Ritz, Christian; Parmigiani, Giovanni
2009-01-01
R is a rapidly evolving lingua franca of graphical display and statistical analysis of experiments from the applied sciences. This book provides a coherent treatment of nonlinear regression with R by means of examples from a diversity of applied sciences such as biology, chemistry, engineering, medicine and toxicology.
Robust nonlinear regression in applications
Lim, Changwon; Sen, Pranab K.; Peddada, Shyamal D.
2013-01-01
Robust statistical methods, such as M-estimators, are needed for nonlinear regression models because of the presence of outliers/influential observations and heteroscedasticity. Outliers and influential observations are commonly observed in many applications, especially in toxicology and agricultural experiments. For example, dose response studies, which are routinely conducted in toxicology and agriculture, sometimes result in potential outliers, especially in the high dose gr...
Adaptive regression for modeling nonlinear relationships
Knafl, George J
2016-01-01
This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of outcome variables. Such nonlinear dependence is often not considered in applied research, yet nonlinear relationships are common and so need to be addressed. A standard linear analysis can produce misleading conclusions, while a nonlinear analysis can provide novel insights into data, not otherwise possible. A variety of examples of the benefits of modeling nonlinear relationships are presented throughout the book. Methods are covered using what are called fractional polynomials based on real-valued power transformations of primary predictor variables combined with model selection based on likelihood cross-validation. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in the s...
Curvatures for Parameter Subsets in Nonlinear Regression
1986-01-01
The relative curvature measures of nonlinearity proposed by Bates and Watts (1980) are extended to an arbitrary subset of the parameters in a normal, nonlinear regression model. In particular, the subset curvatures proposed indicate the validity of linearization-based approximate confidence intervals for single parameters. The derivation produces the original Bates-Watts measures directly from the likelihood function. When the intrinsic curvature is negligible, the Bates-Watts parameter-effec...
HENDRIKS, MMWB; COENEGRACHT, PMJ; DOORNBOS, DA
1994-01-01
New models have been developed that accurately describe the response surfaces of capacity factors that are a function of changes in the pH and the fraction of organic modifier in reversed-phase high-performance liquid chromatography (RP-HPLC). The purpose of this article is to illustrate one of the
Learning Inverse Rig Mappings by Nonlinear Regression.
Holden, Daniel; Saito, Jun; Komura, Taku
2016-11-11
We present a framework to design inverse rig-functions - functions that map low level representations of a character's pose such as joint positions or surface geometry to the representation used by animators called the animation rig. Animators design scenes using an animation rig, a framework widely adopted in animation production which allows animators to design character poses and geometry via intuitive parameters and interfaces. Yet most state-of-the-art computer animation techniques control characters through raw, low level representations such as joint angles, joint positions, or vertex coordinates. This difference often stops the adoption of state-of-the-art techniques in animation production. Our framework solves this issue by learning a mapping between the low level representations of the pose and the animation rig. We use nonlinear regression techniques, learning from example animation sequences designed by the animators. When new motions are provided in the skeleton space, the learned mapping is used to estimate the rig controls that reproduce such a motion. We introduce two nonlinear functions for producing such a mapping: Gaussian process regression and feedforward neural networks. The appropriate solution depends on the nature of the rig and the amount of data available for training. We show our framework applied to various examples including articulated biped characters, quadruped characters, facial animation rigs, and deformable characters. With our system, animators have the freedom to apply any motion synthesis algorithm to arbitrary rigging and animation pipelines for immediate editing. This greatly improves the productivity of 3D animation, while retaining the flexibility and creativity of artistic input.
Bayesian nonlinear regression for large small problems
Chakraborty, Sounak
2012-07-01
Statistical modeling and inference problems with sample sizes substantially smaller than the number of available covariates are challenging. This is known as large p small n problem. Furthermore, the problem is more complicated when we have multiple correlated responses. We develop multivariate nonlinear regression models in this setup for accurate prediction. In this paper, we introduce a full Bayesian support vector regression model with Vapnik\\'s ε-insensitive loss function, based on reproducing kernel Hilbert spaces (RKHS) under the multivariate correlated response setup. This provides a full probabilistic description of support vector machine (SVM) rather than an algorithm for fitting purposes. We have also introduced a multivariate version of the relevance vector machine (RVM). Instead of the original treatment of the RVM relying on the use of type II maximum likelihood estimates of the hyper-parameters, we put a prior on the hyper-parameters and use Markov chain Monte Carlo technique for computation. We have also proposed an empirical Bayes method for our RVM and SVM. Our methods are illustrated with a prediction problem in the near-infrared (NIR) spectroscopy. A simulation study is also undertaken to check the prediction accuracy of our models. © 2012 Elsevier Inc.
Nonlinear phased array imaging
Croxford, Anthony J.; Cheng, Jingwei; Potter, Jack N.
2016-04-01
A technique is presented for imaging acoustic nonlinearity within a specimen using ultrasonic phased arrays. Acoustic nonlinearity is measured by evaluating the difference in energy of the transmission bandwidth within the diffuse field produced through different focusing modes. The two different modes being classical beam forming, where delays are applied to different element of a phased array to physically focus the energy at a single location (parallel firing) and focusing in post processing, whereby one element at a time is fired and a focused image produced in post processing (sequential firing). Although these two approaches are linearly equivalent the difference in physical displacement within the specimen leads to differences in nonlinear effects. These differences are localized to the areas where the amplitude is different, essentially confining the differences to the focal point. Direct measurement at the focal point are however difficult to make. In order to measure this the diffuse field is used. It is a statistical property of the diffuse field that it represents the total energy in the system. If the energy in the diffuse field for both the sequential and parallel firing case is measured then the difference between these, within the input signal bandwidth, is largely due to differences at the focal spot. This difference therefore gives a localized measurement of where energy is moving out of the transmission bandwidth due to nonlinear effects. This technique is used to image fatigue cracks and other damage types undetectable with conventional linear ultrasonic measurements.
Phase retrieval using nonlinear diversity.
Lu, Chien-Hung; Barsi, Christopher; Williams, Matthew O; Kutz, J Nathan; Fleischer, Jason W
2013-04-01
We extend the Gerchberg-Saxton algorithm to phase retrieval in a nonlinear system. Using a tunable photorefractive crystal, we experimentally demonstrate the noninterferometric technique by reconstructing an unknown phase object from optical intensity measurements taken at different nonlinear strengths.
Nonlinear wavelet estimation of regression function with random desigm
Institute of Scientific and Technical Information of China (English)
张双林; 郑忠国
1999-01-01
The nonlinear wavelet estimator of regression function with random design is constructed. The optimal uniform convergence rate of the estimator in a ball of Besov space Bp,q? is proved under quite genera] assumpations. The adaptive nonlinear wavelet estimator with near-optimal convergence rate in a wide range of smoothness function classes is also constructed. The properties of the nonlinear wavelet estimator given for random design regression and only with bounded third order moment of the error can be compared with those of nonlinear wavelet estimator given in literature for equal-spaced fixed design regression with i.i.d. Gauss error.
ASYMPTOTIC EFFICIENT ESTIMATION IN SEMIPARAMETRIC NONLINEAR REGRESSION MODELS
Institute of Scientific and Technical Information of China (English)
ZhuZhongyi; WeiBocheng
1999-01-01
In this paper, the estimation method based on the “generalized profile likelihood” for the conditionally parametric models in the paper given by Severini and Wong (1992) is extendedto fixed design semiparametrie nonlinear regression models. For these semiparametrie nonlinear regression models,the resulting estimator of parametric component of the model is shown to beasymptotically efficient and the strong convergence rate of nonparametric component is investigated. Many results (for example Chen (1988) ,Gao & Zhao (1993), Rice (1986) et al. ) are extended to fixed design semiparametric nonlinear regression models.
Nonlinear and Non Normal Regression Models in Physiological Research
1984-01-01
Applications of nonlinear and non normal regression models are in increasing order for appropriate interpretation of complex phenomenon of biomedical sciences. This paper reviews critically some applications of these models physiological research.
Nonlinear Forecasting With Many Predictors Using Kernel Ridge Regression
DEFF Research Database (Denmark)
Exterkate, Peter; Groenen, Patrick J.F.; Heij, Christiaan
This paper puts forward kernel ridge regression as an approach for forecasting with many predictors that are related nonlinearly to the target variable. In kernel ridge regression, the observed predictor variables are mapped nonlinearly into a high-dimensional space, where estimation of the predi......This paper puts forward kernel ridge regression as an approach for forecasting with many predictors that are related nonlinearly to the target variable. In kernel ridge regression, the observed predictor variables are mapped nonlinearly into a high-dimensional space, where estimation...... of the predictive regression model is based on a shrinkage estimator to avoid overfitting. We extend the kernel ridge regression methodology to enable its use for economic time-series forecasting, by including lags of the dependent variable or other individual variables as predictors, as typically desired...... in macroeconomic and financial applications. Monte Carlo simulations as well as an empirical application to various key measures of real economic activity confirm that kernel ridge regression can produce more accurate forecasts than traditional linear and nonlinear methods for dealing with many predictors based...
Cardiovascular Response Identification Based on Nonlinear Support Vector Regression
Wang, Lu; Su, Steven W.; Chan, Gregory S. H.; Celler, Branko G.; Cheng, Teddy M.; Savkin, Andrey V.
This study experimentally investigates the relationships between central cardiovascular variables and oxygen uptake based on nonlinear analysis and modeling. Ten healthy subjects were studied using cycle-ergometry exercise tests with constant workloads ranging from 25 Watt to 125 Watt. Breath by breath gas exchange, heart rate, cardiac output, stroke volume and blood pressure were measured at each stage. The modeling results proved that the nonlinear modeling method (Support Vector Regression) outperforms traditional regression method (reducing Estimation Error between 59% and 80%, reducing Testing Error between 53% and 72%) and is the ideal approach in the modeling of physiological data, especially with small training data set.
Kernel Partial Least Squares for Nonlinear Regression and Discrimination
Rosipal, Roman; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper summarizes recent results on applying the method of partial least squares (PLS) in a reproducing kernel Hilbert space (RKHS). A previously proposed kernel PLS regression model was proven to be competitive with other regularized regression methods in RKHS. The family of nonlinear kernel-based PLS models is extended by considering the kernel PLS method for discrimination. Theoretical and experimental results on a two-class discrimination problem indicate usefulness of the method.
Geometric Properties of AR（q） Nonlinear Regression Models
Institute of Scientific and Technical Information of China (English)
LIUYing-ar; WEIBo-cheng
2004-01-01
This paper is devoted to a study of geometric properties of AR(q) nonlinear regression models. We present geometric frameworks for regression parameter space and autoregression parameter space respectively based on the weighted inner product by fisher information matrix. Several geometric properties related to statistical curvatures are given for the models. The results of this paper extended the work of Bates & Watts(1980,1988)[1.2] and Seber & Wild (1989)[3].
An Excel Solver Exercise to Introduce Nonlinear Regression
Pinder, Jonathan P.
2013-01-01
Business students taking business analytics courses that have significant predictive modeling components, such as marketing research, data mining, forecasting, and advanced financial modeling, are introduced to nonlinear regression using application software that is a "black box" to the students. Thus, although correct models are…
An Excel Solver Exercise to Introduce Nonlinear Regression
Pinder, Jonathan P.
2013-01-01
Business students taking business analytics courses that have significant predictive modeling components, such as marketing research, data mining, forecasting, and advanced financial modeling, are introduced to nonlinear regression using application software that is a "black box" to the students. Thus, although correct models are…
Symmetric Nonlinear Regression. Research Report. ETS RR-07-13
Antal, Tamás
2007-01-01
An estimation tool for symmetric univariate nonlinear regression is presented. The method is based on introducing a nontrivial set of affine coordinates for diffeomorphisms of the real line. The main ingredient making the computations possible is the Connes-Moscovici Hopf algebra of these affine coordinates.
A Toolbox for Nonlinear Regression in R: The Package nlstools
Directory of Open Access Journals (Sweden)
Florent Baty
2015-08-01
Full Text Available Nonlinear regression models are applied in a broad variety of scientific fields. Various R functions are already dedicated to fitting such models, among which the function nls( has a prominent position. Unlike linear regression fitting of nonlinear models relies on non-trivial assumptions and therefore users are required to carefully ensure and validate the entire modeling. Parameter estimation is carried out using some variant of the least- squares criterion involving an iterative process that ideally leads to the determination of the optimal parameter estimates. Therefore, users need to have a clear understanding of the model and its parameterization in the context of the application and data considered, an a priori idea about plausible values for parameter estimates, knowledge of model diagnostics procedures available for checking crucial assumptions, and, finally, an under- standing of the limitations in the validity of the underlying hypotheses of the fitted model and its implication for the precision of parameter estimates. Current nonlinear regression modules lack dedicated diagnostic functionality. So there is a need to provide users with an extended toolbox of functions enabling a careful evaluation of nonlinear regression fits. To this end, we introduce a unified diagnostic framework with the R package nlstools. In this paper, the various features of the package are presented and exemplified using a worked example from pulmonary medicine.
Semiparametric maximum likelihood for nonlinear regression with measurement errors.
Suh, Eun-Young; Schafer, Daniel W
2002-06-01
This article demonstrates semiparametric maximum likelihood estimation of a nonlinear growth model for fish lengths using imprecisely measured ages. Data on the species corvina reina, found in the Gulf of Nicoya, Costa Rica, consist of lengths and imprecise ages for 168 fish and precise ages for a subset of 16 fish. The statistical problem may therefore be classified as nonlinear errors-in-variables regression with internal validation data. Inferential techniques are based on ideas extracted from several previous works on semiparametric maximum likelihood for errors-in-variables problems. The illustration of the example clarifies practical aspects of the associated computational, inferential, and data analytic techniques.
CONSERVATIVE ESTIMATING FUNCTIONIN THE NONLINEAR REGRESSION MODEL WITHAGGREGATED DATA
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The purpose of this paper is to study the theory of conservative estimating functions in nonlinear regression model with aggregated data. In this model, a quasi-score function with aggregated data is defined. When this function happens to be conservative, it is projection of the true score function onto a class of estimation functions. By constructing, the potential function for the projected score with aggregated data is obtained, which have some properties of log-likelihood function.
On concurvity in nonlinear and nonparametric regression models
Directory of Open Access Journals (Sweden)
Sonia Amodio
2014-12-01
Full Text Available When data are affected by multicollinearity in the linear regression framework, then concurvity will be present in fitting a generalized additive model (GAM. The term concurvity describes nonlinear dependencies among the predictor variables. As collinearity results in inflated variance of the estimated regression coefficients in the linear regression model, the result of the presence of concurvity leads to instability of the estimated coefficients in GAMs. Even if the backfitting algorithm will always converge to a solution, in case of concurvity the final solution of the backfitting procedure in fitting a GAM is influenced by the starting functions. While exact concurvity is highly unlikely, approximate concurvity, the analogue of multicollinearity, is of practical concern as it can lead to upwardly biased estimates of the parameters and to underestimation of their standard errors, increasing the risk of committing type I error. We compare the existing approaches to detect concurvity, pointing out their advantages and drawbacks, using simulated and real data sets. As a result, this paper will provide a general criterion to detect concurvity in nonlinear and non parametric regression models.
Robust Nonlinear Regression in Enzyme Kinetic Parameters Estimation
Directory of Open Access Journals (Sweden)
Maja Marasović
2017-01-01
Full Text Available Accurate estimation of essential enzyme kinetic parameters, such as Km and Vmax, is very important in modern biology. To this date, linearization of kinetic equations is still widely established practice for determining these parameters in chemical and enzyme catalysis. Although simplicity of linear optimization is alluring, these methods have certain pitfalls due to which they more often then not result in misleading estimation of enzyme parameters. In order to obtain more accurate predictions of parameter values, the use of nonlinear least-squares fitting techniques is recommended. However, when there are outliers present in the data, these techniques become unreliable. This paper proposes the use of a robust nonlinear regression estimator based on modified Tukey’s biweight function that can provide more resilient results in the presence of outliers and/or influential observations. Real and synthetic kinetic data have been used to test our approach. Monte Carlo simulations are performed to illustrate the efficacy and the robustness of the biweight estimator in comparison with the standard linearization methods and the ordinary least-squares nonlinear regression. We then apply this method to experimental data for the tyrosinase enzyme (EC 1.14.18.1 extracted from Solanum tuberosum, Agaricus bisporus, and Pleurotus ostreatus. The results on both artificial and experimental data clearly show that the proposed robust estimator can be successfully employed to determine accurate values of Km and Vmax.
A nonlinear regression model-based predictive control algorithm.
Dubay, R; Abu-Ayyad, M; Hernandez, J M
2009-04-01
This paper presents a unique approach for designing a nonlinear regression model-based predictive controller (NRPC) for single-input-single-output (SISO) and multi-input-multi-output (MIMO) processes that are common in industrial applications. The innovation of this strategy is that the controller structure allows nonlinear open-loop modeling to be conducted while closed-loop control is executed every sampling instant. Consequently, the system matrix is regenerated every sampling instant using a continuous function providing a more accurate prediction of the plant. Computer simulations are carried out on nonlinear plants, demonstrating that the new approach is easily implemented and provides tight control. Also, the proposed algorithm is implemented on two real time SISO applications; a DC motor, a plastic injection molding machine and a nonlinear MIMO thermal system comprising three temperature zones to be controlled with interacting effects. The experimental closed-loop responses of the proposed algorithm were compared to a multi-model dynamic matrix controller (MPC) with improved results for various set point trajectories. Good disturbance rejection was attained, resulting in improved tracking of multi-set point profiles in comparison to multi-model MPC.
Improved Methodology for Parameter Inference in Nonlinear, Hydrologic Regression Models
Bates, Bryson C.
1992-01-01
A new method is developed for the construction of reliable marginal confidence intervals and joint confidence regions for the parameters of nonlinear, hydrologic regression models. A parameter power transformation is combined with measures of the asymptotic bias and asymptotic skewness of maximum likelihood estimators to determine the transformation constants which cause the bias or skewness to vanish. These optimized constants are used to construct confidence intervals and regions for the transformed model parameters using linear regression theory. The resulting confidence intervals and regions can be easily mapped into the original parameter space to give close approximations to likelihood method confidence intervals and regions for the model parameters. Unlike many other approaches to parameter transformation, the procedure does not use a grid search to find the optimal transformation constants. An example involving the fitting of the Michaelis-Menten model to velocity-discharge data from an Australian gauging station is used to illustrate the usefulness of the methodology.
Fault Isolation for Nonlinear Systems Using Flexible Support Vector Regression
Directory of Open Access Journals (Sweden)
Yufang Liu
2014-01-01
Full Text Available While support vector regression is widely used as both a function approximating tool and a residual generator for nonlinear system fault isolation, a drawback for this method is the freedom in selecting model parameters. Moreover, for samples with discordant distributing complexities, the selection of reasonable parameters is even impossible. To alleviate this problem we introduce the method of flexible support vector regression (F-SVR, which is especially suited for modelling complicated sample distributions, as it is free from parameters selection. Reasonable parameters for F-SVR are automatically generated given a sample distribution. Lastly, we apply this method in the analysis of the fault isolation of high frequency power supplies, where satisfactory results have been obtained.
Nonlinear Phase Control and Anomalous Phase Matching in Plasmonic Metasurfaces
Almeida, Euclides; Prior, Yehiam
2015-01-01
Metasurfaces, and in particular those containing plasmonic-based metallic elements, constitute a particularly attractive set of materials. By means of modern nanolithographic fabrication techniques, flat, ultrathin optical elements may be constructed. However, in spite of their strong optical nonlinearities, plasmonic metasurfaces have so far been investigated mostly in the linear regime. Here we introduce full nonlinear phase control over plasmonic elements in metasurfaces. We show that for nonlinear interactions in a phase-gradient nonlinear metasurface a new anomalous nonlinear phase matching condition prevails, which is the nonlinear analog of the generalized Snell law demonstrated for linear metasurfaces. This phase matching condition is very different from the other known phase matching schemes. The subwavelength phase control of optical nonlinearities provides a foundation for the design of flat nonlinear optical elements based on metasurfaces. Our demonstrated flat nonlinear elements (i.e. lenses) act...
The allometry of coarse root biomass: log-transformed linear regression or nonlinear regression?
Directory of Open Access Journals (Sweden)
Jiangshan Lai
Full Text Available Precise estimation of root biomass is important for understanding carbon stocks and dynamics in forests. Traditionally, biomass estimates are based on allometric scaling relationships between stem diameter and coarse root biomass calculated using linear regression (LR on log-transformed data. Recently, it has been suggested that nonlinear regression (NLR is a preferable fitting method for scaling relationships. But while this claim has been contested on both theoretical and empirical grounds, and statistical methods have been developed to aid in choosing between the two methods in particular cases, few studies have examined the ramifications of erroneously applying NLR. Here, we use direct measurements of 159 trees belonging to three locally dominant species in east China to compare the LR and NLR models of diameter-root biomass allometry. We then contrast model predictions by estimating stand coarse root biomass based on census data from the nearby 24-ha Gutianshan forest plot and by testing the ability of the models to predict known root biomass values measured on multiple tropical species at the Pasoh Forest Reserve in Malaysia. Based on likelihood estimates for model error distributions, as well as the accuracy of extrapolative predictions, we find that LR on log-transformed data is superior to NLR for fitting diameter-root biomass scaling models. More importantly, inappropriately using NLR leads to grossly inaccurate stand biomass estimates, especially for stands dominated by smaller trees.
Nonlinear Identification Using Orthogonal Forward Regression With Nested Optimal Regularization.
Hong, Xia; Chen, Sheng; Gao, Junbin; Harris, Chris J
2015-12-01
An efficient data based-modeling algorithm for nonlinear system identification is introduced for radial basis function (RBF) neural networks with the aim of maximizing generalization capability based on the concept of leave-one-out (LOO) cross validation. Each of the RBF kernels has its own kernel width parameter and the basic idea is to optimize the multiple pairs of regularization parameters and kernel widths, each of which is associated with a kernel, one at a time within the orthogonal forward regression (OFR) procedure. Thus, each OFR step consists of one model term selection based on the LOO mean square error (LOOMSE), followed by the optimization of the associated kernel width and regularization parameter, also based on the LOOMSE. Since like our previous state-of-the-art local regularization assisted orthogonal least squares (LROLS) algorithm, the same LOOMSE is adopted for model selection, our proposed new OFR algorithm is also capable of producing a very sparse RBF model with excellent generalization performance. Unlike our previous LROLS algorithm which requires an additional iterative loop to optimize the regularization parameters as well as an additional procedure to optimize the kernel width, the proposed new OFR algorithm optimizes both the kernel widths and regularization parameters within the single OFR procedure, and consequently the required computational complexity is dramatically reduced. Nonlinear system identification examples are included to demonstrate the effectiveness of this new approach in comparison to the well-known approaches of support vector machine and least absolute shrinkage and selection operator as well as the LROLS algorithm.
Reduction of the curvature of a class of nonlinear regression models
Institute of Scientific and Technical Information of China (English)
吴翊; 易东云
2000-01-01
It is proved that the curvature of nonlinear model can be reduced to zero by increasing measured data for a class of nonlinear regression models. The result is important to actual problem and has obtained satisfying effect on data fusing.
Fast nonlinear regression method for CT brain perfusion analysis.
Bennink, Edwin; Oosterbroek, Jaap; Kudo, Kohsuke; Viergever, Max A; Velthuis, Birgitta K; de Jong, Hugo W A M
2016-04-01
Although computed tomography (CT) perfusion (CTP) imaging enables rapid diagnosis and prognosis of ischemic stroke, current CTP analysis methods have several shortcomings. We propose a fast nonlinear regression method with a box-shaped model (boxNLR) that has important advantages over the current state-of-the-art method, block-circulant singular value decomposition (bSVD). These advantages include improved robustness to attenuation curve truncation, extensibility, and unified estimation of perfusion parameters. The method is compared with bSVD and with a commercial SVD-based method. The three methods were quantitatively evaluated by means of a digital perfusion phantom, described by Kudo et al. and qualitatively with the aid of 50 clinical CTP scans. All three methods yielded high Pearson correlation coefficients ([Formula: see text]) with the ground truth in the phantom. The boxNLR perfusion maps of the clinical scans showed higher correlation with bSVD than the perfusion maps from the commercial method. Furthermore, it was shown that boxNLR estimates are robust to noise, truncation, and tracer delay. The proposed method provides a fast and reliable way of estimating perfusion parameters from CTP scans. This suggests it could be a viable alternative to current commercial and academic methods.
Nonlinear Ultrasonic Phased Array Imaging
Potter, J. N.; Croxford, A. J.; Wilcox, P. D.
2014-10-01
This Letter reports a technique for the imaging of acoustic nonlinearity. By contrasting the energy of the diffuse field produced through the focusing of an ultrasonic array by delayed parallel element transmission with that produced by postprocessing of sequential transmission data, acoustic nonlinearity local to the focal point is measured. Spatially isolated wave distortion is inferred without requiring interrogation of the wave at the inspection point, thereby allowing nonlinear imaging through depth.
Nonlinear ultrasonic phased array imaging
Potter, J N; Croxford, A.J.; Wilcox, P. D.
2014-01-01
This Letter reports a technique for the imaging of acoustic nonlinearity. By contrasting the energy of the diffuse field produced through the focusing of an ultrasonic array by delayed parallel element transmission with that produced by postprocessing of sequential transmission data, acoustic nonlinearity local to the focal point is measured. Spatially isolated wave distortion is inferred without requiring interrogation of the wave at the inspection point, thereby allowing nonlinear imaging t...
Nonlinear ultrasonic phased array imaging.
Potter, J N; Croxford, A J; Wilcox, P D
2014-10-03
This Letter reports a technique for the imaging of acoustic nonlinearity. By contrasting the energy of the diffuse field produced through the focusing of an ultrasonic array by delayed parallel element transmission with that produced by postprocessing of sequential transmission data, acoustic nonlinearity local to the focal point is measured. Spatially isolated wave distortion is inferred without requiring interrogation of the wave at the inspection point, thereby allowing nonlinear imaging through depth.
Motulsky, Harvey J; Brown, Ronald E
2006-03-09
Nonlinear regression, like linear regression, assumes that the scatter of data around the ideal curve follows a Gaussian or normal distribution. This assumption leads to the familiar goal of regression: to minimize the sum of the squares of the vertical or Y-value distances between the points and the curve. Outliers can dominate the sum-of-the-squares calculation, and lead to misleading results. However, we know of no practical method for routinely identifying outliers when fitting curves with nonlinear regression. We describe a new method for identifying outliers when fitting data with nonlinear regression. We first fit the data using a robust form of nonlinear regression, based on the assumption that scatter follows a Lorentzian distribution. We devised a new adaptive method that gradually becomes more robust as the method proceeds. To define outliers, we adapted the false discovery rate approach to handling multiple comparisons. We then remove the outliers, and analyze the data using ordinary least-squares regression. Because the method combines robust regression and outlier removal, we call it the ROUT method. When analyzing simulated data, where all scatter is Gaussian, our method detects (falsely) one or more outlier in only about 1-3% of experiments. When analyzing data contaminated with one or several outliers, the ROUT method performs well at outlier identification, with an average False Discovery Rate less than 1%. Our method, which combines a new method of robust nonlinear regression with a new method of outlier identification, identifies outliers from nonlinear curve fits with reasonable power and few false positives.
Directory of Open Access Journals (Sweden)
Motulsky Harvey J
2006-03-01
Full Text Available Abstract Background Nonlinear regression, like linear regression, assumes that the scatter of data around the ideal curve follows a Gaussian or normal distribution. This assumption leads to the familiar goal of regression: to minimize the sum of the squares of the vertical or Y-value distances between the points and the curve. Outliers can dominate the sum-of-the-squares calculation, and lead to misleading results. However, we know of no practical method for routinely identifying outliers when fitting curves with nonlinear regression. Results We describe a new method for identifying outliers when fitting data with nonlinear regression. We first fit the data using a robust form of nonlinear regression, based on the assumption that scatter follows a Lorentzian distribution. We devised a new adaptive method that gradually becomes more robust as the method proceeds. To define outliers, we adapted the false discovery rate approach to handling multiple comparisons. We then remove the outliers, and analyze the data using ordinary least-squares regression. Because the method combines robust regression and outlier removal, we call it the ROUT method. When analyzing simulated data, where all scatter is Gaussian, our method detects (falsely one or more outlier in only about 1–3% of experiments. When analyzing data contaminated with one or several outliers, the ROUT method performs well at outlier identification, with an average False Discovery Rate less than 1%. Conclusion Our method, which combines a new method of robust nonlinear regression with a new method of outlier identification, identifies outliers from nonlinear curve fits with reasonable power and few false positives.
Comparison between Linear and Nonlinear Regression in a Laboratory Heat Transfer Experiment
Gonçalves, Carine Messias; Schwaab, Marcio; Pinto, José Carlos
2013-01-01
In order to interpret laboratory experimental data, undergraduate students are used to perform linear regression through linearized versions of nonlinear models. However, the use of linearized models can lead to statistically biased parameter estimates. Even so, it is not an easy task to introduce nonlinear regression and show for the students…
Comparison between Linear and Nonlinear Regression in a Laboratory Heat Transfer Experiment
Gonçalves, Carine Messias; Schwaab, Marcio; Pinto, José Carlos
2013-01-01
In order to interpret laboratory experimental data, undergraduate students are used to perform linear regression through linearized versions of nonlinear models. However, the use of linearized models can lead to statistically biased parameter estimates. Even so, it is not an easy task to introduce nonlinear regression and show for the students…
Least Squares Adjustment: Linear and Nonlinear Weighted Regression Analysis
DEFF Research Database (Denmark)
Nielsen, Allan Aasbjerg
2007-01-01
This note primarily describes the mathematics of least squares regression analysis as it is often used in geodesy including land surveying and satellite positioning applications. In these fields regression is often termed adjustment. The note also contains a couple of typical land surveying...... and satellite positioning application examples. In these application areas we are typically interested in the parameters in the model typically 2- or 3-D positions and not in predictive modelling which is often the main concern in other regression analysis applications. Adjustment is often used to obtain...
CONFIDENCE REGIONS IN TERMS OF STATISTICAL CURVATURE FOR AR(q) NONLINEAR REGRESSION MODELS
Institute of Scientific and Technical Information of China (English)
刘应安; 韦博成
2004-01-01
This paper constructs a set of confidence regions of parameters in terms of statistical curvatures for AR(q) nonlinear regression models. The geometric frameworks are proposed for the model. Then several confidence regions for parameters and parameter subsets in terms of statistical curvatures are given based on the likelihood ratio statistics and score statistics. Several previous results, such as [1] and [2] are extended to AR(q)nonlinear regression models.
Singh, Kunwar P; Gupta, Shikha; Rai, Premanjali
2014-05-01
Kernel function-based regression models were constructed and applied to a nonlinear hydro-chemical dataset pertaining to surface water for predicting the dissolved oxygen levels. Initial features were selected using nonlinear approach. Nonlinearity in the data was tested using BDS statistics, which revealed the data with nonlinear structure. Kernel ridge regression, kernel principal component regression, kernel partial least squares regression, and support vector regression models were developed using the Gaussian kernel function and their generalization and predictive abilities were compared in terms of several statistical parameters. Model parameters were optimized using the cross-validation procedure. The proposed kernel regression methods successfully captured the nonlinear features of the original data by transforming it to a high dimensional feature space using the kernel function. Performance of all the kernel-based modeling methods used here were comparable both in terms of predictive and generalization abilities. Values of the performance criteria parameters suggested for the adequacy of the constructed models to fit the nonlinear data and their good predictive capabilities.
A regressed phase analysis for coupled joint systems.
