WorldWideScience

Sample records for nonlinear surface polaritons

  1. Intrinsic nonlinear response of surface plasmon polaritons

    CERN Document Server

    Im, Song-Jin; Kim, Gum-Hyok

    2015-01-01

    We offer a model to describe the intrinsic nonlinear response of surface plasmon polaritons (SPPs). Relation of the complex nonlinear coefficient of SPPs to the third-order nonlinear susceptibility of the metal is provided. As reported in a recent study, gold is highly lossy and simultaneously highly nonlinear due to interband absorption and interband thermo-modulation at a wavelength shorter than 700 nm. The effect of the high loss of the metal on the SPP nonlinear propagation is taken into account in our model. With the model we show difference in sign of real and imaginary parts between the nonlinear propagation coefficient and the nonlinear susceptibility of component material for the first time to our knowledge. Our model could have practical importance in studying plasmonic devices utilizing the nonlinear phase modulation and the nonlinear absorption of SPPs. For example, it allows one to extract the complex nonlinear susceptibility of gold through a measurement of SPP nonlinear propagation at the visib...

  2. NONLINEAR OPTICS: Nonlinear optical processes in planar waveguides and excitation of surface polaritons

    Science.gov (United States)

    Yashkir, O. V.; Yashkir, Yu N.

    1987-11-01

    An investigation is made of nonlinear optical interaction of light propagating in a planar waveguide with surface polaritons. Reduced wave equations for the amplitudes of the waveguide modes and surface polaritons are used to study the characteristics of generation of surface polaritons of difference frequency, parametric frequency up-conversion of the polaritons, and stimulated Raman scattering by the polaritons. An analysis is made of the characteristic properties of the investigated nonlinear optical processes.

  3. The surface plasmon polariton dispersion relations in a nonlinear-metal-nonlinear dielectric structure of arbitrary nonlinearity

    Institute of Scientific and Technical Information of China (English)

    Liu Bing-Can; Yu Li; Lu Zhi-Xin

    2011-01-01

    The analytic surface plasmon polaritons (SPPs) dispersion relation is studied in a system consisting of a thin metallic film bounded by two sides media of nonlinear dielectric of arbitrary nonlinearity is studied by applying a generalised first integral approach. We consider both asymmetric and symmetric structures. Especially, in the symmetric system, two possible modes can exist: the odd mode and the even mode. The dispersion relations of the two modes are obtained. Due to the nonlinear dielectric, the magnitude of the electric field at the interface appears and alters the dispersion relations. The changes in SPPs dispersion relations depending on film thicknesses and nonlinearity are studied.

  4. Numerical study of propagation properties of surface plasmon polaritons in nonlinear media

    KAUST Repository

    Sagor, Rakibul Hasan

    2016-03-29

    We present a time-domain algorithm for simulating nonlinear propagation of surface plasmon polaritons (SPPs) in chalcogenide glass. Due to the high non-linearity property and strong dispersion and confinement chalcogenide glasses are widely known as ultrafast nonlinear materials. We have used the finite difference time domain (FDTD) method to develop the simulation algorithm for the current analysis. We have modeled the frequency dependent dispersion properties and third order nonlinearity property of chalcogenide glass utilizing the general polarization algorithm merged in the auxiliary differential equation (ADE) method. The propagation dynamics of the whole structure with and without third order nonlinearity property of chalcogenide glass have been simulated and the effect of nonlinearity on the propagation properties of SPP has been investigated. © 2016 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.

  5. Nonlinear Dynamics of Ultrashort Long-Range Surface Plasmon Polariton Pulses in Gold Strip Waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Olivier, Nicolas

    2016-01-01

    We study experimentally and theoretically nonlinear propagation of ultrashort long-range surface plasmon polaritons in gold strip waveguides. The nonlinear absorption of the plasmonic modes in the waveguides is measured with femtosecond pulses revealing a strong dependence of the third......-order nonlinear susceptibility of the gold core on the pulse duration and layer thickness. A comprehensive model for the pulse duration dependence of the third-order nonlinear susceptibility is developed on the basis of the nonlinear Schrödinger equation for plasmonic mode propagation in the waveguides....... The model accounts for the intrinsic delayed (noninstantaneous) nonlinearity of free electrons of gold as well as the thickness of the gold film and is experimentally verified. The obtained results are important for the development of active plasmonic and nanophotonic components....

  6. Nonlinear Goos-Haenchen shifts due to surface polariton resonance in Kretschmann configuration with a Kerr-type substrate

    Energy Technology Data Exchange (ETDEWEB)

    Xu Guoding, E-mail: guodingxu@163.co [Department of Physics, Suzhou University of Science and Technology, Suzhou 215009 (China); Zang Taocheng; Mao Hongmin; Pan Tao [Department of Physics, Suzhou University of Science and Technology, Suzhou 215009 (China)

    2010-07-26

    As the surface polaritons are excited in Kretschmann configuration with a Kerr-type substrate, the nonlinear Goos-Haenchen (GH) shifts exhibit the optically hysteretic response to the intensity of incident light. For thicker metal films, the GH shifts become very sensitive to the intensity of incident light and the angle of incidence.

  7. Nonlinear effects in propagation of long-range surface plasmon polaritons in gold strip waveguides

    Science.gov (United States)

    Lysenko, Oleg; Bache, Morten; Malureanu, Radu; Lavrinenko, Andrei

    2016-04-01

    This paper is devoted to experimental and theoretical studies of nonlinear propagation of a long-range surface plasmon polariton (LRSPP) in gold strip waveguides. The plasmonic waveguides are fabricated in house, and contain a gold layer, tantalum pentoxide adhesion layers, and silicon dioxide cladding. The optical characterization was performed using a high power picosecond laser at 1064 nm. The experiments reveal two nonlinear optical effects: nonlinear power transmission and spectral broadening of the LRSPP mode in the waveguides. Both nonlinear optical effects depend on the gold layer thickness. The theoretical model of these effects is based on the third-order susceptibility of the constituent materials. The linear and nonlinear parameters of the LRSPP mode are obtained, and the nonlinear Schrödinger equation is solved. The dispersion length is much larger than the waveguides length, and the chromatic dispersion does not affect the propagation of the plasmonic mode. We find that the third-order susceptibility of the gold layer has a dominant contribution to the effective third-order susceptibility of the LRSPP mode. The real part of the effective third-order susceptibility leads to the observed spectral broadening through the self-phase modulation effect, and its imaginary part determines the nonlinear absorption parameter and leads to the observed nonlinear power transmission. The experimental values of the third-order susceptibility of the gold layers are obtained. They indicate an effective enhancement of the third-order susceptibility for the gold layers, comparing to the bulk gold values. This enhancement is explained in terms of the change of the electrons motion.

  8. Dispersion relations and the nonlinear generation of C1-surface exciton polaritons in spatially dispersive ZnO

    Science.gov (United States)

    Fukui, M.; So, V. C.-Y.; Stegeman, G. I.

    1980-07-01

    The recent experiments of DeMartini, Colocci, Kohn, and Shen [Phys. Rev. Lett. 38, 1223 (1977)] on the nonlinear generation of C1- (n=1 in the series) surface exciton polaritons in spatially dispersive ZnO are analyzed. It is shown for a prism-air-sample geometry that the air-gap thickness plays an important role in determining the polariton attenuation, and to a lesser degree the polariton energy. Reasonably good agreement with the experimental dispersion relations of DeMartini and co-workers is obtained by including spatial dispersion via the additional boundary condition (ABC) ∂P→ex/∂z=0 for the excitonic polarization P→ex at the surface: The ABC P→ex=0 does not yield a good fit. The theory of the nonlinear generation of surface exciton polaritons in isotropic, spatially dispersive media is developed and applied to angle- and frequency-scanning experimental geometries. Numerical estimates of both the power radiated out via the prism (in the absence of surface roughness) and the line shape were also found to be in reasonable agreement with experiment for the ABC ∂P→ex/∂x=0, but not for P→ex=0.

  9. Interaction of light and surface plasmon polaritons in Ag Islands studied by nonlinear photoemission microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Buckanie, N.M.; Kirschbaum, P.; Sindermann, S.; Heringdorf, F.-J. Meyer zu, E-mail: meyerzh@uni-due.de

    2013-07-15

    Two photon photoemission microscopy was used to study the interaction of femtosecond laser pulses with Ag islands prepared using different strategies on Si(111) and SiO{sub 2}. The femtosecond laser pulses initiate surface plasmon polariton (SPP) waves at the edges of the island. The superposition of the electrical fields of the femtosecond laser pulses with the electrical fields of the SPP results in a moiré pattern that is comparable despite the rather different methods of preparation and that gives access to the wavelength and direction of the SPP waves. If the SPPs reach edges of the Ag islands, they can be converted back into light waves. The incident and refracted light waves result in an interference pattern that can again be described with a moiré pattern, demonstrating that Ag islands can be used as plasmonic beam deflectors for light. - Highlights: • Surface plasmon polaritons were studied on Ag islands in two photon photoemission microscopy. • Ag islands were prepared using self-assembly, electron beam lithography, and a focused ion beam. • The SPP pattern on Ag islands can be described with a simple moiré concept. • SPP output coupling results in a pattern that can again be described by the moiré effect.

  10. Interactive optomechanical coupling with nonlinear polaritonic systems

    CERN Document Server

    Bobrovska, N; Liew, T C H; Kyriienko, O

    2016-01-01

    We study a system of interacting matter quasiparticles strongly coupled to photons inside an optomechanical cavity. The resulting normal modes of the system are represented by hybrid polaritonic quasiparticles, which acquire effective nonlinearity. Its strength is influenced by the presence of the mechanical mode and depends on the resonance frequency of the cavity. This leads to an interactive type of optomechanical coupling, being distinct from the previously studied dispersive and dissipative couplings in optomechanical systems. The emergent interactive coupling is shown to generate effective optical nonlinearity terms of high order, being quartic in the polariton number. We consider particular systems of exciton-polaritons and dipolaritons, and show that the induced effective optical nonlinearity due to the interactive coupling can exceed in magnitude the strength of Kerr nonlinear terms, such as those arising from polariton-polariton interactions. As applications, we show that the higher order terms give...

  11. Interaction of light and surface plasmon polaritons in Ag islands studied by nonlinear photoemission microscopy.

    Science.gov (United States)

    Buckanie, N M; Kirschbaum, P; Sindermann, S; Meyer zu Heringdorf, F-J

    2013-07-01

    Two photon photoemission microscopy was used to study the interaction of femtosecond laser pulses with Ag islands prepared using different strategies on Si(111) and SiO₂. The femtosecond laser pulses initiate surface plasmon polariton (SPP) waves at the edges of the island. The superposition of the electrical fields of the femtosecond laser pulses with the electrical fields of the SPP results in a moiré pattern that is comparable despite the rather different methods of preparation and that gives access to the wavelength and direction of the SPP waves. If the SPPs reach edges of the Ag islands, they can be converted back into light waves. The incident and refracted light waves result in an interference pattern that can again be described with a moiré pattern, demonstrating that Ag islands can be used as plasmonic beam deflectors for light.

  12. Waveguiding with surface plasmon polaritons

    DEFF Research Database (Denmark)

    Han, Zhanghua; Bozhevolnyi, Sergey I.

    2014-01-01

    Surface plasmon polaritons (SPPs) are electromagnetic modes propagating along metal-dielectric interfaces. Various SPP modes can be supported by flat and curved, single and multiple surfaces, exhibiting remarkable properties, including the possibility of concentrating electromagnetic fields beyond...

  13. Nonlinear effects in propagation of long-range surface plasmon polaritons in gold strip waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Malureanu, Radu

    2016-01-01

    thickness. The theoretical model of these effects is based on the third-order susceptibility of the constituent materials. The linear and nonlinear parameters of the LRSPP mode are obtained, and the nonlinear Schrodinger equation is solved. The dispersion length is much larger than the waveguides length...

  14. Surface exciton-polaritons in ternary mixed crystals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The surface exciton-polaritons in ternary mixed crystals are investigated. The numerical calculations for several Ⅲ-Ⅴ and Ⅱ-Ⅵ compound systems are performed and the polariton frequencies as functions of the wave-vector and the compositions for ternary mixed crystals AlxGa1-xAs, CdxZn1-xSe and AlxGa1-xN as examples are given and discussed. The results show that the dependence of the energies of surface polaritons on the composition of ternary mixed crystals are slightly nonlinear different from the bulk modes.

  15. SURFACE PLASMON POLARITON AND SURFACE NONLINEAR OPTICS%表面等离激元与表面非线性光学

    Institute of Scientific and Technical Information of China (English)

    刘韡韬; 王洪庆

    2015-01-01

    表面等离激元与表面非线性光学(如光学二次谐波、光学混频等)同为重要的表面光学现象,在现代科技中具有十分广泛的应用。近年以来,随着纳米科学与激光科学的发展,两者结合所带来的新现象、新应用引起了人们广泛的兴趣。本文对等离激元与表面非线性光学结合的工作进行了简介,并着重介绍了以相关技术探测电化学界面的新进展。%The surface plasmon polariton (SPP)and surface nonlinear optics (such as the sec-ond harmonic generation,the sum-frequency generation,etc.)are two important surface opti-cal phenomena.They both have wide applications in modern science and technology.In recent years,with the development of nano-science and laser technologies,the combination of SPP and surface nonlinear optics has attracted much interest and showed a wide range of potential applications.Here we make a brief introduction to recent development in combining SPP and surface nonlinear optics,in particular our latest progress in its application on in situ probing of electrochemical interfaces.

  16. Infrared surface polaritons on antimony.

    Science.gov (United States)

    Cleary, Justin W; Medhi, Gautam; Shahzad, Monas; Rezadad, Imen; Maukonen, Doug; Peale, Robert E; Boreman, Glenn D; Wentzell, Sandy; Buchwald, Walter R

    2012-01-30

    The semimetal antimony, with a plasma frequency ~80 times less than that of gold, is potentially useful as a host for infrared surface polaritons (SPs). Relevant IR SP properties, including the frequency-dependent propagation length and penetration depths for fields into the media on either side of the interface, were determined from optical constants measured on optically-thick thermally-evaporated Sb films over the wavelength range 1 to 40 μm. Plasma and carrier relaxation frequencies were determined from Drude-model fits to these data. The real part of the permittivity is negative for wavelengths beyond 11 μm. Distinct resonant decreases in specular reflected intensity were observed for Sb lamellar gratings in the wavelength range of 6 to 11 μm, where the real part of the permittivity is positive. Both resonance angles and the angular reflectance spectral line shapes are in agreement with theory for excitation of bound surface electromagnetic waves (SPs). Finite element method (FEM) electrodynamic simulations indicate the existence of SP modes under conditions matching the experiments. FEM results also show that such waves depend on having a significant imaginary part of the permittivity, as has been noted earlier for the case of surface exciton polaritons.

  17. Terahertz optoelectronics with surface plasmon polariton diode.

    Science.gov (United States)

    Vinnakota, Raj K; Genov, Dentcho A

    2014-05-09

    The field of plasmonics has experience a renaissance in recent years by providing a large variety of new physical effects and applications. Surface plasmon polaritons, i.e. the collective electron oscillations at the interface of a metal/semiconductor and a dielectric, may bridge the gap between electronic and photonic devices, provided a fast switching mechanism is identified. Here, we demonstrate a surface plasmon-polariton diode (SPPD) an optoelectronic switch that can operate at exceedingly large signal modulation rates. The SPPD uses heavily doped p-n junction where surface plasmon polaritons propagate at the interface between n and p-type GaAs and can be switched by an external voltage. The devices can operate at transmission modulation higher than 98% and depending on the doping and applied voltage can achieve switching rates of up to 1 THz. The proposed switch is compatible with the current semiconductor fabrication techniques and could lead to nanoscale semiconductor-based optoelectronics.

  18. Modulation of cavity-polaritons by surface acoustic waves

    DEFF Research Database (Denmark)

    de Lima, M. M.; Poel, Mike van der; Hey, R.;

    2006-01-01

    We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations.......We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations....

  19. Surface plasmon polariton waveguiding in random surface nanostructures

    DEFF Research Database (Denmark)

    Bozhevolnyi, S. I.; Volkov, V. S.; Leosson, K.

    2003-01-01

    In this study, guiding of surface plasmon polaritons excited at a gold film surface along corrugation-free channels in regions that are covered with randomly located surface scatterers, is considered using near-field microscopy for imaging of surface plasmon polariton intensity distributions at t...... demonstrate well-defined surface plasmon polariton guiding along corrugation-free 2 micro-m wide channels in random structures and, in the wavelength range 738-774 nm, low-loss guiding around 20degrees bends having a bend radius of approx. 15 micro-m....

  20. Surface Plasmon Polaritons Probed with Cold Atoms

    DEFF Research Database (Denmark)

    Kawalec, Tomasz; Sierant, Aleksandra; Panas, Roman

    2017-01-01

    We report on an optical mirror for cold rubidium atoms based on a repulsive dipole potential created by means of a modified recordable digital versatile disc. Using the mirror, we have determined the absolute value of the surface plasmon polariton (SPP) intensity, reaching 90 times the intensity...

  1. Femtosecond tunneling response of surface plasmon polaritons

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Ha, Taekjip; Jensen, Jacob Riis

    1998-01-01

    We obtain femtosecond (200 fs) time resolution using a scanning tunneling microscope on surface plasmon polaritons (SPPs) generated by two 100 fs laser beams in total internal reflection geometry. The tunneling gap dependence of the signal clearly indicates the tunneling origin of the signal...

  2. Subwavelength light confinement with surface plasmon polaritons

    NARCIS (Netherlands)

    Verhagen, E.

    2009-01-01

    In free space, the diffraction limit sets a lower bound to the size to which light can be confined. Surface plasmon polaritons (SPPs), which are electromagnetic waves bound to the interface between a metal and a dielectric, allow the control of light on subwavelength length scales. This opens up a r

  3. Surface plasmon polariton waveguiding in random surface nanostructures

    DEFF Research Database (Denmark)

    Bozhevolnyi, S. I.; Volkov, V. S.; Leosson, K.

    2003-01-01

    In this study, guiding of surface plasmon polaritons excited at a gold film surface along corrugation-free channels in regions that are covered with randomly located surface scatterers, is considered using near-field microscopy for imaging of surface plasmon polariton intensity distributions...... at the surface. In the wavelength range 713-815 nm, we observed complete inhibition of the surface plasmon polariton propagation inside the random structures composed of individual (approx. 70 nm high) gold bumps (and their clusters) placed on a 55 nm thick gold film with a bump density of 75 micro-m-2. We...... demonstrate well-defined surface plasmon polariton guiding along corrugation-free 2 micro-m wide channels in random structures and, in the wavelength range 738-774 nm, low-loss guiding around 20degrees bends having a bend radius of approx. 15 micro-m....

  4. Scattering of Light and Surface Plasmon Polaritons from Rough Surfaces

    Science.gov (United States)

    2013-06-14

    approximation for surface plasmon polaritons,” Proc. SPIE 7792, 779204 (1-9)(2010). [10] J. Polanco , R.M. Fitzgerald, T.A. Leskova, and A.A. Maradudin...condition,” Phys. Rev. A 84, 013801 (1-8) (2011). [12] J. Polanco , R.M. Fitzgerald, and A.A. Maradudin, “Propagation of s-polarized surface polaritons...surface plasmon polaritons,” Phys. Rev. A 86, 043805(1-4)(2012). [15] R.M. Fitzgerald, A.A. Maradudin, J. Polanco , and A.B. Shvartsburg, “S-polarized

  5. Surface plasmon polariton assisted optical pulling force

    CERN Document Server

    Petrov, M I; Bogdanov, A A; Shalin, A S; Dogariu, A

    2016-01-01

    We demonstrate both analytically and numerically the existence of optical pulling forces acting on particles located near plasmonic interfaces. Two main factors contribute to the appearance of this negative reaction force. The interference between the incident and reflected waves induces a rotating dipole with an asymmetric scattering pattern while the directional excitation of surface plasmon polaritons (SPP) enhances the linear momentum of scattered light. The strongly asymmetric SPP excitation is determined by spin-orbit coupling of the rotating dipole and surface plasmon polariton. As a result of the total momentum conservation, the force acting on the particle points in a direction opposite to the incident wave propagation. We derive analytical expressions for the force acting on a dipolar particles placed in the proximity of plasmonic surfaces. Analytical expressions for this pulling force are derived within the dipole approximation and are in excellent agreement with results of electromagnetic numerica...

  6. Surface plasmon polaritons in artificial metallic nanostructures

    Science.gov (United States)

    Briscoe, Jayson Lawrence

    Surface plasmon polaritons have been the focus of intense research due to their many unique properties such as high electromagnetic field localization, extreme sensitivity to surface conditions, and subwavelength confinement of electromagnetic waves. The area of potential impact is vast and includes promising advancements in photonic circuits, high speed photodetection, hyperspectral imaging, spectroscopy, enhanced solar cells, ultra-small scale lithography, and microscopy. My research has focused on utilizing these properties to design and demonstrate new phenomena and implement real-world applications using artificial metallic nanostructures. Artificial metallic nanostructures employed during my research begin as thin planar gold films which are then lithographically patterned according to previously determined dimensions. The result is a nanopatterned device which can excite surface plasmon polaritons on its surface under specific conditions. Through my research I characterized the optical properties of these devices for further insight into the interesting properties of surface plasmon polaritons. Exploration of these properties led to advancements in biosensing, development of artificial media to enhance and control light-matter interactions at the nanoscale, and hybrid plasmonic cavities. Demonstrations from these advancements include: label-free immunosensing of Plasmodium in a whole blood lysate, low part-per-trillion detection of microcystin-LR, enhanced refractive index sensitivity of novel resonant plasmonic devices, a defect-based plasmonic crystal, spontaneous emission modification of colloidal quantum dots, and coupling of plasmonic and optical Fabry-Perot resonant modes in a hybrid cavity.

  7. Generalized Surface Polaritons and their quantum spin Hall effect

    CERN Document Server

    Xu, Yadong; Chen, Huanyang

    2016-01-01

    Surface polaritons, e.g., surface plasmon polaritons, are invaluable tools in nanophotonics. However, considerable plasmon loss narrows the application regime of plasmonic devices. Here we reveal some general conditions for lossless surface polaritons to emerge at the interface of a gain and a loss media. The gain medium does not only compensate the energy loss, but also modifies surface wave oscillation mechanisms. A new type of surface polaritons induced by the sign switch of the imaginary part of the permittivity across the interface is discovered. The surface polaritons exhibit spin Hall effect due to spin-momentum locking and unique Berry phase. The spin Hall coefficient changes the sign across the parity-time symmetric limit and becomes quantized for perfect metal-dielectric interface and for dielectric-dielectric interface with very large permittivity contrast, carrying opposite topological numbers. Our study opens a new direction for manipulating light with surface polaritons in non-Hermitian optical ...

  8. Dynamical Casimir effect for surface plasmon polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Hizhnyakov, V.; Loot, A., E-mail: ardi.loot@ut.ee; Azizabadi, S.Ch.

    2015-02-20

    The emission of photon pairs by a metal–dielectric interface placed between the mirrors of the resonator and excited by a plane wave is considered. The excitation causes oscillations in time of the optical length of surface plasmon polaritons in the interface. This leads to the dynamical Casimir effect – the generation of pairs of surface plasmon polariton quanta, which transfer to photons outside the interface. In the case of a properly chosen interface, the yield of two-photon emission may exceed that of the usual spontaneous parametric down-conversion. - Highlights: • The theory of dynamical Casimir effect (DCE) in the metal–dielectric interface excited by a monochromatic wave is proposed. • It is shown that the field enhancement associated with surface plasmon polaritons strongly enhances the yield of the DCE. • The numerical calculations of the enhancement factor are made. • The scheme of experimental setup to observe the DCE in the metal–dielectric interface is proposed. • Additional methods to enhance the DCE in the metal–dielectric interface are discussed.

  9. Criteria for Existence of Surface Plasmon Polaritons at Lossy Interfaces

    CERN Document Server

    Sang-Nourpour, Nafiseh; Kheradmand, R; Rezaei, M; Sanders, Barry C

    2016-01-01

    We determine bounds for the square of the complex propagation coefficient for fields at planar lossy interfaces, and we employ these bounds to determine rigorous criteria for electromagnetic susceptibilities that lead to existence of surface plasmon polaritons. Ascertaining existence or nonexistence of surface plasmon polaritons is important to check the viability of a given study or application. As an application we show that surface plasmon polaritons cannot exist for double-negative refractive index region with arbitrary values of permittivity and permeability and we employ our criteria to show that certain prior predictions of surface plasmon polaritons are not in fact correct.

  10. Refracting surface plasmon polaritons with nanoparticle arrays

    DEFF Research Database (Denmark)

    Radko, I.P.; Evlyukhin, A.B.; Boltasseva, Alexandra

    2008-01-01

    Refraction of surface plasmon polaritons (SPPs) by various structures formed by a 100-nm-period square lattice of gold nanoparticles on top of a gold film is studied by leakage radiation microscopy. SPP refraction by a triangular-shaped nanoparticle array indicates that the SPP effective refractive...... index increases inside the array by a factor of ~1.08 (for the wavelength 800 nm) with respect to the SPP index at a flat surface. Observations of SPP focusing and deflection by circularly shaped areas as well as SPP waveguiding inside rectangular arrays are consistent with the SPP index increase...

  11. Surface plasmon polaritons in topological Weyl semimetals

    Science.gov (United States)

    Hofmann, Johannes; Das Sarma, Sankar

    2016-06-01

    We consider theoretically surface plasmon polaritons in Weyl semimetals. These materials contain pairs of band touching points—Weyl nodes—with a chiral topological charge, which induces an optical anisotropy and anomalous transport through the chiral anomaly. We show that these effects, which are not present in ordinary metals, have a direct fundamental manifestation in the surface plasmon dispersion. The retarded Weyl surface plasmon dispersion depends on the separation of the Weyl nodes in energy and momentum space. For Weyl semimetals with broken time-reversal symmetry, the distance between the nodes acts as an effective applied magnetic field in momentum space, and the Weyl surface plasmon polariton dispersion is strikingly similar to magnetoplasmons in ordinary metals. In particular, this implies the existence of nonreciprocal surface modes. In addition, we obtain the nonretarded Weyl magnetoplasmon modes, which acquire an additional longitudinal magnetic field dependence. These predicted surface plasmon results are observable manifestations of the chiral anomaly in Weyl semimetals and might have technological applications.

  12. Stimulated emission of surface plasmon polaritons

    CERN Document Server

    Noginov, M A; Mayy, M F; Ritzo, B A; Noginova, N; Podolskiy, V A

    2008-01-01

    We have observed laser-like emission of surface plasmon polaritons (SPPs) decoupled to the glass prism in an attenuated total reflection setup. SPPs were excited by optically pumped molecules in a polymeric film deposited on the top of the silver film. Stimulated emission was characterized by a distinct threshold in the input-output dependence and narrowing of the emission spectrum. The observed stimulated emission and corresponding to it compensation of the metallic absorption loss by gain enables many applications of metamaterials and nanoplasmonic devices.

  13. Direct imaging of localized surface plasmon polaritons

    Science.gov (United States)

    Balci, Sinan; Karademir, Ertugrul; Kocabas, Coskun; Aydinli, Atilla

    2011-09-01

    In this Letter, we report on dark field imaging of localized surface plasmon polaritons (SPPs) in plasmonic waveguiding bands formed by plasmonic coupled cavities. We image the light scattered from SPPs in the plasmonic cavities excited by a tunable light source. Tuning the excitation wavelength, we measure the localization and dispersion of the plasmonic cavity mode. Dark field imaging has been achieved in the Kretschmann configuration using a supercontinuum white-light laser equipped with an acoustooptic tunable filter. Polarization dependent spectroscopic reflection and dark field imaging measurements are correlated and found to be in agreement with finite-difference time-domain calculations.

  14. Structured light for focusing surface plasmon polaritons.

    Science.gov (United States)

    Hu, Z J; Tan, P S; Zhu, S W; Yuan, X-C

    2010-05-10

    We propose a structureless method for focusing surface plasmon polaritons (SPPs) on a flat metal film under illumination of radially polarized cogwheel-like structured light beams. Without metal structures, the locally induced SPPs can further be propagated following the predefined patterns to form symmetric focal spots with dimensions beyond diffraction limit. Benefiting from the radial polarization, this method can be employed to pattern various center-symmetric evanescent distributions for generating SPPs reconfigurably. The SPPs will be propagating and focusing in radial directions.

  15. Surface Polaritons in a Wire Medium with Spatial Dispersion

    Institute of Scientific and Technical Information of China (English)

    LIU Zheng; GONG Qi-Huang

    2008-01-01

    The dispersion relations of the surface polariton in a semi-infinite wire medium with spatial dispersion are analysed.In comparison with the traditional spatial dispersive medium there only exists one branch instead of multibranch for the dispersion curve.The possibility of the experimentally observing the surface polaritons by attenuated total reflection is simulated numerically.

  16. Nanoimprinted Long-range Surface Plasmon Polariton Waveguide Components

    DEFF Research Database (Denmark)

    Johansen, Dan Mario; Boltasseva, A.; Nielsen, Theodor

    2006-01-01

    We report on the fabrication by nanoimprint lithography (NIL) and performance of metal stripe waveguides embedded in a polymer, capable of supporting long-range surface plasmon polariton (LRSPP) propagation.......We report on the fabrication by nanoimprint lithography (NIL) and performance of metal stripe waveguides embedded in a polymer, capable of supporting long-range surface plasmon polariton (LRSPP) propagation....

  17. Refracting surface plasmon polaritons with nanoparticle arrays.

    Science.gov (United States)

    Radko, Ilya P; Evlyukhin, Andrey B; Boltasseva, Alexandra; Bozhevolnyi, Sergey I

    2008-03-17

    Refraction of surface plasmon polaritons (SPPs) by various structures formed by a 100-nm-period square lattice of gold nanoparticles on top of a gold film is studied by leakage radiation microscopy. SPP refraction by a triangular-shaped nanoparticle array indicates that the SPP effective refractive index increases inside the array by a factor of approximately 1.08 (for the wavelength 800 nm) with respect to the SPP index at a flat surface. Observations of SPP focusing and deflection by circularly shaped areas as well as SPP waveguiding inside rectangular arrays are consistent with the SPP index increase deduced from the SPP refraction by triangular arrays. The SPP refractive index is found to decrease slightly for longer wavelengths within the wavelength range of 700-860 nm. Modeling based on the Green's tensor formalism is in a good agreement with the experimental results, opening the possibility to design nanoparticle arrays for specific applications requiring in-plane SPP manipulation.

  18. Local excitation of surface plasmon polaritons in random surface nanostructures

    DEFF Research Database (Denmark)

    Bozhevolnyi, S.I.; Volkov, V.S.; Boltasseva, Alexandra;

    2003-01-01

    We investigate local excitation of surface plasmon polaritons (SPPs) at a 55-nm-thick gold layer covered with randomly located scatterers (density similar to75 mum(-2)) by using an uncoated fiber tip of a near-field optical microscope as a radiation source and detecting the radiation scattered...

  19. Local excitation of surface plasmon polaritons in random surface nanostructures

    DEFF Research Database (Denmark)

    Bozhevolnyi, S.I.; Volkov, V.S.; Boltasseva, Alexandra

    2003-01-01

    We investigate local excitation of surface plasmon polaritons (SPPs) at a 55-nm-thick gold layer covered with randomly located scatterers (density similar to75 mum(-2)) by using an uncoated fiber tip of a near-field optical microscope as a radiation source and detecting the radiation scattered...

  20. Harmonics radiation of graphene surface plasmon polaritons in terahertz regime

    Energy Technology Data Exchange (ETDEWEB)

    Li, D., E-mail: dazhi_li@hotmail.com [Institute for Laser Technology, Suita, Osaka 565-0871 (Japan); Wang, Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Nakajima, M. [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Hashida, M. [Advanced Research Center for Beam Science, ICR, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Wei, Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Miyamoto, S. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Ako, Hyogo 678-1205 (Japan)

    2016-06-03

    This letter presents an approach to extract terahertz radiation from surface plasmon polaritons excited in the surface of a uniform graphene structure by an electron beam. A sidewall configuration is proposed to lift the surface plasmon mode to be close to the light line, so that some of its harmonics have chances to go above the light line and become radiative. The harmonics are considered to be excited by a train of periodic electron bunches. The physical mechanism in this scheme is analyzed with three-dimensional theory, and the harmonics excitation and radiation are demonstrated through numerical calculations. The results show that this technique could be an alternative to transform the surface plasmon polaritons into radiation. - Highlights: • An approach to extract terahertz radiation from graphene surface plasmon polaritons is presented. • A sidewall configuration is proposed to lift the surface plasmon mode. • Harmonics of surface plasmon polaritons are possible to radiate.

  1. Resonant scattering of surface plasmon polaritons by dressed quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Danhong; Cardimona, Dave [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Easter, Michelle [Department of Mechanical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030 (United States); Gumbs, Godfrey [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Maradudin, A. A. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Lin, Shawn-Yu [Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States); Zhang, Xiang [Department of Mechanical Engineering, 3112 Etcheverry Hall, University of California at Berkeley, Berkeley, California 94720 (United States)

    2014-06-23

    The resonant scattering of surface plasmon-polariton waves (SPP) by embedded semiconductor quantum dots above the dielectric/metal interface is explored in the strong-coupling regime. In contrast to non-resonant scattering by a localized dielectric surface defect, a strong resonant peak in the spectrum of the scattered field is predicted that is accompanied by two side valleys. The peak height depends nonlinearly on the amplitude of SPP waves, reflecting the feedback dynamics from a photon-dressed electron-hole plasma inside the quantum dots. This unique behavior in the scattered field peak strength is correlated with the occurrence of a resonant dip in the absorption spectrum of SPP waves due to the interband photon-dressing effect. Our result on the scattering of SPP waves may be experimentally observable and applied to spatially selective illumination and imaging of individual molecules.

  2. Efficiency of local surface plasmon polariton excitation on ridges

    DEFF Research Database (Denmark)

    Radko, Ilya; Bozhevolnyi, Sergey I.; Boltasseva, Alexandra

    2008-01-01

    We investigate experimentally and numerically the efficiency of surface plasmon polariton excitation by a focused laser beam using gold ridges. The dependence of the efficiency on geometrical parameters of ridges and wavelength dependence are examined. The experimental measurements accomplished...

  3. Surface-plasmon-polariton-assisted dissipative backaction cooling and amplification

    Science.gov (United States)

    Hassani nia, Iman; Mohseni, Hooman

    2015-11-01

    We evaluate a method, based on the near-field properties of surface-plasmon polaritons, to significantly enhance the dissipative optomechanical backaction mechanism. Although the large momentum of the surface-plasmon-polariton modes leads to the enhanced sensitivity of the scattering to the mechanical displacement, the overall efficiency will not improve unless an optical antenna efficiently couples the plasmonic modes to the far field. The predicted improvements in both efficiency and bandwidth make this approach uniquely suitable for many new applications.

  4. Coherence and aberration effects in surface plasmon polariton imaging

    OpenAIRE

    Berthel, Martin; Jiang, Quanbo; Chartrand, Camille; Bellessa, Joel; Huant, Serge; Genet, Cyriaque; Drezet, Aurélien

    2016-01-01

    We study theoretically and experimentally coherent imaging of surface plasmon polaritons using either leakage radiation microscopy through a thin metal film or interference microscopy through a thick metal film. Using a rigorous modal formalism based on scalar Whittaker potentials we develop a systematic analytical and vectorial method adapted to the analysis of coherent imaging involving surface plasmon polaritons. The study includes geometrical aberrations due index mismatch which played an...

  5. Theory of nonlinear s-polarized plasmon-polariton and phonon-polariton modes in dielectric superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Baher, S. [Department of Physics, Lorestan University, Khoramabad (Iran, Islamic Republic of) and Research Institute of Applied Sciences (ACECR), Shahid Beheshti University (Iran, Islamic Republic of)]. E-mail: bahersalar@yahoo.com; Baharvand, A. [Department of Physics, Lorestan University, Khoramabad (Iran, Islamic Republic of); Sepahvand, R. [Department of Physics, Lorestan University, Khoramabad (Iran, Islamic Republic of); Badraghi, J. [Research Institute of Applied Sciences (ACECR), Shahid Beheshti University (Iran, Islamic Republic of)

    2007-04-30

    The propagation of nonlinear s-polarized polariton waves (TE modes) in an infinitely extended superlattice is considered. The periodic system is composed of two different components where the layers are arranged in an alternating fashion so that each layer of material 1 is bounded by two layers of material 2 and vice versa. In general, each of the individual layers may be characterized by a Kerr-type nonlinear dielectric function with a frequency-dependent characteristic of either the plasmons in a metal/semiconductor or the optical phonons in an ionic crystal. To investigate the propagation of polariton modes in such a system, a theoretical model is formulated leading to Jacobi elliptic functions for the electric field amplitude across the layers. Subsequently, the application of boundary conditions at the interfaces gives rise to dispersion relations. Numerical examples are given for plasmon-polariton and phonon-polariton modes and a comparison is made with phonon-polariton modes propagating in a three layered system.

  6. Exciton-polaritons in lattices: A non-linear photonic simulator

    Science.gov (United States)

    Amo, Alberto; Bloch, Jacqueline

    2016-10-01

    Microcavity polaritons are mixed light-matter quasiparticles with extraordinary nonlinear properties, which can be easily accessed in photoluminescence experiments. Thanks to the possibility of designing the potential landscape of polaritons, this system provides a versatile photonic platform to emulate 1D and 2D Hamiltonians. Polaritons allow transposing to the photonic world some of the properties of electrons in solid-state systems, and to engineer Hamiltonians for photons with novel transport properties. Here we review some experimental implementations of polariton Hamiltonians using lattice geometries. xml:lang="fr"

  7. Transverse Chiral Optical Forces by Locally Excited Surface Plasmon Polaritons

    CERN Document Server

    Alizadeh, M H

    2015-01-01

    Recently the new concepts of transverse spin angular momentum and Belinfante spin momentum of evanescent waves have drawn considerable attention. Here, we investigate these novel physical properties of electromagnetic fields in the context of locally excited surface plasmon polaritons. We demonstrate, both analytically and numerically, that locally excited surface plasmon polaritons possess transverse spin angular momentum and Belinfante momentum with rich and non-trivial characteristics. We also show that the transverse spin angular momentum of locally excited surface plasmon polaritons leads to the emergence of transverse chiral forces in opposite directions for chiral objects of different handedness. The magnitude of such a transverse force is comparable to the optical gradient force and scattering forces. This finding may pave the way for realization of optical separation of chiral biomolecules.

  8. Lossless Airy Surface Polaritons in a Metamaterial via Active Raman Gain

    CERN Document Server

    Zhang, Qi; Huang, Guoxiang

    2016-01-01

    We propose a scheme to realize a lossless propagation of linear and nonlinear Airy surface polaritons (SPs) via active Raman gain (ARG). The system we suggest is a planar interface superposed by a negative index metamaterial (NIMM) and a dielectric, where three-level quantum emitters are doped. By using the ARG from the quantum emitters and the destructive interference effect between the electric and magnetic responses from the NIMM, we show that not only the Ohmic loss of the NIMM but also the light absorption of the quantum emitters can be completely eliminated. As a result, non-diffractive Airy SPs may propagate for very long distance without attenuation. We also show that the Kerr nonlinearity of the system can be largely enhanced due to the introduction of the quantum emitters and hence lossless Airy surface polaritonic solitons with very low power can be generated in the system.

  9. Lossless Airy Surface Polaritons in a Metamaterial via Active Raman Gain.

    Science.gov (United States)

    Zhang, Qi; Tan, Chaohua; Huang, Guoxiang

    2016-02-19

    We propose a scheme to realize a lossless propagation of linear and nonlinear Airy surface polaritons (SPs) via active Raman gain (ARG). The system we suggest is a planar interface superposed by a negative index metamaterial (NIMM) and a dielectric, where three-level quantum emitters are doped. By using the ARG from the quantum emitters and the destructive interference effect between the electric and magnetic responses from the NIMM, we show that not only the Ohmic loss of the NIMM but also the light absorption of the quantum emitters can be completely eliminated. As a result, non-diffractive Airy SPs may propagate for very long distance without attenuation. We also show that the Kerr nonlinearity of the system can be largely enhanced due to the introduction of the quantum emitters and hence lossless Airy surface polaritonic solitons with very low power can be generated in the system.

  10. Coherence and aberration effects in surface plasmon polariton imaging

    CERN Document Server

    Berthel, Martin; Chartrand, Camille; Bellessa, Joel; Huant, Serge; Genet, Cyriaque; Drezet, Aurélien

    2016-01-01

    We study theoretically and experimentally coherent imaging of surface plasmon polaritons using either leakage radiation microscopy through a thin metal film or interference microscopy through a thick metal film. Using a rigorous modal formalism based on scalar Whittaker potentials we develop a systematic analytical and vectorial method adapted to the analysis of coherent imaging involving surface plasmon polaritons. The study includes geometrical aberrations due index mismatch which played an important role in the interpretation of recent experiments using leakage radiation microscopy. We compare our theory with experiments using classical or quantum near-field scanning optical microscopy probes and show that the approach leads to a full interpretation of the recorded optical images.

  11. Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders

    KAUST Repository

    Zhang, Ying

    2017-06-15

    We demonstrated a structure with periodic cylinders arranged bilaterally and a thin dielectric layer covered inside that supports bound modes of surface plasmon polaritons at terahertz frequencies. This structure can confine the surface plasmon polaritons in the lateral direction, and at the same time reduce the field expansion into space. We examined and explored the characteristics of several different structures using scanning near-field terahertz microscopy. The proposed designs pave a novel way to terahertz waveguiding and may have important applications in the development of flexible, wideband and compact photonic circuits operating at terahertz frequencies.

  12. Coherence and aberration effects in surface plasmon polariton imaging

    Science.gov (United States)

    Berthel, Martin; Jiang, Quanbo; Chartrand, Camille; Bellessa, Joel; Huant, Serge; Genet, Cyriaque; Drezet, Aurélien

    2015-09-01

    We study theoretically and experimentally coherent imaging of surface plasmon polaritons using either leakage radiation microscopy through a thin metal film or interference microscopy through a thick metal film. Using a rigorous modal formalism based on scalar Whittaker potentials, we develop a systematic analytical and vectorial method adapted to the analysis of coherent imaging involving surface plasmon polaritons. The study includes geometrical aberrations due index mismatch which played an important role in the interpretation of recent experiments using leakage radiation microscopy. We compare our theory with experiments using classical or quantum near-field scanning optical microscopy probes and show that the approach leads to a full interpretation of the recorded optical images.

  13. Surface plasmon polariton propagation in organic nanofiber based plasmonic waveguides

    DEFF Research Database (Denmark)

    Leißner, Till; Lemke, Christoph; Jauernik, Stephan

    2013-01-01

    Plasmonic wave packet propagation is monitored in dielectric-loaded surface plasmon polariton waveguides realized from para-hexaphenylene nanofibers deposited onto a 60 nm thick gold film. Using interferometric time resolved two-photon photoemission electron microscopy we are able to determine...... phase and group velocity of the surface plasmon polariton (SPP) waveguiding mode (0.967c and 0.85c at λLaser = 812nm) as well as the effective propagation length (39 μm) along the fiber-gold interface. We furthermore observe that the propagation properties of the SPP waveguiding mode are governed...

  14. Near-field investigation of surface plasmon polaritons

    NARCIS (Netherlands)

    Jose, Jincy

    2010-01-01

    The interaction of light with metals contains a resonant phenomenon called the Surface Plasmon Resonance (SPR), at which the free electrons in the metal collectively oscillate. This collective oscillation of the free electrons, called Surface Plasmon Polaritons (SPPs), is highly sensitive to the med

  15. Bend loss in surface plasmon polariton band-gap structures

    DEFF Research Database (Denmark)

    Bozhevolnyi, S.I.; Volkov, V.S.; Leosson, Kristjan

    2001-01-01

    Using near-field optical microscopy, we investigate propagation of surface plasmon polaritons (SPPs) excited in the wavelength range of 720-830 nm at a corrugated gold-film surface with areas of 200-nm-wide and 45-nm-high scatterers arranged in a 410-nm-period triangular lattice containing line...

  16. Strong Coupling between Surface Plasmon Polaritons and Molecular Vibrations

    Science.gov (United States)

    Memmi, H.; Benson, O.; Sadofev, S.; Kalusniak, S.

    2017-03-01

    We report on the strong coupling of surface plasmon polaritons and molecular vibrations in an organic-inorganic plasmonic hybrid structure consisting of a ketone-based polymer deposited on top of a silver layer. Attenuated-total-reflection spectra of the hybrid reveal an anticrossing in the dispersion relation in the vicinity of the carbonyl stretch vibration of the polymer with an energy splitting of the upper and lower polariton branch up to 15 meV. The splitting is found to depend on the molecular layer thickness and saturates for micrometer-thick films. This new hybrid state holds a strong potential for application in chemistry and optoelectronics.

  17. Directional couplers using long-range surface plasmon polariton waveguides

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Bozhevolnyi, Sergey I.

    2006-01-01

    We present an experimental study of guiding and routing of electromagnetic radiation along the nanometer-thin and micrometer-wide gold stripes embedded in a polymer via excitation of long-range surface plasmon polaritons (LR-SPPs) in a very broad wavelength range from 1000 to 1650 mn. For straight...

  18. Surface plasmon polariton modulator with optimized active layer

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2012-01-01

    A multilayered waveguide, which supports surface plasmon polaritons, is considered as an absorption modulator. The waveguide core consists of a silicon nitride layer and ultrathin layer with the varied carrier density embedded between two silver plates, which also serve as electrodes. Under...

  19. Surface plasmon polariton beam focusing with parabolic nanoparticle chains

    DEFF Research Database (Denmark)

    Radko, Ilya P.; Bozhevolnyi, Sergey I.; Evlyukhin, Andrey B.

    2007-01-01

    We report on the focusing of surface plasmon polariton (SPP) beams with parabolic chains of gold nanoparticles fabricated on thin gold films. SPP focusing with different parabolic chains is investigated in the wavelength range of 700–860 nm, both experimentally and theoretically. Mapping of SPP...

  20. Organic nanofiber-loaded surface plasmon-polariton waveguides

    DEFF Research Database (Denmark)

    Radko, Ilya; Fiutowski, Jacek; Tavares, Luciana;

    2011-01-01

    We demonstrate the use of organic nanofibers, composed of self-assembled organic molecules, as a dielectric medium for dielectric-loaded surface plasmon polariton waveguides at near-infrared wavelengths. We successfully exploit a metallic grating coupler to excite the waveguiding mode and charact...

  1. Subwavelength light confinement with surface plasmon polaritons

    Science.gov (United States)

    Verhagen, E.

    2009-12-01

    In free space, the diffraction limit sets a lower bound to the size to which light can be confined. Surface plasmon polaritons (SPPs), which are electromagnetic waves bound to the interface between a metal and a dielectric, allow the control of light on subwavelength length scales. This opens up a rich world of opportunities in science and technology, ranging from lighting and photovoltaics to photonic circuits and quantum optics. This thesis explores new ways to tailor the properties of SPPs such that they enable the confinement of light at nanoscale dimensions. A variety of metallodielectric geometries are used that can serve as waveguides for SPPs. We show how the SPP propagation characteristics can be controlled, and how light can be concentrated in subwavelength volumes by tapering and truncating the waveguides. In Chapter 2 we use a near-field microscope to image the fields of SPPs that are squeezed into a 50~nm thick dielectric layer between two Ag surfaces, showing that the wavelength of SPPs is significantly shortened with respect to that of light. Chapter 3 focuses on specific waveguided SPP modes that can exhibit a negative effective index of refraction. This enables negative refraction of light into the waveguide at optical frequencies. Chapters 4 and 5 show that the concentration of infrared SPPs in laterally tapered Ag stripe waveguides enhances the upconversion of infrared to visible light in Er ions in the substrate. SPPs focus at the 65 nm large taper apex. Calculations show that the observed focusing effect can only occur for SPPs at the interface between the metal stripe and the high-index substrate. The focusing in tapered waveguides is explained in terms of an adiabatic transformation of a SPP mode guided by the waveguides in Chapter 6. Tapered waveguides are used to efficiently excite SPPs on metal nanowires with diameters as small as 60 nm. Phase- and polarization-sensitive near-field microscopy allows retrieval of the propagation speed and

  2. Surface plasmon polariton amplification in semiconductor-graphene-dielectric structure

    Energy Technology Data Exchange (ETDEWEB)

    Dadoenkova, Yuliya S. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Novgorod State University, Veliky Novgorod (Russian Federation); Donetsk Institute for Physics and Technology, Donetsk (Ukraine); Moiseev, Sergey G. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Ulyanovsk (Russian Federation); Abramov, Aleksei S. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Kadochkin, Aleksei S.; Zolotovskii, Igor O. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Institute of Nanotechnologies of Microelectronics of the Russian Academy of Sciences, 32A Leninskiy Prosp., 119991, Moscow (Russian Federation); Fotiadi, Andrei A. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Universite de Mons (Belgium)

    2017-05-15

    A mechanism of amplification of surface plasmon polaritons due to the transfer of electromagnetic energy from a drift current wave into a far-infrared surface wave propagating along a semiconductor-dielectric boundary in waveguide geometry is proposed. A necessary condition of the interaction of these waves is phase matching condition, i. e., when the phase velocity of the surface wave approaches the drift velocity of charge carriers. It is shown that in the spectral region of the surface plasmon polariton slowing-down its amplification coefficient can reach values substantially exceeding the ohmic loss coefficient of the surface wave in the structure. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Harmonics radiation of graphene surface plasmon polaritons in terahertz regime

    Science.gov (United States)

    Li, D.; Wang, Y.; Nakajima, M.; Hashida, M.; Wei, Y.; Miyamoto, S.

    2016-06-01

    This letter presents an approach to extract terahertz radiation from surface plasmon polaritons excited in the surface of a uniform graphene structure by an electron beam. A sidewall configuration is proposed to lift the surface plasmon mode to be close to the light line, so that some of its harmonics have chances to go above the light line and become radiative. The harmonics are considered to be excited by a train of periodic electron bunches. The physical mechanism in this scheme is analyzed with three-dimensional theory, and the harmonics excitation and radiation are demonstrated through numerical calculations. The results show that this technique could be an alternative to transform the surface plasmon polaritons into radiation.

  4. Enhanced surface plasmon polariton propagation induced by active dielectrics

    OpenAIRE

    Athanasopoulos, C.; Mattheakis, M.; Tsironis, G. P.

    2013-01-01

    We present numerical simulations for the propagation of surface plasmon polaritons in a dielectric-metal-dielectric waveguide using COMSOL multiphysics software. We show that the use of an active dielectric with gain that compensates metal absorption losses enhances substantially plasmon propagation. Furthermore, the introduction of the active material induces, for a specific gain value, a root in the imaginary part of the propagation constant leading to infinite propagation of the surface pl...

  5. Surface plasmon polariton amplification in metal-semiconductor structures.

    Science.gov (United States)

    Fedyanin, Dmitry Yu; Arsenin, Aleksey V

    2011-06-20

    We propose a novel scheme of surface plasmon polariton (SPP) amplification that is based on a minority carrier injection in a Schottky diode. This scheme uses compact electrical pumping instead of bulky optical pumping. Compact size and a planar structure of the proposed amplifier allow one to utilize it in integrated plasmonic circuits and couple it easily to passive plasmonic devices. Moreover, this technique can be used to obtain surface plasmon lasing.

  6. Asymmetric transmission of surface plasmon polaritons on planar gratings

    CERN Document Server

    Kuzmiak, Vladimir

    2016-01-01

    We describe a surface structure consisting of a metal-air interface where the metallic part consists of two metallic segments with a periodic modulation of the interface between them. Such a structure possesses a different transmissivity for a surface plasmon polariton incident on it from one side of it than it has for a surface plasmon polariton incident on it from the opposite side. This asymmetric transmission of a surface plasmon polariton is based on the suppression of the zero-order Bragg beam which, for a certain value of the modulation depth, is not transmitted through the structure, while the diffraction efficiencies of the +1 and -1 Bragg beams can be modified by varying the period of grating and/or the angle of incidence. For a certain range of the incidence angle one can observe asymmetry in transmittance for the -1 mode while the +1 mode is completely suppressed. By varying the material and geometrical parameters of the diffractive structure one can control the contrast transmission that characte...

  7. Quantum Statistics of Surface Plasmon Polaritons in Metallic Stripe Waveguides

    CERN Document Server

    Di Martino, Giuliana; Kéna-Cohen, Stéphane; Tame, Mark; Özdemir, Şahin K; Kim, M S; Maier, Stefan A

    2012-01-01

    Single surface plasmon polaritons are excited using photons generated via spontaneous parametric down-conversion. The mean excitation rates, intensity correlations and Fock state populations are studied. The observed dependence of the second order coherence in our experiment is consistent with a linear uncorrelated Markovian environment in the quantum regime. Our results provide important information about the effect of loss for assessing the potential of plasmonic waveguides for future nanophotonic circuitry in the quantum regime.

  8. Design of Matched Absorbing Layers for Surface Plasmon-Polaritons

    Directory of Open Access Journals (Sweden)

    Sergio de la Cruz

    2012-01-01

    Full Text Available We describe a procedure for designing metal-metal boundaries for the strong attenuation of surface plasmon-polaritons without the introduction of reflections or scattering effects. Solutions associated with different sets of matching materials are found. To illustrate the results and the consequences of adopting different solutions, we present calculations based on an integral equation formulation for the scattering problem and the use of a nonlocal impedance boundary condition.

  9. Terahertz reflection and emission associated with nonequilibrium surface plasmon polaritons in n-GaN

    Science.gov (United States)

    Melentyev, G. A.; Shalygin, V. A.; Moldavskaya, M. D.; Panevin, V. Yu; Vorobjev, L. E.; Firsov, D. A.; Nykänen, H.; Riuttanen, L.; Svensk, O.; Suihkonen, S.

    2015-01-01

    Surface plasmon polaritons are investigated in heavily doped n-GaN epitaxial layers. The grating etched on the surface of the epitaxial layer is used to convert photons into the surface plasmon polaritons and vice versa. The spectral study of reflection demonstrates the possibility of nonequilibrium surface plasmon polaritons excitation due to terahertz radiation scattering on the grating. Terahertz electroluminescence is investigated under lateral electric field. The luminescence spectrum demonstrates a significant contribution of nonequilibrium surface plasmon polariton scattering to terahertz radiation emission.

  10. Experimental studies of surface plasmon polariton band gap effect

    DEFF Research Database (Denmark)

    Volkov, V. S.; Bozhevolnyi, S. I.; Leosson, K.

    2003-01-01

    Surface plasmon polaritons (SPPs) propagation at a gold film surface covered by periodic arrays of ~40-nm-high scatterers arranged in a triangular lattice of different periods containing straight line defects is studied using collection scanning near-field optical microscopy. The results reveal...... the dependence of the SPP band gap (SPPBG) effect manifested via the SPP reflection and guiding (along line defects) on the parameters of the surface structures (period, filling factor and lattice orientation). We find that the SPPBG effect is stronger along &ggr;K direction for all investigated periodic...

  11. Waveguiding in surface plasmon polariton band gap structures

    DEFF Research Database (Denmark)

    Bozhevolnyi, S.I.; Østergaard, John Erland; Leosson, Kristjan

    2001-01-01

    Using near-held optical microscopy, we investigate propagation and scattering of surface plasmon polaritons (SPP's) excited in the wavelength range of 780-820 nm at nanostructured gold-film surfaces with areas of 200-nm-wide scatterers arranged in a 400-nm-period triangular lattice containing line...... defects. We observe the SPP reflection by such an area and SPP guiding along line defects at 782 nm, as well as significant deterioration of these effects is 815 nm, thereby directly demonstrating the SPP band gap effect and showing first examples of SPP channel waveguides in surface band gap structures....

  12. The Goos-Hänchen effect for surface plasmon polaritons.

    Science.gov (United States)

    Huerkamp, Felix; Leskova, Tamara A; Maradudin, Alexei A; Baumeier, Björn

    2011-08-01

    By means of an impedance boundary condition and numerical solution of integral equations for the scattering amplitudes to which its use gives rise, we study as a function of its angle of incidence the reflection of a surface plasmon polariton beam propagating on a metal surface whose dielectric function is ɛ1(ω) when it is incident on a planar interface with a coplanar metal surface whose dielectric function is ɛ2(ω). When the surface of incidence is optically more dense than the surface of scattering, i.e. when |ɛ2(ω)|≫|ɛ1(ω)|, the reflected beam undergoes a lateral displacement whose magnitude is several times the wavelength of the incident beam. This displacement is the surface plasmon polariton analogue of the Goos-Hänchen effect. Since this displacement is sensitive to the dielectric properties of the surface, this effect can be exploited to sense modifications of the dielectric environment of a metal surface, e.g. due to adsorption of atomic or molecular layers on it.

  13. Ultimate limit of field confinement by surface plasmon polaritons

    CERN Document Server

    Khurgin, Jacob B

    2014-01-01

    We show that electric field confinement in surface plasmon polaritons propagating at the metal/dielectric interfaces enhances the loss due to Landau damping and which effectively limits the degree of confinement itself. We prove that Landau damping and associated with it surface collision damping follow directly from Lindhard formula for the dielectric constant of free electron gas Furthermore, we demonstrate that even if all the conventional loss mechanisms, caused by phonons, electron-electron, and interface roughness scattering, were eliminated, the maximum attainable degree of confinement and the loss accompanying it would not change significantly compared to the best existing plasmonic materials, such as silver.

