WorldWideScience

Sample records for nonlinear time-delay systems

  1. Dynamics of Nonlinear Time-Delay Systems

    CERN Document Server

    Lakshmanan, Muthusamy

    2010-01-01

    Synchronization of chaotic systems, a patently nonlinear phenomenon, has emerged as a highly active interdisciplinary research topic at the interface of physics, biology, applied mathematics and engineering sciences. In this connection, time-delay systems described by delay differential equations have developed as particularly suitable tools for modeling specific dynamical systems. Indeed, time-delay is ubiquitous in many physical systems, for example due to finite switching speeds of amplifiers in electronic circuits, finite lengths of vehicles in traffic flows, finite signal propagation times in biological networks and circuits, and quite generally whenever memory effects are relevant. This monograph presents the basics of chaotic time-delay systems and their synchronization with an emphasis on the effects of time-delay feedback which give rise to new collective dynamics. Special attention is devoted to scalar chaotic/hyperchaotic time-delay systems, and some higher order models, occurring in different bran...

  2. Singular perturbation methods for nonlinear dynamic systems with time delays

    International Nuclear Information System (INIS)

    Hu, H.Y.; Wang, Z.H.

    2009-01-01

    This review article surveys the recent advances in the dynamics and control of time-delay systems, with emphasis on the singular perturbation methods, such as the method of multiple scales, the method of averaging, and two newly developed methods, the energy analysis and the pseudo-oscillator analysis. Some examples are given to demonstrate the advantages of the methods. The comparisons with other methods show that these methods lead to easier computations and higher accurate prediction on the local dynamics of time-delay systems near a Hopf bifurcation.

  3. Absolute stability of nonlinear systems with time delays and applications to neural networks

    Directory of Open Access Journals (Sweden)

    Xinzhi Liu

    2001-01-01

    Full Text Available In this paper, absolute stability of nonlinear systems with time delays is investigated. Sufficient conditions on absolute stability are derived by using the comparison principle and differential inequalities. These conditions are simple and easy to check. In addition, exponential stability conditions for some special cases of nonlinear delay systems are discussed. Applications of those results to cellular neural networks are presented.

  4. Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations

    International Nuclear Information System (INIS)

    Udaltsov, Vladimir S.; Goedgebuer, Jean-Pierre; Larger, Laurent; Cuenot, Jean-Baptiste; Levy, Pascal; Rhodes, William T.

    2003-01-01

    We report that signal encoding with high-dimensional chaos produced by delayed feedback systems with a strong nonlinearity can be broken. We describe the procedure and illustrate the method with chaotic waveforms obtained from a strongly nonlinear optical system that we used previously to demonstrate signal encryption/decryption with chaos in wavelength. The method can be extended to any systems ruled by nonlinear time-delayed differential equations

  5. Gain scheduling for non-linear time-delay systems using approximated model

    NARCIS (Netherlands)

    Pham, H.T.; Lim, J.T

    2012-01-01

    The authors investigate a regulation problem of non-linear systems driven by an exogenous signal and time-delay in the input. In order to compensate for the input delay, they propose a reduction transformation containing the past information of the control input. Then, by utilising the Euler

  6. Inverse chaos synchronization in linearly and nonlinearly coupled systems with multiple time-delays

    International Nuclear Information System (INIS)

    Shahverdiev, E.M.; Hashimov, R.H.; Nuriev, R.A.; Hashimova, L.H.; Huseynova, E.M.; Shore, K.A.

    2005-04-01

    We report on inverse chaos synchronization between two unidirectionally linearly and nonlinearly coupled chaotic systems with multiple time-delays and find the existence and stability conditions for different synchronization regimes. We also study the effect of parameter mismatches on synchonization regimes. The method is tested on the famous Ikeda model. Numerical simulations fully support the analytical approach. (author)

  7. Chaotification of vibration isolation floating raft system via nonlinear time-delay feedback control

    International Nuclear Information System (INIS)

    Zhang Jing; Xu Daolin; Zhou Jiaxi; Li Yingli

    2012-01-01

    Highlights: ► A chaotification method based on nonlinear time-delay feedback control is present. ► An analytical function of nonlinear time-delay feedback control is derived. ► A large range of parametric domain for chaotification is obtained. ► The approach allows using small control gain. ► Design of chaotification becomes a standard process without uncertainty. - Abstract: This paper presents a chaotification method based on nonlinear time-delay feedback control for a two-dimensional vibration isolation floating raft system (VIFRS). An analytical function of nonlinear time-delay feedback control is derived. This approach can theoretically provide a systematic design of chaotification for nonlinear VIFRS and completely avoid blind and inefficient numerical search on the basis of trials and errors. Numerical simulations show that with a proper setting of control parameters the method holds the favorable aspects including the capability of chaotifying across a large range of parametric domain, the advantage of using small control and the flexibility of designing control feedback forms. The effects on chaotification performance are discussed in association with the configuration of the control parameters.

  8. Estimation of Nonlinear Functions of State Vector for Linear Systems with Time-Delays and Uncertainties

    Directory of Open Access Journals (Sweden)

    Il Young Song

    2015-01-01

    Full Text Available This paper focuses on estimation of a nonlinear function of state vector (NFS in discrete-time linear systems with time-delays and model uncertainties. The NFS represents a multivariate nonlinear function of state variables, which can indicate useful information of a target system for control. The optimal nonlinear estimator of an NFS (in mean square sense represents a function of the receding horizon estimate and its error covariance. The proposed receding horizon filter represents the standard Kalman filter with time-delays and special initial horizon conditions described by the Lyapunov-like equations. In general case to calculate an optimal estimator of an NFS we propose using the unscented transformation. Important class of polynomial NFS is considered in detail. In the case of polynomial NFS an optimal estimator has a closed-form computational procedure. The subsequent application of the proposed receding horizon filter and nonlinear estimator to a linear stochastic system with time-delays and uncertainties demonstrates their effectiveness.

  9. Adaptive Neural Control for a Class of Outputs Time-Delay Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Ruliang Wang

    2012-01-01

    Full Text Available This paper considers an adaptive neural control for a class of outputs time-delay nonlinear systems with perturbed or no. Based on RBF neural networks, the radius basis function (RBF neural networks is employed to estimate the unknown continuous functions. The proposed control guarantees that all closed-loop signals remain bounded. The simulation results demonstrate the effectiveness of the proposed control scheme.

  10. Forced phase-locked response of a nonlinear system with time delay after Hopf bifurcation

    International Nuclear Information System (INIS)

    Ji, J.C.; Hansen, Colin H.

    2005-01-01

    The trivial equilibrium of a nonlinear autonomous system with time delay may become unstable via a Hopf bifurcation of multiplicity two, as the time delay reaches a critical value. This loss of stability of the equilibrium is associated with two coincident pairs of complex conjugate eigenvalues crossing the imaginary axis. The resultant dynamic behaviour of the corresponding nonlinear non-autonomous system in the neighbourhood of the Hopf bifurcation is investigated based on the reduction of the infinite-dimensional problem to a four-dimensional centre manifold. As a result of the interaction between the Hopf bifurcating periodic solutions and the external periodic excitation, a primary resonance can occur in the forced response of the system when the forcing frequency is close to the Hopf bifurcating periodic frequency. The method of multiple scales is used to obtain four first-order ordinary differential equations that determine the amplitudes and phases of the phase-locked periodic solutions. The first-order approximations of the periodic solutions are found to be in excellent agreement with those obtained by direct numerical integration of the delay-differential equation. It is also found that the steady state solutions of the nonlinear non-autonomous system may lose their stability via either a pitchfork or Hopf bifurcation. It is shown that the primary resonance response may exhibit symmetric and asymmetric phase-locked periodic motions, quasi-periodic motions, chaotic motions, and coexistence of two stable motions

  11. Constructing Hopf bifurcation lines for the stability of nonlinear systems with two time delays

    Science.gov (United States)

    Nguimdo, Romain Modeste

    2018-03-01

    Although the plethora real-life systems modeled by nonlinear systems with two independent time delays, the algebraic expressions for determining the stability of their fixed points remain the Achilles' heel. Typically, the approach for studying the stability of delay systems consists in finding the bifurcation lines separating the stable and unstable parameter regions. This work deals with the parametric construction of algebraic expressions and their use for the determination of the stability boundaries of fixed points in nonlinear systems with two independent time delays. In particular, we concentrate on the cases for which the stability of the fixed points can be ascertained from a characteristic equation corresponding to that of scalar two-delay differential equations, one-component dual-delay feedback, or nonscalar differential equations with two delays for which the characteristic equation for the stability analysis can be reduced to that of a scalar case. Then, we apply our obtained algebraic expressions to identify either the parameter regions of stable microwaves generated by dual-delay optoelectronic oscillators or the regions of amplitude death in identical coupled oscillators.

  12. Causal inference in nonlinear systems: Granger causality versus time-delayed mutual information

    Science.gov (United States)

    Li, Songting; Xiao, Yanyang; Zhou, Douglas; Cai, David

    2018-05-01

    The Granger causality (GC) analysis has been extensively applied to infer causal interactions in dynamical systems arising from economy and finance, physics, bioinformatics, neuroscience, social science, and many other fields. In the presence of potential nonlinearity in these systems, the validity of the GC analysis in general is questionable. To illustrate this, here we first construct minimal nonlinear systems and show that the GC analysis fails to infer causal relations in these systems—it gives rise to all types of incorrect causal directions. In contrast, we show that the time-delayed mutual information (TDMI) analysis is able to successfully identify the direction of interactions underlying these nonlinear systems. We then apply both methods to neuroscience data collected from experiments and demonstrate that the TDMI analysis but not the GC analysis can identify the direction of interactions among neuronal signals. Our work exemplifies inference hazards in the GC analysis in nonlinear systems and suggests that the TDMI analysis can be an appropriate tool in such a case.

  13. Memorized discrete systems and time-delay

    CERN Document Server

    Luo, Albert C J

    2017-01-01

    This book examines discrete dynamical systems with memory—nonlinear systems that exist extensively in biological organisms and financial and economic organizations, and time-delay systems that can be discretized into the memorized, discrete dynamical systems. It book further discusses stability and bifurcations of time-delay dynamical systems that can be investigated through memorized dynamical systems as well as bifurcations of memorized nonlinear dynamical systems, discretization methods of time-delay systems, and periodic motions to chaos in nonlinear time-delay systems. The book helps readers find analytical solutions of MDS, change traditional perturbation analysis in time-delay systems, detect motion complexity and singularity in MDS; and determine stability, bifurcation, and chaos in any time-delay system.

  14. Adaptive fuzzy observer-based stabilization of a class of uncertain time-delayed chaotic systems with actuator nonlinearities

    International Nuclear Information System (INIS)

    Shahnazi, Reza; Haghani, Adel; Jeinsch, Torsten

    2015-01-01

    An observer-based output feedback adaptive fuzzy controller is proposed to stabilize a class of uncertain chaotic systems with unknown time-varying time delays, unknown actuator nonlinearities and unknown external disturbances. The actuator nonlinearity can be backlash-like hysteresis or dead-zone. Based on universal approximation property of fuzzy systems the unknown nonlinear functions are approximated by fuzzy systems, where the consequent parts of fuzzy rules are tuned with adaptive schemes. The proposed method does not need the availability of the states and an observer based output feedback approach is proposed to estimate the states. To have more robustness and at the same time to alleviate chattering an adaptive discontinuous structure is suggested. Semi-global asymptotic stability of the overall system is ensured by proposing a suitable Lyapunov–Krasovskii functional candidate. The approach is applied to stabilize the time-delayed Lorenz chaotic system with uncertain dynamics amid significant disturbances. Analysis of simulations reveals the effectiveness of the proposed method in terms of coping well with the modeling uncertainties, nonlinearities in actuators, unknown time-varying time-delays and unknown external disturbances while maintaining asymptotic convergence

  15. Neural Network Based Finite-Time Stabilization for Discrete-Time Markov Jump Nonlinear Systems with Time Delays

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2013-01-01

    Full Text Available This paper deals with the finite-time stabilization problem for discrete-time Markov jump nonlinear systems with time delays and norm-bounded exogenous disturbance. The nonlinearities in different jump modes are parameterized by neural networks. Subsequently, a linear difference inclusion state space representation for a class of neural networks is established. Based on this, sufficient conditions are derived in terms of linear matrix inequalities to guarantee stochastic finite-time boundedness and stochastic finite-time stabilization of the closed-loop system. A numerical example is illustrated to verify the efficiency of the proposed technique.

  16. Decentralized adaptive neural control for high-order interconnected stochastic nonlinear time-delay systems with unknown system dynamics.

    Science.gov (United States)

    Si, Wenjie; Dong, Xunde; Yang, Feifei

    2018-03-01

    This paper is concerned with the problem of decentralized adaptive backstepping state-feedback control for uncertain high-order large-scale stochastic nonlinear time-delay systems. For the control design of high-order large-scale nonlinear systems, only one adaptive parameter is constructed to overcome the over-parameterization, and neural networks are employed to cope with the difficulties raised by completely unknown system dynamics and stochastic disturbances. And then, the appropriate Lyapunov-Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown unmatched time-delay interactions of high-order large-scale systems for the first time. At last, on the basis of Lyapunov stability theory, the decentralized adaptive neural controller was developed, and it decreases the number of learning parameters. The actual controller can be designed so as to ensure that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error converges in the small neighborhood of zero. The simulation example is used to further show the validity of the design method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Nonlinear analysis of a closed-loop tractor-semitrailer vehicle system with time delay

    Science.gov (United States)

    Liu, Zhaoheng; Hu, Kun; Chung, Kwok-wai

    2016-08-01

    In this paper, a nonlinear analysis is performed on a closed-loop system of articulated heavy vehicles with driver steering control. The nonlinearity arises from the nonlinear cubic tire force model. An integration method is employed to derive an analytical periodic solution of the system in the neighbourhood of the critical speed. The results show that excellent accuracy can be achieved for the calculation of periodic solutions arising from Hopf bifurcation of the vehicle motion. A criterion is obtained for detecting the Bautin bifurcation which separates branches of supercritical and subcritical Hopf bifurcations. The integration method is compared to the incremental harmonic balance method in both supercritical and subcritical scenarios.

  18. Non-fragile robust stabilization and H{sub {infinity}} control for uncertain stochastic nonlinear time-delay systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jinhui [Department of Automatic Control, Beijing Institute of Technology, Beijing 100081 (China)], E-mail: jinhuizhang82@gmail.com; Shi Peng [Faculty of Advanced Technology, University of Glamorgan, Pontypridd CF37 1DL (United Kingdom); ILSCM, School of Science and Engineering, Victoria University, Melbourne, Vic. 8001 (Australia); School of Mathematics and Statistics, University of South Australia, Mawson Lakes, SA 5095 (Australia)], E-mail: pshi@glam.ac.uk; Yang Hongjiu [Department of Automatic Control, Beijing Institute of Technology, Beijing 100081 (China)], E-mail: yanghongjiu@gmail.com

    2009-12-15

    This paper deals with the problem of non-fragile robust stabilization and H{sub {infinity}} control for a class of uncertain stochastic nonlinear time-delay systems. The parametric uncertainties are real time-varying as well as norm bounded. The time-delay factors are unknown and time-varying with known bounds. The aim is to design a memoryless non-fragile state feedback control law such that the closed-loop system is stochastically asymptotically stable in the mean square and the effect of the disturbance input on the controlled output is less than a prescribed level for all admissible parameter uncertainties. New sufficient conditions for the existence of such controllers are presented based on the linear matrix inequalities (LMIs) approach. Numerical example is given to illustrate the effectiveness of the developed techniques.

  19. Global output feedback stabilisation of stochastic high-order feedforward nonlinear systems with time-delay

    Science.gov (United States)

    Zhang, Kemei; Zhao, Cong-Ran; Xie, Xue-Jun

    2015-12-01

    This paper considers the problem of output feedback stabilisation for stochastic high-order feedforward nonlinear systems with time-varying delay. By using the homogeneous domination theory and solving several troublesome obstacles in the design and analysis, an output feedback controller is constructed to drive the closed-loop system globally asymptotically stable in probability.

  20. Stochastic Stability for Time-Delay Markovian Jump Systems with Sector-Bounded Nonlinearities and More General Transition Probabilities

    Directory of Open Access Journals (Sweden)

    Dan Ye

    2013-01-01

    Full Text Available This paper is concerned with delay-dependent stochastic stability for time-delay Markovian jump systems (MJSs with sector-bounded nonlinearities and more general transition probabilities. Different from the previous results where the transition probability matrix is completely known, a more general transition probability matrix is considered which includes completely known elements, boundary known elements, and completely unknown ones. In order to get less conservative criterion, the state and transition probability information is used as much as possible to construct the Lyapunov-Krasovskii functional and deal with stability analysis. The delay-dependent sufficient conditions are derived in terms of linear matrix inequalities to guarantee the stability of systems. Finally, numerical examples are exploited to demonstrate the effectiveness of the proposed method.

  1. Robust control of time-delay chaotic systems

    International Nuclear Information System (INIS)

    Hua Changchun; Guan Xinping

    2003-01-01

    Robust control problem of nonlinear time-delay chaotic systems is investigated. For such uncertain systems, we propose adaptive feedback controller and novel nonlinear feedback controller. They are both independent of the time delay and can render the corresponding closed-loop systems globally uniformly ultimately bounded stable. The simulations on controlling logistic system are made and the results show the controllers are feasible

  2. Observer-Based Controller Design for a Class of Nonlinear Networked Control Systems with Random Time-Delays Modeled by Markov Chains

    Directory of Open Access Journals (Sweden)

    Yanfeng Wang

    2017-01-01

    Full Text Available This paper investigates the observer-based controller design problem for a class of nonlinear networked control systems with random time-delays. The nonlinearity is assumed to satisfy a global Lipschitz condition and two dependent Markov chains are employed to describe the time-delay from sensor to controller (S-C delay and the time-delay from controller to actuator (C-A delay, respectively. The transition probabilities of S-C delay and C-A delay are both assumed to be partly inaccessible. Sufficient conditions on the stochastic stability for the closed-loop systems are obtained by constructing proper Lyapunov functional. The methods of calculating the controller and the observer gain matrix are also given. Two numerical examples are used to illustrate the effectiveness of the proposed method.

  3. Periodic flows to chaos in time-delay systems

    CERN Document Server

    Luo, Albert C J

    2017-01-01

    This book for the first time examines periodic motions to chaos in time-delay systems, which exist extensively in engineering. For a long time, the stability of time-delay systems at equilibrium has been of great interest from the Lyapunov theory-based methods, where one cannot achieve the ideal results. Thus, time-delay discretization in time-delay systems was used for the stability of these systems. In this volume, Dr. Luo presents an accurate method based on the finite Fourier series to determine periodic motions in nonlinear time-delay systems. The stability and bifurcation of periodic motions are determined by the time-delayed system of coefficients in the Fourier series and the method for nonlinear time-delay systems is equivalent to the Laplace transformation method for linear time-delay systems. Facilitates discovery of analytical solutions of nonlinear time-delay systems; Illustrates bifurcation trees of periodic motions to chaos; Helps readers identify motion complexity and singularity; Explains pro...

  4. Effects of linear and nonlinear time-delayed feedback on the noise-enhanced stability phenomenon in a periodically driven bistable system

    International Nuclear Information System (INIS)

    Jia, Zheng-Lin; Mei, Dong-Cheng

    2011-01-01

    We investigate numerically the effects of time delay on the phenomenon of noise-enhanced stability (NES) in a periodically modulated bistable system. Three types of time-delayed feedback, including linear delayed feedback, nonlinear delayed feedback and global delayed feedback, are considered. We find a non-monotonic behaviour of the mean first-passage time (MFPT) as a function of the delay time τ, with a maximum in the case of linear delayed feedback and with a minimum in the case of nonlinear delayed feedback. There are two peculiar values of τ around which the NES phenomenon is enhanced or weakened. For the case of global delayed feedback, the increase of τ always weakens the NES phenomenon. Moreover, we also show that the amplitude A and the frequency Ω of the periodic forcing play an opposite role in the NES phenomenon, i.e. the increase of A weakens the NES effect while the increase of Ω enhances it. These observations demonstrate that the time-delayed feedback can be used as a feasible control scheme for the NES phenomenon

  5. Observer-based adaptive control of chaos in nonlinear discrete-time systems using time-delayed state feedback

    International Nuclear Information System (INIS)

    Goharrizi, Amin Yazdanpanah; Khaki-Sedigh, Ali; Sepehri, Nariman

    2009-01-01

    A new approach to adaptive control of chaos in a class of nonlinear discrete-time-varying systems, using a delayed state feedback scheme, is presented. It is discussed that such systems can show chaotic behavior as their parameters change. A strategy is employed for on-line calculation of the Lyapunov exponents that will be used within an adaptive scheme that decides on the control effort to suppress the chaotic behavior once detected. The scheme is further augmented with a nonlinear observer for estimation of the states that are required by the controller but are hard to measure. Simulation results for chaotic control problem of Jin map are provided to show the effectiveness of the proposed scheme.

  6. Fractional-Order Control of a Nonlinear Time-Delay System: Case Study in Oxygen Regulation in the Heart-Lung Machine

    Directory of Open Access Journals (Sweden)

    S. J. Sadati

    2012-01-01

    Full Text Available A fractional-order controller will be proposed to regulate the inlet oxygen into the heart-lung machine. An analytical approach will be explained to satisfy some requirements together with practical implementation of some restrictions for the first time. Primarily a nonlinear single-input single-output (SISO time-delay model which was obtained previously in the literature is introduced for the oxygen generation process in the heart-lung machine system and we will complete it by adding some new states to control it. Thereafter, the system is linearized using the state feedback linearization approach to find a third-order time-delay dynamics. Consequently classical PID and fractional order controllers are gained to assess the quality of the proposed technique. A set of optimal parameters of those controllers are achieved through the genetic algorithm optimization procedure through minimizing a cost function. Our design method focuses on minimizing some famous performance criterions such as IAE, ISE, and ITSE. In the genetic algorithm, the controller parameters are chosen as a random population. The best relevant values are achieved by reducing the cost function. A time-domain simulation signifies the performance of controller with respect to a traditional optimized PID controller.

  7. An adaptive robust controller for time delay maglev transportation systems

    Science.gov (United States)

    Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza

    2012-12-01

    For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.

  8. Coherence resonance in an excitable system with time delay

    International Nuclear Information System (INIS)

    Sethia, Gautam C.; Kurths, Juergen; Sen, Abhijit

    2007-01-01

    We study the noise activated dynamics of a model excitable system that consists of a subcritical Hopf oscillator with a time delayed nonlinear feedback. The coherence of the noise driven pulses of the system exhibits a novel double peaked structure as a function of the noise amplitude. The two peaks correspond to separate optimal noise levels for excitation of single spikes and multiple spikes (bursts) respectively. The relative magnitudes of these peaks are found to be a sensitive function of time delay. The physical significance of our results and its practical implications in various real life systems are discussed

  9. Global synchronization criteria with channel time-delay for chaotic time-delay system

    International Nuclear Information System (INIS)

    Sun Jitao

    2004-01-01

    Based on the Lyapunov stabilization theory, matrix measure, and linear matrix inequality (LMIs), this paper studies the chaos synchronization of time-delay system using the unidirectional linear error feedback coupling with time-delay. Some generic conditions of chaos synchronization with time-delay in the transmission channel is established. The chaotic Chua's circuit is used for illustration, where the coupling parameters are determined according to the criteria under which the global chaos synchronization of the time-delay coupled systems is achieved

  10. Time-Delay System Identification Using Genetic Algorithm

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Seested, Glen Thane

    2013-01-01

    Due to the unknown dead-time coefficient, the time-delay system identification turns to be a non-convex optimization problem. This paper investigates the identification of a simple time-delay system, named First-Order-Plus-Dead-Time (FOPDT), by using the Genetic Algorithm (GA) technique. The qual......Due to the unknown dead-time coefficient, the time-delay system identification turns to be a non-convex optimization problem. This paper investigates the identification of a simple time-delay system, named First-Order-Plus-Dead-Time (FOPDT), by using the Genetic Algorithm (GA) technique...

  11. Complex systems fractionality, time-delay and synchronization

    CERN Document Server

    Sun, Jian-Qiao

    2012-01-01

    "Complex Systems: Fractionality, Time-delay and Synchronization" covers the most recent developments and advances in the theory and application of complex systems in these areas. Each chapter was written by scientists highly active in the field of complex systems. The book discusses a new treatise on fractional dynamics and control, as well as the new methods for differential delay systems and control. Lastly, a theoretical framework for the complexity and synchronization of complex system is presented. The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering. It can also serve as a reference book for graduate students in physics, applied mathematics and engineering. Dr. Albert C.J. Luo is a Professor at Southern Illinois University Edwardsville, USA. Dr. Jian-Qiao Sun is a Professor at the University of California, Merced, USA.

  12. Generalized Synchronization of Time-Delayed Discrete Systems

    International Nuclear Information System (INIS)

    Jing Jianyi; Min Lequan

    2009-01-01

    This paper establishes two theorems for two time-delayed (chaotic) discrete systems to achieve time-delayed generalized synchronization (TDGS). These two theorems uncover the general forms of two TDGS systems via a prescribed transformation. As examples, we convert the Lorenz three-dimensional chaotic map to an equal time-delayed system as the driving system, and construct the TDGS driven systems according to the Theorems 1 and 2. Numerical simulations demonstrate the effectiveness of the proposed theorems. (interdisciplinary physics and related areas of science and technology)

  13. Dynamics and control of a financial system with time-delayed feedbacks

    International Nuclear Information System (INIS)

    Chen, W.-C.

    2008-01-01

    Complex behaviors in a financial system with time-delayed feedbacks are discussed in this study via numerical modeling. The system shows complex dynamics such as periodic, quasi-periodic, and chaotic behaviors. Both period doubling and inverse period doubling routes were found in this system. This paper also shows that the attractor merging crisis is a fundamental feature of nonlinear financial systems with time-delayed feedbacks. Control of the deterministic chaos in the financial system can be realized using Pyragas feedbacks

  14. Generalized synchronization-based multiparameter estimation in modulated time-delayed systems

    Science.gov (United States)

    Ghosh, Dibakar; Bhattacharyya, Bidyut K.

    2011-09-01

    We propose a nonlinear active observer based generalized synchronization scheme for multiparameter estimation in time-delayed systems with periodic time delay. A sufficient condition for parameter estimation is derived using Krasovskii-Lyapunov theory. The suggested tool proves to be globally and asymptotically stable by means of Krasovskii-Lyapunov method. With this effective method, parameter identification and generalized synchronization of modulated time-delayed systems with all the system parameters unknown, can be achieved simultaneously. We restrict our study for multiple parameter estimation in modulated time-delayed systems with single state variable only. Theoretical proof and numerical simulation demonstrate the effectiveness and feasibility of the proposed technique. The block diagram of electronic circuit for multiple time delay system shows that the method is easily applicable in practical communication problems.

  15. Stability analysis of linear switching systems with time delays

    International Nuclear Information System (INIS)

    Li Ping; Zhong Shouming; Cui Jinzhong

    2009-01-01

    The issue of stability analysis of linear switching system with discrete and distributed time delays is studied in this paper. An appropriate switching rule is applied to guarantee the stability of the whole switching system. Our results use a Riccati-type Lyapunov functional under a condition on the time delay. So, switching systems with mixed delays are developed. A numerical example is given to illustrate the effectiveness of our results.

  16. Time delay systems theory, numerics, applications, and experiments

    CERN Document Server

    Ersal, Tulga; Orosz, Gábor

    2017-01-01

    This volume collects contributions related to selected presentations from the 12th IFAC Workshop on Time Delay Systems, Ann Arbor, June 28-30, 2015. The included papers present novel techniques and new results of delayed dynamical systems. The topical spectrum covers control theory, numerical analysis, engineering and biological applications as well as experiments and case studies. The target audience primarily comprises research experts in the field of time delay systems, but the book may also be beneficial for graduate students alike. .

  17. A note on chaotic synchronization of time-delay secure communication systems

    International Nuclear Information System (INIS)

    Li Demin; Wang Zidong; Zhou Jie; Fang Jianan; Ni Jinjin

    2008-01-01

    In a real world, the signals are often transmitted through a hostile environment, and therefore the secure communication system has attracted considerable research interests. In this paper, the observer-based chaotic synchronization problem is studied for a class of time-delay secure communication systems. The system under consideration is subject to delayed state and nonlinear disturbances. The time-delay is allowed to be time-varying, and the nonlinearities are assumed to satisfy global Lipschitz conditions. The problem addressed is the design of a synchronization scheme such that, for the admissible time-delay as well as nonlinear disturbances, the response system can globally synchronize the driving system. An effective algebraic matrix inequality approach is developed to solve the chaotic synchronization problem. A numerical example is presented to show the effectiveness and efficiency of the proposed secure communication scheme

  18. Controlling chaos in a nonlinear pendulum using an extended time-delayed feedback control method

    International Nuclear Information System (INIS)

    Souza de Paula, Aline; Savi, Marcelo Amorim

    2009-01-01

    Chaos control is employed for the stabilization of unstable periodic orbits (UPOs) embedded in chaotic attractors. The extended time-delayed feedback control uses a continuous feedback loop incorporating information from previous states of the system in order to stabilize unstable orbits. This article deals with the chaos control of a nonlinear pendulum employing the extended time-delayed feedback control method. The control law leads to delay-differential equations (DDEs) that contain derivatives that depend on the solution of previous time instants. A fourth-order Runge-Kutta method with linear interpolation on the delayed variables is employed for numerical simulations of the DDEs and its initial function is estimated by a Taylor series expansion. During the learning stage, the UPOs are identified by the close-return method and control parameters are chosen for each desired UPO by defining situations where the largest Lyapunov exponent becomes negative. Analyses of a nonlinear pendulum are carried out by considering signals that are generated by numerical integration of the mathematical model using experimentally identified parameters. Results show the capability of the control procedure to stabilize UPOs of the dynamical system, highlighting some difficulties to achieve the stabilization of the desired orbit.

  19. Passivity analysis and synthesis for uncertain time-delay systems

    Directory of Open Access Journals (Sweden)

    Magdi S. Mahmoud

    2001-01-01

    Full Text Available In this paper, we investigate the robust passivity analysis and synthesis problems for a class of uncertain time-delay systems. This class of systems arises in the modelling effort of studying water quality constituents in fresh stream. For the analysis problem, we derive a sufficient condition for which the uncertain time-delay system is robustly stable and strictly passive for all admissible uncertainties. The condition is given in terms of a linear matrix inequality. Both the delay-independent and delay-dependent cases are considered. For the synthesis problem, we propose an observer-based design method which guarantees that the closed-loop uncertain time-delay system is stable and strictly passive for all admissible uncertainties. Several examples are worked out to illustrate the developed theory.

  20. Kalman filtering for time-delayed linear systems

    Institute of Scientific and Technical Information of China (English)

    LU Xiao; WANG Wei

    2006-01-01

    This paper is to study the linear minimum variance estimation for discrete- time systems. A simple approach to the problem is presented by developing re-organized innovation analysis for the systems with instantaneous and double time-delayed measurements. It is shown that the derived estimator involves solving three different standard Kalman filtering with the same dimension as the original system. The obtained results form the basis for solving some complicated problems such as H∞ fixed-lag smoothing, preview control, H∞ filtering and control with time delays.

  1. Lag synchronization of chaotic systems with time-delayed linear

    Indian Academy of Sciences (India)

    In this paper, the lag synchronization of chaotic systems with time-delayed linear terms via impulsive control is investigated. Based on the stability theory of impulsive delayed differential equations, some sufficient conditions are obtained guaranteeing the synchronized behaviours between two delayed chaotic systems.

  2. Simple robust technique using time delay estimation for the control and synchronization of Lorenz systems

    International Nuclear Information System (INIS)

    Jin, Maolin; Chang, Pyung Hun

    2009-01-01

    This work presents two simple and robust techniques based on time delay estimation for the respective control and synchronization of chaos systems. First, one of these techniques is applied to the control of a chaotic Lorenz system with both matched and mismatched uncertainties. The nonlinearities in the Lorenz system is cancelled by time delay estimation and desired error dynamics is inserted. Second, the other technique is applied to the synchronization of the Lue system and the Lorenz system with uncertainties. The synchronization input consists of three elements that have transparent and clear meanings. Since time delay estimation enables a very effective and efficient cancellation of disturbances and nonlinearities, the techniques turn out to be simple and robust. Numerical simulation results show fast, accurate and robust performance of the proposed techniques, thereby demonstrating their effectiveness for the control and synchronization of Lorenz systems.

  3. Quadratic theory and feedback controllers for linear time delay systems

    International Nuclear Information System (INIS)

    Lee, E.B.

    1976-01-01

    Recent research on the design of controllers for systems having time delays is discussed. Results for the ''open loop'' and ''closed loop'' designs will be presented. In both cases results for minimizing a quadratic cost functional are given. The usefulness of these results is not known, but similar results for the non-delay case are being routinely applied. (author)

  4. FREQUENCY CATASTROPHE AND CO-EXISTING ATTRACTORS IN A CELL Ca2+ NONLINEAR OSCILLATION MODEL WITH TIME DELAY*

    Institute of Scientific and Technical Information of China (English)

    应阳君; 黄祖洽

    2001-01-01

    Frequency catastrophe is found in a cell Ca2+ nonlinear oscillation model with time delay. The relation of the frequency transition to the time delay is studied by numerical simulations and theoretical analysis. There is a range of parameters in which two kinds of attractors with great frequency differences co-exist in the system. Along with parameter changes, a critical phenomenon occurs and the oscillation frequency changes greatly. This mechanism helps us to deepen the understanding of the complex dynamics of delay systems, and might be of some meaning in cell signalling.

  5. On control of Hopf bifurcation in time-delayed neural network system

    International Nuclear Information System (INIS)

    Zhou Shangbo; Liao Xiaofeng; Yu Juebang; Wong Kwokwo

    2005-01-01

    The control of Hopf bifurcations in neural network systems is studied in this Letter. The asymptotic stability theorem and the relevant corollary for linearized nonlinear dynamical systems are proven. In particular, a novel method for analyzing the local stability of a dynamical system with time-delay is suggested. For the time-delayed system consisting of one or two neurons, a washout filter based control model is proposed and analyzed. By employing the stability theorems derived, we investigate the stability of a control system and state the relevant theorems for choosing the parameters of the stabilized control system

  6. Truncated predictor feedback for time-delay systems

    CERN Document Server

    Zhou, Bin

    2014-01-01

    This book provides a systematic approach to the design of predictor based controllers for (time-varying) linear systems with either (time-varying) input or state delays. Differently from those traditional predictor based controllers, which are infinite-dimensional static feedback laws and may cause difficulties in their practical implementation, this book develops a truncated predictor feedback (TPF) which involves only finite dimensional static state feedback. Features and topics: A novel approach referred to as truncated predictor feedback for the stabilization of (time-varying) time-delay systems in both the continuous-time setting and the discrete-time setting is built systematically Semi-global and global stabilization problems of linear time-delay systems subject to either magnitude saturation or energy constraints are solved in a systematic manner Both stabilization of a single system and consensus of a group of systems (multi-agent systems) are treated in a unified manner by applying the truncated pre...

  7. Complex Time-Delay Systems Theory and Applications

    CERN Document Server

    Atay, Fatihcan M

    2010-01-01

    Time delays in dynamical systems arise as an inevitable consequence of finite speeds of information transmission. Realistic models increasingly demand the inclusion of delays in order to properly understand, analyze, design, and control real-life systems. The goal of this book is to present the state-of-the-art in research on time-delay dynamics in the framework of complex systems and networks. While the mathematical theory of delay equations is quite mature, its application to the particular problems of complex systems and complexity is a newly emerging field, and the present volume aims to play a pioneering role in this perspective. The chapters in this volume are authored by renowned experts and cover both theory and applications in a wide range of fields, with examples extending from neuroscience and biology to laser physics and vehicle traffic. Furthermore, all chapters include sufficient introductory material and extensive bibliographies, making the book a self-contained reference for both students and ...

  8. Global synchronization for time-delay of WINDMI System

    International Nuclear Information System (INIS)

    Wang Junxa; Lu Dianchen; Tian Lixin

    2006-01-01

    Considering a time-delay in the receiver as compared with the transmitter, we addresses a practical issue in chaos synchronization of WINDMI system which is based on the Lyapunov stabilization theory and matrix measure, such that the state of the slave system at time t is asymptotically synchronizing with the master at time t - τ. The Mathematical software is used to prove the effectiveness of this method

  9. Guaranteed cost control of time-delay chaotic systems

    International Nuclear Information System (INIS)

    Park, Ju H.; Kwon, O.M.

    2006-01-01

    This article studies a guaranteed cost control problem for a class of time-delay chaotic systems. Attention is focused on the design of memory state feedback controllers such that the resulting closed-loop system is asymptotically stable and an adequate level of performance is also guaranteed. Using the Lyapunov method and LMI (linear matrix inequality) framework, two criteria for the existence of the controller are derived in terms of LMIs. A numerical example is given to illustrate the proposed method

  10. Low-complexity controllers for time-delay systems

    CERN Document Server

    Özbay, Hitay; Bonnet, Catherine; Mounier, Hugues

    2014-01-01

    This volume in the newly established series Advances in Delays and Dynamics (ADD@S) provides a collection of recent results on the design and analysis of Low Complexity Controllers for Time Delay Systems. A widely used indirect method to obtain low order controllers for time delay systems is to design a controller for the reduced order model of the plant. In the dual indirect approach, an infinite dimensional controller is designed first for the original plant model; then, the controller is approximated by keeping track of the degradation in performance and stability robustness measures. The present volume includes new techniques used at different stages of the indirect approach. It also includes new direct design methods for fixed structure and low order controllers. On the other hand, what is meant by low complexity controller is not necessarily low order controller. For example, Smith predictor or similar type of controllers include a copy of the plant internally in the controller, so they are technically ...

  11. Optimal control for parabolic-hyperbolic system with time delay

    International Nuclear Information System (INIS)

    Kowalewski, A.

    1985-07-01

    In this paper we consider an optimal control problem for a system described by a linear partial differential equation of the parabolic-hyperbolic type with time delay in the state. The right-hand side of this equation and the initial conditions are not continuous functions usually, but they are measurable functions belonging to L 2 or Lsup(infinity) spaces. Therefore, the solution of this equation is given by a certain Sobolev space. The time delay in the state is constant, but it can be also a function of time. The control time T is fixed in our problem. Making use of the Milutin-Dubovicki theorem, necessary and sufficient conditions of optimality with the quadratic performance functional and constrained control are derived for the Dirichlet problem. The flow chart of the algorithm which can be used in the numerical solving of certain optimization problems for distributed systems is also presented. (author)

  12. Stochastic nonlinear time series forecasting using time-delay reservoir computers: performance and universality.

    Science.gov (United States)

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo

    2014-07-01

    Reservoir computing is a recently introduced machine learning paradigm that has already shown excellent performances in the processing of empirical data. We study a particular kind of reservoir computers called time-delay reservoirs that are constructed out of the sampling of the solution of a time-delay differential equation and show their good performance in the forecasting of the conditional covariances associated to multivariate discrete-time nonlinear stochastic processes of VEC-GARCH type as well as in the prediction of factual daily market realized volatilities computed with intraday quotes, using as training input daily log-return series of moderate size. We tackle some problems associated to the lack of task-universality for individually operating reservoirs and propose a solution based on the use of parallel arrays of time-delay reservoirs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Stochastic resonance in a bistable system subject to multi-time-delayed feedback and aperiodic signal

    International Nuclear Information System (INIS)

    Li Jianlong; Zeng Lingzao

    2010-01-01

    We discuss in detail the effects of the multi-time-delayed feedback driven by an aperiodic signal on the output of a stochastic resonance (SR) system. The effective potential function and dynamical probability density function (PDF) are derived. To measure the performance of the SR system in the presence of a binary random signal, the bit error rate (BER) defined by the dynamical PDF is employed, as is commonly used in digital communications. We find that the delay time, strength of the feedback, and number of time-delayed terms can change the effective potential function and the effective amplitude of the signal, and then affect the BER of the SR system. The numerical simulations strongly support the theoretical results. The goal of this investigation is to explore the effects of the multi-time-delayed feedback on SR and give a guidance to nonlinear systems in the application of information processing.

  14. Instability in time-delayed switched systems induced by fast and random switching

    Science.gov (United States)

    Guo, Yao; Lin, Wei; Chen, Yuming; Wu, Jianhong

    2017-07-01

    In this paper, we consider a switched system comprising finitely or infinitely many subsystems described by linear time-delayed differential equations and a rule that orchestrates the system switching randomly among these subsystems, where the switching times are also randomly chosen. We first construct a counterintuitive example where even though all the time-delayed subsystems are exponentially stable, the behaviors of the randomly switched system change from stable dynamics to unstable dynamics with a decrease of the dwell time. Then by using the theories of stochastic processes and delay differential equations, we present a general result on when this fast and random switching induced instability should occur and we extend this to the case of nonlinear time-delayed switched systems as well.

  15. Application of Time-Delay Absorber to Suppress Vibration of a Dynamical System to Tuned Excitation.

    Science.gov (United States)

    El-Ganaini, W A A; El-Gohary, H A

    2014-08-01

    In this work, we present a comprehensive investigation of the time delay absorber effects on the control of a dynamical system represented by a cantilever beam subjected to tuned excitation forces. Cantilever beam is one of the most widely used system in too many engineering applications, such as mechanical and civil engineering. The main aim of this work is to control the vibration of the beam at simultaneous internal and combined resonance condition, as it is the worst resonance case. Control is conducted via time delay absorber to suppress chaotic vibrations. Time delays often appear in many control systems in the state, in the control input, or in the measurements. Time delay commonly exists in various engineering, biological, and economical systems because of the finite speed of the information processing. It is a source of performance degradation and instability. Multiple time scale perturbation method is applied to obtain a first order approximation for the nonlinear differential equations describing the system behavior. The different resonance cases are reported and studied numerically. The stability of the steady-state solution at the selected worst resonance case is investigated applying Runge-Kutta fourth order method and frequency response equations via Matlab 7.0 and Maple11. Time delay absorber is effective, but within a specified range of time delay. It is the critical factor in selecting such absorber. Time delay absorber is better than the ordinary one as from the effectiveness point of view. The effects of the different absorber parameters on the system behavior and stability are studied numerically. A comparison with the available published work showed a close agreement with some previously published work.

  16. Time Delay Systems Methods, Applications and New Trends

    CERN Document Server

    Vyhlídal, Tomáš; Niculescu, Silviu-Iulian; Pepe, Pierdomenico

    2012-01-01

    This volume is concerned with the control and dynamics of time delay systems; a research field with at least six-decade long history that has been very active especially in the past two decades. In parallel to the new challenges emerging from engineering, physics, mathematics, and economics, the volume covers several new directions including topology induced stability, large-scale interconnected systems, roles of networks in stability, and new trends in predictor-based control and consensus dynamics. The associated applications/problems are described by highly complex models, and require solving inverse problems as well as the development of new theories, mathematical tools, numerically-tractable algorithms for real-time control. The volume, which is targeted to present these developments in this rapidly evolving field, captures a careful selection of the most recent papers contributed by experts and collected under five parts: (i) Methodology: From Retarded to Neutral Continuous Delay Models, (ii) Systems, S...

  17. Fine Output Voltage Control Method considering Time-Delay of Digital Inverter System for X-ray Computed Tomography

    Science.gov (United States)

    Shibata, Junji; Kaneko, Kazuhide; Ohishi, Kiyoshi; Ando, Itaru; Ogawa, Mina; Takano, Hiroshi

    This paper proposes a new output voltage control for an inverter system, which has time-delay and nonlinear load. In the next generation X-ray computed tomography of a medical device (X-ray CT) that uses the contactless power transfer method, the feedback signal often contains time-delay due to AD/DA conversion and error detection/correction time. When the PID controller of the inverter system is received the adverse effects of the time-delay, the controller often has an overshoot and a oscillated response. In order to overcome this problem, this paper proposes a compensation method based on the Smith predictor for an inverter system having a time-delay and the nonlinear loads which are the diode bridge rectifier and X-ray tube. The proposed compensation method consists of the hybrid Smith predictor system based on an equivalent analog circuit and DSP. The experimental results confirm the validity of the proposed system.

  18. Impulsive control of time-delay systems using delayed impulse and its application to impulsive master-slave synchronization

    International Nuclear Information System (INIS)

    Sun Jitao; Han Qinglong; Jiang Xiefu

    2008-01-01

    This Letter is concerned with impulsive control of a class of nonlinear time-delay systems. Some uniform stability criteria for the closed-loop time-delay system under delayed impulsive control are derived by using piecewise Lyapunov functions. Then the criteria are applied to impulsive master-slave synchronization of some secure communication systems with transmission delays and sample delays under delayed impulsive control. Two numerical examples are given to illustrate the effectiveness of the derived results

  19. Adaptive modified function projective synchronization of multiple time-delayed chaotic Rossler system

    International Nuclear Information System (INIS)

    Sudheer, K. Sebastian; Sabir, M.

    2011-01-01

    In this Letter we consider modified function projective synchronization of unidirectionally coupled multiple time-delayed Rossler chaotic systems using adaptive controls. Recently, delay differential equations have attracted much attention in the field of nonlinear dynamics. The high complexity of the multiple time-delayed systems can provide a new architecture for enhancing message security in chaos based encryption systems. Adaptive control can be used for synchronization when the parameters of the system are unknown. Based on Lyapunov stability theory, the adaptive control law and the parameter update law are derived to make the state of two chaotic systems are function projective synchronized. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.

  20. Steady states and outbreaks of two-phase nonlinear age-structured model of population dynamics with discrete time delay.

    Science.gov (United States)

    Akimenko, Vitalii; Anguelov, Roumen

    2017-12-01

    In this paper we study the nonlinear age-structured model of a polycyclic two-phase population dynamics including delayed effect of population density growth on the mortality. Both phases are modelled as a system of initial boundary values problem for semi-linear transport equation with delay and initial problem for nonlinear delay ODE. The obtained system is studied both theoretically and numerically. Three different regimes of population dynamics for asymptotically stable states of autonomous systems are obtained in numerical experiments for the different initial values of population density. The quasi-periodical travelling wave solutions are studied numerically for the autonomous system with the different values of time delays and for the system with oscillating death rate and birth modulus. In both cases it is observed three types of travelling wave solutions: harmonic oscillations, pulse sequence and single pulse.

  1. A simple time-delayed method to control chaotic systems

    International Nuclear Information System (INIS)

    Chen Maoyin; Zhou Donghua; Shang Yun

    2004-01-01

    Based on the adaptive iterative learning strategy, a simple time-delayed controller is proposed to stabilize unstable periodic orbits (UPOs) embedded in chaotic attractors. This controller includes two parts: one is a linear feedback part; the other is an adaptive iterative learning estimation part. Theoretical analysis and numerical simulation show the effectiveness of this controller

  2. On Tuning PI Controllers for Integrating Plus Time Delay Systems

    Directory of Open Access Journals (Sweden)

    David Di Ruscio

    2010-10-01

    Full Text Available Some analytical results concerning PI controller tuning based on integrator plus time delay models are worked out and presented. A method for obtaining PI controller parameters, Kp=alpha/(k*tau, and, Ti=beta*tau, which ensures a given prescribed maximum time delay error, dtau_max, to time delay, tau, ratio parameter delta=dau_max/tau, is presented. The corner stone in this method, is a method product parameter, c=alpha*beta. Analytical relations between the PI controller parameters, Ti, and, Kp, and the time delay error parameter, delta, is presented, and we propose the setting, beta=c/a*(delta+1, and, alpha=a/(delta+1, which gives, Ti=c/a*(delta+1*tau, and Kp=a/((delta+1*k*tau, where the parameter, a, is constant in the method product parameter, c=alpha*beta. It also turns out that the integral time, Ti, is linear in, delta, and the proportional gain, Kp, inversely proportional to, delta+1. For the original Ziegler Nichols (ZN method this parameter is approximately, c=2.38, and the presented method may e.g., be used to obtain new modified ZN parameters with increased robustness margins, also documented in the paper.

  3. Steady State Analysis of Stochastic Systems with Multiple Time Delays

    Science.gov (United States)

    Xu, W.; Sun, C. Y.; Zhang, H. Q.

    In this paper, attention is focused on the steady state analysis of a class of nonlinear dynamic systems with multi-delayed feedbacks driven by multiplicative correlated Gaussian white noises. The Fokker-Planck equations for delayed variables are at first derived by Novikov's theorem. Then, under small delay assumption, the approximate stationary solutions are obtained by the probability density approach. As a special case, the effects of multidelay feedbacks and the correlated additive and multiplicative Gaussian white noises on the response of a bistable system are considered. It is shown that the obtained analytical results are in good agreement with experimental results in Monte Carlo simulations.

  4. Transition among synchronous schemes in coupled nonidentical multiple time delay systems

    International Nuclear Information System (INIS)

    Thang Manh Hoang

    2009-01-01

    We present the transition among possible synchronous schemes in coupled nonidentical multiple time delay systems, i.e., lag, projective-lag, complete, anticipating and projective-anticipating synchronization. The number of nonlinear transforms in the master's equation can be different from that in slave's, and nonlinear transforms can be in various forms. The driving signal is the sum of nonlinearly transformed components of delayed state variable. Moreover, the equation representing for driving signal is constructed exactly so that the difference between the master's and slave's structures is complemented. The sufficient condition for synchronization is considered by the Krasovskii-Lyapunov theory. The specific examples will demonstrate and verify the effectiveness of the proposed models.

  5. A novel stabilization condition for T-S polynomial fuzzy system with time-delay:A sum-of-squares approach

    OpenAIRE

    Tsai, Shun Hung; Chen, Yu-An; Chen, Yu-Wen; Lo, Ji-Chang; Lam, Hak-Keung

    2017-01-01

    A novel stabilization problem for T-S polynomial fuzzy system with time-delay is investigated in this paper. Firstly, a polynomial fuzzy controller for T-S polynomial fuzzy system with time-delay is proposed. In addition, based on polynomial Lyapunov-Krasovskii function and the developed polynomial slack variable matrices, a novel stabilization condition for T-S polynomial fuzzy system with time-delay is presented in terms of sum-of-square (SOS) form. Lastly, nonlinear system with time-delay ...

