GP equation are compared to experiment with excellent agreement. A comparison between a canonical 1D dissipative and dispersive shock problem shows significant differences in shock structure and shock front speed. Numerical results associated with laboratory experiments show that three and two-dimensional approximations are in excellent agreement and one dimensional approximations are in qualitative agreement. The interaction of two DSWs is investigated analytically and numerically. Using one dimensional DSW theory it is argued
International Nuclear Information System (INIS)
Yi Sumin; Ryu, C.-M.; Yoon, Peter H.
2003-01-01
The nonlinear frequency shift of a low-frequency, coherent dust-acoustic wave in the presence of higher frequency dust-acoustic turbulence is investigated in the framework of weak turbulence theory. It is found that the frequency shift of the dust-acoustic wave in an unmagnetized dusty plasma is always positive irrespective of the propagation direction of the coherent wave. It is also found that turbulent waves propagating in the same direction as the coherent wave are shown to give rise to a much higher frequency shift than the opposite case. Finally, it is shown that the nonlinear frequency shift of a dust-acoustic wave is more pronounced than in the case of the customary ion-acoustic waves in fully ionized plasmas
Nonlinear Hydroelastic Waves Generated due to a Floating Elastic Plate in a Current
Directory of Open Access Journals (Sweden)
Ping Wang
2017-01-01
Full Text Available Effects of underlying uniform current on the nonlinear hydroelastic waves generated due to an infinite floating plate are studied analytically, under the hypotheses that the fluid is homogeneous, incompressible, and inviscid. For the case of irrotational motion, the Laplace equation is the governing equation, with the boundary conditions expressing a balance among the hydrodynamics, the uniform current, and elastic force. It is found that the convergent series solutions, obtained by the homotopy analysis method (HAM, consist of the nonlinear hydroelastic wave profile and the velocity potential. The impacts of important physical parameters are discussed in detail. With the increment of the following current intensity, we find that the amplitudes of the hydroelastic waves decrease very slightly, while the opposing current produces the opposite effect on the hydroelastic waves. Furthermore, the amplitudes of waves increase very obviously for higher opposing current speed but reduce very slightly for higher following current speed. A larger amplitude of the incident wave increases the hydroelastic wave deflections for both opposing and following current, while for Young’s modulus of the plate there is the opposite effect.
DEFF Research Database (Denmark)
Pu, Minhao; Chen, Yaohui; Yvind, Kresten
2014-01-01
Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides is investigated. A conversion bandwidth reduction up to 63% is observed in simulation due to the thermal effects.......Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides is investigated. A conversion bandwidth reduction up to 63% is observed in simulation due to the thermal effects....
Combined solitary-wave solution for coupled higher-order nonlinear Schroedinger equations
International Nuclear Information System (INIS)
Tian Jinping; Tian Huiping; Li Zhonghao; Zhou Guosheng
2004-01-01
Coupled nonlinear Schroedinger equations model several interesting physical phenomena. We used a trigonometric function transform method based on a homogeneous balance to solve the coupled higher-order nonlinear Schroedinger equations. We obtained four pairs of exact solitary-wave solutions including a dark and a bright-soliton pair, a bright- and a dark-soliton pair, a bright- and a bright-soliton pair, and the last pair, a combined bright-dark-soliton pair
International Nuclear Information System (INIS)
Tian Lixin; Yin Jiuli
2004-01-01
In this paper, we introduce the fully nonlinear generalized Camassa-Holm equation C(m,n,p) and by using four direct ansatzs, we obtain abundant solutions: compactons (solutions with the absence of infinite wings), solitary patterns solutions having infinite slopes or cups, solitary waves and singular periodic wave solutions and obtain kink compacton solutions and nonsymmetry compacton solutions. We also study other forms of fully nonlinear generalized Camassa-Holm equation, and their compacton solutions are governed by linear equations
Mandal, Birendra Nath
2015-01-01
The theory of water waves is most varied and is a fascinating topic. It includes a wide range of natural phenomena in oceans, rivers, and lakes. It is mostly concerned with elucidation of some general aspects of wave motion including the prediction of behaviour of waves in the presence of obstacles of some special configurations that are of interest to ocean engineers. Unfortunately, even the apparently simple problems appear to be difficult to tackle mathematically unless some simplified assumptions are made. Fortunately, one can assume water to be an incompressible, in viscid and homogeneous
International Nuclear Information System (INIS)
Rizzato, F.B.
1992-01-01
A nonlinear emission mechanism of electromagnetic waves at the fundamental plasma frequency has been examined. This mechanism is based on the electromagnetic oscillating two-stream instability driven by two oppositely propagating Langmuir waves. The excitation of the electromagnetic oscillating two-stream instability is due to nonlinear wave-wave coupling involving Langmuir waves, low-frequency density waves and electromagnetic waves. The Chian and Alves model is improved using the generalized Zakharov equations. Attention is directed toward the influence of induced low-frequency and Langmuir waves on the properties of the electromagnetic oscillating two-stream instability. Presumably, the properties derived in the present context may be relevant to both space and laboratory plasmas. (author)
Short-crested waves in deep water: a numerical investigation of recent laboratory experiments
DEFF Research Database (Denmark)
Fuhrman, David R.; Madsen, Per A.
2006-01-01
A numerical study of quasi-steady, doubly-periodic monochromatic short-crested wave patterns in deep water is conducted using a high-order Boussinesq-type model. Simulations using linear wavemaker conditions in the nonlinear model are initially used to approximate conditions from recent laboratory...... experiments. The computed patterns share many features with those observed in wavetanks, including bending (both frontwards and backwards) of the wave crests, dipping at the crest centerlines, and a pronounced long modulation in the direction of propagation. A new and simple explanation for these features...
Nonlinear propagation of Alfven waves in cometary plasmas
International Nuclear Information System (INIS)
Lakhina, G.S.; Shukla, P.K.
1987-07-01
Large amplitude Alfven waves propagating along the guide magnetic field in a three-component plasma are shown to be modulationally unstable due to their nonlinear interaction with nonresonant electrostatic density fluctuations. A new class of subsonic Alfven soliton solutions are found to exist in the three-component plasma. The Alfven solitons can be relevant in explaining the properties of hydromagnetic turbulence near the comets. (author). 15 refs
International Nuclear Information System (INIS)
Matsuda, Y.; Crawford, F.W.
1975-01-01
An economical low-noise plasma simulation model originated by Denavit is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation. These tests serve to establish the low-noise features of the model, and to verify the theoretical linear dispersion relation at wave energy levels as low as 10 -6 of the plasma thermal energy: Better quantitative results are obtained, for comparable computing time, than can be obtained by conventional particle simulation models, or direct solution of the Vlasov equation. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories
Two-tone nonlinear electrostatic waves in the quantum electron–hole plasma of semiconductors
Energy Technology Data Exchange (ETDEWEB)
Dubinov, A. E., E-mail: dubinov-ae@yandex.ru; Kitayev, I. N. [Russian Federal Nuclear Center–All-Russia Scientific and Research Institute of Experimental Physics (RFNC–VNIIEF) (Russian Federation)
2017-01-15
Longitudinal electrostatic waves in the quantum electron–hole plasma of semiconductors are considered taking into account the degeneracy of electrons and holes and the exchange interaction. It is found in the framework of linear theory that the dispersion curve of longitudinal waves has two branches: plasmon and acoustic. An expression for the critical cutoff frequency for plasma oscillations and an expression for the speed of sound for acoustic vibrations are derived. It is shown that the plasma wave always exists in the form of a superposition of two components, characterized by different periods and wavelengths. Two nonlinear solutions are obtained within nonlinear theory: one in the form of a simple superposition of two tones and the other in the form of beats.
Kuznetsov, N.; Maz'ya, V.; Vainberg, B.
2002-08-01
This book gives a self-contained and up-to-date account of mathematical results in the linear theory of water waves. The study of waves has many applications, including the prediction of behavior of floating bodies (ships, submarines, tension-leg platforms etc.), the calculation of wave-making resistance in naval architecture, and the description of wave patterns over bottom topography in geophysical hydrodynamics. The first section deals with time-harmonic waves. Three linear boundary value problems serve as the approximate mathematical models for these types of water waves. The next section uses a plethora of mathematical techniques in the investigation of these three problems. The techniques used in the book include integral equations based on Green's functions, various inequalities between the kinetic and potential energy and integral identities which are indispensable for proving the uniqueness theorems. The so-called inverse procedure is applied to constructing examples of non-uniqueness, usually referred to as 'trapped nodes.'
Nonlinear acoustic waves in the viscous thermosphere and ionosphere above earthquake
Czech Academy of Sciences Publication Activity Database
Chum, Jaroslav; Cabrera, M. A.; Mošna, Zbyšek; Fagre, M.; Baše, Jiří; Fišer, Jiří
2016-01-01
Roč. 121, č. 12 (2016), s. 12126-12137 ISSN 2169-9380 R&D Projects: GA ČR(CZ) GC15-07281J Institutional support: RVO:68378289 Keywords : infrasound * seismic waves * ionosphere * nonlinear wave propagation * viscosity * dissipation * remote sensing Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.733, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2016JA023450/full
A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.
Theory of nonlinear interaction of particles and waves in an inverse plasma maser. Part 1
International Nuclear Information System (INIS)
Krivitsky, V.S.; Vladimirov, S.V.