  14. Surface plasmon polaritons at the interface of two nanowire metamaterials

    Science.gov (United States)

    Gric, Tatjana; Hess, Ortwin

    2017-08-01

    The properties of surface-plasmon-polaritons (SPPs) at the interface of two nanowire metamaterials are investigated theoretically. Calculated dispersion relations and propagation lengths are presented. It is demonstrated that the SPPs can be tuned by controlling the metamaterial design. Tunability of these structures can be enhanced further by increasing the pore diameter, which leads the shift of the surface modes to higher frequencies. We specifically consider two different cases with the composite nanowire metamaterial stack composed of the same type of metamaterial in each layer as well as the case of a nanowire metamaterial stack with different materials in each metamaterial layer.

  15. Geometrically induced surface polaritons in planar nanostructured metallic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, P. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Intravia, F [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer at short separations.

  16. Efficiency of local surface plasmon polariton excitation on ridges

    DEFF Research Database (Denmark)

    Radko, I.P.; Bozhevolnyi, S.I.; Brucoli, G.

    2008-01-01

    The issue of efficient local coupling of light into surface plasmon polariton (SPP) modes is an important concern in miniaturization of plasmonic components. Here we present experimental and numerical investigations of efficiency of local SPP excitation on gold ridges of rectangular profile...... positioned on a gold film. The excitation is accomplished by illuminating the metal surface normally with a focused laser beam. Wavelength dependence and dependence of the efficiency on geometrical parameters of ridges are examined. Using leakage radiation microscopy, the efficiency of ˜20% is demonstrated...

  17. SNOM Observations of Surface Plasmon Polaritons on Metal Heterostructures

    Institute of Scientific and Technical Information of China (English)

    KITAZAWA Tazuko; MIYANISHI Shintaro; MURAKAMI Yoshiteru; KOJIMA Kunio; TAKAHASHI Akira

    2007-01-01

    We observe surface plasmon polariton (SPP) refraction on a metal heterostructured sample with a scattered-type scanning near-field optical microscope (SNOM). The sample consists of Al and Au in-plane whose boundary is smooth enough with proper etching time. SPPs excited on the Al film travel to the boundary and a portion of SPPs propagates into the Au film. In addition, interference fringes appear in the SNOM image bent at the boundary. The result is analysed with effective index method and the refracted angle is explained by Snell's law.

  18. Coupling light to a localized surface plasmon-polariton

    Science.gov (United States)

    Agio, Mario; Zumofen, Gert; Mojarad, Nassiredin M.; Sandoghdar, Vahid

    2009-08-01

    We investigate the interaction of focused Gaussian and radially-polarized beams with a silver nanosphere, with emphasis on the coupling to localized surface plasmon-polaritons. We discuss the overall efficiency, including the effect of the entrance pupil and of absorption in the nanosphere, showing that a Gaussian beam performs better than a radially-polarized beam, when focused by an aplanatic system. We find that more than 50% of the photons in the incident beam can be reflected using realistic focusing parameters.

  19. Spatio-temporal second-order quantum correlations of surface plasmon polaritons

    CERN Document Server

    Berthel, Martin; Drezet, Aurélien

    2016-01-01

    We present an experimental methodology to observe spatio-temporal second-order quantum coherence of surface plasmon polaritons which are emitted by nitrogen vacancy color centers attached at the apex of an optical tip. The approach relies on leakage radiation microscopy in the Fourier space and we use this approach to test wave-particle duality for surface plasmon polaritons.

  20. Imaging of surface plasmon polariton interference using phase-sensitive scanning tunneling microscope

    NARCIS (Netherlands)

    Jose, J.; Segerink, Franciscus B.; Korterik, Jeroen P.; Herek, Jennifer Lynn; Offerhaus, Herman L.

    2011-01-01

    We report the surface plasmon polariton interference, generated via a ‘buried’ gold grating, and imaged using a phase-sensitive Photon Scanning Tunneling Microscope (PSTM). The phase-resolved PSTM measurement unravels the complex surface plasmon polariton interference fields at the gold-air

  1. Polarization-Directed Surface Plasmon Polariton Launching

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2017-01-05

    The relative intensities of propagating surface plasmons (PSPs) simultaneously launched from opposing edges of a symmetric trench structure etched into a silver thin film may be controllably varied by tuning the linear polarization of the driving field. This is demonstrated through transient multiphoton photoemission electron microscopy measurements performed using a pair of spatially separated phase-locked femtosecond pulses. Our measurements are rationalized using finite-difference time domain simulations, which reveal that the coupling efficiency into the PSP modes is inversely proportional to the magnitude of the localized surface plasmon fields excited at the trench edges. Additional experiments on single step edges also show asymmetric PSP launching with respect to polarization, analogous to the trench results. Our combined experimental and computational results allude to the interplay between localized and propagating surface plasmon modes in the trench; strong coupling to the localized modes at the edges correlates to weak coupling to the PSP modes. Simultaneous excitation of the electric fields localized at both edges of the trench results in complex interactions between the right- and left-side PSP modes with Fabry-Perot and cylindrical modes. This results in a trench width-dependent PSP intensity ratio using otherwise identical driving fields. A systematic exploration of polarization directed PSP launching from a series of trench structures reveals an optimal PSP contrast ratio of 4.2 using a 500 nm-wide trench.

  2. Polarization dependence of nonlinear wave mixing of spinor polaritons in semiconductor microcavities

    CERN Document Server

    Lewandowski, Przemyslaw; Baudin, Emmanuel; Chan, Chris K P; Leung, P T; Luk, Samuel M H; Galopin, Elisabeth; Lemaitre, Aristide; Bloch, Jacqueline; Tignon, Jerome; Roussignol, Philippe; Kwong, N H; Binder, Rolf; Schumacher, Stefan

    2015-01-01

    The pseudo-spin dynamics of propagating exciton-polaritons in semiconductor microcavities are known to be strongly influenced by TE-TM splitting. As a vivid consequence, in the Rayleigh scattering regime, the TE-TM splitting gives rise to the optical spin Hall effect (OSHE). Much less is known about its role in the nonlinear optical regime in which four-wave mixing for example allows the formation of spatial patterns in the polariton density, such that hexagons and two-spot patterns are observable in the far field. Here we present a detailed analysis of spin-dependent four-wave mixing processes, by combining the (linear) physics of TE-TM splitting with spin-dependent nonlinear processes, i.e., exciton-exciton interaction and fermionic phase-space filling. Our combined theoretical and experimental study elucidates the complex physics of the four-wave mixing processes that govern polarization and orientation of off-axis modes.

  3. Nonlinear optical processes at quadrupole polariton resonance in Cu2O as probed by a Z-scan technique

    Science.gov (United States)

    Mani, S.; Jang, J. I.; Ketterson, J. B.

    2010-09-01

    Employing a modified Z-scan technique at 2 K, we monitor not only the fundamental (ω) but also the frequency-doubled (2ω) and tripled (3ω) Z-scan responses in Cu2O when the input laser frequency ω is tuned to the two-photon quadrupole polariton resonance. The Z-scan response at ω allows us to accurately estimate the absolute number of polaritons generated via two-photon absorption. A striking dip is observed near the 2ω Z-scan focus which basically arises from Auger-type recombination of polaritons. Under high excitation levels, the 3ω Z-scan shows strong third harmonic generation. Based on the nonlinear optical parameters determined, we estimate the experimental polariton density achievable and propose a direction for polariton-based Bose-Einstein condensation in Cu2O .

  4. Active control of the strong coupling regime between porphyrin excitons and surface plasmon polaritons

    NARCIS (Netherlands)

    Berrier, A.; Cools, R.; Arnold, C.; Offermans, P.; Crego-Calama, M.; Brongersma, S.H.; Gomez-Rivas, J.

    2011-01-01

    We experimentally demonstrate the active control of the coupling strength between porphyrin dyes and surface plasmon polaritons supported by a thin gold layer. This control is externally exerted by a gas flow and is reversible. The hybridized exciton-polariton branches resulting from the

  5. Monolithic phononic crystals with a surface acoustic band gap from surface phonon-polariton coupling.

    Science.gov (United States)

    Yudistira, D; Boes, A; Djafari-Rouhani, B; Pennec, Y; Yeo, L Y; Mitchell, A; Friend, J R

    2014-11-21

    We theoretically and experimentally demonstrate the existence of complete surface acoustic wave band gaps in surface phonon-polariton phononic crystals, in a completely monolithic structure formed from a two-dimensional honeycomb array of hexagonal shape domain-inverted inclusions in single crystal piezoelectric Z-cut lithium niobate. The band gaps appear at a frequency of about twice the Bragg band gap at the center of the Brillouin zone, formed through phonon-polariton coupling. The structure is mechanically, electromagnetically, and topographically homogeneous, without any physical alteration of the surface, offering an ideal platform for many acoustic wave applications for photonics, phononics, and microfluidics.

  6. Surface Plasmon Polaritons of Two-Dimensional Three-Order Dendritic Structures

    Institute of Scientific and Technical Information of China (English)

    王敏凤; 周鲁卫

    2011-01-01

    We study surface plasmon polaritons excited on two-dimensional three-order dendritic structures. Previous studies show that split ring resonators (SRRs) can be used to obtain magnetic resonance, thus sustairdng surface waves behaving like surface plasmon polaritons (SPPs). In this paper, we obtain detailed results on surface plasmon polaritons of several different grating structures and theoretically prove that this kind of structures can sustain SPPs. Besides, since dendritic structures can be fabricated by double template-assisted electrochemical deposition, it is worth noting that fabrication of SPP-based materials might be much easier.

  7. Hyperbolic Metamaterials and Coupled Surface Plasmon Polaritons: comparative analysis

    CERN Document Server

    Li, Tengfei

    2016-01-01

    We investigate the optical properties of sub-wavelength layered metal/dielectric structures, also known as hyperbolic metamaterials (HMMs), using exact analytical Kronig Penney (KP) model. We show that hyperbolic isofrequency surfaces exist for all combinations of layer permittivities and thicknesses, and the largest Purcell enhancements (PE) of spontaneous radiation are achieved away from the nominally hyperbolic region. Detailed comparison of field distributions, dispersion curves, and Purcell factors (PF) between the HMMs and Surface Plasmon Polaritons (SPPs) guided modes in metal/dielectric waveguides demonstrates that HMMs are nothing but weakly coupled gap or slab SPPs modes. Broadband PE is not specific to the HMMs and can be easily attained in single thin metallic layers. Furthermore, large wavevectors and PE are always combined with high loss, short propagation distances and large impedances; hence PE in HMMs is essentially a direct coupling of the energy into the free electron motion in the metal, o...

  8. Localized surface phonon polariton resonances in polar gallium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Kaijun, E-mail: kfeng@nd.edu; Islam, S. M.; Verma, Jai; Hoffman, Anthony J. [Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Streyer, William; Wasserman, Daniel [Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States); Jena, Debdeep [Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14850 (United States)

    2015-08-24

    We demonstrate the excitation of localized surface phonon polaritons in an array of sub-diffraction pucks fabricated in an epitaxial layer of gallium nitride (GaN) on a silicon carbide (SiC) substrate. The array is characterized via polarization- and angle-dependent reflection spectroscopy in the mid-infrared, and coupling to several localized modes is observed in the GaN Reststrahlen band (13.4–18.0 μm). The same structure is simulated using finite element methods and the charge density of the modes are studied; transverse dipole modes are identified for the transverse electric and magnetic polarizations and a quadrupole mode is identified for the transverse magnetic polarization. The measured mid-infrared spectrum agrees well with numerically simulated spectra. This work could enable optoelectronic structures and devices that support surface modes at mid- and far-infrared wavelengths.

  9. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity

    National Research Council Canada - National Science Library

    Lingling Huang; Xianzhong Chen; Benfeng Bai; Qiaofeng Tan; Guofan Jin; Thomas Zentgraf; Shuang Zhang

    2013-01-01

      Surface plasmon polaritons (SPPs) have been widely exploited in various scientific communities, ranging from physics, chemistry to biology, due to the strong confinement of light to the metal surface...

  10. Erbium luminescence imaging of infrared surface plasmon polaritons

    Science.gov (United States)

    Verhagen, E.; Tchebotareva, A. L.; Polman, A.

    2006-03-01

    We demonstrate a new technique to spatially map the propagation and damping of infrared surface plasmon polaritons (SPPs) on metal films using optically active erbium ions as a probe of the SPP field. The bound SPP mode propagating along the Ag/glass interface of a 96nm thick Ag film on glass is excited by illuminating a subwavelength hole array in the metal with 1.49μm light. By imaging the 1.53μm photoluminescence of Er ions positioned in the glass at a distance of 60nm from the Ag/glass interface in a confocal microscope, a SPP beam was observed to propagate along a broad stripe waveguide, with a characteristic propagation length of 76μm. This technique provides a useful tool to study the characteristics of SPP modes at metal-dielectric interfaces in a wide range of geometries.

  11. On-chip photonic Fourier transform with surface plasmon polaritons

    Institute of Scientific and Technical Information of China (English)

    Shan Shan Kou; Guanghui Yuan; Qian wang; Luping Du; Eugeniu Balaur; Daohua Zhang; Dingyuan Tang

    2016-01-01

    The Fourier transform (FT),a cornerstone of optical processing,enables rapid evaluation of fundamental mathematical operations,such as derivatives and integrals.Conventionally,a converging lens performs an optical FT in free space when light passes through it.The speed of the transformation is limited by the thickness and the focal length of the lens.By usingthe wave nature of surface plasmon polaritons (SPPs),here we demonstrate that the FT can be implemented in a planar configuration with a minimal propagation distance of around 10 μm,resulting in an increase of speed by four to five orders of magnitude.The photonic FT was tested by synthesizing intricate SPP waves with their Fourier components.The reduced dimensionality in the minuscule device allows the future development of an ultrafast on-chip photonic information processing platform for large-scale optical computing.

  12. Tension induced surface plasmon-polaritons at graphene-based structure

    Science.gov (United States)

    Khalandi, G.; Namdar, A.; Entezar, S. Roshan

    2017-02-01

    Dispersion properties and field distributions of TM (or p-polarized) surface plasmon-polaritons have been investigated in the system that a strained graphene sheet cladded by two dielectrics. The outcomes show that graphene TM surface plasmon-polaritons are bound confined modes, and the field components penetrate into the dielectric layers in the rang that is very smaller than the wavelength in the free space. At low photon energies, when the tension is along the zigzag (armchair) direction and parallel (perpendicular) to the tangential electric field, the wavelength, propagation length and penetration depth of TM surface plasmon-polaritons increase (decrease) with increasing the strain. Changing the angle between the tension direction and tangential electric field at cases with the constant strain, cause to existence of TM surface plasmon-polaritons in the wider range of frequency.

  13. Generation of Bessel Surface Plasmon Polaritons in a Finite-Thickness Metal Film

    Directory of Open Access Journals (Sweden)

    S. N. Kurilkina

    2013-01-01

    Full Text Available A theory of generation of low- and high-index Bessel surface plasmon polaritons and their superposition in a metal film of a finite thickness is developed. Correct analytical expressions are obtained for the field of two families of Bessel surface plasmon polariton modes formed inside and outside the metal layer. The intensity distribution near the boundary of the layer has been calculated and analyzed. A scheme for the experimental realization of a superposition of Bessel surface plasmon polaritons is suggested. Our study demonstrates that it is feasible to use the superposition of Bessel surface plasmon polaritons as a virtual tip for near-field optical microscopy with a nanoscale resolution.

  14. Nonlocal effect in surface plasmon polariton of ultrathin metal films

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Hong-jie; Yu, Yabin, E-mail: apybyu@hnu.edu.cn; Wu, Reng-lai; Yu, Yan-qin; Wang, Ya-xin

    2015-09-01

    Using the nonlocal conductivity based on quantum response theory, we study the optical properties of p-polarized wave in quartz–metal–film–air structures, especially the influence of nonlocal effect on the surface plasmon polaritons (SPPs) resonance. In absorption spectrum, the resonant peak of SPP is found, and the dependence of the resonant peak on film thickness shows that nonlocal effect in the SPP resonance is enhanced significantly with the decrease of film-thickness, especially in the less than 20 nm metal film. We calculate the surface charge density as a function of frequency, and find that the frequencies at the charge and absorption peaks are the same. This clearly confirms that the absorption peak stems from SPP resonance excitation, and SPPs absorb the energy of the electromagnetic wave via charge oscillations. In the case of SPP resonance, the charge and electric field on the down-surface of thin film are always greater than that on the up-surface; however, the situation is just opposite in the case of no SPP resonance. This implies that the SPP resonance occurs near the down-surface of the film. Moreover, due to the nonlocal response of electric current to the electric field, the energy flow and electric current show anomalous oscillations, and with the increase of film thickness the anomalous oscillations exhibit obvious attenuation.

  15. Coupling of self-assembled InAs quantum dots to surface plasmon polaritons

    DEFF Research Database (Denmark)

    Andersen, Mads Lykke; Stobbe, Søren; Johansen, Jeppe;

    2008-01-01

    InAs quantum dots have been placed at different distances to a silver mirror. We extract the coupling of quantum dots to surface plasmon polaritons as a function of the distance by time-resolved spontaneous emission measurements.......InAs quantum dots have been placed at different distances to a silver mirror. We extract the coupling of quantum dots to surface plasmon polaritons as a function of the distance by time-resolved spontaneous emission measurements....

  16. Dispersion regions overlapping for bulk and surface polaritons in a magnetic-semiconductor superlattice

    CERN Document Server

    Fesenko, Volodymyr I; Tuz, Vladimir R

    2016-01-01

    Extraordinary dispersion features of both bulk and surface polaritons in a finely-stratified magnetic-semiconductor structure which is under an action of an external static magnetic field in the Voigt geometry are discussed in this letter. It is shown that the conditions for total overlapping dispersion regions of simultaneous existence of bulk and surface polaritons can be reached providing a conscious choice of the constitutive parameters and material fractions for both magnetic and semiconductor subsystems.

  17. Nonlinear surface magneto-plasmonics in Kretschmann multilayers

    CERN Document Server

    Razdolski, Ilya; Rasing, Theo; Makarov, Denys; Schmidt, Oliver G; Temnov, Vasily V

    2015-01-01

    The nonlinear magneto-plasmonics aims to utilize plasmonic excitations to control the mechanisms and taylor the efficiencies of the non-linear light frequency conversion at the nanoscale. We investigate the mechanisms of magnetic second harmonic generation in hybrid gold-cobalt-silver multilayer structures, which support propagating surface plasmon polaritons at both fundamental and second harmonic frequencies. Using magneto-optical spectroscopy in Kretschmann geometry, we show that the huge magneto-optical modulation of the second harmonic intensity is dominated by the excitation of surface plasmon polaritons at the second harmonic frequency, as shown by tuning the optical wavelength over the spectral region of strong plasmonic dispersion. Our proof-of-principle experiment highlights bright prospects of nonlinear magneto-plasmonics and contributes to the general understanding of the nonlinear optics of magnetic surfaces and interfaces.

  18. Capacitive-coupled Series Spoof Surface Plasmon Polaritons

    Science.gov (United States)

    Yin, Jia Yuan; Ren, Jian; Zhang, Hao Chi; Zhang, Qian; Cui, Tie Jun

    2016-04-01

    A novel method to realize stopband within the operating frequency of spoof surface plasmon polaritons (SPPs) is presented. The stopband is introduced by a new kind of capacitive-coupled series spoof SPPs. Two conventional H-shaped unit cells are proposed to construct a new unit cell, and every two new unit cells are separated by a gap with certain distance, which is designed to implement capacitive coupling. The original surface impedance matching is disturbed by the capacitive coupling, leading to the stopband during the transmission of SPPs. The proposed method is verified by both numerical simulations and experiments, and the simulated and measured results have good agreements. It is shown that the proposed structure exhibits a stopband in 9-9.5 GHz while the band-pass feature maintains in 5-9 GHz and 9.5-11 GHz. In the passband, the reflection coefficient is less than -10 dB, and the transmission loss is around 3 dB in the stopband, the reflection coefficient is -2 dB, and the transmission coefficient is less than -30 dB. The compact size, easy fabrication and good band-pass and band-stop features make the proposed structure a promising plasmonic device in SPP communication systems.

  19. Engineering absorption and blackbody radiation in the far-infrared with surface phonon polaritons on gallium phosphide

    Energy Technology Data Exchange (ETDEWEB)

    Streyer, W.; Law, S.; Rosenberg, A.; Wasserman, D. [Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801 (United States); Roberts, C.; Podolskiy, V. A. [Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Hoffman, A. J. [Department of Electrical Engineering, University of Notre Dame, South Bend, Indiana 46556 (United States)

    2014-03-31

    We demonstrate excitation of surface phonon polaritons on patterned gallium phosphide surfaces. Control over the light-polariton coupling frequencies is demonstrated by changing the pattern periodicity and used to experimentally determine the gallium phosphide surface phonon polariton dispersion curve. Selective emission via out-coupling of thermally excited surface phonon polaritons is experimentally demonstrated. Samples are characterized experimentally by Fourier transform infrared reflection and emission spectroscopy, and modeled using finite element techniques and rigorous coupled wave analysis. The use of phonon resonances for control of emissivity and excitation of bound surface waves offers a potential tool for the exploration of long-wavelength Reststrahlen band frequencies.

  20. Propagation of S-polarized surface polaritons circumferentially around a locally cylindrical surface

    Energy Technology Data Exchange (ETDEWEB)

    Polanco, J. [Department of Physics, University of Texas, El Paso, TX 79968 (United States); Fitzgerald, R.M., E-mail: rfitzgerald@utep.edu [Department of Physics, University of Texas, El Paso, TX 79968 (United States); Maradudin, A.A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)

    2012-04-02

    The dispersion relation is derived and solved for s-polarized surface polaritons propagating circumferentially around a portion of a cylindrical interface between vacuum and an isotropic dielectric. In the case that the dielectric is convex toward the vacuum these modes are found to be radiative, and consequently are attenuated as they propagate on the cylindrical surface. When the dielectric is concave toward the vacuum the resulting surface polaritons are nonradiative and propagate unattenuated on the cylinder. Such modes do not exist in the case of a planar interface between a homogeneous isotropic dielectric and vacuum. -- Highlights: ► New surface wave. ► Many-branched dispersion curve. ► More nodes in fields as frequency grows.

  1. A silicon-based electrical source of surface plasmon polaritons.

    Science.gov (United States)

    Walters, R J; van Loon, R V A; Brunets, I; Schmitz, J; Polman, A

    2010-01-01

    After decades of process scaling driven by Moore's law, the silicon microelectronics world is now defined by length scales that are many times smaller than the dimensions of typical micro-optical components. This size mismatch poses an important challenge for those working to integrate photonics with complementary metal oxide semiconductor (CMOS) electronics technology. One promising solution is to fabricate optical systems at metal/dielectric interfaces, where electromagnetic modes called surface plasmon polaritons (SPPs) offer unique opportunities to confine and control light at length scales below 100 nm (refs 1, 2). Research groups working in the rapidly developing field of plasmonics have now demonstrated many passive components that suggest the potential of SPPs for applications in sensing and optical communication. Recently, active plasmonic devices based on III-V materials and organic materials have been reported. An electrical source of SPPs was recently demonstrated using organic semiconductors by Koller and colleagues. Here we show that a silicon-based electrical source for SPPs can be fabricated using established low-temperature microtechnology processes that are compatible with back-end CMOS technology.

  2. Development and Application of Surface Plasmon Polaritons on Optical Amplification

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    2014-01-01

    Full Text Available Propagation of surface plasmon polaritons (SPPs along the interface between a metal and a dielectric has attracted significant attention due to its unique optical properties, which has inspired a plethora of fascinating applications in photonics and optoelectronics. However, SPPs suffer from large attenuation because of the ohmic losses in the metal layer. It has become the main bottom-neck problem for the development of high performance plasmonic devices. This limitation can be overcome by providing the material adjacent to the metal with optical gain. In this paper, a review of gain compensation to SPPs is presented. We focus on the spontaneous radiation amplification and simulated radiation amplification. The ohmic loss of metal was greatly improved by introducing optical gain. Then we introduce several gain mediums of dye doped, quantum dots, erbium ion, and semiconductor to compensate optical loss of SPPs. Using gain medium mentioned above can compensate losses and achieve many potential applications, for example, laser, amplifier, and LRSPP discussed.

  3. Surface plasmon polariton excitation by electrostatic modulation and phase grating in indium-tin-oxide coated lithium niobate slabs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao; Zhang, Jingwen; Zhao, Hua, E-mail: zhaohuaz@hit.edu.cn [Institute of Modern Optics, Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Micro-Optics and Photonics Technology of Heilongjiang Province, Harbin 150001 (China)

    2015-08-14

    Excitation of surface plasmon polaritons (SPPs) in a non-metal system in visible regime is discussed. With the assistance of phase grating resulted from photorefractive effect and electrostatic modulation of ITO induced by strong photovoltaic effect in iron-doped LiNbO{sub 3}, phase matching condition could be satisfied for SPP excitation in this semiconductor/dielectric system. Both the phase grating instead of metal grating and electrostatic modulation of semiconductor could be used for the design of tunable plasmonic devices based on nonlinear photorefractive crystals.

  4. Apertureless SNOM imaging of the surface phonon polariton waves: what do we measure?

    Science.gov (United States)

    Kazantsev, D. V.; Ryssel, H.

    2013-10-01

    The apertureless scanning near-field microscope (ASNOM) mapping of surface phonon polariton (SPP) waves being excited at the surface of the SiC polar crystal at a frequency corresponding to the lattice resonance was investigated. The wave with well-defined direction and source position, as well as a well-known propagation law, was used to calibrate the signal of an ASNOM. An experimental proof is presented showing that the signal collected by the ASNOM in such a case is proportional (as a complex number) to the local field amplitude above the surface, regardless of the tip response model. It is shown that the expression describing an ASNOM response, which is, in general case, rather complicated nonlinear function of a surface/tip dielectric constants, wavelength, tip vibration amplitude, tip shape etc., can be dramatically simplified in the case of the SPP waves mapping in a mid-IR range, due to a lucky combination of the tip and surface parameters for the case being considered. A tip vibration amplitude is much less than a running SPP wave field decay height in a normal direction. At the same time, the tip amplitude is larger than a characteristic distance at which a tip-surface electromagnetic near-field interaction plays a significant role.

  5. Surface plasmon polariton-induced hot carrier generation for photocatalysis.

    Science.gov (United States)

    Ahn, Wonmi; Ratchford, Daniel C; Pehrsson, Pehr E; Simpkins, Blake S

    2017-03-02

    Non-radiative plasmon decay in noble metals generates highly energetic carriers under visible light irradiation, which opens new prospects in the fields of photocatalysis, photovoltaics, and photodetection. While localized surface plasmon-induced hot carrier generation occurs in diverse metal nanostructures, inhomogeneities typical of many metal-semiconductor plasmonic nanostructures hinder predictable control of photocarrier generation and therefore reproducible carrier-mediated photochemistry. Here, we generate traveling surface plasmon polaritons (SPPs) at the interface between a noble metal/titanium dioxide (TiO2) heterostructure film and aqueous solution, enabling simultaneous optical and electrochemical interrogation of plasmon-mediated chemistry in a system whose resonance may be continuously tuned via the incident optical excitation angle. To the best of our knowledge, this is the first experimental demonstration of SPP-induced hot carrier generation for photocatalysis. We found electrochemical photovoltage and photocurrent responses as SPP-induced hot carriers drive both solution-based oxidation of methanol and the anodic half-reaction of photoelectrochemical water-splitting in sodium hydroxide solution. A strong excitation angle dependence and linear power dependence in the electrochemical photocurrent confirm that the photoelectrochemical reactions are SPP-driven. SPP-generated hot carrier chemistry was recorded on gold and silver and with two different excitation wavelengths, demonstrating potential for mapping resonant charge transfer processes with this technique. These results will provide the design criteria for a metal-semiconductor hybrid system with enhanced hot carrier generation and transport, which is important for the understanding and application of plasmon-induced photocatalysis.

  6. The complex dispersion relation of surface plasmon polaritons at gold/para-hexaphenylene interfaces

    DEFF Research Database (Denmark)

    Lemke, Christoph; Leißner, Till; Klick, Alwin;

    2014-01-01

    Two-photon photoemission electron microscopy (2P-PEEM) is used to measure the real and imaginary part of the dispersion relation of surface plasmon polaritons at different interface systems. A comparison of calculated and measured dispersion data for a gold/vacuum interface demonstrates the capab......Two-photon photoemission electron microscopy (2P-PEEM) is used to measure the real and imaginary part of the dispersion relation of surface plasmon polaritons at different interface systems. A comparison of calculated and measured dispersion data for a gold/vacuum interface demonstrates...... the capability of the presented experimental approach. A systematic 2P-PEEM study on the dispersion relation of dielectric-loaded gold surfaces shows how effective the propagation of surface plasmon polaritons at a gold/para-hexaphenylene interface can be tuned by adjustment of the dielectric film thickness...

  7. Near-field thermal radiative emission of materials demonstrating near infrared surface polariton resonance

    Science.gov (United States)

    Petersen, Spencer Justin

    Surface polariton mediated near-field radiative transfer exceeds the blackbody limit by orders of magnitude and is quasimonochromatic. Thermophotovoltaic (TPV) power generation consists of converting thermal radiation into useful electrical energy and exhibits a peak performance near the TPV cell bandgap, which is typically located within the near infrared bandwidth. Therefore, an ideal emission source for a nanoscale gap TPV device, in which the emitter and cell are separated by no more than one peak emitted wavelength, will sustain surface polariton resonance at or near the TPV cell bandgap in the near infrared. To date, few materials have been identified that satisfy this requirement. The first objective of this dissertation is to theoretically explore dielectric Mie resonance-based (DMRB) electromagnetic metamaterials for the potential to sustain near infrared surface polariton resonance. Electromagnetic metamaterials are composite media, consisting of subwavelength, repeating unit structures called "meta-atoms." The microscopic configuration of the meta-atom can be engineered, dictating the effective macroscale electromagnetic properties of the bulk metamaterial, including the surface polariton resonance wavelength. DMRB metamaterials consist of dielectric nanoparticles within a host medium and are analyzed using an effective medium theory. The local density of electromagnetic states, an indicator of possibly harvestable energy near an emitting surface, is calculated for two DMRB metamaterials: spherical nanoparticles of 1) silicon carbide, and 2) silicon embedded in a host medium. Results show that the surface polariton resonance of these metamaterials is tunable and, for the silicon metamaterial only, is found in the near infrared bandwidth, making it a viable candidate for use in a nano-TPV device. In order to demonstrate the practicality thereof, the second objective is to fabricate and characterize DMRB metamaterials. Specimens are fabricated by hand

  8. Surface phonon-polariton enhanced optical forces in silicon carbide nanostructures.

    Science.gov (United States)

    Li, Dongfang; Lawandy, Nabil M; Zia, Rashid

    2013-09-09

    The enhanced optical forces induced by surface phonon-polariton (SPhP) modes are investigated in different silicon carbide (SiC) nanostructures. Specifically, we calculate optical forces using the Maxwell stress tensor for three different geometries: spherical particles, slab waveguides, and rectangular waveguides. We show that SPhP modes in SiC can produce very large forces, more than one order of magnitude larger than the surface plasmon-polariton (SPP) forces in analogous metal nanostructures. The material and geometric basis for these large optical forces are examined in terms of dispersive permittivity, separation distance, and operating wavelength.

  9. Exploiting Rydberg Atom Surface Phonon Polariton Coupling for Single Photon Subtraction

    CERN Document Server

    Kübler, H; Sedlacek, J; Zabawa, P; Shaffer, J P

    2013-01-01

    We investigate a hybrid quantum system that consists of a superatom coupled to a surface phonon-polariton. We apply this hybrid quantum system to subtract individual photons from a beam of light. Rydberg atom blockade is used to attain absorption of a single photon by an atomic microtrap. Surface phonon-polariton coupling to the superatom then triggers the transfer of the excitation to a storage state, a single Rydberg atom. The approach utilizes the interaction between a superatom and a Markovian bath that acts as a controlled decoherence mechanism to irreversibly project the superatom state into a single Rydberg atom state that can be read out.

  10. Derivation of the Effective Nonlinear Schrodinger Equations for Dark and Power Law Spatial Plasmon-Polariton Solitons Using Nano Self-Focusing

    Science.gov (United States)

    2011-03-01

    Schrödinger’s equation in dual power law media,” Physics Letters A, Vol. 372, 5941–5943, 2008. 29. Biswas, A., “Optical solitons in a parabolic law media...Agranovich, V. M., V. S. Babichenko, and V. Ya Chernyak, “Nonlinear surface polaritons,” Soviet Physics . JETP Letters , Vol. 32, 512–515, 1980. 33. Stegeman...Fibers to Photonic Crystals, Academic Press, 2003. 2. Stegeman, G. I., L. Jankovic, H. Kim, S. Polyakov , S. Carrasco, L. Torner, C. Bosshard, P. Gunter

  11. Giant enhancement of sum-frequency generation upon excitation of a surface plasmon-polariton

    NARCIS (Netherlands)

    Alieva, E. V.; Petrov, Y. E.; Yakovlev, V. A.; Eliel, E. R.; van der Ham, E. W. M.; Vrehen, Q. H. F.; van der Meer, A. F. G.; Sychugov, V. A.

    1997-01-01

    The generation of the sum frequency of visible (0.5235 mu m) and IP (10 mu m) radiation on smooth and corrugated silver surfaces is investigated. The sum-frequency signal obtained with a visible-range surface plasmon-polariton excited on a corrugated silver-air interface is found to be more than

  12. Surface plasmon polariton excitation by second harmonic generation in single organic nanofibers

    DEFF Research Database (Denmark)

    Simesen, Paw; Søndergaard, Thomas; Skovsen, Esben

    2015-01-01

    Coherent local excitation of surface plasmon polaritons (SPPs) by second-harmonic generation (SHG) in individual aligned crystalline organic functionalized para-phenylene nanofibers deposited on a thin silver film is demonstrated. The SH-SPP generation is considered theoretically and investigated...... to the silver film surface....

  13. Thermal Conductance of a Surface Phonon-Polariton Crystal Made up of Polar Nanorods

    Science.gov (United States)

    Ordonez-Miranda, Jose; Joulain, Karl; Ezzahri, Younes

    2017-02-01

    We demonstrate that the energy transport of surface phonon-polaritons can be large enough to be observable in a crystal made up of a three-dimensional assembly of nanorods of silicon carbide. The ultralow phonon thermal conductivity of this nanostructure along with its high surface area-to-volume ratio allows the predominance of the polariton energy over that generated by phonons. The dispersion relation, propagation length, and thermal conductance of polaritons are numerically determined as functions of the radius and temperature of the nanorods. It is shown that the thermal conductance of a crystal with nanorods at 500 K and diameter (length) of 200 nm (20 μm) is 0.55 nW·K-1, which is comparable to the quantum of thermal conductance of polar nanowires.

  14. Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon.

    Science.gov (United States)

    Derrien, Thibault J-Y; Krüger, Jörg; Itina, Tatiana E; Höhm, Sandra; Rosenfeld, Arkadi; Bonse, Jörn

    2013-12-02

    The formation of near-wavelength laser-induced periodic surface structures (LIPSS) on silicon upon irradiation with sequences of Ti:sapphire femtosecond laser pulse pairs (pulse duration 150 fs, central wavelength 800 nm) is studied theoretically. For this purpose, the nonlinear generation of conduction band electrons in silicon and their relaxation is numerically calculated using a two-temperature model approach including intrapulse changes of optical properties, transport, diffusion and recombination effects. Following the idea that surface plasmon polaritons (SPP) can be excited when the material turns from semiconducting to metallic state, the "SPP active area" is calculated as function of fluence and double-pulse delay up to several picoseconds and compared to the experimentally observed rippled surface areas. Evidence is presented that multi-photon absorption explains the large increase of the rippled area for temporally overlapping pulses. For longer double-pulse delays, relevant relaxation processes are identified. The results demonstrate that femtosecond LIPSS on silicon are caused by the excitation of SPP and can be controlled by temporal pulse shaping.

  15. Graphene surface plasmon polaritons with opposite in-plane electron oscillations along its two surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Huawei; Ruan, Shuangchen, E-mail: scruan@szu.edu.cn; Zhang, Min; Su, Hong; Li, Irene Ling [Shenzhen Key Laboratory of Laser Engineering, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060 (China)

    2015-08-31

    We predict the existence of a surface plasmon polariton (SPP) mode that can be guided by a graphene monolayer, regardless of the sign of the imaginary part of its conductivity. In this mode, in-plane electron oscillations along two surfaces of graphene are of opposite directions, which is very different from conventional SPPs on graphene. Significantly, coating graphene with dielectric films yields a way to guide the SPPs with both sub-wavelength mode widths and ultra-long propagation distances. In particular, the mode characteristics are very sensitive to the chemical potential of graphene, so the graphene-based waveguide can find applications in many optoelectronic devices.

  16. Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Mortensen, Asger

    2011-01-01

    We report surface-plasmon-polariton-induced suppressed transmission through two-dimensional arrays of isolated metal disks with a thickness comparable to optical skin depth of the metal. A transmittance dip of −17:5 dB is achieved at the resonant wavelength of 1524 nm, compared to −12 dB for closed...

  17. Time-resolved detection of surface plasmon polaritons with a scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Ha, T.; Jensen, Jacob Riis;

    1998-01-01

    We present the time-resolved detection of surface plasmon polaritons with an STM. The results indicate that the time resolved signal is due to rectification of coherently superimposed plasmon voltages. The comparison with differential reflectivity measurements shows that the tip itself influences...

  18. Long-range surface plasmon polaritons at THz frequencies in thin semiconductor layers

    Institute of Scientific and Technical Information of China (English)

    Yichen Zhang; Audrey Berrier; Jaime Gómez Rivas

    2011-01-01

    Surface plasmon polaritons (SPPs) are electromagnetic waves coupled to the free charge carriers at the interface between a metal and a dielectric[1].These waves propagate along the interface,while decaying evanescently away from it.The propagation length of SPPs is mainly limited by Ohmic losses in the metal.A possible way to lower these losses is to reduce the penetration of the electromagnetic field inside the metal,which can be achieved by coupling the SPPs at the opposite sides of a thin metallic film.These coupled SPPs are known as long-range surface plasmon polaritons (LRSPPs) and have been thoroughly investigated at optical frequencies in thin layers of noble metals[2].%We present a theoretical investigation of THz long-range surface plasmon polaritons propagating on thin layers of InSb. The metallic behavior of doped semiconductors at THz frequencies allows the excitation of surface plasmon polaritons with propagation and confinement lengths that can be actively controlled. This control is achieved by acting on the free carrier density, which can be realized by changing the temperature of InSb.

  19. Interplay of nonlocal response, damping, and low group velocity in surface-plasmon polaritons

    DEFF Research Database (Denmark)

    Raza, Søren; Mortensen, N. Asger

    2016-01-01

    augmented with quantum mechanical corrections, such as the electron spill-out effect and nonlocal response. Here, we discuss the latter and its implications on the waveguiding characteristics, such as dispersion and group velocity, of the surface-plasmon polariton mode supported at a metal-air interface....

  20. Propagation of surface plasmon polariton in the single interface of gallium lanthanum sulfide and silver

    Science.gov (United States)

    Sagor, Rakibul Hasan; Saber, Md. Ghulam; Amin, Md. Ruhul

    2014-03-01

    The propagation characteristics of the surface-plasmon-polariton (SPP) mode in the single interface of silver (Ag) and gallium lanthanum sulfide (GLS) have been studied both analytically and numerically. The obtained numerical results show an excellent agreement with the analytical ones. The locations of the spatial resonance point along the direction of propagation were determined for the dielectric and the metal.

  1. Local excitation of surface plasmon polaritons by second-harmonic generation in crystalline organic nanofibers

    DEFF Research Database (Denmark)

    Skovsen, Esben; Søndergaard, Thomas; Fiutowski, Jacek

    2012-01-01

    Coherent local excitation of surface plasmon polaritons (SPPs) by second-harmonic generation (SHG) in aligned crystalline organic functionalized para-phenylene nanofibers deposited on a thin silver film is demonstrated. The excited SPPs are characterized using angle-resolved leakage radiation...

  2. Elliptically polarized modes for the unidirectional excitation of surface plasmon polaritons

    NARCIS (Netherlands)

    Compaijen, Paul J.; Malyshev, Victor A.; Knoester, Jasper

    2016-01-01

    We propose a new method for the directional excitation of surface plasmon polaritons by a metal nanoparticle antenna, based on the elliptical polarization of the normal modes of the antenna when it is in close proximity to a metallic substrate. The proposed theoretical model allows for the full char

  3. Surface plasmon polariton generation by light scattering off aligned organic nanofibers

    DEFF Research Database (Denmark)

    Skovsen, Esben; Søndergaard, Thomas; Fiutowski, Jacek

    2012-01-01

    Leakage radiation spectroscopy has been applied to study surface plasmon polariton (SPP) generation by light scattered off aligned organic nanofibers deposited on a thin silver film. The efficiency of SPP generation was studied by angularly resolved leakage radiation spectroscopy as a function...

  4. Application of a grating coupler for surface plasmon polariton excitation in a photoemission electron microscopy experiment

    DEFF Research Database (Denmark)

    Leißner, Till; Jauernik, Stephan; Lemke, Christoph

    Surface plasmon polariton (SPP) excitation at a gold-vacuum interface via 800 nm light pulses mediated by a periodic array of gold ridges is probed at high lateral resolution by means of photoemission electron microscopy (PEEM). We directly monitor and quantify the coupling properties as a function...

  5. Mapping surface plasmon polariton propagation via counter-propagating light pulses

    DEFF Research Database (Denmark)

    Lemke, Christoph; Leißner, Till; Jauernik, Stephan

    2012-01-01

    In an interferometric time-resolved photoemission electron microscopy (ITR-PEEM) experiment, the near-field associated with surface plasmon polaritons (SPP) can be locally sensed via interference with ultrashort laser pulses. Here, we present ITR-PEEM data of SPP propagation at a gold vacuum...

  6. Enhanced surface plasmon polariton propagation length using a buried metal grating

    NARCIS (Netherlands)

    Jose, J.; Segerink, Franciscus B.; Korterik, Jeroen P.; Gomez Casado, A.; Huskens, Jurriaan; Herek, Jennifer Lynn; Offerhaus, Herman L.

    2011-01-01

    We report an enhancement in the propagation length of surface plasmon polaritons (SPPs) on a metallic grating when the grating is buried in the substrate. A template-stripping technique has been used to fabricate the buried grating. Near-field measurements on the buried and an exposed grating show

  7. Data transmission in long-range dielectric-loaded surface plasmon polariton waveguides

    DEFF Research Database (Denmark)

    Kharitonov, S.; Kiselev, R.; Kumar, Ashwani

    2014-01-01

    We demonstrate the data transmission of 10 Gbit/s on-off keying modulated 1550 nm signal through a long-range dielectric-loaded surface plasmon polariton waveguide structure with negligible signal degradation. In the experiment the bit error rate penalties do not exceed 0.6 dB over the 15 nm...

  8. Loss compensation in long-range dielectric loaded surface plasmon polariton waveguides

    NARCIS (Netherlands)

    García Blanco, Sonia Maria; Zouhdi, Said; Begaud, Xavier; Pollnau, Markus; Bozhevolnyi, S.I.

    Loss compensation in long-range dielectric loaded surface plasmon polariton (LR-DLSPP) waveguides has been theoretically studied. Rare-earth-ion-doped potassium double tungstates have been proposed as gain materials because of the elevated gain that they can provide, together with a favorable

  9. Loss compensation in long-range dielectric-loaded surface plasmon-polariton waveguides

    NARCIS (Netherlands)

    García Blanco, Sonia Maria; Pollnau, Markus; Bozhevolnyi, Sergey I.

    2011-01-01

    Loss compensation in long-range dielectric-loaded surface plasmon-polariton waveguides is theoretically analyzed when rare-earth-doped double tungstate crystalline material is used as the gain medium in three different waveguide configurations. We study the effect of waveguide geometry on loss

  10. Multiple omnidirectional defect modes and nonlinear magnetic-field effects in metamaterial photonic superlattices with a polaritonic defect

    Science.gov (United States)

    Robles-Uriza, A. X.; Reyes Gómez, F.; Mejía-Salazar, J. R.

    2016-09-01

    We report the existence of multiple omnidirectional defect modes in the zero-nbar gap of photonic stacks, made of alternate layers of conventional dielectric and double-negative metamaterial, with a polaritonic defect layer. In the case of nonlinear magnetic metamaterials, the optical bistability phenomenon leads to switching from negligible to perfect transmission around these defect modes. We hope these findings have potential applications in the design and development of multichannel optical filters, power limiters, optical-diodes and optical-transistors.

  11. Single-cycle surface plasmon polaritons on a bare metal wire excited by relativistic electrons

    Science.gov (United States)

    Op `T Root, W. P. E. M.; Brussaard, G. J. H.; Smorenburg, P. W.; Luiten, O. J.

    2016-12-01

    Terahertz (THz) pulses are applied in areas as diverse as materials science, communication and biosensing. Techniques for subwavelength concentration of THz pulses give access to a rapidly growing range of spatial scales and field intensities. Here we experimentally demonstrate a method to generate intense THz pulses on a metal wire, thereby introducing the possibility of wave-guiding and focussing of the full THz pulse energy to subwavelength spotsizes. This enables endoscopic sensing, single-shot subwavelength THz imaging and study of strongly nonlinear THz phenomena. We generate THz surface plasmon polaritons (SPPs) by launching electron bunches onto the tip of a bare metal wire. Bunches with 160 pC charge and ~6 ps duration yield SPPs with 6-10 ps duration and 0.4+/-0.1 MV m-1 electric field strength on a 1.5 mm diameter aluminium wire. These are the most intense SPPs reported on a wire. The SPPs are shown to propagate around a 90° bend.

  12. Microwave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes

    Science.gov (United States)

    Li, Yongfeng; Zhang, Jieqiu; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Feng, Dayi; Xu, Zhuo; Qu, Shaobo

    2016-10-01

    We propose the design of wideband birefringent metamaterials based on spoof surface plasmon polaritons (SSPPs). Spatial k-dispersion design of SSPP modes in metamaterials is adopted to achieve high-efficiency transmission of electromagnetic waves through the metamaterial layer. By anisotropic design, the transmission phase accumulation in metamaterials can be independently modulated for x- and y-polarized components of incident waves. Since the dispersion curve of SSPPs is nonlinear, frequency-dependent phase differences can be obtained between the two orthogonal components of transmitted waves. As an example, we demonstrate a microwave birefringent metamaterials composed of fishbone structures. The full-polarization-state conversions on the zero-longitude line of Poincaré sphere can be fulfilled twice in 6–20 GHz for both linearly polarized (LP) and circularly polarized (CP) waves incidence. Besides, at a given frequency, the full-polarization-state conversion can be achieved by changing the polarization angle of the incident LP waves. Both the simulation and experiment results verify the high-efficiency polarization conversion functions of the birefringent metamaterial, including circular-to-circular, circular-to-linear(linear-to-circular), linear-to-linear polarization conversions.

  13. Microwave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes

    Science.gov (United States)

    Li, Yongfeng; Zhang, Jieqiu; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Feng, Dayi; Xu, Zhuo; Qu, Shaobo

    2016-01-01

    We propose the design of wideband birefringent metamaterials based on spoof surface plasmon polaritons (SSPPs). Spatial k-dispersion design of SSPP modes in metamaterials is adopted to achieve high-efficiency transmission of electromagnetic waves through the metamaterial layer. By anisotropic design, the transmission phase accumulation in metamaterials can be independently modulated for x- and y-polarized components of incident waves. Since the dispersion curve of SSPPs is nonlinear, frequency-dependent phase differences can be obtained between the two orthogonal components of transmitted waves. As an example, we demonstrate a microwave birefringent metamaterials composed of fishbone structures. The full-polarization-state conversions on the zero-longitude line of Poincaré sphere can be fulfilled twice in 6–20 GHz for both linearly polarized (LP) and circularly polarized (CP) waves incidence. Besides, at a given frequency, the full-polarization-state conversion can be achieved by changing the polarization angle of the incident LP waves. Both the simulation and experiment results verify the high-efficiency polarization conversion functions of the birefringent metamaterial, including circular-to-circular, circular-to-linear(linear-to-circular), linear-to-linear polarization conversions. PMID:27698443

  14. Compact surface structures for the efficient excitation of surface plasmon-polaritons

    Energy Technology Data Exchange (ETDEWEB)

    De la Cruz, S.; Mendez, E.R. [Division de Fisica Applicada, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Ensenada 22860, BC (Mexico); Macias, D.; Salas-Montiel, R.; Adam, P.M. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP-2060, 10010 Troyes Cedex (France)

    2012-06-15

    We present calculations of the efficiency of excitation of surface plasmon-polaritons (SPPs) with surface structures illuminated by focussed beams. First, it is shown that the low reflectivity observed with broad highly directional beams and periodic gratings does not necessarily imply an efficient coupling to SPPs. We then consider the coupling through surface features like steps, grooves and angled steps, and calculate efficiency maps for these structures as functions of the parameters that define them. Finally, we explore the possibilities of improving the coupling efficiency using periodic structures consisting of a small number of rectangular grooves. We find that a surface section with a length of about four wavelengths can couple as much as 45% of the incident light into a directional SPP. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Surface plasmon polariton band gap structures: implications to integrated plasmonic circuits

    DEFF Research Database (Denmark)

    Bozhevolnyi, S. I.; Volkov, V. S.; Østergaard, John Erland

    2001-01-01

    PBG-based components within a few hundred micrometers, we realized that other two-dimensional waves, e.g., surface plasmon polaritons (SPPs), might be employed for the same purpose. The SPP band gap (SPPBG) has been observed for the textured silver surfaces by performing angular measurements...... of the surface reflectivity. Here we report the results of our experimental and theoretical investigations of waveguiding in the SPPBG structures....

  16. Surface plasmon polariton propagation along a 90 degrees bent line defect in a periodically corrugated metal surface

    DEFF Research Database (Denmark)

    Bozhevolnyi, S.I.; Volkov, V.S.; Leosson, Kristjan

    2001-01-01

    Propagation of surface plasmon polaritons (SPPs) excited in the wavelength range of 720-860 nm at a gold (45-nm-thick) film surface with lithographically fabricated (170-nm-wide and 50-nm-high) scatterers arranged in a 400-nm-period triangular lattice containing a 90 degrees bent line defect...

  17. Interaction of surface plasmon polaritons in heavily doped GaN microstructures with terahertz radiation

    Science.gov (United States)

    Melentev, G. A.; Shalygin, V. A.; Vorobjev, L. E.; Panevin, V. Yu.; Firsov, D. A.; Riuttanen, L.; Suihkonen, S.; Korotyeyev, V. V.; Lyaschuk, Yu. M.; Kochelap, V. A.; Poroshin, V. N.

    2016-03-01

    We present the results of experimental and theoretical studies of the surface plasmon polariton excitations in heavily doped GaN epitaxial layers. Reflection and emission of radiation in the frequency range of 2-20 THz including the Reststrahlen band were investigated for samples with grating etched on the sample surface, as well as for samples with flat surface. The reflectivity spectrum for p-polarized radiation measured for the sample with the surface-relief grating demonstrates a set of resonances associated with excitations of different surface plasmon polariton modes. Spectral peculiarities due to the diffraction effect have been also revealed. The characteristic features of the reflectivity spectrum, namely, frequencies, amplitudes, and widths of the resonance dips, are well described theoretically by a modified technique of rigorous coupled-wave analysis of Maxwell equations. The emissivity spectra of the samples were measured under epilayer temperature modulation by pulsed electric field. The emissivity spectrum of the sample with surface-relief grating shows emission peaks in the frequency ranges corresponding to the decay of the surface plasmon polariton modes. Theoretical analysis based on the blackbody-like radiation theory well describes the main peculiarities of the observed THz emission.

  18. Interaction of surface plasmon polaritons in heavily doped GaN microstructures with terahertz radiation

    Energy Technology Data Exchange (ETDEWEB)

    Melentev, G. A., E-mail: gamelen@spbstu.ru; Shalygin, V. A.; Vorobjev, L. E.; Panevin, V. Yu.; Firsov, D. A. [Department of Physics of Semiconductors and Nanoelectronics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251 (Russian Federation); Riuttanen, L.; Suihkonen, S. [School of Electrical Engineering, Aalto University, Espoo 02150 (Finland); Korotyeyev, V. V.; Lyaschuk, Yu. M.; Kochelap, V. A. [Department of Theoretical Physics, Institute of Semiconductor Physics NASU, Kyiv 03028 (Ukraine); Poroshin, V. N. [Department of Solid State Electronics, Institute of Physics NASU, Kyiv 03028 (Ukraine)

    2016-03-07

    We present the results of experimental and theoretical studies of the surface plasmon polariton excitations in heavily doped GaN epitaxial layers. Reflection and emission of radiation in the frequency range of 2–20 THz including the Reststrahlen band were investigated for samples with grating etched on the sample surface, as well as for samples with flat surface. The reflectivity spectrum for p-polarized radiation measured for the sample with the surface-relief grating demonstrates a set of resonances associated with excitations of different surface plasmon polariton modes. Spectral peculiarities due to the diffraction effect have been also revealed. The characteristic features of the reflectivity spectrum, namely, frequencies, amplitudes, and widths of the resonance dips, are well described theoretically by a modified technique of rigorous coupled-wave analysis of Maxwell equations. The emissivity spectra of the samples were measured under epilayer temperature modulation by pulsed electric field. The emissivity spectrum of the sample with surface-relief grating shows emission peaks in the frequency ranges corresponding to the decay of the surface plasmon polariton modes. Theoretical analysis based on the blackbody-like radiation theory well describes the main peculiarities of the observed THz emission.

  19. Observation of Hot Electrons in Surface-Wave Plasmas Excited by Surface Plasmon Polaritons

    Institute of Scientific and Technical Information of China (English)

    HU Ye-Lin; CHEN Zhao-Quan; LIU Ming-Hai; HONG Ling-Li; LI Ping; ZHENG Xiao-Liang; XIA Guang-Qing; HU Xi-Wei

    2011-01-01

    The electron energy distribution functions (EEDFs) are studied in the planar-type surface-wave plasma (SWP)caused by resonant excitation of surface plasmon polaritons (SPPs) using a single cylindrical probe.Sustained plasma characteristics can be considered as a bi-Maxwellian EEDF,which correspond to a superposition of the bulk low-temperature electron and the high-energy electron beam-like part.The beam component energy is pronounced at about 10eV but the bulk part is lower than 3.5eV.The hot electrons included in the proposed plasmas play a significant role in plasma heating and further affect the discharge chemistry.During the past several years,in the fabrication ofamorphous or crystalline silicon films,diamond film synthesis and carbon nanotube growth,the large-area overdense plasma source has been useful.In electronic device fabrication techniques such as etching,ashing or plasma chemical vapor deposition,overdense electrons and radicals are required,especially hot electrons.Among the various plasma devices,the planar-type surface-wave plasma (SWP) source is an advanced plasma source,which is a type of promising plasma source satisfying the above rigorous requirements for large-area plasma processing.%The electron energy distribution functions (EEDFs) are studied in the planar-type surface-wave plasma (SWP) caused by resonant excitation of surface plasmon polaritons (SPPs) using a single cylindrical probe. Sustained plasma characteristics can be considered as a bi-Maxwellian EEDF, which correspond to a superposition of the bulk low-temperature electron and the high-energy electron beam-like part. The beam component energy is pronounced at about 10 eV but the bulk part is lower than 3.5 eV. The hot electrons included in the proposed plasmas play a significant role in plasma heating and further affect the discharge chemistry.

  20. Experimental demonstration of CMOS-compatible long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs)

    DEFF Research Database (Denmark)

    Zektzer, R.; Desiatov, B.; Mazurski, N.;

    2014-01-01

    We demonstrate the design, fabrication and experimental characterization of long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs) that are compatible with complementary metal-oxide semiconductor (CMOS) technology. The demonstrated waveguide configuration represents...

  1. Strong coupling of Rydberg atoms and surface phonon polaritons on piezoelectric superlattices

    CERN Document Server

    Sheng, Jiteng; Shaffer, James P

    2016-01-01

    We propose a hybrid quantum system where the strong coupling regime can be achieved between a Rydberg atomic ensemble and propagating surface phonon polaritons on a piezoelectric superlattice. By exploiting the large electric dipole moment and long lifetime of Rydberg atoms as well as tightly confined surface phonon polariton modes, it is possible to achieve a coupling constant far exceeding the relevant decay rates. The frequency of the surface mode can be selected so it is resonant with a Rydberg transition by engineering the piezoelectric superlattice. We describe a way to observe the Rabi splitting associated with the strong coupling regime under realistic experimental conditions. The system can be viewed as a new type of optomechanical system.

  2. Surface plasmon polariton assisted red shift in excitonic emission of semiconductor microflowers

    Science.gov (United States)

    Parameswaran, Chithra; Warrier, Anita R.; Bingi, Jayachandra; Vijayan, C.