Wininger, Michael
2011-01-01
This study aims to address shortcomings of the relative phase analysis, a widely used method for assessment of coupling among joints of the lower limb. Goniometric data from 15 individuals with spastic diplegic cerebral palsy were recorded from the hip and knee joints during ambulation on a flat surface, and from a single healthy individual with no known motor impairment, over at least 10 gait cycles. The minimum relative phase (MRP) revealed substantial disparity in the timing and severity of the instance of maximum coupling, depending on which reference frame was selected: MRP(knee-hip) differed from MRP(hip-knee) by 16.1±14% of gait cycle and 50.6±77% difference in scale. Additionally, several relative phase portraits contained discontinuities which may contribute to error in phase feature extraction. These vagaries can be attributed to the predication of relative phase analysis on a transformation into the velocity-position phase plane, and the extraction of phase angle by the discontinuous arc-tangent operator. Here, an alternative phase analysis is proposed, wherein kinematic data is transformed into a profile of joint coupling across the entire gait cycle. By comparing joint velocities directly via a standard linear regression in the velocity-velocity phase plane, this regressed phase analysis provides several key advantages over relative phase analysis including continuity, commutativity between reference frames, and generalizability to many-joint systems.
Printed Arabic Text Recognition using Linear and Nonlinear Regression
Directory of Open Access Journals (Sweden)
Ashraf A. Shahin
2017-01-01
Full Text Available Arabic language is one of the most popular languages in the world. Hundreds of millions of people in many countries around the world speak Arabic as their native speaking. However, due to complexity of Arabic language, recognition of printed and handwritten Arabic text remained untouched for a very long time compared with English and Chinese. Although, in the last few years, significant number of researches has been done in recognizing printed and handwritten Arabic text, it stills an open research field due to cursive nature of Arabic script. This paper proposes automatic printed Arabic text recognition technique based on linear and ellipse regression techniques. After collecting all possible forms of each character, unique code is generated to represent each character form. Each code contains a sequence of lines and ellipses. To recognize fonts, a unique list of codes is identified to be used as a fingerprint of font. The proposed technique has been evaluated using over 14000 different Arabic words with different fonts and experimental results show that average recognition rate of the proposed technique is 86%.
Symmetry, phase modulation and nonlinear waves
Bridges, Thomas J
2017-01-01
Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background results in mathematics, such as Hamiltonian systems, symplectic geometry, conservation laws, Noether theory, Lagrangian field theory and analysis, all of which combine to generate the new theory of phase modulation. While the build-up of theory can be intensive, the resulting emergent partial differential equations are relatively simple. A key outcome of the theory is that the coefficients in the emergent modulation equations are universal and easy to calculate. This book gives several examples of the implications in the theory of fluid mechanics and points to a wide range of new applications.
Röthig, Andreas; Chiarella, Carl
2006-01-01
This article explores nonlinearities in the response of speculators' trading activity to price changes in live cattle, corn, and lean hog futures markets. Analyzing weekly data from March 4, 1997 to December 27, 2005, we reject linearity in all of these markets. Using smooth transition regression models, we find a similar structure of nonlinearities with regard to the number of different regimes, the choice of the transition variable, and the value at which the transition occurs.
Hartmann, Armin; Van Der Kooij, Anita J; Zeeck, Almut
2009-07-01
In explorative regression studies, linear models are often applied without questioning the linearity of the relations between the predictor variables and the dependent variable, or linear relations are taken as an approximation. In this study, the method of regression with optimal scaling transformations is demonstrated. This method does not require predefined nonlinear functions and results in easy-to-interpret transformations that will show the form of the relations. The method is illustrated using data from a German multicenter project on the indication criteria for inpatient or day clinic psychotherapy treatment. The indication criteria to include in the regression model were selected with the Lasso, which is a tool for predictor selection that overcomes the disadvantages of stepwise regression methods. The resulting prediction model indicates that treatment status is (approximately) linearly related to some criteria and nonlinearly related to others.
On Calculating the Hougaard Measure of Skewness in a Nonlinear Regression Model with Two Parameters
Directory of Open Access Journals (Sweden)
S. A. EL-Shehawy
2009-01-01
Full Text Available Problem statement: This study presented an alternative computational algorithm for determining the values of the Hougaard measure of skewness as a nonlinearity measure in a Nonlinear Regression model (NLR-model with two parameters. Approach: These values indicated a degree of a nonlinear behavior in the estimator of the parameter in a NLR-model. Results: We applied the suggested algorithm on an example of a NLR-model in which there is a conditionally linear parameter. The algorithm is mainly based on many earlier studies in measures of nonlinearity. The algorithm was suited for implementation using computer algebra systems such as MAPLE, MATLAB and MATHEMATICA. Conclusion/Recommendations: The results with the corresponding output the same considering example will be compared with the results in some earlier studies.
The Chaotic Prediction for Aero-Engine Performance Parameters Based on Nonlinear PLS Regression
Directory of Open Access Journals (Sweden)
Chunxiao Zhang
2012-01-01
Full Text Available The prediction of the aero-engine performance parameters is very important for aero-engine condition monitoring and fault diagnosis. In this paper, the chaotic phase space of engine exhaust temperature (EGT time series which come from actual air-borne ACARS data is reconstructed through selecting some suitable nearby points. The partial least square (PLS based on the cubic spline function or the kernel function transformation is adopted to obtain chaotic predictive function of EGT series. The experiment results indicate that the proposed PLS chaotic prediction algorithm based on biweight kernel function transformation has significant advantage in overcoming multicollinearity of the independent variables and solve the stability of regression model. Our predictive NMSE is 16.5 percent less than that of the traditional linear least squares (OLS method and 10.38 percent less than that of the linear PLS approach. At the same time, the forecast error is less than that of nonlinear PLS algorithm through bootstrap test screening.
Beam Combining by Phase Transition Nonlinear Media
1990-02-01
use the Redlich Kwong equation of state for the media we consider. This equation of state can be written RT a p - -b -FT(p.-’ + b)p ; 2-I M (2-1) where...as ac 3 dg-A7 C VA/\\CIIJT (6) The Redlich - Kwong equation of state; i.e., _ RT T-1/2 v-P v(v+P) (7) can be used to compute aP/lT, where the relevant...practical the application of nonlinear phase conjugate techniques to the beam combining of multiple lasers with a coherence characteristic of a
Drzewiecki, Wojciech
2016-12-01
In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels) was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques. The results proved that in case of sub-pixel evaluation the most accurate prediction of change may not necessarily be based on the most accurate individual assessments. When single methods are considered, based on obtained results Cubist algorithm may be advised for Landsat based mapping of imperviousness for single dates. However, Random Forest may be endorsed when the most reliable evaluation of imperviousness change is the primary goal. It gave lower accuracies for individual assessments, but better prediction of change due to more correlated errors of individual predictions. Heterogeneous model ensembles performed for individual time points assessments at least as well as the best individual models. In case of imperviousness change assessment the ensembles always outperformed single model approaches. It means that it is possible to improve the accuracy of sub-pixel imperviousness change assessment using ensembles of heterogeneous non-linear regression models.
Phase reduction theory for hybrid nonlinear oscillators
Shirasaka, Sho; Kurebayashi, Wataru; Nakao, Hiroya
2017-01-01
Hybrid dynamical systems characterized by discrete switching of smooth dynamics have been used to model various rhythmic phenomena. However, the phase reduction theory, a fundamental framework for analyzing the synchronization of limit-cycle oscillations in rhythmic systems, has mostly been restricted to smooth dynamical systems. Here we develop a general phase reduction theory for weakly perturbed limit cycles in hybrid dynamical systems that facilitates analysis, control, and optimization of nonlinear oscillators whose smooth models are unavailable or intractable. On the basis of the generalized theory, we analyze injection locking of hybrid limit-cycle oscillators by periodic forcing and reveal their characteristic synchronization properties, such as ultrafast and robust entrainment to the periodic forcing and logarithmic scaling at the synchronization transition. We also illustrate the theory by analyzing the synchronization dynamics of a simple physical model of biped locomotion.
Multilayer perceptron for robust nonlinear interval regression analysis using genetic algorithms.
Hu, Yi-Chung
2014-01-01
On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets.
Multilayer Perceptron for Robust Nonlinear Interval Regression Analysis Using Genetic Algorithms
2014-01-01
On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets. PMID:25110755
Energy Technology Data Exchange (ETDEWEB)
Harlim, John, E-mail: jharlim@psu.edu [Department of Mathematics and Department of Meteorology, the Pennsylvania State University, University Park, PA 16802, Unites States (United States); Mahdi, Adam, E-mail: amahdi@ncsu.edu [Department of Mathematics, North Carolina State University, Raleigh, NC 27695 (United States); Majda, Andrew J., E-mail: jonjon@cims.nyu.edu [Department of Mathematics and Center for Atmosphere and Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States)
2014-01-15
A central issue in contemporary science is the development of nonlinear data driven statistical–dynamical models for time series of noisy partial observations from nature or a complex model. It has been established recently that ad-hoc quadratic multi-level regression models can have finite-time blow-up of statistical solutions and/or pathological behavior of their invariant measure. Recently, a new class of physics constrained nonlinear regression models were developed to ameliorate this pathological behavior. Here a new finite ensemble Kalman filtering algorithm is developed for estimating the state, the linear and nonlinear model coefficients, the model and the observation noise covariances from available partial noisy observations of the state. Several stringent tests and applications of the method are developed here. In the most complex application, the perfect model has 57 degrees of freedom involving a zonal (east–west) jet, two topographic Rossby waves, and 54 nonlinearly interacting Rossby waves; the perfect model has significant non-Gaussian statistics in the zonal jet with blocked and unblocked regimes and a non-Gaussian skewed distribution due to interaction with the other 56 modes. We only observe the zonal jet contaminated by noise and apply the ensemble filter algorithm for estimation. Numerically, we find that a three dimensional nonlinear stochastic model with one level of memory mimics the statistical effect of the other 56 modes on the zonal jet in an accurate fashion, including the skew non-Gaussian distribution and autocorrelation decay. On the other hand, a similar stochastic model with zero memory levels fails to capture the crucial non-Gaussian behavior of the zonal jet from the perfect 57-mode model.
Scarneciu, Camelia C; Sangeorzan, Livia; Rus, Horatiu; Scarneciu, Vlad D; Varciu, Mihai S; Andreescu, Oana; Scarneciu, Ioan
2017-01-01
This study aimed at assessing the incidence of pulmonary hypertension (PH) at newly diagnosed hyperthyroid patients and at finding a simple model showing the complex functional relation between pulmonary hypertension in hyperthyroidism and the factors causing it. The 53 hyperthyroid patients (H-group) were evaluated mainly by using an echocardiographical method and compared with 35 euthyroid (E-group) and 25 healthy people (C-group). In order to identify the factors causing pulmonary hypertension the statistical method of comparing the values of arithmetical means is used. The functional relation between the two random variables (PAPs and each of the factors determining it within our research study) can be expressed by linear or non-linear function. By applying the linear regression method described by a first-degree equation the line of regression (linear model) has been determined; by applying the non-linear regression method described by a second degree equation, a parabola-type curve of regression (non-linear or polynomial model) has been determined. We made the comparison and the validation of these two models by calculating the determination coefficient (criterion 1), the comparison of residuals (criterion 2), application of AIC criterion (criterion 3) and use of F-test (criterion 4). From the H-group, 47% have pulmonary hypertension completely reversible when obtaining euthyroidism. The factors causing pulmonary hypertension were identified: previously known- level of free thyroxin, pulmonary vascular resistance, cardiac output; new factors identified in this study- pretreatment period, age, systolic blood pressure. According to the four criteria and to the clinical judgment, we consider that the polynomial model (graphically parabola- type) is better than the linear one. The better model showing the functional relation between the pulmonary hypertension in hyperthyroidism and the factors identified in this study is given by a polynomial equation of second
Nonlinear phase noise in coherent optical OFDM transmission systems.
Zhu, Xianming; Kumar, Shiva
2010-03-29
We derive an analytical formula to estimate the variance of nonlinear phase noise caused by the interaction of amplified spontaneous emission (ASE) noise with fiber nonlinearity such as self-phase modulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM) in coherent orthogonal frequency division multiplexing (OFDM) systems. The analytical results agree very well with numerical simulations, enabling the study of the nonlinear penalties in long-haul coherent OFDM systems without extensive numerical simulation. Our results show that the nonlinear phase noise induced by FWM is significantly larger than that induced by SPM and XPM, which is in contrast to traditional WDM systems where ASE-FWM interaction is negligible in quasi-linear systems. We also found that fiber chromatic dispersion can reduce the nonlinear phase noise. The variance of the total phase noise increases linearly with the bit rate, and does not depend significantly on the number of subcarriers for systems with moderate fiber chromatic dispersion.
Robust Nonlinear Regression: A Greedy Approach Employing Kernels With Application to Image Denoising
Papageorgiou, George; Bouboulis, Pantelis; Theodoridis, Sergios
2017-08-01
We consider the task of robust non-linear regression in the presence of both inlier noise and outliers. Assuming that the unknown non-linear function belongs to a Reproducing Kernel Hilbert Space (RKHS), our goal is to estimate the set of the associated unknown parameters. Due to the presence of outliers, common techniques such as the Kernel Ridge Regression (KRR) or the Support Vector Regression (SVR) turn out to be inadequate. Instead, we employ sparse modeling arguments to explicitly model and estimate the outliers, adopting a greedy approach. The proposed robust scheme, i.e., Kernel Greedy Algorithm for Robust Denoising (KGARD), is inspired by the classical Orthogonal Matching Pursuit (OMP) algorithm. Specifically, the proposed method alternates between a KRR task and an OMP-like selection step. Theoretical results concerning the identification of the outliers are provided. Moreover, KGARD is compared against other cutting edge methods, where its performance is evaluated via a set of experiments with various types of noise. Finally, the proposed robust estimation framework is applied to the task of image denoising, and its enhanced performance in the presence of outliers is demonstrated.
Aboveground biomass and carbon stocks modelling using non-linear regression model
Ain Mohd Zaki, Nurul; Abd Latif, Zulkiflee; Nazip Suratman, Mohd; Zainee Zainal, Mohd
2016-06-01
Aboveground biomass (AGB) is an important source of uncertainty in the carbon estimation for the tropical forest due to the variation biodiversity of species and the complex structure of tropical rain forest. Nevertheless, the tropical rainforest holds the most extensive forest in the world with the vast diversity of tree with layered canopies. With the usage of optical sensor integrate with empirical models is a common way to assess the AGB. Using the regression, the linkage between remote sensing and a biophysical parameter of the forest may be made. Therefore, this paper exemplifies the accuracy of non-linear regression equation of quadratic function to estimate the AGB and carbon stocks for the tropical lowland Dipterocarp forest of Ayer Hitam forest reserve, Selangor. The main aim of this investigation is to obtain the relationship between biophysical parameter field plots with the remotely-sensed data using nonlinear regression model. The result showed that there is a good relationship between crown projection area (CPA) and carbon stocks (CS) with Pearson Correlation (p < 0.01), the coefficient of correlation (r) is 0.671. The study concluded that the integration of Worldview-3 imagery with the canopy height model (CHM) raster based LiDAR were useful in order to quantify the AGB and carbon stocks for a larger sample area of the lowland Dipterocarp forest.
VARIANCE OF NONLINEAR PHASE NOISE IN FIBER-OPTIC SYSTEM
RANJU KANWAR; SAMEKSHA BHASKAR
2013-01-01
In communication system, the noise process must be known, in order to compute the system performance. The nonlinear effects act as strong perturbation in long- haul system. This perturbation effects the signal, when interact with amplitude noise, and results in random motion of the phase of the signal. Based on the perturbation theory, the variance of nonlinear phase noise contaminated by both self- and cross-phase modulation, is derived analytically for phase-shift- keying system. Through th...
Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling.
Kawashima, Issaku; Kumano, Hiroaki
2017-01-01
Mind-wandering (MW), task-unrelated thought, has been examined by researchers in an increasing number of articles using models to predict whether subjects are in MW, using numerous physiological variables. However, these models are not applicable in general situations. Moreover, they output only binary classification. The current study suggests that the combination of electroencephalogram (EEG) variables and non-linear regression modeling can be a good indicator of MW intensity. We recorded EEGs of 50 subjects during the performance of a Sustained Attention to Response Task, including a thought sampling probe that inquired the focus of attention. We calculated the power and coherence value and prepared 35 patterns of variable combinations and applied Support Vector machine Regression (SVR) to them. Finally, we chose four SVR models: two of them non-linear models and the others linear models; two of the four models are composed of a limited number of electrodes to satisfy model usefulness. Examination using the held-out data indicated that all models had robust predictive precision and provided significantly better estimations than a linear regression model using single electrode EEG variables. Furthermore, in limited electrode condition, non-linear SVR model showed significantly better precision than linear SVR model. The method proposed in this study helps investigations into MW in various little-examined situations. Further, by measuring MW with a high temporal resolution EEG, unclear aspects of MW, such as time series variation, are expected to be revealed. Furthermore, our suggestion that a few electrodes can also predict MW contributes to the development of neuro-feedback studies.
Energy Technology Data Exchange (ETDEWEB)
Gunay, Ahmet [Deparment of Environmental Engineering, Faculty of Engineering and Architecture, Balikesir University (Turkey)], E-mail: ahmetgunay2@gmail.com
2007-09-30
The experimental data of ammonium exchange by natural Bigadic clinoptilolite was evaluated using nonlinear regression analysis. Three two-parameters isotherm models (Langmuir, Freundlich and Temkin) and three three-parameters isotherm models (Redlich-Peterson, Sips and Khan) were used to analyse the equilibrium data. Fitting of isotherm models was determined using values of standard normalization error procedure (SNE) and coefficient of determination (R{sup 2}). HYBRID error function provided lowest sum of normalized error and Khan model had better performance for modeling the equilibrium data. Thermodynamic investigation indicated that ammonium removal by clinoptilolite was favorable at lower temperatures and exothermic in nature.
Describing Adequacy of cure with maximum hardness ratios and non-linear regression.
Bouschlicher, Murray; Berning, Kristen; Qian, Fang
2008-01-01
Knoop Hardness (KH) ratios (HR) > or = 80% are commonly used as criteria for the adequate cure of a composite. These per-specimen HRs can be misleading, as both numerator and denominator may increase concurrently, prior to reaching an asymptotic, top-surface maximum hardness value (H(MAX)). Extended cure times were used to establish H(MAX) and descriptive statistics, and non-linear regression analysis were used to describe the relationship between exposure duration and HR and predict the time required for HR-H(MAX) = 80%. Composite samples 2.00 x 5.00 mm diameter (n = 5/grp) were cured for 10 seconds, 20 seconds, 40 seconds, 60 seconds, 90 seconds, 120 seconds, 180 seconds and 240 seconds in a 2-composite x 2-light curing unit design. A microhybrid (Point 4, P4) or microfill resin (Heliomolar, HM) composite was cured with a QTH or LED light curing unit and then stored in the dark for 24 hours prior to KH testing. Non-linear regression was calculated with: H = (H(MAX)-c)(1-e(-kt)) +c, H(MAX) = maximum hardness (a theoretical asymptotic value), c = constant (t = 0), k = rate constant and t = exposure duration describes the relationship between radiant exposure (irradiance x time) and HRs. Exposure durations for HR-H(MAX) = 80% were calculated. Two-sample t-tests for pairwise comparisons evaluated relative performance of the light curing units for similar surface x composite x exposure (10-90s). A good measure of goodness-of-fit of the non-linear regression, r2, ranged from 0.68-0.95. (mean = 0.82). Microhybrid (P4) exposure to achieve HR-H(MAX = 80% was 21 seconds for QTH and 34 seconds for the LED light curing unit. Corresponding values for microfill (HM) were 71 and 74 seconds, respectively. P4 HR-H(MAX) of LED vs QTH was statistically similar for 10 to 40 seconds, while HM HR-H(MAX) of LED was significantly lower than QTH for 10 to 40 seconds. It was concluded that redefined hardness ratios based on maximum hardness used in conjunction with non-linear regression
Heteroscedastic nonlinear regression models based on scale mixtures of skew-normal distributions.
Lachos, Victor H; Bandyopadhyay, Dipankar; Garay, Aldo M
2011-08-01
An extension of some standard likelihood based procedures to heteroscedastic nonlinear regression models under scale mixtures of skew-normal (SMSN) distributions is developed. We derive a simple EM-type algorithm for iteratively computing maximum likelihood (ML) estimates and the observed information matrix is derived analytically. Simulation studies demonstrate the robustness of this flexible class against outlying and influential observations, as well as nice asymptotic properties of the proposed EM-type ML estimates. Finally, the methodology is illustrated using an ultrasonic calibration data.
Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control.
Hahne, J M; Biessmann, F; Jiang, N; Rehbaum, H; Farina, D; Meinecke, F C; Muller, K-R; Parra, L C
2014-03-01
In recent years the number of active controllable joints in electrically powered hand-prostheses has increased significantly. However, the control strategies for these devices in current clinical use are inadequate as they require separate and sequential control of each degree-of-freedom (DoF). In this study we systematically compare linear and nonlinear regression techniques for an independent, simultaneous and proportional myoelectric control of wrist movements with two DoF. These techniques include linear regression, mixture of linear experts (ME), multilayer-perceptron, and kernel ridge regression (KRR). They are investigated offline with electro-myographic signals acquired from ten able-bodied subjects and one person with congenital upper limb deficiency. The control accuracy is reported as a function of the number of electrodes and the amount and diversity of training data providing guidance for the requirements in clinical practice. The results showed that KRR, a nonparametric statistical learning method, outperformed the other methods. However, simple transformations in the feature space could linearize the problem, so that linear models could achieve similar performance as KRR at much lower computational costs. Especially ME, a physiologically inspired extension of linear regression represents a promising candidate for the next generation of prosthetic devices.
Berry phase in a generalized nonlinear two-level system
Institute of Scientific and Technical Information of China (English)
Liu Ji-Bing; Li Jia-Hua; Song Pei-Jun; Li Wei-Bin
2008-01-01
In this paper,we investigate the behaviour of the geometric phase of a more generalized nonlinear system composed of an effective two-level system interacting with a single-mode quantized cavity field.Both the field nonlinearity and the atom-field coupling nonlinearity are considered.We find that the geometric phase depends on whether the index k is an odd number or an even number in the resonant case.In addition,we also find that the geometric phase may be easily observed when the field nonlinearity is not considered.The fractional statistical phenomenon appears in this system if the strong nonlinear atom-field coupling is considered.We have also investigated the geometric phase of an effective two-level system interacting with a two-mode quantized cavity field.
Evaluating Non-Linear Regression Models in Analysis of Persian Walnut Fruit Growth
Directory of Open Access Journals (Sweden)
I. Karamatlou
2016-02-01
larger cells and tissues. The second phase includes attainment of final nut form, and it is characterized mainly by chemical changes. These include changes in the shell as the cells become lignified and more important changes in kernel composition. Conclusion: Based on thes tatistical testing and goodness of the fit, the best model between six nonlinear growth models, was double-sigmoid and Richard model swhich can be used to accurately predict fruit growth based on fruit weight, fruit lengt hand width, respectively.
Complex Nonlinearity Chaos, Phase Transitions, Topology Change and Path Integrals
Ivancevic, Vladimir G
2008-01-01
Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos–control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity – chaos – corresponds to th...
Holographic paramagnetism-ferromagnetism phase transition with the nonlinear electrodynamics
Zhang, Cheng-Yuan; Zhang, Ya-Nan; Wang, Huan-Yu; Wu, Meng-Meng
2016-01-01
In the probe limit, we investigate the nonlinear electrodynamical effects of the both exponential form and the logarithmic form on the holographic paramagnetism-ferromagnetism phase transition in the background of a Schwarzschild-AdS black hole spacetime. Moreover, by comparing the exponential form of nonlinear electrodynamics with the logarithmic form of nonlinear electrodynamics and the Born-Infeld nonlinear electrodynamics which has been presented in Ref.~\\cite{Wu:2016uyj}, we find that the higher nonlinear electrodynamics correction makes the critical temperature smaller and the magnetic moment harder form in the case without external field. Furthermore, the increase of nonlinear parameter b will result in extending the period of the external magnetic field. Especially, the effect of the exponential form of nonlinear electrodynamics on the periodicity of hysteresis loop is more noticeable.
Harmonic Phase Response of Nonlinear Radar Targets
2015-10-01
to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT...of an improvised explosive device (IED). Previous nonlinear radar systems detect targets via transmission of a single frequency ω, stepping...electronically nonlinear components, such as transistors, diodes , and semiconductors. While many circuit devices, such as amplifiers, mixers, and
Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces
Almeida, Euclides; Shalem, Guy; Prior, Yehiam
2016-01-01
Metasurfaces, and in particular those containing plasmonic-based metallic elements, constitute an attractive set of materials with a potential for replacing standard bulky optical elements. In recent years, increasing attention has been focused on their nonlinear optical properties, particularly in the context of second and third harmonic generation and beam steering by phase gratings. Here, we harness the full phase control enabled by subwavelength plasmonic elements to demonstrate a unique metasurface phase matching that is required for efficient nonlinear processes. We discuss the difference between scattering by a grating and by subwavelength phase-gradient elements. We show that for such interfaces an anomalous phase-matching condition prevails, which is the nonlinear analogue of the generalized Snell's law. The subwavelength phase control of optical nonlinearities paves the way for the design of ultrathin, flat nonlinear optical elements. We demonstrate nonlinear metasurface lenses, which act both as generators and as manipulators of the frequency-converted signal.
Directory of Open Access Journals (Sweden)
Roseane Cavalcanti dos Santos
2012-08-01
Full Text Available The objective of this work was to estimate the stability and adaptability of pod and seed yield in runner peanut genotypes based on the nonlinear regression and AMMI analysis. Yield data from 11 trials, distributed in six environments and three harvests, carried out in the Northeast region of Brazil during the rainy season were used. Significant effects of genotypes (G, environments (E, and GE interactions were detected in the analysis, indicating different behaviors among genotypes in favorable and unfavorable environmental conditions. The genotypes BRS Pérola Branca and LViPE‑06 are more stable and adapted to the semiarid environment, whereas LGoPE‑06 is a promising material for pod production, despite being highly dependent on favorable environments.
Phase Relation of Harmonics in Nonlinear Focused Ultrasound
Institute of Scientific and Technical Information of China (English)
Zhe-Fan Peng; Wei-Jun Lin; Shi-Lei Liu; Chang Su; Hai-Lan Zhang; Xiu-Ming Wang
2016-01-01
The phase relation of harmonics in high-intensity focused ultrasound is investigated numerically and experimentally.The nonlinear Westervelt equation is solved to model nonlinear focused sound field by using the finite difference time domain method.Experimental waveforms are measured by a robust needle hydrophone.Then the relative phase quantity is introduced and obtained by using the zero-phase filter.The results show that the nth harmonic relative phase quantity is approximately (n-1)π/3 at geometric center and increases along the axial direction.Moreover,the relative phase quantity decreases with the increase of source amplitude.This phase relation gives an explanation of some nonlinear phenomena such as the discrepancy of positive and negative pressure.
Describing Growth Pattern of Bali Cows Using Non-linear Regression Models
Directory of Open Access Journals (Sweden)
Mohd. Hafiz A.W
2016-12-01
Full Text Available The objective of this study was to evaluate the best fit non-linear regression model to describe the growth pattern of Bali cows. Estimates of asymptotic mature weight, rate of maturing and constant of integration were derived from Brody, von Bertalanffy, Gompertz and Logistic models which were fitted to cross-sectional data of body weight taken from 74 Bali cows raised in MARDI Research Station Muadzam Shah Pahang. Coefficient of determination (R2 and residual mean squares (MSE were used to determine the best fit model in describing the growth pattern of Bali cows. Von Bertalanffy model was the best model among the four growth functions evaluated to determine the mature weight of Bali cattle as shown by the highest R2 and lowest MSE values (0.973 and 601.9, respectively, followed by Gompertz (0.972 and 621.2, respectively, Logistic (0.971 and 648.4, respectively and Brody (0.932 and 660.5, respectively models. The correlation between rate of maturing and mature weight was found to be negative in the range of -0.170 to -0.929 for all models, indicating that animals of heavier mature weight had lower rate of maturing. The use of non-linear model could summarize the weight-age relationship into several biologically interpreted parameters compared to the entire lifespan weight-age data points that are difficult and time consuming to interpret.
Extra phase noise from thermal fluctuations in nonlinear optical crystals
DEFF Research Database (Denmark)
César, J. E. S.; Coelho, A.S.; Cassemiro, K.N.
2009-01-01
We show theoretically and experimentally that scattered light by thermal phonons inside a second-order nonlinear crystal is the source of additional phase noise observed in optical parametric oscillators. This additional phase noise reduces the quantum correlations and has hitherto hindered the d...... the direct production of multipartite entanglement in a single nonlinear optical system. We cooled the nonlinear crystal and observed a reduction in the extra noise. Our treatment of this noise can be successfully applied to different systems in the literature....
Thermodynamics of Phase Transitions of a Kerr Nonlinear Blackbody
Institute of Scientific and Technical Information of China (English)
CHENG Ze
2008-01-01
We study the thermodynamics of phase transitions of a blackbody whose interior is filled by a Kerr nonlinear crystal. There is a transition temperature To, above which the Kerr nonlinear blackbody is in the normal thermal radiation state, and below which it is in the squeezed thermal radiation state. At To, the Gibbs free energy of the two phases is continuous but the entropy density of the two phases is discontinuous. Hence, there is a jump in the entropy density and this leads to a latent heat density. The photon system undergoes a first-order phase transition from the normal to the squeezed thermal radiation state.
Directory of Open Access Journals (Sweden)
Hongjian Wang
2014-01-01
Full Text Available We present a support vector regression-based adaptive divided difference filter (SVRADDF algorithm for improving the low state estimation accuracy of nonlinear systems, which are typically affected by large initial estimation errors and imprecise prior knowledge of process and measurement noises. The derivative-free SVRADDF algorithm is significantly simpler to compute than other methods and is implemented using only functional evaluations. The SVRADDF algorithm involves the use of the theoretical and actual covariance of the innovation sequence. Support vector regression (SVR is employed to generate the adaptive factor to tune the noise covariance at each sampling instant when the measurement update step executes, which improves the algorithm’s robustness. The performance of the proposed algorithm is evaluated by estimating states for (i an underwater nonmaneuvering target bearing-only tracking system and (ii maneuvering target bearing-only tracking in an air-traffic control system. The simulation results show that the proposed SVRADDF algorithm exhibits better performance when compared with a traditional DDF algorithm.
Directory of Open Access Journals (Sweden)
Yi-Ming Chen
2017-01-01
Full Text Available Noninvasive medical procedures are usually preferable to their invasive counterparts in the medical community. Anemia examining through the palpebral conjunctiva is a convenient noninvasive procedure. The procedure can be automated to reduce the medical cost. We propose an anemia examining approach by using a Kalman filter (KF and a regression method. The traditional KF is often used in time-dependent applications. Here, we modified the traditional KF for the time-independent data in medical applications. We simply compute the mean value of the red component of the palpebral conjunctiva image as our recognition feature and use a penalty regression algorithm to find a nonlinear curve that best fits the data of feature values and the corresponding levels of hemoglobin (Hb concentration. To evaluate the proposed approach and several relevant approaches, we propose a risk evaluation scheme, where the entire Hb spectrum is divided into high-risk, low-risk, and doubtful intervals for anemia. The doubtful interval contains the Hb threshold, say 11 g/dL, separating anemia and nonanemia. A suspect sample is the sample falling in the doubtful interval. For the anemia screening purpose, we would like to have as less suspect samples as possible. The experimental results show that the modified KF reduces the number of suspect samples significantly for all the approaches considered here.
