#### Sample records for nonlinear transfer laws

1. Dynamic bounds for power and efficiency of non-ideal energy converters under nonlinear transfer laws

International Nuclear Information System (INIS)

Sieniutycz, Stanislaw

2009-01-01

We present a thermodynamic approach to simulation and modeling of nonlinear energy converters, in particular radiation engines. Novel results are obtained especially for dynamical engines when the temperature of the propelling medium decreases in time due to a continual decrease of the medium's internal energy caused by the power production. Basic thermodynamic principles determine the converter's efficiency and work limits in terms of the entropy production. The real work is a cumulative effect obtained in a system of a resource fluid, a sequence of engines, and an infinite bath. Nonlinear modeling involves dynamic optimization in which the classical expression for efficiency at maximum power is generalized to endoirreversible machines and nonlinear transfer laws. The primary result is a finite-rate generalization of the classical, reversible work potential (exergy). The generalized work function depends on thermal coordinates and a dissipation index, h, i.e. a Hamiltonian of the minimum entropy production problem. This generalized work function implies stronger bounds on work delivered or supplied than the reversible work potential. The role of the nonlinear analyses and dynamic optimization is shown especially for radiation engines. As an example of the kinetic work limit, generalized exergy of radiation fluid is estimated in terms of finite rates, quantified by the Hamiltonian h

2. Nonlinear Conservation Laws and Finite Volume Methods

Science.gov (United States)

Leveque, Randall J.

Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References

3. Nonlinearity, Conservation Law and Shocks

However, genuine nonlinearity is always present in an ideal gas. The conservation form of the equation (25) brings in shocks which cut off the growing part of the amplitUde as shown in. Figure 15. Acknowledgements. The author sincerely thanks the two referees whose valuable comments led to an improvement of the ...

4. Determination of regression laws: Linear and nonlinear

International Nuclear Information System (INIS)

Onishchenko, A.M.

1994-01-01

A detailed mathematical determination of regression laws is presented in the article. Particular emphasis is place on determining the laws of X j on X l to account for source nuclei decay and detector errors in nuclear physics instrumentation. Both linear and nonlinear relations are presented. Linearization of 19 functions is tabulated, including graph, relation, variable substitution, obtained linear function, and remarks. 6 refs., 1 tab

5. Entropy viscosity method for nonlinear conservation laws

KAUST Repository

Guermond, Jean-Luc

2011-05-01

A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.

6. Entropy viscosity method for nonlinear conservation laws

KAUST Repository

Guermond, Jean-Luc; Pasquetti, Richard; Popov, Bojan

2011-01-01

A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.

7. Power law scaling for rotational energy transfer

International Nuclear Information System (INIS)

Pritchard, D.E.; Smith, N.; Driver, R.D.; Brunner, T.A.

1979-01-01

We have applied a new scaling law to several sets of rotational energy transfer cross sections. The new law asserts that the square of the T-matrix depends on the amount of energy transferred as a power law. Two different kinds of angular momentum statistics are assumed, one corresponding to m/sub j/ being conserved and the other corresponding to m/sub j/ being completely randomized. Numerical fits are presented which demonstrate that the data follow the power law better than the widely used exponential gap law

8. Transfer pricing principles in VAT Law

DEFF Research Database (Denmark)

Jensen, Dennis Ramsdahl

2011-01-01

The main part of the article is devoted to a critical analysis of the optional transfer pricing provisions in the EC VAT Directive in the light of the principle of fiscal neutrality. As an integrated part of this analysis, the VAT transfer pricing regime is considered in the light of the well......-known principles for transfer pricing in the area of income tax law, as set out in Art. 9 of the OECD Model Tax Convention. The last part of the article contains a brief discussion of to which extent it is desirable to harmonize the two tax systems´ transfer pricing rules....

9. Law of nonlinear flow in saturated clays and radial consolidation

Institute of Scientific and Technical Information of China (English)

2007-01-01

It was derived that micro-scale amount level of average pore radius of clay changed from 0.01 to 0.1 micron by an equivalent concept of flow in porous media. There is good agreement between the derived results and test ones. Results of experiments show that flow in micro-scale pore of saturated clays follows law of nonlinear flow. Theoretical analyses demonstrate that an interaction of solid-liquid interfaces varies inversely with permeability or porous radius. The interaction is an important reason why nonlinear flow in saturated clays occurs. An exact mathematical model was presented for nonlinear flow in micro-scale pore of saturated clays. Dimension and physical meanings of parameters of it are definite. A new law of nonlinear flow in saturated clays was established. It can describe characteristics of flow curve of the whole process of the nonlinear flow from low hydraulic gradient to high one. Darcy law is a special case of the new law. A mathematical model was presented for consolidation of nonlinear flow in radius direction in saturated clays with constant rate based on the new law of nonlinear flow. Equations of average mass conservation and moving boundary, and formula of excess pore pressure distribution and average degree of consolidation for nonlinear flow in saturated clay were derived by using an idea of viscous boundary layer, a method of steady state in stead of transient state and a method of integral of an equation. Laws of excess pore pressure distribution and changes of average degree of consolidation with time were obtained. Results show that velocity of moving boundary decreases because of the nonlinear flow in saturated clay. The results can provide geology engineering and geotechnical engineering of saturated clay with new scientific bases. Calculations of average degree of consolidation of the Darcy flow are a special case of that of the nonlinear flow.

10. Variational approaches to conservation laws for a nonlinear ...

African Journals Online (AJOL)

The conservation laws of a nonlinear evolution equation of time dependent variable coefficients of damping and dispersion is studied. The equation under consideration is not derivable from a variational principle which means that one cannot appeal to the Noether theorem to determine the conservation laws. We utilize the ...

11. Power laws and elastic nonlinearity in materials with complex microstructure

Energy Technology Data Exchange (ETDEWEB)

Scalerandi, M., E-mail: marco.scalerandi@infm.polito.it

2016-01-28

Nonlinear ultrasonic methods have been widely used to characterize the microstructure of damaged solids and consolidated granular media. Besides distinguishing between materials exhibiting classical nonlinear behaviors from those exhibiting hysteresis, it could be of importance the discrimination between ultrasonic indications from different physical sources (scatterers). Elastic hysteresis could indeed be due to dislocations, grain boundaries, stick-slip at interfaces, etc. Analyzing data obtained on various concrete samples, we show that the power law behavior of the nonlinear indicator vs. the energy of excitation could be used to classify different microscopic features. In particular, the power law exponent ranges between 1 and 3, depending on the nature of nonlinearity. We also provide a theoretical interpretation of the collected data using models for clapping and hysteretic nonlinearities. - Highlights: • Several materials exhibit a nontrivial nonlinear elastic behavior which can be ascribed to different physical sources. • The quantitative nonlinear response is dependent on the type of microstructure present in the material. • A nonlinear indicator could be defined which depends on the excitation energy of the sample. • Assuming a power law dependence, the exponent depends on the microstructure of the material and could evolve in time. • Experimental results on concrete are discussed and a theoretical description is proposed.

12. Nonlinear response matrix methods for radiative transfer

International Nuclear Information System (INIS)

Miller, W.F. Jr.; Lewis, E.E.

1987-01-01

A nonlinear response matrix formalism is presented for the solution of time-dependent radiative transfer problems. The essential feature of the method is that within each computational cell the temperature is calculated in response to the incoming photons from all frequency groups. Thus the updating of the temperature distribution is placed within the iterative solution of the spaceangle transport problem, instead of being placed outside of it. The method is formulated for both grey and multifrequency problems and applied in slab geometry. The method is compared to the more conventional source iteration technique. 7 refs., 1 fig., 4 tabs

13. Nonlinear MHD-equations: symmetries, solutions and conservation laws

International Nuclear Information System (INIS)

Samokhin, A.V.

1985-01-01

To investigate stability and nonlinear effects in a high-temperature plasma the system of two scalar nonlinear equations is considered. The algebra of classical symmetries of this system and a certain natural part of its conservation laws are described. It is shown that first, with symmetries one can derive invariant (self-similar) solutions, second, acting with symmetry on the known solution the latter can be included into parametric family

14. Convergence of spectral methods for nonlinear conservation laws. Final report

International Nuclear Information System (INIS)

1987-08-01

The convergence of the Fourier method for scalar nonlinear conservation laws which exhibit spontaneous shock discontinuities is discussed. Numerical tests indicate that the convergence may (and in fact in some cases must) fail, with or without post-processing of the numerical solution. Instead, a new kind of spectrally accurate vanishing viscosity is introduced to augment the Fourier approximation of such nonlinear conservation laws. Using compensated compactness arguments, it is shown that this spectral viscosity prevents oscillations, and convergence to the unique entropy solution follows

15. Nonlinear Dynamic Inversion Baseline Control Law: Architecture and Performance Predictions

Science.gov (United States)

Miller, Christopher J.

2011-01-01

A model reference dynamic inversion control law has been developed to provide a baseline control law for research into adaptive elements and other advanced flight control law components. This controller has been implemented and tested in a hardware-in-the-loop simulation; the simulation results show excellent handling qualities throughout the limited flight envelope. A simple angular momentum formulation was chosen because it can be included in the stability proofs for many basic adaptive theories, such as model reference adaptive control. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as basic as possible to simplify the addition of the adaptive elements. Those design choices are explained, along with their predicted impact on the handling qualities.

16. Quantum-mechanical Green's functions and nonlinear superposition law

International Nuclear Information System (INIS)

Nassar, A.B.; Bassalo, J.M.F.; Antunes Neto, H.S.; Alencar, P. de T.S.

1986-01-01

The quantum-mechanical Green's function is derived for the problem of a time-dependent variable mass particle subject to a time-dependent forced harmonic oscillator potential by taking direct recourse of the corresponding Schroedinger equation. Through the usage of the nonlinear superposition law of Ray and Reid, it is shown that such a Green's function can be obtained from that for the problem of a particle with unit (constant) mass subject to either a forced harmonic potential with constant frequency or only to a time-dependent linear field. (Author) [pt

17. Quantum-mechanical Green's function and nonlinear superposition law

International Nuclear Information System (INIS)

Nassar, A.B.; Bassalo, J.M.F.; Antunes Neto, H.S.; Alencar, P.T.S.

1986-01-01

It is derived the quantum-mechanical Green's function for the problem of a time-dependent variable mass particle subject to a time-dependent forced harmonic-oscillator potential by taking direct recourse of the corresponding Schroedinger equation. Through the usage of the nonlinear superposition law of Ray and Reid, it is shown that such a Green's function can be obtained from that for the problem of a particle with unit (constant) mass subject to either a forced harmonic potential with constant frequency or only to a time-dependent linear field

18. Propagation of multidimensional nonlinear waves and kinematical conservation laws

CERN Document Server

2017-01-01

This book formulates the kinematical conservation laws (KCL), analyses them and presents their applications to various problems in physics. Finally, it addresses one of the most challenging problems in fluid dynamics: finding successive positions of a curved shock front. The topics discussed are the outcome of collaborative work that was carried out mainly at the Indian Institute of Science, Bengaluru, India. The theory presented in the book is supported by referring to extensive numerical results. The book is organised into ten chapters. Chapters 1–4 offer a summary of and briefly discuss the theory of hyperbolic partial differential equations and conservation laws. Formulation of equations of a weakly nonlinear wavefront and those of a shock front are briefly explained in Chapter 5, while Chapter 6 addresses KCL theory in space of arbitrary dimensions. The remaining chapters examine various analyses and applications of KCL equations ending in the ultimate goal-propagation of a three-dimensional curved sho...

19. Painleve analysis, conservation laws, and symmetry of perturbed nonlinear equations

International Nuclear Information System (INIS)

Basak, S.; Chowdhury, A.R.

1987-01-01

The authors consider the Lie-Backlund symmetries and conservation laws of a perturbed KdV equation and NLS equation. The arbitrary coefficients of the perturbing terms can be related to the condition of existence of nontrivial LB symmetry generators. When the perturbed KdV equation is subjected to Painleve analysis a la Weiss, it is found that the resonance position changes compared to the unperturbed one. They prove the compatibility of the overdetermined set of equations obtained at the different stages of recursion relations, at least for one branch. All other branches are also indicated and difficulties associated them are discussed considering the perturbation parameter epsilon to be small. They determine the Lax pair for the aforesaid branch through the use of Schwarzian derivative. For the perturbed NLS equation they determine the conservation laws following the approach of Chen and Liu. From the recurrence of these conservation laws a Lax pair is constructed. But the Painleve analysis does not produce a positive answer for the perturbed NLS equation. So here they have two contrasting examples of perturbed nonlinear equations: one passes the Painleve test and its Lax pair can be found from the analysis itself, but the other equation does not meet the criterion of the Painleve test, though its Lax pair is found in another way

20. Finite difference techniques for nonlinear hyperbolic conservation laws

International Nuclear Information System (INIS)

Sanders, R.

1985-01-01

The present study is concerned with numerical approximations to the initial value problem for nonlinear systems of conservative laws. Attention is given to the development of a class of conservation form finite difference schemes which are based on the finite volume method (i.e., the method of averages). These schemes do not fit into the classical framework of conservation form schemes discussed by Lax and Wendroff (1960). The finite volume schemes are specifically intended to approximate solutions of multidimensional problems in the absence of rectangular geometries. In addition, the development is reported of different schemes which utilize the finite volume approach for time discretization. Particular attention is given to local time discretization and moving spatial grids. 17 references

1. Free convection heat and mass transfer in a power law fluid past an inclined surface with thermophoresis

Directory of Open Access Journals (Sweden)

Medhat M. Helal

2013-10-01

Full Text Available The problem of heat and mass transfer in a power law, two-dimensional, laminar, boundary layer flow of a viscous incompressible fluid over an inclined plate with heat generation and thermophoresis is investigated by the characteristic function method. The governing non-linear partial differential equations describing the flow and heat transfer problem are transformed into a set of coupled non-linear ordinary differential equation which was solved using Runge–Kutta shooting method. Exact solutions for the dimensionless temperature and concentration profiles, are presented graphically for different physical parameters and for the different power law exponents 0  0.5.

2. Qualitative analysis and traveling wave solutions for the perturbed nonlinear Schroedinger's equation with Kerr law nonlinearity

International Nuclear Information System (INIS)

Zhang Zaiyun; Liu Zhenhai; Miao Xiujin; Chen Yuezhong

2011-01-01

In this Letter, we investigate the perturbed nonlinear Schroedinger's equation (NLSE) with Kerr law nonlinearity. All explicit expressions of the bounded traveling wave solutions for the equation are obtained by using the bifurcation method and qualitative theory of dynamical systems. These solutions contain bell-shaped solitary wave solutions, kink-shaped solitary wave solutions and Jacobi elliptic function periodic solutions. Moreover, we point out the region which these periodic wave solutions lie in. We present the relation between the bounded traveling wave solution and the energy level h. We find that these periodic wave solutions tend to the corresponding solitary wave solutions as h increases or decreases. Finally, for some special selections of the energy level h, it is shown that the exact periodic solutions evolute into solitary wave solution.

3. Cumulants of heat transfer across nonlinear quantum systems

Science.gov (United States)

Li, Huanan; Agarwalla, Bijay Kumar; Li, Baowen; Wang, Jian-Sheng

2013-12-01

We consider thermal conduction across a general nonlinear phononic junction. Based on two-time observation protocol and the nonequilibrium Green's function method, heat transfer in steady-state regimes is studied, and practical formulas for the calculation of the cumulant generating function are obtained. As an application, the general formalism is used to study anharmonic effects on fluctuation of steady-state heat transfer across a single-site junction with a quartic nonlinear on-site pinning potential. An explicit nonlinear modification to the cumulant generating function exact up to the first order is given, in which the Gallavotti-Cohen fluctuation symmetry is found still valid. Numerically a self-consistent procedure is introduced, which works well for strong nonlinearity.

4. Overall mass-transfer coefficients in non-linear chromatography

DEFF Research Database (Denmark)

Mollerup, Jørgen; Hansen, Ernst

1998-01-01

In case of mass transfer where concentration differences in both phases must be taken into account, one may define an over-all mass-transfer coefficient basd on the apparent over-all concentration difference. If the equilibrium relationship is linear, i.e. in cases where a Henry´s law relationshi...

5. Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities (vol 24, pg 2752, 2007)

DEFF Research Database (Denmark)

Bache, Morten; Moses, J.; Wise, F.W.

2010-01-01

Erratum for [M. Bache, J. Moses, and F. W. Wise, "Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities," J. Opt. Soc. Am. B 24, 2752-2762 (2007)].......Erratum for [M. Bache, J. Moses, and F. W. Wise, "Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities," J. Opt. Soc. Am. B 24, 2752-2762 (2007)]....

6. Nonlinear self-adjointness, conservation laws, and the construction of solutions of partial differential equations using conservation laws

International Nuclear Information System (INIS)

Ibragimov, N Kh; Avdonina, E D

2013-01-01

The method of nonlinear self-adjointness, which was recently developed by the first author, gives a generalization of Noether's theorem. This new method significantly extends approaches to constructing conservation laws associated with symmetries, since it does not require the existence of a Lagrangian. In particular, it can be applied to any linear equations and any nonlinear equations that possess at least one local conservation law. The present paper provides a brief survey of results on conservation laws which have been obtained by this method and published mostly in recent preprints of the authors, along with a method for constructing exact solutions of systems of partial differential equations with the use of conservation laws. In most cases the solutions obtained by the method of conservation laws cannot be found as invariant or partially invariant solutions. Bibliography: 23 titles

7. Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.

Science.gov (United States)

Ullah, Azmat; Malik, Suheel Abdullah; Alimgeer, Khurram Saleem

2018-01-01

In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA) with Interior Point Algorithm (IPA) is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.

8. Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.

Directory of Open Access Journals (Sweden)

Azmat Ullah

Full Text Available In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA with Interior Point Algorithm (IPA is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.

9. A Note on the Invariance Properties and Conservation Laws of the Kadomstev—Petviashvili Equation with Power Law Nonlinearity

International Nuclear Information System (INIS)

Bokhari A H; Zaman F D; Fakhar K; Kara A H

2011-01-01

First, we studied the invariance properties of the Kadomstev—Petviashvili equation with power law nonlinearity. Then, we determined the complete class of conservation laws and stated the corresponding conserved densities which are useful in finding the conserved quantities of the equation. The point symmetry generators were also used to reduce the equation to an exact solution and to verify the invariance properties of the conserved flows. (general)

10. Conservation laws for certain time fractional nonlinear systems of partial differential equations

Science.gov (United States)

Singla, Komal; Gupta, R. K.

2017-12-01

In this study, an extension of the concept of nonlinear self-adjointness and Noether operators is proposed for calculating conserved vectors of the time fractional nonlinear systems of partial differential equations. In our recent work (J Math Phys 2016; 57: 101504), by proposing the symmetry approach for time fractional systems, the Lie symmetries for some fractional nonlinear systems have been derived. In this paper, the obtained infinitesimal generators are used to find conservation laws for the corresponding fractional systems.

11. A disturbance decoupling nonlinear control law for variable speed wind turbines

DEFF Research Database (Denmark)

Thomsen, Sven Creutz; Poulsen, Niels Kjølstad

2007-01-01

This paper describes a nonlinear control law for controlling variable speed wind turbines using feedback linearization. The novel aspect of the control law is its ability to decouple the effect of wind fluctuations. Furthermore, the transformation to feedback linearizable coordinates is chosen...

12. Nonlinear Lyapunov-based boundary control of distributed heat transfer mechanisms in membrane distillation plant

KAUST Repository

2015-07-01

This paper presents a nonlinear Lyapunov-based boundary control for the temperature difference of a membrane distillation boundary layers. The heat transfer mechanisms inside the process are modeled with a 2D advection-diffusion equation. The model is semi-descretized in space, and a nonlinear state-space representation is provided. The control is designed to force the temperature difference along the membrane sides to track a desired reference asymptotically, and hence a desired flux would be generated. Certain constraints are put on the control law inputs to be within an economic range of energy supplies. The effect of the controller gain is discussed. Simulations with real process parameters for the model, and the controller are provided. © 2015 American Automatic Control Council.

13. A Nonlinear Fuel Optimal Reaction Jet Control Law

National Research Council Canada - National Science Library

Breitfeller, Eric

2002-01-01

We derive a nonlinear fuel optimal attitude control system (ACS) that drives the final state to the desired state according to a cost function that weights the final state angular error relative to the angular rate error...

14. Consequences of nonlinear heat transport laws on expected plasma profiles

International Nuclear Information System (INIS)

Lackner, K.

1987-03-01

The expected variation of plasma pressure profiles against changes in power deposition is investigated by using a simple linear heat transport law as well as a quadratic one. Applying the quadratic transport law it can be shown that the stiffening of the resulting profiles is sufficient to understand the experimentally measured phenomenon of 'profile consistence' without further assumptions of nonlocal effects. (orig.) [de

15. Analysis of the Symmetries and Conservation Laws of the Nonlinear Jaulent-Miodek Equation

Directory of Open Access Journals (Sweden)

2014-01-01

Full Text Available Lie symmetry method is performed for the nonlinear Jaulent-Miodek equation. We will find the symmetry group and optimal systems of Lie subalgebras. The Lie invariants associated with the symmetry generators as well as the corresponding similarity reduced equations are also pointed out. And conservation laws of the J-M equation are presented with two steps: firstly, finding multipliers for computation of conservation laws and, secondly, symbolic computation of conservation laws will be applied.

16. Forced convective heat transfer in boundary layer flow of Sisko fluid over a nonlinear stretching sheet.

Science.gov (United States)

Munir, Asif; Shahzad, Azeem; Khan, Masood

2014-01-01

The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden's method in the domain[Formula: see text]. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.

17. Testing the Law of One Price under Nonlinearity for Egg Market of Selected Provinces of Iran

Directory of Open Access Journals (Sweden)

2016-05-01

Full Text Available Introduction: Regarding to the ever-increasing consumption of egg and consequently enhancement of its production during recent years, consideration to this output's market integration has special importance. Considering the fact that information on market integration may provide specific evidence as to the competitiveness of market, the effectiveness of arbitrage and the efficiency of pricing could be, likewise, useful to guide subsequent interventions aimed at improving the performance of market. In this context, in present study, validity of Law of One Price (LOP will be tested in the egg market and among selected provinces. Materials and Methods: Nonlinearity naturally extracted from local market due to existence of transportation and other transaction costs, so common cointegration test results are not suitable for market integration. In this study, at first, for being sure that series follow nonlinear behavior, Luukkonen et al. (1988 and BDS nonlinearity tests were used. Then for testing Law of One price in the egg market, nonlinear unit root test proposed by Emmanouilides and Fousekis (2012, which is an auxiliary regression for ESTAR model, was used. The data are daily retail prices of egg with the sample period ranging from April 2006 to march 2014 for north-west provinces of Iran including West Azerbaijan, East Azerbaijan, Ardebil, Tehran and Zanjan, which were obtained from State Live Stock Affairs Logistics Incorporated Company. Results and Discussion: Based on the DF-GLS unit root test, the null hypothesis of unit root for egg price differentials was rejected. So, all series of price differentials are stationary. In the next step nonlinearity of price differentials of egg between two provinces was examined. In BDS test, at the beginning, an ARMA model was estimated then the test was carried out to the residual of estimated model with embedding dimension (m 2-8 and the dimensional distance (ε chosen equals to 0.5 and 2 times of

18. DOUBLE TRIALS METHOD FOR NONLINEAR PROBLEMS ARISING IN HEAT TRANSFER

Directory of Open Access Journals (Sweden)

Chun-Hui He

2011-01-01

Full Text Available According to an ancient Chinese algorithm, the Ying Buzu Shu, in about second century BC, known as the rule of double false position in West after 1202 AD, two trial roots are assumed to solve algebraic equations. The solution procedure can be extended to solve nonlinear differential equations by constructing an approximate solution with an unknown parameter, and the unknown parameter can be easily determined using the Ying Buzu Shu. An example in heat transfer is given to elucidate the solution procedure.

19. Application of nonlinear Krylov acceleration to radiative transfer problems

International Nuclear Information System (INIS)

Till, A. T.; Adams, M. L.; Morel, J. E.

2013-01-01

The iterative solution technique used for radiative transfer is normally nested, with outer thermal iterations and inner transport iterations. We implement a nonlinear Krylov acceleration (NKA) method in the PDT code for radiative transfer problems that breaks nesting, resulting in more thermal iterations but significantly fewer total inner transport iterations. Using the metric of total inner transport iterations, we investigate a crooked-pipe-like problem and a pseudo-shock-tube problem. Using only sweep preconditioning, we compare NKA against a typical inner / outer method employing GMRES / Newton and find NKA to be comparable or superior. Finally, we demonstrate the efficacy of applying diffusion-based preconditioning to grey problems in conjunction with NKA. (authors)

20. Fluid mechanics and heat transfer advances in nonlinear dynamics modeling

CERN Document Server

Asli, Kaveh Hariri

2015-01-01

This valuable new book focuses on new methods and techniques in fluid mechanics and heat transfer in mechanical engineering. The book includes the research of the authors on the development of optimal mathematical models and also uses modern computer technology and mathematical methods for the analysis of nonlinear dynamic processes. It covers technologies applicable to both fluid mechanics and heat transfer problems, which include a combination of physical, mechanical, and thermal techniques. The authors develop a new method for the calculation of mathematical models by computer technology, using parametric modeling techniques and multiple analyses for mechanical system. The information in this book is intended to help reduce the risk of system damage or failure. Included are sidebar discussions, which contain information and facts about each subject area that help to emphasize important points to remember.

1. Some current topics on nonlinear conservation laws lectures at the morningside center of mathematics, 1

CERN Document Server

Hsiao, Ling

2000-01-01

This volume resulted from a year-long program at the Morningside Center of Mathematics at the Academia Sinica in Beijing. It presents an overview of nonlinear conversation laws and introduces developments in this expanding field. Xin's introductory overview of the subject is followed by lecture notes of leading experts who have made fundamental contributions to this field of research. A. Bressan's theory of L^1-well-posedness for entropy weak solutions to systems of nonlinear hyperbolic conversation laws in the class of viscosity solutions is one of the most important results in the past two decades; G. Chen discusses weak convergence methods and various applications to many problems; P. Degond details mathematical modelling of semi-conductor devices; B. Perthame describes the theory of asymptotic equivalence between conservation laws and singular kinetic equations; Z. Xin outlines the recent development of the vanishing viscosity problem and nonlinear stability of elementary wave-a major focus of research in...

2. On heat transfer of weakly compressible power-law flows

Directory of Open Access Journals (Sweden)

Li Botong

2017-01-01

Full Text Available This paper completes a numerical research on steady momentum and heat transfer in power-law fluids in a channel. Weakly compressible laminar fluids are studied with no slip at the walls and uniform wall temperatures. The full governing equations are solved by continuous finite element method. Three thermal conductivity models are adopted in this paper, that is, constant thermal conductivity model, thermal conductivity varying as a function of temperature gradient, and a modified temperature-gradient-dependent thermal conductivity model. The results are compared with each other and the physical characteristics for values of parameters are also discussed in details. It is shown that the velocity curve from the solution becomes straight at higher power-law index. The effects of Reynolds numbers on the dilatant fluid and the pseudo-plastic look similar to each other and their trends can be easily predicted. Furthermore, for different models, the temperature curves also present pseudo-plastic and dilatant properties.

3. Optically nonlinear energy transfer in light-harvesting dendrimers

Science.gov (United States)

Andrews, David L.; Bradshaw, David S.

2004-08-01

Dendrimeric polymers are the subject of intense research activity geared towards their implementation in nanodevice applications such as energy harvesting systems, organic light-emitting diodes, photosensitizers, low-threshold lasers, and quantum logic elements, etc. A recent development in this area has been the construction of dendrimers specifically designed to exhibit novel forms of optical nonlinearity, exploiting the unique properties of these materials at high levels of photon flux. Starting from a thorough treatment of the underlying theory based on the principles of molecular quantum electrodynamics, it is possible to identify and characterize several optically nonlinear mechanisms for directed energy transfer and energy pooling in multichromophore dendrimers. Such mechanisms fall into two classes: first, those where two-photon absorption by individual donors is followed by transfer of the net energy to an acceptor; second, those where the excitation of two electronically distinct but neighboring donor groups is followed by a collective migration of their energy to a suitable acceptor. Each transfer process is subject to minor dissipative losses. In this paper we describe in detail the balance of factors and the constraints that determines the favored mechanism, which include the excitation statistics, structure of the energy levels, laser coherence factors, chromophore selection rules and architecture, possibilities for the formation of delocalized excitons, spectral overlap, and the overall distribution of donors and acceptors. Furthermore, it transpires that quantum interference between different mechanisms can play an important role. Thus, as the relative importance of each mechanism determines the relevant nanophotonic characteristics, the results reported here afford the means for optimizing highly efficient light-harvesting dendrimer devices.

4. Filtering Non-Linear Transfer Functions on Surfaces.

Science.gov (United States)

Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice

2014-07-01

Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few

5. The generalized approximation method and nonlinear heat transfer equations

Directory of Open Access Journals (Sweden)

Rahmat Khan

2009-01-01

Full Text Available Generalized approximation technique for a solution of one-dimensional steady state heat transfer problem in a slab made of a material with temperature dependent thermal conductivity, is developed. The results obtained by the generalized approximation method (GAM are compared with those studied via homotopy perturbation method (HPM. For this problem, the results obtained by the GAM are more accurate as compared to the HPM. Moreover, our (GAM generate a sequence of solutions of linear problems that converges monotonically and rapidly to a solution of the original nonlinear problem. Each approximate solution is obtained as the solution of a linear problem. We present numerical simulations to illustrate and confirm the theoretical results.

6. Direct observation of coherent energy transfer in nonlinear micromechanical oscillators.

Science.gov (United States)

Chen, Changyao; Zanette, Damián H; Czaplewski, David A; Shaw, Steven; López, Daniel

2017-05-26

Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. The fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.

7. On a quantum version of conservation laws for derivative nonlinear Schrodinger equation

International Nuclear Information System (INIS)

Sen, S.; Chowdhury, A.R.

1988-01-01

The authors derived the quantum mechanical versions of infinite number of conservation laws associated with Derivative Nonlinear Schrodinger equation with the help of a methodology used in string theory. The renormalised version of the conserved quantities are obtained with explicit forms of the counter terms

8. Investigation on the effect of nonlinear processes on similarity law in high-pressure argon discharges

Science.gov (United States)

Fu, Yangyang; Parsey, Guy M.; Verboncoeur, John P.; Christlieb, Andrew J.

2017-11-01

In this paper, the effect of nonlinear processes (such as three-body collisions and stepwise ionizations) on the similarity law in high-pressure argon discharges has been studied by the use of the Kinetic Global Model framework. In the discharge model, the ground state argon atoms (Ar), electrons (e), atom ions (Ar+), molecular ions (Ar2+), and fourteen argon excited levels Ar*(4s and 4p) are considered. The steady-state electron and ion densities are obtained with nonlinear processes included and excluded in the designed models, respectively. It is found that in similar gas gaps, keeping the product of gas pressure and linear dimension unchanged, with the nonlinear processes included, the normalized density relations deviate from the similarity relations gradually as the scale-up factor decreases. Without the nonlinear processes, the parameter relations are in good agreement with the similarity law predictions. Furthermore, the pressure and the dimension effects are also investigated separately with and without the nonlinear processes. It is shown that the gas pressure effect on the results is less obvious than the dimension effect. Without the nonlinear processes, the pressure and the dimension effects could be estimated from one to the other based on the similarity relations.

9. A nonlinear CDM based damage growth law for ductile materials

Science.gov (United States)

Gautam, Abhinav; Priya Ajit, K.; Sarkar, Prabir Kumar

2018-02-01

A nonlinear ductile damage growth criterion is proposed based on continuum damage mechanics (CDM) approach. The model is derived in the framework of thermodynamically consistent CDM assuming damage to be isotropic. In this study, the damage dissipation potential is also derived to be a function of varying strain hardening exponent in addition to damage strain energy release rate density. Uniaxial tensile tests and load-unload-cyclic tensile tests for AISI 1020 steel, AISI 1030 steel and Al 2024 aluminum alloy are considered for the determination of their respective damage variable D and other parameters required for the model(s). The experimental results are very closely predicted, with a deviation of 0%-3%, by the proposed model for each of the materials. The model is also tested with predictabilities of damage growth by other models in the literature. Present model detects the state of damage quantitatively at any level of plastic strain and uses simpler material tests to find the parameters of the model. So, it should be useful in metal forming industries to assess the damage growth for the desired deformation level a priori. The superiority of the new model is clarified by the deviations in the predictability of test results by other models.

10. Nonlinear quenches of power-law confining traps in quantum critical systems

International Nuclear Information System (INIS)

Collura, Mario; Karevski, Dragi

2011-01-01

We describe the coherent quantum evolution of a quantum many-body system with a time-dependent power-law confining potential. The amplitude of the inhomogeneous potential is driven in time along a nonlinear ramp which crosses a critical point. Using Kibble-Zurek-like scaling arguments we derive general scaling laws for the density of excitations and energy excess generated during the nonlinear sweep of the confining potential. It is shown that, with respect to the sweeping rate, the densities follow algebraic laws with exponents that depend on the space-time properties of the potential and on the scaling dimensions of the densities. We support our scaling predictions with both analytical and numerical results on the Ising quantum chain with an inhomogeneous transverse field varying in time.

11. Infinite sets of conservation laws for linear and nonlinear field equations

International Nuclear Information System (INIS)

Mickelsson, J.

1984-01-01

The relation between an infinite set of conservation laws of a linear field equation and the enveloping algebra of the space-time symmetry group is established. It is shown that each symmetric element of the enveloping algebra of the space-time symmetry group of a linear field equation generates a one-parameter group of symmetries of the field equation. The cases of the Maxwell and Dirac equations are studied in detail. Then it is shown that (at least in the sense of a power series in the 'coupling constant') the conservation laws of the linear case can be deformed to conservation laws of a nonlinear field equation which is obtained from the linear one by adding a nonlinear term invariant under the group of space-time symmetries. As an example, our method is applied to the Korteweg-de Vries equation and to the massless Thirring model. (orig.)

12. A Case Study of 2-4 Transfer in New Jersey: Implementation of a Transfer Law at Three Community Colleges

Science.gov (United States)

McCormick, Mark Allen

2017-01-01

The purpose of this study was to examine ways in which the 2007 New Jersey transfer law mandating "seamless transfer" between public two- and four-year colleges has been implemented at three community colleges and the state's flagship research university and the forces that have contributed to and limited the extent to which the law has…

13. Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains

Science.gov (United States)

Przedborski, Michelle; Anco, Stephen C.

2017-09-01

A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.

14. AKNS hierarchy, Darboux transformation and conservation laws of the 1D nonautonomous nonlinear Schroedinger equations

International Nuclear Information System (INIS)

Zhao Dun; Zhang Yujuan; Lou Weiwei; Luo Honggang

2011-01-01

By constructing nonisospectral Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy, we investigate the nonautonomous nonlinear Schroedinger (NLS) equations which have been used to describe the Feshbach resonance management in matter-wave solitons in Bose-Einstein condensate and the dispersion and nonlinearity managements for optical solitons. It is found that these equations are some special cases of a new integrable model of nonlocal nonautonomous NLS equations. Based on the Lax pairs, the Darboux transformation and conservation laws are explored. It is shown that the local external potentials would break down the classical infinite number of conservation laws. The result indicates that the integrability of the nonautonomous NLS systems may be nontrivial in comparison to the conventional concept of integrability in the canonical case.

15. Conservation Laws and Traveling Wave Solutions of a Generalized Nonlinear ZK-BBM Equation

Directory of Open Access Journals (Sweden)

2014-01-01

Full Text Available We study a generalized two-dimensional nonlinear Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZK-BBM equation, which is in fact Benjamin-Bona-Mahony equation formulated in the ZK sense. Conservation laws for this equation are constructed by using the new conservation theorem due to Ibragimov and the multiplier method. Furthermore, traveling wave solutions are obtained by employing the (G'/G-expansion method.

16. Nonlinear Lyapunov-based boundary control of distributed heat transfer mechanisms in membrane distillation plant

KAUST Repository

2015-01-01

This paper presents a nonlinear Lyapunov-based boundary control for the temperature difference of a membrane distillation boundary layers. The heat transfer mechanisms inside the process are modeled with a 2D advection-diffusion equation. The model

17. Nonlinear and linear wave equations for propagation in media with frequency power law losses

Science.gov (United States)

Szabo, Thomas L.

2003-10-01

The Burgers, KZK, and Westervelt wave equations used for simulating wave propagation in nonlinear media are based on absorption that has a quadratic dependence on frequency. Unfortunately, most lossy media, such as tissue, follow a more general frequency power law. The authors first research involved measurements of loss and dispersion associated with a modification to Blackstock's solution to the linear thermoviscous wave equation [J. Acoust. Soc. Am. 41, 1312 (1967)]. A second paper by Blackstock [J. Acoust. Soc. Am. 77, 2050 (1985)] showed the loss term in the Burgers equation for plane waves could be modified for other known instances of loss. The authors' work eventually led to comprehensive time-domain convolutional operators that accounted for both dispersion and general frequency power law absorption [Szabo, J. Acoust. Soc. Am. 96, 491 (1994)]. Versions of appropriate loss terms were developed to extend the standard three nonlinear wave equations to these more general losses. Extensive experimental data has verified the predicted phase velocity dispersion for different power exponents for the linear case. Other groups are now working on methods suitable for solving wave equations numerically for these types of loss directly in the time domain for both linear and nonlinear media.

18. A novel investigation of a micropolar fluid characterized by nonlinear constitutive diffusion model in boundary layer flow and heat transfer

Science.gov (United States)

Sui, Jize; Zhao, Peng; Cheng, Zhengdong; Zheng, Liancun; Zhang, Xinxin

2017-02-01

The rheological and heat-conduction constitutive models of micropolar fluids (MFs), which are important non-Newtonian fluids, have been, until now, characterized by simple linear expressions, and as a consequence, the non-Newtonian performance of such fluids could not be effectively captured. Here, we establish the novel nonlinear constitutive models of a micropolar fluid and apply them to boundary layer flow and heat transfer problems. The nonlinear power law function of angular velocity is represented in the new models by employing generalized "n-diffusion theory," which has successfully described the characteristics of non-Newtonian fluids, such as shear-thinning and shear-thickening fluids. These novel models may offer a new approach to the theoretical understanding of shear-thinning behavior and anomalous heat transfer caused by the collective micro-rotation effects in a MF with shear flow according to recent experiments. The nonlinear similarity equations with a power law form are derived and the approximate analytical solutions are obtained by the homotopy analysis method, which is in good agreement with the numerical solutions. The results indicate that non-Newtonian behaviors involving a MF depend substantially on the power exponent n and the modified material parameter K 0 introduced by us. Furthermore, the relations of the engineering interest parameters, including local boundary layer thickness, local skin friction, and Nusselt number are found to be fitted by a quadratic polynomial to n with high precision, which enables the extraction of the rapid predictions from a complex nonlinear boundary-layer transport system.

19. Strong gun laws are not enough: the need for improved enforcement of secondhand gun transfer laws in Massachusetts.

Science.gov (United States)

Braga, Anthony A; Hureau, David M

2015-10-01

Research suggests that an overwhelming majority of crime guns were transferred by private sellers before recovery by law enforcement. Unfortunately, most states do not regulate these transactions. This study examines whether analyses of state-level private transfer data could be used to develop interventions to reduce the supply of handguns to violent criminals. Traced Boston crime handguns first sold at Massachusetts license dealers were matched to state secondhand gun transfer data. Logistic regression and descriptive statistics were used to analyze the characteristics of recovered crime guns and in-state primary and secondary market transaction patterns. For crime handguns with records of secondary market transactions in Massachusetts, many rapidly move from private transfer to recovery by the police. Unfortunately, important transaction data on the in-state sources of nearly 63% of recovered handguns were not readily available to law enforcement agencies. Data on private transfers of guns could be used to prevent violent injuries by reducing criminal access. However, the passage of strong private transfer gun laws needs to be accompanied by investments in the vigorous enforcement of reporting requirements. Copyright © 2015 Elsevier Inc. All rights reserved.

20. High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains

Science.gov (United States)

Fisher, Travis C.; Carpenter, Mark H.

2013-01-01

Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.

1. Block backstepping design of nonlinear state feedback control law for underactuated mechanical systems

CERN Document Server

2017-01-01

This book presents a novel, generalized approach to the design of nonlinear state feedback control laws for a large class of underactuated mechanical systems based on application of the block backstepping method. The control law proposed here is robust against the effects of model uncertainty in dynamic and steady-state performance and addresses the issue of asymptotic stabilization for the class of underactuated mechanical systems. An underactuated system is defined as one for which the dimension of space spanned by the configuration vector is greater than that of the space spanned by the control variables. Control problems concerning underactuated systems currently represent an active field of research due to their broad range of applications in robotics, aerospace, and marine contexts. The book derives a generalized theory of block backstepping control design for underactuated mechanical systems, and examines several case studies that cover interesting examples of underactuated mechanical systems. The math...

2. Numerical solution of non-linear dual-phase-lag bioheat transfer equation within skin tissues.

Science.gov (United States)

Kumar, Dinesh; Kumar, P; Rai, K N

2017-11-01

This paper deals with numerical modeling and simulation of heat transfer in skin tissues using non-linear dual-phase-lag (DPL) bioheat transfer model under periodic heat flux boundary condition. The blood perfusion is assumed temperature-dependent which results in non-linear DPL bioheat transfer model in order to predict more accurate results. A numerical method of line which is based on finite difference and Runge-Kutta (4,5) schemes, is used to solve the present non-linear problem. Under specific case, the exact solution has been obtained and compared with the present numerical scheme, and we found that those are in good agreement. A comparison based on model selection criterion (AIC) has been made among non-linear DPL models when the variation of blood perfusion rate with temperature is of constant, linear and exponential type with the experimental data and it has been found that non-linear DPL model with exponential variation of blood perfusion rate is closest to the experimental data. In addition, it is found that due to absence of phase-lag phenomena in Pennes bioheat transfer model, it achieves steady state more quickly and always predict higher temperature than thermal and DPL non-linear models. The effect of coefficient of blood perfusion rate, dimensionless heating frequency and Kirchoff number on dimensionless temperature distribution has also been analyzed. The whole analysis is presented in dimensionless form. Copyright © 2017 Elsevier Inc. All rights reserved.

3. Generalized irreversible heat-engine experiencing a complex heat-transfer law

International Nuclear Information System (INIS)

Chen Lingen; Li Jun; Sun Fengrui

2008-01-01

The fundamental optimal relation between optimal power-output and efficiency of a generalized irreversible Carnot heat-engine is derived based on a generalized heat-transfer law, including a generalized convective heat-transfer law and a generalized radiative heat-transfer law, q ∝ (ΔT n ) m . The generalized irreversible Carnot-engine model incorporates several internal and external irreversibilities, such as heat resistance, bypass heat-leak, friction, turbulence and other undesirable irreversibility factors. The added irreversibilities, besides heat resistance, are characterized by a constant parameter and a constant coefficient. The effects of heat-transfer laws and various loss terms are analyzed. The results obtained corroborate those in the literature

4. Second Law Analysis in Convective Heat and Mass Transfer

Directory of Open Access Journals (Sweden)

A. Ben Brahim

2006-02-01

Full Text Available This paper reports the numerical determination of the entropy generation due to heat transfer, mass transfer and fluid friction in steady state for laminar double diffusive convection, in an inclined enclosure with heat and mass diffusive walls, by solving numerically the mass, momentum, species conservation and energy balance equations, using a Control Volume Finite-Element Method. The influences of the inclination angle, the thermal Grashof number and the buoyancy ratio on total entropy generation were investigated. The irreversibilities localization due to heat transfer, mass transfer and fluid friction is discussed for three inclination angles at a fixed thermal Grashof number.

5. Energy transfer in coupled nonlinear phononic waveguides: transition from wandering breather to nonlinear self-trapping

International Nuclear Information System (INIS)

Kosevich, Y A; Manevitch, L I; Savin, A V

2007-01-01

We consider, both analytically and numerically, the dynamics of stationary and slowly-moving breathers (localized short-wavelength excitations) in two weakly coupled nonlinear oscillator chains (nonlinear phononic waveguides). We show that there are two qualitatively different dynamical regimes of the coupled breathers: the oscillatory exchange of the low-amplitude breather between the phononic waveguides (wandering breather), and one-waveguide-localization (nonlinear self-trapping) of the high-amplitude breather. We also show that phase-coherent dynamics of the coupled breathers in two weakly linked nonlinear phononic waveguides has a profound analogy, and is described by a similar pair of equations, to the tunnelling quantum dynamics of two weakly linked Bose-Einstein condensates in a symmetric double-well potential (single bosonic Josephson junction). The exchange of phonon energy and excitations between the coupled phononic waveguides takes on the role which the exchange of atoms via quantum tunnelling plays in the case of the coupled condensates. On the basis of this analogy, we predict a new tunnelling mode of the coupled Bose-Einstein condensates in a single bosonic Josephson junction in which their relative phase oscillates around π/2. The dynamics of relative phase of two weakly linked Bose-Einstein condensates can be studied by means of interference, while the dynamics of the exchange of lattice excitations in coupled nonlinear phononic waveguides can be observed by means of light scattering

6. Optically nonlinear energy transfer in light-harvesting dendrimers

OpenAIRE

2004-01-01

Dendrimeric polymers are the subject of intense research activity geared towards their implementation in nanodevice applications such as energy harvesting systems,organic light-emitting diodes, photosensitizers, low-threshold lasers, and quantum logic elements, etc. A recent development in this area has been the construction of dendrimers specifically designed to exhibit novel forms of optical nonlinearity, exploiting the unique properties of these materials at high levels of photon flux. Sta...

7. A strain-hardening bi-power law for the nonlinear behaviour of biological soft tissues.

Science.gov (United States)

Nicolle, S; Vezin, P; Palierne, J-F

2010-03-22

Biological soft tissues exhibit a strongly nonlinear viscoelastic behaviour. Among parenchymous tissues, kidney and liver remain less studied than brain, and a first goal of this study is to report additional material properties of kidney and liver tissues in oscillatory shear and constant shear rate tests. Results show that the liver tissue is more compliant but more strain hardening than kidney. A wealth of multi-parameter mathematical models has been proposed for describing the mechanical behaviour of soft tissues. A second purpose of this work is to develop a new constitutive law capable of predicting our experimental data in the both linear and nonlinear viscoelastic regime with as few parameters as possible. We propose a nonlinear strain-hardening fractional derivative model in which six parameters allow fitting the viscoelastic behaviour of kidney and liver tissues for strains ranging from 0.01 to 1 and strain rates from 0.0151 s(-1) to 0.7s(-1). Copyright (c) 2009 Elsevier Ltd. All rights reserved.