1991-01-01
An expression is obtained for the collision integral describing the simultaneous interaction of plasma particles with resonant and non-resonant waves. It is shown that this collision integral is determined by two processes: a 'direct' nonlinear interaction of particles and waves, and the influence of the non-stationary of the system. The expression for the nonlinear collision integral is found to be quite different from the expression for a quasi-linear collision integral; in particular, the nonlinear integral contains higher-order derivatives of the distribution function with respect to momentum than the quasi-linear one. (author)
The evolution of a localized nonlinear wave of the Kelvin-Helmholtz instability with gravity
Orazzo, Annagrazia; Hoepffner, Jérôme
2012-11-01
At the interface between two fluids of different density and in the presence of gravity, there are well known periodic surface waves which can propagate for long distances with little attenuation, as it is for instance the case at the surface of the sea. If wind is present, these waves progressively accumulate energy as they propagate and grow to large sizes—this is the Kelvin-Helmholtz instability. On the other hand, we show in this paper that for a given wind strength, there is potential for the growth of a localized nonlinear wave. This wave can reach a size such that the hydrostatic pressure drop from top to bottom equals the stagnation pressure of the wind. This process for the disruption of the flat interface is localized and nonlinear. We study the properties of this wave using numerical simulations of the Navier-Stokes equations.
Wave propagation in photonic crystals and metamaterials: Surface waves, nonlinearity and chirality
Energy Technology Data Exchange (ETDEWEB)
Wang, Bingnan [Iowa State Univ., Ames, IA (United States)
2009-01-01
nonlinear SRRs are built and modeled to study the nonlinearity in magnetic metamaterials and the results will be presented in Chapter 3. Negative refractive index n is one of the major target in the research of metamaterials. Negative n can be obtained with a metamaterial with both ϵ and μ negative. As an alternative, negative index for one of the circularly polarized waves could be achieved with metamaterials having a strong chirality ?. In this case neither ϵ} nor μ negative is required. My work on chiral metamaterials will be presented in Chapter 4.
Weakly nonlinear electromagnetic waves in an electron-ion positron plasma
International Nuclear Information System (INIS)
Rizzato, F.B.; Schneider, R.S.; Dillenburg, D.
1987-01-01
The modulation of a high-frequency electromagnetic wave which is circulary polarized and propagates in a plasma made up of electrons, ions and positrons is investigated. The coefficient of the cubic nonlinear term in the Schroedinger equation may change sign as the relative particle concentrations vary, and consequently a marginal state of modulation instability may exist. To described the system in the neighbourhood of this state an appropriate equation is derived. Particular stationary solutions of this equation are envelope solitary waves, envelope Kinks and envelope hole solitary waves. The dependence of the amplitude of the solutions on the propagation velocity and the particle concentrations is discussed. (author) [pt
Modified wave operators for nonlinear Schrodinger equations in one and two dimensions
Directory of Open Access Journals (Sweden)
Nakao Hayashi
2004-04-01
Full Text Available We study the asymptotic behavior of solutions, in particular the scattering theory, for the nonlinear Schr"{o}dinger equations with cubic and quadratic nonlinearities in one or two space dimensions. The nonlinearities are summation of gauge invariant term and non-gauge invariant terms. The scattering problem of these equations belongs to the long range case. We prove the existence of the modified wave operators to those equations for small final data. Our result is an improvement of the previous work [13
International Nuclear Information System (INIS)
Mirzade, Fikret Kh.
2005-01-01
The propagation of longitudinal strain wave in a plate with quadratic nonlinearity of elastic continuum was studied in the context of a model that takes into account the joint dynamics of elastic displacements in the medium and the concentration of the nonequilibrium laser-induced point defects. The input equations of the problem are reformulated in terms of only the total displacements of the medium points. In this case, the presence of structural defects manifests itself in the emergence of a delayed response of the system to the propagation of the strain-related perturbations, which is characteristic of media with relaxation or memory. The model equations describing the nonlinear displacement wave were derived with allowance made for the values of the relaxation parameter. The influence of the generation and relaxation of lattice defects on the propagation of this wave was analyzed. It is shown that, for short relaxation times of defects, the strain can propagate in the form of shock fronts. In the case of longer relaxation times, shock waves do not form and the strain wave propagates only in the form of solitary waves or a train of solitons. The contributions of the finiteness of the defect-recombination rate to linear and nonlinear elastic modulus, and spatial dispersion are determined
Nonlinear surge motions of a ship in bi-chromatic following waves
Spyrou, Kostas J.; Themelis, Nikos; Kontolefas, Ioannis
2018-03-01
Unintended motions of a ship operating in steep and long following waves are investigated. A well-known such case is ;surf-riding; where a ship is carried forward by a single wave, an event invoking sometimes lateral instability and even capsize. The dynamics underlying this behavior has been clarified earlier for monochromatic waves. However, the unsteadiness of the phase space associated with ship behavior in a multichromatic sea, combined with the intrinsically strong system nonlinearity, pose new challenges. Here, current theory is extended to cover surging and surf-riding behavior in unidirectional bi-chromatic waves encountering a ship from the stern. Excitation is provided by two unidirectional harmonic wave components having their lengths comparable to the ship length and their frequencies in rational ratio. The techniques applied include (a) continuation analysis; (b) tracking of Lagrangian coherent structures in phase space, approximated through a finite-time Lyapunov exponents' calculation; and (c) large scale simulation. A profound feature of surf-riding in bi-chromatic waves is that it is turned oscillatory. Initially it appears as a frequency-locked motion, ruled by the harmonic wave component dominating the excitation. Transformations of oscillatory surf-riding are realized as the waves become steeper. In particular, heteroclinic tanglings are identified, governing abrupt transitions between qualitatively different motions. Chaotic transients, as well as long-term chaotic motions, exist near to these events. Some extraordinary patterns of ship motion are discovered. These include a counterintuitive low speed motion at very high wave excitation level; and a hybrid motion characterized by a wildly fluctuating velocity. Due to the quite generic nature of the core mathematical model of our investigation, the current results are believed to offer clues about the behavior of a class of nonlinear dynamical systems having in their modeling some analogy with
Nonlinear dynamics and chaotic behaviour of spin wave instabilities
Energy Technology Data Exchange (ETDEWEB)
Rezende, S M; Aguiar, F.M. de.
1986-09-01
Recent experiments revealed that spin wave instabilities driven by microwave fields, either parallel or transverse to the static magnetic field, display chaotic dynamics similar to other physical systems. A theory based on the coupled nonlinear equations of motion for two spin wave modes is presented which explains most features of the experimental observations. The model predicts subharmonic routes to chaos that depend on the parameter values. For certain parameters the system exhibits a Feigenbaum scenario characteristic of one-dimensional maps. Other parameters lead to different subharmonic routes indicative of multidimensional behavior, as observed in some experiments.
Nonlinear wave propagation studies, dispersion modeling, and signal parameters correction
Czech Academy of Sciences Publication Activity Database
Převorovský, Zdeněk
..: ..., 2004, 00. [European Workshop on FP6-AERONEWS /1./. Naples (IT), 13.09.2004-16.09.2004] EU Projects: European Commission(XE) 502927 - AERO-NEWS Institutional research plan: CEZ:AV0Z2076919 Keywords : nodestructive testing * nonlinear elastic wave spectroscopy Subject RIV: BI - Acoustics
Solitary waves under the competition of linear and nonlinear periodic potentials
International Nuclear Information System (INIS)
Rapti, Z; Kevrekidis, P G; Konotop, V V; Jones, C K R T
2007-01-01
In this paper, we study the competition of the linear and nonlinear lattices and its effects on the stability and dynamics of bright solitary waves. We consider both lattices in a perturbative framework, whereby the technique of Hamiltonian perturbation theory can be used to obtain information about the existence of solutions, and the same approach, as well as eigenvalue count considerations, can be used to obtain detailed conditions about their linear stability. We find that the analytical results are in very good agreement with our numerical findings and can also be used to predict features of the dynamical evolution of such solutions. A particularly interesting result of these considerations is the existence of a tunable cancellation effect between the linear and nonlinear lattices that allows for increased mobility of the solitary wave
Energy Technology Data Exchange (ETDEWEB)
Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pegalajar-Jurado, Antonio [Technical University of Denmark; Borg, Michael [Technical University of Denmark; Bredmose, Henrik [Technical University of Denmark
2017-08-02
In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equation for the hydrodynamic forcing. The wave kinematics are computed from either theoretical or measured signals of free-surface elevation. The numerical results from each model are compared to results from wave basin tests on a scaled prototype. The comparison shows that sub and superharmonic responses can be introduced by second-order and fully nonlinear wave kinematics. The response at the wave frequency range is better reproduced when kinematics are generated from the measured surface elevation. In the future, the numerical response may be further improved by replacing the global, constant damping coefficients in the model by a more detailed, customizable definition of the user-defined numerical damping.
Directory of Open Access Journals (Sweden)
Ahmed Elhanafi
2016-12-01
Full Text Available In this paper, hydrodynamic wave loads on an offshore stationary–floating oscillating water column (OWC are investigated via a 2D and 3D computational fluid dynamics (CFD modeling based on the RANS equations and the VOF surface capturing scheme. The CFD model is validated against previous experiments for nonlinear regular wave interactions with a surface-piercing stationary barge. Following the validation stage, the numerical model is modified to consider the pneumatic damping effect, and an extensive campaign of numerical tests is carried out to study the wave–OWC interactions for different wave periods, wave heights and pneumatic damping factors. It is found that the horizontal wave force is usually larger than the vertical one. Also, there a direct relationship between the pneumatic and hydrodynamic vertical forces with a maximum vertical force almost at the device natural frequency, whereas the pneumatic damping has a little effect on the horizontal force. Additionally, simulating the turbine damping with an orifice plate induces higher vertical loads than utilizing a slot opening. Furthermore, 3D modeling significantly escalates and declines the predicted hydrodynamic vertical and horizontal wave loads, respectively.