Phase mixing and nonlinearity in geodesic acoustic modes
Energy Technology Data Exchange (ETDEWEB)
Hung, C. P.; Hassam, A. B. [University of Maryland at College Park, College Park, Maryland 20742 (United States)
2013-09-15
Phase mixing and nonlinear resonance detuning of geodesic acoustic modes in a tokamak plasma are examined. Geodesic acoustic modes (GAMs) are tokamak normal modes with oscillations in poloidal flow constrained to lie within flux surfaces. The mode frequency is sonic, dependent on the local flux surface temperature. Consequently, mode oscillations between flux surfaces get rapidly out of phase, resulting in enhanced damping from the phase mixing. Damping rates are shown to scale as the negative 1/3 power of the large viscous Reynolds number. The effect of convective nonlinearities on the normal modes is also studied. The system of nonlinear GAM equations is shown to resemble the Duffing oscillator, which predicts resonance detuning of the oscillator. Resonant amplification is shown to be suppressed nonlinearly. All analyses are verified by numerical simulation. The findings are applied to a recently proposed GAM excitation experiment on the DIII-D tokamak.
Phased-array sources based on nonlinear metamaterial nanocavities.
Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P; Liu, Sheng; Luk, Ting S; Kadlec, Emil A; Shaner, Eric A; Klem, John F; Sinclair, Michael B; Brener, Igal
2015-07-01
Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5 μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.
The Gouy phase shift in nonlinear interactions of waves
Lastzka, Nico; Schnabel, Roman
2007-06-01
We theoretically analyze the influence of the Gouy phase shift on the nonlinear interaction between waves of different frequencies. We focus on χ(2)interaction of optical fields, e.g. through birefringent crystals, and show that focussing, stronger than suggested by the Boyd-Kleinman factor, can further improve nonlinear processes. An increased value of 3.32 for the optimal focussing parameter for a single pass process is found. The new value builds on the compensation of the Gouy phase shift by a spatially varying, instead constant, wave vector phase mismatch. We analyze the single-ended, singly resonant standing wave nonlinear cavity and show that in this case the Gouy phase shift leads to an additional phase during backreflection. Our numerical simulations may explain ill-understood experimental observations in such devices.
Braess, Dietrich; Dette, Holger
2004-01-01
We consider maximin and Bayesian D -optimal designs for nonlinear regression models. The maximin criterion requires the specification of a region for the nonlinear parameters in the model, while the Bayesian optimality criterion assumes that a prior distribution for these parameters is available. It was observed empirically by many authors that an increase of uncertainty in the prior information (i.e. a larger range for the parameter space in the maximin criterion or a larger variance of the ...
VARIANCE OF NONLINEAR PHASE NOISE IN FIBER-OPTIC SYSTEM
Directory of Open Access Journals (Sweden)
RANJU KANWAR
2013-04-01
Full Text Available In communication system, the noise process must be known, in order to compute the system performance. The nonlinear effects act as strong perturbation in long- haul system. This perturbation effects the signal, when interact with amplitude noise, and results in random motion of the phase of the signal. Based on the perturbation theory, the variance of nonlinear phase noise contaminated by both self- and cross-phase modulation, is derived analytically for phase-shift- keying system. Through this work, it is investigated that for longer transmission distance, 40-Gb/s systems are more sensitive to nonlinear phase noise as compared to 50-Gb/s systems. Also, when transmitting the data through the fiber optic link, bit errors are produced due to various effects such as noise from optical amplifiers and nonlinearity occurring in fiber. On the basis of the simulation results , we have compared the bit error rate based on 8-PSK with theoretical results, and result shows that in real time approach, the bit error rate is high for the same signal to noise ratio. MATLAB software is used to validate the analytical expressions for the variance of nonlinear phase noise.
Non-linear regression model for spatial variation in precipitation chemistry for South India
Siva Soumya, B.; Sekhar, M.; Riotte, J.; Braun, Jean-Jacques
Chemical composition of rainwater changes from sea to inland under the influence of several major factors - topographic location of area, its distance from sea, annual rainfall. A model is developed here to quantify the variation in precipitation chemistry under the influence of inland distance and rainfall amount. Various sites in India categorized as 'urban', 'suburban' and 'rural' have been considered for model development. pH, HCO 3, NO 3 and Mg do not change much from coast to inland while, SO 4 and Ca change is subjected to local emissions. Cl and Na originate solely from sea salinity and are the chemistry parameters in the model. Non-linear multiple regressions performed for the various categories revealed that both rainfall amount and precipitation chemistry obeyed a power law reduction with distance from sea. Cl and Na decrease rapidly for the first 100 km distance from sea, then decrease marginally for the next 100 km, and later stabilize. Regression parameters estimated for different cases were found to be consistent ( R2 ˜ 0.8). Variation in one of the parameters accounted for urbanization. Model was validated using data points from the southern peninsular region of the country. Estimates are found to be within 99.9% confidence interval. Finally, this relationship between the three parameters - rainfall amount, coastline distance, and concentration (in terms of Cl and Na) was validated with experiments conducted in a small experimental watershed in the south-west India. Chemistry estimated using the model was in good correlation with observed values with a relative error of ˜5%. Monthly variation in the chemistry is predicted from a downscaling model and then compared with the observed data. Hence, the model developed for rain chemistry is useful in estimating the concentrations at different spatio-temporal scales and is especially applicable for south-west region of India.
Directory of Open Access Journals (Sweden)
Boldizsar Nagy
2017-05-01
Full Text Available In the present study the biosorption characteristics of Cd (II and Zn (II ions from monocomponent aqueous solutions by Agaricus bisporus macrofungus were investigated. The initial metal ion concentrations, contact time, initial pH and temperature were parameters that influence the biosorption. Maximum removal efficiencies up to 76.10% and 70.09% (318 K for Cd (II and Zn (II, respectively and adsorption capacities up to 3.49 and 2.39 mg/g for Cd (II and Zn (II, respectively at the highest concentration, were calculated. The experimental data were analyzed using pseudo-first- and pseudo-second-order kinetic models, various isotherm models in linear and nonlinear (CMA-ES optimization algorithm regression and thermodynamic parameters were calculated. The results showed that the biosorption process of both studied metal ions, followed pseudo second-order kinetics, while equilibrium is best described by Sips isotherm. The changes in morphological structure after heavy metal-biomass interactions were evaluated by SEM analysis. Our results confirmed that macrofungus A. bisporus could be used as a cost effective, efficient biosorbent for the removal of Cd (II and Zn (II from aqueous synthetic solutions.
De Mello, Fernanda; Oliveira, Carlos A L; Ribeiro, Ricardo P; Resende, Emiko K; Povh, Jayme A; Fornari, Darci C; Barreto, Rogério V; McManus, Concepta; Streit, Danilo
2015-01-01
Was evaluated the pattern of growth among females and males of tambaqui by Gompertz nonlinear regression model. Five traits of economic importance were measured on 145 animals during the three years, totaling 981 morphometric data analyzed. Different curves were adjusted between males and females for body weight, height and head length and only one curve was adjusted to the width and body length. The asymptotic weight (a) and relative growth rate to maturity (k) were different between sexes in animals with ± 5 kg; slaughter weight practiced by a specific niche market, very profitable. However, there was no difference between males and females up to ± 2 kg; slaughter weight established to supply the bigger consumer market. Females showed weight greater than males (± 280 g), which are more suitable for fish farming purposes defined for the niche market to larger animals. In general, males had lower maximum growth rate (8.66 g / day) than females (9.34 g / day), however, reached faster than females, 476 and 486 days growth rate, respectively. The height and length body are the traits that contributed most to the weight at 516 days (P <0.001).
A fast nonlinear regression method for estimating permeability in CT perfusion imaging.
Bennink, Edwin; Riordan, Alan J; Horsch, Alexander D; Dankbaar, Jan Willem; Velthuis, Birgitta K; de Jong, Hugo W
2013-11-01
Blood-brain barrier damage, which can be quantified by measuring vascular permeability, is a potential predictor for hemorrhagic transformation in acute ischemic stroke. Permeability is commonly estimated by applying Patlak analysis to computed tomography (CT) perfusion data, but this method lacks precision. Applying more elaborate kinetic models by means of nonlinear regression (NLR) may improve precision, but is more time consuming and therefore less appropriate in an acute stroke setting. We propose a simplified NLR method that may be faster and still precise enough for clinical use. The aim of this study is to evaluate the reliability of in total 12 variations of Patlak analysis and NLR methods, including the simplified NLR method. Confidence intervals for the permeability estimates were evaluated using simulated CT attenuation-time curves with realistic noise, and clinical data from 20 patients. Although fixating the blood volume improved Patlak analysis, the NLR methods yielded significantly more reliable estimates, but took up to 12 × longer to calculate. The simplified NLR method was ∼4 × faster than other NLR methods, while maintaining the same confidence intervals (CIs). In conclusion, the simplified NLR method is a new, reliable way to estimate permeability in stroke, fast enough for clinical application in an acute stroke setting.
Ocean wave nonlinearity and phase couplings
Digital Repository Service at National Institute of Oceanography (India)
Varkey, M.J.
Bispectrum of a swell dominated sea state is computed using Fourier coefficients from an original record and from simulated Fourier coefficients using pseudorandom (uniform) phase spectrum. The differences in the bispectra clearly bring out...
Non-linear regression techniques are used widely to fit weed field emergence patterns to soil microclimatic indices using S-type functions. Artificial neural networks present interesting and alternative features for such modeling purposes. In this work, a univariate hydrothermal-time based Weibull m...
Sudarshanam, V. S.; Claus, Richard O.
1993-03-01
A new cylindrical coil configuration for polyvinylidene flouride (PVF2) film based fiber optic phase modulator is studied for the frequency response and nonlinearity of phase shift at the resonance frequency. This configuration, hitherto unapproached for PVF2 film modulators, offers resonance at well defined, controllable and higher frequencies than possible for the flat-strip configuration. Two versions of this configuration are presented that differ strongly in both the resonance frequency and the phase shift nonlinearity coefficient.
A non-linear regression method for CT brain perfusion analysis
Bennink, E.; Oosterbroek, J.; Viergever, M. A.; Velthuis, B. K.; de Jong, H. W. A. M.
2015-03-01
CT perfusion (CTP) imaging allows for rapid diagnosis of ischemic stroke. Generation of perfusion maps from CTP data usually involves deconvolution algorithms providing estimates for the impulse response function in the tissue. We propose the use of a fast non-linear regression (NLR) method that we postulate has similar performance to the current academic state-of-art method (bSVD), but that has some important advantages, including the estimation of vascular permeability, improved robustness to tracer-delay, and very few tuning parameters, that are all important in stroke assessment. The aim of this study is to evaluate the fast NLR method against bSVD and a commercial clinical state-of-art method. The three methods were tested against a published digital perfusion phantom earlier used to illustrate the superiority of bSVD. In addition, the NLR and clinical methods were also tested against bSVD on 20 clinical scans. Pearson correlation coefficients were calculated for each of the tested methods. All three methods showed high correlation coefficients (>0.9) with the ground truth in the phantom. With respect to the clinical scans, the NLR perfusion maps showed higher correlation with bSVD than the perfusion maps from the clinical method. Furthermore, the perfusion maps showed that the fast NLR estimates are robust to tracer-delay. In conclusion, the proposed fast NLR method provides a simple and flexible way of estimating perfusion parameters from CT perfusion scans, with high correlation coefficients. This suggests that it could be a better alternative to the current clinical and academic state-of-art methods.
Naumann, H D; Tedeschi, L O; Fonseca, M A
2015-11-01
Methane (CH) is a potent greenhouse gas that is normally produced by microbial fermentation in the rumen and released to the environment mainly during eructation. Prediction of ruminal CH production is important for ruminant nutrition, especially for the determination of ME intake to assess the amount of total GE available for metabolism by an animal. Equations have been developed to predict ruminal CH production based on dietary constituents, but none have considered condensed tannins (CT), which are known to impact CH production by ruminants. The objective was to develop an equation to predict ruminal CH, accounting for CT effects. Methane production data were acquired from 48-h in vitro fermentation of a diverse group of warm-season perennial forage legumes containing different concentrations of CT over the course of 3 yr ( = 113). The following nonlinear exponential decay regression equation was developed: CH₄ = 113.6 × exp (-0.1751 x CT) - 2.18), [corrected] in which CH is expressed in grams per kilogram of fermentable organic matter and CT is in percentage of the DM. This equation predicted that CH production could be reduced by approximately 50% when CT is 3.9% DM. This equation is likely more accurate when screening CT-containing forages for their potential ability to mitigate in vitro CH production by ruminants when the CT concentration is greater than 3% DM. Therefore, despite the degree of variability in ruminal CH production, this equation could be used as a tool for screening CT-containing forages for their potential to inhibit ruminal CH. Future research should focus on the development of predictive equations when other potential reducers of ruminal CH are used in conjunction with CT.
Solidification of ternary systems with a nonlinear phase diagram
Alexandrov, D. V.; Dubovoi, G. Yu.; Malygin, A. P.; Nizovtseva, I. G.; Toropova, L. V.
2017-02-01
The directional solidification of a ternary system with an extended phase transition region is theoretically studied. A mathematical model is developed to describe quasi-stationary solidification, and its analytical solution is constructed with allowance for a nonlinear liquidus line equation. A deviation of the liquidus equation from a linear function is shown to result in a substantial change in the solidification parameters.
Parappagoudar, Mahesh B.; Pratihar, Dilip K.; Datta, Gouranga L.
2008-08-01
A cement-bonded moulding sand system takes a fairly long time to attain the required strength. Hence, the moulds prepared with cement as a bonding material will have to wait a long time for the metal to be poured. In this work, an accelerator was used to accelerate the process of developing the bonding strength. Regression analysis was carried out on the experimental data collected as per statistical design of experiments (DOE) to establish input-output relationships of the process. The experiments were conducted to measure compression strength and hardness (output parameters) by varying the input variables, namely amount of cement, amount of accelerator, water in the form of cement-to-water ratio, and testing time. A two-level full-factorial design was used for linear regression model, whereas a three-level central composite design (CCD) had been utilized to develop non-linear regression model. Surface plots and main effects plots were used to study the effects of amount of cement, amount of accelerator, water and testing time on compression strength, and mould hardness. It was observed from both the linear as well as non-linear models that amount of cement, accelerator, and testing time have some positive contributions, whereas cement-to-water ratio has negative contribution to both the above responses. Compression strength was found to have linear relationship with the amount of cement and accelerator, and non-linear relationship with the remaining process parameters. Mould hardness was seen to vary linearly with testing time and non-linearly with the other parameters. Analysis of variance (ANOVA) was performed to test statistical adequacy of the models. Twenty random test cases were considered to test and compare their performances. Non-linear regression models were found to perform better than the linear models for both the responses. An attempt was also made to express compression strength of the moulding sand system as a function of mould hardness.
Phase-selective entrainment of nonlinear oscillator ensembles
Zlotnik, Anatoly; Nagao, Raphael; Kiss, István Z.; Li-Shin, Jr.
2016-03-01
The ability to organize and finely manipulate the hierarchy and timing of dynamic processes is important for understanding and influencing brain functions, sleep and metabolic cycles, and many other natural phenomena. However, establishing spatiotemporal structures in biological oscillator ensembles is a challenging task that requires controlling large collections of complex nonlinear dynamical units. In this report, we present a method to design entrainment signals that create stable phase patterns in ensembles of heterogeneous nonlinear oscillators without using state feedback information. We demonstrate the approach using experiments with electrochemical reactions on multielectrode arrays, in which we selectively assign ensemble subgroups into spatiotemporal patterns with multiple phase clusters. The experimentally confirmed mechanism elucidates the connection between the phases and natural frequencies of a collection of dynamical elements, the spatial and temporal information that is encoded within this ensemble, and how external signals can be used to retrieve this information.
Karadag, Dogan; Koc, Yunus; Turan, Mustafa; Ozturk, Mustafa
2007-06-01
Ammonium ion exchange from aqueous solution using clinoptilolite zeolite was investigated at laboratory scale. Batch experimental studies were conducted to evaluate the effect of various parameters such as pH, zeolite dosage, contact time, initial ammonium concentration and temperature. Freundlich and Langmuir isotherm models and pseudo-second-order model were fitted to experimental data. Linear and non-linear regression methods were compared to determine the best fitting of isotherm and kinetic model to experimental data. The rate limiting mechanism of ammonium uptake by zeolite was determined as chemical exchange. Non-linear regression has better performance for analyzing experimental data and Freundlich model was better than Langmuir to represent equilibrium data.
Nonlinear Spline Kernel-based Partial Least Squares Regression Method and Its Application
Institute of Scientific and Technical Information of China (English)
JIA Jin-ming; WEN Xiang-jun
2008-01-01
Inspired by the traditional Wold's nonlinear PLS algorithm comprises of NIPALS approach and a spline inner function model,a novel nonlinear partial least squares algorithm based on spline kernel(named SK-PLS)is proposed for nonlinear modeling in the presence of multicollinearity.Based on the iuner-product kernel spanned by the spline basis functions with infinite numher of nodes,this method firstly maps the input data into a high dimensional feature space,and then calculates a linear PLS model with reformed NIPALS procedure in the feature space and gives a unified framework of traditional PLS"kernel"algorithms in consequence.The linear PLS in the feature space corresponds to a nonlinear PLS in the original input (primal)space.The good approximating property of spline kernel function enhances the generalization ability of the novel model,and two numerical experiments are given to illustrate the feasibility of the proposed method.
Effects of noise on the phase dynamics of nonlinear oscillators
Daffertshofer, A.
1998-07-01
Various properties of human rhythmic movements have been successfully modeled using nonlinear oscillators. However, despite some extensions towards stochastical differential equations, these models do not comprise different statistical features that can be explained by nondynamical statistics. For instance, one observes certain lag one serial correlation functions for consecutive periods during periodic motion. This work aims at an extension of dynamical descriptions in terms of stochastically forced nonlinear oscillators such as ξ¨+ω20ξ=n(ξ,ξ˙)+q(ξ,ξ˙)Ψ(t), where the nonlinear function n(ξ,ξ˙) generates a limit cycle and Ψ(t) denotes colored noise that is multiplied via q(ξ,ξ˙). Nonlinear self-excited systems have been frequently investigated, particularly emphasizing stability properties and amplitude evolution. Thus, one can focus on the effects of noise on the frequency or phase dynamics that can be analyzed by use of time-dependent Fokker-Planck equations. It can be shown that noise multiplied via polynoms of arbitrary finite order cannot generate the desired period correlation but predominantly results in phase diffusion. The system is extended in terms of forced oscillators in order to find a minimal model producing the required error correction.
Nonlinear Phase Noise Compensation in Experimental WDM Systems with 256QAM
DEFF Research Database (Denmark)
Yankov, Metodi Plamenov; Da Ros, Francesco; Porto da Silva, Edson
2016-01-01
Nonlinear phase noise (NLPN) is studied in an experimental wavelength division multiplexed (WDM) system operating at 256QAM. Extremely narrow linewidth lasers (phase part of the nonlinear noise in a Raman amplified link. Based...
A Geometrically Nonlinear Phase Field Theory of Brittle Fracture
2014-10-01
tension. Int J Fract Mech 4:257–266 Voyiadjis G, Mozaffari N (2013) Nonlocal damage model using the phase field method: theory and applications. Int J... model of fracture. Computer simula- tions enable descriptions of fracture in brittle solids under complex loading conditions and for nonlinear and...Simple models based on the notion of theo- retical strength (Gilman1960;Clayton 2009, 2010) can provide insight into directionality of fracture
Nonlinear dynamic theory for photorefractive phase hologram formation
Kim, D. M.; Shah, R. R.; Rabson, T. A.; Tittle, F. K.
1976-01-01
A nonlinear dynamic theory is developed for the formation of photorefractive volume phase holograms. A feedback mechanism existing between the photogenerated field and free-electron density, treated explicitly, yields the growth and saturation of the space-charge field in a time scale characterized by the coupling strength between them. The expression for the field reduces in the short-time limit to previous theories and approaches in the long-time limit the internal or photovoltaic field. Additionally, the phase of the space charge field is shown to be time-dependent.
Kumar, K Vasanth
2007-04-02
Kinetic experiments were carried out for the sorption of safranin onto activated carbon particles. The kinetic data were fitted to pseudo-second order model of Ho, Sobkowsk and Czerwinski, Blanchard et al. and Ritchie by linear and non-linear regression methods. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo-second order models were the same. Non-linear regression analysis showed that both Blanchard et al. and Ho have similar ideas on the pseudo-second order model but with different assumptions. The best fit of experimental data in Ho's pseudo-second order expression by linear and non-linear regression method showed that Ho pseudo-second order model was a better kinetic expression when compared to other pseudo-second order kinetic expressions.
Exchange Rates and Monetary Fundamentals: What Do We Learn from Linear and Nonlinear Regressions?
Directory of Open Access Journals (Sweden)
Guangfeng Zhang
2014-01-01
Full Text Available This paper revisits the association between exchange rates and monetary fundamentals with the focus on both linear and nonlinear approaches. With the monthly data of Euro/US dollar and Japanese yen/US dollar, our linear analysis demonstrates the monetary model is a long-run description of exchange rate movements, and our nonlinear modelling suggests the error correction model describes the short-run adjustment of deviations of exchange rates, and monetary fundamentals are capable of explaining exchange rate dynamics under an unrestricted framework.
Phase reduction approach to synchronisation of nonlinear oscillators
Nakao, Hiroya
2016-04-01
Systems of dynamical elements exhibiting spontaneous rhythms are found in various fields of science and engineering, including physics, chemistry, biology, physiology, and mechanical and electrical engineering. Such dynamical elements are often modelled as nonlinear limit-cycle oscillators. In this article, we briefly review phase reduction theory, which is a simple and powerful method for analysing the synchronisation properties of limit-cycle oscillators exhibiting rhythmic dynamics. Through phase reduction theory, we can systematically simplify the nonlinear multi-dimensional differential equations describing a limit-cycle oscillator to a one-dimensional phase equation, which is much easier to analyse. Classical applications of this theory, i.e. the phase locking of an oscillator to a periodic external forcing and the mutual synchronisation of interacting oscillators, are explained. Further, more recent applications of this theory to the synchronisation of non-interacting oscillators induced by common noise and the dynamics of coupled oscillators on complex networks are discussed. We also comment on some recent advances in phase reduction theory for noise-driven oscillators and rhythmic spatiotemporal patterns.
Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intraday Range
C.W.S. Chen (Cathy); R. Gerlach (Richard); B.B.K. Hwang (Bruce); M.J. McAleer (Michael)
2011-01-01
textabstractValue-at-Risk (VaR) is commonly used for financial risk measurement. It has recently become even more important, especially during the 2008-09 global financial crisis. We propose some novel nonlinear threshold conditional autoregressive VaR (CAViar) models that incorporate intra-day pric
Sublinear Expectation Nonlinear Regression for the Financial Risk Measurement and Management
Directory of Open Access Journals (Sweden)
Yunquan Song
2013-01-01
normality of the estimation and the mini-max property of the prediction are obtained. Finally, simulation study and real data analysis are carried out to illustrate the new model and methods. In this paper, the notions and methodological developments are nonclassical and original, and the proposed modeling and inference methods establish the foundations for nonlinear expectation statistics.
Institute of Scientific and Technical Information of China (English)
Liu Yingan; Wei Bocheng
2008-01-01
Chaos theory has taught us that a system which has both nonlinearity and random input will most likely produce irregular data. If random errors are irregular data, then random error process will raise nonlinearity (Kantz and Schreiber (1997)). Tsai (1986) introduced a composite test for autocorrelation and heteroscedasticity in linear models with AR(1) errors. Liu (2003) introduced a composite test for correlation and heteroscedasticity in nonlinear models with DBL(p, 0, 1) errors. Therefore, the important problems in regres- sion model are detections of bilinearity, correlation and heteroscedasticity. In this article, the authors discuss more general case of nonlinear models with DBL(p, q, 1) random errors by score test. Several statistics for the test of bilinearity, correlation, and heteroscedas-ticity are obtained, and expressed in simple matrix formulas. The results of regression models with linear errors are extended to those with bilinear errors. The simulation study is carried out to investigate the powers of the test statistics. All results of this article extend and develop results of Tsai (1986), Wei, et al (1995), and Liu, et al (2003).
Nonlinear decoupling controller design based on least squares support vector regression
Institute of Scientific and Technical Information of China (English)
WEN Xiang-jun; ZHANG Yu-nong; YAN Wei-wu; XU Xiao-ming
2006-01-01
Support Vector Machines (SVMs) have been widely used in pattern recognition and have also drawn considerable interest in control areas. Based on a method of least squares SVM (LS-SVM) for multivariate function estimation, a generalized inverse system is developed for the linearization and decoupling control ora general nonlinear continuous system. The approach of inverse modelling via LS-SVM and parameters optimization using the Bayesian evidence framework is discussed in detail. In this paper, complex high-order nonlinear system is decoupled into a number of pseudo-linear Single Input Single Output (SISO) subsystems with linear dynamic components. The poles of pseudo-linear subsystems can be configured to desired positions. The proposed method provides an effective alternative to the controller design of plants whose accurate mathematical model is unknown or state variables are difficult or impossible to measure. Simulation results showed the efficacy of the method.
Feng, Xin; Winters, Jack M
2011-01-01
Individualizing a neurorehabilitation training protocol requires understanding the performance of subjects with various capabilities under different task settings. We use multivariate regression to evaluate the performance of subjects with stroke-induced hemiparesis in trajectory tracking tasks using a force-reflecting joystick. A nonlinear effect was consistently shown in both dimensions of force field strength and impairment level for selected kinematic performance measures, with greatest sensitivity at lower force fields. This suggests that the form of a force field may play a different "role" for subjects with various impairment levels, and confirms that to achieve optimized therapeutic benefit, it is necessary to personalize interfaces.
Return-Volatility Relationship: Insights from Linear and Non-Linear Quantile Regression
D.E. Allen (David); A.K. Singh (Abhay); R.J. Powell (Robert); M.J. McAleer (Michael); J. Taylor (James); L. Thomas (Lyn)
2013-01-01
textabstractThe purpose of this paper is to examine the asymmetric relationship between price and implied volatility and the associated extreme quantile dependence using linear and non linear quantile regression approach. Our goal in this paper is to demonstrate that the relationship between the
Tiedeman, C.R.; Kernodle, J.M.; McAda, D.P.
1998-01-01
This report documents the application of nonlinear-regression methods to a numerical model of ground-water flow in the Albuquerque Basin, New Mexico. In the Albuquerque Basin, ground water is the primary source for most water uses. Ground-water withdrawal has steadily increased since the 1940's, resulting in large declines in water levels in the Albuquerque area. A ground-water flow model was developed in 1994 and revised and updated in 1995 for the purpose of managing basin ground- water resources. In the work presented here, nonlinear-regression methods were applied to a modified version of the previous flow model. Goals of this work were to use regression methods to calibrate the model with each of six different configurations of the basin subsurface and to assess and compare optimal parameter estimates, model fit, and model error among the resulting calibrations. The Albuquerque Basin is one in a series of north trending structural basins within the Rio Grande Rift, a region of Cenozoic crustal extension. Mountains, uplifts, and fault zones bound the basin, and rock units within the basin include pre-Santa Fe Group deposits, Tertiary Santa Fe Group basin fill, and post-Santa Fe Group volcanics and sediments. The Santa Fe Group is greater than 14,000 feet (ft) thick in the central part of the basin. During deposition of the Santa Fe Group, crustal extension resulted in development of north trending normal faults with vertical displacements of as much as 30,000 ft. Ground-water flow in the Albuquerque Basin occurs primarily in the Santa Fe Group and post-Santa Fe Group deposits. Water flows between the ground-water system and surface-water bodies in the inner valley of the basin, where the Rio Grande, a network of interconnected canals and drains, and Cochiti Reservoir are located. Recharge to the ground-water flow system occurs as infiltration of precipitation along mountain fronts and infiltration of stream water along tributaries to the Rio Grande; subsurface
Creating a non-linear total sediment load formula using polynomial best subset regression model
Okcu, Davut; Pektas, Ali Osman; Uyumaz, Ali
2016-08-01
The aim of this study is to derive a new total sediment load formula which is more accurate and which has less application constraints than the well-known formulae of the literature. 5 most known stream power concept sediment formulae which are approved by ASCE are used for benchmarking on a wide range of datasets that includes both field and flume (lab) observations. The dimensionless parameters of these widely used formulae are used as inputs in a new regression approach. The new approach is called Polynomial Best subset regression (PBSR) analysis. The aim of the PBRS analysis is fitting and testing all possible combinations of the input variables and selecting the best subset. Whole the input variables with their second and third powers are included in the regression to test the possible relation between the explanatory variables and the dependent variable. While selecting the best subset a multistep approach is used that depends on significance values and also the multicollinearity degrees of inputs. The new formula is compared to others in a holdout dataset and detailed performance investigations are conducted for field and lab datasets within this holdout data. Different goodness of fit statistics are used as they represent different perspectives of the model accuracy. After the detailed comparisons are carried out we figured out the most accurate equation that is also applicable on both flume and river data. Especially, on field dataset the prediction performance of the proposed formula outperformed the benchmark formulations.
Yadav, Manish; Singh, Nitin Kumar
2017-08-01
A comparison of the linear and non-linear regression method in selecting the optimum isotherm among three most commonly used adsorption isotherms (Langmuir, Freundlich, and Redlich-Peterson) was made to the experimental data of fluoride (F) sorption onto Bio-F at a solution temperature of 30 ± 1 °C. The coefficient of correlation (r2 ) was used to select the best theoretical isotherm among the investigated ones. A total of four Langmuir linear equations were discussed and out of which linear form of most popular Langmuir-1 and Langmuir-2 showed the higher coefficient of determination (0.976 and 0.989) as compared to other Langmuir linear equations. Freundlich and Redlich-Peterson isotherms showed a better fit to the experimental data in linear least-square method, while in non-linear method Redlich-Peterson isotherm equations showed the best fit to the tested data set. The present study showed that the non-linear method could be a better way to obtain the isotherm parameters and represent the most suitable isotherm. Redlich-Peterson isotherm was found to be the best representative (r2 = 0.999) for this sorption system. It is also observed that the values of β are not close to unity, which means the isotherms are approaching the Freundlich but not the Langmuir isotherm.
Nonlinear dynamics of wind waves: multifractal phase/time effects
Directory of Open Access Journals (Sweden)
R. H. Mellen
1994-01-01
Full Text Available In addition to the bispectral coherence method, phase/time analysis of analytic signals is another promising avenue for the investigation of phase effects in wind waves. Frequency spectra of phase fluctuations obtained from both sea and laboratory experiments follow an F-β power law over several decades, suggesting that a fractal description is appropriate. However, many similar natural phenomena have been shown to be multifractal. Universal multifractals are quantified by two additional parameters: the Lévy index 0 α 2 for the type of multifractal and the co-dimension 0 C1 1 for intermittence. The three parameters are a full statistical measure the nonlinear dynamics. Analysis of laboratory flume data is reported here and the results indicate that the phase fluctuations are 'hard multifractal' (α > 1. The actual estimate is close to the limiting value α = 2, which is consistent with Kolmogorov's lognormal model for turbulent fluctuations. Implications for radar and sonar backscattering from the sea surface are briefly considered.