  6. Synchronization of Different Fractional Order Time-Delay Chaotic Systems Using Active Control

    Directory of Open Access Journals (Sweden)

    Jianeng Tang

    2014-01-01

    Full Text Available Chaos synchronization of different fractional order time-delay chaotic systems is considered. Based on the Laplace transform theory, the conditions for achieving synchronization of different fractional order time-delay chaotic systems are analyzed by use of active control technique. Then numerical simulations are provided to verify the effectiveness and feasibility of the developed method. At last, effects of the fraction order and the time delay on synchronization are further researched.

  7. Predictor-based stabilization for chained form systems with input time delay

    Directory of Open Access Journals (Sweden)

    Mnif Faïçal

    2016-12-01

    Full Text Available This note addresses the stabilization problem of nonlinear chained-form systems with input time delay. We first employ the so-called σ-process transformation that renders the feedback system under a linear form. We introduce a particular transformation to convert the original system into a delay-free system. Finally, we apply a state feedback control, which guarantees a quasi-exponential stabilization to all the system states, which in turn converge exponentially to zero. Then we employ the so-called -type control to achieve a quasi-exponential stabilization of the subsequent system. A simulation example illustrated on the model of a wheeled mobile robot is provided to demonstrate the effectiveness of the proposed approach.

  8. Noise-induced coherence in bistable systems with multiple time delays

    International Nuclear Information System (INIS)

    Jiang Yu; Dong, Shi-Hai; Lozada-Cassou, M.

    2004-01-01

    We study the correlation properties of noise-driven bistable systems with multiple time-delay feedbacks. For small noisy perturbation and feedback magnitude, we derive the autocorrelation function and the power spectrum based on the two-state model with transition rates depending on the earlier states of the system. A comparison between the single and double time delays reveals that the auto correlation functions exhibit exponential decay with small undulation for the double time delays, in contrast with the remarkable oscillatory behavior at small time lags for the single time delay

  9. A novel control framework for nonlinear time-delayed dual-master/single-slave teleoperation.

    Science.gov (United States)

    Ghorbanian, A; Rezaei, S M; Khoogar, A R; Zareinejad, M; Baghestan, K

    2013-03-01

    A novel trilateral control architecture for the Dual-master/Single-slave teleoperation is proposed in this paper. This framework has been used in surgical training and rehabilitation applications. In this structure, the slave motion has been controlled by weighted summation of signals transmitted by the operator referring to task control authority through the dominance factors. The nonlinear dynamics for telemanipulators are considered which were considered as disregarded issues in previous studies of this field. Bounded variable time-delay has been considered which affects the transmitted signals in the communication channels. Two types of controllers have been offered and an appropriate stability analysis for each controller has been demonstrated. The first controller includes Proportional with dissipative gains (P+d). The second one contains Proportional and Derivative with dissipative gains (PD+d). In both cases, the stability of the trilateral control framework is preserved by choosing appropriate controller's gains. It is shown that these controllers attempt to coordinate the positions of telemanipulators in the free motion condition. The stability of the Dual-master/Single-slave teleoperation has been proved by an appropriate Lyapunov like function and the stability conditions have been studied. In addition the proposed PD+d control architecture is modified for trilateral teleoperation with internet communication between telemanipulators that caused such communication complications as packet loss, data duplication and swapping. A number of experiments have been conducted with various levels of dominance factor to validate the effectiveness of the new control architecture. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Robust Fault Tolerant Control for a Class of Time-Delay Systems with Multiple Disturbances

    Directory of Open Access Journals (Sweden)

    Songyin Cao

    2013-01-01

    Full Text Available A robust fault tolerant control (FTC approach is addressed for a class of nonlinear systems with time delay, actuator faults, and multiple disturbances. The first part of the multiple disturbances is supposed to be an uncertain modeled disturbance and the second one represents a norm-bounded variable. First, a composite observer is designed to estimate the uncertain modeled disturbance and actuator fault simultaneously. Then, an FTC strategy consisting of disturbance observer based control (DOBC, fault accommodation, and a mixed H2/H∞ controller is constructed to reconfigure the considered systems with disturbance rejection and attenuation performance. Finally, simulations for a flight control system are given to show the efficiency of the proposed approach.

  11. Estimation of time delay and wavelength shift for highly nonlinear multilayer waveguide by using time transformation approach

    Science.gov (United States)

    Chatterjee, Roshmi; Basu, Mousumi

    2018-02-01

    The well known time transformation method is used here to derive the temporal and spectral electric field distribution at the output end of a multilayer waveguide which consists of different layers of Kerr nonlinear media. A highly nonlinear CS 3-68 glass is considered as one of the materials of the waveguide which mainly comprises of different chalcogenide glass layers. The results indicate that there is sufficient time delay as well as frequency shift between the input and output pulses which is associated with the phenomenon of adiabatic wavelength conversion (AWC). Depending on different arrangements of materials, the time delay and frequency shift can be changed. As a result an input pulse in visible green region can be blue-shifted or red-shifted according to the choices of refractive index of the non-dispersive Kerr nonlinear media. The results show that under certain conditions the input pulse is broadened or compressed for different combinations of materials. This process of AWC also includes the variation of temporal and spectral phase, time delay, temporal peak power etc. For different input pulse shapes the change in time delay is also presented. The study may be useful to find applications of AWC in optical resonators or optical signal processing to be applicable to different photonic devices.

  12. Operation Modes and Control Schemes for Internet-Based Teleoperation System with Time Delay

    Institute of Scientific and Technical Information of China (English)

    曾庆军; 宋爱国

    2003-01-01

    Teleoperation system plays an important role in executing task under hazard environment. As the computer networks such as the Internet are being used as the communication channel of teleoperation system, varying time delay causes the overall system unstable and reduces the performance of transparency. This paper proposed twelve operation modes with different control schemes for teleoperation on the Internet with time delay. And an optimal operation mode with control scheme was specified for teleoperation with time delay, based on the tradeoff between passivity and transparency properties. It experimentally confirmed the validity of the proposed optimal mode and control scheme by using a simple one DOF master-slave manipulator system.

  13. Partial Synchronization Manifolds for Linearly Time-Delay Coupled Systems

    OpenAIRE

    Steur, Erik; van Leeuwen, Cees; Michiels, Wim

    2014-01-01

    Sometimes a network of dynamical systems shows a form of incomplete synchronization characterized by synchronization of some but not all of its systems. This type of incomplete synchronization is called partial synchronization. Partial synchronization is associated with the existence of partial synchronization manifolds, which are linear invariant subspaces of C, the state space of the network of systems. We focus on partial synchronization manifolds in networks of system...

  14. Analysis of Time Delay Simulation in Networked Control System

    OpenAIRE

    Nyan Phyo Aung; Zaw Min Naing; Hla Myo Tun

    2016-01-01

    The paper presents a PD controller for the Networked Control Systems (NCS) with delay. The major challenges in this networked control system (NCS) are the delay of the data transmission throughout the communication network. The comparative performance analysis is carried out for different delays network medium. In this paper, simulation is carried out on Ac servo motor control system using CAN Bus as communication network medium. The True Time toolbox of MATLAB is used for simulation to analy...

  15. Stability of time-delay systems via Lyapunov functions

    Directory of Open Access Journals (Sweden)

    Carlos F. Alastruey

    2002-01-01

    Full Text Available In this paper, a Lyapunov function candidate is introduced for multivariable systems with inner delays, without assuming a priori stability for the nondelayed subsystem. By using this Lyapunov function, a controller is deduced. Such a controller utilizes an input–output description of the original system, a circumstance that facilitates practical applications of the proposed approach.

  16. Synchronization of time-delayed systems with chaotic modulation and cryptography

    International Nuclear Information System (INIS)

    Banerjee, Santo

    2009-01-01

    This paper presents a method of synchronization between two time-delayed systems where the delay times are modulated by a common chaotic signal of the driving system. The technique is well applied to two identical autonomous continuous-time-delayed systems with numerical simulations. Finally, a new method of encryption is generated for digital messages. This method is illustrated with two different encryption processes for text as well as picture messages.

  17. Time-Delay System Identification Using Genetic Algorithm

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Seested, Glen Thane

    2013-01-01

    problem through an identification approach using the real coded Genetic Algorithm (GA). The desired FOPDT/SOPDT model is directly identified based on the measured system's input and output data. In order to evaluate the quality and performance of this GA-based approach, the proposed method is compared...

  18. Smart Telerobotic Surveillance System via Internet with Reduced Time Delay

    Directory of Open Access Journals (Sweden)

    Ashesh Vasalya

    2012-09-01

    Full Text Available This work provides an imperial solution to the problems faced by man while enduring hazardous tasks like handling and disposal of nuclear wastes, monitoring nuclear power plants, mining operations etc .which have to be aborted if expertise group running it is unavailable or on a run. This paper presents a distributed platform that allows the special group of user to control a gadget (possibly a robot through internet as a medium. An advanced version of this technology is capable of transmitting graphic images and other surrounding information as required, via internet back to the user to facilitate the effective monitoring of the existent situation using appropriate software tools. The project uses the SRV-1 Mobile Surveillance Robot which is a fully integrated system standard designed and other related technology for surveillance purposes. It is driven via web browser using JAVA based control applications with live video feeds. Specialised user group will be given separate account from where they can control and monitor the system even when they are not present at the site. End user will be connected to the gadget (robot through a central server which acts as a single channel for both sending and receiving information. But the subject of remote control over the internet has some possible anomalies namely network freezing, delay between host and recipient, congested network and many others. This system enables asynchronous object passing so that network bandwidth is used effectively and such parameters as the network condition and server states have less effect on the system. To resolve this issue, a fuzzy logic controller is used to control the robot’s motion along a predefined path with the necessary manipulation of the normal course. The robot was first modelled in Matlab Simulink and the fuzzy logic rules were optimized for the best results possible. In accordance with the fuzzy rules developed the fuzzy interference system generates the

  19. Identification of fractional-order systems with time delays using block pulse functions

    Science.gov (United States)

    Tang, Yinggan; Li, Ning; Liu, Minmin; Lu, Yao; Wang, Weiwei

    2017-07-01

    In this paper, a novel method based on block pulse functions is proposed to identify continuous-time fractional-order systems with time delays. First, the operational matrices of block pulse functions for fractional integral operator and time delay operator are derived. Then, these operational matrices are applied to convert the continuous-time fractional-order systems with time delays to an algebraic equation. Finally, the system's parameters along with the differentiation orders and the time delays are all simultaneously estimated through minimizing a quadric error function. The proposed method reduces the computation complexity of the identification process, and also it does not require the system's differentiation orders to be commensurate. The effectiveness of the proposed method are demonstrated by several numerical examples.

  20. Lyapunov matrices approach to the parametric optimization of time-delay systems

    Directory of Open Access Journals (Sweden)

    Duda Józef

    2015-09-01

    Full Text Available In the paper a Lyapunov matrices approach to the parametric optimization problem of time-delay systems with a P-controller is presented. The value of integral quadratic performance index of quality is equal to the value of Lyapunov functional for the initial function of the time-delay system. The Lyapunov functional is determined by means of the Lyapunov matrix

  1. Hopf bifurcation of a ratio-dependent predator-prey system with time delay

    International Nuclear Information System (INIS)

    Celik, Canan

    2009-01-01

    In this paper, we consider a ratio dependent predator-prey system with time delay where the dynamics is logistic with the carrying capacity proportional to prey population. By considering the time delay as bifurcation parameter, we analyze the stability and the Hopf bifurcation of the system based on the normal form approach and the center manifold theory. Finally, we illustrate our theoretical results by numerical simulations.

  2. Consensus Analysis of Second-Order Multiagent Systems with General Topology and Time Delay

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2013-01-01

    Full Text Available This paper addresses the consensus of second-order multiagent systems with general topology and time delay based on the nearest neighbor rule. By using the Laplace transform technique, it is proved that the second-order multi-agent system in the presence of time-delay can reach consensus if the network topology contains a globally reachable node and time delay is bounded. The bound of time-delay only depends on eigenvalues of the Laplacian matrix of the system. The main contribution of this paper is that the accurate state of the consensus center and the upper bound of the communication delay to make the agents reach consensus are given. Some numerical simulations are given to illustrate the theoretical results.

  3. Online Identification of Multivariable Discrete Time Delay Systems Using a Recursive Least Square Algorithm

    Directory of Open Access Journals (Sweden)

    Saïda Bedoui

    2013-01-01

    Full Text Available This paper addresses the problem of simultaneous identification of linear discrete time delay multivariable systems. This problem involves both the estimation of the time delays and the dynamic parameters matrices. In fact, we suggest a new formulation of this problem allowing defining the time delay and the dynamic parameters in the same estimated vector and building the corresponding observation vector. Then, we use this formulation to propose a new method to identify the time delays and the parameters of these systems using the least square approach. Convergence conditions and statistics properties of the proposed method are also developed. Simulation results are presented to illustrate the performance of the proposed method. An application of the developed approach to compact disc player arm is also suggested in order to validate simulation results.

  4. On a new time-delayed feedback control of chaotic systems

    International Nuclear Information System (INIS)

    Tian Lixin; Xu Jun; Sun Mei; Li Xiuming

    2009-01-01

    In this paper, using the idea of the successive dislocation feedback method, a new time-delayed feedback control method called the successive dislocation time-delayed feedback control (SDTDFC) is designed. Firstly, the idea of SDTDFC is introduced. Then some analytic sufficient conditions of the chaos control from the SDTDFC approach are derived for stabilization. Finally, some established results are further clarified via a case study of the Lorenz system with the numerical simulations.

  5. Internet Teleoperation of a Robot with Streaming Buffer System under Varying Time Delays

    Science.gov (United States)

    Park, Jahng-Hyon; Shin, Wanjae

    It is known that existence of irregular transmission time delay is a major bottleneck for application of advanced robot control schemes to internet telerobotic systems. In the internet teleoperation system, the irregular transmission time delay causes a critical problem, which includes instability and inaccuracy. This paper suggests a practical internet teleoperation system with streaming buffer system, which consists of a buffer, a buffer manager, and a control timer. The proposed system converts the irregular transmission time delay to a constant. So, the system effectively transmits the control input to a remote site to operate a robot stably and accurately. This feature enables short control input intervals. That means the entire system has a large control bandwidth. The validity of the proposed method is demonstrated by experiments of teleoperation from USC (University of Southern California in U. S.A.) to HYU (Hanyang Univ. in Korea) through the Internet. The proposed method is also demonstrated by experiments of teleoperation through the wireless internet.

  6. A Method to Determine Oscillation Emergence Bifurcation in Time-Delayed LTI System with Single Lag

    Directory of Open Access Journals (Sweden)

    Yu Xiaodan

    2014-01-01

    Full Text Available One type of bifurcation named oscillation emergence bifurcation (OEB found in time-delayed linear time invariant (abbr. LTI systems is fully studied. The definition of OEB is initially put forward according to the eigenvalue variation. It is revealed that a real eigenvalue splits into a pair of conjugated complex eigenvalues when an OEB occurs, which means the number of the system eigenvalues will increase by one and a new oscillation mode will emerge. Next, a method to determine OEB bifurcation in the time-delayed LTI system with single lag is developed based on Lambert W function. A one-dimensional (1-dim time-delayed system is firstly employed to explain the mechanism of OEB bifurcation. Then, methods to determine the OEB bifurcation in 1-dim, 2-dim, and high-dimension time-delayed LTI systems are derived. Finally, simulation results validate the correctness and effectiveness of the presented method. Since OEB bifurcation occurs with a new oscillation mode emerging, work of this paper is useful to explore the complex phenomena and the stability of time-delayed dynamic systems.

  7. Dual-anticipating, dual and dual-lag synchronization in modulated time-delayed systems

    International Nuclear Information System (INIS)

    Ghosh, Dibakar; Chowdhury, A. Roy

    2010-01-01

    In this Letter, dual synchronization in modulated time delay system using delay feedback controller is proposed. Based on Lyapunov stability theory, we suggest a general method to achieve the dual-anticipating, dual, dual-lag synchronization of time-delayed chaotic systems and we find both its existing and sufficient stability conditions. Numerically it is shown that the dual synchronization is also possible when driving system contain two completely different systems. Effect of parameter mismatch on dual synchronization is also discussed. As an example, numerical simulations for the Mackey-Glass and Ikeda systems are conducted, which is in good agreement with the theoretical analysis.

  8. Robust H∞ Control of Neutral System with Time-Delay for Dynamic Positioning Ships

    Directory of Open Access Journals (Sweden)

    Dawei Zhao

    2015-01-01

    Full Text Available Due to the input time-delay existing in most thrust systems of the ships, the robust H∞ controller is designed for the ship dynamic positioning (DP system with time-delay. The input delay system is turned to a neutral time-delay system by a state-derivative control law. The less conservative result is derived for the neutral system with state-derivative feedback by the delay-decomposition approach and linear matrix inequality (LMI. Finally, the numerical simulations demonstrate the asymptotic stability and robustness of the controller and verify that the designed DP controller is effective in the varying environment disturbances of wind, waves, and ocean currents.

  9. Effects of computing time delay on real-time control systems

    Science.gov (United States)

    Shin, Kang G.; Cui, Xianzhong

    1988-01-01

    The reliability of a real-time digital control system depends not only on the reliability of the hardware and software used, but also on the speed in executing control algorithms. The latter is due to the negative effects of computing time delay on control system performance. For a given sampling interval, the effects of computing time delay are classified into the delay problem and the loss problem. Analysis of these two problems is presented as a means of evaluating real-time control systems. As an example, both the self-tuning predicted (STP) control and Proportional-Integral-Derivative (PID) control are applied to the problem of tracking robot trajectories, and their respective effects of computing time delay on control performance are comparatively evaluated. For this example, the STP (PID) controller is shown to outperform the PID (STP) controller in coping with the delay (loss) problem.

  10. A unified approach for impulsive lag synchronization of chaotic systems with time delay

    International Nuclear Information System (INIS)

    Li Chuandong; Liao Xiaofeng; Zhang Rong

    2005-01-01

    In this paper, we propose a unified approach for impulsive lag-synchronization of a class of chaotic systems with time delay by employing the stability theory of impulsive delayed differential equations. Three well-known delayed chaotic systems are presented to illustrate our results. Also, the estimates of the stable regions for these systems are given, respectively

  11. Stability and Hopf Bifurcation of a Reaction-Diffusion Neutral Neuron System with Time Delay

    Science.gov (United States)

    Dong, Tao; Xia, Linmao

    2017-12-01

    In this paper, a type of reaction-diffusion neutral neuron system with time delay under homogeneous Neumann boundary conditions is considered. By constructing a basis of phase space based on the eigenvectors of the corresponding Laplace operator, the characteristic equation of this system is obtained. Then, by selecting time delay and self-feedback strength as the bifurcating parameters respectively, the dynamic behaviors including local stability and Hopf bifurcation near the zero equilibrium point are investigated when the time delay and self-feedback strength vary. Furthermore, the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are obtained by using the normal form and the center manifold theorem for the corresponding partial differential equation. Finally, two simulation examples are given to verify the theory.

  12. Incorporating time-delays in S-System model for reverse engineering genetic networks.

    Science.gov (United States)

    Chowdhury, Ahsan Raja; Chetty, Madhu; Vinh, Nguyen Xuan

    2013-06-18

    In any gene regulatory network (GRN), the complex interactions occurring amongst transcription factors and target genes can be either instantaneous or time-delayed. However, many existing modeling approaches currently applied for inferring GRNs are unable to represent both these interactions simultaneously. As a result, all these approaches cannot detect important interactions of the other type. S-System model, a differential equation based approach which has been increasingly applied for modeling GRNs, also suffers from this limitation. In fact, all S-System based existing modeling approaches have been designed to capture only instantaneous interactions, and are unable to infer time-delayed interactions. In this paper, we propose a novel Time-Delayed S-System (TDSS) model which uses a set of delay differential equations to represent the system dynamics. The ability to incorporate time-delay parameters in the proposed S-System model enables simultaneous modeling of both instantaneous and time-delayed interactions. Furthermore, the delay parameters are not limited to just positive integer values (corresponding to time stamps in the data), but can also take fractional values. Moreover, we also propose a new criterion for model evaluation exploiting the sparse and scale-free nature of GRNs to effectively narrow down the search space, which not only reduces the computation time significantly but also improves model accuracy. The evaluation criterion systematically adapts the max-min in-degrees and also systematically balances the effect of network accuracy and complexity during optimization. The four well-known performance measures applied to the experimental studies on synthetic networks with various time-delayed regulations clearly demonstrate that the proposed method can capture both instantaneous and delayed interactions correctly with high precision. The experiments carried out on two well-known real-life networks, namely IRMA and SOS DNA repair network in

  13. Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach

    International Nuclear Information System (INIS)

    Feng Cun-Fang; Wang Ying-Hai

    2011-01-01

    Projective synchronization in modulated time-delayed systems is studied by applying an active control method. Based on the Lyapunov asymptotical stability theorem, the controller and sufficient condition for projective synchronization are calculated analytically. We give a general method with which we can achieve projective synchronization in modulated time-delayed chaotic systems. This method allows us to adjust the desired scaling factor arbitrarily. The effectiveness of our method is confirmed by using the famous delay-differential equations related to optical bistable or hybrid optical bistable devices. Numerical simulations fully support the analytical approach. (general)

  14. Reconstruction of ensembles of coupled time-delay systems from time series.

    Science.gov (United States)

    Sysoev, I V; Prokhorov, M D; Ponomarenko, V I; Bezruchko, B P

    2014-06-01

    We propose a method to recover from time series the parameters of coupled time-delay systems and the architecture of couplings between them. The method is based on a reconstruction of model delay-differential equations and estimation of statistical significance of couplings. It can be applied to networks composed of nonidentical nodes with an arbitrary number of unidirectional and bidirectional couplings. We test our method on chaotic and periodic time series produced by model equations of ensembles of diffusively coupled time-delay systems in the presence of noise, and apply it to experimental time series obtained from electronic oscillators with delayed feedback coupled by resistors.

  15. Approximation of itô integrals arising in stochastic time-delayed systems

    NARCIS (Netherlands)

    Bagchi, Arunabha

    1984-01-01

    Likelihood functional for stochastic linear time-delayed systems involve Itô integrals with respect to the observed data. Since the Wiener process appearing in the standard observation process model for such systems is not realizable and the physically observed process is smooth, one needs to study

  16. On positive periodic solution of periodic competition Lotka-Volterra system with time delay and diffusion

    International Nuclear Information System (INIS)

    Sun Wen; Chen Shihua; Hong Zhiming; Wang Changping

    2007-01-01

    A two-species periodic competition Lotka-Volterra system with time delay and diffusion is investigated. Some sufficient conditions of the existence of positive periodic solution are established for the system by using the continuation theorem of coincidence degree theory

  17. Effects of stochastic time-delayed feedback on a dynamical system modeling a chemical oscillator

    Science.gov (United States)

    González Ochoa, Héctor O.; Perales, Gualberto Solís; Epstein, Irving R.; Femat, Ricardo

    2018-05-01

    We examine how stochastic time-delayed negative feedback affects the dynamical behavior of a model oscillatory reaction. We apply constant and stochastic time-delayed negative feedbacks to a point Field-Körös-Noyes photosensitive oscillator and compare their effects. Negative feedback is applied in the form of simulated inhibitory electromagnetic radiation with an intensity proportional to the concentration of oxidized light-sensitive catalyst in the oscillator. We first characterize the system under nondelayed inhibitory feedback; then we explore and compare the effects of constant (deterministic) versus stochastic time-delayed feedback. We find that the oscillatory amplitude, frequency, and waveform are essentially preserved when low-dispersion stochastic delayed feedback is used, whereas small but measurable changes appear when a large dispersion is applied.

  18. Chaotification of Quasi-zero Stiffness System Via Direct Time-delay Feedback

    Directory of Open Access Journals (Sweden)

    Shuyong Liu

    2013-03-01

    Full Text Available This paper presents a chaotification method based on direct time-delay feedback control for a quasi-zero-stiffness isolation system. An analytical function of time-delay feedback control is derived based on differential-geometry control theory. Furthermore, the feasibility and effectiveness of this method was verified by numerical simulations. Numerical simulations show that this method holds the favorable aspects including the advantage of using tiny control gain, the capability of chaotifying across a large range of parametric domain and the high feasibility of the control implement.

  19. Influence of time delay on fractional-order PI-controlled system for a second-order oscillatory plant model with time delay

    Directory of Open Access Journals (Sweden)

    Sadalla Talar

    2017-12-01

    Full Text Available The paper aims at presenting the influence of an open-loop time delay on the stability and tracking performance of a second-order open-loop system and continuoustime fractional-order PI controller. The tuning method of this controller is based on Hermite- Biehler and Pontryagin theorems, and the tracking performance is evaluated on the basis of two integral performance indices, namely IAE and ISE. The paper extends the results and methodology presented in previous work of the authors to analysis of the influence of time delay on the closed-loop system taking its destabilizing properties into account, as well as concerning possible application of the presented results and used models.

  20. Hopf bifurcation in love dynamical models with nonlinear couples and time delays

    International Nuclear Information System (INIS)

    Liao Xiaofeng; Ran Jiouhong

    2007-01-01

    A love dynamical models with nonlinear couples and two delays is considered. Local stability of this model is studied by analyzing the associated characteristic transcendental equation. We find that the Hopf bifurcation occurs when the sum of the two delays varies and passes a sequence of critical values. The stability and direction of the Hopf bifurcation are determined by applying the normal form theory and the center manifold theorem. Numerical example is given to illustrate our results

  1. LMI optimization approach to stabilization of time-delay chaotic systems

    International Nuclear Information System (INIS)

    Park, Ju H.; Kwon, O.M.

    2005-01-01

    Based on the Lyapunov stability theory and linear matrix inequality (LMI) technique, this paper proposes a novel control method for stabilization of a class of time-delay chaotic systems. A stabilization criterion is derived in terms of LMIs which can be easily solved by efficient convex optimization algorithms. A numerical example is included to show the advantage of the result derived

  2. An improved condition for master-slave synchronization of Lur'e systems with time delay

    International Nuclear Information System (INIS)

    Xiang, Ji; Li, Yanjun; Wei, Wei

    2007-01-01

    In this Letter, a new sufficient condition is proposed for master-slave synchronization of Lur'e system with time delay. This condition is constructed on the new integral inequality method such that the obtained result is much sharper than that in [M.E.Y. Yalcin, J.A.K. Suykens, J. Vandewalle, Int. J. Bifur. Chaos 11 (2001) 1707

  3. Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices.

    Science.gov (United States)

    Pejović, Milić M; Denić, Dragan B; Pejović, Momčilo M; Nešić, Nikola T; Vasović, Nikola

    2010-10-01

    This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven by TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.

  4. Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices

    Energy Technology Data Exchange (ETDEWEB)

    Pejovic, Milic M.; Denic, Dragan B.; Pejovic, Momcilo M.; Nesic, Nikola T.; Vasovic, Nikola [Faculty of Electronic Engineering, University of Nis, Aleksandra Medvedeva 14, 18000 Nis (Serbia)

    2010-10-15

    This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven by TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.

  5. Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices

    International Nuclear Information System (INIS)

    Pejovic, Milic M.; Denic, Dragan B.; Pejovic, Momcilo M.; Nesic, Nikola T.; Vasovic, Nikola

    2010-01-01

    This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven by TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.

  6. Stabilization of a Wireless Networked Control System with Packet Loss and Time Delay: An ADS Approach

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2012-01-01

    Full Text Available The stabilization problem of a wireless networked control system is considered in this paper. Both time delay and packet loss exist simultaneously in the wireless network. The system is modeled as an asynchronous dynamic system (ADS with unstable subsystems. A sufficient condition for the system to be stable is presented. A numerical example is given to demonstrate the effectiveness of the proposed approach.

  7. Multi-Gbit/s optical phase chaos communications using a time-delayed optoelectronic oscillator with a three-wave interferometer nonlinearity

    Science.gov (United States)

    Oden, Jérémy; Lavrov, Roman; Chembo, Yanne K.; Larger, Laurent

    2017-11-01

    We propose a chaos communication scheme based on a chaotic optical phase carrier generated with an optoelectronic oscillator with nonlinear time-delay feedback. The system includes a dedicated non-local nonlinearity, which is a customized three-wave imbalanced interferometer. This particular feature increases the complexity of the chaotic waveform and thus the security of the transmitted information, as these interferometers are characterized by four independent parameters which are part of the secret key for the chaos encryption scheme. We first analyze the route to chaos in the system, and evidence a sequence of period doubling bifurcations from the steady-state to fully developed chaos. Then, in the chaotic regime, we study the synchronization between the emitter and the receiver, and achieve chaotic carrier cancellation with a signal-to-noise ratio up to 20 dB. We finally demonstrate error-free chaos communications at a data rate of 3 Gbit/s.

  8. Multi-Gbit/s optical phase chaos communications using a time-delayed optoelectronic oscillator with a three-wave interferometer nonlinearity.

    Science.gov (United States)

    Oden, Jérémy; Lavrov, Roman; Chembo, Yanne K; Larger, Laurent

    2017-11-01

    We propose a chaos communication scheme based on a chaotic optical phase carrier generated with an optoelectronic oscillator with nonlinear time-delay feedback. The system includes a dedicated non-local nonlinearity, which is a customized three-wave imbalanced interferometer. This particular feature increases the complexity of the chaotic waveform and thus the security of the transmitted information, as these interferometers are characterized by four independent parameters which are part of the secret key for the chaos encryption scheme. We first analyze the route to chaos in the system, and evidence a sequence of period doubling bifurcations from the steady-state to fully developed chaos. Then, in the chaotic regime, we study the synchronization between the emitter and the receiver, and achieve chaotic carrier cancellation with a signal-to-noise ratio up to 20 dB. We finally demonstrate error-free chaos communications at a data rate of 3 Gbit/s.

  9. The relaxation time of processes in a FitzHugh-Nagumo neural system with time delay

    International Nuclear Information System (INIS)

    Gong Ailing; Zeng Chunhua; Wang Hua

    2011-01-01

    In this paper, we study the relaxation time (RT) of the steady-state correlation function in a FitzHugh-Nagumo neural system under the presence of multiplicative and additive white noises and time delay. The noise correlation parameter λ can produce a critical behavior in the RT as functions of the multiplicative noise intensity D, the additive noise intensity Q and the time delay τ. That is, the RT decreases as the noise intensities D and Q increase, and increases as the time delay τ increases below the critical value of λ. However, above the critical value, the RT first increases, reaches a maximum, and then decreases as D, Q and τ increase, i.e. a noise intensity D or Q and a time delay τ exist, at which the time scales of the relaxation process are at their largest. In addition, the additive noise intensity Q can also produce a critical behavior in the RT as a function of λ. The noise correlation parameter λ first increases the RT of processes, then decreases it below the critical value of Q. Above the critical value, λ increases it.

  10. Observer Design for a Time Delay System via the Razumikhin Approach

    Czech Academy of Sciences Publication Activity Database

    Rehák, Branislav

    2017-01-01

    Roč. 19, č. 6 (2017), s. 2226-2231 ISSN 1561-8625 R&D Projects: GA ČR GA13-02149S Institutional support: RVO:67985556 Keywords : observer * time-delay system * input-to-state stability * quantization Subject RIV: BC - Control Systems Theory OBOR OECD: Automation and control systems Impact factor: 1.421, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/asjc.1507/full

  11. A frequency-domain method for solving linear time delay systems with constant coefficients

    Science.gov (United States)

    Jin, Mengshi; Chen, Wei; Song, Hanwen; Xu, Jian

    2018-03-01

    In an active control system, time delay will occur due to processes such as signal acquisition and transmission, calculation, and actuation. Time delay systems are usually described by delay differential equations (DDEs). Since it is hard to obtain an analytical solution to a DDE, numerical solution is of necessity. This paper presents a frequency-domain method that uses a truncated transfer function to solve a class of DDEs. The theoretical transfer function is the sum of infinite items expressed in terms of poles and residues. The basic idea is to select the dominant poles and residues to truncate the transfer function, thus ensuring the validity of the solution while improving the efficiency of calculation. Meanwhile, the guideline of selecting these poles and residues is provided. Numerical simulations of both stable and unstable delayed systems are given to verify the proposed method, and the results are presented and analysed in detail.

  12. Anticontrol of chaos in continuous-time systems via time-delay feedback.

    Science.gov (United States)

    Wang, Xiao Fan; Chen, Guanrong; Yu, Xinghuo

    2000-12-01

    In this paper, a systematic design approach based on time-delay feedback is developed for anticontrol of chaos in a continuous-time system. This anticontrol method can drive a finite-dimensional, continuous-time, autonomous system from nonchaotic to chaotic, and can also enhance the existing chaos of an originally chaotic system. Asymptotic analysis is used to establish an approximate relationship between a time-delay differential equation and a discrete map. Anticontrol of chaos is then accomplished based on this relationship and the differential-geometry control theory. Several examples are given to verify the effectiveness of the methodology and to illustrate the systematic design procedure. (c) 2000 American Institute of Physics.

  13. An optimal PID controller via LQR for standard second order plus time delay systems.

    Science.gov (United States)

    Srivastava, Saurabh; Misra, Anuraag; Thakur, S K; Pandit, V S

    2016-01-01

    An improved tuning methodology of PID controller for standard second order plus time delay systems (SOPTD) is developed using the approach of Linear Quadratic Regulator (LQR) and pole placement technique to obtain the desired performance measures. The pole placement method together with LQR is ingeniously used for SOPTD systems where the time delay part is handled in the controller output equation instead of characteristic equation. The effectiveness of the proposed methodology has been demonstrated via simulation of stable open loop oscillatory, over damped, critical damped and unstable open loop systems. Results show improved closed loop time response over the existing LQR based PI/PID tuning methods with less control effort. The effect of non-dominant pole on the stability and robustness of the controller has also been discussed. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Chaos synchronization in time-delayed systems with parameter mismatches and variable delay times

    International Nuclear Information System (INIS)

    Shahverdiev, E.M.; Nuriev, R.A.; Hashimov, R.H.; Shore, K.A.

    2004-06-01

    We investigate synchronization between two undirectionally linearly coupled chaotic nonidentical time-delayed systems and show that parameter mismatches are of crucial importance to achieve synchronization. We establish that independent of the relation between the delay time in the coupled systems and the coupling delay time, only retarded synchronization with the coupling delay time is obtained. We show that with parameter mismatch or without it neither complete nor anticipating synchronization occurs. We derive existence and stability conditions for the retarded synchronization manifold. We demonstrate our approach using examples of the Ikeda and Mackey Glass models. Also for the first time we investigate chaos synchronization in time-delayed systems with variable delay time and find both existence and sufficient stability conditions for the retarded synchronization manifold with the coupling-delay lag time. (author)

  15. Adaptive control of bifurcation and chaos in a time-delayed system

    International Nuclear Information System (INIS)

    Li Ning; Zhang Qing-Ling; Yuan Hui-Qun; Sun Hai-Yi

    2013-01-01

    In this paper, the stabilization of a continuous time-delayed system is considered. To control the bifurcation and chaos in a time-delayed system, a parameter perturbation control and a hybrid control are proposed. Then, to ensure the asymptotic stability of the system in the presence of unexpected system parameter changes, the adaptive control idea is introduced, i.e., the perturbation control parameter and the hybrid control parameter are automatically tuned according to the adaptation laws, respectively. The adaptation algorithms are constructed based on the Lyapunov-Krasovskii stability theorem. The adaptive parameter perturbation control and the adaptive hybrid control methods improve the corresponding constant control methods. They have the advantages of increased stability, adaptability to the changes of the system parameters, control cost saving, and simplicity. Numerical simulations for a well-known chaotic time-delayed system are performed to demonstrate the feasibility and superiority of the proposed control methods. A comparison of the two adaptive control methods is also made in an experimental study

  16. Recent Progress in Stability and Stabilization of Systems with Time-Delays

    Directory of Open Access Journals (Sweden)

    Magdi S. Mahmoud

    2017-01-01

    Full Text Available This paper overviews the research investigations pertaining to stability and stabilization of control systems with time-delays. The prime focus is the fundamental results and recent progress in theory and applications. The overview sheds light on the contemporary development on the linear matrix inequality (LMI techniques in deriving both delay-independent and delay-dependent stability results for time-delay systems. Particular emphases will be placed on issues concerned with the conservatism and the computational complexity of the results. Key technical bounding lemmas and slack variable introduction approaches will be presented. The results will be compared and connections of certain delay-dependent stability results are also discussed.

  17. 11th International Federation of Automatic Control (IFAC) Workshop on Time-Delay Systems

    CERN Document Server

    Fridman, Emilia; Sename, Olivier; Dugard, Luc

    2016-01-01

    This book mostly results from a selection of papers presented during the 11th IFAC (International Federation of Automatic Control) Workshop on Time-Delay Systems, which took place in Grenoble, France, February 4 - 6, 2013.  During this event, 37 papers were presented. Taking into account the reviewers' evaluation and the papers' presentation the best papers have been selected and collected into the present volume. The authors of 13 selected papers were invited to participate to this book and provided a more detailed and improved version of the conference paper. To enrich the book, three more chapters have been included from specialists on time-delay systems who presented their work during the 52nd IEEE Conference on Decision and Control, which held in December 10 - 13, 2013, at Florence, Italy. The content of the book is divided into four main parts as follows: Modeling, Stability analysis, Stabilization and control, and Input-delay systems. Focusing on various topics of time-delay systems, this book will be...

  18. Delay-dependent asymptotic stability of a two-neuron system with different time delays

    International Nuclear Information System (INIS)

    Tu Fenghua; Liao Xiaofeng; Zhang Wei

    2006-01-01

    In this paper, we consider a two-neuron system with time-delayed connections between neurons. Based on the construction of Lyapunov functionals, we obtain sufficient criteria to ensure local and global asymptotic stability of the equilibrium of the neural network. The obtained conditions are shown to be less conservative and restrictive than those reported in the literature. Some examples are included to illustrate our results

  19. Robust passive control for Internet-based switching systems with time-delay

    Energy Technology Data Exchange (ETDEWEB)

    Guan Zhihong [Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhang Hao [Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)], E-mail: ehao79@163.com; Yang Shuanghua [Department of Computer Science, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2008-04-15

    In this paper, based on remote control and local control strategy, a class of hybrid multi-rate control models with time-delay and switching controllers are formulated and the problem of robust passive control for this discrete system is investigated. By Lyapunov-Krasovskii function and applying it to a descriptor model transformation some new sufficient conditions in form of LMIs are derived. A numerical example is given to illustrate the effectiveness of the theoretical result.

  20. Stochastic resonance in a time-delayed asymmetric bistable system with mixed periodic signal

    International Nuclear Information System (INIS)

    Yong-Feng, Guo; Wei, Xu; Liang, Wang

    2010-01-01

    This paper studies the phenomenon of stochastic resonance in an asymmetric bistable system with time-delayed feedback and mixed periodic signal by using the theory of signal-to-noise ratio in the adiabatic limit. A general approximate Fokker–Planck equation and the expression of the signal-to-noise ratio are derived through the small time delay approximation at both fundamental harmonics and mixed harmonics. The effects of the additive noise intensity Q, multiplicative noise intensity D, static asymmetry r and delay time τ on the signal-to-noise ratio are discussed. It is found that the higher mixed harmonics and the static asymmetry r can restrain stochastic resonance, and the delay time τ can enhance stochastic resonance. Moreover, the longer the delay time τ is, the larger the additive noise intensity Q and the multiplicative noise intensity D are, when the stochastic resonance appears. (general)

  1. Nonfragile Robust Model Predictive Control for Uncertain Constrained Systems with Time-Delay Compensation

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2016-01-01

    Full Text Available This study investigates the problem of asymptotic stabilization for a class of discrete-time linear uncertain time-delayed systems with input constraints. Parametric uncertainty is assumed to be structured, and delay is assumed to be known. In Lyapunov stability theory framework, two synthesis schemes of designing nonfragile robust model predictive control (RMPC with time-delay compensation are put forward, where the additive and the multiplicative gain perturbations are, respectively, considered. First, by designing appropriate Lyapunov-Krasovskii (L-K functions, the robust performance index is defined as optimization problems that minimize upper bounds of infinite horizon cost function. Then, to guarantee closed-loop stability, the sufficient conditions for the existence of desired nonfragile RMPC are obtained in terms of linear matrix inequalities (LMIs. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed approaches.

  2. Rank One Strange Attractors in Periodically Kicked Predator-Prey System with Time-Delay

    Science.gov (United States)

    Yang, Wenjie; Lin, Yiping; Dai, Yunxian; Zhao, Huitao

    2016-06-01

    This paper is devoted to the study of the problem of rank one strange attractor in a periodically kicked predator-prey system with time-delay. Our discussion is based on the theory of rank one maps formulated by Wang and Young. Firstly, we develop the rank one chaotic theory to delayed systems. It is shown that strange attractors occur when the delayed system undergoes a Hopf bifurcation and encounters an external periodic force. Then we use the theory to the periodically kicked predator-prey system with delay, deriving the conditions for Hopf bifurcation and rank one chaos along with the results of numerical simulations.

  3. Estimating the state of a geophysical system with sparse observations: time delay methods to achieve accurate initial states for prediction

    Science.gov (United States)

    An, Zhe; Rey, Daniel; Ye, Jingxin; Abarbanel, Henry D. I.

    2017-01-01

    The problem of forecasting the behavior of a complex dynamical system through analysis of observational time-series data becomes difficult when the system expresses chaotic behavior and the measurements are sparse, in both space and/or time. Despite the fact that this situation is quite typical across many fields, including numerical weather prediction, the issue of whether the available observations are "sufficient" for generating successful forecasts is still not well understood. An analysis by Whartenby et al. (2013) found that in the context of the nonlinear shallow water equations on a β plane, standard nudging techniques require observing approximately 70 % of the full set of state variables. Here we examine the same system using a method introduced by Rey et al. (2014a), which generalizes standard nudging methods to utilize time delayed measurements. We show that in certain circumstances, it provides a sizable reduction in the number of observations required to construct accurate estimates and high-quality predictions. In particular, we find that this estimate of 70 % can be reduced to about 33 % using time delays, and even further if Lagrangian drifter locations are also used as measurements.

  4. Robust H∞ Filtering for Uncertain Neutral Stochastic Systems with Markovian Jumping Parameters and Time Delay

    Directory of Open Access Journals (Sweden)

    Yajun Li

    2015-01-01

    Full Text Available This paper deals with the robust H∞ filter design problem for a class of uncertain neutral stochastic systems with Markovian jumping parameters and time delay. Based on the Lyapunov-Krasovskii theory and generalized Finsler Lemma, a delay-dependent stability condition is proposed to ensure not only that the filter error system is robustly stochastically stable but also that a prescribed H∞ performance level is satisfied for all admissible uncertainties. All obtained results are expressed in terms of linear matrix inequalities which can be easily solved by MATLAB LMI toolbox. Numerical examples are given to show that the results obtained are both less conservative and less complicated in computation.

  5. Multiagent System-Based Distributed Coordinated Control for Radial DC Microgrid Considering Transmission Time Delays

    DEFF Research Database (Denmark)

    Dou, Chun-Xia; Yue, Dong; Guerrero, Josep M.

    2017-01-01

    This paper focuses on a multi-agent based distributed coordinated control for radial DC microgrid considering trans-mission time delays. Firstly, a two-level multi-agent system is constructed, where local control is formulated based on local states and executed by means of the first-level agent......, and dis-tributed coordinated control law is formulated based on wide-area information and executed by means of the secondary- level agent in order to improve the voltage control performances. Afterwards, the research mainly focuses on designing the local controller and the distributed coordinated...

  6. Quasipolynomial Approach to Simultaneous Robust Control of Time-Delay Systems

    Directory of Open Access Journals (Sweden)

    Nikolaj Semenič

    2014-01-01

    Full Text Available A control law for retarded time-delay systems is considered, concerning infinite closed-loop spectrum assignment. An algebraic method for spectrum assignment is presented with a unique optimization algorithm for minimization of spectral abscissa and effective shaping of the chains of infinitely many closed-loop poles. Uncertainty of plant delays of a certain structure is considered in a sense of a robust simultaneous stabilization. Robust performance is achieved using mixed sensitivity design, which is incorporated into the addressed control law.

  7. Optimal design of PID controller for second order plus time delay systems

    International Nuclear Information System (INIS)

    Srivastava, S.; Misra, A.; Kumar, Y.; Thakur, S.K.

    2015-01-01

    It is well known that the effect of time delay in the forward path of control loop deteriorates the system performance and at the same time makes it difficult to compute the optimum PID controller parameters of the feedback control systems. PI/PID controller is most popular and used more than 80% in industries as well as in accelerators lab due to its simple structure and appropriate robustness. At VECC we have planned to use a PID controller for the speed control of DC motor which will be used to adjust the solenoid coil position of the 2.45 GHz microwave ion source for optimum performance during the online operation. In this paper we present a comparison of the two methods which have been used to design the optimum PID controller parameters: one by optimizing different time domain performance indices such as lAE, ITSE etc. and other using analytical formulation based on Linear Quadratic Regulator (LQR). We have performed numerical simulations using MATLAB and compare the closed loop time response performance measures using the PID parameters obtained from above mentioned two methods on a second order transfer function of a DC motor with time delay. (author)

  8. Controllability of multi-agent systems with time-delay in state and switching topology

    Science.gov (United States)

    Ji, Zhijian; Wang, Zidong; Lin, Hai; Wang, Zhen

    2010-02-01

    In this article, the controllability issue is addressed for an interconnected system of multiple agents. The network associated with the system is of the leader-follower structure with some agents taking leader role and others being followers interconnected via the neighbour-based rule. Sufficient conditions are derived for the controllability of multi-agent systems with time-delay in state, as well as a graph-based uncontrollability topology structure is revealed. Both single and double integrator dynamics are considered. For switching topology, two algebraic necessary and sufficient conditions are derived for the controllability of multi-agent systems. Several examples are also presented to illustrate how to control the system to shape into the desired configurations.

  9. Optimal Exponential Synchronization of Chaotic Systems with Multiple Time Delays via Fuzzy Control

    Directory of Open Access Journals (Sweden)

    Feng-Hsiag Hsiao

    2013-01-01

    Full Text Available This study presents an effective approach to realize the optimal exponential synchronization of multiple time-delay chaotic (MTDC systems. First, a neural network (NN model is employed to approximate the MTDC system. Then, a linear differential inclusion (LDI state-space representation is established for the dynamics of the NN model. Based on this LDI state-space representation, this study proposes a delay-dependent exponential stability criterion of the error system derived in terms of Lyapunov’s direct method to ensure that the trajectories of the slave system can approach those of the master system. Subsequently, the stability condition of this criterion is reformulated into a linear matrix inequality (LMI. Based on the LMI, a fuzzy controller is synthesized not only to realize the exponential synchronization but also to achieve the optimal performance by minimizing the disturbance attenuation level. Finally, a numerical example with simulations is provided to illustrate the concepts discussed throughout this work.

  10. Fault Detection for Wireless Networked Control Systems with Stochastic Switching Topology and Time Delay

    Directory of Open Access Journals (Sweden)

    Pengfei Guo

    2014-01-01

    Full Text Available This paper deals with the fault detection problem for a class of discrete-time wireless networked control systems described by switching topology with uncertainties and disturbances. System states of each individual node are affected not only by its own measurements, but also by other nodes’ measurements according to a certain network topology. As the topology of system can be switched in a stochastic way, we aim to design H∞ fault detection observers for nodes in the dynamic time-delay systems. By using the Lyapunov method and stochastic analysis techniques, sufficient conditions are acquired to guarantee the existence of the filters satisfying the H∞ performance constraint, and observer gains are derived by solving linear matrix inequalities. Finally, an illustrated example is provided to verify the effectiveness of the theoretical results.

  11. Effects of time delay on stochastic resonance of the stock prices in financial system

    International Nuclear Information System (INIS)

    Li, Jiang-Cheng; Li, Chun; Mei, Dong-Cheng

    2014-01-01

    The effect of time delay on stochastic resonance of the stock prices in finance system was investigated. The time delay is introduced into the Heston model driven by the extrinsic and intrinsic periodic information for stock price. The signal power amplification (SPA) was calculated by numerical simulation. The results indicate that an optimal critical value of delay time maximally enhances the reverse-resonance in the behaviors of SPA as a function of long-run variance of volatility or cross correlation coefficient between noises for both cases of intrinsic and extrinsic periodic information. Moreover, in both cases, being a critical value in the delay time, when the delay time takes value below the critical value, reverse-resonance increases with the delay time increasing, however, when the delay time takes value above the critical value, the reverse-resonance decrease with the delay time increasing. - Highlights: • The effects of delay time on stochastic resonance of the stock prices was investigated. • There is an optimal critical value of delay time maximally enhances the reverse-resonance • The reverse-resonance increases with the delay time increasing as the delay time takes value below the critical value • The reverse-resonance decrease with the delay time increasing as the delay time takes value above the critical value

  12. Noise and time delay induce critical point in a bistable system

    Science.gov (United States)

    Zhang, Jianqiang; Nie, Linru; Yu, Lilong; Zhang, Xinyu

    2014-07-01

    We study relaxation time Tc of time-delayed bistable system driven by two cross-correlated Gaussian white noises that one is multiplicative and the other is additive. By means of numerical calculations, the results indicate that: (i) Combination of noise and time delay can induce two critical points about the relaxation time at some certain noise cross-correlation strength λ under the condition that the multiplicative intensity D equals to the additive noise intensity α. (ii) For each fixed D or α, there are two symmetrical critical points which locates in the regions of positive and negative correlations, respectively. Namely, as λ equals to the critical value λc, Tc is independent of the delay time and the result of Tc versus τ is a horizontal line, but as |λ|>|λc| (or |λ|decreases) with the delay time increasing. (iii) In the presence of D = α, the change of λc with D is two symmetrical curves about the axis of λc = 0, and the critical value λc is close to zero for a smaller D, which approaches to +1 or -1 for a greater D.

  13. Effects of time delay on stochastic resonance of the stock prices in financial system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiang-Cheng [Department of Physics, Yunnan University, Kunming, 650091 (China); Li, Chun [Department of Computer Science, Puer Teachers' College, Puer 665000 (China); Mei, Dong-Cheng, E-mail: meidch@ynu.edu.cn [Department of Physics, Yunnan University, Kunming, 650091 (China)

    2014-06-13

    The effect of time delay on stochastic resonance of the stock prices in finance system was investigated. The time delay is introduced into the Heston model driven by the extrinsic and intrinsic periodic information for stock price. The signal power amplification (SPA) was calculated by numerical simulation. The results indicate that an optimal critical value of delay time maximally enhances the reverse-resonance in the behaviors of SPA as a function of long-run variance of volatility or cross correlation coefficient between noises for both cases of intrinsic and extrinsic periodic information. Moreover, in both cases, being a critical value in the delay time, when the delay time takes value below the critical value, reverse-resonance increases with the delay time increasing, however, when the delay time takes value above the critical value, the reverse-resonance decrease with the delay time increasing. - Highlights: • The effects of delay time on stochastic resonance of the stock prices was investigated. • There is an optimal critical value of delay time maximally enhances the reverse-resonance • The reverse-resonance increases with the delay time increasing as the delay time takes value below the critical value • The reverse-resonance decrease with the delay time increasing as the delay time takes value above the critical value.

