Yoshida, Zensho
2010-01-01
This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl
Introduction to nonlinear science
Nicolis, G
1995-01-01
One of the most unexpected results in science in recent years is that quite ordinary systems obeying simple laws can give rise to complex, nonlinear or chaotic, behavior. In this book, the author presents a unified treatment of the concepts and tools needed to analyze nonlinear phenomena and to outline some representative applications drawn from the physical, engineering, and biological sciences. Some of the interesting topics covered include: dynamical systems with a finite number of degrees of freedom, linear stability analysis of fixed points, nonlinear behavior of fixed points, bifurcation analysis, spatially distributed systems, broken symmetries, pattern formation, and chaotic dynamics. The author makes a special effort to provide a logical connection between ordinary dynamical systems and spatially extended systems, and to balance the emphasis on chaotic behavior and more classical nonlinear behavior. He also develops a statistical approach to complex systems and compares it to traditional deterministi...
Zabusky, Norman J
2005-03-01
This paper is mostly a history of the early years of nonlinear and computational physics and mathematics. I trace how the counterintuitive result of near-recurrence to an initial condition in the first scientific digital computer simulation led to the discovery of the soliton in a later computer simulation. The 1955 report by Fermi, Pasta, and Ulam (FPU) described their simulation of a one-dimensional nonlinear lattice which did not show energy equipartition. The 1965 paper by Zabusky and Kruskalshowed that the Korteweg-de Vries (KdV) nonlinear partial differential equation, a long wavelength model of the alpha-lattice (or cubic nonlinearity), derived by Kruskal, gave quantitatively the same results obtained by FPU. In 1967, Zabusky and Deem showed that a localized short wavelength initial excitation (then called an "optical" and now a "zone-boundary mode" excitation ) of the alpha-lattice revealed "n-curve" coherent states. If the initial amplitude was sufficiently large energy equipartition followed in a short time. The work of Kruskal and Miura (KM), Gardner and Greene (GG), and myself led to the appreciation of the infinity of denumerable invariants (conservation laws) for Hamiltonian systems and to a procedure by GGKM in 1967 for solving KdV exactly. The nonlinear science field exponentiated in diversity of linkages (as described in Appendix A). Included were pure and applied mathematics and all branches of basic and applied physics, including the first nonhydrodynamic application to optical solitons, as described in a brief essay (Appendix B) by Hasegawa. The growth was also manifest in the number of meetings held and institutes founded, as described briefly in Appendix D. Physicists and mathematicians in Japan, USA, and USSR (in the latter two, people associated with plasma physics) contributed to the diversification of the nonlinear paradigm which continues worldwide to the present. The last part of the paper (and Appendix C) discuss visiometrics: the
Smith, Paul H.
1988-01-01
The Computer Science Program provides advanced concepts, techniques, system architectures, algorithms, and software for both space and aeronautics information sciences and computer systems. The overall goal is to provide the technical foundation within NASA for the advancement of computing technology in aerospace applications. The research program is improving the state of knowledge of fundamental aerospace computing principles and advancing computing technology in space applications such as software engineering and information extraction from data collected by scientific instruments in space. The program includes the development of special algorithms and techniques to exploit the computing power provided by high performance parallel processors and special purpose architectures. Research is being conducted in the fundamentals of data base logic and improvement techniques for producing reliable computing systems.
Rogue waves in nonlinear science
International Nuclear Information System (INIS)
Yan Zhenya
2012-01-01
Rogue waves, as a special type of solitary waves, play an important role in nonlinear optics, Bose-Einstein condensates, ocean, atmosphere, and even finance. In this report, we mainly review on the history of the rogue wave phenomenon and recent development of rogue wave solutions in some nonlinear physical models arising in the fields of nonlinear science.
Computational Models for Nonlinear Aeroelastic Systems, Phase II
National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate new and efficient computational methods of modeling nonlinear aeroelastic systems. The...
Network science, nonlinear science and infrastructure systems
2007-01-01
Network Science, Nonlinear Science and Infrastructure Systems has been written by leading scholars in these areas. Its express purpose is to develop common theoretical underpinnings to better solve modern infrastructural problems. It is felt by many who work in these fields that many modern communication problems, ranging from transportation networks to telecommunications, Internet, supply chains, etc., are fundamentally infrastructure problems. Moreover, these infrastructure problems would benefit greatly from a confluence of theoretical and methodological work done with the areas of Network Science, Dynamical Systems and Nonlinear Science. This book is dedicated to the formulation of infrastructural tools that will better solve these types of infrastructural problems. .
Computational Models for Nonlinear Aeroelastic Systems, Phase I
National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate a new and efficient computational method of modeling nonlinear aeroelastic systems. The...
Nonlinear science as a fluctuating research frontier
International Nuclear Information System (INIS)
He Jihuan
2009-01-01
Nonlinear science has had quite a triumph in all conceivable applications in science and technology, especially in high energy physics and nanotechnology. COBE, which was awarded the physics Nobel Prize in 2006, might be probably more related to nonlinear science than the Big Bang theory. Five categories of nonlinear subjects in research frontier are pointed out.
Third Conference on nonlinear science and complexity (NSC)
Machado, José; Baleanu, Dumitru; Dynamical Systems and Methods
2012-01-01
Nonlinear Systems and Methods For Mechanical, Electrical and Biosystems presents topics observed at the 3rd Conference on Nonlinear Science and Complexity(NSC), focusing on energy transfer and synchronization in hybrid nonlinear systems. The studies focus on fundamental theories and principles,analytical and symbolic approaches, computational techniques in nonlinear physical science and mathematics. Broken into three parts, the text covers:\\ Parametrical excited pendulum, nonlinear dynamics in hybrid systems, dynamical system synchronization and (N+1) body dynamics as well as new views different from the existing results in nonlinear dynamics. Mathematical methods for dynamical systems including conservation laws, dynamical symmetry in nonlinear differential equations and invex energies. Nonlinear phenomena in physical problems such as solutions, complex flows, chemical kinetics, Toda lattices and parallel manipulator. This book is useful to scholars, researchers and advanced technical members of industrial l...
Democratizing Computer Science
Margolis, Jane; Goode, Joanna; Ryoo, Jean J.
2015-01-01
Computer science programs are too often identified with a narrow stratum of the student population, often white or Asian boys who have access to computers at home. But because computers play such a huge role in our world today, all students can benefit from the study of computer science and the opportunity to build skills related to computing. The…
ICASE Computer Science Program
1985-01-01
The Institute for Computer Applications in Science and Engineering computer science program is discussed in outline form. Information is given on such topics as problem decomposition, algorithm development, programming languages, and parallel architectures.
Chaos, patterns, coherent structures, and turbulence: Reflections on nonlinear science.
Ecke, Robert E
2015-09-01
The paradigms of nonlinear science were succinctly articulated over 25 years ago as deterministic chaos, pattern formation, coherent structures, and adaptation/evolution/learning. For chaos, the main unifying concept was universal routes to chaos in general nonlinear dynamical systems, built upon a framework of bifurcation theory. Pattern formation focused on spatially extended nonlinear systems, taking advantage of symmetry properties to develop highly quantitative amplitude equations of the Ginzburg-Landau type to describe early nonlinear phenomena in the vicinity of critical points. Solitons, mathematically precise localized nonlinear wave states, were generalized to a larger and less precise class of coherent structures such as, for example, concentrated regions of vorticity from laboratory wake flows to the Jovian Great Red Spot. The combination of these three ideas was hoped to provide the tools and concepts for the understanding and characterization of the strongly nonlinear problem of fluid turbulence. Although this early promise has been largely unfulfilled, steady progress has been made using the approaches of nonlinear science. I provide a series of examples of bifurcations and chaos, of one-dimensional and two-dimensional pattern formation, and of turbulence to illustrate both the progress and limitations of the nonlinear science approach. As experimental and computational methods continue to improve, the promise of nonlinear science to elucidate fluid turbulence continues to advance in a steady manner, indicative of the grand challenge nature of strongly nonlinear multi-scale dynamical systems.
Energy Technology Data Exchange (ETDEWEB)
DAVENPORT,J.
2004-11-01
The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security.
Nonlinear optics quantum computing with circuit QED.
Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M
2013-02-08
One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.
Bright THz Instrument and Nonlinear THz Science
2017-10-30
Report: Bright THz Instrument and Nonlinear THz Science The views, opinions and/or findings contained in this report are those of the author(s) and...Number: W911NF-16-1-0436 Organization: University of Rochester Title: Bright THz Instrument and Nonlinear THz Science Report Term: 0-Other Email: xi...exploring new cutting-edge research and broader applications, following the significant development of THz science and technology in the late 80’s, is the
Energy Technology Data Exchange (ETDEWEB)
DAVENPORT, J.
2005-11-01
The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.
Theory and computational science
International Nuclear Information System (INIS)
Durham, P.
1985-01-01
The theoretical and computational science carried out at the Daresbury Laboratory in 1984/5 is detailed in the Appendix to the Daresbury Annual Report. The Theory, Computational Science and Applications Groups, provide support work for the experimental projects conducted at Daresbury. Use of the FPS-164 processor is also described. (U.K.)
Computational mechanics of nonlinear response of shells
Energy Technology Data Exchange (ETDEWEB)
Kraetzig, W.B. (Bochum Univ. (Germany, F.R.). Inst. fuer Statik und Dynamik); Onate, E. (Universidad Politecnica de Cataluna, Barcelona (Spain). Escuela Tecnica Superior de Ingenieros de Caminos) (eds.)
1990-01-01
Shell structures and their components are utilized in a wide spectrum of engineering fields reaching from space and aircraft structures, pipes and pressure vessels over liquid storage tanks, off-shore installations, cooling towers and domes, to bodyworks of motor vehicles. Of continuously increasing importance is their nonlinear behavior, in which large deformations and large rotations are involved as well as nonlinear material properties. The book starts with a survey about nonlinear shell theories from the rigorous point of view of continuum mechanics, this starting point being unavoidable for modern computational concepts. There follows a series of papers on nonlinear, especially unstable shell responses, which draw computational connections to well established tools in the field of static and dynamic stability of systems. Several papers are then concerned with new finite element derivations for nonlinear shell problems, and finally a series of authors contribute to specific applications opening a small window of the above mentioned wide spectrum. (orig./HP) With 159 figs.
Computational mechanics of nonlinear response of shells
International Nuclear Information System (INIS)
Kraetzig, W.B.; Onate, E.
1990-01-01
Shell structures and their components are utilized in a wide spectrum of engineering fields reaching from space and aircraft structures, pipes and pressure vessels over liquid storage tanks, off-shore installations, cooling towers and domes, to bodyworks of motor vehicles. Of continuously increasing importance is their nonlinear behavior, in which large deformations and large rotations are involved as well as nonlinear material properties. The book starts with a survey about nonlinear shell theories from the rigorous point of view of continuum mechanics, this starting point being unavoidable for modern computational concepts. There follows a series of papers on nonlinear, especially unstable shell responses, which draw computational connections to well established tools in the field of static and dynamic stability of systems. Several papers are then concerned with new finite element derivations for nonlinear shell problems, and finally a series of authors contribute to specific applications opening a small window of the above mentioned wide spectrum. (orig./HP) With 159 figs
International Nuclear Information System (INIS)
DAVENPORT, J.
2006-01-01
Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together
Energy Technology Data Exchange (ETDEWEB)
DAVENPORT, J.
2006-11-01
Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to
Tucker, Allen B
2004-01-01
Due to the great response to the famous Computer Science Handbook edited by Allen B. Tucker, … in 2004 Chapman & Hall/CRC published a second edition of this comprehensive reference book. Within more than 70 chapters, every one new or significantly revised, one can find any kind of information and references about computer science one can imagine. … All in all, there is absolute nothing about computer science that can not be found in the encyclopedia with its 110 survey articles …-Christoph Meinel, Zentralblatt MATH
Computational Science and Innovation
International Nuclear Information System (INIS)
Dean, David Jarvis
2011-01-01
Simulations - utilizing computers to solve complicated science and engineering problems - are a key ingredient of modern science. The U.S. Department of Energy (DOE) is a world leader in the development of high-performance computing (HPC), the development of applied math and algorithms that utilize the full potential of HPC platforms, and the application of computing to science and engineering problems. An interesting general question is whether the DOE can strategically utilize its capability in simulations to advance innovation more broadly. In this article, I will argue that this is certainly possible.
Lanzagorta, Marco
2009-01-01
In this text we present a technical overview of the emerging field of quantum computation along with new research results by the authors. What distinguishes our presentation from that of others is our focus on the relationship between quantum computation and computer science. Specifically, our emphasis is on the computational model of quantum computing rather than on the engineering issues associated with its physical implementation. We adopt this approach for the same reason that a book on computer programming doesn't cover the theory and physical realization of semiconductors. Another distin
International Nuclear Information System (INIS)
Pike, R.
1982-01-01
With computers becoming more frequently used in theoretical and experimental physics, physicists can no longer afford to be ignorant of the basic techniques and results of computer science. Computing principles belong in a physicist's tool box, along with experimental methods and applied mathematics, and the easiest way to educate physicists in computing is to provide, as part of the undergraduate curriculum, a computing course designed specifically for physicists. As well, the working physicist should interact with computer scientists, giving them challenging problems in return for their expertise. (orig.)
DEFF Research Database (Denmark)
2002-01-01
The proceedings contains 8 papers from the Conference on Theoretical Computer Science. Topics discussed include: query by committee, linear separation and random walks; hardness results for neural network approximation problems; a geometric approach to leveraging weak learners; mind change...
Computer Labs | College of Engineering & Applied Science
Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Structural Engineering Laboratory Water Resources Laboratory Computer Science Department Computer Science Academic Programs Computer Science Undergraduate Programs Computer Science Major Computer Science Tracks
Computer Resources | College of Engineering & Applied Science
Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Structural Engineering Laboratory Water Resources Laboratory Computer Science Department Computer Science Academic Programs Computer Science Undergraduate Programs Computer Science Major Computer Science Tracks
Computer Science | Classification | College of Engineering & Applied
Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Structural Engineering Laboratory Water Resources Laboratory Computer Science Department Computer Science Academic Programs Computer Science Undergraduate Programs Computer Science Major Computer Science Tracks
Nonlinear streak computation using boundary region equations
Energy Technology Data Exchange (ETDEWEB)
Martin, J A; Martel, C, E-mail: juanangel.martin@upm.es, E-mail: carlos.martel@upm.es [Depto. de Fundamentos Matematicos, E.T.S.I Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, 28040 Madrid (Spain)
2012-08-01
The boundary region equations (BREs) are applied for the simulation of the nonlinear evolution of a spanwise periodic array of streaks in a flat plate boundary layer. The well-known BRE formulation is obtained from the complete Navier-Stokes equations in the high Reynolds number limit, and provides the correct asymptotic description of three-dimensional boundary layer streaks. In this paper, a fast and robust streamwise marching scheme is introduced to perform their numerical integration. Typical streak computations present in the literature correspond to linear streaks or to small-amplitude nonlinear streaks computed using direct numerical simulation (DNS) or the nonlinear parabolized stability equations (PSEs). We use the BREs to numerically compute high-amplitude streaks, a method which requires much lower computational effort than DNS and does not have the consistency and convergence problems of the PSE. It is found that the flow configuration changes substantially as the amplitude of the streaks grows and the nonlinear effects come into play. The transversal motion (in the wall normal-streamwise plane) becomes more important and strongly distorts the streamwise velocity profiles, which end up being quite different from those of the linear case. We analyze in detail the resulting flow patterns for the nonlinearly saturated streaks and compare them with available experimental results. (paper)
Nonlinear dynamics as an engine of computation.
Kia, Behnam; Lindner, John F; Ditto, William L
2017-03-06
Control of chaos teaches that control theory can tame the complex, random-like behaviour of chaotic systems. This alliance between control methods and physics-cybernetical physics-opens the door to many applications, including dynamics-based computing. In this article, we introduce nonlinear dynamics and its rich, sometimes chaotic behaviour as an engine of computation. We review our work that has demonstrated how to compute using nonlinear dynamics. Furthermore, we investigate the interrelationship between invariant measures of a dynamical system and its computing power to strengthen the bridge between physics and computation.This article is part of the themed issue 'Horizons of cybernetical physics'. © 2017 The Author(s).
Ortega, J. M.
1986-01-01
Various graduate research activities in the field of computer science are reported. Among the topics discussed are: (1) failure probabilities in multi-version software; (2) Gaussian Elimination on parallel computers; (3) three dimensional Poisson solvers on parallel/vector computers; (4) automated task decomposition for multiple robot arms; (5) multi-color incomplete cholesky conjugate gradient methods on the Cyber 205; and (6) parallel implementation of iterative methods for solving linear equations.
Raus, Randall
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Computer Science I includes fundamental computer concepts, number representations, Boolean algebra, switching circuits, and computer architecture.
Sustainable computational science
DEFF Research Database (Denmark)
Rougier, Nicolas; Hinsen, Konrad; Alexandre, Frédéric
2017-01-01
Computer science offers a large set of tools for prototyping, writing, running, testing, validating, sharing and reproducing results, however computational science lags behind. In the best case, authors may provide their source code as a compressed archive and they may feel confident their research...... workflows, in particular in peer-reviews. Existing journals have been slow to adapt: source codes are rarely requested, hardly ever actually executed to check that they produce the results advertised in the article. ReScience is a peer-reviewed journal that targets computational research and encourages...... the explicit replication of already published research, promoting new and open-source implementations in order to ensure that the original research can be replicated from its description. To achieve this goal, the whole publishing chain is radically different from other traditional scientific journals. ReScience...
Computer and information science
2016-01-01
This edited book presents scientific results of the 15th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2016) which was held on June 26– 29 in Okayama, Japan. The aim of this conference was to bring together researchers and scientists, businessmen and entrepreneurs, teachers, engineers, computer users, and students to discuss the numerous fields of computer science and to share their experiences and exchange new ideas and information in a meaningful way. Research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them. The conference organizers selected the best papers from those papers accepted for presentation at the conference. The papers were chosen based on review scores submitted by members of the program committee, and underwent further rigorous rounds of review. This publication captures 12 of the conference’s most promising...
A simple nonlinear dynamical computing device
International Nuclear Information System (INIS)
Miliotis, Abraham; Murali, K.; Sinha, Sudeshna; Ditto, William L.; Spano, Mark L.
2009-01-01
We propose and characterize an iterated map whose nonlinearity has a simple (i.e., minimal) electronic implementation. We then demonstrate explicitly how all the different fundamental logic gates can be implemented and morphed using this nonlinearity. These gates provide the full set of gates necessary to construct a general-purpose, reconfigurable computing device. As an example of how such chaotic computing devices can be exploited, we use an array of these maps to encode data and to process information. Each map can store one of M items, where M is variable and can be large. This nonlinear hardware stores data naturally in different bases or alphabets. We also show how this method of storing information can serve as a preprocessing tool for exact or inexact pattern-matching searches.
Partnership in Computational Science
Energy Technology Data Exchange (ETDEWEB)
Huray, Paul G.
1999-02-24
This is the final report for the "Partnership in Computational Science" (PICS) award in an amount of $500,000 for the period January 1, 1993 through December 31, 1993. A copy of the proposal with its budget is attached as Appendix A. This report first describes the consequent significance of the DOE award in building infrastructure of high performance computing in the Southeast and then describes the work accomplished under this grant and a list of publications resulting from it.
Birman, Ken; Roughgarden, Tim; Seltzer, Margo; Spohrer, Jim; Stolterman, Erik; Kearsley, Greg; Koszalka, Tiffany; de Jong, Ton
2013-01-01
Scholars representing the field of computer/information science were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Ken Birman, Jennifer Rexford, Tim Roughgarden, Margo Seltzer, Jim Spohrer, and…
Computer science II essentials
Raus, Randall
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Computer Science II includes organization of a computer, memory and input/output, coding, data structures, and program development. Also included is an overview of the most commonly
Computational Materials Science | Materials Science | NREL
Computational Materials Science Computational Materials Science An image of interconnecting, sphere science capabilities span many research fields and interests. Electronic, Optical, and Transport Properties of Photovoltaic Materials Material properties and defect physics of Si, CdTe, III-V, CIGS, CZTS
Margolis, Jane; Goode, Joanna; Bernier, David
2011-01-01
Broadening computer science learning to include more students is a crucial item on the United States' education agenda, these authors say. Although policymakers advocate more computer science expertise, computer science offerings in high schools are few--and actually shrinking. In addition, poorly resourced schools with a high percentage of…
Edwards, Alistair
2006-01-01
This book is aimed at students who are thinking of studying Computer Science or a related topic at university. Part One is a brief introduction to the topics that make up Computer Science, some of which you would expect to find as course modules in a Computer Science programme. These descriptions should help you to tell the difference between Computer Science as taught in different departments and so help you to choose a course that best suits you. Part Two builds on what you have learned about the nature of Computer Science by giving you guidance in choosing universities and making your appli
Computer science a concise introduction
Sinclair, Ian
2014-01-01
Computer Science: A Concise Introduction covers the fundamentals of computer science. The book describes micro-, mini-, and mainframe computers and their uses; the ranges and types of computers and peripherals currently available; applications to numerical computation; and commercial data processing and industrial control processes. The functions of data preparation, data control, computer operations, applications programming, systems analysis and design, database administration, and network control are also encompassed. The book then discusses batch, on-line, and real-time systems; the basic
Computing handbook computer science and software engineering
Gonzalez, Teofilo; Tucker, Allen
2014-01-01
Overview of Computer Science Structure and Organization of Computing Peter J. DenningComputational Thinking Valerie BarrAlgorithms and Complexity Data Structures Mark WeissBasic Techniques for Design and Analysis of Algorithms Edward ReingoldGraph and Network Algorithms Samir Khuller and Balaji RaghavachariComputational Geometry Marc van KreveldComplexity Theory Eric Allender, Michael Loui, and Kenneth ReganFormal Models and Computability Tao Jiang, Ming Li, and Bala
Mathematics and Computer Science | Argonne National Laboratory
Extreme Computing Data-Intensive Science Applied Mathematics Science & Engineering Applications Software Extreme Computing Data-Intensive Science Applied Mathematics Science & Engineering Opportunities For Employees Staff Directory Argonne National Laboratory Mathematics and Computer Science Tools
Volunteer Computing for Science Gateways
Anderson, David
2017-01-01
This poster offers information about volunteer computing for science gateways that offer high-throughput computing services. Volunteer computing can be used to get computing power. This increases the visibility of the gateway to the general public as well as increasing computing capacity at little cost.
Computational Science: Ensuring America's Competitiveness
National Research Council Canada - National Science Library
Reed, Daniel A; Bajcsy, Ruzena; Fernandez, Manuel A; Griffiths, Jose-Marie; Mott, Randall D; Dongarra, J. J; Johnson, Chris R; Inouye, Alan S; Miner, William; Matzke, Martha K; Ponick, Terry L
2005-01-01
Computational science is now indispensable to the solution of complex problems in every sector, from traditional science and engineering domains to such key areas as national security, public health...
Computing with networks of nonlinear mechanical oscillators.
Directory of Open Access Journals (Sweden)
Jean C Coulombe
Full Text Available As it is getting increasingly difficult to achieve gains in the density and power efficiency of microelectronic computing devices because of lithographic techniques reaching fundamental physical limits, new approaches are required to maximize the benefits of distributed sensors, micro-robots or smart materials. Biologically-inspired devices, such as artificial neural networks, can process information with a high level of parallelism to efficiently solve difficult problems, even when implemented using conventional microelectronic technologies. We describe a mechanical device, which operates in a manner similar to artificial neural networks, to solve efficiently two difficult benchmark problems (computing the parity of a bit stream, and classifying spoken words. The device consists in a network of masses coupled by linear springs and attached to a substrate by non-linear springs, thus forming a network of anharmonic oscillators. As the masses can directly couple to forces applied on the device, this approach combines sensing and computing functions in a single power-efficient device with compact dimensions.
Computer programs for nonlinear algebraic equations
International Nuclear Information System (INIS)
Asaoka, Takumi
1977-10-01
We have provided principal computer subroutines for obtaining numerical solutions of nonlinear algebraic equations through a review of the various methods. Benchmark tests were performed on these subroutines to grasp the characteristics of them compared to the existing subroutines. As computer programs based on the secant method, subroutines of the Muller's method using the Chambers' algorithm were newly developed, in addition to the equipment of subroutines of the Muller's method itself. The programs based on the Muller-Chambers' method are useful especially for low-order polynomials with complex coefficients except for the case of finding the triple roots, three close roots etc. In addition, we have equipped subroutines based on the Madsen's algorithm, a variant of the Newton's method. The subroutines have revealed themselves very useful as standard programs because all the roots are found accurately for every case though they take longer computing time than other subroutines for low-order polynomials. It is shown also that an existing subroutine of the Bairstow's method gives the fastest algorithm for polynomials with complex coefficients, except for the case of finding the triple roots etc. We have provided also subroutines to estimate error bounds for all the roots produced with the various algorithms. (auth.)
Computational Science: Ensuring America's Competitiveness
National Research Council Canada - National Science Library
Reed, Daniel A; Bajcsy, Ruzena; Fernandez, Manuel A; Griffiths, Jose-Marie; Mott, Randall D; Dongarra, J. J; Johnson, Chris R; Inouye, Alan S; Miner, William; Matzke, Martha K; Ponick, Terry L
2005-01-01
... previously deemed intractable. Yet, despite the great opportunities and needs, universities and the Federal government have not effectively recognized the strategic significance of computational science in either...
Soft computing in computer and information science
Fray, Imed; Pejaś, Jerzy
2015-01-01
This book presents a carefully selected and reviewed collection of papers presented during the 19th Advanced Computer Systems conference ACS-2014. The Advanced Computer Systems conference concentrated from its beginning on methods and algorithms of artificial intelligence. Further future brought new areas of interest concerning technical informatics related to soft computing and some more technological aspects of computer science such as multimedia and computer graphics, software engineering, web systems, information security and safety or project management. These topics are represented in the present book under the categories Artificial Intelligence, Design of Information and Multimedia Systems, Information Technology Security and Software Technologies.
On the complexity of computing two nonlinearity measures
DEFF Research Database (Denmark)
Find, Magnus Gausdal
2014-01-01
We study the computational complexity of two Boolean nonlinearity measures: the nonlinearity and the multiplicative complexity. We show that if one-way functions exist, no algorithm can compute the multiplicative complexity in time 2O(n) given the truth table of length 2n, in fact under the same ...
Computing in nonlinear media and automata collectives
Adamatzky, Andrew
2001-01-01
Reaction-diffusion, excitation, and computation. Subdivision of space. Computation on and with graphs. Computational universality of excitable media. Phenomenology of lattice excitation and emergence of computation.
Introduction Of Computational Materials Science
International Nuclear Information System (INIS)
Lee, Jun Geun
2006-08-01
This book gives, descriptions of computer simulation, computational materials science, typical three ways of computational materials science, empirical methods ; molecular dynamics such as potential energy, Newton's equation of motion, data production and analysis of results, quantum mechanical methods like wave equation, approximation, Hartree method, and density functional theory, dealing of solid such as pseudopotential method, tight-binding methods embedded atom method, Car-Parrinello method and combination simulation.
NASA's computer science research program
Larsen, R. L.
1983-01-01
Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.
Cascaded nonlinearities for ultrafast nonlinear optical science and applications
DEFF Research Database (Denmark)
Bache, Morten
the cascading nonlinearity is investigated in detail, especially with focus on femtosecond energetic laser pulses being subjected to this nonlinear response. Analytical, numerical and experimental results are used to understand the cascading interaction and applications are demonstrated. The defocusing soliton...... observations with analogies in fiber optics are observed numerically and experimentally, including soliton self-compression, soliton-induced resonant radiation, supercontinuum generation, optical wavebreaking and shock-front formation. All this happens despite no waveguide being present, thanks...... is of particular interest here, since it is quite unique and provides the solution to a number of standing challenges in the ultrafast nonlinear optics community. It solves the problem of catastrophic focusing and formation of a filaments in bulk glasses, which even under controlled circumstances is limited...
Computational Science Facility (CSF)
Federal Laboratory Consortium — PNNL Institutional Computing (PIC) is focused on meeting DOE's mission needs and is part of PNNL's overarching research computing strategy. PIC supports large-scale...
Mermin, N. David
2007-08-01
Preface; 1. Cbits and Qbits; 2. General features and some simple examples; 3. Breaking RSA encryption with a quantum computer; 4. Searching with a quantum computer; 5. Quantum error correction; 6. Protocols that use just a few Qbits; Appendices; Index.
Physical computation and cognitive science
Fresco, Nir
2014-01-01
This book presents a study of digital computation in contemporary cognitive science. Digital computation is a highly ambiguous concept, as there is no common core definition for it in cognitive science. Since this concept plays a central role in cognitive theory, an adequate cognitive explanation requires an explicit account of digital computation. More specifically, it requires an account of how digital computation is implemented in physical systems. The main challenge is to deliver an account encompassing the multiple types of existing models of computation without ending up in pancomputationalism, that is, the view that every physical system is a digital computing system. This book shows that only two accounts, among the ones examined by the author, are adequate for explaining physical computation. One of them is the instructional information processing account, which is developed here for the first time. “This book provides a thorough and timely analysis of differing accounts of computation while adv...
Symbolic computation of nonlinear wave interactions on MACSYMA
International Nuclear Information System (INIS)
Bers, A.; Kulp, J.L.; Karney, C.F.F.
1976-01-01
In this paper the use of a large symbolic computation system - MACSYMA - in determining approximate analytic expressions for the nonlinear coupling of waves in an anisotropic plasma is described. MACSYMA was used to implement the solutions of a fluid plasma model nonlinear partial differential equations by perturbation expansions and subsequent iterative analytic computations. By interacting with the details of the symbolic computation, the physical processes responsible for particular nonlinear wave interactions could be uncovered and appropriate approximations introduced so as to simplify the final analytic result. Details of the MACSYMA system and its use are discussed and illustrated. (Auth.)
Nonlinear continua fundaments for the computational techniques
Dvorkin, Eduardo N
2005-01-01
Offers a presentation of Continuum Mechanics, oriented towards numerical applications in the nonlinear analysis of solids, structures and fluid mechanics. This book develops general curvilinear coordinator kinematics of the continuum deformation using general curvilinear coordinates.
Theoretical computer science and the natural sciences
Marchal, Bruno
2005-12-01
I present some fundamental theorems in computer science and illustrate their relevance in Biology and Physics. I do not assume prerequisites in mathematics or computer science beyond the set N of natural numbers, functions from N to N, the use of some notational conveniences to describe functions, and at some point, a minimal amount of linear algebra and logic. I start with Cantor's transcendental proof by diagonalization of the non enumerability of the collection of functions from natural numbers to the natural numbers. I explain why this proof is not entirely convincing and show how, by restricting the notion of function in terms of discrete well defined processes, we are led to the non algorithmic enumerability of the computable functions, but also-through Church's thesis-to the algorithmic enumerability of partial computable functions. Such a notion of function constitutes, with respect to our purpose, a crucial generalization of that concept. This will make easy to justify deep and astonishing (counter-intuitive) incompleteness results about computers and similar machines. The modified Cantor diagonalization will provide a theory of concrete self-reference and I illustrate it by pointing toward an elementary theory of self-reproduction-in the Amoeba's way-and cellular self-regeneration-in the flatworm Planaria's way. To make it easier, I introduce a very simple and powerful formal system known as the Schoenfinkel-Curry combinators. I will use the combinators to illustrate in a more concrete way the notion introduced above. The combinators, thanks to their low-level fine grained design, will also make it possible to make a rough but hopefully illuminating description of the main lessons gained by the careful observation of nature, and to describe some new relations, which should exist between computer science, the science of life and the science of inert matter, once some philosophical, if not theological, hypotheses are made in the cognitive sciences. In the
Molecular Science Computing: 2010 Greenbook
Energy Technology Data Exchange (ETDEWEB)
De Jong, Wibe A.; Cowley, David E.; Dunning, Thom H.; Vorpagel, Erich R.
2010-04-02
This 2010 Greenbook outlines the science drivers for performing integrated computational environmental molecular research at EMSL and defines the next-generation HPC capabilities that must be developed at the MSC to address this critical research. The EMSL MSC Science Panel used EMSL’s vision and science focus and white papers from current and potential future EMSL scientific user communities to define the scientific direction and resulting HPC resource requirements presented in this 2010 Greenbook.
Computer Science Professionals and Greek Library Science
Dendrinos, Markos N.
2008-01-01
This paper attempts to present the current state of computer science penetration into librarianship in terms of both workplace and education issues. The shift from material libraries into digital libraries is mirrored in the corresponding shift from librarians into information scientists. New library data and metadata, as well as new automated…
Cloud computing and services science
Ivanov, Ivan; van Sinderen, Marten J.; Shishkov, Boris
2012-01-01
This book is essentially a collection of the best papers of the International Conference on Cloud Computing and Services Science (CLOSER), which was held in Noordwijkerhout, The Netherlands on May 7–9, 2011. The conference addressed technology trends in the domain of cloud computing in relation to a
Computational colour science using MATLAB
Westland, Stephen; Cheung, Vien
2012-01-01
Computational Colour Science Using MATLAB 2nd Edition offers a practical, problem-based approach to colour physics. The book focuses on the key issues encountered in modern colour engineering, including efficient representation of colour information, Fourier analysis of reflectance spectra and advanced colorimetric computation. Emphasis is placed on the practical applications rather than the techniques themselves, with material structured around key topics. These topics include colour calibration of visual displays, computer recipe prediction and models for colour-appearance prediction. Each t
Computer Science Research at Langley
Voigt, S. J. (Editor)
1982-01-01
A workshop was held at Langley Research Center, November 2-5, 1981, to highlight ongoing computer science research at Langley and to identify additional areas of research based upon the computer user requirements. A panel discussion was held in each of nine application areas, and these are summarized in the proceedings. Slides presented by the invited speakers are also included. A survey of scientific, business, data reduction, and microprocessor computer users helped identify areas of focus for the workshop. Several areas of computer science which are of most concern to the Langley computer users were identified during the workshop discussions. These include graphics, distributed processing, programmer support systems and tools, database management, and numerical methods.
2005-01-01
After the success of SETI@home, many other scientists have found computer power donated by the public to be a valuable resource - and sometimes the only possibility to achieve their goals. In July, representatives of several “public resource computing” projects came to CERN to discuss technical issues and R&D activities on the common computing platform they are using, BOINC. This photograph shows the LHC@home screen-saver which uses the BOINC platform: the dots represent protons and the position of the status bar indicates the progress of the calculations. This summer, CERN hosted the first “pangalactic workshop” on BOINC (Berkeley Open Interface for Network Computing). BOINC is modelled on SETI@home, which millions of people have downloaded to help search for signs of extraterrestrial intelligence in radio-astronomical data. BOINC provides a general-purpose framework for scientists to adapt their software to, so that the public can install and run it. An important part of BOINC is managing the...
Zobel, Justin
2015-01-01
All researchers need to write or speak about their work, and to have research that is worth presenting. Based on the author's decades of experience as a researcher and advisor, this third edition provides detailed guidance on writing and presentations and a comprehensive introduction to research methods, the how-to of being a successful scientist. Topics include: · Development of ideas into research questions; · How to find, read, evaluate and referee other research; · Design and evaluation of experiments and appropriate use of statistics; · Ethics, the principles of science and examples of science gone wrong. Much of the book is a step-by-step guide to effective communication, with advice on: · Writing style and editing; · Figures, graphs and tables; · Mathematics and algorithms; · Literature reviews and referees' reports; · Structuring of arguments an...
Mathematics, Physics and Computer Sciences The computation of ...
African Journals Online (AJOL)
Mathematics, Physics and Computer Sciences The computation of system matrices for biquadraticsquare finite ... Global Journal of Pure and Applied Sciences ... The computation of system matrices for biquadraticsquare finite elements.
International Developments in Computer Science.
1982-06-01
background on 52 53 China’s scientific research and on their computer science before 1978. A useful companion to the directory is another publication of the...bimonthly publication in Portuguese; occasional translation of foreign articles into Portuguese. Data News: A bimonthly industry newsletter. Sistemas ...computer-related topics; Spanish. Delta: Publication of local users group; Spanish. Sistemas : Publication of System Engineers of Colombia; Spanish. CUBA
Nonlinearity: The History and Philosophy of the Science
Burke, Kenneth M.
2009-01-01
This article provides for a concise history of nonlinearity from the context of the changing assumptions in science throughout the turn of the twentieth century. Concerned with the development of an ethics of technology in higher education, it establishes a background for ongoing research on quantitative methods in the social sciences. The history…
Optical computation based on nonlinear total reflectional optical ...