Nonlinear clustering during the BEC dark matter phase transition
Energy Technology Data Exchange (ETDEWEB)
Freitas, Rodolfo C. de, E-mail: rodolfo.camargo@pq.cnpq.br [Universidade Federal do Espírito Santo, Av. Fernando Ferrari, Goiabeiras, Vitória (Brazil); Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo, Avenida Vitória 1729, Jucutuquara, Vitória (Brazil); Velten, Hermano, E-mail: velten@pq.cnpq.br [Universidade Federal do Espírito Santo, Av. Fernando Ferrari, Goiabeiras, Vitória (Brazil); UMR 7332, CPT, Aix Marseille Université, 13288, Marseille (France)
2015-12-16
Spherical collapse of the Bose–Einstein condensate (BEC) dark matter model is studied in the Thomas–Fermi approximation. The evolution of the overdensity of the collapsed region and its expansion rate are calculated for two scenarios. We consider the case of a sharp phase transition (which happens when the critical temperature is reached) from the normal dark matter state to the condensate one and the case of a smooth first order phase transition where there is a continuous conversion of “normal” dark matter to the BEC phase. We present numerical results for the physics of the collapse for a wide range of the model’s space parameter, i.e. the mass of the scalar particle m{sub χ} and the scattering length l{sub s}. We show the dependence of the transition redshift on m{sub χ} and l{sub s}. Since small scales collapse earlier and eventually before the BEC phase transition, the evolution of collapsing halos in this limit is indeed the same in both the CDM and the BEC models. Differences are expected to appear only on the largest astrophysical scales. However, we argue that the BEC model is almost indistinguishable from the usual dark matter scenario concerning the evolution of nonlinear perturbations above typical clusters scales, i.e., ≳10{sup 14}M{sub ⊙}. This provides an analytical confirmation for recent results from cosmological numerical simulations (Schive et al., Nat Phys 10:496, 2014)
Phase Space Prediction of Chaotic Time Series with Nu-Support Vector Machine Regression
Institute of Scientific and Technical Information of China (English)
YE Mei-Ying; WANG Xiao-Dong
2005-01-01
A new class of support vector machine, nu-support vector machine, is discussed which can handle both classification and regression. We focus on nu-support vector machine regression and use it for phase space prediction of compares nu-support vector machine with back propagation (BP) networks in order to better evaluate the performance of the proposed methods. The experimental results show that the nu-support vector machine regression obtains lower root mean squared error than the BP networks and provides an accurate chaotic time series prediction. These results can be attributable to the fact that nu-support vector machine implements the structural risk minimization principle and this leads to better generalization than the BP networks.
Institute of Scientific and Technical Information of China (English)
XU Guang; QIAN Liejia; WANG Tao; FAN Dianyuan; LI Fuming
2004-01-01
It is shown that the cascaded fifth-order nonlinear phase shifts will increase with energy loss in the cascaded processes. Essentially different from the multi-photon absorption accompanied with inherent material nonlinearities, the loss of fundamental wave in a cascaded process is controllable and suppressible. By introducing difference frequencies generated from the reaction between the fundamental and its second harmonic after the cascaded processes, the fundamental wave can be free of energy loss, while the large cascaded fifth-order nonlinear phase shift is maintained.
Directory of Open Access Journals (Sweden)
Gurudeo Anand Tularam
2012-01-01
Full Text Available House price prediction continues to be important for government agencies insurance companies and real estate industry. This study investigates the performance of house sales price models based on linear and non-linear approaches to study the effects of selected variables. Linear stepwise Multivariate Regression (MR and nonlinear models of Neural Network (NN and Adaptive Neuro-Fuzzy (ANFIS are developed and compared. The GIS methods are used to integrate the data for the study area (Bathurst, Australia. While it was expected that the nonlinear methods would be much better the analysis shows NN and ANFIS are only slightly better than MR suggesting questions about high R2 often found in the literature. While structural data and macro-finance variables may contribute to higher R2 performance comparison was the goal of this study and besides the Australian data lacked structural elements. The results show that MR model could be improved. Also, the land value and location explained at best about 45% of the sale price variation. The analysis of price forecasts (within the 10% range of the actual prediction on average revealed that the non-linear models performed slightly better (29% than the linear (26%. The inclusion of social data improves the MR prediction in most of the suburbs. The suburbs analysis shows the importance of socially based locations and also variance due to types of housing dominant. In general terms of R2, the NN model (0.45 performed only slightly better than ANFIS 0.39 and better than MR (0.37; but the linear MRsoc performed better (0.42. In suburb level, the NN model (7/15 performed better than ANFIS (3/15 but the linear MR (5/15 was better than ANFIS. The improved linear MR (6/15 performed nearly as well as the non-linear NN. Linear methods appear to just as precise as the the more time consuming non linear methods in most cases for accounting for the differences and variation. However, when a much more in depth analysis is
Biyanto, Totok R.
2016-06-01
Fouling in a heat exchanger in Crude Preheat Train (CPT) refinery is an unsolved problem that reduces the plant efficiency, increases fuel consumption and CO2 emission. The fouling resistance behavior is very complex. It is difficult to develop a model using first principle equation to predict the fouling resistance due to different operating conditions and different crude blends. In this paper, Artificial Neural Networks (ANN) MultiLayer Perceptron (MLP) with input structure using Nonlinear Auto-Regressive with eXogenous (NARX) is utilized to build the fouling resistance model in shell and tube heat exchanger (STHX). The input data of the model are flow rates and temperatures of the streams of the heat exchanger, physical properties of product and crude blend data. This model serves as a predicting tool to optimize operating conditions and preventive maintenance of STHX. The results show that the model can capture the complexity of fouling characteristics in heat exchanger due to thermodynamic conditions and variations in crude oil properties (blends). It was found that the Root Mean Square Error (RMSE) are suitable to capture the nonlinearity and complexity of the STHX fouling resistance during phases of training and validation.
Energy Technology Data Exchange (ETDEWEB)
Biyanto, Totok R. [Department of Engineering Physics, Institute Technology of Sepuluh Nopember Surabaya, Surabaya, Indonesia 60111 (Indonesia)
2016-06-03
Fouling in a heat exchanger in Crude Preheat Train (CPT) refinery is an unsolved problem that reduces the plant efficiency, increases fuel consumption and CO{sub 2} emission. The fouling resistance behavior is very complex. It is difficult to develop a model using first principle equation to predict the fouling resistance due to different operating conditions and different crude blends. In this paper, Artificial Neural Networks (ANN) MultiLayer Perceptron (MLP) with input structure using Nonlinear Auto-Regressive with eXogenous (NARX) is utilized to build the fouling resistance model in shell and tube heat exchanger (STHX). The input data of the model are flow rates and temperatures of the streams of the heat exchanger, physical properties of product and crude blend data. This model serves as a predicting tool to optimize operating conditions and preventive maintenance of STHX. The results show that the model can capture the complexity of fouling characteristics in heat exchanger due to thermodynamic conditions and variations in crude oil properties (blends). It was found that the Root Mean Square Error (RMSE) are suitable to capture the nonlinearity and complexity of the STHX fouling resistance during phases of training and validation.
Hussain, Mirza Zahid; Li, Fuguo; Wang, Jing; Yuan, Zhanwei; Li, Pan; Wu, Tao
2015-07-01
The present study comprises the determination of constitutive relationship for thermo-mechanical processing of INCONEL 718 through double multivariate nonlinear regression, a newly developed approach which not only considers the effect of strain, strain rate, and temperature on flow stress but also explains the interaction effect of these thermo-mechanical parameters on flow behavior of the alloy. Hot isothermal compression experiments were performed on Gleeble-3500 thermo-mechanical testing machine in the temperature range of 1153 to 1333 K within the strain rate range of 0.001 to 10 s-1. The deformation behavior of INCONEL 718 is analyzed and summarized by establishing the high temperature deformation constitutive equation. The calculated correlation coefficient ( R) and average absolute relative error ( AARE) underline the precision of proposed constitutive model.
Directory of Open Access Journals (Sweden)
Adnane El Hamidi
2012-01-01
Full Text Available Interactions of Cu(II ions with calcium phosphate Brushite (DCPD in aqueous solutions were investigated by batch conditions and under several sorption parameters like contact time, pH of solution and initial metal concentration. The retention of copper was found maximum and dominated by exchange reaction process in the pH range 4-6. The reaction process was found initially fast and more than 98% was removed at equilibrium. The kinetics data of batch interaction was analyzed with various kinetic models. It was found that the pseudo-first order model using the non-linear regression method predicted best the experimental data. Furthermore, the adsorption process was modeled by Langmuir isotherm and the removal capacity was 331.64 mg.g-1. Consequently, Cu2+ concentration independent kinetics and single surface layer sorption isotherm are then suggested as appropriate mechanisms for the whole process.
Fang, Sheng; Guo, Hua
2013-01-01
The parallel magnetic resonance imaging (parallel imaging) technique reduces the MR data acquisition time by using multiple receiver coils. Coil sensitivity estimation is critical for the performance of parallel imaging reconstruction. Currently, most coil sensitivity estimation methods are based on linear interpolation techniques. Such methods may result in Gibbs-ringing artifact or resolution loss, when the resolution of coil sensitivity data is limited. To solve the problem, we proposed a nonlinear coil sensitivity estimation method based on steering kernel regression, which performs a local gradient guided interpolation to the coil sensitivity. The in vivo experimental results demonstrate that this method can effectively suppress Gibbs ringing artifact in coil sensitivity and reduces both noise and residual aliasing artifact level in SENSE reconstruction.
The quasi-equilibrium phase of nonlinear chains
Indian Academy of Sciences (India)
T R Krishna Mohan; Surajit Sen
2005-03-01
We show that time evolution initiated via kinetic energy perturbations in conservative, discrete, spring-mass chains with purely nonlinear, non-integrable, algebraic potentials of the form ( − +1 ∼ $(_{} − _{+1})^{2}$, ≥ 2 and an integer, occurs via discrete solitary waves (DSWs) and discrete antisolitary waves (DASWs). Presence of reflecting and periodic boundaries in the system leads to collisions between the DSWs and DASWs. Such collisions lead to the breakage and subsequent reformation of (different) DSWs and DASWs. Our calculations show that the system eventually reaches a stable `quasi-equilibrium' phase that appears to be independent of initial conditions, possesses Gaussian velocity distribution, and has a higher mean kinetic energy and larger range of kinetic energy fluctuations as compared to the pure harmonic system with = 1; the latter indicates possible violation of equipartition.
Advanced nonlinear control of three phase series active power filter
Directory of Open Access Journals (Sweden)
Abouelmahjoub Y.
2014-01-01
Full Text Available The problem of controlling three-phase series active power filter (TPSAPF is addressed in this paper in presence of the perturbations in the voltages of the electrical supply network. The control objective of the TPSAPF is twofold: (i compensation of all voltage perturbations (voltage harmonics, voltage unbalance and voltage sags, (ii regulation of the DC bus voltage of the inverter. A controller formed by two nonlinear regulators is designed, using the Backstepping technique, to provide the above compensation. The regulation of the DC bus voltage of the inverter is ensured by the use of a diode bridge rectifier which its output is in parallel with the DC bus capacitor. The Analysis of controller performances is illustrated by numerical simulation in Matlab/Simulink environment.
Nonlinear clustering during the BEC dark matter phase transition
Energy Technology Data Exchange (ETDEWEB)
Freitas, Rodolfo C. de [Universidade Federal do Espirito Santo, Vitoria (Brazil); Ciencia e Tecnologia do Espirito Santo, Instituto Federal de Educacao, Vitoria (Brazil); Velten, Hermano [Universidade Federal do Espirito Santo, Vitoria (Brazil); Aix Marseille Universite, UMR 7332, CPT, Marseille (France)
2015-12-15
Spherical collapse of the Bose-Einstein condensate (BEC) dark matter model is studied in the Thomas-Fermi approximation. The evolution of the overdensity of the collapsed region and its expansion rate are calculated for two scenarios. We consider the case of a sharp phase transition (which happens when the critical temperature is reached) from the normal dark matter state to the condensate one and the case of a smooth first order phase transition where there is a continuous conversion of ''normal'' dark matter to the BEC phase. We present numerical results for the physics of the collapse for a wide range of the model's space parameter, i.e. the mass of the scalar particle m{sub χ} and the scattering length l{sub s}. We show the dependence of the transition redshift on m{sub χ} and l{sub s}. Since small scales collapse earlier and eventually before the BEC phase transition, the evolution of collapsing halos in this limit is indeed the same in both the CDM and the BEC models. Differences are expected to appear only on the largest astrophysical scales. However, we argue that the BEC model is almost indistinguishable from the usual dark matter scenario concerning the evolution of nonlinear perturbations above typical clusters scales, i.e., >or similar 10{sup 14}M{sub s}un. This provides an analytical confirmation for recent results from cosmological numerical simulations (Schive et al., Nat Phys 10:496, 2014). (orig.)
Nonlinear Landau-Zener tunneling in quantum phase space
Energy Technology Data Exchange (ETDEWEB)
Trimborn, F [Institut fuer theoretische Physik, Leibniz Universitaet Hannover, D-30167 Hannover (Germany); Witthaut, D [QUANTOP, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); Kegel, V; Korsch, H J, E-mail: friederike.trimborn@itp.uni-hannover.d [Fachbereich Physik, TU Kaiserslautern, D-67663 Kaiserslautern (Germany)
2010-05-15
We present a detailed analysis of the Landau-Zener problem for an interacting Bose-Einstein condensate in a time-varying double-well trap, especially focusing on the relation between the full many-particle problem and the mean-field approximation. Due to the nonlinear self-interaction a dynamical instability occurs, which leads to a breakdown of adiabaticity and thus fundamentally alters the dynamics. It is shown that essentially all the features of the Landau-Zener problem including the depletion of the condensate mode can be already understood within a semiclassical phase-space picture. In particular, this treatment resolves the formerly imputed incommutability of the adiabatic and semiclassical limits. The possibility of exploiting Landau-Zener sweeps to generate squeezed states for spectroscopic tasks is analyzed in detail. Moreover, we study the influence of phase noise and propose a Landau-Zener sweep as a sensitive yet readily implementable probe for decoherence, since the noise has significant effect on the transition rate for slow parameter variations.
Nonlinear Landau-Zener tunneling in quantum phase space
Trimborn, F; Kegel, V; Korsch, H J; 10.1088/1367-2630/12/5/053010
2010-01-01
We present a detailed analysis of the Landau-Zener problem for an interacting Bose-Einstein condensate in a time-varying double-well trap, especially focussing on the relation between the full many-particle problem and the mean-field approximation. Due to the nonlinear self-interaction a dynamical instability occurs, which leads to a breakdown of adiabaticity condition and thus fundamentally alters the dynamics. It is shown that essentially all features of the Landau-Zener problem including the depletion of the condensate mode can be already understood within a semiclassical phase space picture. In particular, this treatment resolves the formerly imputed incommutability of the adiabatic and semiclassical limits. The possibility to exploit Landau-Zener sweeps to generate squeezed states for spectroscopic tasks is analysed in detail. Moreover, we study the influence of phase noise and propose a Landau-Zener sweep as a sensitive, yet readily implementable probe for decoherence, since this has a significant effec...
Switching Correlation and Noise Level in Pr3+:YSO Crystal via Dressing Nonlinear Phase
Irfan Ahmed; Zhaoyang Zhang; Feng Wen; Da Zhang; Changbiao Li; Ruimin Wang; Yanpeng Zhang
2016-01-01
We propose and experimentally demonstrate that the intensity noise correlation and the noise level of intensity-difference and intensity-sum in Stokes and anti-Stokes channel can be well controlled by the relative nonlinear phase in spontaneous parametric four-wave mixing process. By modulating the relative nonlinear phase, including self-phase modulation and cross-phase modulation, switching the correlation into anti-correlation and the relative intensity noise level between the intensity-di...
A Scanning Hologram Recorded by Phase Conjugate Property of Nonlinear Crystals
DEFF Research Database (Denmark)
Zi-Liang, Ping; Dalsgaard, Erik
1996-01-01
A methode of recording a scanning hologram with phase conjugate property of nonlinear crystal is provided. The principle of recording, setup and experiments are given.......A methode of recording a scanning hologram with phase conjugate property of nonlinear crystal is provided. The principle of recording, setup and experiments are given....
Directory of Open Access Journals (Sweden)
Zvezdelina Lyubenova Yaneva
2013-01-01
Full Text Available The study assessed the applicability of Rhizopus oryzae dead fungi as a biosorbent medium for p-nitrophenol (p-NP removal from aqueous phase. The extent of biosorption was measured through five equilibrium sorption isotherms represented by the Langmuir, Freundlich, Redlich-Peterson, multilayer and Fritz-Schlunder models. Linear and nonlinear regression methods were compared to determine the best-fitting equilibrium model to the experimental data. A detailed error analysis was undertaken to investigate the effect of applying seven error criteria for the determination of the single-component isotherm parameters. According to the comparison of the error functions and to the estimation of the corrected Akaike information criterion (, the Freundlich equation was ranked as the first and the Fritz-Schlunder as the second best-fitting models describing the experimental data. The present investigations proved the high efficiency (94% of Rhizopus Oryzae as an alternative adsorbent for p-NP removal from aqueous phase and revealed the mechanism of the separation process.
Poullis, Michael
2014-11-01
EuroSCORE II, despite improving on the original EuroSCORE system, has not solved all the calibration and predictability issues. Recursive, non-linear and mixed recursive and non-linear regression analysis were assessed with regard to sensitivity, specificity and predictability of the original EuroSCORE and EuroSCORE II systems. The original logistic EuroSCORE, EuroSCORE II and recursive, non-linear and mixed recursive and non-linear regression analyses of these risk models were assessed via receiver operator characteristic curves (ROC) and Hosmer-Lemeshow statistic analysis with regard to the accuracy of predicting in-hospital mortality. Analysis was performed for isolated coronary artery bypass grafts (CABGs) (n = 2913), aortic valve replacement (AVR) (n = 814), mitral valve surgery (n = 340), combined AVR and CABG (n = 517), aortic (n = 350), miscellaneous cases (n = 642), and combinations of the above cases (n = 5576). The original EuroSCORE had an ROC below 0.7 for isolated AVR and combined AVR and CABG. None of the methods described increased the ROC above 0.7. The EuroSCORE II risk model had an ROC below 0.7 for isolated AVR only. Recursive regression, non-linear regression, and mixed recursive and non-linear regression all increased the ROC above 0.7 for isolated AVR. The original EuroSCORE had a Hosmer-Lemeshow statistic that was above 0.05 for all patients and the subgroups analysed. All of the techniques markedly increased the Hosmer-Lemeshow statistic. The EuroSCORE II risk model had a Hosmer-Lemeshow statistic that was significant for all patients (P linear regression failed to improve on the original Hosmer-Lemeshow statistic. The mixed recursive and non-linear regression using the EuroSCORE II risk model was the only model that produced an ROC of 0.7 or above for all patients and procedures and had a Hosmer-Lemeshow statistic that was highly non-significant. The original EuroSCORE and the EuroSCORE II risk models do not have adequate ROC and Hosmer
Directory of Open Access Journals (Sweden)
vahid Rezaverdinejad
2017-01-01
important models to estimate ETc in greenhouse. The inputs of these models are net radiation, temperature, day after planting and air vapour pressure deficit (or relative humidity. Materials and Methods: In this study, daily ETc of reference crop, greenhouse tomato and cucumber crops were measured using lysimeter method in Urmia region. Several linear, nonlinear regressions and artificial neural networks were considered for ETc modelling in greenhouse. For this purpose, the effective meteorological parameters on ETc process includes: air temperature (T, air humidity (RH, air pressure (P, air vapour pressure deficit (VPD, day after planting (N and greenhouse net radiation (SR were considered and measured. According to the goodness of fit, different models of artificial neural networks and regression were compared and evaluated. Furthermore, based on partial derivatives of regression models, sensitivity analysis was conducted. The accuracy and performance of the employed models was judged by ten statistical indices namely root mean square error (RMSE, normalized root mean square error (NRMSE and coefficient of determination (R2. Results and Discussion: Based on the results, the most accurate regression model to reference ETc prediction was obtained three variables exponential function of VPD, RH and SR with RMSE=0.378 mm day-1. The RMSE of optimal artificial neural network to reference ET prediction for train and test data sets were obtained 0.089 and 0.365 mm day-1, respectively. The performance of logarithmic and exponential functions to prediction of cucumber ETc were proper, with high dependent variables especially, and the most accurate regression model to cucumber ET prediction was obtained for exponential function of five variables: VPD, N, T, RH and SR with RMSE=0.353 mm day-1. In addition, for tomato ET prediction, the most accurate regression model was obtained for exponential function of four variables: VPD, N, RH and SR with RMSE= 0.329 mm day-1. The best
Phase sensitivity in deformed-state superposition considering nonlinear phase shifts
Berrada, K.
2016-07-01
We study the problem of the phase estimation for the deformation-state superposition (DSS) under perfect and lossy (due to a dissipative interaction of DSS with their environment) regimes. The study is also devoted to the phase enhancement of the quantum states resulting from a generalized non-linearity of the phase shifts, both without and with losses. We find that such a kind of superposition can give the smallest variance in the phase parameter in comparison with usual Schrödinger cat states in different order of non-linearity even if for a larger average number of photons. Due to the significance of how a system is quantum correlated with its environment in the construction of a scalable quantum computer, the entanglement between the DSS and its environment is investigated during the dissipation. We show that partial entanglement trapping occurs during the dynamics depending on the kind of deformation and mean photon number. These features make the DSS with a larger average number of photons a good candidate for implementation of schemes of quantum optics and information with high precision.
Ncibi, Mohamed Chaker
2008-05-01
In any single component isotherm study, determining the best-fitting model is a key analysis to mathematically describe the involved sorption system and, therefore, to explore the related theoretical assumptions. Hence, several error calculation functions have been widely used to estimate the error deviations between experimental and theoretically predicted equilibrium adsorption values (Q(e,exp)vs.Q(e,theo) as X- and Y-axis, respectively), including the average relative error deviation, the Marquardt's percent standard error deviation, the hybrid fractional error function, the sum of the squares of the errors, the correlation coefficient and the residuals. In this study, five other statistical functions are analysed to investigate their applicability as suitable tools to evaluate isotherm model fitness, namely the Pearson correlation coefficient, the coefficient of determination, the Chi-square test, the F-test and the Student's T-test, using the commonly-used functions as references. The adsorption of textile dye onto Posidonia oceanica seagrass fibres was carried out, as study case, in batch mode at 20 degrees C. Besides, and in order to get an overall approach of the possible utilization of these statistical functions within the studied item, the examination was realized for both linear and non-linear regression analysis. The related results showed that, among the five studied statistical tools, the chi(2) and Student's T-tests were suitable to determine the best-fitting isotherm model for the case of linear modelling approach. On the other hand, dealing with the non-linear analysis, despite the Student's T-test, all the other functions gave satisfactorily results, by agreeing the commonly-used error functions calculation.
Nonlinear wave dynamics near phase transition in PT-symmetric localized potentials
Nixon, Sean; Yang, Jianke
2016-09-01
Nonlinear wave propagation in parity-time symmetric localized potentials is investigated analytically near a phase-transition point where a pair of real eigenvalues of the potential coalesce and bifurcate into the complex plane. Necessary conditions for a phase transition to occur are derived based on a generalization of the Krein signature. Using the multi-scale perturbation analysis, a reduced nonlinear ordinary differential equation (ODE) is derived for the amplitude of localized solutions near phase transition. Above the phase transition, this ODE predicts a family of stable solitons not bifurcating from linear (infinitesimal) modes under a certain sign of nonlinearity. In addition, it predicts periodically-oscillating nonlinear modes away from solitons. Under the opposite sign of nonlinearity, it predicts unbounded growth of solutions. Below the phase transition, solution dynamics is predicted as well. All analytical results are compared to direct computations of the full system and good agreement is observed.
Nonlinear wave dynamics near phase transition in $\\mathcal{PT}$-symmetric localized potentials
Nixon, Sean
2015-01-01
Nonlinear wave propagation in parity-time ($\\mathcal{PT}$) symmetric localized potentials is investigated analytically near a phase-transition point where a pair of real eigenvalues of the potential coalesce and bifurcate into the complex plane. Necessary conditions for phase transition to occur are derived based on a generalization of the Krein signature. Using multi-scale perturbation analysis, a reduced nonlinear ODE model is derived for the amplitude of localized solutions near phase transition. Above phase transition, this ODE model predicts a family of stable solitons not bifurcating from linear (infinitesimal) modes under a certain sign of nonlinearity. In addition, it predicts periodically-oscillating nonlinear modes away from solitons. Under the opposite sign of nonlinearity, it predicts unbounded growth of solutions. Below phase transition, solution dynamics is predicted as well. All analytical results are compared to direct computations of the full system and good agreement is observed.
具有AR(q)误差非线性回归模型的几何性质%Geometric Properties of AR(q) Nonlinear Regression Models
Institute of Scientific and Technical Information of China (English)
刘应安; 韦博成
2004-01-01
This paper is devoted to a study of geometric properties of AR(q) nonlinear regression models. We present geometric frameworks for regression parameter space and autoregression parameter space respectively based on the weighted inner product by fisher information matrix. Several geometric properties related to statistical curvatures are given for the models. The results of this paper extended the work of Bates & Watts(1980,1988) [1,2] and Seber & Wild(1989) [3].
Nonlinear phase noise mitigation in phase-sensitive amplified transmission systems.
Olsson, Samuel L I; Karlsson, Magnus; Andrekson, Peter A
2015-05-04
We investigate the impact of in-line amplifier noise in transmission systems amplified by two-mode phase-sensitive amplifiers (PSAs) and present the first experimental demonstration of nonlinear phase noise (NLPN) mitigation in a modulation format independent PSA-amplified transmission system. The NLPN mitigation capability is attributed to the correlated noise on the signal and idler waves at the input of the transmission span. We study a single-span system with noise loading in the transmitter but the results are expected to be applicable also in multi-span systems. The experimental investigation is supported by numerical simulations showing excellent agreement with the experiments. In addition to demonstrating NLPN mitigation we also present a record high sensitivity receiver, enabled by low-noise PSA-amplification, requiring only 4.1 photons per bit to obtain a bit error ratio (BER) of 1 × 10(-3) with 10 GBd quadrature phase-shift keying (QPSK) data.
Alves, Larissa A.; de Castro, Arthur H.; de Mendonça, Fernanda G.; de Mesquita, João P.
2016-05-01
The oxygenated functional groups present on the surface of carbon dots with an average size of 2.7 ± 0.5 nm were characterized by a variety of techniques. In particular, we discussed the fit data of potentiometric titration curves using a nonlinear regression method based on the Levenberg-Marquardt algorithm. The results obtained by statistical treatment of the titration curve data showed that the best fit was obtained considering the presence of five Brønsted-Lowry acids on the surface of the carbon dots with constant ionization characteristics of carboxylic acids, cyclic ester, phenolic and pyrone-like groups. The total number of oxygenated acid groups obtained was 5 mmol g-1, with approximately 65% (∼2.9 mmol g-1) originating from groups with pKa < 6. The methodology showed good reproducibility and stability with standard deviations below 5%. The nature of the groups was independent of small variations in experimental conditions, i.e. the mass of carbon dots titrated and initial concentration of HCl solution. Finally, we believe that the methodology used here, together with other characterization techniques, is a simple, fast and powerful tool to characterize the complex acid-base properties of these so interesting and intriguing nanoparticles.
Directory of Open Access Journals (Sweden)
Neela Deshpande
2014-12-01
Full Text Available In the recent past Artificial Neural Networks (ANN have emerged out as a promising technique for predicting compressive strength of concrete. In the present study back propagation was used to predict the 28 day compressive strength of recycled aggregate concrete (RAC along with two other data driven techniques namely Model Tree (MT and Non-linear Regression (NLR. Recycled aggregate is the current need of the hour owing to its environmental friendly aspect of re-use of the construction waste. The study observed that, prediction of 28 day compressive strength of RAC was done better by ANN than NLR and MT. The input parameters were cubic meter proportions of Cement, Natural fine aggregate, Natural coarse Aggregates, recycled aggregates, Admixture and Water (also called as raw data. The study also concluded that ANN performs better when non-dimensional parameters like Sand–Aggregate ratio, Water–total materials ratio, Aggregate–Cement ratio, Water–Cement ratio and Replacement ratio of natural aggregates by recycled aggregates, were used as additional input parameters. Study of each network developed using raw data and each non dimensional parameter facilitated in studying the impact of each parameter on the performance of the models developed using ANN, MT and NLR as well as performance of the ANN models developed with limited number of inputs. The results indicate that ANN learn from the examples and grasp the fundamental domain rules governing strength of concrete.
Directory of Open Access Journals (Sweden)
Mukesh Gautam
Full Text Available BACKGROUND: Reptiles are phylogenically important group of organisms as mammals have evolved from them. Wall lizard testis exhibits clearly distinct morphology during various phases of a reproductive cycle making them an interesting model to study regulation of spermatogenesis. Studies on reptile spermatogenesis are negligible hence this study will prove to be an important resource. METHODOLOGY/PRINCIPAL FINDINGS: Histological analyses show complete regression of seminiferous tubules during regressed phase with retracted Sertoli cells and spermatognia. In the recrudescent phase, regressed testis regain cellular activity showing presence of normal Sertoli cells and developing germ cells. In the active phase, testis reaches up to its maximum size with enlarged seminiferous tubules and presence of sperm in seminiferous lumen. Total RNA extracted from whole testis of regressed, recrudescent and active phase of wall lizard was hybridized on Mouse Whole Genome 8×60 K format gene chip. Microarray data from regressed phase was deemed as control group. Microarray data were validated by assessing the expression of some selected genes using Quantitative Real-Time PCR. The genes prominently expressed in recrudescent and active phase testis are cytoskeleton organization GO 0005856, cell growth GO 0045927, GTpase regulator activity GO: 0030695, transcription GO: 0006352, apoptosis GO: 0006915 and many other biological processes. The genes showing higher expression in regressed phase belonged to functional categories such as negative regulation of macromolecule metabolic process GO: 0010605, negative regulation of gene expression GO: 0010629 and maintenance of stem cell niche GO: 0045165. CONCLUSION/SIGNIFICANCE: This is the first exploratory study profiling transcriptome of three drastically different conditions of any reptilian testis. The genes expressed in the testis during regressed, recrudescent and active phase of reproductive cycle are in concordance
DEFF Research Database (Denmark)
Sharifzadeh, Sara; Clemmensen, Line Katrine Harder; Borggaard, Claus
2014-01-01
feature selection method outperforms the PCA for both linear and non-linear methods. The highest performance was obtained by linear ridge regression applied on the selected features from the proposed Elastic net (EN) -based feature selection strategy. All the best models use a reduced number...... of meat samples (430–970 nm) were used for training and testing of the L⁎a⁎b prediction models. Finding a sparse solution or the use of a minimum number of bands is of particular interest to make an industrial vision set-up simpler and cost effective. In this paper, a wide range of linear, non-linear......, kernel-based regression and sparse regression methods are compared. In order to improve the prediction results of these models, we propose a supervised feature selection strategy which is compared with the Principal component analysis (PCA) as a pre-processing step. The results showed that the proposed...
Directory of Open Access Journals (Sweden)
Quoc-Huy Phan
2013-01-01
Full Text Available Multipath mitigation is a long-standing problem in global positioning system (GPS research and is essential for improving the accuracy and precision of positioning solutions. In this work, we consider multipath error estimation as a regression problem and propose a unified framework for both code and carrier-phase multipath mitigation for ground fixed GPS stations. We use the kernel support vector machine to predict multipath errors, since it is known to potentially offer better-performance traditional models, such as neural networks. The predicted multipath error is then used to correct GPS measurements. We empirically show that the proposed method can reduce the code multipath error standard deviation up to 79% on average, which significantly outperforms other approaches in the literature. A comparative analysis of reduction of double-differential carrier-phase multipath error reveals that a 57% reduction is also achieved. Furthermore, by simulation, we also show that this method is robust to coexisting signals of phenomena (e.g., seismic signals we wish to preserve.
Nonlinear Pulse Compression and Reshaping Using Cross-Phase Modulation in a Dispersion-Shifted Fiber
Institute of Scientific and Technical Information of China (English)
S.; W.; Chan; K.; K.; Chow; C.; Shu
2003-01-01
Nonlinear pulse compression has been demonstrated by cross-phase modulation in a dispersion-shifted fiber. The output is obtained from filtering of the broadened optical spectrum and a pulse width reduction from 61 to 28 ps is achieved.
Directory of Open Access Journals (Sweden)
Omholt Stig W
2011-06-01
Full Text Available Abstract Background Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs to variation in features of the trajectories of the state variables (outputs throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR, where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR and ordinary least squares (OLS regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Results Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback
Asymmetrically pumped Bragg scattering with the effects of nonlinear phase modulation
DEFF Research Database (Denmark)
Andersen, Lasse Mejling; Friis, Søren Michael Mørk; Reddy, Dileep V.