Solitary waves for a coupled nonlinear Schrodinger system with dispersion management
Directory of Open Access Journals (Sweden)
Panayotis Panayotaros
2010-08-01
Full Text Available We consider a system of coupled nonlinear Schrodinger equations with periodically varying dispersion coefficient that arises in the context of fiber-optics communication. We use Lions's Concentration Compactness principle to show the existence of standing waves with prescribed L^2 norm in an averaged equation that approximates the coupled system. We also use the Mountain Pass Lemma to prove the existence of standing waves with prescribed frequencies.
Excitation of multiphase waves of the nonlinear Schroedinger equation by capture into resonances
International Nuclear Information System (INIS)
Friedland, L.; Shagalov, A.G.
2005-01-01
A method for adiabatic excitation and control of multiphase (N-band) waves of the periodic nonlinear Schroedinger (NLS) equation is developed. The approach is based on capturing the system into successive resonances with external, small amplitude plane waves having slowly varying frequencies. The excitation proceeds from zero and develops in stages, as an (N+1)-band (N=0,1,2,...), growing amplitude wave is formed in the (N+1)th stage from an N-band solution excited in the preceding stage. The method is illustrated in simulations, where the excited multiphase waves are analyzed via the spectral approach of the inverse scattering transform method. The theory of excitation of 0- and 1-band NLS solutions by capture into resonances is developed on the basis of a weakly nonlinear version of Whitham's averaged variational principle. The phenomenon of thresholds on the driving amplitudes for capture into successive resonances and the stability of driven, phase-locked solutions in these cases are discussed
International Nuclear Information System (INIS)
Zhang Huiqun
2009-01-01
By using a new coupled Riccati equations, a direct algebraic method, which was applied to obtain exact travelling wave solutions of some complex nonlinear equations, is improved. And the exact travelling wave solutions of the complex KdV equation, Boussinesq equation and Klein-Gordon equation are investigated using the improved method. The method presented in this paper can also be applied to construct exact travelling wave solutions for other nonlinear complex equations.
Christodoulou's nonlinear gravitational-wave memory: Evaluation in the quadrupole approximation
International Nuclear Information System (INIS)
Wiseman, A.G.; Will, C.M.
1991-01-01
Christodoulou has found a new nonlinear contribution to the net change in the wave form caused by the passage of a burst of gravity waves (''memory of the burst''). We argue that this effect is nothing but the gravitational wave form generated by the stress energy in the burst itself. We derive an explicit formula for this effect in terms of a retarded-time integral of products of time derivatives of wave-zone gravitational wave forms. The resulting effect corresponds in size to a correction 2.5 post-Newtonian orders [O((Gm/rc 2 ) 5/2 ) =(O(v/c) 5 )] beyond the quadrupole approximation, and is therefore negligible for all but the most relativistic of systems. For gravitational bremsstrahlung from two stars moving at 300 km s -1 , the effect is much less than 10 -10 of the usual linear quadrupole wave form, while for a system of coalescing binary compact objects we estimate that the effect is of order 10 -1 for two neutron stars
Stimulated Raman scattering and ion dynamics: the role of Langmuir wave non-linearities
International Nuclear Information System (INIS)
Bonnaud, G.; Pesme, D.
1988-02-01
The non-linear evolution of stimulated Raman scattering by coupling of the SRS-driven Langmuir waves to ion acoustic waves is studied numerically, in a homogeneous density laser-irradiated plasma. The coupled wave amplitude behaviour is represented either by envelope equations or by complete wave-like equations. The various physical phenomena which are involved are described. This preliminary work has been presented at the 17th Anomalous Absorption Conference, held in last May, in Lake Tahoe City (USA) [fr
Invariant Solutions for a Class of Perturbed Nonlinear Wave Equations
Directory of Open Access Journals (Sweden)
Waheed A. Ahmed
2017-11-01
Full Text Available Approximate symmetries of a class of perturbed nonlinear wave equations are computed using two newly-developed methods. Invariant solutions associated with the approximate symmetries are constructed for both methods. Symmetries and solutions are compared through discussing the advantages and disadvantages of each method.
Localized excitations in a nonlinearly coupled magnetic drift wave-zonal flow system
International Nuclear Information System (INIS)
Shukla, Nitin; Shukla, P.K.
2010-01-01
We consider the amplitude modulation of the magnetic drift wave (MDW) by zonal flows (ZFs) in a nonuniform magnetoplasma. For this purpose, we use the two-fluid model to derive a nonlinear Schroedinger equation for the amplitude modulated MDWs in the presence of the ZF potential, and an evolution equation for the ZF potential which is reinforced by the nonlinear Lorentz force of the MDWs. Our nonlinearly coupled MDW-ZFs system of equations admits stationary solutions in the form of a localized MDW envelope and a shock-like ZF potential profile.
Energy Technology Data Exchange (ETDEWEB)
Zhao, J. S.; Wu, D. J. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing (China); Voitenko, Y.; De Keyser, J., E-mail: js_zhao@pmo.ac.cn [Solar-Terrestrial Centre of Excellence, Space Physics Division, Belgian Institute for Space Aeronomy, Ringlaan-3-Avenue Circulaire, B-1180 Brussels (Belgium)
2014-04-20
We study the nonlocal nonlinear coupling and generation of kinetic Alfvén waves (KAWs) and kinetic slow waves (KSWs) by magnetohydrodynamic Alfvén waves (MHD AWs) in conditions typical for the solar wind in the inner heliosphere. This cross-scale process provides an alternative to the turbulent energy cascade passing through many intermediate scales. The nonlinearities we study are proportional to the scalar products of wave vectors and hence are called 'scalar' ones. Despite the strong Landau damping of kinetic waves, we found fast growing KAWs and KSWs at perpendicular wavelengths close to the ion gyroradius. Using the parametric decay formalism, we investigate two independent decay channels for the pump AW: forward decay (involving co-propagating product waves) and backward decay (involving counter-propagating product waves). The growth rate of the forward decay is typically 0.05 but can exceed 0.1 of the pump wave frequency. The resulting spectral transport is nonlocal and anisotropic, sharply increasing perpendicular wavenumbers but not parallel ones. AWs and KAWs propagating against the pump AW grow with about the same rate and contribute to the sunward wave flux in the solar wind. Our results suggest that the nonlocal decay of MHD AWs into KAWs and KSWs is a robust mechanism for the cross-scale spectral transport of the wave energy from MHD to dissipative kinetic scales in the solar wind and similar media.
Smooth and non-smooth travelling waves in a nonlinearly dispersive Boussinesq equation
International Nuclear Information System (INIS)
Shen Jianwei; Xu Wei; Lei Youming
2005-01-01
The dynamical behavior and special exact solutions of nonlinear dispersive Boussinesq equation (B(m,n) equation), u tt -u xx -a(u n ) xx +b(u m ) xxxx =0, is studied by using bifurcation theory of dynamical system. As a result, all possible phase portraits in the parametric space for the travelling wave system, solitary wave, kink and anti-kink wave solutions and uncountably infinite many smooth and non-smooth periodic wave solutions are obtained. It can be shown that the existence of singular straight line in the travelling wave system is the reason why smooth waves converge to cusp waves, finally. When parameter are varied, under different parametric conditions, various sufficient conditions guarantee the existence of the above solutions are given
Nonlinear acoustics of water-saturated marine sediments
DEFF Research Database (Denmark)
Jensen, Leif Bjørnø
1976-01-01
Interest in the acoustic qualities of water-saturated marine sediments has increased considerably during recent years. The use of sources of high-intensity sound in oil propsecting, in geophysical and geological studies of bottom and subbottom materials and profiles and recently in marine...... archaeology has emphasized the need of information about the nonlinear acoustic qualities of water-saturated marine sediments. While the acoustic experiments and theoretical investigations hitherto performed have concentrated on a determination of the linear acoustic qualities of water-saturated marine...... sediments, their parameters of nonlinear acoustics are still unexplored. The strong absorption, increasing about linearly with frequency, found in most marine sediments and the occurrence of velocity dispersion by some marine sediments restrict the number of nonlinear acoustic test methods traditionally...
Nonlinear wave-mixing processes in the extreme ultraviolet
International Nuclear Information System (INIS)
Misoguti, L.; Christov, I. P.; Backus, S.; Murnane, M. M.; Kapteyn, H. C.