  14. Act-and-wait time-delayed feedback control of nonautonomous systems

    Science.gov (United States)

    Pyragas, Viktoras; Pyragas, Kestutis

    2016-07-01

    Act-and-wait modification of a time-delayed feedback control (TDFC) algorithm is proposed to stabilize unstable periodic orbits in nonautonomous dynamical systems. Due to periodical switching on and off the control perturbation, an infinite-dimensional function space of the TDFC system is reduced to the finite-dimensional state space. As a result the number of Floquet exponents defining the stability of the controlled orbit remains the same as for the control-free system. The values of these exponents can be effectively manipulated by the variation of control parameters. We demonstrate the advantages of the modification for the chaotic nonautonomous Duffing oscillator with diagonal and nondiagonal control matrices. In both cases very deep minima of the spectral abscissa of Floquet exponents have been attained. The advantage of the modification is particularly remarkable for the nondiagonal coupling; in this case the conventional TDFC fails, whereas the modified version works.

  15. A data analysis method for identifying deterministic components of stable and unstable time-delayed systems with colored noise

    Energy Technology Data Exchange (ETDEWEB)

    Patanarapeelert, K. [Faculty of Science, Department of Mathematics, Mahidol University, Rama VI Road, Bangkok 10400 (Thailand); Frank, T.D. [Institute for Theoretical Physics, University of Muenster, Wilhelm-Klemm-Str. 9, 48149 Muenster (Germany)]. E-mail: tdfrank@uni-muenster.de; Friedrich, R. [Institute for Theoretical Physics, University of Muenster, Wilhelm-Klemm-Str. 9, 48149 Muenster (Germany); Beek, P.J. [Faculty of Human Movement Sciences and Institute for Fundamental and Clinical Human Movement Sciences, Vrije Universiteit, Van der Boechorststraat 9, 1081 BT Amsterdam (Netherlands); Tang, I.M. [Faculty of Science, Department of Physics, Mahidol University, Rama VI Road, Bangkok 10400 (Thailand)

    2006-12-18

    A method is proposed to identify deterministic components of stable and unstable time-delayed systems subjected to noise sources with finite correlation times (colored noise). Both neutral and retarded delay systems are considered. For vanishing correlation times it is shown how to determine their noise amplitudes by minimizing appropriately defined Kullback measures. The method is illustrated by applying it to simulated data from stochastic time-delayed systems representing delay-induced bifurcations, postural sway and ship rolling.

  16. Robust decentralised PI based LFC design for time delay power systems

    International Nuclear Information System (INIS)

    Bevrani, Hassan; Hiyama, Takashi

    2008-01-01

    In this paper, two robust decentralised proportional integral (PI) control designs are proposed for load frequency control (LFC) with communication delays. In both methodologies, the PI based LFC problem is reduced to a static output feedback (SOF) control synthesis for a multiple delay system. The first one is based on the optimal H ∞ control design using a linear matrix inequalities (LMI) technique. The second control design gives a suboptimal solution using a developed iterative linear matrix inequalities (ILMI) algorithm via the mixed H 2 /H ∞ control technique. The control strategies are suitable for LFC applications that usually employ PI control. The proposed control strategies are applied to a three control area power system with time delays and load disturbance to demonstrate their robustness

  17. Event-Triggered Faults Tolerant Control for Stochastic Systems with Time Delays

    Directory of Open Access Journals (Sweden)

    Ling Huang

    2016-01-01

    Full Text Available This paper is concerned with the state-feedback controller design for stochastic networked control systems (NCSs with random actuator failures and transmission delays. Firstly, an event-triggered scheme is introduced to optimize the performance of the stochastic NCSs. Secondly, stochastic NCSs under event-triggered scheme are modeled as stochastic time-delay systems. Thirdly, some less conservative delay-dependent stability criteria in terms of linear matrix inequalities for the codesign of both the controller gain and the trigger parameters are obtained by using delay-decomposition technique and convex combination approach. Finally, a numerical example is provided to show the less sampled data transmission and less conservatism of the proposed theory.

  18. Identifying and comparing states of time-delayed systems: phase diagrams and applications to human motor control systems

    International Nuclear Information System (INIS)

    Frank, T.D.; Friedrich, R.; Beek, P.J.

    2005-01-01

    A data driven characterization of time-delayed stochastic systems is proposed in terms of linear delay differential equations and two drift parameters. It is shown how these parameters determine the states of such systems with respect to generalized phase diagrams. This approach allows for a comparison of systems with different parameters as exemplified for two motor control tasks: tracking and force production

  19. Optimal robust stabilizer design based on UPFC for interconnected power systems considering time delay

    Directory of Open Access Journals (Sweden)

    Koofigar Hamid Reza

    2017-09-01

    Full Text Available A robust auxiliary wide area damping controller is proposed for a unified power flow controller (UPFC. The mixed H2 / H∞ problem with regional pole placement, resolved by linear matrix inequality (LMI, is applied for controller design. Based on modal analysis, the optimal wide area input signals for the controller are selected. The time delay of input signals, due to electrical distance from the UPFC location is taken into account in the design procedure. The proposed controller is applied to a multi-machine interconnected power system from the IRAN power grid. It is shown that the both transient and dynamic stability are significantly improved despite different disturbances and loading conditions.

  20. Information transfer via implicit encoding with delay time modulation in a time-delay system

    Energy Technology Data Exchange (ETDEWEB)

    Kye, Won-Ho, E-mail: whkye@kipo.go.kr [Korean Intellectual Property Office, Government Complex Daejeon Building 4, 189, Cheongsa-ro, Seo-gu, Daejeon 302-701 (Korea, Republic of)

    2012-08-20

    A new encoding scheme for information transfer with modulated delay time in a time-delay system is proposed. In the scheme, the message is implicitly encoded into the modulated delay time. The information transfer rate as a function of encoding redundancy in various noise scales is presented and it is analyzed that the implicit encoding scheme (IES) has stronger resistance against channel noise than the explicit encoding scheme (EES). In addition, its advantages in terms of secure communication and feasible applications are discussed. -- Highlights: ► We propose new encoding scheme with delay time modulation. ► The message is implicitly encoded with modulated delay time. ► The proposed scheme shows stronger resistance against channel noise.

  1. Memory State Feedback RMPC for Multiple Time-Delayed Uncertain Linear Systems with Input Constraints

    Directory of Open Access Journals (Sweden)

    Wei-Wei Qin

    2014-01-01

    Full Text Available This paper focuses on the problem of asymptotic stabilization for a class of discrete-time multiple time-delayed uncertain linear systems with input constraints. Then, based on the predictive control principle of receding horizon optimization, a delayed state dependent quadratic function is considered for incorporating MPC problem formulation. By developing a memory state feedback controller, the information of the delayed plant states can be taken into full consideration. The MPC problem is formulated to minimize the upper bound of infinite horizon cost that satisfies the sufficient conditions. Then, based on the Lyapunov-Krasovskii function, a delay-dependent sufficient condition in terms of linear matrix inequality (LMI can be derived to design a robust MPC algorithm. Finally, the digital simulation results prove availability of the proposed method.

  2. A system for gas electrical breakdown time delay measurements based on a microcontroller

    International Nuclear Information System (INIS)

    Todorović, Miomir; Vasović, Nikola D; Ristić, Goran S

    2012-01-01

    A new system, called gasmem v1.0, for the measurements of gas electrical breakdown time delay (t d ), with significantly better characteristics than older systems, has been developed and realized. It is based on the PIC 18F4550 microcontroller and could measure the minimal t d of about 1.5 μs with the resolution of 83.33 ns. The relaxation (afterglow) period (τ) could vary from 1 to 2 32 ms (≈50 days). The successive series of t d measurements with various τ could be performed, giving very reliable t d data that are stored on the personal computer (PC) hard drive via the USB interface. The t d and τ values enable the drawing of memory curves ((t d ) = f(τ)) and the analysis of memory effects in the gases. The randomness of t d values measured by the gasmem system for more τ values was tested using the nonparametric Wald–Wolfowitz test showing the stochastic nature of obtained results. The memory curves obtained by this system have shown very high reproducibility. In addition, the system has a capability of operating as a stand-alone system (independently of a PC), with the possibility for the implementation of a touch screen for controlling the system and additional memory (e.g. memory card) for data storage

  3. The Influence of Gene Expression Time Delays on Gierer–Meinhardt Pattern Formation Systems

    KAUST Repository

    Seirin Lee, S.

    2010-03-23

    There are numerous examples of morphogen gradients controlling long range signalling in developmental and cellular systems. The prospect of two such interacting morphogens instigating long range self-organisation in biological systems via a Turing bifurcation has been explored, postulated, or implicated in the context of numerous developmental processes. However, modelling investigations of cellular systems typically neglect the influence of gene expression on such dynamics, even though transcription and translation are observed to be important in morphogenetic systems. In particular, the influence of gene expression on a large class of Turing bifurcation models, namely those with pure kinetics such as the Gierer-Meinhardt system, is unexplored. Our investigations demonstrate that the behaviour of the Gierer-Meinhardt model profoundly changes on the inclusion of gene expression dynamics and is sensitive to the sub-cellular details of gene expression. Features such as concentration blow up, morphogen oscillations and radical sensitivities to the duration of gene expression are observed and, at best, severely restrict the possible parameter spaces for feasible biological behaviour. These results also indicate that the behaviour of Turing pattern formation systems on the inclusion of gene expression time delays may provide a means of distinguishing between possible forms of interaction kinetics. Finally, this study also emphasises that sub-cellular and gene expression dynamics should not be simply neglected in models of long range biological pattern formation via morphogens. © 2010 Society for Mathematical Biology.

  4. Robust control for a biaxial servo with time delay system based on adaptive tuning technique.

    Science.gov (United States)

    Chen, Tien-Chi; Yu, Chih-Hsien

    2009-07-01

    A robust control method for synchronizing a biaxial servo system motion is proposed in this paper. A new network based cross-coupled control and adaptive tuning techniques are used together to cancel out the skew error. The conventional fixed gain PID cross-coupled controller (CCC) is replaced with the adaptive cross-coupled controller (ACCC) in the proposed control scheme to maintain biaxial servo system synchronization motion. Adaptive-tuning PID (APID) position and velocity controllers provide the necessary control actions to maintain synchronization while following a variable command trajectory. A delay-time compensator (DTC) with an adaptive controller was augmented to set the time delay element, effectively moving it outside the closed loop, enhancing the stability of the robust controlled system. This scheme provides strong robustness with respect to uncertain dynamics and disturbances. The simulation and experimental results reveal that the proposed control structure adapts to a wide range of operating conditions and provides promising results under parameter variations and load changes.

  5. Critical capacity, travel time delays and travel time distribution of rapid mass transit systems

    Science.gov (United States)

    Legara, Erika Fille; Monterola, Christopher; Lee, Kee Khoon; Hung, Gih Guang

    2014-07-01

    We set up a mechanistic agent-based model of a rapid mass transit system. Using empirical data from Singapore's unidentifiable smart fare card, we validate our model by reconstructing actual travel demand and duration of travel statistics. We subsequently use this model to investigate two phenomena that are known to significantly affect the dynamics within the RTS: (1) overloading in trains and (2) overcrowding in the RTS platform. We demonstrate that by varying the loading capacity of trains, a tipping point emerges at which an exponential increase in the duration of travel time delays is observed. We also probe the impact on the rail system dynamics of three types of passenger growth distribution across stations: (i) Dirac delta, (ii) uniform and (iii) geometric, which is reminiscent of the effect of land use on transport. Under the assumption of a fixed loading capacity, we demonstrate the dependence of a given origin-destination (OD) pair on the flow volume of commuters in station platforms.

  6. A fortran programme for determining frequency responses for linear systems with time delays

    International Nuclear Information System (INIS)

    Milsom, P.R.

    1966-11-01

    In this report a digital computer programme for evaluating frequency responses is described. In its standard form the programme is capable of determining the gain and phase of up to 35 variables over a range of up to 30 frequencies for a system described by up to 65 equations. The equations must be either first order differential or algebraic and either type may include time delayed terms. Up to 50 such terms are permissible throughout the equation set. Provision is made for up to 10 inputs and up to 50 differentiated input terms are permitted throughout the equation set. However, it is possible for the user to increase a maximum dimension, albeit at the expense of another array dimension. In punching the data from the equations the user has no sorting or arranging of coefficients to do, and the equations may be in any order. The specifying of other input information, such as frequency range, the inputs to be perturbed and the variables for which frequency responses are required, is also very straightforward. (author)

  7. Fuzzy model-based adaptive synchronization of time-delayed chaotic systems

    International Nuclear Information System (INIS)

    Vasegh, Nastaran; Majd, Vahid Johari

    2009-01-01

    In this paper, fuzzy model-based synchronization of a class of first order chaotic systems described by delayed-differential equations is addressed. To design the fuzzy controller, the chaotic system is modeled by Takagi-Sugeno fuzzy system considering the properties of the nonlinear part of the system. Assuming that the parameters of the chaotic system are unknown, an adaptive law is derived to estimate these unknown parameters, and the stability of error dynamics is guaranteed by Lyapunov theory. Numerical examples are given to demonstrate the validity of the proposed adaptive synchronization approach.

  8. Robust L2-L∞ Filtering of Time-Delay Jump Systems with Respect to the Finite-Time Interval

    Directory of Open Access Journals (Sweden)

    Shuping He

    2011-01-01

    Full Text Available This paper studied the problem of stochastic finite-time boundedness and disturbance attenuation for a class of linear time-delayed systems with Markov jumping parameters. Sufficient conditions are provided to solve this problem. The L2-L∞ filters are, respectively, designed for time-delayed Markov jump linear systems with/without uncertain parameters such that the resulting filtering error dynamic system is stochastically finite-time bounded and has the finite-time interval disturbance attenuation γ for all admissible uncertainties, time delays, and unknown disturbances. By using stochastic Lyapunov-Krasovskii functional approach, it is shown that the filter designing problem is in terms of the solutions of a set of coupled linear matrix inequalities. Simulation examples are included to demonstrate the potential of the proposed results.

  9. Sliding mode load frequency control for multi-area time-delay power system with wind power integration

    DEFF Research Database (Denmark)

    Mi, Yang; Hao, Xuezhi; Liu, Yongjuan

    2017-01-01

    The interconnected time-delay power system has become an important issue for the open communication network. Meanwhile, due to the output power fluctuation of integrated wind energy, load frequency control (LFC) for power system with variable sources and loads has become more complicated. The novel...

  10. Permanence of a Semi-Ratio-Dependent Predator-Prey System with Nonmonotonic Functional Response and Time Delay

    Directory of Open Access Journals (Sweden)

    Xuepeng Li

    2009-01-01

    Full Text Available Sufficient conditions for permanence of a semi-ratio-dependent predator-prey system with nonmonotonic functional response and time delay ̇1(=1([1(−11(1(−(−12(2(/(2+21(],  ̇2(=2([2(−21(2(/1(], are obtained, where 1( and 2( stand for the density of the prey and the predator, respectively, and ≠0 is a constant. (≥0 stands for the time delays due to negative feedback of the prey population.

  11. New Results on Robust Model Predictive Control for Time-Delay Systems with Input Constraints

    Directory of Open Access Journals (Sweden)

    Qing Lu

    2014-01-01

    Full Text Available This paper investigates the problem of model predictive control for a class of nonlinear systems subject to state delays and input constraints. The time-varying delay is considered with both upper and lower bounds. A new model is proposed to approximate the delay. And the uncertainty is polytopic type. For the state-feedback MPC design objective, we formulate an optimization problem. Under model transformation, a new model predictive controller is designed such that the robust asymptotical stability of the closed-loop system can be guaranteed. Finally, the applicability of the presented results are demonstrated by a practical example.

  12. Emergence of a common generalized synchronization manifold in network motifs of structurally different time-delay systems

    International Nuclear Information System (INIS)

    Suresh, R.; Senthilkumar, D.V.; Lakshmanan, M.; Kurths, J.

    2016-01-01

    Highlights: • We have identified that a common generalized synchronization manifold exist for symmetrically coupled structurally different time-delay systems with different orders. • We have provided a theoretical formulation for the existence of a common generalized synchronization manifold based on the auxiliary system approach. • We have pointed out the existence of a transition from partial to global generalized synchronization. • We have corroborated our results using the maximal transverse Lyapunov exponent, correlation coefficient, mutual false nearest neighbor method. - Abstract: We point out the existence of a transition from partial to global generalized synchronization (GS) in symmetrically coupled structurally different time-delay systems of different orders using the auxiliary system approach and the mutual false nearest neighbor method. The present authors have recently reported that there exists a common GS manifold even in an ensemble of structurally nonidentical scalar time-delay systems with different fractal dimensions and shown that GS occurs simultaneously with phase synchronization (PS). In this paper we confirm that the above result is not confined just to scalar one-dimensional time-delay systems alone but there exists a similar type of transition even in the case of time-delay systems with different orders. We calculate the maximal transverse Lyapunov exponent to evaluate the asymptotic stability of the complete synchronization manifold of each of the main and the corresponding auxiliary systems, which in turn ensures the stability of the GS manifold between the main systems. Further we estimate the correlation coefficient and the correlation of probability of recurrence to establish the relation between GS and PS. We also calculate the mutual false nearest neighbor parameter which doubly confirms the occurrence of the global GS manifold.

  13. A chaotic jerk system with non-hyperbolic equilibrium: Dynamics, effect of time delay and circuit realisation

    Science.gov (United States)

    Rajagopal, Karthikeyan; Pham, Viet-Thanh; Tahir, Fadhil Rahma; Akgul, Akif; Abdolmohammadi, Hamid Reza; Jafari, Sajad

    2018-04-01

    The literature on chaos has highlighted several chaotic systems with special features. In this work, a novel chaotic jerk system with non-hyperbolic equilibrium is proposed. The dynamics of this new system is revealed through equilibrium analysis, phase portrait, bifurcation diagram and Lyapunov exponents. In addition, we investigate the time-delay effects on the proposed system. Realisation of such a system is presented to verify its feasibility.

  14. Nonlinear systems

    CERN Document Server

    Palmero, Faustino; Lemos, M; Sánchez-Rey, Bernardo; Casado-Pascual, Jesús

    2018-01-01

    This book presents an overview of the most recent advances in nonlinear science. It provides a unified view of nonlinear properties in many different systems and highlights many  new developments. While volume 1 concentrates on mathematical theory and computational techniques and challenges, which are essential for the study of nonlinear science, this second volume deals with nonlinear excitations in several fields. These excitations can be localized and transport energy and matter in the form of breathers, solitons, kinks or quodons with very different characteristics, which are discussed in the book. They can also transport electric charge, in which case they are known as polarobreathers or solectrons. Nonlinear excitations can influence function and structure in biology, as for example, protein folding. In crystals and other condensed matter, they can modify transport properties, reaction kinetics and interact with defects. There are also engineering applications in electric lattices, Josephson junction a...

  15. Consistency properties of chaotic systems driven by time-delayed feedback

    Science.gov (United States)

    Jüngling, T.; Soriano, M. C.; Oliver, N.; Porte, X.; Fischer, I.

    2018-04-01

    Consistency refers to the property of an externally driven dynamical system to respond in similar ways to similar inputs. In a delay system, the delayed feedback can be considered as an external drive to the undelayed subsystem. We analyze the degree of consistency in a generic chaotic system with delayed feedback by means of the auxiliary system approach. In this scheme an identical copy of the nonlinear node is driven by exactly the same signal as the original, allowing us to verify complete consistency via complete synchronization. In the past, the phenomenon of synchronization in delay-coupled chaotic systems has been widely studied using correlation functions. Here, we analytically derive relationships between characteristic signatures of the correlation functions in such systems and unequivocally relate them to the degree of consistency. The analytical framework is illustrated and supported by numerical calculations of the logistic map with delayed feedback for different replica configurations. We further apply the formalism to time series from an experiment based on a semiconductor laser with a double fiber-optical feedback loop. The experiment constitutes a high-quality replica scheme for studying consistency of the delay-driven laser and confirms the general theoretical results.

  16. Sliding mode control for synchronization of Roessler systems with time delays and its application to secure communication

    International Nuclear Information System (INIS)

    Chen, C-K; Yan, J-J; Liao, T-L

    2007-01-01

    This study is concerned with the chaos synchronization problem of Roessler systems subjected to multiple time delays. Based on the sliding mode control (SMC) technique, we first propose an adaptive switching surface which does not allow for a reduction of system order, as is the case in most SMC schemes. Then both a sliding mode controller and a new sufficient condition are derived to guarantee, respectively, the global hitting of the sliding mode and stability of the equivalent error dynamics in the sliding mode. Thus, the chaos synchronization for Roessler systems with multiple time delays can surely be achieved. Moreover, the proposed scheme is then applied to the secure communication system. Numerical simulations are included to demonstrate the feasibility of the proposed scheme

  17. Stochastic resonance in a time-delayed mono-stable system with correlated multiplicative and additive white noise

    International Nuclear Information System (INIS)

    Zhou Yu-Rong

    2011-01-01

    This paper considers the stochastic resonance for a time-delayed mono-stable system, driven by correlated multiplicative and additive white noise. It finds that the output signal-to-noise ratio (SNR) varies non-monotonically with the delayed times. The SNR varies non-monotonically with the increase of the intensities of the multiplicative and additive noise, with the increase of the correlation strength between the two noises, as well as with the system parameter. (general)

  18. Robust Guaranteed Cost Observer Design for Singular Markovian Jump Time-Delay Systems with Generally Incomplete Transition Probability

    Directory of Open Access Journals (Sweden)

    Yanbo Li

    2014-01-01

    Full Text Available This paper is devoted to the investigation of the design of robust guaranteed cost observer for a class of linear singular Markovian jump time-delay systems with generally incomplete transition probability. In this singular model, each transition rate can be completely unknown or only its estimate value is known. Based on stability theory of stochastic differential equations and linear matrix inequality (LMI technique, we design an observer to ensure that, for all uncertainties, the resulting augmented system is regular, impulse free, and robust stochastically stable with the proposed guaranteed cost performance. Finally, a convex optimization problem with LMI constraints is formulated to design the suboptimal guaranteed cost filters for linear singular Markovian jump time-delay systems with generally incomplete transition probability.

  19. Segmented Spiral Waves and Anti-phase Synchronization in a Model System with Two Identical Time-Delayed Coupled Layers

    International Nuclear Information System (INIS)

    Yuan Guoyong; Yang Shiping; Wang Guangrui; Chen Shigang

    2008-01-01

    In this paper, we consider a model system with two identical time-delayed coupled layers. Synchronization and anti-phase synchronization are exhibited in the reactive system without diffusion term. New segmented spiral waves, which are constituted by many thin trips, are found in each layer of two identical time-delayed coupled layers, and are different from the segmented spiral waves in a water-in-oil aerosol sodium bis(2-ethylhexyl) sulfosuccinate (AOT) micro-emulsion (ME) (BZ-AOT system), which consists of many small segments. 'Anti-phase spiral wave synchronization' can be realized between the first layer and the second one. For different excitable parameters, we also give the minimum values of the coupling strength to generate segmented spiral waves and the tip orbits of spiral waves in the whole bilayer.

  20. Multivariable predictive control considering time delay for load-frequency control in multi-area power systems

    Directory of Open Access Journals (Sweden)

    Daniar Sabah

    2016-12-01

    Full Text Available In this paper, a multivariable model based predictive control (MPC is proposed for the solution of load frequency control (LFC in a multi-area interconnected power system. The proposed controller is designed to consider time delay, generation rate constraint and multivariable nature of the LFC system, simultaneously. A new formulation of the MPC is presented to compensate time delay. The generation rate constraint is considered by employing a constrained MPC and economic allocation of the generation is further guaranteed by an innovative modification in the predictive control objective function. The effectiveness of proposed scheme is verified through time-based simulations on the standard 39-bus test system and the responses are then compared with the proportional-integral controller. The evaluation of the results reveals that the proposed control scheme offers satisfactory performance with fast responses.

  1. Stability Analysis of Positive Polynomial Fuzzy-Model-Based Control Systems with Time Delay under Imperfect Premise Matching

    OpenAIRE

    Li, Xiaomiao; Lam, Hak Keung; Song, Ge; Liu, Fucai

    2017-01-01

    This paper deals with the stability and positivity analysis of polynomial-fuzzy-model-based ({PFMB}) control systems with time delay, which is formed by a polynomial fuzzy model and a polynomial fuzzy controller connected in a closed loop, under imperfect premise matching. To improve the design and realization flexibility, the polynomial fuzzy model and the polynomial fuzzy controller are allowed to have their own set of premise membership functions. A sum-of-squares (SOS)-based stability ana...

  2. Time-delayed feedback control of diffusion in random walkers

    Science.gov (United States)

    Ando, Hiroyasu; Takehara, Kohta; Kobayashi, Miki U.

    2017-07-01

    Time delay in general leads to instability in some systems, while specific feedback with delay can control fluctuated motion in nonlinear deterministic systems to a stable state. In this paper, we consider a stochastic process, i.e., a random walk, and observe its diffusion phenomenon with time-delayed feedback. As a result, the diffusion coefficient decreases with increasing delay time. We analytically illustrate this suppression of diffusion by using stochastic delay differential equations and justify the feasibility of this suppression by applying time-delayed feedback to a molecular dynamics model.

  3. Amplification of weak signals via the non-adiabatic regime of stochastic resonance in a bistable dynamical system with time delay

    International Nuclear Information System (INIS)

    Du Luchun; Mei Dongcheng

    2011-01-01

    The non-adiabatic regime of stochastic resonance (SR) in a bistable system with time delay, an additive white noise and a periodic signal was investigated. The signal power amplification η was employed to characterize the SR of the system. The simulation results indicate that (i) in the case of intermediate frequency Ω of the periodic signal, the typical behavior of SR is lowered monotonically by increasing the delay time τ; in the case of large Ω, τ weakens the SR behavior and then enhances it, with a non-monotonic behavior as a function of time delay; (ii) time delay induces SR when A is above the threshold, whereas no such resonance exists in the absence of time delay; (iii) time delay induces a transition from bimodal to unimodal configuration of η; (iv) varying the particular form of time delay results in different phenomena.

  4. Effect of time delay on the upper bound of the time derivative of information entropy in a stochastic dynamical system

    International Nuclear Information System (INIS)

    Zhang Min-Min; Mei Dong-Cheng; Wang Can-Jun

    2011-01-01

    The effects of the time delay on the upper bound of the time derivative of information entropy are investigated in a time-delayed dynamical system driven by correlated noise. Using the Markov approximation of the stochastic delay differential equations and the Schwartz inequality principle, we obtain an analytical expression for the upper bound U B (t) of the time derivative of the information entropy. The results show that there is a critical value of τ (delay time), and U B (t) presents opposite behaviours on difference sides of the critical value. For the case of the weak additive noise, τ can induce a reentrance transition. Delay time τ also causes a reversal behaviour in U B (t)-λ plot, where λ denotes the degree of the correlation between the two noises. (general)

  5. H∞ Control of Coronary Artery Input Time-Delay System via the Free-Matrix-Based Integral Inequality

    Directory of Open Access Journals (Sweden)

    Sha-sha Li

    2018-01-01

    Full Text Available The issue of H∞ control for the coronary artery input time-delay system with external disturbance is of concern. To further reduce conservation, we utilize the free-matrix-based integral inequality, Wirtinger-based integral inequality, and reciprocal convex combination approach to construct Lyapunov-Krasovskii function (LKF. Then a sufficient condition for controller design which can guarantee robust synchronization the coronary artery system is represented in terms of linear matrix inequality (LMI. Finally, a numerical example is exploited to show the effectiveness of the proposed methods.

  6. Tuning of an optimal fuzzy PID controller with stochastic algorithms for networked control systems with random time delay.

    Science.gov (United States)

    Pan, Indranil; Das, Saptarshi; Gupta, Amitava

    2011-01-01

    An optimal PID and an optimal fuzzy PID have been tuned by minimizing the Integral of Time multiplied Absolute Error (ITAE) and squared controller output for a networked control system (NCS). The tuning is attempted for a higher order and a time delay system using two stochastic algorithms viz. the Genetic Algorithm (GA) and two variants of Particle Swarm Optimization (PSO) and the closed loop performances are compared. The paper shows that random variation in network delay can be handled efficiently with fuzzy logic based PID controllers over conventional PID controllers. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Impulsive control for a Takagi–Sugeno fuzzy model with time-delay and its application to chaotic systems

    International Nuclear Information System (INIS)

    Shi-Guo, Peng; Si-Min, Yu

    2009-01-01

    A control approach where the fuzzy logic methodology is combined with impulsive control is developed for controlling some time-delay chaotic systems in this paper. We first introduce impulses into each subsystem with delay of the Takagi–Sugeno (TS) fuzzy IF–THEN rules and then present a unified TS impulsive fuzzy model with delay for chaos control. Based on the new model, a simple and unified set of conditions for controlling chaotic systems is derived by the Lyapunov–Razumikhin method, and a design procedure for estimating bounds on control matrices is also given. Several numerical examples are presented to illustrate the effectiveness of this method

  8. Stability Analysis of Networked Control Systems with Random Time Delays and Packet Dropouts Modeled by Markov Chains

    Directory of Open Access Journals (Sweden)

    Li Qiu

    2013-01-01

    unified Markov jump model. The random time delays and packet dropouts existed in feedback communication link are modeled by two independent Markov chains; the resulting closed-loop system is described by a new Markovian jump linear system (MJLS with Markov delays. Sufficient conditions of the stochastic stability for NCSs is obtained by constructing a novel Lyapunov functional, and the mode-dependent output feedback controller design method is presented based on linear matrix inequality (LMI technique. A numerical example is given to illustrate the effectiveness of the proposed method.

  9. Robust output observer-based control of neutral uncertain systems with discrete and distributed time delays: LMI optimization approach

    International Nuclear Information System (INIS)

    Chen, J.-D.

    2007-01-01

    In this paper, the robust control problem of output dynamic observer-based control for a class of uncertain neutral systems with discrete and distributed time delays is considered. Linear matrix inequality (LMI) optimization approach is used to design the new output dynamic observer-based controls. Three classes of observer-based controls are proposed and the maximal perturbed bound is given. Based on the results of this paper, the constraint of matrix equality is not necessary for designing the observer-based controls. Finally, a numerical example is given to illustrate the usefulness of the proposed method

  10. Robust Moving Horizon H∞ Control of Discrete Time-Delayed Systems with Interval Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    F. Yıldız Tascikaraoglu

    2014-01-01

    Full Text Available In this study, design of a delay-dependent type moving horizon state-feedback control (MHHC is considered for a class of linear discrete-time system subject to time-varying state delays, norm-bounded uncertainties, and disturbances with bounded energies. The closed-loop robust stability and robust performance problems are considered to overcome the instability and poor disturbance rejection performance due to the existence of parametric uncertainties and time-delay appeared in the system dynamics. Utilizing a discrete-time Lyapunov-Krasovskii functional, some delay-dependent linear matrix inequality (LMI based conditions are provided. It is shown that if one can find a feasible solution set for these LMI conditions iteratively at each step of run-time, then we can construct a control law which guarantees the closed-loop asymptotic stability, maximum disturbance rejection performance, and closed-loop dissipativity in view of the actuator limitations. Two numerical examples with simulations on a nominal and uncertain discrete-time, time-delayed systems, are presented at the end, in order to demonstrate the efficiency of the proposed method.

  11. Noise enhanced stability effect in a metastable system with two different kinds of time delays and cross-correlated noises

    International Nuclear Information System (INIS)

    Jia Zhenglin; Mei Dongcheng

    2011-01-01

    We numerically investigate the influences of the time delay τ simultaneously existing in both the deterministic and fluctuating forces, the time delay τ r existing only in the fluctuating force and the cross-correlation strength λ on the enhancement of the mean first-passage time (MFPT) as a function of the additive D and the multiplicative α noise intensities in a metastable system. The results indicate that both the multiplicative and additive noises can induce the noise-enhanced stability (NES) effect. An increase of λ can enhance or weaken the NES effect induced by the additive noise, depending on the value of τ. However, it weakens the NES effect induced by the multiplicative noise with a suppression of the effect of λ caused by increasing τ. The τ-induced critical behavior on both NES effects can be observed, i.e. an increase of τ can enhance or restrain the NES effects induced by the two kinds of noises. With an increase of λ and τ, MFPT versus D shows a transition from one peak to two peaks and finally one peak, implying the multiple NES effect caused by λ and τ. An increase of τ r can enhance the NES effect induced by the additive noise and weaken the NES effect induced by the multiplicative noise.

  12. Sum-of-squares based observer design for polynomial systems with a known fixed time delay

    Czech Academy of Sciences Publication Activity Database

    Rehák, Branislav

    2015-01-01

    Roč. 51, č. 5 (2015), s. 858-873 ISSN 0023-5954 R&D Projects: GA ČR GA13-02149S Institutional support: RVO:67985556 Keywords : sum-of-squares polynomial * observer * polynomial system Subject RIV: BC - Control Systems Theory Impact factor: 0.628, year: 2015 http://www.kybernetika.cz/content/2015/5/856

  13. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise

    International Nuclear Information System (INIS)

    Shu Chang-Zheng; Nie Lin-Ru; Zhou Zhong-Rao

    2012-01-01

    Stochastic resonance (SR)-like and resonance suppression (RS)-like phenomena in a time-delayed bistable system driven by additive white noise are investigated by means of stochastic simulations of the power spectrum, the quality factor of the power spectrum, and the mean first-passage time (MFPT) of the system. The calculative results indicate that: (i) as the system is driven by a small periodic signal, the quality factor as a function delay time exhibits a maximal value at smaller noise intensities, i.e., an SR-like phenomenon. With the increment in additive noise intensity, the extremum gradually disappears and the quality factor decreases monotonously with delay time. (ii) As the additive noise intensity is smaller, the curve of the MFPT with respect to delay time displays a peak, i.e., an RS-like phenomenon. At higher levels of noise, however, the non-monotonic behavior is lost. (general)

  14. Stability Analysis and H∞ Model Reduction for Switched Discrete-Time Time-Delay Systems

    Directory of Open Access Journals (Sweden)

    Zheng-Fan Liu

    2014-01-01

    Full Text Available This paper is concerned with the problem of exponential stability and H∞ model reduction of a class of switched discrete-time systems with state time-varying delay. Some subsystems can be unstable. Based on the average dwell time technique and Lyapunov-Krasovskii functional (LKF approach, sufficient conditions for exponential stability with H∞ performance of such systems are derived in terms of linear matrix inequalities (LMIs. For the high-order systems, sufficient conditions for the existence of reduced-order model are derived in terms of LMIs. Moreover, the error system is guaranteed to be exponentially stable and an H∞ error performance is guaranteed. Numerical examples are also given to demonstrate the effectiveness and reduced conservatism of the obtained results.

  15. Robust H∞ Control for Singular Time-Delay Systems via Parameterized Lyapunov Functional Approach

    Directory of Open Access Journals (Sweden)

    Li-li Liu

    2014-01-01

    Full Text Available A new version of delay-dependent bounded real lemma for singular systems with state delay is established by parameterized Lyapunov-Krasovskii functional approach. In order to avoid generating nonconvex problem formulations in control design, a strategy that introduces slack matrices and decouples the system matrices from the Lyapunov-Krasovskii parameter matrices is used. Examples are provided to demonstrate that the results in this paper are less conservative than the existing corresponding ones in the literature.

  16. A normalized PID controller in networked control systems with varying time delays.

    Science.gov (United States)

    Tran, Hoang-Dung; Guan, Zhi-Hong; Dang, Xuan-Kien; Cheng, Xin-Ming; Yuan, Fu-Shun

    2013-09-01

    It requires not only simplicity and flexibility but also high specified stability and robustness of system to design a PI/PID controller in such complicated networked control systems (NCSs) with delays. By gain and phase margins approach, this paper proposes a novel normalized PI/PID controller for NCSs based on analyzing the stability and robustness of system under the effect of network-induced delays. Specifically, We take into account the total measured network delays to formulate the gain and phase margins of the closed-loop system in the form of a set of equations. With pre-specified values of gain and phase margins, this set of equations is then solved for calculating the closed forms of control parameters which enable us to propose the normalized PI/PID controller simultaneously satisfying the following two requirements: (1) simplicity without re-solving the optimization problem for a new process, (2) high flexibility to cope with large scale of random delays and deal with many different processes in different conditions of network. Furthermore, in our method, the upper bound of random delay can be estimated to indicate the operating domain of proposed PI/PID controller. Finally, simulation results are shown to demonstrate the advantages of our proposed controller in many situations of network-induced delays. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Consensus of discrete-time multi-agent systems with adversaries and time delays

    Science.gov (United States)

    Wu, Yiming; He, Xiongxiong; Liu, Shuai; Xie, Lihua

    2014-05-01

    This paper studies the resilient asymptotic consensus problem for discrete-time multi-agent systems in the presence of adversaries and transmission delays. The network is assumed to have ? loyal agents and ? adversarial agents, and each loyal agent in the network has no knowledge of the network topology other than an upper bound on the number of adversarial agents in its neighborhood. For the considered networked system, only locally delayed information is available for each loyal agent, and also the information flow is directed and a control protocol using only local information is designed to guarantee the realization of consensus with respect to communication graph, which satisfies a featured network robustness. Numerical examples are finally given to demonstrate the effectiveness of theoretical results.

  18. Consensus of Discrete Multiagent System with Various Time Delays and Environmental Disturbances

    Directory of Open Access Journals (Sweden)

    Zheping Yan

    2014-12-01

    Full Text Available In this paper, the consensus problem of discrete multiagent systems with time varying sampling periods is studied. Firstly, with thorough analysis of various delays among agents, the control input of each agent is designed with consideration of sending delay and receiving delay. With construction of discrete dynamics of state error vector, it is proved by applying Halanay inequality that consensus of the system can be reached. Further, the definition of bounded consensus is proposed in the situation where environmental disturbances exist. In order to handle this problem, the Halanay inequality is extended into a more general one with boundedness property. Based on the new Halanay inequality obtained, the boundedness of consensus error is guaranteed. At last, simulation examples are presented to demonstrate the theoretical conclusions.

  19. A Novel Approach to Sliding Mode Control of Time-Delay Systems

    Directory of Open Access Journals (Sweden)

    Hongwei Xia

    2013-01-01

    Full Text Available This paper is concerned with the sliding mode control for a class of linear systems with time-varying delays. By utilizing a novel Lyapunov-Krasovskii functional and combining it with the delay fractioning approach as well as the free-weighting matrix technology, a sufficient condition is established such that the resulting sliding mode dynamics is asymptotically stable. Then, a sliding mode controller for reaching motion is synthesized to guarantee that the trajectories of the resulting closed-loop system can be driven onto a prescribed sliding surface and maintained there for all subsequent time. A numerical example is provided to illustrate the effectiveness of the proposed design approach.

  20. A novel adaptive synchronization control of a class of master-slave large-scale systems with unknown channel time-delay

    Science.gov (United States)

    Shen, Qikun; Zhang, Tianping

    2015-05-01

    The paper addresses a practical issue for adaptive synchronization in master-slave large-scale systems with constant channel time-delay., and a novel adaptive synchronization control scheme is proposed to guarantee the synchronization errors asymptotically converge to the origin, in which the matching condition as in the related literatures is not necessary. The real value of channel time-delay can be estimated online by a proper adaptation mechanism, which removes the conditions that the channel time-delay should be known exactly as in existing works. Finally, simulation results demonstrate the effectiveness of the approach.

  1. Optimal control strategy for an impulsive stochastic competition system with time delays and jumps

    Science.gov (United States)

    Liu, Lidan; Meng, Xinzhu; Zhang, Tonghua

    2017-07-01

    Driven by both white and jump noises, a stochastic delayed model with two competitive species in a polluted environment is proposed and investigated. By using the comparison theorem of stochastic differential equations and limit superior theory, sufficient conditions for persistence in mean and extinction of two species are established. In addition, we obtain that the system is asymptotically stable in distribution by using ergodic method. Furthermore, the optimal harvesting effort and the maximum of expectation of sustainable yield (ESY) are derived from Hessian matrix method and optimal harvesting theory of differential equations. Finally, some numerical simulations are provided to illustrate the theoretical results.

  2. Time Delay of CGM Sensors

    Science.gov (United States)

    Schmelzeisen-Redeker, Günther; Schoemaker, Michael; Kirchsteiger, Harald; Freckmann, Guido; Heinemann, Lutz; del Re, Luigi

    2015-01-01

    Background: Continuous glucose monitoring (CGM) is a powerful tool to support the optimization of glucose control of patients with diabetes. However, CGM systems measure glucose in interstitial fluid but not in blood. Rapid changes in one compartment are not accompanied by similar changes in the other, but follow with some delay. Such time delays hamper detection of, for example, hypoglycemic events. Our aim is to discuss the causes and extent of time delays and approaches to compensate for these. Methods: CGM data were obtained in a clinical study with 37 patients with a prototype glucose sensor. The study was divided into 5 phases over 2 years. In all, 8 patients participated in 2 phases separated by 8 months. A total number of 108 CGM data sets including raw signals were used for data analysis and were processed by statistical methods to obtain estimates of the time delay. Results: Overall mean (SD) time delay of the raw signals with respect to blood glucose was 9.5 (3.7) min, median was 9 min (interquartile range 4 min). Analysis of time delays observed in the same patients separated by 8 months suggests a patient dependent delay. No significant correlation was observed between delay and anamnestic or anthropometric data. The use of a prediction algorithm reduced the delay by 4 minutes on average. Conclusions: Prediction algorithms should be used to provide real-time CGM readings more consistent with simultaneous measurements by SMBG. Patient specificity may play an important role in improving prediction quality. PMID:26243773

  3. A Study of Accuracy and Time Delay for Bilateral Master-Slave Industrial Robotic Arm Manipulator System

    Directory of Open Access Journals (Sweden)

    Mansor Nuratiqa Natrah

    2018-01-01

    Full Text Available Bilateral master-slave industrial robotic arm manipulator system is an advanced technology used to help human to interact with environments that are unreachable to human, due to its remoteness or perilous. The system has been used in different areas such as tele-surgery, autonomous tele-operation for sea and space operation and handling explosive or high radiation operation fields. It is beneficial both for science and society. Remarkably, the system is not common and generally used in Malaysia. Likewise, the number of research conducted that focused about this technology in our country manufacturing industry are not yet discovered and existent. The implementation of this bilateral manipulator system in an industrial robot could be useful for industrial imminent and development over our country and people, specifically for production yield size and human operative. Hence, the study of bilateral robotic arm manipulator system in an industrial robot and analyzation of its performance and time delay in 3 differ controllers will be discussed to attest the efficiency and its effectiveness on the said design system. The experiment conducted was on KUKA youBot arm in V-Rep simulation with three different controllers (P, PD, PID.

  4. An active balance board system with real-time control of stiffness and time-delay to assess mechanisms of postural stability.

    Science.gov (United States)

    Cruise, Denise R; Chagdes, James R; Liddy, Joshua J; Rietdyk, Shirley; Haddad, Jeffrey M; Zelaznik, Howard N; Raman, Arvind

    2017-07-26

    Increased time-delay in the neuromuscular system caused by neurological disorders, concussions, or advancing age is an important factor contributing to balance loss (Chagdes et al., 2013, 2016a,b). We present the design and fabrication of an active balance board system that allows for a systematic study of stiffness and time-delay induced instabilities in standing posture. Although current commercial balance boards allow for variable stiffness, they do not allow for manipulation of time-delay. Having two controllable parameters can more accurately determine the cause of balance deficiencies, and allows us to induce instabilities even in healthy populations. An inverted pendulum model of human posture on such an active balance board predicts that reduced board rotational stiffness destabilizes upright posture through board tipping, and limit cycle oscillations about the upright position emerge as feedback time-delay is increased. We validate these two mechanisms of instability on the designed balance board, showing that rotational stiffness and board time-delay induced the predicted postural instabilities in healthy, young adults. Although current commercial balance boards utilize control of rotational stiffness, real-time control of both stiffness and time-delay on an active balance board is a novel and innovative manipulation to reveal balance deficiencies and potentially improve individualized balance training by targeting multiple dimensions contributing to standing balance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A new modelling and identification scheme for time-delay systems with experimental investigation: a relay feedback approach

    Science.gov (United States)

    Pandey, Saurabh; Majhi, Somanath; Ghorai, Prasenjit

    2017-07-01

    In this paper, the conventional relay feedback test has been modified for modelling and identification of a class of real-time dynamical systems in terms of linear transfer function models with time-delay. An ideal relay and unknown systems are connected through a negative feedback loop to bring the sustained oscillatory output around the non-zero setpoint. Thereafter, the obtained limit cycle information is substituted in the derived mathematical equations for accurate identification of unknown plants in terms of overdamped, underdamped, critically damped second-order plus dead time and stable first-order plus dead time transfer function models. Typical examples from the literature are included for the validation of the proposed identification scheme through computer simulations. Subsequently, the comparisons between estimated model and true system are drawn through integral absolute error criterion and frequency response plots. Finally, the obtained output responses through simulations are verified experimentally on real-time liquid level control system using Yokogawa Distributed Control System CENTUM CS3000 set up.

  6. Nonlinear systems

    National Research Council Canada - National Science Library

    Drazin, P. G

    1992-01-01

    This book is an introduction to the theories of bifurcation and chaos. It treats the solution of nonlinear equations, especially difference and ordinary differential equations, as a parameter varies...

  7. Time-delay-induced dynamical behaviors for an ecological vegetation growth system driven by cross-correlated multiplicative and additive noises.

    Science.gov (United States)

    Wang, Kang-Kang; Ye, Hui; Wang, Ya-Jun; Li, Sheng-Hong

    2018-05-14

    In this paper, the modified potential function, the stationary probability distribution function (SPDF), the mean growth time and the mean degeneration time for a vegetation growth system with time delay are investigated, where the vegetation system is assumed to be disturbed by cross-correlated multiplicative and additive noises. The results reveal some fact that the multiplicative and additive noises can both reduce the stability and speed up the decline of the vegetation system, while the strength of the noise correlation and time delay can both enhance the stability of the vegetation and slow down the depression process of the ecological system. On the other hand, with regard to the impacts of noises and time delay on the mean development and degeneration processes of the ecological system, it is discovered that 1) in the development process of the vegetation population, the increase of the noise correlation strength and time delay will restrain the regime shift from the barren state to the boom one, while the increase of the additive noise can lead to the fast regime shift from the barren state to the boom one. 2) Conversely, in the depression process of the ecological system, the increase of the strength of the correlation noise and time delay will prevent the regime shift from the boom state to the barren one. Comparatively, the increase of the additive and multiplicative noises can accelerate the regime shift from the boom state to the barren state.

  8. Combined action of time-delay and colored cross-associated multiplicative and additive noises on stability and stochastic resonance for a stochastic metapopulation system

    Science.gov (United States)

    Wang, Kang-Kang; Zong, De-Cai; Wang, Ya-Jun; Li, Sheng-Hong

    2016-05-01

    In this paper, the transition between the stable state of a big density and the extinction state and stochastic resonance (SR) for a time-delayed metapopulation system disturbed by colored cross-correlated noises are investigated. By applying the fast descent method, the small time-delay approximation and McNamara and Wiesenfeld's SR theory, we investigate the impacts of time-delay, the multiplicative, additive noises and colored cross-correlated noise on the SNR and the shift between the two states of the system. Numerical results show that the multiplicative, additive noises and time-delay can all speed up the transition from the stable state to the extinction state, while the correlation noise and its correlation time can slow down the extinction process of the population system. With respect to SNR, the multiplicative noise always weakens the SR effect, while noise correlation time plays a dual role in motivating the SR phenomenon. Meanwhile, time-delay mainly plays a negative role in stimulating the SR phenomenon. Conversely, it could motivate the SR effect to increase the strength of the cross-correlation noise in the SNR-β plot, while the increase of additive noise intensity will firstly excite SR, and then suppress the SR effect.

  9. Periodic solutions in reaction–diffusion equations with time delay

    International Nuclear Information System (INIS)

    Li, Li

    2015-01-01

    Spatial diffusion and time delay are two main factors in biological and chemical systems. However, the combined effects of them on diffusion systems are not well studied. As a result, we investigate a nonlinear diffusion system with delay and obtain the existence of the periodic solutions using coincidence degree theory. Moreover, two numerical examples confirm our theoretical results. The obtained results can also be applied in other related fields

  10. Performance investigation of stochastic resonance in bistable systems with time-delayed feedback and three types of asymmetries

    Science.gov (United States)

    Liu, Jian; Wang, Youguo

    2018-03-01

    The simultaneous influence of potential asymmetries and time-delayed feedback on stochastic resonance (SR) subject to both periodic force and additive Gaussian white noise is investigated by using two-state theory and small-delay approximation, where three types of asymmetries include well-depth, well-width, and both well-depth and well-width asymmetries, respectively. The asymmetric types and time-delayed feedback determine the behaviors of SR, especially output signal-to-noise ratio (SNR) peaks, optimal additive noise intensity and feedback intensity. Moreover, the largest SNR in asymmetric SR is found to be relatively larger than symmetric one in some cases, whereas in other cases the symmetric SR is superior to asymmetric one, which is of dependence on time delay and feedback intensity. In addition, the SR with well-width asymmetry can suppress stronger noise than that with well-depth asymmetry under the action of same time delay, which is beneficial to weak signal detection.

  11. Mittag-Leffler Stability Theorem for Fractional Nonlinear Systems with Delay

    Directory of Open Access Journals (Sweden)

    S. J. Sadati

    2010-01-01

    Full Text Available Fractional calculus started to play an important role for analysis of the evolution of the nonlinear dynamical systems which are important in various branches of science and engineering. In this line of taught in this paper we studied the stability of fractional order nonlinear time-delay systems for Caputo's derivative, and we proved two theorems for Mittag-Leffler stability of the fractional nonlinear time delay systems.