    2014-10-01

    We report on the study of metal nanoparticle-semiconductor hybrid system composed of β-indium sulfide (β-In2S3) and gold (Au) nanoparticles. β-In2S3 micron sized flower like structures (˜1 μm) and Au nanoparticles (˜10 nm) were synthesized by chemical route. These Au nanoparticles have surface plasmon resonance at ˜ 520 nm. We study the influence of Au surface plasmon polaritons on the radiative properties of the β-In2S3 microflowers. As a result of the coupling between the surface plasmon polaritons and the excitons there is a red shift ˜ 50 nm in emission spectrum of hybrid β-In2S3-Au system. Such hybrid systems provide scope for a control on the optical properties of semiconductor microstructures, thus rendering them suitable for specific device applications in optoelectronics and photovoltaics.

  3. Surface plasmon polariton assisted red shift in excitonic emission of semiconductor microflowers

    Energy Technology Data Exchange (ETDEWEB)

    Parameswaran, Chithra [Centre for Nanotechnology Research, VIT University, Vellore 632014 (India); Warrier, Anita R., E-mail: cvijayan@iitm.ac.in; Bingi, Jayachandra, E-mail: cvijayan@iitm.ac.in; Vijayan, C., E-mail: cvijayan@iitm.ac.in [Indian Institute of Technology Madras, Chennai 600036 (India)

    2014-10-15

    We report on the study of metal nanoparticle-semiconductor hybrid system composed of β-indium sulfide (β-In{sub 2}S{sub 3}) and gold (Au) nanoparticles. β-In{sub 2}S{sub 3} micron sized flower like structures (∼1 μm) and Au nanoparticles (∼10 nm) were synthesized by chemical route. These Au nanoparticles have surface plasmon resonance at ∼ 520 nm. We study the influence of Au surface plasmon polaritons on the radiative properties of the β-In{sub 2}S{sub 3} microflowers. As a result of the coupling between the surface plasmon polaritons and the excitons there is a red shift ∼ 50 nm in emission spectrum of hybrid β-In{sub 2}S{sub 3}-Au system. Such hybrid systems provide scope for a control on the optical properties of semiconductor microstructures, thus rendering them suitable for specific device applications in optoelectronics and photovoltaics.

  4. Diversiform hybrid-polarization surface plasmon polaritons in a dielectric–metal metamaterial

    Directory of Open Access Journals (Sweden)

    Q. Zhang

    2017-04-01

    Full Text Available Hybrid-polarization surface plasmon polaritons (HSPPs at the interface between an isotropic medium and a one-dimensional metal–dielectric metamaterial (MM were discussed, where the metal-layer permittivity was described with the improved Drude model. From the obtained dispersion equations, we predicated five types of HSPPs. One type is the Dyakonov-like surface polariton and another type is the tradition-like surface polarton. The others are new types of HSPPs. We establish a numerical simulation method of the attenuated total reflection (ATR measurement to examine these HSPPs. The results from the ATR spectra are consistent with those from the dispersion equations and indicate the different polarization features of these HSPPs. The numerical results also demonstrate that the observation of each type of HSPPs requires different conditions dictated by the material parameters and the polarization direction of incident light used in the ATR spectra. These results may further widen the space of potential applications of surface plasmon polaritons.

  5. Spontaneous down conversion of surface plasmon polaritons: strong-field consideration

    CERN Document Server

    Hizhnyakov, Vladimir

    2016-01-01

    A non-perturbative theory of the spontaneous down conversion (SDC) of surface plasmon polaritons at a metal-dielectric interface is presented. It is shown that the process is resonantly enhanced for the characteristic power of excitation, typically of the order of tens of watts. At a stronger excitation the yield of SDC decreases rapidly. At a stronger excitation the yield of SDC decreases rapidly. The reason for this decrease is the high rate of the change of surface plasmon polaritons by the laser field, exceeding the rate of the zero-point fluctuations responsible for the SDC process. The obtained results may help one to construct miniature sources of entangled photons for quantum communication.

  6. Surface plasmon-polariton resonance at diffraction of THz radiation on semiconductor gratings

    CERN Document Server

    Spevak, I S; Gavrikov, V K; Shulga, V M; Feng, J; Sun, H B; Kamenev, Yu E; Kats, A V

    2013-01-01

    Resonance diffraction of THz HCN laser radiation on a semiconductor (InSb) grating is studied both experimentally and theoretically. The specular reflectivity suppression due to the resonance excitation of the THz surface plasmon-polariton is observed on a pure semiconductor grating and on semiconductor gratings covered with a thin striped layer of the residual photoresist. Presence of a thin dielectric layer on the grating surface leads to the shift and widening of the plasmon-polariton resonance. A simple analytical theory of the resonance diffraction on a shallow grating covered with a dielectric layer is presented. Its results are in a good accordance with the experimental data. Analytical expressions for the resonance shift and broadening can be useful for sensing data interpretation.

  7. Spontaneous emission noise in long-range surface plasmon polariton waveguide based optical gyroscope.

    Science.gov (United States)

    Wang, Yang-Yang; Zhang, Tong

    2014-01-01

    Spontaneous emission noise is an important limit to the performance of active plasmonic devices. Here, we investigate the spontaneous emission noise in the long-range surface plasmon-polariton waveguide based optical gyroscope. A theoretical model of the sensitivity is established to study the incoherent multi-beam interference of spontaneous emission in the gyroscope. Numerical results show that spontaneous emission produces a drift in the transmittance spectra and lowers the signal-to-noise-ratio of the gyroscope. It also strengthens the shot noise to be the main limit to the sensitivity of the gyroscope for high propagation loss. To reduce the negative effects of the spontaneous emission noise on the gyroscope, an external feedback loop is suggested to estimate the drift in the transmittance spectra and therefor enhance the sensitivity. Our work lays a foundation for the improvement of long-range surface plasmon-polariton gyroscope and paves the way to its practical application.

  8. A study of angle dependent surface plasmon polaritons in nano-hole array structures

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Shankar [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Lawson Health Research Institute, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Najiminaini, Mohamadreza; Carson, Jeffrey J. L. [Lawson Health Research Institute, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada)

    2016-07-21

    We report that the light-matter interaction in metallic nano-hole array structures possess a subwavelength hole radius and periodicity. The transmission coefficient for nano-hole array structures was measured for different angles of incidence of light. Each measured transmission spectrum had several peaks due to surface plasmon polaritons. A theory of the transmission coefficient was developed based on the quantum density matrix method. It was found that the location of the surface plasmon polariton and the heights of the spectral peaks were dependent on the angle of incidence of light. Good agreement was observed between the experimental and theoretical results. This property of these structures has opened up new possibilities for sensing applications.

  9. Surface plasmon polaritons in a composite system of porous silicon and gold

    Energy Technology Data Exchange (ETDEWEB)

    Vainshtein, J. S.; Goryachev, D. N.; Ken, O. S., E-mail: olja.ken@mail.ioffe.ru; Sreseli, O. M. [Ioffe Institute (Russian Federation)

    2015-04-15

    A composite system of silicon quantum dots and gold particles with properties periodically changing along the surface (i.e., a system exhibiting the properties of a diffraction grating) is obtained by a one-step metal-assisted chemical etching. The spectral and angular dependences of the photoresponse for the composite system on single-crystal silicon are studied. The photoresponse peaks were observed, which behavior (the dependence on the parameters of the diffraction grating, wavelength and incidence angles of light) is attributed to the excitation of plasmon-polariton modes at the surface of the composite system with the diffraction grating. At the same time, the obtained values of the wave vectors for these modes are smaller than those calculated for plasmon polaritons excited at the interface between air and metal (gold) diffraction grating.

  10. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  11. Unidirectional generation of surface plasmon polaritons by a single right-angled trapezoid metallic nanoslit

    Science.gov (United States)

    Yang, Xuefeng; Wang, Jun; Hann Lim, Xiao; Xu, Zhengji; Teng, Jinghua; Zhang, Dao Hua

    2017-02-01

    We report theoretical and experimental investigation on a single right-angled trapezoid metallic nanoslit for efficient unidirectional generation of surface plasmon polaritons (SPPs) under normal incidence. The propagated SPPs intensity ratio in two directions is sensitive to the taper angle and metal thickness. Significant intensity ratio at the same propagation distances from the respective slit edges in opposite directions is demonstrated. We believe that the proposed compact unidirectional SPPs generator has high potential for applications in nanolithography and photonic integration.

  12. Long-range surface plasmon polariton nanowire waveguides for device applications

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Nikolajsen, T.; Boltasseva, Alexandra

    2006-01-01

    We report an experimental study of long-range surface plasmon polaritons propagating along metallic wires of sub-micrometer rectangular cross-sections (nanowires) embedded in a dielectric. At telecom wavelengths, optical signals are shown to propagate up to several millimeters along such nanowires...... of plasmonic nanowire waveguides to optical circuits, we demonstrate a compact variable optical attenuator consisting of a single nanowire that simultaneously carries light and electrical current....

  13. Large Optical Nonlinearity of Surface Plasmon Modes on Thin Gold Films

    DEFF Research Database (Denmark)

    Huck, Alexander; Witthaut, Dirk; Kumar, Shailesh

    2013-01-01

    We investigate the optical nonlinear effects of a long-range surface plasmon polariton mode propagating on a thin gold film. These effects may play a key role in the design of future nanophotonic circuits as they allow for the realization of active plasmonic elements. We demonstrate a significant...

  14. Tapered dielectric structure in metal as a wavelength-selective surface plasmon polariton focuser

    Institute of Scientific and Technical Information of China (English)

    Zhang Yang; Zhao Qing; Liao Zhi-Min; Yu Da-Peng

    2009-01-01

    Symmetric tapered dielectric structures in metal have demonstrated applications such as the nanofocusing of surface plasmon polaxitons, as well as the waveguiding of V-channel polaxitons. Yet the fabrication of smooth-surfaced tapered structure remains an obstacle to most researchers. We have successfully developed a handy method to fabricate metal-sandwiched tapered nanostructures simply with electron beam lithography. Though these structures are slightly different from conventional symmetric V-shaped structures, systematic simulations show that similar functionality of surface plasmon polaxiton nanofocusing can still be achieved, When parameters are properly selected, wavelengthselective nanofocusing of surface plasmon polaritons can be obtained.

  15. On the influence of surface plasmon-polariton waves on pattern formation upon laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, E.L., E-mail: gurevich@lat.rub.de [Ruhr-Universität Bochum, Chair of Applied Laser Technology, Universitätsstraße 150, 44801 Bochum (Germany)

    2013-08-01

    Here we analyze whether the laser-induced periodic surface structures (LIPSS), which appear on solid surfaces exposed to single-pulse femtosecond laser radiation, can be explained by excitation of surface plasmon-polariton waves. We demonstrate that excitation of the surface plasmons is impossible in the laser-ablation experiments, since the excitation conditions are not fulfilled. Moreover, properties and morphology of the observed periodic patterns contradict to the theory of the plasmonic nature of the LIPSS. The results are illustrated with experimental examples.

  16. Unidirectional transmission based on polarization conversion and excitation of magnetic or surface polaritons

    Science.gov (United States)

    Wu, Xiaohu; Fu, Ceji

    2017-07-01

    We propose in this work combing a uniaxial crystal slab with a one-dimensional grating to realize unidirectional transmission (UDT). The physical mechanism for the UDT is attributed to polarization conversion with uniaxial crystal slab and excitation of magnetic polaritons (MPs) or surface plasmon polaritons (SPPs) in the grating region. Numerical simulations were performed by taking hexagonal boron nitride as the uniaxial crystal. The results reveal that UDT can be achieved for both TE and TM waves in the mid-infrared and the optical regions if the grating material is respectively selected as silicon carbide (SiC) and silver (Ag) with properly chosen values of the structure's geometric parameters. This work may provide important guidelines for design of novel unidirectional transmission devices.

  17. Unidirectional transmission based on polarization conversion and excitation of magnetic or surface polaritons

    Directory of Open Access Journals (Sweden)

    Xiaohu Wu

    2017-07-01

    Full Text Available We propose in this work combing a uniaxial crystal slab with a one-dimensional grating to realize unidirectional transmission (UDT. The physical mechanism for the UDT is attributed to polarization conversion with uniaxial crystal slab and excitation of magnetic polaritons (MPs or surface plasmon polaritons (SPPs in the grating region. Numerical simulations were performed by taking hexagonal boron nitride as the uniaxial crystal. The results reveal that UDT can be achieved for both TE and TM waves in the mid-infrared and the optical regions if the grating material is respectively selected as silicon carbide (SiC and silver (Ag with properly chosen values of the structure’s geometric parameters. This work may provide important guidelines for design of novel unidirectional transmission devices.

  18. Design considerations for enhancing absorption in semiconductors on metals through surface plasmon polaritons.

    Science.gov (United States)

    Bohn, Christopher D; Agrawal, Amit; Lee, Youngmin; Choi, Charles J; Davis, Matthew S; Haney, Paul M; Lezec, Henri J; Szalai, Veronika A

    2014-04-07

    Surface plasmon polaritons have attracted attention for energy applications such as photovoltaic and photoelectrochemical cells because of their ability to improve optical absorption in thin films. We show that surface plasmon polaritons enhance absorption most significantly in materials with small positive real permittivity and large positive imaginary permittivity, e.g. organics or CdTe. Additional losses, accounting for dissipation in the metal and the existence of a cutoff frequency above which polaritons are no longer bound, are incorporated into efficiency calculations. Owing to these losses, devices with optical absorption based solely on SPPs will necessarily always have a lower efficiency than that predicted by the Shockley-Queisser limit. Calculations are presented for specific materials, including crystalline and amorphous Si, GaAs, CdTe, a P3HT:PCBM blend, α-Fe2O3 and rutile TiO2, as well as for general materials of arbitrary permittivity. Guidelines for selecting absorber materials and determining whether specific materials are good candidates for improving optical absorption with SPPs are presented.

  19. Terahertz surface plasmon polariton propagation and focusing on periodically corrugated metal wires

    CERN Document Server

    Maier, S A; García-Vidal, F J; Martín-Moreno, L; Andrews, Steve R.; Maier, Stefan A.

    2006-01-01

    In this letter we show how the dispersion relation of surface plasmon polaritons (SPPs) propagating along a perfectly conducting wire can be tailored by corrugating its surface with a periodic array of radial grooves. In this way, highly localized SPPs can be sustained in the terahertz region of the electromagnetic spectrum. Importantly, the propagation characteristics of these spoof SPPs can be controlled by the surface geometry, opening the way to important applications such as energy concentration on cylindrical wires and superfocusing using conical structures.

  20. Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Derrien, Thibault J.-Y. [Laboratoire Hubert Curien (LabHC), UMR CNRS 5516 - Université Jean-Monnet. Bâtiment F, 18 rue du Professeur Benoit Lauras, F-42000 Saint-Etienne (France); Laboratoire Lasers, Plasmas et Procédés Photoniques (LP3), UMR CNRS 7341 - Aix-Marseille Université, Parc Technologique et Scientifique de Luminy, Case 917, 163 avenue de Luminy, F-13288 Marseille Cedex 09 (France); Itina, Tatiana E. [Laboratoire Hubert Curien (LabHC), UMR CNRS 5516 - Université Jean-Monnet. Bâtiment F, 18 rue du Professeur Benoit Lauras, F-42000 Saint-Etienne (France); Torres, Rémi; Sarnet, Thierry; Sentis, Marc [Laboratoire Lasers, Plasmas et Procédés Photoniques (LP3), UMR CNRS 7341 - Aix-Marseille Université, Parc Technologique et Scientifique de Luminy, Case 917, 163 avenue de Luminy, F-13288 Marseille Cedex 09 (France)

    2013-08-28

    The mechanisms of ripple formation on silicon surface by femtosecond laser pulses are investigated. We demonstrate the transient evolution of the density of the excited free-carriers. As a result, the experimental conditions required for the excitation of surface plasmon polaritons are revealed. The periods of the resulting structures are then investigated as a function of laser parameters, such as the angle of incidence, laser fluence, and polarization. The obtained dependencies provide a way of better control over the properties of the periodic structures induced by femtosecond laser on the surface of a semiconductor material.

  1. NONLINEAR OPTICS: Stimulated resonant hyper-Raman scattering of light by polaritons in alkali metal vapors

    Science.gov (United States)

    Galaĭchuk, Yu A.; Yashkir, Yu N.

    1989-12-01

    A theory is developed for the calculation of the gain g due to stimulated resonant hyper-Raman scattering of light by polaritons in gaseous media. It is shown that throughout the tuning range of the pump frequency (including one- and two-photon resonances) a maximum of g corresponds to a dispersion curve of polaritons plotted ignoring attenuation. Theoretical results are used to analyze characteristics of hyper-Raman scattering in sodium vapor. It is shown that under normal experimental conditions the splitting of polariton branches is considerable (amounting to tens of reciprocal centimeters on the frequency scale and several angular degrees). The value of g is estimated for two-photon resonances in the case when the pump frequency is tunable in a wide range. The optimal conditions for stimulated hyper-Raman scattering are identified.

  2. Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves

    Science.gov (United States)

    Chiadini, Francesco; Fiumara, Vincenzo; Mackay, Tom G.; Scaglione, Antonio; Lakhtakia, Akhlesh

    2017-08-01

    The effect of changing the temperature on the propagation of electromagnetic surface waves (ESWs), guided by the planar interface of a homogeneous isotropic temperature-sensitive material (namely, InSb) and a temperature-insensitive structurally chiral material (SCM) was numerically investigated in the terahertz frequency regime. As the temperature rises, InSb transforms from a dissipative dielectric material to a dissipative plasmonic material. Correspondingly, the ESWs transmute from Dyakonov-Tamm surface waves into surface-plasmon-polariton waves. The effects of the temperature change are clearly observed in the phase speeds, propagation distances, angular existence domains, multiplicity, and spatial profiles of energy flow of the ESWs. Remarkably large propagation distances can be achieved; in such instances the energy of an ESW is confined almost entirely within the SCM. For certain propagation directions, simultaneous excitation of two ESWs with (i) the same phase speeds but different propagation distances or (ii) the same propagation distances but different phase speeds are also indicated by our results.

  3. Localization of surface plasmon polaritons in hexagonal arrays of Moiré cavities

    Science.gov (United States)

    Balci, Sinan; Kocabas, Askin; Kocabas, Coskun; Aydinli, Atilla

    2011-01-01

    In view of the progress on the confinement of light, we report on the dispersion characteristics of surface plasmon polaritons (SPPs) on two-dimensional Moiré surfaces in the visible part of the electromagnetic spectrum. Polarization dependent spectroscopic reflection measurements show omnidirectional confinement of SPPs. The resonance wavelength of SPP cavity modes can be adjusted by tuning the propagation direction of SPPs. The results may have an impact on the control of spontaneous emission and absorption with applications in light emitting diodes and solar cells, as well as in quantum electrodynamics experiments.

  4. Slowing surface plasmon polaritons on plasmonic coupled cavities by tuning grating grooves

    Science.gov (United States)

    Balci, Sinan; Kocabas, Askin; Kocabas, Coskun; Aydinli, Atilla

    2010-09-01

    We investigate slow surface plasmon polaritons (SPPs) in plasmonic waveguiding bands formed by coupled plasmonic cavities on Moiré surfaces. We demonstrate controlling the group velocity and dispersion of the SPPs by varying the depth of the plasmonic Bragg grating groove. Changing the grating depth results in modification of coupling coefficients between the cavities and hence the SPPs group velocity is altered. Variation in the group velocity and dispersion of SPPs can be measured with polarization dependent spectroscopic reflection measurements. Dispersion of SPPs has been calculated by finite-difference time-domain method in agreement with the experimental data.

  5. Electronic detection of surface plasmon polaritons by metal-oxide-silicon capacitor

    Directory of Open Access Journals (Sweden)

    Robert E. Peale

    2016-09-01

    Full Text Available An electronic detector of surface plasmon polaritons (SPPs is reported. SPPs optically excited on a metal surface using a prism coupler are detected by using a close-coupled metal-oxide-silicon (MOS capacitor. Incidence-angle dependence is explained by Fresnel transmittance calculations, which also are used to investigate the dependence of photo-response on structure dimensions. Electrodynamic simulations agree with theory and experiment and additionally provide spatial intensity distributions on and off the SPP excitation resonance. Experimental dependence of the photoresponse on substrate carrier type, carrier concentration, and back-contact biasing is qualitatively explained by simple theory of MOS capacitors.

  6. Electronic detection of surface plasmon polaritons by metal-oxide-silicon capacitor

    Science.gov (United States)

    Peale, Robert E.; Smith, Evan; Smith, Christian W.; Khalilzadeh-Rezaie, Farnood; Ishigami, Masa; Nader, Nima; Vangala, Shiva; Cleary, Justin W.

    2016-09-01

    An electronic detector of surface plasmon polaritons (SPPs) is reported. SPPs optically excited on a metal surface using a prism coupler are detected by using a close-coupled metal-oxide-silicon (MOS) capacitor. Incidence-angle dependence is explained by Fresnel transmittance calculations, which also are used to investigate the dependence of photo-response on structure dimensions. Electrodynamic simulations agree with theory and experiment and additionally provide spatial intensity distributions on and off the SPP excitation resonance. Experimental dependence of the photoresponse on substrate carrier type, carrier concentration, and back-contact biasing is qualitatively explained by simple theory of MOS capacitors.

  7. Local excitation of surface plasmon polaritons using nitrogen-vacancy centers

    CERN Document Server

    Garcia-Ortiz, Cesar E; Bozhevolnyi, Sergey I

    2016-01-01

    Surface plasmon polaritons (SPPs) are locally excited at silver surfaces using (~100) nm-sized nanodiamonds (NDs) with multiple nitrogen-vacancy (NV) centers (~400). The fluorescence from an externally illuminated (at 532 nm) ND and from nearby NDs, which are not illuminated but produce out-of-plane scattering of SPPs excited by the illuminated ND, exhibit distinctly different wavelength spectra, showing short-wavelength filtering due to the SPP propagation loss. The results indicate that NDs with multiple NV centers can be used as efficient sub-wavelength SPP sources in planar integrated plasmonics for various applications.

  8. Surface plasmon polariton excitation by second harmonic generation in single organic nanofibers.

    Science.gov (United States)

    Simesen, Paw; Søndergaard, Thomas; Skovsen, Esben; Fiutowski, Jacek; Rubahn, Horst-Günter; Bozhevolnyi, Sergey I; Pedersen, Kjeld

    2015-06-15

    Coherent local excitation of surface plasmon polaritons (SPPs) by second-harmonic generation (SHG) in individual aligned crystalline organic functionalized para-phenylene nanofibers deposited on a thin silver film is demonstrated. The SH-SPP generation is considered theoretically and investigated experimentally with angular-resolved leakage radiation spectroscopy for normal incidence of the excitation beam. Both measurements and simulations show asymmetric excitation of left- and right-propagating SH-SPPs, which is explained as an effect of fiber molecules being oriented at an angle relative to the silver film surface.

  9. Efficient out-coupling and beaming of Tamm optical states via surface plasmon polariton excitation

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Garcia, M.; Ho, Y.-L. D.; Taverne, M. P. C.; Chen, L.-F.; Rarity, J. G.; Oulton, R. [Department of Electrical and Electronic Engineering, University of Bristol, Faculty of Engineering, Queen' s Building, University Walk, Bristol BS8 1TR (United Kingdom); Murshidy, M. M. [Department of Physics and Mathematics, University of Hull, Cottingham Road, HU6 7RX Hull (United Kingdom); Department of Physics, Faculty of Science, Helwan University, Helwan (Egypt); Yousef Jameel Science and Technology Research Center, The American University in Cairo (Egypt); Edwards, A. P.; Adawi, A. M. [Department of Physics and Mathematics, University of Hull, Cottingham Road, HU6 7RX Hull (United Kingdom); Serry, M. Y. [Yousef Jameel Science and Technology Research Center, The American University in Cairo (Egypt)

    2014-06-09

    We present evidence of optical Tamm states to surface plasmon polariton (SPP) coupling. We experimentally demonstrate that for a Bragg stack with a thin metal layer on the surface, hybrid Tamm-SPP modes may be excited when a grating on the air-metal interface is introduced. Out-coupling via the grating to free space propagation is shown to enhance the transmission as well as the directionality and polarization selection for the transmitted beam. We suggest that this system will be useful on those devices, where a metallic electrical contact as well as beaming and polarization control is needed.

  10. Integrated-Optics Components Utilizing Long-Range Surface Plasmon Polaritons

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra

    2004-01-01

    This thesis describes a new class of components for integrated optics, based on the propagation of long-range surface plasmon polaritons (LR-SPPs) along metal stripes embedded in a dielectric. These novel components can provide guiding of light as well as coupling and splitting from/into a number...... that the photonic band gap might be expected only for some particular propagation directions. The possibilities of achieving a full band gap (in the surface plane) for LR-SPPs as well as use of the weak coherent-scattering effect are discussed. The effective index contrast, achieved in the investigated metallic...

  11. Tunable Surface Plasmon and Phonon Polariton Interactions for Moderately Doped Semiconductor Surfaces

    Science.gov (United States)

    Janipour, Mohsen; Misirlioglu, Ibrahim Burc; Sendur, Kursat

    2016-10-01

    Spatial charge distribution for biased semiconductors fundamentally differs from metals since they can allow inhomogeneous charge distributions due to penetration of the electric field, as observed in the classical Schottky junctions. Similarly, the electrostatics of the dielectric/semiconductor interface can lead to a carrier depletion or accumulation in the semiconductor side when under applied bias. In this study, we demonstrate that the inhomogeneous carrier accumulation in a moderately p-doped GaAs-dielectric interface can be tailored for tunable plasmonics by an external voltage. Solving Maxwell’s equations in the doped GaAs-dielectric stack, we investigate the tunability of the surface plasmon and phonon polaritons’ interaction via an external bias. The plasmonic mode analysis of such an interface reveals interesting dispersion curves for surface plasmon and phonon polariton interactions that are not possible in metals. We show that the plasmon dispersion curve can be engineered through an external bias using the inherent properties of the p-doped GaAs- dielectric interface.

  12. Tunable Surface Plasmon and Phonon Polariton Interactions for Moderately Doped Semiconductor Surfaces

    Science.gov (United States)

    Janipour, Mohsen; Misirlioglu, Ibrahim Burc; Sendur, Kursat

    2016-01-01

    Spatial charge distribution for biased semiconductors fundamentally differs from metals since they can allow inhomogeneous charge distributions due to penetration of the electric field, as observed in the classical Schottky junctions. Similarly, the electrostatics of the dielectric/semiconductor interface can lead to a carrier depletion or accumulation in the semiconductor side when under applied bias. In this study, we demonstrate that the inhomogeneous carrier accumulation in a moderately p-doped GaAs–dielectric interface can be tailored for tunable plasmonics by an external voltage. Solving Maxwell’s equations in the doped GaAs-dielectric stack, we investigate the tunability of the surface plasmon and phonon polaritons’ interaction via an external bias. The plasmonic mode analysis of such an interface reveals interesting dispersion curves for surface plasmon and phonon polariton interactions that are not possible in metals. We show that the plasmon dispersion curve can be engineered through an external bias using the inherent properties of the p-doped GaAs– dielectric interface.

  13. Near-field relaxation of a quantum emitter to 2D semiconductors: surface dissipation and exciton polaritons

    CERN Document Server

    Karanikolas, Vasilios D; Eastham, Paul R; Bradley, A Louise

    2016-01-01

    The total spontaneous emission rate of a quantum emitter in the presence of an infinite MoS\\textsubscript{2} monolayer is enhanced by several orders of magnitude, compared to its free-space value, due to the excitation of surface exciton polariton modes and lossy modes. The spectral and distance dependence of the spontaneous emission rate are analyzed and the lossy-surface-wave, surface exciton polariton mode and radiative contributions are identified. The transverse magnetic and transverse electric exciton polariton modes can be excited for different emission frequencies of the quantum emitter, and their contributions to the total spontaneous emission rate are different. To calculate these different decay rates, we use the non-Hermitian description of light-matter interactions, employing a Green's tensor formalism. The distance dependence follows different trends depending on the emission energy of quantum emitter. For the case of the lossy surface waves, the distance dependence follows a $z^{-n}$, $n=2,3,4$...

  14. Room temperature organic exciton-polariton flow exploiting high-speed, high-Q propagating modes

    CERN Document Server

    Lerario, Giovanni; Cannavale, Alessandro; Mangione, Federica; Gambino, Salvatore; Dominici, Lorenzo; De Giorgi, Milena; Gigli, Giuseppe; Sanvitto, Daniele

    2015-01-01

    Exciton-polaritons, bosonic quasi-particles formed by the interaction of light and matter, have shown a plethora of exciting phenomena that have been chiefly restricted to inorganic semiconductors and low temperature operation. Only recently, polariton condensation and non-linear effects have been demonstrated with polymers and organic molecules, making these systems suited for a realistic new generation of all-optical devices. However, polariton propagation in the plane of the device, essential for on-chip integration, is still limited by the very strong dissipation inherent to present organic microcavities. Here, we demonstrate strong-coupling of organic excitons with a Bloch surface wave (Q $\\approx$ 3000) which sustains polariton propagation for distances longer than 300 $\\mu$m and polariton lifetimes of about 1 ps, a record value in organic devices. The group velocity of the polariton mode is found to be $\\approx$ 50% the speed of light, about two order of magnitude higher than in any planar microcavity.

  15. Two New Type Surface Polaritons Excited into Nanoholes in Metal Films

    Directory of Open Access Journals (Sweden)

    Minasyan V. N.

    2010-04-01

    Full Text Available We argue that the smooth metal-air interface should be regarded as a distinct dielectric medium, the skin of the metal. Here we present quantized Maxwell’s equations for electromagnetic field in an isotropic homogeneous medium, allowing us to solve the absorption anomaly property of these metal films. The results imply the existence of light quasi-particles with spin one and effective mass m = 2.5 E-5 me which in turn provide the presence of two type surface polaritons into nanoholes in metal films.

  16. Abnormal Cutoff Thickness of Long-Range Surface Plasmon Polariton Modes Guided by Thin Metal Films

    Institute of Scientific and Technical Information of China (English)

    LIU Fang; RAO Yi; HUANG Yi-Dong; ZHANG Wei; PENG Jiang-De

    2007-01-01

    Long-range surface plasmon polariton(LRSPP) modes guided by a thin metal film surrounded by semi-infinite dielectrics with different refractive indices are studied.Our cMculation results show that the cutoff thickness of the metal film does not monotonically increase with refractive index difference △n between the SHbstrate and superstrate.Just because of this abnormal behaviour of cutoff thickness,the existence of LRSPP illustrates complicated situations in asymmetric configurations.For a certain metal film thickness,LRsPP may exist in one.two or three refractive index difference △n regions.

  17. Enhancement of dynamic sensitivity of multiple surface-plasmonic-polaritonic sensor using silver nanoparticles

    CERN Document Server

    Abbas, Farhat; Swiontek, Stephen E; Lakhtakia, Akhlesh

    2015-01-01

    Multiple surface plasmon-polariton (SPP) waves excited at the interface of a homogeneous isotropic metal and a chiral sculptured thin film (STF) impregnated with silver nanoparticles were theoretically assessed for the multiple-SPP-waves-based sensing of a fluid uniformly infiltrating the chiral STF. The Bruggemann homogenization formalism was used in two different modalities to determine the three principal relative permittivity scalars of the silver-nanoparticle-impregnated chiral STF infiltrated uniformly by the fluid. The dynamic sensitivity increased when silver nanoparticles were present, provided their volume fraction did not exceed about 1%.

  18. Determination of the Surface Plasmons Polaritons extraction efficiency from a self-assembled plasmonic crystal

    CERN Document Server

    Frederich, Hugo; Laverdant, Julien; de Marcillac, Willy Daney; Schwob, Catherine; Coolen, Laurent; Maître, Agnès

    2013-01-01

    We experimentally measure and analytically describe the fluorescence enhancement obtained by depositing CdSe/CdS nanocrystals onto a gold plasmonic crystal, a two-dimensional grating of macroscopic size obtained by gold deposition on a self-assembled opal. We show evidences of nanocrystals near-field coupling to the gold Surface Plasmons Polaritons (SPP) followed by grating-induced SPP re-emission to far-field. We develop a theoretical framework and an original method in order to evaluate, from photoluminescence experiments, the SPP extraction efficiency of a grating.

  19. Localized surface plasmon polariton resonance in holographically structured Al-doped ZnO

    Science.gov (United States)

    George, David; Li, Li; Jiang, Yan; Lowell, David; Mao, Michelle; Hassan, Safaa; Ding, Jun; Cui, Jingbiao; Zhang, Hualiang; Philipose, Usha; Lin, Yuankun

    2016-07-01

    In this paper, we studied the localized surface plasmon polariton (SPP) resonance in hole arrays in transparent conducting aluminum-doped zinc oxide (AZO). CMOS-compatible fabrication process was demonstrated for the AZO devices. The localized SPP resonance was observed and confirmed by electromagnetic simulations. Using a standing wave model, the observed SPP was dominated by the standing-wave resonance along (1,1) direction in square lattices. This research lays the groundwork for a fabrication technique that can contribute to the core technology of future integrated photonics through its extension into tunable conductive materials.

  20. An optical pressure sensor based on π-shaped surface plasmon polariton resonator

    Science.gov (United States)

    Duan, Gaoyan; Lang, Peilin; Wang, Lulu; Yu, Li; Xiao, Jinghua

    2016-07-01

    We propose a metal-insulator-metal (MIM) structure which consists of a π-shaped resonator and a surface plasmon polariton (SPP) waveguide. The finite element method (FEM) is employed in the simulation. The results show that this structure forms an optical pressure sensor. The transmission spectra have a redshift with increasing pressure, and the relation between the wavelength shift and the pressure is linear. The nanoscale pressure sensor shows a high sensitivity and may have potential applications in biological and biomedical engineering.

  1. A novel optical pressure sensor based on surface plasmon polariton resonator

    Science.gov (United States)

    Wu, Jing; Lang, Peilin; Chen, Xi; Zhang, Ru

    2016-02-01

    We propose a Metal-Insulator-Metal structure consists of two surface plasmon polaritons (SPPs) and an H-shaped resonator. The reflectance spectrum is numerically simulated by the two-dimensional finite-difference time-domain method. The results show that this structure can act as a pressure sensor. To our knowledge, this is the first proposal to utilize the SPP resonator to form a pressure sensor. The size of the SPP resonator can be as small as a few hundred nanometers. The nano-scale pressure sensor opens a wide field for potential applications in biological and biomedical engineering.

  2. Tunable surface plasmon-polaritons in a gyroelectric slab sandwiched between two graphene layers

    Science.gov (United States)

    Xu, Guoding; Cao, Ming; Liu, Chang; Sun, Jian; Pan, Tao

    2016-05-01

    We study numerically the properties of surface plasmon-polaritons (SPPs) in a gyroelectric slab sandwiched between two graphene layers, where the external static magnetic field is applied in the Voigt geometry. It is shown that the dispersion characteristics and propagation lenghts of the SPPs for both the optical and the acoustic branches can be tuned flexibly by the external magnetic field and graphene's chemical potential, and that the nonreciprocal properties of the SPPs caused by the external magnetic field are rather obvious. The results provide a method for adjusting and improving the dispersion and propagation properties of the SPPs, which might be helpful for the design of the related plasmonic devices.

  3. Gap plasmon resonator arrays for unidirectional launching and shaping of surface plasmon polaritons

    CERN Document Server

    Lei, Zeyu

    2015-01-01

    We report the design and experimental realization of a kind of miniaturized devices for efficient unidirectional launching and shaping of surface plasmon polaritons (SPPs). Each device consists of an array of evenly spaced gap plasmon resonators with varying dimensions. Particle swarm optimization is used to achieve a theoretical two dimensional launching efficiency of about 51%, under the normal illumination of a 5-{\\mu}m waist Gaussian beam at 780 nm. By modifying the wavefront of the SPPs, unidirectional SPPs with focused, Bessel and Airy profiles are launched and imaged with leakage radiation microscopy.

  4. Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Bozhevolnyi, Sergey I.; Søndergaard, Thomas

    2005-01-01

    We design, fabricate and investigate compact Z-add-drop (ZAD) filters for long-range surface plasmon polaritons (LR-SPPs) at telecom wavelengths. The ZAD filter for LR-SPPs consists of two ridge gratings formed by periodic gold thickness modulation at the intersections of three zigzag-crossed gold...... stripes embedded in polymer. We investigate influence of the grating length and crossing angle on the filter characteristics and demonstrate a 10o-ZAD filter based on 80-mm-long gratings that exhibit a 15-dB dip (centered at ~1.55 mm) in transmission of the direct arm along with the corresponding ~13-nm...

  5. Amplitude and phase of surface plasmon polaritons excited at a step edge

    DEFF Research Database (Denmark)

    Klick, Alwin; de la Cruz, Sergio; Lemke, Christoph

    2016-01-01

    A combined experimental and theoretical study on the laser-induced excitation of surface plasmon polaritons (SPP) at well-defined step edges of a gold–vacuum interface is presented. As a relevant parameter determining the coupling efficiency between laser field and SPP, we identify the ratio...... between step height h and excitation wavelength λ. For specific values of h/λ, an almost complete suppression of SPP excitation is observed, which corresponds to a condition of constructive interference between the waves reflected at the top and bottom of the step. Experiment and theory show, furthermore...

  6. Surface plasmon polaritons in topological insulator nano-films and superlattices.

    Science.gov (United States)

    Deshko, Yury; Krusin-Elbaum, Lia; Menon, Vinod; Khanikaev, Alexander; Trevino, Jacob

    2016-04-04

    We investigate the propagation of surface plasmon polaritons (SPPs) in thin films of topological insulators. Cases of single films and multilayered stacks are analyzed. The materials considered are second generation three dimensional topological insulators Bi2Se3, Bi2Te3, and Sb2Te3. Dispersion relations and propagation lengths of SPPs are estimated numerically, taking into account the variation of bulk dielectric functions of topological insulators, as well as substrate, using the Drude-Lorentz model. The key factors affecting propagation length are identified and experimental modifications for tuning the dispersion relations are proposed. The apparent discrepancy between the experimental data and previously considered theory is resolved.

  7. Circular polarization analyzer with polarization tunable focusing of surface plasmon polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Sen; Zhang, Yan, E-mail: yzhang@mail.cnu.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Beijing Key Laboratory for Metamaterials and Devices, and Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048 (China); Wang, Xinke [Beijing Key Laboratory for Metamaterials and Devices, and Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048 (China); Kan, Qiang [State Key Laboratory for Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Qu, Shiliang [Optoelectronics Department, Harbin Institute of Technology at Weihai, Weihai 264209 (China)

    2015-12-14

    A practical circular polarization analyzer (CPA) that can selectively focus surface plasmon polaritons (SPPs) at two separate locations, according to the helicity of the circularly polarized light, is designed and experimentally verified in the terahertz frequency range. The CPA consists of fishbone-slit units and is designed using the simulated annealing algorithm. By differentially detecting the intensities of the two SPPs focuses, the helicity of the incident circularly polarized light can be obtained and the CPA is less vulnerable to the noise of incident light. The proposed device may also have wide potential applications in chiral SPPs photonics and the analysis of chiral molecules in biology.

  8. Numerical Studies of s-Polarized Surface Plasmon Polaritons at the Interface Associated with Metamaterial

    Institute of Scientific and Technical Information of China (English)

    YAN Bao-Rong; LV Jian-Hong; KONG Ling-Hua; HU Xi-Wei

    2010-01-01

    @@ The s-polarized surface plasmon polaritons(SPPs)at the interface between dielectric and metamaterial are studied,and the dispersion relations of SPPs are also presented.Using the prism coupling mechanism,we obtain the attenuated total reflection(ATR)spectra in the frequency regime based on the Otto configuration.It is found that the thickness of the dielectric in the configuration and the small damping of the metamaterial affect the coupling strength significantly without changing the coupling frequency.Furthermore,the optimized thickness of the dielectric decreases with a larger damping,and the coefficient F of the metamaterial also determines the coupling frequency and strength.

  9. Phase effects in guided mode resonances II: measuring the angular phase of a surface plasmon polariton

    Science.gov (United States)

    Theisen, M. J.; Brown, T. G.

    2015-02-01

    We show how the phase of a resonant interaction between a focused beam and a guided mode can be directly observed in a pupil imaging experiment, in which the irradiance leaving the pupil of a standard microscope is relayed to an image sensor through a combination Wollaston prism, calcite beam splitter and polarizer. We apply the method to the observation of a surface plasmon polariton resonance excited in a corrugated silver film fabricated using electron beam lithography. We discuss how this particular imaging configuration could be adapted for applications in plasmonic optical sensing.

  10. INTERFERENCE REFRACTOMETRY OF TERAHERTZ SURFACE PLASMON-POLARITONS LAUNCHED BY A FREE-ELECTRON LASER

    OpenAIRE

    2013-01-01

    The problem of terahertz (THz) surface plasmon-polaritons (SPP) refractometry, i.e. determination of their complex refractive index κ = κ′ + i ⋅ κ′′ employing interferometric measurements, is considered in the paper. It is stated that one can determine both parts of κ provided the interference pattern formed by a reference bulk wave and the wave produced by the SPP is recorded. The idea was tested for SPP generated by monochromatic radiation (wavelength 140 μm) of Novosibirsk THz free-electro...

  11. Localized surface plasmon polariton resonance in holographically structured Al-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    George, David; Lowell, David; Mao, Michelle; Hassan, Safaa; Philipose, Usha [Department of Physics and Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76203 (United States); Li, Li; Jiang, Yan; Cui, Jingbiao [Department of Physics and Materials Science, University of Memphis, Memphis, Tennessee 38152 (United States); Ding, Jun; Zhang, Hualiang [Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Lin, Yuankun [Department of Physics and Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76203 (United States); Department of Electrical Engineering, University of North Texas, Denton, Texas 76203 (United States)

    2016-07-28

    In this paper, we studied the localized surface plasmon polariton (SPP) resonance in hole arrays in transparent conducting aluminum-doped zinc oxide (AZO). CMOS-compatible fabrication process was demonstrated for the AZO devices. The localized SPP resonance was observed and confirmed by electromagnetic simulations. Using a standing wave model, the observed SPP was dominated by the standing-wave resonance along (1,1) direction in square lattices. This research lays the groundwork for a fabrication technique that can contribute to the core technology of future integrated photonics through its extension into tunable conductive materials.

  12. Coupling effect of surface plasmon polaritons in single-negative lamellar heterostructure

    Institute of Scientific and Technical Information of China (English)

    Lin Zhou; Yongyuan Zhu

    2008-01-01

    Propagation characteristics of surface plasmon polaritons (SPPs) in the lamellar heterostructure, which is actually a SPP waveguide array, constructed by two kinds of single negative (SNG) material layers stacked alternatively are investigated. Based on the finite element method (FEM), the negative-refraction (NR) property is demonstrated when the electromagnetic wave penetrates through free space into such SNG lamellar structure. A clear view of the underlying physics of NR is presented qualitatively that is mainly related to the coupled SPPs. The strong coupling effect leads to the novel SPP dispersion curves and then the anomalous propagation characteristics.

  13. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Larsen Lausen, Jens; García Ortíz, César Eduardo

    2016-01-01

    polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces...... protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the first case, we concentrate on monitoring differences in fluorescence spectra obtained from a source ND, which is illuminated by a pump laser, and from a scattering ND illuminated only...

  14. Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide

    DEFF Research Database (Denmark)

    Xiao, Binggang; Li, Sheng-Hua; Xiao, Sanshui

    2016-01-01

    Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN...... and satellite communication interference simultaneously. Both the cutoff frequency and the notch frequency are sensitive to the structure parameters, and the cut-off frequency can reach 20 GHz. An adiabatic transition relying on gradient hole-size and flaring ground is designed to effectively couple energy...

  15. Exciting Graphene Surface Plasmon Polaritons through Light and Sound Interplay

    KAUST Repository

    Farhat, Mohamed

    2013-12-05

    We propose a concept that allows for efficient excitation of surface plasmon spolaritons (SPPs) on a thin graphene sheet located on a substrate by an incident electromagnetic field. Elastic vibrations of the sheet, which are generated by a flexural wave, act as a grating that enables the electromagnetic field to couple to propagating graphene SPPs. This scheme permits fast on-off switching of the SPPs and dynamic tuning of their excitation frequency by adjusting the vibration frequency (grating period). Potential applications include single molecule detection and enhanced control of SPP trajectories via surface wave patterning of graphene metasurfaces. Analytical calculations and numerical experiments demonstrate the practical applicability of the proposed concept.

  16. Experimental studies of surface plasmon polariton band gap effect

    DEFF Research Database (Denmark)

    Volkov, V. S.; Bozhevolnyi, S. I.; Leosson, K.;

    2003-01-01

    the dependence of the SPP band gap (SPPBG) effect manifested via the SPP reflection and guiding (along line defects) on the parameters of the surface structures (period, filling factor and lattice orientation). We find that the SPPBG effect is stronger along &ggr;K direction for all investigated periodic...

  17. Photonic bandgap structures for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Boltasseva, Alexandra; Søndergaard, Thomas

    2005-01-01

    -size thickness variations result in the pronounced band gap effect, and obtain very good agreement between measured and simulated (transmission and reflection) spectra. This effect is exploited to realize a compact wavelength add-drop filter with the bandwidth of -20 nm centered at 1550 nm. The possibilities...... of achieving a full bandgap (in the surface plane) for LR-SPPs are also discussed....

  18. Ultrathin 90-degree sharp bends for spoof surface plasmon polaritons

    DEFF Research Database (Denmark)

    Yang, Yihao; Chen, Hongsheng; Xiao, Sanshui;

    2015-01-01

    surface plasmons around 90-degree sharp bends on ultrathin metallic films in the microwave regime. We demonstrate that by judiciously engineering the structure, the dispersion relation can be designed to reduce the scattering. Furthermore, the reflection can be suppressed by proper structural decoration...

  19. Directional Nanoslit-Bump Coupler for Surface Plasmon Polaritons

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-Liang; ZHAO De-Yin; ZHOU Chuan-Hong; JIANG Xun-Ya

    2008-01-01

    We investigate a p-polarized plane wave transmitted through a metallic slit-bump nanostructure using the finite difference time domain simulation.It is found that narrow bumps with suitable separation can diffract surface plasmons into highly directional collimating beams,The number and directionality of the beams can be controlled by adjusting the geometry parameters of the nanostructure.The structure with optimized parameters may be interesting for practical applications as directional nanoslit SPP-light coupler in integrated photonic devices.

  20. Anisotropy-assisted non-scattering coherent absorption of surface plasmon-polaritons

    CERN Document Server

    Ignatov, Anton I; Baranov, Denis G

    2016-01-01

    The ability to control propagation of electromagnetic guided modes lies at the heart of integrated nanophotonics. Surface plasmon-polaritons are a class of guided modes which can be employed in integrated optical systems. Here, we present a theoretical design of a coherent surface plasmon absorber which can perfectly harvest energy of coherently incident surface plasmons without parasitic scattering into free space modes. Excitation of free space modes which usually accompanies scattering of a surface plasmon by an interface boundary is avoided due to specially tailored anisotropy of the absorber. The concept of coherent SPP absorber is analyzed numerically for spatially non-uniform and finite-size structures. We believe that our results will be important for the development of integrated nanoplasmonic systems.

  1. Proposal for a self-excited electrically driven surface plasmon polariton generator

    Science.gov (United States)

    Bordo, V. G.

    2017-01-01

    We propose a generator of surface plasmon polaritons (SPPs) which, unlike spasers or plasmon lasers, does not require stimulated emission in the system. Its principle of operation is based on a positive feedback which an ensemble of classical oscillating dipoles experiences from a reflective surface located in its near field. The generator design includes a nanocavity between two metal surfaces which contains metal nanoparticles in its interior. The whole structure is placed onto a prism surface that allows one to detect the generated SPPs in the Kretschmann configuration. The generation process is driven by a moderate DC voltage applied between the metal covers of the cavity. Both the generation criterion and the steady-state operation of the generator are investigated.

  2. Surface polaritons in two-dimensional left-handed photonic crystals

    CERN Document Server

    Zeng Yong; Fu Ying; Chen Xiao Shuang; Lu Wei; Agren, Hans

    2006-01-01

    Using an extended plane-wave-based transfer-matrix method, the photonic band structures and the corresponding transmission spectrum of a two-dimensional left-handed photonic crystal are calculated. Comparisons between the periodic structure with a single left-handed cylindric rod are made, and many interesting similarities are found. It is shown that, due to the localized surface polaritons presented by an isolated left-handed rod, there exist many exciting physical phenomena in high-dimensional left-handed photonic crystals. As direct results of coupling of the localized surface polaritons of neighboring left-handed rod, a lot of almost dispersionless bands, anti-crossing behavior, and a zero $\\bar{n}$ gap are exhibited in the left-handed periodic structure. Moreover, in a certain frequency region, except distorted by a lot of anti-crossing behavior, there exists a continual dispersion relation, which can be explained by the long-wavelength approximation. It is also pointed out that high-dimensional left-han...

  3. When are Surface Plasmon Polaritons Excited in the Kretschmann-Raether configuration?

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Jonathan J.; Haratyunyan, Hayk; Rosenmann, Daniel; Divan, Ralu; Wiederrecht, Gary P; Gray, Stephen K.

    2015-04-23

    It is widely believed that the reflection minimum in a Kretschmann-Raether experiment results from direct coupling into surface plasmon polariton modes. Our experimental results provide a surprising discrepancy between the leakage radiation patterns of surface plasmon polaritons (SPPs) launched on a layered gold/germanium film compared to the K-R minimum, clearly challenging this belief. We provide definitive evidence that the reflectance dip in K-R experiments does not correlate with excitation of an SPP mode, but rather corresponds to a particular type of perfectly absorbing (PA) mode. Results from rigorous electrodynamics simulations show that the PA mode can only exist under external driving, whereas the SPP can exist in regions free from direct interaction with the driving field. These simulations show that it is possible to indirectly excite propagating SPPs guided by the reflectance minimum in a K-R experiment, but demonstrate the efficiency can be lower by more than a factor of 3. We find that optimal coupling into the SPP can be guided by the square magnitude of the Fresnel transmission amplitude.

  4. An Efficient Large-Area Grating Coupler for Surface Plasmon Polaritons

    CERN Document Server

    Koev, Stephan T; Lezec, Henri J; Aksyuk, Vladimir A

    2011-01-01

    We report the design, fabrication and characterization of a periodic grating of shallow rectangular grooves in a metallic film with the goal of maximizing the coupling efficiency of an extended plane wave (PW) of visible or near-infrared light into a single surface plasmon polariton (SPP) mode on a flat metal surface. A PW-to-SPP power conversion factor > 45 % is demonstrated at a wavelength of 780 nm, which exceeds by an order of magnitude the experimental performance of SPP grating couplers reported to date at any wavelength. Conversion efficiency is maximized by matching the dissipative SPP losses along the grating surface to the local coupling strength. This critical coupling condition is experimentally achieved by tailoring the groove depth and width using a focused ion beam.

  5. Control surface plasmon polaritons propagation efficiently with only one holographic line

    Science.gov (United States)

    Yin, Juan; Chen, Yue-Gang

    2017-04-01

    Controlling surface plasmon polaritons (SPPs) propagation on metal surface is significant for wide applications. Simple and effective structures are needed for SPP propagation controlling. In this paper, the line holography method is proposed to design a simple structure to control SPP wave propagation. The designed structure is composed of only one metal line, rather than a number of grooves in the holograms designed by the common surface electromagnetic wave holography method (SWH). The holographic line structure can control SPPs propagation effectively. Through the line holography method, two holographic line structures are designed to focus aside a plane SPP wave to one or two points. The finite-difference time-domain (FDTD) method is used to simulate the control process. Results show that the holographic line can control the SPP wave propagation with efficiency of 55%, higher than that of the common SWH method (19%).

  6. Surface Plasmon Polariton Excitation in Metallic Layer Via Surface Relief Gratings in Photoactive Polymer Studied by the Finite-Difference Time-Domain Method.

    Science.gov (United States)

    Karpinski, Pawel; Miniewicz, Andrzej

    2011-09-01

    We performed numerical investigations of surface plasmon excitation and propagation in structures made of a photochromic polymer layer deposited over a metal surface using the finite-difference time-domain method. We investigated the process of light coupling into surface plasmon polariton excitation using surface relief gratings formed on the top of a polymer layer and compared it with the coupling via rectangular ridges grating made directly in the metal layer. We also performed preliminary studies on the influence of refractive index change of photochromic polymer on surface plasmon polariton propagation conditions.

  7. Experimental demonstration of CMOS-compatible long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs)

    DEFF Research Database (Denmark)

    Zektzer, Roy; Desiatov, Boris; Mazurski, Noa;

    2015-01-01

    We demonstrate the design, fabrication and experimental characterization of long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs) that are compatible with complementary metal-oxide semiconductor (CMOS) technology. The demonstrated waveguides feature good mode confinement...

  8. Effect of surface-plasmon polaritons on spontaneous emission and intermolecular energy-transfer rates in multilayered geometries

    NARCIS (Netherlands)

    Marocico, C. A.; Knoester, J.

    2011-01-01

    We use a Green's tensor method to investigate the spontaneous emission rate of a molecule and the energy-transfer rate between molecules placed in two types of layered geometries: a slab geometry and a planar waveguide. We focus especially on the role played by surface-plasmon polaritons in

  9. Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons

    CERN Document Server

    Zhang, Hao Chi; Zhang, Qian; Fan, Yifeng; Fu, Xiaojian

    2015-01-01

    In modern integrated circuits and wireless communication systems/devices, three key features need to be solved simultaneously to reach higher performance and more compact size: signal integrity, interference suppression, and miniaturization. However, the above-mentioned requests are almost contradictory using the traditional techniques. To overcome this challenge, here we propose time-domain spoof surface plasmon polaritons (SPPs) as the carrier of signals. By designing a special plasmonic waveguide constructed by printing two narrow corrugated metallic strips on the top and bottom surfaces of a dielectric substrate with mirror symmetry, we show that spoof SPPs are supported from very low frequency to the cutoff frequency with strong subwavelength effects, which can be converted to the time-domain SPPs. When two such plasmonic waveguides are tightly packed with deep-subwavelength separation, which commonly happens in the integrated circuits and wireless communications due to limited space, we demonstrate theo...

  10. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons

    Directory of Open Access Journals (Sweden)

    Caldwell Joshua D.

    2015-04-01

    Full Text Available The excitation of surface-phonon-polariton (SPhP modes in polar dielectric crystals and the associated new developments in the field of SPhPs are reviewed. The emphasis of this work is on providing an understanding of the general phenomenon, including the origin of the Reststrahlen band, the role that optical phonons in polar dielectric lattices play in supporting sub-diffraction-limited modes and how the relatively long optical phonon lifetimes can lead to the low optical losses observed within these materials. Based on this overview, the achievements attained to date and the potential technological advantages of these materials are discussed for localized modes in nanostructures, propagating modes on surfaces and in waveguides and novel metamaterial designs, with the goal of realizing low-loss nanophotonics and metamaterials in the mid-infrared to terahertz spectral ranges.

  11. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    CERN Document Server

    Kumar, Shailesh; Garcia-Ortiz, Cesar E; Andersen, Sebastian K H; Roberts, Alexander S; Radko, Ilya P; Smith, Cameron L C; Kristensen, Anders; Bozhevolnyi, Sergey I

    2016-01-01

    Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum-information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the fir...

  12. Variable Optical Attenuator Based on Long-Range Surface Plasmon Polariton Multimode Interference Coupler

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Sun

    2014-01-01

    Full Text Available The fabrication and characterization of a thermal variable optical attenuator based on long-range surface plasmon polariton (LRSPP waveguide with multimode interference architecture were investigated. The surface morphology and waveguide configuration of Au stripe were studied by atomic force microscopy. The fluctuation of refractive index of poly(methyl-methacrylate-glycidyl-methacrylate polymer cladding was confirmed to be less than 3×10-4 within 8 h curing at 120°C. The end-fire excitation of LRSPP mode guiding at 1550 nm along Au stripe indicated that the extinction ratio of attenuator was about 12 dB at a driving power of 69 mW. The measured optical rise time and fall time are 0.57 and 0.87 ms, respectively. These favorable properties promise potentials of this plasmonic device in the application of optical interconnection.

  13. Plasmon-polaritons on a surface with fluctuating impedance: Scattering, localization, stability

    Science.gov (United States)

    Tarasov, Yu. V.; Usatenko, O. V.; Iakushev, D. A.

    2016-08-01

    Scattering of TM-polarized surface plasmon-polariton waves (PPW) by a finite segment of the metal-vacuum interface with randomly fluctuating surface impedance is examined. Solution of the integral equation relating the scattered field with the field of the incident PPW, valid for arbitrary scattering intensity and arbitrary dissipative characteristics of the conductive medium, is analyzed. As a measure of the PPW scattering, the Hilbert norm of the integral scattering operator is used. The strength of the scattering is shown to be determined not only by the parameters of the fluctuating impedance (dispersion, correlation radius and the length of the inhomogeneity region) but also by the conductivity of the metal. If the scattering operator norm is small, the PPW is mainly scattered into the vacuum, thus losing its energy through the excitation of quasi-isotropic bulk Norton waves above the conducting surface. The scattered field intensity is expressed in terms of the random impedance pair-correlation function. Its dependence on the incident and scattered wavenumbers shows that in the case of random-impedance-induced scattering of PPW it is possible to observe the effect analogous to Wood's anomalies on gratings. Under strong scattering, when the norm of the scattering operator becomes large compared to unity, the radiation into free space is strongly suppressed, and, in the limit, the incoming PPW is almost perfectly back-reflected from the inhomogeneous part of the interface. Therefore, within the model of a dissipation-free conducting medium, the surface polariton is unstable against arbitrary small fluctuations of the medium polarizability. Transition from scattering to back-reflection under strong fluctuations of the impedance is interpreted in terms of the Anderson localization.