2005-01-01
We present data from two-color high-order harmonic generation in a hollow waveguide, that suggest the presence of a nonlinear-optical frequency conversion process driven by extreme ultraviolet light. By combining the fundamental and second harmonic of an 800 nm laser in a hollow-core fiber, with varying relative polarizations, and by observing the pressure and power scaling of the various harmonic orders, we show that the data are consistent with a picture where we drive the process of high-harmonic generation, which in turn drives four-wave frequency mixing processes in the extreme EUV. This work promises a method for extending nonlinear optics into the extreme ultraviolet region of the spectrum using an approach that has not previously been considered, and has compelling implications for generating tunable light at short wavelengths
International Nuclear Information System (INIS)
Kong, Ling-Bao; Wang, Hong-Yu; Hou, Zhi-Ling; Jin, Hai-Bo; Du, Chao-Hai
2013-01-01
The nonlinear theory of slow-wave electron cyclotron masers (ECM) with an initially straight electron beam is developed. The evolution equation of the nonlinear beam electron energy is derived. The numerical studies of the slow-wave ECM efficiency with inclusion of Gaussian beam velocity spread are presented. It is shown that the velocity spread reduces the interaction efficiency. -- Highlights: •The theory of slow-wave electron cyclotron masers is considered. •The calculation of efficiency under the resonance condition is presented. •The efficiency under Gaussian velocity spreads has been obtained
Energy Technology Data Exchange (ETDEWEB)
Kong, Ling-Bao, E-mail: konglingbao@gmail.com [School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemicals Assessment, Beijing University of Chemical Technology, Beijing 100029 (China); Wang, Hong-Yu [School of Physics, Anshan Normal University, Anshan 114005 (China); Hou, Zhi-Ling, E-mail: houzl@mail.buct.edu.cn [School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemicals Assessment, Beijing University of Chemical Technology, Beijing 100029 (China); Jin, Hai-Bo [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Du, Chao-Hai [Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)
2013-12-15
The nonlinear theory of slow-wave electron cyclotron masers (ECM) with an initially straight electron beam is developed. The evolution equation of the nonlinear beam electron energy is derived. The numerical studies of the slow-wave ECM efficiency with inclusion of Gaussian beam velocity spread are presented. It is shown that the velocity spread reduces the interaction efficiency. -- Highlights: •The theory of slow-wave electron cyclotron masers is considered. •The calculation of efficiency under the resonance condition is presented. •The efficiency under Gaussian velocity spreads has been obtained.
Energy Technology Data Exchange (ETDEWEB)
Guo, Shimin, E-mail: gsm861@126.com [School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049 (China); Research Group MAC, Centrum Wiskunde and Informatica, Amsterdam, 1098XG (Netherlands); Mei, Liquan, E-mail: lqmei@mail.xjtu.edu.cn [School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049 (China); Center for Computational Geosciences, Xi’an Jiaotong University, Xi’an, 710049 (China); Sun, Anbang [Research Group MAC, Centrum Wiskunde and Informatica, Amsterdam, 1098XG (Netherlands)
2013-05-15
The nonlinear propagation of planar and nonplanar (cylindrical and spherical) ion-acoustic waves in an unmagnetized electron–positron–ion–dust plasma with two-electron temperature distributions is investigated in the context of the nonextensive statistics. Using the reductive perturbation method, a modified nonlinear Schrödinger equation is derived for the potential wave amplitude. The effects of plasma parameters on the modulational instability of ion-acoustic waves are discussed in detail for planar as well as for cylindrical and spherical geometries. In addition, for the planar case, we analyze how the plasma parameters influence the nonlinear structures of the first- and second-order ion-acoustic rogue waves within the modulational instability region. The present results may be helpful in providing a good fit between the theoretical analysis and real applications in future spatial observations and laboratory plasma experiments. -- Highlights: ► Modulational instability of ion-acoustic waves in a new plasma model is discussed. ► Tsallis’s statistics is considered in the model. ► The second-order ion-acoustic rogue wave is studied for the first time.
International Nuclear Information System (INIS)
Guo, Shimin; Mei, Liquan; Sun, Anbang
2013-01-01
The nonlinear propagation of planar and nonplanar (cylindrical and spherical) ion-acoustic waves in an unmagnetized electron–positron–ion–dust plasma with two-electron temperature distributions is investigated in the context of the nonextensive statistics. Using the reductive perturbation method, a modified nonlinear Schrödinger equation is derived for the potential wave amplitude. The effects of plasma parameters on the modulational instability of ion-acoustic waves are discussed in detail for planar as well as for cylindrical and spherical geometries. In addition, for the planar case, we analyze how the plasma parameters influence the nonlinear structures of the first- and second-order ion-acoustic rogue waves within the modulational instability region. The present results may be helpful in providing a good fit between the theoretical analysis and real applications in future spatial observations and laboratory plasma experiments. -- Highlights: ► Modulational instability of ion-acoustic waves in a new plasma model is discussed. ► Tsallis’s statistics is considered in the model. ► The second-order ion-acoustic rogue wave is studied for the first time
Energy Technology Data Exchange (ETDEWEB)
Callaghan, David P.; Nielsen, Peter [The University of Queensland, School of Civil Engineering, Brisbane (Australia); Ahmadi, Afshin [Kellogg Brown and Root Pty Ltd, Brisbane, QLD (Australia)
2011-12-15
Flume measurements of a one-dimensional sliding hump starting from rest in quiescence fresh water indicate that when the hump travels at speed less than the shallow-water wave celerity, three waves emerge, travelling in two directions. One wave travels in the opposite direction to the sliding hump at approximately the shallow-water wave celerity (backward free wave). Another wave travels approximately in step with the hump (forced wave), and the remaining wave travels in the direction of the hump at approximately the shallow-water wave celerity (forward free wave). These experiments were completed for a range of sliding hump speed relative to the shallow-water wave celerity, up to unity of this ratio, to investigate possible derivation from solutions of the Euler equation with non-linear and non-hydrostatic terms being included or excluded. For the experimental arrangements tested, the forced waves were negative (depression or reduced water surface elevation) waves while the free waves were positive (bulges or increased water surface elevation). For experiments where the sliding hump travelled at less than 80% of the shallow-water wave celerity did not include transient behaviour measurements (i.e. when the three waves still overlapped). The three wave framework was partially supported by these measurements in that the separated forward and forced waves were compared to measurements. For the laboratory scale experiments, the forward free wave height was predicted reasonably by the long-wave equation (ignoring non-linear and non-hydrostatic terms) when the sliding hump speed was less than 80% of the shallow-water wave celerity. The forced wave depression magnitude required the Euler equations for all hump speed tested. The long-wave solution, while being valid in a limited parameter range, does predict the existence of the three waves as found in these experiments (forward travelling waves measured quantitatively while the backward travelling waves visually by video
Nonlinear interactions of electromagnetic waves with the auroral ionosphere
Wong, Alfred Y.
1999-09-01
The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO2 through the use of ion cyclotron resonant heating.
Numerical simulation of nonlinear wave force on a quasi-ellipse caisson
Wang, Yongxue; Ren, Xiaozhong; Wang, Guoyu
2011-09-01
A three dimensional numerical model of nonlinear wave action on a quasi-ellipse caisson in a time domain was developed in this paper. Navier-Stokes equations were solved by the finite difference method, and the volume of fluid (VOF) method was employed to trace the free surface. The partial cell method was used to deal with the irregular boundary typical of this type of problem during first-time wave interaction with the structure, and a satisfactory result was obtained. The numerical model was verified and used to investigate the effects of the relative wave height H/d, relative caisson width kD, and relative length-width ratio B/D on the wave forces of the quasi-ellipse caisson. It was shown that the relative wave height H/d has a significant effect on the wave forces of the caisson. Compared with the non-dimensional inline wave force, the relative length-width ratio B/D was shown to have significant influence on the non-dimensional transverse wave force.
Alfven wave. [Book on linear and nonlinear properties for fusion applications
Energy Technology Data Exchange (ETDEWEB)
Hasegawa, A.; Uberoi, C.
1978-11-01
Seven chapters are included. Chapters 1 and 2 introduce the Alfven wave and describe its linear properties in a homogeneous medium. Chapters 3 and 4 cover the effects of inhomogeneities on these linear properties. Particular emphasis is placed on the appearance of a continuum spectrum and the associated absorption of the Alfven wave which arise due to the inhomogeneity. The explanation of the physical origin of absorption is given using kinetic theory. Chapter 5 is devoted to the associated plasma instabilities. Nonlinear effects discussed in Chapter 6 include quasilinear diffusion, decay, a solitary wave, and a modulational instability. The principles of Alfven wave heating, a design example and present-day experimental results are described in Chapter 7.
WAVE-E: The WAter Vapour European-Explorer Mission
Jimenez-LLuva, David; Deiml, Michael; Pavesi, Sara
2017-04-01
In the last decade, stratosphere-troposphere coupling processes in the Upper Troposphere Lower Stratosphere (UTLS) have been increasingly recognized to severely impact surface climate and high-impact weather phenomena. Weakened stratospheric circumpolar jets have been linked to worldwide extreme temperature and high-precipitation events, while anomalously strong stratospheric jets can lead to an increase in surface winds and tropical cyclone intensity. Moreover, stratospheric water vapor has been identified as an important forcing for global decadal surface climate change. In the past years, operational weather forecast and climate models have adapted a high vertical resolution in the UTLS region in order to capture the dynamical processes occurring in this highly stratified region. However, there is an evident lack of available measurements in the UTLS region to consistently support these models and further improve process understanding. Consequently, both the IPCC fifth assessment report and the ESA-GEWEX report 'Earth Observation and Water Cycle Science Priorities' have identified an urgent need for long-term observations and improved process understanding in the UTLS region. To close this gap, the authors propose the 'WAter Vapour European - Explorer' (WAVE-E) space mission, whose primary goal is to monitor water vapor in the UTLS at 1 km vertical, 25 km horizontal and sub-daily temporal resolution. WAVE-E consists of three quasi-identical small ( 500 kg) satellites (WAVE-E 1-3) in a constellation of Sun-Synchronous Low Earth Orbits, each carrying a limb sounding and cross-track scanning mid-infrared passive spectrometer (824 cm-1 to 829 cm-1). The core of the instruments builds a monolithic, field-widened type of Michelson interferometer without any moving parts, rendering it rigid and fault tolerant. Synergistic use of WAVE-E and MetOp-NG operational satellites is identified, such that a data fusion algorithm could provide water vapour profiles from the
Effects of vortex-like and non-thermal ion distributions on non-linear dust-acoustic waves
International Nuclear Information System (INIS)
Mamun, A.A.; Cairns, R.A.; Shukla, P.K.