  12. METHODS AND MEANS OF MEASURING THE COORDINATES OF AIRCRAFTS BY TIME DELAY OF SIGNALS IN MULTIPOSITIONING RADIO RANGEFINDING AERONAVIGATION AND LANDING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Ya. V. Kondrashov

    2014-01-01

    Full Text Available The principles of operation of radio range finding interrogation-reply system to provide navigational and landing operations of aircraft are considered. A precise method of measuring of time delays of signals for determining the location of aircraft with high accuracy is proposed.

  13. Advances and applications in nonlinear control systems

    CERN Document Server

    Volos, Christos

    2016-01-01

    The book reports on the latest advances and applications of nonlinear control systems. It consists of 30 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought out in the broad areas of nonlinear control systems such as robotics, nonlinear circuits, power systems, memristors, underwater vehicles, chemical processes, observer design, output regulation, backstepping control, sliding mode control, time-delayed control, variables structure control, robust adaptive control, fuzzy logic control, chaos, hyperchaos, jerk systems, hyperjerk systems, chaos control, chaos synchronization, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in nonlinear control systems. This book will serve as a reference book for graduate students and researchers with a basic knowledge of electrical and control systems engineering. The resulting design proce...

  14. Time-Delay Interferometry

    Directory of Open Access Journals (Sweden)

    Massimo Tinto

    2014-08-01

    Full Text Available Equal-arm detectors of gravitational radiation allow phase measurements many orders of magnitude below the intrinsic phase stability of the laser injecting light into their arms. This is because the noise in the laser light is common to both arms, experiencing exactly the same delay, and thus cancels when it is differenced at the photo detector. In this situation, much lower level secondary noises then set the overall performance. If, however, the two arms have different lengths (as will necessarily be the case with space-borne interferometers, the laser noise experiences different delays in the two arms and will hence not directly cancel at the detector. In order to solve this problem, a technique involving heterodyne interferometry with unequal arm lengths and independent phase-difference readouts has been proposed. It relies on properly time-shifting and linearly combining independent Doppler measurements, and for this reason it has been called time-delay interferometry (TDI. This article provides an overview of the theory, mathematical foundations, and experimental aspects associated with the implementation of TDI. Although emphasis on the application of TDI to the Laser Interferometer Space Antenna (LISA mission appears throughout this article, TDI can be incorporated into the design of any future space-based mission aiming to search for gravitational waves via interferometric measurements. We have purposely left out all theoretical aspects that data analysts will need to account for when analyzing the TDI data combinations.

  15. Time delay of quantum scattering processes

    International Nuclear Information System (INIS)

    Martin, P.A.

    1981-01-01

    The author presents various aspects of the theory of the time delay of scattering processes. The author mainly studies non-relativistic two-body scattering processes, first summarizing briefly the theory of simple scattering systems. (Auth.)

  16. H∞ Filtering for Discrete Markov Jump Singular Systems with Mode-Dependent Time Delay Based on T-S Fuzzy Model

    Directory of Open Access Journals (Sweden)

    Cheng Gong

    2014-01-01

    Full Text Available This paper investigates the H∞ filtering problem of discrete singular Markov jump systems (SMJSs with mode-dependent time delay based on T-S fuzzy model. First, by Lyapunov-Krasovskii functional approach, a delay-dependent sufficient condition on H∞-disturbance attenuation is presented, in which both stability and prescribed H∞ performance are required to be achieved for the filtering-error systems. Then, based on the condition, the delay-dependent H∞ filter design scheme for SMJSs with mode-dependent time delay based on T-S fuzzy model is developed in term of linear matrix inequality (LMI. Finally, an example is given to illustrate the effectiveness of the result.

  17. A Reduced-Order Controller Considering High-Order Modal Information of High-Rise Buildings for AMD Control System with Time-Delay

    Directory of Open Access Journals (Sweden)

    Zuo-Hua Li

    2017-01-01

    Full Text Available Time-delays of control force calculation, data acquisition, and actuator response will degrade the performance of Active Mass Damper (AMD control systems. To reduce the influence, model reduction method is used to deal with the original controlled structure. However, during the procedure, the related hierarchy information of small eigenvalues will be directly discorded. As a result, the reduced-order model ignores the information of high-order mode, which will reduce the design accuracy of an AMD control system. In this paper, a new reduced-order controller based on the improved Balanced Truncation (BT method is designed to reduce the calculation time and to retain the abandoned high-order modal information. It includes high-order natural frequency, damping ratio, and vibration modal information of the original structure. Then, a control gain design method based on Guaranteed Cost Control (GCC algorithm is presented to eliminate the adverse effects of data acquisition and actuator response time-delays in the design process of the reduced-order controller. To verify its effectiveness, the proposed methodology is applied to a numerical example of a ten-storey frame and an experiment of a single-span four-storey steel frame. Both numerical and experimental results demonstrate that the reduced-order controller with GCC algorithm has an excellent control effect; meanwhile it can compensate time-delays effectively.

  18. An Improved Genetic Algorithm to Optimize Spatial Locations for Double-Wishbone Type Suspension System with Time Delay

    Directory of Open Access Journals (Sweden)

    Qiang Li

    2018-01-01

    Full Text Available By taking account of double-wishbone independent suspension with two unequal-length arms, the coordinate values of articulated geometry are based on structural limitations and constraint equations of alignment parameters. The sensitivities of front wheel alignment parameters are analyzed using the space analytic geometry method with insight module in ADAMS® software. The multiobjective optimization functions are designed to calculate the coordinate values of hardpoints with front suspension since the effect of time delay due to wheelbase can be easily obtained by vehicle speed. The K&C characteristics have been investigated using GA solutions in the simulation environment. The camber angle decreases from 1.152° to 1.05° and toe-in angle reduces from 1.036° to 0.944°. The simulation results demonstrate that the suggested optimization method is able to satisfy the suspension motion to enhance ride comfort. Experimental results, obtained by K&C test bench, also indicate that the optimized suspension can track the desired trajectory while keeping the vehicle performance in various road conditions.

  19. Polarization chaos and random bit generation in nonlinear fiber optics induced by a time-delayed counter-propagating feedback loop.

    Science.gov (United States)

    Morosi, J; Berti, N; Akrout, A; Picozzi, A; Guasoni, M; Fatome, J

    2018-01-22

    In this manuscript, we experimentally and numerically investigate the chaotic dynamics of the state-of-polarization in a nonlinear optical fiber due to the cross-interaction between an incident signal and its intense backward replica generated at the fiber-end through an amplified reflective delayed loop. Thanks to the cross-polarization interaction between the two-delayed counter-propagating waves, the output polarization exhibits fast temporal chaotic dynamics, which enable a powerful scrambling process with moving speeds up to 600-krad/s. The performance of this all-optical scrambler was then evaluated on a 10-Gbit/s On/Off Keying telecom signal achieving an error-free transmission. We also describe how these temporal and chaotic polarization fluctuations can be exploited as an all-optical random number generator. To this aim, a billion-bit sequence was experimentally generated and successfully confronted to the dieharder benchmarking statistic tools. Our experimental analysis are supported by numerical simulations based on the resolution of counter-propagating coupled nonlinear propagation equations that confirm the observed behaviors.

  20. Gravitational Lens Time Delays Using Polarization Monitoring

    Directory of Open Access Journals (Sweden)

    Andrew Biggs

    2017-11-01

    Full Text Available Gravitational lens time delays provide a means of measuring the expansion of the Universe at high redshift (and therefore in the ‘Hubble flow’ that is independent of local calibrations. It was hoped that many of the radio lenses found in the JVAS/CLASS survey would yield time delays as these were selected to have flat spectra and are dominated by multiple compact components. However, despite extensive monitoring with the Very Large Array (VLA, time delays have only been measured for three of these systems (out of 22. We have begun a programme to reanalyse the existing VLA monitoring data with the goal of producing light curves in polarized flux and polarization position angle, either to improve delay measurements or to find delays for new sources. Here, we present preliminary results on the lens system B1600+434 which demonstrate the presence of correlated and substantial polarization variability in each image.

  1. Nonlinear optical systems

    CERN Document Server

    Lugiato, Luigi; Brambilla, Massimo

    2015-01-01

    Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.

  2. The Strong Lensing Time Delay Challenge (2014)

    Science.gov (United States)

    Liao, Kai; Dobler, G.; Fassnacht, C. D.; Treu, T.; Marshall, P. J.; Rumbaugh, N.; Linder, E.; Hojjati, A.

    2014-01-01

    Time delays between multiple images in strong lensing systems are a powerful probe of cosmology. At the moment the application of this technique is limited by the number of lensed quasars with measured time delays. However, the number of such systems is expected to increase dramatically in the next few years. Hundred such systems are expected within this decade, while the Large Synoptic Survey Telescope (LSST) is expected to deliver of order 1000 time delays in the 2020 decade. In order to exploit this bounty of lenses we needed to make sure the time delay determination algorithms have sufficiently high precision and accuracy. As a first step to test current algorithms and identify potential areas for improvement we have started a "Time Delay Challenge" (TDC). An "evil" team has created realistic simulated light curves, to be analyzed blindly by "good" teams. The challenge is open to all interested parties. The initial challenge consists of two steps (TDC0 and TDC1). TDC0 consists of a small number of datasets to be used as a training template. The non-mandatory deadline is December 1 2013. The "good" teams that complete TDC0 will be given access to TDC1. TDC1 consists of thousands of lightcurves, a number sufficient to test precision and accuracy at the subpercent level, necessary for time-delay cosmography. The deadline for responding to TDC1 is July 1 2014. Submissions will be analyzed and compared in terms of predefined metrics to establish the goodness-of-fit, efficiency, precision and accuracy of current algorithms. This poster describes the challenge in detail and gives instructions for participation.

  3. Anticontrol of Hopf bifurcation and control of chaos for a finance system through washout filters with time delay.

    Science.gov (United States)

    Zhao, Huitao; Lu, Mengxia; Zuo, Junmei

    2014-01-01

    A controlled model for a financial system through washout-filter-aided dynamical feedback control laws is developed, the problem of anticontrol of Hopf bifurcation from the steady state is studied, and the existence, stability, and direction of bifurcated periodic solutions are discussed in detail. The obtained results show that the delay on price index has great influences on the financial system, which can be applied to suppress or avoid the chaos phenomenon appearing in the financial system.

  4. Time Delay Estimation Algoritms for Echo Cancellation

    Directory of Open Access Journals (Sweden)

    Kirill Sakhnov

    2011-01-01

    Full Text Available The following case study describes how to eliminate echo in a VoIP network using delay estimation algorithms. It is known that echo with long transmission delays becomes more noticeable to users. Thus, time delay estimation, as a part of echo cancellation, is an important topic during transmission of voice signals over packetswitching telecommunication systems. An echo delay problem associated with IP-based transport networks is discussed in the following text. The paper introduces the comparative study of time delay estimation algorithm, used for estimation of the true time delay between two speech signals. Experimental results of MATLab simulations that describe the performance of several methods based on cross-correlation, normalized crosscorrelation and generalized cross-correlation are also presented in the paper.

  5. T-S Fuzzy Model-Based Approximation and Filter Design for Stochastic Time-Delay Systems with Hankel Norm Criterion

    Directory of Open Access Journals (Sweden)

    Yanhui Li

    2014-01-01

    Full Text Available This paper investigates the Hankel norm filter design problem for stochastic time-delay systems, which are represented by Takagi-Sugeno (T-S fuzzy model. Motivated by the parallel distributed compensation (PDC technique, a novel filtering error system is established. The objective is to design a suitable filter that guarantees the corresponding filtering error system to be mean-square asymptotically stable and to have a specified Hankel norm performance level γ. Based on the Lyapunov stability theory and the Itô differential rule, the Hankel norm criterion is first established by adopting the integral inequality method, which can make some useful efforts in reducing conservativeness. The Hankel norm filtering problem is casted into a convex optimization problem with a convex linearization approach, which expresses all the conditions for the existence of admissible Hankel norm filter as standard linear matrix inequalities (LMIs. The effectiveness of the proposed method is demonstrated via a numerical example.

  6. Time-delay analyzer with continuous discretization

    International Nuclear Information System (INIS)

    Bayatyan, G.L.; Darbinyan, K.T.; Mkrtchyan, K.K.; Stepanyan, S.S.

    1988-01-01

    A time-delay analyzer is described which when triggered by a start pulse of adjustable duration performs continuous discretization of the analyzed signal within nearly 22 ns time intervals, the recording in a memory unit with following slow read-out of the information to the computer and its processing. The time-delay analyzer consists of four CAMAC-VECTOR systems of unit width. With its help one can separate comparatively short, small-amplitude rare signals against the background of quasistationary noise processes. 4 refs.; 3 figs

  7. H∞ Excitation Control Design for Stochastic Power Systems with Input Delay Based on Nonlinear Hamiltonian System Theory

    Directory of Open Access Journals (Sweden)

    Weiwei Sun

    2015-01-01

    Full Text Available This paper presents H∞ excitation control design problem for power systems with input time delay and disturbances by using nonlinear Hamiltonian system theory. The impact of time delays introduced by remote signal transmission and processing in wide-area measurement system (WAMS is well considered. Meanwhile, the systems under investigation are disturbed by random fluctuation. First, under prefeedback technique, the power systems are described as a nonlinear Hamiltonian system. Then the H∞ excitation controller of generators connected to distant power systems with time delay and stochasticity is designed. Based on Lyapunov functional method, some sufficient conditions are proposed to guarantee the rationality and validity of the proposed control law. The closed-loop systems under the control law are asymptotically stable in mean square independent of the time delay. And we through a simulation of a two-machine power system prove the effectiveness of the results proposed in this paper.

  8. Time delayed Ensemble Nudging Method

    Science.gov (United States)

    An, Zhe; Abarbanel, Henry

    Optimal nudging method based on time delayed embedding theory has shows potentials on analyzing and data assimilation in previous literatures. To extend the application and promote the practical implementation, new nudging assimilation method based on the time delayed embedding space is presented and the connection with other standard assimilation methods are studied. Results shows the incorporating information from the time series of data can reduce the sufficient observation needed to preserve the quality of numerical prediction, making it a potential alternative in the field of data assimilation of large geophysical models.

  9. Multiple Model-Based Synchronization Approaches for Time Delayed Slaving Data in a Space Launch Vehicle Tracking System

    Directory of Open Access Journals (Sweden)

    Haryong Song

    2016-01-01

    Full Text Available Due to the inherent characteristics of the flight mission of a space launch vehicle (SLV, which is required to fly over very large distances and have very high fault tolerances, in general, SLV tracking systems (TSs comprise multiple heterogeneous sensors such as radars, GPS, INS, and electrooptical targeting systems installed over widespread areas. To track an SLV without interruption and to hand over the measurement coverage between TSs properly, the mission control system (MCS transfers slaving data to each TS through mission networks. When serious network delays occur, however, the slaving data from the MCS can lead to the failure of the TS. To address this problem, in this paper, we propose multiple model-based synchronization (MMS approaches, which take advantage of the multiple motion models of an SLV. Cubic spline extrapolation, prediction through an α-β-γ filter, and a single model Kalman filter are presented as benchmark approaches. We demonstrate the synchronization accuracy and effectiveness of the proposed MMS approaches using the Monte Carlo simulation with the nominal trajectory data of Korea Space Launch Vehicle-I.

  10. Another definition for time delay

    International Nuclear Information System (INIS)

    Narnhofer, H.

    1980-01-01

    Time delay is defined by geometrical considerations which work in classical as well as in quantum mechanics, and its connection with the S-matrix and the virial is proven for potentials with V(x vector) and x vector V(x vector) vanishing as rsup(-1-epsilon) for r -> infinity. (Author)

  11. Balancing for nonlinear systems

    NARCIS (Netherlands)

    Scherpen, J.M.A.

    1993-01-01

    We present a method of balancing for nonlinear systems which is an extension of balancing for linear systems in the sense that it is based on the input and output energy of a system. It is a local result, but gives 'broader' results than we obtain by just linearizing the system. Furthermore, the

  12. Time-delayed chameleon: Analysis, synchronization and FPGA implementation

    Science.gov (United States)

    Rajagopal, Karthikeyan; Jafari, Sajad; Laarem, Guessas

    2017-12-01

    In this paper we report a time-delayed chameleon-like chaotic system which can belong to different families of chaotic attractors depending on the choices of parameters. Such a characteristic of self-excited and hidden chaotic flows in a simple 3D system with time delay has not been reported earlier. Dynamic analysis of the proposed time-delayed systems are analysed in time-delay space and parameter space. A novel adaptive modified functional projective lag synchronization algorithm is derived for synchronizing identical time-delayed chameleon systems with uncertain parameters. The proposed time-delayed systems and the synchronization algorithm with controllers and parameter estimates are then implemented in FPGA using hardware-software co-simulation and the results are presented.

  13. Stability Analysis of Fractional-Order Nonlinear Systems with Delay

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2014-01-01

    Full Text Available Stability analysis of fractional-order nonlinear systems with delay is studied. We propose the definition of Mittag-Leffler stability of time-delay system and introduce the fractional Lyapunov direct method by using properties of Mittag-Leffler function and Laplace transform. Then some new sufficient conditions ensuring asymptotical stability of fractional-order nonlinear system with delay are proposed firstly. And the application of Riemann-Liouville fractional-order systems is extended by the fractional comparison principle and the Caputo fractional-order systems. Numerical simulations of an example demonstrate the universality and the effectiveness of the proposed method.

  14. Control of self-organizing nonlinear systems

    CERN Document Server

    Klapp, Sabine; Hövel, Philipp

    2016-01-01

    The book summarizes the state-of-the-art of research on control of self-organizing nonlinear systems with contributions from leading international experts in the field. The first focus concerns recent methodological developments including control of networks and of noisy and time-delayed systems. As a second focus, the book features emerging concepts of application including control of quantum systems, soft condensed matter, and biological systems. Special topics reflecting the active research in the field are the analysis and control of chimera states in classical networks and in quantum systems, the mathematical treatment of multiscale systems, the control of colloidal and quantum transport, the control of epidemics and of neural network dynamics.

  15. Oscillations in nonlinear systems

    CERN Document Server

    Hale, Jack K

    2015-01-01

    By focusing on ordinary differential equations that contain a small parameter, this concise graduate-level introduction to the theory of nonlinear oscillations provides a unified approach to obtaining periodic solutions to nonautonomous and autonomous differential equations. It also indicates key relationships with other related procedures and probes the consequences of the methods of averaging and integral manifolds.Part I of the text features introductory material, including discussions of matrices, linear systems of differential equations, and stability of solutions of nonlinear systems. Pa

  16. An Epidemic Model of Computer Worms with Time Delay and Variable Infection Rate

    Directory of Open Access Journals (Sweden)

    Yu Yao

    2018-01-01

    Full Text Available With rapid development of Internet, network security issues become increasingly serious. Temporary patches have been put on the infectious hosts, which may lose efficacy on occasions. This leads to a time delay when vaccinated hosts change to susceptible hosts. On the other hand, the worm infection is usually a nonlinear process. Considering the actual situation, a variable infection rate is introduced to describe the spread process of worms. According to above aspects, we propose a time-delayed worm propagation model with variable infection rate. Then the existence condition and the stability of the positive equilibrium are derived. Due to the existence of time delay, the worm propagation system may be unstable and out of control. Moreover, the threshold τ0 of Hopf bifurcation is obtained. The worm propagation system is stable if time delay is less than τ0. When time delay is over τ0, the system will be unstable. In addition, numerical experiments have been performed, which can match the conclusions we deduce. The numerical experiments also show that there exists a threshold in the parameter a, which implies that we should choose appropriate infection rate β(t to constrain worm prevalence. Finally, simulation experiments are carried out to prove the validity of our conclusions.

  17. Nonlinear Hamiltonian systems

    DEFF Research Database (Denmark)

    Jørgensen, Michael Finn

    1995-01-01

    It is generally very difficult to solve nonlinear systems, and such systems often possess chaotic solutions. In the rare event that a system is completely solvable, it is said to integrable. Such systems never have chaotic solutions. Using the Inverse Scattering Transform Method (ISTM) two...... particular configurations of the Discrete Self-Trapping (DST) system are shown to be completely solvable. One of these systems includes the Toda lattice in a certain limit. An explicit integration is carried through for this Near-Toda lattice. The Near-Toda lattice is then generalized to include singular...

  18. Period doubling phenomenon in a class of time delay equations

    International Nuclear Information System (INIS)

    Oliveira, C.R. de; Malta, C.P.

    1985-01-01

    The properties of the solution of a nonlinear time delayed differential equation (infinite dimension) as function of two parameters: the time delay tau and another parameter A (nonlinearity) are investigated. After a Hopf bifurcation period doubling may occur and is characterized by Feigenbaum's delta. A strange atractor is obtained after the period doubling cascade and the largest Lyapunov exponent is calculated indicating that the attractor has low dimension. The behaviour of this Liapunov exponent as function of tau is different from its behaviour as function of A. (Author) [pt

  19. Photoemission and photoionization time delays and rates

    Science.gov (United States)

    Gallmann, L.; Jordan, I.; Wörner, H. J.; Castiglioni, L.; Hengsberger, M.; Osterwalder, J.; Arrell, C. A.; Chergui, M.; Liberatore, E.; Rothlisberger, U.; Keller, U.

    2017-01-01

    Ionization and, in particular, ionization through the interaction with light play an important role in fundamental processes in physics, chemistry, and biology. In recent years, we have seen tremendous advances in our ability to measure the dynamics of photo-induced ionization in various systems in the gas, liquid, or solid phase. In this review, we will define the parameters used for quantifying these dynamics. We give a brief overview of some of the most important ionization processes and how to resolve the associated time delays and rates. With regard to time delays, we ask the question: how long does it take to remove an electron from an atom, molecule, or solid? With regard to rates, we ask the question: how many electrons are emitted in a given unit of time? We present state-of-the-art results on ionization and photoemission time delays and rates. Our review starts with the simplest physical systems: the attosecond dynamics of single-photon and tunnel ionization of atoms in the gas phase. We then extend the discussion to molecular gases and ionization of liquid targets. Finally, we present the measurements of ionization delays in femto- and attosecond photoemission from the solid–vacuum interface. PMID:29308414

  20. Photoemission and photoionization time delays and rates

    Directory of Open Access Journals (Sweden)

    L. Gallmann

    2017-11-01

    Full Text Available Ionization and, in particular, ionization through the interaction with light play an important role in fundamental processes in physics, chemistry, and biology. In recent years, we have seen tremendous advances in our ability to measure the dynamics of photo-induced ionization in various systems in the gas, liquid, or solid phase. In this review, we will define the parameters used for quantifying these dynamics. We give a brief overview of some of the most important ionization processes and how to resolve the associated time delays and rates. With regard to time delays, we ask the question: how long does it take to remove an electron from an atom, molecule, or solid? With regard to rates, we ask the question: how many electrons are emitted in a given unit of time? We present state-of-the-art results on ionization and photoemission time delays and rates. Our review starts with the simplest physical systems: the attosecond dynamics of single-photon and tunnel ionization of atoms in the gas phase. We then extend the discussion to molecular gases and ionization of liquid targets. Finally, we present the measurements of ionization delays in femto- and attosecond photoemission from the solid–vacuum interface.

  1. PAU/GNSS-R: Implementation, Performance and First Results of a Real-Time Delay-Doppler Map Reflectometer Using Global Navigation Satellite System Signals

    Directory of Open Access Journals (Sweden)

    Enric Valencia

    2008-05-01

    Full Text Available Signals from Global Navigation Satellite Systems (GNSS were originally conceived for position and speed determination, but they can be used as signals of opportunity as well. The reflection process over a given surface modifies the properties of the scattered signal, and therefore, by processing the reflected signal, relevant geophysical data regarding the surface under study (land, sea, ice… can be retrieved. In essence, a GNSS-R receiver is a multi-channel GNSS receiver that computes the received power from a given satellite at a number of different delay and Doppler bins of the incoming signal. The first approaches to build such a receiver consisted of sampling and storing the scattered signal for later post-processing. However, a real-time approach to the problem is desirable to obtain immediately useful geophysical variables and reduce the amount of data. The use of FPGA technology makes this possible, while at the same time the system can be easily reconfigured. The signal tracking and processing constraints made necessary to fully design several new blocks. The uniqueness of the implemented system described in this work is the capability to compute in real-time Delay-Doppler maps (DDMs either for four simultaneous satellites or just one, but with a larger number of bins. The first tests have been conducted from a cliff over the sea and demonstrate the successful performance of the instrument to compute DDMs in real-time from the measured reflected GNSS/R signals. The processing of these measurements shall yield quantitative relationships between the sea state (mainly driven by the surface wind and the swell and the overall DDM shape. The ultimate goal is to use the DDM shape to correct the sea state influence on the L-band brightness temperature to improve the retrieval of the sea surface salinity (SSS.

  2. Stability and oscillation of two coupled Duffing equations with time delay state feedback

    International Nuclear Information System (INIS)

    El-Bassiouny, A F

    2006-01-01

    This paper presents an analytical study of the simultaneous principal parametric resonances of two coupled Duffing equations with time delay state feedback. The concept of an equivalent damping related to the delay feedback is proposed and the appropriate choice of the feedback gains and the time delay is discussed from the viewpoint of vibration control. The method of multiple scales is used to determine a set of ordinary differential equations governing the modulation of the amplitudes and phases of the two modes. The first order approximation of the resonances are derived and the effect of time delay on the resonances is investigated. The fixed points correspond to a periodic motion for the starting system and we show the frequency-response curves. We analyse the effect of time delay and the other different parameters on these oscillations. The stability of the fixed points is examined by using the variational method. Numerical solutions are carried out and graphical representations of the results are presented and discussed. Increasing in the time delay τ given decreasing and increasing in the regions of definition and stability respectively and the first mode has decreased magnitudes. The multivalued solutions disappear when decreasing the coefficients of cubic nonlinearities of the second mode α 3 and the detuning parameter σ 2 respectively. Both modes shift to the left for increasing linear feedback gain v 1 and the coefficient of parametric excitation f 1 respectively

  3. H∞ Balancing for Nonlinear Systems

    NARCIS (Netherlands)

    Scherpen, Jacquelien M.A.

    1996-01-01

    In previously obtained balancing methods for nonlinear systems a past and a future energy function are used to bring the nonlinear system in balanced form. By considering a different pair of past and future energy functions that are related to the H∞ control problem for nonlinear systems we define

  4. Bifurcation Control of an Electrostatically-Actuated MEMS Actuator with Time-Delay Feedback

    Directory of Open Access Journals (Sweden)

    Lei Li

    2016-10-01

    Full Text Available The parametric excitation system consisting of a flexible beam and shuttle mass widely exists in microelectromechanical systems (MEMS, which can exhibit rich nonlinear dynamic behaviors. This article aims to theoretically investigate the nonlinear jumping phenomena and bifurcation conditions of a class of electrostatically-driven MEMS actuators with a time-delay feedback controller. Considering the comb structure consisting of a flexible beam and shuttle mass, the partial differential governing equation is obtained with both the linear and cubic nonlinear parametric excitation. Then, the method of multiple scales is introduced to obtain a slow flow that is analyzed for stability and bifurcation. Results show that time-delay feedback can improve resonance frequency and stability of the system. What is more, through a detailed mathematical analysis, the discriminant of Hopf bifurcation is theoretically derived, and appropriate time-delay feedback force can make the branch from the Hopf bifurcation point stable under any driving voltage value. Meanwhile, through global bifurcation analysis and saddle node bifurcation analysis, theoretical expressions about the system parameter space and maximum amplitude of monostable vibration are deduced. It is found that the disappearance of the global bifurcation point means the emergence of monostable vibration. Finally, detailed numerical results confirm the analytical prediction.

  5. FRF decoupling of nonlinear systems

    Science.gov (United States)

    Kalaycıoğlu, Taner; Özgüven, H. Nevzat

    2018-03-01

    Structural decoupling problem, i.e. predicting dynamic behavior of a particular substructure from the knowledge of the dynamics of the coupled structure and the other substructure, has been well investigated for three decades and led to several decoupling methods. In spite of the inherent nonlinearities in a structural system in various forms such as clearances, friction and nonlinear stiffness, all decoupling studies are for linear systems. In this study, decoupling problem for nonlinear systems is addressed for the first time. A method, named as FRF Decoupling Method for Nonlinear Systems (FDM-NS), is proposed for calculating FRFs of a substructure decoupled from a coupled nonlinear structure where nonlinearity can be modeled as a single nonlinear element. Depending on where nonlinear element is, i.e., either in the known or unknown subsystem, or at the connection point, the formulation differs. The method requires relative displacement information between two end points of the nonlinear element, in addition to point and transfer FRFs at some points of the known subsystem. However, it is not necessary to excite the system from the unknown subsystem even when the nonlinear element is in that subsystem. The validation of FDM-NS is demonstrated with two different case studies using nonlinear lumped parameter systems. Finally, a nonlinear experimental test structure is used in order to show the real-life application and accuracy of FDM-NS.

  6. 4-channel time delayed pulse generator

    International Nuclear Information System (INIS)

    Wetzel, L.F.S.; Rossi, J.O.; Del Bosco, E.

    1987-02-01

    It is described the project of a 4-channel delayed pulse generator employed to trigger the plasma centrifuge experiment of the Laboratorio Associado de Plasmas. The circuit delivers pulses with amplitude of 15V, full width at half maximum of 50μs and rise time of 0.7μs. The maximum time delay is 100ms. There are two channels with a fine adjustment of 0-1ms. The system can be manually or automatically driven. (author) [pt

  7. A Simple Snap Oscillator with Coexisting Attractors, Its Time-Delayed Form, Physical Realization, and Communication Designs

    Science.gov (United States)

    Rajagopal, Karthikeyan; Jafari, Sajad; Akgul, Akif; Karthikeyan, Anitha; Çiçek, Serdar; Shekofteh, Yasser

    2018-05-01

    In this paper, we report a novel chaotic snap oscillator with one nonlinear function. Dynamic analysis of the system shows the existence of bistability. To study the time delay effects on the proposed snap oscillator, we introduce multiple time delay in the fourth state equation. Investigation of dynamical properties of the time-delayed system shows that the snap oscillator exhibits the same multistable properties as the nondelayed system. The new multistable hyperjerk chaotic system has been tested in chaos shift keying and symmetric choc shift keying modulated communication designs for engineering applications. It has been determined that the symmetric chaos shift keying modulated communication system implemented with the new chaotic system is more successful than the chaos shift keying modulation for secure communication. Also, circuit implementation of the chaotic snap oscillator with tangent function is carried out showing its feasibility.

  8. Global chaos synchronization with channel time-delay

    International Nuclear Information System (INIS)

    Jiang Guoping; Zheng Weixing; Chen Guanrong

    2004-01-01

    This paper addresses a practical issue in chaos synchronization where there is a time-delay in the receiver as compared with the transmitter. A new synchronization scheme and a general criterion for global chaos synchronization are proposed and developed from the approach of unidirectional linear error feedback coupling with time-delay. The chaotic Chua's circuit is used for illustration, where the coupling parameters are determined according to the criterion under which the global chaos synchronization of the time-delay coupled systems is achieved

  9. Identifying time-delayed gene regulatory networks via an evolvable hierarchical recurrent neural network.

    Science.gov (United States)

    Kordmahalleh, Mina Moradi; Sefidmazgi, Mohammad Gorji; Harrison, Scott H; Homaifar, Abdollah

    2017-01-01

    The modeling of genetic interactions within a cell is crucial for a basic understanding of physiology and for applied areas such as drug design. Interactions in gene regulatory networks (GRNs) include effects of transcription factors, repressors, small metabolites, and microRNA species. In addition, the effects of regulatory interactions are not always simultaneous, but can occur after a finite time delay, or as a combined outcome of simultaneous and time delayed interactions. Powerful biotechnologies have been rapidly and successfully measuring levels of genetic expression to illuminate different states of biological systems. This has led to an ensuing challenge to improve the identification of specific regulatory mechanisms through regulatory network reconstructions. Solutions to this challenge will ultimately help to spur forward efforts based on the usage of regulatory network reconstructions in systems biology applications. We have developed a hierarchical recurrent neural network (HRNN) that identifies time-delayed gene interactions using time-course data. A customized genetic algorithm (GA) was used to optimize hierarchical connectivity of regulatory genes and a target gene. The proposed design provides a non-fully connected network with the flexibility of using recurrent connections inside the network. These features and the non-linearity of the HRNN facilitate the process of identifying temporal patterns of a GRN. Our HRNN method was implemented with the Python language. It was first evaluated on simulated data representing linear and nonlinear time-delayed gene-gene interaction models across a range of network sizes and variances of noise. We then further demonstrated the capability of our method in reconstructing GRNs of the Saccharomyces cerevisiae synthetic network for in vivo benchmarking of reverse-engineering and modeling approaches (IRMA). We compared the performance of our method to TD-ARACNE, HCC-CLINDE, TSNI and ebdbNet across different network

  10. Time-delay-induced phase-transition to synchrony in coupled bursting neurons

    Science.gov (United States)

    Adhikari, Bhim Mani; Prasad, Awadhesh; Dhamala, Mukeshwar

    2011-06-01

    Signal transmission time delays in a network of nonlinear oscillators are known to be responsible for a variety of interesting dynamic behaviors including phase-flip transitions leading to synchrony or out of synchrony. Here, we uncover that phase-flip transitions are general phenomena and can occur in a network of coupled bursting neurons with a variety of coupling types. The transitions are marked by nonlinear changes in both temporal and phase-space characteristics of the coupled system. We demonstrate these phase-transitions with Hindmarsh-Rose and Leech-Heart interneuron models and discuss the implications of these results in understanding collective dynamics of bursting neurons in the brain.

  11. Balancing for Unstable Nonlinear Systems

    NARCIS (Netherlands)

    Scherpen, J.M.A.

    1993-01-01

    A previously obtained method of balancing for stable nonlinear systems is extended to unstable nonlinear systems. The similarity invariants obtained by the concept of LQG balancing for an unstable linear system can also be obtained by considering a past and future energy function of the system. By

  12. Model Reduction of Nonlinear Aeroelastic Systems Experiencing Hopf Bifurcation

    KAUST Repository

    Abdelkefi, Abdessattar

    2013-06-18

    In this paper, we employ the normal form to derive a reduced - order model that reproduces nonlinear dynamical behavior of aeroelastic systems that undergo Hopf bifurcation. As an example, we consider a rigid two - dimensional airfoil that is supported by nonlinear springs in the pitch and plunge directions and subjected to nonlinear aerodynamic loads. We apply the center manifold theorem on the governing equations to derive its normal form that constitutes a simplified representation of the aeroelastic sys tem near flutter onset (manifestation of Hopf bifurcation). Then, we use the normal form to identify a self - excited oscillator governed by a time - delay ordinary differential equation that approximates the dynamical behavior while reducing the dimension of the original system. Results obtained from this oscillator show a great capability to predict properly limit cycle oscillations that take place beyond and above flutter as compared with the original aeroelastic system.

  13. Chaotic dynamics and chaos control in nonlinear laser systems

    International Nuclear Information System (INIS)

    Fang Jinqing; Yao Weiguang

    2001-01-01

    Chaotic dynamics and chaos control have become a great challenge in nonlinear laser systems and its advances are reviewed mainly based on the ring cavity laser systems. The principle and stability conditions for time-delay feedback control are analyzed and applied to chaos control in the laser systems. Other advanced methods of chaos control, such as weak spatial perturbation and occasional proportional feedback technique, are discussed. Prospects of chaos control for application (such as improvement of laser power and performance, synchronized chaos secure communication and information processing) are pointed out finally

  14. Tunable Optical True-Time Delay Devices Would Exploit EIT

    Science.gov (United States)

    Kulikov, Igor; DiDomenico, Leo; Lee, Hwang

    2004-01-01

    Tunable optical true-time delay devices that would exploit electromagnetically induced transparency (EIT) have been proposed. Relative to prior true-time delay devices (for example, devices based on ferroelectric and ferromagnetic materials) and electronically controlled phase shifters, the proposed devices would offer much greater bandwidths. In a typical envisioned application, an optical pulse would be modulated with an ultra-wideband radio-frequency (RF) signal that would convey the information that one seeks to communicate, and it would be required to couple differently delayed replicas of the RF signal to the radiating elements of a phased-array antenna. One or more of the proposed devices would be used to impose the delays and/or generate the delayed replicas of the RF-modulated optical pulse. The beam radiated or received by the antenna would be steered by use of a microprocessor-based control system that would adjust operational parameters of the devices to tune the delays to the required values. EIT is a nonlinear quantum optical interference effect that enables the propagation of light through an initially opaque medium. A suitable medium must have, among other properties, three quantum states (see Figure 1): an excited state (state 3), an upper ground state (state 2), and a lower ground state (state 1). These three states must form a closed system that exhibits no decays to other states in the presence of either or both of two laser beams: (1) a probe beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 1; and (2) a coupling beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 2. The probe beam is the one that is pulsed and modulated with an RF signal.

  15. Linear time delay methods and stability analyses of the human spine. Effects of neuromuscular reflex response.

    Science.gov (United States)

    Franklin, Timothy C; Granata, Kevin P; Madigan, Michael L; Hendricks, Scott L

    2008-08-01

    Linear stability methods were applied to a biomechanical model of the human musculoskeletal spine to investigate effects of reflex gain and reflex delay on stability. Equations of motion represented a dynamic 18 degrees-of-freedom rigid-body model with time-delayed reflexes. Optimal muscle activation levels were identified by minimizing metabolic power with the constraints of equilibrium and stability with zero reflex time delay. Muscle activation levels and associated muscle forces were used to find the delay margin, i.e., the maximum reflex delay for which the system was stable. Results demonstrated that stiffness due to antagonistic co-contraction necessary for stability declined with increased proportional reflex gain. Reflex delay limited the maximum acceptable proportional reflex gain, i.e., long reflex delay required smaller maximum reflex gain to avoid instability. As differential reflex gain increased, there was a small increase in acceptable reflex delay. However, differential reflex gain with values near intrinsic damping caused the delay margin to approach zero. Forward-dynamic simulations of the fully nonlinear time-delayed system verified the linear results. The linear methods accurately found the delay margin below which the nonlinear system was asymptotically stable. These methods may aid future investigations in the role of reflexes in musculoskeletal stability.

  16. Determination of relevant neuron-neuron connections for neural prosthetics using time-delayed mutual information: tutorial and preliminary results.

    Science.gov (United States)

    Taghva, Alexander; Song, Dong; Hampson, Robert E; Deadwyler, Sam A; Berger, Theodore W

    2012-12-01

    Identification of functional dependence among neurons is a necessary component in both the rational design of neural prostheses as well as in the characterization of network physiology. The objective of this article is to provide a tutorial for neurosurgeons regarding information theory, specifically time-delayed mutual information, and to compare time-delayed mutual information, an information theoretic quantity based on statistical dependence, with cross-correlation, a commonly used metric for this task in a preliminary analysis of rat hippocampal neurons. Spike trains were recorded from rats performing delayed nonmatch-to-sample task using an array of electrodes surgically implanted into the hippocampus of each hemisphere of the brain. In addition, spike train simulations of positively correlated neurons, negatively correlated neurons, and neurons correlated by nonlinear functions were generated. These were evaluated by time-delayed mutual information (MI) and cross-correlation. Application of time-delayed MI to experimental data indicated the optimal bin size for information capture in the CA3-CA1 system was 40 ms, which may provide some insight into the spatiotemporal nature of encoding in the rat hippocampus. On simulated data, time-delayed MI showed peak values at appropriate time lags in positively correlated, negatively correlated, and complexly correlated data. Cross-correlation showed peak and troughs with positively correlated and negatively correlated data, but failed to capture some higher order correlations. Comparison of time-delayed MI to cross-correlation in identification of functionally dependent neurons indicates that the methods are not equivalent. Time-delayed MI appeared to capture some interactions between CA3-CA1 neurons at physiologically plausible time delays missed by cross-correlation. It should be considered as a method for identification of functional dependence between neurons and may be useful in the development of neural

  17. Time-delay interferometry for LISA

    International Nuclear Information System (INIS)

    Tinto, Massimo; Estabrook, F.B.; Armstrong, J.W.

    2002-01-01

    LISA (Laser Interferometer Space Antenna) is a mission to detect and study low-frequency cosmic gravitational radiation through its influence on the phases or frequencies of laser beams exchanged between three remote spacecraft. We previously showed how, with lasers of identical frequencies on stationary spacecraft, the measurement of twelve time series of Doppler shifts could be combined to cancel exactly the phase noise of the lasers and the Doppler fluctuations due to noninertial motions of the six optical benches, while preserving gravitational wave signals. Here we generalize those results on gravitational wave detection with time-delay interferometry to the expected LISA instrument. The six lasers have different center frequencies (in the nominal LISA configuration these center frequencies may well differ by several hundred megahertz) and the distances between spacecraft pairs will change with time (these slowly varying orbital Doppler shifts are expected to be up to tens of megahertz). We develop time-delay data combinations which, as previously, preserve gravitational waves and exactly cancel the leading noise source (phase fluctuations of the six lasers); these data combinations then imply transfer functions for the remaining system noises. Using these, we plot frequency and phase power spectra for modeled system noises in the unequal Michelson combination X and the symmetric Sagnac combination ζ. Although optical bench noise can no longer be cancelled exactly, with the current LISA specifications it is suppressed to negligible levels. It is known that the presently anticipated laser center frequency differences and the orbital Doppler drifts introduce another source of phase noise, arising from the onboard oscillators required to track the photodetector fringes. For the presently planned mission, our analysis indeed demonstrates that noise from current-generation ultrastable oscillators would, if uncorrected, dominate the LISA noise budget. To meet the

  18. Prediction-Based Control for Nonlinear Systems with Input Delay

    Directory of Open Access Journals (Sweden)

    I. Estrada-Sánchez

    2017-01-01

    Full Text Available This work has two primary objectives. First, it presents a state prediction strategy for a class of nonlinear Lipschitz systems subject to constant time delay in the input signal. As a result of a suitable change of variable, the state predictor asymptotically provides the value of the state τ units of time ahead. Second, it proposes a solution to the stabilization and trajectory tracking problems for the considered class of systems using predicted states. The predictor-controller convergence is proved by considering a complete Lyapunov functional. The proposed predictor-based controller strategy is evaluated using numerical simulations.

  19. Time-Delay Effects on Constitutive Gene Expression*

    International Nuclear Information System (INIS)

    Feng Yan-Ling; Wang Dan; Tang Xu-Lei; Dong Jian-Min

    2017-01-01

    The dynamics of constitutive gene expression with delayed mRNA degradation is investigated, where the intrinsic noise caused by the small number of reactant molecules is introduced. It is found that the oscillatory behavior claimed in previous investigations does not appear in the approximation of small time delay, and the steady state distribution still follows the Poisson law. Furthermore, we introduce the extrinsic noise induced by surrounding environment to explore the effects of this noise and time delay on the Fano factor. Based on a delay Langevin equation and the corresponding Fokker–Planck equation, the distribution of mRNA copy-number is achieved analytically. The time delay and extrinsic noise play similar roles in the gene expression system, that is, they are able to result in the deviation of the Fano factor from 1 evidently. The measured Fano factor for constitutive gene expression is slightly larger than 1, which is perhaps attributed to the time-delay effect. (paper)

  20. Travelling wave solutions for some time-delayed equations through factorizations

    International Nuclear Information System (INIS)

    Fahmy, E.S.

    2008-01-01

    In this work, we use factorization method to find explicit particular travelling wave solutions for the following important nonlinear second-order partial differential equations: The generalized time-delayed Burgers-Huxley, time-delayed convective Fishers, and the generalized time-delayed Burgers-Fisher. Using the particular solutions for these equations we find the general solutions, two-parameter solution, as special cases

  1. Time delays, population, and economic development

    Science.gov (United States)

    Gori, Luca; Guerrini, Luca; Sodini, Mauro

    2018-05-01

    This research develops an augmented Solow model with population dynamics and time delays. The model produces either a single stationary state or multiple stationary states (able to characterise different development regimes). The existence of time delays may cause persistent fluctuations in both economic and demographic variables. In addition, the work identifies in a simple way the reasons why economics affects demographics and vice versa.

  2. Stability of Nonlinear Systems with Unknown Time-varying Feedback Delay

    Science.gov (United States)

    Chunodkar, Apurva A.; Akella, Maruthi R.

    2013-12-01

    This paper considers the problem of stabilizing a class of nonlinear systems with unknown bounded delayed feedback wherein the time-varying delay is 1) piecewise constant 2) continuous with a bounded rate. We also consider application of these results to the stabilization of rigid-body attitude dynamics. In the first case, the time-delay in feedback is modeled specifically as a switch among an arbitrarily large set of unknown constant values with a known strict upper bound. The feedback is a linear function of the delayed states. In the case of linear systems with switched delay feedback, a new sufficiency condition for average dwell time result is presented using a complete type Lyapunov-Krasovskii (L-K) functional approach. Further, the corresponding switched system with nonlinear perturbations is proven to be exponentially stable inside a well characterized region of attraction for an appropriately chosen average dwell time. In the second case, the concept of the complete type L-K functional is extended to a class of nonlinear time-delay systems with unknown time-varying time-delay. This extension ensures stability robustness to time-delay in the control design for all values of time-delay less than the known upper bound. Model-transformation is used in order to partition the nonlinear system into a nominal linear part that is exponentially stable with a bounded perturbation. We obtain sufficient conditions which ensure exponential stability inside a region of attraction estimate. A constructive method to evaluate the sufficient conditions is presented together with comparison with the corresponding constant and piecewise constant delay. Numerical simulations are performed to illustrate the theoretical results of this paper.

  3. Time delay in a multichannel formalism

    International Nuclear Information System (INIS)

    Haberzettl, Helmut; Workman, Ron

    2007-01-01

    We reexamine the time-delay formalism of Wigner, Eisenbud, and Smith, which was developed to analyze both elastic and inelastic resonances. An error in the paper of Smith has propagated through the literature. We correct this error and show how the results of Eisenbud and Smith are related. We also comment on some recent time-delay studies, based on Smith's erroneous interpretation of the Eisenbud result

  4. Nonlinear Robust Observer-Based Fault Detection for Networked Suspension Control System of Maglev Train

    Directory of Open Access Journals (Sweden)

    Yun Li

    2013-01-01

    Full Text Available A fault detection approach based on nonlinear robust observer is designed for the networked suspension control system of Maglev train with random induced time delay. First, considering random bounded time-delay and external disturbance, the nonlinear model of the networked suspension control system is established. Then, a nonlinear robust observer is designed using the input of the suspension gap. And the estimate error is proved to be bounded with arbitrary precision by adopting an appropriate parameter. When sensor faults happen, the residual between the real states and the observer outputs indicates which kind of sensor failures occurs. Finally, simulation results using the actual parameters of CMS-04 maglev train indicate that the proposed method is effective for maglev train.

  5. Time-delayed feedback control of coherence resonance chimeras

    Science.gov (United States)

    Zakharova, Anna; Semenova, Nadezhda; Anishchenko, Vadim; Schöll, Eckehard

    2017-11-01

    Using the model of a FitzHugh-Nagumo system in the excitable regime, we investigate the influence of time-delayed feedback on noise-induced chimera states in a network with nonlocal coupling, i.e., coherence resonance chimeras. It is shown that time-delayed feedback allows for the control of the range of parameter values where these chimera states occur. Moreover, for the feedback delay close to the intrinsic period of the system, we find a novel regime which we call period-two coherence resonance chimera.

  6. Adaptive Control for Autonomous Navigation of Mobile Robots Considering Time Delay and Uncertainty

    Science.gov (United States)

    Armah, Stephen Kofi

    Autonomous control of mobile robots has attracted considerable attention of researchers in the areas of robotics and autonomous systems during the past decades. One of the goals in the field of mobile robotics is development of platforms that robustly operate in given, partially unknown, or unpredictable environments and offer desired services to humans. Autonomous mobile robots need to be equipped with effective, robust and/or adaptive, navigation control systems. In spite of enormous reported work on autonomous navigation control systems for mobile robots, achieving the goal above is still an open problem. Robustness and reliability of the controlled system can always be improved. The fundamental issues affecting the stability of the control systems include the undesired nonlinear effects introduced by actuator saturation, time delay in the controlled system, and uncertainty in the model. This research work develops robustly stabilizing control systems by investigating and addressing such nonlinear effects through analytical, simulations, and experiments. The control systems are designed to meet specified transient and steady-state specifications. The systems used for this research are ground (Dr Robot X80SV) and aerial (Parrot AR.Drone 2.0) mobile robots. Firstly, an effective autonomous navigation control system is developed for X80SV using logic control by combining 'go-to-goal', 'avoid-obstacle', and 'follow-wall' controllers. A MATLAB robot simulator is developed to implement this control algorithm and experiments are conducted in a typical office environment. The next stage of the research develops an autonomous position (x, y, and z) and attitude (roll, pitch, and yaw) controllers for a quadrotor, and PD-feedback control is used to achieve stabilization. The quadrotor's nonlinear dynamics and kinematics are implemented using MATLAB S-function to generate the state output. Secondly, the white-box and black-box approaches are used to obtain a linearized

  7. Nonlinear robust hierarchical control for nonlinear uncertain systems

    Directory of Open Access Journals (Sweden)

    Leonessa Alexander

    1999-01-01

    Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.

  8. Discrete-time nonlinear sliding mode controller

    African Journals Online (AJOL)

    user

    Keywords: Discrete-time delay system, Sliding mode control, nonlinear sliding ... of engineering systems such as chemical process control, delay in the actuator ...... instrumentation from Motilal Nehru National Institute of Technology (MNNIT),.

  9. Nonlinear transport of dynamic system phase space

    International Nuclear Information System (INIS)

    Xie Xi; Xia Jiawen

    1993-01-01

    The inverse transform of any order solution of the differential equation of general nonlinear dynamic systems is derived, realizing theoretically the nonlinear transport for the phase space of nonlinear dynamic systems. The result is applicable to general nonlinear dynamic systems, with the transport of accelerator beam phase space as a typical example

  10. STEMI time delays: A clinical perspective

    NARCIS (Netherlands)

    M.J. de Boer (Menko Jan); F. Zijlstra (Felix)

    2015-01-01

    textabstractSTEMI time delays have been introduced as a performance indicator or marker of quality of care. As they are only one part of a very complex medical process, one should be aware of concomitant issues that may be overlooked or even be more important with regard to clinical outcome of STEMI

  11. Time delay interferometry with moving spacecraft arrays

    International Nuclear Information System (INIS)

    Tinto, Massimo; Estabrook, F.B.; Armstrong, J.W.