Indian Academy of Sciences (India)
2School of Education Science, South China Normal University, Guangzhou, 510631, China. *Corresponding ... Before the computation, all the inputs are prepared in the polarization state. The key .... The all-optical computing system described.
The Use of Hebbian Cell Assemblies for Nonlinear Computation
DEFF Research Database (Denmark)
Tetzlaff, Christian; Dasgupta, Sakyasingha; Kulvicius, Tomas
2015-01-01
When learning a complex task our nervous system self-organizes large groups of neurons into coherent dynamic activity patterns. During this, a network with multiple, simultaneously active, and computationally powerful cell assemblies is created. How such ordered structures are formed while preser...... computing complex non-linear transforms and - for execution - must cooperate with each other without interference. This mechanism, thus, permits the self-organization of computationally powerful sub-structures in dynamic networks for behavior control....
Computability, complexity, and languages fundamentals of theoretical computer science
Davis, Martin D; Rheinboldt, Werner
1983-01-01
Computability, Complexity, and Languages: Fundamentals of Theoretical Computer Science provides an introduction to the various aspects of theoretical computer science. Theoretical computer science is the mathematical study of models of computation. This text is composed of five parts encompassing 17 chapters, and begins with an introduction to the use of proofs in mathematics and the development of computability theory in the context of an extremely simple abstract programming language. The succeeding parts demonstrate the performance of abstract programming language using a macro expa
The NASA computer science research program plan
1983-01-01
A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified.
Computer science and operations research
Balci, Osman
1992-01-01
The interface of Operation Research and Computer Science - although elusive to a precise definition - has been a fertile area of both methodological and applied research. The papers in this book, written by experts in their respective fields, convey the current state-of-the-art in this interface across a broad spectrum of research domains which include optimization techniques, linear programming, interior point algorithms, networks, computer graphics in operations research, parallel algorithms and implementations, planning and scheduling, genetic algorithms, heuristic search techniques and dat
Advances and challenges in computational plasma science
International Nuclear Information System (INIS)
Tang, W M; Chan, V S
2005-01-01
Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This
Parallel computing in plasma physics: Nonlinear instabilities
International Nuclear Information System (INIS)
Pohn, E.; Kamelander, G.; Shoucri, M.
2000-01-01
A Vlasov-Poisson-system is used for studying the time evolution of the charge-separation at a spatial one- as well as a two-dimensional plasma-edge. Ions are advanced in time using the Vlasov-equation. The whole three-dimensional velocity-space is considered leading to very time-consuming four-resp. five-dimensional fully kinetic simulations. In the 1D simulations electrons are assumed to behave adiabatic, i.e. they are Boltzmann-distributed, leading to a nonlinear Poisson-equation. In the 2D simulations a gyro-kinetic approximation is used for the electrons. The plasma is assumed to be initially neutral. The simulations are performed at an equidistant grid. A constant time-step is used for advancing the density-distribution function in time. The time-evolution of the distribution function is performed using a splitting scheme. Each dimension (x, y, υ x , υ y , υ z ) of the phase-space is advanced in time separately. The value of the distribution function for the next time is calculated from the value of an - in general - interstitial point at the present time (fractional shift). One-dimensional cubic-spline interpolation is used for calculating the interstitial function values. After the fractional shifts are performed for each dimension of the phase-space, a whole time-step for advancing the distribution function is finished. Afterwards the charge density is calculated, the Poisson-equation is solved and the electric field is calculated before the next time-step is performed. The fractional shift method sketched above was parallelized for p processors as follows. Considering first the shifts in y-direction, a proper parallelization strategy is to split the grid into p disjoint υ z -slices, which are sub-grids, each containing a different 1/p-th part of the υ z range but the whole range of all other dimensions. Each processor is responsible for performing the y-shifts on a different slice, which can be done in parallel without any communication between
Automated computation of autonomous spectral submanifolds for nonlinear modal analysis
Ponsioen, Sten; Pedergnana, Tiemo; Haller, George
2018-04-01
We discuss an automated computational methodology for computing two-dimensional spectral submanifolds (SSMs) in autonomous nonlinear mechanical systems of arbitrary degrees of freedom. In our algorithm, SSMs, the smoothest nonlinear continuations of modal subspaces of the linearized system, are constructed up to arbitrary orders of accuracy, using the parameterization method. An advantage of this approach is that the construction of the SSMs does not break down when the SSM folds over its underlying spectral subspace. A further advantage is an automated a posteriori error estimation feature that enables a systematic increase in the orders of the SSM computation until the required accuracy is reached. We find that the present algorithm provides a major speed-up, relative to numerical continuation methods, in the computation of backbone curves, especially in higher-dimensional problems. We illustrate the accuracy and speed of the automated SSM algorithm on lower- and higher-dimensional mechanical systems.
Labour market expectation of Nigerian computer science ...
African Journals Online (AJOL)
... of Nigerian computer science / Information Communication Technology (ICT) graduates. ... It also x-rays the women performance in Computer Science. ... key players were analyzed using variables such as competence, creativity, innovation, ...
Non-Linear Interactive Stories in Computer Games
DEFF Research Database (Denmark)
Bangsø, Olav; Jensen, Ole Guttorm; Kocka, Tomas
2003-01-01
The paper introduces non-linear interactive stories (NOLIST) as a means to generate varied and interesting stories for computer games automatically. We give a compact representation of a NOLIST based on the specification of atomic stories, and show how to build an object-oriented Bayesian network...
University rankings in computer science
DEFF Research Database (Denmark)
Ehret, Philip; Zuccala, Alesia Ann; Gipp, Bela
2017-01-01
This is a research-in-progress paper concerning two types of institutional rankings, the Leiden and QS World ranking, and their relationship to a list of universities’ ‘geo-based’ impact scores, and Computing Research and Education Conference (CORE) participation scores in the field of computer...... science. A ‘geo-based’ impact measure examines the geographical distribution of incoming citations to a particular university’s journal articles for a specific period of time. It takes into account both the number of citations and the geographical variability in these citations. The CORE participation...... score is calculated on the basis of the number of weighted proceedings papers that a university has contributed to either an A*, A, B, or C conference as ranked by the Computing Research and Education Association of Australasia. In addition to calculating the correlations between the distinct university...
Complex dynamics and morphogenesis an introduction to nonlinear science
Misbah, Chaouqi
2017-01-01
This book offers an introduction to the physics of nonlinear phenomena through two complementary approaches: bifurcation theory and catastrophe theory. Readers will be gradually introduced to the language and formalisms of nonlinear sciences, which constitute the framework to describe complex systems. The difficulty with complex systems is that their evolution cannot be fully predicted because of the interdependence and interactions between their different components. Starting with simple examples and working toward an increasing level of universalization, the work explores diverse scenarios of bifurcations and elementary catastrophes which characterize the qualitative behavior of nonlinear systems. The study of temporal evolution is undertaken using the equations that characterize stationary or oscillatory solutions, while spatial analysis introduces the fascinating problem of morphogenesis. Accessible to undergraduate university students in any discipline concerned with nonlinear phenomena (physics, mathema...
Advanced in Computer Science and its Applications
Yen, Neil; Park, James; CSA 2013
2014-01-01
The theme of CSA is focused on the various aspects of computer science and its applications for advances in computer science and its applications and provides an opportunity for academic and industry professionals to discuss the latest issues and progress in the area of computer science and its applications. Therefore this book will be include the various theories and practical applications in computer science and its applications.
Computational aspects of nonlinear fracture mechanics
International Nuclear Information System (INIS)
Brocks, W.; Cornec, A.; Scheider, I.
2003-01-01
The following contribution will essentially restrict to the application of the von Mises theory of incremental plasticity to cracked specimens and components. In particular, the classical parameters of EPFM, J and CTOD, as well as subsequently proposed parameters such as energy dissipation rate and crack-tip opening angle (CTOA) and the related computational aspects will be discussed. Some remarks follow on the 'local approach to fracture' which is based on continuum field quantities, namely stresses and strains, and the damage models of Gurson (1977) and Rousselier (1987), which have now found increasing application, will be briefly addressed in Section 3.03.4. The numerical modeling of decohesion and separation phenomena by 'cohesive elements' will be presented in Section 3.03.5. (orig.)
Preparing Future Secondary Computer Science Educators
Ajwa, Iyad
2007-01-01
Although nearly every college offers a major in computer science, many computer science teachers at the secondary level have received little formal training. This paper presents details of a project that could make a significant contribution to national efforts to improve computer science education by combining teacher education and professional…
Computer Science and the Liberal Arts
Shannon, Christine
2010-01-01
Computer science and the liberal arts have much to offer each other. Yet liberal arts colleges, in particular, have been slow to recognize the opportunity that the study of computer science provides for achieving the goals of a liberal education. After the precipitous drop in computer science enrollments during the first decade of this century,…
Girls Save the World through Computer Science
Murakami, Christine
2011-01-01
It's no secret that fewer and fewer women are entering computer science fields. Attracting high school girls to computer science is only part of the solution. Retaining them while they are in higher education or the workforce is also a challenge. To solve this, there is a need to show girls that computer science is a wide-open field that offers…
Computer-aided design and computer science technology
Fulton, R. E.; Voigt, S. J.
1976-01-01
A description is presented of computer-aided design requirements and the resulting computer science advances needed to support aerospace design. The aerospace design environment is examined, taking into account problems of data handling and aspects of computer hardware and software. The interactive terminal is normally the primary interface between the computer system and the engineering designer. Attention is given to user aids, interactive design, interactive computations, the characteristics of design information, data management requirements, hardware advancements, and computer science developments.
Functional Programming in Computer Science
Energy Technology Data Exchange (ETDEWEB)
Anderson, Loren James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Davis, Marion Kei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-01-19
We explore functional programming through a 16-week internship at Los Alamos National Laboratory. Functional programming is a branch of computer science that has exploded in popularity over the past decade due to its high-level syntax, ease of parallelization, and abundant applications. First, we summarize functional programming by listing the advantages of functional programming languages over the usual imperative languages, and we introduce the concept of parsing. Second, we discuss the importance of lambda calculus in the theory of functional programming. Lambda calculus was invented by Alonzo Church in the 1930s to formalize the concept of effective computability, and every functional language is essentially some implementation of lambda calculus. Finally, we display the lasting products of the internship: additions to a compiler and runtime system for the pure functional language STG, including both a set of tests that indicate the validity of updates to the compiler and a compiler pass that checks for illegal instances of duplicate names.
Computer simulations on the nonlinear frequency shift and nonlinear modulation of ion-acoustic waves
International Nuclear Information System (INIS)
Ohsawa, Yukiharu; Kamimura, Tetsuo.
1976-11-01
The nonlinear behavior of ion-acoustic waves with rather short wave-length, k lambda sub(De) asymptotically equals 1, is investigated by computer sumulations. It is observed that the nonlinear frequency shift is negative and is proportional to square root of the initial wave amplitude when the amplitude is not too large. This proportionality breaks down and the frequency shift can become positive (for large Te/Ti), when (n tilde sub(i)/n 0 )sup(1/2)>0.25, where n tilde sub(i) is the ion density perturbation and n 0 the average plasma density. Nonlinear modulation of the wave-packet is clearly seen; however, modulational instability was not observed. The importance of the effects of trapped ions to these phenomena is emphasized. (auth.)
Berkeley Lab Computing Sciences: Accelerating Scientific Discovery
International Nuclear Information System (INIS)
Hules, John A.
2008-01-01
Scientists today rely on advances in computer science, mathematics, and computational science, as well as large-scale computing and networking facilities, to increase our understanding of ourselves, our planet, and our universe. Berkeley Lab's Computing Sciences organization researches, develops, and deploys new tools and technologies to meet these needs and to advance research in such areas as global climate change, combustion, fusion energy, nanotechnology, biology, and astrophysics
Applications of chaos and nonlinear dynamics in science and engineering
Rondoni, Lamberto; Mitra, Mala
Chaos and nonlinear dynamics initially developed as a new emergent field with its foundation in physics and applied mathematics. The highly generic, interdisciplinary quality of the insights gained in the last few decades has spawned myriad applications in almost all branches of science and technology—and even well beyond. Wherever the quantitative modeling and analysis of complex, nonlinear phenomena are required, chaos theory and its methods can play a key role. This second volume concentrates on reviewing further relevant, contemporary applications of chaotic nonlinear systems as they apply to the various cutting-edge branches of engineering. This encompasses, but is not limited to, topics such as the spread of epidemics; electronic circuits; chaos control in mechanical devices; secure communication; and digital watermarking. Featuring contributions from active and leading research groups, this collection is ideal both as a reference work and as a ‘recipe book’ full of tried and tested, successf...
Computing, Environment and Life Sciences | Argonne National Laboratory
Computing, Environment and Life Sciences Research Divisions BIOBiosciences CPSComputational Science DSLData Argonne Leadership Computing Facility Biosciences Division Environmental Science Division Mathematics and Computer Science Division Facilities and Institutes Argonne Leadership Computing Facility News Events About
International Nuclear Information System (INIS)
Page, B.; Hilty, L.M.
1994-01-01
Environmental computer science is a new partial discipline of applied computer science, which makes use of methods and techniques of information processing in environmental protection. Thanks to the inter-disciplinary nature of environmental problems, computer science acts as a mediator between numerous disciplines and institutions in this sector. The handbook reflects the broad spectrum of state-of-the art environmental computer science. The following important subjects are dealt with: Environmental databases and information systems, environmental monitoring, modelling and simulation, visualization of environmental data and knowledge-based systems in the environmental sector. (orig.) [de
Nonlinear simulations with and computational issues for NIMROD
International Nuclear Information System (INIS)
Sovinec, C.R.
1998-01-01
The NIMROD (Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion) code development project was commissioned by the US Department of Energy in February, 1996 to provide the fusion research community with a computational tool for studying low-frequency behavior in experiments. Specific problems of interest include the neoclassical evolution of magnetic islands and the nonlinear behavior of tearing modes in the presence of rotation and nonideal walls in tokamaks; they also include topics relevant to innovative confinement concepts such as magnetic turbulence. Besides having physics models appropriate for these phenomena, an additional requirement is the ability to perform the computations in realistic geometries. The NIMROD Team is using contemporary management and computational methods to develop a computational tool for investigating low-frequency behavior in plasma fusion experiments. The authors intend to make the code freely available, and are taking steps to make it as easy to learn and use as possible. An example application for NIMROD is the nonlinear toroidal RFP simulation--the first in a series to investigate how toroidal geometry affects MHD activity in RFPs. Finally, the most important issue facing the project is execution time, and they are exploring better matrix solvers and a better parallel decomposition to address this
Nonlinear simulations with and computational issues for NIMROD
Energy Technology Data Exchange (ETDEWEB)
Sovinec, C.R. [Los Alamos National Lab., NM (United States)
1998-12-31
The NIMROD (Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion) code development project was commissioned by the US Department of Energy in February, 1996 to provide the fusion research community with a computational tool for studying low-frequency behavior in experiments. Specific problems of interest include the neoclassical evolution of magnetic islands and the nonlinear behavior of tearing modes in the presence of rotation and nonideal walls in tokamaks; they also include topics relevant to innovative confinement concepts such as magnetic turbulence. Besides having physics models appropriate for these phenomena, an additional requirement is the ability to perform the computations in realistic geometries. The NIMROD Team is using contemporary management and computational methods to develop a computational tool for investigating low-frequency behavior in plasma fusion experiments. The authors intend to make the code freely available, and are taking steps to make it as easy to learn and use as possible. An example application for NIMROD is the nonlinear toroidal RFP simulation--the first in a series to investigate how toroidal geometry affects MHD activity in RFPs. Finally, the most important issue facing the project is execution time, and they are exploring better matrix solvers and a better parallel decomposition to address this.
On teaching computer ethics within a computer science department.
Quinn, Michael J
2006-04-01
The author has surveyed a quarter of the accredited undergraduate computer science programs in the United States. More than half of these programs offer a 'social and ethical implications of computing' course taught by a computer science faculty member, and there appears to be a trend toward teaching ethics classes within computer science departments. Although the decision to create an 'in house' computer ethics course may sometimes be a pragmatic response to pressure from the accreditation agency, this paper argues that teaching ethics within a computer science department can provide students and faculty members with numerous benefits. The paper lists topics that can be covered in a computer ethics course and offers some practical suggestions for making the course successful.
Computer Simulation of Hydraulic Systems with Typical Nonlinear Characteristics
Directory of Open Access Journals (Sweden)
D. N. Popov
2017-01-01
Full Text Available The task was to synthesise an adjustable hydraulic system structure, the mathematical model of which takes into account its inherent nonlinearity. Its solution suggests using a successive computer simulations starting with a structure of the linearized stable hydraulic system, which is then complicated by including the essentially non-linear elements. The hydraulic system thus obtained may be unable to meet the Lyapunov stability criterion and be unstable. This can be eliminated through correcting elements. Control of correction results is provided according to the form of transition processes due to stepwise variation of the control signal.Computer simulation of a throttle-controlled electrohydraulic servo drive with the rotary output element illustrates the proposed method application. A constant pressure power source provides fluid feed for the drive under pressure.For drive simulation the following models were involved: the linear model, the model taking into consideration a non-linearity of the flow-dynamic characteristics of a spool-type valve, and the non-linear models that take into account the dry friction in the spool-type valve, the backlash in the steering angle sensor of the motor shaft.The paper shows possibility of damping oscillation caused by variable hydrodynamic forces through introducing a correction device.The list of references attached contains 16 sources, which were used to justify and explain certain factors of the automatic control theory and the fluid mechanics of unsteady flows.The article presents 6 block-diagrams of the electrohydraulic servo drive and their appropriate transition processes, which have been studied.
Advances in Computer Science and Engineering
Second International Conference on Advances in Computer Science and Engineering (CES 2012)
2012-01-01
This book includes the proceedings of the second International Conference on Advances in Computer Science and Engineering (CES 2012), which was held during January 13-14, 2012 in Sanya, China. The papers in these proceedings of CES 2012 focus on the researchers’ advanced works in their fields of Computer Science and Engineering mainly organized in four topics, (1) Software Engineering, (2) Intelligent Computing, (3) Computer Networks, and (4) Artificial Intelligence Software.
ASCR Workshop on Quantum Computing for Science
Energy Technology Data Exchange (ETDEWEB)
Aspuru-Guzik, Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Van Dam, Wim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Farhi, Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gaitan, Frank [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Humble, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jordan, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Landahl, Andrew J [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Love, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lucas, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Preskill, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Muller, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Svore, Krysta [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wiebe, Nathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Williams, Carl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-06-01
This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms for linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.
Role of nonlinear dynamics and chaos in applied sciences
International Nuclear Information System (INIS)
Lawande, Quissan V.; Maiti, Nirupam
2000-02-01
Nonlinear dynamics manifests itself in a number of phenomena in both laboratory and day to day dealings. However, little attention was being paid to this dynamically rich field. With the advent of high speed computers with visual graphics, the field has proliferated over past few years. One of the most rewarding realization from nonlinear dynamics is the universally acclaimed field of chaos. Chaos has brought in order and has broken the disciplinary boundaries that existed until recently. With its universal phenomena, almost all disciplines following an evolutionary character can be treated on same footing. Chaotic dynamics has its grounding in the multidisciplinary field of synergetics founded by Professor Hermann Haken. In this report, we address some of the basics related to the field of chaos. We have discussed simple mechanisms for generating chaotic trajectories, ways and means of characterizing such systems and the manifestation of their signatures in the evolutions. We have mentioned the links of this field with other existing theories. We have outlined the topics on bifurcation and stability of dynamical systems. Information theoretic aspects and notions on fractal geometry are reviewed in the light of dynamical characterization of chaotic systems. Application oriented views of this novel dynamical phenomena are discussed through examples on simple nonlinear electronic circuits and a BWR reactor. Some ideas relating to control and synchronization in chaotic systems also addressed. In conclusion, we have explored the possibilities of exploiting nonlinear dynamics and chaos in the context of multidisciplinary character of BARC. (author)
Zendler, Andreas; Klaudt, Dieter
2012-01-01
The significance of computer science for economics and society is undisputed. In particular, computer science is acknowledged to play a key role in schools (e.g., by opening multiple career paths). The provision of effective computer science education in schools is dependent on teachers who are able to properly represent the discipline and whose…
Game based learning for computer science education
Schmitz, Birgit; Czauderna, André; Klemke, Roland; Specht, Marcus
2011-01-01
Schmitz, B., Czauderna, A., Klemke, R., & Specht, M. (2011). Game based learning for computer science education. In G. van der Veer, P. B. Sloep, & M. van Eekelen (Eds.), Computer Science Education Research Conference (CSERC '11) (pp. 81-86). Heerlen, The Netherlands: Open Universiteit.
CREATIVE APPROACHES TO COMPUTER SCIENCE EDUCATION
Directory of Open Access Journals (Sweden)
V. B. Raspopov
2010-04-01
Full Text Available Using the example of PPS «Toolbox of multimedia lessons «For Children About Chopin» we demonstrate the possibility of involving creative students in developing the software packages for educational purposes. Similar projects can be assigned to school and college students studying computer sciences and informatics, and implemented under the teachers’ supervision, as advanced assignments or thesis projects as a part of a high school course IT or Computer Sciences, a college course of Applied Scientific Research, or as a part of preparation for students’ participation in the Computer Science competitions or IT- competitions of Youth Academy of Sciences ( MAN in Russian or in Ukrainian.
Bringing computational science to the public.
McDonagh, James L; Barker, Daniel; Alderson, Rosanna G
2016-01-01
The increasing use of computers in science allows for the scientific analyses of large datasets at an increasing pace. We provided examples and interactive demonstrations at Dundee Science Centre as part of the 2015 Women in Science festival, to present aspects of computational science to the general public. We used low-cost Raspberry Pi computers to provide hands on experience in computer programming and demonstrated the application of computers to biology. Computer games were used as a means to introduce computers to younger visitors. The success of the event was evaluated by voluntary feedback forms completed by visitors, in conjunction with our own self-evaluation. This work builds on the original work of the 4273π bioinformatics education program of Barker et al. (2013, BMC Bioinform. 14:243). 4273π provides open source education materials in bioinformatics. This work looks at the potential to adapt similar materials for public engagement events. It appears, at least in our small sample of visitors (n = 13), that basic computational science can be conveyed to people of all ages by means of interactive demonstrations. Children as young as five were able to successfully edit simple computer programs with supervision. This was, in many cases, their first experience of computer programming. The feedback is predominantly positive, showing strong support for improving computational science education, but also included suggestions for improvement. Our conclusions are necessarily preliminary. However, feedback forms suggest methods were generally well received among the participants; "Easy to follow. Clear explanation" and "Very easy. Demonstrators were very informative." Our event, held at a local Science Centre in Dundee, demonstrates that computer games and programming activities suitable for young children can be performed alongside a more specialised and applied introduction to computational science for older visitors.
The science of computing shaping a discipline
Tedre, Matti
2014-01-01
The identity of computing has been fiercely debated throughout its short history. Why is it still so hard to define computing as an academic discipline? Is computing a scientific, mathematical, or engineering discipline? By describing the mathematical, engineering, and scientific traditions of computing, The Science of Computing: Shaping a Discipline presents a rich picture of computing from the viewpoints of the field's champions. The book helps readers understand the debates about computing as a discipline. It explains the context of computing's central debates and portrays a broad perspecti
A survey of computational physics introductory computational science
Landau, Rubin H; Bordeianu, Cristian C
2008-01-01
Computational physics is a rapidly growing subfield of computational science, in large part because computers can solve previously intractable problems or simulate natural processes that do not have analytic solutions. The next step beyond Landau's First Course in Scientific Computing and a follow-up to Landau and Páez's Computational Physics, this text presents a broad survey of key topics in computational physics for advanced undergraduates and beginning graduate students, including new discussions of visualization tools, wavelet analysis, molecular dynamics, and computational fluid dynamics
Mathematics and Computer Science: The Interplay
Madhavan, Veni CE
2005-01-01
Mathematics has been an important intellectual preoccupation of man for a long time. Computer science as a formal discipline is about seven decades young. However, one thing in common between all users and producers of mathematical thought is the almost involuntary use of computing. In this article, we bring to fore the many close connections and parallels between the two sciences of mathematics and computing. We show that, unlike in the other branches of human inquiry where mathematics is me...
Semiotics, Information Science, Documents and Computers.
Warner, Julian
1990-01-01
Discusses the relationship and value of semiotics to the established domains of information science. Highlights include documentation; computer operations; the language of computing; automata theory; linguistics; speech and writing; and the written language as a unifying principle for the document and the computer. (93 references) (LRW)
Enabling Earth Science Through Cloud Computing
Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian
2012-01-01
Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.
Crystal growth and computational materials science
International Nuclear Information System (INIS)
Jayakumar, S.; Ravindran, P.; Arun Kumar, R.; Sudarshan, C.
2012-01-01
The proceedings of the international conference on advanced materials discusses the advances being made in the area of single crystals, their preparation and device development from these crystals and details of the progress that is taking place in the computational field relating to materials science. Computational materials science makes use of advanced simulation tools and computer interfaces to develop a virtual platform which can provide a model for real-time experiments. This book includes selected papers in topics of crystal growth and computational materials science. We are confident that the new concepts and results presented will stimulate and enhance progress of research on crystal growth and computational materials science. Papers relevant to INIS are indexed separately
Cloud computing with e-science applications
Terzo, Olivier
2015-01-01
The amount of data in everyday life has been exploding. This data increase has been especially significant in scientific fields, where substantial amounts of data must be captured, communicated, aggregated, stored, and analyzed. Cloud Computing with e-Science Applications explains how cloud computing can improve data management in data-heavy fields such as bioinformatics, earth science, and computer science. The book begins with an overview of cloud models supplied by the National Institute of Standards and Technology (NIST), and then:Discusses the challenges imposed by big data on scientific
Computer programs for solving systems of nonlinear equations
International Nuclear Information System (INIS)
Asaoka, Takumi
1978-03-01
Computer programs to find a solution, usually the one closest to some guess, of a system of simultaneous nonlinear equations are provided for real functions of the real arguments. These are based on quasi-Newton methods or projection methods, which are briefly reviewed in the present report. Benchmark tests were performed on these subroutines to grasp their characteristics. As the program not requiring analytical forms of the derivatives of the Jacobian matrix, we have dealt with NS01A of Powell, NS03A of Reid for a system with the sparse Jacobian and NONLIN of Brown. Of these three subroutines of quasi-Newton methods, NONLIN is shown to be the most useful because of its stable algorithm and short computation time. On the other hand, as the subroutine for which the derivatives of the Jacobian are to be supplied analytically, we have tested INTECH of a quasi-Newton method based on the Boggs' algorithm, PROJA of Georg and Keller based on the projection method and an option of NS03A. The results have shown that INTECH, treating variables which appear only linearly in the functions separately, takes the shortest computation time, on the whole, while the projection method requires further research to find an optimal algorithm. (auth.)
Computational Modeling of Ultrafast Pulse Propagation in Nonlinear Optical Materials
Goorjian, Peter M.; Agrawal, Govind P.; Kwak, Dochan (Technical Monitor)
1996-01-01
There is an emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. rib build such devices and subsystems, one needs to model the entire chip. Accurate computer modeling of electromagnetic wave propagation in semiconductors is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Here, the computer simulations are made by solving the full vector, nonlinear, Maxwell's equations, coupled with the semiconductor Bloch equations, without any approximations. The carrier is retained in the description of the optical pulse, (i.e. the envelope approximation is not made in the Maxwell's equations), and the rotating wave approximation is not made in the Bloch equations. These coupled equations are solved to simulate the propagation of femtosecond optical pulses in semiconductor materials. The simulations describe the dynamics of the optical pulses, as well as the interband and intraband.
Stochastic Computational Approach for Complex Nonlinear Ordinary Differential Equations
International Nuclear Information System (INIS)
Khan, Junaid Ali; Raja, Muhammad Asif Zahoor; Qureshi, Ijaz Mansoor
2011-01-01
We present an evolutionary computational approach for the solution of nonlinear ordinary differential equations (NLODEs). The mathematical modeling is performed by a feed-forward artificial neural network that defines an unsupervised error. The training of these networks is achieved by a hybrid intelligent algorithm, a combination of global search with genetic algorithm and local search by pattern search technique. The applicability of this approach ranges from single order NLODEs, to systems of coupled differential equations. We illustrate the method by solving a variety of model problems and present comparisons with solutions obtained by exact methods and classical numerical methods. The solution is provided on a continuous finite time interval unlike the other numerical techniques with comparable accuracy. With the advent of neuroprocessors and digital signal processors the method becomes particularly interesting due to the expected essential gains in the execution speed. (general)
Soft Computing Techniques in Vision Science
Yang, Yeon-Mo
2012-01-01
This Special Edited Volume is a unique approach towards Computational solution for the upcoming field of study called Vision Science. From a scientific firmament Optics, Ophthalmology, and Optical Science has surpassed an Odyssey of optimizing configurations of Optical systems, Surveillance Cameras and other Nano optical devices with the metaphor of Nano Science and Technology. Still these systems are falling short of its computational aspect to achieve the pinnacle of human vision system. In this edited volume much attention has been given to address the coupling issues Computational Science and Vision Studies. It is a comprehensive collection of research works addressing various related areas of Vision Science like Visual Perception and Visual system, Cognitive Psychology, Neuroscience, Psychophysics and Ophthalmology, linguistic relativity, color vision etc. This issue carries some latest developments in the form of research articles and presentations. The volume is rich of contents with technical tools ...
Journal of Computer Science and Its Application
African Journals Online (AJOL)
Journal of Computer Science and Its Application ... Cloud model construct for transaction-based cooperative systems · EMAIL FULL TEXT EMAIL FULL TEXT ... The evaluation of tertiary institution service quality using HiEdQUAL and fuzzy ...
Code 672 observational science branch computer networks
Hancock, D. W.; Shirk, H. G.
1988-01-01
In general, networking increases productivity due to the speed of transmission, easy access to remote computers, ability to share files, and increased availability of peripherals. Two different networks within the Observational Science Branch are described in detail.
Computer science: Data analysis meets quantum physics
Schramm, Steven
2017-10-01
A technique that combines machine learning and quantum computing has been used to identify the particles known as Higgs bosons. The method could find applications in many areas of science. See Letter p.375
Computational Science: Ensuring America`s Competitiveness
Networking and Information Technology Research and Development, Executive Office of the President — ...rationalization and restructuring of computational science within universities and Federal agencies, and the development and maintenance of a multi-decade roadmap...
Philosophy, computing and information science
Hagengruber, Ruth
2014-01-01
Over the last four decades computers and the internet have become an intrinsic part of all our lives, but this speed of development has left related philosophical enquiry behind. Featuring the work of computer scientists and philosophers, these essays provide an overview of an exciting new area of philosophy that is still taking shape.
Third Workshop on Teaching Computational Science (WTCS 2009)
Tirado-Ramos, A.; Shiflet, A.
2009-01-01
The Third Workshop on Teaching Computational Science, within the International Conference on Computational Science, provides a platform for discussing innovations in teaching computational sciences at all levels and contexts of higher education. This editorial provides an introduction to the work
Second Workshop on Teaching Computational Science WTCS 2008
Tirado-Ramos, A.
2008-01-01
The Second Workshop on Teaching Computational Science, within the International Conference on Computational Science, provides a platform for discussing innovations in teaching computational sciences at all levels and contexts of higher education. This editorial provides an introduction to the work
Applied Computational Mathematics in Social Sciences
Damaceanu, Romulus-Catalin
2010-01-01
Applied Computational Mathematics in Social Sciences adopts a modern scientific approach that combines knowledge from mathematical modeling with various aspects of social science. Special algorithms can be created to simulate an artificial society and a detailed analysis can subsequently be used to project social realities. This Ebook specifically deals with computations using the NetLogo platform, and is intended for researchers interested in advanced human geography and mathematical modeling studies.
Is Computer Science Compatible with Technological Literacy?
Buckler, Chris; Koperski, Kevin; Loveland, Thomas R.
2018-01-01
Although technology education evolved over time, and pressure increased to infuse more engineering principles and increase links to STEM (science technology, engineering, and mathematics) initiatives, there has never been an official alignment between technology and engineering education and computer science. There is movement at the federal level…
Computer Science Concept Inventories: Past and Future
Taylor, C.; Zingaro, D.; Porter, L.; Webb, K. C.; Lee, C. B.; Clancy, M.
2014-01-01
Concept Inventories (CIs) are assessments designed to measure student learning of core concepts. CIs have become well known for their major impact on pedagogical techniques in other sciences, especially physics. Presently, there are no widely used, validated CIs for computer science. However, considerable groundwork has been performed in the form…
Rangaswamy Narasimhan: Doyen of Computer Science
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 5. Rangaswamy Narasimhan: Doyen of Computer Science and Technology. Srinivasan Ramani. Article-in-a-Box Volume 13 Issue 5 May 2008 pp 407-409. Fulltext. Click here to view fulltext PDF. Permanent link:
Computational Science at the Argonne Leadership Computing Facility
Romero, Nichols
2014-03-01
The goal of the Argonne Leadership Computing Facility (ALCF) is to extend the frontiers of science by solving problems that require innovative approaches and the largest-scale computing systems. ALCF's most powerful computer - Mira, an IBM Blue Gene/Q system - has nearly one million cores. How does one program such systems? What software tools are available? Which scientific and engineering applications are able to utilize such levels of parallelism? This talk will address these questions and describe a sampling of projects that are using ALCF systems in their research, including ones in nanoscience, materials science, and chemistry. Finally, the ways to gain access to ALCF resources will be presented. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357.
Group Projects and the Computer Science Curriculum
Joy, Mike
2005-01-01
Group projects in computer science are normally delivered with reference to good software engineering practice. The discipline of software engineering is rapidly evolving, and the application of the latest 'agile techniques' to group projects causes a potential conflict with constraints imposed by regulating bodies on the computer science…
Computer science research and technology volume 3
Bauer, Janice P
2011-01-01
This book presents leading-edge research from across the globe in the field of computer science research, technology and applications. Each contribution has been carefully selected for inclusion based on the significance of the research to this fast-moving and diverse field. Some topics included are: network topology; agile programming; virtualization; and reconfigurable computing.
Computer science and the recent innovations of the modern society
Directory of Open Access Journals (Sweden)
Greorghe Popescu
2010-12-01
Full Text Available The paper “Computer science and the recent innovations of the modern society” presents the importance of computer science, with the most important historical moments in its evolution, the main theoretical elements of the computation science, computer elements and architecture and the latest innovations in the computer science, such as Artificial Intelligence.
International Conference on Computer, Communication and Computational Sciences
Mishra, Krishn; Tiwari, Shailesh; Singh, Vivek
2017-01-01
Exchange of information and innovative ideas are necessary to accelerate the development of technology. With advent of technology, intelligent and soft computing techniques came into existence with a wide scope of implementation in engineering sciences. Keeping this ideology in preference, this book includes the insights that reflect the ‘Advances in Computer and Computational Sciences’ from upcoming researchers and leading academicians across the globe. It contains high-quality peer-reviewed papers of ‘International Conference on Computer, Communication and Computational Sciences (ICCCCS 2016), held during 12-13 August, 2016 in Ajmer, India. These papers are arranged in the form of chapters. The content of the book is divided into two volumes that cover variety of topics such as intelligent hardware and software design, advanced communications, power and energy optimization, intelligent techniques used in internet of things, intelligent image processing, advanced software engineering, evolutionary and ...
Learning computer science by watching video games
Nagataki, Hiroyuki
2014-01-01
This paper proposes a teaching method that utilizes video games in computer science education. The primary characteristic of this approach is that it utilizes video games as observational materials. The underlying idea is that by observing the computational behavior of a wide variety of video games, learners will easily grasp the fundamental architecture, theory, and technology of computers. The results of a case study conducted indicate that the method enhances the motivation of students for...
Nuclear computational science a century in review
Azmy, Yousry
2010-01-01
Nuclear engineering has undergone extensive progress over the years. In the past century, colossal developments have been made and with specific reference to the mathematical theory and computational science underlying this discipline, advances in areas such as high-order discretization methods, Krylov Methods and Iteration Acceleration have steadily grown. Nuclear Computational Science: A Century in Review addresses these topics and many more; topics which hold special ties to the first half of the century, and topics focused around the unique combination of nuclear engineering, computational
Transactions on Computational Science IX
DEFF Research Database (Denmark)
Diagrams, held in Copenhagen, Denmark, June 23-36, 2009. Topics covered include: divide and conquer construction of Voronoi diagrams; new generalized Voronoi diagrams or properties of existing generalized Voronoi diagrams; and applications of Voronoi diagrams and their duals in graph theory, computer...... graphics, bioinformatics, and spatial process simulation....