1996-01-01
The effects of vortex-like and non-thermal ion distributions are incorporated in the study of nonlinear dust-acoustic waves in an unmagnetized dusty plasma. It is found that owing to the departure from the Boltzmann ion distribution to a vortex-like phase space distribution, the dynamics of small but finite amplitude dust-acoustic waves is governed by a modified Kortweg endash de Vries equation. The latter admits a stationary dust-acoustic solitary wave solution, which has larger amplitude, smaller width, and higher propagation velocity than that involving adiabatic ions. On the other hand, consideration of a non-thermal ion distribution provides the possibility of coexistence of large amplitude rarefactive as well as compressive dust-acoustic solitary waves, whereas these structures appear independently when the wave amplitudes become infinitely small. The present investigation should help us to understand the salient features of the non-linear dust-acoustic waves that have been observed in a recent numerical simulation study. copyright 1996 American Institute of Physics
Linear and nonlinear waves with orbital angular momentum in magnetized plasma
Ali, Shahid; Kant Shukla, Padma; Tito Mendonca, José.
2009-11-01
Here we discuss the concept of orbital angular momentum (OAM) for electromagnetic waves in a magnetized plasma. Nonlinear effects of photons with spin and OAM will be considered. In particular, we examine the case of parametric interactions between circularly polarized electromagnetic waves and Langmuir and ion acoustic waves, including the ponderomotive force of light with OAM in magnetized plasma (Shukla & Stenflo, PRA). This will be a generalization of recent results published in PRL by J.T. Mendonca and B. Thide. We also examine the influence of OAM on the magnetic field generation by the inverse Faraday effect.
Kim, Kihong; Phung, D K; Rotermund, F; Lim, H
2008-01-21
We develop a generalized version of the invariant imbedding method, which allows us to solve the electromagnetic wave equations in arbitrarily inhomogeneous stratified media where both the dielectric permittivity and magnetic permeability depend on the strengths of the electric and magnetic fields, in a numerically accurate and efficient manner. We apply our method to a uniform nonlinear slab and find that in the presence of strong external radiation, an initially uniform medium of positive refractive index can spontaneously change into a highly inhomogeneous medium where regions of positive or negative refractive index as well as metallic regions appear. We also study the wave transmission properties of periodic nonlinear media and the influence of nonlinearity on the mode conversion phenomena in inhomogeneous plasmas. We argue that our theory is very useful in the study of the optical properties of a variety of nonlinear media including nonlinear negative index media fabricated using wires and split-ring resonators.
Nonlinear wave runup in long bays and firths: Samoa 2009 and Tohoku 2011 tsunamis
Didenkulova, I.; Pelinovsky, E.
2012-04-01
Last catastrophic tsunami events in Samoa on 29 September 2009 and in Japan on 11 March 2011 demonstrated that tsunami may experience abnormal amplification in long bays and firths and result in an unexpectedly high wave runup. The capital city Pago Pago, which is located at the toe of a narrow 4-km-long bay and represents the most characteristic example of a long and narrow bay, was considerably damaged during Samoa 2009 tsunami (destroyed infrastructures, boats and shipping containers carried inland into commercial areas, etc.) The runup height there reached 8 m over an inundation of 538 m at its toe, while the tsunami wave height measured by the tide-gauge at the entrance of the bay was at most 3 m. The same situation was observed during catastrophic Tohoku tsunami in Japan, which coast contains numerous long bays and firths, which experienced the highest wave runup and the strongest amplification. Such examples are villages: Ofunato, Ryori Bay, where the wave runup reached 30 m high, and Onagawa, where the wave amplified up to 17 m. Here we study the nonlinear dynamics of tsunami waves in an inclined U-shaped bay. Nonlinear shallow water equations can in this case be written in 1D form and solved analytically with the use of the hodograph transformation. This approach generalizes the well-known Carrier-Greenspan transformation for long wave runup on a plane beach. In the case of an inclined U-shaped bay it leads to the associated generalized wave equation for symmetrical wave in fractal space. In the special case of the channel of parabolic cross-section it is a spherical symmetrical linear wave equation. As a result, the solution of the Cauchy problem can be expressed in terms of elementary functions and has a simple form (with respect to analysis) for any kind of initial conditions. Wave regimes associated with various localized initial conditions, corresponding to problems of evolution and runup of tsunami, are considered and analyzed. Special attention is
International Nuclear Information System (INIS)
Amein, W.H.; El-Siragy, N.M.; Nagy, O.Z.; Sayed, Y.A.
1981-01-01
Nonlinear interaction of S-Polarized surface waves at the boundary of a semibounded magnetized plasma is investigated. The expressions of the amplitudes of the generated waves are found. It is shown that, the generated waves with combined frequencies are equally radiated from the transient layer into plasma and vacuum
Rogue wave solutions of the nonlinear Schrödinger equation with ...
Indian Academy of Sciences (India)
In this paper, a unified formula of a series of rogue wave solutions for the standard ... rating a noise-sensitive nonlinear process in which extremely broadband radiations are ..... Based on [21,24], the higher-order rational solution of eq. (15) are.
Exact traveling wave solutions for a new nonlinear heat transfer equation
Directory of Open Access Journals (Sweden)
Gao Feng
2017-01-01
Full Text Available In this paper, we propose a new non-linear partial differential equation to de-scribe the heat transfer problems at the extreme excess temperatures. Its exact traveling wave solutions are obtained by using Cornejo-Perez and Rosu method.
Rayleigh scattering and nonlinear inversion of elastic waves
Energy Technology Data Exchange (ETDEWEB)
Gritto, Roland [Univ. of California, Berkeley, CA (United States)
1995-12-01
Rayleigh scattering of elastic waves by an inclusion is investigated and the limitations determined. In the near field of the inhomogeneity, the scattered waves are up to a factor of 300 stronger than in the far field, excluding the application of the far field Rayleigh approximation for this range. The investigation of the relative error as a function of parameter perturbation shows a range of applicability broader than previously assumed, with errors of 37% and 17% for perturbations of -100% and +100%, respectively. The validity range for the Rayleigh limit is controlled by large inequalities, and therefore, the exact limit is determined as a function of various parameter configurations, resulting in surprisingly high values of up to k_{p}R = 0.9. The nonlinear scattering problem can be solved by inverting for equivalent source terms (moments) of the scatterer, before the elastic parameters are determined. The nonlinear dependence between the moments and the elastic parameters reveals a strong asymmetry around the origin, which will produce different results for weak scattering approximations depending on the sign of the anomaly. Numerical modeling of cross hole situations shows that near field terms are important to yield correct estimates of the inhomogeneities in the vicinity of the receivers, while a few well positioned sources and receivers considerably increase the angular coverage, and thus the model resolution of the inversion parameters. The pattern of scattered energy by an inhomogeneity is complicated and varies depending on the object, the wavelength of the incident wave, and the elastic parameters involved. Therefore, it is necessary to investigate the direction of scattered amplitudes to determine the best survey geometry.
Directory of Open Access Journals (Sweden)
Kyoung-Rok Lee
2013-12-01
Full Text Available A floating Oscillating Water Column (OWC wave energy converter, a Backward Bent Duct Buoy (BBDB, was simulated using a state-of-the-art, two-dimensional, fully-nonlinear Numerical Wave Tank (NWT technique. The hydrodynamic performance of the floating OWC device was evaluated in the time domain. The acceleration potential method, with a full-updated kernel matrix calculation associated with a mode decomposition scheme, was implemented to obtain accurate estimates of the hydrodynamic force and displacement of a freely floating BBDB. The developed NWT was based on the potential theory and the boundary element method with constant panels on the boundaries. The mixed Eulerian-Lagrangian (MEL approach was employed to capture the nonlinear free surfaces inside the chamber that interacted with a pneumatic pressure, induced by the time-varying airflow velocity at the air duct. A special viscous damping was applied to the chamber free surface to represent the viscous energy loss due to the BBDB's shape and motions. The viscous damping coefficient was properly selected using a comparison of the experimental data. The calculated surface elevation, inside and outside the chamber, with a tuned viscous damping correlated reasonably well with the experimental data for various incident wave conditions. The conservation of the total wave energy in the computational domain was confirmed over the entire range of wave frequencies.
Nonlinear fiber-optic strain sensor based on four-wave mixing in microstructured optical fiber
DEFF Research Database (Denmark)
Gu, Bobo; Yuan, Scott Wu; Frosz, Michael H.
2012-01-01
We demonstrate a nonlinear fiber-optic strain sensor, which uses the shifts of four-wave mixing Stokes and anti-Stokes peaks caused by the strain-induced changes in the structure and refractive index of a microstructured optical fiber. The sensor thus uses the inherent nonlinearity of the fiber a...