    2004-01-01

    Space-borne interferometric gravitational wave detectors, sensitive in the low-frequency (millihertz) band, will fly in the next decade. In these detectors the spacecraft-to-spacecraft light-travel-times will necessarily be unequal, time varying, and (due to aberration) have different time delays on up and down links. The reduction of data from moving interferometric laser arrays in solar orbit will in fact encounter nonsymmetric up- and down-link light time differences that are about 100 times larger than has previously been recognized. The time-delay interferometry (TDI) technique uses knowledge of these delays to cancel the otherwise dominant laser phase noise and yields a variety of data combinations sensitive to gravitational waves. Under the assumption that the (different) up- and down-link time delays are constant, we derive the TDI expressions for those combinations that rely only on four interspacecraft phase measurements. We then turn to the general problem that encompasses time dependence of the light-travel times along the laser links. By introducing a set of noncommuting time-delay operators, we show that there exists a quite general procedure for deriving generalized TDI combinations that account for the effects of time dependence of the arms. By applying our approach we are able to re-derive the 'flex-free' expression for the unequal-arm Michelson combinations X 1 , and obtain the generalized expressions for the TDI combinations called relay, beacon, monitor, and symmetric Sagnac

  12. Maximum likelihood window for time delay estimation

    International Nuclear Information System (INIS)

    Lee, Young Sup; Yoon, Dong Jin; Kim, Chi Yup

    2004-01-01

    Time delay estimation for the detection of leak location in underground pipelines is critically important. Because the exact leak location depends upon the precision of the time delay between sensor signals due to leak noise and the speed of elastic waves, the research on the estimation of time delay has been one of the key issues in leak lovating with the time arrival difference method. In this study, an optimal Maximum Likelihood window is considered to obtain a better estimation of the time delay. This method has been proved in experiments, which can provide much clearer and more precise peaks in cross-correlation functions of leak signals. The leak location error has been less than 1 % of the distance between sensors, for example the error was not greater than 3 m for 300 m long underground pipelines. Apart from the experiment, an intensive theoretical analysis in terms of signal processing has been described. The improved leak locating with the suggested method is due to the windowing effect in frequency domain, which offers a weighting in significant frequencies.

  13. Nonlinear Response of Strong Nonlinear System Arisen in Polymer Cushion

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2013-01-01

    Full Text Available A dynamic model is proposed for a polymer foam-based nonlinear cushioning system. An accurate analytical solution for the nonlinear free vibration of the system is derived by applying He's variational iteration method, and conditions for resonance are obtained, which should be avoided in the cushioning design.

  14. Nonlinear dynamics in biological systems

    CERN Document Server

    Carballido-Landeira, Jorge

    2016-01-01

    This book presents recent research results relating to applications of nonlinear dynamics, focusing specifically on four topics of wide interest: heart dynamics, DNA/RNA, cell mobility, and proteins. The book derives from the First BCAM Workshop on Nonlinear Dynamics in Biological Systems, held in June 2014 at the Basque Center of Applied Mathematics (BCAM). At this international meeting, researchers from different but complementary backgrounds, including molecular dynamics, physical chemistry, bio-informatics and biophysics, presented their most recent results and discussed the future direction of their studies using theoretical, mathematical modeling and experimental approaches. Such was the level of interest stimulated that the decision was taken to produce this publication, with the organizers of the event acting as editors. All of the contributing authors are researchers working on diverse biological problems that can be approached using nonlinear dynamics. The book will appeal especially to applied math...

  15. Impulsive Controller Design for Complex Nonlinear Singular Networked Systems with Packet Dropouts

    Directory of Open Access Journals (Sweden)

    Xian-Lin Zhao

    2013-01-01

    Full Text Available Globally exponential stability of Complex (with coupling Nonlinear Singular Impulsive Networked Control Systems (CNSINCS with packet dropouts and time-delay is investigated. Firstly, the mathematic model of CNSINCS is established. Then, by employing the method of Lyapunov functional, exponential stability criteria are obtained and the impulsive controller design method is given. Finally, some simulation results are provided to demonstrate the effectiveness of the proposed method.

  16. Frequency response functions for nonlinear convergent systems

    NARCIS (Netherlands)

    Pavlov, A.V.; Wouw, van de N.; Nijmeijer, H.

    2007-01-01

    Convergent systems constitute a practically important class of nonlinear systems that extends the class of asymptotically stable linear time-invariant systems. In this note, we extend frequency response functions defined for linear systems to nonlinear convergent systems. Such nonlinear frequency

  17. Time-delayed autosynchronous swarm control.

    Science.gov (United States)

    Biggs, James D; Bennet, Derek J; Dadzie, S Kokou

    2012-01-01

    In this paper a general Morse potential model of self-propelling particles is considered in the presence of a time-delayed term and a spring potential. It is shown that the emergent swarm behavior is dependent on the delay term and weights of the time-delayed function, which can be set to induce a stationary swarm, a rotating swarm with uniform translation, and a rotating swarm with a stationary center of mass. An analysis of the mean field equations shows that without a spring potential the motion of the center of mass is determined explicitly by a multivalued function. For a nonzero spring potential the swarm converges to a vortex formation about a stationary center of mass, except at discrete bifurcation points where the center of mass will periodically trace an ellipse. The analytical results defining the behavior of the center of mass are shown to correspond with the numerical swarm simulations.

  18. Nonlinear system identification of smart structures under high impact loads

    International Nuclear Information System (INIS)

    Sarp Arsava, Kemal; Kim, Yeesock; El-Korchi, Tahar; Park, Hyo Seon

    2013-01-01

    The main purpose of this paper is to develop numerical models for the prediction and analysis of the highly nonlinear behavior of integrated structure control systems subjected to high impact loading. A time-delayed adaptive neuro-fuzzy inference system (TANFIS) is proposed for modeling of the complex nonlinear behavior of smart structures equipped with magnetorheological (MR) dampers under high impact forces. Experimental studies are performed to generate sets of input and output data for training and validation of the TANFIS models. The high impact load and current signals are used as the input disturbance and control signals while the displacement and acceleration responses from the structure–MR damper system are used as the output signals. The benchmark adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. Comparisons of the trained TANFIS models with experimental results demonstrate that the TANFIS modeling framework is an effective way to capture nonlinear behavior of integrated structure–MR damper systems under high impact loading. In addition, the performance of the TANFIS model is much better than that of ANFIS in both the training and the validation processes. (paper)

  19. Nonlinear system identification of smart structures under high impact loads

    Science.gov (United States)

    Sarp Arsava, Kemal; Kim, Yeesock; El-Korchi, Tahar; Park, Hyo Seon

    2013-05-01

    The main purpose of this paper is to develop numerical models for the prediction and analysis of the highly nonlinear behavior of integrated structure control systems subjected to high impact loading. A time-delayed adaptive neuro-fuzzy inference system (TANFIS) is proposed for modeling of the complex nonlinear behavior of smart structures equipped with magnetorheological (MR) dampers under high impact forces. Experimental studies are performed to generate sets of input and output data for training and validation of the TANFIS models. The high impact load and current signals are used as the input disturbance and control signals while the displacement and acceleration responses from the structure-MR damper system are used as the output signals. The benchmark adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. Comparisons of the trained TANFIS models with experimental results demonstrate that the TANFIS modeling framework is an effective way to capture nonlinear behavior of integrated structure-MR damper systems under high impact loading. In addition, the performance of the TANFIS model is much better than that of ANFIS in both the training and the validation processes.

  20. Firing patterns transition and desynchronization induced by time delay in neural networks

    Science.gov (United States)

    Huang, Shoufang; Zhang, Jiqian; Wang, Maosheng; Hu, Chin-Kun

    2018-06-01

    We used the Hindmarsh-Rose (HR) model (Hindmarsh and Rose, 1984) to study the effect of time delay on the transition of firing behaviors and desynchronization in neural networks. As time delay is increased, neural networks exhibit diversity of firing behaviors, including regular spiking or bursting and firing patterns transitions (FPTs). Meanwhile, the desynchronization of firing and unstable bursting with decreasing amplitude in neural system, are also increasingly enhanced with the increase of time delay. Furthermore, we also studied the effect of coupling strength and network randomness on these phenomena. Our results imply that time delays can induce transition and desynchronization of firing behaviors in neural networks. These findings provide new insight into the role of time delay in the firing activities of neural networks, and can help to better understand the firing phenomena in complex systems of neural networks. A possible mechanism in brain that can cause the increase of time delay is discussed.

  1. A comparison of cosmological models using time delay lenses

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jun-Jie; Wu, Xue-Feng; Melia, Fulvio, E-mail: jjwei@pmo.ac.cn, E-mail: xfwu@pmo.ac.cn, E-mail: fmelia@email.arizona.edu [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2014-06-20

    The use of time-delay gravitational lenses to examine the cosmological expansion introduces a new standard ruler with which to test theoretical models. The sample suitable for this kind of work now includes 12 lens systems, which have thus far been used solely for optimizing the parameters of ΛCDM. In this paper, we broaden the base of support for this new, important cosmic probe by using these observations to carry out a one-on-one comparison between competing models. The currently available sample indicates a likelihood of ∼70%-80% that the R {sub h} = ct universe is the correct cosmology versus ∼20%-30% for the standard model. This possibly interesting result reinforces the need to greatly expand the sample of time-delay lenses, e.g., with the successful implementation of the Dark Energy Survey, the VST ATLAS survey, and the Large Synoptic Survey Telescope. In anticipation of a greatly expanded catalog of time-delay lenses identified with these surveys, we have produced synthetic samples to estimate how large they would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼150 time-delay lenses would be sufficient to rule out R {sub h} = ct at this level of accuracy, while ∼1000 time-delay lenses would be required to rule out ΛCDM if the real universe is instead R {sub h} = ct. This difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM.

  2. A comparison of cosmological models using time delay lenses

    International Nuclear Information System (INIS)

    Wei, Jun-Jie; Wu, Xue-Feng; Melia, Fulvio

    2014-01-01

    The use of time-delay gravitational lenses to examine the cosmological expansion introduces a new standard ruler with which to test theoretical models. The sample suitable for this kind of work now includes 12 lens systems, which have thus far been used solely for optimizing the parameters of ΛCDM. In this paper, we broaden the base of support for this new, important cosmic probe by using these observations to carry out a one-on-one comparison between competing models. The currently available sample indicates a likelihood of ∼70%-80% that the R h = ct universe is the correct cosmology versus ∼20%-30% for the standard model. This possibly interesting result reinforces the need to greatly expand the sample of time-delay lenses, e.g., with the successful implementation of the Dark Energy Survey, the VST ATLAS survey, and the Large Synoptic Survey Telescope. In anticipation of a greatly expanded catalog of time-delay lenses identified with these surveys, we have produced synthetic samples to estimate how large they would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼150 time-delay lenses would be sufficient to rule out R h = ct at this level of accuracy, while ∼1000 time-delay lenses would be required to rule out ΛCDM if the real universe is instead R h = ct. This difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM.

  3. Stability analysis of fractional-order Hopfield neural networks with time delays.

    Science.gov (United States)

    Wang, Hu; Yu, Yongguang; Wen, Guoguang

    2014-07-01

    This paper investigates the stability for fractional-order Hopfield neural networks with time delays. Firstly, the fractional-order Hopfield neural networks with hub structure and time delays are studied. Some sufficient conditions for stability of the systems are obtained. Next, two fractional-order Hopfield neural networks with different ring structures and time delays are developed. By studying the developed neural networks, the corresponding sufficient conditions for stability of the systems are also derived. It is shown that the stability conditions are independent of time delays. Finally, numerical simulations are given to illustrate the effectiveness of the theoretical results obtained in this paper. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Complex motions and chaos in nonlinear systems

    CERN Document Server

    Machado, José; Zhang, Jiazhong

    2016-01-01

    This book brings together 10 chapters on a new stream of research examining complex phenomena in nonlinear systems—including engineering, physics, and social science. Complex Motions and Chaos in Nonlinear Systems provides readers a particular vantage of the nature and nonlinear phenomena in nonlinear dynamics that can develop the corresponding mathematical theory and apply nonlinear design to practical engineering as well as the study of other complex phenomena including those investigated within social science.

  5. Time delays between core power production and external detector response from Monte Carlo calculations

    International Nuclear Information System (INIS)

    Valentine, T.E.; Mihalczo, J.T.

    1996-01-01

    One primary concern for design of safety systems for reactors is the time response of external detectors to changes in the core. This paper describes a way to estimate the time delay between the core power production and the external detector response using Monte Carlo calculations and suggests a technique to measure the time delay. The Monte Carlo code KENO-NR was used to determine the time delay between the core power production and the external detector response for a conceptual design of the Advanced Neutron Source (ANS) reactor. The Monte Carlo estimated time delay was determined to be about 10 ms for this conceptual design of the ANS reactor

  6. Nonlinear time heteronymous damping in nonlinear parametric planetary systems

    Czech Academy of Sciences Publication Activity Database

    Hortel, Milan; Škuderová, Alena

    2014-01-01

    Roč. 225, č. 7 (2014), s. 2059-2073 ISSN 0001-5970 Institutional support: RVO:61388998 Keywords : nonlinear dynamics * planetary systems * heteronymous damping Subject RIV: JT - Propulsion, Motors ; Fuels Impact factor: 1.465, year: 2014

  7. Nonlinearity of colloid systems oxyhydrate systems

    CERN Document Server

    Sucharev, Yuri I

    2008-01-01

    The present monograph is the first systematic study of the non-linear characteristic of gel oxy-hydrate systems involving d- and f- elements. These are the oxyhydrates of rare-earth elements and oxides - hydroxides of d- elements (zirconium, niobium, titanium, etc.) The non-linearity of these gel systems introduces fundamental peculiarities into their structure and, consequently, their properties. The polymer-conformational diversity of energetically congenial gel fragments, which continu-ously transform under the effect of, for instance, system dissipation heat, is central to the au-thor's hy

  8. Time series analyses of breathing patterns of lung cancer patients using nonlinear dynamical system theory.

    Science.gov (United States)

    Tewatia, D K; Tolakanahalli, R P; Paliwal, B R; Tomé, W A

    2011-04-07

    The underlying requirements for successful implementation of any efficient tumour motion management strategy are regularity and reproducibility of a patient's breathing pattern. The physiological act of breathing is controlled by multiple nonlinear feedback and feed-forward couplings. It would therefore be appropriate to analyse the breathing pattern of lung cancer patients in the light of nonlinear dynamical system theory. The purpose of this paper is to analyse the one-dimensional respiratory time series of lung cancer patients based on nonlinear dynamics and delay coordinate state space embedding. It is very important to select a suitable pair of embedding dimension 'm' and time delay 'τ' when performing a state space reconstruction. Appropriate time delay and embedding dimension were obtained using well-established methods, namely mutual information and the false nearest neighbour method, respectively. Establishing stationarity and determinism in a given scalar time series is a prerequisite to demonstrating that the nonlinear dynamical system that gave rise to the scalar time series exhibits a sensitive dependence on initial conditions, i.e. is chaotic. Hence, once an appropriate state space embedding of the dynamical system has been reconstructed, we show that the time series of the nonlinear dynamical systems under study are both stationary and deterministic in nature. Once both criteria are established, we proceed to calculate the largest Lyapunov exponent (LLE), which is an invariant quantity under time delay embedding. The LLE for all 16 patients is positive, which along with stationarity and determinism establishes the fact that the time series of a lung cancer patient's breathing pattern is not random or irregular, but rather it is deterministic in nature albeit chaotic. These results indicate that chaotic characteristics exist in the respiratory waveform and techniques based on state space dynamics should be employed for tumour motion management.

  9. Time series analyses of breathing patterns of lung cancer patients using nonlinear dynamical system theory

    Energy Technology Data Exchange (ETDEWEB)

    Tewatia, D K; Tolakanahalli, R P; Paliwal, B R; Tome, W A, E-mail: tewatia@wisc.edu [Department of Human Oncology, University of Wisconsin, Madison, WI (United States)

    2011-04-07

    The underlying requirements for successful implementation of any efficient tumour motion management strategy are regularity and reproducibility of a patient's breathing pattern. The physiological act of breathing is controlled by multiple nonlinear feedback and feed-forward couplings. It would therefore be appropriate to analyse the breathing pattern of lung cancer patients in the light of nonlinear dynamical system theory. The purpose of this paper is to analyse the one-dimensional respiratory time series of lung cancer patients based on nonlinear dynamics and delay coordinate state space embedding. It is very important to select a suitable pair of embedding dimension 'm' and time delay '{tau}' when performing a state space reconstruction. Appropriate time delay and embedding dimension were obtained using well-established methods, namely mutual information and the false nearest neighbour method, respectively. Establishing stationarity and determinism in a given scalar time series is a prerequisite to demonstrating that the nonlinear dynamical system that gave rise to the scalar time series exhibits a sensitive dependence on initial conditions, i.e. is chaotic. Hence, once an appropriate state space embedding of the dynamical system has been reconstructed, we show that the time series of the nonlinear dynamical systems under study are both stationary and deterministic in nature. Once both criteria are established, we proceed to calculate the largest Lyapunov exponent (LLE), which is an invariant quantity under time delay embedding. The LLE for all 16 patients is positive, which along with stationarity and determinism establishes the fact that the time series of a lung cancer patient's breathing pattern is not random or irregular, but rather it is deterministic in nature albeit chaotic. These results indicate that chaotic characteristics exist in the respiratory waveform and techniques based on state space dynamics should be employed

  10. Time series analyses of breathing patterns of lung cancer patients using nonlinear dynamical system theory

    International Nuclear Information System (INIS)

    Tewatia, D K; Tolakanahalli, R P; Paliwal, B R; Tome, W A

    2011-01-01

    The underlying requirements for successful implementation of any efficient tumour motion management strategy are regularity and reproducibility of a patient's breathing pattern. The physiological act of breathing is controlled by multiple nonlinear feedback and feed-forward couplings. It would therefore be appropriate to analyse the breathing pattern of lung cancer patients in the light of nonlinear dynamical system theory. The purpose of this paper is to analyse the one-dimensional respiratory time series of lung cancer patients based on nonlinear dynamics and delay coordinate state space embedding. It is very important to select a suitable pair of embedding dimension 'm' and time delay 'τ' when performing a state space reconstruction. Appropriate time delay and embedding dimension were obtained using well-established methods, namely mutual information and the false nearest neighbour method, respectively. Establishing stationarity and determinism in a given scalar time series is a prerequisite to demonstrating that the nonlinear dynamical system that gave rise to the scalar time series exhibits a sensitive dependence on initial conditions, i.e. is chaotic. Hence, once an appropriate state space embedding of the dynamical system has been reconstructed, we show that the time series of the nonlinear dynamical systems under study are both stationary and deterministic in nature. Once both criteria are established, we proceed to calculate the largest Lyapunov exponent (LLE), which is an invariant quantity under time delay embedding. The LLE for all 16 patients is positive, which along with stationarity and determinism establishes the fact that the time series of a lung cancer patient's breathing pattern is not random or irregular, but rather it is deterministic in nature albeit chaotic. These results indicate that chaotic characteristics exist in the respiratory waveform and techniques based on state space dynamics should be employed for tumour motion management.

  11. Time delays across saddles as a test of modified gravity

    International Nuclear Information System (INIS)

    Magueijo, João; Mozaffari, Ali

    2013-01-01

    Modified gravity theories can produce strong signals in the vicinity of the saddles of the total gravitational potential. In a sub-class of these models, this translates into diverging time delays for echoes crossing the saddles. Such models arise from the possibility that gravity might be infrared divergent or confined, and if suitably designed they are very difficult to rule out. We show that Lunar Laser Ranging during an eclipse could probe the time-delay effect within metres of the saddle, thereby proving or excluding these models. Very Large Baseline Interferometry, instead, could target delays across the Jupiter–Sun saddle. Such experiments would shed light on the infrared behaviour of gravity and examine the puzzling possibility that there might be well-hidden regions of strong gravity and even singularities inside the solar system. (fast track communication)

  12. Identification of Nonlinear Dynamic Systems Possessing Some Non-linearities

    Directory of Open Access Journals (Sweden)

    Y. N. Pavlov

    2015-01-01

    Full Text Available The subject of this work is the problem of identification of nonlinear dynamic systems based on the experimental data obtained by applying test signals to the system. The goal is to determinate coefficients of differential equations of systems by experimental frequency hodographs and separate similar, but different, in essence, forces: dissipative forces with the square of the first derivative in the motion equations and dissipative force from the action of dry friction. There was a proposal to use the harmonic linearization method to approximate each of the nonlinearity of "quadratic friction" and "dry friction" by linear friction with the appropriate harmonic linearization coefficient.Assume that a frequency transfer function of the identified system has a known form. Assume as well that there are disturbances while obtaining frequency characteristics of the realworld system. As a result, the points of experimentally obtained hodograph move randomly. Searching for solution of the identification problem was in the hodograph class, specified by the system model, which has the form of the frequency transfer function the same as the form of the frequency transfer function of the system identified. Minimizing a proximity criterion (measure of the experimentally obtained system hodograph and the system hodograph model for all the experimental points described and previously published by one of the authors allowed searching for the unknown coefficients of the frequenc ransfer function of the system model. The paper shows the possibility to identify a nonlinear dynamic system with multiple nonlinearities, obtained on the experimental samples of the frequency system hodograph. The proposed algorithm allows to select the nonlinearity of the type "quadratic friction" and "dry friction", i.e. also in the case where the nonlinearity is dependent on the same dynamic parameter, in particular, on the derivative of the system output value. For the dynamic

  13. Fundamental and Subharmonic Resonances of Harmonically Oscillation with Time Delay State Feedback

    Directory of Open Access Journals (Sweden)

    A.F. EL-Bassiouny

    2006-01-01

    Full Text Available Time delays occur in many physical systems. In particular, when automatic control is used with structural or mechanical systems, there exists a delay between measurement of the system state and corrective action. The concept of an equivalent damping related to the delay feedback is proposed and the appropriate choice of the feedback gains and the time delay is discussed from the viewpoint of vibration control. We investigate the fundamental resonance and subharmonic resonance of order one-half of a harmonically oscillation under state feedback control with a time delay. By using the multiple scale perturbation technique, the first order approximation of the resonances are derived and the effect of time delay on the resonances is investigated. The fixed points correspond to a periodic motion for the starting system and we show the external excitation-response and frequency-response curves. We analyze the effect of time delay and the other different parameters on these oscillations.

  14. Measurement of time delay for a prospectively gated CT simulator.

    Science.gov (United States)

    Goharian, M; Khan, R F H

    2010-04-01

    For the management of mobile tumors, respiratory gating is the ideal option, both during imaging and during therapy. The major advantage of respiratory gating during imaging is that it is possible to create a single artifact-free CT data-set during a selected phase of the patient's breathing cycle. The purpose of the present work is to present a simple technique to measure the time delay during acquisition of a prospectively gated CT. The time delay of a Philips Brilliance BigBore (Philips Medical Systems, Madison, WI) scanner attached to a Varian Real-Time Position Management (RPM) system (Varian Medical Systems, Palo Alto, CA) was measured. Two methods were used to measure the CT time delay: using a motion phantom and using a recorded data file from the RPM system. In the first technique, a rotating wheel phantom was altered by placing two plastic balls on its axis and rim, respectively. For a desired gate, the relative positions of the balls were measured from the acquired CT data and converted into corresponding phases. Phase difference was calculated between the measured phases and the desired phases. Using period of motion, the phase difference was converted into time delay. The Varian RPM system provides an external breathing signal; it also records transistor-transistor logic (TTL) 'X-Ray ON' status signal from the CT scanner in a text file. The TTL 'X-Ray ON' indicates the start of CT image acquisition. Thus, knowledge of the start time of CT acquisition, combined with the real-time phase and amplitude data from the external respiratory signal, provides time-stamping of all images in an axial CT scan. The TTL signal with time-stamp was used to calculate when (during the breathing cycle) a slice was recorded. Using the two approaches, the time delay between the prospective gating signal and CT simulator has been determined to be 367 +/- 40 ms. The delay requires corrections both at image acquisition and while setting gates for the treatment delivery

  15. Measurement of time delay for a prospectively gated CT simulator

    Directory of Open Access Journals (Sweden)

    Goharian M

    2010-01-01

    Full Text Available For the management of mobile tumors, respiratory gating is the ideal option, both during imaging and during therapy. The major advantage of respiratory gating during imaging is that it is possible to create a single artifact-free CT data-set during a selected phase of the patient′s breathing cycle. The purpose of the present work is to present a simple technique to measure the time delay during acquisition of a prospectively gated CT. The time delay of a Philips Brilliance BigBore™ (Philips Medical Systems, Madison, WI scanner attached to a Varian Real-Time Position Management™ (RPM system (Varian Medical Systems, Palo Alto, CA was measured. Two methods were used to measure the CT time delay: using a motion phantom and using a recorded data file from the RPM system. In the first technique, a rotating wheel phantom was altered by placing two plastic balls on its axis and rim, respectively. For a desired gate, the relative positions of the balls were measured from the acquired CT data and converted into corresponding phases. Phase difference was calculated between the measured phases and the desired phases. Using period of motion, the phase difference was converted into time delay. The Varian RPM system provides an external breathing signal; it also records transistor-transistor logic (TTL ′X-Ray ON′ status signal from the CT scanner in a text file. The TTL ′X-Ray ON′ indicates the start of CT image acquisition. Thus, knowledge of the start time of CT acquisition, combined with the real-time phase and amplitude data from the external respiratory signal, provides time-stamping of all images in an axial CT scan. The TTL signal with time-stamp was used to calculate when (during the breathing cycle a slice was recorded. Using the two approaches, the time delay between the prospective gating signal and CT simulator has been determined to be 367 ± 40 ms. The delay requires corrections both at image acquisition and while setting gates for

  16. Measurement of time delay for a prospectively gated CT simulator

    International Nuclear Information System (INIS)

    Goharian, M.; Khan, R.F.H.

    2010-01-01

    For the management of mobile tumors, respiratory gating is the ideal option, both during imaging and during therapy. The major advantage of respiratory gating during imaging is that it is possible to create a single artifact-free CT data-set during a selected phase of the patient's breathing cycle. The purpose of the present work is to present a simple technique to measure the time delay during acquisition of a prospectively gated CT. The time delay of a Philips Brilliance BigBore (Philips Medical Systems, Madison, WI) scanner attached to a Varian Real-Time Position Management (RPM) system (Varian Medical Systems, Palo Alto, CA) was measured. Two methods were used to measure the CT time delay: using a motion phantom and using a recorded data file from the RPM system. In the first technique, a rotating wheel phantom was altered by placing two plastic balls on its axis and rim, respectively. For a desired gate, the relative positions of the balls were measured from the acquired CT data and converted into corresponding phases. Phase difference was calculated between the measured phases and the desired phases. Using period of motion, the phase difference was converted into time delay. The Varian RPM system provides an external breathing signal; it also records transistor-transistor logic (TTL) 'X-Ray ON' status signal from the CT scanner in a text file. The TTL 'X-Ray ON' indicates the start of CT image acquisition. Thus, knowledge of the start time of CT acquisition, combined with the real-time phase and amplitude data from the external respiratory signal, provides time-stamping of all images in an axial CT scan. The TTL signal with time-stamp was used to calculate when (during the breathing cycle) a slice was recorded. Using the two approaches, the time delay between the prospective gating signal and CT simulator has been determined to be 367 ± 40 ms. The delay requires corrections both at image acquisition and while setting gates for the treatment delivery

  17. Nonlinear dynamics and complexity

    CERN Document Server

    Luo, Albert; Fu, Xilin

    2014-01-01

    This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.

  18. Graphical Evaluation of Time-Delay Compensation Techniques for Digitally Controlled Converters

    DEFF Research Database (Denmark)

    Lu, Minghui; Wang, Xiongfei; Loh, Poh Chiang

    2018-01-01

    A main design constraint of the digitally controlled power electronics converters is the time delay of control systems, which may lead to the reduced control loop bandwidth and even unstable dynamics. Numerous time-delay compensation methods have been developed, of which the model-free schemes...

  19. STRONG LENS TIME DELAY CHALLENGE. I. EXPERIMENTAL DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    Dobler, Gregory [Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA 93106 (United States); Fassnacht, Christopher D.; Rumbaugh, Nicholas [Department of Physics, University of California, 1 Shields Avenue, Davis, CA 95616 (United States); Treu, Tommaso; Liao, Kai [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Marshall, Phil [Kavli Institute for Particle Astrophysics and Cosmology, P.O. Box 20450, MS29, Stanford, CA 94309 (United States); Hojjati, Alireza [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, B.C. V6T 1Z1 (Canada); Linder, Eric, E-mail: tt@astro.ucla.edu [Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720 (United States)

    2015-02-01

    The time delays between point-like images in gravitational lens systems can be used to measure cosmological parameters. The number of lenses with measured time delays is growing rapidly; the upcoming Large Synoptic Survey Telescope (LSST) will monitor ∼10{sup 3} strongly lensed quasars. In an effort to assess the present capabilities of the community, to accurately measure the time delays, and to provide input to dedicated monitoring campaigns and future LSST cosmology feasibility studies, we have invited the community to take part in a ''Time Delay Challenge'' (TDC). The challenge is organized as a set of ''ladders'', each containing a group of simulated data sets to be analyzed blindly by participating teams. Each rung on a ladder consists of a set of realistic mock observed lensed quasar light curves, with the rungs' data sets increasing in complexity and realism. The initial challenge described here has two ladders, TDC0 and TDC1. TDC0 has a small number of data sets, and is designed to be used as a practice set by the participating teams. The (non-mandatory) deadline for completion of TDC0 was the TDC1 launch date, 2013 December 1. The TDC1 deadline was 2014 July 1. Here we give an overview of the challenge, we introduce a set of metrics that will be used to quantify the goodness of fit, efficiency, precision, and accuracy of the algorithms, and we present the results of TDC0. Thirteen teams participated in TDC0 using 47 different methods. Seven of those teams qualified for TDC1, which is described in the companion paper.

  20. Optical resonators for true-time-delay beam steering

    Science.gov (United States)

    Gesell, Leslie H.; Evanko, Stephen M.

    1996-06-01

    Conventional true time delay beamforming and steering devices rely on switching between various lengths of delay line. Therefore only discrete delays are possible. Proposed is a new photonics concept for true time delay beamforming which provides a finely controlled continuum of delays with switching speeds on the order of 10's of nanoseconds or faster. The architecture uses an array of waveguide cavities with different resonate frequencies to channelize the signal. Each spectral component of the signal is phase shifted by an amount proportional to the frequency of that component and the desired time delay. These phase shifted spectral components are then summed to obtain the delayed signal. This paper provides an overview of the results of a Phase I SBIR contract where this concept has been refined and analyzed. The parameters for an operational system are determined and indication of the feasibility of this approach is given. Among the issues addressed are the requirements of the resonators and the methods necessary to implement fiber optic Bragg gratings as these resonators.

  1. Output Feedback Adaptive Dynamic Surface Control of Permanent Magnet Synchronous Motor with Uncertain Time Delays via RBFNN

    Directory of Open Access Journals (Sweden)

    Shaohua Luo

    2014-01-01

    Full Text Available This paper focuses on an adaptive dynamic surface control based on the Radial Basis Function Neural Network for a fourth-order permanent magnet synchronous motor system wherein the unknown parameters, disturbances, chaos, and uncertain time delays are presented. Neural Network systems are used to approximate the nonlinearities and an adaptive law is employed to estimate accurate parameters. Then, a simple and effective controller has been obtained by introducing dynamic surface control technique on the basis of first-order filters. Asymptotically tracking stability in the sense of uniformly ultimate boundedness is achieved in a short time. Finally, the performance of the proposed control has been illustrated through simulation results.

  2. Synchronization stability of memristor-based complex-valued neural networks with time delays.

    Science.gov (United States)

    Liu, Dan; Zhu, Song; Ye, Er

    2017-12-01

    This paper focuses on the dynamical property of a class of memristor-based complex-valued neural networks (MCVNNs) with time delays. By constructing the appropriate Lyapunov functional and utilizing the inequality technique, sufficient conditions are proposed to guarantee exponential synchronization of the coupled systems based on drive-response concept. The proposed results are very easy to verify, and they also extend some previous related works on memristor-based real-valued neural networks. Meanwhile, the obtained sufficient conditions of this paper may be conducive to qualitative analysis of some complex-valued nonlinear delayed systems. A numerical example is given to demonstrate the effectiveness of our theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Empirical Differential Balancing for Nonlinear Systems

    NARCIS (Netherlands)

    Kawano, Yu; Scherpen, Jacquelien M.A.; Dochain, Denis; Henrion, Didier; Peaucelle, Dimitri

    In this paper, we consider empirical balancing of nonlinear systems by using its prolonged system, which consists of the original nonlinear system and its variational system. For the prolonged system, we define differential reachability and observability Gramians, which are matrix valued functions

  4. Chaos synchronization of uncertain chaotic systems using composite nonlinear feedback based integral sliding mode control.

    Science.gov (United States)

    Mobayen, Saleh

    2018-06-01

    This paper proposes a combination of composite nonlinear feedback and integral sliding mode techniques for fast and accurate chaos synchronization of uncertain chaotic systems with Lipschitz nonlinear functions, time-varying delays and disturbances. The composite nonlinear feedback method allows accurate following of the master chaotic system and the integral sliding mode control provides invariance property which rejects the perturbations and preserves the stability of the closed-loop system. Based on the Lyapunov- Krasovskii stability theory and linear matrix inequalities, a novel sufficient condition is offered for the chaos synchronization of uncertain chaotic systems. This method not only guarantees the robustness against perturbations and time-delays, but also eliminates reaching phase and avoids chattering problem. Simulation results demonstrate that the suggested procedure leads to a great control performance. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Controlling flow time delays in flexible manufacturing cells

    NARCIS (Netherlands)

    Slomp, J.; Caprihan, R.; Bokhorst, J. A. C.

    2009-01-01

    Flow time delays in Flexible Manufacturing Cells (FMCs) are caused by transport and clamping/reclamping activities. This paper shows how dynamic scheduling parameters may control the flow times of jobs and the available task windows for flow time delays.

  6. Electrical Activity in a Time-Delay Four-Variable Neuron Model under Electromagnetic Induction

    Directory of Open Access Journals (Sweden)

    Keming Tang

    2017-11-01

    Full Text Available To investigate the effect of electromagnetic induction on the electrical activity of neuron, the variable for magnetic flow is used to improve Hindmarsh–Rose neuron model. Simultaneously, due to the existence of time-delay when signals are propagated between neurons or even in one neuron, it is important to study the role of time-delay in regulating the electrical activity of the neuron. For this end, a four-variable neuron model is proposed to investigate the effects of electromagnetic induction and time-delay. Simulation results suggest that the proposed neuron model can show multiple modes of electrical activity, which is dependent on the time-delay and external forcing current. It means that suitable discharge mode can be obtained by selecting the time-delay or external forcing current, which could be helpful for further investigation of electromagnetic radiation on biological neuronal system.

  7. New distributions of the statistical time delay of electrical breakdown in nitrogen

    International Nuclear Information System (INIS)

    Markovic, V Lj; Gocic, S R; Stamenkovic, S N

    2006-01-01

    Two new distributions of the statistical time delay of electrical breakdown in nitrogen are reported in this paper. The Gaussian and Gauss-exponential distributions of statistical time delay have been obtained on the basis of thousands of time delay measurements on a gas tube with a plane-parallel electrode system. Distributions of the statistical time delay are theoretically founded on binomial distribution for the occurrence of initiating electrons and described by using simple analytical and numerical models. The shapes of distributions depend on the electron yields in the interelectrode space originating from residual states. It is shown that a distribution of the statistical time delay changes from exponential and Gauss-exponential to Gaussian distribution due to the influence of residual ionization

  8. Local Stability of AIDS Epidemic Model Through Treatment and Vertical Transmission with Time Delay

    Science.gov (United States)

    Novi W, Cascarilla; Lestari, Dwi

    2016-02-01

    This study aims to explain stability of the spread of AIDS through treatment and vertical transmission model. Human with HIV need a time to positively suffer AIDS. The existence of a time, human with HIV until positively suffer AIDS can be delayed for a time so that the model acquired is the model with time delay. The model form is a nonlinear differential equation with time delay, SIPTA (susceptible-infected-pre AIDS-treatment-AIDS). Based on SIPTA model analysis results the disease free equilibrium point and the endemic equilibrium point. The disease free equilibrium point with and without time delay are local asymptotically stable if the basic reproduction number is less than one. The endemic equilibrium point will be local asymptotically stable if the time delay is less than the critical value of delay, unstable if the time delay is more than the critical value of delay, and bifurcation occurs if the time delay is equal to the critical value of delay.

  9. Nonlinear Waves in Complex Systems

    DEFF Research Database (Denmark)

    2007-01-01

    The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations, it is the ......The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations...

  10. Cucker-Smale model with normalized communication weights and time delay

    KAUST Repository

    Choi, Young-Pil; Haskovec, Jan

    2017-01-01

    We study a Cucker-Smale-type system with time delay in which agents interact with each other through normalized communication weights. We construct a Lyapunov functional for the system and provide sufficient conditions for asymptotic flocking, i

  11. Effects of Noise and Time Delay Upon Active Control of Combustion Instabilities

    National Research Council Canada - National Science Library

    Zinn, Ben

    2001-01-01

    To improve the performance of practical active control system (ACS) for unstable combustors, the effects of system noise and ACS time delay upon combustion instabilities and the ACS performance were studied...

  12. Discontinuity and complexity in nonlinear physical systems

    CERN Document Server

    Baleanu, Dumitru; Luo, Albert

    2014-01-01

    This unique book explores recent developments in experimental research in this broad field, organized in four distinct sections. Part I introduces the reader to the fractional dynamics and Lie group analysis for nonlinear partial differential equations. Part II covers chaos and complexity in nonlinear Hamiltonian systems, important to understand the resonance interactions in nonlinear dynamical systems, such as Tsunami waves and wildfire propagations; as well as Lev flights in chaotic trajectories, dynamical system synchronization and DNA information complexity analysis. Part III examines chaos and periodic motions in discontinuous dynamical systems, extensively present in a range of systems, including piecewise linear systems, vibro-impact systems and drilling systems in engineering. And in Part IV, engineering and financial nonlinearity are discussed. The mechanism of shock wave with saddle-node bifurcation and rotating disk stability will be presented, and the financial nonlinear models will be discussed....

  13. Stability analysis of nonlinear systems with slope restricted nonlinearities.

    Science.gov (United States)

    Liu, Xian; Du, Jiajia; Gao, Qing

    2014-01-01

    The problem of absolute stability of Lur'e systems with sector and slope restricted nonlinearities is revisited. Novel time-domain and frequency-domain criteria are established by using the Lyapunov method and the well-known Kalman-Yakubovich-Popov (KYP) lemma. The criteria strengthen some existing results. Simulations are given to illustrate the efficiency of the results.

  14. Stability Analysis of Nonlinear Systems with Slope Restricted Nonlinearities

    Directory of Open Access Journals (Sweden)

    Xian Liu

    2014-01-01

    Full Text Available The problem of absolute stability of Lur’e systems with sector and slope restricted nonlinearities is revisited. Novel time-domain and frequency-domain criteria are established by using the Lyapunov method and the well-known Kalman-Yakubovich-Popov (KYP lemma. The criteria strengthen some existing results. Simulations are given to illustrate the efficiency of the results.

  15. Topology Identification of General Dynamical Network with Distributed Time Delays

    International Nuclear Information System (INIS)

    Zhao-Yan, Wu; Xin-Chu, Fu

    2009-01-01

    General dynamical networks with distributed time delays are studied. The topology of the networks are viewed as unknown parameters, which need to be identified. Some auxiliary systems (also called the network estimators) are designed to achieve this goal. Both linear feedback control and adaptive strategy are applied in designing these network estimators. Based on linear matrix inequalities and the Lyapunov function method, the sufficient condition for the achievement of topology identification is obtained. This method can also better monitor the switching topology of dynamical networks. Illustrative examples are provided to show the effectiveness of this method. (general)

  16. Time-delayed fronts from biased random walks

    International Nuclear Information System (INIS)

    Fort, Joaquim; Pujol, Toni

    2007-01-01

    We generalize a previous model of time-delayed reaction-diffusion fronts (Fort and Mendez 1999 Phys. Rev. Lett. 82 867) to allow for a bias in the microscopic random walk of particles or individuals. We also present a second model which takes the time order of events (diffusion and reproduction) into account. As an example, we apply them to the human invasion front across the USA in the 19th century. The corrections relative to the previous model are substantial. Our results are relevant to physical and biological systems with anisotropic fronts, including particle diffusion in disordered lattices, population invasions, the spread of epidemics, etc

  17. Time delay effects on large-scale MR damper based semi-active control strategies

    International Nuclear Information System (INIS)

    Cha, Y-J; Agrawal, A K; Dyke, S J

    2013-01-01

    This paper presents a detailed investigation on the robustness of large-scale 200 kN MR damper based semi-active control strategies in the presence of time delays in the control system. Although the effects of time delay on stability and performance degradation of an actively controlled system have been investigated extensively by many researchers, degradation in the performance of semi-active systems due to time delay has yet to be investigated. Since semi-active systems are inherently stable, instability problems due to time delay are unlikely to arise. This paper investigates the effects of time delay on the performance of a building with a large-scale MR damper, using numerical simulations of near- and far-field earthquakes. The MR damper is considered to be controlled by four different semi-active control algorithms, namely (i) clipped-optimal control (COC), (ii) decentralized output feedback polynomial control (DOFPC), (iii) Lyapunov control, and (iv) simple-passive control (SPC). It is observed that all controllers except for the COC are significantly robust with respect to time delay. On the other hand, the clipped-optimal controller should be integrated with a compensator to improve the performance in the presence of time delay. (paper)

  18. Goodwin accelerator model revisited with fixed time delays

    Science.gov (United States)

    Matsumoto, Akio; Merlone, Ugo; Szidarovszky, Ferenc

    2018-05-01

    Dynamics of Goodwin's accelerator business cycle model is reconsidered. The model is characterized by a nonlinear accelerator and an investment time delay. The role of the nonlinearity for the birth of persistent oscillations is fully discussed in the existing literature. On the other hand, not much of the role of the delay has yet been revealed. The purpose of this paper is to show that the delay really matters. In the original framework of Goodwin [6], it is first demonstrated that there is a threshold value of the delay: limit cycles arise for smaller values than the threshold and so do sawtooth oscillations for larger values. In the extended framework in which a consumption or saving delay, in addition to the investment delay, is introduced, three main results are demonstrated under assumption of the identical length of investment and consumption delays. The dynamics with consumption delay is basically the same as that of the single delay model. Second, in the case of saving delay, the steady state can coexist with the stable and unstable limit cycles in the stable case. Third, in the unstable case, there is an interval of delay in which the limit cycle or the sawtooth oscillation emerges depending on the choice of the constant initial function.

  19. The Hubble constant estimation using 18 gravitational lensing time delays

    Science.gov (United States)

    Jaelani, Anton T.; Premadi, Premana W.

    2014-03-01

    Gravitational lens time delay method has been used to estimate the rate of cosmological expansion, called the Hubble constant, H0, independently of the standard candle method. This gravitational lensing method requires a good knowledge of the lens mass distribution, reconstructed using the lens image properties. The observed positions of the images, and the redshifts of the lens and the images serve as strong constraints to the lens equations, which are then solved as a set of simultaneous linear equations. Here we made use of a non-parametric technique to reconstruct the lens mass distribution, which is manifested in a linear equations solver named PixeLens. Input for the calculation is chosen based on prior known parameters obtained from analyzed result of the lens case observations, including time-delay, position angles of the images and the lens, and their redshifts. In this project, 18 fairly well studied lens cases are further grouped according to a number of common properties to examine how each property affects the character of the data, and therefore affects the calculation of H0. The considered lens case properties are lens morphology, number of image, completeness of time delays, and symmetry of lens mass distribution. Analysis of simulation shows that paucity of constraints on mass distribution of a lens yields wide range value of H0, which reflects the uniqueness of each lens system. Nonetheless, gravitational lens method still yields H0 within an acceptable range of value when compared to those determined by many other methods. Grouping the cases in the above manner allowed us to assess the robustness of PixeLens and thereby use it selectively. In addition, we use glafic, a parametric mass reconstruction solver, to refine the mass distribution of one lens case, as a comparison.

  20. Multiplicity counting from fission detector signals with time delay effects

    Science.gov (United States)

    Nagy, L.; Pázsit, I.; Pál, L.

    2018-03-01

    In recent work, we have developed the theory of using the first three auto- and joint central moments of the currents of up to three fission chambers to extract the singles, doubles and triples count rates of traditional multiplicity counting (Pázsit and Pál, 2016; Pázsit et al., 2016). The objective is to elaborate a method for determining the fissile mass, neutron multiplication, and (α, n) neutron emission rate of an unknown assembly of fissile material from the statistics of the fission chamber signals, analogous to the traditional multiplicity counting methods with detectors in the pulse mode. Such a method would be an alternative to He-3 detector systems, which would be free from the dead time problems that would be encountered in high counting rate applications, for example the assay of spent nuclear fuel. A significant restriction of our previous work was that all neutrons born in a source event (spontaneous fission) were assumed to be detected simultaneously, which is not fulfilled in reality. In the present work, this restriction is eliminated, by assuming an independent, identically distributed random time delay for all neutrons arising from one source event. Expressions are derived for the same auto- and joint central moments of the detector current(s) as in the previous case, expressed with the singles, doubles, and triples (S, D and T) count rates. It is shown that if the time-dispersion of neutron detections is of the same order of magnitude as the detector pulse width, as they typically are in measurements of fast neutrons, the multiplicity rates can still be extracted from the moments of the detector current, although with more involved calibration factors. The presented formulae, and hence also the performance of the proposed method, are tested by both analytical models of the time delay as well as with numerical simulations. Methods are suggested also for the modification of the method for large time delay effects (for thermalised neutrons).

  1. COSMOLOGY FROM GRAVITATIONAL LENS TIME DELAYS AND PLANCK DATA

    International Nuclear Information System (INIS)

    Suyu, S. H.; Treu, T.; Sonnenfeld, A.; Hilbert, S.; Spiniello, C.; Auger, M. W.; Collett, T.; Blandford, R. D.; Marshall, P. J.; Courbin, F.; Meylan, G.; Tewes, M.; Fassnacht, C. D.; Koopmans, L. V. E.

    2014-01-01

    Under the assumption of a flat ΛCDM cosmology, recent data from the Planck satellite point toward a Hubble constant that is in tension with that measured by gravitational lens time delays and by the local distance ladder. Prosaically, this difference could arise from unknown systematic uncertainties in some of the measurements. More interestingly—if systematics were ruled out—resolving the tension would require a departure from the flat ΛCDM cosmology, introducing, for example, a modest amount of spatial curvature, or a non-trivial dark energy equation of state. To begin to address these issues, we present an analysis of the gravitational lens RXJ1131–1231 that is improved in one particular regard: we examine the issue of systematic error introduced by an assumed lens model density profile. We use more flexible gravitational lens models with baryonic and dark matter components, and find that the exquisite Hubble Space Telescope image with thousands of intensity pixels in the Einstein ring and the stellar velocity dispersion of the lens contain sufficient information to constrain these more flexible models. The total uncertainty on the time-delay distance is 6.6% for a single system. We proceed to combine our improved time-delay distance measurement with the WMAP9 and Planck posteriors. In an open ΛCDM model, the data for RXJ1131–1231 in combination with Planck favor a flat universe with Ω k =0.00 −0.02 +0.01 (68% credible interval (CI)). In a flat wCDM model, the combination of RXJ1131–1231 and Planck yields w=−1.52 −0.20 +0.19 (68% CI)

  2. Generating Li–Yorke chaos in a stable continuous-time T–S fuzzy model via time-delay feedback control

    International Nuclear Information System (INIS)

    Qiu-Ye, Sun; Hua-Guang, Zhang; Yan, Zhao

    2010-01-01

    This paper investigates the chaotification problem of a stable continuous-time T–S fuzzy system. A simple nonlinear state time-delay feedback controller is designed by parallel distributed compensation technique. Then, the asymptotically approximate relationship between the controlled continuous-time T–S fuzzy system with time-delay and a discrete-time T–S fuzzy system is established. Based on the discrete-time T–S fuzzy system, it proves that the chaos in the discrete-time T–S fuzzy system satisfies the Li–Yorke definition by choosing appropriate controller parameters via the revised Marotto theorem. Finally, the effectiveness of the proposed chaotic anticontrol method is verified by a practical example. (general)

  3. Adaptive fuzzy wavelet network control of second order multi-agent systems with unknown nonlinear dynamics.

    Science.gov (United States)

    Taheri, Mehdi; Sheikholeslam, Farid; Najafi, Majddedin; Zekri, Maryam

    2017-07-01

    In this paper, consensus problem is considered for second order multi-agent systems with unknown nonlinear dynamics under undirected graphs. A novel distributed control strategy is suggested for leaderless systems based on adaptive fuzzy wavelet networks. Adaptive fuzzy wavelet networks are employed to compensate for the effect of unknown nonlinear dynamics. Moreover, the proposed method is developed for leader following systems and leader following systems with state time delays. Lyapunov functions are applied to prove uniformly ultimately bounded stability of closed loop systems and to obtain adaptive laws. Three simulation examples are presented to illustrate the effectiveness of the proposed control algorithms. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. The transition between monostable and bistable states induced by time delay in intracellular calcium oscillation

    International Nuclear Information System (INIS)

    Duan, Wei-Long

    2013-01-01

    The revised role of the time delay of active processes with colored noises of transmission of intracellular Ca 2+ in intracellular calcium oscillation (ICO) is investigated by means of a first-order algorithm based on stochastic simulation. The simulation results indicate that time delay induces a double critical phenomenon and a transition between the monostable and bistable states of the ICO system. In addition, as the time delay increases, for a cytosolic Ca 2+ concentration with weak colored noises there appears a calcium burst, and the Ca 2+ concentration of the calcium store shows nonmonotonic variation. (paper)

  5. Positive real balancing for nonlinear systems

    NARCIS (Netherlands)

    Ionescu, Tudor C.; Scherpen, Jacquelien M.A.; Ciuprina, G; Ioan, D

    2007-01-01

    We extend the positive real balancing procedure for passive linear systems to the nonlinear systems case. We show that, just like in the linear case, model reduction based on this technique preserves passivity.

  6. On Stabilization of Nonautonomous Nonlinear Systems

    International Nuclear Information System (INIS)

    Bogdanov, A. Yu.