8. Robust wireless power transfer using a nonlinear parity-time-symmetric circuit.

Science.gov (United States)

Assawaworrarit, Sid; Yu, Xiaofang; Fan, Shanhui

2017-06-14

Considerable progress in wireless power transfer has been made in the realm of non-radiative transfer, which employs magnetic-field coupling in the near field. A combination of circuit resonance and impedance transformation is often used to help to achieve efficient transfer of power over a predetermined distance of about the size of the resonators. The development of non-radiative wireless power transfer has paved the way towards real-world applications such as wireless powering of implantable medical devices and wireless charging of stationary electric vehicles. However, it remains a fundamental challenge to create a wireless power transfer system in which the transfer efficiency is robust against the variation of operating conditions. Here we propose theoretically and demonstrate experimentally that a parity-time-symmetric circuit incorporating a nonlinear gain saturation element provides robust wireless power transfer. Our results show that the transfer efficiency remains near unity over a distance variation of approximately one metre, without the need for any tuning. This is in contrast with conventional methods where high transfer efficiency can only be maintained by constantly tuning the frequency or the internal coupling parameters as the transfer distance or the relative orientation of the source and receiver units is varied. The use of a nonlinear parity-time-symmetric circuit should enable robust wireless power transfer to moving devices or vehicles.

9. Robust wireless power transfer using a nonlinear parity-time-symmetric circuit

Science.gov (United States)

Assawaworrarit, Sid; Yu, Xiaofang; Fan, Shanhui

2017-06-01

Considerable progress in wireless power transfer has been made in the realm of non-radiative transfer, which employs magnetic-field coupling in the near field. A combination of circuit resonance and impedance transformation is often used to help to achieve efficient transfer of power over a predetermined distance of about the size of the resonators. The development of non-radiative wireless power transfer has paved the way towards real-world applications such as wireless powering of implantable medical devices and wireless charging of stationary electric vehicles. However, it remains a fundamental challenge to create a wireless power transfer system in which the transfer efficiency is robust against the variation of operating conditions. Here we propose theoretically and demonstrate experimentally that a parity-time-symmetric circuit incorporating a nonlinear gain saturation element provides robust wireless power transfer. Our results show that the transfer efficiency remains near unity over a distance variation of approximately one metre, without the need for any tuning. This is in contrast with conventional methods where high transfer efficiency can only be maintained by constantly tuning the frequency or the internal coupling parameters as the transfer distance or the relative orientation of the source and receiver units is varied. The use of a nonlinear parity-time-symmetric circuit should enable robust wireless power transfer to moving devices or vehicles.

10. Geometry effect on energy transfer rate in a coupled-quantum-well structure: nonlinear regime

International Nuclear Information System (INIS)

Salavati-fard, T; Vazifehshenas, T

2014-01-01

We study theoretically the effect of geometry on the energy transfer rate at nonlinear regime in a coupled-quantum-well system using the balance equation approach. To investigate comparatively the effect of both symmetric and asymmetric geometry, different structures are considered. The random phase approximation dynamic dielectric function is employed to include the contributions from both quasiparticle and plasmon excitations. Also, the short-range exchange interaction is taken into account through the Hubbard approximation. Our numerical results show that the energy transfer rate increases by increasing the well thicknesses in symmetric structures. Furthermore, by increasing spatial asymmetry, the energy transfer rate decreases for the electron temperature range of interest. From numerical calculations, it is obtained that the nonlinear energy transfer rate is proportional to the square of electron drift velocity in all structures and also, found that the influence of Hubbard local field correction on the energy transfer rate gets weaker by increasing the strength of applied electric field. (paper)

11. Non-linearity in radiocaesium soil to plant transfer: fact or fiction?

International Nuclear Information System (INIS)

Beresford, N.A.; Scott, W.A.; Wright, S.M.

2004-01-01

The basis premise of many radiological assessments is the assumption that the transfer of many radionuclides from soil to herbage and hence animal derived food products is a positive linear relationship for a given set of ecological conditions. However, a number of authors have published results which they conclude demonstrate non-linear transfer of radiocaesium to plants and animals with transfer being highest when soil concentrations are lowest. Whilst we may expect non-linear transfer of radionuclides under homeostatic control or present in comparatively large chemical quantities there appears no credible hypothesis to support such an observation for radiocaesium. In this paper we review those articles which have reported non-linear radiocaesium transfer and also analyse novel data. Mechanisms for the observation as presented in the original works are critically assessed. For instance, some authors have speculated that radiocaesium root uptake is saturated. We suggest that this is unlikely as whilst saturation of root uptake of radiocaesium has been observed above 1.37 mg Cs + L -1 in growth solutions, concentrations of Cs + in soil solutions are typically -1 , and 1 MBq m -2 of 137 Cs will add only 0.3 mg Cs + m -2 . We discuss alternative hypotheses to explain the reported observations and suggest that sampling bias, countermeasure application and statistical chance all contribute to the reported non-linearity in radiocaesium transfer. (author)

12. On the structure on non-local conservation laws in the two-dimensional non-linear sigma-model

International Nuclear Information System (INIS)

Zamolodchikov, Al.B.

1978-01-01

The non-local conserved charges are supposed to satisfy a special multiplicative law in the space of asymptotic states of the non-linear sigma-model. This supposition leads to factorization equations for two-particle scattering matrix elements and determines to some extent the action of these charges in the asymptotic space. Their conservation turns out to be consistent with the factorized S-matrix of the non-linear sigma-model. It is shown also that the factorized sine-Gordon S-matrix is consistent with a similar family of conservation laws

13. Nonlinear behavior of micro bubbles under ultrasound due to heat transfer

International Nuclear Information System (INIS)

Lim, Chan Soo; Kwak, Ho Young; Kim, Jeong Eun; Lee, Jae Young

2009-01-01

We investigated the nonlinear behavior of a microbubble under ultrasound, taking into account the heat transfer inside the bubble and through the bubble wall. The polytropic relation, which has been used for the process of pressure change depending on the volume variation of ideal gases, cannot properly treat heat transfer involving the oscillating bubble under ultrasound. In this study, a set of solutions of the Navier-Stokes equations for the gas inside the bubble along with an analytical treatment of the Navier-Stokes equations for the liquid adjacent to the bubble wall was used to treat properly the heat transfer process for the oscillating bubble under ultrasound. Entropy generation due to finite heat transfer, which induces the lost work during bubble evolution, reduces the collapsing process and considerably affects the nonlinear behavior of the bubble

14. 29 CFR 102.45 - Administrative law judge's decision; contents; service; transfer of case to the Board; contents...

Science.gov (United States)

2010-07-01

... and Transfer of Case to the Board § 102.45 Administrative law judge's decision; contents; service... administrative law judge's decision and of the order transferring the case to the Board shall be complete upon... 29 Labor 2 2010-07-01 2010-07-01 false Administrative law judge's decision; contents; service...

15. 29 CFR 102.153 - Administrative law judge's decision; contents; service; transfer of case to the Board; contents...

Science.gov (United States)

2010-07-01

... Expenses § 102.153 Administrative law judge's decision; contents; service; transfer of case to the Board... administrative law judge's decision and of the order transferring the case to the Board shall be complete upon... 29 Labor 2 2010-07-01 2010-07-01 false Administrative law judge's decision; contents; service...

16. Exact traveling wave solutions for a new nonlinear heat transfer equation

Directory of Open Access Journals (Sweden)

Gao Feng

2017-01-01

Full Text Available In this paper, we propose a new non-linear partial differential equation to de-scribe the heat transfer problems at the extreme excess temperatures. Its exact traveling wave solutions are obtained by using Cornejo-Perez and Rosu method.

17. A Fourier transform method for Vsin i estimations under nonlinear Limb-Darkening laws

Energy Technology Data Exchange (ETDEWEB)

Levenhagen, R. S., E-mail: ronaldo.levenhagen@gmail.com [Universidade Federal de São Paulo, Depto. Ciências Exatas e da Terra, Rua Prof. Arthur Riedel, 275, Jd. Eldorado, CEP 09972-270 Diadema, SP (Brazil)

2014-12-10

Star rotation offers us a large horizon for the study of many important physical issues pertaining to stellar evolution. Currently, four methods are widely used to infer rotation velocities, namely those related to line width calibrations, on the fitting of synthetic spectra, interferometry, and on Fourier transforms (FTs) of line profiles. Almost all of the estimations of stellar projected rotation velocities using the Fourier method in the literature have been addressed with the use of linear limb-darkening (LD) approximations during the evaluation of rotation profiles and their cosine FTs, which in certain cases, lead to discrepant velocity estimates. In this work, we introduce new mathematical expressions of rotation profiles and their Fourier cosine transforms assuming three nonlinear LD laws—quadratic, square-root, and logarithmic—and study their applications with and without gravity-darkening (GD) and geometrical flattening (GF) effects. Through an analysis of He I models in the visible range accounting for both limb and GD, we find out that, for classical models without rotationally driven effects, all the Vsin i values are too close to each other. On the other hand, taking into account GD and GF, the Vsin i obtained with the linear law result in Vsin i values that are systematically smaller than those obtained with the other laws. As a rule of thumb, we apply these expressions to the FT method to evaluate the projected rotation velocity of the emission B-type star Achernar (α Eri).

18. Exact Solution of a Faraday's Law Problem that Includes a Nonlinear Term and Its Implication for Perturbation Theory.

Science.gov (United States)

Fulcher, Lewis P.

1979-01-01

Presents an exact solution to the nonlinear Faraday's law problem of a rod sliding on frictionless rails with resistance. Compares the results with perturbation calculations based on the methods of Poisson and Pincare and of Kryloff and Bogoliuboff. (Author/GA)

19. Impact of melting heat transfer and nonlinear radiative heat flux mechanisms for the generalized Burgers fluids

Directory of Open Access Journals (Sweden)

Waqar Azeem Khan

Full Text Available The present paper deals with the analysis of melting heat and mass transfer characteristics in the stagnation point flow of an incompressible generalized Burgers fluid over a stretching sheet in the presence of non-linear radiative heat flux. A uniform magnetic field is applied normal to the flow direction. The governing equations in dimensional form are reduced to a system of dimensionless expressions by implementation of suitable similarity transformations. The resulting dimensionless problem governing the generalized Burgers is solved analytically by using the homotopy analysis method (HAM. The effects of different flow parameters like the ratio parameter, magnetic parameter, Prandtl number, melting parameter, radiation parameter, temperature ratio parameter and Schmidt number on the velocity, heat and mass transfer characteristics are computed and presented graphically. Moreover, useful discussions in detail are carried out with the help of plotted graphs and tables. Keywords: Generalized Burgers fluid, Non-linear radiative flow, Magnetic field, Melting heat transfer

20. Numerical simulation of heat transfer in power law fluid flow through a stenosed artery

Science.gov (United States)

Talib, Amira Husni; Abdullah, Ilyani

2017-11-01

A numerical study of heat transfer in a power law fluid is investigated in this paper. The blood flow is treated as power law fluid with a presence of cosine shaped stenosis. This study reveals the effect of stenosis on the heat transfer and velocity of blood flowing in the constricted artery. The governing and energy equations are formulated in a cylindrical coordinate system. Hence, the set of equations and boundary conditions are solved numerically by Marker and Cell (MAC) method. The graphical result shows the profile of blood temperature is increased while the blood velocity is decreased at the critical height of stenosis.

1. Dynamic behaviors for a perturbed nonlinear Schrödinger equation with the power-law nonlinearity in a non-Kerr medium

Science.gov (United States)

Chai, Jun; Tian, Bo; Zhen, Hui-Ling; Sun, Wen-Rong; Liu, De-Yin

2017-04-01

Effects of quantic nonlinearity on the propagation of the ultrashort optical pulses in a non-Kerr medium, like an optical fiber, can be described by a perturbed nonlinear Schrödinger equation with the power law nonlinearity, which is studied in this paper from a planar-dynamic-system view point. We obtain the equivalent two-dimensional planar dynamic system of such an equation, for which, according to the bifurcation theory and qualitative theory, phase portraits are given. Through the analysis of those phase portraits, we present the relations among the Hamiltonian, orbits of the dynamic system and types of the analytic solutions. Analytic expressions of the periodic-wave solutions, kink- and bell-shaped solitary-wave solutions are derived, and we find that the periodic-wave solutions can be reduced to the kink- and bell-shaped solitary-wave solutions.

2. Spectral energy transfer of atmospheric gravity waves through sum and difference nonlinear interactions

Energy Technology Data Exchange (ETDEWEB)

Huang, K.M. [Wuhan Univ. (China). School of Electronic Information; Chinese Academey of Sciences, Hefei (China). Key Lab. of Geospace Environment; Embry Riddle Aeronautical Univ., Daytona Beach, FL (United States). Dept. of Physical Science; Ministry of Education, Wuhan (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan (China); Liu, A.Z.; Li, Z. [Embry Riddle Aeronautical Univ., Daytona Beach, FL (United States). Dept. of Physical Science; Zhang, S.D.; Yi, F. [Wuhan Univ. (China). School of Electronic Information; Ministry of Education, Wuhan (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan (China)

2012-07-01

Nonlinear interactions of gravity waves are studied with a two-dimensional, fully nonlinear model. The energy exchanges among resonant and near-resonant triads are examined in order to understand the spectral energy transfer through interactions. The results show that in both resonant and near-resonant interactions, the energy exchange between two high frequency waves is strong, but the energy transfer from large to small vertical scale waves is rather weak. This suggests that the energy cascade toward large vertical wavenumbers through nonlinear interaction is inefficient, which is different from the rapid turbulence cascade. Because of considerable energy exchange, nonlinear interactions can effectively spread high frequency spectrum, and play a significant role in limiting wave amplitude growth and transferring energy into higher altitudes. In resonant interaction, the interacting waves obey the resonant matching conditions, and resonant excitation is reversible, while near-resonant excitation is not so. Although near-resonant interaction shows the complexity of match relation, numerical experiments show an interesting result that when sum and difference near-resonant interactions occur between high and low frequency waves, the wave vectors tend to approximately match in horizontal direction, and the frequency of the excited waves is also close to the matching value. (orig.)

3. Nonlinear transfer of elements from soil to plants: impact on radioecological modeling

Energy Technology Data Exchange (ETDEWEB)

Tuovinen, Tiina S.; Kolehmainen, Mikko; Roivainen, Paeivi; Kumlin, Timo; Makkonen, Sari; Holopainen, Toini; Juutilainen, Jukka [University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 1627, Kuopio (Finland)

2016-08-15

In radioecology, transfer of radionuclides from soil to plants is typically described by a concentration ratio (CR), which assumes linearity of transfer with soil concentration. Nonlinear uptake is evidenced in many studies, but it is unclear how it should be taken into account in radioecological modeling. In this study, a conventional CR-based linear model, a nonlinear model derived from observed uptake into plants, and a new simple model based on the observation that nonlinear uptake leads to a practically constant concentration in plant tissues are compared. The three models were used to predict transfer of {sup 234}U, {sup 59}Ni and {sup 210}Pb into spruce needles. The predictions of the nonlinear and the new model were essentially similar. In contrast, plant radionuclide concentration was underestimated by the linear model when the total element concentration in soil was relatively low, but within the range commonly observed in nature. It is concluded that the linear modeling could easily be replaced by a new approach that more realistically reflects the true processes involved in the uptake of elements into plants. The new modeling approach does not increase the complexity of modeling in comparison with CR-based linear models, and data needed for model parameters (element concentrations) are widely available. (orig.)

4. Some New Results in Astrophysical Problems of Nonlinear Theory of Radiative Transfer

Science.gov (United States)

Pikichyan, H. V.

2017-07-01

In the interpretation of the observed astrophysical spectra, a decisive role is related to nonlinear problems of radiative transfer, because the processes of multiple interactions of matter of cosmic medium with the exciting intense radiation ubiquitously occur in astrophysical objects, and in their vicinities. Whereas, the intensity of the exciting radiation changes the physical properties of the original medium, and itself was modified, simultaneously, in a self-consistent manner under its influence. In the present report, we show that the consistent application of the principle of invariance in the nonlinear problem of bilateral external illumination of a scattering/absorbing one-dimensional anisotropic medium of finite geometrical thickness allows for simplifications that were previously considered as a prerogative only of linear problems. The nonlinear problem is analyzed through the three methods of the principle of invariance: (i) an adding of layers, (ii) its limiting form, described by differential equations of invariant imbedding, and (iii) a transition to the, so-called, functional equations of the "Ambartsumyan's complete invariance". Thereby, as an alternative to the Boltzmann equation, a new type of equations, so-called "kinetic equations of equivalence", are obtained. By the introduction of new functions - the so-called "linear images" of solution of nonlinear problem of radiative transfer, the linear structure of the solution of the nonlinear problem under study is further revealed. Linear images allow to convert naturally the statistical characteristics of random walk of a "single quantum" or their "beam of unit intensity", as well as widely known "probabilistic interpretation of phenomena of transfer", to the field of nonlinear problems. The structure of the equations obtained for determination of linear images is typical of linear problems.

5. Transient and chaotic low-energy transfers in a system with bistable nonlinearity

Energy Technology Data Exchange (ETDEWEB)

Romeo, F., E-mail: francesco.romeo@uniroma1.it [Department of Structural and Geotechnical Engineering, SAPIENZA University of Rome, Rome (Italy); Manevitch, L. I. [Institute of Chemical Physics, RAS, Moscow (Russian Federation); Bergman, L. A.; Vakakis, A. [College of Engineering, University of Illinois at Urbana–Champaign, Champaign, Illinois 61820 (United States)

2015-05-15

The low-energy dynamics of a two-dof system composed of a grounded linear oscillator coupled to a lightweight mass by means of a spring with both cubic nonlinear and negative linear components is investigated. The mechanisms leading to intense energy exchanges between the linear oscillator, excited by a low-energy impulse, and the nonlinear attachment are addressed. For lightly damped systems, it is shown that two main mechanisms arise: Aperiodic alternating in-well and cross-well oscillations of the nonlinear attachment, and secondary nonlinear beats occurring once the dynamics evolves solely in-well. The description of the former dissipative phenomenon is provided in a two-dimensional projection of the phase space, where transitions between in-well and cross-well oscillations are associated with sequences of crossings across a pseudo-separatrix. Whereas the second mechanism is described in terms of secondary limiting phase trajectories of the nonlinear attachment under certain resonance conditions. The analytical treatment of the two aformentioned low-energy transfer mechanisms relies on the reduction of the nonlinear dynamics and consequent analysis of the reduced dynamics by asymptotic techniques. Direct numerical simulations fully validate our analytical predictions.

6. Bifurcation topology transfer in nonlinear nanocantilever arrays subject to parametric and internal resonances

Directory of Open Access Journals (Sweden)

Souayeh Saoussen

2014-01-01

Full Text Available The collective nonlinear dynamics of a coupled array of nanocantilevers is investigated while taking into account the main sources of nonlinearities. The amplitude and phase equations of this device, subject to parametric and internal resonances, are analytically derived by means of a multi-modal Galerkin discretization coupled with a multiscale analysis. Based on the steady-state solutions of these equations, the frequency responses are numerically computed for a two-beam array. The effects of different parameters are investigated and several dynamical aspects are confirmed by numerical simulations. Particularly, we have demonstrated that the bifurcation topology transfer is imposed by the first nanocantilever and it can be general to the collective nonlinear dynamics of the NEMS array.

7. Energy harvesting with stacked dielectric elastomer transducers: Nonlinear theory, optimization, and linearized scaling law

Science.gov (United States)

Tutcuoglu, A.; Majidi, C.

2014-12-01

Using principles of damped harmonic oscillation with continuous media, we examine electrostatic energy harvesting with a "soft-matter" array of dielectric elastomer (DE) transducers. The array is composed of infinitely thin and deformable electrodes separated by layers of insulating elastomer. During vibration, it deforms longitudinally, resulting in a change in the capacitance and electrical enthalpy of the charged electrodes. Depending on the phase of electrostatic loading, the DE array can function as either an actuator that amplifies small vibrations or a generator that converts these external excitations into electrical power. Both cases are addressed with a comprehensive theory that accounts for the influence of viscoelasticity, dielectric breakdown, and electromechanical coupling induced by Maxwell stress. In the case of a linearized Kelvin-Voigt model of the dielectric, we obtain a closed-form estimate for the electrical power output and a scaling law for DE generator design. For the complete nonlinear model, we obtain the optimal electrostatic voltage input for maximum electrical power output.

8. Non-linear laws of echoic memory and auditory change detection in humans.

Science.gov (United States)

Inui, Koji; Urakawa, Tomokazu; Yamashiro, Koya; Otsuru, Naofumi; Nishihara, Makoto; Takeshima, Yasuyuki; Keceli, Sumru; Kakigi, Ryusuke

2010-07-03

The detection of any abrupt change in the environment is important to survival. Since memory of preceding sensory conditions is necessary for detecting changes, such a change-detection system relates closely to the memory system. Here we used an auditory change-related N1 subcomponent (change-N1) of event-related brain potentials to investigate cortical mechanisms underlying change detection and echoic memory. Change-N1 was elicited by a simple paradigm with two tones, a standard followed by a deviant, while subjects watched a silent movie. The amplitude of change-N1 elicited by a fixed sound pressure deviance (70 dB vs. 75 dB) was negatively correlated with the logarithm of the interval between the standard sound and deviant sound (1, 10, 100, or 1000 ms), while positively correlated with the logarithm of the duration of the standard sound (25, 100, 500, or 1000 ms). The amplitude of change-N1 elicited by a deviance in sound pressure, sound frequency, and sound location was correlated with the logarithm of the magnitude of physical differences between the standard and deviant sounds. The present findings suggest that temporal representation of echoic memory is non-linear and Weber-Fechner law holds for the automatic cortical response to sound changes within a suprathreshold range. Since the present results show that the behavior of echoic memory can be understood through change-N1, change-N1 would be a useful tool to investigate memory systems.

9. Target Tracking in 3-D Using Estimation Based Nonlinear Control Laws for UAVs

Directory of Open Access Journals (Sweden)

Mousumi Ahmed

2016-02-01

Full Text Available This paper presents an estimation based backstepping like control law design for an Unmanned Aerial Vehicle (UAV to track a moving target in 3-D space. A ground-based sensor or an onboard seeker antenna provides range, azimuth angle, and elevation angle measurements to a chaser UAV that implements an extended Kalman filter (EKF to estimate the full state of the target. A nonlinear controller then utilizes this estimated target state and the chaser’s state to provide speed, flight path, and course/heading angle commands to the chaser UAV. Tracking performance with respect to measurement uncertainty is evaluated for three cases: (1 stationary white noise; (2 stationary colored noise and (3 non-stationary (range correlated white noise. Furthermore, in an effort to improve tracking performance, the measurement model is made more realistic by taking into consideration range-dependent uncertainties in the measurements, i.e., as the chaser closes in on the target, measurement uncertainties are reduced in the EKF, thus providing the UAV with more accurate control commands. Simulation results for these cases are shown to illustrate target state estimation and trajectory tracking performance.

10. Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid past a stretching cylinder

Directory of Open Access Journals (Sweden)

Masood Khan

2016-05-01

Full Text Available In the present paper, we endeavor to perform a numerical analysis in connection with the nonlinear radiative stagnation-point flow and heat transfer to Sisko fluid past a stretching cylinder in the presence of convective boundary conditions. The influence of thermal radiation using nonlinear Rosseland approximation is explored. The numerical solutions of transformed governing equations are calculated through forth order Runge-Kutta method using shooting technique. With the help of graphs and tables, the influence of non-dimensional parameters on velocity and temperature along with the local skin friction and Nusselt number is discussed. The results reveal that the temperature increases however, heat transfer from the surface of cylinder decreases with the increasing values of thermal radiation and temperature ratio parameters. Moreover, the authenticity of numerical solutions is validated by finding their good agreement with the HAM solutions.

11. Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid past a stretching cylinder

Energy Technology Data Exchange (ETDEWEB)

Khan, Masood [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Malik, Rabia, E-mail: rabiamalik.qau@gmail.com [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Department of Mathematics and Statistics, International Islamic University Islamabad 44000 (Pakistan); Hussain, M. [Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Islamabad 44000 (Pakistan)

2016-05-15

In the present paper, we endeavor to perform a numerical analysis in connection with the nonlinear radiative stagnation-point flow and heat transfer to Sisko fluid past a stretching cylinder in the presence of convective boundary conditions. The influence of thermal radiation using nonlinear Rosseland approximation is explored. The numerical solutions of transformed governing equations are calculated through forth order Runge-Kutta method using shooting technique. With the help of graphs and tables, the influence of non-dimensional parameters on velocity and temperature along with the local skin friction and Nusselt number is discussed. The results reveal that the temperature increases however, heat transfer from the surface of cylinder decreases with the increasing values of thermal radiation and temperature ratio parameters. Moreover, the authenticity of numerical solutions is validated by finding their good agreement with the HAM solutions.

12. Numerical simulation of nanofluids based on power-law fluids with flow and heat transfer

Science.gov (United States)

Li, Lin; Jiang, Yongyue; Chen, Aixin

2017-04-01

In this paper, we investigate the heat transfer of nanofluids based on power-law fluids and movement of nanoparticles with the effect of thermophoresis in a rotating circular groove. The velocity of circular groove rotating is a constant and the temperature on the wall is kept to be zero all the time which is different from the temperature of nanofluids in the initial time. The effects of thermophoresis and Brownian diffusion are considered in temperature and concentration equations, and it is assumed that the thermal conductivity of nanofluids is a function of concentration of nanoparticles. Based on numerical results, it can be found that nanofluids improve the process of heat transfer than base fluids in a rotating circular groove. The enhancement of heat transfer increases as the power law index of base fluids decreases.

13. 5 CFR 2430.12 - Administrative Law Judge's decision; contents; service; transfer of case to the Authority...

Science.gov (United States)

2010-01-01

... Administrative Law Judge's decision and of the order transferring the case to the Board shall be complete upon... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Administrative Law Judge's decision; contents; service; transfer of case to the Authority; contents of record in case. 2430.12 Section 2430.12...

14. State Firearm Laws and Interstate Transfer of Guns in the USA, 2006-2016.

Science.gov (United States)

Collins, Tessa; Greenberg, Rachael; Siegel, Michael; Xuan, Ziming; Rothman, Emily F; Cronin, Shea W; Hemenway, David

2018-06-01

In a cross-sectional, panel study, we examined the relationship between state firearm laws and the extent of interstate transfer of guns, as measured by the percentage of crime guns recovered in a state and traced to an in-state source (as opposed to guns recovered in a state and traced to an out-of-state source). We used 2006-2016 data on state firearm laws obtained from a search of selected state statutes and 2006-2016 crime gun trace data from the Bureau of Alcohol, Tobacco, Firearms, and Explosives. We examined the relationship between state firearm laws and interstate transfer of guns using annual data from all 50 states during the period 2006-2016 and employing a two-way fixed effects model. The primary outcome variable was the percentage of crime guns recovered in a state that could be traced to an original point of purchase within that state as opposed to another state. The main exposure variables were eight specific state firearm laws pertaining to dealer licensing, sales restrictions, background checks, registration, prohibitors for firearm purchase, and straw purchase of guns. Four laws were independently associated with a significantly lower percentage of in-state guns: a waiting period for handgun purchase, permits required for firearm purchase, prohibition of firearm possession by people convicted of a violent misdemeanor, and a requirement for relinquishment of firearms when a person becomes disqualified from owning them. States with a higher number of gun laws had a lower percentage of traced guns to in-state dealers, with each increase of one in the total number of laws associated with a decrease of 1.6 percentage points in the proportion of recovered guns that were traced to an in-state as opposed to an out-of-state source. Based on an examination of the movement patterns of guns across states, the overall observed pattern of gun flow was out of states with weak gun laws and into states with strong gun laws. These findings indicate that certain

15. Non-linear laws of echoic memory and auditory change detection in humans

Directory of Open Access Journals (Sweden)

Takeshima Yasuyuki

2010-07-01

Full Text Available Abstract Background The detection of any abrupt change in the environment is important to survival. Since memory of preceding sensory conditions is necessary for detecting changes, such a change-detection system relates closely to the memory system. Here we used an auditory change-related N1 subcomponent (change-N1 of event-related brain potentials to investigate cortical mechanisms underlying change detection and echoic memory. Results Change-N1 was elicited by a simple paradigm with two tones, a standard followed by a deviant, while subjects watched a silent movie. The amplitude of change-N1 elicited by a fixed sound pressure deviance (70 dB vs. 75 dB was negatively correlated with the logarithm of the interval between the standard sound and deviant sound (1, 10, 100, or 1000 ms, while positively correlated with the logarithm of the duration of the standard sound (25, 100, 500, or 1000 ms. The amplitude of change-N1 elicited by a deviance in sound pressure, sound frequency, and sound location was correlated with the logarithm of the magnitude of physical differences between the standard and deviant sounds. Conclusions The present findings suggest that temporal representation of echoic memory is non-linear and Weber-Fechner law holds for the automatic cortical response to sound changes within a suprathreshold range. Since the present results show that the behavior of echoic memory can be understood through change-N1, change-N1 would be a useful tool to investigate memory systems.

16. Nonlinear entropy transfer in ETG-TEM turbulence via TEM driven zonal flows

International Nuclear Information System (INIS)

Asahi, Yuuichi; Tsutsui, Hiroaki; Tsuji-Iio, Shunji; Ishizawa, Akihiro; Sugama, Hideo; Watanabe, Tomohiko

2015-01-01

Nonlinear interplay of the electron temperature gradient (ETG) modes and the trapped electron modes (TEMs) was investigated by means of gyrokinetic simulation. Focusing on the situation where both TEMs and ETG modes are linearly unstable, the effects of TEM-driven zonal flows on ETG turbulence were examined by means of entropy transfer analysis. In a statistically steady turbulence where the TEM driven zonal flows are dominant, it turned out that the zonal flows meditate the entropy transfer of the ETG modes from the low to high radial wavenumber regions. The successive entropy transfer broadens the potential fluctuation spectrum in the radial wavenumber direction. In contrast, in the situation where ETG modes are unstable but TEMs are stable, the pure ETG turbulence does not produce strong zonal flows, leading to a rather narrow spectrum in the radial wavenumber space and a higher transport level. (author)

17. Issues Associated with the Conveyance and Transfer of DOE Lands under Public Law 105-119

International Nuclear Information System (INIS)

1999-01-01

Public Law 105-119 (Law) was enacted in November 1997 as part of the Defense Authorization Act of 1998 (Act). The Law specifically requires the US Department of Energy (DOE) to identify lands that are suitable for conveyance or transfer at Los Alamos National Laboratory (LANL) within 90 days after enactment of the Act. In general, suitable lands include those parcels that are not required to meet the national security missions assigned to DOE at LANL within a ten year period beginning on the date of enactment of the Act. Additional suitability criteria are addressed below and include the need to establish clear title to the land and to restore areas contaminated with hazardous wastes. This proposed change in future land ownership is intended to serve as the final settlement of DOE community assistance obligations with respect to LANL and Los Alamos County and to stimulate economic development

18. Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models.

Science.gov (United States)

Pozo, Carlos; Marín-Sanguino, Alberto; Alves, Rui; Guillén-Gosálbez, Gonzalo; Jiménez, Laureano; Sorribas, Albert

2011-08-25

Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.

19. Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models

Directory of Open Access Journals (Sweden)

Sorribas Albert

2011-08-01

Full Text Available Abstract Background Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.

20. Semi-discrete approximations to nonlinear systems of conservation laws; consistency and L(infinity)-stability imply convergence. Final report

International Nuclear Information System (INIS)

1988-07-01

A convergence theory for semi-discrete approximations to nonlinear systems of conservation laws is developed. It is shown, by a series of scalar counter-examples, that consistency with the conservation law alone does not guarantee convergence. Instead, a notion of consistency which takes into account both the conservation law and its augmenting entropy condition is introduced. In this context it is concluded that consistency and L(infinity)-stability guarantee for a relevant class of admissible entropy functions, that their entropy production rate belongs to a compact subset of H(loc)sup -1 (x,t). One can now use compensated compactness arguments in order to turn this conclusion into a convergence proof. The current state of the art for these arguments includes the scalar and a wide class of 2 x 2 systems of conservation laws. The general framework of the vanishing viscosity method is studied as an effective way to meet the consistency and L(infinity)-stability requirements. How this method is utilized to enforce consistency and stability for scalar conservation laws is shown. In this context we prove, under the appropriate assumptions, the convergence of finite difference approximations (e.g., the high resolution TVD and UNO methods), finite element approximations (e.g., the Streamline-Diffusion methods) and spectral and pseudospectral approximations (e.g., the Spectral Viscosity methods)

1. A high-order relaxation method with projective integration for solving nonlinear systems of hyperbolic conservation laws

Science.gov (United States)

Lafitte, Pauline; Melis, Ward; Samaey, Giovanni

2017-07-01

We present a general, high-order, fully explicit relaxation scheme which can be applied to any system of nonlinear hyperbolic conservation laws in multiple dimensions. The scheme consists of two steps. In a first (relaxation) step, the nonlinear hyperbolic conservation law is approximated by a kinetic equation with stiff BGK source term. Then, this kinetic equation is integrated in time using a projective integration method. After taking a few small (inner) steps with a simple, explicit method (such as direct forward Euler) to damp out the stiff components of the solution, the time derivative is estimated and used in an (outer) Runge-Kutta method of arbitrary order. We show that, with an appropriate choice of inner step size, the time step restriction on the outer time step is similar to the CFL condition for the hyperbolic conservation law. Moreover, the number of inner time steps is also independent of the stiffness of the BGK source term. We discuss stability and consistency, and illustrate with numerical results (linear advection, Burgers' equation and the shallow water and Euler equations) in one and two spatial dimensions.

2. Lie symmetry analysis, explicit solutions and conservation laws for the space-time fractional nonlinear evolution equations

Science.gov (United States)

Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa; Baleanu, Dumitru

2018-04-01

This paper studies the symmetry analysis, explicit solutions, convergence analysis, and conservation laws (Cls) for two different space-time fractional nonlinear evolution equations with Riemann-Liouville (RL) derivative. The governing equations are reduced to nonlinear ordinary differential equation (ODE) of fractional order using their Lie point symmetries. In the reduced equations, the derivative is in Erdelyi-Kober (EK) sense, power series technique is applied to derive an explicit solutions for the reduced fractional ODEs. The convergence of the obtained power series solutions is also presented. Moreover, the new conservation theorem and the generalization of the Noether operators are developed to construct the nonlocal Cls for the equations . Some interesting figures for the obtained explicit solutions are presented.

3. Construction of local and non-local conservation laws for non-linear field equations

International Nuclear Information System (INIS)

1984-08-01

A method of constructing conserved currents for non-linear field equations is presented. More explicitly for non-linear equations, which can be derived from compatibility conditions of some linear system with a parameter, a procedure of obtaining explicit expressions for local and non-local currents is developed. Some examples such as the classical Heisenberg spin chain and supersymmetric Yang-Mills theory are considered. (author)

4. STABLE ADAPTIVE CONTROL FOR A CLASS OF NONLINEAR SYSTEMS WITHOUT USE OF A SUPERVISORY TERM IN THE CONTROL LAW

Directory of Open Access Journals (Sweden)

MOHAMED BAHITA

2012-02-01

Full Text Available In this paper, a direct adaptive control scheme for a class of nonlinear systems is proposed. The architecture employs a Gaussian radial basis function (RBF network to construct an adaptive controller. The parameters of the adaptive controller are adapted and changed according to a law derived using Lyapunov stability theory. The centres of the RBF network are adapted on line using the k-means algorithm. Asymptotic Lyapunov stability is established without the use of a supervisory (compensatory term in the control law and with the tracking errors converging to a neighbourhood of the origin. Finally, a simulation is provided to explore the feasibility of the proposed neuronal controller design method.

5. Perceptions of a Learning Organization and Factors within the Work Environment That Influence Transfer of Training in Law Enforcement

Science.gov (United States)

Hunter-Johnson, Yvonne

2012-01-01

The purpose of this study was to determine law enforcement officers' perception of factors within the workplace that influence transfer of training and their perception of the organization being a learning organization. The study actually had three parts. First, it intended to investigate the perception of law enforcement officers regarding…

6. On Nonlinear Inverse Problems of Heat Transfer with Radiation Boundary Conditions: Application to Dehydration of Gypsum Plasterboards Exposed to Fire

OpenAIRE

Belmiloudi, A.; Mahé, F.

2014-01-01

International audience; The paper investigates boundary optimal controls and parameter estimates to the well-posedness nonlinear model of dehydration of thermic problems. We summarize the general formulations for the boundary control for initial-boundary value problem for nonlinear partial differential equations modeling the heat transfer and derive necessary optimality conditions, including the adjoint equation, for the optimal set of parameters minimizing objective functions J. Numerical si...

7. Waves, conservation laws and symmetries of a third-order nonlinear ...

African Journals Online (AJOL)

order is under consideration. Important properties concerning advanced character such like conservation laws and the equation of continuity are given. Characteristic wave properties such like dispersion relations and both the group and phase ...

8. Nonperturbative quantum simulation of time-resolved nonlinear spectra: Methodology and application to electron transfer reactions in the condensed phase

International Nuclear Information System (INIS)

Wang Haobin; Thoss, Michael

2008-01-01

A quantum dynamical method is presented to accurately simulate time-resolved nonlinear spectra for complex molecular systems. The method combines the nonpertubative approach to describe nonlinear optical signals with the multilayer multiconfiguration time-dependent Hartree theory to calculate the laser-induced polarization for the overall field-matter system. A specific nonlinear optical signal is obtained by Fourier decomposition of the overall polarization. The performance of the method is demonstrated by applications to photoinduced ultrafast electron transfer reactions in mixed-valence compounds and at dye-semiconductor interfaces

9. Stagnation point flow and heat transfer over a nonlinear shrinking sheet with slip effects

Directory of Open Access Journals (Sweden)

N.F. Fauzi

2015-12-01

Full Text Available In this paper, an investigation is performed to analyze the effects of the slip parameters A and B on the steady stagnation-point flow and heat transfer due to a shrinking sheet in a viscous and incompressible fluid. Using similarity transformations, the governing boundary layer equations are transformed into the nonlinear ordinary (similar differential equations. The transformed equations are solved numerically using the shooting method. The dual solutions for velocity and temperature distribution exist for certain values of the positive constant velocity and temperature slip parameters. Likewise, a stability analysis has been performed to find the nature of the dual solutions. The velocity slip will delay the boundary layer separation whereas the temperature slip does not affect the boundary layer separation.

10. Inverse atmospheric radiative transfer problems - A nonlinear minimization search method of solution. [aerosol pollution monitoring

Science.gov (United States)

Fymat, A. L.

1976-01-01

The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.

11. Nonlinear observer-based Lyapunov boundary control of distributed heat transfer mechanisms for membrane distillation plant

KAUST Repository

2016-09-19

This paper presents a nonlinear observer-based Lyapunov control for a membrane distillation (MD) process. The control considers the inlet temperatures of the feed and the permeate solutions as inputs, transforming it to boundary control process, and seeks to maintain the temperature difference along the membrane boundaries around a sufficient level to promote water production. MD process is modeled with advection diffusion equation model in two dimensions, where the diffusion and convection heat transfer mechanisms are best described. Model analysis, effective order reduction and parameters physical interpretation, are provided. Moreover, a nonlinear observer has been designed to provide the control with estimates of the temperature evolution at each time instant. In addition, physical constraints are imposed on the control to have an acceptable range of feasible inputs, and consequently, better energy consumption. Numerical simulations for the complete process with real membrane parameter values are provided, in addition to detailed explanations for the role of the controller and the observer. (C) 2016 Elsevier Ltd. All rights reserved.

12. Infinite sets of conservation laws for linear and non-linear field equations

International Nuclear Information System (INIS)

Niederle, J.

1984-01-01

The work was motivated by a desire to understand group theoretically the existence of an infinite set of conservation laws for non-interacting fields and to carry over these conservation laws to the case of interacting fields. The relation between an infinite set of conservation laws of a linear field equation and the enveloping algebra of its space-time symmetry group was established. It is shown that in the case of the Korteweg-de Vries (KdV) equation to each symmetry of the corresponding linear equation delta sub(o)uxxx=u sub() determined by an element of the enveloping algebra of the space translation algebra, there corresponds a symmetry of the full KdV equation

13. Time-domain simulation of constitutive relations for nonlinear acoustics including relaxation for frequency power law attenuation media modeling

Science.gov (United States)

Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.

2015-10-01

We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.

14. Control Law Design for Twin Rotor MIMO System with Nonlinear Control Strategy

Directory of Open Access Journals (Sweden)

M. Ilyas

2016-01-01

Full Text Available Modeling of complex air vehicles is a challenging task due to high nonlinear behavior and significant coupling effect between rotors. Twin rotor multi-input multioutput system (TRMS is a laboratory setup designed for control experiments, which resembles a helicopter with unstable, nonlinear, and coupled dynamics. This paper focuses on the design and analysis of sliding mode control (SMC and backstepping controller for pitch and yaw angle control of main and tail rotor of the TRMS under parametric uncertainty. The proposed control strategy with SMC and backstepping achieves all mentioned limitations of TRMS. Result analysis of SMC and backstepping control schemes elucidates that backstepping provides efficient behavior with the parametric uncertainty for twin rotor system. Chattering and oscillating behaviors of SMC are removed with the backstepping control scheme considering the pitch and yaw angle for TRMS.

15. Nonlinear transient heat transfer and thermoelastic analysis of thick-walled FGM cylinder with temperature-dependent material properties using Hermitian transfinite element

Energy Technology Data Exchange (ETDEWEB)

Azadi, Mohammad [Sharif University of Technology, Tehran (Iran, Islamic Republic of); Azadi, Mahboobeh [Shiraz University, Shiraz (Iran, Islamic Republic of)

2009-10-15

Nonlinear transient heat transfer and thermoelastic stress analyses of a thick-walled FGM cylinder with temperature dependent materials are performed by using the Hermitian transfinite element method. Temperature-dependency of the material properties has not been taken into account in transient thermoelastic analysis, so far. Due to the mentioned dependency, the resulting governing FEM equations of transient heat transfer are highly nonlinear. Furthermore, in all finite element analysis performed so far in the field, Lagrangian elements have been used. To avoid an artificial local heat source at the mutual boundaries of the elements, Hermitian elements are used instead in the present research. Another novelty of the present paper is simultaneous use of the transfinite element method and updating technique. Time variations of the temperature, displacements, and stresses are obtained through a numerical Laplace inversion. Finally, results obtained considering the temperature-dependency of the material properties are compared with those derived based on temperature independency assumption. Furthermore, the temperature distribution and the radial and circumferential stresses are investigated versus time, geometrical parameters and index of power law. Results reveal that the temperature-dependency effect is significant

16. Multidimensional radiative transfer with multilevel atoms. II. The non-linear multigrid method.

Science.gov (United States)

Fabiani Bendicho, P.; Trujillo Bueno, J.; Auer, L.

1997-08-01

A new iterative method for solving non-LTE multilevel radiative transfer (RT) problems in 1D, 2D or 3D geometries is presented. The scheme obtains the self-consistent solution of the kinetic and RT equations at the cost of only a few (iteration (Brandt, 1977, Math. Comp. 31, 333; Hackbush, 1985, Multi-Grid Methods and Applications, springer-Verlag, Berlin), an efficient multilevel RT scheme based on Gauss-Seidel iterations (cf. Trujillo Bueno & Fabiani Bendicho, 1995ApJ...455..646T), and accurate short-characteristics formal solution techniques. By combining a valid stopping criterion with a nested-grid strategy a converged solution with the desired true error is automatically guaranteed. Contrary to the current operator splitting methods the very high convergence speed of the new RT method does not deteriorate when the grid spatial resolution is increased. With this non-linear multigrid method non-LTE problems discretized on N grid points are solved in O(N) operations. The nested multigrid RT method presented here is, thus, particularly attractive in complicated multilevel transfer problems where small grid-sizes are required. The properties of the method are analyzed both analytically and with illustrative multilevel calculations for Ca II in 1D and 2D schematic model atmospheres.

17. Two-dimensional nonlinear transient heat transfer analysis of variable section pin fins

Energy Technology Data Exchange (ETDEWEB)

Malekzadeh, P. [Department of Mechanical Engineering, School of Engineering, Persian Gulf University, Boushehr 75168 (Iran); Rahideh, H. [Department of Chemical Engineering, School of Engineering, Persian Gulf University, Boushehr 75168 (Iran)

2009-04-15

The two-dimensional nonlinear transient heat transfer analysis of variable cross section pin-fins is studied using the incremental differential quadrature method (IDQM) as a simple, accurate, and computationally efficient numerical tool. The formulations are general so that it can easily be used for arbitrary continuously varying cross section pin fins with the spatial-temperature dependent thermal parameters. On all external surfaces of the pin fin, the convective-radiative condition is considered. The effects of two different types of boundary conditions at the base of pin fin are investigated: time and spatial dependent temperature, and the convection heat transfer. The thermal conductivity of the pin fin is assumed to vary as a linear function of the temperature. The accuracy of the method is demonstrated by comparing its results with those generated by finite difference method. It is shown that using few grid points, results in excellent agreements with those of FDM are obtained. Less computational efforts of the method with respect to finite difference method is shown. (author)

18. Nonlinear Analysis and Scaling Laws for Noncircular Composite Structures Subjected to Combined Loads

Science.gov (United States)

Hilburger, Mark W.; Rose, Cheryl A.; Starnes, James H., Jr.

2001-01-01

Results from an analytical study of the response of a built-up, multi-cell noncircular composite structure subjected to combined internal pressure and mechanical loads are presented. Nondimensional parameters and scaling laws based on a first-order shear-deformation plate theory are derived for this noncircular composite structure. The scaling laws are used to design sub-scale structural models for predicting the structural response of a full-scale structure representative of a portion of a blended-wing-body transport aircraft. Because of the complexity of the full-scale structure, some of the similitude conditions are relaxed for the sub-scale structural models. Results from a systematic parametric study are used to determine the effects of relaxing selected similitude conditions on the sensitivity of the effectiveness of using the sub-scale structural model response characteristics for predicting the full-scale structure response characteristics.