  14. The road towards polaritonic devices

    Science.gov (United States)

    Sanvitto, Daniele; Kéna-Cohen, Stéphane

    2016-10-01

    Polaritons are quasiparticles that form in semiconductors when an elementary excitation such as an exciton or a phonon interacts sufficiently strongly with light. In particular, exciton-polaritons have attracted tremendous attention for their unique properties, spanning from an ability to undergo ultra-efficient four-wave mixing to superfluidity in the condensed state. These quasiparticles possess strong intrinsic nonlinearities, while keeping most characteristics of the underlying photons. Here we review the most important features of exciton-polaritons in microcavities, with a particular emphasis on the emerging technological applications, the use of new materials for room-temperature operation, and the possibility of exploiting polaritons for quantum computation and simulation.

  15. High-efficiency tri-band quasi-continuous phase gradient metamaterials based on spoof surface plasmon polaritons

    Science.gov (United States)

    Li, Yongfeng; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Zheng, Qiqi; Chen, Hongya; Han, Yajuan; Zhang, Jieqiu; Qu, Shaobo

    2017-01-01

    A high-efficiency tri-band quasi-continuous phase gradient metamaterial is designed and demonstrated based on spoof surface plasmon polaritons (SSPPs). High-efficiency polarizaiton conversion transmission is firstly achieved via tailoring phase differece between the transmisive SSPP and the space wave in orthogonal directions. As an example, a tri-band circular-to-circular (CTC) polarization conversion metamateiral (PCM) was designed by a nonlinearly dispersive phase difference. Using such PCM unit cell, a tri-band quasi-continuous phase gradient metamaterial (PGM) was then realized by virtue of the Pancharatnam-Berry phase. The distribution of the cross-polarization transmission phase along the x-direction is continuous except for two infinitely small intervals near the phases 0° and 360°, and thus the phase gradient has definition at any point along the x-direction. The simulated normalized polarization conversion transmission spectrums together with the electric field distributions for circularly polarized wave and linearly polarized wave demonstrated the high-efficiency anomalous refraction of the quasi-continuous PGM. The experimental verification for the linearly polarized incidence was also provided.

  16. Excitation of surface plasmon polaritons by electron beam with graphene ribbon arrays

    Science.gov (United States)

    Liu, Yong-Qiang; Liu, Pu-Kun

    2017-03-01

    Graphene has emerged as an alternative material to support surface plasmon polaritons (SPPs) with its excellent properties such as the tight electromagnetic field localization, low dissipative loss, and versatile tunability. Thus, graphene surface plasmon polaritons (GSPs) provide an exciting platform to develop a series of novel devices and systems from the optical band to the terahertz (THz) band. In this paper, theoretical and simulated studies about the excitation of SPPs by an injected electron beam with periodic graphene ribbon arrays deposited on a dielectric medium are presented. The analytical dispersion expression of the GSP mode on the graphene ribbon arrays is obtained by using a modal expansion method along with periodic boundary conditions in the structure. With this result, the dispersion relation, propagation loss, and field pattern of the propagating GSPs for both periodic graphene microribbon arrays and the complete graphene sheet are investigated and analyzed in the THz band. It is shown that the electromagnetic field with a better concentration on the interface can be realized with graphene ribbon arrays compared with the graphene sheet for a given frequency. Besides, the excitation of GSPs by an injected electron beam with graphene ribbon arrays is modeled and implemented by the particle-in-cell simulation based on the finite difference time domain algorithm. GSPs can be excited effectively when the dispersion line of the electron beam and SPPs on the graphene ribbon arrays is matched with each other well. Besides, the dependences of output power on electron beam parameters such as the distance of the electron beam above the graphene ribbon surface and beam voltage are studied and analyzed. Finally, the tunability of graphene conductivity via biased voltage with a ground metal is considered and the tunable excitation of GSPs on the structure with biased drive voltage by the injected electron beam is also realized. The present work can find a

  17. Oblique-incidence excitation of surface plasmon polaritons on small metal wires

    CERN Document Server

    Kriesch, Arian

    2008-08-13

    This work reports on the experimental investigation of surface plasmon polaritons (SPP) on cylindrical wires of small diameters. Applying a new technique that was developed by this group and recently reported, single wire and wire array samples of gold (Au) and silver (Ag) with small diameters 400nm < D < 3 mum and high aspect ratios <= 75000 in photonic crystal fibers and single hole capillaries are fabricated. Additionally, effective bulk metal wires of Au and Ag are created by a hybrid technique, including fiber tapering and magnetron sputter deposition for a large number of different diameters between 13 mum to 50 mum. The measurement of the absorption, corresponding to the excitation of SPP modes is realized with a new goniometer-based experimental setup for oblique incidence laser beam scattering at a single wavelength. A device is developed that allows a simultaneous measurement of the scattering amplitude in s- and p-polarization under varied incident angle. For comparison, a model for the di...

  18. Fabrication and optical characterization of long-range surface-plasmon-polariton waveguides in the NIR

    CERN Document Server

    Weber, Markus; Boehm, Florian; Fischer, Peter; Kraus, Marion; Tashima, Toshiyuki; Liebermeister, Lars; Altpeter, Philipp; Weinfurter, Harald

    2016-01-01

    We experimentally demonstrate the propagation of long-range surface plasmon-polaritons in a nobel metal stripe waveguide at an optical wavelength of 780 nm. To minimize propagation damping the lithographically structured waveguide is produced from a thin gold stripe embedded in a dielectric polymer. Our waveguide geometry supports a symmetric fundamental and anti-symmetric first order mode. For the fundamental mode we measure a propagation loss of $(6.12^{+0.66} _{-0.54})$ dB/mm, in good agreement with numerical simulations using a vectorial eigenmode solver. Our results are a promising starting point for coupling fluorescence of individual solid state quantum emitters to integrated plasmonic waveguide structures.

  19. Ultrathin metasurface with topological transition for manipulating spoof surface plasmon polaritons

    CERN Document Server

    Yang, Yihao; Jing, Liqiao; Shao, Zheping; Koschny, Thomas; Soukoulis, Costas M; Chen, Hongsheng

    2016-01-01

    Metasurfaces, with intrinsically planar nature and subwavelength thickness, provide us unconventional methodologies to not only mold the flow of propagating waves but also manipulate near-field waves. Plasmonic metasurfaces with topological transition for controlling surface plasmon polaritons (SPPs) recently have been experimentally demonstrated, which, however, are limited to optical frequencies. In this work, we proposed and experimentally characterized an ultrathin metasurface with the topological transition for manipulating spoof SPPs at low frequency. We demonstrated rich interesting phenomena based on this metasurface, including frequency-dependent spatial localization, non-diffraction propagation, negative refraction, and dispersion-dependent spin-momentum locking of spoof SPPs. Comparing with traditional three-dimensional metamaterials, our metasurface exhibits low propagation loss and compatibility with the photonic integrated circuit, which may find plenty of applications in spatial multiplexers, f...

  20. A Multithread Nested Neural Network Architecture to Model Surface Plasmon Polaritons Propagation

    Directory of Open Access Journals (Sweden)

    Giacomo Capizzi

    2016-06-01

    Full Text Available Surface Plasmon Polaritons are collective oscillations of electrons occurring at the interface between a metal and a dielectric. The propagation phenomena in plasmonic nanostructures is not fully understood and the interdependence between propagation and metal thickness requires further investigation. We propose an ad-hoc neural network topology assisting the study of the said propagation when several parameters, such as wavelengths, propagation length and metal thickness are considered. This approach is novel and can be considered a first attempt at fully automating such a numerical computation. For the proposed neural network topology, an advanced training procedure has been devised in order to shun the possibility of accumulating errors. The provided results can be useful, e.g., to improve the efficiency of photocells, for photon harvesting, and for improving the accuracy of models for solid state devices.

  1. Mid-infrared surface plasmon polariton chemical sensing on fiber-coupled ITO coated glass

    CERN Document Server

    Martinez, Javier; Aguilo, Magdalena; Fernandez, Toney; Solis, Javier; Diaz, Francesc

    2016-01-01

    A novel fiber-coupled ITO coated glass slide sensor for performing surface plasmon polariton chemical monitoring in the 3.5 um mid-IR range is reported. Efficient mid-IR fiber coupling is achieved with 3D laser written waveguides, and the coupling of glass waveguide modes to ITO SPPs is driven by the varying phase matching conditions of different aqueous analytes across the anomalous dispersion range determined by their molecular fingerprints. By means of using both a mid-IR fiber supercontinuum source and a diode laser the excitation of SPPs is demonstrated. The efficient optical monitoring of mid-IR SPPs in smart glass could have a broad range of applications in biological and chemical sensing.

  2. Propagation of long-range surface plasmon polaritons in photonic crystals

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Søndergaard, Thomas; Nikolajsen, T.

    2005-01-01

    We study the interaction of long-range surface plasmon polaritons (LR-SPPs), excited at telecommunication wavelengths, with photonic crystals (PCs) formed by periodic arrays of gold bumps that are arranged in a triangular lattice and placed symmetrically on both sides of a thin gold film embedded...... in polymer. Radiation is delivered to and from the PC structures with the help of LR-SPP guides that consist of 8 mu m wide and 15 nm thick gold stripes attached to wide film sections (of the same thickness) covered with bumps (diameter similar to 300 nm, height up to 150 nm on each side of the film). We......) into the investigated PC structures. Using a self-consistent description based on the Green'S function formalism, we simulate numerically the LR-SPP transmission through and reflection from finite-size PC structures consisting of finite-size scatterers, as well as the LR-SPP guiding along line defects...

  3. Propagation of long-range surface plasmon polaritons in photonic band gap structures

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Søndergaard, Thomas; Nikolajsen, Thomas

    2005-01-01

    We study the interaction of long-range surface plasmon polaritons (LR-SPPs), excited at telecommunication wavelengths, with photonic crystals (PCs) formed by periodic arrays of gold bumps that are arranged in a triangular lattice and placed symmetrically on both sides of a thin gold fil embedded...... in polymer. Radiation is delivered to and from the PC structures with the help of LR-SPP guides that consist of 8 mm wide and 15 nm thick gold stripes attached to wide film sections (of the same thickness) covered with bumps (diameter ~300 nm, height up to 150 nm on each side of the film). We investigate...... structures. Using a self-consistent description based on the Green's function formalism, we simulate numerically the LR-SPP transmission through and reflection from finite-size PC structures consisting of finite-size scatterers, as well as the LR-SPP guiding along line defects in these structures...

  4. Integrated optical gyroscope using active long-range surface plasmon-polariton waveguide resonator.

    Science.gov (United States)

    Zhang, Tong; Qian, Guang; Wang, Yang-Yang; Xue, Xiao-Jun; Shan, Feng; Li, Ruo-Zhou; Wu, Jing-Yuan; Zhang, Xiao-Yang

    2014-01-24

    Optical gyroscopes with high sensitivity are important rotation sensors for inertial navigation systems. Here, we present the concept of integrated resonant optical gyroscope constructed by active long-range surface plasmon-polariton (LRSPP) waveguide resonator. In this gyroscope, LRSPP waveguide doped gain medium is pumped to compensate the propagation loss, which has lower pump noise than that of conventional optical waveguide. Peculiar properties of single-polarization of LRSPP waveguide have been found to significantly reduce the polarization error. The metal layer of LRSPP waveguide is electro-optical multiplexed for suppression of reciprocal noises. It shows a limited sensitivity of ~10(-4) deg/h, and a maximum zero drift which is 4 orders of magnitude lower than that constructed by conventional single-mode waveguide.

  5. Surface polaritons of one-dimensional photonic crystals containing graphene monolayers

    Science.gov (United States)

    Madani, Amir; Roshan Entezar, Samad

    2014-11-01

    We investigated theoretically the existence of surface polaritons (SPs) at the interface of a one-dimensional photonic crystal containing graphene monolayers. It is shown that the structure has a new type of the photonic band gap in the THz region which is strictly omnidirectional for the TM-polarization and can support the SPs for both TM-polarization and TE-polarization. The results show that the characteristics of the SPs depends on the optical properties of the graphene sheets which can be controlled by a gate voltage. We plotted the electromagnetic field profiles of the SPs at the frequency range of the graphene induced band gap and a conventional Bragg gap of the structure. It is found that the SPs at the graphene induced band gap are more localized than the SPs at the Bragg gaps.

  6. Slanted gold mushroom array: a switchable bi/tridirectional surface plasmon polariton splitter.

    Science.gov (United States)

    Shen, Yang; Fang, Guisheng; Cerjan, Alexander; Chi, Zhenguo; Fan, Shanhui; Jin, Chongjun

    2016-08-25

    Surface plasmon polaritons (SPPs) show great promise in providing an ultracompact platform for integrated photonic circuits. However, challenges remain in easily and efficiently coupling light into and subsequently routing SPPs. Here, we theoretically propose and experimentally demonstrate a switchable bi/tridirectional beam splitter which can simultaneously perform both tasks. The photonic device consists of a periodic array of slanted gold 'mushrooms' composed of angled dielectric pillars with gold caps extruding from a periodic array of perforations in a gold film. The unidirectional coupling results from the interference of the in-plane guided modes scattered by a pair of dislocated gold gratings, while the output channel is determined by the polarization of the incident beam. This device, in combination with dynamic polarization modulation techniques, has the potential to serve as a router or switch in plasmonic integrated circuits.

  7. Theoretical Analysis of Interference Nanolithography of Surface Plasmon Polaritons without a Match Layer

    Institute of Scientific and Technical Information of China (English)

    WANG Jing-quan; LIANG Hui-Min; SHI Sha; DU Jing-Lei

    2009-01-01

    Interference nanolithography techniques based on long-range surface plasmon polaritons (LR-SPP) are hardly ever achieved by experiments at present.One key reason is that suitable liquid materials are difficult to find as the match layer connects the metal film and the resist.We redesign a Kretschmann-Raether structure for interference lithography.A polymer layer is coated under the metal film,and an air layer is placed between the polymer layer and the resist layer.This design not only avoids the above-mentioned question of the match layer,but also can form a soft contact between the polymer layer and the resist layer and can protect the exposure pattern.Simulation results confirm that a device with an appropriately thick polymer layer can form high intensity and contrast interference fringes with a critical dimension of about λ/7 in the resist.In addition,the fabrication of the device is very easy.

  8. Properties of Surface Plasmon Polaritons on lossy materials: Lifetimes, periods and excitation conditions

    CERN Document Server

    Derrien, Thibault J -Y; Bonse, Jörn

    2016-01-01

    The possibility to excite Surface Plasmon Polaritons (SPPs) at the interface between two media depends on the optical properties of both media and geometrical aspects. Specific conditions allowing the coupling of light with a plasmon-active interface must be satisfied. Plasmonic effects are well described in noble metals where the imaginary part of the dielectric permittivity is often neglected ("perfect medium approximation"). However, some systems exist for which such approximation cannot be applied, hence requiring a refinement of the common SPP theory. In this context, several properties of SPPs such as excitation conditions, period of the electromagnetic field modulation and SPP lifetime then may strongly deviate from that of the perfect medium approximation. In this paper, calculations taking into account the imaginary part of the dielectric permittivities are presented. The model identifies analytical terms which should not be neglected in the mathematical description of SPPs on lossy materials. These ...

  9. Converting surface plasmon polaritons into spatial bending beams through graded dielectric rectangles over metal film

    Science.gov (United States)

    Li, Hui; Xu, Yongzheng; Wang, Gang; Fu, Tong; Wang, Li; Zhang, Zhongyue

    2017-01-01

    Spatial bending beams, which preserve their spatial shape while propagating along curved trajectories in free space, offer important application in the fields of fiber sensor, optical trapping, and micromanipulation. In this work, two slits are designed on a metal film to excite surface plasmon polaritons (SPPs), and a group of dielectric rectangles over metal film is theoretically proposed to directly convert SPPs into spatial beams showing arbitrary bending. The appropriate locations of the dielectric rectangles are calculated by phase-modulation method. Transverse acceleration and nondiffraction characteristics of spatial bending beams are observed. We further demonstrate that the intensity distribution, shape, and propagation length of spatial beams showing arbitrary bending rely on structural parameters of dielectric rectangles and on the distance between dielectric rectangles and metal film. These findings provide guidance in the design and optimization of bending beam generators.

  10. Nanowires-assisted excitation and propagation of mid-infrared surface plasmon polaritons in graphene

    Science.gov (United States)

    Lu, Hua; Zhao, Jianlin; Gu, Min

    2016-10-01

    We investigate the excitation and propagation of surface plasmon polaritons in a novel graphene hybrid photonic nanostructure, which consists of a graphene sheet and a dielectric layer with partly etched nanowires coated on the silicon substrate. The simulation and analytical results show that the mid-infrared plasmonic wave can be generated in the graphene sheet by normally incident light due to the satisfaction of the wavevector matching condition. Especially, we find that the plasmonic wavelength and spectral width are determined by the width, pitch, and refractive index of the dielectric nanowires, as well as the layer number and the Fermi level of graphene sheet. The analytical calculations agree well with the finite-difference time-domain simulations. These results would provide an new avenue toward the excitation of graphene plasmonics for the manipulation of mid-infrared light at nanoscale.

  11. Experimental demonstration of ultra-wideband and high-efficiency terahertz spoof surface plasmon polaritons coupler

    Science.gov (United States)

    Tang, Heng-He; Ma, Tian-Jun; Liu, Pu-Kun

    2016-05-01

    Spoof surface plasmon polaritons (SSPPs) are promising for subwavelength waveguiding in the terahertz (THz) frequency range. However, they cannot be efficiently excited from spatial propagating or guided waves due to the mismatched momenta. In this paper, a THz coupler is designed to smoothly bridge SSPPs and guided (or propagating) waves. By using a tapered parallel-plate waveguide, the incident energies are efficiently compressed and coupled into a subwavelength gap. Then, the momenta differences are mitigated with a graded grating. The numerical simulations show that the relative bandwidth of the coupler reaches up to 127%, and the maximum coupling efficiency is 99%. More importantly, experiment results in the 0.22 THz-0.33 THz frequency range are also presented to verify the good performance of the coupler. The work provides a technical support for terahertz waveguiding.

  12. Modeling chiral sculptured thin films as platforms for surface-plasmonic-polaritonic optical sensing

    CERN Document Server

    Mackay, Tom G

    2010-01-01

    Biomimetic nanoengineered metamaterials called chiral sculptured thin films (CSTFs) are attractive platforms for optical sensing because their porosity, morphology and optical properties can be tailored to order. Furthermore, their ability to support more than one surface-plasmon-polariton (SPP) wave at a planar interface with a metal offers functionality beyond that associated with conventional SPP--based sensors. An empirical model was constructed to describe SPP-wave propagation guided by the planar interface of a CSTF--infiltrated with a fluid which supposedly contains analytes to be detected--and a metal. The inverse Bruggeman homogenization formalism was first used to determine the nanoscale model parameters of the CSTF. These parameters then served as inputs to the forward Bruggeman homogenization formalism to determine the reference relative permittivity dyadic of the infiltrated CSTF. By solving the coresponding boundary-value problem for a modified Kretschmann configuration, the characteristics of t...

  13. Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons.

    Science.gov (United States)

    Wu, Jin Jei; Hou, Da Jun; Liu, Kexin; Shen, Linfang; Tsai, Chi An; Wu, Chien Jang; Tsai, Dichi; Yang, Tzong-Jer

    2014-11-03

    We apply the concept of spoof surface plasmon polaritons (SPPs) to the design of differential microstrip lines by introducing periodic subwavelength corrugations on their edges. The dispersion relation and field distribution of those lines are analyzed numerically. And then through designing practical coupling circuits, we found that compared with conventional differential microstrip lines, the electromagnetic field can be strongly confined inside the grooves of the corrugated microstrip lines, so the crosstalk between the differential pair and the adjacent microstrip lines is greatly reduced, and the conversion from the differential signal to the common mode signal can also be effectively suppressed. The propagation length of those lines is also very long in a wide band. Moreover, the experimental results in time domain demonstrate those lines perform very well in high-speed circuit. Therefore, those novel kinds of spoof SPPs based differential microstrip lines can be widely utilized in high-density microwave circuits and guarantee signal integrity in high-speed systems.

  14. Reduction of radiation loss at small-radius bend using spoof surface plasmon polariton transmission line.

    Science.gov (United States)

    Tang, Wen Xuan; Zhang, Hao Chi; Liu, Jun Feng; Xu, Jie; Cui, Tie Jun

    2017-01-23

    Spoof surface plasmon polariton (SPP) has been realized at low frequencies through corrugated metallic structures. As two-dimensional application, the ultrathin SPP transmission lines (TLs) have been proposed with great potentials for microwave compact circuits due to the strong field confinement and enhancement, as well as controllable dispersive properties. In this paper, we examine the radiation loss at small-radius bend, which may cause severe crosstalk in highly-integrated circuits or systems, for the SPP TLs. We theoretically analyze that the SPP TL has essential merit of low radiation loss, and show better performance of SPP TL than the conventional microstrip line through numerical simulations and experiments. Both simulated and measured results demonstrate that the new type of transmission line can efficiently suppress the radiation loss at small-radius bend, and hence reduce the crosstalk in circuits and systems.

  15. Engineering optical gradient force from coupled surface plasmon polariton modes in nanoscale plasmonic waveguides

    Science.gov (United States)

    Lu, Jiahui; Wang, Guanghui

    2016-11-01

    We explore the dispersion properties and optical gradient forces from mutual coupling of surface plasmon polariton (SPP) modes at two interfaces of nanoscale plasmonic waveguides with hyperbolic metamaterial cladding. With Maxwell’s equations and Maxwell stress tensor, we calculate and compare the dispersion relation and optical gradient force for symmetric and antisymmetric SPP modes in two kinds of nanoscale plasmonic waveguides. The numerical results show that the optical gradient force between two coupled hyperbolic metamaterial waveguides can be engineered flexibly by adjusting the waveguide structure parameters. Importantly, an alternative way to boost the optical gradient force is provided through engineering the hyperbolic metamaterial cladding of suitable orientation. These special optical properties will open the door for potential optomechanical applications, such as optical tweezers and actuators. Project supported by the National Natural Science Foundation of China (Grant No. 11474106) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2016A030313439).

  16. Rabi oscillations of surface plasmon polaritons in graphene-pair arrays.

    Science.gov (United States)

    Wang, Feng; Qin, Chengzhi; Wang, Bing; Ke, Shaolin; Long, Hua; Wang, Kai; Lu, Peixiang

    2015-11-30

    We investigate the Bloch mode conversion of surface plasmon polaritons in a periodic array of graphene pairs with each consisting of two separated parallel graphene sheets. The employment of graphene pair as a unit cell in the array yields two Bloch modes belonging to different bands. By periodically modulating the permittivity of dielectrics between graphene along the propagation direction, the interband transitions occur and the modes will alternatively couple to each other, similar to traditional Rabi oscillations in quantum systems. The indirect Rabi oscillations can also be observed through introducing transverse modulation momentum. The period of Rabi oscillations can be optimized by taking advantage of the flexible tunability of graphene. The study suggests that the structure have applications in optical switches and mode converters operating on deep-subwavelength scale.

  17. Coupled resonator induced transparency in surface plasmon polariton gap waveguide with two side-coupled cavities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengren, E-mail: zhrenzhang@126.com [School of Science, Chongqing Jiaotong University, Chongqing 400074 (China); Zhang, Liwei [School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Yin, Pengfei; Han, Xiangyu [School of Science, Chongqing Jiaotong University, Chongqing 400074 (China)

    2014-08-01

    We investigate theoretically the generation process of coupled resonator-induced transparency (CRIT) in surface plasmon polariton gap waveguide system containing two side-coupled cavities, which locate at a symmetric position. The CRIT is original from the destructive interference of the two detuned cavities. In contrast with the existing electromagnetically induced transparency (EIT) schemes, the occurrence of the CRIT is caused by the two radiative cavities in waveguide, instead of interference between a dark cavity and radiative cavity. This behavior mimics the quantum interference between two direct excitation pathways in a three-level V-type atom. The transmission lineshape can be tuned between an EIT-like resonant peak and a Lorentzian-like resonant dip by tailoring the detuning of the two cavities. Moreover, we also find that the transparency peak moves to high frequency with a line shift and its Q factor decreases with the increase of coupling distance between the cavities and waveguide.

  18. Photoluminescence from single silicon quantum dots excited via surface plasmon polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Matsuhisa, Koji [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan); Fujii, Minoru, E-mail: fujii@eedept.kobe-u.ac.jp [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan); Imakita, Kenji; Hayashi, Shinji [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan)

    2012-05-15

    Single dot spectroscopy of Si quantum dots (QDs) was performed by using surface plasmon polariton (SPP)-mediated excitation in the attenuated total reflection geometry with a MgF{sub 2}/Ag film on the base of a prism. Thanks to the 16 times enhancement of the incident electric field and very small background signal, PL from single Si QDs was observed clearly. This proves the usefulness of the technique for the detection of inherently weak emission of Si QDs. - Highlights: Black-Right-Pointing-Pointer Metal-enhanced fluorescence for the single dot spectroscopy of Si QDs. Black-Right-Pointing-Pointer Single dot spectroscopy of Si QDs in the attenuated total reflection geometry. Black-Right-Pointing-Pointer Single Si QDs prepared from silica films containing Si QDs.

  19. Reduction of radiation loss at small-radius bend using spoof surface plasmon polariton transmission line

    Science.gov (United States)

    Tang, Wen Xuan; Zhang, Hao Chi; Liu, Jun Feng; Xu, Jie; Cui, Tie Jun

    2017-01-01

    Spoof surface plasmon polariton (SPP) has been realized at low frequencies through corrugated metallic structures. As two-dimensional application, the ultrathin SPP transmission lines (TLs) have been proposed with great potentials for microwave compact circuits due to the strong field confinement and enhancement, as well as controllable dispersive properties. In this paper, we examine the radiation loss at small-radius bend, which may cause severe crosstalk in highly-integrated circuits or systems, for the SPP TLs. We theoretically analyze that the SPP TL has essential merit of low radiation loss, and show better performance of SPP TL than the conventional microstrip line through numerical simulations and experiments. Both simulated and measured results demonstrate that the new type of transmission line can efficiently suppress the radiation loss at small-radius bend, and hence reduce the crosstalk in circuits and systems. PMID:28112238

  20. Negative Photoconductivity Induced by Surface Plasmon Polaritons in the Kretschmann Configuration

    Institute of Scientific and Technical Information of China (English)

    郑京镐; 孙家林; 薛平

    2011-01-01

    Prism coupling in the Kretschmann configuration is a well-known method for the excitation of surface plasmon polaritons(SPPs)in thin films bounded from one side by a prism and from the other side by air.Based on the Kretschmann configuration,we experimentally study the transport properties of a silver thin film with a thickness of 55nm and a width of 500μm undergoing total internal reflection.We observe considerable negative photoconductivity in the film induced by the SPPs excited in this configuration and find that both SPP-electron interactions and SPP-induced heating have contributions to the negative photoconductivity.We believe that the new phenomena,which result from the combination of photonics and electronics,will be useful in relative technical applications and scientific research.%Prism coupling in the Krctschmann configuration is a well-known method for the excitation of surface plasmon polaritons (SPPs) in thin films bounded from one side by a prism and from the other side by air. Based on the Kretschmann configuration, we experimentally study the transport properties of a silver thin Him with a thickness of 55nm and a width of 500μm undergoing total internal reflection. We observe considerable negative photoconductivity in the film induced by the SPPs excited in this configuration and find that both SPP-electron interactions and SPP-induced heating have contributions to the negative photoconductivity. We believe that the new phenomena, which result from the combination of photonics and electronics, will be useful in relative technical applications and scientific research.

  1. Strategies for leukemic biomarker detection using long-range surface plasmon-polaritons

    Science.gov (United States)

    Krupin, O.; Wang, C.; Berini, P.

    2014-09-01

    The suitability and use of long-range surface plasmon-polaritons for leukemic biomarker detection is discussed. A novel optical biosensor comprised of gold straight waveguides embedded in CYTOP with an etched microfluidic channel was tested for detecting leukemia in patient serum. Gold surface functionalization involved the interaction of protein G (PG) with antibodies by first adsorbing PG on bare gold and then antibodies (Immunoglobulin G, IgG). Differentiation between healthy and leukemia patients was based on the difference in ratios of Ig kappa (Igκ) and Ig lambda (Igλ) light chains in both serums. The ratio for a normal patient is ~1.4 - 2, whereas for a leukemia patient this ratio is altered. As a receptor (primary antibodies), goat anti-human anti-IgGκ and anti-IgGλ were used to functionalize the surface. Diluted normal and leukemia patient serums were tested over the aforementioned surfaces. The ratios of mass surface densities of IgGκ:IgGλ for normal serum (NS) and patient serum (PS) were found to be 1.55 and 1.92 respectively.

  2. Application of surface plasmon polaritons in the laser ablation and characterisation of thin aluminium films

    Science.gov (United States)

    Cairns, G. F.; McNeill, D. A.; Dawson, P.

    1999-06-01

    Surface modification of thin aluminium films is both produced and characterised by exciting surface plasmon polaritons in an attenuated total reflection geometry: silica prism/aluminium/ aluminium oxide system. The modification is performed, under ambient conditions, by exposure to a low fluence (pulse of radiation from an excimer laser at wavelength 248 nm. Pre- and post-ablation characterisation of samples is performed at a centre wavelength of 250 nm by using a xenon lamp and optical filtration. Modelling of the characteristic reflectance-angle curves from areas exposed to the laser shows both an increased oxide thickness and the presence of an optically absorbing cermet layer, a region of mixed metal and oxide, between the aluminium and the aluminium oxide. Analysis of the results suggests that the interfacial aluminium/oxide region supporting the surface mode is ablated by means of a non-thermal, bond-breaking mechanism leading to further surface oxide formation and a progressively less complete oxidation process for a finite distance into the aluminium film. However, the ablation is frustrated in the sense that there is little or no net loss of aluminium from the system.

  3. High-efficiency real-time waveform modulator for free space waves based on dispersion engineering of spoof surface plasmon polaritons

    Science.gov (United States)

    Wang, Zhuoluo; Wang, Jiafu; Ma, Hua; Wang, Xin; Meng, Yueyu; Zhang, Jieqiu; Zhao, Yaodong; Qu, Shaobo

    2017-06-01

    Limited by causality, strong dispersion is always accompanied by a high loss for natural materials, so it is very hard to obtain strong dispersion simultaneously with low loss in a narrow band. The nonlinear dispersion curve of spoof surface plasmon polaritons (SSPPs) provides rich potential for dispersion engineering. By tailoring the asymptotic region of the SSPP dispersion curve, a good compromise can be made between strong dispersion and low loss to obtain a dispersive group delay time (GDT). With a delicate GDT design, signals in the free space can be modulated intentionally with high efficiency. As an example, we demonstrated a waveform modulator operating in an X band. Both the simulation and experiment show that the modulator can produce time delays that are linearly dependent on frequency in a 50 MHz frequency band. Our finding may have applications in radar invisibility, analog signal processing, etc.

  4. The Tunable Hybrid Surface Phonon and Plasmon Polariton Modes in Boron Nitride Nanotube and Graphene Monolayer Heterostructures

    CERN Document Server

    Sun, Yu; Cheng, Jiangtao; Liu, Jiansheng

    2014-01-01

    The hybrid modes incorporating surface phonon polariton (SPhP) modes in boron nitride nanotubes (BNNTs) and surface plasmon polariton (SPP) modes in graphene monolayers are theoretically studied. The combination of the 1D BNNTs and 2D graphene monolayer further improves the modal characteristics with electrical tunability. Superior to the graphene monolayers, the proposed heterostructures supports single mode transmission with lateral optical confinement. The modal characteristics can be shifted from SPP-like toward SPhP-like. Both the figure of merit and field enhancement of hybrid modes are improved over 3 times than those of BNNT SPhP modes, which may further enable sub-wavelength mid-infrared applications.

  5. Enhancement and tunability of near-field radiative heat transfer mediated by surface plasmon polaritons in thin plasmonic films

    CERN Document Server

    Boriskina, Svetlana V; Huang, Yi; Zhou, Jiawei; Chiloyan, Vazrik; Chen, Gang

    2016-01-01

    The properties of thermal radiation exchange between hot and cold objects can be strongly modified if they interact in the near field where electromagnetic coupling occurs across gaps narrower than the dominant wavelength of thermal radiation. Using a rigorous fluctuational electrodynamics approach, we predict that ultra-thin films of plasmonic materials can be used to dramatically enhance near-field heat transfer. The total spectrally integrated film-to-film heat transfer is over an order of magnitude larger than between the same materials in bulk form and also exceeds the levels achievable with polar dielectrics such as SiC. We attribute this enhancement to the significant spectral broadening of radiative heat transfer due to coupling between surface plasmon polaritons (SPPs) on both sides of each thin film. We show that the radiative heat flux spectrum can be further shaped by the choice of the substrate onto which the thin film is deposited. In particular, substrates supporting surface phonon polaritons (...

  6. Diagnostics of the efficiency of surface plasmon-polariton excitation by quantum dots via polarization measurements of the output radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kukushkin, V. A., E-mail: vakuk@appl.sci-nnov.ru [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation); Baidus, N. V. [Lobachevsky State University of Nizhni Novgorod (Russian Federation); Zdoroveishchev, A. V. [Lobachevsky State University of Nizhni Novgorod, Physicotechnical Research Institute (Russian Federation)

    2015-06-15

    It is demonstrated that the efficiency of surface plasmon-polariton excitation at a metal-semiconductor interface by active quantum dots can be determined from measurements of the polarization characteristics of the output radiation. Experimentally, the proposed diagnostic method is based on finding the ratio of the intensities of the output radiation with polarizations orthogonal and parallel to the nanoheterostructure plane for two different distances between the quantum-dot layer and the metal-semiconductor interface. These data are then used to obtain the unknown parameters in the proposed mathematical model which makes it possible to calculate the rate of surface plasmon-polariton excitation by active quantum dots. As a result, this rate can be determined without complicated expensive equipment for fast time-resolved measurements.

  7. Imaging of surface plasmon polariton propagation on a Au thin film by using tip-enhanced Rayleigh scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Y., E-mail: y.ogawa@ap.titech.ac.jp [Department of Physics, Tokyo Institute of Technology, Oh-Okayama 2-12-1, Tokyo 152-8551 (Japan); Takahashi, S.; Nakajima, D.; Minami, F. [Department of Physics, Tokyo Institute of Technology, Oh-Okayama 2-12-1, Tokyo 152-8551 (Japan)

    2013-01-15

    Surface plasmon polariton (SPP) propagation on a Au thin film has been observed by tip-enhanced Rayleigh scattering. The interference pattern has been observed around the edge of the film. The interference is due to the near-field scattering light at the tip and SPP radiation from the edge of the film. From the interference width, we evaluated the wave number of SPP on the Au film. By changing the wavelength of the incidence light, we have obtained the dispersion relation of the SPP. The experimentally obtained dispersion relation is well corresponding to the calculated one using bulk Au parameters. - Highlights: Black-Right-Pointing-Pointer We observed surface plasmon polariton propagation on Au film by tip-enhanced Rayleigh scattering. Black-Right-Pointing-Pointer The dispersion relation was obtained by changing the wavelength of the incidence light. Black-Right-Pointing-Pointer The dispersion relation is well corresponding to the calculated one using bulk Au parameters.

  8. On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS.

    Science.gov (United States)

    Liang, Yuan; Yu, Hao; Zhang, Hao Chi; Yang, Chang; Cui, Tie Jun

    2015-10-08

    A low-loss and low-crosstalk surface-wave transmission line (T-line) is demonstrated at sub-THz in CMOS. By introducing periodical sub-wavelength structures onto the metal transmission line, surface plasmon polaritons (SPP) are excited and propagate signals via a strongly localized surface wave. Two coupled SPP T-lines and two quasi-TEM T-lines are both fabricated on-chip, each with a separation distance of 2.4 μm using standard 65 nm CMOS technology. Measurement results show that the SPP T-lines achieve wideband reflection coefficient lower than -14 dB and crosstalk ratio better than -24 dB, which is 19 dB lower on average than the traditional T-lines from 220 GHz to 325 GHz. The demonstrated compact and wideband SPP T-lines have shown great potential for future realization of highly dense on-chip sub-THz communications in CMOS.

  9. New surface plasmon polariton waveguide based on GaN nanowires

    Science.gov (United States)

    Zhu, Jun; Xu, Zhengjie; Xu, Wenju; Fu, Deli; Song, Shuxiang

    Lasers are nowadays widely used in industry, in hospitals and in many devices that we have at home. Random laser development is challenging given its high threshold and low integration. Surface plasmon polariton (SPP) can improve random laser characteristics because of its ability to control diffraction. In this study, we establish a random laser structural model with silicon-based parcel GaN nanowires. The GaN nanowire gain and enhanced surface plasmon increase population inversion level. Our laser model is based on random particle scattering feedback mechanism, nanowire use, and surface plasmon enhancement effect, which causes stochastic laser emergence. Analysis shows that the SPP mode and nanowire waveguides coupled in the dielectric layer of low refractive index can store light energy like a capacitor under low refractive index clearance. The waveguide mode field area and limiting factors show that the modeled laser can achieve sub-wavelength constraints of the output light field. We also investigate emergent laser performance for a more limited light field capacity and lower threshold.

  10. Effective Propagation of Surface Plasmon Polaritons on Graphene-Protected Single-Crystalline Silver Films.

    Science.gov (United States)

    Hong, Hyun Young; Ha, Jeong Sook; Lee, Sang-Soo; Park, Jong Hyuk

    2017-02-08

    Silver (Ag) is a promising material for manipulation of surface plasmon polaritons (SPPs), due to its optical and electrical properties; however, the intrinsic properties are easily degraded by surface corrosion under atmospheric conditions, restricting its applications in plasmonics. Here, we address this issue via single-crystalline Ag films protected with graphene layers and demonstrate effective propagation of SPPs on the graphene-protected Ag films. Single-crystalline Ag films with atomically flat surfaces are prepared by epitaxial growth; graphene layers are then transferred onto the Ag films. The propagation lengths of SPPs on the graphene-protected Ag films are measured, and their variations under corrosive conditions are investigated. The initial SPP propagation lengths for the bare Ag films are very long (about 50 μm in the wavelength range 550-700 nm). However, the values decrease significantly (11-13 μm) under corrosive conditions. On the contrary, the double-layer-graphene-protected Ag films exhibit SPP propagation lengths of about 23 μm and retain over 90% (21-23 μm) of the propagation lengths even after exposure to corrosive conditions, guaranteeing the reliability of Ag plasmonic devices. This approach can encourage extending the application of the graphene-metal hybrid structure and thus developing Ag plasmonic devices.

  11. Near-field relaxation of a quantum emitter to two-dimensional semiconductors: Surface dissipation and exciton polaritons

    Science.gov (United States)

    Karanikolas, Vasilios D.; Marocico, Cristian A.; Eastham, Paul R.; Bradley, A. Louise

    2016-11-01

    The total spontaneous emission rate of a quantum emitter in the presence of an infinite MoS2 monolayer is enhanced by several orders of magnitude, compared to its free-space value, due to the excitation of surface exciton polariton modes and lossy modes. The spectral and distance dependence of the spontaneous emission rate are analyzed and the lossy surface wave, surface exciton polariton mode and radiative contributions are identified. The transverse magnetic and transverse electric exciton polariton modes can be excited for different emission frequencies of the quantum emitter, and their contributions to the total spontaneous emission rate are different. To calculate these different decay rates we use the non-Hermitian description of light-matter interactions, employing a Green's tensor formalism. The distance dependence follows different trends depending on the emission energy of the quantum emitter. For the case of the lossy surface waves, the distance dependence follows a z-n,n =2 ,3 ,4 , trend. When transverse magnetic exciton polariton modes are excited, they dominate and characterize the distance dependence of the spontaneous emission rate of a quantum emitter in the presence of the MoS2 layers. The interaction between a quantum emitter and a MoS2 superlattice is investigated, and we observe a splitting of the modes supported by the superlattice. Moreover, a blueshift of the peak values of the spontaneous emission rate of a quantum emitter is observed as the number of layers is increased. The field distribution profiles, created by a quantum emitter, are used to explain this behavior.

  12. Control of near-field radiative heat transfer via surface phonon-polariton coupling in thin films

    OpenAIRE

    Francoeur, M.; Mengüç, M. Pınar; Vaillon, R.

    2010-01-01

    The possibily of controlling near-field radiative heat transfer via thin films supporting surface phonon-polaritons (SPhPs) is explored. Local density of electromagnetic states (LDOS) within the nanometric gap formed between two silicon carbide (SiC) films and the radiative heat flux exchanged between the thin layers are calculated. Using this information, engineering of desired heat transfer profiles can be obtained, which can be used for the next generation energy harvesting device. Kent...

  13. Asymmetric coupling and dispersion of surface-plasmon-polariton waves on a periodically patterned anisotropic metal film

    OpenAIRE

    Dutta, Jhuma; Ramakrishna, S. Anantha; Lakhtakia, Akhlesh

    2014-01-01

    The morphology of a columnar thin film (CTF) of silver renders it an effectively biaxially anisotropic continuum. CTFs of silver deposited on one-dimensional gratings of photoresist showed strong blazing action and asymmetrically coupled optical radiation to surface plasmon-polariton (SPP) waves propagating only along one direction supported by either the CTF/photoresist or the CTF/air interfaces. Homogenization of the CTFs using the Bruggeman formalism revealed them to display hyperbolic dis...

  14. Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film

    OpenAIRE

    de Leon-Perez, F.; Brucoli, G.; Garcia-Vidal, F.J.; Martin-Moreno, L

    2008-01-01

    The scattering of light and surface plasmon polaritons (SPPs) by finite arrays of either holes or dimples in a metal film is treated theoretically. A modal expansion formalism, capable of handling real metals with up to thousands of indentations, is presented. Computations based on this method demonstrate that a single hole scatters a significant fraction of incoming light into SPPs. It is also observed that holes and dimples scatter SPPs into light with similar efficiencies, provided the dep...

  15. Soliton Properties of Light Pulses on the Surface of Ionic Crystals Generated by Strong Nonlinear Effects

    Institute of Scientific and Technical Information of China (English)

    NIU Jia-Sheng; MA Ben-Kun

    2003-01-01

    In this paper, we theoretically discuss the soliton properties of light pulse transportation on the surface of an ionic crystal having strong nonlinear interactions between ions of unit cells. We analyze in detail the dark solitons when the nonlinear coefficient g is positive and negative, respectively. It is found that whether the nonlinear coefficient g is positive or negative, the dark solitons can be formed over the whole dispersion relation area of surface polaritons considering nonlinear effects. Attention should be paid to the fact that around ωTO, the light pulse can form advanced dark solitons, and there is a switching area from advanced dark soliton to retarded dark soliton near ωTO. We also discuss the effects of higher nonlinear dispersion on the solitons.

  16. Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Korobkin, D.; Urzhumov, Y.A.; Neuner, B. III; Shvets, G. [The University of Texas at Austin, Department of Physics, Austin, TX (United States); Zorman, C. [Case Western Reserve University, Department of Electrical Engineering, Cleveland, OH (United States); Zhang, Z.; Mayergoyz, I.D. [University of Maryland, Department of Electrical and Computer Engineering, College Park, MD (United States)

    2007-09-15

    We theoretically and experimentally study electromagnetic properties of a novel mid-infrared metamaterial: optically thin silicon carbide (SiC) membrane perforated by an array of sub-wavelength holes. Giant absorption and transmission is found using Fourier transformed infrared (FTIR) microscopy and explained by introducing a frequency-dependent effective permittivity {epsilon}{sub eff}({omega}) of the perforated film. The value of {epsilon}{sub eff}({omega}) is determined by the excitation of two distinct types of hole resonances: delocalized slow surface polaritons (SSPs) whose frequencies are largely determined by the array period, and a localized surface polariton (LSP) corresponding to the resonance of an isolated hole. Only SSPs are shown to modify {epsilon}{sub eff}({omega}) strongly enough to cause giant transmission and absorption. Because of the sub-wavelength period of the hole array, anomalous optical properties can be directly traced to surface polaritons, and their interpretation is not obscured by diffractive effects. Giant absorbance of this metamaterial can be utilized in designing highly efficient thermal radiation sources. (orig.)

  17. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    Science.gov (United States)

    Kumar, Shailesh; Lausen, Jens L.; Garcia-Ortiz, Cesar E.; Andersen, Sebastian K. H.; Roberts, Alexander S.; Radko, Ilya P.; Smith, Cameron L. C.; Kristensen, Anders; Bozhevolnyi, Sergey I.

    2016-02-01

    Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum-information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the first case, we concentrate on monitoring differences in fluorescence spectra obtained from a source ND, which is illuminated by a pump laser, and from a scattering ND illuminated only by the fluorescence-excited SPP radiation. In the second case, we observe changes in the average NV lifetime when the same ND is characterized outside and inside a VG. Fluorescence emission from the VG terminations is also observed, which confirms the NV coupling to the VG-supported SPP modes.

  18. On-chip sub-terahertz surface plasmon polariton transmission lines with mode converter in CMOS.

    Science.gov (United States)

    Liang, Yuan; Yu, Hao; Wen, Jincai; Apriyana, Anak Agung Alit; Li, Nan; Luo, Yu; Sun, Lingling

    2016-07-21

    An on-chip low-loss and high conversion efficiency plasmonic waveguide converter is demonstrated at sub-THz in CMOS. By introducing a subwavelength periodic corrugated structure onto the transmission line (T-line) implemented by a top-layer metal, surface plasmon polaritons (SPP) are established to propagate signals with strongly localized surface-wave. To match both impedance and momentum of other on-chip components with TEM-wave propagation, a mode converter structure featured by a smooth bridge between the Ground coplanar waveguide (GCPW) with 50 Ω impedance and SPP T-line is proposed. To further reduce area, the converter is ultimately simplified to a gradual increment of groove with smooth gradient. The proposed SPP T-lines with the converter is designed and fabricated in the standard 65 nm CMOS process. Both near-field simulation and measurement results show excellent conversion efficiency from quasi-TEM to SPP modes in a broadband frequency range. The converter achieves wideband impedance matching (CMOS technology.

  19. Dephasing time and damping mechanisms of surface plasmon polaritons in gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Borg, Nils; Sanchez Blazquez, David; Hendrich, Christian; Hubenthal, Frank; Traeger, Frank [Institut fuer Physik und Center for Interdisciplinary Nanostructure Science and Technology - CINSaT, Universitaet Kassel, Heinrich-Plett-Strasse 40, D-34132 Kassel (Germany)

    2007-07-01

    The ultrafast electron dynamics in gold nanoparticles (NPs) was studied by measuring the dephasing time T{sub 2} of the surface plasmon polariton by means of persistent spectral hole burning. The dephasing time of gold grown on sapphire and TiO{sub 2} substrates was measured as a function of photon energy and the particle size. Dephasing times ranging from 5 to 17 fs were extracted. Furthermore, an explicit influence of the reduced dimension of the NPs has been determined, which plays a role for NPs with radii below 12 nm already. Most importantly, a dependence of T{sub 2} on the decreasing particle dimensions which fulfilled a 1/R-dependence was found and we could obtain a damping parameter for gold on sapphire of A=(0.32{+-}0.06) nm/fs. Comparison with other measurements as well as with theoretical predictions could identify surface scattering and Landau-damping as the most important mechanisms. Recent further experiments on gold NPs supported on TiO{sub 2} showed a further reduction of the dephasing time. For example, for NPs with a radius of approximately 13 nm we observed a decrease from T{sub 2}{approx}15 fs for NPs grown on sapphire to T{sub 2}{approx}12 fs for NPs grown on TiO{sub 2} at a photon energy of 1.65 eV. This indicates an additional damping mechanism, i.e. chemical interface damping.

  20. Thermostimulated THz Radiation Emission of GaAs at Surface Plasmon-Phonon Polariton Frequencies

    Directory of Open Access Journals (Sweden)

    Edmundas ŠIRMULIS

    2014-06-01

    Full Text Available The THz radiation reflection, absorption and emission spectra of conductive n-GaAs/air surface are considered. The influence of thermostimulated surface plasmon-phonon (SPP polariton oscillations on THz radiation reflection, absorption and emission of high conductivity GaAs polished plates with electron density n = 7∙1017 cm–3 and 4∙1018 cm–3 and thickness of 350 mm is studied experimentally. The frequencies of thermostimulated transverse and longitudinal optical phonons and SPP oscillations, which characterize a heated lattice state, were determined. It is found that the heated highly doped interface layer (GaAs/air emits the THz radiation at selected frequencies of SPP oscillations in the (7 – 8 THz and (10 – 15 THz ranges. It is shown that thermal heating of the GaAs/air interface enhances the absorption of the incident THz radiation. The huge decrease of the incident radiation reflectivity at the SPP frequencies with an increase of GaAs temperature is observed experimentally. DOI: http://dx.doi.org/10.5755/j01.ms.20.2.6318

  1. Performance analysis of higher mode spoof surface plasmon polariton for terahertz sensing

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Haizi; Tu, Wanli [Laboratory of Optics, Terahertz and Non-Destructive Testing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108 (China); Zhong, Shuncong, E-mail: zhongshuncong@hotmail.com [Laboratory of Optics, Terahertz and Non-Destructive Testing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108 (China); Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, Glasgow G4 0LZ (United Kingdom); Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou 350108 (China)

    2015-04-07

    We investigated the spoof surface plasmon polaritons (SSPPs) on 1D grooved metal surface for terahertz sensing of refractive index of the filling analyte through a prism-coupling attenuated total reflection setup. From the dispersion relation analysis and the finite element method-based simulation, we revealed that the dispersion curve of SSPP got suppressed as the filling refractive index increased, which cause the coupling resonance frequency redshifting in the reflection spectrum. The simulated results for testing various refractive indexes demonstrated that the incident angle of terahertz radiation has a great effect on the performance of sensing. Smaller incident angle will result in a higher sensitive sensing with a narrower detection range. In the meanwhile, the higher order mode SSPP-based sensing has a higher sensitivity with a narrower detection range. The maximum sensitivity is 2.57 THz/RIU for the second-order mode sensing at 45° internal incident angle. The proposed SSPP-based method has great potential for high sensitive terahertz sensing.

  2. Surface plasmon polaritons in a semi-bounded degenerate plasma: role of spatial dispersion and collisions

    CERN Document Server

    Tyshetskiy, Yuriy; Kompaneets, Roman; 10.1063/1.4764468

    2012-01-01

    Surface plasmon polaritons (SPPs) in a semi-bounded degenerate plasma (e.g., a metal) are studied using the quasiclassical mean-field kinetic model, taking into account the spatial dispersion of the plasma (due to quantum degeneracy of electrons) and electron-ion (electron-lattice, for metals) collisions. SPP dispersion and damping are obtained in both retarded ($\\omega/k_z\\sim c$) and non-retarded ($\\omega/k_z\\ll c$) regions, as well as in between. It is shown that the plasma spatial dispersion significantly affects the properties of SPPs, especially at short wavelengths (less than the collisionless skin depth, $\\lambda\\lesssim c/\\omega_{pe}$). Namely, the collisionless (Landau) damping of SPPs (due to spatial dispersion) is comparable to the purely collisional (Ohmic) damping (due to electron-lattice collisions) in a wide range of SPP wavelengths, e.g., from $\\lambda\\sim20$ nm to $\\lambda\\sim0.8$ nm for SPP in gold at T=293 K, and from $\\lambda\\sim400$ nm to $\\lambda\\sim0.7$ nm for SPPs in gold at T=100 K. ...

  3. Wideband helicity dependent spoof surface plasmon polaritons coupling metasurface based on dispersion design

    Science.gov (United States)

    Dong, Guoxiang; Shi, Hongyu; He, Yuchen; Zhang, Anxue; Wei, Xiaoyong; Zhuang, Yongyong; Du, Bai; Xia, Song; Xu, Zhuo

    2016-12-01

    The surface plasmon polaritons (SPPs) have many potential application due to their local field enhancement and sub-wavelength characteristics. Recently, the gradient metasurface is introduced to couple the spoof SPPs in microwave frequency band. One of the most important issue which should be solved is the narrowband of spoof SPPs coupling on the gradient metasurface. Here, the metasurface is proposed to achieve the wideband helicity dependent directional spoof SPPs coupling for circular polarized light. Our research show that the coupling frequency of spoof SPPs on the gradient metasurface is determined by the dispersion of the metasurface, so the coupling frequency can be controlled by dispersion design. The careful design of each cell geometric parameters has provided many appropriate dispersion relations possessed by just one metasurface. The wave vector matching between the propagating wave and the spoof SPPs has been achieved at several frequencies for certain wave vector provided by the metasurface, which leads to wideband spoof SPPs coupling. This work has shown that wideband helicity dependent directional spoof SPPs coupling has been achieved with a high efficiency. Hence, the proposed wideband spoof SPPs coupling presents the improvement in practice applications.

  4. Photo-thermal modulation of surface plasmon polariton propagation at telecommunication wavelengths.

    Science.gov (United States)

    Kaya, S; Weeber, J-C; Zacharatos, F; Hassan, K; Bernardin, T; Cluzel, B; Fatome, J; Finot, C

    2013-09-23

    We report on photo-thermal modulation of thin film surface plasmon polaritons (SPP) excited at telecom wavelengths and traveling at a gold/air interface. By operating a modulated continuous-wave or a Q-switched nanosecond pump laser, we investigate the photo-thermally induced modulation of SPP propagation mediated by the temperature-dependent ohmic losses in the gold film. We use a fiber-to-fiber characterization set-up to measure accurately the modulation depth of the SPP signal under photo-thermal excitation. On the basis of these measurements, we extract the thermo-plasmonic coefficient of the SPP mode defined as the temperature derivative of the SPP damping constant. Next, we introduce a figure of merit which is relevant to characterize the impact of temperature onto the properties of bounded or weakly leaky SPP modes supported by a given metal at a given wavelength. By combining our measurements with tabulated values of the temperature-dependent imaginary part of gold dielectric function, we compute the thermo-optical coefficients (TOC) of gold at telecom wavelengths. Finally, we investigate a pulsed photo-thermal excitation of the SPP in the nanosecond regime. The experimental SPP depth of modulation obtained in this situation are found to be in fair agreement with the modulation depths computed by using our values of gold TOC.

  5. Ultrafast surface plasmon-polariton interference and switching in multiple crossing dielectric waveguides

    Science.gov (United States)

    Birr, Tobias; Zywietz, Urs; Fischer, Tim; Chhantyal, Parva; Evlyukhin, Andrey B.; Chichkov, Boris N.; Reinhardt, Carsten

    2016-06-01

    In this paper, we investigate propagation effects and interference switching of surface plasmon-polaritons (SPPs) in a junction of multiple crossed waveguides. These waveguides are produced on a thin gold layer by a simple photolithographic procedure. The waveguide dimensions are optimized for SPP excitation and propagation along two crossed input waveguides. At the waveguide intersection, different possibilities for SPP propagation into multiple output waveguides are offered. Using leakage radiation microscopy, we find that the SPPs preferably propagate into only one specific direction different from the direction of the input waveguides with avoidance of signal backscattering into the input direction. Furthermore, it is demonstrated that the SPP intensity at the output waveguide can be tuned by interference effects induced by a phase shift of the excitation laser beams. Additionally, we study the influence of different angles between the two input and the one specific output waveguides of the junction structure on the propagation properties of SPP modes in order to demonstrate a highest possible energy flux into the output waveguide. The experimental investigations are supported by finite-difference time-domain simulations. Good agreement between experimental results and numerical simulations is obtained. Applications of this effect are discussed for realization of ultrafast optical/plasmonic switches and optical logic gate structures with potential for integration and cascading.

  6. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons

    Science.gov (United States)

    Zhou, You; Scuri, Giovanni; Wild, Dominik S.; High, Alexander A.; Dibos, Alan; Jauregui, Luis A.; Shu, Chi; de Greve, Kristiaan; Pistunova, Kateryna; Joe, Andrew Y.; Taniguchi, Takashi; Watanabe, Kenji; Kim, Philip; Lukin, Mikhail D.; Park, Hongkun

    2017-09-01

    Transition metal dichalcogenide (TMD) monolayers with a direct bandgap feature tightly bound excitons, strong spin-orbit coupling and spin-valley degrees of freedom. Depending on the spin configuration of the electron-hole pairs, intra-valley excitons of TMD monolayers can be either optically bright or dark. Dark excitons involve nominally spin-forbidden optical transitions with a zero in-plane transition dipole moment, making their detection with conventional far-field optical techniques challenging. Here, we introduce a method for probing the optical properties of two-dimensional materials via near-field coupling to surface plasmon polaritons (SPPs). This coupling selectively enhances optical transitions with dipole moments normal to the two-dimensional plane, enabling direct detection of dark excitons in TMD monolayers. When a WSe2 monolayer is placed on top of a single-crystal silver film, its emission into near-field-coupled SPPs displays new spectral features whose energies and dipole orientations are consistent with dark neutral and charged excitons. The SPP-based near-field spectroscopy significantly improves experimental capabilities for probing and manipulating exciton dynamics of atomically thin materials, thus opening up new avenues for realizing active metasurfaces and robust optoelectronic systems, with potential applications in information processing and communication.