    2008-01-01

    The procedures to obtain the sufficient conditions of asymptotic stability for nonlinear nonstationary continuous-time systems are discussed. We consider different types of the following general controlled system: x = X(t,x,u) = F(t,x)+B(t,x)u, x(t 0 ) = x 0 . (*) The basis of investigation is limiting equations, limiting Lyapunov functions, etc. The improved concept of observability of the pair of functional matrices is presented. By these results the problem of synthesis of asymptotically stable control nonlinear nonautonomous systems (with linear parts) involving the quadratic time-dependent Lyapunov functions is solved as well as stabilizing a given unstable system with nonlinear control law.

  7. Fluctuations in Nonlinear Systems: A Short Review

    International Nuclear Information System (INIS)

    Rubia, F.J. de la; Buceta, J.; Cabrera, J.L.; Olarrea, J.; Parrondo, J.M.R.

    2003-01-01

    We review some results that illustrate the constructive role of noise in nonlinear systems. Several phenomena are briefly discussed: optimal localization of orbits in a system with limit cycle behavior and perturbed by colored noise; stochastic branch selection at secondary bifurcations; noise- induced order/disorder transitions and pattern formation in spatially extended systems. In all cases the presence of noise is crucial, and the results reinforce the modern view of the importance of noise in the evolution of nonlinear systems. (author)

  8. Generalized Projective Synchronization between Two Different Neural Networks with Mixed Time Delays

    Directory of Open Access Journals (Sweden)

    Xuefei Wu

    2012-01-01

    Full Text Available The generalized projective synchronization (GPS between two different neural networks with nonlinear coupling and mixed time delays is considered. Several kinds of nonlinear feedback controllers are designed to achieve GPS between two different such neural networks. Some results for GPS of these neural networks are proved theoretically by using the Lyapunov stability theory and the LaSalle invariance principle. Moreover, by comparison, we determine an optimal nonlinear controller from several ones and provide an adaptive update law for it. Computer simulations are provided to show the effectiveness and feasibility of the proposed methods.

  9. Trajectory-tracking control of underwater inspection robot for nuclear reactor internals using Time Delay Control

    International Nuclear Information System (INIS)

    Park, Joon-Young; Cho, Byung-Hak; Lee, Jae-Kyung

    2009-01-01

    This paper addresses the trajectory control problem of an underwater inspection robot for nuclear reactor internals. From the viewpoint of control engineering, the trajectory control of the underwater robot is a difficult task due to its nonlinear dynamics, which includes various hydraulic forces such as buoyancy and hydrodynamic damping, the difference between the centres of gravity and buoyancy, and disturbances from a tether cable. To solve such problems, we applied Time Delay Control to the underwater robot. This control law has a very simple structure not requiring nonlinear plant dynamics, and was proven to be highly robust against nonlinearities, uncertainties and disturbances. We confirmed its effectiveness through experiments.

  10. Analysis of a Dynamical Cournot Duopoly Game with Distributed Time Delay

    Directory of Open Access Journals (Sweden)

    SÎrghi Nicoleta

    2015-03-01

    Full Text Available The aim of the paper is to analyze the dynamic model of the Cournot duopoly game with bounded rationality associated to two firms. We consider the cost function of the first firm as nonlinear and for the second firm as linear. The players do not have a complete knowledge of the market and they follow a bounded rationality adjustment process based on the estimation of the marginal profit. Also, the distributed time delay is introduced, because the decisions at the current time depend on the average past decisions. The mathematical model is described by a distributed delay differential system with two nonlinear equations. The study for the local stability of the Nash equilibrium point is carried out in the case of two types of kernels: weak (exponential and Dirac. A change in local stability of the equilibrium point, from stable to unstable, implies a Hopf bifurcation. The delays are considered as bifurcation parameters. In some conditions of the parameters of the model, we have proved that a family of periodic solutions bifurcates from the equilibrium point when the bifurcation parameter passes through a critical value. Numerical simulations are performed to illustrate the effectiveness of our results. Finally, conclusions and future researches are provided.

  11. Boundary Controllability of Nonlinear Fractional Integrodifferential Systems

    Directory of Open Access Journals (Sweden)

    Ahmed HamdyM

    2010-01-01

    Full Text Available Sufficient conditions for boundary controllability of nonlinear fractional integrodifferential systems in Banach space are established. The results are obtained by using fixed point theorems. We also give an application for integropartial differential equations of fractional order.

  12. Super-transient scaling in time-delay autonomous Boolean network motifs

    Energy Technology Data Exchange (ETDEWEB)

    D' Huys, Otti, E-mail: otti.dhuys@phy.duke.edu; Haynes, Nicholas D. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Lohmann, Johannes [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Gauthier, Daniel J. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2016-09-15

    Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.

  13. Time domain passivity controller for 4-channel time-delay bilateral teleoperation.

    Science.gov (United States)

    Rebelo, Joao; Schiele, Andre

    2015-01-01

    This paper presents an extension of the time-domain passivity control approach to a four-channel bilateral controller under the effects of time delays. Time-domain passivity control has been used successfully to stabilize teleoperation systems with position-force and position-position controllers; however, the performance with such control architectures is sub-optimal both with and without time delays. This work extends the network representation of the time-domain passivity controller to the four-channel architecture, which provides perfect transparency to the user without time delay. The proposed architecture is based on modelling the controllers as dependent voltage sources and using only series passivity controllers. The obtained results are shown on a one degree-of-freedom setup and illustrate the stabilization behaviour of the proposed controller when time delay is present in the communication channel.

  14. Time delay induced different synchronization patterns in repulsively coupled chaotic oscillators

    Science.gov (United States)

    Yao, Chenggui; Yi, Ming; Shuai, Jianwei

    2013-09-01

    Time delayed coupling plays a crucial role in determining the system's dynamics. We here report that the time delay induces transition from the asynchronous state to the complete synchronization (CS) state in the repulsively coupled chaotic oscillators. In particular, by changing the coupling strength or time delay, various types of synchronous patterns, including CS, antiphase CS, antiphase synchronization (ANS), and phase synchronization, can be generated. In the transition regions between different synchronous patterns, bistable synchronous oscillators can be observed. Furthermore, we show that the time-delay-induced phase flip bifurcation is of key importance for the emergence of CS. All these findings may light on our understanding of neuronal synchronization and information processing in the brain.

  15. Nonlinear PDEs a dynamical systems approach

    CERN Document Server

    Schneider, Guido

    2017-01-01

    This is an introductory textbook about nonlinear dynamics of PDEs, with a focus on problems over unbounded domains and modulation equations. The presentation is example-oriented, and new mathematical tools are developed step by step, giving insight into some important classes of nonlinear PDEs and nonlinear dynamics phenomena which may occur in PDEs. The book consists of four parts. Parts I and II are introductions to finite- and infinite-dimensional dynamics defined by ODEs and by PDEs over bounded domains, respectively, including the basics of bifurcation and attractor theory. Part III introduces PDEs on the real line, including the Korteweg-de Vries equation, the Nonlinear Schrödinger equation and the Ginzburg-Landau equation. These examples often occur as simplest possible models, namely as amplitude or modulation equations, for some real world phenomena such as nonlinear waves and pattern formation. Part IV explores in more detail the connections between such complicated physical systems and the reduced...

  16. Universal formats for nonlinear ordinary differential systems

    International Nuclear Information System (INIS)

    Kerner, E.H.

    1981-01-01

    It is shown that very general nonlinear ordinary differential systems (embracing all that arise in practice) may, first, be brought down to polynomial systems (where the nonlinearities occur only as polynomials in the dependent variables) by introducing suitable new variables into the original system; second, that polynomial systems are reducible to ''Riccati systems,'' where the nonlinearities are quadratic at most; third, that Riccati systems may be brought to elemental universal formats containing purely quadratic terms with simple arrays of coefficients that are all zero or unity. The elemental systems have representations as novel types of matrix Riccati equations. Different starting systems and their associated Riccati systems differ from one another, at the final elemental level, in order and in initial data, but not in format

  17. Nonlinear and Complex Dynamics in Real Systems

    OpenAIRE

    William Barnett; Apostolos Serletis; Demitre Serletis

    2005-01-01

    This paper was produced for the El-Naschie Symposium on Nonlinear Dynamics in Shanghai in December 2005. In this paper we provide a review of the literature with respect to fluctuations in real systems and chaos. In doing so, we contrast the order and organization hypothesis of real systems with nonlinear chaotic dynamics and discuss some techniques used in distinguishing between stochastic and deterministic behavior. Moreover, we look at the issue of where and when the ideas of chaos could p...

  18. Using Constant Time Delay to Teach Braille Word Recognition

    Science.gov (United States)

    Hooper, Jonathan; Ivy, Sarah; Hatton, Deborah

    2014-01-01

    Introduction: Constant time delay has been identified as an evidence-based practice to teach print sight words and picture recognition (Browder, Ahlbrim-Delzell, Spooner, Mims, & Baker, 2009). For the study presented here, we tested the effectiveness of constant time delay to teach new braille words. Methods: A single-subject multiple baseline…

  19. Generation of chaotic radiation in a driven traveling wave tube amplifier with time-delayed feedback

    International Nuclear Information System (INIS)

    Marchewka, Chad; Larsen, Paul; Bhattacharjee, Sudeep; Booske, John; Sengele, Sean; Ryskin, Nikita; Titov, Vladimir

    2006-01-01

    The application of chaos in communications and radar offers new and interesting possibilities. This article describes investigations on the generation of chaos in a traveling wave tube (TWT) amplifier and the experimental parameters responsible for sustaining stable chaos. Chaos is generated in a TWT amplifier when it is made to operate in a highly nonlinear regime by recirculating a fraction of the TWT output power back to the input in a delayed feedback configuration. A driver wave provides a constant external force to the system making it behave like a forced nonlinear oscillator. The effects of the feedback bandwidth, intensity, and phase are described. The study illuminates the different transitions to chaos and the effect of parameters such as the frequency and intensity of the driver wave. The detuning frequency, i.e., difference frequency between the driver wave and the natural oscillation of the system, has been identified as being an important physical parameter for controlling evolution to chaos. Among the observed routes to chaos, besides the more common period doubling, a new route called loss of frequency locking occurs when the driving frequency is adjacent to a natural oscillation mode. The feedback bandwidth controls the nonlinear dynamics of the system, particularly the number of natural oscillation modes. A computational model has been developed to simulate the experiments and reasonably good agreement is obtained between them. Experiments are described that demonstrate the feasibility of chaotic communications using two TWTs, where one is operated as a driven chaotic oscillator and the other as a time-delayed, open-loop amplifier

  20. Generation of chaotic radiation in a driven traveling wave tube amplifier with time-delayed feedback

    Science.gov (United States)

    Marchewka, Chad; Larsen, Paul; Bhattacharjee, Sudeep; Booske, John; Sengele, Sean; Ryskin, Nikita; Titov, Vladimir

    2006-01-01

    The application of chaos in communications and radar offers new and interesting possibilities. This article describes investigations on the generation of chaos in a traveling wave tube (TWT) amplifier and the experimental parameters responsible for sustaining stable chaos. Chaos is generated in a TWT amplifier when it is made to operate in a highly nonlinear regime by recirculating a fraction of the TWT output power back to the input in a delayed feedback configuration. A driver wave provides a constant external force to the system making it behave like a forced nonlinear oscillator. The effects of the feedback bandwidth, intensity, and phase are described. The study illuminates the different transitions to chaos and the effect of parameters such as the frequency and intensity of the driver wave. The detuning frequency, i.e., difference frequency between the driver wave and the natural oscillation of the system, has been identified as being an important physical parameter for controlling evolution to chaos. Among the observed routes to chaos, besides the more common period doubling, a new route called loss of frequency locking occurs when the driving frequency is adjacent to a natural oscillation mode. The feedback bandwidth controls the nonlinear dynamics of the system, particularly the number of natural oscillation modes. A computational model has been developed to simulate the experiments and reasonably good agreement is obtained between them. Experiments are described that demonstrate the feasibility of chaotic communications using two TWTs, where one is operated as a driven chaotic oscillator and the other as a time-delayed, open-loop amplifier.

  1. Introduction to Focus Issue: Time-delay dynamics

    Science.gov (United States)

    Erneux, Thomas; Javaloyes, Julien; Wolfrum, Matthias; Yanchuk, Serhiy

    2017-11-01

    The field of dynamical systems with time delay is an active research area that connects practically all scientific disciplines including mathematics, physics, engineering, biology, neuroscience, physiology, economics, and many others. This Focus Issue brings together contributions from both experimental and theoretical groups and emphasizes a large variety of applications. In particular, lasers and optoelectronic oscillators subject to time-delayed feedbacks have been explored by several authors for their specific dynamical output, but also because they are ideal test-beds for experimental studies of delay induced phenomena. Topics include the control of cavity solitons, as light spots in spatially extended systems, new devices for chaos communication or random number generation, higher order locking phenomena between delay and laser oscillation period, and systematic bifurcation studies of mode-locked laser systems. Moreover, two original theoretical approaches are explored for the so-called Low Frequency Fluctuations, a particular chaotical regime in laser output which has attracted a lot of interest for more than 30 years. Current hot problems such as the synchronization properties of networks of delay-coupled units, novel stabilization techniques, and the large delay limit of a delay differential equation are also addressed in this special issue. In addition, analytical and numerical tools for bifurcation problems with or without noise and two reviews on concrete questions are proposed. The first review deals with the rich dynamics of simple delay climate models for El Nino Southern Oscillations, and the second review concentrates on neuromorphic photonic circuits where optical elements are used to emulate spiking neurons. Finally, two interesting biological problems are considered in this Focus Issue, namely, multi-strain epidemic models and the interaction of glucose and insulin for more effective treatment.

  2. Adaptive PI Controller for a Nonlinear System

    Directory of Open Access Journals (Sweden)

    D. Rathikarani

    2009-10-01

    Full Text Available Most of the industrial processes are inherently nonlinear in their behaviour. Designs of controllers for these nonlinear processes are difficult, as they do not follow superposition theorem. Adaptive controller can change its behaviour in response to changes in the dynamics of the process and disturbances. Hence adaptive controller can be used to control nonlinear processes. Direct Model Reference Adaptive Control is a technique, in which a reference model involving the desired performances is specified. In the present work, a DMRAC is designed and implemented to achieve satisfactory control of a nonlinear system in all its local linear operating regions. The closed loop system is made BIBO stable by proper control techniques. The controller is designed through simulation in Matlab platform and is validated in real time by conducting experiments on the laboratory Air Flow Control System using the dSPACE interface.

  3. Effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks

    Science.gov (United States)

    Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen

    2017-05-01

    In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay pdelay, whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.

  4. Heterogeneity of time delays determines synchronization of coupled oscillators.

    Science.gov (United States)

    Petkoski, Spase; Spiegler, Andreas; Proix, Timothée; Aram, Parham; Temprado, Jean-Jacques; Jirsa, Viktor K

    2016-07-01

    Network couplings of oscillatory large-scale systems, such as the brain, have a space-time structure composed of connection strengths and signal transmission delays. We provide a theoretical framework, which allows treating the spatial distribution of time delays with regard to synchronization, by decomposing it into patterns and therefore reducing the stability analysis into the tractable problem of a finite set of delay-coupled differential equations. We analyze delay-structured networks of phase oscillators and we find that, depending on the heterogeneity of the delays, the oscillators group in phase-shifted, anti-phase, steady, and non-stationary clusters, and analytically compute their stability boundaries. These results find direct application in the study of brain oscillations.

  5. On the time delay between ultra-relativistic particles

    International Nuclear Information System (INIS)

    Fleury, Pierre

    2016-01-01

    The time delay between the receptions of ultra-relativistic particles emitted simultaneously is a useful observable for both fundamental physics and cosmology. The expression of the delay when the particles travel through an arbitrary spacetime has been derived recently by Fanizza et al., using a particular coordinate system and self-consistent assumptions. The present article shows that this formula enjoys a simple physical interpretation: the relative velocity between two ultra-relativistic particles is constant. This result reveals an interesting kinematical property of general relativity, namely that the tidal forces experienced by ultra-relativistic particles in the direction of their motion are much smaller than those experienced orthogonally to their motion.

  6. On avian influenza epidemic models with time delay.

    Science.gov (United States)

    Liu, Sanhong; Ruan, Shigui; Zhang, Xinan

    2015-12-01

    After the outbreak of the first avian influenza A virus (H5N1) in Hong Kong in 1997, another avian influenza A virus (H7N9) crossed the species barrier in mainland China in 2013 and 2014 and caused more than 400 human cases with a death rate of nearly 40%. In this paper, we take account of the incubation periods of avian influenza A virus and construct a bird-to-human transmission model with different time delays in the avian and human populations combining the survival probability of the infective avian and human populations at the latent time. By analyzing the dynamical behavior of the model, we obtain a threshold value for the prevalence of avian influenza and investigate local and global asymptotical stability of equilibria of the system.

  7. On the time delay between ultra-relativistic particles

    Energy Technology Data Exchange (ETDEWEB)

    Fleury, Pierre, E-mail: pierre.fleury@uct.ac.za [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa); Department of Physics, University of the Western Cape, Robert Sobukwe Road, Bellville 7535 (South Africa)

    2016-09-10

    The time delay between the receptions of ultra-relativistic particles emitted simultaneously is a useful observable for both fundamental physics and cosmology. The expression of the delay when the particles travel through an arbitrary spacetime has been derived recently by Fanizza et al., using a particular coordinate system and self-consistent assumptions. The present article shows that this formula enjoys a simple physical interpretation: the relative velocity between two ultra-relativistic particles is constant. This result reveals an interesting kinematical property of general relativity, namely that the tidal forces experienced by ultra-relativistic particles in the direction of their motion are much smaller than those experienced orthogonally to their motion.

  8. Implementation of time-delay interferometry for LISA

    International Nuclear Information System (INIS)

    Tinto, Massimo; Shaddock, Daniel A.; Sylvestre, Julien; Armstrong, J.W.

    2003-01-01

    We discuss the baseline optical configuration for the Laser Interferometer Space Antenna (LISA) mission, in which the lasers are not free-running, but rather one of them is used as the main frequency reference generator (the master) and the remaining five as slaves, these being phase-locked to the master (the master-slave configuration). Under the condition that the frequency fluctuations due to the optical transponders can be made negligible with respect to the secondary LISA noise sources (mainly proof-mass and shot noises), we show that the entire space of interferometric combinations LISA can generate when operated with six independent lasers (the one-way method) can also be constructed with the master-slave system design. The corresponding hardware trade-off analysis for these two optical designs is presented, which indicates that the two sets of systems needed for implementing the one-way method, and the master-slave configuration, are essentially identical. Either operational mode could therefore be implemented without major implications on the hardware configuration. We then derive the required accuracies of armlength knowledge, time synchronization of the onboard clocks, sampling times and time-shifts needed for effectively implementing time-delay interferometry for LISA. We find that an armlength accuracy of about 16 meters, a synchronization accuracy of about 50 ns, and the time jitter due to a presently existing space qualified clock will allow the suppression of the frequency fluctuations of the lasers below to the level identified by the secondary noise sources. A new procedure for sampling the data in such a way to avoid the problem of having time shifts that are not integer multiples of the sampling time is also introduced, addressing one of the concerns about the implementation of time-delay interferometry

  9. Nonlinear dynamical system approaches towards neural prosthesis

    International Nuclear Information System (INIS)

    Torikai, Hiroyuki; Hashimoto, Sho

    2011-01-01

    An asynchronous discrete-state spiking neurons is a wired system of shift registers that can mimic nonlinear dynamics of an ODE-based neuron model. The control parameter of the neuron is the wiring pattern among the registers and thus they are suitable for on-chip learning. In this paper an asynchronous discrete-state spiking neuron is introduced and its typical nonlinear phenomena are demonstrated. Also, a learning algorithm for a set of neurons is presented and it is demonstrated that the algorithm enables the set of neurons to reconstruct nonlinear dynamics of another set of neurons with unknown parameter values. The learning function is validated by FPGA experiments.

  10. Perception is more than time delays

    NARCIS (Netherlands)

    Pala, O.; Rouwette, E.A.J.A.

    2013-01-01

    In this paper, we look at the way perceptions – a vital component of any decision-making process – are modeled in System Dynamics (SD) models. SD models include perceptions as a factor translating actual into observed conditions. System dynamicists assume that true conditions are not available to

  11. Measurement of time delays in gated radiotherapy for realistic respiratory motions

    International Nuclear Information System (INIS)

    Chugh, Brige P.; Quirk, Sarah; Conroy, Leigh; Smith, Wendy L.

    2014-01-01

    Purpose: Gated radiotherapy is used to reduce internal motion margins, escalate target dose, and limit normal tissue dose; however, its temporal accuracy is limited. Beam-on and beam-off time delays can lead to treatment inefficiencies and/or geographic misses; therefore, AAPM Task Group 142 recommends verifying the temporal accuracy of gating systems. Many groups use sinusoidal phantom motion for this, under the tacit assumption that use of sinusoidal motion for determining time delays produces negligible error. The authors test this assumption by measuring gating time delays for several realistic motion shapes with increasing degrees of irregularity. Methods: Time delays were measured on a linear accelerator with a real-time position management system (Varian TrueBeam with RPM system version 1.7.5) for seven motion shapes: regular sinusoidal; regular realistic-shape; large (40%) and small (10%) variations in amplitude; large (40%) variations in period; small (10%) variations in both amplitude and period; and baseline drift (30%). Film streaks of radiation exposure were generated for each motion shape using a programmable motion phantom. Beam-on and beam-off time delays were determined from the difference between the expected and observed streak length. Results: For the system investigated, all sine, regular realistic-shape, and slightly irregular amplitude variation motions had beam-off and beam-on time delays within the AAPM recommended limit of less than 100 ms. In phase-based gating, even small variations in period resulted in some time delays greater than 100 ms. Considerable time delays over 1 s were observed with highly irregular motion. Conclusions: Sinusoidal motion shapes can be considered a reasonable approximation to the more complex and slightly irregular shapes of realistic motion. When using phase-based gating with predictive filters even small variations in period can result in time delays over 100 ms. Clinical use of these systems for patients

  12. Measurement of time delays in gated radiotherapy for realistic respiratory motions

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, Brige P.; Quirk, Sarah; Conroy, Leigh; Smith, Wendy L., E-mail: Wendy.Smith@albertahealthservices.ca [Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta T2N 4N2 (Canada)

    2014-09-15

    Purpose: Gated radiotherapy is used to reduce internal motion margins, escalate target dose, and limit normal tissue dose; however, its temporal accuracy is limited. Beam-on and beam-off time delays can lead to treatment inefficiencies and/or geographic misses; therefore, AAPM Task Group 142 recommends verifying the temporal accuracy of gating systems. Many groups use sinusoidal phantom motion for this, under the tacit assumption that use of sinusoidal motion for determining time delays produces negligible error. The authors test this assumption by measuring gating time delays for several realistic motion shapes with increasing degrees of irregularity. Methods: Time delays were measured on a linear accelerator with a real-time position management system (Varian TrueBeam with RPM system version 1.7.5) for seven motion shapes: regular sinusoidal; regular realistic-shape; large (40%) and small (10%) variations in amplitude; large (40%) variations in period; small (10%) variations in both amplitude and period; and baseline drift (30%). Film streaks of radiation exposure were generated for each motion shape using a programmable motion phantom. Beam-on and beam-off time delays were determined from the difference between the expected and observed streak length. Results: For the system investigated, all sine, regular realistic-shape, and slightly irregular amplitude variation motions had beam-off and beam-on time delays within the AAPM recommended limit of less than 100 ms. In phase-based gating, even small variations in period resulted in some time delays greater than 100 ms. Considerable time delays over 1 s were observed with highly irregular motion. Conclusions: Sinusoidal motion shapes can be considered a reasonable approximation to the more complex and slightly irregular shapes of realistic motion. When using phase-based gating with predictive filters even small variations in period can result in time delays over 100 ms. Clinical use of these systems for patients

  13. A note on Burgers' equation with time delay: Instability via finite-time blow-up

    International Nuclear Information System (INIS)

    Jordan, P.M.

    2008-01-01

    Burgers' equation with time delay is considered. Using the Cole-Hopf transformation, the exact solution of this nonlinear partial differential equation (PDE) is determined in the context of a (seemingly) well-posed initial-boundary value problem (IBVP) involving homogeneous Dirichlet data. The solution obtained, however, is shown to exhibit a delay-induced instability, suffering blow-up in finite-time

  14. Augmented nonlinear differentiator design and application to nonlinear uncertain systems.

    Science.gov (United States)

    Shao, Xingling; Liu, Jun; Li, Jie; Cao, Huiliang; Shen, Chong; Zhang, Xiaoming

    2017-03-01

    In this paper, an augmented nonlinear differentiator (AND) based on sigmoid function is developed to calculate the noise-less time derivative under noisy measurement condition. The essential philosophy of proposed AND in achieving high attenuation of noise effect is established by expanding the signal dynamics with extra state variable representing the integrated noisy measurement, then with the integral of measurement as input, the augmented differentiator is formulated to improve the estimation quality. The prominent advantages of the present differentiation technique are: (i) better noise suppression ability can be achieved without appreciable delay; (ii) the improved methodology can be readily extended to construct augmented high-order differentiator to obtain multiple derivatives. In addition, the convergence property and robustness performance against noises are investigated via singular perturbation theory and describing function method, respectively. Also, comparison with several classical differentiators is given to illustrate the superiority of AND in noise suppression. Finally, the robust control problems of nonlinear uncertain systems, including a numerical example and a mass spring system, are addressed to demonstrate the effectiveness of AND in precisely estimating the disturbance and providing the unavailable differential estimate to implement output feedback based controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Dynamics of one- and two-dimensional fronts in a bistable equation with time-delayed global feedback: Propagation failure and control mechanisms

    International Nuclear Information System (INIS)

    Boubendir, Yassine; Mendez, Vicenc; Rotstein, Horacio G.

    2010-01-01

    We study the evolution of fronts in a bistable equation with time-delayed global feedback in the fast reaction and slow diffusion regime. This equation generalizes the Hodgkin-Grafstein and Allen-Cahn equations. We derive a nonlinear equation governing the motion of fronts, which includes a term with delay. In the one-dimensional case this equation is linear. We study the motion of one- and two-dimensional fronts, finding a much richer dynamics than for the previously studied cases (without time-delayed global feedback). We explain the mechanism by which localized fronts created by inhibitory global coupling loose stability in a Hopf bifurcation as the delay time increases. We show that for certain delay times, the prevailing phase is different from that corresponding to the system in the absence of global coupling. Numerical simulations of the partial differential equation are in agreement with the analytical predictions.

  16. Controller Design of Complex System Based on Nonlinear Strength

    Directory of Open Access Journals (Sweden)

    Rongjun Mu

    2015-01-01

    Full Text Available This paper presents a new idea of controller design for complex systems. The nonlinearity index method was first developed for error propagation of nonlinear system. The nonlinearity indices access the boundary between the strong and the weak nonlinearities of the system model. The algorithm of nonlinearity index according to engineering application is first proposed in this paper. Applying this method on nonlinear systems is an effective way to measure the nonlinear strength of dynamics model over the full flight envelope. The nonlinearity indices access the boundary between the strong and the weak nonlinearities of system model. According to the different nonlinear strength of dynamical model, the control system is designed. The simulation time of dynamical complex system is selected by the maximum value of dynamic nonlinearity indices. Take a missile as example; dynamical system and control characteristic of missile are simulated. The simulation results show that the method is correct and appropriate.

  17. Parametric Identification of Nonlinear Dynamical Systems

    Science.gov (United States)

    Feeny, Brian

    2002-01-01

    In this project, we looked at the application of harmonic balancing as a tool for identifying parameters (HBID) in a nonlinear dynamical systems with chaotic responses. The main idea is to balance the harmonics of periodic orbits extracted from measurements of each coordinate during a chaotic response. The periodic orbits are taken to be approximate solutions to the differential equations that model the system, the form of the differential equations being known, but with unknown parameters to be identified. Below we summarize the main points addressed in this work. The details of the work are attached as drafts of papers, and a thesis, in the appendix. Our study involved the following three parts: (1) Application of the harmonic balance to a simulation case in which the differential equation model has known form for its nonlinear terms, in contrast to a differential equation model which has either power series or interpolating functions to represent the nonlinear terms. We chose a pendulum, which has sinusoidal nonlinearities; (2) Application of the harmonic balance to an experimental system with known nonlinear forms. We chose a double pendulum, for which chaotic response were easily generated. Thus we confronted a two-degree-of-freedom system, which brought forth challenging issues; (3) A study of alternative reconstruction methods. The reconstruction of the phase space is necessary for the extraction of periodic orbits from the chaotic responses, which is needed in this work. Also, characterization of a nonlinear system is done in the reconstructed phase space. Such characterizations are needed to compare models with experiments. Finally, some nonlinear prediction methods can be applied in the reconstructed phase space. We developed two reconstruction methods that may be considered if the common method (method of delays) is not applicable.

  18. Non-predictor control of a class of feedforward nonlinear systems with unknown time-varying delays

    Science.gov (United States)

    Koo, Min-Sung; Choi, Ho-Lim

    2016-08-01

    This paper generalises the several recent results on the control of feedforward time-delay nonlinear systems. First, in view of system formulation, there are unknown time-varying delays in both states and main control input. Also, the considered nonlinear system has extended feedforward nonlinearities. Second, in view of control solution, our proposed controller is a non-predictor feedback controller whereas smith-predictor type controllers are used in the several existing results. Moreover, our controller does not need any information on the unknown delays except their upper bounds. Thus, our result has certain merits in both system formulation and control solution perspective. The analysis and example are given for clear illustration.

  19. A study of discrete nonlinear systems

    International Nuclear Information System (INIS)

    Dhillon, H.S.

    2001-04-01

    An investigation of various spatially discrete time-independent nonlinear models was undertaken. These models are generically applicable to many different physical systems including electron-phonon interactions in solids, magnetic multilayers, layered superconductors and classical lattice systems. To characterise the possible magnetic structures created on magnetic multilayers a model has been formulated and studied. The Euler-Lagrange equation for this model is a discrete version of the Sine-Gordon equation. Solutions of this equation are generated by applying the methods of Chaotic Dynamics - treating the space variable associated with the layer number as a discrete time variable. The states found indicate periodic, quasiperiodic and chaotic structures. Analytic solutions to the discrete nonlinear Schroedinger Equation (DNSE) with cubic nonlinearity are presented in the strong coupling limit. Using these as a starting point, a procedure is developed to determine the wave function and the energy eigenvalue for moderate coupling. The energy eigenvalues of the different structures of the wave function are found to be in excellent agreement with the exact strong coupling result. The solutions to the DNSE indicate commensurate and incommensurate spatial structures associated with different localisation patterns of the wave function. The states which arise may be fractal, periodic, quasiperiodic or chaotic. This work is then extended to solve a first order discrete nonlinear equation. The exact solutions for both the first and second order discrete nonlinear equations with cubic nonlinearity suggests that this method of studying discrete nonlinear equations may be applied to solve discrete equations with any order difference and cubic nonlinearity. (author)

  20. Bilateral control of master-slave manipulators with constant time delay.

    Science.gov (United States)

    Forouzantabar, A; Talebi, H A; Sedigh, A K

    2012-01-01

    This paper presents a novel teleoperation controller for a nonlinear master-slave robotic system with constant time delay in communication channel. The proposed controller enables the teleoperation system to compensate human and environmental disturbances, while achieving master and slave position coordination in both free motion and contact situation. The current work basically extends the passivity based architecture upon the earlier work of Lee and Spong (2006) [14] to improve position tracking and consequently transparency in the face of disturbances and environmental contacts. The proposed controller employs a PID controller in each side to overcome some limitations of a PD controller and guarantee an improved performance. Moreover, by using Fourier transform and Parseval's identity in the frequency domain, we demonstrate that this new PID controller preserves the passivity of the system. Simulation and semi-experimental results show that the PID controller tracking performance is superior to that of the PD controller tracking performance in slave/environmental contacts. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Resonant driving of a nonlinear Hamiltonian system

    International Nuclear Information System (INIS)

    Palmisano, Carlo; Gervino, Gianpiero; Balma, Massimo; Devona, Dorina; Wimberger, Sandro

    2013-01-01

    As a proof of principle, we show how a classical nonlinear Hamiltonian system can be driven resonantly over reasonably long times by appropriately shaped pulses. To keep the parameter space reasonably small, we limit ourselves to a driving force which consists of periodic pulses additionally modulated by a sinusoidal function. The main observables are the average increase of kinetic energy and of the action variable (of the non-driven system) with time. Applications of our scheme aim for driving high frequencies of a nonlinear system with a fixed modulation signal.

  2. Precision cosmology with time delay lenses: high resolution imaging requirements

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiao-Lei; Liao, Kai [Department of Astronomy, Beijing Normal University, 19 Xinjiekouwai Street, Beijing, 100875 (China); Treu, Tommaso; Agnello, Adriano [Department of Physics, University of California, Broida Hall, Santa Barbara, CA 93106 (United States); Auger, Matthew W. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Marshall, Philip J., E-mail: xlmeng919@gmail.com, E-mail: tt@astro.ucla.edu, E-mail: aagnello@physics.ucsb.edu, E-mail: mauger@ast.cam.ac.uk, E-mail: liaokai@mail.bnu.edu.cn, E-mail: dr.phil.marshall@gmail.com [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305 (United States)

    2015-09-01

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ''Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρ{sub tot}∝ r{sup −γ'} for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. However, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation

  3. Precision cosmology with time delay lenses: High resolution imaging requirements

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiao -Lei [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Treu, Tommaso [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Agnello, Adriano [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Auger, Matthew W. [Univ. of Cambridge, Cambridge (United Kingdom); Liao, Kai [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Marshall, Philip J. [Stanford Univ., Stanford, CA (United States)

    2015-09-28

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtot∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive

  4. A Framework for telerobotics across the time delays of space

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposal will develop a novel intelligent time-delay mitigation framework to be used in bilateral space telerobotics. This framework will consist of master...

  5. Controlling chaotic systems via nonlinear feedback control

    International Nuclear Information System (INIS)

    Park, Ju H.

    2005-01-01

    In this article, a new method to control chaotic systems is proposed. Using Lyapunov method, we design a nonlinear feedback controller to make the controlled system be stabilized. A numerical example is given to illuminate the design procedure and advantage of the result derived

  6. A hierarchy of systems of nonlinear equations

    International Nuclear Information System (INIS)

    Falkensteiner, P.; Grosse, H.

    1985-01-01

    Imposing isospectral invariance for the one-dimensional Dirac operator yields an infinite hierarchy of systems of chiral invariant nonlinear partial differential equations. The same system is obtained through a Lax pair construction and finally a formulation in terms of Kac-Moody generators is given. (Author)

  7. Cucker-Smale model with normalized communication weights and time delay

    KAUST Repository

    Choi, Young-Pil

    2017-03-06

    We study a Cucker-Smale-type system with time delay in which agents interact with each other through normalized communication weights. We construct a Lyapunov functional for the system and provide sufficient conditions for asymptotic flocking, i.e., convergence to a common velocity vector. We also carry out a rigorous limit passage to the mean-field limit of the particle system as the number of particles tends to infinity. For the resulting Vlasov-type equation we prove the existence, stability and large-time behavior of measure-valued solutions. This is, to our best knowledge, the first such result for a Vlasov-type equation with time delay. We also present numerical simulations of the discrete system with few particles that provide further insights into the flocking and oscillatory behaviors of the particle velocities depending on the size of the time delay.

  8. Fault detection for nonlinear systems - A standard problem approach

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1998-01-01

    The paper describes a general method for designing (nonlinear) fault detection and isolation (FDI) systems for nonlinear processes. For a rich class of nonlinear systems, a nonlinear FDI system can be designed using convex optimization procedures. The proposed method is a natural extension...

  9. Modelling biochemical networks with intrinsic time delays: a hybrid semi-parametric approach

    Directory of Open Access Journals (Sweden)

    Oliveira Rui

    2010-09-01

    Full Text Available Abstract Background This paper presents a method for modelling dynamical biochemical networks with intrinsic time delays. Since the fundamental mechanisms leading to such delays are many times unknown, non conventional modelling approaches become necessary. Herein, a hybrid semi-parametric identification methodology is proposed in which discrete time series are incorporated into fundamental material balance models. This integration results in hybrid delay differential equations which can be applied to identify unknown cellular dynamics. Results The proposed hybrid modelling methodology was evaluated using two case studies. The first of these deals with dynamic modelling of transcriptional factor A in mammalian cells. The protein transport from the cytosol to the nucleus introduced a delay that was accounted for by discrete time series formulation. The second case study focused on a simple network with distributed time delays that demonstrated that the discrete time delay formalism has broad applicability to both discrete and distributed delay problems. Conclusions Significantly better prediction qualities of the novel hybrid model were obtained when compared to dynamical structures without time delays, being the more distinctive the more significant the underlying system delay is. The identification of the system delays by studies of different discrete modelling delays was enabled by the proposed structure. Further, it was shown that the hybrid discrete delay methodology is not limited to discrete delay systems. The proposed method is a powerful tool to identify time delays in ill-defined biochemical networks.

  10. Network science, nonlinear science and infrastructure systems

    CERN Document Server

    2007-01-01

    Network Science, Nonlinear Science and Infrastructure Systems has been written by leading scholars in these areas. Its express purpose is to develop common theoretical underpinnings to better solve modern infrastructural problems. It is felt by many who work in these fields that many modern communication problems, ranging from transportation networks to telecommunications, Internet, supply chains, etc., are fundamentally infrastructure problems. Moreover, these infrastructure problems would benefit greatly from a confluence of theoretical and methodological work done with the areas of Network Science, Dynamical Systems and Nonlinear Science. This book is dedicated to the formulation of infrastructural tools that will better solve these types of infrastructural problems. .

  11. Time-delay effects and simplified control fields in quantum Lyapunov control

    International Nuclear Information System (INIS)

    Yi, X X; Wu, S L; Wu, Chunfeng; Feng, X L; Oh, C H

    2011-01-01

    Lyapunov-based quantum control has the advantage that it is free from the measurement-induced decoherence and it includes the instantaneous information of the system in the control. The Lyapunov control is often confronted with time delay in the control fields and difficulty in practical implementations of the control. In this paper, we study the effect of time delay on the Lyapunov control and explore the possibility of replacing the control field with a pulse train or a bang-bang signal. The efficiency of the Lyapunov control is also presented through examining the convergence time of the system. These results suggest that the Lyapunov control is robust against time delay, easy to realize and effective for high-dimensional quantum systems.

  12. Nonlinear dynamics of fractional order Duffing system

    International Nuclear Information System (INIS)

    Li, Zengshan; Chen, Diyi; Zhu, Jianwei; Liu, Yongjian

    2015-01-01

    In this paper, we analyze the nonlinear dynamics of fractional order Duffing system. First, we present the fractional order Duffing system and the numerical algorithm. Second, nonlinear dynamic behaviors of Duffing system with a fixed fractional order is studied by using bifurcation diagrams, phase portraits, Poincare maps and time domain waveforms. The fractional order Duffing system shows some interesting dynamical behaviors. Third, a series of Duffing systems with different fractional orders are analyzed by using bifurcation diagrams. The impacts of fractional orders on the tendency of dynamical motion, the periodic windows in chaos, the bifurcation points and the distance between the first and the last bifurcation points are respectively studied, in which some basic laws are discovered and summarized. This paper reflects that the integer order system and the fractional order one have close relationship and an integer order system is a special case of fractional order ones.

  13. Symmetry, Hopf bifurcation, and the emergence of cluster solutions in time delayed neural networks.

    Science.gov (United States)

    Wang, Zhen; Campbell, Sue Ann

    2017-11-01

    We consider the networks of N identical oscillators with time delayed, global circulant coupling, modeled by a system of delay differential equations with Z N symmetry. We first study the existence of Hopf bifurcations induced by the coupling time delay and then use symmetric Hopf bifurcation theory to determine how these bifurcations lead to different patterns of symmetric cluster oscillations. We apply our results to a case study: a network of FitzHugh-Nagumo neurons with diffusive coupling. For this model, we derive the asymptotic stability, global asymptotic stability, absolute instability, and stability switches of the equilibrium point in the plane of coupling time delay (τ) and excitability parameter (a). We investigate the patterns of cluster oscillations induced by the time delay and determine the direction and stability of the bifurcating periodic orbits by employing the multiple timescales method and normal form theory. We find that in the region where stability switching occurs, the dynamics of the system can be switched from the equilibrium point to any symmetric cluster oscillation, and back to equilibrium point as the time delay is increased.

  14. Symmetry, Hopf bifurcation, and the emergence of cluster solutions in time delayed neural networks

    Science.gov (United States)

    Wang, Zhen; Campbell, Sue Ann

    2017-11-01

    We consider the networks of N identical oscillators with time delayed, global circulant coupling, modeled by a system of delay differential equations with ZN symmetry. We first study the existence of Hopf bifurcations induced by the coupling time delay and then use symmetric Hopf bifurcation theory to determine how these bifurcations lead to different patterns of symmetric cluster oscillations. We apply our results to a case study: a network of FitzHugh-Nagumo neurons with diffusive coupling. For this model, we derive the asymptotic stability, global asymptotic stability, absolute instability, and stability switches of the equilibrium point in the plane of coupling time delay (τ) and excitability parameter (a). We investigate the patterns of cluster oscillations induced by the time delay and determine the direction and stability of the bifurcating periodic orbits by employing the multiple timescales method and normal form theory. We find that in the region where stability switching occurs, the dynamics of the system can be switched from the equilibrium point to any symmetric cluster oscillation, and back to equilibrium point as the time delay is increased.

  15. Modelling and tuning for a time-delayed vibration absorber with friction

    Science.gov (United States)

    Zhang, Xiaoxu; Xu, Jian; Ji, Jinchen

    2018-06-01

    This paper presents an integrated analytical and experimental study to the modelling and tuning of a time-delayed vibration absorber (TDVA) with friction. In system modelling, this paper firstly applies the method of averaging to obtain the frequency response function (FRF), and then uses the derived FRF to evaluate the fitness of different friction models. After the determination of the system model, this paper employs the obtained FRF to evaluate the vibration absorption performance with respect to tunable parameters. A significant feature of the TDVA with friction is that its stability is dependent on the excitation parameters. To ensure the stability of the time-delayed control, this paper defines a sufficient condition for stability estimation. Experimental measurements show that the dynamic response of the TDVA with friction can be accurately predicted and the time-delayed control can be precisely achieved by using the modelling and tuning technique provided in this paper.

  16. Security-enhanced chaos communication with time-delay signature suppression and phase encryption.

    Science.gov (United States)

    Xue, Chenpeng; Jiang, Ning; Lv, Yunxin; Wang, Chao; Li, Guilan; Lin, Shuqing; Qiu, Kun

    2016-08-15

    A security-enhanced chaos communication scheme with time delay signature (TDS) suppression and phase-encrypted feedback light is proposed, in virtue of dual-loop feedback with independent high-speed phase modulation. We numerically investigate the property of TDS suppression in the intensity and phase space and quantitatively discuss security of the proposed system by calculating the bit error rate of eavesdroppers who try to crack the system by directly filtering the detected signal or by using a similar semiconductor laser to synchronize the link signal and extract the data. The results show that TDS embedded in the chaotic carrier can be well suppressed by properly setting the modulation frequency, which can keep the time delay a secret from the eavesdropper. Moreover, because the feedback light is encrypted, without the accurate time delay and key, the eavesdropper cannot reconstruct the symmetric operation conditions and decode the correct data.

  17. Adaptive logical stochastic resonance in time-delayed synthetic genetic networks

    Science.gov (United States)

    Zhang, Lei; Zheng, Wenbin; Song, Aiguo

    2018-04-01

    In the paper, the concept of logical stochastic resonance is applied to implement logic operation and latch operation in time-delayed synthetic genetic networks derived from a bacteriophage λ. Clear logic operation and latch operation can be obtained when the network is tuned by modulated periodic force and time-delay. In contrast with the previous synthetic genetic networks based on logical stochastic resonance, the proposed system has two advantages. On one hand, adding modulated periodic force to the background noise can increase the length of the optimal noise plateau of obtaining desired logic response and make the system adapt to varying noise intensity. On the other hand, tuning time-delay can extend the optimal noise plateau to larger range. The result provides possible help for designing new genetic regulatory networks paradigm based on logical stochastic resonance.

  18. Hydrodynamic Cucker-Smale model with normalized communication weights and time delay

    KAUST Repository

    Choi, Young-Pil

    2017-07-17

    We study a hydrodynamic Cucker-Smale-type model with time delay in communication and information processing, in which agents interact with each other through normalized communication weights. The model consists of a pressureless Euler system with time delayed non-local alignment forces. We resort to its Lagrangian formulation and prove the existence of its global in time classical solutions. Moreover, we derive a sufficient condition for the asymptotic flocking behavior of the solutions. Finally, we show the presence of a critical phenomenon for the Eulerian system posed in the spatially one-dimensional setting.

  19. Phase Control in Nonlinear Systems

    Science.gov (United States)

    Zambrano, Samuel; Seoane, Jesús M.; Mariño, Inés P.; Sanjuán, Miguel A. F.; Meucci, Riccardo

    The following sections are included: * Introduction * Phase Control of Chaos * Description of the model * Numerical exploration of phase control of chaos * Experimental evidence of phase control of chaos * Phase Control of Intermittency in Dynamical Systems * Crisis-induced intermittency and its control * Experimental setup and implementation of the phase control scheme * Phase control of the laser in the pre-crisis regime * Phase control of the intermittency after the crisis * Phase control of the intermittency in the quadratic map * Phase Control of Escapes in Open Dynamical Systems * Control of open dynamical systems * Model description * Numerical simulations and heuristic arguments * Experimental implementation in an electronic circuit * Conclusions and Discussions * Acknowledgments * References

  20. Workshop on Nonlinear Phenomena in Complex Systems

    CERN Document Server

    1989-01-01

    This book contains a thorough treatment of neural networks, cellular-automata and synergetics, in an attempt to provide three different approaches to nonlinear phenomena in complex systems. These topics are of major interest to physicists active in the fields of statistical mechanics and dynamical systems. They have been developed with a high degree of sophistication and include the refinements necessary to work with the complexity of real systems as well as the more recent research developments in these areas.

  1. Periodic Solutions for Highly Nonlinear Oscillation Systems

    DEFF Research Database (Denmark)

    Ghadimi, M; Barari, Amin; Kaliji, H.D

    2012-01-01

    In this paper, Frequency-Amplitude Formulation is used to analyze the periodic behavior of tapered beam as well as two complex nonlinear systems. Many engineering structures, such as offshore foundations, oil platform supports, tower structures and moving arms, are modeled as tapered beams...

  2. Exploring Nonlinearities in Financial Systemic Risk

    NARCIS (Netherlands)

    Wolski, M.

    2013-01-01

    We propose a new methodology of assessing the effects of individual institution's risk on the others and on the system as a whole. We build upon the Conditional Value-at-Risk approach, however, we introduce the explicit Granger causal linkages and we account for possible nonlinearities in the

  3. Experimental chaos in nonlinear vibration isolation system

    International Nuclear Information System (INIS)

    Lou Jingjun; Zhu Shijian; He Lin; He Qiwei

    2009-01-01

    The chaotic vibration isolation method was studied thoroughly from an experimental perspective. The nonlinear load-deflection characteristic of the conical coil spring used in the experiment was surveyed. Chaos and subharmonic responses including period-2 and period-6 motions were observed. The line spectrum reduction and the drop of the acceleration vibration level in chaotic state and that in non-chaotic state were compared, respectively. It was concluded from the experiment that the nonlinear vibration isolation system in chaotic state has strong ability in line spectrum reduction.

  4. Determination of time delay between ventricles contraction using impedance measurements

    International Nuclear Information System (INIS)

    Lewandowska, M; Poliński, A; Wtorek, J

    2013-01-01

    The paper presents a novel approach to assessment of ventricular dyssynchrony basing on multichannel electrical impedance measurements. Using a proper placement of electrodes, the sensitivity approach allows estimating time difference between chambers contraction from over determined nonlinear system of equations. The theoretical considerations which include Finite Element Method simulations were verified using measurements on healthy 28 year's old woman. The nonlinear least squares method was applied to obtain a time difference between heart chambers contraction. The obtained value was in a good agreement with theoretical values found in literature.

  5. Nonlinear distortion in wireless systems modeling and simulation with Matlab

    CERN Document Server

    Gharaibeh, Khaled M

    2011-01-01

    This book covers the principles of modeling and simulation of nonlinear distortion in wireless communication systems with MATLAB simulations and techniques In this book, the author describes the principles of modeling and simulation of nonlinear distortion in single and multichannel wireless communication systems using both deterministic and stochastic signals. Models and simulation methods of nonlinear amplifiers explain in detail how to analyze and evaluate the performance of data communication links under nonlinear amplification. The book addresses the analysis of nonlinear systems

  6. Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers.

    Science.gov (United States)

    Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel

    2010-10-11

    We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.