Fundamentals: IVC and Computer Science
Gozalvez, Javier; Haerri, Jerome; Hartenstein, Hannes; Heijenk, Geert; Kargl, Frank; Petit, Jonathan; Scheuermann, Björn; Tieler, Tessa; Altintas, O.; Dressler, F.; Hartenstein, H.; Tonguz, O.K.
The working group on “Fundamentals: IVC and Computer Science‿ discussed the lasting value of achieved research results as well as potential future directions in the field of inter- vehicular communication. Two major themes ‘with variations’ were the dependence on a specific technology (particularly
Computational approach in zeolite science
Pidko, E.A.; Santen, van R.A.; Chester, A.W.; Derouane, E.G.
2009-01-01
This chapter presents an overview of different computational methods and their application to various fields of zeolite chemistry. We will discuss static lattice methods based on interatomic potentials to predict zeolite structures and topologies, Monte Carlo simulations for the investigation of
Computational Science in Armenia (Invited Talk)
Marandjian, H.; Shoukourian, Yu.
This survey is devoted to the development of informatics and computer science in Armenia. The results in theoretical computer science (algebraic models, solutions to systems of general form recursive equations, the methods of coding theory, pattern recognition and image processing), constitute the theoretical basis for developing problem-solving-oriented environments. As examples can be mentioned: a synthesizer of optimized distributed recursive programs, software tools for cluster-oriented implementations of two-dimensional cellular automata, a grid-aware web interface with advanced service trading for linear algebra calculations. In the direction of solving scientific problems that require high-performance computing resources, examples of completed projects include the field of physics (parallel computing of complex quantum systems), astrophysics (Armenian virtual laboratory), biology (molecular dynamics study of human red blood cell membrane), meteorology (implementing and evaluating the Weather Research and Forecast Model for the territory of Armenia). The overview also notes that the Institute for Informatics and Automation Problems of the National Academy of Sciences of Armenia has established a scientific and educational infrastructure, uniting computing clusters of scientific and educational institutions of the country and provides the scientific community with access to local and international computational resources, that is a strong support for computational science in Armenia.
SIAM Conference on Computational Science and Engineering
Energy Technology Data Exchange (ETDEWEB)
None, None
2005-08-29
The Second SIAM Conference on Computational Science and Engineering was held in San Diego from February 10-12, 2003. Total conference attendance was 553. This is a 23% increase in attendance over the first conference. The focus of this conference was to draw attention to the tremendous range of major computational efforts on large problems in science and engineering, to promote the interdisciplinary culture required to meet these large-scale challenges, and to encourage the training of the next generation of computational scientists. Computational Science & Engineering (CS&E) is now widely accepted, along with theory and experiment, as a crucial third mode of scientific investigation and engineering design. Aerospace, automotive, biological, chemical, semiconductor, and other industrial sectors now rely on simulation for technical decision support. For federal agencies also, CS&E has become an essential support for decisions on resources, transportation, and defense. CS&E is, by nature, interdisciplinary. It grows out of physical applications and it depends on computer architecture, but at its heart are powerful numerical algorithms and sophisticated computer science techniques. From an applied mathematics perspective, much of CS&E has involved analysis, but the future surely includes optimization and design, especially in the presence of uncertainty. Another mathematical frontier is the assimilation of very large data sets through such techniques as adaptive multi-resolution, automated feature search, and low-dimensional parameterization. The themes of the 2003 conference included, but were not limited to: Advanced Discretization Methods; Computational Biology and Bioinformatics; Computational Chemistry and Chemical Engineering; Computational Earth and Atmospheric Sciences; Computational Electromagnetics; Computational Fluid Dynamics; Computational Medicine and Bioengineering; Computational Physics and Astrophysics; Computational Solid Mechanics and Materials; CS
Computational Exposure Science: An Emerging Discipline to ...
Background: Computational exposure science represents a frontier of environmental science that is emerging and quickly evolving.Objectives: In this commentary, we define this burgeoning discipline, describe a framework for implementation, and review some key ongoing research elements that are advancing the science with respect to exposure to chemicals in consumer products.Discussion: The fundamental elements of computational exposure science include the development of reliable, computationally efficient predictive exposure models; the identification, acquisition, and application of data to support and evaluate these models; and generation of improved methods for extrapolating across chemicals. We describe our efforts in each of these areas and provide examples that demonstrate both progress and potential.Conclusions: Computational exposure science, linked with comparable efforts in toxicology, is ushering in a new era of risk assessment that greatly expands our ability to evaluate chemical safety and sustainability and to protect public health. The National Exposure Research Laboratory’s (NERL’s) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA’s mission to protect human health and the environment. HEASD’s research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA’s strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source
Probability, statistics, and computational science.
Beerenwinkel, Niko; Siebourg, Juliane
2012-01-01
In this chapter, we review basic concepts from probability theory and computational statistics that are fundamental to evolutionary genomics. We provide a very basic introduction to statistical modeling and discuss general principles, including maximum likelihood and Bayesian inference. Markov chains, hidden Markov models, and Bayesian network models are introduced in more detail as they occur frequently and in many variations in genomics applications. In particular, we discuss efficient inference algorithms and methods for learning these models from partially observed data. Several simple examples are given throughout the text, some of which point to models that are discussed in more detail in subsequent chapters.
Plagiarism in computer science courses
Energy Technology Data Exchange (ETDEWEB)
Harris, J.K. [Francis Marion Univ., Florence, SC (United States)
1994-12-31
Plagiarism of computer programs has long been a problem in higher education. Ease of electronic copying, vague understanding by students as to what constitutes plagiarism, increasing acceptance of plagiarism by students, lack of enforcement by instructors and school administrators, and a whole host of other factors contribute to plagiarism. The first step in curbing plagiarism is prevention, the second (and much less preferable) is detection. History files and software metrics can be used as a tool to aid in detecting possible plagiarism. This paper gives advice concerning how to deal with plagiarism and with using software monitors to detect plagiarism.
Computationally Efficient Nonlinear Bell Inequalities for Quantum Networks
Luo, Ming-Xing
2018-04-01
The correlations in quantum networks have attracted strong interest with new types of violations of the locality. The standard Bell inequalities cannot characterize the multipartite correlations that are generated by multiple sources. The main problem is that no computationally efficient method is available for constructing useful Bell inequalities for general quantum networks. In this work, we show a significant improvement by presenting new, explicit Bell-type inequalities for general networks including cyclic networks. These nonlinear inequalities are related to the matching problem of an equivalent unweighted bipartite graph that allows constructing a polynomial-time algorithm. For the quantum resources consisting of bipartite entangled pure states and generalized Greenberger-Horne-Zeilinger (GHZ) states, we prove the generic nonmultilocality of quantum networks with multiple independent observers using new Bell inequalities. The violations are maximal with respect to the presented Tsirelson's bound for Einstein-Podolsky-Rosen states and GHZ states. Moreover, these violations hold for Werner states or some general noisy states. Our results suggest that the presented Bell inequalities can be used to characterize experimental quantum networks.
Applied Mathematics, Modelling and Computational Science
Kotsireas, Ilias; Makarov, Roman; Melnik, Roderick; Shodiev, Hasan
2015-01-01
The Applied Mathematics, Modelling, and Computational Science (AMMCS) conference aims to promote interdisciplinary research and collaboration. The contributions in this volume cover the latest research in mathematical and computational sciences, modeling, and simulation as well as their applications in natural and social sciences, engineering and technology, industry, and finance. The 2013 conference, the second in a series of AMMCS meetings, was held August 26–30 and organized in cooperation with AIMS and SIAM, with support from the Fields Institute in Toronto, and Wilfrid Laurier University. There were many young scientists at AMMCS-2013, both as presenters and as organizers. This proceedings contains refereed papers contributed by the participants of the AMMCS-2013 after the conference. This volume is suitable for researchers and graduate students, mathematicians and engineers, industrialists, and anyone who would like to delve into the interdisciplinary research of applied and computational mathematics ...
Proceedings of computational methods in materials science
International Nuclear Information System (INIS)
Mark, J.E. Glicksman, M.E.; Marsh, S.P.
1992-01-01
The Symposium on which this volume is based was conceived as a timely expression of some of the fast-paced developments occurring throughout materials science and engineering. It focuses particularly on those involving modern computational methods applied to model and predict the response of materials under a diverse range of physico-chemical conditions. The current easy access of many materials scientists in industry, government laboratories, and academe to high-performance computers has opened many new vistas for predicting the behavior of complex materials under realistic conditions. Some have even argued that modern computational methods in materials science and engineering are literally redefining the bounds of our knowledge from which we predict structure-property relationships, perhaps forever changing the historically descriptive character of the science and much of the engineering
Palmero, Faustino; Lemos, M; Sánchez-Rey, Bernardo; Casado-Pascual, Jesús
2018-01-01
This book presents an overview of the most recent advances in nonlinear science. It provides a unified view of nonlinear properties in many different systems and highlights many new developments. While volume 1 concentrates on mathematical theory and computational techniques and challenges, which are essential for the study of nonlinear science, this second volume deals with nonlinear excitations in several fields. These excitations can be localized and transport energy and matter in the form of breathers, solitons, kinks or quodons with very different characteristics, which are discussed in the book. They can also transport electric charge, in which case they are known as polarobreathers or solectrons. Nonlinear excitations can influence function and structure in biology, as for example, protein folding. In crystals and other condensed matter, they can modify transport properties, reaction kinetics and interact with defects. There are also engineering applications in electric lattices, Josephson junction a...
Multiscale analysis of nonlinear systems using computational homology
Energy Technology Data Exchange (ETDEWEB)
Konstantin Mischaikow; Michael Schatz; William Kalies; Thomas Wanner
2010-05-24
Characterization - We extended our previous work on studying the time evolution of patterns associated with phase separation in conserved concentration fields. (6) Probabilistic Homology Validation - work on microstructure characterization is based on numerically studying the homology of certain sublevel sets of a function, whose evolution is described by deterministic or stochastic evolution equations. (7) Computational Homology and Dynamics - Topological methods can be used to rigorously describe the dynamics of nonlinear systems. We are approaching this problem from several perspectives and through a variety of systems. (8) Stress Networks in Polycrystals - we have characterized stress networks in polycrystals. This part of the project is aimed at developing homological metrics which can aid in distinguishing not only microstructures, but also derived mechanical response fields. (9) Microstructure-Controlled Drug Release - This part of the project is concerned with the development of topological metrics in the context of controlled drug delivery systems, such as drug-eluting stents. We are particularly interested in developing metrics which can be used to link the processing stage to the resulting microstructure, and ultimately to the achieved system response in terms of drug release profiles. (10) Microstructure of Fuel Cells - we have been using our computational homology software to analyze the topological structure of the void, metal and ceramic components of a Solid Oxide Fuel Cell.
Multiscale analysis of nonlinear systems using computational homology
Energy Technology Data Exchange (ETDEWEB)
Konstantin Mischaikow, Rutgers University/Georgia Institute of Technology, Michael Schatz, Georgia Institute of Technology, William Kalies, Florida Atlantic University, Thomas Wanner,George Mason University
2010-05-19
Characterization - We extended our previous work on studying the time evolution of patterns associated with phase separation in conserved concentration fields. (6) Probabilistic Homology Validation - work on microstructure characterization is based on numerically studying the homology of certain sublevel sets of a function, whose evolution is described by deterministic or stochastic evolution equations. (7) Computational Homology and Dynamics - Topological methods can be used to rigorously describe the dynamics of nonlinear systems. We are approaching this problem from several perspectives and through a variety of systems. (8) Stress Networks in Polycrystals - we have characterized stress networks in polycrystals. This part of the project is aimed at developing homological metrics which can aid in distinguishing not only microstructures, but also derived mechanical response fields. (9) Microstructure-Controlled Drug Release - This part of the project is concerned with the development of topological metrics in the context of controlled drug delivery systems, such as drug-eluting stents. We are particularly interested in developing metrics which can be used to link the processing stage to the resulting microstructure, and ultimately to the achieved system response in terms of drug release profiles. (10) Microstructure of Fuel Cells - we have been using our computational homology software to analyze the topological structure of the void, metal and ceramic components of a Solid Oxide Fuel Cell.
Applied modelling and computing in social science
Povh, Janez
2015-01-01
In social science outstanding results are yielded by advanced simulation methods, based on state of the art software technologies and an appropriate combination of qualitative and quantitative methods. This book presents examples of successful applications of modelling and computing in social science: business and logistic process simulation and optimization, deeper knowledge extractions from big data, better understanding and predicting of social behaviour and modelling health and environment changes.
Sustainable computational science: the ReScience initiative
Directory of Open Access Journals (Sweden)
Nicolas P. Rougier
2017-12-01
Full Text Available Computer science offers a large set of tools for prototyping, writing, running, testing, validating, sharing and reproducing results; however, computational science lags behind. In the best case, authors may provide their source code as a compressed archive and they may feel confident their research is reproducible. But this is not exactly true. James Buckheit and David Donoho proposed more than two decades ago that an article about computational results is advertising, not scholarship. The actual scholarship is the full software environment, code, and data that produced the result. This implies new workflows, in particular in peer-reviews. Existing journals have been slow to adapt: source codes are rarely requested and are hardly ever actually executed to check that they produce the results advertised in the article. ReScience is a peer-reviewed journal that targets computational research and encourages the explicit replication of already published research, promoting new and open-source implementations in order to ensure that the original research can be replicated from its description. To achieve this goal, the whole publishing chain is radically different from other traditional scientific journals. ReScience resides on GitHub where each new implementation of a computational study is made available together with comments, explanations, and software tests.
Toward efficient computation of the expected relative entropy for nonlinear experimental design
International Nuclear Information System (INIS)
Coles, Darrell; Prange, Michael
2012-01-01
The expected relative entropy between prior and posterior model-parameter distributions is a Bayesian objective function in experimental design theory that quantifies the expected gain in information of an experiment relative to a previous state of knowledge. The expected relative entropy is a preferred measure of experimental quality because it can handle nonlinear data-model relationships, an important fact due to the ubiquity of nonlinearity in science and engineering and its effects on post-inversion parameter uncertainty. This objective function does not necessarily yield experiments that mediate well-determined systems, but, being a Bayesian quality measure, it rigorously accounts for prior information which constrains model parameters that may be only weakly constrained by the optimized dataset. Historically, use of the expected relative entropy has been limited by the computing and storage requirements associated with high-dimensional numerical integration. Herein, a bifocal algorithm is developed that makes these computations more efficient. The algorithm is demonstrated on a medium-sized problem of sampling relaxation phenomena and on a large problem of source–receiver selection for a 2D vertical seismic profile. The method is memory intensive but workarounds are discussed. (paper)
Mathematics for engineering, technology and computing science
Martin, Hedley G
1970-01-01
Mathematics for Engineering, Technology and Computing Science is a text on mathematics for courses in engineering, technology, and computing science. It covers linear algebra, ordinary differential equations, and vector analysis, together with line and multiple integrals. This book consists of eight chapters and begins with a discussion on determinants and linear equations, with emphasis on how the value of a determinant is defined and how it may be obtained. Solution of linear equations and the dependence between linear equations are also considered. The next chapter introduces the reader to
Demystifying computer science for molecular ecologists.
Belcaid, Mahdi; Toonen, Robert J
2015-06-01
In this age of data-driven science and high-throughput biology, computational thinking is becoming an increasingly important skill for tackling both new and long-standing biological questions. However, despite its obvious importance and conspicuous integration into many areas of biology, computer science is still viewed as an obscure field that has, thus far, permeated into only a few of the biology curricula across the nation. A national survey has shown that lack of computational literacy in environmental sciences is the norm rather than the exception [Valle & Berdanier (2012) Bulletin of the Ecological Society of America, 93, 373-389]. In this article, we seek to introduce a few important concepts in computer science with the aim of providing a context-specific introduction aimed at research biologists. Our goal was to help biologists understand some of the most important mainstream computational concepts to better appreciate bioinformatics methods and trade-offs that are not obvious to the uninitiated. © 2015 John Wiley & Sons Ltd.
Digital Da Vinci computers in the arts and sciences
Lee, Newton
2014-01-01
Explores polymathic education through unconventional and creative applications of computer science in the arts and sciences Examines the use of visual computation, 3d printing, social robotics and computer modeling for computational art creation and design Includes contributions from leading researchers and practitioners in computer science, architecture and digital media
Computer science approach to quantum control
International Nuclear Information System (INIS)
Janzing, D.
2006-01-01
Whereas it is obvious that every computation process is a physical process it has hardly been recognized that many complex physical processes bear similarities to computation processes. This is in particular true for the control of physical systems on the nanoscopic level: usually the system can only be accessed via a rather limited set of elementary control operations and for many purposes only a concatenation of a large number of these basic operations will implement the desired process. This concatenation is in many cases quite similar to building complex programs from elementary steps and principles for designing algorithm may thus be a paradigm for designing control processes. For instance, one can decrease the temperature of one part of a molecule by transferring its heat to the remaining part where it is then dissipated to the environment. But the implementation of such a process involves a complex sequence of electromagnetic pulses. This work considers several hypothetical control processes on the nanoscopic level and show their analogy to computation processes. We show that measuring certain types of quantum observables is such a complex task that every instrument that is able to perform it would necessarily be an extremely powerful computer. Likewise, the implementation of a heat engine on the nanoscale requires to process the heat in a way that is similar to information processing and it can be shown that heat engines with maximal efficiency would be powerful computers, too. In the same way as problems in computer science can be classified by complexity classes we can also classify control problems according to their complexity. Moreover, we directly relate these complexity classes for control problems to the classes in computer science. Unifying notions of complexity in computer science and physics has therefore two aspects: on the one hand, computer science methods help to analyze the complexity of physical processes. On the other hand, reasonable
Science Prospects And Benefits with Exascale Computing
Energy Technology Data Exchange (ETDEWEB)
Kothe, Douglas B [ORNL
2007-12-01
Scientific computation has come into its own as a mature technology in all fields of science. Never before have we been able to accurately anticipate, analyze, and plan for complex events that have not yet occurred from the operation of a reactor running at 100 million degrees centigrade to the changing climate a century down the road. Combined with the more traditional approaches of theory and experiment, scientific computation provides a profound tool for insight and solution as we look at complex systems containing billions of components. Nevertheless, it cannot yet do all we would like. Much of scientific computation s potential remains untapped in areas such as materials science, Earth science, energy assurance, fundamental science, biology and medicine, engineering design, and national security because the scientific challenges are far too enormous and complex for the computational resources at hand. Many of these challenges are of immediate global importance. These challenges can be overcome by a revolution in computing that promises real advancement at a greatly accelerated pace. Planned petascale systems (capable of a petaflop, or 1015 floating point operations per second) in the next 3 years and exascale systems (capable of an exaflop, or 1018 floating point operations per second) in the next decade will provide an unprecedented opportunity to attack these global challenges through modeling and simulation. Exascale computers, with a processing capability similar to that of the human brain, will enable the unraveling of longstanding scientific mysteries and present new opportunities. Table ES.1 summarizes these scientific opportunities, their key application areas, and the goals and associated benefits that would result from solutions afforded by exascale computing.
International Conference on Computational Engineering Science
Yagawa, G
1988-01-01
The aim of this Conference was to become a forum for discussion of both academic and industrial research in those areas of computational engineering science and mechanics which involve and enrich the rational application of computers, numerical methods, and mechanics, in modern technology. The papers presented at this Conference cover the following topics: Solid and Structural Mechanics, Constitutive Modelling, Inelastic and Finite Deformation Response, Transient Analysis, Structural Control and Optimization, Fracture Mechanics and Structural Integrity, Computational Fluid Dynamics, Compressible and Incompressible Flow, Aerodynamics, Transport Phenomena, Heat Transfer and Solidification, Electromagnetic Field, Related Soil Mechanics and MHD, Modern Variational Methods, Biomechanics, and Off-Shore-Structural Mechanics.
Application of cluster computing in materials science
International Nuclear Information System (INIS)
Kuzmin, A.
2006-01-01
Solution of many problems in materials science requires that high performance computing (HPC) be used. Therefore, a cluster computer, Latvian Super-cluster (LASC), was constructed at the Institute of Solid State Physics of the University of Latvia in 2002. The LASC is used for advanced research in the fields of quantum chemistry, solid state physics and nano materials. In this work we overview currently available computational technologies and exemplify their application by interpretation of x-ray absorption spectra for nano-sized ZnO. (author)
Vector and parallel processors in computational science
International Nuclear Information System (INIS)
Duff, I.S.; Reid, J.K.
1985-01-01
These proceedings contain the articles presented at the named conference. These concern hardware and software for vector and parallel processors, numerical methods and algorithms for the computation on such processors, as well as applications of such methods to different fields of physics and related sciences. See hints under the relevant topics. (HSI)
Programming Paradigms in Computer Science Education
Bolshakova, Elena
2005-01-01
Main styles, or paradigms of programming – imperative, functional, logic, and object-oriented – are shortly described and compared, and corresponding programming techniques are outlined. Programming languages are classified in accordance with the main style and techniques supported. It is argued that profound education in computer science should include learning base programming techniques of all main programming paradigms.
The Student/Library Computer Science Collaborative
Hahn, Jim
2015-01-01
With funding from an Institute of Museum and Library Services demonstration grant, librarians of the Undergraduate Library at the University of Illinois at Urbana-Champaign partnered with students in computer science courses to design and build student-centered mobile apps. The grant work called for demonstration of student collaboration…
Computational Experiments for Science and Engineering Education
Xie, Charles
2011-01-01
How to integrate simulation-based engineering and science (SBES) into the science curriculum smoothly is a challenging question. For the importance of SBES to be appreciated, the core value of simulations-that they help people understand natural phenomena and solve engineering problems-must be taught. A strategy to achieve this goal is to introduce computational experiments to the science curriculum to replace or supplement textbook illustrations and exercises and to complement or frame hands-on or wet lab experiments. In this way, students will have an opportunity to learn about SBES without compromising other learning goals required by the standards and teachers will welcome these tools as they strengthen what they are already teaching. This paper demonstrates this idea using a number of examples in physics, chemistry, and engineering. These exemplary computational experiments show that it is possible to create a curriculum that is both deeper and wider.
Nonlinear evolution equations and solving algebraic systems: the importance of computer algebra
International Nuclear Information System (INIS)
Gerdt, V.P.; Kostov, N.A.
1989-01-01
In the present paper we study the application of computer algebra to solve the nonlinear polynomial systems which arise in investigation of nonlinear evolution equations. We consider several systems which are obtained in classification of integrable nonlinear evolution equations with uniform rank. Other polynomial systems are related with the finding of algebraic curves for finite-gap elliptic potentials of Lame type and generalizations. All systems under consideration are solved using the method based on construction of the Groebner basis for corresponding polynomial ideals. The computations have been carried out using computer algebra systems. 20 refs
[Earth Science Technology Office's Computational Technologies Project
Fischer, James (Technical Monitor); Merkey, Phillip
2005-01-01
This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.
International Nuclear Information System (INIS)
Abe, H.; Okuda, H.
1994-06-01
We study linear and nonlinear properties of a new computer simulation model developed to study the propagation of electromagnetic waves in a dielectric medium in the linear and nonlinear regimes. The model is constructed by combining a microscopic model used in the semi-classical approximation for the dielectric media and the particle model developed for the plasma simulations. It is shown that the model may be useful for studying linear and nonlinear wave propagation in the dielectric media
Computational thinking in life science education.
Directory of Open Access Journals (Sweden)
Amir Rubinstein
2014-11-01
Full Text Available We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1 devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2 focus on discrete notions, rather than on continuous ones, and (3 have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.
Computational thinking in life science education.
Rubinstein, Amir; Chor, Benny
2014-11-01
We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1) devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2) focus on discrete notions, rather than on continuous ones, and (3) have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.
Computer-aided Nonlinear Control System Design Using Describing Function Models
Nassirharand, Amir
2012-01-01
A systematic computer-aided approach provides a versatile setting for the control engineer to overcome the complications of controller design for highly nonlinear systems. Computer-aided Nonlinear Control System Design provides such an approach based on the use of describing functions. The text deals with a large class of nonlinear systems without restrictions on the system order, the number of inputs and/or outputs or the number, type or arrangement of nonlinear terms. The strongly software-oriented methods detailed facilitate fulfillment of tight performance requirements and help the designer to think in purely nonlinear terms, avoiding the expedient of linearization which can impose substantial and unrealistic model limitations and drive up the cost of the final product. Design procedures are presented in a step-by-step algorithmic format each step being a functional unit with outputs that drive the other steps. This procedure may be easily implemented on a digital computer with example problems from mecha...
Scientific Discovery through Advanced Computing in Plasma Science
Tang, William
2005-03-01
per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of plasma turbulence in magnetically-confined high temperature plasmas. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract bright young talent to the computational science area.
TerraFERMA: Harnessing Advanced Computational Libraries in Earth Science
Wilson, C. R.; Spiegelman, M.; van Keken, P.
2012-12-01
Many important problems in Earth sciences can be described by non-linear coupled systems of partial differential equations. These "multi-physics" problems include thermo-chemical convection in Earth and planetary interiors, interactions of fluids and magmas with the Earth's mantle and crust and coupled flow of water and ice. These problems are of interest to a large community of researchers but are complicated to model and understand. Much of this complexity stems from the nature of multi-physics where small changes in the coupling between variables or constitutive relations can lead to radical changes in behavior, which in turn affect critical computational choices such as discretizations, solvers and preconditioners. To make progress in understanding such coupled systems requires a computational framework where multi-physics problems can be described at a high-level while maintaining the flexibility to easily modify the solution algorithm. Fortunately, recent advances in computational science provide a basis for implementing such a framework. Here we present the Transparent Finite Element Rapid Model Assembler (TerraFERMA), which leverages several advanced open-source libraries for core functionality. FEniCS (fenicsproject.org) provides a high level language for describing the weak forms of coupled systems of equations, and an automatic code generator that produces finite element assembly code. PETSc (www.mcs.anl.gov/petsc) provides a wide range of scalable linear and non-linear solvers that can be composed into effective multi-physics preconditioners. SPuD (amcg.ese.ic.ac.uk/Spud) is an application neutral options system that provides both human and machine-readable interfaces based on a single xml schema. Our software integrates these libraries and provides the user with a framework for exploring multi-physics problems. A single options file fully describes the problem, including all equations, coefficients and solver options. Custom compiled applications are
International Nuclear Information System (INIS)
Sarrach, D.; Strohner, P.
1986-01-01
The Gauss-Newton algorithm has been used to evaluate tracer binding parameters of RIA by nonlinear regression analysis. The calculations were carried out on the K1003 desk computer. Equations for simple binding models and its derivatives are presented. The advantages of nonlinear regression analysis over linear regression are demonstrated
A Financial Technology Entrepreneurship Program for Computer Science Students
Lawler, James P.; Joseph, Anthony
2011-01-01
Education in entrepreneurship is becoming a critical area of curricula for computer science students. Few schools of computer science have a concentration in entrepreneurship in the computing curricula. The paper presents Technology Entrepreneurship in the curricula at a leading school of computer science and information systems, in which students…
Sustainability science: accounting for nonlinear dynamics in policy and social-ecological systems
Resilience is an emergent property of complex systems. Understanding resilience is critical for sustainability science, as linked social-ecological systems and the policy process that governs them are characterized by non-linear dynamics. Non-linear dynamics in these systems mean...
Special Section on Synchronization in Nonlinear Science and Engineering
Ikeguchi, Tohru; Tokuda, Isao
Synchronization is a ubiquitous phenomenon of coupled nonlinear oscillators, commonly found in physics, engineering, biology, and other diverse disciplines. It has a long research history back to Christiaan Huygens, who discovered synchronized motion of two pendulum clocks in 1673. It is very easy to observe synchronization in our daily life: e.g., metronomes, candle fires, pet-bottle oscillators, saltwater oscillators, and so on(See, for example, experimental movies at http://www.youtube.com/user/IkeguchiLab?feature=watch). For the last few decades, significant development has been made from both theories and experiments on synchronization of coupled limit cycle oscillators as well as coupled chaotic oscillators. Applications have been also developed to communication technologies, controlling techniques, and data analysis. Combined with the idea from complex network theory, neuroscience, and systems biology, the research speed of synchronization has been even accelerated. This Special Section of NOLTA is primarily dedicated to the recent advanced development of basics and applications of synchronization in science and engineering. A number of qualified works is included, ranging from experimental study on synchronization of Huygens' system, analog circuits, and singing voice to applied study of synchronization in communication networks. One invited paper is devoted to comprehensive reviews on generalized synchronization of chaotic oscillators. On behalf of the editorial committee of the special section, the guest editors would like to express their sincere thanks to all the authors for their excellent contributions. In particular, they are grateful to Prof. Dr. Ulrich Parlitz for contributing his distinguished review article. They would also like to thank the reviewers and the members of the guest editorial committee, especially Prof. Hiroo Sekiya of Chiba University and the editorial staffs of the NOLTA journal, for their supports on publishing this Special
Computation of Value Functions in Nonlinear Differential Games with State Constraints
Botkin, Nikolai; Hoffmann, Karl-Heinz; Mayer, Natalie; Turova, Varvara
2013-01-01
Finite-difference schemes for the computation of value functions of nonlinear differential games with non-terminal payoff functional and state constraints are proposed. The solution method is based on the fact that the value function is a
Social sciences via network analysis and computation
Kanduc, Tadej
2015-01-01
In recent years information and communication technologies have gained significant importance in the social sciences. Because there is such rapid growth of knowledge, methods and computer infrastructure, research can now seamlessly connect interdisciplinary fields such as business process management, data processing and mathematics. This study presents some of the latest results, practices and state-of-the-art approaches in network analysis, machine learning, data mining, data clustering and classifications in the contents of social sciences. It also covers various real-life examples such as t
Lin, Yezhi; Liu, Yinping; Li, Zhibin
2012-01-01
The Adomian decomposition method (ADM) is one of the most effective methods for constructing analytic approximate solutions of nonlinear differential equations. In this paper, based on the new definition of the Adomian polynomials, and the two-step Adomian decomposition method (TSADM) combined with the Padé technique, a new algorithm is proposed to construct accurate analytic approximations of nonlinear differential equations with initial conditions. Furthermore, a MAPLE package is developed, which is user-friendly and efficient. One only needs to input a system, initial conditions and several necessary parameters, then our package will automatically deliver analytic approximate solutions within a few seconds. Several different types of examples are given to illustrate the validity of the package. Our program provides a helpful and easy-to-use tool in science and engineering to deal with initial value problems. Program summaryProgram title: NAPA Catalogue identifier: AEJZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJZ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4060 No. of bytes in distributed program, including test data, etc.: 113 498 Distribution format: tar.gz Programming language: MAPLE R13 Computer: PC Operating system: Windows XP/7 RAM: 2 Gbytes Classification: 4.3 Nature of problem: Solve nonlinear differential equations with initial conditions. Solution method: Adomian decomposition method and Padé technique. Running time: Seconds at most in routine uses of the program. Special tasks may take up to some minutes.
Advances in Computer Science and Education
Huang, Xiong
2012-01-01
CSE2011 is an integrated conference concentration its focus on computer science and education. In the proceeding, you can learn much more knowledge about computer science and education of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful
Energy Technology Data Exchange (ETDEWEB)
Sagdeev, R Z
1984-01-01
The results of theoretical and experimental investigations of nonlinear and turbulent phenomena from a wide range of fields in physics are presented in reviews and reports. Topics examined include localized vortex formations in an ideal fluid, phase transitions in crystals, spatially nonuniform structures in condensed matter, solitons in molecular systems, the migration of quasi-particles in easily deformed crystals, bifurcations and dissipative structures in distributed kinetic systems, and structures in a nonlinear burning medium. Consideration is given to macroscopic motion generation in nonequilibrium media, the interaction of bulk and surface wave trains, near-threshold instabilities in hydrodynamics, solitons in nonlinear elastic rods with variable characteristics, the generation of solitons and vortices from chaos, and nonlinear electromagnetic-wave dissipation in an electron system.
Who am I? ~ Undergraduate Computer Science Student
Ferris, Jane
2012-01-01
As part of a school review process a survey of the students was designed to gain insight into who the students of the school were. The survey was a voluntary anonymous online survey. Students were able to skip questions and select more than one option in some questions. This was to reduce frustration with participation in the survey and ensure that the survey was completed. This conference details the average undergraduate Computer Science student of a large third level institute.
Teaching computer science at school: some ideas
Bodei, Chiara; Grossi, Roberto; Lagan?, Maria Rita; Righi, Marco
2010-01-01
As a young discipline, Computer Science does not rely on longly tested didactic procedures. This allows the experimentation of innovative teaching methods at schools, especially in early childhood education. Our approach is based on the idea that abstracts notions should be gained as the ﬁnal result of a learning path made of concrete and touchable steps. To illustrate our methodology, we present some of the teaching projects we proposed.
Creating science simulations through Computational Thinking Patterns
Basawapatna, Ashok Ram
Computational thinking aims to outline fundamental skills from computer science that everyone should learn. As currently defined, with help from the National Science Foundation (NSF), these skills include problem formulation, logically organizing data, automating solutions through algorithmic thinking, and representing data through abstraction. One aim of the NSF is to integrate these and other computational thinking concepts into the classroom. End-user programming tools offer a unique opportunity to accomplish this goal. An end-user programming tool that allows students with little or no prior experience the ability to create simulations based on phenomena they see in-class could be a first step towards meeting most, if not all, of the above computational thinking goals. This thesis describes the creation, implementation and initial testing of a programming tool, called the Simulation Creation Toolkit, with which users apply high-level agent interactions called Computational Thinking Patterns (CTPs) to create simulations. Employing Computational Thinking Patterns obviates lower behavior-level programming and allows users to directly create agent interactions in a simulation by making an analogy with real world phenomena they are trying to represent. Data collected from 21 sixth grade students with no prior programming experience and 45 seventh grade students with minimal programming experience indicates that this is an effective first step towards enabling students to create simulations in the classroom environment. Furthermore, an analogical reasoning study that looked at how users might apply patterns to create simulations from high- level descriptions with little guidance shows promising results. These initial results indicate that the high level strategy employed by the Simulation Creation Toolkit is a promising strategy towards incorporating Computational Thinking concepts in the classroom environment.
Research Institute for Advanced Computer Science
Gross, Anthony R. (Technical Monitor); Leiner, Barry M.
2000-01-01
The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth; (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking. Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a
Computational studies of third-order nonlinear optical properties of ...
Indian Academy of Sciences (India)
Anuj Kumar
2017-06-20
Jun 20, 2017 ... Department of Physics, Jaypee University of Engineering and Technology, Raghogarh,. Guna 473 226, India. ∗ ... properties and other molecular properties of the organic nonlinear optical crystal 2-aminopyridinium p- toluenesulphonate ... nal processing, optical limiting, optical logic gates, laser radiation ...
Research in Applied Mathematics, Fluid Mechanics and Computer Science
1999-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.
[Research activities in applied mathematics, fluid mechanics, and computer science
1995-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.
NASA Center for Computational Sciences: History and Resources
2000-01-01
The Nasa Center for Computational Sciences (NCCS) has been a leading capacity computing facility, providing a production environment and support resources to address the challenges facing the Earth and space sciences research community.
Archives: Journal of Computer Science and Its Application
African Journals Online (AJOL)
Items 1 - 9 of 9 ... Archives: Journal of Computer Science and Its Application. Journal Home > Archives: Journal of Computer Science and Its Application. Log in or Register to get access to full text downloads.
Institute for Computer Applications in Science and Engineering (ICASE)
1984-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period April 1, 1983 through September 30, 1983 is summarized.
Journal of Computer Science and Its Application: Site Map
African Journals Online (AJOL)
Journal of Computer Science and Its Application: Site Map. Journal Home > About the Journal > Journal of Computer Science and Its Application: Site Map. Log in or Register to get access to full text downloads.
Journal of Computer Science and Its Application: About this journal
African Journals Online (AJOL)
Journal of Computer Science and Its Application: About this journal. Journal Home > Journal of Computer Science and Its Application: About this journal. Log in or Register to get access to full text downloads.
Journal of Computer Science and Its Application: Journal Sponsorship
African Journals Online (AJOL)
Journal of Computer Science and Its Application: Journal Sponsorship. Journal Home > About the Journal > Journal of Computer Science and Its Application: Journal Sponsorship. Log in or Register to get access to full text downloads.
Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits.