19. A novel nonlinear nano-scale wear law for metallic brake pads.

Science.gov (United States)

Patil, Sandeep P; Chilakamarri, Sri Harsha; Markert, Bernd

2018-05-03

20. Discretely Conservative Finite-Difference Formulations for Nonlinear Conservation Laws in Split Form: Theory and Boundary Conditions

Science.gov (United States)

Fisher, Travis C.; Carpenter, Mark H.; Nordstroem, Jan; Yamaleev, Nail K.; Swanson, R. Charles

2011-01-01

Simulations of nonlinear conservation laws that admit discontinuous solutions are typically restricted to discretizations of equations that are explicitly written in divergence form. This restriction is, however, unnecessary. Herein, linear combinations of divergence and product rule forms that have been discretized using diagonal-norm skew-symmetric summation-by-parts (SBP) operators, are shown to satisfy the sufficient conditions of the Lax-Wendroff theorem and thus are appropriate for simulations of discontinuous physical phenomena. Furthermore, special treatments are not required at the points that are near physical boundaries (i.e., discrete conservation is achieved throughout the entire computational domain, including the boundaries). Examples are presented of a fourth-order, SBP finite-difference operator with second-order boundary closures. Sixth- and eighth-order constructions are derived, and included in E. Narrow-stencil difference operators for linear viscous terms are also derived; these guarantee the conservative form of the combined operator.

1. Nonlinear Fatigue Damage Model Based on the Residual Strength Degradation Law

Science.gov (United States)

Yongyi, Gao; Zhixiao, Su

In this paper, a logarithmic expression to describe the residual strength degradation process is developed in order to fatigue test results for normalized carbon steel. The definition and expression of fatigue damage due to symmetrical stress with a constant amplitude are also given. The expression of fatigue damage can also explain the nonlinear properties of fatigue damage. Furthermore, the fatigue damage of structures under random stress is analyzed, and an iterative formula to describe the fatigue damage process is deduced. Finally, an approximate method for evaluating the fatigue life of structures under repeated random stress blocking is presented through various calculation examples.

2. Control Law Design for Propofol Infusion to Regulate Depth of Hypnosis: A Nonlinear Control Strategy

Directory of Open Access Journals (Sweden)

Ali Khaqan

2016-01-01

Full Text Available Maintaining the depth of hypnosis (DOH during surgery is one of the major objectives of anesthesia infusion system. Continuous administration of Propofol infusion during surgical procedures is essential but increases the undue load of an anesthetist in operating room working in a multitasking setup. Manual and target controlled infusion (TCI systems are not good at handling instabilities like blood pressure changes and heart rate variability arising due to interpatient variability. Patient safety, large interindividual variability, and less postoperative effects are the main factors to motivate automation in anesthesia. The idea of automated system for Propofol infusion excites the control engineers to come up with a more sophisticated and safe system that handles optimum delivery of drug during surgery and avoids postoperative effects. In contrast to most of the investigations with linear control strategies, the originality of this research work lies in employing a nonlinear control technique, backstepping, to track the desired hypnosis level of patients during surgery. This effort is envisioned to unleash the true capabilities of this nonlinear control technique for anesthesia systems used today in biomedical field. The working of the designed controller is studied on the real dataset of five patients undergoing surgery. The controller tracks the desired hypnosis level within the acceptable range for surgery.

3. Nonlinear network model analysis of vibrational energy transfer and localisation in the Fenna-Matthews-Olson complex

Science.gov (United States)

Morgan, Sarah E.; Cole, Daniel J.; Chin, Alex W.

2016-11-01

Collective protein modes are expected to be important for facilitating energy transfer in the Fenna-Matthews-Olson (FMO) complex of photosynthetic green sulphur bacteria, however to date little work has focussed on the microscopic details of these vibrations. The nonlinear network model (NNM) provides a computationally inexpensive approach to studying vibrational modes at the microscopic level in large protein structures, whilst incorporating anharmonicity in the inter-residue interactions which can influence protein dynamics. We apply the NNM to the entire trimeric FMO complex and find evidence for the existence of nonlinear discrete breather modes. These modes tend to transfer energy to the highly connected core pigments, potentially opening up alternative excitation energy transfer routes through their influence on pigment properties. Incorporating localised modes based on these discrete breathers in the optical spectra calculations for FMO using ab initio site energies and excitonic couplings can substantially improve their agreement with experimental results.

4. Entransy analysis of irreversible heat pump using Newton and Dulong–Petit heat transfer laws and relations with its performance

International Nuclear Information System (INIS)

Açıkkalp, Emin

2014-01-01

Highlights: • Entransy analysis was made for irreversible heat pump. • Newton and Dulong–Petit heat transfer laws were used. • Entransy dissipations were defined and determined. • Relations between entransy and other thermodynamic parameters were determined. - Abstract: An irreversible heat pump was investigated via entransy analysis and performance criteria. In the analyses, two different convective heat transfer laws were applied to the considered system: the Newton and Dulong–Petit heat transfer laws. The irreversibilities in the system are the result of a finite heat transfer rate, a heat leak and internal irreversibilities, including friction, turbulence etc. In this study, a thermodynamic analysis was performed in detail, and the numerical solutions were used for the conducted analysis. The maximum entransy dissipation (critical points) ranges from 18436.7 kW K to 18855.3 kW K according to y for Newton’s law; however, there is no maximum point for the Dulon–Petit law. It can be concluded from this study that entransy should be used among the basic thermodynamic criteria

5. Data planning and analysis for synthesis of multidimensional laws (nonlinear multifactor analysis)

International Nuclear Information System (INIS)

Mordashev, V. M.

2010-01-01

The methodology of data planning and analysis for synthesis of multidimensional laws using visualization is described along with the ensuing method of numerical data approximation by functions with “separable” variables. The method is developed for the cases of source data presented as (a) a table where all cells are filled, (b) an orthogonal table where quite certain cells are filled, and (c) a table where, generally speaking, arbitrary cells are not filled. The method was successfully applied for different problems of nuclear science and technology.

6. Nonlinear energy transfer and current sheet development in localized Alfvén wavepacket collisions in the strong turbulence limit

Science.gov (United States)

Verniero, J. L.; Howes, G. G.; Klein, K. G.

2018-02-01

In space and astrophysical plasmas, turbulence is responsible for transferring energy from large scales driven by violent events or instabilities, to smaller scales where turbulent energy is ultimately converted into plasma heat by dissipative mechanisms. The nonlinear interaction between counterpropagating Alfvén waves, denoted Alfvén wave collisions, drives this turbulent energy cascade, as recognized by early work with incompressible magnetohydrodynamic (MHD) equations. Recent work employing analytical calculations and nonlinear gyrokinetic simulations of Alfvén wave collisions in an idealized periodic initial state have demonstrated the key properties that strong Alfvén wave collisions mediate effectively the transfer of energy to smaller perpendicular scales and self-consistently generate current sheets. For the more realistic case of the collision between two initially separated Alfvén wavepackets, we use a nonlinear gyrokinetic simulation to show here that these key properties persist: strong Alfvén wavepacket collisions indeed facilitate the perpendicular cascade of energy and give rise to current sheets. Furthermore, the evolution shows that nonlinear interactions occur only while the wavepackets overlap, followed by a clean separation of the wavepackets with straight uniform magnetic fields and the cessation of nonlinear evolution in between collisions, even in the gyrokinetic simulation presented here which resolves dispersive and kinetic effects beyond the reach of the MHD theory.

7. The influence of compressibility on nonlinear spectral energy transfer - Part 2: Effect on hypersonic boundary layer transition

Science.gov (United States)

Mittal, Ankita; Girimaji, Sharath

2017-11-01

We examine the effect of compressible spectral energy transfer in the nonlinear regime of transition to turbulence of hypersonic boundary layers. The nature of spectral energy transfer between perturbation modes is profoundly influenced by two compressibility mechanisms. First and foremost, the emergence of nonlinear pressure-dilatation mechanism leads to kinetic-internal energy exchange within the perturbation field. Such interchange is absent in incompressible flow as pressure merely reorients the perturbation amplitude vector while conserving kinetic energy. Secondly, the nature of triadic interactions also changes due to variability in density. In this work, we demonstrate that the efficiency of nonlinear spectral energy transfer is diminished in compressible boundary layers. Emergence of new perturbation modes or `broad-banding' of the perturbation field is significantly delayed in comparison to incompressible boundary layer undergoing transition. A significant amount of perturbation energy is transformed to internal energy and thus unavailable for `tripping' the flow into turbulent state. These factors profoundly change the nature of the nonlinear stage of transition in compressible boundary layer leading to delayed onset of full-fledged turbulence.

8. Constructing and analysis of soliton-like solutions of (1 + 1), (2 + 1), (3 + 1)-dimensional Schrodinger equations with the third power nonlinearity law

International Nuclear Information System (INIS)

Zhestkov, S.V.; Romanenko, A.A.

2009-01-01

The problem of existence of soliton-like solutions of (1+1), (2+1), (3+1)-dimensional Schrodinger equations with the third power nonlinearity law is investigated. The numerical-analytical method of constructing solitons is developed. (authors)

9. Geometry and quadratic nonlinearity of charge transfer complexes in solution: A theoretical study

International Nuclear Information System (INIS)

Mukhopadhyay, S.; Ramasesha, S.; Pandey, Ravindra; Das, Puspendu K.

2011-01-01

In this paper, we have computed the quadratic nonlinear optical (NLO) properties of a class of weak charge transfer (CT) complexes. These weak complexes are formed when the methyl substituted benzenes (donors) are added to strong acceptors like chloranil (CHL) or di-chloro-di-cyano benzoquinone (DDQ) in chloroform or in dichloromethane. The formation of such complexes is manifested by the presence of a broad absorption maximum in the visible range of the spectrum where neither the donor nor the acceptor absorbs. The appearance of this visible band is due to CT interactions, which result in strong NLO responses. We have employed the semiempirical intermediate neglect of differential overlap (INDO/S) Hamiltonian to calculate the energy levels of these CT complexes using single and double configuration interaction (SDCI). The solvent effects are taken into account by using the self-consistent reaction field (SCRF) scheme. The geometry of the complex is obtained by exploring different relative molecular geometries by rotating the acceptor with respect to the fixed donor about three different axes. The theoretical geometry that best fits the experimental energy gaps, β HRS and macroscopic depolarization ratios is taken to be the most probable geometry of the complex. Our studies show that the most probable geometry of these complexes in solution is the parallel displaced structure with a significant twist in some cases.

10. Does price efficiency increase with trading volume? Evidence of nonlinearity and power laws in ETFs

Science.gov (United States)

Caginalp, Gunduz; DeSantis, Mark

2017-02-01

Whether efficiency increases with increasing volume is an important issue that may illuminate trader strategies and distinguish between market theories. This relationship is tested using 124,236 daily observations comprising 68 large and liquid U.S. equity exchange traded funds (ETFs). ETFs have the advantage that efficiency can be measured in terms of the deviation between the trading price and the underlying net asset value that is reported each day. Our findings support the hypothesis that the relationship between volume and efficiency is nonlinear. Indeed, efficiency increases as volume increases from low to moderately high levels, but then decreases as volume increases further. The first part tends to support the idea that higher volume simply facilitates transactions and maintains efficiency, while the latter part, i.e., even higher volumes, supports the ansatz that increased volume is associated with increased speculation that ignores valuation and decreases efficiency. The results are consistent with the hypothesis that valuation is only part of the motivation for traders. Our methodology accounts for fund heterogeneity and contemporaneous correlations. Similar results are obtained when daily price volatility is introduced as an additional independent variable.

11. The Role of International Investment Law in Renewable Energy Investment; focus on Build Operate and Transfer (BOT) Contracts

OpenAIRE

2014-01-01

Renewable energy is one of the ways of reducing greenhouse gas emission. There is need for more investment in this sector. However, lack of stable regulatory framework and change in policy makes it unattractive to investors. International investment laws through its protections in investment agreement can help to mitigate risks considered by investors especially those with Build, Operate and Transfer (BOT) type of contracts.

12. Thermophoretic diffusion and nonlinear radiative heat transfer due to a contracting cylinder in a nanofluid with generalized slip condition

Directory of Open Access Journals (Sweden)

Z. Abbas

Full Text Available An analysis is carried out to study the generalized slip condition and MHD flow of a nanofluid due to a contracting cylinder in the presence of non-linear radiative heat transfer using Buongiorno’s model. The Navier-Stokes along with energy and nanoparticle concentration equations is transformed to highly nonlinear ordinary differential equations using similarity transformations. These similar differential equations are then solved numerically by employing a shooting technique with Runge–Kutta–Fehlberg method. Dual solutions exist for a particular range of the unsteadiness parameter. The physical influence of the several important fluid parameters on the flow velocity, temperature and nanoparticle volume fraction is discussed and shown through graphs and table in detail. The present study indicates that as increase of Brownian motion parameter and slip velocity is to decrease the nanoparticle volume fraction. Keywords: Nanofluid, Contracting cylinder, Nonlinear thermal radiation, Generalized slip condition, Numerical solution

13. Modeling nonlinear problems in the mechanics of strings and rods the role of the balance laws

CERN Document Server

O'Reilly, Oliver M

2017-01-01

This book presents theories of deformable elastic strings and rods and their application to broad classes of problems. Readers will gain insights into the formulation and analysis of models for mechanical and biological systems. Emphasis is placed on how the balance laws interplay with constitutive relations to form a set of governing equations. For certain classes of problems, it is shown how a balance of material momentum can play a key role in forming the equations of motion. The first half of the book is devoted to the purely mechanical theory of a string and its applications. The second half of the book is devoted to rod theories, including Euler’s theory of the elastica, Kirchhoff ’s theory of an elastic rod, and a range of Cosserat rod theories. A variety of classic and recent applications of these rod theories are examined. Two supplemental chapters, the first on continuum mechanics of three-dimensional continua and the second on methods from variational calculus, are included to provide relevant ...

14. Simple molecular mechanism of heat transfer: Debye relaxation versus power-law

International Nuclear Information System (INIS)

Gall, M.; Kutner, R.

2005-01-01

We study a simple molecular model (at coarse-grain level) as a basis of irreversible heat transfer through a diathermic partition. The partition separates into two adjacent parts a box containing ideal point particles that communicate only though this partition. We provide the basic mechanism of energy transfer between the left- and right-hand side gas samples by assuming equipartition of kinetic energy of all outgoing particles colliding with the partition at a given time. We analyse and compare two essentially different cases (A) the reference one, where we assume that the border walls of the box and the diathermic partitions can randomize the direction of motion of rebounding particles, and (B) the case where we assume the mirror collisions of particles with the border walls and the partition. In both cases the rebounding of the particles from border walls is elastic. The above introduced assumptions allow us to numerically simulate and analytically consider, for example, the relaxation of temperatures of both gas samples and the entropy of the system. However, in both cases the long-time relaxation is essentially different since in case (A) it is an exponential one, while in case (B) it seems to be a power-law relaxation. The obtained results well agree in case (A) with the predictions of the phenomenological, linear theory of irreversible theory had to be developed which assumes time-dependence of heat conductivity; it describes the relaxation of the system far from equilibrium. The explanation of the results obtained in this case is, nevertheless, an intriguing problem. (author)

15. Second law analysis of coupled conduction-radiation heat transfer with phase change

International Nuclear Information System (INIS)

Makhanlall, D.; Liu, L.H.

2010-01-01

This work considers an exergy-based analysis of two-dimensional solid-liquid phase change processes in a square cavity enclosure. The phase change material (PCM) concerns a semi-transparent absorbing, emitting and anisotropically scattering medium with constant thermodynamic properties. The enthalpy-based energy equation is solved numerically using computational fluid dynamics. Once the energy equation is solved, local exergy loss due to heat conduction and radiative heat transfer during the phase change process is calculated by post processing procedures. In this work, the radiation exergy loss in the medium and at the enclosure boundary is taken into consideration. It is found that radiation exergy loss is significant in the high-temperature phase change process. Parametric investigation is also carried out to study the effects of Stefan number, Biot number, Planck number, single scattering albedo and wall emissivity on exergy loss. The results show that the total exergy loss increases with Biot number, single scattering albedo and wall emissivity. The second law effects of the conduction-radiation coupling in the energy equation are also shown in this work. (authors)

16. Comparison between Linear and Nonlinear Regression in a Laboratory Heat Transfer Experiment

Science.gov (United States)

Gonçalves, Carine Messias; Schwaab, Marcio; Pinto, José Carlos

2013-01-01

In order to interpret laboratory experimental data, undergraduate students are used to perform linear regression through linearized versions of nonlinear models. However, the use of linearized models can lead to statistically biased parameter estimates. Even so, it is not an easy task to introduce nonlinear regression and show for the students…

17. All-Optical Control of Linear and Nonlinear Energy Transfer via the Zeno Effect

Science.gov (United States)

Guo, Xiang; Zou, Chang-Ling; Jiang, Liang; Tang, Hong X.

2018-05-01

Microresonator-based nonlinear processes are fundamental to applications including microcomb generation, parametric frequency conversion, and harmonics generation. While nonlinear processes involving either second- (χ(2 )) or third- (χ(3 )) order nonlinearity have been extensively studied, the interaction between these two basic nonlinear processes has seldom been reported. In this paper we demonstrate a coherent interplay between second- and third- order nonlinear processes. The parametric (χ(2 ) ) coupling to a lossy ancillary mode shortens the lifetime of the target photonic mode and suppresses its density of states, preventing the photon emissions into the target photonic mode via the Zeno effect. Such an effect is then used to control the stimulated four-wave mixing process and realize a suppression ratio of 34.5.

18. Numerical analysis of the transient conjugated heat transfer in a circular duct with a power-law fluid

Energy Technology Data Exchange (ETDEWEB)

Luna, N. [Secretaria de Energia, Direccion de Operacion Petrolera, Mexico DF (Mexico); Mendez, F. [UNAM, Facultad de Ingenieria, Mexico DF (Mexico); Bautista, O. [ITESM, Division de Ingenieria y Arquitectura, Mexico DF (Mexico)

2005-05-01

We treat numerically in this paper, the transient analysis of a conjugated heat transfer process in the thermal entrance region of a circular tube with a fully developed laminar power-law fluid flow. We apply the quasi-steady approximation for the power-law fluid, identifying the suitable time scales of the process. Thus, the energy equation in the fluids is solved analytically using the well-known integral boundary layer technique. This solution is coupled to the transient energy equation for the solid where the transverse and longitudinal heat conduction effects are taken into account. The numerical results for the temporal evolution of the average temperature of the tube wall, {theta}{sub av,} is plotted for different nondimensional parameters such as conduction parameter, {alpha}, the aspect ratios of the tube, {epsilon} and {epsilon}{sub 0} and the index of power-law fluid, n. (orig.)

19. Numerical study of pressure fluctuations transfer law in different flow rate of turbine mode in a prototype pump turbine

International Nuclear Information System (INIS)

Sun, Y K; Zuo, Z G; Liu, S H; Wu, Y L; Liu, J T; Qin, D Q; Wei, X Z

2013-01-01

Numerical simulation using SST k-w turbulence model was carried out, to predict pressure fluctuation transfer law in turbine mode. Three operating points with different mass flow rates are simulated. The results of numerical simulation show that, the amplitude and frequency of pressure fluctuations in different positions are very different. The transfer law of amplitude and frequency of pressure fluctuations change with different position and different mass flow rate. Blade passing frequency (BPF) is the first dominant frequency in vaneless space, while component in this frequency got smaller in the upstream and downstream of vaneless space when the mass flow is set. Furthermore triple blade passing frequency (3BPF) component obtained a different transfer law through the whole flow passage. The amplitude and frequency of pressure fluctuations is also different in different circumference position of vaneless space. When the mass flow is different, the distribution of pressure fluctuations in circumference is different. The frequency component of pressure fluctuations in all the positions is different too

20. Effect of asymmetrical transfer coefficients of a non-polarizing beam splitter on the nonlinear error of the polarization interferometer

Science.gov (United States)

Zhao, Chen-Guang; Tan, Jiu-Bin; Liu, Tao

2010-09-01

The mechanism of a non-polarizing beam splitter (NPBS) with asymmetrical transfer coefficients causing the rotation of polarization direction is explained in principle, and the measurement nonlinear error caused by NPBS is analyzed based on Jones matrix theory. Theoretical calculations show that the nonlinear error changes periodically, and the error period and peak values increase with the deviation between transmissivities of p-polarization and s-polarization states. When the transmissivity of p-polarization is 53% and that of s-polarization is 48%, the maximum error reaches 2.7 nm. The imperfection of NPBS is one of the main error sources in simultaneous phase-shifting polarization interferometer, and its influence can not be neglected in the nanoscale ultra-precision measurement.

1. Non-linear flow law of rockglacier creep determined from geomorphological observations: A case study from the Murtèl rockglacier (Engadin, SE Switzerland)

Science.gov (United States)

Frehner, Marcel; Amschwand, Dominik; Gärtner-Roer, Isabelle

2016-04-01

Rockglaciers consist of unconsolidated rock fragments (silt/sand-rock boulders) with interstitial ice; hence their creep behavior (i.e., rheology) may deviate from the simple and well-known flow-laws for pure ice. Here we constrain the non-linear viscous flow law that governs rockglacier creep based on geomorphological observations. We use the Murtèl rockglacier (upper Engadin valley, SE Switzerland) as a case study, for which high-resolution digital elevation models (DEM), time-lapse borehole deformation data, and geophysical soundings exist that reveal the exterior and interior architecture and dynamics of the landform. Rockglaciers often feature a prominent furrow-and-ridge topography. For the Murtèl rockglacier, Frehner et al. (2015) reproduced the wavelength, amplitude, and distribution of the furrow-and-ridge morphology using a linear viscous (Newtonian) flow model. Arenson et al. (2002) presented borehole deformation data, which highlight the basal shear zone at about 30 m depth and a curved deformation profile above the shear zone. Similarly, the furrow-and-ridge morphology also exhibits a curved geometry in map view. Hence, the surface morphology and the borehole deformation data together describe a curved 3D geometry, which is close to, but not quite parabolic. We use a high-resolution DEM to quantify the curved geometry of the Murtèl furrow-and-ridge morphology. We then calculate theoretical 3D flow geometries using different non-linear viscous flow laws. By comparing them to the measured curved 3D geometry (i.e., both surface morphology and borehole deformation data), we can determine the most adequate flow-law that fits the natural data best. Linear viscous models result in perfectly parabolic flow geometries; non-linear creep leads to localized deformation at the sides and bottom of the rockglacier while the deformation in the interior and top are less intense. In other words, non-linear creep results in non-parabolic flow geometries. Both the

2. The Transference of Gender-based Norms in the Law Reform Process: A Reflection on my Work in Thailand

Directory of Open Access Journals (Sweden)

Y-Vonne Hutchinson

2013-04-01

Full Text Available In 2008, I spent a year as a Rule of Law specialist in Thailand with the International Rescue Committee (IRC, as part of a fellowship program for human rights lawyers. I was assigned the task of facilitating the development of a comprehensive legal code for the refugee camps along the border between Thailand and /Burma. As part of my work, I also sought to increase gender-based protection under the law through the incorporation of Thai and international human rights norms. This paper is a reflection on the processes that occurred during my time at IRC. The reform project approached the transference of contentious international norms for protection of women and girls in two ways: a through the inclusive design of the law reform process and b the establishment of a prohibition on rules that clearly violated international or national law. By forming a representative drafting committee and placing an emphasis on community consultation as a precursor to code finalisation, refugee perspectives, particularly female perspectives, were given scope to inform interpretations of national and international legal standards. By requiring international and national legal compliance and placing an emphasis on explanation and clarification of international and national standards in discussions, the project supported downward transference of international norms to a specific community context. We hoped that, as a product of these two normative flows, the resulting legal code would be a sustainable mechanism for gender-based protection and redress in cases of sexual and gender-based violence. During negotiations, it became evident that the inclusive design of the law reform process had a more positive impact on the success of norms transference than the actual substance of the norm. The norms that were most readily accepted were those introduced by law reform committee members themselves. Local norm translators played a pivotal role in the norms diffusion process

3. 31 CFR 515.525 - Certain transfers by operation of law.

Science.gov (United States)

2010-07-01

... succession; (3) Any transfer to any person as administrator, executor, or other fiduciary by reason of any testamentary disposition; and (4) Any transfer to any person as administrator, executor, or fiduciary by reason... no transfer to any person as administrator, executor, or other fiduciary by reason of any...

4. 31 CFR 500.525 - Certain transfers by operation of law.

Science.gov (United States)

2010-07-01

... intestate succession. (3) Any transfer to any person as administrator, executor, or other fiduciary by reason of any testamentary disposition; and (4) Any transfer to any person as administrator, executor, or... and no transfer to any person as administrator, executor, or other fiduciary by reason of any...

5. Dual solutions of three-dimensional flow and heat transfer over a non-linearly stretching/shrinking sheet

Science.gov (United States)

Naganthran, Kohilavani; Nazar, Roslinda; Pop, Ioan

2018-05-01

This study investigated the influence of the non-linearly stretching/shrinking sheet on the boundary layer flow and heat transfer. A proper similarity transformation simplified the system of partial differential equations into a system of ordinary differential equations. This system of similarity equations is then solved numerically by using the bvp4c function in the MATLAB software. The generated numerical results presented graphically and discussed in the relevance of the governing parameters. Dual solutions found as the sheet stretched and shrunk in the horizontal direction. Stability analysis showed that the first solution is physically realizable whereas the second solution is not practicable.

6. Simulation of herbicide degradation in different soils by use of Pedo-transfer functions (PTF) and non-linear kinetics.

Science.gov (United States)

von Götz, N; Richter, O

1999-03-01

The degradation behaviour of bentazone in 14 different soils was examined at constant temperature and moisture conditions. Two soils were examined at different temperatures. On the basis of these data the influence of soil properties and temperature on degradation was assessed and modelled. Pedo-transfer functions (PTF) in combination with a linear and a non-linear model were found suitable to describe the bentazone degradation in the laboratory as related to soil properties. The linear PTF can be combined with a rate related to the temperature to account for both soil property and temperature influence at the same time.

7. World law

Directory of Open Access Journals (Sweden)

Harold J. Berman

1999-03-01

Full Text Available In the third millennium of the Christian era, which is characterised by the emergence of a world economy and eventually a world society, the concept of world law is needed to embrace not only the traditional disciplines of public international law, and comparative law, but also the common underlying legal principles applicable in world trade, world finance, transnational transfer of technology and other fields of world economic law, as well as in such emerging fields as the protection of the world's environment and the protection of universal human rights. World law combines inter-state law with the common law of humanity and the customary law of various world communities.

8. Discretisation of the non-linear heat transfer equation for food freezing processes using orthogonal collocation on finite elements

Directory of Open Access Journals (Sweden)

E. D. Resende

2007-09-01

Full Text Available The freezing process is considered as a propagation problem and mathematically classified as an "initial value problem." The mathematical formulation involves a complex situation of heat transfer with simultaneous changes of phase and abrupt variation in thermal properties. The objective of the present work is to solve the non-linear heat transfer equation for food freezing processes using orthogonal collocation on finite elements. This technique has not yet been applied to freezing processes and represents an alternative numerical approach in this area. The results obtained confirmed the good capability of the numerical method, which allows the simulation of the freezing process in approximately one minute of computer time, qualifying its application in a mathematical optimising procedure. The influence of the latent heat released during the crystallisation phenomena was identified by the significant increase in heat load in the early stages of the freezing process.

9. The implications of non-linearity for excitation transfer in DNA

International Nuclear Information System (INIS)

Baverstock, K.F.; Cundall, R.B.

1990-01-01

Non-linear effects which arise from the coupling of anharmonic interactions can completely change excitation transport through molecular chains. The consequences of this for an understanding of the effect of ionising radiation on DNA are discussed. We consider that these effects should be taken into account in the interpretation of experimental data. (author)

10. Numerical investigation into the highly nonlinear heat transfer equation with bremsstrahlung emission in the inertial confinement fusion plasmas

Energy Technology Data Exchange (ETDEWEB)

Habibi, M.; Oloumi, M.; Hosseinkhani, H.; Magidi, S. [Plasma and Fusion Research School, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)

2015-10-15

A highly nonlinear parabolic partial differential equation that models the electron heat transfer process in laser inertial fusion has been solved numerically. The strong temperature dependence of the electron thermal conductivity and heat loss term (Bremsstrahlung emission) makes this a highly nonlinear process. In this case, an efficient numerical method is developed for the energy transport mechanism from the region of energy deposition into the ablation surface by a combination of the Crank-Nicolson scheme and the Newton-Raphson method. The quantitative behavior of the electron temperature and the comparison between analytic and numerical solutions are also investigated. For more clarification, the accuracy and conservation of energy in the computations are tested. The numerical results can be used to evaluate the nonlinear electron heat conduction, considering the released energy of the laser pulse at the Deuterium-Tritium (DT) targets and preheating by heat conduction ahead of a compression shock in the inertial confinement fusion (ICF) approach. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

11. Linear and nonlinear Biot waves in a noncohesive granular medium slab: transfer function, self-action, second harmonic generation.

Science.gov (United States)

Legland, J-B; Tournat, V; Dazel, O; Novak, A; Gusev, V

2012-06-01

Experimental results are reported on second harmonic generation and self-action in a noncohesive granular medium supporting wave energy propagation both in the solid frame and in the saturating fluid. The acoustic transfer function of the probed granular slab can be separated into two main frequency regions: a low frequency region where the wave propagation is controlled by the solid skeleton elastic properties, and a higher frequency region where the behavior is dominantly due to the air saturating the beads. Experimental results agree well with a recently developed nonlinear Biot wave model applied to granular media. The linear transfer function, second harmonic generation, and self-action effect are studied as a function of bead diameter, compaction step, excitation amplitude, and frequency. This parametric study allows one to isolate different propagation regimes involving a range of described and interpreted linear and nonlinear processes that are encountered in granular media experiments. In particular, a theoretical interpretation is proposed for the observed strong self-action effect.

12. Simple scaling laws for the evaporation of droplets pinned on pillars: Transfer-rate- and diffusion-limited regimes.

Science.gov (United States)

Hernandez-Perez, Ruth; García-Cordero, José L; Escobar, Juan V

2017-12-01

The evaporation of droplets can give rise to a wide range of interesting phenomena in which the dynamics of the evaporation are crucial. In this work, we find simple scaling laws for the evaporation dynamics of axisymmetric droplets pinned on millimeter-sized pillars. Different laws are found depending on whether evaporation is limited by the diffusion of vapor molecules or by the transfer rate across the liquid-vapor interface. For the diffusion-limited regime, we find that a mass-loss rate equal to 3/7 of that of a free-standing evaporating droplet brings a good balance between simplicity and physical correctness. We also find a scaling law for the evaporation of multicomponent solutions. The scaling laws found are validated against experiments of the evaporation of droplets of (1) water, (2) blood plasma, and (3) a mixture of water and polyethylene glycol, pinned on acrylic pillars of different diameters. These results shed light on the macroscopic dynamics of evaporation on pillars as a first step towards the understanding of other complex phenomena that may be taking place during the evaporation process, such as particle transport and chemical reactions.

13. Simple scaling laws for the evaporation of droplets pinned on pillars: Transfer-rate- and diffusion-limited regimes

Science.gov (United States)

Hernandez-Perez, Ruth; García-Cordero, José L.; Escobar, Juan V.

2017-12-01

The evaporation of droplets can give rise to a wide range of interesting phenomena in which the dynamics of the evaporation are crucial. In this work, we find simple scaling laws for the evaporation dynamics of axisymmetric droplets pinned on millimeter-sized pillars. Different laws are found depending on whether evaporation is limited by the diffusion of vapor molecules or by the transfer rate across the liquid-vapor interface. For the diffusion-limited regime, we find that a mass-loss rate equal to 3/7 of that of a free-standing evaporating droplet brings a good balance between simplicity and physical correctness. We also find a scaling law for the evaporation of multicomponent solutions. The scaling laws found are validated against experiments of the evaporation of droplets of (1) water, (2) blood plasma, and (3) a mixture of water and polyethylene glycol, pinned on acrylic pillars of different diameters. These results shed light on the macroscopic dynamics of evaporation on pillars as a first step towards the understanding of other complex phenomena that may be taking place during the evaporation process, such as particle transport and chemical reactions.

14. Mitochondrial replacement techniques and Mexico's rule of law: on the legality of the first maternal spindle transfer case

Science.gov (United States)

Medina-Arellano, María de Jesús

2017-01-01

Abstract News about the first baby born after a mitochondrial replacement technique (MRT; specifically maternal spindle transfer) broke on September 27, 2016 and, in a matter of hours, went global. Of special interest was the fact that the mitochondrial replacement procedure happened in Mexico. One of the scientists behind this world first was quoted as having said that he and his team went to Mexico to carry out the procedure because, in Mexico, there are no rules. In this paper, we explore Mexico's rule of law in relation to mitochondrial replacement techniques and show that, in fact, certain instances of MRTs are prohibited at the federal level and others are prohibited at the state level. According to our interpretation of the law, the scientists behind this first successful MRT procedure broke federal regulations regarding assisted fertilization research. PMID:28852557

15. Cumulant generating function formula of heat transfer in ballistic systems with lead-lead coupling and general nonlinear systems

Science.gov (United States)

Li, Huanan

2013-03-01

Based on a two-time observation protocol, we consider heat transfer in a given time interval tM in a lead-junction-lead system taking coupling between the leads into account. In view of the two-time observation, consistency conditions are carefully verified in our specific family of quantum histories. Furthermore, its implication is briefly explored. Then using the nonequilibrium Green's function method, we obtain an exact formula for the cumulant generating function for heat transfer between the two leads, valid in both transient and steady-state regimes. Also, a compact formula for the cumulant generating function in the long-time limit is derived, for which the Gallavotti-Cohen fluctuation symmetry is explicitly verified. In addition, we briefly discuss Di Ventra's repartitioning trick regarding whether the repartitioning procedure of the total Hamiltonian affects the nonequilibrium steady-state current fluctuation. All kinds of properties of nonequilibrium current fluctuations, such as the fluctuation theorem in different time regimes, could be readily given according to these exact formulas. Finally a practical formalism dealing with cumulants of heat transfer across general nonlinear quantum systems is established based on field theoretical/algebraic method.

16. Non-linear heat transfer computer code by finite element method

International Nuclear Information System (INIS)

Nagato, Kotaro; Takikawa, Noboru

1977-01-01

The computer code THETA-2D for the calculation of temperature distribution by the two-dimensional finite element method was made for the analysis of heat transfer in a high temperature structure. Numerical experiment was performed for the numerical integration of the differential equation of heat conduction. The Runge-Kutta method of the numerical experiment produced an unstable solution. A stable solution was obtained by the β method with the β value of 0.35. In high temperature structures, the radiative heat transfer can not be neglected. To introduce a term of the radiative heat transfer, a functional neglecting the radiative heat transfer was derived at first. Then, the radiative term was added after the discretion by variation method. Five model calculations were carried out by the computer code. Calculation of steady heat conduction was performed. When estimated initial temperature is 1,000 degree C, reasonable heat blance was obtained. In case of steady-unsteady temperature calculation, the time integral by THETA-2D turned out to be under-estimation for enthalpy change. With a one-dimensional model, the temperature distribution in a structure, in which heat conductivity is dependent on temperature, was calculated. Calculation with a model which has a void inside was performed. Finally, model calculation for a complex system was carried out. (Kato, T.)

17. An Analysis of the Invariance and Conservation Laws of Some Classes of Nonlinear Ostrovsky Equations and Related Systems

International Nuclear Information System (INIS)

Fakhar, K.; Kara, A. H.

2011-01-01

A large class of partial differential equations in the modelling of ocean waves are due to Ostrovsky. We determine the invariance properties (through the Lie point symmetry generators) and construct classes of conservation laws for some of the models. In the latter case, the method involves finding the ‘multipliers’ associated with the conservation laws with a stronger emphasis on the ‘higher-order’ ones. The relationship between the symmetries and conservation laws is investigated by considering the invariance properties of the multipliers. (general)

18. Third Conference on nonlinear science and complexity (NSC)

CERN Document Server

Machado, José; Baleanu, Dumitru; Dynamical Systems and Methods

2012-01-01

Nonlinear Systems and Methods For Mechanical, Electrical and Biosystems presents topics observed at the 3rd Conference on Nonlinear Science and Complexity(NSC), focusing on energy transfer and synchronization in hybrid nonlinear systems. The studies focus on fundamental theories and principles,analytical and symbolic approaches, computational techniques in nonlinear physical science and mathematics. Broken into three parts, the text covers:\\ Parametrical excited pendulum, nonlinear dynamics in hybrid systems, dynamical system synchronization and (N+1) body dynamics as well as new views different from the existing results in nonlinear dynamics. Mathematical methods for dynamical systems including conservation laws, dynamical symmetry in nonlinear differential equations and invex energies. Nonlinear phenomena in physical problems such as solutions, complex flows, chemical kinetics, Toda lattices and parallel manipulator. This book is useful to scholars, researchers and advanced technical members of industrial l...

19. Nonlinear radiative heat transfer in magnetohydrodynamic (MHD stagnation point flow of nanofluid past a stretching sheet with convective boundary condition

Directory of Open Access Journals (Sweden)

Wubshet Ibrahim

2015-12-01

Full Text Available Two-dimensional boundary layer flow of nanofluid fluid past a stretching sheet is examined. The paper reveals the effect of non-linear radiative heat transfer on magnetohydrodynamic (MHD stagnation point flow past a stretching sheet with convective heating. Condition of zero normal flux of nanoparticles at the wall for the stretched flow is considered. The nanoparticle fractions on the boundary are considered to be passively controlled. The solution for the velocity, temperature and nanoparticle concentration depends on parameters viz. Prandtl number Pr, velocity ratio parameter A, magnetic parameter M, Lewis number Le, Brownian motion Nb, and the thermophoresis parameter Nt. Moreover, the problem is governed by temperature ratio parameter (Nr=TfT∞ and radiation parameter Rd. Similarity transformation is used to reduce the governing non-linear boundary-value problems into coupled higher order non-linear ordinary differential equation. These equations were numerically solved using the function bvp4c from the matlab software for different values of governing parameters. Numerical results are obtained for velocity, temperature and concentration, as well as the skin friction coefficient and local Nusselt number. The results indicate that the skin friction coefficient Cf increases as the values of magnetic parameter M increase and decreases as the values of velocity ratio parameter A increase. The local Nusselt number −θ′(0 decreases as the values of thermophoresis parameter Nt and radiation parameter Nr increase and it increases as the values of both Biot number Bi and Prandtl number Pr increase. Furthermore, radiation has a positive effect on temperature and concentration profiles.

20. Nonlinear Dynamic Inversion Baseline Control Law: Flight-Test Results for the Full-scale Advanced Systems Testbed F/A-18 Airplane

Science.gov (United States)

Miller, Christopher J.

2011-01-01

A model reference nonlinear dynamic inversion control law has been developed to provide a baseline controller for research into simple adaptive elements for advanced flight control laws. This controller has been implemented and tested in a hardware-in-the-loop simulation and in flight. The flight results agree well with the simulation predictions and show good handling qualities throughout the tested flight envelope with some noteworthy deficiencies highlighted both by handling qualities metrics and pilot comments. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as simple as possible to easily allow the addition of the adaptive elements. The flight-test results and how they compare to the simulation predictions are discussed, along with a discussion about how each element affected pilot opinions. Additionally, aspects of the design that performed better than expected are presented, as well as some simple improvements that will be suggested for follow-on work.

1. 78 FR 24386 - Electronic Fund Transfers; Determination of Effect on State Laws (Maine and Tennessee)

Science.gov (United States)

2013-04-25

... property as early as two years after purchase. Once a gift card has been deemed abandoned, some or all of... obtain merchandise, not cash, from the purchase of gift cards. A handful of commenters urged the Bureau... unclaimed gift cards are inconsistent with and preempted by the Electronic Fund Transfer Act and Regulation...

2. Targeted energy transfer in laminar vortex-induced vibration of a sprung cylinder with a nonlinear dissipative rotator

Science.gov (United States)

Blanchard, Antoine; Bergman, Lawrence A.; Vakakis, Alexander F.

2017-07-01

We computationally investigate the dynamics of a linearly-sprung circular cylinder immersed in an incompressible flow and undergoing transverse vortex-induced vibration (VIV), to which is attached a rotational nonlinear energy sink (NES) consisting of a mass that freely rotates at constant radius about the cylinder axis, and whose motion is restrained by a rotational linear viscous damper. The inertial coupling between the rotational motion of the attached mass and the rectilinear motion of the cylinder is ;essentially nonlinear;, which, in conjunction with dissipation, allows for one-way, nearly irreversible targeted energy transfer (TET) from the oscillating cylinder to the nonlinear dissipative attachment. At the intermediate Reynolds number Re = 100, the NES-equipped sprung cylinder undergoes repetitive cycles of slowly decaying oscillations punctuated by intervals of chaotic instabilities. During the slowly decaying portion of each cycle, the dynamics of the cylinder is regular and, for large enough values of the ratio ε of the NES mass to the total mass (i.e., NES mass plus cylinder mass), can lead to significant vortex street elongation with partial stabilization of the wake. As ε approaches zero, no such vortex elongation is observed and the wake patterns appear similar to that for a sprung cylinder with no NES. We apply proper orthogonal decomposition (POD) to the velocity flow field during a slowly decaying portion of the solution and show that, in situations where vortex elongation occurs, the NES, though not in direct contact with the surrounding fluid, has a drastic effect on the underlying flow structures, imparting significant and continuous passive redistribution of energy among POD modes. We construct a POD-based reduced-order model for the lift coefficient to characterize energy transactions between the fluid and the cylinder throughout the slowly decaying cycle. We introduce a quantitative signed measure of the work done by the fluid on the

3. Studies on the Exergy Transfer Law for the Irreversible Process in the Waxy Crude Oil Pipeline Transportation

Directory of Open Access Journals (Sweden)

Qinglin Cheng

2018-04-01

Full Text Available With the increasing demand of oil products in China, the energy consumption of pipeline operation will continue to rise greatly, as well as the cost of oil transportation. In the field of practical engineering, saving energy, reducing energy consumption and adapting to the international oil situation are the development trends and represent difficult problems. Based on the basic principle of non-equilibrium thermodynamics, this paper derives the field equilibrium equations of non-equilibrium thermodynamic process for pipeline transportation. To seek the bilinear form of “force” and “flow” in the non-equilibrium thermodynamics of entropy generation rate, the oil pipeline exergy balance equation and the exergy transfer pipeline dynamic equation of the irreversibility were established. The exergy balance equation was applied to energy balance evaluation system, which makes the system more perfect. The exergy flow transfer law of the waxy oil pipeline were explored deeply from the directions of dynamic exergy, pressure exergy, thermal exergy and diffusion exergy. Taking an oil pipeline as an example, the influence factors of exergy transfer coefficient and exergy flow density were analyzed separately.

4. An approximate block Newton method for coupled iterations of nonlinear solvers: Theory and conjugate heat transfer applications

Science.gov (United States)

Yeckel, Andrew; Lun, Lisa; Derby, Jeffrey J.

2009-12-01

A new, approximate block Newton (ABN) method is derived and tested for the coupled solution of nonlinear models, each of which is treated as a modular, black box. Such an approach is motivated by a desire to maintain software flexibility without sacrificing solution efficiency or robustness. Though block Newton methods of similar type have been proposed and studied, we present a unique derivation and use it to sort out some of the more confusing points in the literature. In particular, we show that our ABN method behaves like a Newton iteration preconditioned by an inexact Newton solver derived from subproblem Jacobians. The method is demonstrated on several conjugate heat transfer problems modeled after melt crystal growth processes. These problems are represented by partitioned spatial regions, each modeled by independent heat transfer codes and linked by temperature and flux matching conditions at the boundaries common to the partitions. Whereas a typical block Gauss-Seidel iteration fails about half the time for the model problem, quadratic convergence is achieved by the ABN method under all conditions studied here. Additional performance advantages over existing methods are demonstrated and discussed.

5. A modified variable physical properties model, for analyzing nanofluids flow and heat transfer over nonlinearly stretching sheet

Directory of Open Access Journals (Sweden)

2017-07-01

Full Text Available In this paper, the problem of laminar nanofluid flow which results from the nonlinear stretching of a flat sheet is investigated numerically. In this paper, a modified variable physical properties model for analyzing nanofluids flow and heat transfer is introduced. In this model, the effective viscosity, density, and thermal conductivity of the solid-liquid mixture (nanofluids which are commonly utilized in the homogenous single-phase model, are locally combined with the prevalent single-phase model. A numerical similarity solution is considered which depends on the local Prandtl number, local Brownian motion number, local Lewis number, and local thermophoresis number. The results are compared to the prevalent single-phase model. This comparison depicts that the prevalent single-phase model has a considerable deviation for predicting the behavior of nanofluids flow especially in dimensionless temperature and nanoparticle volume fraction. In addition the effect of the governing parameters such as Prandtl number, the Brownian motion number, the thermophoresis parameter, the Lewis number, and etc. on the velocity, temperature, and volume fraction distribution and the dimensionless heat and mass transfer rates are examined.

6. Nonlinear transfer function encodes synchronization in a neural network from the mammalian brain.

Science.gov (United States)

Menendez de la Prida, L; Sanchez-Andres, J V

1999-09-01

Synchronization is one of the mechanisms by which the brain encodes information. The observed synchronization of neuronal activity has, however, several levels of fluctuations, which presumably regulate local features of specific areas. This means that biological neural networks should have an intrinsic mechanism able to synchronize the neuronal activity but also to preserve the firing capability of individual cells. Here, we investigate the input-output relationship of a biological neural network from developing mammalian brain, i.e., the hippocampus. We show that the probability of occurrence of synchronous output activity (which consists in stereotyped population bursts recorded throughout the hippocampus) is encoded by a sigmoidal transfer function of the input frequency. Under this scope, low-frequency inputs will not produce any coherent output while high-frequency inputs will determine a synchronous pattern of output activity (population bursts). We analyze the effect of the network size (N) on the parameters of the transfer function (threshold and slope). We found that sigmoidal functions realistically simulate the synchronous output activity of hippocampal neural networks. This outcome is particularly important in the application of results from neural network models to neurobiology.