  7. Observation of surface plasmon polariton pumping of optical eigenmodes of gold-decorated gallium nitride nanowires.

    Science.gov (United States)

    Sundararajan, Jency Pricilla; Bakharev, Pavel; Niraula, Ishwar; Kengne, Blaise Alexis Fouetio; MacPherson, Quinn; Sargent, Meredith; Hare, Brian; McIlroy, David N

    2012-10-10

    The photocurrent of individual gallium nitride (GaN) nanowires decorated with Au nanoparticles as function of the wavelength of light (405 nm (blue), 532 nm (green), and 632.8 nm (red)) and nanowire diameter (80 to 400 nm) is reported. The photocurrent scales with photon energy but oscillates with nanowire diameter. The oscillations are described in terms of the scattering of surface plasmon polaritons into allowed transverse magnetic electromagnetic modes of the nanowire that have maximum intensities in the undepleted region of the nanowire. These oscillations do not occur below a nanowire diameter of ~200 nm due to the depletion layer formed at the Au-GaN interface, which completely depletes the nanowire, that is, there is an insufficient density of carriers that can be excited into the conduction band. On the basis of estimations of the depletion depth and solutions of the Helmholtz equation, the maxima in the photocurrent for d > 200 nm are assigned to the two lowest azimuthally symmetric transverse magnetic eigenmodes: (m = 0, n = 1) and (m = 0, n = 2), which have maximum electric field intensities within the undepleted region of the GaN nanowire. The outcome of this work could have far reaching implications on the development of nanophotonics.

  8. Giant transmission Goos-Hänchen shift in surface plasmon polaritons excitation and its physical origin

    Science.gov (United States)

    Yang, Yang; Liu, Ju; Li, Zhi-Yuan

    2015-07-01

    Excitation of surface plasmon polaritons (SPPs) propagating at the interface between a dielectric medium and a silver thin film by a focused Gaussian beam in a classical Kretschmann prism setup is studied theoretically. We find that the center of the transmitted Gaussian evanescent wave has a giant lateral shift relative to the incident Gaussian beam center for a wide range of incident angle and Gaussian beam wavelength to excite SPPs, which can be more than two orders of magnitude larger than the silver film thickness. The phenomenon is closely related with the conventional Goos-Hänchen effect for total internal reflection of light beam, and it is called the transmission Goos-Hänchen shift. We find that this lateral shift depends heavily on the excitation wavelength, incident angle, and the silver layer thickness. Finite-difference time-domain simulations show that this transmission Goos-Hänchen shift is induced by a unique dynamical process of excitation, transport, and leakage of SPPs. Project supported by the National Basic Research Program of China (Grant No. 2013CB632704) and the National Natural Science Foundation of China (Grant No. 11374357).

  9. Ultra-wideband filtering of spoof surface plasmon polaritons using deep subwavelength planar structures

    Science.gov (United States)

    Hu, Ming Zhe; Zhang, Hao Chi; Yin, Jia Yuan; Ding, Zhao; Liu, Jun Feng; Tang, Wen Xuan; Cui, Tie Jun

    2016-11-01

    Novel ultra-wideband filtering of spoof surface plasmon polaritons (SPPs) is proposed in the microwave frequency using deep subwavelength planar structures printed on thin and flexible dielectric substrate. The proposed planar SPPs waveguide is composed of two mirror-oriented metallic corrugated strips, which are further decorated with parallel-arranged slots in the main corrugated strips. This compound structure provides deep subwavelength field confinement as well as flexible parameters when employed as a plasmonic waveguide, which is potential to construct miniaturization. Using momentum and impedance matching technology, we achieve a smooth conversion between the proposed SPPs waveguide and the conventional transmission line. To verify the validity of the design, we fabricate a spoof SPPs filter, and the measured results illustrate excellent performance, in which the reflection coefficient is less than ‑10 dB within the ‑3 dB passband from 1.21 GHz to 7.21 GHz with the smallest insertion loss of 1.23 dB at 2.21 GHz, having very good agreements with numerical simulations. The ultra-wideband filter with low insertion loss and high transmission efficiency possesses great potential in modern communication systems.

  10. Low-loss waveguiding and detecting structure for surface plasmon polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Fukuhara, M., E-mail: fukuhara@photon.ee.tut.ac.jp; Aihara, T. [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Aichi 441-8580 (Japan); JSPS Research Fellow, Japan Society for the Promotion of Science, 8 Ichiban-cho, Chiyoda, Tokyo 102-8472 (Japan); Ota, M.; Sakai, H.; Ishii, Y.; Fukuda, M. [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Aichi 441-8580 (Japan)

    2014-02-24

    A simple and low-loss metal/semiconductor surface plasmon polariton (SPP) device consisting of a SPP waveguide and a detector is studied theoretically and experimentally. We demonstrate a simple diffraction structure (a metal grating) where the SPP couples from the waveguide to the detector. The SPP can propagate without large losses at the air/Au interface, and this interface was used for SPP waveguiding. To convert the SPP into an electric signal using internal photoemission, the propagating SPP is coupled into the Au/Si interface by the diffraction structure. The propagation direction of the coupled SPP at the Au/Si interface depends on the slit pitch of the diffraction structure, and the direction can be controlled by adjusting the pitch. The slit pitch is also modeled using a diffraction grating equation, and the results show good agreement with those of simulations using the finite-difference time-domain method. When diffraction structures consisting of a multi-slit structure and a disk array are placed at the end of the waveguide, SPP coupling into the Au/Si interface is also observed. The photocurrents detected at the Au/Si interface are much larger when compared with that detected for the device without the diffraction structure (26 times for the multi-slit structure and 10 times for the disk array). From the polarization angle dependence of the detected photocurrent, we also confirmed that the photocurrent was caused by the SPP propagating at the air/Au interface.

  11. Gain-assisted superluminal propagation and rotary drag of photon and surface plasmon polaritons

    Science.gov (United States)

    Khan, Naveed; Amin Bacha, Bakht; Iqbal, Azmat; Ur Rahman, Amin; Afaq, A.

    2017-07-01

    Superluminal propagation of light is a well-established phenomenon and has motivated immense research interest that has led to state-of-the-art knowledge and potential applications in the emerging technology of quantum optics and photonics. This study presents a theoretical analysis of the gain-assisted superluminal light propagation in a four-level N -type atomic system by exploiting the scheme of electromagnetically induced gain and superluminal propagation of surface plasmon polaritons (SPPs) along the gain-assisted atomic-metal interface simultaneously. In addition, a theoretical demonstration is presented on the comparison between Fresnel's rotary photon drag and SPP drag in view of light polarization state rotation by rotating the coherent atomic medium and the atomic-metal interface, respectively. Analogous to photon drag in the superluminal anomalous dispersion region where light polarization rotation occurs opposite the rotation of the gain-assisted atomic medium, the rotation of the atomic-metal interface also rotates the polarization state of SPPs opposite the rotation of the interface. This further confirms the superluminal nature of SPPs propagating along the interface with negative group velocity. Rabi frequencies of the control and pump fields considerably modify both photon and SPP drag coefficients. Metal conductivity also controls SPP propagation.

  12. Strongly Confined Spoof Surface Plasmon Polaritons Waveguiding Enabled by Planar Staggered Plasmonic Waveguides

    Science.gov (United States)

    Ye, Longfang; Xiao, Yifan; Liu, Yanhui; Zhang, Liang; Cai, Guoxiong; Liu, Qing Huo

    2016-12-01

    We demonstrate a novel route to achieving highly efficient and strongly confined spoof surface plasmon polaritons (SPPs) waveguides at subwavelength scale enabled by planar staggered plasmonic waveguides (PSPWs). The structure of these new waveguides consists of an ultrathin metallic strip with periodic subwavelength staggered double groove arrays supported by a flexible dielectric substrate, leading to unique staggered EM coupling and waveguiding phenomenon. The spoof SPP propagation properties, including dispersion relations and near field distributions, are numerically investigated. Furthermore, broadband coplanar waveguide (CPW) to planar staggered plasmonic waveguide (PSPW) transitions are designed to achieve smooth momentum matching and highly efficient spoof SPP mode conversion. By applying these transitions, a CPW-PSPW-CPW structure is designed, fabricated and measured to verify the PSPW’s propagation performance at microwave frequencies. The investigation results show the proposed PSPWs have excellent performance of deep subwavelength spoof SPPs confinement, long propagation length and low bend loss, as well as great design flexibility to engineer the propagation properties by adjusting their geometry dimensions and material parameters. Our work opens up a new avenue for development of various advanced planar integrated plasmonic devices and circuits in microwave and terahertz regimes.

  13. Ultra-wideband filtering of spoof surface plasmon polaritons using deep subwavelength planar structures

    Science.gov (United States)

    Hu, Ming Zhe; Zhang, Hao Chi; Yin, Jia Yuan; Ding, Zhao; Liu, Jun Feng; Tang, Wen Xuan; Cui, Tie Jun

    2016-01-01

    Novel ultra-wideband filtering of spoof surface plasmon polaritons (SPPs) is proposed in the microwave frequency using deep subwavelength planar structures printed on thin and flexible dielectric substrate. The proposed planar SPPs waveguide is composed of two mirror-oriented metallic corrugated strips, which are further decorated with parallel-arranged slots in the main corrugated strips. This compound structure provides deep subwavelength field confinement as well as flexible parameters when employed as a plasmonic waveguide, which is potential to construct miniaturization. Using momentum and impedance matching technology, we achieve a smooth conversion between the proposed SPPs waveguide and the conventional transmission line. To verify the validity of the design, we fabricate a spoof SPPs filter, and the measured results illustrate excellent performance, in which the reflection coefficient is less than −10 dB within the −3 dB passband from 1.21 GHz to 7.21 GHz with the smallest insertion loss of 1.23 dB at 2.21 GHz, having very good agreements with numerical simulations. The ultra-wideband filter with low insertion loss and high transmission efficiency possesses great potential in modern communication systems. PMID:27883028

  14. Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide

    Science.gov (United States)

    Xiao, Binggang; Kong, Sheng; Xiao, Sanshui

    2016-09-01

    Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN and satellite communication interference simultaneously. Both the cutoff frequency and the notch frequency are sensitive to the structure parameters, and the cut-off frequency can reach 20 GHz. An adiabatic transition relying on gradient hole-size and flaring ground is designed to effectively couple energy into spoof SPP waveguide. The result shows its cut-off frequency of 17.4 GHz with the insertion loss better than 3 dB during the whole pass-band, while having more than 20 dB rejections at 5.36 GHz and 9.32 GHz with 10 dB fractional bandwidth 1.07% and 0.74% respectively to avoid the existing WLAN and satellite communication signals. Due to planar structures proposed here, it is easy to integrate in the microwave integrated systems, which can play an important role in the microwave communication circuit and system.

  15. On-chip sub-terahertz surface plasmon polariton transmission lines with mode converter in CMOS

    Science.gov (United States)

    Liang, Yuan; Yu, Hao; Wen, Jincai; Apriyana, Anak Agung Alit; Li, Nan; Luo, Yu; Sun, Lingling

    2016-01-01

    An on-chip low-loss and high conversion efficiency plasmonic waveguide converter is demonstrated at sub-THz in CMOS. By introducing a subwavelength periodic corrugated structure onto the transmission line (T-line) implemented by a top-layer metal, surface plasmon polaritons (SPP) are established to propagate signals with strongly localized surface-wave. To match both impedance and momentum of other on-chip components with TEM-wave propagation, a mode converter structure featured by a smooth bridge between the Ground coplanar waveguide (GCPW) with 50 Ω impedance and SPP T-line is proposed. To further reduce area, the converter is ultimately simplified to a gradual increment of groove with smooth gradient. The proposed SPP T-lines with the converter is designed and fabricated in the standard 65 nm CMOS process. Both near-field simulation and measurement results show excellent conversion efficiency from quasi-TEM to SPP modes in a broadband frequency range. The converter achieves wideband impedance matching (<−9 dB) with excellent transmission efficiency (averagely −1.9 dB) from 110 GHz–325 GHz. The demonstrated compact and wideband SPP T-lines with mode converter have shown great potentials to replace existing waveguides as future on-chip THz interconnects. To the best of the author’s knowledge, this is the first time to demonstrate the (sub)-THz surface mode conversion on-chip in CMOS technology. PMID:27444782

  16. Surface plasmon polariton assisted optical switching in noble bimetallic nanoparticle system

    Energy Technology Data Exchange (ETDEWEB)

    Dhara, Sandip, E-mail: dhara@igcar.gov.in, E-mail: chenkh@pub.iams.sinica.edu.tw [Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Lu, C.-Y.; Tu, W.-S. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Magudapathy, P. [Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Huang, Y.-F.; Chen, K.-H., E-mail: dhara@igcar.gov.in, E-mail: chenkh@pub.iams.sinica.edu.tw [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Center for Condensed Matter Science, National Taiwan University, Taipei 106, Taiwan (China)

    2015-01-12

    Photoresponse of bimetallic Au-Ag nanoparticle embedded soda glass (Au-Ag@SG) substrate is reported for surface plasmon assisted optical switching using 808 nm excitation. Au-Ag@SG system is made by an ion beam technique where Ag{sup +} is introduced first in the soda glass matrix by ion exchange technique. Subsequently, 400 keV Au{sup +} is implanted in the sample for different fluences, which is followed by an ion beam annealing process using 1 MeV Si{sup +} at a fixed fluence of 2 × 10{sup 16} ions·cm{sup −2}. Characteristic surface plasmon resonance (SPR) peaks around 400 and 550 nm provided evidence for the presence of Au and Ag nanoparticles. An optical switching in the Au-Ag@SG system with 808 nm, which is away from the characteristic SPR peaks of Ag and Au nanoparticles, suggests the possible role of two photon absorption (TPA) owing to the presence of interacting electric dipole in these systems. The role of surface plasmon polariton is emphasized for the propagation of electronic carrier belonging to the conduction electron of Au-Ag system in understanding the observed photoresponse. Unique excitation dependent photoresponse measurements confirm the possible role of TPA process. A competitive interband and intraband transitions in the bimetallic system of Au and Ag, which may be primarily responsible for the observation, are validated qualitatively using finite difference time domain calculations where inter-particle separation of Au and Ag plays an important role. Thus, a smart way of optical switching can be envisaged in noble bimetallic nanocluster system where long wavelength with higher skin depth can be used for communication purpose.

  17. Time-domain analysis of surface-plasmon-polariton propagation in Ag nano-films using a generalized polarization approach

    KAUST Repository

    Al-Jabr, Ahmad

    2010-01-01

    A time-domain analysis of the propagation properties of surface-plasmon-polaritons (SPP) in Silver nanostructures is presented. The analysis is based on a simulation algorithm that unifies the formulation of different dispersion models and multi-pole relations into one form. The main objective of this work is to perform a comparative analysis between different dispersion models used for Silver, including Debye, Drude and multi-pole Lorentz-Drude models. The quantities that are used in the comparison are the SPP propagation length and propagation speed. Experimental results reported in literature are used to support the conclusions.

  18. Asymmetric coupling and dispersion of surface-plasmon-polariton waves on a periodically patterned anisotropic metal film

    CERN Document Server

    Dutta, Jhuma; Lakhtakia, Akhlesh

    2014-01-01

    The morphology of a columnar thin film (CTF) of silver renders it an effectively biaxially anisotropic continuum. CTFs of silver deposited on one-dimensional gratings of photoresist showed strong blazing action and asymmetrically coupled optical radiation to surface plasmon-polariton (SPP) waves propagating only along one direction supported by either the CTF/photoresist or the CTF/air interfaces. Homogenization of the CTFs using the Bruggeman formalism revealed them to display hyperbolic dispersion, and the dispersion of SPP waves was adequately described thereby.

  19. Asymmetric coupling and dispersion of surface-plasmon-polariton waves on a periodically patterned anisotropic metal film

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Jhuma; Ramakrishna, S. Anantha [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India); Lakhtakia, Akhlesh, E-mail: akhlesh@psu.edu [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-01-07

    The morphology of a columnar thin film (CTF) of silver renders it an effectively biaxially anisotropic continuum. CTFs of silver deposited on one-dimensional gratings of photoresist showed strong blazing action and asymmetrically coupled optical radiation to surface-plasmon-polariton (SPP) waves propagating only along one direction supported by either the CTF/photoresist or the CTF/air interfaces. Homogenization of the CTFs using the Bruggeman formalism revealed them to display hyperbolic dispersion, and the dispersion of SPP waves was adequately described thereby.

  20. Manipulation of surface plasmon polariton propagation on isotropic and anisotropic two-dimensional materials coupled to boron nitride heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Inampudi, Sandeep; Nazari, Mina; Forouzmand, Ali; Mosallaei, Hossein, E-mail: hosseinm@coe.neu.edu [Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 (United States)

    2016-01-14

    We present a comprehensive analysis of surface plasmon polariton dispersion characteristics associated with isotropic and anisotropic two-dimensional atomically thin layered materials (2D sheets) coupled to h-BN heterostructures. A scattering matrix based approach is presented to compute the electromagnetic fields and related dispersion characteristics of stacked layered systems composed of anisotropic 2D sheets and uniaxial bulk materials. We analyze specifically the surface plasmon polariton (SPP) dispersion characteristics in case of isolated and coupled two-dimensional layers with isotropic and anisotropic conductivities. An analysis based on residue theorem is utilized to identify optimum optical parameters (surface conductivity) and geometrical parameters (separation between layers) to maximize the SPP field at a given position. The effect of type and degree of anisotropy on the shapes of iso-frequency curves and propagation characteristics is discussed in detail. The analysis presented in this paper gives an insight to identify optimum setup to enhance the SPP field at a given position and in a given direction on the surface of two-dimensional materials.

  1. Parametric study of dielectric loaded surface plasmon polariton add-drop filters for hybrid silicon/plasmonic optical circuitry

    Science.gov (United States)

    Dereux, A.; Hassan, K.; Weeber, J.-C.; Djellali, N.; Bozhevolnyi, S. I.; Tsilipakos, O.; Pitilakis, A.; Kriezis, E.; Papaioannou, S.; Vyrsokinos, K.; Pleros, N.; Tekin, T.; Baus, M.; Kalavrouziotis, D.; Giannoulis, G.; Avramopoulos, H.

    2011-01-01

    Surface plasmons polaritons are electromagnetic waves propagating along the surface of a conductor. Surface plasmons photonics is a promising candidate to satisfy the constraints of miniaturization of optical interconnects. This contribution reviews an experimental parametric study of dielectric loaded surface plasmon waveguides ring resonators and add-drop filters within the perspective of the recently suggested hybrid technology merging plasmonic and silicon photonics on a single board (European FP7 project PLATON "Merging Plasmonic and Silicon Photonics Technology towards Tb/s routing in optical interconnects"). Conclusions relevant for dielectric loaded surface plasmon switches to be integrated in silicon photonic circuitry will be drawn. They rely on the opportunity offered by plasmonic circuitry to carry optical signals and electric currents through the same thin metal circuitry. The heating of the dielectric loading by the electric current enables to design low foot-print thermo-optical switches driving the optical signal flow.

  2. Coherent exciton-polariton devices

    Science.gov (United States)

    Fraser, Michael D.

    2017-09-01

    The Bose-Einstein condensate of exciton-polaritons has emerged as a unique, coherent system for the study of non-equilibrium, macroscopically coherent Bose gases, while the full confinement of this coherent state to a semiconductor chip has also generated considerable interest in developing novel applications employing the polariton condensate, possibly even at room temperature. Such devices include low-threshold lasers, precision inertial sensors, and circuits based on superfluidity with ultra-fast non-linear elements. While the demonstration and development of such devices are at an early stage, rapid progress is being made. In this review, an overview of the exciton-polariton condensate system and the established and emerging material systems and fabrication techniques are presented, followed by a critical, in-depth assessment of the ability of the coherent polariton system to deliver on its promise of devices offering either new functionality and/or room-temperature operation.

  3. Exciton-polaritons in Bragg gratings

    Energy Technology Data Exchange (ETDEWEB)

    Creatore, C [Department of Physics ' A. Volta' , Universita di Pavia, via Bassi 6, I-27100, Pavia (Italy); Mouchliadis, L; Langbein, W [School of Physics and Astronomy, Cardiff University, The Parade, CF24 3AA, Cardiff (United Kingdom); Biancalana, F [Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1/Bau 24, 91058 Erlangen (Germany); Osborne, S, E-mail: creatore@fisicavolta.unipv.i [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland)

    2010-02-01

    We study the strong coupling between photons and bulk excitons in a one-dimensional Bragg grating. The dispersion of the resulting Bragg-polariton states resembles the dispersion of quantum-well microcavity polaritons. We report on a parametric scattering process at two 'magic frequencies' occurring due to the strong excitonic nonlinearity.

  4. Effect of phonon-plasmon and surface plasmon polaritons on photoluminescence in quantum emitter and graphene deposited on polar crystals

    Science.gov (United States)

    Singh, Mahi R.; Brzozowski, Marek J.; Apter, Boris

    2016-09-01

    We investigate the light-matter interaction in a quantum emitter and metallic graphene flake (MGF) hybrid system deposited on a polar material. The coupling of surface plasmons in graphene and optical phonons in the polar material produces phonon-plasmon polaritons (PPPs). Similarly, couplings of photons with surface plasmons of graphene produce surface-plasmon polaritons (SPPs). Using the second quantized formulation for SPPs and PPPs interactions and density matrix method, we have calculated photoluminescence of the quantum emitters. It is found that when the exciton energy of the quantum emitter is in resonant with SPP and PPP energies, the photoluminescence in the quantum emitter are enhanced in the terahertz range. The enhancement is due to the transfer of SPP and PPP energies from the graphene flake to the quantum emitter. The energy transfer from graphene to the quantum emitter can be controlled by applying external pump lasers or stress and strain fields. These are interesting findings which can be used to fabricate switches and sensors.

  5. Dependence of surface plasmon-phonon-polariton in 4 H-SiC on free carrier concentration

    Science.gov (United States)

    Karakachian, H.; Kazan, M.

    2017-03-01

    In this paper, we present a thorough study of the characteristics of the surface modes that result from coupling between plasmon electronic oscillation modes, phonon modes, and electromagnetic modes. The Fourier transform of p-polarized reflectivity measurements were carried out on different 4 H-SiC epilayers differing in their free carrier concentration. The reflectivity measurements were performed with appropriate care to record reflectivity spectra averaged over a wide range of incidence angles. The complex infrared dielectric functions of the measured samples were determined by correcting the values obtained from the conventional Kramers-Kronig conversion technique with reference to Fresnel equations for reflectivity. The obtained dielectric functions were used to compute the effect of the free carrier concentration and the resulting plasmon electronic oscillation on the dispersion spectrum, lifetime, mean propagation length of the bulk, and surface plasmon-phonon-polariton modes. The effect of the free carrier concentration on the temporal coherence of surface plasmon-phonon-polariton is investigated, showing a potential practical method for enhancing the temporal coherence of SiC based thermal sources.

  6. Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation

    Energy Technology Data Exchange (ETDEWEB)

    Danilov, P. A.; Ionin, A. A.; Kudryashov, S. I., E-mail: sikudr@sci.lebedev.ru; Makarov, S. V.; Rudenko, A. A. [Lebedev Physical Institute (Russian Federation); Saltuganov, P. N. [Moscow Institute of Physics and Technology (State University) (Russian Federation); Seleznev, L. V.; Yurovskikh, V. I.; Zayarny, D. A. [Lebedev Physical Institute (Russian Federation); Apostolova, T. [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energetics (Bulgaria)

    2015-06-15

    Ultrafast intense photoexcitation of a silicon surface is complementarily studied experimentally and theoretically, with its prompt optical dielectric function obtained by means of time-resolved optical reflection microscopy and the underlying electron-hole plasma dynamics modeled numerically, using a quantum kinetic approach. The corresponding transient surface plasmon-polariton (SPP) dispersion curves of the photo-excited material were simulated as a function of the electron-hole plasma density, using the derived optical dielectric function model, and directly mapped at several laser photon energies, measuring spatial periods of the corresponding SPP-mediated surface relief nanogratings. The unusual spectral dynamics of the surface plasmon resonance, initially increasing with the increase in the electron-hole plasma density but damped at high interband absorption losses induced by the high-density electron-hole plasma through instantaneous bandgap renormalization, was envisioned through the multi-color mapping.

  7. Compact and broadband directional coupling and demultiplexing in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect

    DEFF Research Database (Denmark)

    Zhu, Zhihong; García Ortíz, César Eduardo; Han, Zhanghua;

    2013-01-01

    We theoretically, numerically, and experimentally demonstrate that a directional coupling function can be realized with a wide bandwidth (greater than 200 nm) in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect. The functional size of the structure...

  8. Nonlinear plasmonic amplification via dissipative soliplasmons

    CERN Document Server

    Ferrando, Albert

    2016-01-01

    In this contribution we introduce a new strategy for the compensation of plasmonic losses based on a recently proposed nonlinear mechanism: the resonant interaction between surface plasmon polaritons and spatial solitons propagating in parallel along a metal/dielectric/Kerr structure. This mechanism naturally leads to the generation of a quasi-particle excitation, the so-called soliplasmon resonance. We analyze the role played by the effective nonlinear coupling inherent to this system and how this can be used to provide a new mechanism of quasi-resonant nonlinear excitation of surface plasmon polaritons. We will pay particular attention to the introduction of asymmetric linear gain in the Kerr medium. The unique combination of nonlinear propagation, nonlinear coupling and gain give rise to a new scenario for the excitation of long- range surface plasmon polaritons with distinguishing characteristics. The connection between plasmonic losses and soliplasmon resonances in the presence of gain will be discussed.

  9. Electric and magnetic surface polariton mediated near-field radiative heat transfer between metamaterials made of silicon carbide particles.

    Science.gov (United States)

    Francoeur, Mathieu; Basu, Soumyadipta; Petersen, Spencer J

    2011-09-26

    Near-field radiative heat transfer between isotropic, dielectric-based metamaterials is analyzed. A potassium bromide host medium comprised of silicon carbide (SiC) spheres with a volume filling fraction of 0.4 is considered for the metamaterial. The relative electric permittivity and relative magnetic permeability of the metamaterial are modeled via the Clausius-Mossotti relations linking the macroscopic response of the medium with the polarizabilities of the spheres. We show for the first time that electric and magnetic surface polariton (SP) mediated near-field radiative heat transfer occurs between dielectric-based structures. Magnetic SPs, existing in TE polarization, are physically due to strong magnetic dipole resonances of the spheres. We find that spherical inclusions with radii of 1 μm (or greater) are needed in order to induce SPs in TE polarization. On the other hand, electric SPs existing in TM polarization are generated by surface modes of the spheres, and are thus almost insensitive to the size of the inclusions. We estimate that the total heat flux around SP resonance for the metamaterial comprised of SiC spheres with radii of 1 μm is about 35% greater than the flux predicted between two bulks of SiC, where only surface phonon-polaritons in TM polarization are excited. The results presented in this work show that the near-field thermal spectrum can be engineered via dielectric-based metamaterials, which is crucial in many emerging technologies, such as in nanoscale-gap thermophotovoltaic power generation. © 2011 Optical Society of America

  10. Ultrafast exciton-polariton scattering towards the Dirac points.

    Science.gov (United States)

    Kovalev, V M; Savenko, I G; Iorsh, I V

    2016-03-16

    Using the Feynman-Dyson diagram technique, we study nonlinear polariton-polariton scattering in a two-dimensional micropillar-based optical superlattice with hexagonal symmetry. We demonstrate that both the emerging polariton chirality and the loop Feynman diagrams up to infinite order should be strictly accounted for in the evaluation of the self-energy of the system. Further, we explicitly show that in such a design the time of polariton scattering towards the Dirac points can be drastically decreased which can be used, for instance, in engineering novel classes of polariton lasers with substantially reduced thresholds.

  11. Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film

    Energy Technology Data Exchange (ETDEWEB)

    De Leon-Perez, F; Brucoli, G; Martin-Moreno, L [Instituto de Ciencia de Materiales de Aragon and Departamento de FIsica de la Materia Condensada, CSIC-Universidad de Zaragoza, E-50009, Zaragoza (Spain); Garcia-Vidal, F J [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, E-28049 Madrid (Spain)], E-mail: lmm@unizar.es

    2008-10-15

    The scattering of light and surface plasmon polaritons (SPPs) by finite arrays of either holes or dimples in a metal film is treated theoretically. A modal expansion formalism, capable of handling real metals with up to thousands of indentations, is presented. Computations based on this method demonstrate that a single hole scatters a significant fraction of incoming light into SPPs. It is also observed that holes and dimples scatter SPPs into light with similar efficiencies, provided the depth of the dimple is larger than its radius. Finally, it is shown that in arrays the normalized-to-area emittances in the out-of-plane and SPP channels present different dependences with the number of holes.

  12. Leakage radiation spectroscopy of organic nanofibers on metal films: evidence for exciton-surface plasmon polariton interaction

    DEFF Research Database (Denmark)

    Jozefowski, Leszek; Fiutowski, Jacek; Bordo, Vladimir

    2012-01-01

    Leakage radiation spectroscopy of organic nanofibers composed of self-assembled organic molecules (para-Hexaphenylene, p-6P) deposited on a thin (40-60 nm) Ag film has been performed in the spectral range 420-675 nm which overlaps with the nanofiber photoluminescence band. Using a soft transfer...... of detection. The leakage radiation was observed on the opposite side of the Ag film at the phase matching angle. The spectrally resolved intensity of the scattered radiation has been measured as a function of scattering angle at normally incident light. The spectrum contains a distinct peak at an wavelength...... dependent angle above the critical angle. By analyzing this dispersion curve one can argue that it originates from the interaction between the nanofiber excitons and surface plasmon polaritons of the metal film.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading...

  13. Enhanced light emission from top-emitting organic light-emitting diodes by optimizing surface plasmon polariton losses

    CERN Document Server

    Fuchs, Cornelius; Wieczorek, Martin; Gather, Malte C; Hofmann, Simone; Reineke, Sebastian; Leo, Karl; Scholz, Reinhard

    2015-01-01

    We demonstrate enhanced light extraction for monochrome top-emitting organic light-emitting diodes (OLEDs). The enhancement by a factor of 1.2 compared to a reference sample is caused by the use of a hole transport layer (HTL) material possessing a low refractive index (1.52). The low refractive index reduces the in-plane wave vector of the surface plasmon polariton (SPP) excited at the interface between the bottom opaque metallic electrode (anode) and the HTL. The shift of the SPP dispersion relation decreases the power dissipated into lost evanescent excitations and thus increases the outcoupling efficiency, although the SPP remains constant in intensity. The proposed method is suitable for emitter materials owning isotropic orientation of the transition dipole moments as well as anisotropic, preferentially horizontal orientation, resulting in comparable enhancement factors. Furthermore, for sufficiently low refractive indices of the HTL material, the SPP can be modeled as a propagating plane wave within ot...

  14. Impact of surface plasmon polaritons on photorefractive effect in dye doped liquid crystal cells with ZnSe interlayers.

    Science.gov (United States)

    Xue, Tingyu; Zhao, Hua; Meng, Cuiling; Fu, Jiayin; Zhang, Jingwen

    2014-08-25

    Great impact of surface plasmon polaritons (SPPs) on photorefractive effect in ZnSe/liquid crystal interface was observed and studied in dye pyrromethane 597 doped 4,4'-n-pentylcyanobiphenyl (5CB) liquid crystal (LC) cells sandwiched with ZnSe coated ITO glass plates. Locally electrostatic modification of ZnSe in charge carrier density makes possible visible light excitation of SPPs in the LC/ZnSe interfaces. A tentative physical picture of SPP mediation was proposed in elucidating associated findings, including photoinduced scattering enhancement at low electric field and then reduction at high field, stepwise up- and down-turns in exponential gain coefficient, and 2D diffraction patterns. This work may open a new way toward tunable low-loss visible excitation of SPPs for plasmonic applications, specifically for organic plasmonics.

  15. Surface-plasmon-polariton wave propagation guided by a metal slab in a sculptured nematic thin film

    CERN Document Server

    Faryad, Muhammad

    2010-01-01

    Surface-plasmon-polariton~(SPP) wave propagation guided by a metal slab in a periodically nonhomogeneous sculptured nematic thin film~(SNTF) was studied theoretically. The morphologically significant planes of the SNTF on both sides of the metal slab could either be aligned or twisted with respect to each other. The canonical boundary-value problem was formulated, solved for SPP-wave propagation, and examined to determine the effect of slab thickness on the multiplicity and the spatial profiles of SPP waves. Decrease in slab thickness was found to result in more intense coupling of two metal/SNTF interfaces. But when the metal slab becomes thicker, the coupling between the two interfaces reduces and SPP waves localize to one of the two interfaces. The greater the coupling between the two metal/SNTF interfaces, the smaller is the phase speed.

  16. On columnar thin films as platforms for surface-plasmonic-polaritonic optical sensing: higher-order considerations

    CERN Document Server

    Jamaian, Siti S

    2011-01-01

    The ability to tailor the porosity and optical properties of columnar thin films (CTFs) renders them promising platforms for optical sensing. In particular, surface-plasmon-polariton (SPP) waves, guided by the planar interface of an infiltrated CTF and a thin layer of metal, may be harnessed to detect substances that penetrate the void regions in between the columns of a CTF. This scenario was investigated theoretically using a higher-order homogenization technique, based on an extended version of the second-order strong-permittivity-fluctuation theory, which takes into account the size of the component particles which make up the infiltrated CTF and the statistical distribution of these particles. Our numerical studies revealed that as the size of the component particles increases and as the correlation length that characterizes their distribution increases: (i) the phase speed of the SPP wave decreases and the SPP wave's attenuation increases; (ii) the SPP wave's penetration into the CTF decreases; (iii) th...

  17. Understanding the role of surface plasmon polaritons in two-dimensional achiral nanohole arrays for polarization conversion

    CERN Document Server

    Cao, Z L; Zhang, Z Q; Chan, C T; Ong, H C

    2016-01-01

    We have studied the dependence of the rotation angle and ellipticity on the sample orientation and incident polarization from metallic nanohole arrays. The arrays have four-fold symmetry and thus do not possess any intrinsic chirality. We elucidate the role of surface plasmon polaritons (SPPs) in determining the extrinsic chirality and we verify the results by using finite-difference time-domain simulation. Our results have indicated the outgoing reflection arises from the interference between the nonresonant background, which preserves the input polarization, and the SPP radiation damping, which is linearly polarized but carries a different polarization defined by the vectorial field of SPPs. More importantly, the interference manifests various polarization states ranging from linear to elliptical across the SPP resonance. We analytically formulate the outgoing waves based on temporal coupled mode theory (CMT) and the results agree well with the experiment and simulation. From CMT, we find the polarization c...

  18. Surface plasmon polaritons on soft-boundary graphene nanoribbons and their application as voltage controlled plasmonic switches and frequency demultiplexers

    CERN Document Server

    Forati, Ebrahim

    2013-01-01

    A graphene sheet gated with a ridged ground plane, creating a soft-boundary (SB) graphene nanoribbon, is considered. By adjusting the ridge parameters and bias voltage a channel can be created on the graphene which can guide TM surface plasmon polaritons (SPP). Two types of modes are found; fundemental and higher-order modes with no apparent cutoff frequency and with energy distributed over the created channel, and edge modes with energy concen-trated at the soft-boundary edge. Dispersion curves, electric near-field patterns, and current distributions of these modes are determined. Since the location where energy is concentrated in the edge modes can be easily controlled electronically by the bias voltage and frequency, the edge-mode phenomena is used to propose a novel voltage controlled plasmonic switch and a plasmonic frequency demultiplexer.

  19. Pulsed microwave-driven argon plasma jet with distinctive plume patterns resonantly excited by surface plasmon polaritons

    Institute of Scientific and Technical Information of China (English)

    陈兆权; 殷志祥; 夏广庆; 洪伶俐; 胡业林; 刘明海; 胡希伟

    2015-01-01

    Atmospheric lower-power pulsed microwave argon cold plasma jets are obtained by using coaxial transmission line resonators in ambient air. The plasma jet plumes are generated at the end of a metal wire placed in the middle of the dielec-tric tubes. The electromagnetic model analyses and simulation results suggest that the discharges are excited resonantly by the enhanced electric field of surface plasmon polaritons. Moreover, for conquering the defect of atmospheric argon filamentation discharges excited by 2.45-GHz continued microwave, the distinctive patterns of the plasma jet plumes can be maintained by applying different gas flow rates of argon gas, frequencies of pulsed modulator, duty cycles of pulsed microwave, peak values of input microwave power, and even by using different materials of dielectric tubes. In addition, the emission spectrum, the plume temperature, and other plasma parameters are measured, which shows that the proposed pulsed microwave plasma jets can be adjusted for plasma biomedical applications.

  20. Compact surface plasmon amplifier in nonlinear hybrid waveguide

    Science.gov (United States)

    Shu-shu, Wang; Dan-qing, Wang; Xiao-peng, Hu; Tao, Li; Shi-ning, Zhu

    2016-07-01

    Surface plasmon polariton (SPP), a sub-wavelength surface wave promising for photonic integration, always suffers from the large metallic loss that seriously restricts its practical application. Here, we propose a compact SPP amplifier based on a nonlinear hybrid waveguide (a combination of silver, LiNbO3, and SiO2), where a couple of Bragg gratings are introduced in the waveguide to construct a cavity. This special waveguide is demonstrated to support a highly localized SPP-like hybrid mode and a low loss waveguide-like hybrid mode. To provide a large nonlinear gain, a pumping wave input from the LiNbO3 waveguide is designed to resonate inside the cavity and satisfy the cavity phase matching to fulfill the optical parametric amplification (OPA) of the SPP signal. Proper periods of gratings and the cavity length are chosen to satisfy the impedance matching condition to ensure the high input efficiency of the pump wave from the outside into the cavity. In theoretical calculations, this device demonstrates a high performance in a very compact scheme (∼ 3.32 μm) and a much lower pumping power for OPA compared with single-pass pumping. To obtain a comprehensive insight into this cavity OPA, the influences of the pumping power, cavity length, and the initial phase are discussed in detail. Project supported by the National Basic Research Program of China (Grant No. 2012CB921501), the National Natural Science Foundation of China (Grant Nos. 11322439, 11274165, 11321063, and 91321312), the Dengfeng Project B of Nanjing University, China, and the PAPD of Jiangsu Higher Education Institutions, China.

  1. Goos-Hänchen Shift and Even-Odd Peak Oscillations in Edge-Reflections of Surface Polaritons in Atomically Thin Crystals.

    Science.gov (United States)

    Kang, Ji-Hun; Wang, Sheng; Shi, Zhiwen; Zhao, Wenyu; Yablonovitch, Eli; Wang, Feng

    2017-02-08

    Two-dimensional surface polaritons (2DSPs), such as graphene plasmons, exhibit various unusual properties, including electrical tunability and strong spatial confinement with high Q-factor, which can enable tunable photonic devices for deep subwavelength light manipulations. Reflection of plasmons at the graphene's edge plays a critical role in the manipulation of 2DSP and enables their direct visualization in near-field infrared microscopy. However, a quantitative understanding of the edge-reflections, including reflection phases and diffraction effects, has remained elusive. Here, we show theoretically and experimentally that edge-reflection of 2DSP exhibits unusual behaviors due to the presence of the evanescent waves, including an anomalous Goos-Hänchen phase shift as in total internal reflections and an unexpected even-odd peak amplitude oscillation from the wave diffraction at the edge. Our theory is not only valid for plasmons in graphene but also for other 2D polaritons, such as phonon polaritons in ultrathin boron nitride flakes and exciton polariton in two-dimensional semiconductors.

  2. Hyperbolic Metamaterials with Bragg Polaritons

    Science.gov (United States)

    Sedov, Evgeny S.; Iorsh, I. V.; Arakelian, S. M.; Alodjants, A. P.; Kavokin, Alexey

    2015-06-01

    We propose a novel mechanism for designing quantum hyperbolic metamaterials with the use of semiconductor Bragg mirrors containing periodically arranged quantum wells. The hyperbolic dispersion of exciton-polariton modes is realized near the top of the first allowed photonic miniband in such a structure which leads to the formation of exciton-polariton X waves. Exciton-light coupling provides a resonant nonlinearity which leads to nontrivial topologic solutions. We predict the formation of low amplitude spatially localized oscillatory structures: oscillons described by kink shaped solutions of the effective Ginzburg-Landau-Higgs equation. The oscillons have direct analogies in gravitational theory. We discuss implementation of exciton-polariton Higgs fields for the Schrödinger cat state generation.

  3. Coupling of guided Surface Plasmon Polaritons to proximal self-assembled InGaAs Quantum Dots

    CERN Document Server

    Bracher, Gregor; Blauth, Mäx; Jakubeit, Clemens; Müller, Kai; Koblmüller, Gregor; Bichler, Max; Kaniber, Michael; Finley, Jonathan J

    2012-01-01

    We present investigations of the propagation length of guided surface plasmon polaritons along Au waveguides on GaAs and their coupling to near surface InGaAs self-assembled quantum dots. Our results reveal surface plasmon propagation lengths ranging from 13.4 {\\pm} 1.7 {\\mu}m to 27.5 {\\pm} 1.5 {\\mu}m as the width of the waveguide increases from 2-5 {\\mu}m. Experiments performed on active structures containing near surface quantum dots clearly show that the propagating plasmon mode excites the dot, providing a new method to spatially image the surface plasmon mode. We use low temperature confocal microscopy with polarization control in the excitation and detection channel. After excitation, plasmons propagate along the waveguide and are scattered into the far field at the end. By comparing length and width evolution of the waveguide losses we determine the plasmon propagation length to be 27.5 {\\pm} 1.5 {\\mu}m at 830 nm (for a width of 5 {\\mu}m), reducing to 13.4 {\\pm} 1.7 {\\mu}m for a width of 2 {\\mu}m. For ...

  4. Physical nature of volume plasmon polaritons in hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Kidwai, Omar; Sipe, J. E.

    2013-01-01

    We investigate electromagnetic wave propagation in multilayered metal-dielectric hyperbolic metamaterials (HMMs). We demonstrate that high-k propagating waves in HMMs are volume plasmon polaritons. The volume plasmon polariton band is formed by coupling of short-range surface plasmon polariton...

  5. A voltage-controlled silver nanograting device for dynamic modulation of transmitted light based on the surface plasmon polariton effect

    Science.gov (United States)

    Wang, Hailong; Li, Haibo; Wang, Yi; Xu, Shuping; Xu, Weiqing

    2016-02-01

    An active-controlled plasmonic device is designed and fabricated based on the index-sensitive properties of surface plasmon polaritons (SPPs). We utilize a one-dimensional silver nanograting with a period of 320 nm overlayered with a liquid crystal (LC) layer (50 μm in thickness), to transmit selectively the surface plasmon resonance (SPR) wavelength. This device realizes the active, reversible and continuous control of the transmitted light wavelength by modulating the external voltage signal applied to the LC layer. This voltage-controlled plasmonic filter has a dynamic wavelength modulation range of 17 nm, a fast respond speed of 4.24 ms and a low driving voltage of 1.06 V μm-1. This study opens up a unique way for the design of tunable nanophotonic devices, such as a micro light sources and switches.An active-controlled plasmonic device is designed and fabricated based on the index-sensitive properties of surface plasmon polaritons (SPPs). We utilize a one-dimensional silver nanograting with a period of 320 nm overlayered with a liquid crystal (LC) layer (50 μm in thickness), to transmit selectively the surface plasmon resonance (SPR) wavelength. This device realizes the active, reversible and continuous control of the transmitted light wavelength by modulating the external voltage signal applied to the LC layer. This voltage-controlled plasmonic filter has a dynamic wavelength modulation range of 17 nm, a fast respond speed of 4.24 ms and a low driving voltage of 1.06 V μm-1. This study opens up a unique way for the design of tunable nanophotonic devices, such as a micro light sources and switches. Electronic supplementary information (ESI) available: (1) The general theory of the VCP filter; (2) RI sensitivity; (3) the thickness optimization of the Ag grating sandwiched by photoresist layers; (4) image system; (5) detection systems for transmission and reflection spectra; (6) detection system for the response time of the VCP filter. See DOI: 10.1039/c5nr

  6. Excitation of surface phonon polariton modes in gold gratings with silicon carbide substrate and their potential sensing applications

    Science.gov (United States)

    Zheng, Gaige; Xu, Linhua; Zou, Xiujuan; Liu, Yuzhu

    2017-02-01

    We demonstrate the excitation of surface phonon polaritons (SPhPs) in the mid-infrared (mid-IR) Reststrahlen band (10.288 μm-12.563 μm) on patterned surfaces with silicon carbide (SiC) substrate and gold (Au) gratings. The very large negative permittivity of Au limits its applications in the mid-IR range, and to couple incident light to SPhPs modes, their momentum mismatch can be compensated by patterning Au grating onto the surface of SiC substrate. Samples were fabricated and characterized experimentally by Fourier transform infrared reflection (FTIR) spectroscopy. The optical properties were also simulated by the rigorous coupled wave analysis (RCWA) method. Reflection dips are observed for light polarized vertical to the grating lines (TM-polarized), which are attributed to the coupling of electromagnetic (EM) waves into the SPhP modes. In addition, we present small-volume index sensing with analyte specificity based on mid-IR SPhPs in the fabricated configuration.

  7. The simulation of localized surface plasmon and surface plasmon polariton in wire grid polarizer integrated on InP substrate for InGaAs sensor

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2015-07-01

    Full Text Available We numerically demonstrate the integration of gold wire grid polarizer on InP substrate for InGaAs polarimetric imaging. The effective spectral range of wire grid polarizer has been designed in 0.8-3 μm according to InGaAs response waveband. The dips in TM transmission are observed due to surface plasmon (SPs significantly damaging polarization performance. To further understand the coupling mechanism between gold wire grid grating and InP, the different contributions of surface plasmon polariton (SPP and localized surface plasmon (LSP to the dips are analyzed. Both transmission and reflectance spectra are simulated at different grating periods and duty cycles by finite-different time-domain (FDTD method. LSP wavelength is located at around 1 μm and sensitive to the specific shape of metal wire. SPP presents higher resonance wavelength closely related to grating period. The simulations of electric field distribution show the same results.

  8. Aspect-ratio driven evolution of high-order resonant modes and near-field distributions in localized surface phonon polariton nanostructures

    Science.gov (United States)

    Ellis, Chase T.; Tischler, Joseph G.; Glembocki, Orest J.; Bezares, Francisco J.; Giles, Alexander J.; Kasica, Richard; Shirey, Loretta; Owrutsky, Jeffrey C.; Chigrin, Dmitry N.; Caldwell, Joshua D.

    2016-09-01

    Polar dielectrics have garnered much attention as an alternative to plasmonic metals in the mid- to long-wave infrared spectral regime due to their low optical losses. As such, nanoscale resonators composed of these materials demonstrate figures of merit beyond those achievable in plasmonic equivalents. However, until now, only low-order, phonon-mediated, localized polariton resonances, known as surface phonon polaritons (SPhPs), have been observed in polar dielectric optical resonators. In the present work, we investigate the excitation of 16 distinct high-order, multipolar, localized surface phonon polariton resonances that are optically excited in rectangular pillars etched into a semi-insulating silicon carbide substrate. By elongating a single pillar axis we are able to significantly modify the far- and near-field properties of localized SPhP resonances, opening the door to realizing narrow-band infrared sources with tailored radiation patterns. Such control of the near-field behavior of resonances can also impact surface enhanced infrared optical sensing, which is mediated by polarization selection rules, as well as the morphology and strength of resonator hot spots. Furthermore, through the careful choice of polar dielectric material, these results can also serve as the guiding principles for the generalized design of optical devices that operate from the mid- to far-infrared.

  9. Nonlinear plasmonic amplification via dissipative soliton-plasmon resonances

    Science.gov (United States)

    Ferrando, Albert

    2017-01-01

    In this contribution we introduce a strategy for the compensation of plasmonic losses based on a recently proposed nonlinear mechanism: the resonant interaction between surface plasmon polaritons and spatial solitons propagating in parallel along a metal/dielectric/Kerr structure. This mechanism naturally leads to the generation of a quasiparticle excitation, the so-called soliplasmon resonance. We analyze the role played by the effective nonlinear coupling inherent to this system and how this can be used to provide a mechanism of quasiresonant nonlinear excitation of surface plasmon polaritons. We will pay particular attention to the introduction of asymmetric linear gain in the Kerr medium. The unique combination of nonlinear propagation, nonlinear coupling, and gain give rise to a scenario for the excitation of long-range surface plasmon polaritons with distinguishing characteristics. The connection between plasmonic losses and soliplasmon resonances in the presence of gain will be discussed.

  10. A highly efficient surface plasmon polaritons excitation achieved with a metal-coupled metal-insulator-metal waveguide

    Directory of Open Access Journals (Sweden)

    Hongyan Yang

    2014-12-01

    Full Text Available We propose a novel metal-coupled metal-insulator-metal (MC-MIM waveguide which can achieve a highly efficient surface plasmon polaritons (SPPs excitation. The MC-MIM waveguide is formed by inserting a thin metal film in the insulator of an MIM. The introduction of the metal film, functioning as an SPPs coupler, provides a space for the interaction between SPPs and a confined electromagnetic field of the intermediate metal surface, which makes energy change and phase transfer in the metal-dielectric interface, due to the joint action of incomplete electrostatic shielding effect and SPPs coupling. Impacts of the metal film with different materials and various thickness on SPPs excitation are investigated. It is shown that the highest efficient SPPs excitation is obtained when the gold film thickness is 60 nm. The effect of refractive index of upper and lower symmetric dielectric layer on SPPs excitation is also discussed. The result shows that the decay value of refractive index is 0.3. Our results indicate that this proposed MC-MIM waveguide may offer great potential in designing a new SPPs source.

  11. Propagation length enhancement of surface plasmon polaritons in gold nano-/micro-waveguides by the interference with photonic modes in the surrounding active dielectrics

    Science.gov (United States)

    Suárez, Isaac; Ferrando, Albert; Marques-Hueso, Jose; Díez, Antonio; Abargues, Rafael; Rodríguez-Cantó, Pedro J.; Martínez-Pastor, Juan P.

    2017-08-01

    In this work, the unique optical properties of surface plasmon polaritons (SPPs), i.e. subwavelength confinement or strong electric field concentration, are exploited to demonstrate the propagation of light signal at 600 nm along distances in the range from 17 to 150 μm for Au nanostripes 500 nm down to 100 nm wide (30 nm of height), respectively, both theoretically and experimentally. A low power laser is coupled into an optical fiber tip that is used to locally excite the photoluminescence of colloidal quantum dots (QDs) dispersed in their surroundings. Emitted light from these QDs is generating the SPPs that propagate along the metal waveguides. Then, the above-referred propagation lengths were directly extracted from this novel experimental technique by studying the intensity of light decoupled at the output edge of the waveguide. Furthermore, an enhancement of the propagation length up to 0.4 mm is measured for the 500-nm-wide metal nanostripe, for which this effect is maximum. For this purpose, a simultaneous excitation of the same QDs dispersed in poly(methyl methacrylate) waveguides integrated with the metal nanostructures is performed by end-fire coupling an excitation laser energy as low as 1 KW/cm2. The proposed mechanism to explain such enhancement is a non-linear interference effect between dielectric and plasmonic (super)modes propagating in the metal-dielectric structure, which can be apparently seen as an effective amplification or compensation effect of the gain material (QDs) over the SPPs, as previously reported in literature. The proposed system and the method to create propagating SPPs in metal waveguides can be of interest for the application field of sensors and optical communications at visible wavelengths, among other applications, using plasmonic interconnects to reduce the dimensions of photonic chips.

  12. Propagation length enhancement of surface plasmon polaritons in gold nano-/micro-waveguides by the interference with photonic modes in the surrounding active dielectrics

    Directory of Open Access Journals (Sweden)

    Suárez Isaac

    2017-02-01

    Full Text Available In this work, the unique optical properties of surface plasmon polaritons (SPPs, i.e. subwavelength confinement or strong electric field concentration, are exploited to demonstrate the propagation of light signal at 600 nm along distances in the range from 17 to 150 μm for Au nanostripes 500 nm down to 100 nm wide (30 nm of height, respectively, both theoretically and experimentally. A low power laser is coupled into an optical fiber tip that is used to locally excite the photoluminescence of colloidal quantum dots (QDs dispersed in their surroundings. Emitted light from these QDs is generating the SPPs that propagate along the metal waveguides. Then, the above-referred propagation lengths were directly extracted from this novel experimental technique by studying the intensity of light decoupled at the output edge of the waveguide. Furthermore, an enhancement of the propagation length up to 0.4 mm is measured for the 500-nm-wide metal nanostripe, for which this effect is maximum. For this purpose, a simultaneous excitation of the same QDs dispersed in poly(methyl methacrylate waveguides integrated with the metal nanostructures is performed by end-fire coupling an excitation laser energy as low as 1 KW/cm2. The proposed mechanism to explain such enhancement is a non-linear interference effect between dielectric and plasmonic (supermodes propagating in the metal-dielectric structure, which can be apparently seen as an effective amplification or compensation effect of the gain material (QDs over the SPPs, as previously reported in literature. The proposed system and the method to create propagating SPPs in metal waveguides can be of interest for the application field of sensors and optical communications at visible wavelengths, among other applications, using plasmonic interconnects to reduce the dimensions of photonic chips.

  13. Nonlinear surface waves in photonic hypercrystals

    Science.gov (United States)

    Ali, Munazza Zulfiqar

    2017-08-01

    Photonic crystals and hyperbolic metamaterials are merged to give the concept of photonic hypercrystals. It combines the properties of its two constituents to give rise to novel phenomena. Here the propagation of Transverse Magnetic waves at the interface between a nonlinear dielectric material and a photonic hypercrystal is studied and the corresponding dispersion relation is derived using the uniaxial parallel approximation. Both dielectric and metallic photonic hypercrystals are studied and it is found that nonlinearity limits the infinite divergence of wave vectors of the surface waves. These states exist in the frequency region where the linear surface waves do not exist. It is also shown that the nonlinearity can be used to engineer the group velocity of the resulting surface wave.

  14. Versatile and tunable surface plasmon polariton excitation over a broad bandwidth with a simple metaline by external polarization modulation.

    Science.gov (United States)

    You, Oubo; Bai, Benfeng; Sun, Lin; Shen, Biyao; Zhu, Zhendong

    2016-09-19

    Surface plasmon polariton (SPP) sources and launchers are highly demanded in various applications of nanophotonics. Here, we propose a general approach that can realize complete control of the complex extinction ratio (including amplitude and phase) of any two linearly independent SPP modes excited by any elementary SPP excitation architecture just by manipulating the incident polarization state. In an optical system, it suffices to simply tune the orientation angles of a linear polarizer and a quarter wave plate, which may greatly simplify the design and application of SPP launchers and diversify their functionalities. As an example to show the broad application prospect of this method, we design and realize a metaline consisting of Δ-shaped plasmonic nanoantennas, which can effectively realize dual functionalities, i.e., the tunable directional SPP excitation at an arbitrarily chosen wavelength and the complete unidirectional SPP excitation over a broad bandwidth. This general approach can also be extended to the control of the complex extinction ratio of any two linearly independent excited modes in many other linear optical systems, such as two modes in a waveguide or two diffraction orders in a grating, over a broad bandwidth.

  15. Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal.

    Science.gov (United States)

    Hall, Anthony Shoji; Faryad, Muhammad; Barber, Greg D; Liu, Liu; Erten, Sema; Mayer, Theresa S; Lakhtakia, Akhlesh; Mallouk, Thomas E

    2013-06-25

    Light incident upon a periodically corrugated metal/dielectric interface can generate surface plasmon polariton (SPP) waves. This effect is used in many sensing applications. Similar metallodielectric nanostructures are used for light trapping in solar cells, but the gains are modest because SPP waves can be excited only at specific angles and with one linear polarization state of incident light. Here we report the optical absorptance of a metallic grating coupled to silicon oxide/oxynitride layers with a periodically varying refractive index, i.e., a 1D photonic crystal. These structures show a dramatic enhancement relative to those employing a homogeneous dielectric material. Multiple SPP waves can be activated, and both s- and p-polarized incident light can be efficiently trapped. Many SPP modes are weakly bound and display field enhancements that extend throughout the dielectric layers. These modes have significantly longer propagation lengths than the single SPP modes excited at the interface of a metallic grating and a uniform dielectric. These results suggest that metallic gratings coupled to photonic crystals could have utility for light trapping in photovoltaics, sensing, and other applications.

  16. Pulsed microwave-driven argon plasma jet with distinctive plume patterns resonantly excited by surface plasmon polaritons

    Science.gov (United States)

    Chen, Zhao-Quan; Yin, Zhi-Xiang; Xia, Guang-Qing; Hong, Ling-Li; Hu, Ye-Lin; Liu, Ming-Hai; Hu, Xi-Wei; A. Kudryavtsev, A.