Propagation of Quasi-plane Nonlinear Waves in Tubes
P. Koníček; M. Bednařík; M. Červenka
2002-01-01
This paper deals with possibilities of using the generalized Burgers equation and the KZK equation to describe nonlinear waves in circular ducts. A new method for calculating of diffraction effects taking into account boundary layer effects is described. The results of numerical solutions of the model equations are compared. Finally, the limits of validity of the used model equations are discussed with respect to boundary conditions and the radius of the circular duct. The limits of applicabi...
Soliton on a cnoidal wave background in the coupled nonlinear Schroedinger equation
International Nuclear Information System (INIS)
Shin, H J
2004-01-01
An application of the Darboux transformation on a cnoidal wave background in the coupled nonlinear Schroedinger equation gives a new solution which describes a soliton moving on a cnoidal wave. This is a generalized version of the previously known soliton solutions of dark-bright pair. Here a dark soliton resides on a cnoidal wave instead of on a constant background. It also exhibits a new type of soliton solution in a self-focusing medium, which describes a breakup of a generalized dark-bright pair into another generalized dark-bright pair and an 'oscillating' soliton. We calculate the shift of the crest of the cnoidal wave along a soliton and the moving direction of the soliton on a cnoidal wave
Real time wave measurements and wave hindcasting in deep waters
Digital Repository Service at National Institute of Oceanography (India)
Anand, N.M.; Mandal, S.; SanilKumar, V.; Nayak, B.U.
Deep water waves off Karwar (lat. 14~'45.1'N, long. 73~'34.8'E) at 75 m water depth pertaining to peak monsoon period have been measured using a Datawell waverider buoy. Measured wave data show that the significant wave height (Hs) predominantly...
Nonlinear Modeling and Analysis of Pressure Wave inside CEUP Fuel Pipeline
Directory of Open Access Journals (Sweden)
Qaisar Hayat
2014-01-01
Full Text Available Operating conditions dependent large pressure variations are one of the working characteristics of combination electronic unit pump (CEUP fuel injection system for diesel engines. We propose a precise and accurate nonlinear numerical model of pressure inside HP fuel pipeline of CEUP using wave equation (WE including both viscous and frequency dependent frictions. We have proved that developed hyperbolic approximation gives more realistic description of pressure wave as compared to classical viscous damped wave equation. Frictional effects of various frequencies on pressure wave have been averaged out across valid frequencies to represent the combined effect of all frequencies on pressure wave. Dynamic variations of key fuel properties including density, acoustic wave speed, and bulk modulus with varying pressures have also been incorporated. Based on developed model we present analysis on effect of fuel pipeline length on pressure wave propagation and variation of key fuel properties with both conventional diesel and alternate fuel rapeseed methyl ester (RME for CEUP pipeline.
Combined effects of traveling seismic waves and soil nonlinearity on nuclear power plant response
International Nuclear Information System (INIS)
Lee, T.H.; Charman, C.M.
1981-01-01
The effects of ground motion nonuniformity on the seismic input have been actively studied in recent years by considering the passage of traveling seismic waves. These studies gave rise to a new class of soil-structure interaction problems in which the seismic input is modified as a result of the spatial variations of ground motion. The phenomena were usually studied by using the elastic half-space simulation or discrete spring-models for modeling the soil medium. Finite element methods were also used recently on a limited scope. Results obtained from these investigations are often manifested by an attenuation of translational excitation along with an addition of rotational ground motion input. The decrease in structural response resulting from the input loss in the translational component was often insignificant since the response reduction tends to be offset by the effects from rotational input. The traveling wave effects have, so far, been investigated within the framework of linear theory with soil nonlinearity ignored. Conversely, the incorporation of soil nonlinearity in soil-structure interaction analyses has been done without including wave effect. Seismic analyses considering the hysteretic behavior of soil have been performed using highly idealized models for steady-state solution. More elaborate nonlinear seismic models deal with only the strain-dependent soil modulus rather than the transient unloading-reloading type of hysteretic characteristics of soil under a time-function input of earthquake trace. Apparently, the traveling wave effect and soil nonlinearity have been separately treated in the past. The purpose of this paper is to demonstrate that these two major effects can be combined in one model such that the influence of wave passage is reflected through the hysteretic behavior of soil particles, and thereby achieving significant reduction in seismic loads. (orig./RW)
Essama, Bedel Giscard Onana; Atangana, Jacques; Frederick, Biya Motto; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Kofane, Timoleon Crepin
2014-09-01
We investigate the behavior of the electromagnetic wave that propagates in a metamaterial for negative index regime. Second-order dispersion and cubic-quintic nonlinearities are taken into account. The behavior obtained for negative index regime is compared to that observed for absorption regime. The collective coordinates technique is used to characterize the light pulse intensity profile at some frequency ranges. Five frequency ranges have been pointed out. The perfect combination of second-order dispersion and cubic nonlinearity leads to a robust soliton at each frequency range for negative index regime. The soliton peak power progressively decreases for absorption regime. Further, this peak power also decreases with frequency. We show that absorption regime can induce rogue wave trains generation at a specific frequency range. However, this rogue wave trains generation is maintained when the quintic nonlinearity comes into play for negative index regime and amplified for absorption regime at a specific frequency range. It clearly appears that rogue wave behavior strongly depends on the frequency and the regime considered. Furthermore, the stability conditions of the electromagnetic wave have also been discussed at frequency ranges considered for both negative index and absorption regimes.
Nonlinear wave propagation in discrete and continuous systems
Rothos, V. M.
2016-09-01
In this review we try to capture some of the recent excitement induced by a large volume of theoretical and computational studies addressing nonlinear Schrödinger models (discrete and continuous) and the localized structures that they support. We focus on some prototypical structures, namely the breather solutions and solitary waves. In particular, we investigate the bifurcation of travelling wave solution in Discrete NLS system applying dynamical systems methods. Next, we examine the combined effects of cubic and quintic terms of the long range type in the dynamics of a double well potential. The relevant bifurcations, the stability of the branches and their dynamical implications are examined both in the reduced (ODE) and in the full (PDE) setting. We also offer an outlook on interesting possibilities for future work on this theme.
International Nuclear Information System (INIS)
Sen, S.; Roy Chowdhury, A.
1989-06-01
The nonlinear Alfven waves are governed by the Vector Derivative nonlinear Schroedinger (VDNLS) equation, which for parallel or quasi parallel propagation reduces to the Derivative Nonlinear Schroedinger (DNLS) equation for the circularly polarized waves. We have formulated the Quantum Inverse problem for a new type of Nonlinear Schroedinger Equation which has many properties similar to the usual NLS problem but the structure of classical and quantum R matrix are distinctly different. The commutation rules of the scattering data are obtained and the Algebraic Bethe Ansatz is formulated to derive the eigenvalue equation for the energy of the excited states. 10 refs
International Nuclear Information System (INIS)
Sugaya, Reiji
1989-01-01
General expressions of the matrix elements for nonlinear wave-particle scattering (nonlinear Landau and cyclotron damping) of electromagnetic and electrostatic waves in a homogeneous magnetized plasma are derived from the Vlasov-Maxwell equations. The kinetic wave equations obtained for electromagnetic waves are expressed by four-order tensors in the rotating and cartesian coordinates. No restrictions are imposed on the propagation angle to a uniform magnetic field, the Larmor radius, the frequencies, or the wave numbers. By electrostatic approximation of the dielectric tensor and the matrix elements the kinetic wave equations can be applied to the case in which two scattering waves are electrostatic or they are partially electrostatic. Further, the matrix elements in the limit of parallel or perpendicular propagation to the magnetic field are given. (author)
Yokoyama, Naoto; Takaoka, Masanori
2014-12-01
A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.
Elwakil, S. A.; El-hanbaly, A. M.; Elgarayh, A.; El-Shewy, E. K.; Kassem, A. I.
2014-11-01
The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, non-thermal hot electrons obeying a non-thermal distribution, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles on the electron beam and energetic population parameter are discussed. The results of the present investigation may be applicable in auroral zone plasma.
International Nuclear Information System (INIS)
Kasahara, H.; Seki, T.; Kumazawa, R.; Saito, K.; Mutoh, T.; Kubo, S.; Shimozuma, T.; Igami, H.; Yoshimura, Y.; Takahashi, H.; Yamada, I.; Tokuzawa, T.; Ohdachi, S.; Morita, S.; Nomura, G.; Shimpo, F.; Komori, A.; Motojima, O.; Oosako, T.; Takase, Y.
2008-01-01
A wave detector, a newly designed magnetic probe, is installed in the large helical device (LHD). This wave detector is a 100-turn loop coil with electrostatic shield. Comparing a one-loop coil to this detector, this detector has roughly constant power coupling in the lower frequency range of 40 MHz, and it can easily detect magnetic wave in the frequency of a few megahertz. During high-harmonic fast wave heating, lower frequency waves (<10 MHz) were observed in the LHD for the first time, and for the power density threshold of lower frequency wave excitation (7.5 MHz) the power density of excited pumped wave (38.47 MHz) was approximately -46 dBm/Hz. These lower frequencies are kept constant for electron density and high energy particle distribution, and these lower frequency waves seem to be ion cyclotron waves caused by nonlinear wave-particle interaction, for example, parametric decay instability.