Ujfalussy, Balázs B; Makara, Judit K; Branco, Tiago; Lengyel, Máté
2015-12-24
Cortical neurons integrate thousands of synaptic inputs in their dendrites in highly nonlinear ways. It is unknown how these dendritic nonlinearities in individual cells contribute to computations at the level of neural circuits. Here, we show that dendritic nonlinearities are critical for the efficient integration of synaptic inputs in circuits performing analog computations with spiking neurons. We developed a theory that formalizes how a neuron's dendritic nonlinearity that is optimal for integrating synaptic inputs depends on the statistics of its presynaptic activity patterns. Based on their in vivo preynaptic population statistics (firing rates, membrane potential fluctuations, and correlations due to ensemble dynamics), our theory accurately predicted the responses of two different types of cortical pyramidal cells to patterned stimulation by two-photon glutamate uncaging. These results reveal a new computational principle underlying dendritic integration in cortical neurons by suggesting a functional link between cellular and systems--level properties of cortical circuits.
Architecture, systems research and computational sciences
2012-01-01
The Winter 2012 (vol. 14 no. 1) issue of the Nexus Network Journal is dedicated to the theme “Architecture, Systems Research and Computational Sciences”. This is an outgrowth of the session by the same name which took place during the eighth international, interdisciplinary conference “Nexus 2010: Relationships between Architecture and Mathematics, held in Porto, Portugal, in June 2010. Today computer science is an integral part of even strictly historical investigations, such as those concerning the construction of vaults, where the computer is used to survey the existing building, analyse the data and draw the ideal solution. What the papers in this issue make especially evident is that information technology has had an impact at a much deeper level as well: architecture itself can now be considered as a manifestation of information and as a complex system. The issue is completed with other research papers, conference reports and book reviews.
Computational science: Emerging opportunities and challenges
International Nuclear Information System (INIS)
Hendrickson, Bruce
2009-01-01
In the past two decades, computational methods have emerged as an essential component of the scientific and engineering enterprise. A diverse assortment of scientific applications has been simulated and explored via advanced computational techniques. Computer vendors have built enormous parallel machines to support these activities, and the research community has developed new algorithms and codes, and agreed on standards to facilitate ever more ambitious computations. However, this track record of success will be increasingly hard to sustain in coming years. Power limitations constrain processor clock speeds, so further performance improvements will need to come from ever more parallelism. This higher degree of parallelism will require new thinking about algorithms, programming models, and architectural resilience. Simultaneously, cutting edge science increasingly requires more complex simulations with unstructured and adaptive grids, and multi-scale and multi-physics phenomena. These new codes will push existing parallelization strategies to their limits and beyond. Emerging data-rich scientific applications are also in need of high performance computing, but their complex spatial and temporal data access patterns do not perform well on existing machines. These interacting forces will reshape high performance computing in the coming years.
Optical computation based on nonlinear total reflectional optical ...
Indian Academy of Sciences (India)
Optical computing; beam splitter; optical switch; polarized beams. ... main research direction called quantum information and quantum computation is .... above has several advantages: Firstly, it is easy to be integrated with appropriate.
Computer science in Dutch secondary education: independent or integrated?
van der Sijde, Peter; Doornekamp, B.G.
1992-01-01
Nowadays, in Dutch secondary education, computer science is integrated within school subjects. About ten years ago computer science was considered an independent subject, but in the mid-1980s this idea changed. In our study we investigated whether the objectives of teaching computer science as an
Empirical Determination of Competence Areas to Computer Science Education
Zendler, Andreas; Klaudt, Dieter; Seitz, Cornelia
2014-01-01
The authors discuss empirically determined competence areas to K-12 computer science education, emphasizing the cognitive level of competence. The results of a questionnaire with 120 professors of computer science serve as a database. By using multi-dimensional scaling and cluster analysis, four competence areas to computer science education…
Hispanic Women Overcoming Deterrents to Computer Science: A Phenomenological Study
Herling, Lourdes
2011-01-01
The products of computer science are important to all aspects of society and are tools in the solution of the world's problems. It is, therefore, troubling that the United States faces a shortage in qualified graduates in computer science. The number of women and minorities in computer science is significantly lower than the percentage of the…
Marrying Content and Process in Computer Science Education
Zendler, A.; Spannagel, C.; Klaudt, D.
2011-01-01
Constructivist approaches to computer science education emphasize that as well as knowledge, thinking skills and processes are involved in active knowledge construction. K-12 computer science curricula must not be based on fashions and trends, but on contents and processes that are observable in various domains of computer science, that can be…
Factors Influencing Exemplary Science Teachers' Levels of Computer Use
Hakverdi, Meral; Dana, Thomas M.; Swain, Colleen
2011-01-01
The purpose of this study was to examine exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their…
Factors influencing exemplary science teachers' levels of computer use
Hakverdi, Meral
This study examines exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their students' use of computer applications/tools in or for their science class. After a relevant review of the literature certain variables were selected for analysis. These variables included personal self-efficacy in teaching with computers, outcome expectancy, pupil-control ideology, level of computer use, age, gender, teaching experience, personal computer use, professional computer use and science teachers' level of knowledge/skills in using specific computer applications for science instruction. The sample for this study includes middle and high school science teachers who received the Presidential Award for Excellence in Science Teaching Award (sponsored by the White House and the National Science Foundation) between the years 1997 and 2003 from all 50 states and U.S. territories. Award-winning science teachers were contacted about the survey via e-mail or letter with an enclosed return envelope. Of the 334 award-winning science teachers, usable responses were received from 92 science teachers, which made a response rate of 27.5%. Analysis of the survey responses indicated that exemplary science teachers have a variety of knowledge/skills in using computer related applications/tools. The most commonly used computer applications/tools are information retrieval via the Internet, presentation tools, online communication, digital cameras, and data collection probes. Results of the study revealed that students' use of technology in their science classroom is highly correlated with the frequency of their science teachers' use of computer applications/tools. The results of the multiple regression analysis revealed that personal self-efficacy related to
Lin, Yezhi; Liu, Yinping; Li, Zhibin
2013-01-01
The Adomian decomposition method (ADM) is one of the most effective methods to construct analytic approximate solutions for nonlinear differential equations. In this paper, based on the new definition of the Adomian polynomials, Rach (2008) [22], the Adomian decomposition method and the Padé approximants technique, a new algorithm is proposed to construct analytic approximate solutions for nonlinear fractional differential equations with initial or boundary conditions. Furthermore, a MAPLE software package is developed to implement this new algorithm, which is user-friendly and efficient. One only needs to input the system equation, initial or boundary conditions and several necessary parameters, then our package will automatically deliver the analytic approximate solutions within a few seconds. Several different types of examples are given to illustrate the scope and demonstrate the validity of our package, especially for non-smooth initial value problems. Our package provides a helpful and easy-to-use tool in science and engineering simulations. Program summaryProgram title: ADMP Catalogue identifier: AENE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 12011 No. of bytes in distributed program, including test data, etc.: 575551 Distribution format: tar.gz Programming language: MAPLE R15. Computer: PCs. Operating system: Windows XP/7. RAM: 2 Gbytes Classification: 4.3. Nature of problem: Constructing analytic approximate solutions of nonlinear fractional differential equations with initial or boundary conditions. Non-smooth initial value problems can be solved by this program. Solution method: Based on the new definition of the Adomian polynomials [1], the Adomian decomposition method and the Pad
Computer science education for medical informaticians.
Logan, Judith R; Price, Susan L
2004-03-18
The core curriculum in the education of medical informaticians remains a topic of concern and discussion. This paper reports on a survey of medical informaticians with Master's level credentials that asked about computer science (CS) topics or skills that they need in their employment. All subjects were graduates or "near-graduates" of a single medical informatics Master's program that they entered with widely varying educational backgrounds. The survey instrument was validated for face and content validity prior to use. All survey items were rated as having some degree of importance in the work of these professionals, with retrieval and analysis of data from databases, database design and web technologies deemed most important. Least important were networking skills and object-oriented design and concepts. These results are consistent with other work done in the field and suggest that strong emphasis on technical skills, particularly databases, data analysis, web technologies, computer programming and general computer science are part of the core curriculum for medical informatics.
Computing as Empirical Science – Evolution of a Concept
Directory of Open Access Journals (Sweden)
Polak Paweł
2016-12-01
Full Text Available This article presents the evolution of philosophical and methodological considerations concerning empiricism in computer/computing science. In this study, we trace the most important current events in the history of reflection on computing. The forerunners of Artificial Intelligence H.A. Simon and A. Newell in their paper Computer Science As Empirical Inquiry (1975 started these considerations. Later the concept of empirical computer science was developed by S.S. Shapiro, P. Wegner, A.H. Eden and P.J. Denning. They showed various empirical aspects of computing. This led to a view of the science of computing (or science of information processing - the science of general scope. Some interesting contemporary ways towards a generalized perspective on computations were also shown (e.g. natural computing.
Non-Determinism: An Abstract Concept in Computer Science Studies
Armoni, Michal; Gal-Ezer, Judith
2007-01-01
Non-determinism is one of the most important, yet abstract, recurring concepts of Computer Science. It plays an important role in Computer Science areas such as formal language theory, computability theory, distributed computing, and operating systems. We conducted a series of studies on the perception of non-determinism. In the current research,…
COMPUTATIONAL SCIENCE IN IN THE EDUCATIONAL CURRICULUM
Directory of Open Access Journals (Sweden)
José Manuel Cabrera Delgado
2017-06-01
Full Text Available How to incorporate Computer Science (CS into the basic education curriculum continues to be subject of controversy at the European level. Without there being a defined strategy on behalf of the European Union in this respect, several countries have begun their incorporation showing us the advantages and difficulties of such action. Main elements of CS, such as computational thinking and coding, are already being taught in schools, establishing the need for a curriculum adapted to the ages of the students, training for teachers and enough resources. The purpose of this article, from the knowledge of the experience of these countries, is to respond, or at least to reflect, on the answers to the following questions: what is CS?, what are their main elements?, why is it necessary?, at what age should CS be taught?, what requirements are needed for their incorporation?
Lent, Ricardo
2013-01-01
Information technology is the enabling foundation science and technology for all of human activity at the beginning of the 21st century, and advances in this area are crucial to all of us. These advances are taking place all over the world and can only be followed and perceived when researchers from all over the world assemble, and exchange their ideas in conferences such as the one presented in this proceedings volume regarding the 27th International Symposium on Computer and Information Systems, held at the Institut Henri Poincare' in Paris on October 3 and 4, 2012. Computer and Information Sciences III: 27th International Symposium on Computer and Information Sciences contains novel advances in the state of the art covering applied research in electrical and computer engineering and computer science, across the broad area of information technology. It provides access to the main innovative activities in research across the world, and points to the results obtained recently by some of the most active teams ...
Lent, Ricardo; Sakellari, Georgia
2012-01-01
Information technology is the enabling foundation for all of human activity at the beginning of the 21st century, and advances in this area are crucial to all of us. These advances are taking place all over the world and can only be followed and perceived when researchers from all over the world assemble, and exchange their ideas in conferences such as the one presented in this proceedings volume regarding the 26th International Symposium on Computer and Information Systems, held at the Royal Society in London on 26th to 28th September 2011. Computer and Information Sciences II contains novel advances in the state of the art covering applied research in electrical and computer engineering and computer science, across the broad area of information technology. It provides access to the main innovative activities in research across the world, and points to the results obtained recently by some of the most active teams in both Europe and Asia.
The quantum computer game: citizen science
Damgaard, Sidse; Mølmer, Klaus; Sherson, Jacob
2013-05-01
Progress in the field of quantum computation is hampered by daunting technical challenges. Here we present an alternative approach to solving these by enlisting the aid of computer players around the world. We have previously examined a quantum computation architecture involving ultracold atoms in optical lattices and strongly focused tweezers of light. In The Quantum Computer Game (see http://www.scienceathome.org/), we have encapsulated the time-dependent Schrödinger equation for the problem in a graphical user interface allowing for easy user input. Players can then search the parameter space with real-time graphical feedback in a game context with a global high-score that rewards short gate times and robustness to experimental errors. The game which is still in a demo version has so far been tried by several hundred players. Extensions of the approach to other models such as Gross-Pitaevskii and Bose-Hubbard are currently under development. The game has also been incorporated into science education at high-school and university level as an alternative method for teaching quantum mechanics. Initial quantitative evaluation results are very positive. AU Ideas Center for Community Driven Research, CODER.
Przybylla, Mareen; Romeike, Ralf
2014-01-01
Physical computing covers the design and realization of interactive objects and installations and allows students to develop concrete, tangible products of the real world, which arise from the learners' imagination. This can be used in computer science education to provide students with interesting and motivating access to the different topic…
Nonlinear dynamics and predictability in the atmospheric sciences
Ghil, M.; Kimoto, M.; Neelin, J. D.
1991-01-01
Systematic applications of nonlinear dynamics to studies of the atmosphere and climate are reviewed for the period 1987-1990. Problems discussed include paleoclimatic applications, low-frequency atmospheric variability, and interannual variability of the ocean-atmosphere system. Emphasis is placed on applications of the successive bifurcation approach and the ergodic theory of dynamical systems to understanding and prediction of intraseasonal, interannual, and Quaternary climate changes.
Symbolic computation of exact solutions for a nonlinear evolution equation
International Nuclear Information System (INIS)
Liu Yinping; Li Zhibin; Wang Kuncheng
2007-01-01
In this paper, by means of the Jacobi elliptic function method, exact double periodic wave solutions and solitary wave solutions of a nonlinear evolution equation are presented. It can be shown that not only the obtained solitary wave solutions have the property of loop-shaped, cusp-shaped and hump-shaped for different values of parameters, but also different types of double periodic wave solutions are possible, namely periodic loop-shaped wave solutions, periodic hump-shaped wave solutions or periodic cusp-shaped wave solutions. Furthermore, periodic loop-shaped wave solutions will be degenerated to loop-shaped solitary wave solutions for the same values of parameters. So do cusp-shaped solutions and hump-shaped solutions. All these solutions are new and first reported here
A research program in empirical computer science
Knight, J. C.
1991-01-01
During the grant reporting period our primary activities have been to begin preparation for the establishment of a research program in experimental computer science. The focus of research in this program will be safety-critical systems. Many questions that arise in the effort to improve software dependability can only be addressed empirically. For example, there is no way to predict the performance of the various proposed approaches to building fault-tolerant software. Performance models, though valuable, are parameterized and cannot be used to make quantitative predictions without experimental determination of underlying distributions. In the past, experimentation has been able to shed some light on the practical benefits and limitations of software fault tolerance. It is common, also, for experimentation to reveal new questions or new aspects of problems that were previously unknown. A good example is the Consistent Comparison Problem that was revealed by experimentation and subsequently studied in depth. The result was a clear understanding of a previously unknown problem with software fault tolerance. The purpose of a research program in empirical computer science is to perform controlled experiments in the area of real-time, embedded control systems. The goal of the various experiments will be to determine better approaches to the construction of the software for computing systems that have to be relied upon. As such it will validate research concepts from other sources, provide new research results, and facilitate the transition of research results from concepts to practical procedures that can be applied with low risk to NASA flight projects. The target of experimentation will be the production software development activities undertaken by any organization prepared to contribute to the research program. Experimental goals, procedures, data analysis and result reporting will be performed for the most part by the University of Virginia.
Computer - based modeling in extract sciences research -III ...
African Journals Online (AJOL)
Molecular modeling techniques have been of great applicability in the study of the biological sciences and other exact science fields like agriculture, mathematics, computer science and the like. In this write up, a list of computer programs for predicting, for instance, the structure of proteins has been provided. Discussions on ...
International Nuclear Information System (INIS)
Bartlett, Stephen D.; Sanders, Barry C.
2002-01-01
Although universal continuous-variable quantum computation cannot be achieved via linear optics (including squeezing), homodyne detection, and feed-forward, inclusion of ideal photon-counting measurements overcomes this obstacle. These measurements are sometimes described by arrays of beam splitters to distribute the photons across several modes. We show that such a scheme cannot be used to implement ideal photon counting and that such measurements necessarily involve nonlinear evolution. However, this requirement of nonlinearity can be moved ''off-line,'' thereby permitting universal continuous-variable quantum computation with linear optics
Parallel Computation of the Jacobian Matrix for Nonlinear Equation Solvers Using MATLAB
Rose, Geoffrey K.; Nguyen, Duc T.; Newman, Brett A.
2017-01-01
Demonstrating speedup for parallel code on a multicore shared memory PC can be challenging in MATLAB due to underlying parallel operations that are often opaque to the user. This can limit potential for improvement of serial code even for the so-called embarrassingly parallel applications. One such application is the computation of the Jacobian matrix inherent to most nonlinear equation solvers. Computation of this matrix represents the primary bottleneck in nonlinear solver speed such that commercial finite element (FE) and multi-body-dynamic (MBD) codes attempt to minimize computations. A timing study using MATLAB's Parallel Computing Toolbox was performed for numerical computation of the Jacobian. Several approaches for implementing parallel code were investigated while only the single program multiple data (spmd) method using composite objects provided positive results. Parallel code speedup is demonstrated but the goal of linear speedup through the addition of processors was not achieved due to PC architecture.
A Cognitive Model for Problem Solving in Computer Science
Parham, Jennifer R.
2009-01-01
According to industry representatives, computer science education needs to emphasize the processes involved in solving computing problems rather than their solutions. Most of the current assessment tools used by universities and computer science departments analyze student answers to problems rather than investigating the processes involved in…
The role of dendritic non-linearities in single neuron computation
Directory of Open Access Journals (Sweden)
Boris Gutkin
2014-05-01
Full Text Available Experiment has demonstrated that summation of excitatory post-synaptic protientials (EPSPs in dendrites is non-linear. The sum of multiple EPSPs can be larger than their arithmetic sum, a superlinear summation due to the opening of voltage-gated channels and similar to somatic spiking. The so-called dendritic spike. The sum of multiple of EPSPs can also be smaller than their arithmetic sum, because the synaptic current necessarily saturates at some point. While these observations are well-explained by biophysical models the impact of dendritic spikes on computation remains a matter of debate. One reason is that dendritic spikes may fail to make the neuron spike; similarly, dendritic saturations are sometime presented as a glitch which should be corrected by dendritic spikes. We will provide solid arguments against this claim and show that dendritic saturations as well as dendritic spikes enhance single neuron computation, even when they cannot directly make the neuron fire. To explore the computational impact of dendritic spikes and saturations, we are using a binary neuron model in conjunction with Boolean algebra. We demonstrate using these tools that a single dendritic non-linearity, either spiking or saturating, combined with somatic non-linearity, enables a neuron to compute linearly non-separable Boolean functions (lnBfs. These functions are impossible to compute when summation is linear and the exclusive OR is a famous example of lnBfs. Importantly, the implementation of these functions does not require the dendritic non-linearity to make the neuron spike. Next, We show that reduced and realistic biophysical models of the neuron are capable of computing lnBfs. Within these models and contrary to the binary model, the dendritic and somatic non-linearity are tightly coupled. Yet we show that these neuron models are capable of linearly non-separable computations.
6th International Conference on Computer Science and its Applications
Stojmenovic, Ivan; Jeong, Hwa; Yi, Gangman
2015-01-01
The 6th FTRA International Conference on Computer Science and its Applications (CSA-14) will be held in Guam, USA, Dec. 17 - 19, 2014. CSA-14 presents a comprehensive conference focused on the various aspects of advances in engineering systems in computer science, and applications, including ubiquitous computing, U-Health care system, Big Data, UI/UX for human-centric computing, Computing Service, Bioinformatics and Bio-Inspired Computing and will show recent advances on various aspects of computing technology, Ubiquitous Computing Services and its application.
International Nuclear Information System (INIS)
Tian Bo; Gao Yitian
2005-01-01
A realistic, inhomogeneous fiber in the optical communication systems can be described by the perturbed nonlinear Schrodinger model (also named as the normalized nonlinear Schrodinger model with periodically varying coefficients, dispersion managed nonlinear Schrodinger model or nonlinear Schrodinger model with variable coefficients). Hereby, we extend to this model a direct method, perform symbolic computation and obtain two families of the exact, analytic bright-solitonic solutions, with or without the chirp respectively. The parameters addressed include the shape of the bright soliton, soliton amplitude, inverse width of the soliton, chirp, frequency, center of the soliton and center of the phase of the soliton. Of optical and physical interests, we discuss some previously-published special cases of our solutions. Those solutions could help the future studies on the optical communication systems. ms
Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu
2013-01-01
With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…
Stoilescu, Dorian; Egodawatte, Gunawardena
2010-01-01
Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new…
Brains--Computers--Machines: Neural Engineering in Science Classrooms
Chudler, Eric H.; Bergsman, Kristen Clapper
2016-01-01
Neural engineering is an emerging field of high relevance to students, teachers, and the general public. This feature presents online resources that educators and scientists can use to introduce students to neural engineering and to integrate core ideas from the life sciences, physical sciences, social sciences, computer science, and engineering…
Stoilescu, Dorian; Egodawatte, Gunawardena
2010-12-01
Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new definitions for computer science culture but to see how male and female students see themselves involved in computer science practices, how they see computer science as a successful career, and what they like and dislike about current computer science practices. The study took place in a mid-sized university in Ontario. Sixteen students and two instructors were interviewed to get their views. We found that male and female views are different on computer use, programming, and the pattern of student interactions. Female and male students did not have any major issues in using computers. In computing programming, female students were not so involved in computing activities whereas male students were heavily involved. As for the opinions about successful computer science professionals, both female and male students emphasized hard working, detailed oriented approaches, and enjoying playing with computers. The myth of the geek as a typical profile of successful computer science students was not found to be true.
Computer simulation in nuclear science and engineering
International Nuclear Information System (INIS)
Akiyama, Mamoru; Miya, Kenzo; Iwata, Shuichi; Yagawa, Genki; Kondo, Shusuke; Hoshino, Tsutomu; Shimizu, Akinao; Takahashi, Hiroshi; Nakagawa, Masatoshi.
1992-01-01
The numerical simulation technology used for the design of nuclear reactors includes the scientific fields of wide range, and is the cultivated technology which grew in the steady efforts to high calculation accuracy through safety examination, reliability verification test, the assessment of operation results and so on. Taking the opportunity of putting numerical simulation to practical use in wide fields, the numerical simulation of five basic equations which describe the natural world and the progress of its related technologies are reviewed. It is expected that numerical simulation technology contributes to not only the means of design study but also the progress of science and technology such as the construction of new innovative concept, the exploration of new mechanisms and substances, of which the models do not exist in the natural world. The development of atomic energy and the progress of computers, Boltzmann's transport equation and its periphery, Navier-Stokes' equation and its periphery, Maxwell's electromagnetic field equation and its periphery, Schroedinger wave equation and its periphery, computational solid mechanics and its periphery, and probabilistic risk assessment and its periphery are described. (K.I.)
Collaboration, Collusion and Plagiarism in Computer Science Coursework
Robert FRASER
2014-01-01
We present an overview of the nature of academic dishonesty with respect to computer science coursework. We discuss the efficacy of various policies for collaboration with regard to student education, and we consider a number of strategies for mitigating dishonest behaviour on computer science coursework by addressing some common causes. Computer science coursework is somewhat unique, in that there often exist ideal solutions for problems, and work may be shared and copied with very little ef...
COYOTE: a finite element computer program for nonlinear heat conduction problems
International Nuclear Information System (INIS)
Gartling, D.K.
1978-06-01
COYOTE is a finite element computer program designed for the solution of two-dimensional, nonlinear heat conduction problems. The theoretical and mathematical basis used to develop the code is described. Program capabilities and complete user instructions are presented. Several example problems are described in detail to demonstrate the use of the program
Czech Academy of Sciences Publication Activity Database
Lukšan, Ladislav; Vlček, Jan
1998-01-01
Roč. 8, č. 3-4 (1998), s. 201-223 ISSN 1055-6788 R&D Projects: GA ČR GA201/96/0918 Keywords : nonlinear equations * Armijo-type descent methods * Newton-like methods * truncated methods * global convergence * nonsymmetric linear systems * conjugate gradient -type methods * residual smoothing * computational experiments Subject RIV: BB - Applied Statistics, Operational Research
TRUMP3-JR: a finite difference computer program for nonlinear heat conduction problems
International Nuclear Information System (INIS)
Ikushima, Takeshi
1984-02-01
Computer program TRUMP3-JR is a revised version of TRUMP3 which is a finite difference computer program used for the solution of multi-dimensional nonlinear heat conduction problems. Pre- and post-processings for input data generation and graphical representations of calculation results of TRUMP3 are avaiable in TRUMP3-JR. The calculation equations, program descriptions and user's instruction are presented. A sample problem is described to demonstrate the use of the program. (author)
5th Computer Science On-line Conference
Senkerik, Roman; Oplatkova, Zuzana; Silhavy, Petr; Prokopova, Zdenka
2016-01-01
This volume is based on the research papers presented in the 5th Computer Science On-line Conference. The volume Artificial Intelligence Perspectives in Intelligent Systems presents modern trends and methods to real-world problems, and in particular, exploratory research that describes novel approaches in the field of artificial intelligence. New algorithms in a variety of fields are also presented. The Computer Science On-line Conference (CSOC 2016) is intended to provide an international forum for discussions on the latest research results in all areas related to Computer Science. The addressed topics are the theoretical aspects and applications of Computer Science, Artificial Intelligences, Cybernetics, Automation Control Theory and Software Engineering.
Computational data sciences for assessment and prediction of climate extremes
Ganguly, A. R.
2011-12-01
Climate extremes may be defined inclusively as severe weather events or large shifts in global or regional weather patterns which may be caused or exacerbated by natural climate variability or climate change. This area of research arguably represents one of the largest knowledge-gaps in climate science which is relevant for informing resource managers and policy makers. While physics-based climate models are essential in view of non-stationary and nonlinear dynamical processes, their current pace of uncertainty reduction may not be adequate for urgent stakeholder needs. The structure of the models may in some cases preclude reduction of uncertainty for critical processes at scales or for the extremes of interest. On the other hand, methods based on complex networks, extreme value statistics, machine learning, and space-time data mining, have demonstrated significant promise to improve scientific understanding and generate enhanced predictions. When combined with conceptual process understanding at multiple spatiotemporal scales and designed to handle massive data, interdisciplinary data science methods and algorithms may complement or supplement physics-based models. Specific examples from the prior literature and our ongoing work suggests how data-guided improvements may be possible, for example, in the context of ocean meteorology, climate oscillators, teleconnections, and atmospheric process understanding, which in turn can improve projections of regional climate, precipitation extremes and tropical cyclones in an useful and interpretable fashion. A community-wide effort is motivated to develop and adapt computational data science tools for translating climate model simulations to information relevant for adaptation and policy, as well as for improving our scientific understanding of climate extremes from both observed and model-simulated data.
Informatics everywhere : information and computation in society, science, and technology
Verhoeff, T.
2013-01-01
Informatics is about information and its processing, also known as computation. Nowadays, children grow up taking smartphones and the internet for granted. Information and computation rule society. Science uses computerized equipment to collect, analyze, and visualize massive amounts of data.
Geometric Nonlinear Computation of Thin Rods and Shells
Grinspun, Eitan
2011-03-01
We develop simple, fast numerical codes for the dynamics of thin elastic rods and shells, by exploiting the connection between physics, geometry, and computation. By building a discrete mechanical picture from the ground up, mimicking the axioms, structures, and symmetries of the smooth setting, we produce numerical codes that not only are consistent in a classical sense, but also reproduce qualitative, characteristic behavior of a physical system----such as exact preservation of conservation laws----even for very coarse discretizations. As two recent examples, we present discrete computational models of elastic rods and shells, with straightforward extensions to the viscous setting. Even at coarse discretizations, the resulting simulations capture characteristic geometric instabilities. The numerical codes we describe are used in experimental mechanics, cinema, and consumer software products. This is joint work with Miklós Bergou, Basile Audoly, Max Wardetzky, and Etienne Vouga. This research is supported in part by the Sloan Foundation, the NSF, Adobe, Autodesk, Intel, the Walt Disney Company, and Weta Digital.
Research in applied mathematics, numerical analysis, and computer science
1984-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.
COMPUTER SCIENCE IN THE EDUCATION OF UKRAINE: FORMATION PROSPECTS
Viktor Shakotko
2016-01-01
The article deals with the formation of computer science as science and school subject as well in the system of education in Ukraine taking into consideration the development tendencies of this science in the world. The introduction of the notion« information technology», «computer science» and «informatics science» into the science, their correlation and the peculiarities of subject sphere determination are analyzed through the historical aspect. The author considers the points of view conce...
Exploring Theoretical Computer Science Using Paper Toys (for kids)
DEFF Research Database (Denmark)
Valente, Andrea
2004-01-01
In this paper we propose the structure of an exploratory course in theoretical computer science intended for a broad range of students (and especially kids). The course is built on computational cards, a simple paper toy, in which playing cards are computational elements; computing machines can...
Master, Allison; Cheryan, Sapna; Meltzoff, Andrew N.
2016-01-01
Computer science has one of the largest gender disparities in science, technology, engineering, and mathematics. An important reason for this disparity is that girls are less likely than boys to enroll in necessary "pipeline courses," such as introductory computer science. Two experiments investigated whether high-school girls' lower…
International Nuclear Information System (INIS)
Abe, H.; Okuda, H.
1994-06-01
Soliton propagation in the dielectric media has been simulated by using the nonlinear Lorentz computational model, which was recently developed to study the propagation of electromagnetic waves in a linear and a nonlinear dielectric. The model is constructed by combining a microscopic model used in the semi-classical approximation for dielectric media and the particle model developed for the plasma simulations. The carrier wave frequency is retained in the simulation so that not only the envelope of the soliton but also its phase can be followed in time. It is shown that the model may be useful for studying pulse propagation in the dielectric media
Computation of nonlinear water waves with a high-order Boussinesq model
DEFF Research Database (Denmark)
Fuhrman, David R.; Madsen, Per A.; Bingham, Harry
2005-01-01
Computational highlights from a recently developed high-order Boussinesq model are shown. The model is capable of treating fully nonlinear waves (up to the breaking point) out to dimensionless depths of (wavenumber times depth) kh \\approx 25. Cases considered include the study of short......-crested waves in shallow/deep water, resulting in hexagonal/rectangular surface patterns; crescent waves, resulting from unstable perturbations of plane progressive waves; and highly-nonlinear wave-structure interactions. The emphasis is on physically demanding problems, and in eachcase qualitative and (when...
GPU-based acceleration of computations in nonlinear finite element deformation analysis.
Mafi, Ramin; Sirouspour, Shahin
2014-03-01
The physics of deformation for biological soft-tissue is best described by nonlinear continuum mechanics-based models, which then can be discretized by the FEM for a numerical solution. However, computational complexity of such models have limited their use in applications requiring real-time or fast response. In this work, we propose a graphic processing unit-based implementation of the FEM using implicit time integration for dynamic nonlinear deformation analysis. This is the most general formulation of the deformation analysis. It is valid for large deformations and strains and can account for material nonlinearities. The data-parallel nature and the intense arithmetic computations of nonlinear FEM equations make it particularly suitable for implementation on a parallel computing platform such as graphic processing unit. In this work, we present and compare two different designs based on the matrix-free and conventional preconditioned conjugate gradients algorithms for solving the FEM equations arising in deformation analysis. The speedup achieved with the proposed parallel implementations of the algorithms will be instrumental in the development of advanced surgical simulators and medical image registration methods involving soft-tissue deformation. Copyright © 2013 John Wiley & Sons, Ltd.
Recent topics in non-linear partial differential equations 4
Mimura, M
1989-01-01
This fourth volume concerns the theory and applications of nonlinear PDEs in mathematical physics, reaction-diffusion theory, biomathematics, and in other applied sciences. Twelve papers present recent work in analysis, computational analysis of nonlinear PDEs and their applications.
A procedure to construct exact solutions of nonlinear evolution ...
Indian Academy of Sciences (India)
Exact solutions; the functional variable method; nonlinear wave equations. PACS Nos 02.30. ... computer science, directly searching for solutions of nonlinear differential equations has become more and ... Right after this pioneer work, this ...
Methodical Approaches to Teaching of Computer Modeling in Computer Science Course
Rakhimzhanova, B. Lyazzat; Issabayeva, N. Darazha; Khakimova, Tiyshtik; Bolyskhanova, J. Madina
2015-01-01
The purpose of this study was to justify of the formation technique of representation of modeling methodology at computer science lessons. The necessity of studying computer modeling is that the current trends of strengthening of general education and worldview functions of computer science define the necessity of additional research of the…
Logic in the curricula of Computer Science
Directory of Open Access Journals (Sweden)
Margareth Quindeless
2014-12-01
Full Text Available The aim of the programs in Computer Science is to educate and train students to understand the problems and build systems that solve them. This process involves applying a special reasoning to model interactions, capabilities, and limitations of the components involved. A good curriculum must involve the use of tools to assist in these tasks, and one that could be considered as a fundamental is the logic, because with it students develop the necessary reasoning. Besides, software developers analyze the behavior of the program during the designed, the depuration, and testing; hardware designers perform minimization and equivalence verification of circuits; designers of operating systems validate routing protocols, programing, and synchronization; and formal logic underlying all these activities. Therefore, a strong background in applied logic would help students to develop or potentiate their ability to reason about complex systems. Unfortunately, few curricula formed and properly trained in logic. Most includes only one or two courses of Discrete Mathematics, which in a few weeks covered truth tables and the propositional calculus, and nothing more. This is not enough, and higher level courses in which they are applied and many other logical concepts are needed. In addition, students will not see the importance of logic in their careers and need to modify the curriculum committees or adapt the curriculum to reverse this situation.
Toward Psychoinformatics: Computer Science Meets Psychology.
Montag, Christian; Duke, Éilish; Markowetz, Alexander
2016-01-01
The present paper provides insight into an emerging research discipline called Psychoinformatics. In the context of Psychoinformatics, we emphasize the cooperation between the disciplines of psychology and computer science in handling large data sets derived from heavily used devices, such as smartphones or online social network sites, in order to shed light on a large number of psychological traits, including personality and mood. New challenges await psychologists in light of the resulting "Big Data" sets, because classic psychological methods will only in part be able to analyze this data derived from ubiquitous mobile devices, as well as other everyday technologies. As a consequence, psychologists must enrich their scientific methods through the inclusion of methods from informatics. The paper provides a brief review of one area of this research field, dealing mainly with social networks and smartphones. Moreover, we highlight how data derived from Psychoinformatics can be combined in a meaningful way with data from human neuroscience. We close the paper with some observations of areas for future research and problems that require consideration within this new discipline.
Summer 1994 Computational Science Workshop. Final report
Energy Technology Data Exchange (ETDEWEB)
NONE
1994-12-31
This report documents the work performed by the University of New Mexico Principal Investigators and Research Assistants while hosting the highly successful Summer 1994 Computational Sciences Workshop in Albuquerque on August 6--11, 1994. Included in this report is a final budget for the workshop, along with a summary of the participants` evaluation of the workshop. The workshop proceeding have been delivered under separate cover. In order to assist in the organization of future workshops, we have also included in this report detailed documentation of the pre- and post-workshop activities associated with this contract. Specifically, we have included a section that documents the advertising performed, along with the manner in which applications were handled. A complete list of the workshop participants in this section. Sample letters that were generated while dealing with various commercial entities and departments at the University are also included in a section dealing with workshop logistics. Finally, we have included a section in this report that deals with suggestions for future workshops.
Computer Science and the Liberal Arts: A Philosophical Examination
Walker, Henry M.; Kelemen, Charles
2010-01-01
This article explores the philosophy and position of the discipline of computer science within the liberal arts, based upon a discussion of the nature of computer science and a review of the characteristics of the liberal arts. A liberal arts environment provides important opportunities for undergraduate programs, but also presents important…
Stateless Programming as a Motif for Teaching Computer Science
Cohen, Avi
2004-01-01
With the development of XML Web Services, the Internet could become an integral part of and the basis for teaching computer science and software engineering. The approach has been applied to a university course for students studying introduction to computer science from the point of view of software development in a stateless, Internet…
New Pedagogies on Teaching Science with Computer Simulations
Khan, Samia
2011-01-01
Teaching science with computer simulations is a complex undertaking. This case study examines how an experienced science teacher taught chemistry using computer simulations and the impact of his teaching on his students. Classroom observations over 3 semesters, teacher interviews, and student surveys were collected. The data was analyzed for (1)…
Studies in Mathematics, Volume 22. Studies in Computer Science.
Pollack, Seymour V., Ed.