    2015-02-01

    Atmospheric lower-power pulsed microwave argon cold plasma jets are obtained by using coaxial transmission line resonators in ambient air. The plasma jet plumes are generated at the end of a metal wire placed in the middle of the dielectric tubes. The electromagnetic model analyses and simulation results suggest that the discharges are excited resonantly by the enhanced electric field of surface plasmon polaritons. Moreover, for conquering the defect of atmospheric argon filamentation discharges excited by 2.45-GHz of continued microwave, the distinctive patterns of the plasma jet plumes can be maintained by applying different gas flow rates of argon gas, frequencies of pulsed modulator, duty cycles of pulsed microwave, peak values of input microwave power, and even by using different materials of dielectric tubes. In addition, the emission spectrum, the plume temperature, and other plasma parameters are measured, which shows that the proposed pulsed microwave plasma jets can be adjusted for plasma biomedical applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 11105002 and 61170172), the Natural Science Foundation of Anhui Province, China (Grant Nos. 1408085QA16 and 1408085ME101), the China Postdoctoral Science Foundation (Grant No. 2014M551788), and the Open-end Fund of State Key Laboratory of Advanced Electromagnetic Engineering and Technology (HUST), China (Grant No. GZ1301).

  17. Surface-plasmon-polariton waves guided by the uniformly moving planar interface of a metal film and dielectric slab

    CERN Document Server

    Mackay, Tom G

    2010-01-01

    We explored the effects of relative motion on the excitation of surface-plasmon-polariton (SPP) waves guided by the planar interface of a metal film and a dielectric slab, both materials being isotropic and homogeneous. Electromagnetic phasors in moving and non-moving reference frames were related directly using the corresponding Lorentz transformations. Our numerical studies revealed that, in the case of a uniformly moving dielectric slab, the angle of incidence for SPP-wave excitation is highly sensitive to (i) the ratio $\\beta$ of the speed of motion to speed of light in free space and (ii) the direction of motion. When the direction of motion is parallel to the plane of incidence, the SPP wave is excited by $p$-polarized (but not $s$-polarized) incident plane waves for low and moderate values of $\\beta$, while at higher values of $\\beta$ the total reflection regime breaks down. When the direction of motion is perpendicular to the plane of incidence, the SPP wave is excited by $p$-polarized incident plane ...

  18. Identification of higher order long-propagation-length surface plasmon polariton modes in chemically prepared gold nanowires.

    Science.gov (United States)

    Paul, Aniruddha; Solis, David; Bao, Kui; Chang, Wei-Shun; Nauert, Scott; Vidgerman, Leonid; Zubarev, Eugene R; Nordlander, Peter; Link, Stephan

    2012-09-25

    A comprehensive understanding of the type of modes and their propagation length for surface plasmon polaritons (SPPs) in gold nanowires is essential for potential applications of these materials as nanoscale optical waveguides. We have studied chemically synthesized single gold nanowires by a novel technique called bleach-imaged plasmon propagation (BlIPP), which relies on the plasmonic near-field induced photobleaching of a dye to report the SPP propagation in nanowires. We observed a much longer propagation length of 7.5 ± 2.0 μm at 785 nm compared to earlier reports, which found propagation lengths of ~2.5 μm. Finite difference time domain simulations revealed that the bleach-imaged SPP is a higher order m = 1 mode and that the lowest order m = 0 mode is strongly quenched due to the loss to the dye layer and cannot be resolved by BlIPP. A comparative assessment of BlIPP with direct fluorescence imaging furthermore showed that the significant difference in propagation lengths obtained by these two techniques can be attributed to the difference in their experimental conditions, especially to the difference in thickness of the dye layer coating on the nanowire. In addition to identifying a higher order SPP mode with long propagation length, our study infers that caution must be taken in selecting indirect measurement techniques for probing SPP propagation in nanoscale metallic waveguides.

  19. Photorefractive surface nonlinearly chirped waveguide arrays

    Science.gov (United States)

    Qi, Pengfei; Feng, Tianrun; Wang, Sainan; Han, Rong; Hu, Zhijian; Zhang, Tianhao; Tian, Jianguo; Xu, Jingjun

    2016-05-01

    We report an alternate type of nonlinear waveguides, photorefractive surface nonlinearly chirped waveguide arrays, which can be directly induced by photorefractive surface waves in virtue of diffusion and drift nonlinearities. The amplitude of such nonlinearly chirped waveguide arrays has an apodized envelope owing to the diffusion nonlinearity. The refractive-index change of the apodized tails converges to a nonzero value which can be handily adjusted by an external electric field. Moreover, the chirp parameters such as amplitude, sign (positive or negative), and initial position can be conveniently adjusted by an external electric field, background illumination, incident beam, etc. Then the guided-wave properties of this type of waveguide arrays are analyzed by using the transfer matrix method. Owing to the flexible tail and the nonlinear chirp, the dispersion curves of the index-guided modes can be tailored by an external electric field and the dispersion curves of ordinary and extraordinary Bragg guided modes couple, intertwine, and anticross with each other. Meanwhile, there is a clear "competition" in the coupling hybrid mode near anticrossing.

  20. Nonlinear surface waves over topography

    NARCIS (Netherlands)

    Janssen, T.T.

    2006-01-01

    As ocean surface waves radiate into shallow coastal areas and onto beaches, their lengths shorten, wave heights increase, and the wave shape transforms from nearsinusoidal to the characteristic saw-tooth shapes at the onset of breaking; in the ensuing breaking process the wave energy is cascaded to

  1. Soliton physics with semiconductor exciton-polaritons in confined systems

    Science.gov (United States)

    Sich, Maksym; Skryabin, Dmitry V.; Krizhanovskii, Dmitry N.

    2016-10-01

    In the past decade, there has been a significant progress in the study of non-linear polariton phenomena in semiconductor microcavities. One of the key features of non-linear systems is the emergence of solitons. The complexity and the inherently strong nonlinearity of the polariton system made it a perfect sandpit for observing solitonic effects in half-light half-matter environment. This review focuses on the theory and the latest experimental elucidating physics as well as potential applications of conservative and dissipative solitons in exciton-polariton systems. xml:lang="fr"

  2. Near field evidence of backward surface plasmon polaritons on negative index material boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas, Mauro, E-mail: cuevas@df.uba.ar [Facultad de Ingeniería y Tecnología Informática, Universidad de Belgrano, Villanueva 1324, C1426BMJ, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Grunhut, Vivian [Facultad de Ingeniería, Universidad Austral (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Depine, Ricardo A. [Grupo de Electromagnetismo Aplicado, Departamento de Física, FCEN, Universidad de Buenos Aires and IFIBA, Ciudad Universitaria, Pabellón I, C1428EHA, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina)

    2016-12-09

    Highlights: • Electromagnetic scattering from a localized defect on a NIM surface is presented. • The electromagnetic response strongly depends on the SPPs excited. • Near field distribution reveals the forward or backward character of SPPs excited. - Abstract: We present a detailed analysis about the electromagnetic response of a metamaterial surface with a localized defect. The excitation of electromagnetic surface waves leads to a near-field distribution showing a periodic dependence along the metamaterial surface. We find that this periodic pattern provides a direct demonstration of the forward or backward surface wave propagation.

  3. Photonic surfaces for designable nonlinear power shaping

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Roshni, E-mail: rbiswas@usc.edu; Povinelli, Michelle L. [Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 (United States)

    2015-02-09

    We propose a method for designing nonlinear input-output power response based on absorptive resonances of nanostructured surfaces. We show that various power transmission trends can be obtained by placing a photonic resonance mode at the appropriate detuning from the laser wavelength. We demonstrate our results in a silicon photonic crystal slab at a laser wavelength of 808 nm. We quantify the overall spectral red shift as a function of laser power. The shift results from absorptive heating and the thermo-optic effect. We then demonstrate devices with increasing, decreasing, and non-monotonic transmission as a function of laser power. The transmission changes are up to 7.5 times larger than in unpatterned silicon. The strong nonlinear transmission is due to a combination of resonantly enhanced absorption, reduced thermal conductivity, and the resonant transmission lineshape. Our results illustrate the possibility of designing different nonlinear power trends within a single materials platform at a given wavelength of interest.

  4. Hamiltonian Optics of Hyperbolic Polaritons in Nanogranules.

    Science.gov (United States)

    Sun, Zhiyuan; Gutiérrez-Rubio, Á; Basov, D N; Fogler, M M

    2015-07-08

    Semiclassical quantization rules and numerical calculations are applied to study polariton modes of materials whose permittivity tensor has principal values of opposite sign (so-called hyperbolic materials). The spectra of volume- and surface-confined polaritons are computed for spheroidal nanogranules of hexagonal boron nitride, a natural hyperbolic crystal. The field distribution created by polaritons excited by an external dipole source is predicted to exhibit raylike patterns due to classical periodic orbits. Near-field infrared imaging and Purcell-factor measurements are suggested to test these predictions.

  5. Modulational instability and solitary waves in polariton topological insulators

    CERN Document Server

    Kartashov, Yaroslav V

    2016-01-01

    Optical microcavities supporting exciton-polariton quasi-particles offer one of the most powerful platforms for investigation of rapidly developing area of topological photonics in general, and of photonic topological insulators in particular. Energy bands of the microcavity polariton graphene are readily controlled by magnetic field and influenced by the spin-orbit coupling effects, a combination leading to formation of linear unidirectional edge states in polariton topological insulators as predicted very recently. In this work we depart from the linear limit of non-interacting polaritons and predict instabilities of the nonlinear topological edge states resulting in formation of the localized topological quasi-solitons, which are exceptionally robust and immune to backscattering wavepackets propagating along the graphene lattice edge. Our results provide a background for experimental studies of nonlinear polariton topological insulators and can influence other subareas of photonics and condensed matter phy...

  6. Composition Dependence of Surface Phonon Polariton Mode in Wurtzite InxGa1-xN (0 ≤ x ≤ 1) Ternary Alloy

    Institute of Scientific and Technical Information of China (English)

    S. S. Ng; Z. Hassan; H. Abu Hassan

    2008-01-01

    @@ We present a theoretical study on the composition dependence of the surface phonon polariton (SPP) mode in wurtzite structure α-Inx Ga1-xN ternary alloy over the whole composition range. The SPP modes are obtained by the theoretical simulations by means of an anisotropy model. The results reveal that the SPP mode of α-InxGa1-Xn semiconductors exhibits one-mode behaviour. From these data, composition dependence of the SPP mode with bowing parameter of -28.9 cm-1 is theoretically obtained.

  7. Compact and broadband directional coupling and demultiplexing in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect

    DEFF Research Database (Denmark)

    Zhu, Zhihong; García Ortíz, César Eduardo; Han, Zhanghua

    2013-01-01

    We theoretically, numerically, and experimentally demonstrate that a directional coupling function can be realized with a wide bandwidth (greater than 200 nm) in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect. The functional size of the structures...... is in the range of several micrometers, which is much shorter than traditional directional couplers consisting of two parallel dielectric or plasmonic metallic waveguides. In addition, 1 × 2 beam splitting and demultiplexing function was realized. Such devices with wide bandwidth and small size indicate potential...

  8. Surface-Plasmon-Polariton Laser based on an Open-Cavity Fabry-Perot Resonator

    CERN Document Server

    Zhu, Wenqi; Agrawal, Amit; Lezec, Henri J

    2016-01-01

    Recent years have witnessed growing interest in the development of small-footprint lasers for potential applications in small-volume sensing and on-chip optical communications. Surface-plasmons, electromagnetic modes evanescently confined to metal-dielectric interfaces, offer an effective route to achieving lasing at nanometer-scale dimensions when resonantly amplified in contact with a gain-medium. Here, we achieve visible frequency ultra-narrow linewidth lasing at room-temperature by leveraging surface plasmons propagating in an open Fabry-Perot cavity formed by a flat metal surface coated with a subwavelength-thick layer of optically-pumped gain medium and orthogonally bound by a pair of flat metal sidewalls. Low perturbation transmission-configuration sampling of the lasing plasmon mode is achieved via an evanescently coupled recessed nanoslit, opening the way to high-figure-of-merit refractive-index sensing of analytes interacting with the open cavity.

  9. Controlling Surface-plasmon-polariton Launching with Hot Spot Cylindrical Waves in a Metallic Slit Structure

    CERN Document Server

    Yao, Wenjie; Chen, Jianjun; Gong, Qihuang

    2015-01-01

    Plasmonic nanostructures, which are used to generate surface plasmon polaritions (SPPs), always involve sharp corners where the charges can accumulate. This can result in strong localized electromagnetic fields at the metallic corners, forming hot spots. The influence of the hot spots on the propagating SPPs are investigated theoretically and experimentally in a metallic slit structure. It is found that the electromagnetic fields radiated from the hot spots, termed as the hot spot cylindrical wave (HSCW), can greatly manipulate the SPP launching in the slit structure. The physical mechanism behind the manipulation of the SPP launching with the HSCW is explicated by a semi-analytic model. By using the HSCW, unidirectional SPP launching is experimentally realized in an ultra-small metallic step-slit structure. The HSCW bridges the localized surface plasmons and the propagating surface plasmons in an integrated platform and thus may pave a new route to the design of plasmonic devices and circuits.

  10. Photonic band gap structures for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Boltasseva, Alexandra; Søndergaard, Thomas

    2005-01-01

    -size thickness variations result in the pronounced band gap effect, and obtain very good agreement between measured and simulated (transmission and reflection) spectra. This effect is exploited to realize a compact wavelength add-drop filter with the bandwidth of ~20 nm centered at 1550 nm. The possibilities...... of achieving a full bandgap (in the surface plane) for LR-SPPs are also discussed....

  11. Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires

    NARCIS (Netherlands)

    Van der Valk, N.C.J.; Planken, P.C.M.

    2005-01-01

    The authors present measurements and calculations on the effect of thin dielectric coatings on the propagation of terahertz pulses along the surface of metal wires. Our measurements show that propagation over only a few centimeters of wire having a thin dielectric coating, strongly distorts the tera

  12. Theoretical study of loss compensation in long-range dielectric loaded surface plasmon polariton waveguides

    NARCIS (Netherlands)

    García Blanco, Sonia Maria; Pollnau, Markus; Bozhevolnyi, Sergey I.

    In this paper, a theoretical study of loss compensation in long-range dielectric loaded surface plasmon waveguides (LR-DLSPPs) is presented. Although extendable to other gain materials, rare-earth doped double tungstates are used as gain material in this work. Two different structures are studied

  13. Critical coupling layer thickness for positive or negative Goos-Hänchen shifts near the excitation of backward surface polaritons in Otto-ATR systems

    Science.gov (United States)

    Zeller, Mariana A.; Cuevas, Mauro; Depine, Ricardo A.

    2015-05-01

    We present a theoretical analysis of the lateral displacement (Goos-Hänchen shift) of spatially limited beams reflected from attenuated total reflection (ATR) devices in the Otto configuration when backward surface plasmon polaritons are excited at the interface between a positive refractive index slab and a semi-infinite metamaterial with a negative refractive index. First, the stationary phase approximation and a phenomenological model based on the properties of the complex poles and zeroes of the reflection coefficient are used to demonstrate that: (i) the excitation of backward surface waves can lead to both negative and positive (and not exclusively negative) Goos-Hänchen shifts, and (ii) the sign of the shift depends on whether the value of the coupling layer thickness is higher or lower than a critical value characteristic of the ATR structure. Then, these findings are verified through rigorous calculations of the spatial structure of the reflected beam. For incident beams with a Gaussian profile, the lateral shift calculated as the first moment of the field distribution of the reflected beam agrees quite well with the predictions of approximate analysis. Near the resonant excitation of the backward surface plasmon polariton, large (negative or positive) Goos-Hänchen shifts are obtained, along with a splitting of the reflected beam.

  14. An Electric Field Volume Integral Equation Approach to Simulate Surface Plasmon Polaritons

    Directory of Open Access Journals (Sweden)

    R. Remis

    2013-02-01

    Full Text Available In this paper we present an electric field volume integral equation approach to simulate surface plasmon propagation along metal/dielectric interfaces. Metallic objects embedded in homogeneous dielectric media are considered. Starting point is a so-called weak-form of the electric field integral equation. This form is discretized on a uniform tensor-product grid resulting in a system matrix whose action on a vector can be computed via the fast Fourier transform. The GMRES iterative solver is used to solve the discretized set of equations and numerical examples, illustrating surface plasmon propagation, are presented. The convergence rate of GMRES is discussed in terms of the spectrum of the system matrix and through numerical experiments we show how the eigenvalues of the discretized volume scattering operator are related to plasmon propagation and the medium parameters of a metallic object.

  15. Enhanced Surface-Plasmon-Polariton Interference for Nanolithography by a Micro-Cylinder-Lens Array

    Institute of Scientific and Technical Information of China (English)

    LIANG Hui-Min; WANG Jing-Quan; FAN Feng; QIN Ai-Li; ZHANG Chun-Yuan; CHENG Hui

    2010-01-01

    @@ A practical interference lithography scheme based on surface plasmon polaritions (SPPs) is suggested.In this scheme,a micro-cylinder-lens array is employed to generate the evanescent wave (EW) carrying much energy.When the top of the cylinder lenses are in dose contact with a metal film coated on a resist,the energy of EW will launch strong SPPs and form enhanced interference nanopatterns in the resist.

  16. New application of terahertz time-domain spectrometry (THz-TDS) to the phonon-polariton observation on ferroelectric crystals

    Science.gov (United States)

    Nishizawa, Seizi; Tsumura, Naoki; Kitahara, Hideaki; Wada Takeda, Mitsuo; Kojima, Seiji

    2002-11-01

    A new instrument for terahertz time-domain spectroscopy (THz-TDS) has been developed. It consists of a composite THz-TDS system and a high throughput (Martin-Puplett) interferometer. The instrument is for use in the qualitative study of optoelectronic constants of materials. The spectral transmission intensity and phase shift related to phonon-polariton dispersion have been measured between 100 cm-1 and 3 cm-1 on ferroelectric crystals of industrial interest. These include bismuth titanate Bi4Ti3O12 (a key material for FeRAM), lithium niobate LiNbO3 (a typical nonlinear crystal for parametric oscillator applications) and lithium heptagermanate Li2Ge7O15 for surface elastic wave filter applications. The complex dielectric constants are well reproduced by the phonon-polariton dispersion relation based on the Kurosawa formula. The instrument details and phonon-polariton dispersion results are described.

  17. Microscopic approach to polaritons

    DEFF Research Database (Denmark)

    Skettrup, Torben

    1981-01-01

    contrary to experimental experience. In order to remove this absurdity the semiclassical approach must be abandoned and the electromagnetic field quantized. A simple microscopic polariton model is then derived. From this the wave function for the interacting exciton-photon complex is obtained...... of light of the crystal. The introduction of damping smears out the excitonic spectra. The wave function of the polariton, however, turns out to be very independent of damping up to large damping values. Finally, this simplified microscopic polariton model is compared with the exact solutions obtained...... for the macroscopic polariton model by Hopfield. It is seen that standing photon and exciton waves must be included in an exact microscopic polariton model. However, it is concluded that for practical purposes, only the propagating waves are of importance and the simple microscopic polariton wave function derived...

  18. Analysis of Bragg gratings for long-range surface plasmon polaritons using the bidirectional beam propagation method based on scattering operators

    Science.gov (United States)

    Zhang, Hua; Mu, Jianwei; Huang, Wei-Ping

    2007-09-01

    For realization of highly integrated optical circuits, various metallic nanostructures supporting the propagation of surface plasmon polaritons have been extensively studied experimentally and theoretically in recent years. This paper reports on the development of a numerically stable and accurate finite-difference-based bidirectional beam propagation method (FD-BiBPM) for analyzing piecewise z-invariant plasmonic structures. Our method is developed based on the scattering operators. The adoption of complex coefficient rational approximations to the square root operator allows to correctly model the propagation of evanescent modes excited at discontinuity interfaces. In view of the large index contrast at metal-dielectric interfaces, a fourth-order accurate finite difference formulation for discretization is incorporated to the present method and its fine treatment of these interfaces guarantees accuracy. By using the present method, the reflection and transmission spectra of the Bragg gratings consisting of a thin metal film embedded in dielectric medium and an array of equidistant metal ridges on each side of the film are calculated. The good agreement of our results with the previously reported simulations illustrates the potential of the newly developed FD-BiBPM for the analysis of longrange surface plasmon polariton (LRSPP) waves guided along the described Bragg gratings.

  19. Coupling of Surface Plasmon Polariton in Al-Doped ZnO with Fabry-Pérot Resonance for Total Light Absorption

    Directory of Open Access Journals (Sweden)

    David George

    2017-04-01

    Full Text Available Al-doped ZnO (AZO can be used as an electrically tunable plasmonic material in the near infrared range. This paper presents finite-difference time-domain (FDTD simulations on total light absorption (TLA resulting from the coupling of a surface plasmon polariton (SPP with Fabry-Pérot (F-P resonance in a three-layer structure consisting of an AZO square lattice hole array, a spacer, and a layer of silver. Firstly, we identified that the surface plasmon polariton (SPP that will couple to the F-P resonance because of an SPP standing wave in the (1,0 direction of the square lattice. Two types of coupling between SPP and F-P resonance are observed in the simulations. In order to achieve TLA, an increase in the refractive index of the spacer material leads to a decrease in the thickness of the spacer. Additionally, it is shown that the replacement of silver by other, more cost-effective metals has no significance influence on the TLA condition. It is observed in the simulations that post-fabrication tunability of the TLA wavelength is possible via the electrical tunability of the AZO. Finally, electric field intensity distributions at specific wavelengths are computed to further prove the coupling of SPP with F-P resonance. This work will contribute to the design principle for future device fabrication for TLA applications.

  20. Engineering plasmon dispersion relations : hybrid nanoparticle chain - substrate plasmon polaritons

    NARCIS (Netherlands)

    Compaijen, Paul J.; Malyshev, Victor A.; Knoester, Jasper

    2015-01-01

    We consider the dispersion relations of the optical excitations in a chain of silver nanoparticles situated above a metal substrate and show that they are hybrid plasmon polaritons, composed of localized surface plasmons and surface plasmon polaritons. We demonstrate a strong dependence of the syste

  1. Floating dielectric slab optical interconnection between metal-dielectric interface surface plasmon polariton waveguides.

    Science.gov (United States)

    Kang, Minsu; Park, Junghyun; Lee, Il-Min; Lee, Byoungho

    2009-01-19

    A simple and effective optical interconnection which connects two distanced single metal-dielectric interface surface plasmon waveguides by a floating dielectric slab waveguide (slab bridge) is proposed. Transmission characteristics of the suggested structure are numerically studied using rigorous coupled wave analysis, and design rules based on the study are given. In the wave-guiding part, if the slab bridge can support more than the fundamental mode, then the transmission efficiency of the interconnection shows strong periodic dependency on the length of the bridge, due to the multi-mode interference (MMI) effect. Otherwise, only small fluctuation occurs due to the Fabry-Pérot effect. In addition, light beating happens when the slab bridge is relatively short. In the wave-coupling part, on the other hand, gap-assisted transmission occurs at each overlapping region as a consequence of mode hybridization. Periodic dependency on the length of the overlap region also appears due to the MMI effect. According to these results, we propose design principles for achieving both high transmission efficiency and stability with respect to the variation of the interconnection distance, and we show how to obtain the transmission efficiency of 68.3% for the 1mm-long interconnection.

  2. Superfluidity in polariton condensates

    Energy Technology Data Exchange (ETDEWEB)

    Amo, A; Lefrere, J; Adrados, C; Giacobino, E; Bramati, A [Laboratoire Kastler Brossel, UPMC, ENS and CNRS, 75005 Paris (France); Sanvitto, D; Laussy, F P; Ballarini, D; Valle, E del; MartIn, M D; Tejedor, C; Vina, L [SEMICUAM, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Pigeon, S; Ciuti, C [Laboratoire Materiaux et Phenomenes Quantiques, UMR 7162, Universite Paris Diderot-Paris 7 and CNRS, 75013 Paris (France); Carusotto, I [BEC-CNR-INFM and Dip. di Fisica, Universita di Trento, I-38050 Povo (Italy); Houdre, R [Institut de Photonique et d' Electronique Quantique, Ecole Polytechnique Federale de Lausanne, Station 3, CH-1015 Lausanne (Switzerland); LemaItre, A; Bloch, J [Laboratoire de Photonique et de Nanostructures, CNRS, Route de Nozay, 91460 Marcoussis (France); Krizhanovskii, D N; Skolnick, M S, E-mail: alberto.amo@spectro.jussieu.f [Department of Physics and Astronomy, University of Sheffield, S3 7RH, Sheffield (United Kingdom)

    2010-02-01

    Exciton-polaritons, two-dimensional composite bosons arising from the quantum mixture of excitons and photons, can manifest many-body quantum effects at liquid He temperatures (4 K). Interestingly, polaritons are predicted to behave as particular quantum fluids due to their out of equilibrium character, arising from their reduced lifetime (shorter than their thermalization time). Here we report the observation of superfluid motion of polaritons in semiconductor microcavities both under cw and pulsed excitation. Among other signatures, superfluidity is manifested via the absence of scattering of the polariton condensates when encountering a localized defect in their flow path.

  3. Light Emission Characteristics of Metal/Insulator/Metal and Metal/Insulator/Si Tunnel Junctions Mediated by Surface Plasmon-polaritons

    Institute of Scientific and Technical Information of China (English)

    WANG Mao-xiang; YU Jian-hua; ZHANG You-wen; SUN Cheng-xiu; ZHANG Xu-ping

    2007-01-01

    The Au/Al2O3/Al metal/insulator/metal junction(MIMJ) and Au/SiO2/Si metal/insulator/Si junction(MISJ) have been constructed successfully. The light emission of these junctions was mediated by surface plasmon-polaritons(SPPs) under surface roughness. The light emission from MISJ was more uniform and stable than that from MIMJ. The light power of MISJ was about 2~3 orders higher than that of MIMJ. The light emission spectrum of MISJ was analyzed especially. In the spectrum, there was one main peak located at the wavelength of 610 nm~640 nm, which was mainly due to the couple of SPP with the surface roughness at the Au/air and Au/SiO2 interfaces. A weak peak located at the shorter wavelength region in the spectrum was also found, which was caused by the direct radiation of doped-Si plasma oscillation.

  4. Impact of surface plasmon polaritons and other waves on the radiation of a dipole emitter close to a metallic nanowire antenna.

    Science.gov (United States)

    Liu, Chuan; Liu, Haitao; Zhong, Ying

    2014-10-20

    The radiation of a dipole emitter close to a metallic nanowire optical antenna is investigated theoretically. By considering the excitation and multiple scattering of surface plasmon polaritons (SPPs) on the antenna and neglecting all other surface waves, we build up an intuitive pure-SPP model to comprehensively describe the radiation of the antenna. The model shows that for antennas with short lengths that support lower orders of resonance, waves other than SPPs contribute considerably to the antenna radiation, while SPPs play a dominant role for other cases. The enhancement of the antenna radiation is shown arising from two contributions, the field directly radiated by the emitter and the field resonantly excited by the surface waves on the antenna.

  5. Hyperbolic metamaterials based on Bragg polariton structures

    Science.gov (United States)

    Sedov, E. S.; Charukhchyan, M. V.; Arakelyan, S. M.; Alodzhants, A. P.; Lee, R.-K.; Kavokin, A. V.

    2016-07-01

    A new hyperbolic metamaterial based on a modified semiconductor Bragg mirror structure with embedded periodically arranged quantum wells is proposed. It is shown that exciton polaritons in this material feature hyperbolic dispersion in the vicinity of the second photonic band gap. Exciton-photon interaction brings about resonant nonlinearity leading to the emergence of nontrivial topological polaritonic states. The formation of spatially localized breather-type structures (oscillons) representing kink-shaped solutions of the effective Ginzburg-Landau-Higgs equation slightly oscillating along one spatial direction is predicted.

  6. Plasmon-Exciton-Polariton Lasing

    CERN Document Server

    Ramezani, Mohammad; Fernández-Domínguez, Antonio I; Feist, Johannes; Rodriguez, Said Rahimzadeh-Kalaleh; Garcia-Vidal, Francisco J; Gómez-Rivas, Jaime

    2016-01-01

    Strong coupling of Frenkel excitons with surface plasmons leads to the formation of bosonic quasi-particles known as plasmon-exciton-polaritons (PEPs).Localized surface plasmons in nanoparticles are lossy due to radiative and nonradiative decays, which has hampered the realization of polariton lasing in a plasmonic system, i.e., PEP lasing. These losses can be reduced in collective plasmonic resonances supported by arrays of nanoparticles. Here we demonstrate PEP lasing in arrays of silver nanoparticles by showing the emergence of a threshold in the photoluminescence accompanied by both a superlinear increase of the emission and spectral narrowing. We also observe a reduction of the threshold by increasing the coupling between the molecular excitons and the resonances supported by the array despite the reduction of the quantum efficiency of the emitters. The coexistence of bright and dark collective modes in this plasmonic system allows for a 90?-change of polarization in the emission beyond the threshold.

  7. Propagating Polaritons in III-Nitride Slab Waveguides

    Science.gov (United States)

    Ciers, J.; Roch, J. G.; Carlin, J.-F.; Jacopin, G.; Butté, R.; Grandjean, N.

    2017-03-01

    We report on III-nitride waveguides with c -plane GaN /(Al ,Ga )N quantum wells in the strong light-matter coupling regime supporting propagating polaritons. They feature a normal-mode splitting as large as 60 meV at low temperatures thanks to the large overlap between the optical mode and the active region, a polariton decay length up to 100 μ m for photonlike polaritons and a lifetime of 1 to 2 ps, with the latter values being essentially limited by residual absorption occurring in the waveguide. The fully lattice-matched nature of the structure allows for very low disorder and high in-plane homogeneity, which is an important asset for the realization of polaritonic integrated circuits that could support nonlinear polariton wave packets up to room temperature thanks to the large exciton binding energy of 40 meV.

  8. Critical coupling layer thickness for positive or negative Goos-H\\"anchen shifts near the excitation of backward surface polaritons in Otto-ATR systems

    CERN Document Server

    Zeller, Mariana; Depine, Ricardo A

    2015-01-01

    A theoretical analysis of the lateral displacement (Goos-H\\"anchen shift) of spatially limited beams reflected from Attenuated Total Reflection (ATR) devices in the Otto configuration is presented when backward surface plasmon polaritons are excited at the interface between a positive refractive index slab and a semiinfinite metamaterial with negative refractive index. First, the stationary phase approximation and a phenomenological model based on the properties of the complex poles and zeroes of the reflection coefficient are used to demonstrate that: i) the excitation of backward surface waves can lead to both negative and positive (and not exclusively negative) Goos-H\\"anchen shifts, and ii) the sign of the shift depends on whether the value of the coupling layer thickness is higher or lower than a critical value characteristic of the ATR structure. Second, these findings are verified through rigorous calculations of the spatial structure of the reflected beam. For incident beams with a Gaussian profile, t...

  9. Phonon-induced polariton superlattices

    DEFF Research Database (Denmark)

    de Lima, Jr., M. M.; Poel, Mike van der; Santos, P. V.;

    2006-01-01

    We show that the coherent interaction between microcavity polaritons and externally stimulated acoustic phonons forms a tunable polariton superlattice with a folded energy dispersion determined by the phonon population and wavelength. Under high phonon concentration, the strong confinement of the...... of the optical and excitonic polariton components in the phonon potential creates weakly coupled polariton wires with a virtually flat energy dispersion....

  10. Spectra of surface plasmon polariton enhanced electroluminescence from electroformed Al-Al{sub 2}O{sub 3}-Ag diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hickmott, T. W. [Department of Physics, State University of New York at Albany, Albany, New York 12222 (United States)

    2015-03-07

    Narrow band-pass filters have been used to measure the spectral distribution of electroluminescent photons with energies between 1.8 eV and 3.0 eV from electroformed Al-Al{sub 2}O{sub 3}-Ag diodes with anodic Al{sub 2}O{sub 3} thicknesses between 12 nm and 18 nm. Electroforming of metal-insulator-metal (MIM) diodes is a non-destructive dielectric breakdown that results in a conducting channel in the insulator and changes the initial high resistance of the MIM diode to a low resistance state. It is a critical step in the development of resistive-switching memories that utilize MIM diodes as the active element. Electroforming of Al-Al{sub 2}O{sub 3}-Ag diodes in vacuum results in voltage-controlled negative resistance (VCNR) in the current-voltage (I-V) characteristics. Electroluminescence (EL) and electron emission into vacuum (EM) develop simultaneously with the current increase that results in VCNR in the I-V characteristics. EL is due to recombination of electrons injected at the Al-Al{sub 2}O{sub 3} interface with radiative defect centers in Al{sub 2}O{sub 3}. Measurements of EL photons between 1.8 eV and 3.0 eV using a wide band-pass filter showed that EL intensity is exponentially dependent on Al{sub 2}O{sub 3} thickness for Al-Al{sub 2}O{sub 3}-Ag diodes between 12 nm and 20 nm thick. Enhanced El intensity in the thinnest diodes is attributed to an increase in the spontaneous emission rate of recombination centers due to high electromagnetic fields generated in Al{sub 2}O{sub 3} when EL photons interact with electrons in Ag or Al to form surface plasmon polaritons at the Al{sub 2}O{sub 3}-Ag or Al{sub 2}O{sub 3}-Al interface. El intensity is a maximum at 2.0–2.2 eV for Al-Al{sub 2}O{sub 3}-Ag diodes with Al{sub 2}O{sub 3} thicknesses between 12 nm and 18 nm. EL in diodes with 12 nm or 14 nm of Al{sub 2}O{sub 3} is enhanced by factors of 8–10 over EL from a diode with 18 nm of Al{sub 2}O{sub 3}. The extent of EL enhancement in

  11. Hyperbolic polaritonic crystals based on nanostructured nanorod metamaterials.

    Science.gov (United States)

    Dickson, Wayne; Beckett, Stephen; McClatchey, Christina; Murphy, Antony; O'Connor, Daniel; Wurtz, Gregory A; Pollard, Robert; Zayats, Anatoly V

    2015-10-21

    Surface plasmon polaritons usually exist on a few suitable plasmonic materials; however, nanostructured plasmonic metamaterials allow a much broader range of optical properties to be designed. Here, bottom-up and top-down nanostructuring are combined, creating hyperbolic metamaterial-based photonic crystals termed hyperbolic polaritonic crystals, allowing free-space access to the high spatial frequency modes supported by these metamaterials.

  12. Compound surface-plasmon-polariton waves guided by a thin metal layer sandwiched between a homogeneous isotropic dielectric material and a structurally chiral material

    CERN Document Server

    Chiadini, Francesco; Scaglione, Antonio; Lakhtakia, Akhlesh

    2015-01-01

    Multiple compound surface plasmon-polariton (SPP) waves can be guided by a structure consisting of a sufficiently thick layer of metal sandwiched between a homogeneous isotropic dielectric (HID) material and a dielectric structurally chiral material (SCM). The compound SPP waves are strongly bound to both metal/dielectric interfaces when the thickness of the metal layer is comparable to the skin depth but just to one of the two interfaces when the thickness is much larger. The compound SPP waves differ in phase speed, attenuation rate, and field profile, even though all are excitable at the same frequency. Some compound SPP waves are not greatly affected by the choice of the direction of propagation in the transverse plane but others are, depending on metal thickness. For fixed metal thickness, the number of compound SPP waves depends on the relative permittivity of the HID material, which can be useful for sensing applications.

  13. HNO₃-assisted polyol synthesis of ultralarge single-crystalline Ag microplates and their far propagation length of surface plasmon polariton.

    Science.gov (United States)

    Chang, Cheng-Wei; Lin, Fan-Cheng; Chiu, Chun-Ya; Su, Chung-Yi; Huang, Jer-Shing; Perng, Tsong-Pyng; Yen, Ta-Jen

    2014-07-23

    We developed a HNO3-assisted polyol reduction method to synthesize ultralarge single-crystalline Ag microplates routinely. The edge length of the synthesized Ag microplates reaches 50 μm, and their top facets are (111). The mechanism for dramatically enlarging single-crystalline Ag structure stems from a series of competitive anisotropic growths, primarily governed by carefully tuning the adsorption of Ag(0) by ethylene glycol and the desorption of Ag(0) by a cyanide ion on Ag(100). Finally, we measured the propagation length of surface plasmon polaritons along the air/Ag interface under 534 nm laser excitation. Our single-crystalline Ag microplate exhibited a propagation length (11.22 μm) considerably greater than that of the conventional E-gun deposited Ag thin film (5.27 μm).

  14. Generating non-Gaussian states using collisions between Rydberg polaritons

    CERN Document Server

    Stanojevic, Jovica; Bimbard, Erwan; Ourjoumtsev, Alexei; Pillet, Pierre; Grangier, Philippe

    2012-01-01

    We investigate theoretically the deterministic generation of quantum states with negative Wigner functions, by using giant non-linearities due to collisional interactions between Rydberg polaritons. The state resulting from the polariton interactions may be transferred with high fidelity into a photonic state, which can be analyzed using homodyne detection followed by quantum tomography. Besides generating highly non-classical states of the light, this method can also provide a very sensitive probe for the physics of the collisions involving Rydberg states.

  15. Exciton-polariton trapping and potential landscape engineering

    Science.gov (United States)

    Schneider, C.; Winkler, K.; Fraser, M. D.; Kamp, M.; Yamamoto, Y.; Ostrovskaya, E. A.; Höfling, S.

    2017-01-01

    Exciton-polaritons in semiconductor microcavities have become a model system for the studies of dynamical Bose-Einstein condensation, macroscopic coherence, many-body effects, nonclassical states of light and matter, and possibly quantum phase transitions in a solid state. These low-mass bosonic quasiparticles can condense at comparatively high temperatures up to 300 K, and preserve the fundamental properties of the condensate, such as coherence in space and time domain, even when they are out of equilibrium with the environment. Although the presence of a confining potential is not strictly necessary in order to observe Bose-Einstein condensation, engineering of the polariton confinement is a key to controlling, shaping, and directing the flow of polaritons. Prototype polariton-based optoelectronic devices rely on ultrafast photon-like velocities and strong nonlinearities exhibited by polaritons, as well as on their tailored confinement. Nanotechnology provides several pathways to achieving polariton confinement, and the specific features and advantages of different methods are discussed in this review. Being hybrid exciton-photon quasiparticles, polaritons can be trapped via their excitonic as well as photonic component, which leads to a wide choice of highly complementary trapping techniques. Here, we highlight the almost free choice of the confinement strengths and trapping geometries that provide powerful means for control and manipulation of the polariton systems both in the semi-classical and quantum regimes. Furthermore, the possibilities to observe effects of the polariton blockade, Mott insulator physics, and population of higher-order energy bands in sophisticated lattice potentials are discussed. Observation of such effects could lead to realization of novel polaritonic non-classical light sources and quantum simulators.

  16. Polaritons dispersion in a composite ferrite-semiconductor structure near gyrotropic-nihility state

    Energy Technology Data Exchange (ETDEWEB)

    Tuz, Vladimir R., E-mail: tvr@rian.kharkov.ua

    2016-12-01

    In the context of polaritons in a ferrite-semiconductor structure which is influenced by an external static magnetic field, the gyrotropic-nihility can be identified from the dispersion equation related to bulk polaritons as a particular extreme state, at which the longitudinal component of the corresponding constitutive tensor and bulk constant simultaneously acquire zero. Near the frequency of the gyrotropic-nihility state, the conditions of branches merging of bulk polaritons, as well as an anomalous dispersion of bulk and surface polaritons are found and discussed. - Highlights: • Gyrotropic-nihility state is identified from the dispersion equation related to bulk polaritons in a magnetic-semiconductor superlattice. • The conditions of branches merging of bulk polaritons are found. • An anomalous dispersion of bulk and surface polaritons is found and discussed.

  17. Phase-controlled bistability of a dark soliton train in a polariton fluid

    CERN Document Server

    Goblot, Valentin; Carusotto, Iacopo; Galopin, Elisabeth; Lemaître, Aristide; Sagnes, Isabelle; Amo, Alberto; Bloch, Jacqueline

    2016-01-01

    We use a one-dimensional polariton fluid in a semiconductor microcavity to explore the rich nonlinear dynamics of counter-propagating interacting Bose fluids. The intrinsically driven-dissipative nature of the polariton fluid allows to use resonant pumping to impose a phase twist across the fluid. When the polariton-polariton interaction energy becomes comparable to their kinetic energy, linear interference fringes transform into a train of solitons. A novel type of bistable behavior controlled by the phase twist across the fluid is experimentally evidenced.

  18. Injection of Orbital Angular Momentum and Storage of Quantized Vortices in Polariton Superfluids.

    Science.gov (United States)

    Boulier, T; Cancellieri, E; Sangouard, N D; Glorieux, Q; Kavokin, A V; Whittaker, D M; Giacobino, E; Bramati, A

    2016-03-18

    We report the experimental investigation and theoretical modeling of a rotating polariton superfluid relying on an innovative method for the injection of angular momentum. This novel, multipump injection method uses four coherent lasers arranged in a square, resonantly creating four polariton populations propagating inwards. The control available over the direction of propagation of the superflows allows injecting a controllable nonquantized amount of optical angular momentum. When the density at the center is low enough to neglect polariton-polariton interactions, optical singularities, associated with an interference pattern, are visible in the phase. In the superfluid regime resulting from the strong nonlinear polariton-polariton interaction, the interference pattern disappears and only vortices with the same sign are persisting in the system. Remarkably, the number of vortices inside the superfluid region can be controlled by controlling the angular momentum injected by the pumps.

  19. Nonlinear mixing of laser generated narrowband Rayleigh surface waves

    Science.gov (United States)

    Bakre, Chaitanya; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2017-02-01

    This research presents the nonlinear mixing technique of two co-directionally travelling Rayleigh surface waves generated and detected using laser ultrasonics. The optical generation of Rayleigh waves on the specimen is obtained by shadow mask method. In conventional nonlinear measurements, the inherently small higher harmonics are greatly influenced by the nonlinearities caused by coupling variabilities and surface roughness between the transducer and specimen interface. The proposed technique is completely contactless and it should be possible to eliminate this problem. Moreover, the nonlinear mixing phenomenon yields not only the second harmonics, but also the sum and difference frequency components, which can be used to measure the acoustic nonlinearity of the specimen. In this paper, we will be addressing the experimental configurations for this technique. The proposed technique is validated experimentally on Aluminum 7075 alloy specimen.

  20. Nonlinear optical microscopy for imaging thin films and surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smilowitz, L.B.; McBranch, D.W.; Robinson, J.M.

    1995-03-01

    We have used the inherent surface sensitivity of second harmonic generation to develop an instrument for nonlinear optical microscopy of surfaces and interfaces. We have demonstrated the use of several nonlinear optical responses for imaging thin films. The second harmonic response of a thin film of C{sub 60} has been used to image patterned films. Two photon absorption light induced fluorescence has been used to image patterned thin films of Rhodamine 6G. Applications of nonlinear optical microscopy include the imaging of charge injection and photoinduced charge transfer between layers in semiconductor heterojunction devices as well as across membranes in biological systems.

  1. Compound surface-plasmon-polariton waves guided by a thin metal layer sandwiched between a homogeneous isotropic dielectric material and a periodically multilayered isotropic dielectric material

    CERN Document Server

    Chiadini, Francesco; Scaglione, Antonio; Lakhtakia, Akhlesh

    2015-01-01

    Multiple p- and s-polarized compound surface plasmon-polariton (SPP) waves at a fixed frequency can be guided by a structure consisting of a metal layer sandwiched between a homogeneous isotropic dielectric (HID) material and a periodic multilayered isotropic dielectric (PMLID) material. For any thickness of the metal layer, at least one compound SPP wave must exist. It possesses the p-polarization state, is strongly bound to the metal/HID interface when the metal thickness is large but to both metal/dielectric interfaces when the metal thickness is small. When the metal layer vanishes, this compound SPP wave transmutes into a Tamm wave. Additional compound SPP waves exist, depending on the thickness of the metal layer, the relative permittivity of the HID material, and the period and the composition of the PMLID material. Some of these are p polarized, the others being s polarized. All of them differ in phase speed, attenuation rate, and field profile, even though all are excitable at the same frequency. The...

  2. Single-conductor co-planar quasi-symmetry unequal power divider based on spoof surface plasmon polaritons of bow-tie cells

    Directory of Open Access Journals (Sweden)

    Yongle Wu

    2016-10-01

    Full Text Available In this paper, the spoof surface plasmon polaritons (SSPPs transmission line (TL of periodical grooved bow-tie cells is proposed. The complex propagation constant and characteristic impedance of the SSPPs TLs and microstrip lines (MLs are extracted using the analytical method of generalized lossy TL theory. The properties of the SSPPs TLs with different substrates and the same geometrical configuration are experimented. Then, for comparison, two ML counterparts are also experimented, which shows that the SSPPs TL is less sensitive to the thickness, dielectric constant and loss tangent of the chosen substrate below the cutoff frequency, compared with the ML ones. The single-conductor co-planar quasi-symmetry unequal power divider based on this SSPPs TL is presented in microwave frequencies. For experimental validation, the 0-dB, 2-dB, and 5-dB power dividers are designed, fabricated, and measured. Both simulated and measured results verify that the unequal power divider is a flexible option, which offers massive advantages including single-conductor co-planar quasi-symmetry structures, wide-band operation, and convenient implementations of different power-dividing ratios. Hence, it can be expected that the proposed unequal power dividers will inspire further researches on SSPPs for future design of novel planar passive and active microwave components, circuits and systems.

  3. Single-conductor co-planar quasi-symmetry unequal power divider based on spoof surface plasmon polaritons of bow-tie cells

    Science.gov (United States)

    Wu, Yongle; Li, Mingxing; Yan, Guangyou; Deng, Li; Liu, Yuanan; Ghassemlooy, Zabih

    2016-10-01

    In this paper, the spoof surface plasmon polaritons (SSPPs) transmission line (TL) of periodical grooved bow-tie cells is proposed. The complex propagation constant and characteristic impedance of the SSPPs TLs and microstrip lines (MLs) are extracted using the analytical method of generalized lossy TL theory. The properties of the SSPPs TLs with different substrates and the same geometrical configuration are experimented. Then, for comparison, two ML counterparts are also experimented, which shows that the SSPPs TL is less sensitive to the thickness, dielectric constant and loss tangent of the chosen substrate below the cutoff frequency, compared with the ML ones. The single-conductor co-planar quasi-symmetry unequal power divider based on this SSPPs TL is presented in microwave frequencies. For experimental validation, the 0-dB, 2-dB, and 5-dB power dividers are designed, fabricated, and measured. Both simulated and measured results verify that the unequal power divider is a flexible option, which offers massive advantages including single-conductor co-planar quasi-symmetry structures, wide-band operation, and convenient implementations of different power-dividing ratios. Hence, it can be expected that the proposed unequal power dividers will inspire further researches on SSPPs for future design of novel planar passive and active microwave components, circuits and systems.

  4. Fast response and low power consumption 1×2 thermo-optic switch based on dielectric-loaded surface plasmon polariton waveguides

    Science.gov (United States)

    Qi, Zhipeng; Hu, Guohua; Yun, Binfeng; Zhang, Xiong; Cui, Yiping

    2016-08-01

    In this paper, we present a 1 × 2 thermo-optic (TO) switch based on the integration of the dielectric-loaded surface plasmon polariton (SPP) waveguides with the silicon nanowires. Liquid-curable fluorinated resin (LFR) made of perfluorinated polymer was adopted as the ridge, which has a TO coefficient twice more than that of polymethyl methacrylate, leading to a significant decrease in the power consumption. It was shown that the response time of the dielectric-loaded SPP waveguide could be improved through optimizing the dimensions of the LFR polymer ridge without loss of relative high figure of merit and large confinement factor. Performance characteristics of such a 1 × 2 TO switch operating at a telecom wavelength of 1550 nm was investigated theoretically from the analysis of both heat and optical fields. The results reveal that a switching power as low as 7 mW and an extremely short switching time (with rise time of 3 μs and fall time of 6.7 μs) could be achieved with the proposed dielectric-loaded SPP-based 1 × 2 TO switch. In addition, the crosstalk could be enhanced to at least 40 dB with the applied power of 7 mW at the wavelength of 1550 nm, and it could be retained to be above 20 dB in the wavelength spectrum of 1500-1600 nm during the on/off state.

  5. Adaptive Fuzzy Dynamic Surface Control for Uncertain Nonlinear Systems

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yuan Luo; Zhi-Hao Zhu; Xin-Ping Guan

    2009-01-01

    In this paper, a robust adaptive fuzzy dynamic surface control for a class of uncertain nonlinear systems is proposed. A novel adaptive fuzzy dynamic surface model is built to approximate the uncertain nonlinear functions by only one fuzzy logic system. The approximation capability of this model is proved and the model is implemented to solve the problem that too many approximators are used in the controller design of uncertain nonlinear systems. The shortage of "explosion of complexity" in backstepping design procedure is overcome by using the proposed dynamic surface control method. It is proved by constructing appropriate Lyapunov candidates that all signals of closed-loop systems are semi-globaily uniformly ultimate bounded. Also, this novel controller stabilizes the states of uncertain nonlinear systems faster than the adaptive sliding mode controller (SMC). Two simulation examples are provided to illustrate the effectiveness of the control approach proposed in this paper.

  6. Interactions between nonlinear spur gear dynamics and surface wear

    Science.gov (United States)

    Ding, Huali; Kahraman, Ahmet

    2007-11-01

    In this study, two different dynamic models, a finite elements-based deformable-body model and a simplified discrete model, and a surface wear model are combined to study the interaction between gear surface wear and gear dynamic response. The proposed dynamic gear wear model includes the influence of worn surface profiles on dynamic tooth forces and transmission error as well as the influence of dynamic tooth forces on wear profiles. This paper first introduces the nonlinear dynamic models that include gear backlash and time-varying gear mesh stiffness, and a wear model separately. It presents a comparison to experiments for validation of the dynamic models. The dynamic models are combined with the wear model to study the interaction of surface wear and dynamic behavior in both linear and nonlinear response regimes. At the end, several sets of simulation results are used to demonstrate the two-way relationship between nonlinear gear dynamics and surface wear.

  7. Feasibility study of SWIR light absorption enhancement in PbS and PbSe nano-structure layers using surface plasmon polariton

    Directory of Open Access Journals (Sweden)

    Nimrod Nissim

    2017-03-01

    Full Text Available We present a theoretical feasibility study of the use of reflection grating couplers in order to harness the Surface Plasmon Polariton (SPP to increase the absorption efficiency in the short wavelength infrared (SWIR spectral range of a novel SWIR to visible (VIS direct up-conversion imaging device. This device detects the SWIR spectral band photons using high absorption PbSe/CdSe core-shell, PbS nano-spheres or PbSe nano-columns. In order to further enhance the absorption of the SWIR light within the nano-structure layer we propose to add another light absorption enhancement, known as SPP enhanced absorption. The idea is to cover the absorber layer surface with a structured metal layer that will ignite SPPs on the metal – dielectric interface, by coupling between the incident TM polarized photons and the SPP modes; this results in better field confinement at the interface that will further increase the SWIR absorption of this thin layer. Calculation of the field profile of the surface plasmon (SP in the SWIR range shows perpendicular dominance of the SP’s electrical field direction on the dielectric layer side (the PbS or PbSe/CdSe absorption layer side. Based on this result, it was found that, due to the use of quantum confined and, thus, high oscillator strength nanostructures, there is only a marginal increase in the absorption and, hence, in the quantum efficiency when using the SPP enhancement technique. Nevertheless, we show that one of the proposed configurations of the metal grating coupler, having a lamellar structure with a pitch of 1.38μm, a duty cycle (DC of 0.12μm and a height of 60nm, is predicted to increase the total layer’s absorption by 9.5%, mainly due to efficient light scattering rather than to SPP enhanced absorption.

  8. Nonlinear surface waves in soft, weakly compressible elastic media.

    Science.gov (United States)

    Zabolotskaya, Evgenia A; Ilinskii, Yurii A; Hamilton, Mark F

    2007-04-01

    Nonlinear surface waves in soft, weakly compressible elastic media are investigated theoretically, with a focus on propagation in tissue-like media. The model is obtained as a limiting case of the theory developed by Zabolotskaya [J. Acoust. Soc. Am. 91, 2569-2575 (1992)] for nonlinear surface waves in arbitrary isotropic elastic media, and it is consistent with the results obtained by Fu and Devenish [Q. J. Mech. Appl. Math. 49, 65-80 (1996)] for incompressible isotropic elastic media. In particular, the quadratic nonlinearity is found to be independent of the third-order elastic constants of the medium, and it is inversely proportional to the shear modulus. The Gol'dberg number characterizing the degree of waveform distortion due to quadratic nonlinearity is proportional to the square root of the shear modulus and inversely proportional to the shear viscosity. Simulations are presented for propagation in tissue-like media.

  9. Experimental Observation of Bohr's Nonlinear Fluidic Surface Oscillation

    CERN Document Server

    Moon, Songky; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon

    2015-01-01

    Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of $0.41\\dot{6}\\eta^2$ for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of $\\eta$ much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained...

  10. Focusing,waveguiding and resonance enhancement characteristics of surface plasmon polaritons%表面等离激元的聚焦与波导增强

    Institute of Scientific and Technical Information of China (English)

    方哲宇; 朱星

    2011-01-01

    近年来,表面等离激元学(plasmonics)已经形成一个新的学科热点.电子在金属与介质界面的集体振荡行为形成一种元激发——表面等离激元(surface plasomon polariton,SPP).由于其具有特殊的耦合与传播性质,与SPP相关的器件设计与应用成为目前纳米光子学领域的国际前沿研究方向.文章介绍了利用微纳加工技术制备的SPP纳米结构,以及利用近场光学表征手段对SPP聚焦、波导、共振增强现象研究的进展.%Plasmonics has become a new research hot spot in recent years.The collective oscillation of electrons at the dielectric and metal interface is a kind of electromagnetic excitation known as a surface plasmon polariton(SPP).Because of their specific coupling and propagation properties,the design and application of SPP-based devices have become a foremost direction in nano-optics research.In this article we report our investigations on the fabrication of SPP nanostructures,and the characterization of the SPP focusing,waveguide and resonance enhancement properties by means of near-field optics.

  11. Plasmon polaritons in nanostructured graphene

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    2013-01-01

    Graphene has attracted considerable attention due to its unique electronic and optical properties. When graphene is electrically/chemically doped, it can support surface plasmon where the light propagates along the surface with a very short wavelength and an extremely small mode volume. The optical...... properties of graphene can be tuned by electrical gating, thus proving a promising way to realize a tunable plasmonic material. We firstly investigate the performance of bends and splitters in graphene nanoribbon waveguides, and show that bends and splitters do not induce any additional loss provided...... that the nanoribbon width is sub-wavelength. Then we experimentally demonstrate the excitation of graphene plasmon polaritons in a continuous graphene monolayer resting on a two-dimensional subwavelength silicon grating. The silicon grating is realized by a nanosphere lithography technique with a self...

  12. Plasmon polaritons in nanostructured graphene

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    2013-01-01

    Graphene has attracted considerable attention due to its unique electronic and optical properties. When graphene is electrically/chemically doped, it can support surface plasmon where the light propagates along the surface with a very short wavelength and an extremely small mode volume. The optical...... properties of graphene can be tuned by electrical gating, thus proving a promising way to realize a tunable plasmonic material. We firstly investigate the performance of bends and splitters in graphene nanoribbon waveguides, and show that bends and splitters do not induce any additional loss provided...... that the nanoribbon width is sub-wavelength. Then we experimentally demonstrate the excitation of graphene plasmon polaritons in a continuous graphene monolayer resting on a two-dimensional subwavelength silicon grating. The silicon grating is realized by a nanosphere lithography technique with a self...

  13. Nonlinear optical spectroscopy of diamond surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Chin, R.P.

    1995-04-01

    Second harmonic generation (SHG) and infrared-visible sum frequency generation (SFG) spectroscopies have been shown to be powerful and versatile for studying surfaces with submonolayer sensitivity. They have been used in this work to study bare diamond surfaces and molecular adsorption on them. In particular, infrared-visible SFG as a surface vibrational spectroscopic technique has been employed to identify and monitor in-situ surface bonds and species on the diamond (111) surface. The CH stretch spectra allow us to investigate hydrogen adsorption, desorption, abstraction, and the nature of the hydrogen termination. The C(111) surface dosed with atomic hydrogen was found to be in a monohydride configuration with the hydrogen atoms situated at top-sites. The ratio of the abstraction rate to the adsorption rate was appreciable during atomic hydrogen dosing. Kinetic parameters for thermal desorption of H on C(111) were determined showing a near first-order kinetics. For the fully H-terminated (111) surface, a large (110 cm{sup {minus}1}) anharmonicity and {approximately}19 psec lifetime were measured for the first-excited CH stretch mode. The bare reconstructed C(111)-(2 {times} l) surface showed the presence of CC stretch modes which were consistent with the Pandey {pi}-bonded chain structure. When exposed to the methyl radical, the SFG spectra of the C(111) surface showed features suggesting the presence of adsorbed methyl species. After heating to sufficiently high temperatures, they were converted into the monohydride species. Preliminary results on the hydrogen-terminated diamond (100) surface are also presented.

  14. Nonlinear Transport In Gases, Traps And Surfaces

    Science.gov (United States)

    Šuvakov, M.; Marjanovic, S.