7. Efficient nonlinear registration of 3D images using high order co-ordinate transfer functions.

Science.gov (United States)

Barber, D C

1999-01-01

There is an increasing interest in image registration for a variety of medical imaging applications. Image registration is achieved through the use of a co-ordinate transfer function (CTF) which maps voxels in one image to voxels in the other image, including in the general case changes in mapped voxel intensity. If images of the same subject are to be registered the co-ordinate transfer function needs to implement a spatial transformation consisting of a displacement and a rigid rotation. In order to achieve registration a common approach is to choose a suitable quality-of-registration measure and devise a method for the efficient generation of the parameters of the CTF which minimize this measure. For registration of images from different subjects more complex transforms are required. In general function minimization is too slow to allow the use of CTFs with more than a small number of parameters. However, provided the images are from the same modality and the CTF can be expanded in terms of an appropriate set of basis functions this paper will show how relatively complex CTFs can be used for registration. The use of increasingly complex CTFs to minimize the within group standard deviation of a set of normal single photon emission tomography brain images is used to demonstrate the improved registration of images from different subjects using CTFs of increasing complexity.

8. Numerical solution of a non-linear conservation law applicable to the interior dynamics of partially molten planets

Science.gov (United States)

Bower, Dan J.; Sanan, Patrick; Wolf, Aaron S.

2018-01-01

The energy balance of a partially molten rocky planet can be expressed as a non-linear diffusion equation using mixing length theory to quantify heat transport by both convection and mixing of the melt and solid phases. Crucially, in this formulation the effective or eddy diffusivity depends on the entropy gradient, ∂S / ∂r , as well as entropy itself. First we present a simplified model with semi-analytical solutions that highlights the large dynamic range of ∂S / ∂r -around 12 orders of magnitude-for physically-relevant parameters. It also elucidates the thermal structure of a magma ocean during the earliest stage of crystal formation. This motivates the development of a simple yet stable numerical scheme able to capture the large dynamic range of ∂S / ∂r and hence provide a flexible and robust method for time-integrating the energy equation. Using insight gained from the simplified model, we consider a full model, which includes energy fluxes associated with convection, mixing, gravitational separation, and conduction that all depend on the thermophysical properties of the melt and solid phases. This model is discretised and evolved by applying the finite volume method (FVM), allowing for extended precision calculations and using ∂S / ∂r as the solution variable. The FVM is well-suited to this problem since it is naturally energy conserving, flexible, and intuitive to incorporate arbitrary non-linear fluxes that rely on lookup data. Special attention is given to the numerically challenging scenario in which crystals first form in the centre of a magma ocean. The computational framework we devise is immediately applicable to modelling high melt fraction phenomena in Earth and planetary science research. Furthermore, it provides a template for solving similar non-linear diffusion equations that arise in other science and engineering disciplines, particularly for non-linear functional forms of the diffusion coefficient.

9. Semi-analog Monte Carlo (SMC) method for time-dependent non-linear three-dimensional heterogeneous radiative transfer problems

International Nuclear Information System (INIS)

Yun, Sung Hwan

2004-02-01

Radiative transfer is a complex phenomenon in which radiation field interacts with material. This thermal radiative transfer phenomenon is composed of two equations which are the balance equation of photons and the material energy balance equation. The two equations involve non-linearity due to the temperature and that makes the radiative transfer equation more difficult to solve. During the last several years, there have been many efforts to solve the non-linear radiative transfer problems by Monte Carlo method. Among them, it is known that Semi-Analog Monte Carlo (SMC) method developed by Ahrens and Larsen is accurate regard-less of the time step size in low temperature region. But their works are limited to one-dimensional, low temperature problems. In this thesis, we suggest some method to remove their limitations in the SMC method and apply to the more realistic problems. An initially cold problem was solved over entire temperature region by using piecewise linear interpolation of the heat capacity, while heat capacity is still fitted as a cubic curve within the lowest temperature region. If we assume the heat capacity to be linear in each temperature region, the non-linearity still remains in the radiative transfer equations. We then introduce the first-order Taylor expansion to linearize the non-linear radiative transfer equations. During the linearization procedure, absorption-reemission phenomena may be described by a conventional reemission time sampling scheme which is similar to the repetitive sampling scheme in particle transport Monte Carlo method. But this scheme causes significant stochastic errors, which necessitates many histories. Thus, we present a new reemission time sampling scheme which reduces stochastic errors by storing the information of absorption times. The results of the comparison of the two schemes show that the new scheme has less stochastic errors. Therefore, the improved SMC method is able to solve more realistic problems with

10. Nonlinear bioheat transfer models and multi-objective numerical optimization of the cryosurgery operations

Energy Technology Data Exchange (ETDEWEB)

Kudryashov, Nikolay A.; Shilnikov, Kirill E. [National Research Nuclear University MEPhI, Department of Applied Mathematics, Moscow (Russian Federation)

2016-06-08

Numerical computation of the three dimensional problem of the freezing interface propagation during the cryosurgery coupled with the multi-objective optimization methods is used in order to improve the efficiency and safety of the cryosurgery operations performing. Prostate cancer treatment and cutaneous cryosurgery are considered. The heat transfer in soft tissue during the thermal exposure to low temperature is described by the Pennes bioheat model and is coupled with an enthalpy method for blurred phase change computations. The finite volume method combined with the control volume approximation of the heat fluxes is applied for the cryosurgery numerical modeling on the tumor tissue of a quite arbitrary shape. The flux relaxation approach is used for the stability improvement of the explicit finite difference schemes. The method of the additional heating elements mounting is studied as an approach to control the cellular necrosis front propagation. Whereas the undestucted tumor tissue and destucted healthy tissue volumes are considered as objective functions, the locations of additional heating elements in cutaneous cryosurgery and cryotips in prostate cancer cryotreatment are considered as objective variables in multi-objective problem. The quasi-gradient method is proposed for the searching of the Pareto front segments as the multi-objective optimization problem solutions.

11. Prediction of turbulent heat transfer with surface blowing using a non-linear algebraic heat flux model

International Nuclear Information System (INIS)

Bataille, F.; Younis, B.A.; Bellettre, J.; Lallemand, A.

2003-01-01

The paper reports on the prediction of the effects of blowing on the evolution of the thermal and velocity fields in a flat-plate turbulent boundary layer developing over a porous surface. Closure of the time-averaged equations governing the transport of momentum and thermal energy is achieved using a complete Reynolds-stress transport model for the turbulent stresses and a non-linear, algebraic and explicit model for the turbulent heat fluxes. The latter model accounts explicitly for the dependence of the turbulent heat fluxes on the gradients of mean velocity. Results are reported for the case of a heated boundary layer which is first developed into equilibrium over a smooth impervious wall before encountering a porous section through which cooler fluid is continuously injected. Comparisons are made with LDA measurements for an injection rate of 1%. The reduction of the wall shear stress with increase in injection rate is obtained in the calculations, and the computed rates of heat transfer between the hot flow and the wall are found to agree well with the published data

12. 41 CFR 102-36.365 - May we transfer or donate canines that have been used in the performance of law enforcement duties?

Science.gov (United States)

2010-07-01

... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false May we transfer or donate canines that have been used in the performance of law enforcement duties? 102-36.365 Section 102-36.365 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL...

13. Henry’s Law Constant and Overall Mass Transfer Coefficient for Formaldehyde Emission from Small Water Pools under Simulated Indoor Environmental Conditions

Science.gov (United States)

The Henry’s law constant (HLC) and the overall mass transfer coefficient are both important parameters for modeling formaldehyde emissions from aqueous solutions. In this work, the apparent HLCs for aqueous formaldehyde solutions were determined in the concentration range from 0....

14. Scaling laws of nonlinear Rayleigh-Taylor and Richtmyer-Meshkov instabilities in two and three dimensions

International Nuclear Information System (INIS)

Shvarts, D.; Oron, D.; Kartoon, D.; Rikanati, A.; Sadot, O.; Srebro, Y.; Yedvab, Y.; Ofer, D.; Levin, A.; Sarid, E.; Shvarts, D.; Oron, D.; Kartoon, D.; Rikanati, A.; Sadot, O.; Srebro, Y.; Yedvab, Y.; Ben-Dor, G.; Erez, L.; Erez, G.; Yosef-Hai, A.; Alon, U.; Arazi, L.

2000-01-01

The late-time nonlinear evolution of the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities for random initial perturbations is investigated using a statistical mechanics model based on single-mode and bubble-competition physics at al Atwood numbers (A) and full numerical simulations in two and three dimensions. It is shown that the RT mixing zone bubble and spike fronts evolve as h∼α.A.gt 2 with different values of α for the bubble and spike fronts. The RM mixing zone fronts evolve as h∼θ with different values of θ for bubbles and spikes. Similar analysis yields a linear growth with time of the Kelvin-Helmholtz mixing zone. The dependence of the RT and RM scaling parameters on A and the dimensionality will be discussed. The 3-D predictions are found to be in good agreement with recent Linear Electric Motor (LEM) experiments. (authors)

15. Governing Laws of Complex System Predictability under Co-evolving Uncertainty Sources: Theory and Nonlinear Geophysical Applications

Science.gov (United States)

Perdigão, R. A. P.

2017-12-01

Predictability assessments are traditionally made on a case-by-case basis, often by running the particular model of interest with randomly perturbed initial/boundary conditions and parameters, producing computationally expensive ensembles. These approaches provide a lumped statistical view of uncertainty evolution, without eliciting the fundamental processes and interactions at play in the uncertainty dynamics. In order to address these limitations, we introduce a systematic dynamical framework for predictability assessment and forecast, by analytically deriving governing equations of predictability in terms of the fundamental architecture of dynamical systems, independent of any particular problem under consideration. The framework further relates multiple uncertainty sources along with their coevolutionary interplay, enabling a comprehensive and explicit treatment of uncertainty dynamics along time, without requiring the actual model to be run. In doing so, computational resources are freed and a quick and effective a-priori systematic dynamic evaluation is made of predictability evolution and its challenges, including aspects in the model architecture and intervening variables that may require optimization ahead of initiating any model runs. It further brings out universal dynamic features in the error dynamics elusive to any case specific treatment, ultimately shedding fundamental light on the challenging issue of predictability. The formulated approach, framed with broad mathematical physics generality in mind, is then implemented in dynamic models of nonlinear geophysical systems with various degrees of complexity, in order to evaluate their limitations and provide informed assistance on how to optimize their design and improve their predictability in fundamental dynamical terms.

16. The effect of heat transfer laws and thermal conductances on the local stability of an endoreversible heat engine

International Nuclear Information System (INIS)

Guzman-Vargas, L; Reyes-Ramirez, I; Sanchez, N

2005-01-01

In a recent paper (Santillan et al 2001 J. Phys. D: Appl. Phys. 34 2068-72) the local stability of a Curzon-Ahlborn-Novikov (CAN) engine with equal conductances in the coupling with thermal baths was analysed. In this work, we present a local stability analysis of an endoreversible engine operating at maximum power output, for common heat transfer laws, and for different heat conductances α and β, in the isothermal couplings of the working substance with the thermal sources T 1 and T 2 (T 1 > T 2 ). We find that the relaxation times, in the cases analysed here, are a function of α, β, the heat capacity C, T 1 and T 2 . Besides, the eigendirections in a phase portrait are also functions of τ = T 1 /T 2 and the ratio β/α. From these findings, phase portraits for the trajectories after a small perturbation over the steady-state values of internal temperatures are presented, for some significant situations. Finally, we discuss the local stability and energetic properties of the endoreversible CAN heat engine

17. Rotational energy transfer in Na2 (A Σ) colliding with Xe, Kr, Ar, Ne, He, H2, CH4, and N2: Experiment and fitting laws

International Nuclear Information System (INIS)

Brunner, T.A.; Smith, N.; Karp, A.W.; Pritchard, D.E.

1981-01-01

Using the method of laser-induced fluorescence, we have measured level to level rate constants for rotational energy transfer (RET) in Na 2 colliding with Xe, Kr, Ar, Ne, He, H 2 , N 2 , and CH 4 . For each target gas we varied the initial rotational quantum number ji-italic over a wide range, typically 4--100, and measured approximately 60 rate constants with an average error of between 6% and 9%. The resulting base of 479 rate constants is used to test several recently proposed fitting laws. The energy corrected sudden scaling law of DePristo et al., when combined with the assumption of a power gap law for the basis rate constants k/sub l/→0, fit with only 3 parameters all of the data for a given target gas with 7%--12% average percentage deviation. Our statistical power gap law worked well and was generally the best law for those data sets with only one value of j/sub i/. The worst fits in all cases considered here were those using the exponential gap law of surprisal theory

18. Nonlinear dynamics and control of a vibrating rectangular plate

Science.gov (United States)

Shebalin, J. V.

1983-01-01

The von Karman equations of nonlinear elasticity are solved for the case of a vibrating rectangular plate by meams of a Fourier spectral transform method. The amplification of a particular Fourier mode by nonlinear transfer of energy is demonstrated for this conservative system. The multi-mode system is reduced to a minimal (two mode) system, retaining the qualitative features of the multi-mode system. The effect of a modal control law on the dynamics of this minimal nonlinear elastic system is examined.

19. Heat transfer

First page Back Continue Last page Overview Graphics. Heat transfer. Heat conduction in solid slab. Convective heat transfer. Non-linear temperature. variation due to flow. HEAT FLUX AT SURFACE. conduction/diffusion.

20. Conservation laws and rogue waves for a higher-order nonlinear Schrödinger equation with variable coefficients in the inhomogeneous fiber

Science.gov (United States)

Du, Zhong; Tian, Bo; Wu, Xiao-Yu; Liu, Lei; Sun, Yan

2017-07-01

Subpicosecond or femtosecond optical pulse propagation in the inhomogeneous fiber can be described by a higher-order nonlinear Schrödinger equation with variable coefficients, which is investigated in the paper. Via the Ablowitz-Kaup-Newell-Segur system and symbolic computation, the Lax pair and infinitely-many conservation laws are deduced. Based on the Lax pair and a modified Darboux transformation technique, the first- and second-order rogue wave solutions are constructed. Effects of the groupvelocity dispersion and third-order dispersion on the properties of the first- and second-order rouge waves are graphically presented and analyzed: The groupvelocity dispersion and third-order dispersion both affect the ranges and shapes of the first- and second-order rogue waves: The third-order dispersion can produce a skew angle of the first-order rogue wave and the skew angle rotates counterclockwise with the increase of the groupvelocity dispersion, when the groupvelocity dispersion and third-order dispersion are chosen as the constants; When the groupvelocity dispersion and third-order dispersion are taken as the functions of the propagation distance, the linear, X-shaped and parabolic trajectories of the rogue waves are obtained.

1. The impact of LED transfer function nonlinearity on high-speed optical wireless communications based on discrete-multitone modulation

NARCIS (Netherlands)

Inan, B.; Lee, S.C.J.; Randel, S.; Neokosmidis, L.; Koonen, A.M.J.; Walewski, J.

2009-01-01

The nonlinear dependence of the optical power from white LEDs on the applied driving current and its impact on discrete-multitone modulation was investigated by use of numerical simulations for the case of optical wireless communications.

2. Application of linear and non-linear low-Re k-ε models in two-dimensional predictions of convective heat transfer in passages with sudden contractions

International Nuclear Information System (INIS)

Raisee, M.; Hejazi, S.H.

2007-01-01

This paper presents comparisons between heat transfer predictions and measurements for developing turbulent flow through straight rectangular channels with sudden contractions at the mid-channel section. The present numerical results were obtained using a two-dimensional finite-volume code which solves the governing equations in a vertical plane located at the lateral mid-point of the channel. The pressure field is obtained with the well-known SIMPLE algorithm. The hybrid scheme was employed for the discretization of convection in all transport equations. For modeling of the turbulence, a zonal low-Reynolds number k-ε model and the linear and non-linear low-Reynolds number k-ε models with the 'Yap' and 'NYP' length-scale correction terms have been employed. The main objective of present study is to examine the ability of the above turbulence models in the prediction of convective heat transfer in channels with sudden contraction at a mid-channel section. The results of this study show that a sudden contraction creates a relatively small recirculation bubble immediately downstream of the channel contraction. This separation bubble influences the distribution of local heat transfer coefficient and increases the heat transfer levels by a factor of three. Computational results indicate that all the turbulence models employed produce similar flow fields. The zonal k-ε model produces the wrong Nusselt number distribution by underpredicting heat transfer levels in the recirculation bubble and overpredicting them in the developing region. The linear low-Re k-ε model, on the other hand, returns the correct Nusselt number distribution in the recirculation region, although it somewhat overpredicts heat transfer levels in the developing region downstream of the separation bubble. The replacement of the 'Yap' term with the 'NYP' term in the linear low-Re k-ε model results in a more accurate local Nusselt number distribution. Moreover, the application of the non-linear k

3. LEGAL ASPECTS OF THE TRANSPOSITION OF DIRECTIVE 2001/23/EC REGARDING THE SAFEGUARDING OF EMPLOYEES’ RIGHTS IN THE EVENT OF TRANSFERS IN THE ROMANIAN LAW

Directory of Open Access Journals (Sweden)

FELICIA BEJAN

2013-05-01

Full Text Available The transfer of undertakings, businesses or parts of undertakings or businesses by legal transfer or merger determine important changes in the structure of the participant entities. The change of their juridical organisation has significant consequences on the employees’ rights, reason why, both nationally and internationally, normative acts that would regulate appropriate safeguarding mechanisms have been adopted. The paper aims to analyse the transposition into national law of the communitarian norms in the field. As a result, the legal aspects with regards to which the legislator chose a restrictive transposition, as well as the additional rights established by them in favour of the employees, in comparison to the directive are identified. At the same time, the study emphasizes the aspects with regards to which the Romanian law requires to be changed and therefore makes some proposals de lege ferenda, so that the transposition of the communitarian normative act into national law would be a precise one and consistent to the other dispositions regarding national law.

4. Transfer

DEFF Research Database (Denmark)

Wahlgren, Bjarne; Aarkrog, Vibe

Bogen er den første samlede indføring i transfer på dansk. Transfer kan anvendes som praksis-filosofikum. Den giver en systematisk indsigt til den studerende, der spørger: Hvordan kan teoretisk viden bruges til at reflektere over handlinger i situationer, der passer til min fremtidige arbejdsplads?...

5. On radiative-magnetoconvective heat and mass transfer of a nanofluid past a non-linear stretching surface with Ohmic heating and convective surface boundary condition

Directory of Open Access Journals (Sweden)

Shweta Mishra

2016-12-01

Full Text Available In this paper magnetoconvective heat and mass transfer characteristics of a two-dimensional steady flow of a nanofluid over a non-linear stretching sheet in the presence of thermal radiation, Ohmic heating and viscous dissipation have been investigated numerically. The model used for the nanofluid incorporates the effects of the Brownian motion and the presence of nanoparticles in the base fluid. The governing equations are transformed into a system of nonlinear ordinary differential equations by using similarity transformation. The numerical solutions are obtained by using fifth order Runge–Kutta–Fehlberg method with shooting technique. The non-dimensional parameters on velocity, temperature and concentration profiles and also on local Nusselt number and Sherwood number are discussed. The results indicate that the local skin friction coefficient decreases as the value of the magnetic parameter increases whereas the Nusselt number and Sherwood number increase as the values of the Brownian motion parameter and magnetic parameter increase.

6. Experimental study of nonlinear interaction of plasma flow with charged thin current sheets: 2. Hall dynamics, mass and momentum transfer

Directory of Open Access Journals (Sweden)

S. Savin

2006-01-01

Full Text Available Proceeding with the analysis of Amata et al. (2005, we suggest that the general feature for the local transport at a thin magnetopause (MP consists of the penetration of ions from the magnetosheath with gyroradius larger than the MP width, and that, in crossing it, the transverse potential difference at the thin current sheet (TCS is acquired by these ions, providing a field-particle energy exchange without parallel electric fields. It is suggested that a part of the surface charge is self-consistently produced by deflection of ions in the course of inertial drift in the non-uniform electric field at MP. Consideration of the partial moments of ions with different energies demonstrates that the protons having gyroradii of roughly the same size or larger than the MP width carry fluxes normal to MP that are about 20% of the total flow in the plasma jet under MP. This is close to the excess of the ion transverse velocity over the cross-field drift speed in the plasma flow just inside MP (Amata et al., 2005, which conforms to the contribution of the finite-gyroradius inflow across MP. A linkage through the TCS between different plasmas results from the momentum conservation of the higher-energy ions. If the finite-gyroradius penetration occurs along the MP over ~1.5 RE from the observation site, then it can completely account for the formation of the jet under the MP. To provide the downstream acceleration of the flow near the MP via the cross-field drift, the weak magnetic field is suggested to rotate from its nearly parallel direction to the unperturbed flow toward being almost perpendicular to the accelerated flow near the MP. We discuss a deceleration of the higher-energy ions in the MP normal direction due to the interaction with finite-scale electric field bursts in the magnetosheath flow frame, equivalent to collisions, providing a charge separation. These effective collisions, with a nonlinear frequency proxy of the order of the proton

7. Biot-Savart Law Application in Wireless Power Transfer – Dependence of Magnetic Field to Angle Position

Directory of Open Access Journals (Sweden)

Bogdan IUGA

2017-12-01

Full Text Available The magnetic field of a closed loop of conductive wire can be computed due to Biot-Savart law, which analyses the value of the field at an exterior point from the transversal axis. If the measure point is out of the axis then the magnetic field has completely different values. A general stated form of this law can measure the value in any point, in relation to Euclidian distance from the loop.

8. Nonlinearity, Conservation Law and Shocks

Almost all natural phenomena, and social and economic changes, .... reference moving with velocity c also by the same symbol x and ... abstract as can be seen from the publication of the book Shock Waves and Reaction Diffusion Equation.

9. TRANSFER

African Journals Online (AJOL)

This paper reports on further studies on long range energy transfer between curcumine as donor and another thiazine dye, thionine, which is closely related to methylene blue as energy harvester (Figure 1). Since thionine is known to have a higher quantum yield of singlet oxygen sensitization than methylene blue [8], it is ...

10. Natural convection heat transfer in shallow horizontal rectangular enclosures uniformly heated from the side and filled with non-Newtonian power law fluids

International Nuclear Information System (INIS)

Lamsaadi, M.; Naimi, M.; Hasnaoui, M.

2006-01-01

A combined analytical and numerical study is conducted for two dimensional, steady state, buoyancy driven flows of non-Newtonian power law fluids confined in a shallow rectangular cavity submitted to uniform fluxes of heat along both its short vertical sides, while its long horizontal walls are considered adiabatic. The effect of the non-Newtonian behavior on the fluid flow and heat transfer characteristics is examined. An approximate theoretical solution is developed on the basis of the parallel flow assumption and validated numerically by solving the full governing equations

11. 77 FR 50404 - Electronic Fund Transfers; Intent To Make Determination of Effect on State Laws (Maine and...

Science.gov (United States)

2012-08-21

... issuer. Thus, for example, a consumer who purchases and uses in New York a gift card that was issued by a... Tennessee relating to unclaimed gift cards are inconsistent with and preempted by the requirements of the... between the EFTA and State law ``relating to,'' among other things, ``expiration dates of gift...

12. Some exact solutions of nonlinear fin problem for steady heat transfer in longitudinal fin with different profiles

CSIR Research Space (South Africa)

Mhlongo, MD

2014-05-01

Full Text Available and heat transfer coefficient.This work has been extended in [11] whereby the introduction of the Kirchhoff transformation linearized the one-dimensional fin problem when heat transfer is a differential consequence of thermal conductivity. Symmetry methods... 𝑥 ( 𝜉 ) , 𝜁 𝑥𝑥 = 𝐷 𝑥 (𝜁 𝑥 ) − 𝜃 󸀠󸀠 𝐷 𝑥 ( 𝜉 ) , (46) 10 Advances in Mathematical Physics Table 10: Lie bracket of the admitted symmetry algebra for𝑚 ̸= 𝑛, 𝑛 ̸= − 1 and various 𝑓(𝑥). 𝑓(𝑥) = 𝑥 𝑎 𝑎 = 0 𝑛 arbitrary 𝑓(𝑥) = 𝑥𝑎...

13. Elaboration of the international transfer mechanism of reduction in greenhouse gas emissions on the basis of the Russian federal law About agreements of products sharing'

International Nuclear Information System (INIS)

Toivonen, N.R.; Koulikovskaya, L.

2001-01-01

Suggestions for a comprehensive legal framework for the implementation in Russia of the flexibility mechanisms established under the Kyoto Protocol (i.e. joint implementation; clean development mechanism; international emissions trading) are proposed. It is suggested that the legal framework be established using the principles embodied in the existing Russian federal law, 'About agreements of product sharing' adopted in 1995. As a basic requirement, it is suggested that the new federal law must include the fundamental elements required to create possibilities for the Russian Federation to participate in the process of certified emission reductions (CER) transfer, emissions reduction unit (ERU) negotiation, and adjusted amount units (AAU) trading within the framework of the Kyoto Protocol implementation. The new law must also embody the basic procedures required to enter into agreements at the international, inter-regional and inter-sectoral levels. Failure to develop the legislative support and the legal framework to facilitate valid Russian participation in the implementation of the Kyoto Protocol will prevent many valuable initiatives and projects from being realized

14. Heat transfer

International Nuclear Information System (INIS)

1985-01-01

Heat transfer takes place between material systems as a result of a temperature difference. The transmission process involves energy conversions governed by the first and second laws of thermodynamics. The heat transfer proceeds from a high-temperature region to a low-temperature region, and because of the finite thermal potential, there is an increase in entropy. Thermodynamics, however, is concerned with equilibrium states, which includes thermal equilibrium, irrespective of the time necessary to attain these equilibrium states. But heat transfer is a result of thermal nonequilibrium conditions, therefore, the laws of thermodynamics alone cannot describe completely the heat transfer process. In practice, most engineering problems are concerned with the rate of heat transfer rather than the quantity of heat being transferred. Resort then is directed to the particular laws governing the transfer of heat. There are three distinct modes of heat transfer: conduction, convection, and radiation. Although these modes are discussed separately, all three types may occur simultaneously

15. Simulation of nonlinear dynamics of a PWR core by an improved lumped formulation for fuel heat transfer

International Nuclear Information System (INIS)

Su, Jian; Cotta, Renato M.

2000-01-01

In this work, thermohydraulic behaviour of PWR, during reactivity insertion and partial loss-of-flow, is simulated by using a simplified mathematical model of reactor core and primary coolant. An improved lumped parameter formulation for transient heat conduction in fuel rod is used for core heat transfer modelling. Transient temperature response of fuel, cladding and coolant is analysed. (author)

16. MHD stagnation point flow and heat transfer of a nanofluid over a permeable nonlinear stretching/shrinking sheet with viscous dissipation effect

Science.gov (United States)

Jusoh, Rahimah; Nazar, Roslinda

2018-04-01

The magnetohydrodynamic (MHD) stagnation point flow and heat transfer of an electrically conducting nanofluid over a nonlinear stretching/shrinking sheet is studied numerically. Mathematical modelling and analysis are attended in the presence of viscous dissipation. Appropriate similarity transformations are used to reduce the boundary layer equations for momentum, energy and concentration into a set of ordinary differential equations. The reduced equations are solved numerically using the built in bvp4c function in Matlab. The numerical and graphical results on the effects of various parameters on the velocity and temperature profiles as well as the skin friction coefficient and the local Nusselt number are analyzed and discussed in this paper. The study discovers the existence of dual solutions for a certain range of the suction parameter. The conducted stability analysis reveals that the first solution is stable and feasible, while the second solution is unstable.

17. Determining the status of non-transferred embryos in Ireland: a conspectus of case law and implications for clinical IVF practice.

LENUS (Irish Health Repository)

Sills, Eric Scott

2009-01-01

The development of in vitro fertilisation (IVF) as a treatment for human infertilty was among the most controversial medical achievements of the modern era. In Ireland, the fate and status of supranumary (non-transferred) embryos derived from IVF brings challenges both for clinical practice and public health policy because there is no judicial or legislative framework in place to address the medical, scientific, or ethical uncertainties. Complex legal issues exist regarding informed consent and ownership of embryos, particularly the use of non-transferred embryos if a couple separates or divorces. But since case law is only beginning to emerge from outside Ireland and because legislation on IVF and human embryo status is entirely absent here, this matter is poised to raise contractual, constitutional and property law issues at the highest level. Our analysis examines this medico-legal challenge in an Irish context, and summarises key decisions on this issue rendered from other jurisdictions. The contractual issues raised by the Roche case regarding informed consent and the implications the initial judgment may have for future disputes over embryos are also discussed. Our research also considers a putative Constitutional \\'right to procreate\\' and the implications EU law may have for an Irish case concerning the fate of frozen embryos. Since current Medical Council guidelines are insufficient to ensure appropriate regulation of the advanced reproductive technologies in Ireland, the report of the Commission on Assisted Human Reproduction is most likely to influence embryo custody disputes. Public policy requires the establishment and implementation of a more comprehensive legislative framework within which assisted reproductive medical services are offered.

18. Determining the status of non-transferred embryos in Ireland: a conspectus of case law and implications for clinical IVF practice.

Science.gov (United States)

Sills, Eric Scott; Murphy, Sarah Ellen

2009-07-09

The development of in vitro fertilisation (IVF) as a treatment for human infertilty was among the most controversial medical achievements of the modern era. In Ireland, the fate and status of supranumary (non-transferred) embryos derived from IVF brings challenges both for clinical practice and public health policy because there is no judicial or legislative framework in place to address the medical, scientific, or ethical uncertainties. Complex legal issues exist regarding informed consent and ownership of embryos, particularly the use of non-transferred embryos if a couple separates or divorces. But since case law is only beginning to emerge from outside Ireland and because legislation on IVF and human embryo status is entirely absent here, this matter is poised to raise contractual, constitutional and property law issues at the highest level. Our analysis examines this medico-legal challenge in an Irish context, and summarises key decisions on this issue rendered from other jurisdictions. The contractual issues raised by the Roche case regarding informed consent and the implications the initial judgment may have for future disputes over embryos are also discussed. Our research also considers a putative Constitutional 'right to procreate' and the implications EU law may have for an Irish case concerning the fate of frozen embryos. Since current Medical Council guidelines are insufficient to ensure appropriate regulation of the advanced reproductive technologies in Ireland, the report of the Commission on Assisted Human Reproduction is most likely to influence embryo custody disputes. Public policy requires the establishment and implementation of a more comprehensive legislative framework within which assisted reproductive medical services are offered.

19. Determining the status of non-transferred embryos in Ireland: a conspectus of case law and implications for clinical IVF practice

Directory of Open Access Journals (Sweden)

Sills Eric

2009-07-01

Full Text Available Abstract The development of in vitro fertilisation (IVF as a treatment for human infertilty was among the most controversial medical achievements of the modern era. In Ireland, the fate and status of supranumary (non-transferred embryos derived from IVF brings challenges both for clinical practice and public health policy because there is no judicial or legislative framework in place to address the medical, scientific, or ethical uncertainties. Complex legal issues exist regarding informed consent and ownership of embryos, particularly the use of non-transferred embryos if a couple separates or divorces. But since case law is only beginning to emerge from outside Ireland and because legislation on IVF and human embryo status is entirely absent here, this matter is poised to raise contractual, constitutional and property law issues at the highest level. Our analysis examines this medico-legal challenge in an Irish context, and summarises key decisions on this issue rendered from other jurisdictions. The contractual issues raised by the Roche case regarding informed consent and the implications the initial judgment may have for future disputes over embryos are also discussed. Our research also considers a putative Constitutional 'right to procreate' and the implications EU law may have for an Irish case concerning the fate of frozen embryos. Since current Medical Council guidelines are insufficient to ensure appropriate regulation of the advanced reproductive technologies in Ireland, the report of the Commission on Assisted Human Reproduction is most likely to influence embryo custody disputes. Public policy requires the establishment and implementation of a more comprehensive legislative framework within which assisted reproductive medical services are offered.

20. Renormalization, averaging, conservation laws and AdS (in)stability

International Nuclear Information System (INIS)

Craps, Ben; Evnin, Oleg; Vanhoof, Joris

2015-01-01

We continue our analytic investigations of non-linear spherically symmetric perturbations around the anti-de Sitter background in gravity-scalar field systems, and focus on conservation laws restricting the (perturbatively) slow drift of energy between the different normal modes due to non-linearities. We discover two conservation laws in addition to the energy conservation previously discussed in relation to AdS instability. A similar set of three conservation laws was previously noted for a self-interacting scalar field in a non-dynamical AdS background, and we highlight the similarities of this system to the fully dynamical case of gravitational instability. The nature of these conservation laws is best understood through an appeal to averaging methods which allow one to derive an effective Lagrangian or Hamiltonian description of the slow energy transfer between the normal modes. The conservation laws in question then follow from explicit symmetries of this averaged effective theory.

1. Heat and mass transfer of Williamson nanofluid flow yield by an inclined Lorentz force over a nonlinear stretching sheet

Directory of Open Access Journals (Sweden)

Mair Khan

2018-03-01

Full Text Available The present analysis is devoted to explore the computational solution of the problem addressing the variable viscosity and inclined Lorentz force effects on Williamson nanofluid over a stretching sheet. Variable viscosity is assumed to vary as a linear function of temperature. The basic mathematical modelled problem i.e. system of PDE’s is converted nonlinear into ODE’s via applying suitable transformations. Computational solutions of the problem is also achieved via efficient numerical technique shooting. Characteristics of controlling parameters i.e. stretching index, inclined angle, Hartmann number, Weissenberg number, variable viscosity parameter, mixed convention parameter, Brownian motion parameter, Prandtl number, Lewis number, thermophoresis parameter and chemical reactive species on concentration, temperature and velocity gradient. Additionally, friction factor coefficient, Nusselt number and Sherwood number are describe with the help of graphics as well as tables verses flow controlling parameters. Keywords: Williamson nanofluid, Temperature depended viscosity, Inclined magnetic field, Mixed convection, Chemical reactive species, Variable viscosity, Shooting method

2. Heat and mass transfer of Williamson nanofluid flow yield by an inclined Lorentz force over a nonlinear stretching sheet

Science.gov (United States)

Khan, Mair; Malik, M. Y.; Salahuddin, T.; Hussian, Arif.

2018-03-01

The present analysis is devoted to explore the computational solution of the problem addressing the variable viscosity and inclined Lorentz force effects on Williamson nanofluid over a stretching sheet. Variable viscosity is assumed to vary as a linear function of temperature. The basic mathematical modelled problem i.e. system of PDE's is converted nonlinear into ODE's via applying suitable transformations. Computational solutions of the problem is also achieved via efficient numerical technique shooting. Characteristics of controlling parameters i.e. stretching index, inclined angle, Hartmann number, Weissenberg number, variable viscosity parameter, mixed convention parameter, Brownian motion parameter, Prandtl number, Lewis number, thermophoresis parameter and chemical reactive species on concentration, temperature and velocity gradient. Additionally, friction factor coefficient, Nusselt number and Sherwood number are describe with the help of graphics as well as tables verses flow controlling parameters.

3. Electro-osmotic flow of power-law fluid and heat transfer in a micro-channel with effects of Joule heating and thermal radiation

Science.gov (United States)

Shit, G. C.; Mondal, A.; Sinha, A.; Kundu, P. K.

2016-11-01

A mathematical model has been developed for studying the electro-osmotic flow and heat transfer of bio-fluids in a micro-channel in the presence of Joule heating effects. The flow of bio-fluid is governed by the non-Newtonian power-law fluid model. The effects of thermal radiation and velocity slip condition have been examined in the case of hydrophobic channel. The Poisson-Boltzmann equation governing the electrical double layer field and a body force generated by the applied electric potential field are taken into consideration. The results presented here pertain to the case where the height of the channel is much greater than the thickness of electrical double layer comprising the Stern and diffuse layers. The expressions for flow characteristics such as velocity, temperature, shear stress and Nusselt number have been derived analytically under the purview of the present model. The results estimated on the basis of the data available in the existing scientific literatures are presented graphically. The effects of thermal radiation have an important bearing on the therapeutic procedure of hyperthermia, particularly in understanding the heat transfer in micro-channel in the presence of electric potential. The dimensionless Joule heating parameter has a reducing impact on Nusselt number for both pseudo-plastic and dilatant fluids, nevertheless its impact on Nusselt number is more pronounced for dilatant fluid. Furthermore, the effect of viscous dissipation has a significant role in controlling heat transfer and should not be neglected.

4. The transfer of the nuclear supervision into the federal self-administration in the view of the constitutional law

International Nuclear Information System (INIS)

Burgi, M.

2005-01-01

The paper is focussed on the question of a possible transfer of the nuclear supervision from the federal executive administration into a federal self-administration. The discussed topics include the characterization of the nuclear supervision tasks, the relation between administrative tasks and the type of administration, an assessment of the precondition of centrality with respect to the nuclear supervision and a possible accomplishment of the so called centrality

5. A reliable treatment for nonlinear Schroedinger equations

International Nuclear Information System (INIS)

Khani, F.; Hamedi-Nezhad, S.; Molabahrami, A.

2007-01-01

Exp-function method is used to find a unified solution of nonlinear wave equation. Nonlinear Schroedinger equations with cubic and power law nonlinearity are selected to illustrate the effectiveness and simplicity of the method. It is shown that the Exp-function method, with the help of symbolic computation, provides a powerful mathematical tool for solving nonlinear equation

6. Energy Decay Laws in Strongly Anisotropic Magnetohydrodynamic Turbulence

International Nuclear Information System (INIS)

Bigot, Barbara; Galtier, Sebastien; Politano, Helene

2008-01-01

We investigate the influence of a uniform magnetic field B 0 =B 0 e parallel on energy decay laws in incompressible magnetohydrodynamic (MHD) turbulence. The nonlinear transfer reduction along B 0 is included in a model that distinguishes parallel and perpendicular directions, following a phenomenology of Kraichnan. We predict a slowing down of the energy decay due to anisotropy in the limit of strong B 0 , with distinct power laws for energy decay of shear- and pseudo-Alfven waves. Numerical results from the kinetic equations of Alfven wave turbulence recover these predictions, and MHD numerical results clearly tend to follow them in the lowest perpendicular planes

7. Transfer laws between water and freon 113 for average volumetric steam quality, pressure drop, and critical heat flux

International Nuclear Information System (INIS)

1977-01-01

Simulation of the thermohydraulic processes of the steady-state reactor operation with boiling water and typical fuel element geometries leads to considerable increase of the heat rates to be tranferred and thus to an increase of the experimental cost which can hardly be justified. By proper choice of a model fluid with low heat of evaporation the system parameters like pressure, temperature, and heat rate, while retaining the original geometry, may be reduced to a fraction of those of the original fluid water. This permits not only a decrease in experimental cost but also a modification of the existing calculation data under more favorable experimental conditions. Starting from these considerations the cooling medium R113 was used as model fluid in carrying out the experiments. The necessary knowledge of the thermodynamical laws of simularity, however, have to be determined first of all in simple geometries and the scaling factors are then derived from them. In this connection the following experimental studies have been carried out with R113: a) average volumetric steam quality; b) two-phase pressure drop; c) critical heat flux. (orig.) [de

8. Two-dimensional nonlinear heat conduction wave in a layer-inhomogeneous medium and the characteristics of heat transfer in laser thermonuclear fusion targets

International Nuclear Information System (INIS)

Gus'kov, Sergei Yu; Doskach, I Ya

1999-01-01

An analytical solution is obtained to the problem of propagation of a 2-D nonlinear heat conduction wave from a cylindrical energy source, which acts in a planar layer of a material surrounded by a medium with different mass density and degree of ionisation. A theoretical justification is given of several interesting phenomena of 2-D thermal wave propagation through an inhomogeneous medium. These phenomena are related to the difference between the thermal wave velocities in the media with different thermal diffusivities. When the mass density in a layer experiencing the action of an energy source exceeds the density of the surrounding medium, the thermal wave front is shown to glide along the layer boundaries with a spatial velocity exceeding the velocity of the wave inside the layer. Moreover, there is a possibility of 'themal flow' of a layer across the boundaries between the layer and the surrounding medium in front of a thermal wave propagating inside the layer. The problems of heat transfer in multilayer targets for laser thermonuclear fusion are considered as an application. (interaction of laser radiation with matter. laser plasma)

9. Environmental law

International Nuclear Information System (INIS)

Bender, B.; Sparwasser, R.

1988-01-01

Environmental law is discussed exhaustively in this book. Legal and scientific fundamentals are taken into account, a systematic orientation is given, and hints for further information are presented. The book covers general environmental law, plan approval procedures, protection against nuisances, atomic law and radiation protection law, water protection law, waste management law, laws on chemical substances, conservation law. (HSCH) [de

10. Newton's law of cooling revisited

International Nuclear Information System (INIS)

Vollmer, M

2009-01-01

The cooling of objects is often described by a law, attributed to Newton, which states that the temperature difference of a cooling body with respect to the surroundings decreases exponentially with time. Such behaviour has been observed for many laboratory experiments, which led to a wide acceptance of this approach. However, the heat transfer from any object to its surrounding is not only due to conduction and convection but also due to radiation. The latter does not vary linearly with temperature difference, which leads to deviations from Newton's law. This paper presents a theoretical analysis of the cooling of objects with a small Biot number. It is shown that Newton's law of cooling, i.e. simple exponential behaviour, is mostly valid if temperature differences are below a certain threshold which depends on the experimental conditions. For any larger temperature differences appreciable deviations occur which need the complete nonlinear treatment. This is demonstrated by results of some laboratory experiments which use IR imaging to measure surface temperatures of solid cooling objects with temperature differences of up to 300 K.

11. Nonlinearity and disorder: Classification and stability of nonlinear impurity modes

DEFF Research Database (Denmark)

Sukhorukov, Andrey A.; Kivshar, Yuri S.; Bang, Ole

2001-01-01

We study the effects produced by competition of two physical mechanisms of energy localization in inhomogeneous nonlinear systems. As an example, we analyze spatially localized modes supported by a nonlinear impurity in the generalized nonlinear Schrödinger equation and describe three types of no...... the case of a power-law nonlinearity in detail. We discuss several scenarios of the instability-induced dynamics of the nonlinear impurity modes, including the mode decay or switching to a new stable state, and collapse at the impurity site....

12. On conservation laws in geometrically nonlinear elasto-dynamic field of non-homogenous materials%论非均匀材料几何非线性弹性动力学场的守恒律

Institute of Scientific and Technical Information of China (English)

施伟辰; 高庆海; 李欢欢

2006-01-01

对基于Lagrange框架描述的非均匀弹性材料的Lagrange泛函应用Noether原理,开展材料的几何非线性弹性动力学场守恒律的研究,并给出其物质空间守恒律与物质平衡定律之间关系的清晰图景.研究发现,质量密度和弹性系数需满足一组一阶线性偏微分方程,该组方程不但包含来自Newton力学时-空观的全部时-空对称变换,而且控制着材料物质空间守恒律的存在性和存在的形式.特别需指出的是,惯性坐标系的平移和旋转是Lagrange泛函的对称变换,这些对称变换可导致均匀材料的物质空间守恒律和非均匀材料的物质平衡定律,但是时-空坐标的标度改变并不是对称变换.然而,若质量密度和弹性系数满足由上述方程简化而来的一组特殊的一阶线性偏微分方程,则时-空坐标的标度改变可成为Lagrange泛函的对称变换并导致相关守恒律的存在,但此时与该守恒律关联的物质平衡定律仍然不存在.为构造适合力学分析的功能梯度材料的物质空间守恒律,进行了质量密度和弹性系数需满足的方程的应用研究.对于粘合于基底的功能梯度材料层,给出全部非平凡的物质空间守恒律.%By applying Noether's theorem to the Lagrangian density of non-homogenous elastic materials in the so-called Lagrangian framework, conservation laws in geometrically nonlinear elasto-dynamic field have been studied, and a clear picture of relations between the conservation laws in material space and the material balance laws is given. It is found that the mass density and Lamé's moduli have to satisfy a set of first-order linear partial differential equations, which contain all the symmetry-transformations of space-time based on Newtonian viewpoint of mechanics. The existence and existent forms of conservation laws in material space are governed by these equations. Especially, translation and rotation of coordinates are symmetry

13. [Nonlinear magnetohydrodynamics

International Nuclear Information System (INIS)

1994-01-01

Resistive MHD equilibrium, even for small resistivity, differs greatly from ideal equilibrium, as do the dynamical consequences of its instabilities. The requirement, imposed by Faraday's law, that time independent magnetic fields imply curl-free electric fields, greatly restricts the electric fields allowed inside a finite-resistivity plasma. If there is no flow and the implications of the Ohm's law are taken into account (and they need not be, for ideal equilibria), the electric field must equal the resistivity times the current density. The vanishing of the divergence of the current density then provides a partial differential equation which, together with boundary conditions, uniquely determines the scalar potential, the electric field, and the current density, for any given resistivity profile. The situation parallels closely that of driven shear flows in hydrodynamics, in that while dissipative steady states are somewhat more complex than ideal ones, there are vastly fewer of them to consider. Seen in this light, the vast majority of ideal MHD equilibria are just irrelevant, incapable of being set up in the first place. The steady state whose stability thresholds and nonlinear behavior needs to be investigated ceases to be an arbitrary ad hoc exercise dependent upon the whim of the investigator, but is determined by boundary conditions and choice of resistivity profile

DEFF Research Database (Denmark)

Föh, Kennet Fischer; Mandøe, Lene; Tinten, Bjarke

Business Law is a translation of the 2nd edition of Erhvervsjura - videregående uddannelser. It is an educational textbook for the subject of business law. The textbook covers all important topic?s within business law such as the Legal System, Private International Law, Insolvency Law, Contract law......, Instruments of debt and other claims, Sale of Goods and real estate, Charges, mortgages and pledges, Guarantees, Credit agreements, Tort Law, Product liability and Insurance, Company law, Market law, Labour Law, Family Law and Law of Inheritance....

15. Nonlinear resonances

CERN Document Server

Rajasekar, Shanmuganathan

2016-01-01

This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...

16. Introduction to nonlinear science

CERN Document Server

Nicolis, G

1995-01-01

One of the most unexpected results in science in recent years is that quite ordinary systems obeying simple laws can give rise to complex, nonlinear or chaotic, behavior. In this book, the author presents a unified treatment of the concepts and tools needed to analyze nonlinear phenomena and to outline some representative applications drawn from the physical, engineering, and biological sciences. Some of the interesting topics covered include: dynamical systems with a finite number of degrees of freedom, linear stability analysis of fixed points, nonlinear behavior of fixed points, bifurcation analysis, spatially distributed systems, broken symmetries, pattern formation, and chaotic dynamics. The author makes a special effort to provide a logical connection between ordinary dynamical systems and spatially extended systems, and to balance the emphasis on chaotic behavior and more classical nonlinear behavior. He also develops a statistical approach to complex systems and compares it to traditional deterministi...