The nine articles in this collection were selected because they represent concerns central to computer science, emphasize topics of particular interest to mathematicians, and underscore the wide range of areas deeply and continually affected by computer science. The contents consist of: "Introduction" (S. V. Pollack), "The…
Gender Digital Divide and Challenges in Undergraduate Computer Science Programs
Stoilescu, Dorian; McDougall, Douglas
2011-01-01
Previous research revealed a reduced number of female students registered in computer science studies. In addition, the female students feel isolated, have reduced confidence, and underperform. This article explores differences between female and male students in undergraduate computer science programs in a mid-size university in Ontario. Based on…
Arguing for Computer Science in the School Curriculum
Fluck, Andrew; Webb, Mary; Cox, Margaret; Angeli, Charoula; Malyn-Smith, Joyce; Voogt, Joke; Zagami, Jason
2016-01-01
Computer science has been a discipline for some years, and its position in the school curriculum has been contested differently in several countries. This paper looks at its role in three countries to illustrate these differences. A reconsideration of computer science as a separate subject both in primary and secondary education is suggested. At…
"Computer Science Can Feed a Lot of Dreams"
Educational Horizons, 2014
2014-01-01
Pat Yongpradit is the director of education at Code.org. He leads all education efforts, including professional development and curriculum creation, and he builds relationships with school districts. Pat joined "Educational Horizons" to talk about why it is important to teach computer science--even for non-computer science teachers. This…
Entrepreneurial Health Informatics for Computer Science and Information Systems Students
Lawler, James; Joseph, Anthony; Narula, Stuti
2014-01-01
Corporate entrepreneurship is a critical area of curricula for computer science and information systems students. Few institutions of computer science and information systems have entrepreneurship in the curricula however. This paper presents entrepreneurial health informatics as a course in a concentration of Technology Entrepreneurship at a…
Assessment of Examinations in Computer Science Doctoral Education
Straub, Jeremy
2014-01-01
This article surveys the examination requirements for attaining degree candidate (candidacy) status in computer science doctoral programs at all of the computer science doctoral granting institutions in the United States. It presents a framework for program examination requirement categorization, and categorizes these programs by the type or types…
Collaboration, Collusion and Plagiarism in Computer Science Coursework
Fraser, Robert
2014-01-01
We present an overview of the nature of academic dishonesty with respect to computer science coursework. We discuss the efficacy of various policies for collaboration with regard to student education, and we consider a number of strategies for mitigating dishonest behaviour on computer science coursework by addressing some common causes. Computer…
The Case for Improving U.S. Computer Science Education
Nager, Adams; Atkinson, Robert
2016-01-01
Despite the growing use of computers and software in every facet of our economy, not until recently has computer science education begun to gain traction in American school systems. The current focus on improving science, technology, engineering, and mathematics (STEM) education in the U.S. School system has disregarded differences within STEM…
Case Studies of Liberal Arts Computer Science Programs
Baldwin, D.; Brady, A.; Danyluk, A.; Adams, J.; Lawrence, A.
2010-01-01
Many undergraduate liberal arts institutions offer computer science majors. This article illustrates how quality computer science programs can be realized in a wide variety of liberal arts settings by describing and contrasting the actual programs at five liberal arts colleges: Williams College, Kalamazoo College, the State University of New York…
78 FR 10180 - Annual Computational Science Symposium; Conference
2013-02-13
...] Annual Computational Science Symposium; Conference AGENCY: Food and Drug Administration, HHS. ACTION... Pharmaceutical Users Software Exchange (PhUSE), is announcing a public conference entitled ``The FDA/PhUSE Annual Computational Science Symposium.'' The purpose of the conference is to help the broader community align and...
77 FR 4568 - Annual Computational Science Symposium; Public Conference
2012-01-30
...] Annual Computational Science Symposium; Public Conference AGENCY: Food and Drug Administration, HHS... with the Pharmaceutical Users Software Exchange (PhUSE), is announcing a public conference entitled ``The FDA/PhUSE Annual Computational Science Symposium.'' The purpose of the conference is to help the...
Barbara Ryder to head Department of Computer Science
Daniilidi, Christina
2008-01-01
Barbara G. Ryder, professor of computer science at Rutgers, The State University of New Jersey, will become the computer science department head at Virginia Tech, starting in fall 2008. She is the first woman to serve as a department head in the history of the nationally ranked College of Engineering.
A survey of computer science capstone course literature
Dugan, Robert F., Jr.
2011-09-01
In this article, we surveyed literature related to undergraduate computer science capstone courses. The survey was organized around course and project issues. Course issues included: course models, learning theories, course goals, course topics, student evaluation, and course evaluation. Project issues included: software process models, software process phases, project type, documentation, tools, groups, and instructor administration. We reflected on these issues and thecomputer science capstone course we have taught for seven years. The survey summarized, organized, and synthesized the literature to provide a referenced resource for computer science instructors and researchers interested in computer science capstone courses.
11th International Conference on Computer and Information Science
Computer and Information 2012
2012-01-01
The series "Studies in Computational Intelligence" (SCI) publishes new developments and advances in the various areas of computational intelligence – quickly and with a high quality. The intent is to cover the theory, applications, and design methods of computational intelligence, as embedded in the fields of engineering, computer science, physics and life science, as well as the methodologies behind them. The series contains monographs, lecture notes and edited volumes in computational intelligence spanning the areas of neural networks, connectionist systems, genetic algorithms, evolutionary computation, artificial intelligence, cellular automata, self-organizing systems, soft computing, fuzzy systems, and hybrid intelligent systems. Critical to both contributors and readers are the short publication time and world-wide distribution - this permits a rapid and broad dissemination of research results. The purpose of the 11th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2012...
Macías-Díaz, J E; Macías, Siegfried; Medina-Ramírez, I E
2013-12-01
In this manuscript, we present a computational model to approximate the solutions of a partial differential equation which describes the growth dynamics of microbial films. The numerical technique reported in this work is an explicit, nonlinear finite-difference methodology which is computationally implemented using Newton's method. Our scheme is compared numerically against an implicit, linear finite-difference discretization of the same partial differential equation, whose computer coding requires an implementation of the stabilized bi-conjugate gradient method. Our numerical results evince that the nonlinear approach results in a more efficient approximation to the solutions of the biofilm model considered, and demands less computer memory. Moreover, the positivity of initial profiles is preserved in the practice by the nonlinear scheme proposed. Copyright © 2013 Elsevier Ltd. All rights reserved.
African Journals Online: Technology, Computer Science ...
African Journals Online (AJOL)
Items 1 - 29 of 29 ... ... aspects of science, technology, agriculture, health and other related fields. ... International Journal of Engineering, Science and Technology ... Mechanical Engineering, Petroleum Engineering, Physics and other related ...
A Computer-Based Instrument That Identifies Common Science Misconceptions
Larrabee, Timothy G.; Stein, Mary; Barman, Charles
2006-01-01
This article describes the rationale for and development of a computer-based instrument that helps identify commonly held science misconceptions. The instrument, known as the Science Beliefs Test, is a 47-item instrument that targets topics in chemistry, physics, biology, earth science, and astronomy. The use of an online data collection system…
World Congress on Engineering and Computer Science 2014
Amouzegar, Mahyar; Ao, Sio-long
2015-01-01
This volume contains thirty-nine revised and extended research articles, written by prominent researchers participating in the World Congress on Engineering and Computer Science 2014, held in San Francisco, October 22-24 2014. Topics covered include engineering mathematics, electrical engineering, circuit design, communications systems, computer science, chemical engineering, systems engineering, and applications of engineering science in industry. This book describes some significant advances in engineering technologies, and also serves as an excellent source of reference for researchers and graduate students.
Development of Computer Science Disciplines - A Social Network Analysis Approach
Pham, Manh Cuong; Klamma, Ralf; Jarke, Matthias
2011-01-01
In contrast to many other scientific disciplines, computer science considers conference publications. Conferences have the advantage of providing fast publication of papers and of bringing researchers together to present and discuss the paper with peers. Previous work on knowledge mapping focused on the map of all sciences or a particular domain based on ISI published JCR (Journal Citation Report). Although this data covers most of important journals, it lacks computer science conference and ...
Learning Science through Computer Games and Simulations
Honey, Margaret A., Ed.; Hilton, Margaret, Ed.
2011-01-01
At a time when scientific and technological competence is vital to the nation's future, the weak performance of U.S. students in science reflects the uneven quality of current science education. Although young children come to school with innate curiosity and intuitive ideas about the world around them, science classes rarely tap this potential.…
Explorations in computing an introduction to computer science
Conery, John S
2010-01-01
Introduction Computation The Limits of Computation Algorithms A Laboratory for Computational ExperimentsThe Ruby WorkbenchIntroducing Ruby and the RubyLabs environment for computational experimentsInteractive Ruby Numbers Variables Methods RubyLabs The Sieve of EratosthenesAn algorithm for finding prime numbersThe Sieve Algorithm The mod Operator Containers Iterators Boolean Values and the delete if Method Exploring the Algorithm The sieve Method A Better Sieve Experiments with the Sieve A Journey of a Thousand MilesIteration as a strategy for solving computational problemsSearching and Sortin
A Computer Learning Center for Environmental Sciences
Mustard, John F.
2000-01-01
In the fall of 1998, MacMillan Hall opened at Brown University to students. In MacMillan Hall was the new Computer Learning Center, since named the EarthLab which was outfitted with high-end workstations and peripherals primarily focused on the use of remotely sensed and other spatial data in the environmental sciences. The NASA grant we received as part of the "Centers of Excellence in Applications of Remote Sensing to Regional and Global Integrated Environmental Assessments" was the primary source of funds to outfit this learning and research center. Since opening, we have expanded the range of learning and research opportunities and integrated a cross-campus network of disciplines who have come together to learn and use spatial data of all kinds. The EarthLab also forms a core of undergraduate, graduate, and faculty research on environmental problems that draw upon the unique perspective of remotely sensed data. Over the last two years, the Earthlab has been a center for research on the environmental impact of water resource use in and regions, impact of the green revolution on forest cover in India, the design of forest preserves in Vietnam, and detailed assessments of the utility of thermal and hyperspectral data for water quality analysis. It has also been used extensively for local environmental activities, in particular studies on the impact of lead on the health of urban children in Rhode Island. Finally, the EarthLab has also served as a key educational and analysis center for activities related to the Brown University Affiliated Research Center that is devoted to transferring university research to the private sector.
International Nuclear Information System (INIS)
Li Biao; Chen Yong
2007-01-01
In this paper, the inhomogeneous nonlinear Schroedinger equation with the loss/gain and the frequency chirping is investigated. With the help of symbolic computation, three families of exact analytical solutions are presented by employing the extended projective Riccati equation method. From our results, many previous known results of nonlinear Schroedinger equation obtained by some authors can be recovered by means of some suitable selections of the arbitrary functions and arbitrary constants. Of optical and physical interests, soliton propagation and soliton interaction are discussed and simulated by computer, which include snake-soliton propagation and snake-solitons interaction, boomerang-like soliton propagation and boomerang-like solitons interaction, dispersion managed (DM) bright (dark) soliton propagation and DM solitons interaction
CDM: Teaching Discrete Mathematics to Computer Science Majors
Sutner, Klaus
2005-01-01
CDM, for computational discrete mathematics, is a course that attempts to teach a number of topics in discrete mathematics to computer science majors. The course abandons the classical definition-theorem-proof model, and instead relies heavily on computation as a source of motivation and also for experimentation and illustration. The emphasis on…
Computer Science and Technology Publications. NBS Publications List 84.
National Bureau of Standards (DOC), Washington, DC. Inst. for Computer Sciences and Technology.
This bibliography lists publications of the Institute for Computer Sciences and Technology of the National Bureau of Standards. Publications are listed by subject in the areas of computer security, computer networking, and automation technology. Sections list publications of: (1) current Federal Information Processing Standards; (2) computer…
An accurate and computationally efficient small-scale nonlinear FEA of flexible risers
Rahmati, MT; Bahai, H; Alfano, G
2016-01-01
This paper presents a highly efficient small-scale, detailed finite-element modelling method for flexible risers which can be effectively implemented in a fully-nested (FE2) multiscale analysis based on computational homogenisation. By exploiting cyclic symmetry and applying periodic boundary conditions, only a small fraction of a flexible pipe is used for a detailed nonlinear finite-element analysis at the small scale. In this model, using three-dimensional elements, all layer components are...
Computational Performance Analysis of Nonlinear Dynamic Systems using Semi-infinite Programming
Directory of Open Access Journals (Sweden)
Tor A. Johansen
2001-01-01
Full Text Available For nonlinear systems that satisfy certain regularity conditions it is shown that upper and lower bounds on the performance (cost function can be computed using linear or quadratic programming. The performance conditions derived from Hamilton-Jacobi inequalities are formulated as linear inequalities defined pointwise by discretizing the state-space when assuming a linearly parameterized class of functions representing the candidate performance bounds. Uncertainty with respect to some system parameters can be incorporated by also gridding the parameter set. In addition to performance analysis, the method can also be used to compute Lyapunov functions that guarantees uniform exponential stability.
Computational issues in the analysis of nonlinear two-phase flow dynamics
Energy Technology Data Exchange (ETDEWEB)
Rosa, Mauricio A. Pinheiro [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados. Div. de Energia Nuclear], e-mail: pinheiro@ieav.cta.br; Podowski, Michael Z. [Rensselaer Polytechnic Institute, New York, NY (United States)
2001-07-01
This paper is concerned with the issue of computer simulations of flow-induced instabilities in boiling channels and systems. A computational model is presented for the time-domain analysis of nonlinear oscillations in interconnected parallel boiling channels. The results of model testing and validation are shown. One of the main concerns here has been to show the importance in performing numerical testing regarding the selection of a proper numerical integration method and associated nodalization and time step as well as to demonstrate the convergence of the numerical solution prior to any analysis. (author)
A Computer Security Course in the Undergraduate Computer Science Curriculum.
Spillman, Richard
1992-01-01
Discusses the importance of computer security and considers criminal, national security, and personal privacy threats posed by security breakdown. Several examples are given, including incidents involving computer viruses. Objectives, content, instructional strategies, resources, and a sample examination for an experimental undergraduate computer…
Nonlinear mechanics of non-rigid origami: an efficient computational approach
Liu, K.; Paulino, G. H.
2017-10-01
Origami-inspired designs possess attractive applications to science and engineering (e.g. deployable, self-assembling, adaptable systems). The special geometric arrangement of panels and creases gives rise to unique mechanical properties of origami, such as reconfigurability, making origami designs well suited for tunable structures. Although often being ignored, origami structures exhibit additional soft modes beyond rigid folding due to the flexibility of thin sheets that further influence their behaviour. Actual behaviour of origami structures usually involves significant geometric nonlinearity, which amplifies the influence of additional soft modes. To investigate the nonlinear mechanics of origami structures with deformable panels, we present a structural engineering approach for simulating the nonlinear response of non-rigid origami structures. In this paper, we propose a fully nonlinear, displacement-based implicit formulation for performing static/quasi-static analyses of non-rigid origami structures based on `bar-and-hinge' models. The formulation itself leads to an efficient and robust numerical implementation. Agreement between real models and numerical simulations demonstrates the ability of the proposed approach to capture key features of origami behaviour.
World Congress on Engineering and Computer Science 2015
Kim, Haeng; Amouzegar, Mahyar
2017-01-01
This proceedings volume contains selected revised and extended research articles written by researchers who participated in the World Congress on Engineering and Computer Science 2015, held in San Francisco, USA, 21-23 October 2015. Topics covered include engineering mathematics, electrical engineering, circuits, communications systems, computer science, chemical engineering, systems engineering, manufacturing engineering, and industrial applications. The book offers the reader an overview of the state of the art in engineering technologies, computer science, systems engineering and applications, and will serve as an excellent reference work for researchers and graduate students working in these fields.
Innovations and Advances in Computer, Information, Systems Sciences, and Engineering
Sobh, Tarek
2013-01-01
Innovations and Advances in Computer, Information, Systems Sciences, and Engineering includes the proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2011). The contents of this book are a set of rigorously reviewed, world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Industrial Electronics, Technology and Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.
Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering
Elleithy, Khaled
2013-01-01
Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning. This book includes the proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2010). The proceedings are a set of rigorously reviewed world-class manuscripts presenting the state of international practice in Innovative Algorithms and Techniques in Automation, Industrial Electronics and Telecommunications.
Burrelli, Joan S.
This brief describes graduate enrollment increases in the science and engineering fields, especially in engineering and computer sciences. Graduate student enrollment is summarized by enrollment status, citizenship, race/ethnicity, and fields. (KHR)
Nguyen, Quang
2012-01-01
The latest inventions in computer technology influence most of human daily activities. In the near future, there is tendency that all of aspect of human life will be dependent on computer applications. In manufacturing, robotics and automation have become vital for high quality products. In education, the model of teaching and learning is focusing more on electronic media than traditional ones. Issues related to energy savings and environment is becoming critical. Computational Science should enhance the quality of human life, not only solve their problems. Computational Science should help humans to make wise decisions by presenting choices and their possible consequences. Computational Science should help us make sense of observations, understand natural language, plan and reason with extensive background knowledge. Intelligence with wisdom is perhaps an ultimate goal for human-oriented science. This book is a compilation of some recent research findings in computer application and computational sci...
Hispanic women overcoming deterrents to computer science: A phenomenological study
Herling, Lourdes
The products of computer science are important to all aspects of society and are tools in the solution of the world's problems. It is, therefore, troubling that the United States faces a shortage in qualified graduates in computer science. The number of women and minorities in computer science is significantly lower than the percentage of the U.S. population which they represent. The overall enrollment in computer science programs has continued to decline with the enrollment of women declining at a higher rate than that of men. This study addressed three aspects of underrepresentation about which there has been little previous research: addressing computing disciplines specifically rather than embedding them within the STEM disciplines, what attracts women and minorities to computer science, and addressing the issues of race/ethnicity and gender in conjunction rather than in isolation. Since women of underrepresented ethnicities are more severely underrepresented than women in general, it is important to consider whether race and ethnicity play a role in addition to gender as has been suggested by previous research. Therefore, this study examined what attracted Hispanic women to computer science specifically. The study determines whether being subjected to multiple marginalizations---female and Hispanic---played a role in the experiences of Hispanic women currently in computer science. The study found five emergent themes within the experiences of Hispanic women in computer science. Encouragement and role models strongly influenced not only the participants' choice to major in the field, but to persist as well. Most of the participants experienced a negative atmosphere and feelings of not fitting in while in college and industry. The interdisciplinary nature of computer science was the most common aspect that attracted the participants to computer science. The aptitudes participants commonly believed are needed for success in computer science are the Twenty
Analysis of Sci-Hub downloads of computer science papers
Directory of Open Access Journals (Sweden)
Andročec Darko
2017-07-01
Full Text Available The scientific knowledge is disseminated by research papers. Most of the research literature is copyrighted by publishers and avail- able only through paywalls. Recently, some websites offer most of the recent content for free. One of them is the controversial website Sci-Hub that enables access to more than 47 million pirated research papers. In April 2016, Science Magazine published an article on Sci-Hub activity over the period of six months and publicly released the Sci-Hub’s server log data. The mentioned paper aggregates the view that relies on all downloads and for all fields of study, but these findings might be hiding interesting patterns within computer science. The mentioned Sci-Hub log data was used in this paper to analyse downloads of computer science papers based on DBLP’s list of computer science publications. The top downloads of computer science papers were analysed, together with the geographical location of Sci-Hub users, the most downloaded publishers, types of papers downloaded, and downloads of computer science papers per publication year. The results of this research can be used to improve legal access to the most relevant scientific repositories or journals for the computer science field.
Collaboration between J-PARC and computing science
International Nuclear Information System (INIS)
Nakatani, Takeshi; Inamura, Yasuhiro
2010-01-01
Many world-forefront experimental apparatuses are under construction at Materials and Life Science Facility of Japan Proton Accelerator Research Complex (J-PARC), and new experimental methods supported by the computer facility are under development towards practical use. Many problems, however, remains to be developed as a large open use facility under the Low for Promotion of Public Utilization. Some of them need the cooperation of experimental scientists and computer scientists to be solved. Present status of the computing ability at Materials and Life Science Facility of J-PARC, and research results expected to be brought by the collaboration of experimental- and computer-scientists are described. (author)
Electronic digital computers their use in science and engineering
Alt, Franz L
1958-01-01
Electronic Digital Computers: Their Use in Science and Engineering describes the principles underlying computer design and operation. This book describes the various applications of computers, the stages involved in using them, and their limitations. The machine is composed of the hardware which is run by a program. This text describes the use of magnetic drum for storage of data and some computing. The functions and components of the computer include automatic control, memory, input of instructions by using punched cards, and output from resulting information. Computers operate by using numbe
Logic, mathematics, and computer science modern foundations with practical applications
Nievergelt, Yves
2015-01-01
This text for the first or second year undergraduate in mathematics, logic, computer science, or social sciences, introduces the reader to logic, proofs, sets, and number theory. It also serves as an excellent independent study reference and resource for instructors. Adapted from Foundations of Logic and Mathematics: Applications to Science and Cryptography © 2002 Birkhӓuser, this second edition provides a modern introduction to the foundations of logic, mathematics, and computers science, developing the theory that demonstrates construction of all mathematics and theoretical computer science from logic and set theory. The focus is on foundations, with specific statements of all the associated axioms and rules of logic and set theory, and provides complete details and derivations of formal proofs. Copious references to literature that document historical development is also provided. Answers are found to many questions that usually remain unanswered: Why is the truth table for logical implication so uni...
2012 International Conference on Teaching and Computational Science (ICTCS 2012)
Advanced Technology in Teaching
2013-01-01
2012 International Conference on Teaching and Computational Science (ICTCS 2012) is held on April 1-2, 2012, Macao. This volume contains 120 selected papers presented at 2012 International Conference on Teaching and Computational Science (ICTCS 2012), which is to bring together researchers working in many different areas of teaching and computational Science to foster international collaborations and exchange of new ideas. This volume book can be divided into two sections on the basis of the classification of manuscripts considered. The first section deals with teaching. The second section of this volume consists of computational Science. We hope that all the papers here published can benefit you in the related researching fields.
Interim research assessment 2003-2005 - Computer Science
Mouthaan, A.J.; Hartel, Pieter H.
This report primarily serves as a source of information for the 2007 Interim Research Assessment Committee for Computer Science at the three technical universities in the Netherlands. The report also provides information for others interested in our research activities.
Discrete calculus applied analysis on graphs for computational science
Grady, Leo J
2010-01-01
This unique text brings together into a single framework current research in the three areas of discrete calculus, complex networks, and algorithmic content extraction. Many example applications from several fields of computational science are provided.
Proceedings: Computer Science and Data Systems Technical Symposium, volume 1
Larsen, Ronald L.; Wallgren, Kenneth
1985-01-01
Progress reports and technical updates of programs being performed by NASA centers are covered. Presentations in viewgraph form are included for topics in three categories: computer science, data systems and space station applications.
Proceedings: Computer Science and Data Systems Technical Symposium, volume 2
Larsen, Ronald L.; Wallgren, Kenneth
1985-01-01
Progress reports and technical updates of programs being performed by NASA centers are covered. Presentations in viewgraph form, along with abstracts, are included for topics in three catagories: computer science, data systems, and space station applications.
Information visualization courses for students with a computer science background.
Kerren, Andreas
2013-01-01
Linnaeus University offers two master's courses in information visualization for computer science students with programming experience. This article briefly describes the syllabi, exercises, and practices developed for these courses.
3rd Computer Science On-line Conference
Senkerik, Roman; Oplatkova, Zuzana; Silhavy, Petr; Prokopova, Zdenka
2014-01-01
This book is based on the research papers presented in the 3rd Computer Science On-line Conference 2014 (CSOC 2014). The conference is intended to provide an international forum for discussions on the latest high-quality research results in all areas related to Computer Science. The topics addressed are the theoretical aspects and applications of Artificial Intelligences, Computer Science, Informatics and Software Engineering. The authors provide new approaches and methods to real-world problems, and in particular, exploratory research that describes novel approaches in their field. Particular emphasis is laid on modern trends in selected fields of interest. New algorithms or methods in a variety of fields are also presented. This book is divided into three sections and covers topics including Artificial Intelligence, Computer Science and Software Engineering. Each section consists of new theoretical contributions and applications which can be used for the further development of knowledge of everybod...
30th International Symposium on Computer and Information Sciences
Gelenbe, Erol; Gorbil, Gokce; Lent, Ricardo
2016-01-01
The 30th Anniversary of the ISCIS (International Symposium on Computer and Information Sciences) series of conferences, started by Professor Erol Gelenbe at Bilkent University, Turkey, in 1986, will be held at Imperial College London on September 22-24, 2015. The preceding two ISCIS conferences were held in Krakow, Poland in 2014, and in Paris, France, in 2013. The Proceedings of ISCIS 2015 published by Springer brings together rigorously reviewed contributions from leading international experts. It explores new areas of research and technological development in computer science, computer engineering, and information technology, and presents new applications in fast changing fields such as information science, computer science and bioinformatics. The topics covered include (but are not limited to) advances in networking technologies, software defined networks, distributed systems and the cloud, security in the Internet of Things, sensor systems, and machine learning and large data sets.
International Nuclear Information System (INIS)
Raza, K.S.M.
2004-01-01
This paper demonstrates that if a complicated nonlinear, non-square, state-coupled multi variable system is smartly linearized and subjected to a thorough stability analysis then we can achieve our design objectives via a controller which will be quite simple (in term of resource usage and execution time) and very efficient (in terms of robustness). Further the aim is to implement this controller via computer in a real time environment. Therefore first a nonlinear mathematical model of the system is achieved. An intelligent work is done to decouple the multivariable system. Linearization and stability analysis techniques are employed for the development of a linearized and mathematically sound control law. Nonlinearities like the saturation in actuators are also been catered. The controller is then discretized using Runge-Kutta integration. Finally the discretized control law is programmed in a computer in a real time environment. The programme is done in RT -Linux using GNU C for the real time realization of the control scheme. The real time processes, like sampling and controlled actuation, and the non real time processes, like graphical user interface and display, are programmed as different tasks. The issue of inter process communication, between real time and non real time task is addressed quite carefully. The results of this research pursuit are presented graphically. (author)
History of Computer Science as an Instrument of Enlightenment
Fet , Yakov
2013-01-01
Part 6: Putting the History of Computing into Different Contexts; International audience; This report focuses on the dangerous problems that are currently facing the society – the negative phenomena in development of education and science. The most important way to solve this problem seems to be education and enlightenment. It is assumed that in the history of Computer Science, the intellectual and moral heritage of this history contains a wealth of material that can be used for the dissemina...
Pair Programming as a Modern Method of Teaching Computer Science
Irena Nančovska Šerbec; Branko Kaučič; Jože Rugelj
2008-01-01
At the Faculty of Education, University of Ljubljana we educate future computer science teachers. Beside didactical, pedagogical, mathematical and other interdisciplinary knowledge, students gain knowledge and skills of programming that are crucial for computer science teachers. For all courses, the main emphasis is the absorption of professional competences, related to the teaching profession and the programming profile. The latter are selected according to the well-known document, the ACM C...
Fellowship | Indian Academy of Sciences
Indian Academy of Sciences (India)
Elected: 1996 Section: Mathematical Sciences .... Specialization: Nonlinear Phenomena, Chaos and Statistical Physics ... Magnetic Resonance Spectroscopy, NMR Techniques & its Applications to Biomolecules and Quantum Computing
DEFF Research Database (Denmark)
Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen
2011-01-01
This paper presents a new method for computation of the nonlinear flux linkage in 3-D finite-element models (FEMs) of electrical machines. Accurate computation of the nonlinear flux linkage in 3-D FEM is not an easy task. Compared to the existing energy-perturbation method, the new technique......-perturbation method. The new method proposed is validated using experimental results on two different permanent magnet machines....
Computation of the current density in nonlinear materials subjected to large current pulses
International Nuclear Information System (INIS)
Hodgdon, M.L.; Hixson, R.S.; Parsons, W.M.
1991-01-01
This paper reports that the finite element method and the finite difference method are used to calculate the current distribution in two nonlinear conductors. The first conductor is a small ferromagnetic wire subjected to a current pulse that rises to 10,000 Amperes in 10 microseconds. Results from the transient thermal and transient magnetic solvers of the finite element code FLUX2D are used to compute the current density in the wire. The second conductor is a metal oxide varistor. Maxwell's equations, Ohm's law and the varistor relation for the resistivity and the current density of p = αj -β are used to derive a nonlinear differential equation. The solutions of the differential equation are obtained by a finite difference approximation and a shooting method. The behavior predicted by these calculations is in agreement with experiments
Directory of Open Access Journals (Sweden)
Mosbeh R. Kaloop
2017-01-01
Full Text Available This study investigates predicting the pullout capacity of small ground anchors using nonlinear computing techniques. The input-output prediction model for the nonlinear Hammerstein-Wiener (NHW and delay inputs for the adaptive neurofuzzy inference system (DANFIS are developed and utilized to predict the pullout capacity. The results of the developed models are compared with previous studies that used artificial neural networks and least square support vector machine techniques for the same case study. The in situ data collection and statistical performances are used to evaluate the models performance. Results show that the developed models enhance the precision of predicting the pullout capacity when compared with previous studies. Also, the DANFIS model performance is proven to be better than other models used to detect the pullout capacity of ground anchors.
Laursen, Tod A
2003-01-01
This book comprehensively treats the formulation and finite element approximation of contact and impact problems in nonlinear mechanics. Intended for students, researchers and practitioners interested in numerical solid and structural analysis, as well as for engineers and scientists dealing with technologies in which tribological response must be characterized, the book includes an introductory but detailed overview of nonlinear finite element formulations before dealing with contact and impact specifically. Topics encompassed include the continuum mechanics, mathematical structure, variational framework, and finite element implementations associated with contact/impact interaction. Additionally, important and currently emerging research topics in computational contact mechanics are introduced, encompassing such topics as tribological complexity, conservative treatment of inelastic impact interaction, and novel spatial discretization strategies.
Inter-level relations in computer science, biology, and psychology
Boogerd, F.; Bruggeman, F.; Jonker, C.M.; Looren de Jong, H.; Tamminga, A.; Treur, J.; Westerhoff, H.V.; Wijngaards, W.C.A.
2002-01-01
Investigations into inter-level relations in computer science, biology and psychology call for an empirical turn in the philosophy of mind. Rather than concentrate on a priori discussions of inter-level relations between 'completed' sciences, a case is made for the actual study of the way
Inter-level relations in computer science, biology and psychology
Boogerd, F.C.; Bruggeman, F.J.; Jonker, C.M.; Looren De Jong, H.; Tamminga, A.M.; Treur, J.; Westerhoff, H.V.; Wijngaards, W.C.A.
2002-01-01
Investigations into inter-level relations in computer science, biology and psychology call for an empirical turn in the philosophy of mind. Rather than concentrate on a priori discussions of inter-level relations between "completed" sciences, a case is made for the actual study of the way
Inter-level relations in computer science, biology, and psychology
Boogerd, Fred; Bruggeman, Frank; Jonker, Catholijn; Looren de Jong, Huib; Tamminga, Allard; Treur, Jan; Westerhoff, Hans; Wijngaards, Wouter
2002-01-01
Investigations into inter-level relations in computer science, biology and psychology call for an *empirical* turn in the philosophy of mind. Rather than concentrate on *a priori* discussions of inter-level relations between “completed” sciences, a case is made for the actual study of the way
Fiction as an Introduction to Computer Science Research
Goldsmith, Judy; Mattei, Nicholas
2014-01-01
The undergraduate computer science curriculum is generally focused on skills and tools; most students are not exposed to much research in the field, and do not learn how to navigate the research literature. We describe how fiction reviews (and specifically science fiction) are used as a gateway to research reviews. Students learn a little about…
Wallen, Samuel P.
Granular media are one of the most common, yet least understood forms of matter on earth. The difficulties in understanding the physics of granular media stem from the fact that they are typically heterogeneous and highly disordered, and the grains interact via nonlinear contact forces. Historically, one approach to reducing these complexities and gaining new insight has been the study of granular crystals, which are ordered arrays of similarly-shaped particles (typically spheres) in Hertzian contact. Using this setting, past works explored the rich nonlinear dynamics stemming from contact forces, and proposed avenues where such granular crystals could form designer, dynamically responsive materials, which yield beneficial functionality in dynamic regimes. In recent years, the combination of self-assembly fabrication methods and laser ultrasonic experimental characterization have enabled the study of granular crystals at microscale. While our intuition may suggest that these microscale granular crystals are simply scaled-down versions of their macroscale counterparts, in fact, the relevant physics change drastically; for example, short-range adhesive forces between particles, which are negligible at macroscale, are several orders of magnitude stronger than gravity at microscale. In this thesis, we present recent advances in analytical and computational modeling of microscale granular crystals, in particular concerning the interplay of nonlinearity, shear interactions, and particle rotations, which have previously been either absent, or included separately at macroscale. Drawing inspiration from past works on phononic crystals and nonlinear lattices, we explore problems involving locally-resonant metamaterials, nonlinear localized modes, amplitude-dependent energy partition, and other rich dynamical phenomena. This work enhances our understanding of microscale granular media, which may find applicability in fields such as ultrasonic wave tailoring, signal processing
Advances and Challenges in Computational Plasma Science
International Nuclear Information System (INIS)
Tang, W.M.; Chan, V.S.
2005-01-01
Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behavior. Recent advances in simulations of magnetically-confined plasmas are reviewed in this paper with illustrative examples chosen from associated research areas such as microturbulence, magnetohydrodynamics, and other topics. Progress has been stimulated in particular by the exponential growth of computer speed along with significant improvements in computer technology
JPRS Report, Science & Technology, USSR: Computers.
1988-07-08
Computer Graphics in Ergonomie Design (A. H. Kudryavtsev; TEKHNICHESKAYA ESTETIKA, No 9, 1987) 45 Prospecting Systems Based on Electrical and Seismic...kodirovanlya, 1987 9835 44 APPLICATIONS UDC 331.101.1:62,001.66:681.3:766 Computer Graphics in Ergonomie Design 18630003 Moscow TEKHN1CHESKAYA ESTETIKA in...characteristics (visual, aural and other sensory capabilities), Figure 1. Ergonomie CAD System Structure (10) (15) CPEflCTBA MAWWHHOW TPAOMKH
Audit and Evaluation of Computer Security. Computer Science and Technology.
Ruthberg, Zella G.
This is a collection of consensus reports, each produced at a session of an invitational workshop sponsored by the National Bureau of Standards. The purpose of the workshop was to explore the state-of-the-art and define appropriate subjects for future research in the audit and evaluation of computer security. Leading experts in the audit and…
Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo
2014-07-01
Reservoir computing is a recently introduced machine learning paradigm that has already shown excellent performances in the processing of empirical data. We study a particular kind of reservoir computers called time-delay reservoirs that are constructed out of the sampling of the solution of a time-delay differential equation and show their good performance in the forecasting of the conditional covariances associated to multivariate discrete-time nonlinear stochastic processes of VEC-GARCH type as well as in the prediction of factual daily market realized volatilities computed with intraday quotes, using as training input daily log-return series of moderate size. We tackle some problems associated to the lack of task-universality for individually operating reservoirs and propose a solution based on the use of parallel arrays of time-delay reservoirs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zizka, Jan; Nagamalai, Dhinaharan
2012-01-01
The International conference series on Computer Science, Engineering & Applications (ICCSEA) aims to bring together researchers and practitioners from academia and industry to focus on understanding computer science, engineering and applications and to establish new collaborations in these areas. The Second International Conference on Computer Science, Engineering & Applications (ICCSEA-2012), held in Delhi, India, during May 25-27, 2012 attracted many local and international delegates, presenting a balanced mixture of intellect and research both from the East and from the West. Upon a strenuous peer-review process the best submissions were selected leading to an exciting, rich and a high quality technical conference program, which featured high-impact presentations in the latest developments of various areas of computer science, engineering and applications research.
Zizka, Jan; Nagamalai, Dhinaharan
2012-01-01
The International conference series on Computer Science, Engineering & Applications (ICCSEA) aims to bring together researchers and practitioners from academia and industry to focus on understanding computer science, engineering and applications and to establish new collaborations in these areas. The Second International Conference on Computer Science, Engineering & Applications (ICCSEA-2012), held in Delhi, India, during May 25-27, 2012 attracted many local and international delegates, presenting a balanced mixture of intellect and research both from the East and from the West. Upon a strenuous peer-review process the best submissions were selected leading to an exciting, rich and a high quality technical conference program, which featured high-impact presentations in the latest developments of various areas of computer science, engineering and applications research.
Energy Technology Data Exchange (ETDEWEB)
Reisch, F; Vayssier, G
1969-05-15
This non-linear model serves as one of the blocks in a series of codes to study the transient behaviour of BWR or PWR type reactors. This program is intended to be the hydrodynamic part of the BWR core representation or the hydrodynamic part of the PWR heat exchanger secondary side representation. The equations have been prepared for the CSMP digital simulation language. By using the most suitable integration routine available, the ratio of simulation time to real time is about one on an IBM 360/75 digital computer. Use of the slightly different language DSL/40 on an IBM 7044 computer takes about four times longer. The code has been tested against the Eindhoven loop with satisfactory agreement.