2014-01-01
We derive exact solutions to asymmetrically pumped Bragg scattering with nonlinear phase-modulation (NPM) and show that this setup allows for the frequency conversion of many temporal modes, while reducing the effects due to NPM.......We derive exact solutions to asymmetrically pumped Bragg scattering with nonlinear phase-modulation (NPM) and show that this setup allows for the frequency conversion of many temporal modes, while reducing the effects due to NPM....
A WEAKLY NONLINEAR WATER WAVE MODEL TAKING INTO ACCOUNT DISPERSION OF WAVE PHASE VELOCITY
Institute of Scientific and Technical Information of China (English)
李瑞杰; 李东永
2002-01-01
This paper presents a weakly nonlinear water wave model using a mild slope equation and a new explicit formulation which takes into account dispersion of wave phase velocity, approximates Hedges' (1987) nonlinear dispersion relationship, and accords well with the original empirical formula. Comparison of the calculating results with those obtained from the experimental data and those obtained from linear wave theory showed that the present water wave model considering the dispersion of phase velocity is rational and in good agreement with experiment data.
Extended phase space of Black Holes in Lovelock gravity with nonlinear electrodynamics
Hendi, S H; Panah, B Eslam
2015-01-01
In this paper, we consider Lovelock gravity in presence of two Born-Infeld types of nonlinear electrodynamics and study their thermodynamical behavior. We extend the phase space by considering cosmological constant as a thermodynamical pressure. We obtain critical values of pressure, volume and temperature and investigate the effects of both the Lovelock gravity and the nonlinear electrodynamics on these values. We plot $P-v$, $T-v$ and $G-T$ diagrams to study the phase transition of these thermodynamical systems. We show that power of the nonlinearity and gravity have opposite effects. We also show how considering cosmological constant, nonlinearity and Lovelock parameters as thermodynamical variables will modify Smarr formula and first law of thermodynamics. In addition, we study the behavior of universal ratio of $\\frac{P_{c}v_{c}}{T_{c}}$ for different values of nonlinearity power of electrodynamics as well as the Lovelock coefficients.
Switching Correlation and Noise Level in Pr(3+):YSO Crystal via Dressing Nonlinear Phase.
Ahmed, Irfan; Zhang, Zhaoyang; Wen, Feng; Zhang, Da; Li, Changbiao; Wang, Ruimin; Zhang, Yanpeng
2016-09-21
We propose and experimentally demonstrate that the intensity noise correlation and the noise level of intensity-difference and intensity-sum in Stokes and anti-Stokes channel can be well controlled by the relative nonlinear phase in spontaneous parametric four-wave mixing process. By modulating the relative nonlinear phase, including self-phase modulation and cross-phase modulation, switching the correlation into anti-correlation and the relative intensity noise level between the intensity-difference and intensity-sum are realized. We also show that the variation tendencies of the relative intensity noise level and the corresponding intensity fluctuations correlation are in accordance with each other.
Negative Kerr Nonlinearity of Graphene as seen via Chirped-Pulse-Pumped Self-Phase Modulation
Vermeulen, Nathalie; Castelló-Lurbe, David; Cheng, JinLuo; Pasternak, Iwona; Krajewska, Aleksandra; Ciuk, Tymoteusz; Strupinski, Wlodek; Thienpont, Hugo; Van Erps, Jürgen
2016-10-01
We experimentally demonstrate a negative Kerr nonlinearity for quasiundoped graphene. Hereto, we introduce the method of chirped-pulse-pumped self-phase modulation and apply it to graphene-covered silicon waveguides at telecom wavelengths. The extracted Kerr-nonlinear index for graphene equals n2 ,gr=-10-13 m2 /W . Whereas the sign of n2 ,gr turns out to be negative in contrast to what has been assumed so far, its magnitude is in correspondence with that observed in earlier experiments. Graphene's negative Kerr nonlinearity strongly impacts how graphene should be exploited for enhancing the nonlinear response of photonic (integrated) devices exhibiting a positive nonlinearity. It also opens up the possibility of using graphene to annihilate unwanted nonlinear effects in such devices, to develop unexplored approaches for establishing Kerr processes, and to extend the scope of the "periodic poling" method often used for second-order nonlinearities towards third-order Kerr processes. Because of the generic nature of the chirped-pulse-pumped self-phase modulation method, it will allow fully characterizing the Kerr nonlinearity of essentially any novel (2D) material.
Lavrov, Roman; Peil, Michael; Jacquot, Maxime; Larger, Laurent; Udaltsov, Vladimir; Dudley, John
2009-08-01
We demonstrate experimentally how nonlinear optical phase dynamics can be generated with an electro-optic delay oscillator. The presented architecture consists of a linear phase modulator, followed by a delay line, and a differential phase-shift keying demodulator (DPSK-d). The latter represents the nonlinear element of the oscillator effecting a nonlinear transformation. This nonlinearity is considered as nonlocal in time since it is ruled by an intrinsic differential delay, which is significantly greater than the typical phase variations. To study the effect of this specific nonlinearity, we characterize the dynamics in terms of the dependence of the relevant feedback gain parameter. Our results reveal the occurrence of regular GHz oscillations (approximately half of the DPSK-d free spectral range), as well as a pronounced broadband phase-chaotic dynamics. Beyond this, the observed dynamical phenomena offer potential for applications in the field of microwave photonics and, in particular, for the realization of novel chaos communication systems. High quality and broadband phase-chaos synchronization is also reported with an emitter-receiver pair of the setup.
DEFF Research Database (Denmark)
Bang, Ole; Graversen, T. W.; Clausen, Carl A. Balslev
2000-01-01
Quasi-phase-matching gratings induces Kerr effects in quadratic nonlinear materials. We show analytically and confirm numerically how modulating the grating changes the effective quadratic and cubic nonlinearities and allows for multi-wavelength second-harmonic generation....
Indian Academy of Sciences (India)
R Ganapathy; V C Kuriakose
2002-04-01
We obtain conditions for the occurrence of cross-phase modulational instability in the normal dispersion regime for the coupled higher order nonlinear Schrödinger equation with higher order dispersion and nonlinear terms.
DEFF Research Database (Denmark)
Hu, Hao; Jopson, R. M.; Dinu, M.;
2013-01-01
We demonstrate compensation of fiber nonlinearities using optical phase conjugation of an 8-chamiel WDM 32-Gbaud PDM QPSK signal. Conjugating phase every 600 km in a fiber loop enabled a 6000 km transmission over True Wave fiber. © 2013 Optical Society of America....
DEFF Research Database (Denmark)
Bang, Ole; Corney, Joel Frederick
2001-01-01
In continuous-wave operation asymmetric induced nonlinearities induce an intensity-dependent phase mismatch that implies a nonzero so-called separatrix intensity, the crossing of which changes the one-period phase shift of the fundamental by Pi , with obvious use in switching applications.We deri...
Low-Complexity Tracking of Laser and Nonlinear Phase Noise in WDM Optical Fiber Systems
DEFF Research Database (Denmark)
Yankov, Metodi Plamenov; Fehenberger, Tobias; Barletta, Luca;
2015-01-01
In this paper, the wavelength division multiplexed (WDM) fiber optic channel is considered. It is shown that for ideal distributed Raman amplification (IDRA), the Wiener process model is suitable for the non-linear phase noise due to cross phase modulation from neighboring channels. Based...
On the theory of ternary melt crystallization with a non-linear phase diagram
Toropova, L. V.; Dubovoi, G. Yu; Alexandrov, D. V.
2017-04-01
The present study is concerned with a theoretical analysis of unidirectional solidification process of ternary melts in the presence of a phase transition (mushy) layer. A new analytical solution of heat and mass transfer equations describing the steady-state crystallization scenario is found with allowance for a non-linear liquidus equation. The model under consideration takes into account the presence of two phase transition layers, namely, the primary and cotectic mushy regions. We demonstrate that the phase diagram nonlinearity leads to substantial changes of analytical solutions.
Nonlinear light behaviors near phase transition in non-parity-time-symmetric complex waveguides
Nixon, Sean
2016-01-01
Many classes of non-parity-time (PT) symmetric waveguides with arbitrary gain and loss distributions still possess all-real linear spectrum or exhibit phase transition. In this article, nonlinear light behaviors in these complex waveguides are probed analytically near a phase transition. Using multi-scale perturbation methods, a nonlinear ordinary differential equation (ODE) is derived for the light's amplitude evolution. This ODE predicts that the first class of these non-PT-symmetric waveguides support continuous families of solitons and robust amplitude-oscillating solutions both above and below phase transition, in close analogy with PT-symmetric systems. For the other classes of waveguides, the light's intensity always amplifies under the effect of nonlinearity even if the waveguide is below phase transition. These analytical predictions are confirmed by direct computations of the full system.
Wei, Xile; Lu, Meili; Wang, Jiang; Tsang, K. M.; Deng, Bin; Che, Yanqiu
2010-05-01
We consider the assumption of existence of the general nonlinear internal model that is introduced in the design of robust output regulators for a class of minimum-phase nonlinear systems with rth degree (r ≥ 2). The robust output regulation problem can be converted into a robust stabilisation problem of an augmented system consisting of the given plant and a high-gain nonlinear internal model, perfectly reproducing the bounded including not only periodic but also nonperiodic exogenous signal from a nonlinear system, which satisfies some general immersion assumption. The state feedback controller is designed to guarantee the asymptotic convergence of system errors to zero manifold. Furthermore, the proposed scheme makes use of output feedback dynamic controller that only processes information from the regulated output error by using high-gain observer to robustly estimate the derivatives of the regulated output error. The stabilisation analysis of the resulting closed-loop systems leads to regional as well as semi-global robust output regulation achieved for some appointed initial condition in the state space, for all possible values of the uncertain parameter vector and the exogenous signal, ranging over an arbitrary compact set.
Optical frequency conversion in quasi-phase-matched stacks of nonlinear crystals
Rustagi, K. C.; Mehendale, S. C.; Meenakshi, S.
1982-06-01
The paper presents a quantitative theory of nonlinear frequency conversion in stacks of crystals in which the phase mismatch due to dispersion is compensated by changing the sign of the nonlinear coupling coefficient in successive crystals. The effects of systematic and random departures in crystal lengths are studied with emphasis on the evolution of the relative phase. It is shown that with the appropriate choice of the signs of the nonlinear coupling coefficient in various crystals, high efficiency frequency conversion should be possible using almost any sufficiently large set of nonlinear crystals. In addition, the theory of second harmonic generation in periodic stacks and in rotating twinned crystals of zinc-blend structure is described.
Nonlinear Transformation of Orbital Angular Momentum through Quasi-phase Matching
Shao, Guang-hao; Chen, Jin-hui; Xu, Fei; Lu, Yan-qing
2013-01-01
We propose and investigate the quasi-phase matched (QPM) nonlinear optical frequency conversion of optical vortices in periodically poled Lithium Niobate (PPLN). Laguerre-Gaussian (LG) modes are used to represent the orbital angular momentum (OAM) states, characterized with the azimuthal and radial indices. Typical three-wave nonlinear interactions among the involved OAM modes are studied with the help of coupling wave equations. Being different from normal QPM process where the energy and quasi-momentum conservations are satisfied, both of the azimuthal and radial indices of the OAM states keep constant in most of the cases. However, abnormal change of the radial index is observed when there is asynchronous nonlinear conversion in different parts of the beams. The QPM nonlinear evolution of fractional OAM states is also discussed showing some interesting properties. In comparison with the traditional birefringent phase matching (BPM), the QPM technique avoids the undesired walk-off effect to reserve high-qua...
Nonlinear dynamics of phase space zonal structures and energetic particle physics in fusion plasmas
Zonca, Fulvio; Briguglio, Sergio; Fogaccia, Giuliana; Vlad, Gregorio; Wang, Xin
2014-01-01
A general theoretical framework for investigating nonlinear dynamics of phase space zonal structures is presented in this work. It is then, more specifically, applied to the limit where the nonlinear evolution time scale is smaller or comparable to the wave-particle trapping period. In this limit, both theoretical and numerical simulation studies show that non-adiabatic frequency chirping and phase locking could lead to secular resonant particle transport on meso- or macro-scales. The interplay between mode structures and resonant particles then provides the crucial ingredient to properly understand and analyze the nonlinear dynamics of Alfv\\'en wave instabilities excited by non-perturbative energetic particles in burning fusion plasmas. Analogies with autoresonance in nonlinear dynamics and with superradiance in free electron lasers are also briefly discussed.
Understanding and Ameliorating Non-Linear Phase and Amplitude Responses in AMCW Lidar
Directory of Open Access Journals (Sweden)
John P. Godbaz
2011-12-01
Full Text Available Amplitude modulated continuous wave (AMCW lidar systems commonly suffer from non-linear phase and amplitude responses due to a number of known factors such as aliasing and multipath inteference. In order to produce useful range and intensity information it is necessary to remove these perturbations from the measurements. We review the known causes of non-linearity, namely aliasing, temporal variation in correlation waveform shape and mixed pixels/multipath inteference. We also introduce other sources of non-linearity, including crosstalk, modulation waveform envelope decay and non-circularly symmetric noise statistics, that have been ignored in the literature. An experimental study is conducted to evaluate techniques for mitigation of non-linearity, and it is found that harmonic cancellation provides a significant improvement in phase and amplitude linearity.
Nonlinear dynamics of wave packets in PT-symmetric optical lattices near the phase transition point
Nixon, Sean; Yang, Jianke
2012-01-01
Nonlinear dynamics of wave packets in PT-symmetric optical lattices near the phase-transition point are analytically studied. A nonlinear Klein-Gordon equation is derived for the envelope of these wave packets. A variety of novel phenomena known to exist in this envelope equation are shown to also exist in the full equation including wave blowup, periodic bound states and solitary wave solutions.
Wu, Ya-Bo; Zhang, Cheng-Yuan; Lu, Jian-Bo; Hu, Mu-Hong; Chai, Yun-Tian
2017-04-01
We numerically investigate the holographic paramagnetism-ferromagnetism phase transition in the 4-dimensional Lifshitz spacetime in the presence of three kinds of typical Born-Infeld-like nonlinear electrodynamics. Concretely, in the probe limit, we thoroughly discuss the effects of the nonlinear parameter b and the dynamical exponent z on the critical temperature, magnetic moment and hysteresis loop. The results show that the exponential form of nonlinear electrodynamics correction makes the critical temperature smaller and the magnetic moment harder to form with the absent external field for a constant nonlinear parameter b comparing it with the logarithmic form of nonlinear electrodynamics and the Born-Infeld nonlinear electrodynamics, especially for the case of larger dynamical exponent z. Moreover, the increase of nonlinear parameter b (for the fixed z) or dynamical exponent z (for the fixed b) will result in extending the period of the external magnetic field. Particularly, the effect of the exponential form of nonlinear electrodynamics on the periodicity of hysteresis loop is more noteworthy.
Kukush, Alexander; Schneeweiss, Hans
2004-01-01
We compare the asymptotic covariance matrix of the ML estimator in a nonlinear measurement error model to the asymptotic covariance matrices of the CS and SQS estimators studied in Kukush et al (2002). For small measurement error variances they are equal up to the order of the measurement error variance and thus nearly equally efficient.
Advanced Phase noise modeling techniques of nonlinear microwave devices
Prigent, M.; J. C. Nallatamby; R. Quere
2004-01-01
In this paper we present a coherent set of tools allowing an accurate and predictive design of low phase noise oscillators. Advanced phase noise modelling techniques in non linear microwave devices must be supported by a proven combination of the following : - Electrical modeling of low-frequency noise of semiconductor devices, oriented to circuit CAD . The local noise sources will be either cyclostationary noise sources or quasistationary noise sources. - Theoretic...
DEFF Research Database (Denmark)
Peucheret, Christophe; Da Ros, Francesco; Vukovic, Dragana;
- compatible fabrication process, degrees of freedom in dispersion engineering, and high nonlinear coecient. However, the detrimental eect of free-carrier absorption induced by two-photon absorp- tion has so far prevented them from being used for the demonstration of phase-sensitive processing. Thanks...
Cui, Junning; He, Zhangqiang; Jiu, Yuanwei; Tan, Jiubin; Sun, Tao
2016-09-01
The demand for minimal cyclic nonlinearity error in laser interferometry is increasing as a result of advanced scientific research projects. Research shows that the quadrature phase error is the main effect that introduces cyclic nonlinearity error, and polarization-mixing cross talk during beam splitting is the main error source that causes the quadrature phase error. In this paper, a new homodyne quadrature laser interferometer configuration based on nonpolarization beam splitting and balanced interference between two circularly polarized laser beams is proposed. Theoretical modeling indicates that the polarization-mixing cross talk is elaborately avoided through nonpolarizing and Wollaston beam splitting, with a minimum number of quadrature phase error sources involved. Experimental results show that the cyclic nonlinearity error of the interferometer is up to 0.6 nm (peak-to-valley value) without any correction and can be further suppressed to 0.2 nm with a simple gain and offset correction method.
Signal-to-noise-ratio analysis for nonlinear N-ary phase filters.
Miller, Paul C
2007-09-01
The problem of recognizing targets in nonoverlapping clutter using nonlinear N-ary phase filters is addressed. Using mathematical analysis, expressions were derived for an N-ary phase filter and the intensity variance of an optical correlator output. The N-ary phase filter was shown to consist of an infinite sum of harmonic terms whose periodicity was determined by N. For the intensity variance, it was found that under certain conditions the variance was minimized due to a previously undiscovered phase quadrature effect. Comparison showed that optimal real filters produced greater signal-to-noise-ratio values than the continuous phase versions as a consequence of this effect.
Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime.
Morgner, U; Ell, R; Metzler, G; Schibli, T R; Kärtner, F X; Fujimoto, J G; Haus, H A; Ippen, E P
2001-06-11
Nonlinear optical effects due to the phase between carrier and envelope are observed with 5 fs pulses from a Kerr-lens mode-locked Ti:sapphire laser. These sub-two-cycle pulses with octave spanning spectra are the shortest pulses ever generated directly from a laser oscillator. Detection of the carrier-envelope phase slip is made possible by simply focusing the short pulses directly from the oscillator into a BBO crystal. As a further example of nonlinear optics with such short pulses, the interference between second- and third-harmonic components is also demonstrated.
Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators.
Heebner, John E; Lepeshkin, Nick N; Schweinsberg, Aaron; Wicks, G W; Boyd, Robert W; Grover, Rohit; Ho, P T
2004-04-01
We have constructed and characterized several optical microring resonators with scale sizes of the order of 10 microm. These devices are intended to serve as building blocks for engineerable linear and nonlinear photonic media. Light is guided vertically by an epitaxially grown structure and transversely by deeply etched air-clad sidewalls. We report on the spectral phase transfer characteristics of such resonators. We also report the observation of a pi-rad Kerr nonlinear phase shift accumulated in a single compact ring resonator evidenced by all-optical switching between output ports of a resonator-enhanced Mach-Zehnder interferometer.
Enhanced nonlinear spectral compression in fiber by external sinusoidal phase modulation
Boscolo, S.; Mouradian, L. Kh; Finot, C.
2016-10-01
We propose a new, simple approach to enhance the spectral compression process arising from nonlinear pulse propagation in an optical fiber. We numerically show that an additional sinusoidal temporal phase modulation of the pulse enables efficient reduction of the intensity level of the side lobes in the spectrum that are produced by the mismatch between the initial linear negative chirp of the pulse and the self-phase modulation-induced nonlinear positive chirp. Remarkable increase of both the extent of spectrum narrowing and the quality of the compressed spectrum is afforded by the proposed approach across a wide range of experimentally accessible parameters.
Directory of Open Access Journals (Sweden)
A.G. Sereda
2015-06-01
Full Text Available Purpose. Theoretical justification and engineering of induction motors heat protection method from overload currents taking into account nonlinear distortion of the phase current and implementation as a microprocessor device functioning algorithm. Methodology. To solve the problem used the theory of the representing complex harmonic oscillations analog signals expansion into the oscillation spectrum forming elementary harmonic components in order to compare their properties by applying the theory of discrete signals and systems, as well as methods of spectral analysis and discrete signals filtering. The harmonic analysis versatility is that any periodic signal may be synthesized from harmonic oscillation of certain amplitude, frequency and initial phase. A mathematical model for determining the phase current harmonic content of power supply networks with isolated neutral and non-linear loads types and, as a consequence, the distortion of sinusoidal phase current change is developed by multiplying the analog current in time dependency on the grate delta-function with different sampling intervals, in which the use of simple and widely used in relay protection units, in particular electronic overcurrent relays, mathematical operations of integration squares instantaneous current allows the most in harmony with the mathematical tools to build other network protection types. Findings. The necessity to increase the sensitivity of the induction motors heat protection from overload currents taking into account nonlinear distortion of the phase currents is proved. By nonlinear distortion harmonic analysis of the phase currents the motor protection reliability increasing provided by taking into account the higher harmonic components of the phase currents, which causes to additional losses and heating of the stator winding. It uses the simplest and widely used in protective relaying mathematical apparatus determining of most significant higher harmonics
Rapidly Activated Dynamic Phase Transitions in Nonlinear Solids
1993-02-15
I Form Approv# edAD -A263 601 AiENTA11ON PAGE- f____________18 1. AGENCY USE ONLY (Lea"e blaWk 12. REPORT DATE 13. REPORT TYPE AND OATES COVEREO Feb...phase transforming media during high energy impact. Conversion of mechanical energy to thermal ener- gy has been studied by means of an extended theory...and Phase Structures in General Media , R. Fosdick, E. Dunn & M. Slemrod eds., IMA volume series, Springer- Verlag. Song, J. and T. L. Pence (1992
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
We introduce a new method to derive the orbital parameters of spectroscopic binary stars by nonlinear least squares of (o - c). Using the measured radial velocity data of the four double lined spectroscopic binary systems,AI Phe,GM Dra,HD 93917 and V502 Oph,we derived both the orbital and combined spectroscopic elements of these systems.Our numerical results are in good agreement with the those obtained using the method of Lehmann-Filhés.
Negative Kerr nonlinearity of graphene as seen via chirped-pulse-pumped self-phase modulation
Vermeulen, Nathalie; Cheng, JinLuo; Pasternak, Iwona; Krajewska, Aleksandra; Ciuk, Tymoteusz; Strupinski, Wlodek; Thienpont, Hugo; Van Erps, Jurgen
2016-01-01
We experimentally demonstrate a negative Kerr nonlinearity for quasi-undoped graphene. Hereto, we introduce the method of chirped-pulse-pumped self-phase modulation and apply it to graphene-covered silicon waveguides at telecom wavelengths. The extracted Kerr-nonlinear index for graphene equals n2,gr = -10^(-13) m^2/W. Whereas the sign of n2,gr turns out to be negative in contrast to what has been assumed so far, its magnitude is in correspondence with that observed in earlier experiments. Graphene's negative Kerr nonlinearity strongly impacts how graphene should be exploited for enhancing the nonlinear response of photonic (integrated) devices exhibiting a positive nonlinearity. It also opens up the possibility of using graphene to annihilate unwanted nonlinear effects in such devices, to develop unexplored approaches for establishing Kerr processes, and to extend the scope of the "periodic poling" method often used for second-order nonlinearities towards third-order Kerr processes. Because of the generic na...
Nonlinear supercoherent states and geometric phases for the supersymmetric harmonic oscillator
Díaz-Bautista, Erik
2016-01-01
Nonlinear supercoherent states, which are eigenstates of nonlinear deformations of the Kornbluth-Zypman annihilation operator for the supersymmetric harmonic oscillator, will be studied. They turn out to be expressed in terms of nonlinear coherent states, associated to the corresponding deformations of the standard annihilation operator. We will discuss as well the Heisenberg uncertainty relation for a special particular case, in order to compare our results with those obtained for the Kornbluth-Zypman linear supercoherent states. As the supersymmetric harmonic oscillator executes an evolution loop, such that the evolution operator becomes the identity at a certain time, thus the linear and nonlinear supercoherent states turn out to be cyclic and the corresponding geometric phases will be evaluated.
Regression-based cardiac motion prediction from single-phase CTA
DEFF Research Database (Denmark)
Metz, C.T.; Baka, N.; Kirisli, H.
2012-01-01
State of the art cardiac CT enables the acquisition of imaging data of the heart over the entire cardiac cycle at concurrent high spatial and temporal resolution. However, in clinical practice, acquisition is increasingly limited to 3D images. Estimating the shape of the cardiac structures...... of the regression methods, compared to shape-independent motion prediction by application of the mean motion. The best results were achieved using principal component regression resulting in point-to-point errors of 2.3 ± 0.5 mm, compared to values of 2.7 ± 0.6 mm for shape-independent motion estimation. Finally...
Alkhalifah, Tariq Ali
2012-09-25
Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.
Naseri, Tayebeh; Moradi, Ronak
2017-01-01
Some optical properties including the linear and nonlinear susceptibility and electromagnetically induced phase grating (EIG) in graphene under Raman excitation is studied. A single-layer graphene nanostructure driven by coherent and incoherent fields is investigated theoretically. It is revealed that by adjusting the amplitude of control and incoherent fields, the linear and nonlinear absorption as well as Kerr nonlinearity of the medium can be optimized. It is realized that the enhanced Kerr nonlinearity can occur with zero linear absorption and nonlinear amplification. Furthermore, it should be noted that EIG in graphene is studied for the first time. The results indicate that the diffraction efficiency of the phase grating is dramatically enhanced by controlling the amplitude of coherent and incoherent fields, and an efficient electromagnetically induced phase grating can be obtained. A novel result shows a considerable improvement of the intensity of higher-order diffractions and switching between different orders of grating via incoherent pumping field. Therefore, this model can be used in real experiments for the development of new types of nanoelectronic devices used for the realization of all-optical switching processes.
Correction of Phase Distortion by Nonlinear Optical Techniques
1979-03-01
switch (such as a thyratron ) transfers a fixed voltage (and charge) onto the electrooptical electrodes via a capacitor precharged to a voltage...maximum gain, valid for any distri- bution of incident-wave amplitudes and phases. We apply this theory to several models in a rectangular waveguide...We next use (41) to calculate r for a fairly general da» of pump beams. VIII. MODEL CALCULATION OP NONCONJUGATEO POWER FRACTION We calculate
Tavassoli, Vahid
This thesis studies and mathematically models nonlinear interactions among channels of modern high bit rate (amplitude/) phase modulated optical systems. First, phase modulated analogue systems are studied and a differential receiving method is suggested with experimental validation. The main focus of the rest of the thesis is on digital advanced modulation format systems. Cross-talk due to fiber Kerr nonlinearity in two-format hybrid systems as well as 16-QAM systems is mathematically modelled and verified by simulation for different system parameters. A comparative study of differential receivers and coherent receivers is also given for hybrid systems. The model is based on mathematically proven assumptions and provides an intuitive analytical understanding of nonlinear cross-talk in such systems.
Rajput, Sudheesh K; Nishchal, Naveen K
2014-01-20
We propose a novel nonlinear image-encryption scheme based on a Gerchberg-Saxton (G-S) phase-retrieval algorithm in the Fresnel transform domain. The decryption process can be performed using conventional double random phase encoding (DRPE) architecture. The encryption is realized by applying G-S phase-retrieval algorithm twice, which generates two asymmetric keys from intermediate phases. The asymmetric keys are generated in such a way that decryption is possible optically with a conventional DRPE method. Due to the asymmetric nature of the keys, the proposed encryption process is nonlinear and offers enhanced security. The cryptanalysis has been carried out, which proves the robustness of proposed scheme against known-plaintext, chosen-plaintext, and special attacks. A simple optical setup for decryption has also been suggested. Results of computer simulation support the idea of the proposed cryptosystem.
Frequency and Phase Noise in Non-Linear Microwave Oscillator Circuits
Tannous, C.
2003-01-01
We have developed a new methodology and a time-domain software package for the estimation of the oscillation frequency and the phase noise spectrum of non-linear noisy microwave circuits based on the direct integration of the system of stochastic differential equations representing the circuit. Our theoretical evaluations can be used in order to make detailed comparisons with the experimental measurements of phase noise spectra in selected oscillating circuits.
Effects of nonlinear phase modulation on Bragg scattering in the low-conversion regime
DEFF Research Database (Denmark)
Andersen, Lasse Mejling; Cargill, D. S.; McKinstrie, C. J.
2012-01-01
In this paper, we consider the effects of nonlinear phase modulation on frequency conversion by four-wave mixing (Bragg scattering) in the low-conversion regime. We derive the Green functions for this process using the time-domain collision method, for partial collisions, in which the four fields...
Effects of nonlinear phase modulation on low-conversion four-wave mixing Bragg scattering
DEFF Research Database (Denmark)
Andersen, Lasse Mejling; McKinstrie, C. J.; Rottwitt, Karsten
We consider the effects of nonlinear phase modulation (NPM) on frequency converseon by Bragg scattering. Previously we found that arbitrary mode reshaping without temporal entanglement (separability) was possible. When NPM is included, the modes are chirped and the separability is no longer compl...
Deng, Linhua
2015-07-01
Three nonlinear analysis techniques, including cross-recurrence plot, line of synchronization, and cross-wavelet transform, are proposed to estimate the coherent phase vibrations of nonlinear and non-stationary time series. The case study utilizes the monthly averages of sunspot areas during the time interval from May 1874 to August 2014. The following prominent results are found: (1) the phase-leading hemisphere of long-term sunspot areas has changed twice in the past 140 years, indicating that the hemispheric imbalances and apparent phase differences on both hemispheres are a prevalent behavior and are not anomalous; (2) the alternating regularity of hemispheric asynchronism exhibits a cyclical pattern of 4.5+3.5 cycles, and the magnetic flux excess in a certain hemisphere during the ascending branch of a cycle can be taken as an indication of the phase-leading hemisphere in this cycle. We firmly believe that powerful nonlinear approaches are more advanced than classical linear methods when they are combined to determine the dynamic complexity of nonlinear physical systems.
Knoester, Jasper; Mukamel, Shaul
1990-01-01
A general scheme is presented for calculating the nonlinear optical response in condensed phases that provides a unified picture of excitons, polaritons, retardation, and local-field effects in crystals and in disordered systems. A fully microscopic starting point is taken by considering the evoluti
Experimental Study of Nonlinear Phase Noise and its Impact on WDM Systems with DP-256QAM
DEFF Research Database (Denmark)
Yankov, Metodi Plamenov; Da Ros, Francesco; Porto da Silva, Edson
2016-01-01
A probabilistic method for mitigating the phase noise component of the non-linear interference in WDM systems with Raman amplification is experimentally demonstrated. The achieved gains increase with distance and are comparable to the gains of single-channel digital back-propagation....
Mukesh Gautam; Amitabh Mathur; Meraj Alam Khan; Majumdar, Subeer S.; Umesh Rai
2013-01-01
BACKGROUND: Reptiles are phylogenically important group of organisms as mammals have evolved from them. Wall lizard testis exhibits clearly distinct morphology during various phases of a reproductive cycle making them an interesting model to study regulation of spermatogenesis. Studies on reptile spermatogenesis are negligible hence this study will prove to be an important resource. METHODOLOGY/PRINCIPAL FINDINGS: Histological analyses show complete regression of seminiferous tubules during r...
Institute of Scientific and Technical Information of China (English)
Abhijit Sinha; Sourangshu Mukhopadhyay
2004-01-01
In optical soliton propagation through a single mode optical fiber,it is established that self-phase mod ulation is maintained by the third order non-linearity of the silica-based glass material of the fiber.In this paper we show that the fifth order non-linearity has also some contribution in frequency variation of self-phase modulation.