17. THE NONLINEAR OHM'S LAW: PLASMA HEATING BY STRONG ELECTRIC FIELDS AND ITS EFFECTS ON THE IONIZATION BALANCE IN PROTOPLANETARY DISKS

Energy Technology Data Exchange (ETDEWEB)

Okuzumi, Satoshi [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Inutsuka, Shu-ichiro, E-mail: okuzumi@geo.titech.ac.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)

2015-02-10

The ionization state of the gas plays a key role in the magnetohydrodynamics (MHD) of protoplanetary disks. However, the ionization state can depend on the gas dynamics, because electric fields induced by MHD turbulence can heat up plasmas and thereby affect the ionization balance. To study this nonlinear feedback, we construct an ionization model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as charging of dust grains. We show that when plasma sticking onto grains is the dominant recombination process, the electron abundance in the gas decreases with increasing electric field strength. This is a natural consequence of electron-grain collisions whose frequency increases with the electron's random velocity. The decreasing electron abundance may lead to a self-regulation of MHD turbulence. In some cases, not only the electron abundance but also the electric current decreases with increasing field strength in a certain field range. The resulting N-shaped current-field relation violates the fundamental assumption of the non-relativistic MHD that the electric field is uniquely determined by the current density. At even higher field strengths, impact ionization causes an abrupt increase of the electric current as expected by previous studies. We find that this discharge current is multi-valued (i.e., the current-field relation is S-shaped) under some circumstances, and that the intermediate branch is unstable. The N/S-shaped current-field relations may yield hysteresis in the evolution of MHD turbulence in some parts of protoplanetary disks.

18. Conservation Laws in Biochemical Reaction Networks

DEFF Research Database (Denmark)

Mahdi, Adam; Ferragut, Antoni; Valls, Claudia

2017-01-01

We study the existence of linear and nonlinear conservation laws in biochemical reaction networks with mass-action kinetics. It is straightforward to compute the linear conservation laws as they are related to the left null-space of the stoichiometry matrix. The nonlinear conservation laws...... are difficult to identify and have rarely been considered in the context of mass-action reaction networks. Here, using the Darboux theory of integrability, we provide necessary structural (i.e., parameterindependent) conditions on a reaction network to guarantee the existence of nonlinear conservation laws...

19. Nonlinear hyperbolic waves in multidimensions

CERN Document Server

2001-01-01

The propagation of curved, nonlinear wavefronts and shock fronts are very complex phenomena. Since the 1993 publication of his work Propagation of a Curved Shock and Nonlinear Ray Theory, author Phoolan Prasad and his research group have made significant advances in the underlying theory of these phenomena. This volume presents their results and provides a self-contained account and gradual development of mathematical methods for studying successive positions of these fronts.Nonlinear Hyperbolic Waves in Multidimensions includes all introductory material on nonlinear hyperbolic waves and the theory of shock waves. The author derives the ray theory for a nonlinear wavefront, discusses kink phenomena, and develops a new theory for plane and curved shock propagation. He also derives a full set of conservation laws for a front propagating in two space dimensions, and uses these laws to obtain successive positions of a front with kinks. The treatment includes examples of the theory applied to converging wavefronts...

20. Environmental law

International Nuclear Information System (INIS)

Ketteler, G.; Kippels, K.

1988-01-01

In section I 'Basic principles' the following topics are considered: Constitutional-legal aspects of environmental protection, e.g. nuclear hazards and the remaining risk; European environmental law; international environmental law; administrative law, private law and criminal law relating to the environment; basic principles of environmental law, the instruments of public environmental law. Section II 'Special areas of law' is concerned with the law on water and waste, prevention of air pollution, nature conservation and care of the countryside. Legal decisions and literature up to June 1988 have been taken into consideration. (orig./RST) [de

1. Civil law

NARCIS (Netherlands)

2014-01-01

The concept of civil law has two distinct meanings. that is, disputes between private parties (individuals, corporations), as opposed to other branches of the law, such as administrative law or criminal law, which relate to disputes between individuals and the state. Second, the term civil law is

2. Solving Nonlinear Coupled Differential Equations

Science.gov (United States)

Mitchell, L.; David, J.

1986-01-01

Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.

3. Numerical resolution of a bi-temperature MHD model with a general Ohm's law: Roe solver - Front-tracking - Nonlinear transport equations with discontinuous coefficients. Simulation of a Plasma Opening Switch

International Nuclear Information System (INIS)

Brassier, Stephane

1998-01-01

The Magnetohydrodynamic (MHD) equations represent the coupling between fluid dynamics equations and Maxwell's equations. We consider here a new MHD model with two temperatures. A Roe scheme is first constructed in the one dimensional case, for a multi-species model and a general equation of state. The multidimensional case is treated thanks to the Powell approach. The notion of Roe-Powell matrix, generalization of the notion of Roe matrix for multidimensional MHD, allows us to develop an original scheme on a curvilinear grid. We focus on a second part on the modelling of a Plasma Opening Switch (POS). A front-tracking method is first set up, in order to correctly handle the deformation of the front between the vacuum and the plasma. Besides, by taking into account a general Ohm's law, we have to deal with the Hall effect, which leads to nonlinear transport equations with discontinuous coefficients. Several numerical schemes are proposed and tested on a variety of test cases. This work has allowed us to construct an industrial MHD code, intended to handle complex flows and in particular to correctly simulate the behaviour of the POS. (author) [fr

4. FRF decoupling of nonlinear systems

Science.gov (United States)

Kalaycıoğlu, Taner; Özgüven, H. Nevzat

2018-03-01

Structural decoupling problem, i.e. predicting dynamic behavior of a particular substructure from the knowledge of the dynamics of the coupled structure and the other substructure, has been well investigated for three decades and led to several decoupling methods. In spite of the inherent nonlinearities in a structural system in various forms such as clearances, friction and nonlinear stiffness, all decoupling studies are for linear systems. In this study, decoupling problem for nonlinear systems is addressed for the first time. A method, named as FRF Decoupling Method for Nonlinear Systems (FDM-NS), is proposed for calculating FRFs of a substructure decoupled from a coupled nonlinear structure where nonlinearity can be modeled as a single nonlinear element. Depending on where nonlinear element is, i.e., either in the known or unknown subsystem, or at the connection point, the formulation differs. The method requires relative displacement information between two end points of the nonlinear element, in addition to point and transfer FRFs at some points of the known subsystem. However, it is not necessary to excite the system from the unknown subsystem even when the nonlinear element is in that subsystem. The validation of FDM-NS is demonstrated with two different case studies using nonlinear lumped parameter systems. Finally, a nonlinear experimental test structure is used in order to show the real-life application and accuracy of FDM-NS.

5. Criminal Law

DEFF Research Database (Denmark)

Langsted, Lars Bo; Garde, Peter; Greve, Vagn

<> book contains a thorough description of Danish substantive criminal law, criminal procedure and execution of sanctions. The book was originally published as a monograph in the International Encyclopaedia of Laws/Criminal Law....... book contains a thorough description of Danish substantive criminal law, criminal procedure and execution of sanctions. The book was originally published as a monograph in the International Encyclopaedia of Laws/Criminal Law....

6. Collapse of nonlinear Langmuir waves

International Nuclear Information System (INIS)

Malkin, V.M.

1986-01-01

The dispersion of sufficiently intensive Langmuir waves is determined by intrinsic (electron) nonlinearity. During Langmuir collapse the wave energy density required for the appearance of electron nonlinearity is attained, generally speaking, prior to the development of dissipative processes. Up to now, the effect of electron nonlinearity on the collapse dynamics and spectrum of strong Langmuir turbulence ( which may be very appreciable ) has not been studied extensively because of the difficulty of describing nonlinear Langmuir waves. In the present paper the positive determinacy of the electron nonlinear hamiltonian is proven, the increment of modulation instability of a nonlinear Langmuir wave cluster localized in a cavity is calculated, and the universal law of their collapse is found

7. Nonlinear optics

International Nuclear Information System (INIS)

Boyd, R.W.

1992-01-01

Nonlinear optics is the study of the interaction of intense laser light with matter. This book is a textbook on nonlinear optics at the level of a beginning graduate student. The intent of the book is to provide an introduction to the field of nonlinear optics that stresses fundamental concepts and that enables the student to go on to perform independent research in this field. This book covers the areas of nonlinear optics, quantum optics, quantum electronics, laser physics, electrooptics, and modern optics

8. Nonlinear optics

CERN Document Server

Bloembergen, Nicolaas

1996-01-01

Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe

9. Analysis of Heat Transfer

International Nuclear Information System (INIS)

2003-08-01

This book deals with analysis of heat transfer which includes nonlinear analysis examples, radiation heat transfer, analysis of heat transfer in ANSYS, verification of analysis result, analysis of heat transfer of transition with automatic time stepping and open control, analysis of heat transfer using arrangement of ANSYS, resistance of thermal contact, coupled field analysis such as of thermal-structural interaction, cases of coupled field analysis, and phase change.

10. 14 CFR 155.3 - Applicable law.

Science.gov (United States)

2010-01-01

... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Applicable law. 155.3 Section 155.3... RELEASE OF AIRPORT PROPERTY FROM SURPLUS PROPERTY DISPOSAL RESTRICTIONS § 155.3 Applicable law. (a... transfer to the requirements of applicable law. Based on the laws cited in this paragraph, the...

11. MHD axisymmetric flow of power-law fluid over an unsteady stretching sheet with convective boundary conditions

Directory of Open Access Journals (Sweden)

Full Text Available This paper examines the boundary layer flow and heat transfer characteristic in power law fluid model over unsteady radially stretching sheet under the influence of convective boundary conditions. A uniform magnetic field is applied transversely to the direction of the flow. The governing time dependent nonlinear boundary layer equations are reduced into nonlinear ordinary differential equations with the help of similarity transformations. The transformed coupled ordinary differential equations are then solved analytically by homotopy analysis method (HAM and numerically by shooting procedure. Effects of various governing parameters like, power law index n, magnetic parameter M, unsteadiness A, suction/injection S, Biot number γ and generalized Prandtl number Pr on velocity, temperature, local skin friction and the local Nusselt number are studied and discussed. It is found from the analysis that the magnetic parameter diminishes the velocity profile and the corresponding thermal boundary layer thickness. Keywords: Axisymmetric flow, Power law fluid, Unsteady stretching, Convective boundary conditions

12. Law Studies

Directory of Open Access Journals (Sweden)

G. P. Tolstopiatenko

2014-01-01

Full Text Available At the origin of the International Law Department were such eminent scientists, diplomats and teachers as V.N. Durdenevsky, S.B. Krylov and F.I. Kozhevnikov. International law studies in USSR and Russia during the second half of the XX century was largely shaped by the lawyers of MGIMO. They had a large influence on the education in the international law in the whole USSR, and since 1990s in Russia and other CIS countries. The prominence of the research of MGIMO international lawyers was due to the close connections with the international practice, involving international negotiations in the United Nations and other international fora, diplomatic conferences and international scientific conferences. This experience is represented in the MGIMO handbooks on international law, which are still in demand. The Faculty of International Law at MGIMO consists of seven departments: Department of International Law, Department of Private International and Comparative Law; Department of European Law; Department of Comparative Constitutional Law; Department of Administrative and Financial Law; Department of Criminal Law, Department Criminal Procedure and Criminalistics. Many Russian lawyers famous at home and abroad work at the Faculty, contributing to domestic and international law studies. In 1947 the Academy of Sciences of the USSR published "International Law" textbook which was the first textbook on the subject in USSR. S.B. Krylov and V.N. Durdenevsky were the authors and editors of the textbook. First generations of MGIMO students studied international law according to this textbook. All subsequent books on international law, published in the USSR, were based on the approach to the teaching of international law, developed in the textbook by S.B. Krylov and V.N. Durdenevsky. The first textbook of international law with the stamp of MGIMO, edited by F.I. Kozhevnikov, was published in 1964. This textbook later went through five editions in 1966, 1972

13. Nonlinear Viscoelastic Mechanism for Aftershock Triggering and Decay

Science.gov (United States)

Shcherbakov, R.; Zhang, X.

2016-12-01

Aftershocks are ubiquitous in nature. They are the manifestation of relaxation phenomena observed in various physical systems. In one prominent example, they typically occur after large earthquakes. They also occur in other natural or experimental systems, for example, in solar flares, in fracture experiments on porous materials and acoustic emissions, after stock market crashes, in the volatility of stock prices returns, in internet traffic variability and e-mail spamming, to mention a few. The observed aftershock sequences usually obey several well defined non-trivial empirical laws in magnitude, temporal, and spatial domains. In many cases their characteristics follow scale-invariant distributions. The occurrence of aftershocks displays a prominent temporal behavior due to time-dependent mechanisms of stress and/or energy transfer. In this work, we consider a slider-block model to mimic the behavior of a seismogenic fault. In the model, we introduce a nonlinear viscoelastic coupling mechanism to capture the essential characteristics of crustal rheology and stress interaction between the blocks and the medium. For this purpose we employ nonlinear Kelvin-Voigt elements consisting of an elastic spring and a dashpot assembled in parallel to introduce viscoelastic coupling between the blocks and the driving plate. By mapping the model into a cellular automaton we derive the functional form of the stress transfer mechanism in the model. We show that the nonlinear viscoelasticity plays a critical role in triggering of aftershocks. It explains the functional form of the Omori-Utsu law and gives physical interpretation of its parameters. The proposed model also suggests that the power-law rheology of the fault gauge and underlying lower crust and upper mantle control the decay rate of aftershocks. To verify this, we analyze several prominent aftershock sequences to estimate their decay rates and correlate with the rheological properties of the underlying lower crust and

14. Radiative nanofluid flow and heat transfer over a non-linear permeable sheet with slip conditions and variable magnetic field: Dual solutions

Directory of Open Access Journals (Sweden)

Puneet Rana

2017-09-01

Practice implications: The present problem has numerous applications in engineering and petroleum industries such as glass blowing, annealing and thinning of copper wires. The study of radiation heat transfer plays an important role in the industrial applications at high temperature.

15. Modeling the Lithium Ion/Electrode Battery Interface Using Fick’s Second Law of Diffusion, the Laplace Transform, Charge Transfer Functions, and a [4, 4] Padé Approximant

Directory of Open Access Journals (Sweden)

John H. Summerfield

2015-01-01

Full Text Available This work investigates a one-dimensional model for the solid-state diffusion in a LiC6/LiMnO2 rechargeable cell. This cell is used in hybrid electric vehicles. In this environment the cell experiences low frequency electrical pulses that degrade the electrodes. The model’s starting point is Fick’s second law of diffusion. The Laplace transform is used to move from time as the independent variable to frequency as the independent variable. To better understand the effect of frequency changes on the cell, a transfer function is constructed. The transfer function is a transcendental function so a Padé approximant is found to better describe the model at the origin. Consider ∂c(r,t/∂t=D∂2c(r/∂2r+(2/r(∂c(r/∂r.

16. Nonlinear Science

CERN Document Server

Yoshida, Zensho

2010-01-01

This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl

17. Nonlinear oscillations

CERN Document Server

Nayfeh, Ali Hasan

1995-01-01

Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

18. International law

CERN Document Server

Shaw, Malcolm N

2017-01-01

International Law is the definitive and authoritative text on the subject, offering Shaw's unbeatable combination of clarity of expression and academic rigour and ensuring both understanding and critical analysis in an engaging and authoritative style. Encompassing the leading principles, practice and cases, and retaining and developing the detailed references which encourage and assist the reader in further study, this new edition motivates and challenges students and professionals while remaining accessible and engaging. Fully updated to reflect recent case law and treaty developments, this edition contains an expanded treatment of the relationship between international and domestic law, the principles of international humanitarian law, and international criminal law alongside additional material on international economic law.

19. Environmental law

International Nuclear Information System (INIS)

Anon.

1980-01-01

This pocketbook contains major federal regulations on environmental protection. They serve to protect and cultivate mankind's natural foundations of life, to preserve the environment. The environmental law is devided as follows: Constitutional law on the environment, common administrative law on the environment, special administrative law on the environment including conservation of nature and preservation of rural amenities, protection of waters, waste management, protection against nuisances, nuclear energy and radiation protection, energy conservation, protection against dangerous substances, private law relating to the environment, criminal law relating to the environment. (HSCH) [de

20. Nonlinear Viscoelastic Rheology and the Occurrence of Aftershocks

Science.gov (United States)

Shcherbakov, R.; Zhang, X.

2017-12-01

Aftershocks are ubiquitous in nature. They are the manifestation of relaxation phenomena observed in various physical systems. In one prominent example, they typically occur after large earthquakes. The observed aftershock sequences usually obey several well defined non-trivial empirical laws in magnitude, temporal, and spatial domains. In many cases their characteristics follow scale-invariant distributions. The occurrence of aftershocks displays a prominent temporal behavior due to time-dependent mechanisms of stress and/or energy transfer. There are compelling evidences that the lower continental crust and upper mantle are governed by various solid state creep mechanisms. Among those mechanisms a power-law viscous flow was suggested to explain the postseismic surface deformation after large earthquakes. In this work, we consider a slider-block model to mimic the behavior of a seismogenic fault. In the model, we introduce a nonlinear viscoelastic coupling mechanism to capture the essential characteristics of crustal rheology and stress interaction between the blocks and the medium. For this purpose we employ nonlinear Kelvin-Voigt elements consisting of an elastic spring and a dashpot assembled in parallel to introduce viscoelastic coupling between the blocks and the driving plate. By mapping the model into a cellular automaton we derive the functional form of the stress transfer mechanism in the model. We show that the nonlinear viscoelasticity plays a critical role in triggering of aftershocks. It explains the functional form of the Omori-Utsu law and gives physical interpretation of its parameters. The proposed model also suggests that the power-law rheology of the fault gauge and underlying lower crust and upper mantle controls the decay rate of aftershocks. To verify this, we analyze several prominent aftershock sequences to estimate their decay rates and correlate with the rheological properties of the underlying lower crust and mantle, which were estimated

1. Case law

International Nuclear Information System (INIS)

2013-01-01

This section reports on 7 case laws from 4 countries: - France: Conseil d'Etat decision, 28 June 2013, refusing to suspend operation of the Fessenheim nuclear power plant; - Slovak Republic: New developments including the Supreme Court's judgment in a matter involving Greenpeace Slovakia's claims regarding the Mochovce nuclear power plant; New developments in the matter involving Greenpeace's demands for information under the Freedom of Information Act; - Switzerland: Judgment of the Federal Supreme Court in the matter of the Departement federal de l'environnement, des transports, de l'energie et de la communication (DETEC) against Ursula Balmer-Schafroth and others on consideration of admissibility of a request to withdraw the operating licence for the Muehleberg nuclear power plant; - United States: Judgment of the Court of Appeals for the District of Columbia Circuit granting petition for writ of mandamus ordering US Nuclear Regulatory Commission (NRC) to resume Yucca Mountain licensing; Judgment of the Court of Appeals for the Second Circuit invalidating two Vermont statutes as preempted by the Atomic Energy Act; Judgment of the NRC on transferring Shieldalloy site to New Jersey's jurisdiction

2. Nonlinear systems

CERN Document Server

Palmero, Faustino; Lemos, M; Sánchez-Rey, Bernardo; Casado-Pascual, Jesús

2018-01-01

This book presents an overview of the most recent advances in nonlinear science. It provides a unified view of nonlinear properties in many different systems and highlights many  new developments. While volume 1 concentrates on mathematical theory and computational techniques and challenges, which are essential for the study of nonlinear science, this second volume deals with nonlinear excitations in several fields. These excitations can be localized and transport energy and matter in the form of breathers, solitons, kinks or quodons with very different characteristics, which are discussed in the book. They can also transport electric charge, in which case they are known as polarobreathers or solectrons. Nonlinear excitations can influence function and structure in biology, as for example, protein folding. In crystals and other condensed matter, they can modify transport properties, reaction kinetics and interact with defects. There are also engineering applications in electric lattices, Josephson junction a...

3. Numerical Study of the Magnetic Field Effects on the Heat Transfer and Entropy Generation Aspects of a Power Law Fluid over an Axisymmetric Stretching Plate Structure

Directory of Open Access Journals (Sweden)

Payam Hooshmand

2017-03-01

Full Text Available Numerical investigation of the effects of magnetic field strength, thermal radiation, Joule heating, and viscous heating on a forced convective flow of a non-Newtonian, incompressible power law fluid in an axisymmetric stretching sheet with variable temperature wall is accomplished. The power law shear thinning viscosity-shear rate model for the anisotropic solutions and the Rosseland approximation for the thermal radiation through a highly absorbing medium are considered. The temperature dependent heat sources, Joule heating, and viscous heating are considered as the source terms in the energy balance. The non-dimensional boundary layer equations are solved numerically in terms of similarity variable. A parameter study on the Nusselt number, viscous components of entropy generation, and thermal components of entropy generation in fluid is performed as a function of thermal radiation parameter (0 to 2, Brinkman number (0 to 10, Prandtl number (0 to 10, Hartmann number (0 to 1, power law index (0 to 1, and heat source coefficient (0 to 0.1.

4. The application of rational approximation in the calculation of a temperature field with a non-linear surface heat-transfer coefficient during quenching for 42CrMo steel cylinder

Science.gov (United States)

Cheng, Heming; Huang, Xieqing; Fan, Jiang; Wang, Honggang

1999-10-01

The calculation of a temperature field has a great influence upon the analysis of thermal stresses and stains during quenching. In this paper, a 42CrMo steel cylinder was used an example for investigation. From the TTT diagram of the 42CrMo steel, the CCT diagram was simulated by mathematical transformation, and the volume fraction of phase constituents was calculated. The thermal physical properties were treated as functions of temperature and the volume fraction of phase constituents. The rational approximation was applied to the finite element method. The temperature field with phase transformation and non-linear surface heat-transfer coefficients was calculated using this technique, which can effectively avoid oscillationin the numerical solution for a small time step. The experimental results of the temperature field calculation coincide with the numerical solutions.

5. Waveform Design for Wireless Power Transfer

Science.gov (United States)

Clerckx, Bruno; Bayguzina, Ekaterina

2016-12-01

Far-field Wireless Power Transfer (WPT) has attracted significant attention in recent years. Despite the rapid progress, the emphasis of the research community in the last decade has remained largely concentrated on improving the design of energy harvester (so-called rectenna) and has left aside the effect of transmitter design. In this paper, we study the design of transmit waveform so as to enhance the DC power at the output of the rectenna. We derive a tractable model of the non-linearity of the rectenna and compare with a linear model conventionally used in the literature. We then use those models to design novel multisine waveforms that are adaptive to the channel state information (CSI). Interestingly, while the linear model favours narrowband transmission with all the power allocated to a single frequency, the non-linear model favours a power allocation over multiple frequencies. Through realistic simulations, waveforms designed based on the non-linear model are shown to provide significant gains (in terms of harvested DC power) over those designed based on the linear model and over non-adaptive waveforms. We also compute analytically the theoretical scaling laws of the harvested energy for various waveforms as a function of the number of sinewaves and transmit antennas. Those scaling laws highlight the benefits of CSI knowledge at the transmitter in WPT and of a WPT design based on a non-linear rectenna model over a linear model. Results also motivate the study of a promising architecture relying on large-scale multisine multi-antenna waveforms for WPT. As a final note, results stress the importance of modeling and accounting for the non-linearity of the rectenna in any system design involving wireless power.

6. Nonlinear optics

CERN Document Server

Boyd, Robert W

2013-01-01

Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q

7. Environmental law

International Nuclear Information System (INIS)

Kloepfer, M.

1989-01-01

This comprehensive reference book on environmental law and practice also is a valuable textbook for students specializing in the field. The entire law on pollution control and environmental protection is presented in an intelligent system, covering the latest developments in the Federal and Land legislation, public environmental law, and the related provisions in the fields of civil law and criminal law. The national survey is rounded up by information concerning the international environmental law, environmental law of the European Communities, and of other foreign countries as e.g. Austria and Switzerland. The author also reviews conditions in neighbouring fields such as technology and labour law, environmental economy, environmental policy. Special attention is given to current topics, as e.g. relating to genetic engineering, disused landfills or industrial sites, soil protection, transport of hazardous goods, liability for damage to forests, atomic energy law, and radiation protection law. The latest publishing dates of literature and court decisions considered in the book are in the first months of 1989. (RST) [de

8. Scaling laws for radial foil bearings

Science.gov (United States)

The effects of fluid pressurization, structural deformation of the compliant members and heat generation in foil bearings make the design and analysis of foil bearings very complicated. The complex fluid-structural-thermal interactions in foil bearings also make modeling efforts challenging because these phenomena are governed by highly non-linear partial differential equations. Consequently, comparison of various bearing designs require detailed calculation of the flow fields (velocities, pressures), bump deflections (structural compliance) and heat transfer phenomena (viscous dissipation in the fluid, frictional heating, temperature profile etc.,) resulting in extensive computational effort (time/hardware). To obviate rigorous computations and aid in feasibility assessments of foil bearings of various sizes, NASA developed the "rule of thumb" design guidelines for estimation of journal bearing load capacity. The guidelines are based on extensive experimental data. The goal of the current work is the development of scaling laws for radial foil bearings to establish an analytical "rule of thumb" for bearing clearance and bump stiffness. The use of scale invariant Reynolds equation and experimentally observed NASA "rule of thumb" yield scale factors which can be deduced from first principles. Power-law relationships between: a. Bearing clearance and bearing radius, and b. bump stiffness and bearing radius, are obtained. The clearance and bump stiffness values obtained from scaling laws are used as inputs for Orbit simulation to study various cases. As the clearance of the bearing reaches the dimensions of the material surface roughness, asperity contact breaks the fluid film which results in wear. Similarly, as the rotor diameter increases (requiring larger bearing diameters), the load capacity of the fluid film should increase to prevent dry rubbing. This imposes limits on the size of the rotor diameter and consequently bearing diameter. Therefore, this thesis aims

9. Nonlinear systems

National Research Council Canada - National Science Library

Drazin, P. G

1992-01-01

This book is an introduction to the theories of bifurcation and chaos. It treats the solution of nonlinear equations, especially difference and ordinary differential equations, as a parameter varies...

10. Nonlinear analysis

CERN Document Server

Gasinski, Leszek

2005-01-01

Hausdorff Measures and Capacity. Lebesgue-Bochner and Sobolev Spaces. Nonlinear Operators and Young Measures. Smooth and Nonsmooth Analysis and Variational Principles. Critical Point Theory. Eigenvalue Problems and Maximum Principles. Fixed Point Theory.

11. Lie symmetry analysis, optimal system, exact solutions and conservation laws of a class of high-order nonlinear wave equations%一类高阶非线性波方程的李群分析、最优系统、精确解和守恒律∗

Institute of Scientific and Technical Information of China (English)

李凯辉; 刘汉泽; 辛祥鹏

2016-01-01

The symmetries, conservation laws and exact solutions to the nonlinear partial differential equations play a signif-icant role in nonlinear science and mathematical physics. Symmetry is derived from physics, and it is a mathematical description for invariance. Symmetry group theory plays an important role in constructing explicit solutions, whether the equations are integrable or not. By using the symmetry method, an original nonlinear system can be reduced to a system with fewer independent variables through any given subgroup. But, since there are almost always an infinite number of such subgroups, it is usually not feasible to list all possible group invariant solutions to the system. It is anticipated to find all those equivalent group invariant solutions, that is to say, to construct the one-dimensional optimal system for the Lie algebra. Construction of explicit forms of conservation laws is meaningful, as they are used for developing the appropriate numerical methods and for making mathematical analyses, in particular, of existence, uniqueness and stability. In addition, the existence of a large number of conservation laws of a partial differential equation (system) is a strong indication of its integrability. The similarity solutions are of importance for investigating the long-time behavior, blow-up profile and asymptotic phenomena of a non-linear system. For instance, in some circumstance, the asymptotic behaviors of finite-mass solutions of non-linear diffusion equation with non-linear source term are described by an explicit self-similar solution, etc. However, how to tackle these matters is a complicated problem that challenges researchers to be solved. In this paper, by using the symmetry method, we obtain the symmetry reduction, optimal systems, and many new exact group invariant solution of a fifth-order nonlinear wave equation. By Lie symmetry analysis method, the point symmetries and an optimal system of the equation are obtained. The exact power

12. Pollution law

International Nuclear Information System (INIS)

Triffterer, O.

1980-01-01

In the draft proposed by the legal advisory board the law for the controlling of environmental criminality was promulgated on 28th March 1980. The present commentary therefore - as seen from the results - corresponds in essential to the original assessment of the governmental draft. However, an introduction into the problems of environmental law precedes this commentary for the better unterstanding of all those not acquainted with pollution law and the whole legal matter. (orig./HP) [de

13. Entropy generation minimization (EGM) of nanofluid flow by a thin moving needle with nonlinear thermal radiation

Science.gov (United States)

Waleed Ahmed Khan, M.; Ijaz Khan, M.; Hayat, T.; Alsaedi, A.

2018-04-01

Entropy generation minimization (EGM) and heat transport in nonlinear radiative flow of nanomaterials over a thin moving needle has been discussed. Nonlinear thermal radiation and viscous dissipation terms are merged in the energy expression. Water is treated as ordinary fluid while nanomaterials comprise titanium dioxide, copper and aluminum oxide. The nonlinear governing expressions of flow problems are transferred to ordinary ones and then tackled for numerical results by Built-in-shooting technique. In first section of this investigation, the entropy expression is derived as a function of temperature and velocity gradients. Geometrical and physical flow field variables are utilized to make it nondimensionalized. An entropy generation analysis is utilized through second law of thermodynamics. The results of temperature, velocity, concentration, surface drag force and heat transfer rate are explored. Our outcomes reveal that surface drag force and Nusselt number (heat transfer) enhanced linearly for higher nanoparticle volume fraction. Furthermore drag force decays for aluminum oxide and it enhances for copper nanoparticles. In addition, the lowest heat transfer rate is achieved for higher radiative parameter. Temperature field is enhanced with increase in temperature ratio parameter.

14. Lindy's Law

Science.gov (United States)

Eliazar, Iddo

2017-11-01

Aging means that as things grow old their remaining expected lifetimes lessen. Either faster or slower, most of the things we encounter in our everyday lives age with time. However, there are things that do quite the opposite - they anti-age: as they grow old their remaining expected lifetimes increase rather than decrease. A quantitative formulation of anti-aging is given by the so-called ;Lindy's Law;. In this paper we explore Lindy's Law and its connections to Pareto's Law, to Zipf's Law, and to socioeconomic inequality.

15. Effect of chemical reaction, heat and mass transfer on nonlinear boundary layer past a porous shrinking sheet in the presence of suction

International Nuclear Information System (INIS)

Muhaimin; Kandasamy, Ramasamy; Hashim, Ishak

2010-01-01

This work is concerned with the viscous flow due to a shrinking sheet in the presence of suction with variable stream conditions. The cases of two-dimensional and axisymmetric shrinking have been discussed. The governing partial differential equations of the problem, subjected to their boundary conditions, are solved numerically by applying an efficient solution scheme for local nonsimilarity boundary layer analysis. Favorable comparison with previously published work is performed. Numerical results for the dimensionless velocity, temperature and concentration profiles as well as for the skin friction, heat and mass transfer and deposition rate are obtained and displayed graphically for pertinent parameters to show interesting aspects of the solution.

16. Hamiltonian structures of some non-linear evolution equations

International Nuclear Information System (INIS)

Tu, G.Z.

1983-06-01

The Hamiltonian structure of the O(2,1) non-linear sigma model, generalized AKNS equations, are discussed. By reducing the O(2,1) non-linear sigma model to its Hamiltonian form some new conservation laws are derived. A new hierarchy of non-linear evolution equations is proposed and shown to be generalized Hamiltonian equations with an infinite number of conservation laws. (author)

17. Helmholtz solitons in power-law optical materials

International Nuclear Information System (INIS)

Christian, J. M.; McDonald, G. S.; Potton, R. J.; Chamorro-Posada, P.

2007-01-01

A nonlinear Helmholtz equation for optical materials with regimes of power-law type of nonlinearity is proposed. This model captures the evolution of broad beams at any angle with respect to the reference direction in a wide range of media, including some semiconductors, doped glasses, and liquid crystals. Exact analytical soliton solutions are presented for a generic nonlinearity, within which known Kerr solitons comprise a subset. Three general conservation laws are also reported. Analysis and numerical simulations examine the stability of the Helmholtz power-law solitons. A propagation feature, associated with spatial solitons in power-law media, constituting a class of oscillatory solution, is identified

18. Case law

International Nuclear Information System (INIS)

2016-01-01

This section treats of the following case laws: 1 - Case Law France: Conseil d'etat decision, 22 February 2016, EDF v. Republic and Canton of Geneva relative to the Bugey nuclear power plant (No. 373516); United States: Brodsky v. US Nuclear Regulatory Commission, 650 Fed. Appx. 804 (2. Cir. 2016)

19. Law 302.

Science.gov (United States)

Manitoba Dept. of Education, Winnipeg.

This publication outlines a law course intended as part of a business education program in the secondary schools of Manitoba, Canada. The one credit course of study should be taught over a period of 110-120 hours of instruction. It provides students with an introduction to the principles, practices, and consequences of law with regard to torts,…

20. Double diffusive magnetohydrodynamic heat and mass transfer of nanofluids over a nonlinear stretching/shrinking sheet with viscous-Ohmic dissipation and thermal radiation

Directory of Open Access Journals (Sweden)

Dulal Pal

2017-03-01

Full Text Available The study of magnetohydrodynamic (MHD convective heat and mass transfer near a stagnation-point flow over stretching/shrinking sheet of nanofluids is presented in this paper by considering thermal radiation, Ohmic heating, viscous dissipation and heat source/sink parameter effects. Non-similarity method is adopted for the governing basic equations before they are solved numerically using Runge-Kutta-Fehlberg method using shooting technique. The numerical results are validated by comparing the present results with previously published results. The focus of this paper is to study the effects of some selected governing parameters such as Richardson number, radiation parameter, Schimdt number, Eckert number and magnetic parameter on velocity, temperature and concentration profiles as well as on skin-friction coefficient, local Nusselt number and Sherwood number.

1. Nonlinear optimization

CERN Document Server

Ruszczynski, Andrzej

2011-01-01

Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern top...

2. Case - Case-Law - Law

DEFF Research Database (Denmark)

2013-01-01

Reasoning of the Court of Justice of the European Union – Constr uction of arguments in the case-law of the Court – Citation technique – The use of formulas to transform case-law into ‘law’ – ‘Formulaic style’ – European citizenship as a fundamental status – Ruiz Zambrano – Reasoning from...

3. Nonlinear differential equations

Energy Technology Data Exchange (ETDEWEB)

Dresner, L.

1988-01-01

This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.

4. Nonlinear differential equations

International Nuclear Information System (INIS)

Dresner, L.

1988-01-01

This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics

5. Time series with tailored nonlinearities

Science.gov (United States)

Räth, C.; Laut, I.

2015-10-01

It is demonstrated how to generate time series with tailored nonlinearities by inducing well-defined constraints on the Fourier phases. Correlations between the phase information of adjacent phases and (static and dynamic) measures of nonlinearities are established and their origin is explained. By applying a set of simple constraints on the phases of an originally linear and uncorrelated Gaussian time series, the observed scaling behavior of the intensity distribution of empirical time series can be reproduced. The power law character of the intensity distributions being typical for, e.g., turbulence and financial data can thus be explained in terms of phase correlations.

6. Nuclear Law

International Nuclear Information System (INIS)

Pascal, Maurice.

1979-01-01

This book on nuclear law is the first of a series of analytical studies to be published by the French Energy Commission (CEA) concerning all the various nuclear activities. It describes national and international legislation applicable in France covering the following main sectors: the licensing procedure for nuclear installations, the law of the sea and nuclear law, the legal system governing radioisotopes, the transport of radioactive materials, third party liability and insurance and radiation protection. In each chapter, the overall analysis is supplemented by the relevant regulatory texts and by organisation charts in annex. (NEA) [fr

7. Heat Transfer Search Algorithm for Non-convex Economic Dispatch Problems

Science.gov (United States)

Hazra, Abhik; Das, Saborni; Basu, Mousumi

2018-03-01

This paper presents Heat Transfer Search (HTS) algorithm for the non-linear economic dispatch problem. HTS algorithm is based on the law of thermodynamics and heat transfer. The proficiency of the suggested technique has been disclosed on three dissimilar complicated economic dispatch problems with valve point effect; prohibited operating zone; and multiple fuels with valve point effect. Test results acquired from the suggested technique for the economic dispatch problem have been fitted to that acquired from other stated evolutionary techniques. It has been observed that the suggested HTS carry out superior solutions.

8. Solutions and conservation laws of Benjamin–Bona–Mahony ...

obtained with power-law and dual power-law nonlinearities. The Lie group analysis as ... The notion of conservation laws plays an important role in the solution process of differential ... For the theory and applications of Lie group analysis the ...

9. Islamic Law

OpenAIRE

Doranda Maracineanu

2009-01-01

The law system of a State represents the body of rules passed or recognized by that State inorder to regulate the social relationships, rules that must be freely obeyed by their recipients, otherwisethe State intervening with its coercive power. Throughout the development of the society, pedants havebeen particularly interested in the issue of law systems, each supporting various classifications; theclassification that has remained is the one distinguishing between the Anglo-Saxon, the Roman-...

10. Topics in Nonlinear Dynamics

DEFF Research Database (Denmark)

Mosekilde, Erik

Through a significant number of detailed and realistic examples this book illustrates how the insights gained over the past couple of decades in the fields of nonlinear dynamics and chaos theory can be applied in practice. Aomng the topics considered are microbiological reaction systems, ecological...... food-web systems, nephron pressure and flow regulation, pulsatile secretion of hormones, thermostatically controlled radiator systems, post-stall maneuvering of aircrafts, transfer electron devices for microwave generation, economic long waves, human decision making behavior, and pattern formation...... in chemical reaction-diffusion systems....

11. Nonlinear optics an analytical approach

CERN Document Server

Mandel, Paul

2010-01-01

Based on the author's extensive teaching experience and lecture notes, this textbook provides a substantially analytical rather than descriptive presentation of nonlinear optics. Divided into five parts, with most chapters corresponding to a two-hour lecture, the book begins with a unique account of the historical development from Kirchhoff's law for the black-body radiation to Planck's quantum hypothesis and Einstein's discovery of spontaneous emission - providing all the explicit proofs. The subsequent sections deal with matter quantization, ultrashort pulse propagation in 2-level media, cavity nonlinear optics, chi(2) and chi(3) media. For graduate and PhD students in nonlinear optics or photonics, while also representing a valuable reference for researchers in these fields.

12. Private law

DEFF Research Database (Denmark)

working and researching in the key areas of law, security and privacy in IT, international trade and private law. Now, in 2010 and some seven conferences later, the event moves to Barcelona and embraces for the first time the three conference tracks just described. The papers in this work have all been...... blind reviewed and edited for quality. They represent the contributions of leading academics, early career researchers and others from an increasing number of countries, universities and institutions around the world. They set a benchmark for discussion of the current issues arising in the subject area...... and continue to offer an informed and relevant contribution to the policy making agenda. As Chair of the Conference Committee, I am once more very proud to endorse this work "Private Law: Rights, Duties & Conflicts" to all those seeking an up to date and informed evaluation of the leading issues. This work...

13. Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities

In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all R R . Assuming the existence of an upper and of a lower ...

14. Identification of Nonlinear Dynamic Systems Possessing Some Non-linearities

Directory of Open Access Journals (Sweden)

Y. N. Pavlov

2015-01-01

Full Text Available The subject of this work is the problem of identification of nonlinear dynamic systems based on the experimental data obtained by applying test signals to the system. The goal is to determinate coefficients of differential equations of systems by experimental frequency hodographs and separate similar, but different, in essence, forces: dissipative forces with the square of the first derivative in the motion equations and dissipative force from the action of dry friction. There was a proposal to use the harmonic linearization method to approximate each of the nonlinearity of "quadratic friction" and "dry friction" by linear friction with the appropriate harmonic linearization coefficient.Assume that a frequency transfer function of the identified system has a known form. Assume as well that there are disturbances while obtaining frequency characteristics of the realworld system. As a result, the points of experimentally obtained hodograph move randomly. Searching for solution of the identification problem was in the hodograph class, specified by the system model, which has the form of the frequency transfer function the same as the form of the frequency transfer function of the system identified. Minimizing a proximity criterion (measure of the experimentally obtained system hodograph and the system hodograph model for all the experimental points described and previously published by one of the authors allowed searching for the unknown coefficients of the frequenc ransfer function of the system model. The paper shows the possibility to identify a nonlinear dynamic system with multiple nonlinearities, obtained on the experimental samples of the frequency system hodograph. The proposed algorithm allows to select the nonlinearity of the type "quadratic friction" and "dry friction", i.e. also in the case where the nonlinearity is dependent on the same dynamic parameter, in particular, on the derivative of the system output value. For the dynamic

15. Recent publications on environmental law

International Nuclear Information System (INIS)

Lohse, S.

1991-01-01

The bibliography contains references to publications covering the following subject fields: General environmental law; environmental law in relation to constitutional law, administrative law, procedural law, revenue law, criminal law, private law, industrial law; law of regional development; nature conservation law; law on water protection; waste management law; law on protection against harmful effects on the environment; atomic energy law and radiation protection law; law of the power industry and the mining industry; laws and regulations on hazardous material and environmental hygiene. (orig.) [de

16. Nonlinear generalization of special relativity

International Nuclear Information System (INIS)

Winterberg, F.

1985-01-01

In Poincares axiomatic formulation special relativity is a derived consequence of a true Lorentz contraction, for a rod in absolute motion through a substratum. Furthermore, Lorentz had shown that the rod contraction can be understood by an inverse square law interaction and therefore special relativity derived from more fundamental principles. The derivation by Lorentz shows that the root of the divergence problems is the singular inverse square law. By replacing the inverse square law with a regular one through the introduction of a finite length, the author has succeeded in deriving a nonlinear generalization of special relativity which eliminates all infinities. Besides the relative velocities, these nonlinear transformation equations also contain absolute velocities against a substratum, but in the limit of small energies they go over into the linear Lorentz transformations. Depending on the smallness of the fundamental length, departures from special relativity can be observed only at very high energies. The theorem that the velocity of light is the same in all reference systems still holds and likewise the conservation laws for energy and momentum

17. Case law

International Nuclear Information System (INIS)

Anon.

1999-01-01

This paper gives and analyses three examples of case law: decision rejecting application to close down Tomari nuclear power plant (Japan); judgement by the Supreme Administrative Court on the closing of Barsebaeck (Sweden); litigation relating to the Department of Energy's obligations under the Nuclear Waste Policy Act to accept spent nuclear fuel and high-level radioactive waste (United States). (A.L.B.)

18. Case law

International Nuclear Information System (INIS)

2015-01-01

This section treats of the two following case laws: Slovak Republic: Further developments in cases related to the challenge by Greenpeace Slovakia to the Mochovce nuclear power plant; United States: Judgment of the Nuclear Regulatory Commission denying requests from petitioners to suspend final reactor licensing decisions pending the issuance of a final determination of reasonable assurance of permanent disposal of spent fuel

OpenAIRE

Marson, James; Ferris, Katy

2016-01-01

Marson & Ferris provide a thorough account of the subject for students. Essential topics are introduced by exploring current and pertinent examples and the relevance of the law in a business environment is considered throughout. This pack includes a supplement which considers the effects of the Consumer Rights Act 2015.

20. Nonparametric Transfer Function Models

Science.gov (United States)

Liu, Jun M.; Chen, Rong; Yao, Qiwei

2009-01-01

In this paper a class of nonparametric transfer function models is proposed to model nonlinear relationships between ‘input’ and ‘output’ time series. The transfer function is smooth with unknown functional forms, and the noise is assumed to be a stationary autoregressive-moving average (ARMA) process. The nonparametric transfer function is estimated jointly with the ARMA parameters. By modeling the correlation in the noise, the transfer function can be estimated more efficiently. The parsimonious ARMA structure improves the estimation efficiency in finite samples. The asymptotic properties of the estimators are investigated. The finite-sample properties are illustrated through simulations and one empirical example. PMID:20628584

1. Nonlinear GARCH model and 1 / f noise

Science.gov (United States)

Kononovicius, A.; Ruseckas, J.

2015-06-01

Auto-regressive conditionally heteroskedastic (ARCH) family models are still used, by practitioners in business and economic policy making, as a conditional volatility forecasting models. Furthermore ARCH models still are attracting an interest of the researchers. In this contribution we consider the well known GARCH(1,1) process and its nonlinear modifications, reminiscent of NGARCH model. We investigate the possibility to reproduce power law statistics, probability density function and power spectral density, using ARCH family models. For this purpose we derive stochastic differential equations from the GARCH processes in consideration. We find the obtained equations to be similar to a general class of stochastic differential equations known to reproduce power law statistics. We show that linear GARCH(1,1) process has power law distribution, but its power spectral density is Brownian noise-like. However, the nonlinear modifications exhibit both power law distribution and power spectral density of the 1 /fβ form, including 1 / f noise.

2. Comprehensive analysis of heat transfer of gold-blood nanofluid (Sisko-model) with thermal radiation

Science.gov (United States)

Eid, Mohamed R.; Alsaedi, Ahmed; Muhammad, Taseer; Hayat, Tasawar

Characteristics of heat transfer of gold nanoparticles (Au-NPs) in flow past a power-law stretching surface are discussed. Sisko bio-nanofluid flow (with blood as a base fluid) in existence of non-linear thermal radiation is studied. The resulting equations system is abbreviated to model the suggested problem in non-linear PDEs. Along with initial and boundary-conditions, the equations are made non-dimensional and then resolved numerically utilizing 4th-5th order Runge-Kutta-Fehlberg (RKF45) technique with shooting integration procedure. Various flow quantities behaviors are examined for parametric consideration such as the Au-NPs volume fraction, the exponentially stretching and thermal radiation parameters. It is observed that radiation drives to shortage the thermal boundary-layer thickness and therefore resulted in better heat transfer at surface.

3. Nuclear Energy Law and Arbo Law/Safety Law

International Nuclear Information System (INIS)

Eijnde, J.G. van den

1986-01-01

The legal aspects of radiation protection in the Netherlands are described. Radiation protection is regulated mainly in the Nuclear Energy Law. The Arbo Law also has some sections about radiation protection. The interaction between both laws is discussed. (Auth.)