  7. NONLINEAR TIDES IN CLOSE BINARY SYSTEMS

    International Nuclear Information System (INIS)

    Weinberg, Nevin N.; Arras, Phil; Quataert, Eliot; Burkart, Josh

    2012-01-01

    We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' ∼> 10-100 M ⊕ at orbital periods P ≈ 1-10 days. The nearly static 'equilibrium' tidal distortion is, however, stable to parametric resonance except for solar binaries with P ∼ 3 [P/10 days] for a solar-type star) and drives them as a single coherent unit with growth rates that are a factor of ≈N faster than the standard three-wave parametric instability. These are local instabilities viewed through the lens of global analysis; the coherent global growth rate follows local rates in the regions where the shear is strongest. In solar-type stars, the dynamical tide is unstable to this collective version of the parametric instability for even sub-Jupiter companion masses with P ∼< a month. (4) Independent of the parametric instability, the dynamical and equilibrium tides excite a wide range of stellar p-modes and g-modes by nonlinear inhomogeneous forcing

  8. Communication key using delay times in time-delayed chaos synchronization

    International Nuclear Information System (INIS)

    Kim, Chil-Min; Kye, Won-Ho; Rim, Sunghwan; Lee, Soo-Young

    2004-01-01

    We propose an efficient key scheme, which can generate a great number of communication keys, for communication using chaos synchronization. We have attained the keys from delay times of time-delay coupled chaotic systems. We explain the scheme and the efficiency by coupling Henon and logistic maps and illustrate them by coupling Navier-Stokes and Lorenz equations as a continuous system

  9. Synthetic LISA: Simulating time delay interferometry in a model LISA

    International Nuclear Information System (INIS)

    Vallisneri, Michele

    2005-01-01

    We report on three numerical experiments on the implementation of Time-Delay Interferometry (TDI) for LISA, performed with Synthetic LISA, a C++/Python package that we developed to simulate the LISA science process at the level of scientific and technical requirements. Specifically, we study the laser-noise residuals left by first-generation TDI when the LISA armlengths have a realistic time dependence; we characterize the armlength-measurement accuracies that are needed to have effective laser-noise cancellation in both first- and second-generation TDI; and we estimate the quantization and telemetry bitdepth needed for the phase measurements. Synthetic LISA generates synthetic time series of the LISA fundamental noises, as filtered through all the TDI observables; it also provides a streamlined module to compute the TDI responses to gravitational waves according to a full model of TDI, including the motion of the LISA array and the temporal and directional dependence of the armlengths. We discuss the theoretical model that underlies the simulation, its implementation, and its use in future investigations on system-characterization and data-analysis prototyping for LISA

  10. Probing the cosmic distance duality relation using time delay lenses

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Akshay; Mahajan, Shobhit; Mukherjee, Amitabha [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Jain, Deepak [Deen Dayal Upadhyaya College, University of Delhi, Sector-3, Dwarka, New Delhi 110078 (India); Holanda, R.F.L., E-mail: montirana1992@gmail.com, E-mail: djain@ddu.du.ac.in, E-mail: shobhit.mahajan@gmail.com, E-mail: amimukh@gmail.com, E-mail: holanda@uepb.edu.br [Departamento de Física, Universidade Federal de Sergipe, 49100-000, Aracaju—SE (Brazil)

    2017-07-01

    The construction of the cosmic distance-duality relation (CDDR) has been widely studied. However, its consistency with various new observables remains a topic of interest. We present a new way to constrain the CDDR η( z ) using different dynamic and geometric properties of strong gravitational lenses (SGL) along with SNe Ia observations. We use a sample of 102 SGL with the measurement of corresponding velocity dispersion σ{sub 0} and Einstein radius θ {sub E} . In addition, we also use a dataset of 12 two image lensing systems containing the measure of time delay Δ t between source images. Jointly these two datasets give us the angular diameter distance D {sub A} {sub ol} of the lens. Further, for luminosity distance, we use the 740 observations from JLA compilation of SNe Ia. To study the combined behavior of these datasets we use a model independent method, Gaussian Process (GP). We also check the efficiency of GP by applying it on simulated datasets, which are generated in a phenomenological way by using realistic cosmological error bars. Finally, we conclude that the combined bounds from the SGL and SNe Ia observation do not favor any deviation of CDDR and are in concordance with the standard value (η=1) within 2σ confidence region, which further strengthens the theoretical acceptance of CDDR.

  11. Analysis of nonlinear systems using ARMA [autoregressive moving average] models

    International Nuclear Information System (INIS)

    Hunter, N.F. Jr.

    1990-01-01

    While many vibration systems exhibit primarily linear behavior, a significant percentage of the systems encountered in vibration and model testing are mildly to severely nonlinear. Analysis methods for such nonlinear systems are not yet well developed and the response of such systems is not accurately predicted by linear models. Nonlinear ARMA (autoregressive moving average) models are one method for the analysis and response prediction of nonlinear vibratory systems. In this paper we review the background of linear and nonlinear ARMA models, and illustrate the application of these models to nonlinear vibration systems. We conclude by summarizing the advantages and disadvantages of ARMA models and emphasizing prospects for future development. 14 refs., 11 figs

  12. Indirect learning control for nonlinear dynamical systems

    Science.gov (United States)

    Ryu, Yeong Soon; Longman, Richard W.

    1993-01-01

    In a previous paper, learning control algorithms were developed based on adaptive control ideas for linear time variant systems. The learning control methods were shown to have certain advantages over their adaptive control counterparts, such as the ability to produce zero tracking error in time varying systems, and the ability to eliminate repetitive disturbances. In recent years, certain adaptive control algorithms have been developed for multi-body dynamic systems such as robots, with global guaranteed convergence to zero tracking error for the nonlinear system euations. In this paper we study the relationship between such adaptive control methods designed for this specific class of nonlinear systems, and the learning control problem for such systems, seeking to converge to zero tracking error in following a specific command repeatedly, starting from the same initial conditions each time. The extension of these methods from the adaptive control problem to the learning control problem is seen to be trivial. The advantages and disadvantages of using learning control based on such adaptive control concepts for nonlinear systems, and the use of other currently available learning control algorithms are discussed.

  13. Time delay control of power converters: Mixed frame and stationary-frame variants

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Loh, P.C.; Tang, Y.

    2008-01-01

    In this paper, a mixed-frame and a stationary-frame time delay current controller are proposed for high precision reference tracking and disturbance rejection of power converters. In particular, the controllers use a proportional-resonant regulator in the stationary frame for regulating...... the positive and negative-sequence fundamental currents, which are known to directly influence the flow of active and reactive power in most energy conversion systems. Moreover, for the tracking or compensation of harmonics, the controllers include a time delay control path in either the synchronous...... or stationary frame, whose inherent feedback and feedforward structure can be proven to resemble a bank of resonant filters in either reference frames. Unlike other existing controllers, the proposed time delay controllers function by introducing multiple resonant peaks at only those harmonic frequencies...

  14. Dynamics of the congestion control model in underwater wireless sensor networks with time delay

    International Nuclear Information System (INIS)

    Dong, Tao; Hu, Wenjie; Liao, Xiaofeng

    2016-01-01

    In this paper, a congestion control model in underwater wireless sensor network with time delay is considered. First, the boundedness of the positive equilibrium, where the samples density is positive for each node and the different event flows coexist, is investigated, which implies that the samples density of sensor node cannot exceed the Environmental carrying capacity. Then, by considering the time delay can be regarded as a bifurcating parameter, the dynamical behaviors, which include local stability and Hopf bifurcation, are investigated. It is found that when the communication time delay passes a critical value, the system loses its stability and a Hopf bifurcation occurs, which means the underwater wireless sensor network will be congested, even collapsed. Furthermore, the direction and stability of the bifurcating periodic solutions are derived by applying the normal form theory and the center manifold theorem. Finally, some numerical examples are finally performed to verify the theoretical results.

  15. Time delay for resonant vibrational excitation in electron--molecule collisions

    International Nuclear Information System (INIS)

    Gauyacq, J.P.

    1990-01-01

    An analysis of the time delay associated with vibrational excitation in electron--molecule collision is presented. It consists of a direct study of the time dependence of the process for three model systems. An electron wave packet, that is narrow in time, is sent on the target and the amplitudes in the different inelastic channels are studied as functions of time. The time delay is found to correspond to very different time effects: broadenings, shifts in time of the wave packet, but also complex distortions that cannot be represented by a time delay. The direct analysis of the scattered wave also provides new insights into the vibrational excitation process. It should be a useful tool to analyze complex collision processes

  16. Long-time behavior for suspension bridge equations with time delay

    Science.gov (United States)

    Park, Sun-Hye

    2018-04-01

    In this paper, we consider suspension bridge equations with time delay of the form u_{tt}(x,t) + Δ ^2 u (x,t) + k u^+ (x,t) + a_0 u_t (x,t) + a_1 u_t (x, t- τ ) + f(u(x,t)) = g(x). Many researchers have studied well-posedness, decay rates of energy, and existence of attractors for suspension bridge equations without delay effects. But, as far as we know, there is no work about suspension equations with time delay. In addition, there are not many studies on attractors for other delayed systems. Thus we first provide well-posedness for suspension equations with time delay. And then show the existence of global attractors and the finite dimensionality of the attractors by establishing energy functionals which are related to the norm of the phase space to our problem.

  17. Small-Signal Analysis of the Microgrid Secondary Control Considering a Communication Time Delay

    DEFF Research Database (Denmark)

    Coelho, Ernane Antônio Alves; Wu, Dan; Guerrero, Josep M.

    2016-01-01

    This paper presents a small-signal analysis of an islanded microgrid composed of two or more voltage-source inverters connected in parallel. The primary control of each inverter is integrated through an internal current and voltage loops using proportional resonant compensators, a virtual impedance......, and an external power controller based on frequency and voltage droops. The frequency restoration function is implemented at the secondary control level, which executes a consensus algorithm that consists of a load-frequency control and a single time delay communication network. The consensus network consists...... the behavior of the system considering control parameters and time delay variation....

  18. Spectral decomposition of nonlinear systems with memory

    Science.gov (United States)

    Svenkeson, Adam; Glaz, Bryan; Stanton, Samuel; West, Bruce J.

    2016-02-01

    We present an alternative approach to the analysis of nonlinear systems with long-term memory that is based on the Koopman operator and a Lévy transformation in time. Memory effects are considered to be the result of interactions between a system and its surrounding environment. The analysis leads to the decomposition of a nonlinear system with memory into modes whose temporal behavior is anomalous and lacks a characteristic scale. On average, the time evolution of a mode follows a Mittag-Leffler function, and the system can be described using the fractional calculus. The general theory is demonstrated on the fractional linear harmonic oscillator and the fractional nonlinear logistic equation. When analyzing data from an ill-defined (black-box) system, the spectral decomposition in terms of Mittag-Leffler functions that we propose may uncover inherent memory effects through identification of a small set of dynamically relevant structures that would otherwise be obscured by conventional spectral methods. Consequently, the theoretical concepts we present may be useful for developing more general methods for numerical modeling that are able to determine whether observables of a dynamical system are better represented by memoryless operators, or operators with long-term memory in time, when model details are unknown.

  19. Relativity time-delay experiments utilizing 'Mariner' spacecraft

    Science.gov (United States)

    Esposito, P. B.; Anderson, J. D.

    1974-01-01

    Relativity predicts that the transit time of a signal propagated from the earth to a spacecraft and retransmitted back to earth ought to exhibit an additional, variable time delay. The present work describes some of the analytical techniques employed in experiments using Mariner spacecraft designed to test the accuracy of this prediction. Two types of data are analyzed in these relativity experiments; these include phase-coherent, two-way Doppler shift and round-trip, transit-time measurements. Results of Mariner 6 and 7 relativistic time-delay experiments are in agreement with Einstein's theory of general relativity with an uncertainty of 3%.

  20. Time delay correlations in chaotic scattering and random matrix approach

    International Nuclear Information System (INIS)

    Lehmann, N.; Savin, D.V.; Sokolov, V.V.; Sommers, H.J.

    1994-01-01

    We study the correlations in the time delay a model of chaotic resonance scattering based on the random matrix approach. Analytical formulae which are valid for arbitrary number of open channels and arbitrary coupling strength between resonances and channels are obtained by the supersymmetry method. The time delay correlation function, through being not a Lorentzian, is characterized, similar to that of the scattering matrix, by the gap between the cloud of complex poles of the S-matrix and the real energy axis. 28 refs.; 4 figs

  1. Variable Structure Disturbance Rejection Control for Nonlinear Uncertain Systems with State and Control Delays via Optimal Sliding Mode Surface Approach

    Directory of Open Access Journals (Sweden)

    Jing Lei

    2013-01-01

    Full Text Available The paper considers the problem of variable structure control for nonlinear systems with uncertainty and time delays under persistent disturbance by using the optimal sliding mode surface approach. Through functional transformation, the original time-delay system is transformed into a delay-free one. The approximating sequence method is applied to solve the nonlinear optimal sliding mode surface problem which is reduced to a linear two-point boundary value problem of approximating sequences. The optimal sliding mode surface is obtained from the convergent solutions by solving a Riccati equation, a Sylvester equation, and the state and adjoint vector differential equations of approximating sequences. Then, the variable structure disturbance rejection control is presented by adopting an exponential trending law, where the state and control memory terms are designed to compensate the state and control delays, a feedforward control term is designed to reject the disturbance, and an adjoint compensator is designed to compensate the effects generated by the nonlinearity and the uncertainty. Furthermore, an observer is constructed to make the feedforward term physically realizable, and thus the dynamical observer-based dynamical variable structure disturbance rejection control law is produced. Finally, simulations are demonstrated to verify the effectiveness of the presented controller and the simplicity of the proposed approach.

  2. Time-delay interferometric ranging for space-borne gravitational-wave detectors

    International Nuclear Information System (INIS)

    Tinto, Massimo; Vallisneri, Michele; Armstrong, J.W.

    2005-01-01

    Space-borne interferometric gravitational-wave detectors, sensitive in the low-frequency (mHz) band, will fly in the next decade. In these detectors, the spacecraft-to-spacecraft light-travel times will necessarily be unequal and time varying, and (because of aberration) will have different values on up- and down-links. In such unequal-armlength interferometers, laser-phase noise will be canceled by taking linear combinations of the laser-phase observables measured between pairs of spacecraft, appropriately time shifted by the light propagation times along the corresponding arms. This procedure, known as time-delay interferometry (TDI), requires an accurate knowledge of the light-time delays as functions of time. Here we propose a high-accuracy technique to estimate these time delays, and we study its use in the context of the Laser Interferometer Space Antenna (LISA) mission. We refer to this ranging technique, which relies on the TDI combinations themselves, as time-delay interferometric ranging (TDIR). For every TDI combination, we show that, by minimizing the rms power in that combination (averaged over integration times ∼10 4 s) with respect to the time-delay parameters, we obtain estimates of the time delays accurate enough to cancel laser noise to a level well below the secondary noises. Thus TDIR allows the implementation of TDI without the use of dedicated interspacecraft ranging systems, with a potential simplification of the LISA design. In this paper we define the TDIR procedure formally, and we characterize its expected performance via simulations with the Synthetic LISA software package

  3. Nonlinear dynamic macromodeling techniques for audio systems

    Science.gov (United States)

    Ogrodzki, Jan; Bieńkowski, Piotr

    2015-09-01

    This paper develops a modelling method and a models identification technique for the nonlinear dynamic audio systems. Identification is performed by means of a behavioral approach based on a polynomial approximation. This approach makes use of Discrete Fourier Transform and Harmonic Balance Method. A model of an audio system is first created and identified and then it is simulated in real time using an algorithm of low computational complexity. The algorithm consists in real time emulation of the system response rather than in simulation of the system itself. The proposed software is written in Python language using object oriented programming techniques. The code is optimized for a multithreads environment.

  4. Delay dynamical systems and applications to nonlinear machine-tool chatter

    International Nuclear Information System (INIS)

    Fofana, M.S.

    2003-01-01

    The stability behaviour of machine chatter that exhibits Hopf and degenerate bifurcations has been examined without the assumption of small delays between successive cuts. Delay dynamical system theory leading to the reduction of the infinite-dimensional character of the governing delay differential equations (DDEs) to a finite-dimensional set of ordinary differential equations have been employed. The essential mathematical arguments for these systems in the context of retarded DDEs are summarized. Then the application of these arguments in the stability study of machine-tool chatter with multiple time delays is presented. Explicit analytical expressions ensuring stable and unstable machining when perturbations are periodic, stochastic and nonlinear have been derived using the integral averaging method and Lyapunov exponents

  5. Model reduction of systems with localized nonlinearities.

    Energy Technology Data Exchange (ETDEWEB)

    Segalman, Daniel Joseph

    2006-03-01

    An LDRD funded approach to development of reduced order models for systems with local nonlinearities is presented. This method is particularly useful for problems of structural dynamics, but has potential application in other fields. The key elements of this approach are (1) employment of eigen modes of a reference linear system, (2) incorporation of basis functions with an appropriate discontinuity at the location of the nonlinearity. Galerkin solution using the above combination of basis functions appears to capture the dynamics of the system with a small basis set. For problems involving small amplitude dynamics, the addition of discontinuous (joint) modes appears to capture the nonlinear mechanics correctly while preserving the modal form of the predictions. For problems involving large amplitude dynamics of realistic joint models (macro-slip), the use of appropriate joint modes along with sufficient basis eigen modes to capture the frequencies of the system greatly enhances convergence, though the modal nature the result is lost. Also observed is that when joint modes are used in conjunction with a small number of elastic eigen modes in problems of macro-slip of realistic joint models, the resulting predictions are very similar to those of the full solution when seen through a low pass filter. This has significance both in terms of greatly reducing the number of degrees of freedom of the problem and in terms of facilitating the use of much larger time steps.

  6. The WS transform for the Kuramoto model with distributed amplitudes, phase lag and time delay

    Science.gov (United States)

    Lohe, M. A.

    2017-12-01

    We apply the Watanabe-Strogatz (WS) transform to a generalized Kuramoto model with distributed parameters describing the amplitude of oscillation, phase lag, and time delay at each node of the system. The model has global coupling and identical frequencies, but allows for repulsive interactions at arbitrary nodes leading to conformist-contrarian phenomena together with variable amplitude and time-delay effects. We show how to determine the initial values of the WS system for any initial conditions for the Kuramoto system, and investigate the asymptotic behaviour of the WS variables. For the case of zero time delay the possible asymptotic configurations are determined by the sign of a single parameter μ which measures whether or not the attractive nodes dominate the repulsive nodes. If μ>0 the system completely synchronizes from general initial conditions, whereas if μ<0 one of two types of phase-locked synchronization occurs, depending on the initial values, while for μ=0 periodic solutions can occur. For the case of arbitrary non-uniform time delays we derive a stability condition for completely synchronized solutions.

  7. A Robust Longitudinal Control Strategy of Platoons under Model Uncertainties and Time Delays

    NARCIS (Netherlands)

    Chen, N.; Wang, M.; Alkim, Tom; van Arem, B.

    2018-01-01

    Automated vehicles are designed to free drivers from driving tasks and are expected to improve traffic safety and efficiency when connected via vehicle-to-vehicle communication, that is, connected automated vehicles (CAVs). The time delays and model uncertainties in vehicle control systems pose

  8. The Impact of a Time Delay on the Depleted Proportion of the Viral ...

    African Journals Online (AJOL)

    Journal of the Nigerian Association of Mathematical Physics ... While the impact of the variability of the reproductive rate of the infected cell on the viral load of the virions is an on-going research activity, the inclusion of a time delay which mimics the African culture of diverse health inhibiting belief system is a new numerical ...

  9. Controllability of nonlinear delay oscillating systems

    Directory of Open Access Journals (Sweden)

    Chengbin Liang

    2017-05-01

    Full Text Available In this paper, we study the controllability of a system governed by second order delay differential equations. We introduce a delay Gramian matrix involving the delayed matrix sine, which is used to establish sufficient and necessary conditions of controllability for the linear problem. In addition, we also construct a specific control function for controllability. For the nonlinear problem, we construct a control function and transfer the controllability problem to a fixed point problem for a suitable operator. We give a sufficient condition to guarantee the nonlinear delay system is controllable. Two examples are given to illustrate our theoretical results by calculating a specific control function and inverse of a delay Gramian matrix.

  10. A time-delayed method for controlling chaotic maps

    International Nuclear Information System (INIS)

    Chen Maoyin; Zhou Donghua; Shang Yun

    2005-01-01

    Combining the repetitive learning strategy and the optimality principle, this Letter proposes a time-delayed method to control chaotic maps. This method can effectively stabilize unstable periodic orbits within chaotic attractors in the sense of least mean square. Numerical simulations of some chaotic maps verify the effectiveness of this method

  11. Partial synchronization in diffusively time-delay coupled oscillator networks

    NARCIS (Netherlands)

    Steur, E.; Oguchi, T.; Leeuwen, van C.; Nijmeijer, H.

    2012-01-01

    We study networks of diffusively time-delay coupled oscillatory units and we show that networks with certain symmetries can exhibit a form of incomplete synchronization called partial synchronization. We present conditions for the existence and stability of partial synchronization modes in networks

  12. Time delay between cardiac and brain activity during sleep transitions

    NARCIS (Netherlands)

    Long, X.; Arends, J.B.A.M.; Aarts, R.M.; Haakma, R.; Fonseca, P.; Rolink, J.

    2015-01-01

    Human sleep consists of wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep that includes light and deep sleep stages. This work investigated the time delay between changes of cardiac and brain activity for sleep transitions. Here, the brain activity was quantified by

  13. Stability Criteria for Differential Equations with Variable Time Delays

    Science.gov (United States)

    Schley, D.; Shail, R.; Gourley, S. A.

    2002-01-01

    Time delays are an important aspect of mathematical modelling, but often result in highly complicated equations which are difficult to treat analytically. In this paper it is shown how careful application of certain undergraduate tools such as the Method of Steps and the Principle of the Argument can yield significant results. Certain delay…

  14. Effect of Magnetic Activity on Ionospheric Time Delay at Low ...

    Indian Academy of Sciences (India)

    E) using dual frequency (1575.42 and 1227.60 MHz) GPS measurements. Data from GSV4004A GPS Iono- spheric Scintillation and TEC monitor (GISTM) have been chosen to study these effects. This paper presents the results of ionospheric time delay during quiet and disturbed days for the year 2005. Results show that.

  15. Collective Dynamics of Nonlinear and Disordered Systems

    CERN Document Server

    Radons, G; Just, W

    2005-01-01

    Phase transitions in disordered systems and related dynamical phenomena are a topic of intrinsically high interest in theoretical and experimental physics. This book presents a unified view, adopting concepts from each of the disjoint fields of disordered systems and nonlinear dynamics. Special attention is paid to the glass transition, from both experimental and theoretical viewpoints, to modern concepts of pattern formation, and to the application of the concepts of dynamical systems for understanding equilibrium and nonequilibrium properties of fluids and solids. The content is accessible to graduate students, but will also be of benefit to specialists, since the presentation extends as far as the topics of ongoing research work.

  16. Dynamical Behaviors in Complex-Valued Love Model With or Without Time Delays

    Science.gov (United States)

    Deng, Wei; Liao, Xiaofeng; Dong, Tao

    2017-12-01

    In this paper, a novel version of nonlinear model, i.e. a complex-valued love model with two time delays between two individuals in a love affair, has been proposed. A notable feature in this model is that we separate the emotion of one individual into real and imaginary parts to represent the variation and complexity of psychophysiological emotion in romantic relationship instead of just real domain, and make our model much closer to reality. This is because love is a complicated cognitive and social phenomenon, full of complexity, diversity and unpredictability, which refers to the coexistence of different aspects of feelings, states and attitudes ranging from joy and trust to sadness and disgust. By analyzing associated characteristic equation of linearized equations for our model, it is found that the Hopf bifurcation occurs when the sum of time delays passes through a sequence of critical value. Stability of bifurcating cyclic love dynamics is also derived by applying the normal form theory and the center manifold theorem. In addition, it is also shown that, for some appropriate chosen parameters, chaotic behaviors can appear even without time delay.

  17. Stability and Hopf Bifurcation of Fractional-Order Complex-Valued Single Neuron Model with Time Delay

    Science.gov (United States)

    Wang, Zhen; Wang, Xiaohong; Li, Yuxia; Huang, Xia

    2017-12-01

    In this paper, the problems of stability and Hopf bifurcation in a class of fractional-order complex-valued single neuron model with time delay are addressed. With the help of the stability theory of fractional-order differential equations and Laplace transforms, several new sufficient conditions, which ensure the stability of the system are derived. Taking the time delay as the bifurcation parameter, Hopf bifurcation is investigated and the critical value of the time delay for the occurrence of Hopf bifurcation is determined. Finally, two representative numerical examples are given to show the effectiveness of the theoretical results.

  18. Piloted simulator study of allowable time delays in large-airplane response

    Science.gov (United States)

    Grantham, William D.; Bert T.?aetingas, Stephen A.dings with ran; Bert T.?aetingas, Stephen A.dings with ran

    1987-01-01

    A piloted simulation was performed to determine the permissible time delay and phase shift in the flight control system of a specific large transport-type airplane. The study was conducted with a six degree of freedom ground-based simulator and a math model similar to an advanced wide-body jet transport. Time delays in discrete and lagged form were incorporated into the longitudinal, lateral, and directional control systems of the airplane. Three experienced pilots flew simulated approaches and landings with random localizer and glide slope offsets during instrument tracking as their principal evaluation task. Results of the present study suggest a level 1 (satisfactory) handling qualities limit for the effective time delay of 0.15 sec in both the pitch and roll axes, as opposed to a 0.10-sec limit of the present specification (MIL-F-8785C) for both axes. Also, the present results suggest a level 2 (acceptable but unsatisfactory) handling qualities limit for an effective time delay of 0.82 sec and 0.57 sec for the pitch and roll axes, respectively, as opposed to 0.20 sec of the present specifications for both axes. In the area of phase shift between cockpit input and control surface deflection,the results of this study, flown in turbulent air, suggest less severe phase shift limitations for the approach and landing task-approximately 50 deg. in pitch and 40 deg. in roll - as opposed to 15 deg. of the present specifications for both axes.

  19. Implementation of High Time Delay Accuracy of Ultrasonic Phased Array Based on Interpolation CIC Filter.

    Science.gov (United States)

    Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu

    2017-10-12

    In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter's pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.

  20. The effects of resonances on time delay estimation for water leak detection in plastic pipes

    Science.gov (United States)

    Almeida, Fabrício C. L.; Brennan, Michael J.; Joseph, Phillip F.; Gao, Yan; Paschoalini, Amarildo T.

    2018-04-01

    In the use of acoustic correlation methods for water leak detection, sensors are placed at pipe access points either side of a suspected leak, and the peak in the cross-correlation function of the measured signals gives the time difference (delay) between the arrival times of the leak noise at the sensors. Combining this information with the speed at which the leak noise propagates along the pipe, gives an estimate for the location of the leak with respect to one of the measurement positions. It is possible for the structural dynamics of the pipe system to corrupt the time delay estimate, which results in the leak being incorrectly located. In this paper, data from test-rigs in the United Kingdom and Canada are used to demonstrate this phenomenon, and analytical models of resonators are coupled with a pipe model to replicate the experimental results. The model is then used to investigate which of the two commonly used correlation algorithms, the Basic Cross-Correlation (BCC) function or the Phase Transform (PHAT), is more robust to the undesirable structural dynamics of the pipe system. It is found that time delay estimation is highly sensitive to the frequency bandwidth over which the analysis is conducted. Moreover, it is found that the PHAT is particularly sensitive to the presence of resonances and can give an incorrect time delay estimate, whereas the BCC function is found to be much more robust, giving a consistently accurate time delay estimate for a range of dynamic conditions.

  1. Implementation of High Time Delay Accuracy of Ultrasonic Phased Array Based on Interpolation CIC Filter

    Directory of Open Access Journals (Sweden)

    Peilu Liu

    2017-10-01

    Full Text Available In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter’s pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA. In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.

  2. Solution of linear and nonlinear matrix systems. Application to a nonlinear diffusion equation

    International Nuclear Information System (INIS)

    Bonnet, M.; Meurant, G.

    1978-01-01

    Different methods of solution of linear and nonlinear algebraic systems are applied to the nonlinear system obtained by discretizing a nonlinear diffusion equation. For linear systems, methods in general use of alternating directions type or Gauss Seidel's methods are compared to more recent ones of the type of generalized conjugate gradient; the superiority of the latter is shown by numerical examples. For nonlinear systems, a method on nonlinear conjugate gradient is studied as also Newton's method and some of its variants. It should be noted, however that Newton's method is found to be more efficient when coupled with a good method for solution of the linear system. To conclude, such methods are used to solve a nonlinear diffusion problem and the numerical results obtained are to be compared [fr

  3. Solution of linear and nonlinear matrix systems. Application to a nonlinear diffusion equation

    International Nuclear Information System (INIS)

    Bonnet, M.; Meurant, G.

    1978-01-01

    The object of this study is to compare different methods of solving linear and nonlinear algebraic systems and to apply them to the nonlinear system obtained by discretizing a nonlinear diffusion equation. For linear systems the conventional methods of alternating direction type or Gauss Seidel's methods are compared to more recent ones of the type of generalized conjugate gradient; the superiority of the latter is shown by numerical examples. For nonlinear systems, a method of nonlinear conjugate gradient is studied together with Newton's method and some of its variants. It should be noted, however, that Newton's method is found to be more efficient when coupled with a good method for solving the linear system. As a conclusion, these methods are used to solve a nonlinear diffusion problem and the numerical results obtained are compared [fr

  4. Topological equivalence of nonlinear autonomous dynamical systems

    International Nuclear Information System (INIS)

    Nguyen Huynh Phan; Tran Van Nhung

    1995-12-01

    We show in this paper that the autonomous nonlinear dynamical system Σ(A,B,F): x' = Ax+Bu+F(x) is topologically equivalent to the linear dynamical system Σ(A,B,O): x' = Ax+Bu if the projection of A on the complement in R n of the controllable vectorial subspace is hyperbolic and if lipschitz constant of F is sufficiently small ( * ) and F(x) = 0 when parallel x parallel is sufficiently large ( ** ). In particular, if Σ(A,B,O) is controllable, it is topologically equivalent to Σ(A,B,F) when it is only that F satisfy ( ** ). (author). 18 refs

  5. Nonlinear system theory: another look at dependence.

    Science.gov (United States)

    Wu, Wei Biao

    2005-10-04

    Based on the nonlinear system theory, we introduce previously undescribed dependence measures for stationary causal processes. Our physical and predictive dependence measures quantify the degree of dependence of outputs on inputs in physical systems. The proposed dependence measures provide a natural framework for a limit theory for stationary processes. In particular, under conditions with quite simple forms, we present limit theorems for partial sums, empirical processes, and kernel density estimates. The conditions are mild and easily verifiable because they are directly related to the data-generating mechanisms.

  6. Tracking Control for Switched Cascade Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Dong

    2015-01-01

    Full Text Available The issue of H∞ output tracking for switched cascade nonlinear systems is discussed in this paper, where not all the linear parts of subsystems are stabilizable. The conditions of the solvability for the issue are given by virtue of the structural characteristics of the systems and the average dwell time method, in which the total activation time for stabilizable subsystems is longer than that for the unstabilizable subsystems. At last, a simulation example is used to demonstrate the validity and advantages of the proposed approach.

  7. Is DNA a nonlinear dynamical system where solitary conformational ...

    Indian Academy of Sciences (India)

    Unknown

    DNA is considered as a nonlinear dynamical system in which solitary conformational waves can be excited. The ... nonlinear differential equations and their soliton-like solu- .... structure and dynamics can be added till the most accurate.

  8. Exponential Stability of the Monotubular Heat Exchanger Equation with Time Delay in Boundary Observation

    Directory of Open Access Journals (Sweden)

    Xue-Lian Jin

    2017-01-01

    Full Text Available The exponential stability of the monotubular heat exchanger equation with boundary observation possessing a time delay and inner control was investigated. Firstly, the close-loop system was translated into an abstract Cauchy problem in the suitable state space. A uniformly bounded C0-semigroup generated by the close-loop system, which implies that the unique solution of the system exists, was shown. Secondly, the spectrum configuration of the closed-loop system was analyzed and the eventual differentiability and the eventual compactness of the semigroup were shown by the resolvent estimates on some resolvent sets. This implies that the spectrum-determined growth assumption holds. Finally, a sufficient condition, which is related to the physical parameters in the system and is independent of the time delay, of the exponential stability of the closed-loop system was given.

  9. Exactly and completely integrable nonlinear dynamical systems

    International Nuclear Information System (INIS)

    Leznov, A.N.; Savel'ev, M.V.

    1987-01-01

    The survey is devoted to a consitent exposition of the group-algebraic methods for the integration of systems of nonlinear partial differential equations possessing a nontrivial internal symmetry algebra. Samples of exactly and completely integrable wave and evolution equations are considered in detail, including generalized (periodic and finite nonperiodic Toda lattice, nonlinear Schroedinger, Korteweg-de Vries, Lotka-Volterra equations, etc.) For exactly integrable systems the general solutions of the Cauchy and Goursat problems are given in an explicit form, while for completely integrable systems an effective method for the construction of their soliton solutions is developed. Application of the developed methods to a differential geometry problem of classification of the integrable manifolds embeddings is discussed. For exactly integrable systems the supersymmetric extensions are constructed. By the example of the generalized Toda lattice a quantization scheme is developed. It includes an explicit derivation of the corresponding Heisenberg operators and their desription in terms of the quantum algebras of the Hopf type. Among multidimensional systems the four-dimensional self-dual Yang-Mills equations are investigated most attentively with a goal of constructing their general solutions

  10. Two-actor conflict with time delay: A dynamical model

    Science.gov (United States)

    Qubbaj, Murad R.; Muneepeerakul, Rachata

    2012-11-01

    Recent mathematical dynamical models of the conflict between two different actors, be they nations, groups, or individuals, have been developed that are capable of predicting various outcomes depending on the chosen feedback strategies, initial conditions, and the previous states of the actors. In addition to these factors, this paper examines the effect of time delayed feedback on the conflict dynamics. Our analysis shows that under certain initial and feedback conditions, a stable neutral equilibrium of conflict may destabilize for some critical values of time delay, and the two actors may evolve to new emotional states. We investigate the results by constructing critical delay surfaces for different sets of parameters and analyzing results from numerical simulations. These results provide new insights regarding conflict and conflict resolution and may help planners in adjusting and assessing their strategic decisions.

  11. Time Delay Estimation in Room Acoustic Environments: An Overview

    Directory of Open Access Journals (Sweden)

    Benesty Jacob

    2006-01-01

    Full Text Available Time delay estimation has been a research topic of significant practical importance in many fields (radar, sonar, seismology, geophysics, ultrasonics, hands-free communications, etc.. It is a first stage that feeds into subsequent processing blocks for identifying, localizing, and tracking radiating sources. This area has made remarkable advances in the past few decades, and is continuing to progress, with an aim to create processors that are tolerant to both noise and reverberation. This paper presents a systematic overview of the state-of-the-art of time-delay-estimation algorithms ranging from the simple cross-correlation method to the advanced blind channel identification based techniques. We discuss the pros and cons of each individual algorithm, and outline their inherent relationships. We also provide experimental results to illustrate their performance differences in room acoustic environments where reverberation and noise are commonly encountered.

  12. Electrically tunable photonic true-time-delay line.

    Science.gov (United States)

    Barmenkov, Yuri O; Cruz, José Luis; Díez, Antonio; Andrés, Miguel V

    2010-08-16

    We present a new application of the acousto-optic superlattice modulation of a fiber Bragg grating based on the dynamic phase and group delay properties of this fiber-optic component. We demonstrate a tunable photonic true-time-delay line based on the group delay change of the light reflected from the grating sidebands. The delay is electrically tuned by adjusting the voltage applied to a piezoelectric transducer that generates the acoustic wave propagating along the grating. In our experiments, a true-time delay of 400 ps is continuously adjusted (300 ps within the 3 dB amplitude range of the first sideband), using a 12 cm long uniform grating.

  13. Spectral sum rule for time delay in R2

    International Nuclear Information System (INIS)

    Osborn, T.A.; Sinha, K.B.; Bolle, D.; Danneels, C.

    1985-01-01

    A local spectral sum rule for nonrelativistic scattering in two dimensions is derived for the potential class velement ofL 4 /sup // 3 (R 2 ). The sum rule relates the integral over all scattering energies of the trace of the time-delay operator for a finite region Σis contained inR 2 to the contributions in Σ of the pure point and singularly continuous spectra

  14. Acceleration (Deceleration Model Supporting Time Delays to Refresh Data

    Directory of Open Access Journals (Sweden)

    José Gerardo Carrillo González

    2018-04-01

    Full Text Available This paper proposes a mathematical model to regulate the acceleration (deceleration applied by self-driving vehicles in car-following situations. A virtual environment is designed to test the model in different circumstances: (1 the followers decelerate in time if the leader decelerates, considering a time delay of up to 5 s to refresh data (vehicles position coordinates required by the model, (2 with the intention of optimizing space, the vehicles are grouped in platoons, where 3 s of time delay (to update data is supported if the vehicles have a centre-to-centre spacing of 20 m and a time delay of 1 s is supported at a spacing of 6 m (considering a maximum speed of 20 m/s in both cases, and (3 an algorithm is presented to manage the vehicles’ priority at a traffic intersection, where the model regulates the vehicles’ acceleration (deceleration and a balance in the number of vehicles passing from each side is achieved.

  15. Seismic analysis of a nonlinear airlock system

    International Nuclear Information System (INIS)

    Huang, S.N.

    1983-01-01

    The containment equipment airlock door of the Fast Flux Test Facility utilizes screw-type actuators as a push-pull mechanism for closing and opening operations. Special design features were used to protect these actuators from pressure differential loading. These made the door behave as a nonlinear system during a seismic event. Seismic analyses, utilizing the time history method, were conducted to determine the seismic loads on these scew-type actuators. Several sizes of actuators were examined. Procedures for determining the final optimum design are discussed in detail

  16. An efficient control algorithm for nonlinear systems

    International Nuclear Information System (INIS)

    Sinha, S.

    1990-12-01

    We suggest a scheme to step up the efficiency of a recently proposed adaptive control algorithm, which is remarkably effective for regulating nonlinear systems. The technique involves monitoring of the ''stiffness of control'' to get maximum gain while maintaining a predetermined accuracy. The success of the procedure is demonstrated for the case of the logistic map, where we show that the improvement in performance is often factors of tens, and for small control stiffness, even factors of hundreds. (author). 4 refs, 1 fig., 1 tab

  17. A Heterogeneous Agent Model of Asspet Price with Three Time Delays

    Directory of Open Access Journals (Sweden)

    Akio Matsumoto

    2016-09-01

    Full Text Available This paper considers a continuous-time heterogeneous agent model ofa ...nancial market with one risky asset, two types of agents (i.e., thefundamentalists and the chartists, and three time delays. The chartistdemand is determined through a nonlinear function of the di¤erence be-tween the current price and a weighted moving average of the delayedprices whereas the fundamentalist demand is governed by the di¤erencebetween the current price and the fundamental value. The asset price dy-namics is described by a nonlinear delay di¤erential equation. Two mainresults are analytically and numerically shown:(i the delay destabilizes the market price and generates cyclic oscillationsaround the equilibrium;(ii under multiple delays, stability loss and gain repeatedly occurs as alength of the delay increases.

  18. On the choice of lens density profile in time delay cosmography

    Science.gov (United States)

    Sonnenfeld, Alessandro

    2018-03-01

    Time delay lensing is a mature and competitive cosmological probe. However, it is limited in accuracy by the well-known problem of the mass-sheet degeneracy: too rigid assumptions on the density profile of the lens can potentially bias the inference on cosmological parameters. I investigate the degeneracy between the choice of the lens density profile and the inference on the Hubble constant, focusing on double image systems. By expanding lensing observables in terms of the local derivatives of the lens potential around the Einstein radius, and assuming circular symmetry, I show that 3 degrees of freedom in the radial direction are necessary to achieve a few per cent accuracy in the time-delay distance. Additionally, while the time delay is strongly dependent on the second derivative of the potential, observables typically used to constrain lens models in time-delay studies, such as image position and radial magnification information, are mostly sensitive to the first and third derivatives, making it very challenging to accurately determine time-delay distances with lensing data alone. Tests on mock observations show that the assumption of a power-law density profile results in a 5 per cent average bias on H0, with a 6 per cent scatter. Using a more flexible model and adding unbiased velocity dispersion constraints allows me to obtain an inference with 1 per cent accuracy. A power-law model can still provide 3 per cent accuracy if velocity dispersion measurements are used to constrain its slope. Although this study is based on the assumption of axisymmetry, its main findings can be generalized to cases with moderate ellipticity.

  19. Light deflection, lensing, and time delays from gravitational potentials and Fermat's principle in the presence of a cosmological constant

    International Nuclear Information System (INIS)

    Ishak, Mustapha

    2008-01-01

    The contributions of the cosmological constant to the deflection angle and the time delays are derived from the integration of the gravitational potential as well as from Fermat's principle. The findings are in agreement with recent results using exact solutions to Einstein's equations and reproduce precisely the new Λ term in the bending angle and the lens equation. The consequences on time-delay expressions are explored. While it is known that Λ contributes to the gravitational time delay, it is shown here that a new Λ term appears in the geometrical time delay as well. Although these newly derived terms are perhaps small for current observations, they do not cancel out as previously claimed. Moreover, as shown before, at galaxy cluster scale, the Λ contribution can be larger than the second-order term in the Einstein deflection angle for several cluster lens systems.

  20. Impulse position control algorithms for nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Sesekin, A. N., E-mail: sesekin@list.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002 (Russian Federation); Institute of Mathematics and Mechanics, Ural Division of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990 (Russian Federation); Nepp, A. N., E-mail: anepp@urfu.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002 (Russian Federation)

    2015-11-30

    The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.

  1. Impulse position control algorithms for nonlinear systems

    Science.gov (United States)

    Sesekin, A. N.; Nepp, A. N.

    2015-11-01

    The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.

  2. MPPT for Photovoltaic System Using Nonlinear Controller

    Directory of Open Access Journals (Sweden)

    Ramsha Iftikhar

    2018-01-01

    Full Text Available Photovoltaic (PV system generates energy that varies with the variation in environmental conditions such as temperature and solar radiation. To cope up with the ever increasing demand of energy, the PV system must operate at maximum power point (MPP, which changes with load as well as weather conditions. This paper proposes a nonlinear backstepping controller to harvest maximum power from a PV array using DC-DC buck converter. A regression plane is formulated after collecting the data of the PV array from its characteristic curves to provide the reference voltage to track MPP. Asymptotic stability of the system is proved using Lyapunov stability criteria. The simulation results validate the rapid tracking and efficient performance of the controller. For further validation of the results, it also provides a comparison of the proposed controller with conventional perturb and observe (P&O and fuzzy logic-based controller (FLBC under abrupt changes in environmental conditions.

  3. Deterministic nonlinear systems a short course

    CERN Document Server

    Anishchenko, Vadim S; Strelkova, Galina I

    2014-01-01

    This text is a short yet complete course on nonlinear dynamics of deterministic systems. Conceived as a modular set of 15 concise lectures it reflects the many years of teaching experience by the authors. The lectures treat in turn the fundamental aspects of the theory of dynamical systems, aspects of stability and bifurcations, the theory of deterministic chaos and attractor dimensions, as well as the elements of the theory of Poincare recurrences.Particular attention is paid to the analysis of the generation of periodic, quasiperiodic and chaotic self-sustained oscillations and to the issue of synchronization in such systems.  This book is aimed at graduate students and non-specialist researchers with a background in physics, applied mathematics and engineering wishing to enter this exciting field of research.

  4. Bifurcation methods of dynamical systems for handling nonlinear ...

    Indian Academy of Sciences (India)

    physics pp. 863–868. Bifurcation methods of dynamical systems for handling nonlinear wave equations. DAHE FENG and JIBIN LI. Center for Nonlinear Science Studies, School of Science, Kunming University of Science and Technology .... (b) It can be shown from (15) and (18) that the balance between the weak nonlinear.

  5. Path Tracking Control of Automatic Parking Cloud Model considering the Influence of Time Delay

    Directory of Open Access Journals (Sweden)

    Yiding Hua

    2017-01-01

    Full Text Available This paper establishes the kinematic model of the automatic parking system and analyzes the kinematic constraints of the vehicle. Furthermore, it solves the problem where the traditional automatic parking system model fails to take into account the time delay. Firstly, based on simulating calculation, the influence of time delay on the dynamic trajectory of a vehicle in the automatic parking system is analyzed under the transverse distance Dlateral between different target spaces. Secondly, on the basis of cloud model, this paper utilizes the tracking control of an intelligent path closer to human intelligent behavior to further study the Cloud Generator-based parking path tracking control method and construct a vehicle path tracking control model. Moreover, tracking and steering control effects of the model are verified through simulation analysis. Finally, the effectiveness and timeliness of automatic parking controller in the aspect of path tracking are tested through a real vehicle experiment.

  6. Basins of attraction of the bistable region of time-delayed cutting dynamics

    Science.gov (United States)

    Yan, Yao; Xu, Jian; Wiercigroch, Marian

    2017-09-01

    This paper investigates the effects of bistability in a nonsmooth time-delayed dynamical system, which is often manifested in science and engineering. Previous studies on cutting dynamics have demonstrated persistent coexistence of chatter and chatter-free responses in a bistable region located in the linearly stable zone. As there is no widely accepted definition of basins of attraction for time-delayed systems, bistable regions are coined as unsafe zones (UZs). Hence, we have attempted to define the basins of attraction and stability basins for a typical delayed system to get insight into the bistability in systems with time delays. Special attention was paid to the influences of delayed initial conditions, starting points, and states at time zero on the long-term dynamics of time-delayed systems. By using this concept, it has been confirmed that the chatter is prone to occur when the waviness frequency in the workpiece surface coincides with the effective natural frequency of the cutting process. Further investigations unveil a thin "boundary layer" inside the UZ in the immediate vicinity of the stability boundary, in which we observe an extremely fast growth of the chatter basin stability. The results reveal that the system is more stable when the initial cutting depth is smaller. The physics of the tool deflection at the instant of the tool-workpiece engagement is used to evaluate the cutting safety, and the safe level could be zero when the geometry of tool engagement is unfavorable. Finally, the basins of attraction are used to quench the chatter by a single strike, where the resultant "islands" offer an opportunity to suppress the chatter even when the cutting is very close to the stability boundary.

  7. Basins of attraction of the bistable region of time-delayed cutting dynamics.

    Science.gov (United States)

    Yan, Yao; Xu, Jian; Wiercigroch, Marian

    2017-09-01

    This paper investigates the effects of bistability in a nonsmooth time-delayed dynamical system, which is often manifested in science and engineering. Previous studies on cutting dynamics have demonstrated persistent coexistence of chatter and chatter-free responses in a bistable region located in the linearly stable zone. As there is no widely accepted definition of basins of attraction for time-delayed systems, bistable regions are coined as unsafe zones (UZs). Hence, we have attempted to define the basins of attraction and stability basins for a typical delayed system to get insight into the bistability in systems with time delays. Special attention was paid to the influences of delayed initial conditions, starting points, and states at time zero on the long-term dynamics of time-delayed systems. By using this concept, it has been confirmed that the chatter is prone to occur when the waviness frequency in the workpiece surface coincides with the effective natural frequency of the cutting process. Further investigations unveil a thin "boundary layer" inside the UZ in the immediate vicinity of the stability boundary, in which we observe an extremely fast growth of the chatter basin stability. The results reveal that the system is more stable when the initial cutting depth is smaller. The physics of the tool deflection at the instant of the tool-workpiece engagement is used to evaluate the cutting safety, and the safe level could be zero when the geometry of tool engagement is unfavorable. Finally, the basins of attraction are used to quench the chatter by a single strike, where the resultant "islands" offer an opportunity to suppress the chatter even when the cutting is very close to the stability boundary.

  8. Nonlinear dynamic analysis of flexible multibody systems

    Science.gov (United States)

    Bauchau, Olivier A.; Kang, Nam Kook

    1991-01-01

    Two approaches are developed to analyze the dynamic behavior of flexible multibody systems. In the first approach each body is modeled with a modal methodology in a local non-inertial frame of reference, whereas in the second approach, each body is modeled with a finite element methodology in the inertial frame. In both cases, the interaction among the various elastic bodies is represented by constraint equations. The two approaches were compared for accuracy and efficiency: the first approach is preferable when the nonlinearities are not too strong but it becomes cumbersome and expensive to use when many modes must be used. The second approach is more general and easier to implement but could result in high computation costs for a large system. The constraints should be enforced in a time derivative fashion for better accuracy and stability.

  9. Distance Constrained Based Adaptive Flocking Control for Multiagent Networks with Time Delay

    Directory of Open Access Journals (Sweden)

    Qing Zhang

    2015-01-01

    Full Text Available The flocking control of multiagent system is a new type of decentralized control method, which has aroused great attention. The paper includes a detailed research in terms of distance constrained based adaptive flocking control for multiagent system with time delay. Firstly, the program on the adaptive flocking with time delay of multiagent is proposed. Secondly, a kind of adaptive controllers and updating laws are presented. According to the Lyapunov stability theory, it is proved that the distance between agents can be larger than a constant during the motion evolution. What is more, velocities of each agent come to the same asymptotically. Finally, the analytical results can be verified by a numerical example.

  10. Robustness analysis of uncertain dynamical neural networks with multiple time delays.

    Science.gov (United States)

    Senan, Sibel

    2015-10-01

    This paper studies the problem of global robust asymptotic stability of the equilibrium point for the class of dynamical neural networks with multiple time delays with respect to the class of slope-bounded activation functions and in the presence of the uncertainties of system parameters of the considered neural network model. By using an appropriate Lyapunov functional and exploiting the properties of the homeomorphism mapping theorem, we derive a new sufficient condition for the existence, uniqueness and global robust asymptotic stability of the equilibrium point for the class of neural networks with multiple time delays. The obtained stability condition basically relies on testing some relationships imposed on the interconnection matrices of the neural system, which can be easily verified by using some certain properties of matrices. An instructive numerical example is also given to illustrate the applicability of our result and show the advantages of this new condition over the previously reported corresponding results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Periodicity of a class of nonlinear fuzzy systems with delays

    International Nuclear Information System (INIS)

    Yu Jiali; Yi Zhang; Zhang Lei

    2009-01-01

    The well known Takagi-Sugeno (T-S) model gives an effective method to combine some simple local systems with their linguistic description to represent complex nonlinear dynamic systems. By using the T-S method, a class of local nonlinear systems having nice dynamic properties can be employed to represent some global complex nonlinear systems. This paper proposes to study the periodicity of a class of global nonlinear fuzzy systems with delays by using T-S method. Conditions for guaranteeing periodicity are derived. Examples are employed to illustrate the theory.

  12. Applications of Nonlinear Dynamics Model and Design of Complex Systems

    CERN Document Server

    In, Visarath; Palacios, Antonio

    2009-01-01

    This edited book is aimed at interdisciplinary, device-oriented, applications of nonlinear science theory and methods in complex systems. In particular, applications directed to nonlinear phenomena with space and time characteristics. Examples include: complex networks of magnetic sensor systems, coupled nano-mechanical oscillators, nano-detectors, microscale devices, stochastic resonance in multi-dimensional chaotic systems, biosensors, and stochastic signal quantization. "applications of nonlinear dynamics: model and design of complex systems" brings together the work of scientists and engineers that are applying ideas and methods from nonlinear dynamics to design and fabricate complex systems.

  13. Euclidean null controllability of nonlinear infinite delay systems with ...

    African Journals Online (AJOL)

    Sufficient conditions for the Euclidean null controllability of non-linear delay systems with time varying multiple delays in the control and implicit derivative are derived. If the uncontrolled system is uniformly asymptotically stable and if the control system is controllable, then the non-linear infinite delay system is Euclidean null ...