    2010-07-01

    We will present our numerical study of three different charge transport processes and we will compare properties, specially the nonlinearity, of these processes. First process is electron transport in gases in swarm regime. We used well tested Monte Carlo techique to investigate kinetic phenomena such as negative diferencial conductivity (NDC) or negative apsolute mobility (NAM). We explain these phenomena analysing the spatial profiles of the swarm and collision events. In the second part we will apply the same technique on positron transport to obtain the same level of understanding of positron transport as has been achieved for electrons. The influence of positronium formation, non-conservative process, is much larger than any comparable effects in electron transport due to attachment and/or ionisation. As a result several new phenomena have been observed, such as NDC for the bulk drift velocity. Additionaly, the same Monte Carlo technique is used for modeling and optimisation of Surko like positron traps in different geometries and field configurations. Third process we studied is the charge transport under voltage bias via single-electron tunnelings through the junctions between metallic particles on nanoparticle films. We show how the regular nanoparticle array and topologically inhomogeneous nanonetworks affect the charge transport. We find long-range correlations in the time series of charge fluctuation at individual nanoparticles and of flow along the junctions within the network. These correlations explain the occurrence of a large non-linearity in the simulated and experimentally measured current-voltage characteristics and non-Gaussian fluctuations of the current at the electrode.

  15. Plasmon polaritons in cubic lattices of spherical metallic nanoparticles

    CERN Document Server

    Lamowski, Simon; Mariani, Eros; Weick, Guillaume; Pauly, Fabian

    2016-01-01

    We investigate theoretically plasmon polaritons in cubic lattices of interacting spherical metallic nanoparticles. Dipolar localized surface plasmons on each nanoparticle couple through the near field dipole-dipole interaction and form collective plasmons which extend over the whole metamaterial. Coupling these collective plasmons in turn to photons leads to plasmon polaritons. We derive within a quantum model general semi-analytical expressions to evaluate both plasmon and plasmon-polariton dispersions that fully account for nonlocal effects in the dielectric function of the metamaterial. Within this model, we discuss the influence of different lattice symmetries and predict related polaritonic gaps within the near-infrared to the visible range of the spectrum that depend on wavevector direction and polarization.

  16. Polaritonic excitations in aperiodic nanolayers

    Science.gov (United States)

    Vasconcelos, M. S.; Anselmo, Dory Hélio A. L.; Mello, Vamberto D.

    2014-03-01

    The magnetic polariton propagation in magnonic layered structures is theoretically studied by using a a transfer matrix approach. The layered structures considered here are made up by the periodic and quasiperiodic stacking of two different layers (also known as building blocks, named A and B), where one of them is a ferromagnetic nanofilm (A), while the other is a metamaterial nanolayer (B). For the periodic arrangement, the bulk modes are characterized by two large symmetric bands, with non-reciprocal surface modes between them. The quasiperiodic metamagnetic structure is then built up by following the Fibonacci sequence, whose long range order effect is then investigated, giving rise to an interesting self-similar spectra.

  17. 负Purcell因子对表面等离子激元增强自发辐射的影响%Negative Purcell Factor's Influence on Spontaneous Emission Enhanced by Surface Plasmon Polaritons

    Institute of Scientific and Technical Information of China (English)

    熊贵光; 欧阳奎; 张荣军

    2009-01-01

    利用金属介电函数的Drude模型以及电磁场耦合理论,计算分析了Purcell因子对表面等离子激元(surface plasmon polaritons,SPP)增强自发辐射的影响.结果表明,对于由Ag或Au金属层和电介质层构成的半导体发光二极管系统,当Purcell因子为负值时,SPP将对自发辐射发光效率产生很大的增强作用.

  18. Delocalization of nonlinear optical responses in plasmonic nanoantennas

    CERN Document Server

    Viarbitskaya, Sviatlana; Cluzel, Benoit; Francs, Gérard Colas des; Bouhelier, Alexandre

    2015-01-01

    Remote excitation and emission of two-photon luminescence and second-harmonic generation are observed in micrometer long gold rod optical antennas upon local illumination with a tightly focused near-infrared femtosecond laser beam. We show that the nonlinear radiations can be emitted from the entire antenna and the measured far-field angular patterns bear the information regarding the nature and origins of the respective nonlinear processes. We demonstrate that the nonlinear responses are transported by the propagating surface plasmon at excitation frequency, enabling thereby polariton-mediated tailoring and design of nonlinear responses.

  19. Linear and Nonlinear Surface Waves in Electrohydrodynamics

    CERN Document Server

    Hunt, Matthew; Vanden-broeck, Jean-Marc; Papageorgiou, Demetrios

    2015-01-01

    The problem of interest in this article are waves on a layer of finite depth governed by the Euler equations in the presence of gravity, surface tension, and vertical electric fields. Perturbation theory is used to identify canonical scalings and to derive a Kadomtsev-Petviashvili equation withan additional non-local term arising in interfacial electrohydrodynamics.When the Bond number is equal to 1/3, dispersion disappears and shock waves could potentially form. In the additional limit of vanishing electric fields, a new evolution equation is obtained which contains third and fifth-order dispersion as well as a non-local electric field term.

  20. Nonlinear dynamics of incommensurately contacting surfaces : a model study

    NARCIS (Netherlands)

    Consoli, Luca

    2002-01-01

    This PhD thesis is about the nonlinear dynamics of contacting surfaces. More specifically, it deals with the problem of modelling at the microscopic level some of the contributions that lead to the macroscopic effect of dry sliding friction. In chapter 1, we try to give an overview of the physical q

  1. Nonlinear d'Alembert formula for discrete pseudospherical surfaces

    Science.gov (United States)

    Kobayashi, Shimpei

    2017-09-01

    On the basis of loop group decompositions (Birkhoff decompositions), we give a discrete version of the nonlinear d'Alembert formula, a method of separation of variables of difference equations, for discrete constant negative Gauss curvature (pseudospherical) surfaces in Euclidean three space. We also compute two examples by this formula in detail.

  2. Bayesian inversion analysis of nonlinear dynamics in surface heterogeneous reactions.

    Science.gov (United States)

    Omori, Toshiaki; Kuwatani, Tatsu; Okamoto, Atsushi; Hukushima, Koji

    2016-09-01

    It is essential to extract nonlinear dynamics from time-series data as an inverse problem in natural sciences. We propose a Bayesian statistical framework for extracting nonlinear dynamics of surface heterogeneous reactions from sparse and noisy observable data. Surface heterogeneous reactions are chemical reactions with conjugation of multiple phases, and they have the intrinsic nonlinearity of their dynamics caused by the effect of surface-area between different phases. We adapt a belief propagation method and an expectation-maximization (EM) algorithm to partial observation problem, in order to simultaneously estimate the time course of hidden variables and the kinetic parameters underlying dynamics. The proposed belief propagation method is performed by using sequential Monte Carlo algorithm in order to estimate nonlinear dynamical system. Using our proposed method, we show that the rate constants of dissolution and precipitation reactions, which are typical examples of surface heterogeneous reactions, as well as the temporal changes of solid reactants and products, were successfully estimated only from the observable temporal changes in the concentration of the dissolved intermediate product.

  3. Nonlinear prediction of the aerodynamic loads on lifting surfaces

    Science.gov (United States)

    Kandil, O. A.; Mook, D. T.; Nayfeh, A. H.

    1974-01-01

    A numerical procedure is used to predict the nonlinear aerodynamic characteristics of lifting surfaces of low aspect ratio at high angles of attack for low subsonic Mach numbers. The procedure utilizes a vortex-lattice method and accounts for separation at sharp tips and leading edges. The shapes of the wakes emanating from the edges are predicted, and hence the nonlinear characteristics are calculated. Parallelogram and delta wings are presented as numerical examples. The numerical results are in good agreement with the experimental data.

  4. Spin selective filtering of polariton condensate flow

    Energy Technology Data Exchange (ETDEWEB)

    Gao, T. [FORTH-IESL, P.O. Box 1385, 71110 Heraklion, Crete (Greece); Department of Materials Science and Technology, University of Crete, 71003 Heraklion, Crete (Greece); Antón, C.; Martín, M. D. [Departamento de Física de Materiales, Universidad Autónoma de Madrid, Madrid 28049 (Spain); Instituto de Ciencia de Materiales “Nicolás Cabrera,” Universidad Autónoma de Madrid, Madrid 28049 (Spain); Liew, T. C. H. [School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Hatzopoulos, Z. [FORTH-IESL, P.O. Box 1385, 71110 Heraklion, Crete (Greece); Department of Physics, University of Crete, 71003 Heraklion, Crete (Greece); Viña, L. [Departamento de Física de Materiales, Universidad Autónoma de Madrid, Madrid 28049 (Spain); Instituto de Ciencia de Materiales “Nicolás Cabrera,” Universidad Autónoma de Madrid, Madrid 28049 (Spain); Instituto de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid 28049 (Spain); Eldridge, P. S., E-mail: eldridge@udel.edu [FORTH-IESL, P.O. Box 1385, 71110 Heraklion, Crete (Greece); Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 (United States); Savvidis, P. G., E-mail: psav@materials.uoc.gr [FORTH-IESL, P.O. Box 1385, 71110 Heraklion, Crete (Greece); Department of Materials Science and Technology, University of Crete, 71003 Heraklion, Crete (Greece); Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom)

    2015-07-06

    Spin-selective spatial filtering of propagating polariton condensates, using a controllable spin-dependent gating barrier, in a one-dimensional semiconductor microcavity ridge waveguide is reported. A nonresonant laser beam provides the source of propagating polaritons, while a second circularly polarized weak beam imprints a spin dependent potential barrier, which gates the polariton flow and generates polariton spin currents. A complete spin-based control over the blocked and transmitted polaritons is obtained by varying the gate polarization.

  5. Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons

    CERN Document Server

    Temnov, Vasily V; Nelson, Keith A; Thomay, Tim; Knittel, Vanessa; Leitenstorfer, Alfred; Makarov, Denys; Albrecht, Manfred; Bratschitsch, Rudolf

    2013-01-01

    Fundamental interactions induced by lattice vibrations on ultrafast time scales become increasingly important for modern nanoscience and technology. Experimental access to the physical properties of acoustic phonons in the THz frequency range and over the entire Brillouin zone is crucial for understanding electric and thermal transport in solids and their compounds. Here, we report on the generation and nonlinear propagation of giant (1 percent) acoustic strain pulses in hybrid gold/cobalt bilayer structures probed with ultrafast surface plasmon interferometry. This new technique allows for unambiguous characterization of arbitrary ultrafast acoustic transients. The giant acoustic pulses experience substantial nonlinear reshaping already after a propagation distance of 100 nm in a crystalline gold layer. Excellent agreement with the Korteveg-de Vries model points to future quantitative nonlinear femtosecond THz-ultrasonics at the nano-scale in metals at room temperature.

  6. Polariton spectrum of a bounded antiferromagnet with a center of antisymmetry in an external electric field oriented normally to the surface

    Energy Technology Data Exchange (ETDEWEB)

    Kulagin, D. V.; Savchenko, A. S.; Tarasenko, S. V., E-mail: tarasen@mail.fti.ac.donetsk.ua [National Academy of Sciences of Ukraine, Donetsk Physics and Engineering Institute (Ukraine)

    2009-12-15

    The features of transmission of TE and TM polaritons through an interface between magnetic and nonmagnetic media and their localization at the interface in an external dc electric field have been studied. This field is directed along the hard magnetization axis. The magnetic medium is an easy-plane tetragonal antiferromagnet; it is odd with respect to inversion. A magnetic plate and a 1D magnetic photonic crystal in an external dc electric field, oriented normally to the interface, are considered.

  7. Collective oscillations in spatially modulated exciton-polariton condensate arrays

    Science.gov (United States)

    Tikhomirov, Andrey A.; Kanakov, Oleg I.; Altshuler, Boris L.; Ivanchenko, Mikhail V.

    2015-02-01

    We study collective dynamics of interacting centers of exciton-polariton condensation in presence of spatial inhomogeneity, as modeled by diatomic active oscillator lattices. The mode formalism is developed and employed to derive existence and stability criteria of plane wave solutions. It is demonstrated that k0 = 0 wave number mode with the binary elementary cell on a diatomic lattice possesses superior existence and stability properties. Decreasing net on-site losses (balance of dissipation and pumping) or conservative nonlinearity favors multistability of modes, while increasing frequency mismatch between adjacent oscillators detriments it. On the other hand, spatial inhomogeneity may recover stability of modes at high nonlinearities. Entering the region where all single-mode solutions are unstable we discover subsequent transitions between localized quasiperiodic, chaotic and global chaotic dynamics in the mode space, as nonlinearity increases. Importantly, the last transition evokes the loss of synchronization. These effects may determine lasing dynamics of interacting exciton-polariton condensation centers.

  8. Experimental Observation of Bohr’s Nonlinear Fluidic Surface Oscillation

    Science.gov (United States)

    Moon, Songky; Shin, Younghoon; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon

    2016-01-01

    Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of 0.416η2 for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of η much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained a coefficient of 0.42 ± 0.08 consistently under various experimental conditions. We also measured the resonance mode spectrum of a two-dimensional cavity formed by the cross-sectional segment of the liquid jet. The observed spectra agree well with wave calculations assuming a coefficient of 0.414 ± 0.011. Our measurements establish the first experimental observation of Bohr’s hydrodynamic theory.

  9. Experimental Observation of Bohr's Nonlinear Fluidic Surface Oscillation.

    Science.gov (United States)

    Moon, Songky; Shin, Younghoon; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon

    2016-01-25

    Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of 0.416η(2) for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of η much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained a coefficient of 0.42 ± 0.08 consistently under various experimental conditions. We also measured the resonance mode spectrum of a two-dimensional cavity formed by the cross-sectional segment of the liquid jet. The observed spectra agree well with wave calculations assuming a coefficient of 0.414 ± 0.011. Our measurements establish the first experimental observation of Bohr's hydrodynamic theory.

  10. Efficiency of Launching Highly Confined Polaritons by Infrared Light Incident on a Hyperbolic Material.

    Science.gov (United States)

    Dai, Siyuan; Ma, Qiong; Yang, Yafang; Rosenfeld, Jeremy; Goldflam, Michael D; McLeod, Alex; Sun, Zhiyuan; Andersen, Trond I; Fei, Zhe; Liu, Mengkun; Shao, Yinming; Watanabe, Kenji; Taniguchi, Takashi; Thiemens, Mark; Keilmann, Fritz; Jarillo-Herrero, Pablo; Fogler, Michael M; Basov, D N

    2017-09-13

    We investigated phonon-polaritons in hexagonal boron nitride-a naturally hyperbolic van der Waals material-by means of the scattering-type scanning near-field optical microscopy. Real-space nanoimages we have obtained detail how the polaritons are launched when the light incident on a thin hexagonal boron nitride slab is scattered by various intrinsic and extrinsic inhomogeneities, including sample edges, metallic nanodisks deposited on its top surface, random defects, and surface impurities. The scanned tip of the near-field microscope is itself a polariton launcher whose efficiency proves to be superior to all the other types of polariton launchers we studied. Our work may inform future development of polaritonic nanodevices as well as fundamental studies of collective modes in van der Waals materials.

  11. Hybridized exciton-polariton resonances in core-shell nanoparticles

    CERN Document Server

    Gentile, Martin J

    2016-01-01

    The goal of nanophotonics is to control and manipulate light at length scales below the diffraction limit. Typically nanostructured metals are used for this purpose, light being confined by exploiting the surface plasmon-polaritons such structures support. Recently excitonic (molecular) materials have been identified as an alternative candidate material for nanophotonics. Here we use theoretical modelling to explore how hybridisation of surface exciton-polaritons can be achieved through appropriate nanostructuring. We focus on the extent to which the frequency of the hybridised modes can be shifted with respect to the underlying material resonances.

  12. Crossing and anti-crossing effects of polaritons in a magnetic-semiconductor superlattice influenced by an external magnetic field

    Science.gov (United States)

    Tuz, Vladimir R.; Fesenko, Volodymyr I.; Fedorin, Illia V.; Sun, Hong-Bo; Shulga, Valeriy M.

    2017-03-01

    Crossing and anti-crossing effects in dispersion characteristics of both bulk and surface polaritons in a magnetic-semiconductor superlattice influenced by an external static magnetic field being in the Faraday geometry are discussed. The bulk polaritons are classified as eigenwaves with right-handed and left-handed elliptically polarized states, whereas the surface polaritons are considered as hybrid modes having a predominant effect of either magnetic or semiconductor subsystem, and distinctions in dispersion characteristics of such polaritons are revealed involving the concept of critical points.

  13. Weak non-linear surface charging effects in electrolytic films

    OpenAIRE

    Dean, D. S.; Horgan, R. R.

    2002-01-01

    A simple model of soap films with nonionic surfactants stabilized by added electrolyte is studied. The model exhibits charge regularization due to the incorporation of a physical mechanism responsible for the formation of a surface charge. We use a Gaussian field theory in the film but the full non-linear surface terms which are then treated at a one-loop level by calculating the mean-field Poisson-Boltzmann solution and then the fluctuations about this solution. We carefully analyze the reno...

  14. Polariton condensates put in motion

    Energy Technology Data Exchange (ETDEWEB)

    Sanvitto, D; Amo, A; Vina, L [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, E-28049, Madrid (Spain); Laussy, F P; Tejedor, C [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, E-28049, Madrid (Spain); LemaItre, A; Bloch, J, E-mail: daniele.sanvitto@uam.es [LPN/CNRS, Route de Nozay, F-91460, Marcoussis (France)

    2010-04-02

    We present several examples of the interesting phenomenology shown by a moving polariton condensate in semiconductor microcavities. The superfluid behavior is probed by colliding the polariton condensate against physical obstacles in the form of natural defects of the sample, demonstrating a clear suppression of scattering when the speed of the flow lies below the critical velocity. At higher velocities Cerenkov-like shock waves around the defect and disruption of the condensate are also observed.

  15. SPP propagation in nonlinear glass-metal interface

    KAUST Repository

    Sagor, Rakibul Hasan

    2011-12-01

    The non-linear propagation of Surface-Plasmon-Polaritons (SPP) in single interface of metal and chalcogenide glass (ChG) is considered. A time domain simulation algorithm is developed using the Finite Difference Time Domain (FDTD) method. The general polarization algorithm incorporated in the auxiliary differential equation (ADE) is used to model frequency-dependent dispersion relation and third-order nonlinearity of ChG. The main objective is to observe the nonlinear behavior of SPP propagation and study the dynamics of the whole structure. © 2011 IEEE.

  16. NONLINEAR FREE SURFACE ACTION WITH AN ARRAY OF VERTICAL CYLINDERS

    Institute of Scientific and Technical Information of China (English)

    HUANG J. B.

    2004-01-01

    Nonlinear diffraction of regular waves by an array of bottom-seated circular cylinders is investigated in frequency domain, based on a Stokes expansion approach. A complete semi-analytical solution is developed which allows an efficient evaluation of the second-order potentials in the entire fluid domain, and the wave forces on the structure. Expressions are derived for the second-order potential in the vicinity of individual cylinders. These expressions have a simple form, thus providing an effective means for investigating the wave enhancement due to nonlinear interactions with multiple cylinders. Based on the present method, the wave run-up and free-surface elevations around an array of two, three and four cylinders are investigated numerically.

  17. Nonlinear Acoustics at the Air-Water Free Surface

    Science.gov (United States)

    Pree, Seth; Naranjo, Brian; Putterman, Seth

    2016-11-01

    According to linear acoustics, airborne sound incident on a water surface transmits only a tenth of a percent of its energy. This difficulty of transmitting energy across the water surface limits the feasibility of standoff ultrasound imaging. We propose to overcome this long standing problem by developing new methods of coupling into the medium at standoff. In particular, we believe that the acoustic nonlinearity of both the air and the medium may yield a range of effects in the vicinity of the surface permitting an efficient transmission of ultrasound from the air into the medium. The recent commercial availability of parametric speakers that deliver modulated 100kHz ultrasound at 135dB to nonlinearly generate music at 95dB provides an interesting platform with which to revisit the transmission of sound across acoustic impedance mismatches. We show results of experimental studies of the behavior of the air-water free surface when subjected to large amplitude acoustic pressures from the air. This work was supported by the ARO STIR program.

  18. A quantum cascade phonon-polariton laser

    CERN Document Server

    Ohtani, Keita; Bosco, Lorenzo; Beck, Mattias; Faist, Jérôme

    2016-01-01

    We report a laser that coherently emits phonon-polaritons, quasi-particles arising from the coupling between photons and transverse optical phonons. The gain is provided by an intersubband transition in a quantum cascade structure. The polaritons at h$\

  19. Suppression of space broadening of exciton polariton transport by Bloch oscillation effect

    Science.gov (United States)

    Duan, Xudong; Zou, Bingsuo; Zhang, Yongyou

    2015-12-01

    We theoretically study the transport of exciton polaritons under different applied photon potentials. The relation between the photon potentials and the thickness of the cavity layer is first calculated by finite-element simulation. The theoretical analysis and numerical calculation indicate that the cavity photon potential is proportional to the thickness of the cavity layer with the coefficient being about 1.8 meV nm-1. Further, the periodic and linear photon potentials are considered to control the transport of the exciton polaritons in weak- and strong-field pump situations. In both situations the periodic potential cannot by itself effectively suppress the scatterings of the disorder potentials of the cavity photons and excitons and the nonlinear exciton-exciton interaction. When the linear potential is added to the cavity photons, the exciton polariton transport exhibits the Bloch oscillation behavior. Importantly, the polariton Bloch oscillation can strongly suppress the space broadening of the exciton polariton transport due to the disorder potentials and nonlinear exciton-exciton interaction, which is beneficial for designing the polariton circuits.

  20. Kagome lattice from an exciton-polariton perspective

    Science.gov (United States)

    Gulevich, D. R.; Yudin, D.; Iorsh, I. V.; Shelykh, I. A.

    2016-09-01

    We study a system of microcavity pillars arranged into a kagome lattice. We show that polarization-dependent tunnel coupling of microcavity pillars leads to the emergence of the effective spin-orbit interaction consisting of the Dresselhaus and Rashba terms, similar to the case of polaritonic graphene studied earlier. The appearance of the effective spin-orbit interaction combined with the time-reversal symmetry breaking resulting from the application of the magnetic field leads to the nontrivial topological properties of the Bloch bundles of polaritonic wave function. These are manifested in the opening of the gap in the band structure and topological edge states localized on the boundary. Such states are analogs of the edge states arising in topological insulators. Our study of polarization properties of the edge states clearly demonstrates that opening of the gap is associated with the band inversion in the region of the Dirac points of the Brillouin zone where the two bands corresponding to polaritons of opposite polarizations meet. For one particular type of boundary we observe a highly nonlinear energy dispersion of the edge state which makes a polaritonic kagome lattice a promising system for observation of edge state solitons.

  1. Suppression of space broadening of exciton polariton beams by Bloch oscillation effects

    CERN Document Server

    Duan, Xudong; Zhang, Yongyou

    2015-01-01

    We theoretically study the transport of exciton polaritons under different applied photon potentials. The relation between the photon potentials and the thickness of the cavity layer is calculated by the finite element simulation. The theoretical analysis and numerical calculation indicate that the cavity photon potential is proportional to the thickness of the cavity layer with the coefficient being about $1.8$ meV/nm. Further, the periodic and linear photon potentials are considered to control the transport of the exciton polaritons in weak- and strong-field pump situations. In both situations the periodic potential cannot by itself effectively suppress the scatterings of the disorder potentials of the cavity photons and excitons and the nonlinear exciton-exciton interaction. When the linear potential is added to the cavity photons, the polariton transport exhibits the Bloch oscillation behavior. Importantly, the polariton Bloch oscillation can strongly suppress the space broadening due to the disorder pote...

  2. Weak nonlinear surface-charging effects in electrolytic films.

    Science.gov (United States)

    Dean, D S; Horgan, R R

    2003-11-01

    A simple model of soap films with nonionic surfactants stabilized by added electrolyte is studied. The model exhibits charge regularization due to the incorporation of a physical mechanism responsible for the formation of a surface charge. We use a Gaussian field theory in the film but the full nonlinear surface terms which are then treated at a one-loop level by calculating the mean-field Poisson-Boltzmann solution and then the fluctuations about this solution. We carefully analyze the renormalization of the theory and apply it to a triple-layer model for a thin film with Stern layer of thickness h. For this model we give expressions for the surface charge sigma(L) and the disjoining pressure P(d)(L) and show their dependence on the parameters. The influence of image charges naturally arises in the formalism, and we show that predictions depend strongly on h because of their effects. In particular, we show that the surface charge vanishes as the film thickness L-->0. The fluctuation terms in this class of theories contribute a Casimir-like attraction across the film. Although this attraction is well known to be negligible compared with the mean-field component for model electrolytic films with no surface-charge regulation, in the model studied here these fluctuations also affect the surface-charge regulation leading to a fluctuation component in the disjoining pressure which has the same behavior as the mean-field component even for large film thickness.

  3. Femtosecond dynamics of Tamm plasmon-polaritons (Conference Presentation)

    Science.gov (United States)

    Afinogenov, Boris I.; Popkova, Anna A.; Bessonov, Vladimir O.; Fedyanin, Andrey A.

    2016-09-01

    Tamm plasmon-polaritons (TPPs) have attracted many interest due to the peculiarities of their optical properties. TPPs are optical surface states, which can be excited at the boundary of distributed Bragg reflector and metal film. Like in case of surface plasmon-polaritons or surface electromagnetic waves excitation, the emergence of the TPP leads to the localization of the electromagnetic field near the DBR/metal interface. Experimentally, TPP can be detected by a narrow resonance in reflectance or transmittance spectrum of the DBR/metal structure. Tamm plasmon-polaritons were proposed to be used in several types of novel optical elements, such as sensors and lasers. It was also shown that TPPs can be effectively coupled with other localized states like surface plasmons and microcavity modes. In this contribution the direct measurements of the Tamm plasmon-polariton relaxation dynamics are presented. The lifetime of the TPP in one-dimensional photonic crystal is estimated experimentally and compared to the results of numerical calculations. The dependence of the lifetime on the angle of incidence and duration of the incident pulse is supported by numerical studies performed with the finite difference time-domain technique.

  4. Nonlinear diffraction effects around a surface-piercing structure

    Energy Technology Data Exchange (ETDEWEB)

    Lalli, F.; Mascio, A. Di; Landrini, M. [Istituto Nazionale per Studi ed Esperienze di Architettura Navale, Rome (Italy)

    1995-12-31

    In the present paper the interaction of a wave system with a submerged or surface piercing body is studied. The wave diffraction caused by a cylinder in finite depth water and by a shoal is been computed and the results are compared with analytical solutions and experimental data. The problem is analyzed numerically in the frame of irrotational incompressible flow hypothesis. Both the linearized and the fully nonlinear mathematical models are studied. The numerical solution is gained by means of a mixed panel-desingularized formulation. An explicit time-marching algorithm updates the wave elevation and the potential at the free surface. In all cases, the numerical simulation mirrors the experimental data. In the case of the diffraction around a cylinder, the simulation confirms and extends the theoretical results of the second order analysis (Kriebel 1990, 1992): the linear model yields a very good estimation of the force amplitude acting on the body, while the wave profiles are poorly predicted when compared with the fully nonlinear simulation and the experimental data.

  5. Plasmon beams interaction at interface between metal and dielectric with saturable Kerr nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Ignatyeva, Daria O.; Sukhorukov, Anatoly P. [Lomonosov Moscow State University, Moscow (Russian Federation)

    2012-12-15

    We present a novel theory of surface plasmon polariton interaction on the surface of dielectric with saturable Kerr nonlinearity. The effect of the total internal reflection of a weak signal plasmon beam from a high-power reference beam is discussed. Both ray and wave theories are used to describe signal propagation. The effect of the signal tunneling through the narrow inhomogeneity induced by the reference beam is considered. (orig.)

  6. Nonlinear behavior of vibrating molecules on suspended graphene waveguides

    CERN Document Server

    Banerjee, Amrita

    2015-01-01

    Suspended graphene waveguides were deposited on micron-scale periodic metal (plasmonic) structures. Raman scattering of test molecules (B. Megaterium), deposited on the waveguides' surface, exhibited azimuthal cycles upon rotation: at these micron scales, spontaneous Raman ought to be independent of phase matching conditions. In addition, we observed angular-selective quadratic intensity dependence contrary to the typical linear behavior of spontaneous Raman. The effects were observed at very modest pump laser intensities (<10 MW/cm2 at the sample surface, oftenly used in Raman experiments). We attributed these observations to nonlinear coupling between the vibrating molecules and surface plasmon polariton (SPP) modes at the molecular vibration frequency. It was assessed that the polariton mode propagates through fairly long distances (over 100 microns).

  7. Charged Polaritons with Spin 1

    Directory of Open Access Journals (Sweden)

    Samoilov V.

    2011-04-01

    Full Text Available We present a new model for metal which is based on the stimulated vibration of independent charged Fermi-ions, representing as independent harmonic oscillators with natural frequencies, under action of longitudinal and transverse elastic waves. Due to application of the elastic wave-particle principle and ion-wave dualities, we predict the existence of two types of charged Polaritons with spin 1 which are induced by longitudinal and transverse elastic fields. As result of presented theory, at small wavenumbers, these charged polaritons represent charged phonons.

  8. On the Amplitude Equations for Weakly Nonlinear Surface Waves

    Science.gov (United States)

    Benzoni-Gavage, Sylvie; Coulombel, Jean-François

    2012-09-01

    Nonlocal generalizations of Burgers' equation were derived in earlier work by Hunter (Contemp Math, vol 100, pp 185-202. AMS, 1989), and more recently by Benzoni-Gavage and Rosini (Comput Math Appl 57(3-4):1463-1484, 2009), as weakly nonlinear amplitude equations for hyperbolic boundary value problems admitting linear surface waves. The local-in-time well-posedness of such equations in Sobolev spaces was proved by Benzoni-Gavage (Differ Integr Equ 22(3-4):303-320, 2009) under an appropriate stability condition originally pointed out by Hunter. The same stability condition has also been shown to be necessary for well-posedness in Sobolev spaces in a previous work of the authors in collaboration with Tzvetkov (Benzoni-Gavage et al. in Adv Math 227(6):2220-2240, 2011). In this article, we show how the verification of Hunter's stability condition follows from natural stability assumptions on the original hyperbolic boundary value problem, thus avoiding lengthy computations in each particular situation. We also show that the resulting amplitude equation has a Hamiltonian structure when the original boundary value problem has a variational origin. Our analysis encompasses previous equations derived for nonlinear Rayleigh waves in elasticity.

  9. Theoretical analysis of polariton interference in a thin platelet of CuCl. II - Effect of selective pumping

    Science.gov (United States)

    Cho, K.

    1985-11-01

    Pumping effect on the polariton dynamics in a thin platelet of CuCl has been theoretically analyzed from the viewpoint of nonlinear change in polariton dispersion relation. In terms of (1) the dielectric function of Haug et al. (1980), which includes the effect of pumping excitons into excitonic molecule states, and (2) an extended form of the Pekar's (1958) additional boundary condition, the observed pumping spectra by Mita and Nagasawa (1982) for a very thin platelet, which show a characteristic dependence on the (fixed) probe light frequency are well reproduced. Application of the theory to thicker samples, where a puzzling, pump-induced correlation effect is observed between upper and lower polaritons, shows that the consideration of the nonlinear change in polariton dispersion is not enough to solve the puzzle.

  10. Nanostructures Exploit Hybrid-Polariton Resonances

    Science.gov (United States)

    Anderson, Mark

    2008-01-01

    Nanostructured devices that exploit the hybrid-polariton resonances arising from coupling among photons, phonons, and plasmons are subjects of research directed toward the development of infrared-spectroscopic sensors for measuring extremely small quantities of molecules of interest. The spectroscopic techniques in question are surface enhanced Raman scattering (SERS) and surface enhanced infrared absorption (SEIRA). An important intermediate goal of this research is to increase the sensitivity achievable by these techniques. The basic idea of the approach being followed in this research is to engineer nanostructured devices and thereby engineer their hybrid-polariton resonances to concentrate infrared radiation incident upon their surfaces in such a manner as to increase the absorption of the radiation for SEIRA and measure the frequency shifts of surface vibrational modes. The underlying hybrid-polariton-resonance concept is best described by reference to experimental devices that have been built and tested to demonstrate the concept. The nanostructure of each such device includes a matrix of silicon carbide particles of approximately 1 micron in diameter that are supported on a potassium bromide (KBr) or poly(tetrafluoroethylene) [PTFE] window. These grains are sputter-coated with gold grains of 40-nm size (see figure). From the perspective of classical electrodynamics, in this nanostructure, that includes a particulate or otherwise rough surface, the electric-field portion of an incident electromagnetic field becomes concentrated on the particles when optical resonance conditions are met. Going beyond the perspective of classical electrodynamics, it can be seen that when the resonance frequencies of surface phonons and surface plasmons overlap, the coupling of the resonances gives rise to an enhanced radiation-absorption or -scattering mechanism. The sizes, shapes, and aggregation of the particles determine the frequencies of the resonances. Hence, the task of

  11. Filtering Non-Linear Transfer Functions on Surfaces.

    Science.gov (United States)

    Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice

    2014-07-01

    Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few

  12. Polariton condensates at room temperature

    Science.gov (United States)

    Guillet, Thierry; Brimont, Christelle

    2016-10-01

    We review the recent developments of the polariton physics in microcavities featuring the exciton-photon strong coupling at room temperature, and leading to the achievement of room-temperature polariton condensates. Such cavities embed active layers with robust excitons that present a large binding energy and a large oscillator strength, i.e. wide bandgap inorganic or organic semiconductors, or organic molecules. These various systems are compared, in terms of figures of merit and of common features related to their strong oscillator strength. The various demonstrations of polariton laser are compared, as well as their condensation phase diagrams. The room-temperature operation indeed allows a detailed investigation of the thermodynamic and out-of-equilibrium regimes of the condensation process. The crucial role of the spatial dynamics of the condensate formation is discussed, as well as the debated issue of the mechanism of stimulated relaxation from the reservoir to the condensate under non-resonant excitation. Finally the prospects of polariton devices are presented.

  13. The physics of exciton-polariton condensates

    CERN Document Server

    Lagoudakis, Konstantinos

    2013-01-01

    In 2006 researchers created the first polariton Bose-Einstein condensate at 19K in the solid state. Being inherently open quantum systems, polariton condensates open a window into the unpredictable world of physics beyond the “fifth state of matter”: the limited lifetime of polaritons renders polariton condensates out-of-equilibrium and provides a fertile test-bed for non-equilibrium physics. This book presents an experimental investigation into exciting features arising from this non-equilibrium behavior. Through careful experimentation, the author demonstrates the ability of polaritons to synchronize and create a single energy delocalized condensate. Under certain disorder and excitation conditions the complete opposite case of coexisting spatially overlapping condensates may be observed. The author provides the first demonstration of quantized vortices in polariton condensates and the first observation of fractional vortices with full phase and amplitude characterization. Finally, this book investigate...

  14. Nonlinear Dynamics of Biofilm Growth on Sediment Surfaces

    Science.gov (United States)

    Molz, F. J.; Murdoch, L. C.; Faybishenko, B.

    2013-12-01

    Bioclogging often begins with the establishment of small colonies (microcolonies), which then form biofilms on the surfaces of a porous medium. These biofilm-porous media surfaces are not simple coatings of single microbes, but complex assemblages of cooperative and competing microbes, interacting with their chemical environment. This leads one to ask: what are the underlying dynamics involved with biofilm growth? To begin answering this question, we have extended the work of Kot et al. (1992, Bull. Mathematical Bio.) from a fully mixed chemostat to an idealized, one-dimensional, biofilm environment, taking into account a simple predator-prey microbial competition, with the prey feeding on a specified food source. With a variable (periodic) food source, Kot et al. (1992) were able to demonstrate chaotic dynamics in the coupled substrate-prey-predator system. Initially, deterministic chaos was thought by many to be mainly a mathematical phenomenon. However, several recent publications (e.g., Becks et al, 2005, Nature Letters; Graham et al. 2007, Int. Soc Microb. Eco. J.; Beninca et al., 2008, Nature Letters; Saleh, 2011, IJBAS) have brought together, using experimental studies and relevant mathematics, a breakthrough discovery that deterministic chaos is present in relatively simple biochemical systems. Two of us (Faybishenko and Molz, 2013, Procedia Environ. Sci)) have numerically analyzed a mathematical model of rhizosphere dynamics (Kravchenko et al., 2004, Microbiology) and detected patterns of nonlinear dynamical interactions supporting evidence of synchronized synergetic oscillations of microbial populations, carbon and oxygen concentrations driven by root exudation into a fully mixed system. In this study, we have extended the application of the Kot et al. model to investigate a spatially-dependent biofilm system. We will present the results of numerical simulations obtained using COMSOL Multi-Physics software, which we used to determine the nature of the

  15. Nonlinear microscopy of localized field enhancements in fractal shaped periodic metal nanostructures

    DEFF Research Database (Denmark)

    Beermann, I.; Evlyukhin, A.; Boltasseva, Alexandra

    2008-01-01

    Fractal shaped periodic nanostructures formed with a 100 nm period square lattice of gold nanoparticles placed on a gold film are characterized using far-field nonlinear scanning optical microscopy, in which two-photon photoluminescence (TPL) excited with a strongly focused femtosecond laser beam...... relate the observed TPL enhancements to constructive interference of surface plasmon polaritons partially reflected inside the structure boundaries and support the analysis with numerical simulations using the Green dyadic field propagator....

  16. Ultra-low threshold polariton condensation

    CERN Document Server

    Steger, Mark; Alberi, Kirstin; Mascarenhas, Angelo; Snoke, David W; Pfeiffer, Loren N; West, Ken

    2016-01-01

    We demonstrate condensation of microcavity polaritons with a very sharp threshold occuring at two orders of magnitude lower pump intensity than previous demonstrations of condensation. The long cavity-lifetime and trapping and pumping geometries are crucial to the realization of this low threshold. Polariton condensation, or "polariton lasing" has long been proposed as a promising source of coherent light at lower threshold than traditional lasing, and these results suggest methods to bring this threshold even lower.

  17. Behaviour of Polariton in a Simple Model

    Institute of Scientific and Technical Information of China (English)

    WAN Shao-Long; MA Shuang-Ge; WANG Ke-Lin

    2003-01-01

    Behaviour of a simple model polariton system is restudied. The distribution of phonons in polariton never is sub-Poisson given by computation of the thermal counterpart of the Q parameter and the matrix m'3\\ The polariton complex as a whole shows non-classical behaviour below a threshold temperature, which depends on the photon-phonon coupling strength, when the distribution of phonons is always classical at any temperature.

  18. Microscopic theory of equilibrium polariton condensates

    Science.gov (United States)

    Xue, Fei; Wu, Fengcheng; Xie, Ming; Su, Jung-Jung; MacDonald, A. H.

    2016-12-01

    We present a microscopic theory of the equilibrium polariton condensate state of a semiconductor quantum well in a planar optical cavity. The theory accounts for the adjustment of matter excitations to the presence of a coherent photon field, predicts effective polariton-polariton interaction strengths that are weaker and condensate exciton fractions that are smaller than in the commonly employed exciton-photon model, and yields effective Rabi coupling strengths that depend on the detuning of the cavity-photon energy relative to the bare exciton energy. The dressed quasiparticle bands that appear naturally in the theory provide a mechanism for electrical manipulation of polariton condensates.

  19. Entanglement properties of quantum polaritons

    Science.gov (United States)

    Suárez-Forero, D. G.; Cipagauta, G.; Vinck-Posada, H.; Fonseca Romero, K. M.; Rodríguez, B. A.; Ballarini, D.

    2016-05-01

    Exciton polaritons are coupled states of matter and light, originated by the strong interaction between an optical mode and semiconductor excitons. This interaction can be obtained also at a single-particle level, in which case it has been shown that a quantum treatment is mandatory. In this work we study the light-matter entanglement of polaritons from a fully quantum formalism including pumping and dissipation. We find that the entanglement is completely destroyed if the exciton and photon are tuned at the resonance condition, even under very low pumping rates. Instead, the best condition for maximizing entanglement and purity of the steady state is when the exciton and photon are out of resonance and when incoherent pumping exactly compensates the dissipation rate. In the presence of multiple quantum dots coupled to the light mode, matter-light entanglement survives only at larger detuning for a higher number of quantum dots considered.

  20. Excitonic polaritons in Fibonacci quasicrystals.

    Science.gov (United States)

    Hendrickson, J; Richards, B C; Sweet, J; Khitrova, G; Poddubny, A N; Ivchenko, E L; Wegener, M; Gibbs, H M

    2008-09-29

    The fabrication and characterization of light-emitting one-dimensional photonic quasicrystals based on excitonic resonances is reported. The structures consist of high-quality GaAs/AlGaAs quantum wells grown by molecular-beam epitaxy with wavelength-scale spacings satisfying a Fibonacci sequence. The polaritonic (resonant light-matter coupling) effects and light emission originate from the quantum well excitonic resonances. Measured reflectivity spectra as a function of detuning between emission and Bragg wavelength are in good agreement with excitonic polariton theory. Photoluminescence experiments show that active photonic quasicrystals, unlike photonic crystals, can be good light emitters: While their long-range order results in a stopband similar to that of photonic crystals, the lack of periodicity results in strong emission.

  1. Strengthened nonlinearity in liquid crystal panel with ZnSe aligning layers due to surface charge accumulation

    Science.gov (United States)

    Zhao, Hua; Xue, Tingyu; Fu, Jiayin; Zhang, Jingwen

    2015-09-01

    With ZnSe thin films as aligning layers in fabricating liquid crystal (LC) panel with pentylcyanobiphenyl doped with C60, the response time in writing holograms was shortened to milliseconds. When two laser beams were overlapped in an LC panel, 2D diffraction patterns were observed, along with exponential gain coefficient highly LC and ZnSe thickness dependent. In addition, energy transferring in subwavelength scale through surface grating was evident. By using a hybrid LC panel, it was found the energy transferring direction was voltage polarity and thickness dependent. Electrostatic modification based surface plasmon polariton excitation was proposed to explain all the findings

  2. Numerical modeling of exciton-polariton Bose-Einstein condensate in a microcavity

    Science.gov (United States)

    Voronych, Oksana; Buraczewski, Adam; Matuszewski, Michał; Stobińska, Magdalena

    2017-06-01

    A novel, optimized numerical method of modeling of an exciton-polariton superfluid in a semiconductor microcavity was proposed. Exciton-polaritons are spin-carrying quasiparticles formed from photons strongly coupled to excitons. They possess unique properties, interesting from the point of view of fundamental research as well as numerous potential applications. However, their numerical modeling is challenging due to the structure of nonlinear differential equations describing their evolution. In this paper, we propose to solve the equations with a modified Runge-Kutta method of 4th order, further optimized for efficient computations. The algorithms were implemented in form of C++ programs fitted for parallel environments and utilizing vector instructions. The programs form the EPCGP suite which has been used for theoretical investigation of exciton-polaritons. Catalogue identifier: AFBQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFBQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: BSD-3 No. of lines in distributed program, including test data, etc.: 2157 No. of bytes in distributed program, including test data, etc.: 498994 Distribution format: tar.gz Programming language: C++ with OpenMP extensions (main numerical program), Python (helper scripts). Computer: Modern PC (tested on AMD and Intel processors), HP BL2x220. Operating system: Unix/Linux and Windows. Has the code been vectorized or parallelized?: Yes (OpenMP) RAM: 200 MB for single run Classification: 7, 7.7. Nature of problem: An exciton-polariton superfluid is a novel, interesting physical system allowing investigation of high temperature Bose-Einstein condensation of exciton-polaritons-quasiparticles carrying spin. They have brought a lot of attention due to their unique properties and potential applications in polariton-based optoelectronic integrated circuits. This is an out-of-equilibrium quantum system confined

  3. Optical surface modes in the presence of nonlinearity and disorder

    CERN Document Server

    Molina, M I; Tsironis, G P

    2011-01-01

    We investigate numerically the effect of the competition of disorder, nonlinearity, and boundaries on the Anderson localization of light waves in finite-size, one-dimensional waveguide arrays. Using the discrete Anderson - nonlinear Schr\\"odinger equation, the propagation of the mode amplitudes up to some finite distance is monitored. The analysis is based on the calculated localization length and the participation number, two standard measures for the statistical description of Anderson localization. For relatively weak disorder and nonlinearity, a higher disorder strength is required to achieve the same degree of localization at the edge than in the interior of the array, in agreement with recent experimental observations in the linear regime. However, for relatively strong disorder and/or nonlinearity, this behavior is reversed and it is now easier to localize an excitation at the edge than in the interior.

  4. Mechanical Detection and Imaging of Hyperbolic Phonon Polaritons in Hexagonal Boron Nitride.

    Science.gov (United States)

    Ambrosio, Antonio; Jauregui, Luis A; Dai, Siyuan; Chaudhary, Kundan; Tamagnone, Michele; Fogler, Michael M; Basov, Dimitri N; Capasso, Federico; Kim, Philip; Wilson, William L

    2017-09-26

    Mid-infrared nanoimaging and spectroscopy of two-dimensional (2D) materials have been limited so far to scattering-type scanning near-field optical microscopy (s-SNOM) experiments, where light from the sample is scattered by a metallic-coated atomic force microscope (AFM) tip interacting with the material at the nanoscale. These experiments have recently allowed imaging of plasmon polaritons in graphene as well as hyperbolic phonon polaritons in hexagonal boron nitride (hBN). Here we show that the high mechanical sensitivity of an AFM cantilever can be exploited for imaging hyperbolic phonon polaritons in hBN. In our imaging process, the lattice vibrations of hBN micrometer-sized flakes are locally enhanced by the launched phonon polaritons. These enhanced vibrations are coupled to the AFM tip in contact with the sample surface and recorded during scanning. Imaging resolution of Δ/20 is shown (Δ being the polaritonic fringes' separation distance), comparable to the best resolution in s-SNOM. Importantly, this detection mechanism is free from light background, and it is in fact the first photonless detection of phonon polaritons.

  5. Ultranarrow polaritons in a semiconductor microcavity

    DEFF Research Database (Denmark)

    Jensen, Jacob Riis; Borri, Paola; Langbein, Wolfgang

    2000-01-01

    We have achieved a record high ratio (19) of the Rabi splitting (3.6 meV) to the polariton linewidth (190 mu eV), in a semiconductor lambda microcavity with a single 25 nm GaAs quantum well at the antinode. The narrow polariton lines are obtained with a special cavity design which reduces...

  6. Numerical Modeling on Surface Plasmon Polaritons by Curved Chains of Nanoparticles%基于纳米粒子链的表面等离子体的数值模拟

    Institute of Scientific and Technical Information of China (English)

    吴婷婷; 李锋

    2012-01-01

    从电磁基本理论出发,深入研究了金膜上基于纳米粒子抛物链的表面等离子体的相互作用,由并矢格林函数求解波动方程,建立分层参考系统的电磁场模型.将纳米粒子抛物链划分为一系列立方单元,并利用耦合偶极子法将该积分方程转化为矩阵方程,从而计算出空间任意点的电场.此外,还给出了计算实例,并与国外的结果进行分析对比,证明运用的计算方法结果正确,算法快速.%Excitation, focusing and directing of surface plasmon polaritons ( SPPs) with curved chains of nano-particles located on a finite gold layer are investigated theoretically. The theory of Green' s dyadic functions on a layered reference system is outlined and electromagnetic properties of surface plasmons are discussed. A curved chain of nanoparticles in upper half-space is divided into a number of cubic cells and the integral equation is reduced to a matrix equation using coupled dipole formalism. Then the electric fields at any point is calculated on gold surface. Numerical simulations of the configuration investigated experimentally are carried out based on the Green's tensor formalism and dipole approximation. The numerical result show excellent agreement with foreign works.

  7. Temporal dark polariton solitons

    CERN Document Server

    Kartashov, Yaroslav V

    2016-01-01

    We predict that strong coupling between waveguide photons and excitons of quantum well embedded into waveguide results in the formation of hybrid dark and anti-dark light-matter solitons. Such temporal solitons exist due to interplay between repulsive excitonic nonlinearity and giant group velocity dispersion arising in the vicinity of excitonic resonance. Such fully conservative states do not require external pumping to counteract losses and form continuous families parameterized by the power-dependent phase shift and velocity of their motion. Dark solitons are stable in the considerable part of their existence domain, while anti-dark solitons are always unstable. Both families exist outside forbidden frequency gap of the linear system.

  8. Modeling the toxicity of aromatic compounds to tetrahymena pyriformis: the response surface methodology with nonlinear methods.

    Science.gov (United States)

    Ren, Shijin

    2003-01-01

    Response surface models based on multiple linear regression had previously been developed for the toxicity of aromatic chemicals to Tetrahymena pyriformis. However, a nonlinear relationship between toxicity and one of the molecular descriptors in the response surface model was observed. In this study, response surface models were established using six nonlinear modeling methods to handle the nonlinearity exhibited in the aromatic chemicals data set. All models were validated using the method of cross-validation, and prediction accuracy was tested on an external data set. Results showed that response surface models based on locally weighted regression scatter plot smoothing (LOESS), multivariate adaptive regression splines (MARS), neural networks (NN), and projection pursuit regression (PPR) provided satisfactory power of model fitting and prediction and had similar applicabilities. The response surface models based on nonlinear methods were difficult to interpret and conservative in discriminating toxicity mechanisms.

  9. Impact of lateral carrier confinement on electro-optical tuning properties of polariton condensates

    Energy Technology Data Exchange (ETDEWEB)

    Brodbeck, S.; Suchomel, H.; Amthor, M.; Wolf, A.; Kamp, M. [Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); Schneider, C. [Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); Mediterranean Institute of Fundamental Physics, Via Appia Nuova 31, 00040 Rome (Italy); Höfling, S. [Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY 16 9SS (United Kingdom)

    2015-07-27

    Electro-optical measurements on exciton-polaritons below and above the condensation threshold are performed on high quality, pin-doped microcavities with embedded GaAs quantum wells. Applying an external electric field shifts the polariton emission by hundreds of μeV both in the linear and the nonlinear regime. We study three device geometries to investigate the influence of carrier confinement in the plane of the quantum well on the electro-optical tuning properties. In the conventional micropillar geometry, the electric field tuning behavior is dominated by the effects of carrier tunneling and electric field screening that manifest in a blueshift of the polariton emission. In stark contrast, for a planar sample geometry, we can significantly extend the range of electric fields and a redshift is observed. To separate the contributions of quantum confined Stark effect and reduced exciton oscillator strength to the energy shift, we study a third sample where the etching of micropillars is stopped just above the active region. In this semi-planar geometry, exciton and polariton emissions can be measured simultaneously. As for the planar geometry, redshifts of the polariton emission are observed below and above threshold that are well reproduced by theoretical shifts.

  10. Terahertz polariton propagation in patterned materials.

    Science.gov (United States)

    Stoyanov, Nikolay S; Ward, David W; Feurer, Thomas; Nelson, Keith A

    2002-10-01

    Generation and control of pulsed terahertz-frequency radiation have received extensive attention, with applications in terahertz spectroscopy, imaging and ultrahigh-bandwidth electro-optic signal processing. Terahertz 'polaritonics', in which terahertz lattice waves called phonon-polaritons are generated, manipulated and visualized with femtosecond optical pulses, offers prospects for an integrated solid-state platform for terahertz signal generation and guidance. Here, we extend terahertz polaritonics methods to patterned structures. We demonstrate femtosecond laser fabrication of polaritonic waveguide structures in lithium tantalate and lithium niobate crystals, and illustrate polariton focusing into, and propagation within, the fabricated waveguide structures. We also demonstrate a 90 degrees turn within a structure consisting of two waveguides and a reflecting face, as well as a structure consisting of splitting and recombining elements that can be used as a terahertz Mach-Zehnder interferometer. The structures permit integrated terahertz signal generation, propagation through waveguide-based devices, and readout within a single solid-state platform.

  11. Mimicking graphene with polaritonic spin vortices

    Science.gov (United States)

    Gulevich, Dmitry R.; Yudin, Dmitry

    2017-09-01

    Exploring the properties of strongly correlated systems through quantum simulation with photons, cold atoms, or polaritons represents an active area of research. In fact, the latter sheds light on the behavior of complex systems that are difficult to address in the laboratory or to tackle numerically. In this study, we discuss an analog of graphene formed by exciton-polariton spin vortices arranged into a hexagonal lattice. We show how graphene-type dispersion at different energy scales arises for several types of exciton-polariton spin vortices. In contrast to previous studies of exciton polaritons in artificial lattices, the use of exciton-polariton spin vortex modes offers a richer playground for quantum simulations. In particular, we demonstrate that the sign of the nearest-neighbor coupling strength can be inverted.

  12. Tunable plasmon polaritons in arrays of interacting metallic nanoparticles

    Science.gov (United States)

    Weick, Guillaume; Mariani, Eros

    2015-01-01

    We consider a simple cubic array of metallic nanoparticles supporting extended collective plasmons that arise from the near-field dipolar interaction between localized surface plasmons in each nanoparticle. We develop a fully analytical quantum theory of the strong-coupling regime between these collective plasmons and photons resulting in plasmon polaritons in the nanoparticle array. Remarkably, we show that the polaritonic band gap and the dielectric function of the metamaterial can be significantly modulated by the polarization of light. We unveil how such an anisotropic behavior in the plasmonic metamaterial is crucially mediated by the dipolar interactions between the nanoparticles despite the symmetry of the underlying lattice. Our results thus pave the way towards the realization of tunable quantum plasmonic metamaterials presenting interaction-driven birefringence.

  13. The Roles of Substrate vs Nonlocal Optical Nonlinearities in the Excitation of Surface Plasmons in Graphene

    CERN Document Server

    Constant, Thomas J; Hendry, Euan; Chang, Darrick E

    2016-01-01

    It has recently been demonstrated that difference frequency mixing (DFM) can generate surface plasmons in graphene [1]. Here, we present detailed calculations comparing the contributions to this effect from substrate and from graphene nonlinearities. Our calculations show that the substrate (quartz) nonlinearity gives rise to a surface plasmon intensity that is around twelve orders of magnitude smaller than that arising from the intrinsic graphene response. This surprisingly efficient intrinsic process, given the centrosymmetric structure of graphene, arises almost entirely due to non-local contributions to the second order optical nonlinearity of graphene.

  14. Supersonic exciton gratings: coherent inter-polariton scattering in semiconductor microcavities

    DEFF Research Database (Denmark)

    Birkedal, Dan; Vadim, Lyssenko; Hvam, Jørn Märcher

    2002-01-01

    We report on a coherent nonlinear phenomenon in a semiconductor microcavity (SMC), which has no parallel for QW excitons. When two different polariton modes of the SMC are impulsively excited they undergo normal mode oscillations (NMOs) with coherent energy exchange between the exciton and the ca......We report on a coherent nonlinear phenomenon in a semiconductor microcavity (SMC), which has no parallel for QW excitons. When two different polariton modes of the SMC are impulsively excited they undergo normal mode oscillations (NMOs) with coherent energy exchange between the exciton...... and the cavity mode. In our experiment the two polaritons are excited with slightly different angles resulting in a travelling wave exciton grating. When a test polariton mode is excited it will scatter in the travelling grating producing amplitude modulation sidebands. This phenomenon produces a transient four......-wave mixing (TFWM) signal, which is shifted in frequency from that of the test beam by the NMO frequency, in our case, in the THz range corresponding to a grating velocity = 1 /spl times/ 10/sup 7/ m/s, which is four orders of magnitude larger than the sound velocity. The sample under investigation is a Ga...

  15. Temperature dependence of exciton-surface plasmon polariton coupling in Ag, Au, and Al films on In{sub x}Ga{sub 1−x}N/GaN quantum wells studied with time-resolved cathodoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Estrin, Y.; Rich, D. H., E-mail: danrich@bgu.ac.il [Department of Physics and The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O.B 653, Beer-Sheva 84105 (Israel); Keller, S.; DenBaars, S. P. [Electrical and Computer Engineering and Materials Departments, University of California, Santa Barbara, California 93111 (United States)

    2015-01-28

    The optical properties and coupling of excitons to surface plasmon polaritons (SPPs) in Ag, Au, and Al-coated In{sub x}Ga{sub 1−x}N/GaN multiple and single quantum wells (SQWs) were probed with time-resolved cathodoluminescence. Excitons were generated in the metal coated SQWs by injecting a pulsed high-energy electron beam through the thin metal films. The Purcell enhancement factor (F{sub p}) was obtained by direct measurement of changes in the temperature-dependent radiative lifetime caused by the SQW exciton-SPP coupling. Three chosen plasmonic metals of Al, Ag, and Au facilitate an interesting comparison of the exciton-SPP coupling for energy ranges in which the SP energy is greater than, approximately equal to, and less than the excitonic transition energy for the InGaN/GaN QW emitter. A modeling of the temperature dependence of the Purcell enhancement factor, F{sub p}, included the effects of ohmic losses of the metals and changes in the dielectric properties due to the temperature dependence of (i) the intraband behavior in the Drude model and (ii) the interband critical point transition energies which involve the d-bands of Au and Ag. We show that an inclusion of both intraband and interband effects is essential when calculating the ω vs k SPP dispersion relation, plasmon density of states (DOS), and the dependence of F{sub p} on frequency and temperature. Moreover, the “back bending” in the SPP dispersion relation when including ohmic losses can cause a finite DOS above ω{sub sp} and lead to a measurable F{sub p} in a limited energy range above ω{sub sp}, which can potentially be exploited in plasmonic devices utilizing Ag and Au.