Journal of Computer Science and Its Application: Submissions
African Journals Online (AJOL)
Author Guidelines. The Journal of Computer Science and Its Applications welcomes submission of complete and original research manuscripts, which are not under review in any other conference or journal. The topics covered by the journal include but are not limited to Artificial Intelligence, Bioinformatics, Computational ...
Computers in Science and Mathematics Education in the ASEAN Region.
Talisayon, Vivien M.
1989-01-01
Compares policies and programs on computers in science and mathematics education in the six ASEAN countries: Brunei, Indonesia; Malaysia, Philippines, Singapore, and Thailand. Limits discussion to the computer as a teaching aid and object of study, attendant problems, and regional cooperation. (MVL)
Computer Science in High School Graduation Requirements. ECS Education Trends
Zinth, Jennifer Dounay
2015-01-01
Computer science and coding skills are widely recognized as a valuable asset in the current and projected job market. The Bureau of Labor Statistics projects 37.5 percent growth from 2012 to 2022 in the "computer systems design and related services" industry--from 1,620,300 jobs in 2012 to an estimated 2,229,000 jobs in 2022. Yet some…
The Role of Visualization in Computer Science Education
Fouh, Eric; Akbar, Monika; Shaffer, Clifford A.
2012-01-01
Computer science core instruction attempts to provide a detailed understanding of dynamic processes such as the working of an algorithm or the flow of information between computing entities. Such dynamic processes are not well explained by static media such as text and images, and are difficult to convey in lecture. The authors survey the history…
Graphical User Interface Programming in Introductory Computer Science.
Skolnick, Michael M.; Spooner, David L.
Modern computing systems exploit graphical user interfaces for interaction with users; as a result, introductory computer science courses must begin to teach the principles underlying such interfaces. This paper presents an approach to graphical user interface (GUI) implementation that is simple enough for beginning students to understand, yet…
Computational Fluid Dynamics Methods and Their Applications in Medical Science
Directory of Open Access Journals (Sweden)
Kowalewski Wojciech
2016-12-01
Full Text Available As defined by the National Institutes of Health: “Biomedical engineering integrates physical, chemical, mathematical, and computational sciences and engineering principles to study biology, medicine, behavior, and health”. Many issues in this area are closely related to fluid dynamics. This paper provides an overview of the basic concepts concerning Computational Fluid Dynamics and its applications in medicine.
Computer Graphics for Student Engagement in Science Learning.
Cifuentes, Lauren; Hsieh, Yi-Chuan Jane
2001-01-01
Discusses student use of computer graphics software and presents documentation from a visualization workshop designed to help learners use computer graphics to construct meaning while they studied science concepts. Describes problems and benefits when delivering visualization workshops in the natural setting of a middle school. (Author/LRW)
Computational Science Research in Support of Petascale Electromagnetic Modeling
International Nuclear Information System (INIS)
Lee, L.-Q.
2008-01-01
Computational science research components were vital parts of the SciDAC-1 accelerator project and are continuing to play a critical role in newly-funded SciDAC-2 accelerator project, the Community Petascale Project for Accelerator Science and Simulation (ComPASS). Recent advances and achievements in the area of computational science research in support of petascale electromagnetic modeling for accelerator design analysis are presented, which include shape determination of superconducting RF cavities, mesh-based multilevel preconditioner in solving highly-indefinite linear systems, moving window using h- or p- refinement for time-domain short-range wakefield calculations, and improved scalable application I/O
Adapting computational text analysis to social science (and vice versa
Directory of Open Access Journals (Sweden)
Paul DiMaggio
2015-11-01
Full Text Available Social scientists and computer scientist are divided by small differences in perspective and not by any significant disciplinary divide. In the field of text analysis, several such differences are noted: social scientists often use unsupervised models to explore corpora, whereas many computer scientists employ supervised models to train data; social scientists hold to more conventional causal notions than do most computer scientists, and often favor intense exploitation of existing algorithms, whereas computer scientists focus more on developing new models; and computer scientists tend to trust human judgment more than social scientists do. These differences have implications that potentially can improve the practice of social science.
Fuchs, Armin
2013-01-01
With many areas of science reaching across their boundaries and becoming more and more interdisciplinary, students and researchers in these fields are confronted with techniques and tools not covered by their particular education. Especially in the life- and neurosciences quantitative models based on nonlinear dynamics and complex systems are becoming as frequently implemented as traditional statistical analysis. Unfamiliarity with the terminology and rigorous mathematics may discourage many scientists to adopt these methods for their own work, even though such reluctance in most cases is not justified.This book bridges this gap by introducing the procedures and methods used for analyzing nonlinear dynamical systems. In Part I, the concepts of fixed points, phase space, stability and transitions, among others, are discussed in great detail and implemented on the basis of example elementary systems. Part II is devoted to specific, non-trivial applications: coordination of human limb movement (Haken-Kelso-Bunz ...
TORCH Computational Reference Kernels - A Testbed for Computer Science Research
Energy Technology Data Exchange (ETDEWEB)
Kaiser, Alex; Williams, Samuel Webb; Madduri, Kamesh; Ibrahim, Khaled; Bailey, David H.; Demmel, James W.; Strohmaier, Erich
2010-12-02
For decades, computer scientists have sought guidance on how to evolve architectures, languages, and programming models in order to improve application performance, efficiency, and productivity. Unfortunately, without overarching advice about future directions in these areas, individual guidance is inferred from the existing software/hardware ecosystem, and each discipline often conducts their research independently assuming all other technologies remain fixed. In today's rapidly evolving world of on-chip parallelism, isolated and iterative improvements to performance may miss superior solutions in the same way gradient descent optimization techniques may get stuck in local minima. To combat this, we present TORCH: A Testbed for Optimization ResearCH. These computational reference kernels define the core problems of interest in scientific computing without mandating a specific language, algorithm, programming model, or implementation. To compliment the kernel (problem) definitions, we provide a set of algorithmically-expressed verification tests that can be used to verify a hardware/software co-designed solution produces an acceptable answer. Finally, to provide some illumination as to how researchers have implemented solutions to these problems in the past, we provide a set of reference implementations in C and MATLAB.
10th International Symposium on Computer Science in Sports
Soltoggio, Andrea; Dawson, Christian; Meng, Qinggang; Pain, Matthew
2016-01-01
This book presents the main scientific results of the 10th International Symposium of Computer Science in Sport (IACSS/ISCSS 2015), sponsored by the International Association of Computer Science in Sport in collaboration with the International Society of Sport Psychology (ISSP), which took place between September 9-11, 2015 at Loughborough, UK. This proceedings aims to build a link between computer science and sport, and reports on results from applying computer science techniques to address a wide number of problems in sport and exercise sciences. It provides a good platform and opportunity for researchers in both computer science and sport to understand and discuss ideas and promote cross-disciplinary research. The strictly reviewed and carefully revised papers cover the following topics: Modelling and Analysis, Artificial Intelligence in Sport, Virtual Reality in Sport, Neural Cognitive Training, IT Systems for Sport, Sensing Technologies and Image Processing.
High performance parallel computers for science
International Nuclear Information System (INIS)
Nash, T.; Areti, H.; Atac, R.; Biel, J.; Cook, A.; Deppe, J.; Edel, M.; Fischler, M.; Gaines, I.; Hance, R.
1989-01-01
This paper reports that Fermilab's Advanced Computer Program (ACP) has been developing cost effective, yet practical, parallel computers for high energy physics since 1984. The ACP's latest developments are proceeding in two directions. A Second Generation ACP Multiprocessor System for experiments will include $3500 RISC processors each with performance over 15 VAX MIPS. To support such high performance, the new system allows parallel I/O, parallel interprocess communication, and parallel host processes. The ACP Multi-Array Processor, has been developed for theoretical physics. Each $4000 node is a FORTRAN or C programmable pipelined 20 Mflops (peak), 10 MByte single board computer. These are plugged into a 16 port crossbar switch crate which handles both inter and intra crate communication. The crates are connected in a hypercube. Site oriented applications like lattice gauge theory are supported by system software called CANOPY, which makes the hardware virtually transparent to users. A 256 node, 5 GFlop, system is under construction
A DDC Bibliography on Computers in Information Sciences. Volume II. Information Sciences Series.
Defense Documentation Center, Alexandria, VA.
The unclassified and unlimited bibliography compiles references dealing specifically with the role of computers in information sciences. The volume contains 239 annotated references grouped under three major headings: Artificial and Programming Languages, Computer Processing of Analog Data, and Computer Processing of Digital Data. The references…
A Fast GPU-accelerated Mixed-precision Strategy for Fully NonlinearWater Wave Computations
DEFF Research Database (Denmark)
Glimberg, Stefan Lemvig; Engsig-Karup, Allan Peter; Madsen, Morten G.
2011-01-01
We present performance results of a mixed-precision strategy developed to improve a recently developed massively parallel GPU-accelerated tool for fast and scalable simulation of unsteady fully nonlinear free surface water waves over uneven depths (Engsig-Karup et.al. 2011). The underlying wave......-preconditioned defect correction method. The improved strategy improves the performance by exploiting architectural features of modern GPUs for mixed precision computations and is tested in a recently developed generic library for fast prototyping of PDE solvers. The new wave tool is applicable to solve and analyze...
ASYS: a computer algebra package for analysis of nonlinear algebraic equations systems
International Nuclear Information System (INIS)
Gerdt, V.P.; Khutornoj, N.V.
1992-01-01
A program package ASYS for analysis of nonlinear algebraic equations based on the Groebner basis technique is described. The package is written in REDUCE computer algebra language. It has special facilities to treat polynomial ideals of positive dimension, corresponding to algebraic systems with infinitely many solutions. Such systems can be transformed to an equivalent set of subsystems with reduced number of variables in completely automatic way. It often allows to construct the explicit form of a solution set in many problems of practical importance. Some examples and results of comparison with the standard Reduce package GROEBNER and special-purpose systems FELIX and A1PI are given. 21 refs.; 2 tabs
Computer codes for three dimensional mass transport with non-linear sorption
International Nuclear Information System (INIS)
Noy, D.J.
1985-03-01
The report describes the mathematical background and data input to finite element programs for three dimensional mass transport in a porous medium. The transport equations are developed and sorption processes are included in a general way so that non-linear equilibrium relations can be introduced. The programs are described and a guide given to the construction of the required input data sets. Concluding remarks indicate that the calculations require substantial computer resources and suggest that comprehensive preliminary analysis with lower dimensional codes would be important in the assessment of field data. (author)
Bioinformation processing a primer on computational cognitive science
Peterson, James K
2016-01-01
This book shows how mathematics, computer science and science can be usefully and seamlessly intertwined. It begins with a general model of cognitive processes in a network of computational nodes, such as neurons, using a variety of tools from mathematics, computational science and neurobiology. It then moves on to solve the diffusion model from a low-level random walk point of view. It also demonstrates how this idea can be used in a new approach to solving the cable equation, in order to better understand the neural computation approximations. It introduces specialized data for emotional content, which allows a brain model to be built using MatLab tools, and also highlights a simple model of cognitive dysfunction.
Integrating Computational Science Tools into a Thermodynamics Course
Vieira, Camilo; Magana, Alejandra J.; García, R. Edwin; Jana, Aniruddha; Krafcik, Matthew
2018-01-01
Computational tools and methods have permeated multiple science and engineering disciplines, because they enable scientists and engineers to process large amounts of data, represent abstract phenomena, and to model and simulate complex concepts. In order to prepare future engineers with the ability to use computational tools in the context of their disciplines, some universities have started to integrate these tools within core courses. This paper evaluates the effect of introducing three computational modules within a thermodynamics course on student disciplinary learning and self-beliefs about computation. The results suggest that using worked examples paired to computer simulations to implement these modules have a positive effect on (1) student disciplinary learning, (2) student perceived ability to do scientific computing, and (3) student perceived ability to do computer programming. These effects were identified regardless of the students' prior experiences with computer programming.
Computational error and complexity in science and engineering computational error and complexity
Lakshmikantham, Vangipuram; Chui, Charles K; Chui, Charles K
2005-01-01
The book "Computational Error and Complexity in Science and Engineering pervades all the science and engineering disciplines where computation occurs. Scientific and engineering computation happens to be the interface between the mathematical model/problem and the real world application. One needs to obtain good quality numerical values for any real-world implementation. Just mathematical quantities symbols are of no use to engineers/technologists. Computational complexity of the numerical method to solve the mathematical model, also computed along with the solution, on the other hand, will tell us how much computation/computational effort has been spent to achieve that quality of result. Anyone who wants the specified physical problem to be solved has every right to know the quality of the solution as well as the resources spent for the solution. The computed error as well as the complexity provide the scientific convincing answer to these questions. Specifically some of the disciplines in which the book w...
Computational Science: Ensuring America’s Competitiveness
2005-06-01
Interest of Society (CITRIS) and Professor University of California, Berkeley J. Carter Beese , Jr. President Riggs Capital Partners Pedro Celis, Ph.D...and Library Science University of North Carolina at Chapel Hill William J. Hannigan President AT&T Jonathan C. Javitt, M.D., M.P.H. Senior Fellow...Vannier, Ph.D., Professor of Radiology, University of Chicago • Jonathan C. Silverstein, M.D., M.S., FACS, Assistant Professor of Surgery, University of
Applying Human Computation Methods to Information Science
Harris, Christopher Glenn
2013-01-01
Human Computation methods such as crowdsourcing and games with a purpose (GWAP) have each recently drawn considerable attention for their ability to synergize the strengths of people and technology to accomplish tasks that are challenging for either to do well alone. Despite this increased attention, much of this transformation has been focused on…
Computational problems in science and engineering
Bulucea, Aida; Tsekouras, George
2015-01-01
This book provides readers with modern computational techniques for solving variety of problems from electrical, mechanical, civil and chemical engineering. Mathematical methods are presented in a unified manner, so they can be applied consistently to problems in applied electromagnetics, strength of materials, fluid mechanics, heat and mass transfer, environmental engineering, biomedical engineering, signal processing, automatic control and more.
Data systems and computer science programs: Overview
Smith, Paul H.; Hunter, Paul
1991-01-01
An external review of the Integrated Technology Plan for the Civil Space Program is presented. The topics are presented in viewgraph form and include the following: onboard memory and storage technology; advanced flight computers; special purpose flight processors; onboard networking and testbeds; information archive, access, and retrieval; visualization; neural networks; software engineering; and flight control and operations.
Defense Science Board Report on Advanced Computing
2009-03-01
computers will require extensive research and development to have a chance of reaching the exascale level. Even if exascale level machines can...generations of petascale and then exascale level computing capability. This includes both the hardware and the complex software that may be...required for the architectures needed for exacscale capability. The challenges are extremely daunting, especially at the exascale
Probability and statistics for computer science
Johnson, James L
2011-01-01
Comprehensive and thorough development of both probability and statistics for serious computer scientists; goal-oriented: ""to present the mathematical analysis underlying probability results"" Special emphases on simulation and discrete decision theory Mathematically-rich, but self-contained text, at a gentle pace Review of calculus and linear algebra in an appendix Mathematical interludes (in each chapter) which examine mathematical techniques in the context of probabilistic or statistical importance Numerous section exercises, summaries, historical notes, and Further Readings for reinforcem
JPRS Report, Science & Technology, USSR: Computers
1987-09-23
pages of Literary Gazette, it would be appropriate to proceed with a literary example. Not just elegance of handwriting (made absolutely unnecessary... adult population of the industrially developed nations would have been absorbed by scientific organizations. For this reason, the phenomenon of so...The Institute’s festivities are over. The young specialists in the computer department are in an elated mood . Thanks to their enthusiasm, clearness
High Performance Computing in Science and Engineering '14
Kröner, Dietmar; Resch, Michael
2015-01-01
This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS). The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.
Toward using games to teach fundamental computer science concepts
Edgington, Jeffrey Michael
Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. We present an investigation where computer games are used to teach two fundamental computer science concepts: boolean expressions and recursion. The games are intended to teach the concepts and not how to implement them in a programming language. For this investigation, two computer games were created. One is designed to teach basic boolean expressions and operators and the other to teach fundamental concepts of recursion. We describe the design and implementation of both games. We evaluate the effectiveness of these games using before and after surveys. The surveys were designed to ascertain basic understanding, attitudes and beliefs regarding the concepts. The boolean game was evaluated with local high school students and students in a college level introductory computer science course. The recursion game was evaluated with students in a college level introductory computer science course. We present the analysis of the collected survey information for both games. This analysis shows a significant positive change in student attitude towards recursion and modest gains in student learning outcomes for both topics.
Molecular Science Computing Facility Scientific Challenges: Linking Across Scales
Energy Technology Data Exchange (ETDEWEB)
De Jong, Wibe A.; Windus, Theresa L.
2005-07-01
The purpose of this document is to define the evolving science drivers for performing environmental molecular research at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and to provide guidance associated with the next-generation high-performance computing center that must be developed at EMSL's Molecular Science Computing Facility (MSCF) in order to address this critical research. The MSCF is the pre-eminent computing facility?supported by the U.S. Department of Energy's (DOE's) Office of Biological and Environmental Research (BER)?tailored to provide the fastest time-to-solution for current computational challenges in chemistry and biology, as well as providing the means for broad research in the molecular and environmental sciences. The MSCF provides integral resources and expertise to emerging EMSL Scientific Grand Challenges and Collaborative Access Teams that are designed to leverage the multiple integrated research capabilities of EMSL, thereby creating a synergy between computation and experiment to address environmental molecular science challenges critical to DOE and the nation.
MOOSE: A parallel computational framework for coupled systems of nonlinear equations
International Nuclear Information System (INIS)
Gaston, Derek; Newman, Chris; Hansen, Glen; Lebrun-Grandie, Damien
2009-01-01
Systems of coupled, nonlinear partial differential equations (PDEs) often arise in simulation of nuclear processes. MOOSE: Multiphysics Object Oriented Simulation Environment, a parallel computational framework targeted at the solution of such systems, is presented. As opposed to traditional data-flow oriented computational frameworks, MOOSE is instead founded on the mathematical principle of Jacobian-free Newton-Krylov (JFNK). Utilizing the mathematical structure present in JFNK, physics expressions are modularized into 'Kernels,' allowing for rapid production of new simulation tools. In addition, systems are solved implicitly and fully coupled, employing physics-based preconditioning, which provides great flexibility even with large variance in time scales. A summary of the mathematics, an overview of the structure of MOOSE, and several representative solutions from applications built on the framework are presented.
Global Analysis of Nonlinear Dynamics
Luo, Albert
2012-01-01
Global Analysis of Nonlinear Dynamics collects chapters on recent developments in global analysis of non-linear dynamical systems with a particular emphasis on cell mapping methods developed by Professor C.S. Hsu of the University of California, Berkeley. This collection of contributions prepared by a diverse group of internationally recognized researchers is intended to stimulate interests in global analysis of complex and high-dimensional nonlinear dynamical systems, whose global properties are largely unexplored at this time. This book also: Presents recent developments in global analysis of non-linear dynamical systems Provides in-depth considerations and extensions of cell mapping methods Adopts an inclusive style accessible to non-specialists and graduate students Global Analysis of Nonlinear Dynamics is an ideal reference for the community of nonlinear dynamics in different disciplines including engineering, applied mathematics, meteorology, life science, computational science, and medicine.
Mathematics for informatics and computer science
Audibert, Pierre
2013-01-01
How many ways do exist to mix different ingredients, how many chances to win a gambling game, how many possible paths going from one place to another in a network ? To this kind of questions Mathematics applied to computer gives a stimulating and exhaustive answer. This text, presented in three parts (Combinatorics, Probability, Graphs) addresses all those who wish to acquire basic or advanced knowledge in combinatorial theories. It is actually also used as a textbook. Basic and advanced theoretical elements are presented through simple applications like the Sudoku game, search engine al
Ada in Introductory Computer Science Courses
1993-01-01
M2 111418111 1111111 I s%1 tems to des elop soaftware Systems for IM5. ONhalt oIf dt ufl’wae mownev b f "bs" arn .exti to k ,ulift la Ada. COMPUT...beftjobamdsodeckldthesespienicngamnug them. A celula 101110011ui systm Service in Ada& using an rmniticdawau dipay shows *I tatus. The systm objweaniiimd...liftt aftr of Fucal Nikkao Wirh. Some say Software i - , I, ced a pse-validaed ver. origina soitweim is coded. The idWa is to that Ads is the las gpat
Intellectual Property Rights in Computer Science
DEFF Research Database (Denmark)
Bujlow, Tomasz
of money spent on equipment, technology, and salaries. Therefore, it is very important to secure the outcome by restricting other people from copying and selling the invention. There are several ways of protecting our work: patents, design rights, copyrights, and trademarks. In software engineering...... the last two -- copyrights and trademarks -- are broadly used. Copyrighting computer programs is not only made for obtaining proper license fees in the future. Free software uses copyright to secure its freedom and to prohibit other users from making it proprietary and selling it for money. Making...
DES Science Portal: Computing Photometric Redshifts
Energy Technology Data Exchange (ETDEWEB)
Gschwend, Julia [LIneA, Rio de Janeiro
2016-01-01
An important challenge facing photometric surveys for cosmological purposes, such as the Dark Energy Survey (DES), is the need to produce reliable photometric redshifts (photo-z). The choice of adequate algorithms and configurations and the maintenance of an up-to-date spectroscopic database to build training sets, for example, are challenging tasks when dealing with large amounts of data that are regularly updated and constantly growing. In this paper, we present the first of a series of tools developed by DES, provided as part of the DES Science Portal, an integrated web-based data portal developed to facilitate the scientific analysis of the data, while ensuring the reproducibility of the analysis. We present the DES Science Portal photometric redshift tools, starting from the creation of a spectroscopic sample to training the neural network photo-z codes, to the final estimation of photo-zs for a large photometric catalog. We illustrate this operation by calculating well calibrated photo-zs for a galaxy sample extracted from the DES first year (Y1A1) data. The series of processes mentioned above is run entirely within the Portal environment, which automatically produces validation metrics, and maintains the provenance between the different steps. This system allows us to fine tune the many steps involved in the process of calculating photo-zs, making sure that we do not lose the information on the configurations and inputs of the previous processes. By matching the DES Y1A1 photometry to a spectroscopic sample, we define different training sets that we use to feed the photo-z algorithms already installed at the Portal. Finally, we validate the results under several conditions, including the case of a sample limited to i<22.5 with the color properties close to the full DES Y1A1 photometric data. This way we compare the performance of multiple methods and training configurations. The infrastructure presented here is an effcient way to test several methods of
Energy Technology Data Exchange (ETDEWEB)
Hules, J. [ed.
1996-11-01
National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).
Multiscale Computation. Needs and Opportunities for BER Science
Energy Technology Data Exchange (ETDEWEB)
Scheibe, Timothy D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Jeremy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2015-01-01
The Environmental Molecular Sciences Laboratory (EMSL), a scientific user facility managed by Pacific Northwest National Laboratory for the U.S. Department of Energy, Office of Biological and Environmental Research (BER), conducted a one-day workshop on August 26, 2014 on the topic of “Multiscale Computation: Needs and Opportunities for BER Science.” Twenty invited participants, from various computational disciplines within the BER program research areas, were charged with the following objectives; Identify BER-relevant models and their potential cross-scale linkages that could be exploited to better connect molecular-scale research to BER research at larger scales and; Identify critical science directions that will motivate EMSL decisions regarding future computational (hardware and software) architectures.
Beyond the first "click:" Women graduate students in computer science
Sader, Jennifer L.
This dissertation explored the ways that constructions of gender shaped the choices and expectations of women doctoral students in computer science. Women who do graduate work in computer science still operate in an environment where they are in the minority. How much of women's underrepresentation in computer science fields results from a problem of imagining women as computer scientists? As long as women in these fields are seen as exceptions, they are exceptions that prove the "rule" that computing is a man's domain. The following questions were the focus of this inquiry: What are the career aspirations of women doctoral students in computer science? How do they feel about their chances to succeed in their chosen career and field? How do women doctoral students in computer science construct womanhood? What are their constructions of what it means to be a computer scientist? In what ways, if any, do they believe their gender has affected their experience in their graduate programs? The goal was to examine how constructions of computer science and of gender---including participants' own understanding of what it meant to be a woman, as well as the messages they received from their environment---contributed to their success as graduate students in a field where women are still greatly outnumbered by men. Ten women from four different institutions of higher education were recruited to participate in this study. These women varied in demographic characteristics like age, race, and ethnicity. Still, there were many common threads in their experiences. For example, their construction of womanhood did not limit their career prospects to traditionally female jobs. They had grown up with the expectation that they would be able to succeed in whatever field they chose. Most also had very positive constructions of programming as something that was "fun," rewarding, and intellectually stimulating. Their biggest obstacles were feelings of isolation and a resulting loss of
2011-10-03
... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and... Computer and Information Science and Engineering (1115). Date and Time: November 1, 2011 from 12 p.m.-5:30... Computer and Information Science and Engineering, National Science Foundation, 4201 Wilson Blvd., Suite...
Lin, Che-Li; Liang, Jyh-Chong; Su, Yi-Ching; Tsai, Chin-Chung
2013-01-01
Teacher-centered instruction has been widely adopted in college computer science classrooms and has some benefits in training computer science undergraduates. Meanwhile, student-centered contexts have been advocated to promote computer science education. How computer science learners respond to or prefer the two types of teacher authority,…
Directory of Open Access Journals (Sweden)
Behrooz Seyed-Abbassi
2004-12-01
Full Text Available Continuous technological changes have resulted in a rapid turnover of knowledge in the computing field. The impact of these changes directly affects the computer-related curriculum offered by educational institutions and dictates that curriculum must evolve to keep pace with technology and to provide students with the skills required by businesses. At the same time, accreditations of curricula from reviewing organizations provide additional guidelines and standardization for computing science as well as information science programs. One of the areas significantly affected by these changes is the field of information systems. This paper describes the evaluation and course structure for the undergraduate information science and systems program in the Computer and Information Sciences Department at the University of North Florida. A list of the major required and elective courses as well as an overview of the challenges encountered during the revision of the curriculum is given.
1984-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period October 1, 1983 through March 31, 1984 is summarized.
1989-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1988 through March 31, 1989 is summarized.
Internalization of Malaysian mathematical and computer science journals
Zainab, A. N.
2008-01-01
The internationalization characteristics of two Malaysian journals, Bulletin of the Malaysian Mathematical Sciences Society ( indexed by ISI) and the Malaysian Journal of Computer Science ( indexed by Inspec and Scopus) is observed. All issues for the years 2000 to 2007 were looked at to obtain the following information, (i) total articles published between 2000 and 2007; (ii) the distribution of foreign and Malaysian authors publishing in the journals; (iii) the distribution of articles by c...
Creators of mathematical and computational sciences
Agarwal, Ravi P
2014-01-01
The book records the essential discoveries of mathematical and computational scientists in chronological order, following the birth of ideas on the basis of prior ideas ad infinitum. The authors document the winding path of mathematical scholarship throughout history, and most importantly, the thought process of each individual that resulted in the mastery of their subject. The book implicitly addresses the nature and character of every scientist as one tries to understand their visible actions in both adverse and congenial environments. The authors hope that this will enable the reader to understand their mode of thinking, and perhaps even to emulate their virtues in life. … presents a picture of mathematics as a creation of the human imagination. … brings the history of mathematics to life by describing the contributions of the world’s greatest mathematicians. —Rex F. Gandy, Provost and Vice President for Academic Affairs, TAMUK It starts with the explanation and history of numbers, arithmetic, ...
Versatile Density Functionals for Computational Surface Science
DEFF Research Database (Denmark)
Wellendorff, Jess
Density functional theory (DFT) emerged almost 50 years ago. Since then DFT has established itself as the central electronic structure methodology for simulating atomicscale systems from a few atoms to a few hundred atoms. This success of DFT is due to a very favorable accuracy-to-computational c......Density functional theory (DFT) emerged almost 50 years ago. Since then DFT has established itself as the central electronic structure methodology for simulating atomicscale systems from a few atoms to a few hundred atoms. This success of DFT is due to a very favorable accuracy...... resampling techniques, thereby systematically avoiding problems with overfitting. The first ever density functional presenting both reliable accuracy and convincing error estimation is generated. The methodology is general enough to be applied to more complex functional forms with higher-dimensional fitting...
The Information Science Experiment System - The computer for science experiments in space
Foudriat, Edwin C.; Husson, Charles
1989-01-01
The concept of the Information Science Experiment System (ISES), potential experiments, and system requirements are reviewed. The ISES is conceived as a computer resource in space whose aim is to assist computer, earth, and space science experiments, to develop and demonstrate new information processing concepts, and to provide an experiment base for developing new information technology for use in space systems. The discussion covers system hardware and architecture, operating system software, the user interface, and the ground communication link.
SOFSEM 2009: Theory and Practice of Computer Science
DEFF Research Database (Denmark)
This book constitutes the refereed proceedings of the 35th Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM 2009, held in Špindleruv Mlýn, Czech Republic, in January 2009. The 49 revised full papers, presented together with 9 invited contributions, were carefully...... reviewed and selected from 132 submissions. SOFSEM 2009 was organized around the following four tracks: Foundations of Computer Science; Theory and Practice of Software Services; Game Theoretic Aspects of E-commerce; and Techniques and Tools for Formal Verification....
International Conference on Computer Science and Information Technology
Li, Xiaolong
2014-01-01
The main objective of CSAIT 2013 is to provide a forum for researchers, educators, engineers and government officials involved in the general areas of Computational Sciences and Information Technology to disseminate their latest research results and exchange views on the future research directions of these fields. A medium like this provides an opportunity to the academicians and industrial professionals to exchange and integrate practice of computer science, application of the academic ideas, improve the academic depth. The in-depth discussions on the subject provide an international communication platform for educational technology and scientific research for the world's universities, engineering field experts, professionals and business executives.
Explorations In Theoretical Computer Science For Kids (using paper toys)
DEFF Research Database (Denmark)
Valente, Andrea
2004-01-01
The computational card (c-cards for short) project is a study and realization of an educational tool based on playing cards. C-cards are an educational tool to introduce children 8 to 10 (or older) to the concept of computation, seen as manipulation of symbols. The game provides teachers...... and learners with a physical, tangible metaphor for exploring core concepts of computer science, such as deterministic and probabilistic state machines, frequencies and probability distributions, and the central elements of Shannon's information theory, like information, communication, errors and error...... detection. Our idea is implemented both with paper cards and by an editor/simulator software (a prototype realized in javascript). We also designed the structure of a course in (theoretical) computer science, based on c-cards, and we will test it this summer....
Computer Access and Computer Use for Science Performance of Racial and Linguistic Minority Students
Chang, Mido; Kim, Sunha
2009-01-01
This study examined the effects of computer access and computer use on the science achievement of elementary school students, with focused attention on the effects for racial and linguistic minority students. The study used the Early Childhood Longitudinal Study (ECLS-K) database and conducted statistical analyses with proper weights and…
Erdogan, Yavuz; Dede, Dinçer
2015-01-01
The purpose of this study is to compare the effects of computer assisted project-based instruction on learners' achievement in a science and technology course, in a computer course and in portfolio development. With this aim in mind, a quasi-experimental design was used and a sample of 70 seventh grade secondary school students from Org. Esref…
International Conference on Computer Science and Information Technologies
2017-01-01
The book reports on new theories and applications in the field of intelligent systems and computing. It covers computational and artificial intelligence methods, as well as advances in computer vision, current issue in big data and cloud computing, computation linguistics, cyber-physical systems as well as topics in intelligent information management. Written by active researchers, the different chapters are based on contributions presented at the workshop in intelligent systems and computing (ISC), held during CSIT 2016, September 6-9, and jointly organized by the Lviv Polytechnic National University, Ukraine, the Kharkiv National University of RadioElectronics, Ukraine, and the Technical University of Lodz, Poland, under patronage of Ministry of Education and Science of Ukraine. All in all, the book provides academics and professionals with extensive information and a timely snapshot of the field of intelligent systems, and it is expected to foster new discussions and collaborations among different groups. ...
Three views of logic mathematics, philosophy, and computer science
Loveland, Donald W; Sterrett, S G
2014-01-01
Demonstrating the different roles that logic plays in the disciplines of computer science, mathematics, and philosophy, this concise undergraduate textbook covers select topics from three different areas of logic: proof theory, computability theory, and nonclassical logic. The book balances accessibility, breadth, and rigor, and is designed so that its materials will fit into a single semester. Its distinctive presentation of traditional logic material will enhance readers' capabilities and mathematical maturity. The proof theory portion presents classical propositional logic and first-orde
Modelling, abstraction, and computation in systems biology: A view from computer science.
Melham, Tom
2013-04-01
Systems biology is centrally engaged with computational modelling across multiple scales and at many levels of abstraction. Formal modelling, precise and formalised abstraction relationships, and computation also lie at the heart of computer science--and over the past decade a growing number of computer scientists have been bringing their discipline's core intellectual and computational tools to bear on biology in fascinating new ways. This paper explores some of the apparent points of contact between the two fields, in the context of a multi-disciplinary discussion on conceptual foundations of systems biology. Copyright © 2012 Elsevier Ltd. All rights reserved.
Interactive visualization of Earth and Space Science computations
Hibbard, William L.; Paul, Brian E.; Santek, David A.; Dyer, Charles R.; Battaiola, Andre L.; Voidrot-Martinez, Marie-Francoise
1994-01-01
Computers have become essential tools for scientists simulating and observing nature. Simulations are formulated as mathematical models but are implemented as computer algorithms to simulate complex events. Observations are also analyzed and understood in terms of mathematical models, but the number of these observations usually dictates that we automate analyses with computer algorithms. In spite of their essential role, computers are also barriers to scientific understanding. Unlike hand calculations, automated computations are invisible and, because of the enormous numbers of individual operations in automated computations, the relation between an algorithm's input and output is often not intuitive. This problem is illustrated by the behavior of meteorologists responsible for forecasting weather. Even in this age of computers, many meteorologists manually plot weather observations on maps, then draw isolines of temperature, pressure, and other fields by hand (special pads of maps are printed for just this purpose). Similarly, radiologists use computers to collect medical data but are notoriously reluctant to apply image-processing algorithms to that data. To these scientists with life-and-death responsibilities, computer algorithms are black boxes that increase rather than reduce risk. The barrier between scientists and their computations can be bridged by techniques that make the internal workings of algorithms visible and that allow scientists to experiment with their computations. Here we describe two interactive systems developed at the University of Wisconsin-Madison Space Science and Engineering Center (SSEC) that provide these capabilities to Earth and space scientists.
Stylianou, Agni
2003-06-01
Digital texts which are based on hypertext and hypermedia technologies are now being used to support science learning. Hypertext offers certain opportunities for learning as well as difficulties that challenge readers to become metacognitively aware of their navigation decisions in order to trade both meaning and structure while reading. The goal of this study was to investigate whether supporting sixth grade students to monitor and regulate their navigation behavior while reading from hypertext would lead to better navigation and learning. Metanavigation support in the form of prompts was provided to groups of students who used a hypertext system called CoMPASS to complete a design challenge. The metanavigation prompts aimed at encouraging students to understand the affordances of the navigational aids in CoMPASS and use them to guide their navigation. The study was conducted in a real classroom setting during the implementation of CoMPASS in sixth grade science classes. Multiple sources of group and individual data were collected and analyzed. Measures included student's individual performance in a pre-science knowledge test, the Metacognitive Awareness of Reading Strategies Inventory (MARSI), a reading comprehension test and a concept map test. Process measures included log file information that captured group navigation paths during the use of CoMPASS. The results suggested that providing metanavigation support enabled the groups to make coherent transitions among the text units. Findings also revealed that reading comprehension, presence of metanavigation support and prior domain knowledge significantly predicted students' individual understanding of science. Implications for hypertext design and literacy research fields are discussed.
Report on Computing and Networking in the Space Science Laboratory by the SSL Computer Committee
Gallagher, D. L. (Editor)
1993-01-01
The Space Science Laboratory (SSL) at Marshall Space Flight Center is a multiprogram facility. Scientific research is conducted in four discipline areas: earth science and applications, solar-terrestrial physics, astrophysics, and microgravity science and applications. Representatives from each of these discipline areas participate in a Laboratory computer requirements committee, which developed this document. The purpose is to establish and discuss Laboratory objectives for computing and networking in support of science. The purpose is also to lay the foundation for a collective, multiprogram approach to providing these services. Special recognition is given to the importance of the national and international efforts of our research communities toward the development of interoperable, network-based computer applications.
A DDC Bibliography on Computers in Information Sciences. Volume I. Information Sciences Series.
Defense Documentation Center, Alexandria, VA.