Yu, Lijing; Zhou, Lingling; Tan, Li; Jiang, Hongbo; Wang, Ying; Wei, Sheng; Nie, Shaofa
2014-01-01
Outbreaks of hand-foot-mouth disease (HFMD) have been reported for many times in Asia during the last decades. This emerging disease has drawn worldwide attention and vigilance. Nowadays, the prevention and control of HFMD has become an imperative issue in China. Early detection and response will be helpful before it happening, using modern information technology during the epidemic. In this paper, a hybrid model combining seasonal auto-regressive integrated moving average (ARIMA) model and nonlinear auto-regressive neural network (NARNN) is proposed to predict the expected incidence cases from December 2012 to May 2013, using the retrospective observations obtained from China Information System for Disease Control and Prevention from January 2008 to November 2012. The best-fitted hybrid model was combined with seasonal ARIMA [Formula: see text] and NARNN with 15 hidden units and 5 delays. The hybrid model makes the good forecasting performance and estimates the expected incidence cases from December 2012 to May 2013, which are respectively -965.03, -1879.58, 4138.26, 1858.17, 4061.86 and 6163.16 with an obviously increasing trend. The model proposed in this paper can predict the incidence trend of HFMD effectively, which could be helpful to policy makers. The usefulness of expected cases of HFMD perform not only in detecting outbreaks or providing probability statements, but also in providing decision makers with a probable trend of the variability of future observations that contains both historical and recent information.
Band-phase-randomized Surrogates to assess nonlinearity in non-stationary time series
Guarin, Diego; Orozco, Alvaro
2011-01-01
Testing for nonlinearity is one of the most important preprocessing steps in nonlinear time series analysis. Typically, this is done by means of the linear surrogate data methods. But it is a known fact that the validity of the results heavily depends on the stationarity of the time series. Since most physiological signals are non-stationary, it is easy to falsely detect nonlinearity using the linear surrogate data methods. In this document, we propose a methodology to extend the procedure for generating constrained surrogate time series in order to assess nonlinearity in non-stationary data. The method is based on the band-phase-randomized surrogates, which consists (contrary to the linear surrogate data methods) in randomizing only a portion of the Fourier phases in the high frequency band. Analysis of simulated time series showed that in comparison to the linear surrogate data method, our method is able to discriminate between linear stationarity, linear non-stationary and nonlinear time series. When apply...
Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence
Schekochihin, A. A.; Parker, J. T.; Highcock, E. G.; Dellar, P. J.; Dorland, W.; Hammett, G. W.
2016-04-01
> A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g. drift-wave turbulence driven by ion temperature gradients) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. It is found that it is possible to construct a consistent theory in which very little free energy leaks into high velocity moments of the distribution function, rendering the turbulent cascade in the energetically relevant part of the wavenumber space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also in contrast with the linear problem, in which it occurs at the finite rate equal to the Landau damping rate). The ability of the free energy to stay in the low velocity moments of the distribution function is facilitated by the `anti-phase-mixing' effect, whose presence in the nonlinear system is due to the stochastic version of the plasma echo (the advecting velocity couples the phase-mixing and anti-phase-mixing perturbations). The partitioning of the wavenumber space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the `critical balance' between linear and nonlinear time scales (which for high Hermite moments splits into two thresholds, one demarcating the wavenumber region where phase mixing predominates, the other where plasma echo does).
Zhu, Chengjie; Huang, Guoxiang
2011-11-07
We study linear and nonlinear propagations of probe and signal pulses in a multiple quantum-well structure with a four-level, double Λ-type configuration. We show that slow, mutually matched group velocities and giant Kerr nonlinearity of the probe and the signal pulses may be achieved with nearly vanishing optical absorption. Based on these properties we demonstrate that two-qubit quantum polarization phase gates can be constructed and highly entangled photon pairs may be produced. In addition, we show that coupled slow-light soliton pairs with very low generation power can be realized in the system.
Sharing of nonlinear load in parallel-connected three-phase converters
DEFF Research Database (Denmark)
Borup, Uffe; Blaabjerg, Frede; Enjeti, Prasad N.
2001-01-01
In this paper, a new control method is presented which enables equal sharing of linear and nonlinear loads in three-phase power converters connected in parallel, without communication between the converters. The paper focuses on solving the problem that arises when two converters with harmonic...... compensation are connected in parallel. Without the new solution, they are normally not able to distinguish the harmonic currents that flow to the load and harmonic currents that circulate between the converters. Analysis and experimental results on two 90-kVA 400-Hz converters in parallel are presented....... The results show that both linear and nonlinear loads can be shared equally by the proposed concept....
Observation of spectral self-imaging by nonlinear parabolic cross-phase modulation.
Lei, Lei; Huh, Jeonghyun; Cortés, Luis Romero; Maram, Reza; Wetzel, Benjamin; Duchesne, David; Morandotti, Roberto; Azaña, José
2015-11-15
We report an experimental demonstration of spectral self-imaging on a periodic frequency comb induced by a nonlinear all-optical process, i.e., parabolic cross-phase modulation in a highly nonlinear fiber. The comb free spectral range is reconfigured by simply tuning the temporal period of the pump parabolic pulse train. In particular, undistorted FSR divisions by factors of 2 and 3 are successfully performed on a 10 GHz frequency comb, realizing new frequency combs with an FSR of 5 and 3.3 GHz, respectively. The pump power requirement associated to the SSI phenomena is also shown to be significantly relaxed by the use of dark parabolic pulses.
Tamma, Kumar K.; Railkar, Sudhir B.
1988-01-01
The present paper describes the applicability of hybrid transfinite element modeling/analysis formulations for nonlinear heat conduction problems involving phase change. The methodology is based on application of transform approaches and classical Galerkin schemes with finite element formulations to maintain the modeling versatility and numerical features for computational analysis. In addition, in conjunction with the above, the effects due to latent heat are modeled using enthalpy formulations to enable a physically realistic approximation to be dealt computationally for materials exhibiting phase change within a narrow band of temperatures. Pertinent details of the approach and computational scheme adapted are described in technical detail. Numerical test cases of comparative nature are presented to demonstrate the applicability of the proposed formulations for numerical modeling/analysis of nonlinear heat conduction problems involving phase change.
Energy Technology Data Exchange (ETDEWEB)
Lin Jaeyuh [Chang Jung Univ., Tainan (Taiwan, Province of China); Chen Hantaw [National Cheng Kung Univ., Tainan (Taiwan, Province of China). Dept. of Mechanical Engineering
1997-09-01
A hybrid numerical scheme combining the Laplace transform and control-volume methods is presented to solve nonlinear two-dimensional phase-change problems with the irregular geometry. The Laplace transform method is applied to deal with the time domain, and then the control-volume method is used to discretize the transformed system in the space domain. Nonlinear terms induced by the temperature-dependent thermal properties are linearized by using the Taylor series approximation. Control-volume meshes in the solid and liquid regions during simulations are generated by using the discrete transfinite mapping method. The location of the phase-change interface and the isothermal distributions are determined. Comparison of these results with previous results shows that the present numerical scheme has good accuracy for two-dimensional phase-change problems. (orig.). With 10 figs.
Phase stabilization of Kerr frequency comb internally without nonlinear optical interferometry
Huang, S -W; Yang, J; Yu, M; Kwong, D -L; Wong, C W
2016-01-01
Optical frequency comb (OFC) technology has been the cornerstone for scientific breakthroughs such as precision frequency metrology, redefinition of time, extreme light-matter interaction, and attosecond sciences. While the current mode-locked laser-based OFC has had great success in extending the scientific frontier, its use in real-world applications beyond the laboratory setting remains an unsolved challenge. Microresonator-based OFCs, or Kerr frequency comb, have recently emerged as a candidate solution to the challenge because of their preferable size, weight, and power consumption (SWaP). On the other hand, the current phase stabilization technology requires either external optical references or power-demanding nonlinear processes, overturning the SWaP benefit of Kerr frequency combs. Introducing a new concept in phase control, here we report an internally phase stabilized Kerr frequency comb without the need of any optical references or nonlinear processes. We describe the comb generation analytically ...
Multichannel nonlinear distortion compensation using optical phase conjugation in a silicon nanowire
DEFF Research Database (Denmark)
Vukovic, Dragana; Schoerder, Jochen; Da Ros, Francesco
2015-01-01
silicon nanowire. A clear improvement in Q-factor is shown after 800-km transmission with high span input power when comparing the system with and without the optical phase conjugation module. The influence of OSNR degradation introduced by the silicon nanowire is analysed by comparing transmission......We experimentally demonstrate compensation of nonlinear distortion caused by the Kerr effect in a 3 x 32-Gbaud quadrature phase-shift keying (QPSK) wavelength-division multiplexing (WDM) transmission system. We use optical phase conjugation (OPC) produced by four-wave mixing (FWM) in a 7-mm long...... systems of three different lengths. This is the first demonstration of nonlinear compensation using a silicon nanowire. (C)2015 Optical Society of America...
A Nonlinear-Phase, Model-Based Human Detector for Radar (Preprint)
2010-06-01
characterization techniques cannot be applied. Note that the Fourier transform implements a linear- phase filter yielding a peak response...history of a human target can be highly nonlinear, resulting in an inherent SNR loss when matched filtered with a linear- phase filter , such as the FFT...filter with a linear phase filter , which may be expressed as TNjNj ee )1(121 LINw , (9) where i and are generalized
Nariyuki, Y; Nariyuki, Yasuhiro; Hada, Tohru
2006-01-01
Nonlinear relations among frequencies and phases in modulational instability of circularly polarized Alfven waves are discussed, within the context of one dimensional, dissipation-less, unforced fluid system. We show that generation of phase coherence is a natural consequence of the modulational instability of Alfven waves. Furthermore, we quantitatively evaluate intensity of wave-wave interaction by using bi-coherence, and also by computing energy flow among wave modes, and demonstrate that the energy flow is directly related to the phase coherence generation.
Phase locking and quantum statistics in a parametrically driven nonlinear resonator
Hovsepyan, G. H.; Shahinyan, A. R.; Chew, Lock Yue; Kryuchkyan, G. Yu.
2016-04-01
We discuss phase-locking phenomenon at low-level of quanta and quantum statistics for parametrically driven nonlinear Kerr resonator (PDNR). Oscillatory mode of PDNR is created in the process of a degenerate down-conversion of photons under interaction with a train of external Gaussian pulses. We calculate the distribution of photon-number states, the second-order correlation function of photons, the Wigner functions of cavity mode showing two-fold symmetry in phase space, and we analyze formation of phase-locked states in the regular as well as the quantum chaotic regime of the PDNR.
Pump induced normal mode splittings in phase conjugation in a Kerr nonlinear waveguide
Indian Academy of Sciences (India)
S Dutta Gupta
2000-03-01
Phase conjugation in a Kerr nonlinear waveguide is studied with counter-propagating normally incident pumps and a probe beam at an arbitrary angle of incidence. Detailed numerical results for the specular and phase conjugated reﬂectivities are obtained with full account of pump depletion. For sufﬁcient strengths of the pump a normal mode splitting is demonstrated in both the specular and the phase conjugated reﬂectivities of the probe wave. The splitting is explained in terms of a simple model under undepleted pump approximation.
Institute of Scientific and Technical Information of China (English)
丁先文; 徐亮; 林金官
2012-01-01
经验似然方法已经被广泛用于线性模型和广义线性模型.本文基于经验似然方法对非线性回归模型进行统计诊断.首先得到模型参数的极大经验似然估计；其次基于经验似然研究了三种不同的影响曲率度量；最后通过一个实际例子,说明了诊断方法的有效性.%The empirical likelihood method has been extensively applied to linear regression and generalized linear regression models. In this paper, the diagnostic measures for nonlinear regression models are studied based on the empirical likelihood method. First, the maximum empirical likelihood estimate of the parameters are obtained. Then, three different measures of influence curvatures are studied. Last, real data analysis are given to illustrate the validity of statistical diagnostic measures.
Yao, Weiping; Jing, Jiliang
2016-08-01
We study the holographic entanglement entropy in metal/superconductor phase transition with exponential nonlinear electrodynamics (ENE) in four and five dimensional spacetimes. We find that the holographic entanglement entropy is powerful tool in studying the properties of the holographic phase transition. For the operator , we show that the entanglement entropy in 4-dimensional spacetime decreases in metal phase but changes non-monotonously in superconducting phase with the increase of the ENE parameter. Interestingly, the change of the entanglement entropy in 5-dimensional spacetime for the two phases is monotonous as the ENE factor alters. For the operator , we note that the behavior of entanglement entropy in four and five dimensional spacetimes changes monotonously for the two phases as we tune the strength of the ENE. Furthermore, for both operators, the entanglement entropy in four or five dimensional black hole increases with the increase of the width of the region.
Lambert, Ronald J W; Mytilinaios, Ioannis; Maitland, Luke; Brown, Angus M
2012-08-01
This study describes a method to obtain parameter confidence intervals from the fitting of non-linear functions to experimental data, using the SOLVER and Analysis ToolPaK Add-In of the Microsoft Excel spreadsheet. Previously we have shown that Excel can fit complex multiple functions to biological data, obtaining values equivalent to those returned by more specialized statistical or mathematical software. However, a disadvantage of using the Excel method was the inability to return confidence intervals for the computed parameters or the correlations between them. Using a simple Monte-Carlo procedure within the Excel spreadsheet (without recourse to programming), SOLVER can provide parameter estimates (up to 200 at a time) for multiple 'virtual' data sets, from which the required confidence intervals and correlation coefficients can be obtained. The general utility of the method is exemplified by applying it to the analysis of the growth of Listeria monocytogenes, the growth inhibition of Pseudomonas aeruginosa by chlorhexidine and the further analysis of the electrophysiological data from the compound action potential of the rodent optic nerve.
Nonlinear two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase
Lu, Jian; Hwang, Harold Y; Ofori-Okai, Benjamin K; Fleischer, Sharly; Nelson, Keith A
2016-01-01
Ultrafast two-dimensional spectroscopy utilizes correlated multiple light-matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum. Its extension to the terahertz regime of the electromagnetic spectrum, where a rich variety of material degrees of freedom reside, remains an experimental challenge. Here we report ultrafast two-dimensional terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by three terahertz field-dipole interactions. The nonlinear time-domain orientation signals are mapped into the frequency domain in two-dimensional rotational spectra which reveal J-state-resolved nonlinear rotational dynamics. The approach enables direct observation of correlated rotational transitions and may reveal rotational coupling and relaxation pathways in the ground electronic and vibrational state.
Efficient supercontinuum generation in quadratic nonlinear waveguides without quasi-phase matching
Guo, Hairun; Steinert, Michael; Setzpfandt, Frank; Pertsch, Thomas; Chung, Hung-ping; Chen, Yen-Hung; Bache, Morten
2014-01-01
Efficient supercontinuum generation (SCG) requires excitation of solitons at the pump laser wavelength. Quadratic nonlinear waveguides may support an effective self-defocusing nonlinearity so solitons can directly be generated at common ultrafast laser wavelengths without any waveguide dispersion engineering. We here experimentally demonstrate efficient SCG in a standard lithium niobate (LN) waveguide without using quasi-phase matching (QPM). By using femtosecond pumps with wavelengths in the $1.25-1.5 \\mu\\rm m$ range, where LN has normal dispersion and thus supports self-defocusing solitons, octave-spanning SCG is observed. An optimized mid-IR waveguide design is expected to support even broader spectra. The QPM-free design reduces production complexity, allows longer waveguides, limits undesired spectral resonances and effectively allows using nonlinear crystals where QPM is inefficient or impossible. This result is important for mid-IR SCG, where QPM-free self-defocusing waveguides in common mid-IR nonline...
Saito, Shinji; Miyoshi, Yoshizumi; Seki, Kanako
2016-07-01
Wave-particle interactions with whistler chorus waves are believed to provide a primary acceleration for electrons in the outer radiation belt. Previous models for flux enhancement of the radiation belt have assumed the stochastic process as a diffusion manner of successive random-phase interactions, but physical mechanisms for the acceleration are not fully incorporated in these models because of the lack of a nonlinear scattering process. Here we report rapid increase in relativistic electron flux by using an innovative computer simulation model that incorporates not only diffusive process but also nonlinear scattering processes. The simulations show that three types of scattering simultaneously occur, which are diffusive, phase trapping, and phase bunching. It is found that the phase trapping is the most efficient mechanism to produce the MeV electrons rapidly in the scattering processes. The electrons are accelerated from 400 keV to over 1 MeV in time scale less than 60 s. On the other hand, as the phase trapping is suppressed by the breaking of relative phase angle between waves and gyrating electrons during the interaction, the increase of electron flux at MeV energy is clearly reduced. Our simulations conclude that the phase-trapping process causes a significant effect for the increase in relativistic electron flux and suggest that a quasi-linear diffusion model is not always valid to fully describe the relativistic electron acceleration.
Phase Structure of the Non-Linear σ-MODEL with Oscillator Representation Method
Mishchenko, Yuriy; Ji, Chueng-R.
2004-03-01
Non-Linear σ-model plays an important role in many areas of theoretical physics. Been initially uintended as a simple model for chiral symmetry breaking, this model exhibits such nontrivial effects as spontaneous symmetry breaking, asymptotic freedom and sometimes is considered as an effective field theory for QCD. Besides, non-linear σ-model can be related to the strong-coupling limit of O(N) ϕ4-theory, continuous limit of N-dim. system of quantum spins, fermion gas and many others and takes important place in undertanding of how symmetries are realized in quantum field theories. Because of this variety of connections, theoretical study of the critical properties of σ-model is interesting and important. Oscillator representation method is a theoretical tool for studying the phase structure of simple QFT models. It is formulated in the framework of the canonical quantization and is based on the view of the unitary non-equivalent representations as possible phases of a QFT model. Successfull application of the ORM to ϕ4 and ϕ6 theories in 1+1 and 2+1 dimensions motivates its study in more complicated models such as non-linear σ-model. In our talk we introduce ORM, establish its connections with variational approach in QFT. We then present results of ORM in non-linear σ-model and try to interprete them from the variational point of view. Finally, we point out possible directions for further research in this area.
Huttunen, Jani; Kokkola, Harri; Mielonen, Tero; Esa Juhani Mononen, Mika; Lipponen, Antti; Reunanen, Juha; Vilhelm Lindfors, Anders; Mikkonen, Santtu; Erkki Juhani Lehtinen, Kari; Kouremeti, Natalia; Bais, Alkiviadis; Niska, Harri; Arola, Antti
2016-07-01
In order to have a good estimate of the current forcing by anthropogenic aerosols, knowledge on past aerosol levels is needed. Aerosol optical depth (AOD) is a good measure for aerosol loading. However, dedicated measurements of AOD are only available from the 1990s onward. One option to lengthen the AOD time series beyond the 1990s is to retrieve AOD from surface solar radiation (SSR) measurements taken with pyranometers. In this work, we have evaluated several inversion methods designed for this task. We compared a look-up table method based on radiative transfer modelling, a non-linear regression method and four machine learning methods (Gaussian process, neural network, random forest and support vector machine) with AOD observations carried out with a sun photometer at an Aerosol Robotic Network (AERONET) site in Thessaloniki, Greece. Our results show that most of the machine learning methods produce AOD estimates comparable to the look-up table and non-linear regression methods. All of the applied methods produced AOD values that corresponded well to the AERONET observations with the lowest correlation coefficient value being 0.87 for the random forest method. While many of the methods tended to slightly overestimate low AODs and underestimate high AODs, neural network and support vector machine showed overall better correspondence for the whole AOD range. The differences in producing both ends of the AOD range seem to be caused by differences in the aerosol composition. High AODs were in most cases those with high water vapour content which might affect the aerosol single scattering albedo (SSA) through uptake of water into aerosols. Our study indicates that machine learning methods benefit from the fact that they do not constrain the aerosol SSA in the retrieval, whereas the LUT method assumes a constant value for it. This would also mean that machine learning methods could have potential in reproducing AOD from SSR even though SSA would have changed during
Ramoelo, A.; Skidmore, A. K.; Cho, M. A.; Mathieu, R.; Heitkönig, I. M. A.; Dudeni-Tlhone, N.; Schlerf, M.; Prins, H. H. T.
2013-08-01
Grass nitrogen (N) and phosphorus (P) concentrations are direct indicators of rangeland quality and provide imperative information for sound management of wildlife and livestock. It is challenging to estimate grass N and P concentrations using remote sensing in the savanna ecosystems. These areas are diverse and heterogeneous in soil and plant moisture, soil nutrients, grazing pressures, and human activities. The objective of the study is to test the performance of non-linear partial least squares regression (PLSR) for predicting grass N and P concentrations through integrating in situ hyperspectral remote sensing and environmental variables (climatic, edaphic and topographic). Data were collected along a land use gradient in the greater Kruger National Park region. The data consisted of: (i) in situ-measured hyperspectral spectra, (ii) environmental variables and measured grass N and P concentrations. The hyperspectral variables included published starch, N and protein spectral absorption features, red edge position, narrow-band indices such as simple ratio (SR) and normalized difference vegetation index (NDVI). The results of the non-linear PLSR were compared to those of conventional linear PLSR. Using non-linear PLSR, integrating in situ hyperspectral and environmental variables yielded the highest grass N and P estimation accuracy (R2 = 0.81, root mean square error (RMSE) = 0.08, and R2 = 0.80, RMSE = 0.03, respectively) as compared to using remote sensing variables only, and conventional PLSR. The study demonstrates the importance of an integrated modeling approach for estimating grass quality which is a crucial effort towards effective management and planning of protected and communal savanna ecosystems.
Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media
Phillips, C R; Gallmann, L; Keller, U
2015-01-01
Advances in the amplification and manipulation of ultrashort laser pulses has led to revolutions in several areas. Examples include chirped pulse amplification for generating high peak-power lasers, power-scalable amplification techniques, pulse shaping via modulation of spatially-dispersed laser pulses, and efficient frequency-mixing in quasi-phase-matched nonlinear crystals to access new spectral regions. In this work, we introduce and demonstrate a new platform for nonlinear optics which has the potential to combine all of these separate functionalities (pulse amplification, frequency transfer, and pulse shaping) into a single monolithic device. Moreover, our approach simultaneously offers solutions to the performance-limiting issues in the conventionally-used techniques, and supports scaling in power and bandwidth of the laser source. The approach is based on two-dimensional patterning of quasi-phase-matching gratings combined with optical parametric interactions involving spatially dispersed laser pulses...
A two-phase free boundary problem for a nonlinear diffusion-convection equation
Energy Technology Data Exchange (ETDEWEB)
De Lillo, S; Lupo, G [Dipartimento di Matematica e Informatica, Universita degli Studi di Perugia, Via Vanvitelli 1, 06123 Perugia (Italy)], E-mail: silvana.delillo@pg.infn.it
2008-04-11
A two-phase free boundary problem associated with a diffusion-convection equation is considered. The problem is reduced to a system of nonlinear integral equations, which admits a unique solution for small times. The system admits an explicit two-component solution corresponding to a two-component shock wave of the Burgers equation. The stability of such a solution is also discussed.
A Phase Field Model of Deformation Twinning: Nonlinear Theory and Numerical Simulations
2011-03-01
anisotropic elastic constants. The present phase field method does not enable resolution of atomic details of defect structures afforded by quantum or...multiple twins, following the theory in Appendix B. 6. Conclusions A nonlinear theory has been developed to address mechani - cal twinning. The general...Mag. A 63 (1991) 1001–1012. [25] A. Paxton, P. Gumbsch, M. Methfessel, A quantum mechanical calculation of the theoretical strength of metals, Phil. Mag
Numerical method for nonlinear two-phase displacement problem and its application
Institute of Scientific and Technical Information of China (English)
YUAN Yi-rang; LIANG Dong; RUI Hong-xing; DU Ning; WANG Wen-qia
2008-01-01
For the three-dimensional nonlinear two-phase displacement problem, the modified upwind finite difference fractional steps schemes were put forward. Some techniques, such as calculus of variations, induction hypothesis, decomposition of high order difference operators, the theory of prior estimates and techniques were used. Optimal order estimates were derived for the error in the approximation solution. These methods have been successfully used to predict the consequences of seawater intrusion and protection projects.
Hagberg, Gisela E; Bianciardi, Marta; Brainovich, Valentina; Cassara, Antonino Mario; Maraviglia, Bruno
2012-02-15
Although the majority of fMRI studies exploit magnitude changes only, there is an increasing interest regarding the potential additive information conveyed by the phase signal. This integrated part of the complex number furnished by the MR scanners can also be used for exploring direct detection of neuronal activity and for thermography. Few studies have explicitly addressed the issue of the available signal stability in the context of phase time-series, and therefore we explored the spatial pattern of frequency specific phase fluctuations, and evaluated the effect of physiological noise components (heart beat and respiration) on the phase signal. Three categories of retrospective noise reduction techniques were explored and the temporal signal stability was evaluated in terms of a physiologic noise model, for seven fMRI measurement protocols in eight healthy subjects at 3T, for segmented CSF, gray and white matter voxels. We confirmed that for most processing methods, an efficient use of the phase information is hampered by the fact that noise from physiological and instrumental sources contributes significantly more to the phase than to the magnitude instability. Noise regression based on the phase evolution of the central k-space point, RETROICOR, or an orthonormalized combination of these were able to reduce their impact, but without bringing phase stability down to levels expected from the magnitude signal. Similar results were obtained after targeted removal of scan-to-scan variations in the bulk magnetic field by the dynamic off-resonance in k-space (DORK) method and by the temporal off-resonance alignment of single-echo time series technique (TOAST). We found that spatial high-pass filtering was necessary, and in vivo a Gaussian filter width of 20mm was sufficient to suppress physiological noise and bring the phase fluctuations to magnitude levels. Stronger filters brought the fluctuations down to levels dictated by thermal noise contributions, and for 62
Backward phase-matching for nonlinear optical generation in negative-index materials
Lan, Shoufeng; Kang, Lei; Schoen, David T.; Rodrigues, Sean P.; Cui, Yonghao; Brongersma, Mark L.; Cai, Wenshan
2015-08-01
Metamaterials have enabled the realization of unconventional electromagnetic properties not found in nature, which provokes us to rethink the established rules of optics in both the linear and nonlinear regimes. One of the most intriguing phenomena in nonlinear metamaterials is `backward phase-matching', which describes counter-propagating fundamental and harmonic waves in a negative-index medium. Predicted nearly a decade ago, this process is still awaiting a definitive experimental confirmation at optical frequencies. Here, we report optical measurements showing backward phase-matching by exploiting two distinct modes in a nonlinear plasmonic waveguide, where the real parts of the mode refractive indices are 3.4 and -3.4 for the fundamental and the harmonic waves respectively. The observed peak conversion efficiency at the excitation wavelength of ~780 nm indicates the fulfilment of the phase-matching condition of k2ω = 2kω and n2ω = -nω, where the coherent harmonic wave emerges along a direction opposite to that of the incoming fundamental light.
Phase disruption as a new design paradigm for optimizing the nonlinear-optical response
Lytel, Rick; Kuzyk, Mark G
2015-01-01
The intrinsic optical nonlinearities of quasi-one dimensional structures, including conjugated chain polymers and nanowires, are shown to be dramatically enhanced by the judicious placement of a side group or wire of sufficiently short length to create a large phase disruption in the dominant eigenfunctions along the main path of probability current. Phase disruption is proposed as a new general principle for the design of molecules, nanowires and any quasi-1D quantum system with large intrinsic response and does not require charge donors-acceptors at the ends.
Low-Complexity Tracking of Laser and Nonlinear Phase Noise in WDM Optical Fiber Systems
DEFF Research Database (Denmark)
Yankov, Metodi Plamenov; Fehenberger, Tobias; Barletta, Luca
2015-01-01
In this paper, the wavelength division multiplexed (WDM) fiber optic channel is considered. It is shown that for ideal distributed Raman amplification (IDRA), the Wiener process model is suitable for the non-linear phase noise due to cross phase modulation from neighboring channels. Based...... compared to previous trellis-based approaches, which require numerical integration. Further, the proposed method performs very well in low-to-moderate signal-to-noise ratio (SNR), where standard decision directed (DD) methods, especially for high-order modulation, fail. The proposed algorithm does not rely...... on this model, a phase noise tracking algorithm is presented. We approximate the distribution of the phase noise at each time instant by a mixture of Tikhonov distributions, and derive a closed form expression for the posterior probabilities of the input symbols. This reduces the complexity dramatically...
Wan, X.; Tse, P. W.; Xu, G. H.; Tao, T. F.; Zhang, Q.
2016-04-01
Most previous studies on nonlinear Lamb waves are conducted using mode pairs that satisfying strict phase velocity matching and non-zero power flux criteria. However, there are some limitations in existence. First, strict phase velocity matching is not existed in the whole frequency bandwidth; Second, excited center frequency is not always exactly equal to the true phase-velocity-matching frequency; Third, mode pairs are isolated and quite limited in number; Fourth, exciting a single desired primary mode is extremely difficult in practice and the received signal is quite difficult to process and interpret. And few attention has been paid to solving these shortcomings. In this paper, nonlinear S0 mode Lamb waves at low-frequency range satisfying approximate phase velocity matching is proposed for the purpose of overcoming these limitations. In analytical studies, the secondary amplitudes with the propagation distance considering the fundamental frequency, the maximum cumulative propagation distance (MCPD) with the fundamental frequency and the maximum linear cumulative propagation distance (MLCPD) using linear regression analysis are investigated. Based on analytical results, approximate phase velocity matching is quantitatively characterized as the relative phase velocity deviation less than a threshold value of 1%. Numerical studies are also conducted using tone burst as the excitation signal. The influences of center frequency and frequency bandwidth on the secondary amplitudes and MCPD are investigated. S1-S2 mode with the fundamental frequency at 1.8 MHz, the primary S0 mode at the center frequencies of 100 and 200 kHz are used respectively to calculate the ratios of nonlinear parameter of Al 6061-T6 to Al 7075-T651. The close agreement of the computed ratios to the actual value verifies the effectiveness of nonlinear S0 mode Lamb waves satisfying approximate phase velocity matching for characterizing the material nonlinearity. Moreover, the ratios derived from
DEFF Research Database (Denmark)
Zeng, Xianglong; Guo, Hairun; Zhou, Binbin
2012-01-01
In few-cycle soliton generation with large compression factors using cascaded nonlinearities the pulse quality can be improved by engineering quasi-phase-matching structures. The soliton-induced mid-IR optical Cherenkov wave is also enhanced.......In few-cycle soliton generation with large compression factors using cascaded nonlinearities the pulse quality can be improved by engineering quasi-phase-matching structures. The soliton-induced mid-IR optical Cherenkov wave is also enhanced....
Measurement of nonlinear coefficient and phase matching characteristics of AgGaS sub 2
Energy Technology Data Exchange (ETDEWEB)
Canarelli, P.; Benko, Z.; Hielscher, A.H.; Curl, R.F.; Tittle, F.K. (Dept. of Electrical and Computer Engineering, Rice Quantum Inst., Rice Univ., Houston, TX (US))
1992-01-01
This paper reports on a nonlinear optical characteristics of AgGaS{sub 2} that were investigated by measuring visible parametric fluorescence with a pump wavelength of 600 nm. A value of d{sub 36}(AgGaS{sub 2}) = 31 {plus minus} 5 10{sup {minus}12} m/V for the nonlinear coefficient was determined. The temperature dependence of phase matching up to 100{degrees}C was studied. A significant temperature effect, although much smaller than the LiNbO{sub 3}, was found and results in a change in the infrared difference frequency generated of {approximately}0.6 cm{sup {minus}1} {center dot} {degrees}C{sup {minus}1}.