4. Nonlinear analysis of pupillary dynamics.

Science.gov (United States)

Onorati, Francesco; Mainardi, Luca Tommaso; Sirca, Fabiola; Russo, Vincenzo; Barbieri, Riccardo

2016-02-01

Pupil size reflects autonomic response to different environmental and behavioral stimuli, and its dynamics have been linked to other autonomic correlates such as cardiac and respiratory rhythms. The aim of this study is to assess the nonlinear characteristics of pupil size of 25 normal subjects who participated in a psychophysiological experimental protocol with four experimental conditions, namely “baseline”, “anger”, “joy”, and “sadness”. Nonlinear measures, such as sample entropy, correlation dimension, and largest Lyapunov exponent, were computed on reconstructed signals of spontaneous fluctuations of pupil dilation. Nonparametric statistical tests were performed on surrogate data to verify that the nonlinear measures are an intrinsic characteristic of the signals. We then developed and applied a piecewise linear regression model to detrended fluctuation analysis (DFA). Two joinpoints and three scaling intervals were identified: slope α0, at slow time scales, represents a persistent nonstationary long-range correlation, whereas α1 and α2, at middle and fast time scales, respectively, represent long-range power-law correlations, similarly to DFA applied to heart rate variability signals. Of the computed complexity measures, α0 showed statistically significant differences among experimental conditions (pnonlinear dynamics, (b) three well-defined and distinct long-memory processes exist at different time scales, and (c) autonomic stimulation is partially reflected in nonlinear dynamics. (c) autonomic stimulation is partially reflected in nonlinear dynamics.

5. On Stabilization of Nonautonomous Nonlinear Systems

International Nuclear Information System (INIS)

Bogdanov, A. Yu.

2008-01-01

The procedures to obtain the sufficient conditions of asymptotic stability for nonlinear nonstationary continuous-time systems are discussed. We consider different types of the following general controlled system: x = X(t,x,u) = F(t,x)+B(t,x)u, x(t 0 ) = x 0 . (*) The basis of investigation is limiting equations, limiting Lyapunov functions, etc. The improved concept of observability of the pair of functional matrices is presented. By these results the problem of synthesis of asymptotically stable control nonlinear nonautonomous systems (with linear parts) involving the quadratic time-dependent Lyapunov functions is solved as well as stabilizing a given unstable system with nonlinear control law.

6. Islamic Law

Directory of Open Access Journals (Sweden)

Doranda Maracineanu

2009-06-01

Full Text Available The law system of a State represents the body of rules passed or recognized by that State inorder to regulate the social relationships, rules that must be freely obeyed by their recipients, otherwisethe State intervening with its coercive power. Throughout the development of the society, pedants havebeen particularly interested in the issue of law systems, each supporting various classifications; theclassification that has remained is the one distinguishing between the Anglo-Saxon, the Roman-German,the religious and respectively the communist law systems. The third main international law system is theMuslim one, founded on the Muslim religion – the Islam. The Islam promotes the idea that Allah createdthe law and therefore it must be preserved and observed as such. Etymologically, the Arabian word“Islam” means “to be wanted, to obey” implying the fact that this law system promotes total andunconditioned submission to Allah. The Islamic law is not built on somebody of laws or leading cases,but has as source. The Islam is meant as a universal religion, the Koran promoting the idea of the unityof mankind; thus, one of the precepts in the Koran asserts that “all men are equal (…, there is nodifference between a white man and a black man, between one who is Arabian and one who is not,except for the measure in which they fear God.” The Koran is founded mainly on the Talmud, Hebrewsource of inspiration, and only on very few Christian sources. The Islam does not forward ideas whichcannot be materialized; on the contrary its ideas are purely practical, easy to be observed by the commonman, ideas subordinated to the principle of monotheism. The uncertainties and gaps of the Koran, whichhave been felt along the years, imposed the need for another set of rules, meant to supplement it – that isSunna. Sunna represents a body of laws and, consequently, the second source of the Koran. Sunnanarrates the life of the prophet Mohamed, the model to

7. Criminal law

International Nuclear Information System (INIS)

Silva, J.M. da.

1979-01-01

Facts concerning the application of atomic energy are presented and those aspects which should be under tutelage, the nature and guilt of the nuclear offenses and the agent's peril are presented. The need of a specific chapter in criminal law with adequate legislation concerning the principles of atomic energy is inferred. The basis for the future elaboration this legislation are fixed. (A.L.S.L.) [pt

8. Nonlinear Elasticity

Science.gov (United States)

Fu, Y. B.; Ogden, R. W.

2001-05-01

This collection of papers by leading researchers in the field of finite, nonlinear elasticity concerns itself with the behavior of objects that deform when external forces or temperature gradients are applied. This process is extremely important in many industrial settings, such as aerospace and rubber industries. This book covers the various aspects of the subject comprehensively with careful explanations of the basic theories and individual chapters each covering a different research direction. The authors discuss the use of symbolic manipulation software as well as computer algorithm issues. The emphasis is placed firmly on covering modern, recent developments, rather than the very theoretical approach often found. The book will be an excellent reference for both beginners and specialists in engineering, applied mathematics and physics.

9. Thermodynamic Laws Applied to Economic Systems

Science.gov (United States)

González, José Villacís

2009-01-01

Economic activity in its different manifestations--production, exchange, consumption and, particularly, information on quantities and prices--generates and transfers energy. As a result, we can apply to it the basic laws of thermodynamics. These laws are applicable within a system, i.e., in a country or between systems and countries. To these…

10. Operational Law Handbook,2007

National Research Council Canada - National Science Library

2007-01-01

...), human rights, rules of engagement, emergency essential civilians supporting military operations, contingency contractor personnel, foreign and deployment, criminal law, environmental law, fiscal law...

11. Defocusing regimes of nonlinear waves in media with negative dispersion

DEFF Research Database (Denmark)

Bergé, L.; Kuznetsov, E.A.; Juul Rasmussen, J.

1996-01-01

Defocusing regimes of quasimonochromatic waves governed by a nonlinear Schrodinger equation with mixed-sign dispersion are investigated. For a power-law nonlinearity, we show that localized solutions to this equation defined at the so-called critical dimension cannot collapse in finite time...

12. Nuclear law

International Nuclear Information System (INIS)

Bringuier, P.

2009-01-01

The object of this report is to present the evolution of the nuclear law during the period from 2006 to 2008, period that was characterized in France by a real rewriting from the implementation of a control authority. The prescriptive backing of nuclear activities has been deeply changed by numerous texts. In this first part are presented: (1) the institutional aspects, (2) openness and public information, (7) radioactive wastes and (9) liability and insurance. In a next publication will be treated: (3) safety and radiation protection; (4) nuclear matter, inspection, physical protection; (5) transports; (6) trade, non-proliferation; (8) radiological accidents. (N.C.)

13. Case law

International Nuclear Information System (INIS)

2016-01-01

This section treats of the following case laws: 1 - Canada: Decision of the Canadian Federal Court of Appeal dismissing an appeal related to an environmental assessment of a project to refurbish and extend the life of an Ontario nuclear power plant; 2 - Poland: Decision of the Masovian Voivod of 28 December 2015 concerning the legality of the resolution on holding a local referendum in the Commune of Rozan regarding a new radioactive waste repository (2015); 3 - United States: Commission authorises issuance of construction permit for the Shine Medical Isotope Facility in Janesville, Wisconsin; 4 - United States: Commission authorises issuance of combined licences for the South Texas Project site in Matagorda County, Texas

14. Case law

International Nuclear Information System (INIS)

2012-01-01

This section gathers the following case laws: 1 - Canada: Judicial review of Darlington new nuclear power plant project; Appeal decision upholding criminal convictions related to attempt to export nuclear-related dual-use items to Iran: Her Majesty the Queen V. Yadegari; 2 - European Commission: Greenland cases; 3 - France: Chernobyl accident - decision of dismissal of the Court of Appeal of Paris; 4 - Slovak Republic: Aarhus Convention compliance update; 5 - United States: Judgement of a US court of appeals upholding the NRC's dismissal of challenges to the renewal of the operating licence for Oyster Creek Nuclear Generating Station; reexamination of the project of high-level waste disposal site at Yucca Mountain

15. Nonlinear waves in waveguides with stratification

CERN Document Server

Leble, Sergei B

1991-01-01

S.B. Leble's book deals with nonlinear waves and their propagation in metallic and dielectric waveguides and media with stratification. The underlying nonlinear evolution equations (NEEs) are derived giving also their solutions for specific situations. The reader will find new elements to the traditional approach. Various dispersion and relaxation laws for different guides are considered as well as the explicit form of projection operators, NEEs, quasi-solitons and of Darboux transforms. Special points relate to: 1. the development of a universal asymptotic method of deriving NEEs for guide propagation; 2. applications to the cases of stratified liquids, gases, solids and plasmas with various nonlinearities and dispersion laws; 3. connections between the basic problem and soliton- like solutions of the corresponding NEEs; 4. discussion of details of simple solutions in higher- order nonsingular perturbation theory.

16. Equilibrium and transfer in porous media 2 transfer laws

CERN Document Server

Daïan, Jean-François

2014-01-01

A porous medium is composed of a solid matrix and its geometrical complement: the pore space. This pore space can be occupied by one or more fluids. The understanding of transport phenomena in porous media is a challenging intellectual task.  This book provides a detailed analysis of the aspects required for the understanding of many experimental techniques in the field of porous media transport phenomena. It is aimed at studentsor engineers who may not be looking specifically to become theoreticians in porous media, but wish to integrate knowledge of porous media with their previous scientif

17. Case law

International Nuclear Information System (INIS)

Anon.

2002-01-01

Several judgements are carried: Supreme Administrative Court Judgement rejecting an application to prevent construction of a new nuclear power plant (Finland); judgement of the Council of State specifying the law applicable to storage facilities for depleted uranium (France); Supreme Court Decision overturning for foreign spent fuel (Russian federation); Court of Appeal Judgement on government decision to allow the start up of a MOX fuel plant ( United Kingdom); judgement on lawfulness of authorizations granted by the Environment Agency: Marchiori v. the Environment Agency; (U.K.); Kennedy v. Southern California Edison Co. (U.S.A); Judgement concerning Ireland ' s application to prevent operation of BNFL ' s MOX facility at Sellafield: Ireland v. United Kingdom; At the European Court of Human Rights Balmer-Schafroth and others have complained v. Switzerland. Parliamentary decision rescinding the shutdown date for Barseback - 2 (Sweden); Decision of the International trade Commission regarding imposition of countervailing and anti-dumping duties on imports of low enriched uranium from the European Union, Yucca Mountain site recommendation (USA). (N.C.)

18. Social-ecological resilience and law

Science.gov (United States)

Garmestani, Ahjond S.; Allen, Craig R.

2014-01-01

Environmental law envisions ecological systems as existing in an equilibrium state, reinforcing a rigid legal framework unable to absorb rapid environmental changes and innovations in sustainability. For the past four decades, “resilience theory,” which embraces uncertainty and nonlinear dynamics in complex adaptive systems, has provided a robust, invaluable foundation for sound environmental management. Reforming American law to incorporate this knowledge is the key to sustainability. This volume features top legal and resilience scholars speaking on resilience theory and its legal applications to climate change, biodiversity, national parks, and water law.

19. Adaptive Optimizing Nonlinear Control Design for an Over-actuated Aircraft Model

NARCIS (Netherlands)

Van Oort, E.R.; Sonneveldt, L.; Chu, Q.P.; Mulder, J.A.

2011-01-01

In this paper nonlinear adaptive flight control laws based on the backstepping approach are proposed which are applicable to over-actuated nonlinear systems. Instead of solving the control allocation exactly, update laws for the desired control effector signals are defined such that they converge to

20. Bryan's effect and anisotropic nonlinear damping

Science.gov (United States)

Joubert, Stephan V.; Shatalov, Michael Y.; Fay, Temple H.; Manzhirov, Alexander V.

2018-03-01

In 1890, G. H. Bryan discovered the following: "The vibration pattern of a revolving cylinder or bell revolves at a rate proportional to the inertial rotation rate of the cylinder or bell." We call this phenomenon Bryan's law or Bryan's effect. It is well known that any imperfections in a vibratory gyroscope (VG) affect Bryan's law and this affects the accuracy of the VG. Consequently, in this paper, we assume that all such imperfections are either minimised or eliminated by some known control method and that only damping is present within the VG. If the damping is isotropic (linear or nonlinear), then it has been recently demonstrated in this journal, using symbolic analysis, that Bryan's law remains invariant. However, it is known that linear anisotropic damping does affect Bryan's law. In this paper, we generalise Rayleigh's dissipation function so that anisotropic nonlinear damping may be introduced into the equations of motion. Using a mixture of numeric and symbolic analysis on the ODEs of motion of the VG, for anisotropic light nonlinear damping, we demonstrate (up to an approximate average), that Bryan's law is affected by any form of such damping, causing pattern drift, compromising the accuracy of the VG.

1. Microcircuit Modeling and Simulation beyond Ohm's Law

Science.gov (United States)

Saxena, T.; Chek, D. C. Y.; Tan, M. L. P.; Arora, V. K.

2011-01-01

Circuit theory textbooks rely heavily on the applicability of Ohm's law, which collapses as electronic components reach micro- and nanoscale dimensions. Circuit analysis is examined in the regime where the applied voltage V is greater than the critical voltage V[subscript c], which triggers the nonlinear behavior. The critical voltage is infinity…

2. Generalized non-linear Schroedinger hierarchy

International Nuclear Information System (INIS)

Aratyn, H.; Gomes, J.F.; Zimerman, A.H.

1994-01-01

The importance in studying the completely integrable models have became evident in the last years due to the fact that those models present an algebraic structure extremely rich, providing the natural scenery for solitons description. Those models can be described through non-linear differential equations, pseudo-linear operators (Lax formulation), or a matrix formulation. The integrability implies in the existence of a conservation law associated to each of degree of freedom. Each conserved charge Q i can be associated to a Hamiltonian, defining a time evolution related to to a time t i through the Hamilton equation ∂A/∂t i =[A,Q i ]. Particularly, for a two-dimensions field theory, infinite degree of freedom exist, and consequently infinite conservation laws describing the time evolution in space of infinite times. The Hamilton equation defines a hierarchy of models which present a infinite set of conservation laws. This paper studies the generalized non-linear Schroedinger hierarchy

3. Nonlinear Electromagnetic Stabilization of Plasma Microturbulence

Science.gov (United States)

Whelan, G. G.; Pueschel, M. J.; Terry, P. W.

2018-04-01

The physical causes for the strong stabilizing effect of finite plasma β on ion-temperature-gradient-driven turbulence, which far exceeds quasilinear estimates, are identified from nonlinear gyrokinetic simulations. The primary contribution stems from a resonance of frequencies in the dominant nonlinear interaction between the unstable mode, the stable mode, and zonal flows, which maximizes the triplet correlation time and therefore the energy transfer efficiency. A modification to mixing-length transport estimates is constructed, which reproduces nonlinear heat fluxes throughout the examined β range.

4. Nuclear Law

International Nuclear Information System (INIS)

Wiesbauer, Bruno

1978-01-01

This book is the first attempt of a comprehensive compilation of national Austrian Nuclear Law (Nuclear Liability Act; Radiation protection Act, Radiation Protection Ordinance, Security Control Act, Act on the uses of Nuclear Energy - Zwentendorf Nuclear Power Plant) and the most important international agreements to which Austria is a party. Furthermore, the book contains the most important Nuclear Liability Conventions to which Austria is not yet a party, but which are applicable in neighbouring; the Paris Convention served as a model for the national Nuclear Liability Act and may be used for its interpretation. The author has translated a number of international instruments into German, such as the Expose des Motifs of the Paris Convention. (NEA) [fr

5. Case law

International Nuclear Information System (INIS)

2014-01-01

This section of the Bulletin brings together the texts of the following case laws: Canada: - Judgment of the Federal Court of Canada sending back to a joint review panel for reconsideration the environmental assessment of a proposed new nuclear power plant in Ontario. France : - Conseil d'etat, 24 March 2014 (Request No. 358882); - Conseil d'etat, 24 March 2014 (Request No. 362001). Slovak Republic: - Further developments in cases related to the challenge by Greenpeace Slovakia to the Mochovce nuclear power plant; - Developments in relation to the disclosure of information concerning the Mochovce nuclear power plant. United States: - Initial Decision of the Atomic Safety and Licensing Board Ruling in Favour of Nuclear Innovation North America, LLC (NINA) Regarding Foreign Ownership, Control or Domination

6. Case law

International Nuclear Information System (INIS)

2017-01-01

This section treats of the following case laws (United States): 1 - Virginia Uranium, Inc. v. Warren, 848 F.3d 590 (4. Cir. 2017): In the United States District Court for the Western District of Virginia, the plaintiffs, a collection of uranium mining companies and owners of land containing uranium deposits, challenged a Commonwealth of Virginia moratorium on conventional uranium mining. The plaintiffs alleged that the state moratorium was preempted by federal law under the Supremacy Clause of the US Constitution.; 2 - United States v. Energy Solutions, Inc.; Rockwell Holdco, Inc.; Andrews County; Holdings, Inc.; and Waste Control Specialists, LLC. (D. Del. June 21, 2017): In 2016, the United States, acting through the US Department of Justice, commenced an action in United States District Court in Delaware seeking to enjoin the acquisition of Waste Control Specialists, LLC (WCS) and its parent company by Energy Solutions, Inc., and its parent. WCS and Energy Solutions are competitors in the market for the disposal of low-level radioactive waste (LLRW) produced by commercial generators of such material. The United States alleged that the proposed acquisition was unlawful. 3 - Cooper v. Tokyo Electric Power Company, No. 15-56426 (9. Cir. 2017): The plaintiffs are US Navy service members who were deployed off the Japanese coast as part of the US effort to provide earthquake relief after the 9.0 earthquake and tsunami that struck Japan on 11 March 2011. Plaintiffs sued alleging 'that TEPCO was negligent in operating the Fukushima Daiichi Nuclear Power Plant and in reporting the extent of the radiation leak

7. Facilitating Transfers

DEFF Research Database (Denmark)

Kjær, Poul F.

2018-01-01

Departing from the paradox that globalisation has implied an increase, rather than a decrease, in contextual diversity, this paper re-assesses the function, normative purpose and location of Regulatory Governance Frameworks in world society. Drawing on insights from sociology of law and world...... society studies, the argument advanced is that Regulatory Governance Frameworks are oriented towards facilitating transfers of condensed social components, such as economic capital and products, legal acts, political decisions and scientific knowledge, from one legally-constituted normative order, i.......e. contextual setting, to another. Against this background, it is suggested that Regulatory Governance Frameworks can be understood as schemes which act as ‘rites of passage’ aimed at providing legal stabilisation to social processes characterised by liminality, i.e ambiguity, hybridity and in-betweenness....

8. Solutions and conservation laws of Benjamin–Bona–Mahony

In this paper, exact solutions of Benjamin–Bona–Mahony–Peregrine equation are obtained with power-law and dual power-law nonlinearities. The Lie group analysis as well as the simplest equation method are used to carry out the integration of these equations. The solutions obtained are cnoidal waves, periodic solutions ...

9. Robust approximate optimal guidance strategies for aeroassisted orbital transfer missions

Science.gov (United States)

Ilgen, Marc R.

This thesis presents the application of game theoretic and regular perturbation methods to the problem of determining robust approximate optimal guidance laws for aeroassisted orbital transfer missions with atmospheric density and navigated state uncertainties. The optimal guidance problem is reformulated as a differential game problem with the guidance law designer and Nature as opposing players. The resulting equations comprise the necessary conditions for the optimal closed loop guidance strategy in the presence of worst case parameter variations. While these equations are nonlinear and cannot be solved analytically, the presence of a small parameter in the equations of motion allows the method of regular perturbations to be used to solve the equations approximately. This thesis is divided into five parts. The first part introduces the class of problems to be considered and presents results of previous research. The second part then presents explicit semianalytical guidance law techniques for the aerodynamically dominated region of flight. These guidance techniques are applied to unconstrained and control constrained aeroassisted plane change missions and Mars aerocapture missions, all subject to significant atmospheric density variations. The third part presents a guidance technique for aeroassisted orbital transfer problems in the gravitationally dominated region of flight. Regular perturbations are used to design an implicit guidance technique similar to the second variation technique but that removes the need for numerically computing an optimal trajectory prior to flight. This methodology is then applied to a set of aeroassisted inclination change missions. In the fourth part, the explicit regular perturbation solution technique is extended to include the class of guidance laws with partial state information. This methodology is then applied to an aeroassisted plane change mission using inertial measurements and subject to uncertainties in the initial value

10. Nonlinear beam mechanics

NARCIS (Netherlands)

Westra, H.J.R.

2012-01-01

In this Thesis, nonlinear dynamics and nonlinear interactions are studied from a micromechanical point of view. Single and doubly clamped beams are used as model systems where nonlinearity plays an important role. The nonlinearity also gives rise to rich dynamic behavior with phenomena like

11. Rotating black string with nonlinear source

International Nuclear Information System (INIS)

Hendi, S. H.

2010-01-01

In this paper, we derive rotating black string solutions in the presence of two kinds of nonlinear electromagnetic fields, so-called Born-Infeld and power Maxwell invariant. Investigation of the solutions show that for the Born-Infeld black string the singularity is timelike and the asymptotic behavior of the solutions is anti-de Sitter, but for power Maxwell invariant solutions, depending on the values of nonlinearity parameter, the singularity may be timelike as well as spacelike and the solutions are not asymptotically anti-de Sitter for all values of the nonlinearity parameter. Next, we calculate the conserved quantities of the solutions by using the counterterm method, and find that these quantities do not depend on the nonlinearity parameter. We also compute the entropy, temperature, the angular velocity, the electric charge, and the electric potential of the solutions, in which the conserved and thermodynamics quantities satisfy the first law of thermodynamics.

12. Extreme nonlinear energy exchanges in a geometrically nonlinear lattice oscillating in the plane

Science.gov (United States)

Zhang, Zhen; Manevitch, Leonid I.; Smirnov, Valeri; Bergman, Lawrence A.; Vakakis, Alexander F.

2018-01-01

We study the in-plane damped oscillations of a finite lattice of particles coupled by linear springs under distributed harmonic excitation. Strong nonlinearity in this system is generated by geometric effects due to the in-plane stretching of the coupling spring elements. The lattice has a finite number of nonlinear transverse standing waves (termed nonlinear normal modes - NNMs), and an equal number of axial linear modes which are nonlinearly coupled to the transverse ones. Nonlinear interactions between the transverse and axial modes under harmonic excitation give rise to unexpected and extreme nonlinear energy exchanges in the lattice. In particular, we directly excite a transverse NNM by harmonic forcing (causing simulataneous indirect excitation of a corresponding axial linear mode due to nonlinear coupling), and identify three energy transfer mechanisms in the lattice. First, we detect the stable response of the directly excited transverse NNM (despite its instability in the absence of forcing), with simultaneous stability of the indirectly excited axial linear mode. Second, by changing the system and forcing parameters we report extreme nonlinear "energy explosions," whereby, after an initial regime of stability, the directly excited transverse NNM loses stability, leading to abrupt excitation of all transverse and axial modes of the lattice, at all possible wave numbers. This strong instability is triggered by the parametric instability of an indirectly excited axial mode which builds energy until the explosion. This is proved through theoretical analysis. Finally, in other parameter ranges we report intermittent, intense energy transfers from the directly excited transverse NNM to a small set of transverse NNMs with smaller wavelengths, and from the indirectly excited axial mode to a small set of axial modes, but with larger wavelengths. These intermittent energy transfers resemble energy cascades occurring in turbulent flows. Our results show that

13. 12 CFR 34.4 - Applicability of state law.

Science.gov (United States)

2010-01-01

... laws that obstruct, impair, or condition a national bank's ability to fully exercise its Federally... exercise of national banks' real estate lending powers: (1) Contracts; (2) Torts; (3) Criminal law; 2 2 But... and transfer of real property; (7) Taxation; (8) Zoning; and (9) Any other law the effect of which the...

14. Case Law

International Nuclear Information System (INIS)

Anon.

2009-01-01

Different case law are presented in this part: By decision dated 17 july 2009, the Ontario Court of Appeal (Canada) has ruled on the scope of solicitor-client privilege and the protections that may be afforded to privileged investigations reports. The decision reaffirms the canadian court system view of the importance of the protection of solicitor-client privilege to the administration of justice; For United states here is a judgment of a U.S. court of Appeals on the design basis threat security rule (2009), this case concerns a challenge to the U.S. Nuclear regulatory commission (N.R.C.) revised design basis threat rule, which was adopted in 2007 (nuclear bulletin law no. 80). The petitioners public citizen, Inc., San Luis Obispo Mothers for Peace and the State of New York filed a lawsuit in the U.S. court of appeals for the Ninth circuit alleging that the N.R.C. acted arbitrarily and capriciously and in violation of law by refusing to include the treat of air attacks in its final revised design basis rule. On the 24. july 2009, a panel of three ninth circuit judges rules 2-1 that the N.R.C. acted reasonably in not including an air treat in its design basis rule. Secondly, judgment of a U.S. court of appeals on consideration of the environmental impact of terrorist attacks on nuclear facilities (2009), this case concerns the scope of the U.S. Nuclear regulatory commission environmental analysis during its review of applications to re-licence commercial nuclear power plants. New Jersey urged the N.R.C. to consider the environmental impact of an airborne terrorist attack on the power plant, arguing that such analysis was required by the national environmental policy act (N.E.P.A.). On 31. march 2009, a panel of three circuit judges declined to follow the ninth circuit opinion and affirmed NRC decision 3-0 ruling that NRC was not required to consider terrorism in its N.E.P.A. analysis because NRC re-licensing would not be a reasonably close cause of terrorism

15. Case law

International Nuclear Information System (INIS)

Anon.

2011-01-01

This chapter gathers three case laws, one concerning France and the two others concerning the United States. France - Decision of the Administrative Court in Strasbourg on the permanent shutdown of the Fessenheim nuclear power plant: On 9 March 2011, the administrative court in Strasbourg confirmed the government's rejection to immediately close the Fessenheim nuclear power plant, the first unit of which started operation on 1 January 1978. The court rejected the motion of the 'Association trinationale de protection nucleaire' (ATPN) filed against the decision of the Minister of Economy, Industry and Employment to refuse the final shutdown of the plant. The group, which brings together associations as well as French, German and Swiss municipalities, had taken legal action in December 2008. United States - Case law 1 - Judgment of a US Court of Appeals on public access to sensitive security information and consideration of the environmental impacts of terrorist attacks on nuclear facilities: This case concerns 1) the public's right to access classified and sensitive security information relied upon by the US Nuclear Regulatory Commission (NRC) in its environmental review; and 2) the sufficiency of the NRC's environmental review of the impacts of terrorist attacks for a proposed Independent Spent Fuel Storage Installation (ISFSI). In 2003, the NRC ruled that the National Environmental Policy Act (NEPA) did not require the NRC to consider the impacts of terrorist attacks in its environmental review for the proposed ISFSI at the Diablo Canyon Power Plant. ' NEPA mandates that all federal agencies must prepare a detailed statement on the environment impacts before undertaking a major federal action that significantly affects the human environment. In 2004, the San Luis Obispo Mothers for Peace, a group of individuals who live near the Diablo Canyon Power Plant, filed a petition in the US Court of Appeals for the Ninth Circuit challenging the NRC's 2003 decision. The

16. Case Law

International Nuclear Information System (INIS)

2014-01-01

This section treats of the following case laws sorted by country: 1 - Germany: Federal Administrative Court confirms the judgments of the Higher Administrative Court of the Land Hesse: The shutdown of nuclear power plant Biblis blocks A and B based on a 'moratorium' imposed by the Government was unlawful; List of lawsuits in the nuclear field. 2 - Slovak Republic: Further developments in cases related to the challenge by Greenpeace Slovakia to the Mochovce nuclear power plant; Developments in relation to the disclosure of information concerning the Mochovce nuclear power plant. 3 - United States: Judgment of the Nuclear Regulatory Commission resuming the licensing process for the Department of Energy's construction authorisation application for the Yucca Mountain high-level radioactive waste repository; Judgment of the Licensing Board in favour of Shaw AREVA MOX Services regarding the material control and accounting system at the proposed MOX Facility; Dismissal by US District Court Judge of lawsuit brought by US military personnel against Tokyo Electric Power Company (TEPCO) in connection with the Fukushima Daiichi nuclear power plant accident

17. Case law

International Nuclear Information System (INIS)

Anon.

2000-01-01

This article reviews the judgements and law decisions concerning nuclear activities throughout the world during the end of 1999 and the first semester 2000. In Belgium a judgement has allowed the return of nuclear waste from France. In France the Council of State confirmed the repeal of an authorization order of an installation dedicated to the storage of uranium sesquioxide, on the basis of an insufficient risk analysis. In France too, the criminal chamber of the French Supreme Court ruled that the production in excess of that authorized in the licence can be compared to carrying out operations without a licence. In Japan the Fukui district court rejected a lawsuit filed by local residents calling for the permanent closure, on safety grounds, of the Monju reactor. In the Netherlands, the Council of State ruled that the Dutch government had no legal basis for limiting in time the operating licence of the Borssele plant. In Usa a district court has rejected a request to ban MOX fuel shipment. (A.C.)

18. Modelling nonlinear viscoelastic behaviours of loudspeaker suspensions-like structures

Science.gov (United States)

Maillou, Balbine; Lotton, Pierrick; Novak, Antonin; Simon, Laurent

2018-03-01

Mechanical properties of an electrodynamic loudspeaker are mainly determined by its suspensions (surround and spider) that behave nonlinearly and typically exhibit frequency dependent viscoelastic properties such as creep effect. The paper aims at characterizing the mechanical behaviour of electrodynamic loudspeaker suspensions at low frequencies using nonlinear identification techniques developed in recent years. A Generalized Hammerstein based model can take into account both frequency dependency and nonlinear properties. As shown in the paper, the model generalizes existing nonlinear or viscoelastic models commonly used for loudspeaker modelling. It is further experimentally shown that a possible input-dependent law may play a key role in suspension characterization.

19. Recent publications on environmental law

International Nuclear Information System (INIS)

Lohse, S.

1988-01-01

The bibliography contains 1235 references to publications covering the following subject fields: general environmental law; environmental law in relation to constitutional law, administrative law, procedural law, revenue law, criminal law, private law, industrial law; law of regional development; nature conservation law; law on water protection; waste management law; law on protection against harmful effects on the environment; atomic energy law and radiation protection law; law of the power industry and the mining industry; laws and regulations on hazardous material and environmental hygiene. (HP) [de

20. Recent publications on environmental law

International Nuclear Information System (INIS)

Lohse, S.

1989-01-01

The bibliography contains 1160 references to publications covering the following subject fields: General environmental law; environmental law in relation to constitutional law, administrative law, procedural law, revenue law, criminal law, private law, industrial law; law of regional development; nature conservation law; law on water protection; waste management law; law on protection against harmful effects on the environment; atomic energy law and radiation protection law; law of the power industry and the mining industry; laws and regulations on hazardous material and environmental hygiene. (orig./HP) [de

1. TRANSFERENCE BEFORE TRANSFERENCE.

Science.gov (United States)

Bonaminio, Vincenzo

2017-10-01

This paper is predominantly a clinical presentation that describes the transmigration of one patient's transference to another, with the analyst functioning as a sort of transponder. It involves an apparently accidental episode in which there was an unconscious intersection between two patients. The author's aim is to show how transference from one case may affect transference in another, a phenomenon the author calls transference before transference. The author believes that this idea may serve as a tool for understanding the unconscious work that takes place in the clinical situation. In a clinical example, the analyst finds himself caught up in an enactment involving two patients in which he becomes the medium of what happens in session. © 2017 The Psychoanalytic Quarterly, Inc.

2. Case law

International Nuclear Information System (INIS)

2015-01-01

This section treats of the following case laws: 1 - Canada: Decision of the Canadian Federal Court of Appeal overturning a decision to send back for reconsideration an environmental assessment of a proposed new nuclear power plant in Ontario; 2 - France: Council of State decision, 28 November 2014, Federation 'Reseau sortir du nucleaire' (Nuclear Phase-Out network) and others vs. Electricite de France (EDF), Request No. 367013 for the annulment of: - The resolution of the French Nuclear Safety Authority (ASN) dated 4 July 2011 specifying additional regulations for Electricite de France (EDF) designed to strengthen the reactor basemat of reactor No. 1 in the Fessenheim nuclear power plant, and - The resolution of ASN dated 19 December 2012 approving the start of work on reinforcing the reactor basemat in accordance with the dossier submitted by EDF; 3 - Germany: Judgment of the European Court of Justice on the nuclear fuel tax; 4 - India: Judgment of the High Court of Kerala in a public interest litigation challenging the constitutional validity of the Civil Liability for Nuclear Damage Act, 2010; 5 - Japan - District court decisions on lawsuits related to the restart of Sendai NPP and Takahama NPP; 6 - Poland: Decision of the Masovian Voivod concerning the legality of the resolution on holding a local referendum in the Commune of Rozan regarding a new radioactive waste repository; Certain provisions of the Regulation of the Minister of Health of 18 February 2011 on the conditions for safe use of ionising radiation for all types of medical exposure have been declared unconstitutional by a judgment pronounced by the Constitutional Tribunal; 7 - Slovak Republic: Developments in relation to the disclosure of information concerning the Mochovce nuclear power plant

3. UNCLOS and International Law

DEFF Research Database (Denmark)

Martinez Romera, Beatriz; Coelho, Nelson F.

2018-01-01

, treaty law is only one of many sources of the law that governs international relations, the others being customary international law and principles of law. The main conclusion of this chapter is that states may have to wake up to the limitations of the UNCLOS and that this will require understanding...... the relative role of this treaty among other sources of international law....

4. The French nuclear law

International Nuclear Information System (INIS)

Ito, Hiroshi

2013-01-01

The nuclear law had been out of the environmental law. The act on the transparency and the security of the nuclear matter was enacted in 2006 and set in the code of the environment in 2012. It means that the nuclear law is part of the environmental law and that it is advanced. I will report the French nuclear law. (author)

5. Demonstrating the Gas Laws.

Science.gov (United States)

Holko, David A.

1982-01-01

Presents a complete computer program demonstrating the relationship between volume/pressure for Boyle's Law, volume/temperature for Charles' Law, and volume/moles of gas for Avagadro's Law. The programing reinforces students' application of gas laws and equates a simulated moving piston to theoretical values derived using the ideal gas law.…

6. A Finite-Time Thermal Cycle Variational Optimization with a Stefan–Boltzmann Law for Three Different Criteria

Directory of Open Access Journals (Sweden)

Juan C. Chimal-Eguía

2012-12-01

Full Text Available This work shows the power of the variational approach for studying the efficiency of thermal engines in the context of the Finite Time Thermodynamics (FTT. Using an endoreversible Curzon–Ahlborn (CA heat engine as a model for actual thermal engines, three different criteria for thermal efficiency were analyzed: maximum power output, ecological function, and maximum power density. By means of this procedure, the performance of the CA heat engine with a nonlinear heat transfer law (the Stefan–Boltzmann law was studied to describe the heat exchanges between the working substance and its thermal reservoirs. The specific case of the Müser engine for all the criteria was analyzed. The results confirmed some previous findings using other procedures and additionally new results for the Müser engine performance were obtained.

7. Field-enhanced nonlinear optical properties of organic nanofibers

DEFF Research Database (Denmark)

Kostiučenko, Oksana; Fiutowski, Jacek; Brewer, Jonathan R.

2014-01-01

Second harmonic generation in nonlinearly optically active organic nanofibers, generated via self-assembled surface growth from nonsymmetrically functionalized para-quarterphenylene (CNHP4) molecules, has been investigated. After the growth on mica templates, nanofibers have been transferred onto...

8. A normal form approach to the theory of nonlinear betatronic motion

International Nuclear Information System (INIS)

Bazzani, A.; Todesco, E.; Turchetti, G.; Servizi, G.

1994-01-01

The betatronic motion of a particle in a circular accelerator is analysed using the transfer map description of the magnetic lattice. In the linear case the transfer matrix approach is shown to be equivalent to the Courant-Snyder theory: In the normal coordinates' representation the transfer matrix is a pure rotation. When the nonlinear effects due to the multipolar components of the magnetic field are taken into account, a similar procedure is used: a nonlinear change of coordinates provides a normal form representation of the map, which exhibits explicit symmetry properties depending on the absence or presence of resonance relations among the linear tunes. The use of normal forms is illustrated in the simplest but significant model of a cell with a sextupolar nonlinearity which is described by the quadratic Henon map. After recalling the basic theoretical results in Hamiltonian dynamics, we show how the normal forms describe the different topological structures of phase space such as KAM tori, chains of islands and chaotic regions; a critical comparison with the usual perturbation theory for Hamilton equations is given. The normal form theory is applied to compute the tune shift and deformation of the orbits for the lattices of the SPS and LHC accelerators, and scaling laws are obtained. Finally, the correction procedure of the multipolar errors of the LHC, based on the analytic minimization of the tune shift computed via the normal forms, is described and the results for a model of the LHC are presented. This application, relevant for the lattice design, focuses on the advantages of normal forms with respect to tracking when parametric dependences have to be explored. (orig.)

9. Law Enforcement Locations

Data.gov (United States)

Kansas Data Access and Support Center — Law Enforcement Locations in Kansas Any location where sworn officers of a law enforcement agency are regularly based or stationed. Law enforcement agencies "are...

10. Transfer of Rights and Obligations

DEFF Research Database (Denmark)

Beale, Hugh; Ringe, Wolf-Georg

2013-01-01

This chapter compares the law on transfer of rights (i.e., assignment) in the Draft Common Frame of Reference (DCFR), English law, and German law. It first considers cases in which the three systems produce similar results before concentrating on situations in which the results and the interactions...... on assignment be included in a later version of an optional instrument, there will be a number of interactions with both English and German law in the sense that it will matter which system governs the agreements, particularly the agreement for assignment. Key differences include, inter alia, the proprietary...

11. Topological approximation of the nonlinear Anderson model

Science.gov (United States)

Milovanov, Alexander V.; Iomin, Alexander

2014-06-01

We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t →+∞. The second moment of the associated probability distribution grows with time as a power law ∝ tα, with the exponent α =1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the

12. Tenancy Law Denmark

DEFF Research Database (Denmark)

Edlund, Hans Henrik

2003-01-01

Report on Danish Tenancy Law. Contribution to a research project co-financed by the Grotius Programme for Judicial Co-Operation in Civil Matters. http://www.iue.it/LAW/ResearchTeaching/EuropeanPrivateLaw/Projects.shtml......Report on Danish Tenancy Law. Contribution to a research project co-financed by the Grotius Programme for Judicial Co-Operation in Civil Matters. http://www.iue.it/LAW/ResearchTeaching/EuropeanPrivateLaw/Projects.shtml...

13. Theory and design of nonlinear metamaterials

Science.gov (United States)

Rose, Alec Daniel

If electronics are ever to be completely replaced by optics, a significant possibility in the wake of the fiber revolution, it is likely that nonlinear materials will play a central and enabling role. Indeed, nonlinear optics is the study of the mechanisms through which light can change the nature and properties of matter and, as a corollary, how one beam or color of light can manipulate another or even itself within such a material. However, of the many barriers preventing such a lofty goal, the narrow and limited range of properties supported by nonlinear materials, and natural materials in general, stands at the forefront. Many industries have turned instead to artificial and composite materials, with homogenizable metamaterials representing a recent extension of such composites into the electromagnetic domain. In particular, the inclusion of nonlinear elements has caused metamaterials research to spill over into the field of nonlinear optics. Through careful design of their constituent elements, nonlinear metamaterials are capable of supporting an unprecedented range of interactions, promising nonlinear devices of novel design and scale. In this context, I cast the basic properties of nonlinear metamaterials in the conventional formalism of nonlinear optics. Using alternately transfer matrices and coupled mode theory, I develop two complementary methods for characterizing and designing metamaterials with arbitrary nonlinear properties. Subsequently, I apply these methods in numerical studies of several canonical metamaterials, demonstrating enhanced electric and magnetic nonlinearities, as well as predicting the existence of nonlinear magnetoelectric and off-diagonal nonlinear tensors. I then introduce simultaneous design of the linear and nonlinear properties in the context of phase matching, outlining five different metamaterial phase matching methods, with special emphasis on the phase matching of counter propagating waves in mirrorless parametric amplifiers

14. On Poisson Nonlinear Transformations

Directory of Open Access Journals (Sweden)

Nasir Ganikhodjaev

2014-01-01

Full Text Available We construct the family of Poisson nonlinear transformations defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. We have proved that these nonlinear transformations are regular.

15. Case law

International Nuclear Information System (INIS)

Anon.

2008-01-01

The first point concerns the judgement of the federal Administration Court on the standing of third parties regarding attacks at interim storage facilities (2008). In its judgement handed down on 10. april 2008, the german Federal Administrative Court overrules a decision of a Higher Regional Administrative Court and declares that residents in the vicinity of an interim storage facility may challenge the licence for that facility on the grounds that the necessary protection has not been provided against disruptive action or other interference by third parties. The second point concerns the judgement of the European Court of justice of a member State to fulfill obligations under directive 96/29 EURATOM (2007): the united kingdom imposed to intervene only if a situation of radioactive contamination results from a present or past activity for the exercise of which a licence was granted. The national legislation does not oblige the authorities to take measures in circumstances in which radioactive contamination results from a past practice which was not the subject of a such licence. The United Kingdom Government admitted the validity of the Commission claims adding that further legislation to transpose that article (article 53) into national laws is in the process of being drawn up. The third point is relative to judgement of the US court of Appeals on licensing of the L.E.S. uranium enrichment facility (2007), on appeal to the Federal Court of Appeals for the district of Columbia, the joint petitioners objected to the Nuclear regulatory Commission (NRC) issuing to the Louisiana Energy Services, L.P. (L.E.S.) Uranium enrichment Facility in New Mexico on several grounds: the NRC violated the Atomic Energy Act by supplementing the environmental impact statement after hearing closed; the NRC violated the National Environmental Policy Act by insufficiently analysing the environmental impact of depleted uranium waste from the L.E.S. facility; the NRC violated the Atomic

16. Explicit Nonlinear Model Predictive Control Theory and Applications

CERN Document Server

Grancharova, Alexandra

2012-01-01

Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: Ø  Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; �...

17. Research on nonlinearity effect of secondary electron multiplier

International Nuclear Information System (INIS)

Wei Xingjian; Liao Junsheng; Deng Dachao; Yu Chunrong; Yuan Li

2007-01-01

The nonlinearity of secondary electron multiplier (SEM) of a thermal ionization mass spectrometer has been researched by using UTB-500 uranium isotope reference material and multi-collecting technique. The results show that the nonlinearity effect of SEM exists in the whole ion counting range, and there is an extreme point of the nonlinearity when the ion counting rate is about 20000 cps. The deviation between measured value of the extreme point and the reference value of the reference sample can be up to 3%, and the nonlinearity obeys logarithm linearity law on both sides of extreme point. A kind of mathematics model of nonlinearity calibration has been put forward. Using this model, the nonlinearity of SEM of TIMS can be calibrated. (authors)

18. Nonlinear Krylov acceleration of reacting flow codes

Energy Technology Data Exchange (ETDEWEB)

Kumar, S.; Rawat, R.; Smith, P.; Pernice, M. [Univ. of Utah, Salt Lake City, UT (United States)

1996-12-31

We are working on computational simulations of three-dimensional reactive flows in applications encompassing a broad range of chemical engineering problems. Examples of such processes are coal (pulverized and fluidized bed) and gas combustion, petroleum processing (cracking), and metallurgical operations such as smelting. These simulations involve an interplay of various physical and chemical factors such as fluid dynamics with turbulence, convective and radiative heat transfer, multiphase effects such as fluid-particle and particle-particle interactions, and chemical reaction. The governing equations resulting from modeling these processes are highly nonlinear and strongly coupled, thereby rendering their solution by traditional iterative methods (such as nonlinear line Gauss-Seidel methods) very difficult and sometimes impossible. Hence we are exploring the use of nonlinear Krylov techniques (such as CMRES and Bi-CGSTAB) to accelerate and stabilize the existing solver. This strategy allows us to take advantage of the problem-definition capabilities of the existing solver. The overall approach amounts to using the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) method and its variants as nonlinear preconditioners for the nonlinear Krylov method. We have also adapted a backtracking approach for inexact Newton methods to damp the Newton step in the nonlinear Krylov method. This will be a report on work in progress. Preliminary results with nonlinear GMRES have been very encouraging: in many cases the number of line Gauss-Seidel sweeps has been reduced by about a factor of 5, and increased robustness of the underlying solver has also been observed.

19. Transformation of CLF to ISS-CLF for Nonlinear Systems with Disturbance and Construction of Nonlinear Robust Controller with L2 Gain Performance

Directory of Open Access Journals (Sweden)

Keizo Okano

2014-01-01

Full Text Available A new nonlinear control law for a class of nonlinear systems with disturbance is proposed. A control law is designed by transforming control Lyapunov function (CLF to input-to-state stability control Lyapunov function (ISS-CLF. The transformed CLF satisfies a Hamilton-Jacobi-Isaacs (HJI equation. The feedback system by the proposed control law has characteristics of L2 gain. Finally, it is shown by a numerical example that the proposed control law makes a controller by feedback linearization robust against disturbance.

CERN Document Server

Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong

2015-01-01

This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.

1. Effect of slip on heat transfer and entropy generation characteristics of simplified Phan-Thien–Tanner fluids with viscous dissipation under uniform heat flux boundary conditions: Exponential formulation

International Nuclear Information System (INIS)

Anand, Vishal

2016-01-01

Highlights: • Exponential formulation of s-PTT model used. • Heat transfer and entropy generation characteristics studied. • Effects of three slip laws examined. • Exponential formulation more accurate than linear formulation. - Abstract: This study concerns the heat transfer and entropy generation characteristics of viscoelastic fluid flow modeled by the exponential formulation of simplified Phan-Thien–Tanner (s-PTT) model. This is the first such study in literature of thermal behavior of viscoelastic fluids modeled by the exponential formulation of s-PTT model. The flow between two parallel plates is laminar, hydrodynamically and thermally fully developed, viscous dissipative and subject to uniform heat flux on the walls. The slip velocity boundary condition is imposed on the fluid–solid interface and the slip is captured by three slip laws, namely, Navier's non-linear slip law, Hatzikiriakos slip law, and asymptotic slip law. The governing equations have been solved analytically. Closed form solutions for the velocity distribution have been derived while the temperature distribution is presented in terms of an infinite but convergent series. The results pertaining to the three slip laws have been presented in detail. Finally, a comparison has been made between the results for exponential formulation and those for the linear formulation of the s-PTT model. The comparison shows that results for linear formulation deviate significantly from those for exponential formulation and thus the accuracy of the exponential formulation justifies the extra mathematical complexity which it entails.