The unclassified and unlimited bibliography compiles references dealing specifically with the role of computers in information sciences. The volume contains 249 annotated references grouped under two major headings: Time Shared, On-Line, and Real Time Systems, and Computer Components. The references are arranged in accesion number (AD-number)…
Directory of Open Access Journals (Sweden)
Artiom Alhazov
2008-07-01
Full Text Available Evolution of the informatization notion (which assumes automation of majority of human activities applying computers, computer networks, information technologies towards the notion of {\\it Global Information Society} (GIS challenges the determination of new paradigms of society: automation and intellectualization of production, new level of education and teaching, formation of new styles of work, active participation in decision making, etc. To assure transition to GIS for any society, including that from Republic of Moldova, requires both special training and broad application of progressive technologies and information systems. Methodological aspects concerning impact of GIS creation over the citizen, economic unit, national economy in the aggregate demands a profound study. Without systematic approach to these aspects the GIS creation would have confront great difficulties. Collective of researchers from the Institute of Mathematics and Computer Science (IMCS of Academy of Sciences of Moldova, which work in the field of computer science, constitutes the center of advanced researches and activates in those directions of researches of computer science which facilitate technologies and applications without of which the development of GIS cannot be assured.
A three-dimensional computer code for the nonlinear dynamic response of an HTGR core
International Nuclear Information System (INIS)
Subudhi, M.; Lasker, L.; Koplik, B.; Curreri, J.; Goradia, H.
1979-01-01
A three-dimensional dynamic code has been developed to determine the nonlinear response of an HTGR core. The HTGR core consists of several thousands of hexagonal core blocks. These are arranged in layers stacked together. Each layer contains many core blocks surrounded on their outer periphery by reflector blocks. The entire assembly is contained within a prestressed concrete reactor vessel. Gaps exist between adjacent blocks in any horizontal plane. Each core block in a given layer is connected to the blocks directly above and below it via three dowell pins. The present analytical study is directed towards an investigation of the nonlinear response of the reactor core blocks in the event of a seismic occurrence. The computer code is developed for a specific mathematical model which represents a vertical arrangement of layers of blocks. This comprises a 'block module' of core elements which would be obtained by cutting a cylindrical portion consisting of seven fuel blocks per layer. It is anticipated that a number of such modules properly arranged could represent the entire core. Hence, the predicted response of this module would exhibit the response characteristics of the core. (orig.)
Three-dimensional computer code for the nonlinear dynamic response of an HTGR core
International Nuclear Information System (INIS)
Subudhi, M.; Lasker, L.; Koplik, B.; Curreri, J.; Goradia, H.
1979-01-01
A three-dimensional dynamic code has been developed to determine the nonlinear response of an HTGR core. The HTGR core consists of several thousands of hexagonal core blocks. These are arranged inlayers stacked together. Each layer contains many core blocks surrounded on their outer periphery by reflector blocks. The entire assembly is contained within a prestressed concrete reactor vessel. Gaps exist between adjacent blocks in any horizontal plane. Each core block in a given layer is connected to the blocks directly above and below it via three dowell pins. The present analystical study is directed towards an invesstigation of the nonlinear response of the reactor core blocks in the event of a seismic occurrence. The computer code is developed for a specific mathemtical model which represents a vertical arrangement of layers of blocks. This comprises a block module of core elements which would be obtained by cutting a cylindrical portion consisting of seven fuel blocks per layer. It is anticipated that a number of such modules properly arranged could represent the entire core. Hence, the predicted response of this module would exhibit the response characteristics of the core
Building fast, reliable, and adaptive software for computational science
International Nuclear Information System (INIS)
Rendell, A P; Antony, J; Armstrong, W; Janes, P; Yang, R
2008-01-01
Building fast, reliable, and adaptive software is a constant challenge for computational science, especially given recent developments in computer architecture. This paper outlines some of our efforts to address these three issues in the context of computational chemistry. First, a simple linear performance that can be used to model and predict the performance of Hartree-Fock calculations is discussed. Second, the use of interval arithmetic to assess the numerical reliability of the sort of integrals used in electronic structure methods is presented. Third, use of dynamic code modification as part of a framework to support adaptive software is outlined
A Survey of Current Computer Information Science (CIS) Students.
Los Rios Community Coll. District, Sacramento, CA. Office of Institutional Research.
This document is a survey designed to be completed by current students of Computer Information Science (CIS) in the Los Rios Community College District (LRCCD), which consists of three community colleges: American River College, Cosumnes River College, and Sacramento City College. The students are asked about their educational goals and how…
Women in Computer Sciences in Romania: Success and Sacrifice
Ward, Kelly; Dragne, Cornelia; Lucas, Angelina J.
2014-01-01
The purpose of this article is to more fully understand the professional lives of women academics in computer sciences in six Romanian universities. The work is exploratory and relies on a qualitative framework to more fully understand what it means to be a woman academic in high-tech disciplines in a second world economy. We conducted in-depth,…
Mathematics and Computer Science: Exploring a Symbiotic Relationship
Bravaco, Ralph; Simonson, Shai
2004-01-01
This paper describes a "learning community" designed for sophomore computer science majors who are simultaneously studying discrete mathematics. The learning community consists of three courses: Discrete Mathematics, Data Structures and an Integrative Seminar/Lab. The seminar functions as a link that integrates the two disciplines. Participation…
A Novel Coupling Pattern in Computational Science and Engineering Software
Computational science and engineering (CSE) software is written by experts of certain area(s). Due to the specialization,existing CSE software may need to integrate other CSE software systems developed by different groups of experts. Thecoupling problem is one of the challenges f...
Recruiting Women into Computer Science and Information Systems
Broad, Steven; McGee, Meredith
2014-01-01
While many technical disciplines have reached or are moving toward gender parity in the number of bachelors degrees in those fields, the percentage of women graduating in computer science remains stubbornly low. Many recent efforts to address this situation have focused on retention of undergraduate majors or graduate students, recruiting…
Imprinting Community College Computer Science Education with Software Engineering Principles
Hundley, Jacqueline Holliday
Although the two-year curriculum guide includes coverage of all eight software engineering core topics, the computer science courses taught in Alabama community colleges limit student exposure to the programming, or coding, phase of the software development lifecycle and offer little experience in requirements analysis, design, testing, and maintenance. We proposed that some software engineering principles can be incorporated into the introductory-level of the computer science curriculum. Our vision is to give community college students a broader exposure to the software development lifecycle. For those students who plan to transfer to a baccalaureate program subsequent to their community college education, our vision is to prepare them sufficiently to move seamlessly into mainstream computer science and software engineering degrees. For those students who plan to move from the community college to a programming career, our vision is to equip them with the foundational knowledge and skills required by the software industry. To accomplish our goals, we developed curriculum modules for teaching seven of the software engineering knowledge areas within current computer science introductory-level courses. Each module was designed to be self-supported with suggested learning objectives, teaching outline, software tool support, teaching activities, and other material to assist the instructor in using it.
Contribution of computer science to the evaluation of experimental data
International Nuclear Information System (INIS)
Steuerwald, J.
1978-11-01
The GALE data acquisition system and EDDAR data processing system, used at Max-Planck-Institut fuer Plasmaphysik, serve to illustrate some of the various ways in which computer science plays a major role in developing the evaluation of experimental data. (orig.) [de
Pedagogical Beliefs and Attitudes of Computer Science Teachers in Greece
Fessakis, Georgios; Karakiza, Tsampika
2011-01-01
Pedagogical beliefs and attitudes significantly determine the professional skills and practice of teachers. Many professional development programs for teachers aim to the elaboration of the pedagogical knowledge in order to improve teaching quality. This paper presents the study of pedagogical beliefs of computer science teachers in Greece. The…
Interpolation in computing science : the semantics of modularization
Renardel de Lavalette, Gerard R.
2008-01-01
The Interpolation Theorem, first formulated and proved by W. Craig fifty years ago for predicate logic, has been extended to many other logical frameworks and is being applied in several areas of computer science. We give a short overview, and focus on the theory of software systems and modules. An
The Design and Evaluation of Teaching Experiments in Computer Science.
Forcheri, Paola; Molfino, Maria Teresa
1992-01-01
Describes a relational model that was developed to provide a framework for the design and evaluation of teaching experiments for the introduction of computer science in secondary schools in Italy. Teacher training is discussed, instructional materials are considered, and use of the model for the evaluation process is described. (eight references)…
Applications of Deontic Logic in Computer Science: A Concise Overview
Meyer, J.-J.Ch.; Meyer, John-Jules Ch.; Wieringa, Roelf J.
1993-01-01
Deontic logic is the logic that deals with actual as well as ideal behavior of systems. In this paper, we survey a number of applications of deontic logic in computer science that have arisen in the eighties, and give a systematic framework in which these applications can be classified. Many
Computer Networking Strategies for Building Collaboration among Science Educators.
Aust, Ronald
The development and dissemination of science materials can be associated with technical delivery systems such as the Unified Network for Informatics in Teacher Education (UNITE). The UNITE project was designed to investigate ways for using computer networking to improve communications and collaboration among university schools of education and…
NNS computing facility manual P-17 Neutron and Nuclear Science
International Nuclear Information System (INIS)
Hoeberling, M.; Nelson, R.O.
1993-11-01
This document describes basic policies and provides information and examples on using the computing resources provided by P-17, the Neutron and Nuclear Science (NNS) group. Information on user accounts, getting help, network access, electronic mail, disk drives, tape drives, printers, batch processing software, XSYS hints, PC networking hints, and Mac networking hints is given
A Survey of Computer Science Capstone Course Literature
Dugan, Robert F., Jr.
2011-01-01
In this article, we surveyed literature related to undergraduate computer science capstone courses. The survey was organized around course and project issues. Course issues included: course models, learning theories, course goals, course topics, student evaluation, and course evaluation. Project issues included: software process models, software…
Towards a Competency Model for Teaching Computer Science
Bender, Elena; Hubwieser, Peter; Schaper, Niclas; Margaritis, Melanie; Berges, Marc; Ohrndorf, Laura; Magenheim, Johannes; Schubert, Sigrid
2015-01-01
To address the special challenges of teaching computer science, adequate development of teachers' competencies during their education is extremely important. In particular, pedagogical content knowledge and teachers' beliefs and motivational orientations play an important role in effective teaching. This research field has been sparsely…
A Novel Coupling Pattern in Computational Science and Engineering Software
Computational science and engineering (CSE) software is written by experts of certain area(s). Due to the specialization, existing CSE software may need to integrate other CSE software systems developed by different groups of experts. The coupling problem is one of the challenges...
Results of a Research Evaluating Quality of Computer Science Education
Záhorec, Ján; Hašková, Alena; Munk, Michal
2012-01-01
The paper presents the results of an international research on a comparative assessment of the current status of computer science education at the secondary level (ISCED 3A) in Slovakia, the Czech Republic, and Belgium. Evaluation was carried out based on 14 specific factors gauging the students' point of view. The authors present qualitative…
Mastering Cognitive Development Theory in Computer Science Education
Gluga, Richard; Kay, Judy; Lister, Raymond; Kleitman, Simon; Kleitman, Sabina
2013-01-01
To design an effective computer science curriculum, educators require a systematic method of classifying the difficulty level of learning activities and assessment tasks. This is important for curriculum design and implementation and for communication between educators. Different educators must be able to use the method consistently, so that…
Imprinting Community College Computer Science Education with Software Engineering Principles
Hundley, Jacqueline Holliday
2012-01-01
Although the two-year curriculum guide includes coverage of all eight software engineering core topics, the computer science courses taught in Alabama community colleges limit student exposure to the programming, or coding, phase of the software development lifecycle and offer little experience in requirements analysis, design, testing, and…
Restart: The Resurgence of Computer Science in UK Schools
Brown, Neil C. C.; Sentance, Sue; Crick, Tom; Humphreys, Simon
2014-01-01
Computer science in UK schools is undergoing a remarkable transformation. While the changes are not consistent across each of the four devolved nations of the UK (England, Scotland, Wales and Northern Ireland), there are developments in each that are moving the subject to become mandatory for all pupils from age 5 onwards. In this article, we…
Designing English for Specific Purposes Course for Computer Science Students
Irshad, Isra; Anwar, Behzad
2018-01-01
The aim of this study was to design English for Academic Purposes (EAP) course for University students enrolled in the Computer Science Department. For this purpose, academic English language needs of the students were analyzed by using a 5 point Likert scale questionnaire. Additionally, interviews were also conducted with four faculty members of…
Abstraction to Implementation: A Two Stage Introduction to Computer Science.
Wolz, Ursula; Conjura, Edward
A three-semester core curriculum for undergraduate computer science is proposed and described. Both functional and imperative programming styles are taught. The curriculum particularly addresses the problem of effectively presenting both abstraction and implementation. Two courses in the first semester emphasize abstraction. The next courses…
Finding the Hook: Computer Science Education in Elementary Contexts
Ozturk, Zehra; Dooley, Caitlin McMunn; Welch, Meghan
2018-01-01
The purpose of this study was to investigate how elementary teachers with little knowledge of computer science (CS) and project-based learning (PBL) experienced integrating CS through PBL as a part of a standards-based elementary curriculum in Grades 3-5. The researchers used qualitative constant comparison methods on field notes and reflections…
Decision Sciences, Economics, Finance, Business, Computing, and Big Data: Connections
C-L. Chang (Chia-Lin); M.J. McAleer (Michael); W.-K. Wong (Wing-Keung)
2018-01-01
textabstractThis paper provides a review of some connecting literature in Decision Sciences, Economics, Finance, Business, Computing, and Big Data. We then discuss some research that is related to the six cognate disciplines. Academics could develop theoretical models and subsequent
Recent developments and applications in mathematics and computer science
International Nuclear Information System (INIS)
Churchhouse, R.F.; Tahir Shah, K.; Zanella, P.
1991-01-01
The book contains 8 invited lectures and 4 short seminars presented at the College on Recent Developments and Applications in Mathematics and Computer Science held in Trieste from 7 May to 1 June 1990. A separate abstract was prepared for each paper. Refs, figs and tabs
Advances in Cross-Cutting Ideas for Computational Climate Science
Energy Technology Data Exchange (ETDEWEB)
Ng, Esmond [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Evans, Katherine J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Caldwell, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hoffman, Forrest M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Charles [Univ. of Texas, Austin, TX (United States); Kerstin, Van Dam [Brookhaven National Lab. (BNL), Upton, NY (United States); Leung, Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Martin, Daniel F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ostrouchov, George [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tuminaro, Raymond [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ullrich, Paul [Univ. of California, Davis, CA (United States); Wild, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2017-01-01
This report presents results from the DOE-sponsored workshop titled, ``Advancing X-Cutting Ideas for Computational Climate Science Workshop,'' known as AXICCS, held on September 12--13, 2016 in Rockville, MD. The workshop brought together experts in climate science, computational climate science, computer science, and mathematics to discuss interesting but unsolved science questions regarding climate modeling and simulation, promoted collaboration among the diverse scientists in attendance, and brainstormed about possible tools and capabilities that could be developed to help address them. Emerged from discussions at the workshop were several research opportunities that the group felt could advance climate science significantly. These include (1) process-resolving models to provide insight into important processes and features of interest and inform the development of advanced physical parameterizations, (2) a community effort to develop and provide integrated model credibility, (3) including, organizing, and managing increasingly connected model components that increase model fidelity yet complexity, and (4) treating Earth system models as one interconnected organism without numerical or data based boundaries that limit interactions. The group also identified several cross-cutting advances in mathematics, computer science, and computational science that would be needed to enable one or more of these big ideas. It is critical to address the need for organized, verified, and optimized software, which enables the models to grow and continue to provide solutions in which the community can have confidence. Effectively utilizing the newest computer hardware enables simulation efficiency and the ability to handle output from increasingly complex and detailed models. This will be accomplished through hierarchical multiscale algorithms in tandem with new strategies for data handling, analysis, and storage. These big ideas and cross-cutting technologies for
Advances in Cross-Cutting Ideas for Computational Climate Science
Energy Technology Data Exchange (ETDEWEB)
Ng, E.; Evans, K.; Caldwell, P.; Hoffman, F.; Jackson, C.; Van Dam, K.; Leung, R.; Martin, D.; Ostrouchov, G.; Tuminaro, R.; Ullrich, P.; Wild, S.; Williams, S.
2017-01-01
This report presents results from the DOE-sponsored workshop titled, Advancing X-Cutting Ideas for Computational Climate Science Workshop,'' known as AXICCS, held on September 12--13, 2016 in Rockville, MD. The workshop brought together experts in climate science, computational climate science, computer science, and mathematics to discuss interesting but unsolved science questions regarding climate modeling and simulation, promoted collaboration among the diverse scientists in attendance, and brainstormed about possible tools and capabilities that could be developed to help address them. Emerged from discussions at the workshop were several research opportunities that the group felt could advance climate science significantly. These include (1) process-resolving models to provide insight into important processes and features of interest and inform the development of advanced physical parameterizations, (2) a community effort to develop and provide integrated model credibility, (3) including, organizing, and managing increasingly connected model components that increase model fidelity yet complexity, and (4) treating Earth system models as one interconnected organism without numerical or data based boundaries that limit interactions. The group also identified several cross-cutting advances in mathematics, computer science, and computational science that would be needed to enable one or more of these big ideas. It is critical to address the need for organized, verified, and optimized software, which enables the models to grow and continue to provide solutions in which the community can have confidence. Effectively utilizing the newest computer hardware enables simulation efficiency and the ability to handle output from increasingly complex and detailed models. This will be accomplished through hierarchical multiscale algorithms in tandem with new strategies for data handling, analysis, and storage. These big ideas and cross-cutting technologies for enabling
Opportunities for discovery: Theory and computation in Basic Energy Sciences
Energy Technology Data Exchange (ETDEWEB)
Harmon, Bruce; Kirby, Kate; McCurdy, C. William
2005-01-11
New scientific frontiers, recent advances in theory, and rapid increases in computational capabilities have created compelling opportunities for theory and computation to advance the scientific mission of the Office of Basic Energy Sciences (BES). The prospects for success in the experimental programs of BES will be enhanced by pursuing these opportunities. This report makes the case for an expanded research program in theory and computation in BES. The Subcommittee on Theory and Computation of the Basic Energy Sciences Advisory Committee was charged with identifying current and emerging challenges and opportunities for theoretical research within the scientific mission of BES, paying particular attention to how computing will be employed to enable that research. A primary purpose of the Subcommittee was to identify those investments that are necessary to ensure that theoretical research will have maximum impact in the areas of importance to BES, and to assure that BES researchers will be able to exploit the entire spectrum of computational tools, including leadership class computing facilities. The Subcommittee s Findings and Recommendations are presented in Section VII of this report.
[Activities of Research Institute for Advanced Computer Science
Gross, Anthony R. (Technical Monitor); Leiner, Barry M.
2001-01-01
The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administrations missions. RIACS is located at the NASA Ames Research Center, Moffett Field, California. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1. Automated Reasoning for Autonomous Systems Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. 2. Human-Centered Computing Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities. 3. High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to analysis of large scientific datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.
Computation of Value Functions in Nonlinear Differential Games with State Constraints
Botkin, Nikolai
2013-01-01
Finite-difference schemes for the computation of value functions of nonlinear differential games with non-terminal payoff functional and state constraints are proposed. The solution method is based on the fact that the value function is a generalized viscosity solution of the corresponding Hamilton-Jacobi-Bellman-Isaacs equation. Such a viscosity solution is defined as a function satisfying differential inequalities introduced by M. G. Crandall and P. L. Lions. The difference with the classical case is that these inequalities hold on an unknown in advance subset of the state space. The convergence rate of the numerical schemes is given. Numerical solution to a non-trivial three-dimensional example is presented. © 2013 IFIP International Federation for Information Processing.
Nonlinear dynamics of laser systems with elements of a chaos: Advanced computational code
Buyadzhi, V. V.; Glushkov, A. V.; Khetselius, O. Yu; Kuznetsova, A. A.; Buyadzhi, A. A.; Prepelitsa, G. P.; Ternovsky, V. B.
2017-10-01
A general, uniform chaos-geometric computational approach to analysis, modelling and prediction of the non-linear dynamics of quantum and laser systems (laser and quantum generators system etc) with elements of the deterministic chaos is briefly presented. The approach is based on using the advanced generalized techniques such as the wavelet analysis, multi-fractal formalism, mutual information approach, correlation integral analysis, false nearest neighbour algorithm, the Lyapunov’s exponents analysis, and surrogate data method, prediction models etc There are firstly presented the numerical data on the topological and dynamical invariants (in particular, the correlation, embedding, Kaplan-York dimensions, the Lyapunov’s exponents, Kolmogorov’s entropy and other parameters) for laser system (the semiconductor GaAs/GaAlAs laser with a retarded feedback) dynamics in a chaotic and hyperchaotic regimes.
CASKETSS-HEAT: a finite difference computer program for nonlinear heat conduction problems
International Nuclear Information System (INIS)
Ikushima, Takeshi
1988-12-01
A heat conduction program CASKETSS-HEAT has been developed. CASKETSS-HEAT is a finite difference computer program used for the solution of multi-dimensional nonlinear heat conduction problems. Main features of CASKETSS-HEAT are as follows. (1) One, two and three-dimensional geometries for heat conduction calculation are available. (2) Convection and radiation heat transfer of boundry can be specified. (3) Phase change and chemical change can be treated. (4) Finned surface heat transfer can be treated easily. (5) Data memory allocation in the program is variable according to problem size. (6) The program is a compatible heat transfer analysis program to the stress analysis program SAP4 and SAP5. (7) Pre- and post-processing for input data generation and graphic representation of calculation results are available. In the paper, brief illustration of calculation method, input data and sample calculation are presented. (author)
International Nuclear Information System (INIS)
Matsuda, Y.; Crawford, F.W.
1975-01-01
An economical low-noise plasma simulation model originated by Denavit is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation. These tests serve to establish the low-noise features of the model, and to verify the theoretical linear dispersion relation at wave energy levels as low as 10 -6 of the plasma thermal energy: Better quantitative results are obtained, for comparable computing time, than can be obtained by conventional particle simulation models, or direct solution of the Vlasov equation. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories
Grolet, Aurelien; Thouverez, Fabrice
2015-02-01
This paper is devoted to the study of vibration of mechanical systems with geometric nonlinearities. The harmonic balance method is used to derive systems of polynomial equations whose solutions give the frequency component of the possible steady states. Groebner basis methods are used for computing all solutions of polynomial systems. This approach allows to reduce the complete system to an unique polynomial equation in one variable driving all solutions of the problem. In addition, in order to decrease the number of variables, we propose to first work on the undamped system, and recover solution of the damped system using a continuation on the damping parameter. The search for multiple solutions is illustrated on a simple system, where the influence of the retained number of harmonic is studied. Finally, the procedure is applied on a simple cyclic system and we give a representation of the multiple states versus frequency.
Su, Fei; Wang, Jiang; Deng, Bin; Wei, Xi-Le; Chen, Ying-Yuan; Liu, Chen; Li, Hui-Yan
2015-02-01
The objective here is to explore the use of adaptive input-output feedback linearization method to achieve an improved deep brain stimulation (DBS) algorithm for closed-loop control of Parkinson's state. The control law is based on a highly nonlinear computational model of Parkinson's disease (PD) with unknown parameters. The restoration of thalamic relay reliability is formulated as the desired outcome of the adaptive control methodology, and the DBS waveform is the control input. The control input is adjusted in real time according to estimates of unknown parameters as well as the feedback signal. Simulation results show that the proposed adaptive control algorithm succeeds in restoring the relay reliability of the thalamus, and at the same time achieves accurate estimation of unknown parameters. Our findings point to the potential value of adaptive control approach that could be used to regulate DBS waveform in more effective treatment of PD.
International Nuclear Information System (INIS)
Zahlten, W.
1990-02-01
Starting from a Kirchhoff-Love type shell theory of finite rotations a layered shell element for reinforced concrete is developed. The plastic-fracturing theory due to Bazant/Kim is used to describe the uncracked concrete. Tension cracking is controlled by a principle tensile stress criterion. An elasto-plastic law with kinematic hardening models the reinforcing steel. The tension stiffening concept of Gilbert/Warner allows an averaged consideration of the concrete between cracks. By discretization of the displacement field the element matrices are obtained which are derived via tensor notation. The nonlinear structural response is computed by incremental-iterative path-tracing algorithms. The range of applicability of the model is finally be proven by several examples with time-invariant and time-dependent loading. (orig.) [de
Global Conference on Applied Computing in Science and Engineering
2016-01-01
The Global Conference on Applied Computing in Science and Engineering is organized by academics and researchers belonging to different scientific areas of the C3i/Polytechnic Institute of Portalegre (Portugal) and the University of Extremadura (Spain) with the technical support of ScienceKnow Conferences. The event has the objective of creating an international forum for academics, researchers and scientists from worldwide to discuss worldwide results and proposals regarding to the soundest issues related to Applied Computing in Science and Engineering. This event will include the participation of renowned keynote speakers, oral presentations, posters sessions and technical conferences related to the topics dealt with in the Scientific Program as well as an attractive social and cultural program. The papers will be published in the Proceedings e-books. The proceedings of the conference will be sent to possible indexing on Thomson Reuters (selective by Thomson Reuters, not all-inclusive) and Google Scholar...
1st International Conference on Computational and Experimental Biomedical Sciences
Jorge, RM
2015-01-01
This book contains the full papers presented at ICCEBS 2013 – the 1st International Conference on Computational and Experimental Biomedical Sciences, which was organized in Azores, in October 2013. The included papers present and discuss new trends in those fields, using several methods and techniques, including active shape models, constitutive models, isogeometric elements, genetic algorithms, level sets, material models, neural networks, optimization, and the finite element method, in order to address more efficiently different and timely applications involving biofluids, computer simulation, computational biomechanics, image based diagnosis, image processing and analysis, image segmentation, image registration, scaffolds, simulation, and surgical planning. The main audience for this book consists of researchers, Ph.D students, and graduate students with multidisciplinary interests related to the areas of artificial intelligence, bioengineering, biology, biomechanics, computational fluid dynamics, comput...
Intelligent systems and soft computing for nuclear science and industry
International Nuclear Information System (INIS)
Ruan, D.; D'hondt, P.; Govaerts, P.; Kerre, E.E.
1996-01-01
The second international workshop on Fuzzy Logic and Intelligent Technologies in Nuclear Science (FLINS) addresses topics related to intelligent systems and soft computing for nuclear science and industry. The proceedings contain 52 papers in different fields such as radiation protection, nuclear safety (human factors and reliability), safeguards, nuclear reactor control, production processes in the fuel cycle, dismantling, waste and disposal, decision making, and nuclear reactor control. A clear link is made between theory and applications of fuzzy logic such as neural networks, expert systems, robotics, man-machine interfaces, and decision-support techniques by using modern and advanced technologies and tools. The papers are grouped in three sections. The first section (Soft computing techniques) deals with basic tools to treat fuzzy logic, neural networks, genetic algorithms, decision-making, and software used for general soft-computing aspects. The second section (Intelligent engineering systems) includes contributions on engineering problems such as knowledge-based engineering, expert systems, process control integration, diagnosis, measurements, and interpretation by soft computing. The third section (Nuclear applications) focusses on the application of soft computing and intelligent systems in nuclear science and industry
Activities of the Research Institute for Advanced Computer Science
Oliger, Joseph
1994-01-01
The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. Research at RIACS is currently being done in the following areas: (1) parallel computing; (2) advanced methods for scientific computing; (3) high performance networks; and (4) learning systems. RIACS technical reports are usually preprints of manuscripts that have been submitted to research journals or conference proceedings. A list of these reports for the period January 1, 1994 through December 31, 1994 is in the Reports and Abstracts section of this report.
Kröner, Dietmar; Resch, Michael
2016-01-01
This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2015. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.
Kröner, Dietmar; Resch, Michael; HLRS 2017
2018-01-01
This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2017. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance.The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.
13thInternational Conference on Computer and Information Science
Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing 2012
2013-01-01
The purpose of the 13th International Conference on Computer and Information Science (SNPD 2012) held on August 8-10, 2012 in Kyoto, Japan was to bring together researchers and scientists, businessmen and entrepreneurs, teachers and students to discuss the numerous fields of computer science, and to share ideas and information in a meaningful way. Our conference officers selected the best 17 papers from those papers accepted for presentation at the conference in order to publish them in this volume. The papers were chosen based on review scores submitted by members of the program committee, and underwent further rounds of rigorous review. The conference organizers selected 17 outstanding papers from SNPD 2012, all of which you will find in this volume of Springer’s Studies in Computational Intelligence.
A Survey of Comics Research in Computer Science
Directory of Open Access Journals (Sweden)
Olivier Augereau
2018-06-01
Full Text Available Graphic novels such as comic books and mangas are well known all over the world. The digital transition started to change the way people are reading comics: more and more on smartphones and tablets, and less and less on paper. In recent years, a wide variety of research about comics has been proposed and might change the way comics are created, distributed and read in the future. Early work focuses on low level document image analysis. Comic books are complex; they contains text, drawings, balloons, panels, onomatopoeia, etc. Different fields of computer science covered research about user interaction and content generation such as multimedia, artificial intelligence, human–computer interaction, etc. with different sets of values. We review the previous research about comics in computer science to state what has been done and give some insights about the main outlooks.
Donges, Jonathan; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik; Marwan, Norbert; Dijkstra, Henk; Kurths, Jürgen
2016-04-01
We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology. pyunicorn is available online at https://github.com/pik-copan/pyunicorn. Reference: J.F. Donges, J. Heitzig, B. Beronov, M. Wiedermann, J. Runge, Q.-Y. Feng, L. Tupikina, V. Stolbova, R.V. Donner, N. Marwan, H.A. Dijkstra, and J. Kurths, Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package, Chaos 25, 113101 (2015), DOI: 10.1063/1.4934554, Preprint: arxiv.org:1507.01571 [physics.data-an].
Challenges and opportunities of cloud computing for atmospheric sciences
Pérez Montes, Diego A.; Añel, Juan A.; Pena, Tomás F.; Wallom, David C. H.
2016-04-01
Cloud computing is an emerging technological solution widely used in many fields. Initially developed as a flexible way of managing peak demand it has began to make its way in scientific research. One of the greatest advantages of cloud computing for scientific research is independence of having access to a large cyberinfrastructure to fund or perform a research project. Cloud computing can avoid maintenance expenses for large supercomputers and has the potential to 'democratize' the access to high-performance computing, giving flexibility to funding bodies for allocating budgets for the computational costs associated with a project. Two of the most challenging problems in atmospheric sciences are computational cost and uncertainty in meteorological forecasting and climate projections. Both problems are closely related. Usually uncertainty can be reduced with the availability of computational resources to better reproduce a phenomenon or to perform a larger number of experiments. Here we expose results of the application of cloud computing resources for climate modeling using cloud computing infrastructures of three major vendors and two climate models. We show how the cloud infrastructure compares in performance to traditional supercomputers and how it provides the capability to complete experiments in shorter periods of time. The monetary cost associated is also analyzed. Finally we discuss the future potential of this technology for meteorological and climatological applications, both from the point of view of operational use and research.
Energy Technology Data Exchange (ETDEWEB)
Matsumoto, H.; Kimura, T.
1986-01-01
Triggered by the experimental results of the MINIX, a computer simulation study was initiated on the nonlinear excitation of electrostatic electron cyclotron waves by a monochromatic electromagnetic wave such as the transmitted microwave in the MINIX. The model used assumes that both of the excited waves and exciting (pumping) electromagnetic wave as well as the idler electromagnetic wave propagate in the direction perpendicular to the external magnetic field. The simulation code used for this study was the one-and-two-half dimensional electromagnetic particle code named KEMPO. The simulation result shows the high power electromagnetic wave produces both the backscattered electromagnetic wave and electrostatic electron cyclotron waves as a result of nonlinear parametric instability. Detailed nonlinear microphysics related to the wave excitation is discussed in terms of the nonlinear wave-wave couplings and associated ponderomotive force produced by the high power electromagnetic waves. 2 references, 4 figures.
International Nuclear Information System (INIS)
Matsumoto, H.; Kimura, T.
1986-01-01
Triggered by the experimental results of the MINIX, a computer simulation study was initiated on the nonlinear excitation of electrostatic electron cyclotron waves by a monochromatic electromagnetic wave such as the transmitted microwave in the MINIX. The model used assumes that both of the excited waves and exciting (pumping) electromagnetic wave as well as the idler electromagnetic wave propagate in the direction perpendicular to the external magnetic field. The simulation code used for this study was the one-and-two-half dimensional electromagnetic particle code named KEMPO. The simulation result shows the high power electromagnetic wave produces both the backscattered electromagnetic wave and electrostatic electron cyclotron waves as a result of nonlinear parametric instability. Detailed nonlinear microphysics related to the wave excitation is discussed in terms of the nonlinear wave-wave couplings and associated ponderomotive force produced by the high power electromagnetic waves. 2 references, 4 figures
2011-04-11
... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information; Science and... Committee for Computer and Information Science and Engineering--(1115). Date and Time: May 6, 2011 8:30 a.m... Meeting: Open. Contact Person: Carmen Whitson, Directorate for Computer and Information, Science and...
Enduring Influence of Stereotypical Computer Science Role Models on Women's Academic Aspirations
Cheryan, Sapna; Drury, Benjamin J.; Vichayapai, Marissa
2013-01-01
The current work examines whether a brief exposure to a computer science role model who fits stereotypes of computer scientists has a lasting influence on women's interest in the field. One-hundred undergraduate women who were not computer science majors met a female or male peer role model who embodied computer science stereotypes in appearance…
Computer Science and Convergence : CSA 2011 & WCC 2011 Proceedings
Chao, Han-Chieh; Obaidat, Mohammad; Kim, Jongsung
2012-01-01
Computer Science and Convergence is proceedings of the 3rd FTRA International Conference on Computer Science and its Applications (CSA-11) and The 2011 FTRA World Convergence Conference (FTRA WCC 2011). The topics of CSA and WCC cover the current hot topics satisfying the world-wide ever-changing needs. CSA-11 will be the most comprehensive conference focused on the various aspects of advances in computer science and its applications and will provide an opportunity for academic and industry professionals to discuss the latest issues and progress in the area of CSA. In addition, the conference will publish high quality papers which are closely related to the various theories and practical applications in CSA. Furthermore, we expect that the conference and its publications will be a trigger for further related research and technology improvements in this important subject. The main scope of CSA-11 is as follows: - Mobile and ubiquitous computing - Dependable, reliable and autonomic computi...
International Nuclear Information System (INIS)
Viallet, E.; Heinfling, G.
2005-01-01
Due to increased potentialities of computers, it is nowadays possible to perform dynamic non-linear computation of structures to evaluate their ultimate behavior under seismic loads using refined finite element models. Nevertheless, one key parameter for such complex computations is the input load (i.e. input time histories) which may lead to important discrepancies in the results and therefore difficulties to deal with for engineering purpose (variability, number of time histories to use...). In this situation, the number of accelerograms to be used and the way to deal with the results is to be carefully assessed. The objective of this study is to give some elements concerning (i) the number of accelerograms to be used for transient non-linear computations and (ii) the way to account for scattering of results. For this purpose, some simplified non-linear models are used. These models represent characteristic types of non-linearities such as : - Reinforce concrete (RC) structure model (with plastic non-linearity), - PWR core model (with impact non-linearity). For each type of non-linearity, different sets of accelerograms are used (artificial and natural ones). Each set is composed of a relatively high number of accelerograms in order to get proper trends. The results are expressed in term of average and standard deviation values of the characteristic parameters for each non-linearity (i.e. ductility drift for RC structure model and impact force for PWR core model). The results show that, a relatively large number of time histories may be necessary to get proper predictions of the average value of the characteristic non-linear parameter under consideration. In that situation, it should be difficult to deal with such a result for complex studies on reel structures. Nevertheless, it may be necessarily to perform transient non-linear seismic computations for design analyses but with a reduced number of calculations. For this purpose, the previous results are analyzed
World Congress on Engineering and Computer Science 2012
Ao, Sio-Iong; Amouzegar, Mahyar; Rieger, Burghard
2014-01-01
IAENG Transactions on Engineering Technologies contains forty-nine revised and extended research articles, written by prominent researchers participating in the conference. Topics covered include circuits, engineering mathematics, control theory, communications systems, systems engineering, manufacture engineering, computational biology, chemical engineering, and industrial applications. This book offers the state of art of tremendous advances in engineering technologies and physical science and applications, and also serves as an excellent source of reference for researchers and graduate students working with/on engineering technologies and physical science and applications.