Dikaios, Nikolaos; Atkinson, David; Tudisca, Chiara; Purpura, Pierpaolo; Forster, Martin; Ahmed, Hashim; Beale, Timothy; Emberton, Mark; Punwani, Shonit
2017-03-01
The aim of this work is to compare Bayesian Inference for nonlinear models with commonly used traditional non-linear regression (NR) algorithms for estimating tracer kinetics in Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI). The algorithms are compared in terms of accuracy, and reproducibility under different initialization settings. Further it is investigated how a more robust estimation of tracer kinetics affects cancer diagnosis. The derived tracer kinetics from the Bayesian algorithm were validated against traditional NR algorithms (i.e. Levenberg-Marquardt, simplex) in terms of accuracy on a digital DCE phantom and in terms of goodness-of-fit (Kolmogorov-Smirnov test) on ROI-based concentration time courses from two different patient cohorts. The first cohort consisted of 76 men, 20 of whom had significant peripheral zone prostate cancer (any cancer-core-length (CCL) with Gleason>3+3 or any-grade with CCL>=4mm) following transperineal template prostate mapping biopsy. The second cohort consisted of 9 healthy volunteers and 24 patients with head and neck squamous cell carcinoma. The diagnostic ability of the derived tracer kinetics was assessed with receiver operating characteristic area under curve (ROC AUC) analysis. The Bayesian algorithm accurately recovered the ground-truth tracer kinetics for the digital DCE phantom consistently improving the Structural Similarity Index (SSIM) across the 50 different initializations compared to NR. For optimized initialization, Bayesian did not improve significantly the fitting accuracy on both patient cohorts, and it only significantly improved the ve ROC AUC on the HN population from ROC AUC=0.56 for the simplex to ROC AUC=0.76. For both cohorts, the values and the diagnostic ability of tracer kinetic parameters estimated with the Bayesian algorithm weren't affected by their initialization. To conclude, the Bayesian algorithm led to a more accurate and reproducible quantification of tracer kinetic
Yang, Haijian
2016-07-26
Fully implicit methods are drawing more attention in scientific and engineering applications due to the allowance of large time steps in extreme-scale simulations. When using a fully implicit method to solve two-phase flow problems in porous media, one major challenge is the solution of the resultant nonlinear system at each time step. To solve such nonlinear systems, traditional nonlinear iterative methods, such as the class of the Newton methods, often fail to achieve the desired convergent rate due to the high nonlinearity of the system and/or the violation of the boundedness requirement of the saturation. In the paper, we reformulate the two-phase model as a variational inequality that naturally ensures the physical feasibility of the saturation variable. The variational inequality is then solved by an active-set reduced-space method with a nonlinear elimination preconditioner to remove the high nonlinear components that often causes the failure of the nonlinear iteration for convergence. To validate the effectiveness of the proposed method, we compare it with the classical implicit pressure-explicit saturation method for two-phase flow problems with strong heterogeneity. The numerical results show that our nonlinear solver overcomes the often severe limits on the time step associated with existing methods, results in superior convergence performance, and achieves reduction in the total computing time by more than one order of magnitude.
Nonlinear Phase Distortion in a Ti:Sapphire Optical Amplifier for Optical Stochastic Cooling
Energy Technology Data Exchange (ETDEWEB)
Andorf, Matthew [NICADD, DeKalb; Lebedev, Valeri [Fermilab; Piot, Philippe [NICADD, DeKalb; Ruan, Jinhao [Fermilab
2016-06-01
Optical Stochastic Cooling (OSC) has been considered for future high-luminosity colliders as it offers much faster cooling time in comparison to the micro-wave stochastic cooling. The OSC technique relies on collecting and amplifying a broadband optical signal from a pickup undulator and feeding the amplified signal back to the beam. It creates a corrective kick in a kicker undulator. Owing to its superb gain qualities and broadband amplification features, Titanium:Sapphire medium has been considered as a gain medium for the optical amplifier (OA) needed in the OSC*. A limiting factor for any OA used in OSC is the possibility of nonlinear phase distortions. In this paper we experimentally measure phase distortions by inserting a single-pass OA into one leg of a Mach-Zehnder interferometer. The measurement results are used to estimate the reduction of the corrective kick a particle would receive due to these phase distortions in the kicker undulator.
Subharmonic phase clusters in the complex Ginzburg-Landau equation with nonlinear global coupling.
García-Morales, Vladimir; Orlov, Alexander; Krischer, Katharina
2010-12-01
A wide variety of subharmonic n -phase cluster patterns was observed in experiments with spatially extended chemical and electrochemical oscillators. These patterns cannot be captured with a phase model. We demonstrate that the introduction of a nonlinear global coupling (NGC) in the complex Ginzburg-Landau equation has subharmonic cluster pattern solutions in wide parameter ranges. The NGC introduces a conservation law for the oscillatory state of the homogeneous mode, which describes the strong oscillations of the mean field in the experiments. We show that the NGC causes a pronounced 2:1 self-resonance on any spatial inhomogeneity, leading to two-phase subharmonic clustering, as well as additional higher resonances. Nonequilibrium Ising-Bloch transitions occur as the coupling strength is varied.
Non-linear clustering during the BEC dark matter phase transition
de Freitas, Rodolfo C
2015-01-01
Spherical collapse of the Bose-Einstein Condensate (BEC) dark matter model is studied. The evolution of perturbed quantities like the density of the collapsed region and its expansion rate are calculated for two scenarios. Firstly, we consider the case of a sharp phase transition (which happens when the critical temperature is reached) from the normal dark matter state to the condensate one. In the second case studied we consider a smooth first order phase transition where there is a continuous conversion of "normal" dark matter to the BEC phase. We calculate in detail the perturbative quantities at nonlinear level presenting numerical results for the physics of the collapse for a wide range of the model's space parameter. The model is properly compared to the standard dark matter scenario.
Miksovsky, J.; Raidl, A.
Time delays phase space reconstruction represents one of useful tools of nonlinear time series analysis, enabling number of applications. Its utilization requires the value of time delay to be known, as well as the value of embedding dimension. There are sev- eral methods how to estimate both these parameters. Typically, time delay is computed first, followed by embedding dimension. Our presented approach is slightly different - we reconstructed phase space for various combinations of mentioned parameters and used it for prediction by means of the nearest neighbours in the phase space. Then some measure of prediction's success was computed (correlation or RMSE, e.g.). The position of its global maximum (minimum) should indicate the suitable combination of time delay and embedding dimension. Several meteorological (particularly clima- tological) time series were used for the computations. We have also created a MS- Windows based program in order to implement this approach - its basic features will be presented as well.
Mao, Heng; Zhao, Dazun
2009-03-16
A modified Levenberg-Marquardt (MLM) algorithm is proposed to substitute for modified G-S (MGS) algorithm in some situations of phase-diverse phase retrieval wavefront sensing (WFS), such as the obstructed pupil, in which the second derivative information is specifically employed to eliminate the local minimum stagnation. Experiments have been performed to validate MLM algorithm in WFS accuracy (less than lambda/30 RMS) referring to ZYGO interferometer results and in WFS repeatability (less than lambda/200 RMS), even the dynamic range is more than 7 lambda PV. Moreover, experiments have shown the MLM algorithm is superior to the MGS algorithm both in WFS accuracy and repeatability.
Directory of Open Access Journals (Sweden)
M. Simić
2014-06-01
Full Text Available This paper describes the realization of a three-phase transformer model based on a non-linear open-circuit characteristic. The proposed model is based on the fact that in case of a star connection with a neutral wire on the primary windings for all three phases, the applied voltage presents phase voltage and line (phase currents are magnetization currents. These variables are available for measuring and it is easy to obtain three non-linear open circuit characteristics. The results of simulations and a comparison with references and experimental results verified this approach.
A least angle regression method for fMRI activation detection in phase-encoded experimental designs.
Li, Xingfeng; Coyle, Damien; Maguire, Liam; McGinnity, Thomas M; Watson, David R; Benali, Habib
2010-10-01
This paper presents a new regression method for functional magnetic resonance imaging (fMRI) activation detection. Unlike general linear models (GLM), this method is based on selecting models for activation detection adaptively which overcomes the limitation of requiring a predefined design matrix in GLM. This limitation is because GLM designs assume that the response of the neuron populations will be the same for the same stimuli, which is often not the case. In this work, the fMRI hemodynamic response model is selected from a series of models constructed online by the least angle regression (LARS) method. The slow drift terms in the design matrix for the activation detection are determined adaptively according to the fMRI response in order to achieve the best fit for each fMRI response. The LARS method is then applied along with the Moore-Penrose pseudoinverse (PINV) and fast orthogonal search (FOS) algorithm for implementation of the selected model to include the drift effects in the design matrix. Comparisons with GLM were made using 11 normal subjects to test method superiority. This paper found that GLM with fixed design matrix was inferior compared to the described LARS method for fMRI activation detection in a phased-encoded experimental design. In addition, the proposed method has the advantage of increasing the degrees of freedom in the regression analysis. We conclude that the method described provides a new and novel approach to the detection of fMRI activation which is better than GLM based analyses.
Model-order reduction of nonlinear models of electromagnetic phased-array hyperthermia.
Kowalski, Marc E; Jin, Jian-Ming
2003-11-01
A method based on the Karhunen-Loéve (KL) transform is proposed for the reduction of large-scale, nonlinear ordinary differential equations such as those arising from the finite difference modeling of biological heat transfer. The method of snapshots is used to expedite computation of the required quantities in the KL procedure. Guidelines are presented and validated for snapshot selection and resultant basis series truncation, emphasizing the special physical features of the electromagnetic phased-array heat transfer physics. Applications to fast temperature prediction are presented.
DEFF Research Database (Denmark)
Andersen, Lasse Mejling; McKinstrie, C. J.; Rottwitt, Karsten
2013-01-01
Recently, we solved the coupled-mode equations for Bragg scattering (BS) in the low- and high-conversion regimes, but without the effects of nonlinear phase modulation (NPM). We now present solutions and Green functions in the low-conversion regime that include NPM. We find that NPM does not change...... are still possible, even when the effects of NPM are included. Finally, the effects of using different input signals are considered, and we conclude that using the natural input modes of the system drastically increases the efficiency. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers...
Institute of Scientific and Technical Information of China (English)
冯三营; 薛留根
2012-01-01
考虑非参数协变量带有测量误差(EV)的非线性半参数模型,在测量误差分布为普通光滑分布时,利用经验似然方法,给出了回归系数,光滑函数以及误差方差的最大经验似然估计.在一定条件下证明了所得估计量的渐近正态性和相合性.最后通过数值模拟研究了所提估计方法在有限样本下的实际表现.%In this paper, we consider the nonlinear semiparametric models with measurement error in the nonparametric part. When the error is ordinarily smooth, we obtain the maximum empirical likelihood estimators of regression coefficient, smooth function and error variance by using the empirical likelihood method. The asymptotic normality and consistency of the proposed estimators are proved under some appropriate conditions. Finite sample performance of the proposed method is illustrated in a simulation study.
Observation and output adaptive tracking for a class of nonlinear non-minimum phase systems
Bartolini, G.; Estrada, A.; Punta, E.
2016-09-01
In this paper, the output tracking problem for a class of systems with unstable zero dynamics is addressed. The state is assumed not measurable. The output of the dynamical system to be controlled has to track a signal, which is the sum of a known number of sinusoids with unknown frequencies, amplitudes and phases. The non-minimum phase nature of the considered systems prevents the direct tracking by standard sliding mode methods, which are known to generate unstable behaviours of the internal dynamics. The proposed method relies on the availability of a flat output and its time derivatives which are functions of the unavailable state; therefore, a nonlinear observer is needed. Due to the uncertainty in the frequencies and in the parameters defining the relationship between the output of the system and the flat states, adaptive indirect methods are applied.
Phase quadrature discrimination based on three-pump four-wave mixing in nonlinear optical fibers.
Baillot, Maxime; Gay, Mathilde; Peucheret, Christophe; Michel, Joindot; Chartier, Thierry
2016-11-14
We theoretically and experimentally study the principle of phase-sensitive frequency conversion in a highly-nonlinear fiber using three pump waves. This mechanism, originally demonstrated with four continuous-wave pumps and a signal wave, is based on four-wave mixing and enables to convert the two quadrature components of the signal to different frequencies. In this work, we derive a set of two simple equations to describe this mechanism and find analytic solutions. We show that only three pumps are required, instead of four as originally proposed. We give simple relations to determine the initial conditions for the power levels and the phases of the pumps. To validate this approach, we perform an experimental demonstration of the three-pump scheme and find excellent agreement with the theory.
Gravitational Waves from the Phase Transition of a Non-linearly Realised Electroweak Gauge Symmetry
Kobakhidze, Archil; Yue, Jason
2016-01-01
Within the Standard Model with non-linearly realised electroweak symmetry, the LHC Higgs boson may reside in a singlet representation of the gauge group. Several new interactions are then allowed, including anomalous Higgs self-couplings, which may drive the electroweak phase transition to be strongly first-order. In this paper we investigate the cosmological electroweak phase transition in a simplified model with an anomalous Higgs cubic self- coupling. We look at the feasibility of detecting gravitational waves produced during such a transition in the early universe by future space-based experiments. We find that for the range of relatively large cubic couplings, $111~{\\rm GeV}~ \\lesssim |\\kappa| \\lesssim 118~{\\rm GeV}$, $\\sim $mHz frequency gravitational waves can be observed by eLISA, while BBO will potentially be able to detect waves in a wider frequency range, $0.1-10~$mHz.
eta/s and the phase transition of the Non-Linear Sigma Model
Dobado, Antonio; Torres-Rincon, Juan M
2008-01-01
We present a calculation of eta/s for the meson gas (zero baryon number) within unitarized NLO chiral perturbation theory and confirm the observation that eta/s decreases towards the possible phase transition to a quark-gluon plasma/liquid. The value is however somewhat higher than previously estimated in LO chiPT. We then study the behavior of the viscosity over entropy density across the known second order phase transition in the Non-Linear Sigma Model, and establish that it has indeed a minimum that, within calculational uncertainties, can be identified with the phase transition. Finally we examine the case of atomic Argon gas to check the discontinuity of eta/s across a first order phase transition. Our results reinforce the possibility of employing the KSS number to pin down the phase transition and critical point to a cross-over in strongly interacting nuclear matter between the hadron gas and the quark and gluon plasma/liquid.
Institute of Scientific and Technical Information of China (English)
李蔚; 梅君瑶; 韩庆生; 王腾
2009-01-01
The analytical expression of bit error probability in a balanced differential phase-shift keying(DPSK) optical receiver considering nonlinear phase noise and EDFA ASE noise is given,which is very useful to estimate the performance of DPSK balanced and unbalanced receiver in optical communication system.Through analysis,if only nonlinear phase noise is considered,both the balance and unbalanced receivers have the same performances.But if adding the ASE noise of EDFA,the balanced receiver is better.
Sheykhi, A.; Naeimipour, F.; Zebarjad, S. M.
2015-06-01
Considering the Lagrangian of the logarithmic nonlinear electrodynamics in the presence of a scalar dilaton field, we obtain a new class of topological black hole solutions of Einstein-dilaton gravity with two Liouville-type dilaton potentials. Black hole horizons and cosmological horizons, in these spacetimes, can be a two-dimensional positive, zero, or negative constant curvature surface. We find that the behavior of the electric field crucially depends on the dilaton coupling constant α . For small α , the electric field diverges near the origin, although its divergency is weaker than the linear Maxwell field. However, with increasing α , the behavior of the electric field, near the origin, approaches to that of the Maxwell field. We also study casual structure, asymptotic behavior, and physical properties of the solutions. We find that, depending on the model parameters, the topological dilaton black holes may have one or two horizons, and even in some cases we encounter a naked singularity without horizon. We compute the conserved and thermodynamic quantities of the spacetime and investigate that these quantities satisfy the first law of thermodynamics. We also probe thermal stability in the canonical and grand canonical ensembles and disclose the effects of the dilaton field as well as nonlinear parameter on the thermal stability of the solutions. Finally, we investigate thermodynamical geometry of the obtained solutions by introducing a new metric and studying the phase transition points due to the divergency of the Ricci scalar. We find that the dilaton field affects the phase transition points of the system.
Phases of 4D Scalar-tensor black holes coupled to Born-Infeld nonlinear electrodynamics
Stefanov, Ivan Zh; Todorov, Michail D
2007-01-01
Recent results show that when non-linear electrodynamics is considered the no-scalar-hair theorems in the scalar-tensor theories (STT) of gravity, which are valid for the cases of neutral black holes and charged black holes in the Maxwell electrodynamics, can be circumvented. What is even more, in the present work, we find new non-unique, numerical solutions describing charged black holes coupled to non-linear electrodynamics in a special class of scalar-tensor theories. One of the phases has a trivial scalar field and coincides with the corresponding solution in General Relativity. The other four phases that we find are characterized by the value of the scalar field charge. The causal structure and some aspects of the stability of the solutions have also been studied. For the scalar-tensor theories considered, the black holes have a single, non-degenerate horizon, i.e., their causal structure resembles that of the Schwarzschild black hole. The thermodynamic analysis of the stability of the solutions indicate...
Chitgarha, Mohammad Reza; Khaleghi, Salman; Ziyadi, Morteza; Mohajerin-Ariaei, Amirhossein; Almaiman, Ahmed; Daab, Wajih; Rogawski, Devora; Tur, Moshe; Touch, Joseph D; Langrock, Carsten; Fejer, Martin M; Willner, Alan E
2014-05-15
We propose and demonstrate an all-optical phase noise reduction scheme that uses optical nonlinear mixing and tunable optical delays to suppress the low-speed phase noise induced by laser linewidth. By utilizing the phase conjugate copy of the original signal and two narrow-linewidth optical pumps, the phase noise induced by laser linewidth can be reduced by a factor of ∼5 for a laser with 500-MHz phase noise bandwidth. The error-vector-magnitude can be improved from ∼30% to ∼14% for the same laser linewidth for 40-Gbit/s quadrature phase shift keying signal.
Institute of Scientific and Technical Information of China (English)
Xie Ru-Sheng; Fan Wen-Bin; Lu Ming; Zhao You-Yuan
2007-01-01
This paper reports that the nonlinear refractive index of a novel organic optical storage film doped azodiphenylamine polymer is measured by using the Z-scan technique. The nonlinear refractive index up to 3.7 ×10-6 cm2/W induced by thermo-optical effect is obtained. It indicates that the sample has excellent optical nonlinear properties. The physical mechanism of the great nonlinear optical effect is analysed and the optical conjugate characteristic is also discussed with degenerate four-wave-mixing. The phase conjugate wave diffracted from the formative refractive index grating in the sample is acquired and its equivalent reflectivity reaches about 22%. On this basis,the reflective wave phase-conjugated mirror system was designed, and the image aberration experienced in propagation in the storage experiment is corrected by using the system.
Liu, Tong-Zu; Xu, Chang; Rota, Matteo; Cai, Hui; Zhang, Chao; Shi, Ming-Jun; Yuan, Rui-Xia; Weng, Hong; Meng, Xiang-Yu; Kwong, Joey S W; Sun, Xin
2017-04-01
Approximately 27-37% of the general population experience prolonged sleep duration and 12-16% report shortened sleep duration. However, prolonged or shortened sleep duration may be associated with serious health problems. A comprehensive, flexible, non-linear meta-regression with restricted cubic spline (RCS) was used to investigate the dose-response relationship between sleep duration and all-cause mortality in adults. Medline (Ovid), Embase, EBSCOhost-PsycINFO, and EBSCOhost-CINAHL Plus databases, reference lists of relevant review articles, and included studies were searched up to Nov. 29, 2015. Prospective cohort studies investigating the association between sleep duration and all-cause mortality in adults with at least three categories of sleep duration were eligible for inclusion. We eventually included in our study 40 cohort studies enrolling 2,200,425 participants with 271,507 deaths. A J-shaped association between sleep duration and all-cause mortality was present: compared with 7 h of sleep (reference for 24-h sleep duration), both shortened and prolonged sleep durations were associated with increased risk of all-cause mortality (4 h: relative risk [RR] = 1.05; 95% confidence interval [CI] = 1.02-1.07; 5 h: RR = 1.06; 95% CI = 1.03-1.09; 6 h: RR = 1.04; 95% CI = 1.03-1.06; 8 h: RR = 1.03; 95% CI = 1.02-1.05; 9 h: RR = 1.13; 95% CI = 1.10-1.16; 10 h: RR = 1.25; 95% CI = 1.22-1.28; 11 h: RR = 1.38; 95% CI = 1.33-1.44; n = 29; P < 0.01 for non-linear test). With regard to the night-sleep duration, prolonged night-sleep duration was associated with increased all-cause mortality (8 h: RR = 1.01; 95% CI = 0.99-1.02; 9 h: RR = 1.08; 95% CI = 1.05-1.11; 10 h: RR = 1.24; 95% CI = 1.21-1.28; n = 13; P < 0.01 for non-linear test). Subgroup analysis showed females with short sleep duration a day (<7 h) were at high risk of all-cause mortality (4 h: RR = 1.07; 95% CI = 1.02-1.13; 5 h: RR = 1.08; 95
Nonlinear analysis of gas-water/oil-water two-phase flow in complex networks
Gao, Zhong-Ke; Wang, Wen-Xu
2014-01-01
Understanding the dynamics of multi-phase flows has been a challenge in the fields of nonlinear dynamics and fluid mechanics. This chapter reviews our work on two-phase flow dynamics in combination with complex network theory. We systematically carried out gas-water/oil-water two-phase flow experiments for measuring the time series of flow signals which is studied in terms of the mapping from time series to complex networks. Three network mapping methods were proposed for the analysis and identification of flow patterns, i.e. Flow Pattern Complex Network (FPCN), Fluid Dynamic Complex Network (FDCN) and Fluid Structure Complex Network (FSCN). Through detecting the community structure of FPCN based on K-means clustering, distinct flow patterns can be successfully distinguished and identified. A number of FDCN’s under different flow conditions were constructed in order to reveal the dynamical characteristics of two-phase flows. The FDCNs exhibit universal power-law degree distributions. The power-law exponent ...
Hydration, phase separation and nonlinear rheology of temperature-sensitive water-soluble polymers.
Tanaka, Fumihiko; Koga, Tsuyoshi; Kaneda, Isamu; Winnik, Françoise M
2011-07-20
The collapse of a poly(N-isopropylacrylamide) (PNIPAM) chain upon heating and the phase diagrams of aqueous PNIPAM solutions with a very flat lower critical solution temperature (LCST) phase separation line are theoretically studied on the basis of cooperative dehydration (simultaneous dissociation of bound water molecules in a group of correlated sequence), and compared with the experimental observation of temperature-induced coil-globule transition by light scattering methods. The transition becomes sharper with the cooperativity parameter σ of hydration. The reentrant coil-globule-coil transition and cononsolvency in a mixed solvent of water and methanol are also studied from the viewpoint of competitive hydrogen bonds between polymer-water and polymer-methanol. The downward shift of the cloud-point curves (LCST cononsolvency) with the mol fraction of methanol due to the competition is calculated and compared with the experimental data. Aqueous solutions of hydrophobically modified PNIPAM carrying short alkyl chains at both chain ends (telechelic PNIPAM) are theoretically and experimentally studied. The LCST of these solutions is found to shift downward along the sol-gel transition curve as a result of end-chain association (association-induced phase separation), and separate from the coil-globule transition line. Associated structures in the solution, such as flower micelles, mesoglobules, and higher fractal assembly, are studied by ultra small-angle neutron scattering with theoretical modeling of the scattering function. Dynamic-mechanical modulus, nonlinear stationary viscosity, and stress build-up in start-up shear flows of the associated networks are studied on the basis of the affine and non-affine transient network theory. The molecular conditions for thickening, strain hardening, and stress overshoot are found in terms of the nonlinear amplitude A of the chain tension and the tension-dissociation coupling constant g.
Institute of Scientific and Technical Information of China (English)
Lu Jun
2004-01-01
The stationary-state nonlinear Schr(o)dinger equation, which models the dilute-gas Bose-Einstein condensate, is introduced within the framework of the quantum phase-space representation established by Torres-Vega and Frederick.The exact solutions of equation are obtained in the phase space, by means of the wave-mechanics method. The the phase space eigenfunctions. The eigenfunction with a hypersecant part is discussed as an example.
Modeling the macroscopic behavior of two-phase nonlinear composites by infinite-rank laminates
Idiart, Martín I.
A new approach is proposed for estimating the macroscopic behavior of two-phase nonlinear composites with random, particulate microstructures. The central idea is to model composites by sequentially laminated constructions of infinite rank whose macroscopic behavior can be determined exactly. The resulting estimates incorporate microstructural information up to the two-point correlation functions, and require the solution to a Hamilton-Jacobi equation with the inclusion concentration and the macroscopic fields playing the role of 'time' and 'spatial' variables, respectively. Because they are realizable, by construction, these estimates are guaranteed to be convex, to satisfy all pertinent bounds, to exhibit no duality gap, and to be exact to second order in the heterogeneity contrast. Sample results are provided for two- and three-dimensional power-law composites, and are compared with other homogenization estimates, as well as with numerical simulations available from the literature. The estimates are found to give physically sensible predictions for all the cases considered, even for extreme values of the nonlinearity and heterogeneity contrast. Interestingly, in the case of isotropic porous materials under hydrostatic loadings, the estimates agree exactly with standard Gurson-type models for viscoplastic porous media.
149.8 nm, the shortest wavelength generated by phase matching in nonlinear crystals
Nakazato, Tomoharu; Ito, Isao; Kobayashi, Yohei; Wang, Xiaoyang; Chen, Chuangtian; Watanabe, Shuntaro
2017-02-01
Narrow band light sources in the vacuum ultraviolet (VUV) region are attractive for photo lithography and high resolution photoelectron spectroscopy. Phase matching is essential to generate high power VUV lights by using a narrow band, low peak intensity and nanosecond pump source. In this research, sum frequency mixing has been demonstrated below 150 nm in KBe2BO3F2 by using the fundamental with its fourth harmonic of a 6 kHz Ti:sapphire laser. The laser system we have developed in this research, consists of a Ti:sapphire laser system and a frequency conversion stage. We generated 149.8-nm radiation, which is the shortest wavelength ever obtained to our knowledge by phase matching in nonlinear crystals. The fifth harmonic output powers were 3.6 μW at 149.8 nm and 110 μW at 154.0 nm, respectively. The phase matching angles measured from 149.8 nm to 158.1 nm are larger by 3-4 degrees than those expected from the existing Sellmeier equation. The optical transmission spectra of some KBBF crystals were measured by the spectrophotometer. The transmittance near the absorption edge supports the generation of coherent radiation below 150 nm. The improvement of a prism-coupled device contributed to the generation of coherent radiation below 150 nm. Another reason for the present break through to the shorter wavelength is the use of the short pulse driving source compared with our previous research.
Nonlinear response and dynamical transitions in a phase-field crystal model for adsorbed overlayers
Energy Technology Data Exchange (ETDEWEB)
Ramos, J A P [Departamento de Ciencias Exatas, Universidade Estadual do Sudoeste da Bahia, 45000-000 Vitoria da Conquista, BA (Brazil); Granato, E [Laboratorio Associado de Sensores e Materiais, Instituto Nacional de Pesquisas Espaciais, 12245-970 Sao Jose dos Campos, SP (Brazil); Ying, S C; Ala-Nissila, T [Department of Physics, PO Box 1843, Brown University, Providence, RI 02912-1843 (United States); Achim, C V [Department of Applied Physics, Aalto University School of Science and Technology, PO Box 11000, FI-00076 Aalto, Espoo (Finland); Elder, K R, E-mail: Jorge@las.inpe.b [Department of Physics, Oakland University, Rochester, Michigan 48309-4487 (United States)
2010-09-01
The nonlinear response and sliding friction behavior of a phase-field crystal model for driven adsorbed atomic layers is determined numerically. The model describes the layer as a continuous density field coupled to the pinning potential of the substrate and under an external driving force. Dynamical equations which take into account both thermal fluctuations and inertial effects are used for numerical simulations of commensurate and incommensurate layers. At low temperatures, the velocity response of an initially commensurate layer shows hysteresis with dynamical melting and freezing transitions at different critical forces. The main features of the sliding friction behavior are similar to the results obtained previously from molecular dynamics simulations of particle models. However, the dynamical transitions correspond to nucleations of stripes rather than closed domains.
THE NONLINEAR BEHAVIOR OF INTERFACE BETWEEN TWO-PHASE SHEAR FLOW WITH LARGE DENSITY RATIOS
Institute of Scientific and Technical Information of China (English)
DONG Yu-hong
2006-01-01
The Navier-Stokes equations for the two-dimensional incompressible flow are used to investigate the effects of the Reynolds number and the Weber number on the behavior of interface between liquid-gas shear flow.In the present study, the density ratios are fixed at approximately 100-103.The interface between the two phases is resolved using the level-set approach.The Reynolds number and the Weber number, based on the gas, are selected as 400-10000 and 40-5000, respectively.In the past, simulations reappeared the amplitude of interface growth predicted by viscous Orr-Sommerfeld linear theory, verifying the applicability and accuracy of the numerical method over a wide range of density and viscosity ratios; now, the simulations show that the nonlinear development of ligament elongated structures and resulted in the subsequent breakup of the heavier fluid into drops.
Hendi, S H; Panah, B Eslam
2016-01-01
In this paper, we take into account the black hole solutions of Einstein gravity in the presence of logarithmic and exponential forms of nonlinear electrodynamics. At first, we consider the cosmological constant as a dynamic pressure to study the analogy of the black hole solutions with the Van der Waals liquid--gas system in the extended phase space. We plot $P-V$, $T-V$ and $G-T$ diagrams and investigate the phase transition of adS black holes in the canonical ensemble. Moreover, we discuss about the effect of nonlinear electrodynamics on the the critical values and the universal ratio $P_{c}v_{c}/T_{c}$.
Directory of Open Access Journals (Sweden)
F.G.A. Santos
2008-06-01
Full Text Available Twelve male, mongrel, adult dogs were subcutaneously transplanted with cells originated from two canine transmissible venereal tumors (TVT. The aim was to demonstrate and to quantify the occurrence of apoptosis in the TVT regression. After six months of transplantation, a tumor sample was obtained from each dog, being six dogs with TVT in the growing phase and six in the regression phase as verified by daily measurements. Samples were processed for histological and ultrastructural purposes as well as for DNA extraction. Sections of 4µm were stained by HE, Shorr, methyl green pyronine, Van Gieson, TUNEL reaction and immunostained for P53. The Shorr stained sections went through morphometry that demonstrated an increase of the apoptotic cells per field in the regressive tumors. It was also confirmed by transmission electron microscopy, which showed cells with typical morphology of apoptosis and by the TUNEL reaction that detected in situ the 3'OH nick end labeling mainly in the regressive tumors. The regressive TVTs also showed an intensified immunostaining for P53 besides a more intense genomic DNA fragmentation detected by the agarose gel electrophoresis. In conclusion, apoptosis has an important role in the regression of the experimental TVT in a way that is P53-dependent.Doze cães, adultos, machos e sem raça definida foram transplantados subcutaneamente, na região hipogástrica, com células originadas de dois tumores venéreos transmissíveis caninos (TVT. O objetivo do estudo foi demonstrar e quantificar a ocorrência de apoptose na regressão do TVT. Após seis meses, foi obtido um tumor de cada animal, totalizando seis em crescimento e seis em regressão. Fragmentos dos tumores foram processados para avaliação histológica, ultra-estrutural e também para extração de DNA. Cortes de 4µm foram corados em HE, Shorr, verde de metila pironina e Van Gieson e alguns foram submetidos à reação do TUNEL e à imunoistoquímica para P53
Institute of Scientific and Technical Information of China (English)
邓英尔; 刘慈群
2003-01-01
A mathematical model of two-phase fluid nonlinear flow in the direction ofnormal of ellipse through low-permeability porous media was established according to anonlinear flow law expressed in a continuous function with three parameters, a massconservation law and a concept of turbulent ellipses. A solution to the model was obtainedby using a finite difference method and an extrapolation method. Formulas of calculatingdevelopment index not only before but also after water breaks through an oil well in thecondition of two-phase fluid nonlinear flow in the media were derived. An example wasdiscussed. Water saturation distribution was presented. The moving law of drainage frontwas found. Laws of change of pressure difference with time were recognized. Results showthat there is much difference of water saturation distribution between nonlinear flow andlinear flow; that drainage front by water moves faster, water breaks through sooner and theindex gets worse because of the nonlinear flow ; and that dimensionless pressure differencegets larger at the same dimensionless time and difficulty of oil development becomes biggerby the nonlinear flow . Thus, it is necessary that influence of nonlinear flow on developmentindexes of the oil fields be taken into account. The results provide water-floodingdevelopment of the oil fields with scientific basis.