Nonlinear whistler wave model for lion roars in the Earth’s magnetosheath
DEFF Research Database (Denmark)
Dwivedi, N. K.; Singh, S.
2017-01-01
In the present study, we construct a nonlinear whistler wave model to explain the magnetic field spectra observed for lion roars in the Earth’s magnetosheath region. We use two-fluid theory and semi-analytical approach to derive the dynamical equation of whistler wave propagating along the ambient...... magnetic field. We examine the magnetic field localization of parallel propagating whistler wave in the intermediate beta plasma applicable to the Earth’s magnetosheath. In addition, we investigate spectral features of the magnetic field fluctuations and the spectral slope value. The magnetic field...... semi-analytical model provides exposure to the whistler wave turbulence in the Earth’s magnetosheath....
Nonlinear dynamic effects in a two-wave CO2 laser
International Nuclear Information System (INIS)
Gorobets, V A; Kozlov, K V; Kuntsevich, B F; Petukhov, V O
1999-01-01
Theoretical and experimental investigations were made of nonlinear dynamic regimes of the operation of a two-wave CO 2 laser with cw excitation in an electric discharge and loss modulation in one of the channels. Nonlinear amplitude - frequency characteristics of each of the laser channels have two low-frequency resonance spikes, associated with forced linear oscillations of two coupled oscillators, and high-frequency spikes, corresponding to doubling of the period of the output radiation oscillations. At low loss-modulation frequencies the intensity oscillations of the output radiation in the coupled channels are in antiphase, whereas at high modulation frequencies the dynamics is cophasal. Nonlinear dynamic effects, such as doubling of the period and of the repetition frequency of the pulses and chaotic oscillations of the output radiation intensity, are observed for certain system parameters. (control of laser radiation parameters)
A novel method for predicting the power outputs of wave energy converters
Wang, Yingguang
2018-03-01
This paper focuses on realistically predicting the power outputs of wave energy converters operating in shallow water nonlinear waves. A heaving two-body point absorber is utilized as a specific calculation example, and the generated power of the point absorber has been predicted by using a novel method (a nonlinear simulation method) that incorporates a second order random wave model into a nonlinear dynamic filter. It is demonstrated that the second order random wave model in this article can be utilized to generate irregular waves with realistic crest-trough asymmetries, and consequently, more accurate generated power can be predicted by subsequently solving the nonlinear dynamic filter equation with the nonlinearly simulated second order waves as inputs. The research findings demonstrate that the novel nonlinear simulation method in this article can be utilized as a robust tool for ocean engineers in their design, analysis and optimization of wave energy converters.
Nonlinear electromagnetic waves in a degenerate electron-positron plasma
Energy Technology Data Exchange (ETDEWEB)
El-Labany, S.K., E-mail: skellabany@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta (Egypt); El-Taibany, W.F., E-mail: eltaibany@hotmail.com [Department of Physics, College of Science for Girls in Abha, King Khalid University, Abha (Saudi Arabia); El-Samahy, A.E.; Hafez, A.M.; Atteya, A., E-mail: ahmedsamahy@yahoo.com, E-mail: am.hafez@sci.alex.edu.eg, E-mail: ahmed_ateya2002@yahoo.com [Department of Physics, Faculty of Science, Alexandria University, Alexandria (Egypt)
2015-08-15
Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed. (author)
Wave instabilities in nonlinear Schrödinger systems with non vanishing background
Trillo, Stefano; Gongora, J. S. Totero; Fratalocchi, Andrea
2014-01-01
We investigate wave collapse in the generalized nonlinear Schrödinger (NLS) equation and in the presence of a non vanishing background. Through the use of virial identities, we establish a new criterion for blow-up.
The effects of nonlinear wave propagation on the stability of inertial cavitation
International Nuclear Information System (INIS)
Sinden, D; Stride, E; Saffari, N
2009-01-01
In the context of forecasting temperature and pressure fields generated by high-intensity focussed ultrasound, the accuracy of predictive models is critical for the safety and efficacy of treatment. In such fields 'inertial' cavitation is often observed. Classically, estimations of cavitation thresholds have been based on the assumption that the incident wave at the surface of a bubble is the same as in the far-field, neglecting the effect of nonlinear wave propagation. By modelling the incident wave as a solution to Burgers' equation using weak shock theory, the effects of nonlinear wave propagation on inertial cavitation are investigated using both numerical and analytical techniques. From radius-time curves for a single bubble, it is observed that there is a reduction in the maximum size of a bubble undergoing inertial cavitation and that the inertial collapse occurs earlier in contrast with the classical case. Corresponding stability thresholds for a bubble whose initial radius is slightly below the critical Blake radius are calculated, providing a lower bound for the onset of instability. Bifurcation diagrams and frequency-response curves are presented associated with the loss of stability. The consequences and physical implications of the results are discussed with respect to the classical results.
Demekhov, A. G.
2017-03-01
By using numerical simulations we generalize certain relationships between the parameters of quasimonochromatic whistler-mode waves generated at the linear and nonlinear stages of the cyclotron instability in the backward-wave oscillator regime. One of these relationships is between the wave amplitude at the nonlinear stage and the linear growth rate of the cyclotron instability. It was obtained analytically by V.Yu.Trakhtengerts (1984) for a uniform medium under the assumption of constant frequency and amplitude of the generated wave. We show that a similar relationship also holds for the signals generated in a nonuniform magnetic field and having a discrete structure in the form of short wave packets (elements) with fast frequency drift inside each element. We also generalize the formula for the linear growth rate of absolute cyclotron instability in a nonuniform medium and analyze the relationship between the frequency drift rate in the discrete elements and the wave amplitude. These relationships are important for analyzing the links between the parameters of chorus emissions in the Earth's and planetary magnetospheres and the characteristics of the energetic charged particles generating these signals.
International Nuclear Information System (INIS)
Khalil, Sh.M.; El-Sherif, N.; El-Siragy, N.M.; Tanta Univ.; El-Naggar, I.A.; Alexandria Univ.
1985-01-01
Investigation is made for nonlinear interaction between incident radiation and a surface wave in a magnetized plasma layer. Both interacting waves are of P polarization. The generated currents and fields at combination frequencies are obtained analytically. Unlike the S-polarized interacting waves, the magnetic field affects the fundamental waves and leads to an amplification of generated waves when their frequencies approach the cyclotron frequency. (author)
Nonlinear inertial Alfven waves in plasmas with sheared magnetic field and flow
International Nuclear Information System (INIS)
Chen Yinhua; Wang Ge; Tan Liwei
2004-01-01
Nonlinear equations describing inertial Alfven waves in plasmas with sheared magnetic field and flow are derived. For some specific parameters chosen, authors have found a new type of electromagnetic coherent structures in the tripolar vortex-like form
Oblique propagation of nonlinear hydromagnetic waves: One- and two-dimensional behavior
International Nuclear Information System (INIS)
Malara, F.; Elaoufir, J.
1991-01-01
The one- and two-dimensional behavior of obliquely propagating hydromagnetic waves is analyzed by means of analytical theory and numerical simulations. It is shown that the nonlinear evolution of a one-dimensional MHD wave leads to the formation of a rotational discontinuity and a compressive steepened quasi-linearly polarized pulse whose structure is similar to that of a finite amplitude magnetosonic simple wave. For small propagation angles, the pulse mode (fast or slow) depends on the value of β with respect to unity while for large propagation angles the wave mode is fixed by the sign of the initial density-field correlation. The two-dimensional evolution shows that an MHD wave is unstable against a small-amplitude long-wavelength modulation in the direction transverse to the wave propagation direction. A two-dimensional magnetosonic wave solution is found, in which the density fluctuation is driven by the corresponding total pressure fluctuation, exactly as in the one-dimensional simple wave. Along with the steepening effect, the wave experiences both wave front deformation and a self-focusing effect which may eventually lead to the collapse of the wave. The results compare well with observations of MHD waves in the Earth's foreshock and at comets
Nonlinear particle-wave kinetics in weakly unstable plasmas
International Nuclear Information System (INIS)
Breizman, B.N.; Berk, H.L.; Pekker, M.S.
1996-01-01
With the motivation to address the behavior of the fusion produced alpha particles in a thermonuclear reactor, a theory is developed for predicting the wave saturation levels and particle transport in weakly unstable systems with a discrete number of modes in the presence of energetic particle sources and sinks. Conditions are established for either steady state or bursting nonlinear scenarios when several modes are excited for cases where there is and there is not resonance overlap. Depending on parameters, the particles can undergo benign relaxation, with only a small fraction of the available free energy released to waves and with no global transport, or the particles can experience rapid global transport caused by a substantial conversion of their free energy into wave energy. When the resonance condition of the particle-wave interaction is varied adiabatically, the particles trapped in a wave are found to form phase space holes or clumps that enhance the particle-wave energy exchange. This mechanism, which has been experimentally observed when there is frequency chirping, causes increased saturation levels of instabilities. If resonance sweeping is imposed externally, the particle free energy can even be tapped in stable systems where background dissipation suppresses linear instability. Externally applied resonance sweeping can be important for alpha particle energy channeling, as well as for understanding fishbone and some Alfven wave instability experiments. Near instability threshold, that is when the destabilizing drive just exceeds the background dissipation, a more sophisticated analysis is developed to predict the correct saturation. To leading order, this problem reduces to an integral equation for the wave amplitude with a temporally non local cubic term. This equation has a self-similar solution that blows-up in a finite time
Nonlinear acoustic waves in nonthermal plasmas with negative and positive dust
International Nuclear Information System (INIS)
Verheest, Frank
2009-01-01
Using a Sagdeev pseudopotential formalism where nonlinear structures are stationary in a co-moving frame, large dust-acoustic solitary waves and double layers have been studied in plasmas with negative and positive cold dust, in the presence of nonthermal electrons and ions. This has been done in a systematic way, to delimit the compositional parameter space in which such modes can be found. The existence domain of negative/positive solitary waves is limited by infinite compression of the negative/positive dust or by the occurrence of negative/positive double layers. These double layers require a sufficient nonthermality of the electrons/ions and the presence of enough positive/negative dust. There are parameter ranges where both negative and positive solitary structures coexist, sometimes both of the solitary wave type, sometimes one a solitary wave and the other a double layer. Typical Sagdeev pseudopotentials and solitary wave profiles have been presented.