  16. Semiconductor microcavity polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, Evgenii A [Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow region (Russian Federation)

    2002-12-31

    The optical properties of wide-gap semiconductor films on metal substrates were investigated experimentally by infrared spectroscopy, Raman scattering, and femtosecond spectroscopy techniques as well as theoretically in the framework of linear crystal optics. The optical spectra of such planar structures (microresonators) were shown to bear information on electromagnetic excitations of both the surface and the volume of the structure. The optical spectra are determined by the interaction of all dipole-active excitations of the component materials with the electromagnetic modes of the microresonator, which in turn are determined by the permittivities of each component material, microcavity (microresonator) thickness, and the experimental conditions. (reviews of topical problems)

  17. Linear and nonlinear optics of surface plasmon toy-models of black holes and wormholes

    CERN Document Server

    Smolyaninov, I I

    2003-01-01

    Experimental and theoretical studies of linear and nonlinear optics of surface plasmon toy wormholes and black holes have been performed. These models are based on dielectric microdroplets on the metal surfaces and on nanoholes drilled in thin metal films. Toy surface plasmon black holes and wormholes are shown to exhibit strongly enhanced nonlinear optical behavior in the frequency range near the surface plasmon resonance of a metal-liquid interface. Various possibilities to emulate such nontrivial gravitation theory effects as Hawking radiation and Cauchy horizons are discussed.

  18. Polaritonic Rabi and Josephson Oscillations.

    Science.gov (United States)

    Rahmani, Amir; Laussy, Fabrice P

    2016-07-25

    The dynamics of coupled condensates is a wide-encompassing problem with relevance to superconductors, BECs in traps, superfluids, etc. Here, we provide a unified picture of this fundamental problem that includes i) detuning of the free energies, ii) different self-interaction strengths and iii) finite lifetime of the modes. At such, this is particularly relevant for the dynamics of polaritons, both for their internal dynamics between their light and matter constituents, as well as for the more conventional dynamics of two spatially separated condensates. Polaritons are short-lived, interact only through their material fraction and are easily detuned. At such, they bring several variations to their atomic counterpart. We show that the combination of these parameters results in important twists to the phenomenology of the Josephson effect, such as the behaviour of the relative phase (running or oscillating) or the occurence of self-trapping. We undertake a comprehensive stability analysis of the fixed points on a normalized Bloch sphere, that allows us to provide a generalized criterion to identify the Rabi and Josephson regimes in presence of detuning and decay.

  19. Progress in surface plasmon polariton nano-laser technologies and applications%表面等离子体激元纳米激光器技术及应用研究进展

    Institute of Scientific and Technical Information of China (English)

    陈泳屹; 佟存柱; 秦莉; 王立军; 张金龙

    2012-01-01

    Conventional semiconductor lasers suffer from the scale of the diffraction limit due to the light to be confined by the optical feedback systems. Therefore, the scales of the lasers cannot be miniaturized because their cavities cannot be less than the half of the lasing wavelength. However, lasers based on the Surface Plas- mon Polaritons(SPPs) can operate at a deep sub-wavelength, even nanometer scale. Moreover, the develop- ment of modern nanofabrication techniques provides the fabrication conditions for micro - or even nanometer scale lasers. This paper reviews the progress in nano-lasers based on SPPs that have been demonstrated re-cently. It describes the basic principles of the SPPs and gives structures and characteristics for several kinds of nanometer scale lasers. Then, it points out that the major defects of the nanometer scale lasers currently are focused on higher polariton losses and the difficulties in fabrication and electronic pumping technologies men- tioned above. Finally, the paper considers the research and application prospects of the nanometer scale lasers based on the SPPs.%传统半导体激光器由于采用光学系统反馈而存在衍射极限,其腔长至少是其发射波长的一半,因此难以实现微小化。基于表面等离子体激元的纳米激光器可以实现深亚波长乃至纳米尺度的激光发射,而且现代微纳加工技术的逐步成熟,也为亚波长乃至纳米量级激光器的研制提供了成熟的技术条件。本文重点综述了国际上已成功实验验证的基于表面等离子体激元的纳米激光器的最新研究进展,综述了表面等离子体激元的基本原理,给出了若干种表面等离子体激元纳米激光器的结构和特点,指出该类激光器现存问题主要表现在激元损耗高及由此引起的制备工艺和电泵浦涉及的技术难题。文中最后展望了纳米激光器的应用和研究前景。

  20. Polaritons dispersion in a composite ferrite-semiconductor structure near gyrotropic-nihility state

    CERN Document Server

    Tuz, Vladimir R

    2015-01-01

    The dispersion law of both bulk and surface polaritons in a finely-stratified ferrite-semiconductor structure which is under an action of an external static magnetic field in the Voigt geometry is derived and examined in details. In the long-wavelength limit, when the thicknesses of the structure's layers as well as its period are optically thin, with an assistance of the method of effective anisotropic homogeneous medium, the expressions for relative effective constitutive parameters are retrieved in a general tensor form. The gyrotropic-nihility state is defined from the dispersion equation related to the bulk polaritons as a particular extreme condition, at which the longitudinal component of the corresponding constitutive tensor, as well as the corresponding bulk constant simultaneously acquire zero. The extraordinary spectral features of both bulk and surface polaritons near the frequency of the gyrotropic-nihility state are elucidated.

  1. Electrically tunable artificial gauge potential for polaritons

    Science.gov (United States)

    Lim, Hyang-Tag; Togan, Emre; Kroner, Martin; Miguel-Sanchez, Javier; Imamoğlu, Atac

    2017-01-01

    Neutral particles subject to artificial gauge potentials can behave as charged particles in magnetic fields. This fascinating premise has led to demonstrations of one-way waveguides, topologically protected edge states and Landau levels for photons. In ultracold neutral atoms, effective gauge fields have allowed the emulation of matter under strong magnetic fields leading to realization of Harper-Hofstadter and Haldane models. Here we show that application of perpendicular electric and magnetic fields effects a tunable artificial gauge potential for two-dimensional microcavity exciton polaritons. For verification, we perform interferometric measurements of the associated phase accumulated during coherent polariton transport. Since the gauge potential originates from the magnetoelectric Stark effect, it can be realized for photons strongly coupled to excitations in any polarizable medium. Together with strong polariton–polariton interactions and engineered polariton lattices, artificial gauge fields could play a key role in investigation of non-equilibrium dynamics of strongly correlated photons. PMID:28230047

  2. Highly Nonlinear Luminescence Induced by Gold Nanoparticles on Glass Surfaces with Continuous-Wave Laser Illumination

    CERN Document Server

    Wu, Yong; Toro, Ligia; Stefani, Enrico

    2015-01-01

    We report on highly nonlinear luminescence being observed from individual spherical gold nanoparticles immobilized on a borosilicate glass surface and illuminated by continuous-wave (CW) lasers with relatively low power. The nonlinear luminescence shows optical super-resolution beyond the diffraction limit in three dimensions compared to the scatting of the excitation laser light. The luminescence intensity from most nanoparticles is proportional to the 5th--7th power of the excitation laser power and has wide excitation and emission spectra across the visible wavelength range. Strong nonlinear luminescence is only observed near the glass surface. High optical nonlinearity excited by low CW laser power is related to a long-lived dark state of the gold nanoparticles, where the excitation light is strongly absorbed. This phenomenon has potential biological applications in super-resolution and deep tissue imaging.

  3. Directional dependence of nonlinear surface acoustic waves in the (001) plane of cubic crystals.

    Science.gov (United States)

    Kumon, R E; Hamilton, M F

    2002-05-01

    Spectral evolution equations are used to perform analytical and numerical studies of nonlinear surface acoustic waves in the (001) plane of a variety of nonpiezoelectric cubic crystals. The basic theory underlying the model equations is outlined, and quasilinear solutions of the equations are presented. Expressions are also developed for a characteristic length scale for nonlinear distortion and a nonlinearity coefficient. A time-domain equation corresponding to the spectral equations is derived. Numerical calculations based on measured second- and third-order elastic constants taken from the literature are performed to predict the evolution of initially monofrequency surface waves. Nonlinearity matrix elements that indicate the coupling strength of harmonic interactions are shown to provide a useful tool for characterizing waveform distortion. The formation of compression or rarefaction shocks can be strongly dependent on the direction of propagation, and harmonic generation is suppressed or increased in certain directions.

  4. On the joint distribution of surface slopes for the fourth order nonlinear random sea waves

    Institute of Scientific and Technical Information of China (English)

    张书文; 孙孚; 管长龙

    1999-01-01

    Based upon the nonlinear model of Longuet-Higgins the joint distribution of wave surface slopes is theoretically investigated. It is shown that in the fourth order approximation, the distribution is given by truncated Gram-Charlier series. The types of wave-wave coupling interactions are related to the order of approximation to nonlinearity of sea surface, which eventually defines the truncated term of the Gram-Charlier series. For each order approximation, the coefficients in the series are modified comparatively to the corresponding ones for the previous order approximation. If the nonlinear effect of the kurtosis is considered, the wave surface must be as accurate at least as to the third order approximation, and with regard to skewness, the wave surface must be as accurate at least as to the fourth order approximation.

  5. Higher-order nonlinear Schrodinger equations for simulations of surface wavetrains

    Science.gov (United States)

    Slunyaev, Alexey

    2016-04-01

    Numerous recent results of numerical and laboratory simulations of waves on the water surface claim that solutions of the weakly nonlinear theory for weakly modulated waves in many cases allow a smooth generalization to the conditions of strong nonlinearity and dispersion, even when the 'envelope' is difficult to determine. The conditionally 'strongly nonlinear' high-order asymptotic equations still imply the smallness of the parameter employed in the asymptotic series. Thus at some (unknown a priori) level of nonlinearity and / or dispersion the asymptotic theory breaks down; then the higher-order corrections become useless and may even make the description worse. In this paper we use the higher-order nonlinear Schrodinger (NLS) equation, derived in [1] (the fifth-order NLS equation, or next-order beyond the classic Dysthe equation [2]), for simulations of modulated deep-water wave trains, which attain very large steepness (below or beyond the breaking limit) due to the Benjamin - Feir instability. The results are compared with fully nonlinear simulations of the potential Euler equations as well as with the weakly nonlinear theories represented by the nonlinear Schrodinger equation and the classic Dysthe equation with full linear dispersion [2]. We show that the next-order Dysthe equation can significantly improve the description of strongly nonlinear wave dynamics compared with the lower-order asymptotic models. [1] A.V. Slunyaev, A high-order nonlinear envelope equation for gravity waves in finite-depth water. JETP 101, 926-941 (2005). [2] K. Trulsen, K.B. Dysthe, A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water. Wave Motion 24, 281-289 (1996).

  6. Propagation and excitation of graphene plasmon polaritons

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Jeppesen, Claus

    2013-01-01

    We theoretically investigate the propagation of graphene plasmon polaritons in graphene nanoribbon waveguides and experimentally observe the excitation of the graphene plasmon polaritons in a continuous graphene monolayer. We show that graphene nanoribbon bends do not induce any additional loss...... and nanofocusing occurs in a tapered graphene nanoriboon, and we experimentally demonstrate the excitation of graphene plasmon polaritonss in a continuous graphene monolayer assisted by a two-dimensional subwavelength silicon grating....

  7. Quantum Manybody Physics with Rydberg Polaritons

    Science.gov (United States)

    2016-06-22

    AFRL-AFOSR-VA-TR-2017-0033 Quantum Manybody Physics with Rydberg Polaritons Jonathan Simon UNIVERSITY OF CHICAGO THE 5801 S ELLIS AVE CHICAGO, IL...abstract is to be limited. DISTRIBUTION A: Distribution approved for public release. Title: Quantum Manybody Physics with Rydberg Polaritons AFOSR AWARD...developed. In conjunction with synthetic magnetic fields generated through non-planar cavities, we are now poised to explore fractional quantum hall physics

  8. Skyrmion Spin Textures In Polariton Microcavities

    CERN Document Server

    Cilibrizzi, Pasquale; Liew, Tim C H; Hoadi, Hamid; Askitopoulos, Alexis; Brodbeck, Sebastian; Schneider, Christian; Shelykh, Ivan A; Höfling, Sven; Lagoudakis, Pavlos

    2016-01-01

    We study the polarisation dynamics of a spatially expanding polariton condensate under nonresonant linearly polarized optical excitation. The spatially and temporally resolved polariton emission reveals the formation of Skyrmions in the form of a quadruplet polarisation pattern both in the linear and circular Stokes parameters and an octuplet in the diagonal polarisations. A theoretical model based on the Gross-Pitaevskii equation coupled with an exciton reservoir describes the nontrivial spin textures through the optical spin-Hall effect.

  9. Nonlinear waves on the free surface of a dielectric liquid in an oblique electric field

    Energy Technology Data Exchange (ETDEWEB)

    Gashkov, M. A.; Zubarev, N. M., E-mail: nick@iep.uran.ru; Kochurin, E. A., E-mail: kochurin@iep.uran.ru [Ural Branch, Russian Academy of Sciences, Institute of Electrophysics (Russian Federation)

    2015-09-15

    The nonlinear dynamics of the free surface of an ideal dielectric liquid that is exposed to an external oblique electric field has been studied theoretically. In the framework of the Hamiltonian formalism, a system of nonlinear integro-differential equations has been derived that describes the dynamics of nonlinear waves in the small-angle approximation. It is established that for a liquid with high dielectric permittivity, these equations have a solution in the form of plane waves of arbitrary shape that propagate without distortion in the direction of the horizontal component of the external field.

  10. Modeling of nonlinear microscopy of localized field enhancements in random metal nanostructures

    DEFF Research Database (Denmark)

    Beermann, Jonas; Bozhevolnyi, Sergey I.; Coello, Victor

    2006-01-01

    Nonlinear microscopy of localized field enhancements in random metal nanostructures with a tightly focused laser beam scanning over a sample surface is modeled by making use of analytic representations of the Green dyadic in the near- and far-field regions, with the latter being approximated...... by the part describing the scattering via excitation of surface plasmon polaritons. The developed approach is applied to scanning second-harmonic (SH) microscopy of small gold spheres placed randomly on a gold surface. We calculate self-consistent fundamental harmonic (FH) and SH field distributions...

  11. Ultra-low threshold polariton lasing at room temperature in a GaN membrane microcavity with a zero-dimensional trap.

    Science.gov (United States)

    Jayaprakash, R; Kalaitzakis, F G; Christmann, G; Tsagaraki, K; Hocevar, M; Gayral, B; Monroy, E; Pelekanos, N T

    2017-07-17

    Polariton lasers are coherent light sources based on the condensation of exciton-polaritons in semiconductor microcavities, which occurs either in the kinetic or thermodynamic (Bose-Einstein) regime. Besides their fundamental interest, polariton lasers have the potential of extremely low operating thresholds. Here, we demonstrate ultra-low threshold polariton lasing at room temperature, using an all-dielectric, GaN membrane-based microcavity, with a spontaneously-formed zero-dimensional trap. The microcavity is fabricated using an innovative method, which involves photo-electrochemical etching of an InGaN sacrificial layer and allows for the incorporation of optimally-grown GaN active quantum wells inside a cavity with atomically-smooth surfaces. The resulting structure presents near-theoretical Q-factors and pronounced strong-coupling effects, with a record-high Rabi splitting of 64 meV at room-temperature. Polariton lasing is observed at threshold carrier densities 2.5 orders of magnitude lower than the exciton saturation density. Above threshold, angle-resolved emission spectra reveal an ordered pattern in k-space, attributed to polariton condensation at discrete levels of a single confinement site. This confinement mechanism along with the high material and optical quality of the microcavity, accounts for the enhanced performance of our polariton laser, and pave the way for further developments in the area of robust room temperature polaritonic devices.

  12. Surface Tension of Acid Solutions: Fluctuations beyond the Non-linear Poisson-Boltzmann Theory

    CERN Document Server

    Markovich, Tomer; Podgornik, Rudi

    2016-01-01

    We extend our previous study of surface tension of ionic solutions and apply it to the case of acids (and salts) with strong ion-surface interactions. These ion-surface interactions yield a non-linear boundary condition with an effective surface charge due to adsorption of ions from the bulk onto the interface. The calculation is done using the loop-expansion technique, where the zero-loop (mean field) corresponds of the non-linear Poisson-Boltzmann equation. The surface tension is obtained analytically to one-loop order, where the mean-field contribution is a modification of the Poisson-Boltzmann surface tension, and the one-loop contribution gives a generalization of the Onsager-Samaras result. Our theory fits well a wide range of different acids and salts, and is in accord with the reverse Hofmeister series for acids.

  13. Noncontact monitoring of surface-wave nonlinearity for predicting the remaining life of fatigued steels

    Science.gov (United States)

    Ogi, Hirotsugu; Hirao, Masahiko; Aoki, Shinji

    2001-07-01

    A nonlinear acoustic measurement is studied for fatigue damage monitoring. An electromagnetic acoustic transducer (EMAT) magnetostrictively couples to a surface-shear-wave resonance along the circumference of a rod specimen during rotating bending fatigue of carbon steels. Excitation of the EMAT at half of the resonance frequency caused the standing wave to contain only the second-harmonic component, which was received by the same EMAT to determine the second-harmonic amplitude. Thus measured surface-wave nonlinearity always showed two distinct peaks at 60% and 85% of the total life. We attribute the earlier peak to crack nucleation and growth, and the later peak to an increase of free dislocations associated with crack extension in the final stage. This noncontact resonance-EMAT measurement can monitor the evolution of the surface-shear-wave nonlinearity throughout the metal's fatigue life and detect the pertinent precursors of the eventual failure.

  14. A nonlinear feedback model for granular and surface charging

    Science.gov (United States)

    Shinbrot, Troy; Kozachkov, Leo; Siu, Theo

    2015-03-01

    Independent laboratories have experimentally demonstrated that identical materials brought into symmetric contact generate contact charges. Even the most basic features of this odd behavior remain to be explained. In this talk, we provide a simple, Ising-like, model that appears to account for many of the observed phenomena. We calculate the electric field acting on surface molecules in a lattice, and we show that if the molecules are polarizable, then infinitesimal random polarizations typically build exponentially rapidly in time. These polarizations self-assemble to produce surface patterns that come in two types, and we find that one of these types accounts for strong localized charging, while the other produces a weaker persistent surface charge pattern. We summarize predictions for both ideal surfaces and for defects in granular beds. This work was supported by NSF Grant DMR-1404792.

  15. Edge detection of remote sensing image based on nonlinear intensity of curved surface

    Institute of Scientific and Technical Information of China (English)

    张连蓬; 刘国林; 江涛

    2003-01-01

    A new edge detector based on the nonlinear intensity of curved surface was proposed. The edge detector describes the largest curvature and the smallest curvature of curved surface, therefore it can reflect the real largest direction of image edge jump. By the new edge detector, it is convenient to calculate the curvature in any direction of the curved surface and the curvature can be used in the identification of edge direction and the feature extraction of objects on remote sensing image.

  16. Nonlinear Bubble Dynamics And The Effects On Propagation Through Near-Surface Bubble Layers

    Science.gov (United States)

    Leighton, Timothy G.

    2004-11-01

    Nonlinear bubble dynamics are often viewed as the unfortunate consequence of having to use high acoustic pressure amplitudes when the void fraction in the near-surface oceanic bubble layer is great enough to cause severe attenuation (e.g. >50 dB/m). This is seen as unfortunate since existing models for acoustic propagation in bubbly liquids are based on linear bubble dynamics. However, the development of nonlinear models does more than just allow quantification of the errors associated with the use of linear models. It also offers the possibility of propagation modeling and acoustic inversions which appropriately incorporate the bubble nonlinearity. Furthermore, it allows exploration and quantification of possible nonlinear effects which may be exploited. As a result, high acoustic pressure amplitudes may be desirable even in low void fractions, because they offer opportunities to gain information about the bubble cloud from the nonlinearities, and options to exploit the nonlinearities to enhance communication and sonar in bubbly waters. This paper presents a method for calculating the nonlinear acoustic cross-sections, scatter, attenuations and sound speeds from bubble clouds which may be inhomogeneous. The method allows prediction of the time dependency of these quantities, both because the cloud may vary and because the incident acoustic pulse may have finite and arbitrary time history. The method can be readily adapted for bubbles in other environments (e.g. clouds of interacting bubbles, sediments, structures, in vivo, reverberant conditions etc.). The possible exploitation of bubble acoustics by marine mammals, and for sonar enhancement, is explored.

  17. Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes

    Science.gov (United States)

    Derrien, Thibault J.-Y.; Krüger, Jörg; Itina, Tatiana E.; Höhm, Sandra; Rosenfeld, Arkadi; Bonse, Jörn

    2014-10-01

    The formation of laser-induced periodic surface structures (LIPSS, ripples) upon irradiation of silicon with multiple irradiation sequences consisting of femtosecond laser pulse pairs (pulse duration 150 fs, central wavelength 800 nm) is studied numerically using a rate equation system along with a two-temperature model accounting for one- and two-photon absorption and subsequent carrier diffusion and Auger recombination processes. The temporal delay between the individual equal-energy fs-laser pulses was varied between 0 and ˜4 ps for quantification of the transient carrier densities in the conduction band of the laser-excited silicon. The results of the numerical analysis reveal the importance of carrier generation and relaxation processes in fs-LIPSS formation on silicon and quantitatively explain the two time constants of the delay-dependent decrease of the low spatial frequency LIPSS (LSFL) area observed experimentally. The role of carrier generation, diffusion and recombination is quantified individually.

  18. Nonlinear Radiation Effects on Hydromagnetic Boundary Layer Flow and Heat Transfer over a Shrinking Surface

    Directory of Open Access Journals (Sweden)

    anjali devi

    2015-01-01

    Full Text Available The effects of nonlinear radiation on hydromagnetic boundary layer flow and heat transfer over a shrinking surface is investigated in the present work. Using suitable similarity transformations, the governing nonlinear partial differential equations are transformed into nonlinear ordinary differential equations. The resultant equations which are highly nonlinear are solved numerically using Nachtsheim Swigert shooting iteration scheme together with Fourth Order Runge Kutta method. Numerical solutions for velocity, skin friction coefficient and temperature are obtained for various values of physical parameters involved in the study namely Suction parameter, Magnetic parameter, Prandtl number, Radiation parameter and Temperature ratio parameter. Numerical values for dimensionless rate of heat transfer are also obtained for various physical parameters and are shown through tables. The analytical solution of the energy equation when the radiation term is taken in linear form is obtained using Confluent hypergeometric function.

  19. Assessment of precipitation in alloy steel using nonlinear Rayleigh surface waves

    Science.gov (United States)

    Thiele, Sebastian; Matlack, Kathryn H.; Kim, Jin-Yeon; Qu, Jianmin; Wall, James J.; Jacobs, Laurence J.

    2014-02-01

    Nonlinear ultrasonic waves have shown to be sensitive to various microstructural changes in metals including coherent precipitates; these precipitates introduce a strain field in the lattice structure. The thermal aging of certain alloy steels leads to the formation of coherent precipitates, which pin dislocations and contribute to the generation of a second harmonic component. A precipitate hardenable material namely 17-4 PH stainless steel is thermally treated in this research to obtain different precipitation stages, and then the influence of precipitates on the acoustic nonlinearity parameter is assessed. Conclusions about the microstrucutural changes in the material are drawn based on the results from a nonlinear Rayleigh surface wave measurement and complementary thermo-electric power, hardness and ultrasonic velocity measurements. The results show that the nonlinear parameter is sensitive to coherent precipitates in the material and moreover that precipitation characteristics can be characterized based on the obtained experimental data.

  20. Second-Order Nonlinearity in Triangular Lattice Perforated Gold Film due to Surface Plasmas Resonance

    Directory of Open Access Journals (Sweden)

    Renlong Zhou

    2014-01-01

    Full Text Available We have studied the excitation second-order nonlinearity through a triangular lattice perforated gold film instead of square lattice in many papers. Under the excitation of surface plasmas resonance effect, the second order nonlinearity exists in the noncentrosymmetric split-ring resonators arrays. Reflection of fundamental frequency wave through a triangular lattice perforated gold film is obtained. We also described the second harmonic conversion efficiencies in the second order nonlinear optical process with the spectra. Moreover, the electric field distributions of fundamental frequency above the gold film region are calculated. The light propagation through the holes results in the enhancement of the second order nonlinearity including second harmonic generation as well as the sum (difference frequency generation.

  1. Surface plasmon assisted optical nonlinearities of uniformly oriented metal nano-ellipsoids in glass.

    Science.gov (United States)

    Mohan, Sabitha; Lange, Jens; Graener, Heinrich; Seifert, Gerhard

    2012-12-17

    The nonlinear optical properties of nanocomposites consisting of non-spherical silver nanoparticles in glass matrix have been studied using the femtosecond Z-scan technique. The spheroidal nanoparticles were uniformly oriented along a common direction. By polarization sensitive studies, longitudinal and transverse plasmon resonances can be addressed separately. A sign reversal in optical nonlinearity from negative to positive is observed while switching the light interaction from near to non-resonant regime, which can be done by simply rotating the light polarization by 90°. Studying samples with different aspect ratio, we obtained the dispersion of third-order nonlinearity in the near-resonant regime, showing an enhancement of the nonlinear processes by more than two orders of magnitude due to the electric field enhancement at the surface plasmon resonance.

  2. Nonlinear Effects of Laser Surface Modification of Ore Minerals

    Directory of Open Access Journals (Sweden)

    N.A. Leonenko

    2015-12-01

    Full Text Available The effect of continuous laser radiation on complex ore minerals objects containing gold, not extracted by monerd methods was investigated. It was established the formation of different structural surfaces of gold, revealed general patterns of sintering and concentration of sub-micron gold.

  3. Interpretation of nonlinearity in wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    This study attempts to resolve a mix-up between a physical process and its mathematical interpretation in the context of wind waves on ocean surface. Wind generated wave systems, are conventionally interpreted as a result of interaction of a number...

  4. Cavity-polariton interaction mediated by coherent acoustic phonons in semiconductor microcavities

    DEFF Research Database (Denmark)

    de Lima, Mauricio; Hey, Rudolf; Santos, Paul

    The strong coupling between excitons in a quantum well (QW) and photons in a semiconductor microcavity leads to the formation of quasi-particles known as cavity-polaritons. In this contribution, we investigate their interaction with coherent acoustic phonons in the form of surface acoustic waves ...

  5. Ultrafast nonlinear dynamics of thin gold films due to an intrinsic delayed nonlinearity

    Science.gov (United States)

    Bache, Morten; Lavrinenko, Andrei V.

    2017-09-01

    Using long-range surface plasmon polaritons light can propagate in metal nano-scale waveguides for ultracompact opto-electronic devices. Gold is an important material for plasmonic waveguides, but although its linear optical properties are fairly well understood, the nonlinear response is still under investigation. We consider the propagation of pulses in ultrathin gold strip waveguides, modeled by the nonlinear Schrödinger equation. The nonlinear response of gold is accounted for by the two-temperature model, revealing it as a delayed nonlinearity intrinsic in gold. The consequence is that the measured nonlinearities are strongly dependent on pulse duration. This issue has so far only been addressed phenomenologically, but we provide an accurate estimate of the quantitative connection as well as a phenomenological theory to understand the enhanced nonlinear response as the gold thickness is reduced. In comparison with previous works, the analytical model for the power-loss equation has been improved, and can be applied now to cases with a high laser peak power. We show new fits to experimental data from the literature and provide updated values for the real and imaginary parts of the nonlinear susceptibility of gold for various pulse durations and gold layer thicknesses. Our simulations show that the nonlinear loss is inhibiting efficient nonlinear interaction with low-power laser pulses. We therefore propose to design waveguides suitable for the mid-IR, where the ponderomotive instantaneous nonlinearity can dominate over the delayed hot-electron nonlinearity and provide a suitable plasmonics platform for efficient ultrafast nonlinear optics.

  6. S-polarized nonlinear surface and guided waves in an asymmetric layered structure

    Energy Technology Data Exchange (ETDEWEB)

    Mihalache, D.; Totia, H.

    1983-08-01

    An exact solution of Maxwell's equations is found, corresponding to s-polarized nonlinear surface and guided waves in an asymmetric layered structure. The system under consideration consists of a film with dielectric constant epsilon/sub 2/ bounded at the negative-z side by a linear medium with dielectric constant epsilon/sub 1/ and at the positive -z side by a nonlinear substrate characterized by the diagonal dielectric tensor epsilon/sub 11/ = epsilon/sub 22/ = epsilon/sub 33/ = epsilon/sub 0/ + ..cap alpha.. absolute value of E-vector/sup 2/, ..cap alpha.. > 0 (a selffocussing medium). We predict bistable states of s-polarized nonlinear surface and guided waves provided that the power flow in the wave is the control parameter.

  7. Variational space–time (dis)continuous Galerkin method for nonlinear free surface water waves

    NARCIS (Netherlands)

    Gagarina, E.; Ambati, V.R.; Vegt, van der J.J.W.; Bokhove, O.

    2014-01-01

    A new variational finite element method is developed for nonlinear free surface gravity water waves using the potential flow approximation. This method also handles waves generated by a wave maker. Its formulation stems from Miles’ variational principle for water waves together with a finite element

  8. Variational space-time (dis)continuous Galerkin method for nonlinear free surface waves

    NARCIS (Netherlands)

    Gagarina, E.; Vegt, van der J.J.W.; Ambati, V.R.; Bokhove, O.

    2013-01-01

    A new variational finite element method is developed for nonlinear free surface gravity water waves. This method also handles waves generated by a wave maker. Its formulation stems from Miles' variational principle for water waves together with a space-time finite element discretization that is cont

  9. Nonlinear Cascades of Surface Oceanic Geostrophic Kinetic Energy in the Frequency Domain

    Science.gov (United States)

    2012-09-01

    Planetary Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts ANDREW J. MORTEN Department of Physics, University of Michigan, Ann...compute spectra and spectral fluxes in Vtt * NLOM output, highlighted against the IS Feb 2002 snapshot of sea surface height (cm) in the model: mid... Technology - Woods Hole Oceanographic Institution Joint Program, 220 pp. Larichev, V., and G. Reznik, 1976a: Strongly nonlinear two- dimensional

  10. Acoustic nonlinearity of narrowband laser-generated surface waves in the bending fatigue of Al6061 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Taehyung; Choi, Sungho; Lee, Taehun; Jhang, Kyungyoung; Kim, Chungseok [Hanyang University, Seoul (Korea, Republic of)

    2010-11-15

    The present study describes the acoustic nonlinearity phenomenon of a narrowband laser generated surface wave for the characterization of an aluminum alloy subjected to bending fatigue. The surface wave is very attractive for field applications because it does not require both sides of the test materials to access the transducers and has strong acoustic nonlinear effects on the surface. The intrinsic higher-order harmonic components generated by a line-arrayed laser beam have been analyzed theoretically, and a relative acoustic nonlinear parameter has been successfully measured on the surface of a fatigue-damaged aluminum 6061 alloy. The results show that the acoustic nonlinear parameter increased after fatigue damage with respect to dislocation evolution. Consequently, this study suggests that the new acoustic nonlinearity technique of a laser-generated surface wave can be potentially used to characterize surface damage resulting from bending fatigue prior to the formation of fatigue cracks.

  11. Spin noise of a polariton laser

    Science.gov (United States)

    Ryzhov, I. I.; Glazov, M. M.; Kavokin, A. V.; Kozlov, G. G.; Aßmann, M.; Tsotsis, P.; Hatzopoulos, Z.; Savvidis, P. G.; Bayer, M.; Zapasskii, V. S.

    2016-06-01

    We report on experimental study of the exciton-polariton emission (PE) polarization noise below and above the polariton lasing threshold under continuous-wave nonresonant excitation. The experiments were performed with a high-Q graded 5 λ /2 GaAs/AlGaAs microcavity with four sets of three quantum wells in the strong-coupling regime. The PE polarization noise substantially exceeded in magnitude the shot-noise level and, in the studied frequency range (up to 650 MHz), had a flat spectrum. We have found that the polarization and intensity noise dependences on the pump power are strongly different. This difference is ascribed to the bosonic stimulation effect in spin-dependent scattering of the polaritons to the condensate. A theoretical model describing the observed peculiarity of the PE polarization noise is proposed.

  12. Effective Field Theory for Rydberg Polaritons

    Science.gov (United States)

    Gullans, M. J.; Thompson, J. D.; Wang, Y.; Liang, Q.-Y.; Vuletić, V.; Lukin, M. D.; Gorshkov, A. V.

    2016-01-01

    We develop an effective field theory (EFT) to describe the few- and many-body propagation of one dimensional Rydberg polaritons. We show that the photonic transmission through the Rydberg medium can be found by mapping the propagation problem to a non-equilibrium quench, where the role of time and space are reversed. We include effective range corrections in the EFT and show that they dominate the dynamics near scattering resonances in the presence of deep bound states. Finally, we show how the long-range nature of the Rydberg-Rydberg interactions induces strong effective N-body interactions between Rydberg polaritons. These results pave the way towards studying non-perturbative effects in quantum field theories using Rydberg polaritons. PMID:27661685

  13. Uncoupled Dark States Can Inherit Polaritonic Properties

    Science.gov (United States)

    Gonzalez-Ballestero, Carlos; Feist, Johannes; Gonzalo Badía, Eduardo; Moreno, Esteban; Garcia-Vidal, Francisco J.

    2016-10-01

    When a collection of quantum emitters interacts with an electromagnetic field, the whole system can enter into the collective strong coupling regime in which hybrid light-matter states, i.e., polaritons can be created. Only a small portion of excitations in the emitters are coupled to the light field, and there are many dark states that, in principle, retain their pure excitonic nature. Here we theoretically demonstrate that these dark states can have a delocalized character, which is inherent to polaritons, despite the fact that they do not have a photonic component. This unexpected behavior only appears when the electromagnetic field displays a discrete spectrum. In this case, when the main loss mechanism in the hybrid system stems from the radiative losses of the light field, dark states are even more efficient than polaritons in transferring excitations across the structure.

  14. Continuous retrieval of delayed Raman polaritons

    CERN Document Server

    Smartsev, Slava; Davidson, Nir; Firstenberg, Ofer

    2016-01-01

    We use a Raman four-wave mixing process to read out light from an atomic coherence which is continuously written. This realizes a continuous source of polaritons having been delayed or effectively stored for a finite duration. Contrary to slow-light delay, which depends on the atom number and population distribution, here the effective storage duration is determined solely by intensive properties of the system, approaching the ground-state natural lifetime at the weak driving limit. The generated polaritons are background free. We experimentally probe these properties utilizing spatial atomic diffusion as an 'internal clock' for the write-read delay. A continuous source of delayed polaritons can replace discrete write-read procedures when the atomic evolution is the subject of interest, for example, when dipolar interactions lead to retrieval of non-classical light.

  15. Rydberg polaritons in a thermal vapor

    CERN Document Server

    Ripka, Fabian; Löw, Robert; Pfau, Tilman

    2016-01-01

    We present a pulsed four-wave mixing (FWM) scheme via a Rydberg state to create, store and retrieve collective Rydberg polaritons. The storage medium consists of a gas of thermal Rb atoms confined in a 220 {\\mu}m thick cell, which are heated above room temperature. The experimental sequence consists of a pulsed excitation of Rydberg polaritons via the D1 line, a variable delay or storage time, and a final retrieval pulse via the D2 line. The lifetime of the Rydberg polaritons is around 1.2 ns, almost entirely limited by the excitation bandwidth and the corresponding motional dephasing of the atoms. The presented scheme combined with a tightly confined atomic ensemble is a good candidate for a deterministic single-photon source, as soon as strong interactions in terms of a Rydberg blockade are added.

  16. Casson fluid flow and heat transfer over a nonlinearly stretching surface

    Institute of Scientific and Technical Information of China (English)

    Swati Mukhopadhyay

    2013-01-01

    A boundary layer analysis is presented for non-Newtonian fluid flow and heat transfer over a nonlinearly stretching surface.The Casson fluid model is used to characterize the non-Newtonian fluid behavior.By using suitable transformations,the governing partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations.Numerical solutions of these equations are obtained with the shooting method.The effect of increasing Casson parameter is to suppress the velocity field.However the temperature is enhanced with the increasing Casson parameter.

  17. Nonlinear Nanofluid Flow over Heated Vertical Surface with Sinusoidal Wall Temperature Variations

    Directory of Open Access Journals (Sweden)

    S. S. Motsa

    2014-01-01

    Full Text Available The nonlinear density temperature variations in two-dimensional nanofluid flow over heated vertical surface with a sinusoidal wall temperature are investigated. The model includes the effects of Brownian motion and thermophoresis. Using the boundary layer approximation, the two-dimensional momentum, heat, and mass transfer equations are transferred to nonlinear partial differential equations form and solved numerically using a new method called spectral local linearisation method. The effects of the governing parameters on the fluid properties and on the heat and nanomass transfer coefficients are determined and shown graphically.

  18. NUMERICAL MODELING AND DYNAMIC SIMULATIONS OF NONLINEAR AEROTHERMOELASTIC OF A DOUBLE-WEDGE LIFTING SURFACE

    Directory of Open Access Journals (Sweden)

    ARIF A. EBRAHEEM AL-QASSAR

    2008-12-01

    Full Text Available The design of the re-entry space vehicles and high-speed aircrafts requires special attention to the nonlinear thermoelastic and aerodynamic instabilities of their structural components. The thermal effects are important since temperature environment influences significantly the static and dynamic behaviors of flight structures in supersonic/hypersonic regimes. To contribute to the understanding of dynamic behavior of these “hot” structures, a double-wedge lifting surface with combined freeplay and cubic stiffening structural nonlinearities in both plunging and pitching degrees-of-freedom operating in supersonic/hypersonic flight speed regimes has been analyzed. A third order Piston Theory Aerodynamics is used to evaluate the applied nonlinear unsteady aerodynamic loads. The loss of torsional stiffness that may be incurred by lifting surfaces subjected to axial stresses induced by aerodynamic heating is also considered. The aerodynamic heating effect is estimated based on the adiabatic wall temperature due to high speed airstreams. Modelling issues as well as simulation results have been presented and pertinent conclusions outlined. It is highlighted that a serious loss of torsional stiffness may induce the dynamic instability of the lifting surfaces. The influence of various parameters such as flight condition, thickness ratio, freeplays and pitching stiffness nonlinearity are also discussed.

  19. Characterization of surface properties of a solid plate using nonlinear Lamb wave approach.

    Science.gov (United States)

    Deng, Mingxi

    2006-12-22

    A nonlinear Lamb wave approach is presented for characterizing the surface properties of a solid plate. This characterization approach is useful for some practical situations where ultrasonic transducers cannot touch the surfaces to be inspected, e.g. the inside surfaces of sealed vessels. In this paper, the influences of changes in the surface properties of a solid plate on the effect of second-harmonic generation by Lamb wave propagation were analyzed. A surface coating with the different properties was used to simulate changes in the surface properties of a solid plate. When the areas and thicknesses of coatings on the surface of a given solid plate changed, the amplitude-frequency curves both of the fundamental waves and the second harmonics by Lamb wave propagation were measured under the condition that Lamb waves had a strong nonlinearity. It was found that changes in the surface properties might clearly affect the efficiency of second-harmonic generation by Lamb wave propagation. The Stress Wave Factors (SWFs) in acousto-ultrasonic technique were used for reference, and the definitions of the SWFs of Lamb waves were introduced. The preliminary experimental results showed that the second-harmonic SWF of Lamb wave propagation could effectively be used to characterize changes in the surface properties of the given solid plate.

  20. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    Science.gov (United States)

    2015-09-30

    Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves...interaction of surface and internal gravity waves in the South China Sea. We will seek answers to the following questions: 1) How does the wind-wave

  1. Comment on "Linear wave dynamics explains observations attributed to dark-solitons in a polariton quantum fluid"

    CERN Document Server

    Amo, A; Bramati, A; Carusotto, I; Ciuti, C; Deveaud-Plédran, B; Giacobino, E; Grosso, G; Kamchatnov, A; Malpuech, G; Pavloff, N; Pigeon, S; Sanvitto, D; Solnyshkov, D D

    2014-01-01

    In a recent preprint (arXiv:1401.1128v1) Cilibrizzi and co-workers report experiments and simulations showing the scattering of polaritons against a localised obstacle in a semiconductor microcavity. The authors observe in the linear excitation regime the formation of density and phase patterns reminiscent of those expected in the non-linear regime from the nucleation of dark solitons. Based on this observation, they conclude that previous theoretical and experimental reports on dark solitons in a polariton system should be revised. Here we comment why the results from Cilibrizzi et al. take place in a very different regime than previous investigations on dark soliton nucleation and do not reproduce all the signatures of its rich nonlinear phenomenology. First of all, Cilibrizzi et al. consider a particular type of radial excitation that strongly determines the observed patterns, while in previous reports the excitation has a plane-wave profile. Most importantly, the nonlinear relation between phase jump, sol...

  2. Adaptive Fuzzy Integral Sliding-Mode Regulator for Induction Motor Using Nonlinear Sliding Surface

    Directory of Open Access Journals (Sweden)

    Yong-Kun Lu

    2015-02-01

    Full Text Available An adaptive fuzzy integral sliding-mode controller using nonlinear sliding surface is designed for the speed regulator of a field-oriented induction motor drive in this paper. Combining the conventional integral sliding surface with fractional-order integral, a nonlinear sliding surface is proposed for the integral sliding-mode speed control, which can overcome the windup problem and the convergence speed problem. An adaptive fuzzy control term is utilized to approximate the uncertainty. The stability of the controller is analyzed by Lyapunov stability theory. The effectiveness of the proposed speed regulator is demonstrated by the simulation results in comparison with the conventional integral sliding-mode controller based on boundary layer.

  3. Polarimetric Doppler spectrum of backscattered echoes from nonlinear sea surface damped by natural slicks

    Science.gov (United States)

    Yang, Pengju; Guo, Lixin

    2016-11-01

    Based on the Lombardini et al. model that can predict the hydrodynamic damping of rough sea surfaces in the presence of monomolecular slicks and the "choppy wave" model (CWM) that can describe the nonlinear interactions between ocean waves, the modeling of time-varying nonlinear sea surfaces damped by natural or organic sea slicks is presented in this paper. The polarimetric scattering model of second-order small-slope approximation (SSA-II) with tapered wave incidence is utilized for evaluating co- and cross-polarized backscattered echoes from clean and contaminated CWM nonlinear sea surfaces. The influence of natural sea slicks on Doppler shift and spectral bandwidth of radar sea echoes is investigated in detail by comparing the polarimetric Doppler spectra of contaminated sea surfaces with those of clean sea surfaces. A narrowing of Doppler spectra in the presence of oil slicks is observed for both co- and cross-polarization, which is qualitatively consistent with wave-tank measurements. Simulation results also show that the Doppler shifts in slicks can increase or decrease, depending on incidence angles and polarizations.

  4. A Vertical Draining Film with an Insoluble Surfactant and Nonlinear Surface Properties

    Science.gov (United States)

    Naire, Shailesh; Braun, Richard; Snow, Steve

    2000-11-01

    The drainage of a thin Newtonian film with an insoluble surfactant is studied theoretically in 1+1 dimensions. Lubrication theory is applied to the thin film, which is suspended vertically from a frame and drains into a bath. Three nonlinear partial differential equations (PDEs) govern the evolution of the film shape, surface velocity and surfactant concentration. The surface viscosity and the surface tension of the films are nonlinear functions of the surface concentration; the functions are of the form defined by Lopez and Hirsa for hemicyanine in water. At high concentrations the effects from surface viscosity and the Marangoni effect become more pronounced. Slow and fast draining limits can still be reached and a Marangoni-driven wave that is very localized may be observed. In some instances, the film surface may even be swept clean over some part of its length. When the surface is swept clean, we expect that a vertical film cannot be made for any useful length of time. This is in agreement with expected behavior when films are made with insoluble surfactants; the surface concentration must be high in order for the film to last. This work has been partially supported by the NSF and Dow Corning.

  5. Gold nanoparticles on the surface of soda-lime glass: morphological, linear and nonlinear optical characterization.

    Science.gov (United States)

    Romani, E C; Vitoreti, Douglas; Gouvêa, Paula M P; Caldas, P G; Prioli, R; Paciornik, S; Fokine, Michael; Braga, Arthur M B; Gomes, Anderson S L; Carvalho, Isabel C S

    2012-02-27

    Materials presenting high optical nonlinearity, such as materials containing metal nanoparticles (NPs), can be used in various applications in photonics. This motivated the research presented in this paper, where morphological, linear and nonlinear optical characteristics of gold NPs on the surface of bulk soda-lime glass substrates were investigated as a function of nanoparticle height. The NPs were obtained by annealing gold (Au) thin films previously deposited on the substrates. Pixel intensity histogram fitting on Atomic Force Microscopy (AFM) images was performed to obtain the thickness of the deposited film. Image analysis was employed to obtain the statistical distribution of the average height of the NPs. In addition, absorbance spectra of the samples before and after annealing were measured. Finally, the nonlinear refractive index (n2) and the nonlinear absorption index (α2) at 800 nm were obtained before and after annealing by using the thermally managed eclipse Z-scan (TM-EZ) technique with a Ti:Sapphire laser (150 fs pulses). Results show that both n2 and α2 at this wavelength change signs after the annealing and that the samples presented a high nonlinear refractive index.

  6. A New Maximum Entropy Probability Function for the Surface Elevation of Nonlinear Sea Waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-zhen; XU De-lun

    2005-01-01

    Based on the maximum entropy principle a new probability density function (PDF) f(x) for the surface elevation of nonlinear sea waves, X, is derived through performing a coordinate transform of X and solving a variation problem subject to three constraint conditions of f(x). Compared with the maximum entropy PDFs presented previously, the new PDF has the following merits: (1) it has four parameters to be determined and hence can give more refined fit to observed data and has wider suitability for nonlinear waves in different conditions; (2) these parameters are expressed in terms of distribution moments of X in a relatively simple form and hence are easy to be determined from observed data; (3) the PDF is free of the restriction of weak nonlinearity and possible to be used for sea waves in complicated conditions, such as those in shallow waters with complicated topography; and (4) the PDF is simple in form and hence convenient for theoretical and practical uses. Laboratory wind-wave experiments have been conducted to test the competence of the new PDF for the surface elevation of nonlinear waves. The experimental results manifest that the new PDF gives somewhat better fit to the laboratory wind-wave data than the well-known Gram-Charlier PDF and beta PDF.

  7. Polariton condensation in a disordered potential

    DEFF Research Database (Denmark)

    Antón, C.; Tosi, G.; Lingg, C. A.;

    2011-01-01

    We study polariton condensation under OPO (Optical Parametric Oscillator) out-of-equilibrium conditions [1] in the presence of linear and point defects. Because of the simultaneous presence of pump, signal and idler emitting at different wave vectors, as well as of photonic disorder, the system i...

  8. Hyperbolic phonon polaritons in hexagonal boron nitride

    Science.gov (United States)

    Dai, Siyuan

    2015-03-01

    Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [Science, 343, 1125-1129 (2014)]. Additionally, we carried out the modification of hyperbolic response in heterostructures comprised of a mononlayer graphene deposited on hBN. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the ``hyperlens'' for subdiffractional imaging and focusing using a slab of hBN.

  9. Surface Tension of Acid Solutions: Fluctuations beyond the Nonlinear Poisson-Boltzmann Theory.

    Science.gov (United States)

    Markovich, Tomer; Andelman, David; Podgornik, Rudi

    2017-01-10

    We extend our previous study of surface tension of ionic solutions and apply it to acids (and salts) with strong ion-surface interactions, as described by a single adhesivity parameter for the ionic species interacting with the interface. We derive the appropriate nonlinear boundary condition with an effective surface charge due to the adsorption of ions from the bulk onto the interface. The calculation is done using the loop-expansion technique, where the zero loop (mean field) corresponds of the full nonlinear Poisson-Boltzmann equation. The surface tension is obtained analytically to one-loop order, where the mean-field contribution is a modification of the Poisson-Boltzmann surface tension and the one-loop contribution gives a generalization of the Onsager-Samaras result. Adhesivity significantly affects both contributions to the surface tension, as can be seen from the dependence of surface tension on salt concentration for strongly absorbing ions. Comparison with available experimental data on a wide range of different acids and salts allows the fitting of the adhesivity parameter. In addition, it identifies the regime(s) where the hypotheses on which the theory is based are outside their range of validity.

  10. An operator expansion method for computing nonlinear surface waves on a ferrofluid jet

    Science.gov (United States)

    Guyenne, Philippe; Părău, Emilian I.

    2016-09-01

    We present a new numerical method to simulate the time evolution of axisymmetric nonlinear waves on the surface of a ferrofluid jet. It is based on the reduction of this problem to a lower-dimensional computation involving surface variables alone. To do so, we describe the associated Dirichlet-Neumann operator in terms of a Taylor series expansion where each term can be efficiently computed by a pseudo-spectral scheme using the fast Fourier transform. We show detailed numerical tests on the convergence of this operator and, to illustrate the performance of our method, we simulate the long-time propagation and pairwise collisions of axisymmetric solitary waves. Both depression and elevation waves are examined by varying the magnetic field. Comparisons with weakly nonlinear predictions are also provided.

  11. Magnetohydrodynamic viscous flow over a nonlinearly moving surface: Closed-form solutions

    Science.gov (United States)

    Fang, Tiegang

    2014-05-01

    In this paper, the magnetohydrodynamic (MHD) flow over a nonlinearly (power-law velocity) moving surface is investigated analytically and solutions are presented for a few special conditions. The solutions are obtained in closed forms with hyperbolic functions. The effects of the magnetic, the wall moving, and the mass transpiration parameters are discussed. These solutions are important to show the flow physics as well as to be used as bench mark problems for numerical validation and development of new solution schemes.

  12. Variational space-time (dis)continuous Galerkin method for nonlinear free surface waves

    OpenAIRE

    Gagarina, E; Vegt, van der, N.F.A.; Ambati, V.R.; Bokhove, O.

    2013-01-01

    A new variational finite element method is developed for nonlinear free surface gravity water waves. This method also handles waves generated by a wave maker. Its formulation stems from Miles' variational principle for water waves together with a space-time finite element discretization that is continuous in space and discontinuous in time. The key features of this formulation are: (i) a discrete variational approach that gives rise to conservation of discrete energy and phase space and prese...

  13. Nonlinear hydrodynamic effects induced by Rayleigh surface acoustic wave in sessile droplets.

    Science.gov (United States)

    Alghane, M; Chen, B X; Fu, Y Q; Li, Y; Desmulliez, M P Y; Mohammed, M I; Walton, A J

    2012-11-01

    We report an experimental and numerical characterization of three-dimensional acoustic streaming behavior in small droplets of volumes (1-30 μl) induced by surface acoustic wave (SAW). We provide a quantitative evidence of the existence of strong nonlinear nature of the flow inertia in this SAW-driven flow over a range of the newly defined acoustic parameter F{NA}=Fλ/(σ/R_{d})≥0.01, which is a measure of the strength of the acoustic force to surface tension, where F is the acoustic body force, λ is the SAW wavelength, σ is the surface tension, and R{d} is the droplet radius. In contrast to the widely used Stokes model of acoustic streaming, which generally ignores such a nonlinearity, we identify that the full Navier-Stokes equation must be applied to avoid errors up to 93% between the computed streaming velocities and those from experiments as in the nonlinear case. We suggest that the Stokes model is valid only for very small acoustic power of ≤1 μW (F{NA}droplets.

  14. Contribution of Structure and Morphology of Design Constituents to Performance Improvement of Multilayer Polaritonic Photodetector

    Directory of Open Access Journals (Sweden)

    O. B. Yastrubchak

    2003-10-01

    Full Text Available This paper is devoted to estimate contribution of structure and morphology of the individual design constituents to performance improvement of multilayer polaritonic photodetector (optochemical sensor. Surface plasmon resonance (SPR in the surface barrier heterostructure (SBH with the corrugated interface is used as the basic principle underlying the device operation. The demonstration of correlation of the contribution with the enhanced SBH features was performed through the adequate characterization tool.

  15. Storage enhanced nonlinearities in a cold atomic Rydberg ensemble

    CERN Document Server

    Distante, Emanuele; Cristiani, Matteo; Paredes-Barato, David; de Riedmatten, Hugues

    2016-01-01

    The combination of electromagnetically induced transparency (EIT) with the nonlinear interaction between Rydberg atoms provides an effective interaction between photons. In this paper, we investigate the storage of optical pulses as collective Rydberg atomic excitations in a cold atomic ensemble. By measuring the dynamics of the stored Rydberg polaritons, we experimentally demonstrate that storing a probe pulse as Rydberg polaritons strongly enhances the Rydberg mediated interaction compared to the slow propagation case. We show that the process is characterized by two time scales. At short storage times, we observe a strong enhancement of the interaction due to the reduction of the Rydberg polariton group velocity down to zero. For longer storage times, we observe a further, weaker enhancement dominated by Rydberg induced dephasing of the multiparticle components of the state. In this regime, we observe a non-linear dependence of the Rydberg polariton coherence time with the input photon number. Our results ...

  16. The viscous surface-internal wave problem: nonlinear Rayleigh-Taylor instability

    CERN Document Server

    Wang, Yanjin

    2011-01-01

    We consider the free boundary problem for two layers of immiscible, viscous, incompressible fluid in a uniform gravitational field, lying above a rigid bottom in a three-dimensional horizontally periodic setting. The effect of surface tension is either taken into account at both free boundaries or neglected at both. We are concerned with the Rayleigh-Taylor instability, so we assume that the upper fluid is heavier than the lower fluid. When the surface tension at the free internal interface is below a critical value, which we identify, we establish that the problem under consideration is nonlinearly unstable.

  17. Stagnation point flow towards nonlinear stretching surface with Cattaneo-Christov heat flux

    Science.gov (United States)

    Hayat, T.; Zubair, M.; Ayub, M.; Waqas, M.; Alsaedi, A.

    2016-10-01

    Here the influence of the non-Fourier heat flux in a two-dimensional (2D) stagnation point flow of Eyring-Powell liquid towards a nonlinear stretched surface is reported. The stretching surface is of variable thickness. Thermal conductivity of fluid is taken temperature-dependent. Ordinary differential systems are obtained through the implementation of meaningful transformations. The reduced non-dimensional expressions are solved for the convergent series solutions. Convergence interval is obtained for the computed solutions. Graphical results are displayed and analyzed in detail for the velocity, temperature and skin friction coefficient. The obtained results reveal that the temperature gradient enhances when the thermal relaxation parameter is increased.

  18. Nonlinearity of the Dipole Moment Surface and Intensities Anomaly of CHCl3

    Institute of Scientific and Technical Information of China (English)

    LIN Hai; YUAN Lan-Feng; WANG Dong-Open; ZHU Qing-Shi

    2000-01-01

    Relative absorption intensities of the Fermi resonance polyads of isolated C-H chromophore for the CHCl3 molecule are calculated by one-dimensional dipole moment surface which had been obtained by the ab initio density functional method B3PW91 with 6-311++ G (3df, 2pd) basis set, and agrer very well with the experimental results.It is shown that the nonlinearity of the dipole moment surface in the vicinity of the equilibrium configuration is responsible for the intensities anomaly, i.e. the unusual strong intensities of the second Fermi resonance polyad.

  19. An Adaptive Dynamic Surface Controller for Ultralow Altitude Airdrop Flight Path Angle with Actuator Input Nonlinearity

    Directory of Open Access Journals (Sweden)

    Mao-long Lv

    2016-01-01

    Full Text Available In the process of ultralow altitude airdrop, many factors such as actuator input dead-zone, backlash, uncertain external atmospheric disturbance, and model unknown nonlinearity affect the precision of trajectory tracking. In response, a robust adaptive neural network dynamic surface controller is developed. As a result, the aircraft longitudinal dynamics with actuator input nonlinearity is derived; the unknown nonlinear model functions are approximated by means of the RBF neural network. Also, an adaption strategy is used to achieve robustness against model uncertainties. Finally, it has been proved that all the signals in the closed-loop system are bounded and the tracking error converges to a small residual set asymptotically. Simulation results demonstrate the perfect tracking performance and strong robustness of the proposed method, which is not only applicable to the actuator with input dead-zone but also suitable for the backlash nonlinearity. At the same time, it can effectively overcome the effects of dead-zone and the atmospheric disturbance on the system and ensure the fast track of the desired flight path angle instruction, which overthrows the assumption that system functions must be known.

  20. Modeling nonlinear errors in surface electromyography due to baseline noise: a new methodology.

    Science.gov (United States)

    Law, Laura Frey; Krishnan, Chandramouli; Avin, Keith

    2011-01-01

    The surface electromyographic (EMG) signal is often contaminated by some degree of baseline noise. It is customary for scientists to subtract baseline noise from the measured EMG signal prior to further analyses based on the assumption that baseline noise adds linearly to the observed EMG signal. The stochastic nature of both the baseline and EMG signal, however, may invalidate this assumption. Alternately, "true" EMG signals may be either minimally or nonlinearly affected by baseline noise. This information is particularly relevant at low contraction intensities when signal-to-noise ratios (SNR) may be lowest. Thus, the purpose of this simulation study was to investigate the influence of varying levels of baseline noise (approximately 2-40% maximum EMG amplitude) on mean EMG burst amplitude and to assess the best means to account for signal noise. The simulations indicated baseline noise had minimal effects on mean EMG activity for maximum contractions, but increased nonlinearly with increasing noise levels and decreasing signal amplitudes. Thus, the simple baseline noise subtraction resulted in substantial error when estimating mean activity during low intensity EMG bursts. Conversely, correcting EMG signal as a nonlinear function of both baseline and measured signal amplitude provided highly accurate estimates of EMG amplitude. This novel nonlinear error modeling approach has potential implications for EMG signal processing, particularly when assessing co-activation of antagonist muscles or small amplitude contractions where the SNR can be low.