2. ASPECTS REGARDING THE SHARE TRANSFER

Directory of Open Access Journals (Sweden)

Cristina Cojocaru

2015-11-01

Full Text Available Throughout its content, the memorandum of association, even in the case of a limited liability company, stipulates the contribution of each shareholder to the share capital while the share capital is divided into shares, corresponding to the contribution of each shareholder to the share capital. The limited liability company is established in consideration of the people who set it up and as such, the share transfer is subject to certain conditions provided by law. Therefore, the law sets out strict conditions for share transfer in the case the transfer is done to one or more shareholders, but especially if the transfer is done to people outside the company, or following the inheritance. If the transfer is done to a shareholder, such is possible provided that this transfer has not been prohibited by the act of incorporation itself. Instead, the transfer to people outside the company cannot be done without the cons ent of shareholders representing at least three quarters of the capital. In case of share transfer by succession, the law allows it provided that this transfer is permitted within the memorandum of association .

3. Fractional analysis for nonlinear electrical transmission line and nonlinear Schroedinger equations with incomplete sub-equation

Science.gov (United States)

Fendzi-Donfack, Emmanuel; Nguenang, Jean Pierre; Nana, Laurent

2018-02-01

We use the fractional complex transform with the modified Riemann-Liouville derivative operator to establish the exact and generalized solutions of two fractional partial differential equations. We determine the solutions of fractional nonlinear electrical transmission lines (NETL) and the perturbed nonlinear Schroedinger (NLS) equation with the Kerr law nonlinearity term. The solutions are obtained for the parameters in the range (0<α≤1) of the derivative operator and we found the traditional solutions for the limiting case of α =1. We show that according to the modified Riemann-Liouville derivative, the solutions found can describe physical systems with memory effect, transient effects in electrical systems and nonlinear transmission lines, and other systems such as optical fiber.

4. Nonlinear theory of localized standing waves

OpenAIRE

Denardo, Bruce; Larraza, Andrés; Putterman, Seth; Roberts, Paul

1992-01-01

An investigation of the nonlinear dispersive equations of continuum mechanics reveals localized standing-wave solutions that are domain walls between regions of different wave number. These states can appear even when the dispersion law is a single-valued function of the wave number. In addition, we calculate solutions for kinks in cutoff and noncutoff modes, as well as cutoff breather solitons. Division of Engineering and Geophysics of the Office of Basic Energy Science of U.S. DOE for su...

5. Quantum Nonlinear Optics

CERN Document Server

Hanamura, Eiichi; Yamanaka, Akio

2007-01-01

This graduate-level textbook gives an introductory overview of the fundamentals of quantum nonlinear optics. Based on the quantum theory of radiation, Quantum Nonlinear Optics incorporates the exciting developments in novel nonlinear responses of materials (plus laser oscillation and superradiance) developed over the past decade. It deals with the organization of radiation field, interaction between electronic system and radiation field, statistics of light, mutual manipulation of light and matter, laser oscillation, dynamics of light, nonlinear optical response, and nonlinear spectroscopy, as well as ultrashort and ultrastrong laser pulse. Also considered are Q-switching, mode locking and pulse compression. Experimental and theoretical aspects are intertwined throughout.

6. Nonlinear dynamics and complexity

CERN Document Server

Luo, Albert; Fu, Xilin

2014-01-01

This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.

7. Democratic contract law

NARCIS (Netherlands)

2015-01-01

This article discusses the normative relationship between contract law and democracy. In particular, it argues that in order to be legitimate contract law needs to have a democratic basis. Private law is not different in this respect from public law. Thus, the first claim made in this article will

8. Investigating Coulomb's Law.

Science.gov (United States)

Noll, Ellis; Koehlinger, Mervin; Kowalski, Ludwik; Swackhamer, Gregg

1998-01-01

Describes the use of a computer-linked camera to demonstrate Coulomb's law. Suggests a way of reducing the difficulties in presenting Coulomb's law by teaching the inverse square law of gravity and the inverse square law of electricity in the same unit. (AIM)

9. Teaching Human Rights Law.

Science.gov (United States)

Berman, Howard R.

1985-01-01

The international community has developed a system of human rights law relevant to many areas of legal encounter, which American law schools have been slow to incorporate into curricula. Teaching human rights law provides an opportunity for law schools to enrich the learning process and contribute creatively to the respect for rights in society.…

10. Tax Law System

Science.gov (United States)

Tsindeliani, Imeda A.

2016-01-01

The article deals with consideration of the actual theoretic problems of the subject and system of tax law in Russia. The theoretical approaches to determination of the nature of separate institutes of tax law are represented. The existence of pandect system intax law building as financial law sub-branch of Russia is substantiated. The goal of the…

11. Nonlinear Control of Marine Surface Vessels

Science.gov (United States)

Das, Swarup; Talole, S. E.

2018-03-01

In the present study, a robust yaw control law design derived from nonlinear extended state observer (NESO) based nonlinear state error feedback controller (NSEFC) in conjunction with nonlinear tracking differentiator (NTD) for marine surface vessels is presented. As marine vessel operates in an environment where significant uncertainties and disturbances are present, an NESO is used to estimate the effect of the uncertainties and disturbances along with the plant states leading to a robust design through disturbance estimation and compensation. Convergence of NESO and NTD is demonstrated. The notable feature of the formulation is that to achieve robustness, accurate plant model or any characterization of the uncertainties and disturbances is not needed. Efficacy of the design is illustrated by simulation. Further, performance of the proposed design is compared with some existing controllers to showcase the effectiveness of the proposed design.

12. Distributed nonlinear optical response

DEFF Research Database (Denmark)

Nikolov, Nikola Ivanov

2005-01-01

of bound states of out of phase bright solitons and dark solitons. Also, the newly introduced analogy between the nonlocal cubic nonlinear and the quadratic nonlinear media, presented in paper B and Chapter 3 is discussed. In particular it supplies intuitive physical meaning of the formation of solitons...... in quadratic nonlinear media. In the second part of the report (Chapter 4), the possibility to obtain light with ultrabroad spectrum due to the interplay of many nonlinear effects based on cubic nonlinearity is investigated thoroughly. The contribution of stimulated Raman scattering, a delayed nonlinear...... a modified nonlinear Schroedinger model equation. Chapter 4 and papers D and E are dedicated to this part of the research....

13. 75 FR 57252 - Designated Transfer Date

Science.gov (United States)

2010-09-20

..., as the date for the transfer of functions to the Bureau of Consumer Financial Protection (``CFPB... other laws. After consulting with the heads of the agencies whose functions will transfer to the CFPB... July 21, 2011, as the transfer date will advance the mission of the CFPB and promote an orderly and...

14. Axisymmetric flow and heat transfer to modified second grade fluid over a radially stretching sheet

Directory of Open Access Journals (Sweden)

Masood Khan

Full Text Available In the present work, an analysis is made to the two-dimensional axisymmetric flow and heat transfer of a modified second grade fluid over an isothermal non-linear radially stretching sheet. The momentum and energy equations are modelled and the boundary layer equations are derived. The governing equations for velocity and temperature are turned down into a system of ordinary differential equations by invoking appropriate transformations which are then solved numerically via fourth and fifth order Runge-Kutta Fehlberg method. Moreover, the influence of the pertinent parameters namely the generalized second grade parameter, stretching parameter, the power-law index and the generalized Prandtl number is graphically portrayed. It is inferred that the generalized second grade parameter uplifted the momentum boundary layer while lessened the thermal boundary layer. Furthermore, the impact of stretching parameter is more pronounced for the second grade fluid (m = 0 in contrast with the power-law fluid (k = 0. For some special cases, comparisons are made with previously reported results and an excellent agreement is established. Keywords: Modified second grade fluid, Axisymmetric flow, Heat transfer, Non-linear stretching sheet

15. Law across nations

DEFF Research Database (Denmark)

of participants keen to work together to promote research and policy development in such a lively forum." - Professor Steve Saxby PhD, Cert Ed., MBCS Professor of IT Law and Public Policy, Solicitor, Deputy Head of School (Research), Faculty of Business and Law, University of Southampton, Editor...... not only the original themes of Legal, Security and Privacy Issues in IT Law and International Law and Trade but more recently two new conferences on International Public and Private Law. The papers in this volume then represent the contributions to all these fields and reflect the strong desire......-in-Chief, The Computer Law & Security Review - The International Journal of Technology Law and Practice (Elsevier), www.elsevier.com/locate/clsr, Editor, The Encyclopedia of Information Technology Law (Sweet & Maxwell), Director ILAWS - Institute for Law and the Web - School of Law, Southampton University, www...

16. International Investment Law and EU Law

DEFF Research Database (Denmark)

regional economic integration agreements, International Competition Law, International Investment Regulation, International Monetary Law, International Intellectual Property Protection and International Tax Law. In addition to the regular annual volumes, EYIEL Special Issues routinely address specific...... current topics in International Economic Law. The entry into force of the Lisbon Treaty entails sweeping changes with respect to foreign investment regulation. Most prominently, the Treaty on the Functioning of the European Union (TFEU) now contains in its Article 207 an explicit competence...... for the regulation of foreign direct investment as part of the Common Commercial Policy (CCP) chapter. With this new competence, the EU will become an important actor in the field of international investment politics and law. The new empowerment in the field of international investment law prompts a multitude...

17. Property law in Jersey

OpenAIRE

MacLeod, Rebecca Frances

2012-01-01

Jersey law, and within it Jersey property law, has received little academic attention. This thesis seeks to examine, and provide a systematic account of, the Jersey law of property. Specific aspects of substantive law are explored. From these, general observations about the nature and structure of property law are made. Unsurprisingly, given the small size of the island, Jersey has a relatively limited amount of indigenous legal material to offer, much of it in French. Inevitab...

18. EU Labour Law

DEFF Research Database (Denmark)

Nielsen, Ruth

The focus in this book is upon EU labour law and its interaction with national and international labour law. The book provides an analysis of the framework and sources of European labour law. It covers a number of substantive topics, notably collective labour law, individual employment contracts......, discrimination on grounds of sex and on other grounds, free movement of persons, restructuring of enterprises, working environment and enforcement of rights derived from EU labour law....

19. Europeanisation of private law and English law

OpenAIRE

Beale, Hugh

2003-01-01

To what extent is English Private Law being affected by the United Kingdom’s membership of the European Union? I think we can try to answer this at three levels: (i) The United Kingdom’s compliance with EU legislation; (ii) the influence of European ideas on English Private Law; (iii) the attitude in England towards greater harmonisation or possible unification of European Private Law

20. New results on the mathematical problems in nonlinear physics

International Nuclear Information System (INIS)

1980-01-01

The main topics treated in this report are: I) Existence of generalized Lagrangians. II) Conserved densities for odd-order polynomial evolution equations and linear evolution systems. III ) Conservation laws for Klein-Gordon, Di rae and Maxwell equations. IV) Stability conditions for finite-energy solutions of a non-linear Klein-Gordon equation. V) Hamiltonian approach to non-linear evolution equations and Backlund transformations. VI) Anharmonic vibrations: Status of results and new possible approaches. (Author) 83 refs

1. Beach steepness effects on nonlinear infragravity-wave interactions : A numerical study

NARCIS (Netherlands)

De Bakker, A. T M; Tissier, M.F.S.; Ruessink, B. G.

2016-01-01

The numerical model SWASH is used to investigate nonlinear energy transfers between waves for a diverse set of beach profiles and wave conditions, with a specific focus on infragravity waves. We use bispectral analysis to study the nonlinear triad interactions, and estimate energy transfers to

2. Beach steepness effects on nonlinear infragravity-wave interactions : A numerical study

NARCIS (Netherlands)

de Bakker, A. T M; Tissier, M. F S; Ruessink, B. G.

2016-01-01

The numerical model SWASH is used to investigate nonlinear energy transfers between waves for a diverse set of beach profiles and wave conditions, with a specific focus on infragravity waves. We use bispectral analysis to study the nonlinear triad interactions, and estimate energy transfers to

3. A method of estimate anticipating pollutant transfers through an aquiferous table

International Nuclear Information System (INIS)

Peyrus, J.C.; Escande, C.

1976-01-01

Mathematical models for anticipating transfers in hydrogeology are involved in safety studies of nuclear facilities (radioactive wastes), and so it is with radiotracers used in hydrogeology. A method of estimating transfers of a miscible pollutant within the water of an aquiferous table is defined. The method especially involves a descriptive mathematical forecasting model and consists in a sequential procedure: - choice of the mathematical model, - 'in-situ' determination of the classical parameters and coefficients of the model,- in-laboratory determination of the distribution coefficient and its introduction in the model. A two-dimensional mathematical model is being developed involving longitudinal and transverse macroscopic diffusion processes and a nonlinear law (adsorption-desorption isotherm) of exchange between the liquid and solid phases [fr

4. Treatment of surrogacyin Comparative Law.

Directory of Open Access Journals (Sweden)

Ángela Ruiz SÁENZ

2016-01-01

Full Text Available The progress in the life sciences and medicine driven by modern advances and discoveries of science and technology has led to the development of assisted reproductive technology as a solution to the problem of infertility, replacing adoption as a traditional alternative to biological parenthood. In this context, deserves special mention surrogacy by the disputes generated from a social standpoint, ethical, legal and biomedical. The disparate regulation of this practice into national law has led to the “reproductive tourism”, that is, the transfer of couples from countries where the practice of surrogacy is illegal in other countries where the practice is legal, leading private international law issues relating to the recognition of the parentage of children born through the use of these techniques.

5. Nonlinear Dirac Equations

Directory of Open Access Journals (Sweden)

Wei Khim Ng

2009-02-01

Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

6. Nonlinear graphene plasmonics

Science.gov (United States)

Ooi, Kelvin J. A.; Tan, Dawn T. H.

2017-10-01

The rapid development of graphene has opened up exciting new fields in graphene plasmonics and nonlinear optics. Graphene's unique two-dimensional band structure provides extraordinary linear and nonlinear optical properties, which have led to extreme optical confinement in graphene plasmonics and ultrahigh nonlinear optical coefficients, respectively. The synergy between graphene's linear and nonlinear optical properties gave rise to nonlinear graphene plasmonics, which greatly augments graphene-based nonlinear device performance beyond a billion-fold. This nascent field of research will eventually find far-reaching revolutionary technological applications that require device miniaturization, low power consumption and a broad range of operating wavelengths approaching the far-infrared, such as optical computing, medical instrumentation and security applications.

7. LAW OCRACY ELOPMENT LAW DEMOCRACY & DEVELOPMENT

African Journals Online (AJOL)

HP27975994114

head of traditional central government, the headman was the head of the ward, and the family head exercised leadership at family level.13 Accordingly, the nature of traditional governance in South Africa was that of an unspecialised legal system where the king or chief was creator of laws, the executor of laws and the judge ...

8. RUSSIAN LAW SUBJECTS

Directory of Open Access Journals (Sweden)

D.N. Bakhrakh

2006-03-01

Full Text Available The question about the subjects of law branches is concerning the number of most important and difficult in law science. Its right decision influences on the subject of law regulation, precise definition of addressees of law norms, the volume of their rights and duties, the limits of action of norms of Main part of the branch, its principles. Scientific investigations, dedicated to law subjects system, promote the development of recommendations for the legislative and law applying activity; they are needed for scientific work organization and student training, for preparing qualified lawyers.

9. Stationary nonlinear Airy beams

International Nuclear Information System (INIS)

Lotti, A.; Faccio, D.; Couairon, A.; Papazoglou, D. G.; Panagiotopoulos, P.; Tzortzakis, S.; Abdollahpour, D.

2011-01-01

We demonstrate the existence of an additional class of stationary accelerating Airy wave forms that exist in the presence of third-order (Kerr) nonlinearity and nonlinear losses. Numerical simulations and experiments, in agreement with the analytical model, highlight how these stationary solutions sustain the nonlinear evolution of Airy beams. The generic nature of the Airy solution allows extension of these results to other settings, and a variety of applications are suggested.

10. Generalized Nonlinear Yule Models

OpenAIRE

Lansky, Petr; Polito, Federico; Sacerdote, Laura

2016-01-01

With the aim of considering models with persistent memory we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macrovolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth...

11. Nonlinear Disturbance Observer Based Robust Tracking Control of Pneumatic Muscle

Directory of Open Access Journals (Sweden)

Youssif Mohamed Toum Elobaid

2014-01-01

Full Text Available Presently pneumatic muscles (PMs are used in various applications due to their simple construction, lightweight, and high force-to-weight ratio. However, pneumatic muscles are facing various problems due to their nonlinear characteristics and various uncertainties in real applications. To cope with the uncertainties and strong nonlinearity of a PM model, a nonlinear disturbance observer (NDO is designed to estimate the lumped disturbance. Based on the disturbance observer, the tracking control of PM is studied. Stability analysis based on Lyapunov method with respect to our proposed control law is discussed. The simulation results show the validity, effectiveness, and enhancing robustness of the proposed methods.

12. Nonlinear evolution equations

CERN Document Server

Uraltseva, N N

1995-01-01

This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p

13. Nonlinear Physics of Plasmas

CERN Document Server

Kono, Mitsuo

2010-01-01

A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.

14. Nonlinear optics at interfaces

International Nuclear Information System (INIS)

Chen, C.K.

1980-12-01

Two aspects of surface nonlinear optics are explored in this thesis. The first part is a theoretical and experimental study of nonlinear intraction of surface plasmons and bulk photons at metal-dielectric interfaces. The second part is a demonstration and study of surface enhanced second harmonic generation at rough metal surfaces. A general formulation for nonlinear interaction of surface plasmons at metal-dielectric interfaces is presented and applied to both second and third order nonlinear processes. Experimental results for coherent second and third harmonic generation by surface plasmons and surface coherent antiStokes Raman spectroscopy (CARS) are shown to be in good agreement with the theory

15. Nonlinear drift tearing mode

International Nuclear Information System (INIS)

Zelenyj, L.M.; Kuznetsova, M.M.

1989-01-01

Nonlinear study of magnetic perturbation development under single-mode conditions in collision-free plasma in configurations with the magnetic field shear is investigated. Results are obtained with regard of transverse component of electrical field and its effect on ion dynamics within wide range of ion Larmor radius value and values of magnetic field shear. Increments of nonlinear drift tearing mode are obtained and it is shown that excitation drastic conditions of even linearly stable modes are possible. Mechanism of instability nonlinear stabilization is considered and the value of magnetic island at the saturation threshold is estimeted. Energy of nonlinear drift tearing mode is discussed

16. Large momentum transfer phenomena

International Nuclear Information System (INIS)

Imachi, Masahiro; Otsuki, Shoichiro; Matsuoka, Takeo; Sawada, Shoji.

1978-01-01

The large momentum transfer phenomena in hadron reaction drastically differ from small momentum transfer phenomena, and are described in this paper. Brief review on the features of the large transverse momentum transfer reactions is described in relation with two-body reactions, single particle productions, particle ratios, two jet structure, two particle correlations, jet production cross section, and the component of momentum perpendicular to the plane defined by the incident protons and the triggered pions and transverse momentum relative to jet axis. In case of two-body process, the exponent N of the power law of the differential cross section is a value between 10 to 11.5 in the large momentum transfer region. The breaks of the exponential behaviors into the power ones are observed at the large momentum transfer region. The break would enable to estimate the order of a critical length. The large momentum transfer phenomena strongly suggest an important role of constituents of hadrons in the hard region. Hard rearrangement of constituents from different initial hadrons induces large momentum transfer reactions. Several rules to count constituents in the hard region have been proposed so far to explain the power behavior. Scale invariant quark interaction and hard reactions are explained, and a summary of the possible types of hard subprocess is presented. (Kato, T.)

17. Nonlinear Vibration and Mode Shapes of FG Cylindrical Shells

Directory of Open Access Journals (Sweden)

Saeed Mahmoudkhani

Full Text Available Abstract The nonlinear vibration and normal mode shapes of FG cylindrical shells are investigated using an efficient analytical method. The equations of motion of the shell are based on the Donnell’s non-linear shallow-shell, and the material is assumed to be gradually changed across the thickness according to the simple power law. The solution is provided by first discretizing the equations of motion using the multi-mode Galerkin’s method. The nonlinear normal mode of the system is then extracted using the invariant manifold approach and employed to decouple the discretized equations. The homotopy analysis method is finally used to determine the nonlinear frequency. Numerical results are presented for the backbone curves of FG cylindrical shells, nonlinear mode shapes and also the nonlinear invariant modal surfaces. The volume fraction index and the geometric properties of the shell are found to be effective on the type of nonlinear behavior and also the nonlinear mode shapes of the shell. The circumferential half-wave numbers of the nonlinear mode shapes are found to change with time especially in a thinner cylinder.

18. Polarization Nonlinear Optics of Quadratically Nonlinear Azopolymers

International Nuclear Information System (INIS)

Konorov, S.O.; Akimov, D.A.; Ivanov, A.A.; Petrov, A.N.; Alfimov, M.V.; Yakimanskii, A.V.; Smirnov, N.N.; Ivanova, V.N.; Kudryavtsev, V.V.; Podshivalov, A.A.; Sokolova, I.M.; Zheltikov, A.M.

2005-01-01

The polarization properties of second harmonic and sum-frequency signals generated by femtosecond laser pulses in films of polymers containing covalent groups of an azobenzothiazole chromophore polarized by an external electric field are investigated. It is shown that the methods of polarization nonlinear optics make it possible to determine the structure of oriented molecular dipoles and reveal important properties of the motion of collectivized πelectrons in organic molecules with strong optical nonlinearities. The polarization measurements show that the tensor of quadratic nonlinear optical susceptibility of chromophore fragments oriented by an external field in macromolecules of the noted azopolymers has a degenerate form. This is indicative of a predominantly one-dimensional character of motion of collectivized π electrons along an extended group of atoms in such molecules

19. Numerical solutions of conservation laws

International Nuclear Information System (INIS)

Shu, C.W.

1986-01-01

In the computation of conservation laws u/sub t/ + f(u)/sub x/ 0, TVD (total-variation-diminishing) schemes have been very successful. TVB (total-variation-bounded) schemes share most the advantages and may remove some of the disadvantages (e.g. local degeneracy of accuracy at critical points) TVD schemes. Included in this dissertation are a class of m-step Runge-Kutta type TVD schemes with CFL number equaling m; a procedure to obtain uniformly high order in space TVB schemes; a class of TVD high order time discretizations; a special boundary treatment which keeps the high order of the scheme up to the boundary and preserves the TVB properties in the nonlinear scalar and linear system cases; a discrete entropy inequality for a modified Lax-Wendroff scheme applied to Burgers' equation; and discusses about error propagation in large regions

20. Recent Case Law

DEFF Research Database (Denmark)

Petz, Thomas; Sagaert, Vincent; Østergaard, Kim

2004-01-01

In this section authors from various European countries report the recent case law in their country on the field of private patrimonial law, that is decisions on the law of property, juridical acts, the law of obligations, contract law and prescription. The European Review of Private Law (ERPL......) started this section in 2003. The section aims to give our readers an overview of what is happening in the most recent European case law. We have asked the national reporters to report the juridical essence of the decisions given by the highest courts in their country. These national reports...... not relate the facts of the decision, nor the personal opinion of the reporter. One can find discussions on the most important decisions of European courts in ERPL’s case note section. The recent case law section gives overviews of decisions published in periods of four months. The period of January...

1. By Law Established

DEFF Research Database (Denmark)

Christoffersen, Lisbet

2017-01-01

An analysis of the degree and content of statutory law regulation of Nordic Lutheran majority churches in 2017......An analysis of the degree and content of statutory law regulation of Nordic Lutheran majority churches in 2017...

2. Civil Law Glossary.

Science.gov (United States)

Update on Law-Related Education, 1997

1997-01-01

Presents a glossary of civil law terms originally compiled for journalists by the American Bar Association. Defines many essential civil law concepts and practices including compensatory damages, jurisdiction, motion to dismiss, discovery, and remedy. (MJP)

National Research Council Canada - National Science Library

Speck, Michael B

2007-01-01

.... Furthermore, a false sense of security and reductions in incest reporting continue to victimize children, which results in further sex offender laws passed by legislatures without empirical data supporting such laws...

4. Themes in nuclear law

International Nuclear Information System (INIS)

2003-01-01

The nuclear law was analyzed during a workshop. The main aspects were: the law of population to access to information on nuclear energy and the relationship between the Regulator Organism and the nuclear power plants managers

5. Health care law versus constitutional law.

Science.gov (United States)

Hall, Mark A

2013-04-01

National Federation of Independent Business v. Sebelius, the Supreme Court's ruling on the Patient Protection and Affordable Care Act, is a landmark decision - both for constitutional law and for health care law and policy. Others will study its implications for constitutional limits on a range of federal powers beyond health care. This article considers to what extent the decision is also about health care law, properly conceived. Under one view, health care law is the subdiscipline that inquires how courts and government actors take account of the special features of medicine that make legal or policy issues especially problematic - rather than regarding health care delivery and finance more generically, like most any other economic or social enterprise. Viewed this way, the opinions from the Court's conservative justices are mainly about general constitutional law principles. In contrast, Justice Ruth Bader Ginsburg's dissenting opinion for the four more liberal justices is just as much about health care law as it is about constitutional law. Her opinion gives detailed attention to the unique features of health care finance and delivery in order to inform her analysis of constitutional precedents and principles. Thus, the Court's multiple opinions give a vivid depiction of the compelling contrasts between communal versus individualistic conceptions of caring for those in need, and between health care and health insurance as ordinary commodities versus ones that merit special economic, social, and legal status.

6. Three religious rules of nonlinear physics

International Nuclear Information System (INIS)

Yankov, V.V.

1993-01-01

The theory of strong turbulence is a part of nonlinear physics. The three open-quotes religious rulesclose quotes of nonlinear physics present a heuristic viewpoint that can be used to qualitatively predict the evolution of nonlinear systems. These rules are as follows. (1) The basic results can be obtained from the conservation laws. If some kind of process is not forbidden by these laws, it generally occurs. If it doesn't this means that another conserved quantity imposing the constraint is being missed. (2) The universal law of open-quotes 20/80close quotes takes place: 20% of people drink 80% of beer. In other words, interesting processes usually take place in localized structures occupying a small share of volume. The localized structures interact weakly and therefore maintain their identity. For this reason they are universal and can be investigated. (3) The open-quotes general situationclose quotes is nonintegrable. The special case of exact solutions in integrable models represent a degenerate (nontypical) behavior. Particular exact solutions cannot be taken as representative solutions unless they are attractors. The presence of attractors simplifies the analysis and clarifies the situation. In plasma physics one deals with infinite-dimensional (PDE) systems distributed in space. The application of the religious rules 1 and 2 then leads to the following. If the conservation laws do not prohibit the development of singularities they do occur. If the singularities are prohibited, then stable localized structures take place. Solitons (or solitary waves) and vortices are examples of such stable structures. Wave collapse, wave-breaking, shock waves, magnetic reconnection and singularities in ideal Euler liquid are the examples of singularities. According to rule 3, exact solutions are very essential if they are attractors in some sense. Analysis of this problem is presented for solitons in nonintegrable wave systems and 2D vortices

7. Approaching comparative company law

OpenAIRE

Donald, David C.

2008-01-01

This paper identifies some common errors that occur in comparative law, offers some guidelines to help avoid such errors, and provides a framework for entering into studies of the company laws of three major jurisdictions. The first section illustrates why a conscious approach to comparative company law is useful. Part I discusses some of the problems that can arise in comparative law and offers a few points of caution that can be useful for practical, theoretical and legislative comparative ...

8. On crystallization of law

Directory of Open Access Journals (Sweden)

Szmodis Jenő

2014-01-01

Full Text Available The article introduces the problem of autonomy of law. The paper examines the medieval origins of legal positivism from a historical approach, sketching the main theories concerning the emergence of law, and phrasing some preliminary consideration for a historical and philosophical view of the problem of the birth of law. As a result of reasoning the article suggests some legal historical and human ethological ideas relating to the phenomena of crystallization of the law.

9. Nonlinear oscillations in coriolis based gyroscopes

Directory of Open Access Journals (Sweden)

Dag Kristiansen

1999-01-01

Full Text Available In this paper we model and analyze nonlinear oscillations which are known to exist in some Coriolis based gyroscopes due to large amplitude excitation in the drive loop. A detailed derivation of a dynamic model for a cylinder gyroscope which includes geometric nonlinearities is given, and energy transfer between the system's modes are analyzed using perturbation theory and by proposing a simplified model. The model is also simulated, and the results are shown to give an accurate description of the experimental results. This work is done in order to gain a better understanding of the gyroscope's dynamics, and is intended to be a starting point for designing nonlinear observers and vibration controllers for the gyroscope in order to increase the performance.

10. LAW DEMOCRACY & DEVELOPMENT

African Journals Online (AJOL)

HP27975994114

is still on the increase.8 It is forecast that the world will face a 40 per cent .... the legal context entails.27 Renowned property law scholars, like Underkuffler, argue ..... operation of law.53 The classic examples of Roman law res publicae were ...

11. European tax law

NARCIS (Netherlands)

Terra, B.J.M.; Wattel, P.J.

2008-01-01

This book is intended as a reference book for tax law and EC law pratitioners, tax administrators, academics, the judiciary and tax or Community law policy makers. For students, an abridged student edition textbook is available. The book offers a systematic survey of the tax implications of the EC

12. Contract law as fairness

NARCIS (Netherlands)

Klijnsma, J.

2015-01-01

This article examines the implications for contract law of Rawls' theory of justice as fairness. It argues that contract law as an institution is part of the basic structure of society and as such subject to the principles of justice. Discussing the basic structure in relation to contract law is

13. Transnational Constitutional Law

NARCIS (Netherlands)

Zumbansen, P (Peer); K.I. Bhatt (Kinnari)

2018-01-01

textabstractThis chapter provides an overview of the emerging field of transnational constitutional law (TCL). Whilst questions of constitutional law are typically discussed in the context of a specific domestic legal setting, a salient strategy of TCL is to understand constitutional law and its

14. Environmental law in Denmark

DEFF Research Database (Denmark)

Basse, Ellen Margrethe

Modern Danish environmental law has a strong international dimension due to membership of EU and participation in global and regional agreements. The concept of transnational law that includes EU environmental law that has vertical as well as horizontal effects across jurisdictions binding national...

15. Unjust enrichment in business law

OpenAIRE

Vydrová, Zuzana

2016-01-01

This thesis analyses the concept of unjust enrichment under the business law. First of all the thesis explains the term of business law. Business law is a complex of legal rules concerning the contractual relationships between entrepreneurs arising from their business activities. Business law is a comprehensive field of law which extends into many other fields of law, both private and public law. Equally the regulation of unjust enrichment within the business law expands into many other laws ...

16. Nonlinear dynamics and anisotropic structure of rotating sheared turbulence.

Science.gov (United States)

Salhi, A; Jacobitz, F G; Schneider, K; Cambon, C

2014-01-01

Homogeneous turbulence in rotating shear flows is studied by means of pseudospectral direct numerical simulation and analytical spectral linear theory (SLT). The ratio of the Coriolis parameter to shear rate is varied over a wide range by changing the rotation strength, while a constant moderate shear rate is used to enable significant contributions to the nonlinear interscale energy transfer and to the nonlinear intercomponental redistribution terms. In the destabilized and neutral cases, in the sense of kinetic energy evolution, nonlinearity cannot saturate the growth of the largest scales. It permits the smallest scale to stabilize by a scale-by-scale quasibalance between the nonlinear energy transfer and the dissipation spectrum. In the stabilized cases, the role of rotation is mainly nonlinear, and interacting inertial waves can affect almost all scales as in purely rotating flows. In order to isolate the nonlinear effect of rotation, the two-dimensional manifold with vanishing spanwise wave number is revisited and both two-component spectra and single-point two-dimensional energy components exhibit an important effect of rotation, whereas the SLT as well as the purely two-dimensional nonlinear analysis are unaffected by rotation as stated by the Proudman theorem. The other two-dimensional manifold with vanishing streamwise wave number is analyzed with similar tools because it is essential for any shear flow. Finally, the spectral approach is used to disentangle, in an analytical way, the linear and nonlinear terms in the dynamical equations.

17. Thermodynamic laws and equipartition theorem in relativistic Brownian motion.

Science.gov (United States)

Koide, T; Kodama, T

2011-06-01

We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.

18. Nonlinear dynamics in Nuclotron

International Nuclear Information System (INIS)

Dinev, D.

1997-01-01

The paper represents an extensive study of the nonlinear beam dynamics in the Nuclotron. Chromatic effects, including the dependence of the betatron tunes on the amplitude, and chromatic perturbations have been investigated taking into account the measured field imperfections. Beam distortion, smear, dynamic aperture and nonlinear acceptance have been calculated for different particle energies and betatron tunes

19. Nonlinear Optics and Applications

Science.gov (United States)

Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)

2007-01-01

Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.

20. Petroleum products fiscality in the first 2006 finance law and in the amended 2005 finance law

International Nuclear Information System (INIS)

2006-01-01

The measures relative to petroleum products fiscality adopted in the amended 2005 finance law aim at adjusting the allocation of the domestic tax on petroleum products (DTPP) to the 'departements' in order to compensate for the competence transfers which took place in the framework of decentralization. They concern the agriculture and LPG sectors and prepare to the DTPP regionalization. The measures adopted in the first 2006 finance law deal with the fiscality of biofuels and with the DTPP transfers to regions. (J.S.)

1. Nonlinear optical systems

CERN Document Server

Lugiato, Luigi; Brambilla, Massimo

2015-01-01

Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.

2. Water, law, science

Science.gov (United States)

Narasimhan, T. N.

2008-01-01

SummaryIn a world with water resources severely impacted by technology, science must actively contribute to water law. To this end, this paper is an earth scientist's attempt to comprehend essential elements of water law, and to examine their connections to science. Science and law share a common logical framework of starting with a priori prescribed tenets, and drawing consistent inferences. In science, observationally established physical laws constitute the tenets, while in law, they stem from social values. The foundations of modern water law in Europe and the New World were formulated nearly two thousand years ago by Roman jurists who were inspired by Greek philosophy of reason. Recognizing that vital natural elements such as water, air, and the sea were governed by immutable natural laws, they reasoned that these elements belonged to all humans, and therefore cannot be owned as private property. Legally, such public property was to be governed by jus gentium, the law of all people or the law of all nations. In contrast, jus civile or civil law governed private property. Remarkably, jus gentium continues to be relevant in our contemporary society in which science plays a pivotal role in exploiting vital resources common to all. This paper examines the historical roots of modern water law, follows their evolution through the centuries, and examines how the spirit of science inherent in jus gentium is profoundly influencing evolving water and environmental laws in Europe, the United States and elsewhere. In a technological world, scientific knowledge has to lie at the core of water law. Yet, science cannot formulate law. It is hoped that a philosophical understanding of the relationships between science and law will contribute to their constructively coming together in the service of society.

3. Limits of Kirchhoff's Laws in Plasmonics.

Science.gov (United States)

Razinskas, Gary; Biagioni, Paolo; Hecht, Bert

2018-01-30

The validity of Kirchhoff's laws in plasmonic nanocircuitry is investigated by studying a junction of plasmonic two-wire transmission lines. We find that Kirchhoff's laws are valid for sufficiently small values of a phenomenological parameter κ relating the geometrical parameters of the transmission line with the effective wavelength of the guided mode. Beyond such regime, for large values of the phenomenological parameter, increasing deviations occur and the equivalent impedance description (Kirchhoff's laws) can only provide rough, but nevertheless useful, guidelines for the design of more complex plasmonic circuitry. As an example we investigate a system composed of a two-wire transmission line and a nanoantenna as the load. By addition of a parallel stub designed according to Kirchhoff's laws we achieve maximum signal transfer to the nanoantenna.

4. Evolution of adoption from Roman law to modern law

Directory of Open Access Journals (Sweden)

Kitanović Tanja

2013-01-01

5. LAW OCRACY ELOPMENT LAW DEMOCRACY & DEVELOPMENT

African Journals Online (AJOL)

HP27975994114

to health care services dovetails with the international law approach to assessing compliance with the ..... with extended opening hours) are well distributed across the city.40 Availability of .... often constitutes a de facto denial of access to care.

6. Human law and computer law comparative perspectives

CERN Document Server

Hildebrandt, Mireille

2014-01-01

This book probes the epistemological and hermeneutic implications of data science and artificial intelligence for democracy and the Rule of Law, and the challenges posed by computing technologies traditional legal thinking and the regulation of human affairs.

7. The transfer of the nuclear supervision into the federal self-administration in the view of the constitutional law; Die Ueberfuehrung der Atomaufsicht in die Bundeseigenverwaltung aus verfassungsrechtlicher Sicht

Energy Technology Data Exchange (ETDEWEB)

Burgi, M. [Bochum Univ. (Germany)

2005-07-01

The paper is focussed on the question of a possible transfer of the nuclear supervision from the federal executive administration into a federal self-administration. The discussed topics include the characterization of the nuclear supervision tasks, the relation between administrative tasks and the type of administration, an assessment of the precondition of centrality with respect to the nuclear supervision and a possible accomplishment of the so called centrality.

8. Generalized projective synchronization of chaotic nonlinear gyros coupled with dead-zone input

International Nuclear Information System (INIS)

Hung, M.-L.; Yan, J.-J.; Liao, T.-L.

2008-01-01

This paper addresses the synchronization problem of drive-response chaotic gyros coupled with dead-zone nonlinear input. Using the sliding mode control technique, a novel control law is established which guarantees generalized projective synchronization even when the dead-zone nonlinearity is present. Numerical simulations are presented to verify that the synchronization can be achieved by using the proposed synchronization scheme

9. A common law agenda for labour law

OpenAIRE

Hough, Barry; Spowart-Taylor, Ann

1999-01-01

This article assesses the purposes of a re-contractualisation of the employment relationship. It examines in particular the implied duty to act in good faith, and argues that in developing this and other implied terms the judiciary only extends employment protection to further wealth maximisation. It is argued that the common law sees its contribution to labour law as a device for maximising the efficiency of the enterprise and promoting the creation of wealth for the benefit of the national ...

10. Diffusion and mass transfer

CERN Document Server

Vrentas, James S

2013-01-01

The book first covers the five elements necessary to formulate and solve mass transfer problems, that is, conservation laws and field equations, boundary conditions, constitutive equations, parameters in constitutive equations, and mathematical methods that can be used to solve the partial differential equations commonly encountered in mass transfer problems. Jump balances, Green’s function solution methods, and the free-volume theory for the prediction of self-diffusion coefficients for polymer–solvent systems are among the topics covered. The authors then use those elements to analyze a wide variety of mass transfer problems, including bubble dissolution, polymer sorption and desorption, dispersion, impurity migration in plastic containers, and utilization of polymers in drug delivery. The text offers detailed solutions, along with some theoretical aspects, for numerous processes including viscoelastic diffusion, moving boundary problems, diffusion and reaction, membrane transport, wave behavior, sedime...

11. Nonreciprocity in the dynamics of coupled oscillators with nonlinearity, asymmetry, and scale hierarchy

Science.gov (United States)

Moore, Keegan J.; Bunyan, Jonathan; Tawfick, Sameh; Gendelman, Oleg V.; Li, Shuangbao; Leamy, Michael; Vakakis, Alexander F.

2018-01-01

In linear time-invariant dynamical and acoustical systems, reciprocity holds by the Onsager-Casimir principle of microscopic reversibility, and this can be broken only by odd external biases, nonlinearities, or time-dependent properties. A concept is proposed in this work for breaking dynamic reciprocity based on irreversible nonlinear energy transfers from large to small scales in a system with nonlinear hierarchical internal structure, asymmetry, and intentional strong stiffness nonlinearity. The resulting nonreciprocal large-to-small scale energy transfers mimic analogous nonlinear energy transfer cascades that occur in nature (e.g., in turbulent flows), and are caused by the strong frequency-energy dependence of the essentially nonlinear small-scale components of the system considered. The theoretical part of this work is mainly based on action-angle transformations, followed by direct numerical simulations of the resulting system of nonlinear coupled oscillators. The experimental part considers a system with two scales—a linear large-scale oscillator coupled to a small scale by a nonlinear spring—and validates the theoretical findings demonstrating nonreciprocal large-to-small scale energy transfer. The proposed study promotes a paradigm for designing nonreciprocal acoustic materials harnessing strong nonlinearity, which in a future application will be implemented in designing lattices incorporating nonlinear hierarchical internal structures, asymmetry, and scale mixing.

12. Friction laws at the nanoscale.

Science.gov (United States)

Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela

2009-02-26

Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.

13. Finite element simulation of heat transfer

CERN Document Server

Bergheau, Jean-Michel

2010-01-01

This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena).? A re

14. Asymptotic expansion of unsteady gravity flow of a power-law fluid ...

African Journals Online (AJOL)

We present a paper on the asymptotic expansion of unsteady non-linear rheological effects of a power-law fluid under gravity. The fluid flows through a porous medium. The asymptotic expansion is employed to obtain solution of the nonlinear problem. The results show the existence of traveling waves. It is assumed that the ...

15. Nonlinear Diffusion and Transient Osmosis

International Nuclear Information System (INIS)

Igarashi, Akira; Rondoni, Lamberto; Botrugno, Antonio; Pizzi, Marco

2011-01-01

We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider the variation of the pressure in the containers due to the flow of matter in the channel. In particular, we identify a phenomenon, which depends on the transport of matter across nano-porous membranes, which we call ''transient osmosis . We find that nonlinear diffusion of the porous medium equation type allows numerous different osmotic-like phenomena, which are not present in the case of ordinary Fickian diffusion. Experimental results suggest one possible candidate for transiently osmotic processes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

16. Nonlinear photonic metasurfaces

Science.gov (United States)

Li, Guixin; Zhang, Shuang; Zentgraf, Thomas

2017-03-01

Compared with conventional optical elements, 2D photonic metasurfaces, consisting of arrays of antennas with subwavelength thickness (the 'meta-atoms'), enable the manipulation of light-matter interactions on more compact platforms. The use of metasurfaces with spatially varying arrangements of meta-atoms that have subwavelength lateral resolution allows control of the polarization, phase and amplitude of light. Many exotic phenomena have been successfully demonstrated in linear optics; however, to meet the growing demand for the integration of more functionalities into a single optoelectronic circuit, the tailorable nonlinear optical properties of metasurfaces will also need to be exploited. In this Review, we discuss the design of nonlinear photonic metasurfaces — in particular, the criteria for choosing the materials and symmetries of the meta-atoms — for the realization of nonlinear optical chirality, nonlinear geometric Berry phase and nonlinear wavefront engineering. Finally, we survey the application of nonlinear photonic metasurfaces in optical switching and modulation, and we conclude with an outlook on their use for terahertz nonlinear optics and quantum information processing.

17. Nonlinear crack mechanics

International Nuclear Information System (INIS)

Khoroshun, L.P.

1995-01-01

The characteristic features of the deformation and failure of actual materials in the vicinity of a crack tip are due to their physical nonlinearity in the stress-concentration zone, which is a result of plasticity, microfailure, or a nonlinear dependence of the interatomic forces on the distance. Therefore, adequate models of the failure mechanics must be nonlinear, in principle, although linear failure mechanics is applicable if the zone of nonlinear deformation is small in comparison with the crack length. Models of crack mechanics are based on analytical solutions of the problem of the stress-strain state in the vicinity of the crack. On account of the complexity of the problem, nonlinear models are bason on approximate schematic solutions. In the Leonov-Panasyuk-Dugdale nonlinear model, one of the best known, the actual two-dimensional plastic zone (the nonlinearity zone) is replaced by a narrow one-dimensional zone, which is then modeled by extending the crack with a specified normal load equal to the yield point. The condition of finite stress is applied here, and hence the length of the plastic zone is determined. As a result of this approximation, the displacement in the plastic zone at the abscissa is nonzero

18. A Kinematic Conservation Law in Free Surface Flow

OpenAIRE

Gavrilyuk , Sergey; Kalisch , Henrik; Khorsand , Zahra

2015-01-01

The Green-Naghdi system is used to model highly nonlinear weakly dispersive waves propagating at the surface of a shallow layer of a perfect fluid. The system has three associated conservation laws which describe the conservation of mass, momentum, and energy due to the surface wave motion. In addition, the system features a fourth conservation law which is the main focus of this note. It will be shown how this fourth conservation law can be interpreted in terms of a concrete kinematic quanti...

Science.gov (United States)

Gangnian, Xu; Liansheng, Ma; Wang, Youzhi; Quan, Yuan; Weijie, You

2018-02-01

Using the third-order shear deflection beam theory (TBT), nonlinear bending of functionally graded (FG) beams composed with various amounts of ceramic and metal is analyzed utilizing the differential quadrature method (DQM). The properties of beam material are supposed to accord with the power law index along to thickness. First, according to the principle of stationary potential energy, the partial differential control formulae of the FG beams subjected to a distributed lateral force are derived. To obtain numerical results of the nonlinear bending, non-dimensional boundary conditions and control formulae are dispersed by applying the DQM. To verify the present solution, several examples are analyzed for nonlinear bending of homogeneous beams with various edges. A minute parametric research is in progress about the effect of the law index, transverse shear deformation, distributed lateral force and boundary conditions.

20. Incremental passivity and output regulation for switched nonlinear systems

Science.gov (United States)

Pang, Hongbo; Zhao, Jun

2017-10-01

This paper studies incremental passivity and global output regulation for switched nonlinear systems, whose subsystems are not required to be incrementally passive. A concept of incremental passivity for switched systems is put forward. First, a switched system is rendered incrementally passive by the design of a state-dependent switching law. Second, the feedback incremental passification is achieved by the design of a state-dependent switching law and a set of state feedback controllers. Finally, we show that once the incremental passivity for switched nonlinear systems is assured, the output regulation problem is solved by the design of global nonlinear regulator controllers comprising two components: the steady-state control and the linear output feedback stabilising controllers, even though the problem for none of subsystems is solvable. Two examples are presented to illustrate the effectiveness of the proposed approach.