  14. Estimation of time-delayed mutual information and bias for irregularly and sparsely sampled time-series

    International Nuclear Information System (INIS)

    Albers, D.J.; Hripcsak, George

    2012-01-01

    Highlights: ► Time-delayed mutual information for irregularly sampled time-series. ► Estimation bias for the time-delayed mutual information calculation. ► Fast, simple, PDF estimator independent, time-delayed mutual information bias estimate. ► Quantification of data-set-size limits of the time-delayed mutual calculation. - Abstract: A method to estimate the time-dependent correlation via an empirical bias estimate of the time-delayed mutual information for a time-series is proposed. In particular, the bias of the time-delayed mutual information is shown to often be equivalent to the mutual information between two distributions of points from the same system separated by infinite time. Thus intuitively, estimation of the bias is reduced to estimation of the mutual information between distributions of data points separated by large time intervals. The proposed bias estimation techniques are shown to work for Lorenz equations data and glucose time series data of three patients from the Columbia University Medical Center database.

  15. Complex-Vector Time-Delay Control of Power Converters

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Loh, P. C.; Tang, Y.

    2008-01-01

    Precise controlling of current produced by power converters is an important topic that has attracted interests over the last few decades. With the recent proliferation of grid-tied converters where the control of power flow is indirectly governed by the accuracy of current tracking, motivation...... since only a small amount of memory space for storing time-delayed values and simple arithmetic computations are needed for its physical realization. In addition to that, other advantages of the scheme include its abilities to compensate for negative-sequence, load and grid harmonic components using...

  16. Comment on ‘Time delays in molecular photoionization’

    Science.gov (United States)

    Baykusheva, Denitsa; Wörner, Hans Jakob

    2017-04-01

    In a recent article by Hockett et al (2016 J. Phys. B: At. Mol. Opt. Phys. 49 095602), time delays arising in the context of molecular single-photon ionization are investigated from a theoretical point of view. We argue that one of the central equations given in this article is incorrect and present a reformulation that is consistent with the established treatment of angle-dependent scattering delays (Eisenbud 1948 PhD Thesis Princeton University; Wigner 1955 Phys. Rev. 98 145-7 Smith 1960 Phys. Rev. 118 349-6 Nussenzveig 1972 Phys. Rev. D 6 1534-42).

  17. Global dissipativity of continuous-time recurrent neural networks with time delay

    International Nuclear Information System (INIS)

    Liao Xiaoxin; Wang Jun

    2003-01-01

    This paper addresses the global dissipativity of a general class of continuous-time recurrent neural networks. First, the concepts of global dissipation and global exponential dissipation are defined and elaborated. Next, the sets of global dissipativity and global exponentially dissipativity are characterized using the parameters of recurrent neural network models. In particular, it is shown that the Hopfield network and cellular neural networks with or without time delays are dissipative systems

  18. Global asymptotic stability of hybrid bidirectional associative memory neural networks with time delays

    International Nuclear Information System (INIS)

    Arik, Sabri

    2006-01-01

    This Letter presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all bounded continuous non-monotonic neuron activation functions. The results are also compared with the previous results derived in the literature

  19. Global robust stability of bidirectional associative memory neural networks with multiple time delays.

    Science.gov (United States)

    Senan, Sibel; Arik, Sabri

    2007-10-01

    This correspondence presents a sufficient condition for the existence, uniqueness, and global robust asymptotic stability of the equilibrium point for bidirectional associative memory neural networks with discrete time delays. The results impose constraint conditions on the network parameters of the neural system independently of the delay parameter, and they are applicable to all bounded continuous nonmonotonic neuron activation functions. Some numerical examples are given to compare our results with the previous robust stability results derived in the literature.

  20. Global asymptotic stability of hybrid bidirectional associative memory neural networks with time delays

    Science.gov (United States)

    Arik, Sabri

    2006-02-01

    This Letter presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all bounded continuous non-monotonic neuron activation functions. The results are also compared with the previous results derived in the literature.

  1. Expert system for accelerator single-freedom nonlinear components

    International Nuclear Information System (INIS)

    Wang Sheng; Xie Xi; Liu Chunliang

    1995-01-01

    An expert system by Arity Prolog is developed for accelerator single-freedom nonlinear components. It automatically yields any order approximate analytical solutions for various accelerator single-freedom nonlinear components. As an example, the eighth order approximate analytical solution is derived by this expert system for a general accelerator single-freedom nonlinear component, showing that the design of the expert system is successful

  2. Distributed Fault Detection for a Class of Nonlinear Stochastic Systems

    Directory of Open Access Journals (Sweden)

    Bingyong Yan

    2014-01-01

    Full Text Available A novel distributed fault detection strategy for a class of nonlinear stochastic systems is presented. Different from the existing design procedures for fault detection, a novel fault detection observer, which consists of a nonlinear fault detection filter and a consensus filter, is proposed to detect the nonlinear stochastic systems faults. Firstly, the outputs of the nonlinear stochastic systems act as inputs of a consensus filter. Secondly, a nonlinear fault detection filter is constructed to provide estimation of unmeasurable system states and residual signals using outputs of the consensus filter. Stability analysis of the consensus filter is rigorously investigated. Meanwhile, the design procedures of the nonlinear fault detection filter are given in terms of linear matrix inequalities (LMIs. Taking the influence of the system stochastic noises into consideration, an outstanding feature of the proposed scheme is that false alarms can be reduced dramatically. Finally, simulation results are provided to show the feasibility and effectiveness of the proposed fault detection approach.

  3. Computational Models for Nonlinear Aeroelastic Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate new and efficient computational methods of modeling nonlinear aeroelastic systems. The...

  4. Nonlinear PI control of chaotic systems using singular perturbation theory

    International Nuclear Information System (INIS)

    Wang Jiang; Wang Jing; Li Huiyan

    2005-01-01

    In this paper, we develop the nonlinear PI controllers for a class of chaotic systems based on singular perturbation theory. The original system is decomposed into two reduced order systems, to which the nonlinear uncertain terms belongs. In order to alleviate the deterioration of these nonlinear uncertainties, the nonlinear PI controllers are applied to each subsystem and combined to construct the composite controller for the full order system. The effectiveness and feasibility of the proposed control scheme is demonstrated through numerical simulations on the chaotic Chua's circuit

  5. Model Updating Nonlinear System Identification Toolbox, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology (ZONA) proposes to develop an enhanced model updating nonlinear system identification (MUNSID) methodology that utilizes flight data with...

  6. Bifurcations and Patterns in Nonlinear Dissipative Systems

    Energy Technology Data Exchange (ETDEWEB)

    Guenter Ahlers

    2005-05-27

    This project consists of experimental investigations of heat transport, pattern formation, and bifurcation phenomena in non-linear non-equilibrium fluid-mechanical systems. These issues are studies in Rayleigh-B\\'enard convection, using both pure and multicomponent fluids. They are of fundamental scientific interest, but also play an important role in engineering, materials science, ecology, meteorology, geophysics, and astrophysics. For instance, various forms of convection are important in such diverse phenomena as crystal growth from a melt with or without impurities, energy production in solar ponds, flow in the earth's mantle and outer core, geo-thermal stratifications, and various oceanographic and atmospheric phenomena. Our work utilizes computer-enhanced shadowgraph imaging of flow patterns, sophisticated digital image analysis, and high-resolution heat transport measurements.

  7. Time Delay Measurements for the Cluster-lensed Sextuple Quasar SDSS J2222+2745

    Science.gov (United States)

    Dahle, H.; Gladders, M. D.; Sharon, K.; Bayliss, M. B.; Rigby, J. R.

    2015-11-01

    We report first results from an ongoing monitoring campaign to measure time delays between the six images of the quasar SDSS J2222+2745, gravitationally lensed by a galaxy cluster. The time delay between A and B, the two most highly magnified images, is measured to be {τ }{{AB}}=47.7+/- 6.0 days (95% confidence interval), consistent with previous model predictions for this lens system. The strong intrinsic variability of the quasar also allows us to derive a time delay value of {τ }{{CA}}=722+/- 24 days between image C and A, in spite of modest overlap between their light curves in the current data set. Image C, which is predicted to lead all the other lensed quasar images, has undergone a sharp, monotonic flux increase of 60%-75% during 2014. A corresponding brightening is firmly predicted to occur in images A and B during 2016. The amplitude of this rise indicates that time delays involving all six known images in this system, including those of the demagnified central images D-F, will be obtainable from further ground-based monitoring of this system during the next few years. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, and including observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnologi´a e Innovación Productiva (Argentina).

  8. EMBEDDED LENSING TIME DELAYS, THE FERMAT POTENTIAL, AND THE INTEGRATED SACHS–WOLFE EFFECT

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin; Kantowski, Ronald; Dai, Xinyu, E-mail: bchen3@fsu.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States)

    2015-05-01

    We derive the Fermat potential for a spherically symmetric lens embedded in a Friedman–Lemaître–Robertson–Walker cosmology and use it to investigate the late-time integrated Sachs–Wolfe (ISW) effect, i.e., secondary temperature fluctuations in the cosmic microwave background (CMB) caused by individual large-scale clusters and voids. We present a simple analytical expression for the temperature fluctuation in the CMB across such a lens as a derivative of the lens’ Fermat potential. This formalism is applicable to both linear and nonlinear density evolution scenarios, to arbitrarily large density contrasts, and to all open and closed background cosmologies. It is much simpler to use and makes the same predictions as conventional approaches. In this approach the total temperature fluctuation can be split into a time-delay part and an evolutionary part. Both parts must be included for cosmic structures that evolve and both can be equally important. We present very simple ISW models for cosmic voids and galaxy clusters to illustrate the ease of use of our formalism. We use the Fermat potentials of simple cosmic void models to compare predicted ISW effects with those recently extracted from WMAP and Planck data by stacking large cosmic voids using the aperture photometry method. If voids in the local universe with large density contrasts are no longer evolving we find that the time delay contribution alone predicts values consistent with the measurements. However, we find that for voids still evolving linearly, the evolutionary contribution cancels a significant part of the time delay contribution and results in predicted signals that are much smaller than recently observed.

  9. EMBEDDED LENSING TIME DELAYS, THE FERMAT POTENTIAL, AND THE INTEGRATED SACHS–WOLFE EFFECT

    International Nuclear Information System (INIS)

    Chen, Bin; Kantowski, Ronald; Dai, Xinyu

    2015-01-01

    We derive the Fermat potential for a spherically symmetric lens embedded in a Friedman–Lemaître–Robertson–Walker cosmology and use it to investigate the late-time integrated Sachs–Wolfe (ISW) effect, i.e., secondary temperature fluctuations in the cosmic microwave background (CMB) caused by individual large-scale clusters and voids. We present a simple analytical expression for the temperature fluctuation in the CMB across such a lens as a derivative of the lens’ Fermat potential. This formalism is applicable to both linear and nonlinear density evolution scenarios, to arbitrarily large density contrasts, and to all open and closed background cosmologies. It is much simpler to use and makes the same predictions as conventional approaches. In this approach the total temperature fluctuation can be split into a time-delay part and an evolutionary part. Both parts must be included for cosmic structures that evolve and both can be equally important. We present very simple ISW models for cosmic voids and galaxy clusters to illustrate the ease of use of our formalism. We use the Fermat potentials of simple cosmic void models to compare predicted ISW effects with those recently extracted from WMAP and Planck data by stacking large cosmic voids using the aperture photometry method. If voids in the local universe with large density contrasts are no longer evolving we find that the time delay contribution alone predicts values consistent with the measurements. However, we find that for voids still evolving linearly, the evolutionary contribution cancels a significant part of the time delay contribution and results in predicted signals that are much smaller than recently observed

  10. Embedded Lensing Time Delays, the Fermat Potential, and the Integrated Sachs-Wolfe Effect

    Science.gov (United States)

    Chen, Bin; Kantowski, Ronald; Dai, Xinyu

    2015-05-01

    We derive the Fermat potential for a spherically symmetric lens embedded in a Friedman-Lemaître-Robertson-Walker cosmology and use it to investigate the late-time integrated Sachs-Wolfe (ISW) effect, i.e., secondary temperature fluctuations in the cosmic microwave background (CMB) caused by individual large-scale clusters and voids. We present a simple analytical expression for the temperature fluctuation in the CMB across such a lens as a derivative of the lens’ Fermat potential. This formalism is applicable to both linear and nonlinear density evolution scenarios, to arbitrarily large density contrasts, and to all open and closed background cosmologies. It is much simpler to use and makes the same predictions as conventional approaches. In this approach the total temperature fluctuation can be split into a time-delay part and an evolutionary part. Both parts must be included for cosmic structures that evolve and both can be equally important. We present very simple ISW models for cosmic voids and galaxy clusters to illustrate the ease of use of our formalism. We use the Fermat potentials of simple cosmic void models to compare predicted ISW effects with those recently extracted from WMAP and Planck data by stacking large cosmic voids using the aperture photometry method. If voids in the local universe with large density contrasts are no longer evolving we find that the time delay contribution alone predicts values consistent with the measurements. However, we find that for voids still evolving linearly, the evolutionary contribution cancels a significant part of the time delay contribution and results in predicted signals that are much smaller than recently observed.

  11. General Relativistic Theory of the VLBI Time Delay in the Gravitational Field of Moving Bodies

    Science.gov (United States)

    Kopeikin, Sergei

    2003-01-01

    The general relativistic theory of the gravitational VLBI experiment conducted on September 8, 2002 by Fomalont and Kopeikin is explained. Equations of radio waves (light) propagating from the quasar to the observer are integrated in the time-dependent gravitational field of the solar system by making use of either retarded or advanced solutions of the Einstein field equations. This mathematical technique separates explicitly the effects associated with the propagation of gravity from those associated with light in the integral expression for the relativistic VLBI time delay of light. We prove that the relativistic correction to the Shapiro time delay, discovered by Kopeikin (ApJ, 556, L1, 2001), changes sign if one retains direction of the light propagation but replaces the retarded for the advanced solution of the Einstein equations. Hence, this correction is associated with the propagation of gravity. The VLBI observation measured its speed, and that the retarded solution is the correct one.

  12. Spectrum optimization-based chaotification using time-delay feedback control

    International Nuclear Information System (INIS)

    Zhou Jiaxi; Xu Daolin; Zhang Jing; Liu Chunrong

    2012-01-01

    Highlights: ► A time-delay feedback controller is designed for chaotification. ► A spectrum optimization method is proposed to determine chaotification parameters. ► Numerical examples verify the spectrum optimization- based chaotification method. ► Engineering application in line spectrum reconfiguration is demonstrated. - Abstract: In this paper, a spectrum optimization method is developed for chaotification in conjunction with an application in line spectrum reconfiguration. A key performance index (the objective function) based on Fourier spectrum is specially devised with the idea of suppressing spectrum spikes and broadening frequency band. Minimization of the index empowered by a genetic algorithm enables to locate favorable parameters of the time-delay feedback controller, by which a line spectrum of harmonic vibration can be transformed into a broad-band continuous spectrum of chaotic motion. Numerical simulations are carried out to verify the feasibility of the method and to demonstrate its effectiveness of chaotifying a 2-DOFs linear mechanical system.

  13. Nonlinear analysis of a reaction-diffusion system: Amplitude equations

    Energy Technology Data Exchange (ETDEWEB)

    Zemskov, E. P., E-mail: zemskov@ccas.ru [Russian Academy of Sciences, Dorodnicyn Computing Center (Russian Federation)

    2012-10-15

    A reaction-diffusion system with a nonlinear diffusion term is considered. Based on nonlinear analysis, the amplitude equations are obtained in the cases of the Hopf and Turing instabilities in the system. Turing pattern-forming regions in the parameter space are determined for supercritical and subcritical instabilities in a two-component reaction-diffusion system.

  14. Adaptive projective synchronization of different chaotic systems with nonlinearity inputs

    International Nuclear Information System (INIS)

    Niu Yu-Jun; Pei Bing-Nan; Wang Xing-Yuan

    2012-01-01

    We investigate the projective synchronization of different chaotic systems with nonlinearity inputs. Based on the adaptive technique, sliding mode control method and pole assignment technique, a novel adaptive projective synchronization scheme is proposed to ensure the drive system and the response system with nonlinearity inputs can be rapidly synchronized up to the given scaling factor. (general)

  15. Nonlinear dynamics of quadratically cubic systems

    International Nuclear Information System (INIS)

    Rudenko, O V

    2013-01-01

    We propose a modified form of the well-known nonlinear dynamic equations with quadratic relations used to model a cubic nonlinearity. We show that such quadratically cubic equations sometimes allow exact solutions and sometimes make the original problem easier to analyze qualitatively. Occasionally, exact solutions provide a useful tool for studying new phenomena. Examples considered include nonlinear ordinary differential equations and Hopf, Burgers, Korteweg–de Vries, and nonlinear Schrödinger partial differential equations. Some problems are solved exactly in the space–time and spectral representations. Unsolved problems potentially solvable by the proposed approach are listed. (methodological notes)

  16. Spatial nonlinearities: Cascading effects in the earth system

    Science.gov (United States)

    Peters, Debra P.C.; Pielke, R.A.; Bestelmeyer, B.T.; Allen, Craig D.; Munson-McGee, Stuart; Havstad, K. M.; Canadell, Josep G.; Pataki, Diane E.; Pitelka, Louis F.

    2006-01-01

    Nonlinear behavior is prevalent in all aspects of the Earth System, including ecological responses to global change (Gallagher and Appenzeller 1999; Steffen et al. 2004). Nonlinear behavior refers to a large, discontinuous change in response to a small change in a driving variable (Rial et al. 2004). In contrast to linear systems where responses are smooth, well-behaved, continuous functions, nonlinear systems often undergo sharp or discontinuous transitions resulting from the crossing of thresholds. These nonlinear responses can result in surprising behavior that makes forecasting difficult (Kaplan and Glass 1995). Given that many system dynamics are nonlinear, it is imperative that conceptual and quantitative tools be developed to increase our understanding of the processes leading to nonlinear behavior in order to determine if forecasting can be improved under future environmental changes (Clark et al. 2001).

  17. Stochastic Dynamics of a Time-Delayed Ecosystem Driven by Poisson White Noise Excitation

    Directory of Open Access Journals (Sweden)

    Wantao Jia

    2018-02-01

    Full Text Available We investigate the stochastic dynamics of a prey-predator type ecosystem with time delay and the discrete random environmental fluctuations. In this model, the delay effect is represented by a time delay parameter and the effect of the environmental randomness is modeled as Poisson white noise. The stochastic averaging method and the perturbation method are applied to calculate the approximate stationary probability density functions for both predator and prey populations. The influences of system parameters and the Poisson white noises are investigated in detail based on the approximate stationary probability density functions. It is found that, increasing time delay parameter as well as the mean arrival rate and the variance of the amplitude of the Poisson white noise will enhance the fluctuations of the prey and predator population. While the larger value of self-competition parameter will reduce the fluctuation of the system. Furthermore, the results from Monte Carlo simulation are also obtained to show the effectiveness of the results from averaging method.

  18. Predicting geomagnetic storms from solar-wind data using time-delay neural networks

    Directory of Open Access Journals (Sweden)

    H. Gleisner

    1996-07-01

    Full Text Available We have used time-delay feed-forward neural networks to compute the geomagnetic-activity index Dst one hour ahead from a temporal sequence of solar-wind data. The input data include solar-wind density n, velocity V and the southward component Bz of the interplanetary magnetic field. Dst is not included in the input data. The networks implement an explicit functional relationship between the solar wind and the geomagnetic disturbance, including both direct and time-delayed non-linear relations. In this study we especially consider the influence of varying the temporal size of the input-data sequence. The networks are trained on data covering 6600 h, and tested on data covering 2100 h. It is found that the initial and main phases of geomagnetic storms are well predicted, almost independent of the length of the input-data sequence. However, to predict the recovery phase, we have to use up to 20 h of solar-wind input data. The recovery phase is mainly governed by the ring-current loss processes, and is very much dependent on the ring-current history, and thus also the solar-wind history. With due consideration of the time history when optimizing the networks, we can reproduce 84% of the Dst variance.

  19. Human Robotic Systems (HRS): Controlling Robots over Time Delay Element

    Data.gov (United States)

    National Aeronautics and Space Administration — This element involves the development of software that enables easier commanding of a wide range of NASA relevant robots through the Robot Application Programming...

  20. Lag synchronization of chaotic systems with time-delayed linear ...

    Indian Academy of Sciences (India)

    delayed linear terms via impulsive control is investigated. Based on the stability theory of impulsive delayed differen- tial equations, some sufficient conditions are obtained guaranteeing the synchronized behaviours between two delayed chaotic ...

  1. From Hamiltonian chaos to complex systems a nonlinear physics approach

    CERN Document Server

    Leonetti, Marc

    2013-01-01

    From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach collects contributions on recent developments in non-linear dynamics and statistical physics with an emphasis on complex systems. This book provides a wide range of state-of-the-art research in these fields. The unifying aspect of this book is a demonstration of how similar tools coming from dynamical systems, nonlinear physics, and statistical dynamics can lead to a large panorama of  research in various fields of physics and beyond, most notably with the perspective of application in complex systems. This book also: Illustrates the broad research influence of tools coming from dynamical systems, nonlinear physics, and statistical dynamics Adopts a pedagogic approach to facilitate understanding by non-specialists and students Presents applications in complex systems Includes 150 illustrations From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach is an ideal book for graduate students and researchers working in applied...

  2. Frequency domain performance analysis of nonlinearly controlled motion systems

    NARCIS (Netherlands)

    Pavlov, A.V.; Wouw, van de N.; Pogromski, A.Y.; Heertjes, M.F.; Nijmeijer, H.

    2007-01-01

    At the heart of the performance analysis of linear motion control systems lie essential frequency domain characteristics such as sensitivity and complementary sensitivity functions. For a class of nonlinear motion control systems called convergent systems, generalized versions of these sensitivity

  3. Single-photon blockade in a hybrid cavity-optomechanical system via third-order nonlinearity

    Science.gov (United States)

    Sarma, Bijita; Sarma, Amarendra K.

    2018-04-01

    Photon statistics in a weakly driven optomechanical cavity, with Kerr-type nonlinearity, are analyzed both analytically and numerically. The single-photon blockade effect is demonstrated via calculations of the zero-time-delay second-order correlation function g (2)(0). The analytical results obtained by solving the Schrödinger equation are in complete conformity with the results obtained through numerical solution of the quantum master equation. A systematic study on the parameter regime for observing photon blockade in the weak coupling regime is reported. The parameter regime where the photon blockade is not realizable due to the combined effect of nonlinearities owing to the optomechanical coupling and the Kerr-effect is demonstrated. The experimental feasibility with state-of-the-art device parameters is discussed and it is observed that photon blockade could be generated at the telecommunication wavelength. An elaborate analysis of the thermal effects on photon antibunching is presented. The system is found to be robust against pure dephasing-induced decoherences and thermal phonon number fluctuations.

  4. Shared control on lunar spacecraft teleoperation rendezvous operations with large time delay

    Science.gov (United States)

    Ya-kun, Zhang; Hai-yang, Li; Rui-xue, Huang; Jiang-hui, Liu

    2017-08-01

    Teleoperation could be used in space on-orbit serving missions, such as object deorbits, spacecraft approaches, and automatic rendezvous and docking back-up systems. Teleoperation rendezvous and docking in lunar orbit may encounter bottlenecks for the inherent time delay in the communication link and the limited measurement accuracy of sensors. Moreover, human intervention is unsuitable in view of the partial communication coverage problem. To solve these problems, a shared control strategy for teleoperation rendezvous and docking is detailed. The control authority in lunar orbital maneuvers that involves two spacecraft as rendezvous and docking in the final phase was discussed in this paper. The predictive display model based on the relative dynamic equations is established to overcome the influence of the large time delay in communication link. We discuss and attempt to prove via consistent, ground-based simulations the relative merits of fully autonomous control mode (i.e., onboard computer-based), fully manual control (i.e., human-driven at the ground station) and shared control mode. The simulation experiments were conducted on the nine-degrees-of-freedom teleoperation rendezvous and docking simulation platform. Simulation results indicated that the shared control methods can overcome the influence of time delay effects. In addition, the docking success probability of shared control method was enhanced compared with automatic and manual modes.

  5. Critical time delay of the pineal melatonin rhythm in humans due to weak electromagnetic exposure.

    Science.gov (United States)

    Halgamuge, Malka N

    2013-08-01

    Electromagnetic fields (EMFs) can increase free radicals, activate the stress response and alter enzyme reactions. Intracellular signalling is mediated by free radicals and enzyme kinetics is affected by radical pair recombination rates. The magnetic field component of an external EMF can delay the "recombination rate" of free radical pairs. Magnetic fields thus increase radical life-times in biological systems. Although measured in nanoseconds, this extra time increases the potential to do more damage. Melatonin regulates the body's sleep-wake cycle or circadian rhythm. The World Health Organization (WHO) has confirmed that prolonged alterations in sleep patterns suppress the body's ability to make melatonin. Considerable cancer rates have been attributed to the reduction of melatonin production as a result of jet lag and night shift work. In this study, changes in circadian rhythm and melatonin concentration are observed due to the external perturbation of chemical reaction rates. We further analyze the pineal melatonin rhythm and investigate the critical time delay or maturation time of radical pair recombination rates, exploring the impact of the mRNA degradation rate on the critical time delay. The results show that significant melatonin interruption and changes to the circadian rhythm occur due to the perturbation of chemical reaction rates, as also reported in previous studies. The results also show the influence of the mRNA degradation rate on the circadian rhythm's critical time delay or maturation time. The results support the hypothesis that exposure to weak EMFs via melatonin disruption can adversely affect human health.

  6. Hopf Bifurcation in a Cobweb Model with Discrete Time Delays

    Directory of Open Access Journals (Sweden)

    Luca Gori

    2014-01-01

    Full Text Available We develop a cobweb model with discrete time delays that characterise the length of production cycle. We assume a market comprised of homogeneous producers that operate as adapters by taking the (expected profit-maximising quantity as a target to adjust production and consumers with a marginal willingness to pay captured by an isoelastic demand. The dynamics of the economy is characterised by a one-dimensional delay differential equation. In this context, we show that (1 if the elasticity of market demand is sufficiently high, the steady-state equilibrium is locally asymptotically stable and (2 if the elasticity of market demand is sufficiently low, quasiperiodic oscillations emerge when the time lag (that represents the length of production cycle is high enough.

  7. Time delay between cardiac and brain activity during sleep transitions

    Science.gov (United States)

    Long, Xi; Arends, Johan B.; Aarts, Ronald M.; Haakma, Reinder; Fonseca, Pedro; Rolink, Jérôme

    2015-04-01

    Human sleep consists of wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep that includes light and deep sleep stages. This work investigated the time delay between changes of cardiac and brain activity for sleep transitions. Here, the brain activity was quantified by electroencephalographic (EEG) mean frequency and the cardiac parameters included heart rate, standard deviation of heartbeat intervals, and their low- and high-frequency spectral powers. Using a cross-correlation analysis, we found that the cardiac variations during wake-sleep and NREM sleep transitions preceded the EEG changes by 1-3 min but this was not the case for REM sleep transitions. These important findings can be further used to predict the onset and ending of some sleep stages in an early manner.

  8. Time delayed K sup + N reactions and exotic baryon resonances

    CERN Document Server

    Kelkar, N G; Khemchandani, K P

    2003-01-01

    Evidence and hints, from both the theoretical and experimental sides, of exotic baryon resonances with B = S, have been with us for the last 30 years. The poor status of the general acceptance of these Z* resonances is partly due to the prejudice against penta-quark baryons and partly due to the opinion that a proof of the existence of exotic states must be rigorous. This can refer to the quality and amount of data gathered, and also to the analytical methods applied in the study of these resonances. It then seems mandatory that all possibilities and aspects be exploited. We do that by analysing the time delay in K sup + N scattering, encountering clear signals of the exotic Z* resonances close to the pole values found in partial wave analyses.

  9. Noninteracting control of nonlinear systems based on relaxed control

    NARCIS (Netherlands)

    Jayawardhana, B.

    2010-01-01

    In this paper, we propose methodology to solve noninteracting control problem for general nonlinear systems based on the relaxed control technique proposed by Artstein. For a class of nonlinear systems which cannot be stabilized by smooth feedback, a state-feedback relaxed control can be designed to

  10. New developments in state estimation for Nonlinear Systems

    DEFF Research Database (Denmark)

    Nørgård, Peter Magnus; Poulsen, Niels Kjølstad; Ravn, Ole

    2000-01-01

    Based on an interpolation formula, accurate state estimators for nonlinear systems can be derived. The estimators do not require derivative information which makes them simple to implement.; State estimators for nonlinear systems are derived based on polynomial approximations obtained with a mult......-known estimators, such as the extended Kalman filter (EKF) and its higher-order relatives, in most practical applications....

  11. Model reduction of nonlinear systems subject to input disturbances

    KAUST Repository

    Ndoye, Ibrahima; Laleg-Kirati, Taous-Meriem

    2017-01-01

    The method of convex optimization is used as a tool for model reduction of a class of nonlinear systems in the presence of disturbances. It is shown that under some conditions the nonlinear disturbed system can be approximated by a reduced order

  12. Algebraic approach to time-delay data analysis for LISA

    International Nuclear Information System (INIS)

    Dhurandhar, S.V.; Nayak, K. Rajesh; Vinet, J.-Y.

    2002-01-01

    Cancellation of laser frequency noise in interferometers is crucial for attaining the requisite sensitivity of the triangular three-spacecraft LISA configuration. Raw laser noise is several orders of magnitude above the other noises and thus it is essential to bring it down to the level of other noises such as shot, acceleration, etc. Since it is impossible to maintain equal distances between spacecrafts, laser noise cancellation must be achieved by appropriately combining the six beams with appropriate time delays. It has been shown in several recent papers that such combinations are possible. In this paper, we present a rigorous and systematic formalism based on algebraic geometrical methods involving computational commutative algebra, which generates in principle all the data combinations canceling the laser frequency noise. The relevant data combinations form the first module of syzygies, as it is called in the literature of algebraic geometry. The module is over a polynomial ring in three variables, the three variables corresponding to the three time delays around the LISA triangle. Specifically, we list several sets of generators for the module whose linear combinations with polynomial coefficients generate the entire module. We find that this formalism can also be extended in a straightforward way to cancel Doppler shifts due to optical bench motions. The two modules are in fact isomorphic. We use our formalism to obtain the transfer functions for the six beams and for the generators. We specifically investigate monochromatic gravitational wave sources in the LISA band and carry out the maximization over linear combinations of the generators of the signal-to-noise ratios with the frequency and source direction angles as parameters

  13. Start time delays in operating room: Different perspectives

    Directory of Open Access Journals (Sweden)

    Babita Gupta

    2011-01-01

    Full Text Available Background: Healthcare expenditure is a serious concern, with escalating costs failing to meet the expectations of quality care. The treatment capacities are limited in a hospital setting and the operating rooms (ORs. Their optimal utilization is vital in efficient hospital management. Starting late means considerable wait time for staff, patients and waste of resources. We planned an audit to assess different perspectives of the residents in surgical specialities and anesthesia and OR staff nurses so as to know the causative factors of operative delay. This can help develop a practical model to decrease start time delays in operating room (ORs. Aims: An audit to assess different perspectives of the Operating room (OR staff with respect to the varied causative factors of operative delay in the OR. To aid in the development of a practical model to decrease start time delays in ORs and facilitate on-time starts at Jai Prakash Narayan Apex Trauma centre (JPNATC, All India Institute of Medical Sciences (AIIMS, New Delhi. Methods: We prepared a questionnaire seeking the five main reasons of delay as per their perspective. Results: The available data was analysed. Analysis of the data demonstrated the common causative factors in start time operative delays as: a lack of proper planning, deficiencies in team work, communication gap and limited availability of trained supporting staff. Conclusions: The preparation of the equipment and required material for the OR cases must be done well in advance. Utilization of newer technology enables timely booking and scheduling of cases. Improved inter-departmental coordination and compliance with preanesthetic instructions needs to be ensured. It is essential that the anesthesiologists perform their work promptly, well in time . and supervise the proceedings as the OR manager. This audit is a step forward in defining the need of effective OR planning for continuous quality improvement.

  14. Mathematical model of tuberculosis epidemic with recovery time delay

    Science.gov (United States)

    Iskandar, Taufiq; Chaniago, Natasya Ayuningtia; Munzir, Said; Halfiani, Vera; Ramli, Marwan

    2017-12-01

    Tuberculosis (TB) is a contagious disease which can cause death. The disease is caused by Mycobacterium Tuberculosis which generally affects lungs and other organs such as lymph gland, intestine, kidneys, uterus, bone, and brain. The spread of TB occurs through the bacteria-contaminated air which is inhaled into the lungs. The symptoms of the TB patients are cough, chest pain, shortness of breath, appetite lose, weight lose, fever, cold, and fatigue. World Health Organization (WHO) reported that Indonesia placed the second in term of the most TB cases after India which has 23 % cases while China is reported to have 10 % cases in global. TB has become one of the greatest death threats in global. One way to countermeasure TB disease is by administering vaccination. However, a medication is needed when one has already infected. The medication can generally take 6 months of time which consists of two phases, inpatient and outpatient. Mathematical models to analyze the spread of TB have been widely developed. One of them is the SEIR type model. In this model the population is divided into four groups, which are suspectible (S), exposed (S), infected (I), recovered (R). In fact, a TB patient needs to undergo medication with a period of time in order to recover. This article discusses a model of TB spread with considering the term of recovery (time delay). The model is developed in SIR type where the population is divided into three groups, suspectible (S), infected (I), and recovered (R). Here, the vaccine is given to the susceptible group and the time delay is considered in the group undergoing the medication.

  15. Model reduction of nonlinear systems subject to input disturbances

    KAUST Repository

    Ndoye, Ibrahima

    2017-07-10

    The method of convex optimization is used as a tool for model reduction of a class of nonlinear systems in the presence of disturbances. It is shown that under some conditions the nonlinear disturbed system can be approximated by a reduced order nonlinear system with similar disturbance-output properties to the original plant. The proposed model reduction strategy preserves the nonlinearity and the input disturbance nature of the model. It guarantees a sufficiently small error between the outputs of the original and the reduced-order systems, and also maintains the properties of input-to-state stability. The matrices of the reduced order system are given in terms of a set of linear matrix inequalities (LMIs). The paper concludes with a demonstration of the proposed approach on model reduction of a nonlinear electronic circuit with additive disturbances.

  16. Observers for Systems with Nonlinearities Satisfying an Incremental Quadratic Inequality

    Science.gov (United States)

    Acikmese, Ahmet Behcet; Corless, Martin

    2004-01-01

    We consider the problem of state estimation for nonlinear time-varying systems whose nonlinearities satisfy an incremental quadratic inequality. These observer results unifies earlier results in the literature; and extend it to some additional classes of nonlinearities. Observers are presented which guarantee that the state estimation error exponentially converges to zero. Observer design involves solving linear matrix inequalities for the observer gain matrices. Results are illustrated by application to a simple model of an underwater.

  17. Stochastic multiresonance for a fractional linear oscillator with time-delayed kernel and quadratic noise

    Science.gov (United States)

    Guo, Feng; Wang, Xue-Yuan; Zhu, Cheng-Yin; Cheng, Xiao-Feng; Zhang, Zheng-Yu; Huang, Xu-Hui

    2017-12-01

    The stochastic resonance for a fractional oscillator with time-delayed kernel and quadratic trichotomous noise is investigated. Applying linear system theory and Laplace transform, the system output amplitude (SPA) for the fractional oscillator is obtained. It is found that the SPA is a periodical function of the kernel delayed-time. Stochastic multiplicative phenomenon appears on the SPA versus the driving frequency, versus the noise amplitude, and versus the fractional exponent. The non-monotonous dependence of the SPA on the system parameters is also discussed.

  18. Face to phase: pitfalls in time delay estimation from coherency phase

    NARCIS (Netherlands)

    Campfens, S.F.; van der Kooij, Herman; Schouten, Alfred Christiaan

    2014-01-01

    Coherency phase is often interpreted as a time delay reflecting a transmission delay between spatially separated neural populations. However, time delays estimated from corticomuscular coherency are conflicting and often shorter than expected physiologically. Recent work suggests that

  19. Useful tools for non-linear systems: Several non-linear integral inequalities

    Czech Academy of Sciences Publication Activity Database

    Agahi, H.; Mohammadpour, A.; Mesiar, Radko; Vaezpour, M. S.

    2013-01-01

    Roč. 49, č. 1 (2013), s. 73-80 ISSN 0950-7051 R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : Monotone measure * Comonotone functions * Integral inequalities * Universal integral Subject RIV: BA - General Mathematics Impact factor: 3.058, year: 2013 http://library.utia.cas.cz/separaty/2013/E/mesiar-useful tools for non-linear systems several non-linear integral inequalities.pdf

  20. Energy flow theory of nonlinear dynamical systems with applications

    CERN Document Server

    Xing, Jing Tang

    2015-01-01

    This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing’s oscillator, Van der Pol’s equation, Lorenz attractor, Rössler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as ...

  1. Nonlinear von Neumann equations for quantum dissipative systems

    International Nuclear Information System (INIS)

    Messer, J.; Baumgartner, B.

    1978-01-01

    For pure states nonlinear Schroedinger equations, the so-called Schroedinger-Langevin equations are well-known to model quantum dissipative systems of the Langevin type. For mixtures it is shown that these wave equations do not extend to master equations, but to corresponding nonlinear von Neumann equations. Solutions for the damped harmonic oscillator are discussed. (Auth.)

  2. Nonlinear von Neumann equations for quantum dissipative systems

    International Nuclear Information System (INIS)

    Messer, J.; Baumgartner, B.

    For pure states nonlinear Schroedinger equations, the so-called Schroedinger-Langevin equations are well-known to model quantum dissipative systems of the Langevin type. For mixtures it is shown that these wave equations do not extend to master equations, but to corresponding nonlinear von Neumann equations. Solutions for the damped harmonic oscillator are discussed. (Author)

  3. XXIII International Conference on Nonlinear Dynamics of Electronic Systems

    CERN Document Server

    Stoop, Ruedi; Stramaglia, Sebastiano

    2017-01-01

    This book collects contributions to the XXIII international conference “Nonlinear dynamics of electronic systems”. Topics range from non-linearity in electronic circuits to synchronisation effects in complex networks to biological systems, neural dynamics and the complex organisation of the brain. Resting on a solid mathematical basis, these investigations address highly interdisciplinary problems in physics, engineering, biology and biochemistry.

  4. Transparent Higher Order Sliding Mode Control for Nonlinear Master-Slave Systems without Velocity Measurement

    Directory of Open Access Journals (Sweden)

    Luis G. Garcia-Valdovinos

    2015-04-01

    Full Text Available Transparency has been a major objective in bilateral teleoperation systems, even in the absence of time delay induced by the communication channel, since a high degree of transparency would allow humans to drive the remote teleoperator as if he or she were directly interacting with the remote environment, with the remote teleoperator as a physical and sensorial extension of the operator. When fast convergence of position and force tracking errors are ensured by the control system, then complete transparency is obtained, which would ideally guarantee humans to be tightly kinaesthetically coupled. In this paper a model-free Cartesian second order sliding mode (SOSM PD control scheme for nonlinear master-slave systems is presented. The proposed scheme does not rely on velocity measurements and attains very fast convergence of position trajectories, with bounded tracking of force trajectories, rendering a high degree of transparency with lesser knowledge of the system. The degree of transparency can easily be improved by tuning a feedback gain in the force loop. A unique energy storage function is introduced; such that a similar Cartesian-based controller is implemented in the master and slave sides. The resulting properties of the Cartesian control structure allows the human operator to input directly Cartesian variables, which makes clearer the kinaesthetic coupling, thus the proposed controller becomes a suitable candidate for practical implementation. The performance of the proposed scheme is evaluated in a semi-experimental setup.

  5. Bounds and enhancements for negative scattering time delays

    International Nuclear Information System (INIS)

    Muga, J.G.; Egusquiza, I.L.; Damborenea, J.A.; Delgado, F.

    2002-01-01

    The time of passage of the transmitted wave packet in a tunneling collision of a quantum particle with a square potential barrier becomes independent of the barrier width in a range of barrier thickness. This is the Hartman effect, which has been frequently associated with 'superluminality'. A fundamental limitation on the effect is set by nonrelativistic 'causality conditions'. We demonstrate first that the causality conditions impose more restrictive bounds on the negative time delays (time advancements) when no bound states are present. These restrictive bounds are in agreement with a naive, and generally false, causality argument based on the positivity of the 'extrapolated phase time', one of the quantities proposed to characterize the duration of the barrier's traversal. Nevertheless, square wells may in fact lead to much larger advancements than square barriers. We point out that close to the thresholds of new bound states, the time advancement increases considerably, while, at the same time, the transmission probability is large, which facilitates the possible observation of the enhanced time advancement

  6. Advanced nonlinear engine speed control systems

    DEFF Research Database (Denmark)

    Vesterholm, Thomas; Hendricks, Elbert

    1994-01-01

    Several subsidiary control problems have turned out to be important for improving driveability and fuel consumption in modern spark ignition (SI) engine cars. Among these are idle speed control and cruise control. In this paper the idle speed and cruise control problems will be treated as one......: accurately tracking of a desired engine speed in the presence of model uncertainties and severe load disturbances. This is accomplished by using advanced nonlinear control techniques such as input/output-linearization and sliding mode control. These techniques take advantage of a nonlinear model...... of the engine dynamics, a mean value engine model....

  7. Analytical Evaluation of the Nonlinear Vibration of Coupled Oscillator Systems

    DEFF Research Database (Denmark)

    Bayat, M.; Shahidi, M.; Barari, Amin

    2011-01-01

    approximations to the achieved nonlinear differential oscillation equations where the displacement of the two-mass system can be obtained directly from the linear second-order differential equation using the first order of the current approach. Compared with exact solutions, just one iteration leads us to high......We consider periodic solutions for nonlinear free vibration of conservative, coupled mass-spring systems with linear and nonlinear stiffnesses. Two practical cases of these systems are explained and introduced. An analytical technique called energy balance method (EBM) was applied to calculate...

  8. Discrete-time inverse optimal control for nonlinear systems

    CERN Document Server

    Sanchez, Edgar N

    2013-01-01

    Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). Th

  9. Applications of equivalent linearization approaches to nonlinear piping systems

    International Nuclear Information System (INIS)

    Park, Y.; Hofmayer, C.; Chokshi, N.

    1997-01-01

    The piping systems in nuclear power plants, even with conventional snubber supports, are highly complex nonlinear structures under severe earthquake loadings mainly due to various mechanical gaps in support structures. Some type of nonlinear analysis is necessary to accurately predict the piping responses under earthquake loadings. The application of equivalent linearization approaches (ELA) to seismic analyses of nonlinear piping systems is presented. Two types of ELA's are studied; i.e., one based on the response spectrum method and the other based on the linear random vibration theory. The test results of main steam and feedwater piping systems supported by snubbers and energy absorbers are used to evaluate the numerical accuracy and limitations

  10. Analysis and design of robust decentralized controllers for nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Schoenwald, D.A.

    1993-07-01

    Decentralized control strategies for nonlinear systems are achieved via feedback linearization techniques. New results on optimization and parameter robustness of non-linear systems are also developed. In addition, parametric uncertainty in large-scale systems is handled by sensitivity analysis and optimal control methods in a completely decentralized framework. This idea is applied to alleviate uncertainty in friction parameters for the gimbal joints on Space Station Freedom. As an example of decentralized nonlinear control, singular perturbation methods and distributed vibration damping are merged into a control strategy for a two-link flexible manipulator.

  11. Delay-controlled primary and stochastic resonances of the SD oscillator with stiffness nonlinearities

    Science.gov (United States)

    Yang, Tao; Cao, Qingjie

    2018-03-01

    This work presents analytical studies of the stiffness nonlinearities SD (smooth and discontinuous) oscillator under displacement and velocity feedback control with a time delay. The SD oscillator can capture the qualitative characteristics of quasi-zero-stiffness and negative-stiffness. We focus mainly on the primary resonance of the quasi-zero-stiffness SD oscillator and the stochastic resonance (SR) of the negative-stiffness SD oscillator. Using the averaging method, we have been analyzed the amplitude response of the quasi-zero-stiffness SD oscillator. In this regard, the optimum time delay for changing the control intensity according to the optimization standard proposed can be obtained. For the optimum time delay, increasing the displacement feedback intensity is advantageous to suppress the vibrations in resonant regime where vibration isolation is needed, however, increasing the velocity feedback intensity is advantageous to strengthen the vibrations. Moreover, the effects of time-delayed feedback on the SR of the negative-stiffness SD oscillator are investigated under harmonic forcing and Gaussian white noise, based on the Langevin and Fokker-Planck approaches. The time-delayed feedback can enhance the SR phenomenon where vibrational energy harvesting is needed. This paper established the relationship between the parameters and vibration properties of a stiffness nonlinearities SD which provides the guidance for optimizing time-delayed control for vibration isolation and vibrational energy harvesting of the nonlinear systems.

  12. Parasitic lasing suppression in large-aperture Ti:sapphire amplifiers by optimizing the seed–pump time delay

    International Nuclear Information System (INIS)

    Chu, Y X; Liang, X Y; Yu, L H; Xu, L; Lu, X M; Liu, Y Q; Leng, Y X; Li, R X; Xu, Z Z

    2013-01-01

    Theoretical and experimental investigations are carried out to determine the influence of the time delay between the input seed pulse and pump pulses on transverse parasitic lasing in a Ti:sapphire amplifier with a diameter of 80 mm, which is clad by a refractive index-matched liquid doped with an absorber. When the time delay is optimized, a maximum output energy of 50.8 J is achieved at a pump energy of 105 J, which corresponds to a conversion efficiency of 47.5%. Based on the existing compressor, the laser system achieves a peak power of 1.26 PW with a 29.0 fs pulse duration. (letter)

  13. Hadron–Quark Combustion as a Nonlinear, Dynamical System

    Directory of Open Access Journals (Sweden)

    Amir Ouyed

    2018-03-01

    Full Text Available The hadron–quark combustion front is a system that couples various processes, such as chemical reactions, hydrodynamics, diffusion, and neutrino transport. Previous numerical work has shown that this system is very nonlinear, and can be very sensitive to some of these processes. In these proceedings, we contextualize the hadron–quark combustion as a nonlinear system, subject to dramatic feedback triggered by leptonic weak decays and neutrino transport.

  14. Hadron–Quark Combustion as a Nonlinear, Dynamical System

    Science.gov (United States)

    Ouyed, Amir; Ouyed, Rachid; Jaikumar, Prashanth

    2018-03-01

    The hadron-quark combustion front is a system that couples various processes, such as chemical reactions, hydrodynamics, diffusion, and neutrino transport. Previous numerical work has shown that this system is very nonlinear, and can be very sensitive to some of these processes. In these proceedings, we contextualize the hadron-quark combustion as a nonlinear system, subject to dramatic feedback triggered by leptonic weak decays and neutrino transport.

  15. Passivity Based Stabilization of Non-minimum Phase Nonlinear Systems

    Czech Academy of Sciences Publication Activity Database

    Travieso-Torres, J.C.; Duarte-Mermoud, M.A.; Zagalak, Petr

    2009-01-01

    Roč. 45, č. 3 (2009), s. 417-426 ISSN 0023-5954 R&D Projects: GA ČR(CZ) GA102/07/1596 Institutional research plan: CEZ:AV0Z10750506 Keywords : nonlinear systems * stabilisation * passivity * state feedback Subject RIV: BC - Control Systems Theory Impact factor: 0.445, year: 2009 http://library.utia.cas.cz/separaty/2009/AS/zagalak-passivity based stabilization of non-minimum phase nonlinear systems.pdf

  16. Predictive display design for the vehicles with time delay in dynamic response

    Science.gov (United States)

    Efremov, A. V.; Tiaglik, M. S.; Irgaleev, I. H.; Efremov, E. V.

    2018-02-01

    The two ways for the improvement of flying qualities are considered: the predictive display (PD) and the predictive display integrated with the flight control system (FCS). The both ways allow to transforming the controlled element dynamics in the crossover frequency range, to improve the accuracy of tracking and to suppress the effect of time delay in the vehicle response too. The technique for optimization of the predictive law is applied to the landing task. The results of the mathematical modeling and experimental investigations carried out for this task are considered in the paper.

  17. Chimeralike states in networks of bistable time-delayed feedback oscillators coupled via the mean field.

    Science.gov (United States)

    Ponomarenko, V I; Kulminskiy, D D; Prokhorov, M D

    2017-08-01

    We study the collective dynamics of oscillators in a network of identical bistable time-delayed feedback systems globally coupled via the mean field. The influence of delay and inertial properties of the mean field on the collective behavior of globally coupled oscillators is investigated. A variety of oscillation regimes in the network results from the presence of bistable states with substantially different frequencies in coupled oscillators. In the physical experiment and numerical simulation we demonstrate the existence of chimeralike states, in which some of the oscillators in the network exhibit synchronous oscillations, while all other oscillators remain asynchronous.

  18. Cluster synchronization of community network with distributed time delays via impulsive control

    International Nuclear Information System (INIS)

    Leng Hui; Wu Zhao-Yan

    2016-01-01

    Cluster synchronization is an important dynamical behavior in community networks and deserves further investigations. A community network with distributed time delays is investigated in this paper. For achieving cluster synchronization, an impulsive control scheme is introduced to design proper controllers and an adaptive strategy is adopted to make the impulsive controllers unified for different networks. Through taking advantage of the linear matrix inequality technique and constructing Lyapunov functions, some synchronization criteria with respect to the impulsive gains, instants, and system parameters without adaptive strategy are obtained and generalized to the adaptive case. Finally, numerical examples are presented to demonstrate the effectiveness of the theoretical results. (paper)

  19. Global asymptotic stability analysis of bidirectional associative memory neural networks with time delays.

    Science.gov (United States)

    Arik, Sabri

    2005-05-01

    This paper presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all continuous nonmonotonic neuron activation functions. It is shown that in some special cases of the results, the stability criteria can be easily checked. Some examples are also given to compare the results with the previous results derived in the literature.

  20. New results for global robust stability of bidirectional associative memory neural networks with multiple time delays

    International Nuclear Information System (INIS)

    Senan, Sibel; Arik, Sabri

    2009-01-01

    This paper presents some new sufficient conditions for the global robust asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with multiple time delays. The results we obtain impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all bounded continuous non-monotonic neuron activation functions. We also give some numerical examples to demonstrate the applicability and effectiveness of our results, and compare the results with the previous robust stability results derived in the literature.