Directory of Open Access Journals (Sweden)
Tarikul Islam
2018-03-01
Full Text Available In this article, the analytical solutions to the space-time fractional foam drainage equation and the space-time fractional symmetric regularized long wave (SRLW equation are successfully examined by the recently established rational (G′/G-expansion method. The suggested equations are reduced into the nonlinear ordinary differential equations with the aid of the fractional complex transform. Consequently, the theories of the ordinary differential equations are implemented effectively. Three types closed form traveling wave solutions, such as hyperbolic function, trigonometric function and rational, are constructed by using the suggested method in the sense of conformable fractional derivative. The obtained solutions might be significant to analyze the depth and spacing of parallel subsurface drain and small-amplitude long wave on the surface of the water in a channel. It is observed that the performance of the rational (G′/G-expansion method is reliable and will be used to establish new general closed form solutions for any other NPDEs of fractional order.
Three-dimensional freak waves and higher-order wave-wave resonances
Badulin, S. I.; Ivonin, D. V.; Dulov, V. A.
2012-04-01
Quite often the freak wave phenomenon is associated with the mechanism of modulational (Benjamin-Feir) instability resulted from resonances of four waves with close directions and scales. This weakly nonlinear model reflects some important features of the phenomenon and is discussing in a great number of studies as initial stage of evolution of essentially nonlinear water waves. Higher-order wave-wave resonances attract incomparably less attention. More complicated mathematics and physics explain this disregard partially only. The true reason is a lack of adequate experimental background for the study of essentially three-dimensional water wave dynamics. We start our study with the classic example of New Year Wave. Two extreme events: the famous wave 26.5 meters and one of smaller 18.5 meters height (formally, not freak) of the same record, are shown to have pronounced features of essentially three-dimensional five-wave resonant interactions. The quasi-spectra approach is used for the data analysis in order to resolve adequately frequencies near the spectral peak fp ≈ 0.057Hz and, thus, to analyze possible modulations of the dominant wave component. In terms of the quasi-spectra the above two anomalous waves show co-existence of the peak harmonic and one at frequency f5w = 3/2fp that corresponds to maximum of five-wave instability of weakly nonlinear waves. No pronounced marks of usually discussed Benjamin-Feir instability are found in the record that is easy to explain: the spectral peak frequency fp corresponds to the non-dimensional depth parameter kD ≈ 0.92 (k - wavenumber, D ≈ 70 meters - depth at the Statoil platform Draupner site) that is well below the shallow water limit of the instability kD = 1.36. A unique data collection of wave records of the Marine Hydrophysical Institute in the Katsiveli platform (Black Sea) has been analyzed in view of the above findings of possible impact of the five-wave instability on freak wave occurrence. The data cover
Directory of Open Access Journals (Sweden)
Ahmed Elhanafi
2017-01-01
Full Text Available Offshore oscillating water columns (OWC represent one of the most promising forms of wave energy converters. The hydrodynamic performance of such converters heavily depends on their interactions with ocean waves; therefore, understanding these interactions is essential. In this paper, a fully nonlinear 2D computational fluid dynamics (CFD model based on RANS equations and VOF surface capturing scheme is implemented to carry out wave energy balance analyses for an offshore OWC. The numerical model is well validated against published physical measurements including; chamber differential air pressure, chamber water level oscillation and vertical velocity, overall wave energy extraction efficiency, reflected and transmitted waves, velocity and vorticity fields (PIV measurements. Following the successful validation work, an extensive campaign of numerical tests is performed to quantify the relevance of three design parameters, namely incoming wavelength, wave height and turbine damping to the device hydrodynamic performance and wave energy conversion process. All of the three investigated parameters show important effects on the wave–pneumatic energy conversion chain. In addition, the flow field around the chamber's front wall indicates areas of energy losses by stronger vortices generation than the rear wall.
Generation and growth rates of nonlinear distortions in a traveling wave tube
International Nuclear Information System (INIS)
Woehlbier, John G.; Dobson, Ian; Booske, John H.
2002-01-01
The structure of a steady state multifrequency model of a traveling wave tube amplifier is exploited to describe the generation of intermodulation frequencies and calculate their growth rates. The model describes the evolution of Fourier coefficients of circuit and electron beam quantities and has the form of differential equations with quadratic nonlinearities. Intermodulation frequencies are sequentially generated by the quadratic nonlinearities in a series solution of the differential equations. A formula for maximum intermodulation growth rates is derived and compared to simulation results
Nonlinear time-dependent simulation of helix traveling wave tubes
International Nuclear Information System (INIS)
Peng Wei-Feng; Yang Zhong-Hai; Hu Yu-Lu; Li Jian-Qing; Lu Qi-Ru; Li Bin
2011-01-01
A one-dimensional nonlinear time-dependent theory for helix traveling wave tubes is studied. A generalized electromagnetic field is applied to the expression of the radio frequency field. To simulate the variations of the high frequency structure, such as the pitch taper and the effect of harmonics, the spatial average over a wavelength is substituted by a time average over a wave period in the equation of the radio frequency field. Under this assumption, the space charge field of the electron beam can be treated by a space charge wave model along with the space charge coefficient. The effects of the radio frequency and the space charge fields on the electrons are presented by the equations of the electron energy and the electron phase. The time-dependent simulation is compared with the frequency-domain simulation for a helix TWT, which validates the availability of this theory. (interdisciplinary physics and related areas of science and technology)
Pelinovsky, Efim; Chaikovskaia, Natalya; Rodin, Artem
2015-04-01
The paper presents the analysis of the formation and evolution of shock wave in shallow water with no restrictions on its amplitude in the framework of the nonlinear shallow water equations. It is shown that in the case of large-amplitude waves appears a new nonlinear effect of reflection from the shock front of incident wave. These results are important for the assessment of coastal flooding by tsunami waves and storm surges. Very often the largest number of victims was observed on the coastline where the wave moved breaking. Many people, instead of running away, were just looking at the movement of the "raging wall" and lost time. This fact highlights the importance of researching the problem of security and optimal behavior of people in situations with increased risk. Usually there is uncertainty about the exact time, when rogue waves will impact. This fact limits the ability of people to adjust their behavior psychologically to the stressful situations. It concerns specialists, who are busy both in the field of flying activity and marine service as well as adults, young people and children, who live on the coastal zone. The rogue wave research is very important and it demands cooperation of different scientists - mathematicians and physicists, as well as sociologists and psychologists, because the final goal of efforts of all scientists is minimization of the harm, brought by rogue waves to humanity.
Li, Guang
2017-01-01
This paper presents a fast constrained optimization approach, which is tailored for nonlinear model predictive control of wave energy converters (WEC). The advantage of this approach relies on its exploitation of the differential flatness of the WEC model. This can reduce the dimension of the resulting nonlinear programming problem (NLP) derived from the continuous constrained optimal control of WEC using pseudospectral method. The alleviation of computational burden using this approach helps to promote an economic implementation of nonlinear model predictive control strategy for WEC control problems. The method is applicable to nonlinear WEC models, nonconvex objective functions and nonlinear constraints, which are commonly encountered in WEC control problems. Numerical simulations demonstrate the efficacy of this approach.
Nonlinear electrostatic ion-acoustic "oscilliton" waves driven by charge non-neutrality effects
Directory of Open Access Journals (Sweden)
J. Z. G. Ma
2011-01-01
Full Text Available Nonlinear "oscilliton" structures features a low-frequency (LF solitary envelope, the amplitude of which is modulated violently by superimposed high-frequency (HF oscillations. We have studied the charge non-neutrality effects on the excitation of electrostatic ion-acoustic (IA oscillitons. A two-fluid, warm plasma model is employed, and a set of nonlinear self-similar equations is solved in a cylindrical geometry. Under charge-neutrality conditions, three conventional IA structures (namely, sinusoidal, sawtooth, and spicky/bipolar are obtained. By contrast, under charge non-neutrality conditions, oscilliton structures are excited, where the LF envelope is in the sound-wave (SW mode, while the HF ingredients include the IA mode and the ion-Langmiur (IL mode. The amplitudes of the SW wave are violently modulated by the IA oscillations, whereas the upward sides of the IA amplitudes are modulated by the IL oscillations of smaller amplitudes, and the downward sides are modulated by hybrid IA/IL oscillations. The nonlinear oscillitons are found to be dependent not only upon the input parameters (e.g., the Mach number, the Debye length, and the initial temperature of particles, but on initial conditions as well.