1. Nonlinear flow model for well production in an underground formation

Directory of Open Access Journals (Sweden)

J. C. Guo

2013-05-01

Full Text Available Fluid flow in underground formations is a nonlinear process. In this article we modelled the nonlinear transient flow behaviour of well production in an underground formation. Based on Darcy's law and material balance equations, we used quadratic pressure gradients to deduce diffusion equations and discuss the origins of nonlinear flow issues. By introducing an effective-well-radius approach that considers skin factor, we established a nonlinear flow model for both gas and liquid (oil or water. The liquid flow model was solved using a semi-analytical method, while the gas flow model was solved using numerical simulations because the diffusion equation of gas flow is a stealth function of pressure. For liquid flow, a series of standard log-log type curves of pressure transients were plotted and nonlinear transient flow characteristics were analyzed. Qualitative and quantitative analyses were used to compare the solutions of the linear and nonlinear models. The effect of nonlinearity upon pressure transients should not be ignored. For gas flow, pressure transients were simulated and compared with oil flow under the same formation and well conditions, resulting in the conclusion that, under the same volume rate production, oil wells demand larger pressure drops than gas wells. Comparisons between theoretical data and field data show that nonlinear models will describe fluid flow in underground formations realistically and accurately.

2. Front tracking for hyperbolic conservation laws

CERN Document Server

Holden, Helge

2002-01-01

Hyperbolic conservation laws are central in the theory of nonlinear partial differential equations and in science and technology. The reader is given a self-contained presentation using front tracking, which is also a numerical method. The multidimensional scalar case and the case of systems on the line are treated in detail. A chapter on finite differences is included. "It is already one of the few best digests on this topic. The present book is an excellent compromise between theory and practice. Students will appreciate the lively and accurate style." D. Serre, MathSciNet "I have read the book with great pleasure, and I can recommend it to experts as well as students. It can also be used for reliable and very exciting basis for a one-semester graduate course." S. Noelle, Book review, German Math. Soc. "Making it an ideal first book for the theory of nonlinear partial differential equations...an excellent reference for a graduate course on nonlinear conservation laws." M. Laforest, Comp. Phys. Comm.

3. Nonlinear wave equations

CERN Document Server

Li, Tatsien

2017-01-01

This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.

4. Gravitation SL(2,C) gauge theory and conservation laws

CERN Document Server

Carmeli, Moshe; Nissani, Noah

1990-01-01

This monograph gives a comprehensive presentation of the SL(2,C) Gauge Theory of Gravitation along with some recent developments in the problem of Conservation Laws in General Relativity. Emphasis is put on quadratic Lagrangians which yield the Einstein field equations, as compared with Hilbert's original linear Langrangian, thus gravitation follows the other Gauge Fields all of which are derived from nonlinear Lagrangians.

5. 2×2 systems of conservation laws with L data

Science.gov (United States)

Bianchini, Stefano; Colombo, Rinaldo M.; Monti, Francesca

Consider a hyperbolic system of conservation laws with genuinely nonlinear characteristic fields. We extend the classical Glimm-Lax (1970) result [13, Theorem 5.1] proving the existence of solutions for L initial datum, relaxing the assumptions taken therein on the geometry of the shock-rarefaction curves.

6. The Integration of Social-Ecological Resilience and Law

Science.gov (United States)

Growing recognition of the inherent uncertainty associated with the dynamics of ecological systems and their often non-linear and surprising behavior, however, presents a set of problems outside the scope of classic environmental law, and has lead to a fundamental understanding a...

7. Water, law, science

Energy Technology Data Exchange (ETDEWEB)

Narasimhan, T.N.

2007-10-17

In a world with water resources severely impacted bytechnology, science must actively contribute to water law. To this end,this paper is an earth scientist s attempt to comprehend essentialelements of water law, and to examine their connections to science.Science and law share a common logical framework of starting with apriori prescribed tenets, and drawing consistent inferences. In science,observationally established physical laws constitute the tenets, while inlaw, they stem from social values. The foundations of modern water law inEurope and the New World were formulated nearly two thousand years ago byRoman jurists who were inspired by Greek philosophy of reason.Recognizing that vital natural elements such as water, air, and the seawere governed by immutable natural laws, they reasoned that theseelements belonged to all humans, and therefore cannot be owned as privateproperty. Legally, such public property was to be governed by jusgentium, the law of all people or the law of all nations. In contrast,jus civile or civil law governed private property. Remarkably, jusgentium continues to be relevant in our contemporary society in whichscience plays a pivotal role in exploiting vital resources common to all.This paper examines the historical roots of modern water law, followstheir evolution through the centuries, and examines how the spirit ofscience inherent in jus gentium is profoundly influencing evolving waterand environmental laws in Europe, the United States and elsewhere. In atechnological world, scientific knowledge has to lie at the core of waterlaw. Yet, science cannot formulate law. It is hoped that a philosophicalunderstanding of the relationships between science and law willcontribute to their constructively coming together in the service ofsociety.

8. Robust stabilization of nonlinear systems: The LMI approach

Directory of Open Access Journals (Sweden)

iljak D. D.

2000-01-01

Full Text Available This paper presents a new approach to robust quadratic stabilization of nonlinear systems within the framework of Linear Matrix Inequalities (LMI. The systems are composed of a linear constant part perturbed by an additive nonlinearity which depends discontinuously on both time and state. The only information about the nonlinearity is that it satisfies a quadratic constraint. Our major objective is to show how linear constant feedback laws can be formulated to stabilize this type of systems and, at the same time, maximize the bounds on the nonlinearity which the system can tolerate without going unstable. We shall broaden the new setting to include design of decentralized control laws for robust stabilization of interconnected systems. Again, the LMI methods will be used to maximize the class of uncertain interconnections which leave the overall system connectively stable. It is useful to learn that the proposed LMI formulation “recognizes” the matching conditions by returning a feedback gain matrix for any prescribed bound on the interconnection terms. More importantly, the new formulation provides a suitable setting for robust stabilization of nonlinear systems where the nonlinear perturbations satisfy the generalized matching conditions.

9. International Treaties Tax Law in Brazilian Law

Directory of Open Access Journals (Sweden)

Milena Zampieri Sellmann

2016-06-01

Full Text Available International agreements are the primary source of obligations internationally, whi- ch generate reflections in national law. They have been extremely used in tax harvest because they avoid double taxation and reduce tax burden in international trade. They are formal sources of tax law, which the legislature is expressly recognized in Article 96 of the National Tax Code to set the “tax legislation” expression. Article 98 of the Code determines the supremacy of international tax agreements over national law. Against the odds, international tax agreements do not revoke or modify the national legislation, just limit the effectiveness of national law incompatible with them, with supra-legal hierarchy and infra-constitution. They are above national law, either after or before it is created, and are below the Federal Constitution, so agreements incompatible with it should not be approved by Congress and, if so, they will be subject to declaration of unconstitutionality by the Supreme Court. It is a reporting case the international agreement’s unconstitutio- nality after it is celebrated.

10. Transfer Pricing

DEFF Research Database (Denmark)

Nielsen, Søren Bo

2014-01-01

Against a background of rather mixed evidence about transfer pricing practices in multinational enterprises (MNEs) and varying attitudes on the part of tax authorities, this paper explores how multiple aims in transfer pricing can be pursued across four different transfer pricing regimes. A MNE h...

11. Nonlinear dynamics of fractional order Duffing system

International Nuclear Information System (INIS)

Li, Zengshan; Chen, Diyi; Zhu, Jianwei; Liu, Yongjian

2015-01-01

In this paper, we analyze the nonlinear dynamics of fractional order Duffing system. First, we present the fractional order Duffing system and the numerical algorithm. Second, nonlinear dynamic behaviors of Duffing system with a fixed fractional order is studied by using bifurcation diagrams, phase portraits, Poincare maps and time domain waveforms. The fractional order Duffing system shows some interesting dynamical behaviors. Third, a series of Duffing systems with different fractional orders are analyzed by using bifurcation diagrams. The impacts of fractional orders on the tendency of dynamical motion, the periodic windows in chaos, the bifurcation points and the distance between the first and the last bifurcation points are respectively studied, in which some basic laws are discovered and summarized. This paper reflects that the integer order system and the fractional order one have close relationship and an integer order system is a special case of fractional order ones.

12. Symmetry, phase modulation and nonlinear waves

CERN Document Server

Bridges, Thomas J

2017-01-01

Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background results in mathematics, such as Hamiltonian systems, symplectic geometry, conservation laws, Noether theory, Lagrangian field theory and analysis, all of which combine to generate the new theory of phase modulation. While the build-up of theory can be intensive, the resulting emergent partial differential equations are relatively simple. A key outcome of the theory is that the coefficients in the emergent modulation equations are universal and easy to calculate. This book gives several examples of the implications in the theory of fluid mechanics and points to a wide range of new applications.

13. Nonlinear continuum mechanics and large inelastic deformations

CERN Document Server

Dimitrienko, Yuriy I

2010-01-01

This book provides a rigorous axiomatic approach to continuum mechanics under large deformation. In addition to the classical nonlinear continuum mechanics - kinematics, fundamental laws, the theory of functions having jump discontinuities across singular surfaces, etc. - the book presents the theory of co-rotational derivatives, dynamic deformation compatibility equations, and the principles of material indifference and symmetry, all in systematized form. The focus of the book is a new approach to the formulation of the constitutive equations for elastic and inelastic continua under large deformation. This new approach is based on using energetic and quasi-energetic couples of stress and deformation tensors. This approach leads to a unified treatment of large, anisotropic elastic, viscoelastic, and plastic deformations. The author analyses classical problems, including some involving nonlinear wave propagation, using different models for continua under large deformation, and shows how different models lead t...

14. Scaling of chaos in strongly nonlinear lattices.

Science.gov (United States)

Mulansky, Mario

2014-06-01

Although it is now understood that chaos in complex classical systems is the foundation of thermodynamic behavior, the detailed relations between the microscopic properties of the chaotic dynamics and the macroscopic thermodynamic observations still remain mostly in the dark. In this work, we numerically analyze the probability of chaos in strongly nonlinear Hamiltonian systems and find different scaling properties depending on the nonlinear structure of the model. We argue that these different scaling laws of chaos have definite consequences for the macroscopic diffusive behavior, as chaos is the microscopic mechanism of diffusion. This is compared with previous results on chaotic diffusion [M. Mulansky and A. Pikovsky, New J. Phys. 15, 053015 (2013)], and a relation between microscopic chaos and macroscopic diffusion is established.

15. Special discontinuities in nonlinearly elastic media

Science.gov (United States)

Chugainova, A. P.

2017-06-01

Solutions of a nonlinear hyperbolic system of equations describing weakly nonlinear quasitransverse waves in a weakly anisotropic elastic medium are studied. The influence of small-scale processes of dissipation and dispersion is investigated. The small-scale processes determine the structure of discontinuities (shocks) and a set of discontinuities with a stationary structure. Among the discontinuities with a stationary structure, there are special ones that, in addition to relations following from conservation laws, satisfy additional relations required for the existence of their structure. In the phase plane, the structure of such discontinuities is represented by an integral curve joining two saddles. Special discontinuities lead to nonunique self-similar solutions of the Riemann problem. Asymptotics of non-self-similar problems for equations with dissipation and dispersion are found numerically. These asymptotics correspond to self-similar solutions of the problems.

16. Nonlinear damping for vibration isolation of microsystems using shear thickening fluid

Science.gov (United States)

Iyer, S. S.; Vedad-Ghavami, R.; Lee, H.; Liger, M.; Kavehpour, H. P.; Candler, R. N.

2013-06-01

This work reports the measurement and analysis of nonlinear damping of micro-scale actuators immersed in shear thickening fluids (STFs). A power-law damping term is added to the linear second-order model to account for the shear-dependent viscosity of the fluid. This nonlinear model is substantiated by measurements of oscillatory motion of a torsional microactuator. At high actuation forces, the vibration velocity amplitude saturates. The model accurately predicts the nonlinear damping characteristics of the STF using a power-law index extracted from independent rheology experiments. This result reveals the potential to use STFs as adaptive, passive dampers for vibration isolation of microelectromechanical systems.

17. Photostable nonlinear optical polycarbonates

NARCIS (Netherlands)

Faccini, M.; Balakrishnan, M.; Diemeer, Mart; Torosantucci, Riccardo; Driessen, A.; Reinhoudt, David; Verboom, Willem

2008-01-01

Highly thermal and photostable nonlinear optical polymers were obtained by covalently incorporating the tricyanovinylidenediphenylaminobenzene (TCVDPA) chromophore to a polycarbonate backbone. NLO polycarbonates with different chromophore attachment modes and flexibilities were synthesized. In spite

18. Nonlinear singular elliptic equations

International Nuclear Information System (INIS)

Dong Minh Duc.

1988-09-01

We improve the Poincare inequality, the Sobolev imbedding theorem and the Trudinger imbedding theorem and prove a Mountain pass theorem. Applying these results we study a nonlinear singular mixed boundary problem. (author). 22 refs

19. Nonlinear Optical Terahertz Technology

Data.gov (United States)

National Aeronautics and Space Administration — We develop a new approach to generation of THz radiation. Our method relies on mixing two optical frequency beams in a nonlinear crystalline Whispering Gallery Mode...

20. Nonlinear differential equations

CERN Document Server

Struble, Raimond A

2017-01-01

Detailed treatment covers existence and uniqueness of a solution of the initial value problem, properties of solutions, properties of linear systems, stability of nonlinear systems, and two-dimensional systems. 1962 edition.

1. Terahertz semiconductor nonlinear optics

DEFF Research Database (Denmark)

Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias

2013-01-01

In this proceedings we describe our recent results on semiconductor nonlinear optics, investigated using single-cycle THz pulses. We demonstrate the nonlinear absorption and self-phase modulation of strong-field THz pulses in doped semiconductors, using n-GaAs as a model system. The THz...... nonlinearity in doped semiconductors originates from the near-instantaneous heating of free electrons in the ponderomotive potential created by electric field of the THz pulse, leading to ultrafast increase of electron effective mass by intervalley scattering. Modification of effective mass in turn leads...... to a decrease of plasma frequency in semiconductor and produces a substantial modification of THz-range material dielectric function, described by the Drude model. As a result, the nonlinearity of both absorption coefficient and refractive index of the semiconductor is observed. In particular we demonstrate...

2. Ultrafast nonlinear optics

CERN Document Server

Leburn, Christopher; Reid, Derryck

2013-01-01

The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrasho...

3. Nonlinear surface Alfven waves

International Nuclear Information System (INIS)

Cramer, N.F.

1991-01-01

The problem of nonlinear surface Alfven waves propagating on an interface between a plasma and a vacuum is discussed, with dispersion provided by the finite-frequency effect, i.e. the finite ratio of the frequency to the ion-cyclotron frequency. A set of simplified nonlinear wave equations is derived using the method of stretched co-ordinates, and another approach uses the generation of a second-harmonic wave and its interaction with the first harmonic to obtain a nonlinear dispersion relation. A nonlinear Schroedinger equation is then derived, and soliton solutions found that propagate as solitary pulses in directions close to parallel and antiparallel to the background magnetic field. (author)

4. Nonlinear Structural Analysis

The Structures Panel of the Aeronautics Research and Development Board of India ... A great variety of topics was covered, including themes such as nonlinear finite ... or shell structures, and three are on the composite form of construction, ...

5. A nonlinear oscillatory problem

International Nuclear Information System (INIS)

Zhou Qingqing.

1991-10-01

We have studied the nonlinear oscillatory problem of orthotropic cylindrical shell, we have analyzed the character of the oscillatory system. The stable condition of the oscillatory system has been given. (author). 6 refs

6. Degenerate nonlinear diffusion equations

CERN Document Server

Favini, Angelo

2012-01-01

The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...

7. The rule of law

Directory of Open Access Journals (Sweden)

Besnik Murati

2015-07-01

Full Text Available The state as an international entity and its impact on the individual’s right has been and still continues to be a crucial factor in the relationship between private and public persons. States vary in terms of their political system, however, democratic states are based on the separation of powers and human rights within the state. Rule of law is the product of many actors in a state, including laws, individuals, society, political system, separation of powers, human rights, the establishment of civil society, the relationship between law and the individual, as well as, individual-state relations. Purpose and focus of this study is the importance of a functioning state based on law, characteristics of the rule of law, separation of powers and the basic concepts of the rule of law.

8. Dentistry and criminal law.

Science.gov (United States)

Khoury, B S; Khoury, J N

2017-09-01

Criminal law in dentistry, as shaped and moulded by the prevailing views of society, defines what is or is not socially acceptable. It applies in both personal and professional contexts with the intended consequence of protecting the public from unacceptable conduct and potential imbalances of power. At its centre, a patient's consent plays a pivotal role in transforming unlawful conduct into lawful conduct. This literature review considers the current law and the trend of utilizing criminal law in addition to non-criminal law alternatives of reprimanding clinicians for failure to achieve consent in the course of dental practice. Dentists must appreciate this change and the prosecuting authority's increasing willingness to resort to criminal law. © 2017 Australian Dental Association.

9. Zipf's law, power laws and maximum entropy

International Nuclear Information System (INIS)

Visser, Matt

2013-01-01

Zipf's law, and power laws in general, have attracted and continue to attract considerable attention in a wide variety of disciplines—from astronomy to demographics to software structure to economics to linguistics to zoology, and even warfare. A recent model of random group formation (RGF) attempts a general explanation of such phenomena based on Jaynes' notion of maximum entropy applied to a particular choice of cost function. In the present paper I argue that the specific cost function used in the RGF model is in fact unnecessarily complicated, and that power laws can be obtained in a much simpler way by applying maximum entropy ideas directly to the Shannon entropy subject only to a single constraint: that the average of the logarithm of the observable quantity is specified. (paper)

10. Nonlinear Wave Propagation

Science.gov (United States)

2015-05-07

associated with the lattice background; the nonlinearity is derived from the inclusion of cubic nonlinearity. Often the background potential is periodic...dispersion branch we can find discrete evolution equations for the envelope associated with the lattice NLS equation (1) by looking for solutions of...spatial operator in the above NLS equation can be elliptic, hyperbolic or parabolic . We remark that further reduction is possible by going into a moving

11. Nonlinear dynamics and astrophysics

International Nuclear Information System (INIS)

Vallejo, J. C.; Sanjuan, M. A. F.

2000-01-01

Concepts and techniques from Nonlinear Dynamics, also known as Chaos Theory, have been applied successfully to several astrophysical fields such as orbital motion, time series analysis or galactic dynamics, providing answers to old questions but also opening a few new ones. Some of these topics are described in this review article, showing the basis of Nonlinear Dynamics, and how it is applied in Astrophysics. (Author)

12. Transnational Constitutional Law

OpenAIRE

Zumbansen, P (Peer); Bhatt, Kinnari

2018-01-01

textabstractThis chapter provides an overview of the emerging field of transnational constitutional law (TCL). Whilst questions of constitutional law are typically discussed in the context of a specific domestic legal setting, a salient strategy of TCL is to understand constitutional law and its values by placing them ‘in context’ with existing and evolving cultural norms and political, social and economic discourses and struggles. Drawing on socio-legal investigations into the relationships ...

13. New Russian law

International Nuclear Information System (INIS)

Anon.

1996-01-01

The information about the Russian Federation law dealing with population radiation safety signed by the President in January 1996 is given. The law is based on a new strategy of radiation protection including the mean efficient dose from all ionizing radiation sources as the main factor for evaluation of the safe level for the population. The norms stated in the law will become valid from January 1, 2000

14. Labor Laws and Innovation

OpenAIRE

Viral V. Acharya; Ramin P. Baghai; Krishnamurthy V. Subramanian

2013-01-01

Can stringent labor laws be efficient? Possibly, if they provide firms with a commitment device to not punish short-run failures and thereby incentivize the pursuit of value-maximizing innovative activities. In this paper, we provide empirical evidence that strong labor laws indeed appear to have an ex ante positive incentive effect by encouraging the innovative pursuits of firms and their employees. Using patents and citations as proxies for innovation and a time-varying index of labor laws,...

15. Rhetoric in Law

DEFF Research Database (Denmark)

Gabrielsen, Jonas

The bond between law and rhetoric is as old as the subjects themselves. Especially the ancient works on legal rhetoric afford, however, a too narrow depiction of the interaction between law and rhetoric as a purely instrumental discipline of communication in court. In this paper I challenge...... this narrow understanding of legal rhetoric and outline three distinct frames of understanding the relation between law and rhetoric...

16. Enjoying the Law

DEFF Research Database (Denmark)

Bjerre, Henrik Jøker

2005-01-01

of the concept of enjoyment is instructive, and looking at it more closely makes it possible to spell out why obedience in itself does not suffice for a moral existence. Subjecting ourselves to the prescriptions of positive law might actually function as a way of escaping the insatiable demands of the moral law....... In this case, the positive law not only sustains our enjoyment (by securing basic liberties), but also comes to function as an object of enjoyment itself....

17. Pescara benchmarks: nonlinear identification

Science.gov (United States)

Gandino, E.; Garibaldi, L.; Marchesiello, S.

2011-07-01

Recent nonlinear methods are suitable for identifying large systems with lumped nonlinearities, but in practice most structural nonlinearities are distributed and an ideal nonlinear identification method should cater for them as well. In order to extend the current NSI method to be applied also on realistic large engineering structures, a modal counterpart of the method is proposed in this paper. The modal NSI technique is applied on one of the reinforced concrete beams that have been tested in Pescara, under the project titled "Monitoring and diagnostics of railway bridges by means of the analysis of the dynamic response due to train crossing", financed by Italian Ministry of Research. The beam showed a softening nonlinear behaviour, so that the nonlinearity concerning the first mode is characterized and its force contribution is quantified. Moreover, estimates for the modal parameters are obtained and the model is validated by comparing the measured and the reconstructed output. The identified estimates are also used to accurately predict the behaviour of the same beam, when subject to different initial conditions.

18. Nonlinear Multiantenna Detection Methods

Directory of Open Access Journals (Sweden)

Chen Sheng

2004-01-01

19. Pescara benchmarks: nonlinear identification

International Nuclear Information System (INIS)

Gandino, E; Garibaldi, L; Marchesiello, S

2011-01-01

Recent nonlinear methods are suitable for identifying large systems with lumped nonlinearities, but in practice most structural nonlinearities are distributed and an ideal nonlinear identification method should cater for them as well. In order to extend the current NSI method to be applied also on realistic large engineering structures, a modal counterpart of the method is proposed in this paper. The modal NSI technique is applied on one of the reinforced concrete beams that have been tested in Pescara, under the project titled M onitoring and diagnostics of railway bridges by means of the analysis of the dynamic response due to train crossing , financed by Italian Ministry of Research. The beam showed a softening nonlinear behaviour, so that the nonlinearity concerning the first mode is characterized and its force contribution is quantified. Moreover, estimates for the modal parameters are obtained and the model is validated by comparing the measured and the reconstructed output. The identified estimates are also used to accurately predict the behaviour of the same beam, when subject to different initial conditions.

20. Introduction to nonlinear acoustics

Science.gov (United States)

Bjørnø, Leif

2010-01-01

A brief review of the basic principles of fluid mechanics needed for development of linear and nonlinear ultrasonic concepts will be given. The fundamental equations of nonlinear ultrasonics will be derived and their physical properties explained. It will be shown how an originally monochromatic finite-amplitude ultrasonic wave, due to nonlinear effects, will distort during its propagation in time and space to form higher harmonics to its fundamental frequency. The concepts of shock formation will be presented. The material nonlinearity, described by the nonlinearity parameter B/A of the material, and the convective nonlinearity, described by the ultrasonic Mach Number, will be explained. Two procedures for determination of B/A will briefly be described and some B/A-values characterizing biological materials will be presented. Shock formation, described by use of the Goldberg Number,and Ultrasonic Saturation will be discussed.. An introduction to focused ultrasonic fields will be given and it will be shown how the ultrasonic intensity will vary axially and laterally in and near the focal region and how the field parameters of interest to biomedical applications may be described by use of the KZK-Model. Finally, an introduction will be given to the parametric acoustic array formed by mixing and interaction of two monochromatic, finite-amplitude ultrasonic waves in a liquid and the potentials of this mixing process in biomedical ultrasound will briefly be mentioned.

1. The Pedersen current carried by electrons: a non-linear response of the ionosphere to magnetospheric forcing

Directory of Open Access Journals (Sweden)

S. C. Buchert

2008-09-01

Full Text Available Observations by the EISCAT Svalbard radar show that electron temperatures Te in the cusp electrojet reach up to about 4000 K. The heat is tapped and converted from plasma convection in the near Earth space by a Pedersen current that is carried by electrons due to the presence of irregularities and their demagnetising effect. The heat is transfered to the neutral gas by collisions. In order to enhance Te to such high temperatures the maximally possible dissipation at 50% demagnetisation must nearly be reached. The effective Pedersen conductances are found to be enhanced by up to 60% compared to classical values. Conductivities and conductances respond significantly to variations of the electric field strength E, and "Ohm's law" for the ionosphere becomes non-linear for large E.

2. Is Contract Law Necessary?

OpenAIRE

SCHWARTZ, Alan

2010-01-01

This lecture was delivered on 17 March 2010. Alan Schwartz, Sterling Professor of Law; Professor of Management, Yale University This Lecture argues that much of the contract law in the cases (the US, the UK and Canada) and in the codes (Europe and Latin America) is unnecessary. To say that a law is unnecessary is to say that it does not perform a useful social function. The argument below thus sets out the functions that contract laws today are thought to serve, and then shows that many of...

3. Outlines of environmental Law

International Nuclear Information System (INIS)

Salzwedel, J.

1982-01-01

In this omnibus, ten members of the working group for environmental law attempt to present the respective fields of environmental law in a consistent context, and to show the autonomy of each subject-matter as well as their interdependence and interrelationships. In the long run, the complexity of basic facts of natural science, technology and that of practical execution will require subject-specific penetration and application. Relationships between systems have to be realized to an increasing extent. Structures of law and administration have to be harmonized, and statements on the environmental impact of projects have to be made possible on the whole. Fundamental issues of environmental law are dealt with in the chapters entitled 'Concept and levels of applications of environmental law' and 'Environmental law in general'. The international, supranational and constitutional conditions given in advance of any environmental legislation increasingly gaining in importance are presented in the chapter on 'International environmental law', 'Basics of European Law' and on 'Constitutional Fundamentals'. The necessity of interdisciplinary cooperation becomes evident in those contributions concerning individual fields of environmental law. (orig./HSCH) [de

4. Law before Gratian

DEFF Research Database (Denmark)

This volume, the third in the series, contains the proceedings of the conference 'Law before Gratian' and covers a wide range of topics from individual and local studies to broader reflections on the status and function of law in medieval European societies before the scholastic legal 'revolution......' of the later twelfth century. Seeking to broaden our view of what constituted law in this period, the articles examine these earlier developments in their own right and provide new insights into the variety and complexity of early and high medieval approaches to law and jurisprudence. Contributors...

5. Operational Law Handbook,2007

National Research Council Canada - National Science Library

2007-01-01

... & SOFAs, legal assistance, combating terrorism, domestic operations, noncombatant evacuation operations, special operations, civil affairs, air, sea, and space law, detainee operations, reserve...

6. The laws of sociodynamics

OpenAIRE

Movsesyan, Arsen A.

2015-01-01

The purpose of this article is to tell briefly about the newly discovered fundamental Laws of Sociodynamics, which are the driving force of the evolution of society and the determining factor of world historic process. Based on the principle of symmetry of the laws of nature the relationship between the Laws of Thermodynamics and Sociodynamics is shown, due to which the fifth Law of Thermodynamics has been formulated. In doing so the objectivity of the concept of «spirituality» has been subst...

7. The law on wastes. November 2016 - october 2017

International Nuclear Information System (INIS)

Lanoy, Laurence

2017-01-01

In France, the law on wastes has been subject to important reforms following the passing, in 2015, of the law on the 'energy transition for a green growth'. In the continuity of this law, various evolutions concerning regulations and jurisprudence have been applied. These evolutions mainly concern waste management modalities (technical prescriptions applicable to facilities receiving wastes, status of wastes, domestic wastes, radioactive wastes, special wastes and cross-border waste transfers, general orientations of French and European laws on wastes) and liabilities related to wastes (administrative liability, taxation related to wastes, waste producer liabilities)

8. Investigations of the role of nonlinear couplings in structure formation and transport regulation: Experiment, simulation, and theory

International Nuclear Information System (INIS)

Holland, C.; Kim, E.J.; Champeaux, S.; Gurcan, O.; Rosenbluth, M.N.; Diamond, P.H.; Tynan, G.R.; Nevins, W.; Candy, J.

2003-01-01

Understanding the physics of shear flow and structure formation in plasmas is a central problem for the advancement of magnetic fusion because of the roles such flows are believed to play in regulating turbulence and transport levels. In this paper, we report on integrated experimental, computational, and theoretical studies of sheared zonal flows and radially extended convective cells, with the aim of assessing the results of theory experiment and theory-simulation comparisons. In particular, simulations are used as test beds for verifying analytical predictions and demonstrating the suitability of techniques such as bispectral analysis for isolating nonlinear couplings in data. Based on intriguing initial results suggesting increased levels of nonlinear coupling occur during L-H transitions, we have undertaken a comprehensive study of bispectral quantities in fluid and gyrokinetic simulations, and compared these results with theoretical expectations. Topics of study include locality and directionality of energy transfer, amplitude scaling, and parameter dependences. Techniques for inferring nonlinear coupling coefficients from data are discussed, and initial results from experimental data are presented. Future experimental studies are motivated. We also present work investigating the role of structures in transport. Analysis of simulation data indicates that the turbulent heat flux can be represented as an ensemble of 'heat pulses' of varying sizes, with a power law distribution. The slope of the power law is shown to determine global transport scaling (i.e. Bohm or gyro-Bohm). Theoretical work studying the dynamics of the largest cells (termed 'streamers') is presented, as well as results from ongoing analysis studying connections between heat pulse distribution and bispectral quantities. (author)

9. A Geometrically—Nonlinear Plate Theory 12

Institute of Scientific and Technical Information of China (English)

AlbertC.J.LUO

1999-01-01

An approximate plate theory developed in this paper is based on an assumed displacement field,the strains described by a Taylor series in the normal distance from the middle surface,the exact strains of the middle surface and the equations of equilibrium governing the exact configuration of the deformed middle surface,In this theory the exact geometry of the deformed middle surface is used to derive the strains and equilibrium of the plate.Application of this theory does not depend on the constitutive law.THis theory can reduce to some existing nonlinear theories through imposition of constraints.

10. Investigation of interfacial heat transfer mechanism for 7075-T6 aluminum alloy in HFQ hot forming process

International Nuclear Information System (INIS)

Ying, Liang; Gao, Tianhan; Dai, Minghua; Hu, Ping

2017-01-01

Highlights: • The transient IHTC between 7075 alloy and die in HFQ process is investigated. • The accuracy of IHTC calculated by Beck and heat balance method is compared. • The relationship between IHTC and process parameter of 7075 alloy is studied. • The transient IHTC law is verified by U-type HFQ forming experiment. - Abstract: The IHTC (Interfacial-Heat-Transfer-Coefficient) between aluminum alloy and die during HFQ (Heat-Forming-Quenching) process is an important thermal parameter to reflect the heat transfer efficiency. In the present work, the instantaneous heat transfer law for high strength 7075-T6 alloy during HFQ process based on cylindrical-die model was investigated. The accuracy of IHTC calculated by Beck’s non-linear estimation method (Beck’s method) and heat balance method (HBM) were compared, and instantaneous IHTC of 7075-T6 alloy was acquired in experiment and analyzed in consideration of different contact pressure, surface roughness and lubricate conditions. Furthermore, the obtained IHTC was applied to the simulation process of typical U-type experimental model in order to validate the universality of heat transfer law. The result shows that the average IHTC goes near to 3300 W/m"2·K when pressure is above 80 MPa; Surface roughness can also affect the IHTC in HFQ process, but the effect mechanism is different from the boron steel in hot stamping process. The average IHTC decreases sharply when surface roughness increases in the range of 0.570–0.836 μm, the value is from 3453 W/m"2·K to 2001 W/m"2·K under 80 MPa. Furthermore, surface lubrication can promote heat transfer efficiency and increase IHTC value when contact pressure is relatively high.

11. Numerical studies of nonlinear ultrasonic guided waves in uniform waveguides with arbitrary cross sections

Energy Technology Data Exchange (ETDEWEB)

Zuo, Peng; Fan, Zheng, E-mail: ZFAN@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Zhou, Yu [Advanced Remanufacturing and Technology Center (ARTC), 3 Clean Tech Loop, CleanTech Two, Singapore 637143 (Singapore)

2016-07-15

Nonlinear guided waves have been investigated widely in simple geometries, such as plates, pipe and shells, where analytical solutions have been developed. This paper extends the application of nonlinear guided waves to waveguides with arbitrary cross sections. The criteria for the existence of nonlinear guided waves were summarized based on the finite deformation theory and nonlinear material properties. Numerical models were developed for the analysis of nonlinear guided waves in complex geometries, including nonlinear Semi-Analytical Finite Element (SAFE) method to identify internal resonant modes in complex waveguides, and Finite Element (FE) models to simulate the nonlinear wave propagation at resonant frequencies. Two examples, an aluminum plate and a steel rectangular bar, were studied using the proposed numerical model, demonstrating the existence of nonlinear guided waves in such structures and the energy transfer from primary to secondary modes.

12. Oversight framework over oocyte procurement for somatic cell nuclear transfer: comparative analysis of the Hwang Woo Suk case under South Korean bioethics law and U.S. guidelines for human embryonic stem cell research.

Science.gov (United States)

Kim, Mi-Kyung

2009-01-01

We examine whether the current regulatory regime instituted in South Korea and the United States would have prevented Hwang's potential transgressions in oocyte procurement for somatic cell nuclear transfer, we compare the general aspects and oversight framework of the Bioethics and Biosafety Act in South Korea and the US National Academies' Guidelines for Human Embryonic Stem Cell Research, and apply the relevant provisions and recommendations to each transgression. We conclude that the Act would institute centralized oversight under governmental auspices while the Guidelines recommend politically-independent, decentralized oversight bodies including a special review body for human embryonic stem cell research at an institutional level and that the Guidelines would have provided more vigorous protection for the women who had undergone oocyte procurement for Hwang's research than the Act. We also suggest additional regulations to protect those who provide oocytes for research in South Korea.

13. Fundamentals of nonlinear optical materials

Nonlinear optics; nonlinear polarization; optical fiber communication; optical switch- ing. PACS Nos 42.65Tg; ... The importance of nonlinear optics is to understand the nonlinear behavior in the induced polarization and to ..... but much work in material development and characterization remains to be done. 16. Conclusion.

14. Collisions of Two Spatial Solitons in Inhomogeneous Nonlinear Media

International Nuclear Information System (INIS)

Zhong Weiping; Yi Lin; Yang Zhengping; Xie Ruihua; Milivoj, Belic; Chen Goong

2008-01-01

Collisions of spatial solitons occurring in the nonlinear Schroeinger equation with harmonic potential are studied, using conservation laws and the split-step Fourier method. We find an analytical solution for the separation distance between the spatial solitons in an inhomogeneous nonlinear medium when the light beam is self-trapped in the transverse dimension. In the self-focusing nonlinear media the spatial solitons can be transmitted stably, and the interaction between spatial solitons is enhanced due to the linear focusing effect (and also diminished for the linear defocusing effect). In the self-defocusing nonlinear media, in the absence of self-trapping or in the presence of linear self-defocusing, no transmission of stable spatial solitons is possible. However, in such media the linear focusing effect can be exactly compensated, and the spatial solitons can propagate through

15. Sensorless Estimation and Nonlinear Control of a Rotational Energy Harvester

Science.gov (United States)

Nunna, Kameswarie; Toh, Tzern T.; Mitcheson, Paul D.; Astolfi, Alessandro

2013-12-01

It is important to perform sensorless monitoring of parameters in energy harvesting devices in order to determine the operating states of the system. However, physical measurements of these parameters is often a challenging task due to the unavailability of access points. This paper presents, as an example application, the design of a nonlinear observer and a nonlinear feedback controller for a rotational energy harvester. A dynamic model of a rotational energy harvester with its power electronic interface is derived and validated. This model is then used to design a nonlinear observer and a nonlinear feedback controller which yield a sensorless closed-loop system. The observer estimates the mechancial quantities from the measured electrical quantities while the control law sustains power generation across a range of source rotation speeds. The proposed scheme is assessed through simulations and experiments.

16. VISCOT: a two-dimensional and axisymmetric nonlinear transient thermoviscoelastic and thermoviscoplastic finite-element code for modeling time-dependent viscous mechanical behavior of a rock mass

International Nuclear Information System (INIS)

1983-04-01

VISCOT is a non-linear, transient, thermal-stress finite-element code designed to determine the viscoelastic, fiscoplastic, or elastoplastic deformation of a rock mass due to mechanical and thermal loading. The numerical solution of the nonlinear incremental equilibrium equations within VISCOT is performed by using an explicit Euler time-stepping scheme. The rock mass may be modeled as a viscoplastic or viscoelastic material. The viscoplastic material model can be described by a Tresca, von Mises, Drucker-Prager or Mohr-Coulomb yield criteria (with or without strain hardening) with an associated flow rule which can be a power or an exponential law. The viscoelastic material model within VISCOT is a temperature- and stress-dependent law which has been developed specifically for salt rock masses by Pfeifle, Mellegard and Senseny in ONWI-314 topical report (1981). Site specific parameters for this creep law at the Richton, Permian, Paradox and Vacherie salt sites have been calculated and are given in ONWI-314 topical report (1981). A major application of VISCOT (in conjunction with a SCEPTER heat transfer code such as DOT) is the thermomechanical analysis of a rock mass such as salt in which significant time-dependent nonlinear deformations are expected to occur. Such problems include room- and canister-scale studies during the excavation, operation, and long-term post-closure stages in a salt repository. In Section 1.5 of this document the code custodianship and control is described along with the status of verification, validation and peer review of this report

17. Nonlinear Approaches in Engineering Applications

CERN Document Server

Jazar, Reza

2012-01-01

Nonlinear Approaches in Engineering Applications focuses on nonlinear phenomena that are common in the engineering field. The nonlinear approaches described in this book provide a sound theoretical base and practical tools to design and analyze engineering systems with high efficiency and accuracy and with less energy and downtime. Presented here are nonlinear approaches in areas such as dynamic systems, optimal control and approaches in nonlinear dynamics and acoustics. Coverage encompasses a wide range of applications and fields including mathematical modeling and nonlinear behavior as applied to microresonators, nanotechnologies, nonlinear behavior in soil erosion,nonlinear population dynamics, and optimization in reducing vibration and noise as well as vibration in triple-walled carbon nanotubes. This book also: Provides a complete introduction to nonlinear behavior of systems and the advantages of nonlinearity as a tool for solving engineering problems Includes applications and examples drawn from the el...

18. LAW OCRACY ELOPMENT LAW DEMOCRACY & DEVELOPMENT

African Journals Online (AJOL)

HP27975994114

of customary law, affect the positioning, operation and influence of traditional justice systems. ... communities of East Africa.11 In non-centralised communities, the people were as critical to ..... Other elements which make traditional justice systems the preferred option include ..... are in attendance as friends of the court.

19. School Law Update...Preventive School Law.

Science.gov (United States)

Jones, Thomas N., Ed.; Semler, Darel P., Ed.

A wide variety of contemporary legal issues are addressed in the 15 separate papers that make up this volume. The introductory chapter by William C. Bednar, Jr. provides a broad-based rationale for "Preventive School Law." Chapters 2 and 3, both by Gerald A. Caplan, review "Current Issues in Reduction-in-Force" and "First Amendment Claims by…

20. LAW OCRACY ELOPMENT LAW DEMOCRACY & DEVELOPMENT

African Journals Online (AJOL)

HP27975994114

2016-06-02

Jun 2, 2016 ... section 20(1)(a) of the Electoral Commission Act 51 of 1996 after counsel ... in the 2016 national municipal elections scheduled for 3 August 2016, .... of South African law 9 ed (Cape Town: Juta and Company Ltd 2007) 93.

1. 50 years of nonlinear optics

International Nuclear Information System (INIS)

Shen Yuanrang

2011-01-01

This article presents a brief introduction to the birth and early investigations of nonlinear optics, such as second harmonic generation,sum and difference frequency generation, stimulated Raman scattering,and self-action of light etc. Several important research achievements and applications of nonlinear optics are presented as well, including nonlinear optical spectroscopy, phase conjugation and adaptive optics, coherent nonlinear optics, and high-order harmonic generation. In the end, current and future research topics in nonlinear optics are summarized. (authors)

2. Model(ing) Law

DEFF Research Database (Denmark)

Carlson, Kerstin

The International Criminal Tribunal for the former Yugoslavia (ICTY) was the first and most celebrated of a wave of international criminal tribunals (ICTs) built in the 1990s designed to advance liberalism through international criminal law. Model(ing) Justice examines the case law of the ICTY...

3. Nanotechnology and the Law

Science.gov (United States)

Desmoulin-Canselier, Sonia; Lacour, Stéphanie

Law and nanotechnology form a vast subject. The aim here will be to examine them from the societal standpoint of nanoethics, if necessary without due reference to the work that has been undertaken. For while law differs from ethics, as we shall attempt to explain throughout this reflection, it must also be studied in its relationship with social realities.

4. Archives: Mizan Law Review

African Journals Online (AJOL)

5. The Corporate Law Curriculum

Science.gov (United States)

Mofsky, James S.

1976-01-01

On the premise that corporate counsel must be an able diagnostician before he can focus on highly specialized and interrelated issues of business law, the author suggests an approach to corporate law curriculum in which the basic course balances the quality and quantity of material designed to create the needed sensitivity. (JT)

6. Civil Law and Neuroscience

NARCIS (Netherlands)

de Kogel, C.H.; Schrama, W.M.; Smit, M.

2014-01-01

The relationship between the brain and human behaviour is receiving increasing attention in legal practice. Much has already been published about the role of neuroscience in criminal law, but surprisingly little is known about its role in civil law. In this contribution, the relevance of

7. Teaching Information Technology Law

Science.gov (United States)

Taylor, M. J.; Jones, R. P.; Haggerty, J.; Gresty, D.

2009-01-01

In this paper we discuss an approach to the teaching of information technology law to higher education computing students that attempts to prepare them for professional computing practice. As information technology has become ubiquitous its interactions with the law have become more numerous. Information technology practitioners, and in particular…

8. European food law handbook

NARCIS (Netherlands)

Meulen, van der B.M.J.; Velde, van der M.; Szajkowska, A.; Verbruggen, R.

2008-01-01

This handbook analyses and explains the institutional, substantive and procedural elements of EU food law, taking the General Food Law as a focus point. Principles are discussed as well as specific rules addressing food as a product, the processes related to food and communication about food through

9. EU Food Law Handbook

NARCIS (Netherlands)

Meulen, van der B.M.J.

2014-01-01

The twenty-first century has witnessed a fundamental reform of food law in the European Union, to the point where modern EU food law has now come of age. This book presents the most significant elements of these legal developments with contributions from a highly qualified team of academics and

10. Oromia Law Journal

African Journals Online (AJOL)

The Oromia Law Journal covers articles, book reviews, legislative and case comments related to legal, economic, political and social issues arising in relation to Oromia, Ethiopian, and other related International Laws. As such, the journal has two audiences-primary and secondary. The primary ones are legal professionals ...

11. Essential EU Climate Law

NARCIS (Netherlands)

Woerdman, Edwin; Roggenkamp, Martha; Holwerda, Marijn

2015-01-01

This innovative textbook takes a broad approach to EU climate law and presents all available legal instruments to combat climate change, ranging from greenhouse gas emissions trading to the use of renewable energy sources and energy efficiency mechanisms. After providing a definition of climate law,

12. Law-Abiding Games

Institute of Scientific and Technical Information of China (English)

2006-01-01

Beijing has begun work on laws and regulations to guarantee the smooth operation of the 2008 Olympics One of the major tasks for Beijing as host of the 2008 Olympic Games is to establish regulations and laws to govern the preparations for and conduct of the Games. Thus, on April 10 the Olympic Legislation Coordinating

13. | Yilma | Mizan Law Review

African Journals Online (AJOL)

The current information age requires intellectual property laws to catch up with and proactively regulate unfolding technological realities. The dynamic advances in the domain of the Internet have thus necessitated corresponding changes in Ethiopias intellectual property legal regime including copyright laws in relation with ...

14. Law Education Resources.

Science.gov (United States)

Letwin, Alita Zurav

1983-01-01

Course outlines and timelines for a junior high school elective, "Youth and the Law," and a senior high school elective, "Criminal and Civil Law," are provided. A sample brochure about a supplementary television series for the junior high course is also included. (SR)

15. Social Studies: Law Education.

Science.gov (United States)

Curriculum Review, 1979

1979-01-01

Reviews 11 series, texts, supplements, kits, and professional references for law instruction, including civil and criminal law, the Bill of Rights, and controversial legal issues: arson, gun control, capital punishment, and euthanasia. While all grade levels are covered, the emphasis is on secondary-level materials. (SJL)

16. International nuclear law

International Nuclear Information System (INIS)

Mello, M.M. de.

1981-01-01

The peculiar feature of a developing nuclear law is discussed. Opinions from various writers and jurists are presented. It is concluded that it should be considered as international law, whose main sources are the various treaties, conventions and agreements. (A.L.) [pt

17. Introduction to planning law

International Nuclear Information System (INIS)

Ronellenfitsch, M.

1986-01-01

The author surveys the planning law in the Federal Republic of Germany. He deals with general regulations of the administrative procedure and land-use planning procedure and the main special rules of planning law, according to the Atomic Energy Act, the Nuclear Installation Ordinance and the Federal Act on the Protection against Nuisances. (WG) [de

18. Mizan Law Review: Submissions

African Journals Online (AJOL)

Author Guidelines. SUBMISSION GUIDELINES The following submissions are acceptable for publication upon approval by the Editorial Board. Publication of an ... and development of laws; Comments: Case comments that highlight and analyze issues, laws and their interpretation and application in case decisions or fact ...

19. The law and neuroscience.

Science.gov (United States)

Gazzaniga, Michael S

2008-11-06

Some of the implications for law of recent discoveries in neuroscience are considered in a new program established by the MacArthur Foundation. A group of neuroscientists, lawyers, philosophers, and jurists are examining issues in criminal law and, in particular, problems in responsibility and prediction and problems in legal decision making.

20. Language and the Law.

Science.gov (United States)

Gibbons, John

1999-01-01

Discusses the language of law and its general interest to the field of applied linguistics. Specific focus is on legal language, the problems and remedies of legal communication (e.g., language and disadvantage before the law, improving legal communication) the legislation of language (e.g., language rights, language crimes), and forensic…