Son, Chanhee; Park, Sanghoon; Kim, Minjeong
2011-01-01
This study compared linear text-based and non-linear hypertext-based instruction in a handheld computer regarding effects on two different levels of knowledge (declarative and structural knowledge) and learner motivation. Forty four participants were randomly assigned to one of three experimental conditions: linear text, hierarchical hypertext,…
DEFF Research Database (Denmark)
Kooths, Stefan; Mitze, Timo Friedel; Ringhut, Eric
2004-01-01
This paper compares the predictive power of linear econometric and non-linear computational models for forecasting the inflation rate in the European Monetary Union (EMU). Various models of both types are developed using different monetary and real activity indicators. They are compared according...
Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing
Chen, A.; Pham, L.; Kempler, S.; Theobald, M.; Esfandiari, A.; Campino, J.; Vollmer, B.; Lynnes, C.
2011-12-01
Cloud Computing technology has been used to offer high-performance and low-cost computing and storage resources for both scientific problems and business services. Several cloud computing services have been implemented in the commercial arena, e.g. Amazon's EC2 & S3, Microsoft's Azure, and Google App Engine. There are also some research and application programs being launched in academia and governments to utilize Cloud Computing. NASA launched the Nebula Cloud Computing platform in 2008, which is an Infrastructure as a Service (IaaS) to deliver on-demand distributed virtual computers. Nebula users can receive required computing resources as a fully outsourced service. NASA Goddard Earth Science Data and Information Service Center (GES DISC) migrated several GES DISC's applications to the Nebula as a proof of concept, including: a) The Simple, Scalable, Script-based Science Processor for Measurements (S4PM) for processing scientific data; b) the Atmospheric Infrared Sounder (AIRS) data process workflow for processing AIRS raw data; and c) the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (GIOVANNI) for online access to, analysis, and visualization of Earth science data. This work aims to evaluate the practicability and adaptability of the Nebula. The initial work focused on the AIRS data process workflow to evaluate the Nebula. The AIRS data process workflow consists of a series of algorithms being used to process raw AIRS level 0 data and output AIRS level 2 geophysical retrievals. Migrating the entire workflow to the Nebula platform is challenging, but practicable. After installing several supporting libraries and the processing code itself, the workflow is able to process AIRS data in a similar fashion to its current (non-cloud) configuration. We compared the performance of processing 2 days of AIRS level 0 data through level 2 using a Nebula virtual computer and a local Linux computer. The result shows that Nebula has significantly
Prolog as description and implementation language in computer science teaching
DEFF Research Database (Denmark)
Christiansen, Henning
population with uneven mathematical backgrounds. % Definitional interpreters, compilers, and other models of computation are defined in a systematic way as Prolog programs, and as a result, formal descriptions become running prototypes that can be tested and modified by the students. These programs can......Prolog is a powerful pedagogical instrument for theoretical elements of computer science when used as combined description language and experimentation tool. A teaching methodology based on this principle has been developed and successfully applied in a context with a heterogeneous student...
Environmental sciences and computations: a modular data based systems approach
International Nuclear Information System (INIS)
Crawford, T.V.; Bailey, C.E.
1975-07-01
A major computer code for environmental calculations is under development at the Savannah River Laboratory. The primary aim is to develop a flexible, efficient capability to calculate, for all significant pathways, the dose to man resulting from releases of radionuclides from the Savannah River Plant and from other existing and potential radioactive sources in the southeastern United States. The environmental sciences programs at SRP are described, with emphasis on the development of the calculational system. It is being developed as a modular data-based system within the framework of the larger JOSHUA Computer System, which provides data management, terminal, and job execution facilities. (U.S.)
IBERCIVIS: a stable citizen computing infrastructure, or science at home
International Nuclear Information System (INIS)
Castejon, F.; Tarancon, A.
2008-01-01
Researchers deal with increasingly difficult, complex issues that require more resources and tools. In addition to strictly technical problems, they are also required to produce research that is understood, at least in part, by the public and to be able to convey what are almost always difficult ideas and concepts the frontiers of knowledge. It rarely happens, but sometimes it is possible to solve several problems at the same time. As we will see throughout the article, Volunteer Computing, when properly handled, is able to supply computing power the scientific community and also serve as a window to science in the homes of citizens. (Author) 5 refs
Student Engagement in a Computer Rich Science Classroom
Hunter, Jeffrey C.
The purpose of this study was to examine the student lived experience when using computers in a rural science classroom. The overarching question the project sought to examine was: How do rural students relate to computers as a learning tool in comparison to a traditional science classroom? Participant data were collected using a pre-study survey, Experience Sampling during class and post-study interviews. Students want to use computers in their classrooms. Students shared that they overwhelmingly (75%) preferred a computer rich classroom to a traditional classroom (25%). Students reported a higher level of engagement in classes that use technology/computers (83%) versus those that do not use computers (17%). A computer rich classroom increased student control and motivation as reflected by a participant who shared; "by using computers I was more motivated to get the work done" (Maggie, April 25, 2014, survey). The researcher explored a rural school environment. Rural populations represent a large number of students and appear to be underrepresented in current research. The participants, tenth grade Biology students, were sampled in a traditional teacher led class without computers for one week followed by a week using computers daily. Data supported that there is a new gap that separates students, a device divide. This divide separates those who have access to devices that are robust enough to do high level class work from those who do not. Although cellular phones have reduced the number of students who cannot access the Internet, they may have created a false feeling that access to a computer is no longer necessary at home. As this study shows, although most students have Internet access, fewer have access to a device that enables them to complete rigorous class work at home. Participants received little or no training at school in proper, safe use of a computer and the Internet. It is clear that the majorities of students are self-taught or receive guidance
Spurious Solutions Of Nonlinear Differential Equations
Yee, H. C.; Sweby, P. K.; Griffiths, D. F.
1992-01-01
Report utilizes nonlinear-dynamics approach to investigate possible sources of errors and slow convergence and non-convergence of steady-state numerical solutions when using time-dependent approach for problems containing nonlinear source terms. Emphasizes implications for development of algorithms in CFD and computational sciences in general. Main fundamental conclusion of study is that qualitative features of nonlinear differential equations cannot be adequately represented by finite-difference method and vice versa.
Complex network problems in physics, computer science and biology
Cojocaru, Radu Ionut
There is a close relation between physics and mathematics and the exchange of ideas between these two sciences are well established. However until few years ago there was no such a close relation between physics and computer science. Even more, only recently biologists started to use methods and tools from statistical physics in order to study the behavior of complex system. In this thesis we concentrate on applying and analyzing several methods borrowed from computer science to biology and also we use methods from statistical physics in solving hard problems from computer science. In recent years physicists have been interested in studying the behavior of complex networks. Physics is an experimental science in which theoretical predictions are compared to experiments. In this definition, the term prediction plays a very important role: although the system is complex, it is still possible to get predictions for its behavior, but these predictions are of a probabilistic nature. Spin glasses, lattice gases or the Potts model are a few examples of complex systems in physics. Spin glasses and many frustrated antiferromagnets map exactly to computer science problems in the NP-hard class defined in Chapter 1. In Chapter 1 we discuss a common result from artificial intelligence (AI) which shows that there are some problems which are NP-complete, with the implication that these problems are difficult to solve. We introduce a few well known hard problems from computer science (Satisfiability, Coloring, Vertex Cover together with Maximum Independent Set and Number Partitioning) and then discuss their mapping to problems from physics. In Chapter 2 we provide a short review of combinatorial optimization algorithms and their applications to ground state problems in disordered systems. We discuss the cavity method initially developed for studying the Sherrington-Kirkpatrick model of spin glasses. We extend this model to the study of a specific case of spin glass on the Bethe
Construction informatics - Issues in engineering, computer science and ontology
DEFF Research Database (Denmark)
Eir, Asger
2004-01-01
and conceptual modelling of civil engineering and design. Due to the interdisciplinary content, the first half of the study has been carried out at Department of Civil Engineering (BYG"DTU), The Technical University of Denmark; whereas the second half has been carried out at Informatics and Mathematical....... With origin in civil engineering and design issues, the study was directed towards computer science oriented theories in an attempt to introduce such theories in modelling and clarification of the domain. This strategy turned out to be a strength for the study and this thesis. However, it also discovered some...... problems in carrying out such a truly interdisciplinary Ph.D. study. Per Galle s and Dines Bjørner's common background in computer science has been essential for the success of this study. The original title of the Ph.D. project was Design and application of a civil engineering ontology. However, it became...
Review of research on advanced computational science in FY2016
International Nuclear Information System (INIS)
2017-12-01
Research on advanced computational science for nuclear applications, based on “Plan to Achieve Medium- to Long-term Objectives of the Japan Atomic Energy Agency (Medium- to Long-term Plan)”, has been performed at Center for Computational Science and e-Systems (CCSE), Japan Atomic Energy Agency. CCSE established the committee consisting of outside experts and authorities which does research evaluation and advices for the assistance of the research and development. This report summarizes the followings. (1) Results of the R and D performed at CCSE in FY 2016 (April 1st, 2016 - March 31st, 2017), (2) Results of the evaluation on the R and D by the committee in FY 2016. (author)
Review of research on advanced computational science in FY2015
International Nuclear Information System (INIS)
2017-01-01
Research on advanced computational science for nuclear applications, based on 'Plan to Achieve Medium- to Long-term Objectives of the Japan Atomic Energy Agency (Medium- to Long-term Plan)', has been performed at Center for Computational Science and e-Systems (CCSE), Japan Atomic Energy Agency. CCSE established the committee consisting of outside experts and authorities which does research evaluation and advices for the assistance of the research and development. This report summarizes the followings. (1) Results of the R and D performed at CCSE in FY 2015 (April 1st, 2015 - March 31st, 2016), (2) Results of the evaluation on the R and D by the committee in FY 2015 (April 1st, 2015 - March 31st, 2016). (author)
Grids in Europe - a computing infrastructure for science
International Nuclear Information System (INIS)
Kranzlmueller, D.
2008-01-01
Grids provide sheer unlimited computing power and access to a variety of resources to todays scientists. Moving from a research topic of computer science to a commodity tool for science and research in general, grid infrastructures are built all around the world. This talk provides an overview of the developments of grids in Europe, the status of the so-called national grid initiatives as well as the efforts towards an integrated European grid infrastructure. The latter, summarized under the title of the European Grid Initiative (EGI), promises a permanent and reliable grid infrastructure and its services in a way similar to research networks today. The talk describes the status of these efforts, the plans for the setup of this pan-European e-Infrastructure, and the benefits for the application communities. (author)
Advances in Computer Science and Information Engineering Volume 2
Lin, Sally
2012-01-01
CSIE2012 is an integrated conference concentrating its focus on Computer Science and Information Engineering . In the proceeding, you can learn much more knowledge about Computer Science and Information Engineering of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful.
Advances in Computer Science and Information Engineering Volume 1
Lin, Sally
2012-01-01
CSIE2012 is an integrated conference concentrating its focus on Computer Science and Information Engineering . In the proceeding, you can learn much more knowledge about Computer Science and Information Engineering of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful.
International Nuclear Information System (INIS)
Williams, Ross; Cherin, Emmanuel; Lam, Toby Y J; Tavakkoli, Jahangir; Zemp, Roger J; Foster, F Stuart
2006-01-01
Nonlinear propagation has been demonstrated to have a significant impact on ultrasound imaging. An efficient computational algorithm is presented to simulate nonlinear ultrasound propagation through layered liquid and tissue-equivalent media. Results are compared with hydrophone measurements. This study was undertaken to investigate the role of nonlinear propagation in high frequency ultrasound micro-imaging. The acoustic field of a focused transducer (20 MHz centre frequency, f-number 2.5) was simulated for layered media consisting of water and tissue-mimicking phantom, for several wide-bandwidth source pulses. The simulation model accounted for the effects of diffraction, attenuation and nonlinearity, with transmission and refraction at layer boundaries. The parameter of nonlinearity, B/A, of the water and tissue-mimicking phantom were assumed to be 5.2 and 7.4, respectively. The experimentally measured phantom B/A value found using a finite-amplitude insert-substitution method was shown to be 7.4 ± 0.6. Relative amounts of measured second and third harmonic pressures as a function of the fundamental pressures at the focus were in good agreement with simulations. Agreement within 3% was found between measurements and simulations of the beam widths of the fundamental and second harmonic signals following propagation through the tissue phantom. The results demonstrate significant nonlinear propagation effects for high frequency imaging beams
World Congress on Engineering and Computer Science 2013
Ao, Sio-Iong; Amouzegar, Mahyar
2014-01-01
This volume contains fifty-six revised and extended research articles, written by prominent researchers participating in the congress. Topics covered include electrical engineering, chemical engineering, circuits, computer science, communications systems, engineering mathematics, systems engineering, manufacture engineering, and industrial applications. This book offers theoretical advances in engineering technologies, and presents state of the art applications. It also serves as an excellent source of reference for researchers and graduate students working with/on engineering technologies.
MENTAL SHIFT TOWARDS SYSTEMS THINKING SKILLS IN COMPUTER SCIENCE
Directory of Open Access Journals (Sweden)
MILDEOVÁ, Stanislava
2012-03-01
Full Text Available When seeking solutions to current problems in the field of computer science – and other fields – we encounter situations where traditional approaches no longer bring the desired results. Our cognitive skills also limit the implementation of reliable mental simulation within the basic set of relations. The world around us is becoming more complex and mutually interdependent, and this is reflected in the demands on computer support. Thus, in today’s education and science in the field of computer science and all other disciplines and areas of life need to address the issue of the paradigm shift, which is generally accepted by experts. The goal of the paper is to present the systems thinking that facilitates and extends the understanding of the world through relations and linkages. Moreover, the paper introduces the essence of systems thinking and the possibilities to achieve mental a shift toward systems thinking skills. At the same time, the link between systems thinking and functional literacy is presented. We adopted the “Bathtub Test” from the variety of systems thinking tests that allow people to assess the understanding of basic systemic concepts, in order to assess the level of systems thinking. University students (potential information managers were the examined subjects of the examination of systems thinking that was conducted over a longer time period and whose aim was to determine the status of systems thinking. . The paper demonstrates that some pedagogical concepts and activities, in our case the subject of System Dynamics that leads to the appropriate integration of systems thinking in education. There is some evidence that basic knowledge of system dynamics and systems thinking principles will affect students, and their thinking will contribute to an improved approach to solving problems of computer science both in theory and practice.
Advanced Computing for 21st Century Accelerator Science and Technology
International Nuclear Information System (INIS)
Dragt, Alex J.
2004-01-01
Dr. Dragt of the University of Maryland is one of the Institutional Principal Investigators for the SciDAC Accelerator Modeling Project Advanced Computing for 21st Century Accelerator Science and Technology whose principal investigators are Dr. Kwok Ko (Stanford Linear Accelerator Center) and Dr. Robert Ryne (Lawrence Berkeley National Laboratory). This report covers the activities of Dr. Dragt while at Berkeley during spring 2002 and at Maryland during fall 2003
Computing Science and Statistics: Volume 24. Graphics and Visualization
1993-03-20
Models Mike West Institute of Statistics & Decision Sciences Duke University, Durham NC 27708, USA Abstract density estimation techniques. With an...ratio-of-uniforms halter, D. J., Best, N. G., McNeil, A. method. Statistics and Computing, 1, (in J., Sharples , L. D. and Kirby, A. J. press). (1992b...Dept of Act. Math & Stats Box 13040 SFA Riccarton Edinburgh, Scotland EH 14 4AS Nacognoches, TX 75962 mike @cara.ma.hw.ac.uk Allen McIntosh Michael T
The First NAFOSTED Conference on Information and Computer Science
Nguyen, Xuan; Le, Hoai; Nguyen, Viet; Bao, Vo
2015-01-01
This book includes the extended and revised versions of a set of selected papers from the First NAFOSTED Conference on Information and Computer Science (NICS’2014), held at Le Quy Don Technical Academy, Hanoi, Vietnam from 13/Mar./2014 to 14/Mar./2014. The conference was co-organized by The National Foundation for Science and Technology Development (NAFOSTED) and Le Quy Don Technical Academy. The purpose of the NICS conference series is to promote scientific publications in the country and to provide a platform for high quality academic exchange among scientists in the fields of computer science, information and communication. The conference includes five tracks, namely “Computer Science”, “Artificial Intelligence”, “Network Systems”, “Software Engineering”, and “Information Systems”. The papers in this book are among the best contributions at NICS’2014 taken into account the quality of their presentation at the conference and the recommendation of the two experts in the extra round ...
de Jong, Hidde; Rip, Arie
1997-01-01
The tools that scientists use in their search processes together form so-called discovery environments. The promise of artificial intelligence and other branches of computer science is to radically transform conventional discovery environments by equipping scientists with a range of powerful
Cloud Computing in the Curricula of Schools of Computer Science and Information Systems
Lawler, James P.
2011-01-01
The cloud continues to be a developing area of information systems. Evangelistic literature in the practitioner field indicates benefit for business firms but disruption for technology departments of the firms. Though the cloud currently is immature in methodology, this study defines a model program by which computer science and information…
Computer Science Lesson Study: Building Computing Skills among Elementary School Teachers
Newman, Thomas R.
2017-01-01
The lack of diversity in the technology workforce in the United States has proven to be a stubborn problem, resisting even the most well-funded reform efforts. With the absence of computer science education in the mainstream K-12 curriculum, only a narrow band of students in public schools go on to careers in technology. The problem persists…
Principles of formation of the course of computer science for engineering specialities
Directory of Open Access Journals (Sweden)
Валерий Евгеньевич Жужжалов
2010-03-01
Full Text Available The article describes the principles of computer science courses. The advantages and disadvantages of functional programming and importance of the Lisp language in teaching computer science are reflected in the article.
Activities of the Institute for Computer Applications in Science and Engineering (ICASE)
1988-01-01
This report summarizes research conducted at the Institute for Computer Applications Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 2, 1987 through March 31, 1988.
[Research Conducted at the Institute for Computer Applications in Science and Engineering
1997-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period 1 Oct. 1996 - 31 Mar. 1997.
Research in progress at the Institute for Computer Applications in Science and Engineering
1987-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April 1, 1987 through October 1, 1987.
2011-06-24
... Business Information by Computer Sciences Corporation and Its Identified Subcontractors AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: EPA has authorized its contractor, Computer Sciences Corporation of Chantilly, VA and Its Identified Subcontractors, to access information which has...
Activities of the Institute for Computer Applications in Science and Engineering
1985-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April 1, 1985 through October 2, 1985 is summarized.
Grid computing and e-science: a view from inside
Directory of Open Access Journals (Sweden)
Stefano Cozzini
2008-06-01
Full Text Available My intention is to analyze how, where and if grid computing technology is truly enabling a new way of doing science (so-called ‘e-science’. I will base my views on the experiences accumulated thus far in a number of scientific communities, which we have provided with the opportunity of using grid computing. I shall first define some basic terms and concepts and then discuss a number of specific cases in which the use of grid computing has actually made possible a new method for doing science. I will then present a case in which this did not result in a change in research methods. I will try to identify the reasons for these failures and analyze the future evolution of grid computing. I will conclude by introducing and commenting the concept of ‘cloud computing’, the approach offered and provided by major industrial actors (Google/IBM and Amazon being among the most important and what impact this technology might have on the world of research.
Materials science. Materials that couple sensing, actuation, computation, and communication.
McEvoy, M A; Correll, N
2015-03-20
Tightly integrating sensing, actuation, and computation into composites could enable a new generation of truly smart material systems that can change their appearance and shape autonomously. Applications for such materials include airfoils that change their aerodynamic profile, vehicles with camouflage abilities, bridges that detect and repair damage, or robotic skins and prosthetics with a realistic sense of touch. Although integrating sensors and actuators into composites is becoming increasingly common, the opportunities afforded by embedded computation have only been marginally explored. Here, the key challenge is the gap between the continuous physics of materials and the discrete mathematics of computation. Bridging this gap requires a fundamental understanding of the constituents of such robotic materials and the distributed algorithms and controls that make these structures smart. Copyright © 2015, American Association for the Advancement of Science.
The computational challenges of Earth-system science.
O'Neill, Alan; Steenman-Clark, Lois
2002-06-15
The Earth system--comprising atmosphere, ocean, land, cryosphere and biosphere--is an immensely complex system, involving processes and interactions on a wide range of space- and time-scales. To understand and predict the evolution of the Earth system is one of the greatest challenges of modern science, with success likely to bring enormous societal benefits. High-performance computing, along with the wealth of new observational data, is revolutionizing our ability to simulate the Earth system with computer models that link the different components of the system together. There are, however, considerable scientific and technical challenges to be overcome. This paper will consider four of them: complexity, spatial resolution, inherent uncertainty and time-scales. Meeting these challenges requires a significant increase in the power of high-performance computers. The benefits of being able to make reliable predictions about the evolution of the Earth system should, on their own, amply repay this investment.
Greca, Ileana M.; Seoane, Eugenia; Arriassecq, Irene
2014-01-01
Computers and simulations represent an undeniable aspect of daily scientific life, the use of simulations being comparable to the introduction of the microscope and the telescope, in the development of knowledge. In science education, simulations have been proposed for over three decades as useful tools to improve the conceptual understanding of…
Leibov Roman
2017-01-01
This paper presents a bilinear approach to nonlinear differential equations system approximation problem. Sometimes the nonlinear differential equations right-hand sides linearization is extremely difficult or even impossible. Then piecewise-linear approximation of nonlinear differential equations can be used. The bilinear differential equations allow to improve piecewise-linear differential equations behavior and reduce errors on the border of different linear differential equations systems ...
Approaching Gender Parity: Women in Computer Science at Afghanistan's Kabul University
Plane, Jandelyn
2010-01-01
This study explores the representation of women in computer science at the tertiary level through data collected about undergraduate computer science education at Kabul University in Afghanistan. Previous studies have theorized reasons for underrepresentation of women in computer science, and while many of these reasons are indeed present in…
Payton, Jamie; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey; Zuo, Huifang
2015-01-01
This study is a follow-up to one published in computer science education in 2010 that reported preliminary results showing a positive impact of service learning on student attitudes associated with success and retention in computer science. That paper described how service learning was incorporated into a computer science course in the context of…
Randolph, Justus J.; Julnes, George; Bednarik, Roman; Sutinen, Erkki
2007-01-01
In this study we empirically investigate the claim that articles published in computer science education journals are more methodologically sound than articles published in computer science education conference proceedings. A random sample of 352 articles was selected from those articles published in major computer science education forums between…
2013-12-27
... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and...), the National Science Foundation announces the following meeting: NAME: Advisory Committee for Computer and Information Science and Engineering (1115) DATE/TIME: January 14, 2014, 3:00 p.m. to 5:00 p.m...
2013-10-28
... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and... National Science Foundation is issuing this notice to cancel the October 31 to November 1, 2013 Advisory Committee for Computer and Information Science and Engineering meeting. The public notice for this committee...
2012-04-24
... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science And... amended), the National Science Foundation announces the following meeting: Name: Advisory Committee for Computer and Information Science and Engineering (1115). Date and Time: May 10, 2012 12 p.m.-5:30 p.m., May...
2010-04-14
... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and... amended), the National Science Foundation announces the following meeting: Name: Advisory Committee for Computer and Information Science and Engineering--(1115). Date and Time: May 7, 2010, 8:30 a.m.-5 p.m...
Yee, H. C.; Sweby, P. K.; Griffiths, D. F.
1990-01-01
Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.
12th ACIS/IEEE International Conference on Computer Science and Information Science
2013-01-01
This edited book presents scientific results of the 12th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2013) which was held on June 16-20, 2013 in Toki Messe, Niigata, Japan. The aim of this conference was to bring together scientists, engineers, computer users, and students to share their experiences and exchange new ideas, research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them The conference organizers selected the best 20 papers from those papers accepted for presentation at the conference. The papers were chosen based on review scores submitted by members of the program committee, and underwent further rigorous rounds of review.
Energy Technology Data Exchange (ETDEWEB)
Crabtree, George [Argonne National Lab. (ANL), Argonne, IL (United States); Glotzer, Sharon [University of Michigan; McCurdy, Bill [University of California Davis; Roberto, Jim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2010-07-26
This report is based on a SC Workshop on Computational Materials Science and Chemistry for Innovation on July 26-27, 2010, to assess the potential of state-of-the-art computer simulations to accelerate understanding and discovery in materials science and chemistry, with a focus on potential impacts in energy technologies and innovation. The urgent demand for new energy technologies has greatly exceeded the capabilities of today's materials and chemical processes. To convert sunlight to fuel, efficiently store energy, or enable a new generation of energy production and utilization technologies requires the development of new materials and processes of unprecedented functionality and performance. New materials and processes are critical pacing elements for progress in advanced energy systems and virtually all industrial technologies. Over the past two decades, the United States has developed and deployed the world's most powerful collection of tools for the synthesis, processing, characterization, and simulation and modeling of materials and chemical systems at the nanoscale, dimensions of a few atoms to a few hundred atoms across. These tools, which include world-leading x-ray and neutron sources, nanoscale science facilities, and high-performance computers, provide an unprecedented view of the atomic-scale structure and dynamics of materials and the molecular-scale basis of chemical processes. For the first time in history, we are able to synthesize, characterize, and model materials and chemical behavior at the length scale where this behavior is controlled. This ability is transformational for the discovery process and, as a result, confers a significant competitive advantage. Perhaps the most spectacular increase in capability has been demonstrated in high performance computing. Over the past decade, computational power has increased by a factor of a million due to advances in hardware and software. This rate of improvement, which shows no sign of
Sophistication of computational science and fundamental physics simulations
International Nuclear Information System (INIS)
Ishiguro, Seiji; Ito, Atsushi; Usami, Shunsuke; Ohtani, Hiroaki; Sakagami, Hitoshi; Toida, Mieko; Hasegawa, Hiroki; Horiuchi, Ritoku; Miura, Hideaki
2016-01-01
Numerical experimental reactor research project is composed of the following studies: (1) nuclear fusion simulation research with a focus on specific physical phenomena of specific equipment, (2) research on advanced simulation method to increase predictability or expand its application range based on simulation, (3) visualization as the foundation of simulation research, (4) research for advanced computational science such as parallel computing technology, and (5) research aiming at elucidation of fundamental physical phenomena not limited to specific devices. Specifically, a wide range of researches with medium- to long-term perspectives are being developed: (1) virtual reality visualization, (2) upgrading of computational science such as multilayer simulation method, (3) kinetic behavior of plasma blob, (4) extended MHD theory and simulation, (5) basic plasma process such as particle acceleration due to interaction of wave and particle, and (6) research related to laser plasma fusion. This paper reviews the following items: (1) simultaneous visualization in virtual reality space, (2) multilayer simulation of collisionless magnetic reconnection, (3) simulation of microscopic dynamics of plasma coherent structure, (4) Hall MHD simulation of LHD, (5) numerical analysis for extension of MHD equilibrium and stability theory, (6) extended MHD simulation of 2D RT instability, (7) simulation of laser plasma, (8) simulation of shock wave and particle acceleration, and (9) study on simulation of homogeneous isotropic MHD turbulent flow. (A.O.)
Pair Programming as a Modern Method of Teaching Computer Science
Directory of Open Access Journals (Sweden)
Irena Nančovska Šerbec
2008-10-01
Full Text Available At the Faculty of Education, University of Ljubljana we educate future computer science teachers. Beside didactical, pedagogical, mathematical and other interdisciplinary knowledge, students gain knowledge and skills of programming that are crucial for computer science teachers. For all courses, the main emphasis is the absorption of professional competences, related to the teaching profession and the programming profile. The latter are selected according to the well-known document, the ACM Computing Curricula. The professional knowledge is therefore associated and combined with the teaching knowledge and skills. In the paper we present how to achieve competences related to programming by using different didactical models (semiotic ladder, cognitive objectives taxonomy, problem solving and modern teaching method “pair programming”. Pair programming differs from standard methods (individual work, seminars, projects etc.. It belongs to the extreme programming as a discipline of software development and is known to have positive effects on teaching first programming language. We have experimentally observed pair programming in the introductory programming course. The paper presents and analyzes the results of using this method: the aspects of satisfaction during programming and the level of gained knowledge. The results are in general positive and demonstrate the promising usage of this teaching method.
Energy Technology Data Exchange (ETDEWEB)
Kashiwagi, H [Institute for Molecular Science, Okazaki, Aichi (Japan)
1982-06-01
A large computer system was designed and established for molecular science under the leadership of molecular scientists. Features of the computer system are an automated operation system and an open self-service system. Large-scale theoretical calculations have been performed to solve many problems in molecular science, using the computer system. Necessary conditions for future computers are discussed on the basis of this experience.
International Nuclear Information System (INIS)
Kashiwagi, H.
1982-01-01
A large computer system was designed and established for molecular science under the leadership of molecular scientists. Features of the computer system are an automated operation system and an open self-service system. Large-scale theoretical calculations have been performed to solve many problems in molecular science, using the computer system. Necessary conditions for future computers are discussed on the basis of this experience. (orig.)
Bonham, Kevin S; Stefan, Melanie I
2017-10-01
While women are generally underrepresented in STEM fields, there are noticeable differences between fields. For instance, the gender ratio in biology is more balanced than in computer science. We were interested in how this difference is reflected in the interdisciplinary field of computational/quantitative biology. To this end, we examined the proportion of female authors in publications from the PubMed and arXiv databases. There are fewer female authors on research papers in computational biology, as compared to biology in general. This is true across authorship position, year, and journal impact factor. A comparison with arXiv shows that quantitative biology papers have a higher ratio of female authors than computer science papers, placing computational biology in between its two parent fields in terms of gender representation. Both in biology and in computational biology, a female last author increases the probability of other authors on the paper being female, pointing to a potential role of female PIs in influencing the gender balance.
Directory of Open Access Journals (Sweden)
Kevin S Bonham
2017-10-01
Full Text Available While women are generally underrepresented in STEM fields, there are noticeable differences between fields. For instance, the gender ratio in biology is more balanced than in computer science. We were interested in how this difference is reflected in the interdisciplinary field of computational/quantitative biology. To this end, we examined the proportion of female authors in publications from the PubMed and arXiv databases. There are fewer female authors on research papers in computational biology, as compared to biology in general. This is true across authorship position, year, and journal impact factor. A comparison with arXiv shows that quantitative biology papers have a higher ratio of female authors than computer science papers, placing computational biology in between its two parent fields in terms of gender representation. Both in biology and in computational biology, a female last author increases the probability of other authors on the paper being female, pointing to a potential role of female PIs in influencing the gender balance.
A Case Study of the Introduction of Computer Science in NZ Schools
Bell, Tim; Andreae, Peter; Robins, Anthony
2014-01-01
For many years computing in New Zealand schools was focused on teaching students how to use computers, and there was little opportunity for students to learn about programming and computer science as formal subjects. In this article we review a series of initiatives that occurred from 2007 to 2009 that led to programming and computer science being…
Knowledge-Based Systems in Biomedicine and Computational Life Science
Jain, Lakhmi
2013-01-01
This book presents a sample of research on knowledge-based systems in biomedicine and computational life science. The contributions include: · personalized stress diagnosis system · image analysis system for breast cancer diagnosis · analysis of neuronal cell images · structure prediction of protein · relationship between two mental disorders · detection of cardiac abnormalities · holistic medicine based treatment · analysis of life-science data
Jäger, Willi
2000-01-01
The book contains reports about the most significant projects from science and engineering of the Federal High Performance Computing Center Stuttgart (HLRS). They were carefully selected in a peer-review process and are showcases of an innovative combination of state-of-the-art modeling, novel algorithms and the use of leading-edge parallel computer technology. The projects of HLRS are using supercomputer systems operated jointly by university and industry and therefore a special emphasis has been put on the industrial relevance of results and methods.
Jäger, Willi
1999-01-01
The book contains reports about the most significant projects from science and industry that are using the supercomputers of the Federal High Performance Computing Center Stuttgart (HLRS). These projects are from different scientific disciplines, with a focus on engineering, physics and chemistry. They were carefully selected in a peer-review process and are showcases for an innovative combination of state-of-the-art physical modeling, novel algorithms and the use of leading-edge parallel computer technology. As HLRS is in close cooperation with industrial companies, special emphasis has been put on the industrial relevance of results and methods.
International Nuclear Information System (INIS)
Halleux, J.P.
1983-01-01
The EURDYN computer codes are mainly designed for the simulation of nonlinear dynamic response of fast-reactor compoments submitted to impulse loading due to abnormal working conditions. Two releases of the structural computer codes EURDYN 01 (2-D beams and triangles and axisymmetric conical shells and triangular tores), 02 (axisymmetric and 2-D quadratic isoparametric elements) and 03 (triangular plate elements) have already been produced. They include material (elasto-plasticity using the classical flow theory approach) and geometrical (large displacements and rotations treated by a corotational technique) nonlinearities. The new features of Release 3 roughly consist in: full large strain capability for 9-node isoparametric elements, generalized array dimensions, introduction of the radial return algorithm for elasto-plastic material modelling, extension of the energy check facility to the case of prescribed displacements, and, possible interface to a post-processing package including time plot facilities
Directory of Open Access Journals (Sweden)
Suheel Abdullah Malik
2014-01-01
Full Text Available We present a hybrid heuristic computing method for the numerical solution of nonlinear singular boundary value problems arising in physiology. The approximate solution is deduced as a linear combination of some log sigmoid basis functions. A fitness function representing the sum of the mean square error of the given nonlinear ordinary differential equation (ODE and its boundary conditions is formulated. The optimization of the unknown adjustable parameters contained in the fitness function is performed by the hybrid heuristic computation algorithm based on genetic algorithm (GA, interior point algorithm (IPA, and active set algorithm (ASA. The efficiency and the viability of the proposed method are confirmed by solving three examples from physiology. The obtained approximate solutions are found in excellent agreement with the exact solutions as well as some conventional numerical solutions.
International Nuclear Information System (INIS)
Wang Qi; Chen Yong
2007-01-01
With the aid of symbolic computation, some algorithms are presented for the rational expansion methods, which lead to closed-form solutions of nonlinear partial differential equations (PDEs). The new algorithms are given to find exact rational formal polynomial solutions of PDEs in terms of Jacobi elliptic functions, solutions of the Riccati equation and solutions of the generalized Riccati equation. They can be implemented in symbolic computation system Maple. As applications of the methods, we choose some nonlinear PDEs to illustrate the methods. As a result, we not only can successfully obtain the solutions found by most existing Jacobi elliptic function methods and Tanh-methods, but also find other new and more general solutions at the same time
Trend Analysis of the Brazilian Scientific Production in Computer Science
Directory of Open Access Journals (Sweden)
TRUCOLO, C. C.
2014-12-01
Full Text Available The growth of scientific information volume and diversity brings new challenges in order to understand the reasons, the process and the real essence that propel this growth. This information can be used as the basis for the development of strategies and public politics to improve the education and innovation services. Trend analysis is one of the steps in this way. In this work, trend analysis of Brazilian scientific production of graduate programs in the computer science area is made to identify the main subjects being studied by these programs in general and individual ways.
Computer Assisted Circulation Control at Health Sciences Library SUNYAB
Directory of Open Access Journals (Sweden)
Jean K. Miller
1972-06-01
Full Text Available A description of the circulation system which the Health Sciences Library at the State University of New York at Buffalo has been using since October 1970. Features of the system include automatic production of overdue, fine, and billing notices; notices for call-in of requested books; and book availability notices. Remote operation and processing on the IBM 360/40 and CDC 6400 computer are accomplished via the Administrative Terminal System (ATS and Terminal job Entry (T]E. The system provides information for management of the collection and improved service to the user.
Computer Science Research Institute 2004 annual report of activities.
Energy Technology Data Exchange (ETDEWEB)
DeLap, Barbara J.; Womble, David Eugene; Ceballos, Deanna Rose
2006-03-01
This report summarizes the activities of the Computer Science Research Institute (CSRI) at Sandia National Laboratories during the period January 1, 2004 to December 31, 2004. During this period the CSRI hosted 166 visitors representing 81 universities, companies and laboratories. Of these 65 were summer students or faculty. The CSRI partially sponsored 2 workshops and also organized and was the primary host for 4 workshops. These 4 CSRI sponsored workshops had 140 participants--74 from universities, companies and laboratories, and 66 from Sandia. Finally, the CSRI sponsored 14 long-term collaborative research projects and 5 Sabbaticals.
Practical guide to gender diversity for computer science faculty
Franklin, Diana
2013-01-01
Computer science faces a continuing crisis in the lack of females pursuing and succeeding in the field. Companies may suffer due to reduced product quality, students suffer because educators have failed to adjust to diverse populations, and future generations suffer due to a lack of role models and continued challenges in the environment. In this book, we draw on the latest research in sociology, psychology, and education to first identify why we should be striving for gender diversity (beyond social justice), refuting misconceptions about the differing potentials between females and males. We