Constrained Sparse Galerkin Regression
Loiseau, Jean-Christophe
2016-01-01
In this work, we demonstrate the use of sparse regression techniques from machine learning to identify nonlinear low-order models of a fluid system purely from measurement data. In particular, we extend the sparse identification of nonlinear dynamics (SINDy) algorithm to enforce physical constraints in the regression, leading to energy conservation. The resulting models are closely related to Galerkin projection models, but the present method does not require the use of a full-order or high-fidelity Navier-Stokes solver to project onto basis modes. Instead, the most parsimonious nonlinear model is determined that is consistent with observed measurement data and satisfies necessary constraints. The constrained Galerkin regression algorithm is implemented on the fluid flow past a circular cylinder, demonstrating the ability to accurately construct models from data.
Performance analysis of an all-optical OFDM system in presence of non-linear phase noise.
Hmood, Jassim K; Harun, Sulaiman W; Emami, Siamak D; Khodaei, Amin; Noordin, Kamarul A; Ahmad, Harith; Shalaby, Hossam M H
2015-02-23
The potential for higher spectral efficiency has increased the interest in all-optical orthogonal frequency division multiplexing (OFDM) systems. However, the sensitivity of all-optical OFDM to fiber non-linearity, which causes nonlinear phase noise, is still a major concern. In this paper, an analytical model for estimating the phase noise due to self-phase modulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM) in an all-optical OFDM system is presented. The phase noise versus power, distance, and number of subcarriers is evaluated by implementing the mathematical model using Matlab. In order to verify the results, an all-optical OFDM system, that uses coupler-based inverse fast Fourier transform/fast Fourier transform without any nonlinear compensation, is demonstrated by numerical simulation. The system employs 29 subcarriers; each subcarrier is modulated by a 4-QAM or 16-QAM format with a symbol rate of 25 Gsymbol/s. The results indicate that the phase variance due to FWM is dominant over those induced by either SPM or XPM. It is also shown that the minimum phase noise occurs at -3 dBm and -1 dBm for 4-QAM and 16-QAM, respectively. Finally, the error vector magnitude (EVM) versus subcarrier power and symbol rate is quantified using both simulation and the analytical model. It turns out that both EVM results are in good agreement with each other.
Jumps and bi-stability in the phase-gain characteristics of a nonlinear parametric amplifier
DEFF Research Database (Denmark)
Neumeyer, Stefan; van de Looij, Ruud; Thomsen, Jon Juel
2014-01-01
This work experimentally investigates the impact of nonlinearity on macromechanical parametric amplification. For a strong cubic stiffness nonlinearity we observe jumps in gain (ratio of steady-state vibration amplitude of the externally and parametrically excited system, to vibration amplitude...
Complete modulational-instability gain spectrum of nonlinear quasi-phase-matching gratings
DEFF Research Database (Denmark)
Corney, Joel F.; Bang, Ole
2004-01-01
We consider plane waves propagating in quadratic nonlinear slab waveguides with nonlinear quasi-phasematching gratings. We predict analytically and verify numerically the complete gain spectrum for transverse modulational instability, including hitherto undescribed higher-order gain bands....
Phase mixing vs. nonlinear advection in drift-kinetic plasma turbulence
Schekochihin, A A; Highcock, E G; Dellar, P J; Dorland, W; Hammett, G W
2015-01-01
A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g., drift-wave turbulence driven by temperature gradients) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating ExB flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. A consistent theory is constructed in which very little free energy leaks into high velocity moments of the distribution, rendering the turbulent cascade in the energetically relevant part of the wave-number space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also i...
Phase-referenced nonlinear spectroscopy of the α-quartz/water interface
Ohno, Paul E.; Saslow, Sarah A.; Wang, Hong-Fei; Geiger, Franz M.; Eisenthal, Kenneth B.
2016-12-01
Probing the polarization of water molecules at charged interfaces by second harmonic generation spectroscopy has been heretofore limited to isotropic materials. Here we report non-resonant nonlinear optical measurements at the interface of anisotropic z-cut α-quartz and water under conditions of dynamically changing ionic strength and bulk solution pH. We find that the product of the third-order susceptibility and the interfacial potential, χ(3) × Φ(0), is given by (χ1(3)-iχ2(3)) × Φ(0), and that the interference between this product and the second-order susceptibility of bulk quartz depends on the rotation angle of α-quartz around the z axis. Our experiments show that this newly identified term, iχ(3) × Φ(0), which is out of phase from the surface terms, is of bulk origin. The possibility of internally phase referencing the interfacial response for the interfacial orientation analysis of species or materials in contact with α-quartz is discussed along with the implications for conditions of resonance enhancement.
Crystal growth of an organic non-linear optical material from the vapour phase
Hou, W
1999-01-01
Due to the potential applications of organic non-linear optical materials in the areas of optical processing and communication, the investigation of the crystal growth of new organic NLO materials has been an active field for the last 20 years. For such uses it is necessary to produce single crystals of high quality and perfection, free of strain and defects. When crystals are grown from the solution and the melt, solvent and the decomposition component in the melt can introduce impurities and imperfection to the as-grown crystals. For crystals grown from vapour phase, in the absence of the solvent, this cannot occur and the method promises to yield single crystals of higher quality. Despite this attraction, little attention has been paid to the vapour phase growth of organic NLO crystals. It was with this in mind that the following investigation was carried out. Using Methyl p-hydroxybenzoate (p-MHB), a potential organic NLO material, a comparison investigation was made of its crystal growth from both the va...
Experimental nonlinear beam dynamics studies with turn- by-turn phase space monitors
Terebilo, Andrei Gennadyevich
1999-10-01
This thesis presents an experimental study of single particle and collective beam dynamics undertaken by the author in SPEAR electron storage ring. The technique used for measurement consists of exciting transverse oscillations of a bunch circulating in the ring with a fast kicker and observing the center of mass oscillations every turn for several thousand turns. The goal of this study was to develop new applications of the turn-by-turn technique to accelerator diagnostics. One innovation introduced is the use of a collective mode of the beam motion as a phase space probe. When in this mode the bunch behaves similar to a macroparticle and oscillates coherently. It is possible to control the growth/damping rate of this oscillation by adjusting the accelerator parameters. Another new tool proposed is the analysis of phase space trajectories in the time-frequency domain. This technique makes it possible to conduct nonlinear dynamics experiments such as observation of high order resonances in the frequency map and single-kick measurement of the tune dependence on the amplitude of oscillations.
Energy Technology Data Exchange (ETDEWEB)
Trezza, M.; Cirillo, C.; Sabatino, P.; Carapella, G.; Attanasio, C. [CNR-SPIN Salerno and Dipartimento di Fisica “E. R. Caianiello”, Università degli Studi di Salerno, Fisciano I-84084 (Italy); Prischepa, S. L. [Belarusian State University of Informatics and Radioelectronics, P. Browka 6, Minsk 220013 (Belarus)
2013-12-16
We report on the transport properties of an array of N∼30 interconnected Nb nanowires, grown by sputtering on robust porous Si substrates. The analyzed system exhibits a broad resistive transition in zero magnetic field, H, and highly nonlinear V(I) characteristics as a function of H, which can be both consistently described by quantum tunneling of phase slips.
Li, Hua; Wu, Tao
2016-10-01
A diffuse-interface model is presented in this paper for simulation of the evolution of phase transition between the liquid solution and solid gel states for physical hydrogel with nonlinear deformation. The present domain covers the gel and solution states as well as a diffuse interface between them. They are indicated by the crosslink density in such a way that the solution phase is identified as the state when the crosslink density is small, while the gel as the state if the crosslink density becomes large. In this work, a novel order parameter is thus defined as the crosslink density, which is homogeneous in each distinct phase and smoothly varies over the interface from one phase to another. In this model, the constitutive equations, imposed on the two distinct phases and the interface, are formulated by the second law of thermodynamics, which are in the same form as those derived by a different approach. The present constitutive equations include a novel Ginzburg-Landau type of free energy with a double-well profile, which accounts for the effect of crosslink density. The present governing equations include the equilibrium of forces, the conservations of mass and energy, and an additional kinetic equation imposed for phase transition, in which nonlinear deformation is considered. The equilibrium state is investigated numerically, where two stable phases are observed in the free energy profile. As case studies, a spherically symmetrical solution-gel phase transition is simulated numerically for analysis of the phase transition of physical hydrogel.
Kumar, P; Kumar, Dinesh; Rai, K N
2016-08-01
In this article, a non-linear dual-phase-lag (DPL) bio-heat transfer model based on temperature dependent metabolic heat generation rate is derived to analyze the heat transfer phenomena in living tissues during thermal ablation treatment. The numerical solution of the present non-linear problem has been done by finite element Runge-Kutta (4,5) method which combines the essence of Runge-Kutta (4,5) method together with finite difference scheme. Our study demonstrates that at the thermal ablation position temperature predicted by non-linear and linear DPL models show significant differences. A comparison has been made among non-linear DPL, thermal wave and Pennes model and it has been found that non-linear DPL and thermal wave bio-heat model show almost same nature whereas non-linear Pennes model shows significantly different temperature profile at the initial stage of thermal ablation treatment. The effect of Fourier number and Vernotte number (relaxation Fourier number) on temperature profile in presence and absence of externally applied heat source has been studied in detail and it has been observed that the presence of externally applied heat source term highly affects the efficiency of thermal treatment method.
The ''phase velocity'' of nonlinear plasma waves in the laser beat-wave accelerator
Energy Technology Data Exchange (ETDEWEB)
Spence, W.L.
1985-04-01
A calculational scheme for beat-wave accelerators is introduced that includes all orders in velocity and in plasma density, and additionally accounts for the influence of plasma nonlinearities on the wave's phase velocity. The main assumption is that the laser frequencies are very large compared to the plasma frequency - under which it is possible to sum up all orders of forward Raman scattering. It is found that the nonlinear plasma wave does not have simply a single phase velocity, but that the beat-wave which drives it is usefully described by a non-local ''effective phase velocity'' function. A time-space domain approach is followed. (LEW)
Lijing Yu; Lingling Zhou; Li Tan; Hongbo Jiang; Ying Wang; Sheng Wei; Shaofa Nie
2014-01-01
BACKGROUND: Outbreaks of hand-foot-mouth disease (HFMD) have been reported for many times in Asia during the last decades. This emerging disease has drawn worldwide attention and vigilance. Nowadays, the prevention and control of HFMD has become an imperative issue in China. Early detection and response will be helpful before it happening, using modern information technology during the epidemic. METHOD: In this paper, a hybrid model combining seasonal auto-regressive integrated moving average...
Cosmic flows and the expansion of the Local Universe from nonlinear phase-space reconstructions
Hess, Steffen
2014-01-01
We investigate the impact of cosmic flows and density perturbations on Hubble constant $H_0$ measurements using nonlinear phase-space reconstructions of the Local Universe (LU). We rely on a set of 25 N-body simulations which are constrained to resemble the LU within distances of about 90 Mpc/h. These have been randomly extended up to volumes enclosing distances of 360 Mpc/h with augmented Lagrangian perturbation theory (=750 simulations), accounting in this way for effects from from larger scales ($\\sigma_{\\rm large}=134$ km/s). We report on Local Group (LG) speed reconstructions, which are compatible with those derived from the CMB-dipole: $|v_{\\rm LG}|=685\\pm137$ km/s. The direction $(l,b)=(260.5\\pm 13.3,39.1\\pm 10.4)^\\circ$ is found to be compatible with observations. We use the CMB-dipole information to estimate the missing large scale bulk flow component, indicating that we miss a closely perpendicular flow with a magnitude corresponding to $1.4 \\sigma_{\\rm large}$. Considering this, our bulk flow estim...
Collapse of optical wave arrested by cross-phase modulation in nonlinear metamaterials
Zhang, Jinggui; Li, Ying; Xiang, Yuanjiang; Lei, Dajun; Zhang, Lifu
2016-03-01
In this article, we put forward a novel strategy to realize the management of wave collapse through designing probe-pump configuration where probe wave is assumed to propagate in the positive-index region of metamaterials (MMs), while pump wave is assumed to propagate in the negative-index region. We disclose that cross-phase modulation (XPM) in MMs as a new physical mechanism that can be used to arrest the collapse of probe wave in the positive-index region by copropagating it together with pump wave in the negative-index region. Further, we observe that pump wave will evolve into a ring while probe wave will develop a side lob in the wings during the course of coupled waves propagation, different from the corresponding counterpart in the ordinary positive-index materials (OMs) where they simultaneously exhibit the catastrophic self-focusing behavior. Meanwhile, we also discuss how to control the collapse of probe wave by adjusting intensity-detuned pump wave. Our analysis is performed by directly numerically solving the coupled nonlinear Schrödinger equations, as well as using the variational approximation, both showing consistent results. The finding demonstrates XPM as a specific physical mechanism in MMs can provide us unique opportunities unattainable in OMs to manipulate self-focusing of high-power laser.
Supercontinuum generation in quadratic nonlinear waveguides without quasi-phase matching
DEFF Research Database (Denmark)
Guo, Hairun; Zhou, Binbin; Steinert, Michael
2015-01-01
bandwidths (even octave spanning), together with other experimental data, indicate that negative nonlinearity solitons are indeed excited, which is backed up by numerical simulations. The QPM-free design reduces production complexity, extends the maximum waveguide length, and limits undesired spectral...... resonances. Finally, nonlinear crystals can be used where QPM is inefficient or impossible, which is important for mid-IR SCG. QPM-free waveguides in mid-IR nonlinear crystals can support negative nonlinearity solitons, as these waveguides have a normal dispersion at the emission wavelengths of mid...
Elsaesser, Thomas; Reimann, Klaus; Woerner, Michael
2015-06-01
Intense terahertz (THz) electric field transients with amplitudes up to several megavolts/centimeter and novel multidimensional techniques are the key ingredients of nonlinear THz spectroscopy, a new area of basic research. Both nonlinear light-matter interactions including the non-perturbative regime and THz driven charge transport give new insight into the character and dynamics of low-energy excitations of condensed matter and into quantum kinetic phenomena. This article provides an overview of recent progress in this field, combining an account of technological developments with selected prototype results for liquids and solids. The potential of nonlinear THz methods for future studies of low-frequency excitations of condensed-phase molecular systems is discussed as well.
CSIR Research Space (South Africa)
Ramoelo, Abel
2013-06-01
Full Text Available squares regression (PLSR) for predicting grass N and P concentrations through integrating in situ hyperspectral remote sensing and environmental variables (climatic, edaphic and topographic). Data were collected along a land use gradient in the greater...
Institute of Scientific and Technical Information of China (English)
Hongwei Li⁎; Junpeng Liu; Yunlong Zhou; Bin Sun
2016-01-01
Gas–liquid two-phase flow is complex and has uncertainty in phase interfaces, which make the two-phase flow look very complicated. Even though the flow behavior (e.g. coalescence, crushing and separation) of single bubble or bubble groups in the liquid phase looks random, combining some established character-istics and methodologies can find regularities among the randomness. In order to excavate the nonlinear dynamic characteristics of gas–liquid two-phase flow, the authors developed an improved matrix pencil (IMP) method to analyze the pressure difference signals of the two-phase flow. This paper elucidates the influence of signal length on MP calculation results and the anti-noise-interference ability of the MP method. An IMP algorithm was applied to the fluctuation signals of gas–liquid two-phase flow to extract the mode frequency and damping ratio, which were combined with the component energy index (CEI) en-tropy to identify the different flow patterns. It is also found that frequency, damping ratio, CEI entropy and stability diagram together not only identify flow patterns, but also provide a new way to examine and un-derstand the evolution mechanism of physical dynamics embedded in flow patterns. Combining these characteristics and methods, the evolution of the nonlinear dynamic physical behavior of gas bubbles is revealed.
Wahlstrand, J K; McCole, E T; Cheng, Y -H; Palastro, J P; Levis, R J; Milchberg, H M
2013-01-01
Nonlinear optics experiments measuring phase shifts induced in a weak probe pulse by a strong pump pulse must account for coherent effects that only occur when the pump and probe pulses are temporally overlapped. It is well known that a weak probe beam experiences a greater phase shift from a strong pump beam than the pump beam induces on itself. The physical mechanism behind the enhanced phase shift is diffraction of pump light into the probe direction by a nonlinear refractive index grating produced by interference between the two beams. For an instantaneous third-order response, the effect of the grating is to simply double the probe phase shift, but when delayed nonlinearities are considered, the effect is more complex. A comprehensive treatment is given for both degenerate and nondegenerate pump-probe experiments in noble and diatomic gases. Results of numerical calculations are compared to a recent transient birefringence measurement [Loriot et al., Opt. Express 17, 13429 (2009)] and a recent spectral i...
Akhbari, Mahsa; Shamsollahi, Mohammad B; Jutten, Christian; Armoundas, Antonis A; Sayadi, Omid
2016-02-01
In this paper we propose an efficient method for denoising and extracting fiducial point (FP) of ECG signals. The method is based on a nonlinear dynamic model which uses Gaussian functions to model ECG waveforms. For estimating the model parameters, we use an extended Kalman filter (EKF). In this framework called EKF25, all the parameters of Gaussian functions as well as the ECG waveforms (P-wave, QRS complex and T-wave) in the ECG dynamical model, are considered as state variables. In this paper, the dynamic time warping method is used to estimate the nonlinear ECG phase observation. We compare this new approach with linear phase observation models. Using linear and nonlinear EKF25 for ECG denoising and nonlinear EKF25 for fiducial point extraction and ECG interval analysis are the main contributions of this paper. Performance comparison with other EKF-based techniques shows that the proposed method results in higher output SNR with an average SNR improvement of 12 dB for an input SNR of -8 dB. To evaluate the FP extraction performance, we compare the proposed method with a method based on partially collapsed Gibbs sampler and an established EKF-based method. The mean absolute error and the root mean square error of all FPs, across all databases are 14 ms and 22 ms, respectively, for our proposed method, with an advantage when using a nonlinear phase observation. These errors are significantly smaller than errors obtained with other methods. For ECG interval analysis, with an absolute mean error and a root mean square error of about 22 ms and 29 ms, the proposed method achieves better accuracy and smaller variability with respect to other methods.
Hao, Lingxin
2007-01-01
Quantile Regression, the first book of Hao and Naiman's two-book series, establishes the seldom recognized link between inequality studies and quantile regression models. Though separate methodological literature exists for each subject, the authors seek to explore the natural connections between this increasingly sought-after tool and research topics in the social sciences. Quantile regression as a method does not rely on assumptions as restrictive as those for the classical linear regression; though more traditional models such as least squares linear regression are more widely utilized, Hao
2013-11-18
capability to realistic ocean environments. REFERENCES 1. Dysthe, K.B. 1979 Note on a modification to the nonlinear schrodinger equation for...wave turbulence. Phy. Rev. Lett. 98, 94503. 3. Trulsen,K.and Dysthe,K.B. 1996 A modified nonlinear Schrodinger equation for broader bandwidth
Analytical expressions for Z-scan with arbitrary phase change in thin nonlocal nonlinear media.
Ortega, A Balbuena; Carrasco, M L Arroyo; Otero, M M Méndez; Lara, E Reynoso; Ramírez, E V García; Castillo, M D Iturbe
2014-11-17
Analytical expressions for the normalized transmittance of a thin material with simultaneous nonlocal nonlinear change in refraction and absorption are reported. Gaussian decomposition method was used to obtain the formulas that are adequate for any magnitude of the nonlinear changes. Particular cases of no locality are compared with the local case. Experimental results are reproduced (fitted) with the founded expressions.
Hu, Kun; Peng, C. K.; Huang, Norden E.; Wu, Zhaohua; Lipsitz, Lewis A.; Cavallerano, Jerry; Novak, Vera
2008-04-01
Cerebral autoregulation is an important mechanism that involves dilatation and constriction in arterioles to maintain relatively stable cerebral blood flow in response to changes of systemic blood pressure. Traditional assessments of autoregulation focus on the changes of cerebral blood flow velocity in response to large blood pressure fluctuations induced by interventions. This approach is not feasible for patients with impaired autoregulation or cardiovascular regulation. Here we propose a newly developed technique-the multimodal pressure-flow (MMPF) analysis, which assesses autoregulation by quantifying nonlinear phase interactions between spontaneous oscillations in blood pressure and flow velocity during resting conditions. We show that cerebral autoregulation in healthy subjects can be characterized by specific phase shifts between spontaneous blood pressure and flow velocity oscillations, and the phase shifts are significantly reduced in diabetic subjects. Smaller phase shifts between oscillations in the two variables indicate more passive dependence of blood flow velocity on blood pressure, thus suggesting impaired cerebral autoregulation. Moreover, the reduction of the phase shifts in diabetes is observed not only in previously-recognized effective region of cerebral autoregulation (type 2 diabetes mellitus alters cerebral blood flow regulation over a wide frequency range and that this alteration can be reliably assessed from spontaneous oscillations in blood pressure and blood flow velocity during resting conditions. We also show that the MMPF method has better performance than traditional approaches based on Fourier transform, and is more suitable for the quantification of nonlinear phase interactions between nonstationary biological signals such as blood pressure and blood flow.
Astra, Egon; Olsson, Samuel L I; Eliasson, Henrik; Andrekson, Peter A
2017-06-12
We present an investigation of dispersion map optimization for two-span single-channel 28 GBaud QPSK transmission systems with phase-sensitive amplifiers (PSAs). In experiments, when the PSA link is operated in a highly nonlinear regime, a 1.4 dB error vector magnitude (EVM) improvement is achieved compared to a one-span optimized dispersion map link due to improved nonlinearity mitigation. The two-span optimized dispersion map of a PSA link differs from the optimized dispersion map of a dispersion managed phase-insensitive amplifier (PIA) link. Simulations show that the performance of the two-span dispersion map optimized PSA link does not improve by residual dispersion optimization. Further, by using the two-span optimized dispersion maps repeatedly in a long-haul PSA link instead of one-span optimized maps, the maximum transmission reach can be improved 1.5 times.
Hendi, S H; Momennia, M
2015-01-01
In this paper, we consider quadratic Maxwell invariant as a correction to the Maxwell theory and study thermodynamic behavior of the black holes in Einstein (EN) and Gauss-Bonnet (GB) gravities. We consider cosmological constant as a thermodynamic pressure to extend phase space. Next, we obtain critical values in case of variation of nonlinearity and GB parameters. We generalized the study by considering the effects of dimensionality on critical values and make comparisons between our models with their special sub classes.
The two-phase issue in the O(n) non-linear $\\sigma$-model: A Monte Carlo study
Alles, B.; Buonanno, A.; Cella, G.
1996-01-01
We have performed a high statistics Monte Carlo simulation to investigate whether the two-dimensional O(n) non-linear sigma models are asymptotically free or they show a Kosterlitz- Thouless-like phase transition. We have calculated the mass gap and the magnetic susceptibility in the O(8) model with standard action and the O(3) model with Symanzik action. Our results for O(8) support the asymptotic freedom scenario.
Loures, Cristian Redondo; Biancalana, Fabio
2014-01-01
We study the influence of third-harmonic generation (THG) and negative frequency polarization terms in the self-phase modulation (SPM) of short and intense pulses in Kerr media. We find that THG induces additional symmetric lobes in the SPM process. The amplitude of these new sidebands are greatly enhanced by the contributions of the negative frequency Kerr (NFK) term and the shock operator. We compare our theoretical predictions based on the analytical nonlinear phase with simulations carried out by using the full unidirectional pulse propagation equation (UPPE).
DEFF Research Database (Denmark)
Liu, Xing; Zhou, Binbin; Guo, Hairun;
2015-01-01
in a quadratic nonlinear crystal (beta-barium borate) in the normal dispersion regime due to cascaded (phase-mismatched) second-harmonic generation, and the mid-IR converted wave is formed in the anomalous dispersion regime between. lambda = 2.2-2.4 mu m as a resonant dispersive wave. This process relies...... on nondegenerate four-wave mixing mediated by an effective negative cross-phase modulation term caused by cascaded soliton-probe sum-frequency generation. (C) 2015 Optical Society of America...
Arditi, Tal; Granot, Er'el; Sternklar, Shmuel
2007-09-15
Brillouin amplification with counterpropagating modulated pump and Stokes light leads to nonlinear modulation-phase shifts of the interacting intensity waves. This is due to a partial transformation of the nonmodulated light component at the input into modulated light at the output as a result of a mixing process with the counterpropagating modulated component of the pump and results in an advance or delay of the input modulation. This occurs for interactions over less than half of a modulation wavelength. Milliwatts of power in a kilometer of standard single-mode fiber give significant tunability of the modulation phase.
Berger, N. K.; Zhukov, E. A.; Novokhatskiĭ, V. V.
1984-04-01
The use of a semiconductor-metal phase transition for wavefront reversal of laser radiation was proposed. An investigation was made of nonlinear reflection of CO2 laser radiation at a phase transition in VO2. A three-wave interaction on a VO2 surface was achieved using low-power cw and pulsed CO2 lasers. In the first case, the intensity reflection coefficient was 0.5% for a reference wave intensity of 0.9 W/cm2 and in the second case, it was 42% for a threshold reference wave energy density of 0.6-0.8 mJ/cm2.
H-infinity control for cascade minimum-phase switched nonlinear systems
Institute of Scientific and Technical Information of China (English)
Shengzhi ZHAO; Jun ZHAO
2005-01-01
This paper is concerned with the H-infinity control problem for a class of cascade switched nonlinear systems.Each switched system in this class is composed of a zero-input asymptotically stable nonlinear part,which is also a switched system,and a linearizable part which is controllable.Conditions under which the H-infinity control problem is solvable under arbitrary switching law and under some designed switching law are derived respectively.The nonlinear state feedback and switching law are designed.We exploit the structural characteristics of the switched nonlinear systems to construct common Lyapunov functions for arbitrary switching and to find a single Lyapunov function for designed switching law.The proposed methods do not rely on the solutions of Hamilton-Jacobi inequalities.
Indian Academy of Sciences (India)
K. Karami; R. Mohebi
2007-12-01
We use the method introduced by Karami & Mohebi (2007), and Karami & Teimoorinia (2007) which enable us to derive the orbital parameters of the spectroscopic binary stars by the nonlinear least squares of observed . curve fitting (o–c). Using the measured experimental data for radial velocities of the four double-lined spectroscopic binary systems PV Pup, HD 141929, EE Cet and V921 Her, we find both the orbital and the combined spectroscopic elements of these systems. Our numerical results are in good agreement with those obtained using the method of Lehmann-Filhés.
DEFF Research Database (Denmark)
Da Ros, Francesco; Dalgaard, Kjeld; Lei, Lei
2013-01-01
A phase-sensitive four-wave mixing (FWM) scheme enabling the simultaneous conversion of the two orthogonal quadratures of an optical signal to different wavelengths is demonstrated for the first time under dynamic operation using a highly nonlinear optical fiber (HNLF) as the nonlinear medium....... The scheme is first optimized with respect to the power levels and phases of the four phase-coherent pumps. The successful modulation and wavelength conversion of the two complex quadratures of a quadrature phase-shift keying (QPSK) signal to two binary phase-shift keying (BPSK) signals is then demonstrated...
DEFF Research Database (Denmark)
Deng, Lei; Pang, Xiaodan; Tafur Monroy, Idelfonso
2014-01-01
We propose a nonlinearity and phase noise tolerant orthogonal frequency division multiplexing (OFDM) W-band signal over fiber system based on phase modulation and photonic heterodyne up-conversion techniques. By heterodyne mixing the phase-modulated optical OFDM signal with a free-running laser...... in the photodiode, the constant envelope OFDM W-band wireless signal is obtained to suppress the nonlinear impairments. Moreover, the phase noises of the beating lasers appear as additive terms to the desired signal, and could be easily filtered out without complex phase noise estimation and compensation algorithms...
Tomlinson, Sean
2016-04-01
The calculation and comparison of physiological characteristics of thermoregulation has provided insight into patterns of ecology and evolution for over half a century. Thermoregulation has typically been explored using linear techniques; I explore the application of non-linear scaling to more accurately calculate and compare characteristics and thresholds of thermoregulation, including the basal metabolic rate (BMR), peak metabolic rate (PMR) and the lower (Tlc) and upper (Tuc) critical limits to the thermo-neutral zone (TNZ) for Australian rodents. An exponentially-modified logistic function accurately characterised the response of metabolic rate to ambient temperature, while evaporative water loss was accurately characterised by a Michaelis-Menten function. When these functions were used to resolve unique parameters for the nine species studied here, the estimates of BMR and TNZ were consistent with the previously published estimates. The approach resolved differences in rates of metabolism and water loss between subfamilies of Australian rodents that haven't been quantified before. I suggest that non-linear scaling is not only more effective than the established segmented linear techniques, but also is more objective. This approach may allow broader and more flexible comparison of characteristics of thermoregulation, but it needs testing with a broader array of taxa than those used here.
DEFF Research Database (Denmark)
Da Ros, Francesco; Marco Calabrese, Pachito; Kang, Ning;
2013-01-01
Phase-sensitive processes exploiting FWM in an HNLF allow simultaneously converting two orthogonal quadratures of an optical signal to different wavelengths. Conversion efficiencies to two 90°-phase-shifted idlers exceeding 10dB of phase-sensitive extinction ratio are obtained experimentally....
Jiang, Y; Poggiolini, P; Forghieri, F
2014-01-01
We accurately characterize nonlinear phase noise in uncompensated coherent optical systems. We find that, though present, its impact on system performance is typically negligible in a wide range of practical system scenarios.
DEFF Research Database (Denmark)
Hu, Hao; Jopson, R. M.; Gnauck, A. H.;
2016-01-01
We demonstrate compensation of fiber nonlinearities using repeated optical phase conjugation (OPC) in a WDM system with eight 32-Gbaud PDM 16-QAM channels, showing improved performance over a single mid-span OPC and no OPC....
DEFF Research Database (Denmark)
Da Ros, Francesco; Sackey, I.; Jazayerifar, M.
2015-01-01
Kerr nonlinearity compensation by optical phase conjugation is demonstrated in a WDM PDM 16-QAM system. Improved received signal quality is reported for both dispersion-compensated and dispersion-uncompensated transmission and a comparison with digital backpropagation is provided....
DEFF Research Database (Denmark)
Bache, Stefan Holst
A new and alternative quantile regression estimator is developed and it is shown that the estimator is root n-consistent and asymptotically normal. The estimator is based on a minimax ‘deviance function’ and has asymptotically equivalent properties to the usual quantile regression estimator. It is......, however, a different and therefore new estimator. It allows for both linear- and nonlinear model specifications. A simple algorithm for computing the estimates is proposed. It seems to work quite well in practice but whether it has theoretical justification is still an open question....
Kahane, Leo H
2007-01-01
Using a friendly, nontechnical approach, the Second Edition of Regression Basics introduces readers to the fundamentals of regression. Accessible to anyone with an introductory statistics background, this book builds from a simple two-variable model to a model of greater complexity. Author Leo H. Kahane weaves four engaging examples throughout the text to illustrate not only the techniques of regression but also how this empirical tool can be applied in creative ways to consider a broad array of topics. New to the Second Edition Offers greater coverage of simple panel-data estimation:
Stoller, Patrick C.; Kim, Beop-Min; Rubenchik, Alexander M.; Reiser, Karen M.; Da Silva, Luiz B.
2001-05-01
The measurement of the second order nonlinear susceptibility of collagen in various biological tissues has potential applications in the detection of structural changes which are related to different pathological conditions. We investigate second harmonic generation in a rat-tail tendon, a highly organized collagen structure consisting of parallel fibers. Using an electro-optic modulator and a quarter-wave plate, we modulate the linear polarization of an ultra-short pulse laser beam that is used to measure second harmonic generation in a confocal microscopy setup. Phase-sensitive detection of the generated signal, coupled with a simple model of the collagen protein structures, allows us to measure a parameter (gamma) related to nonlinear susceptibility and to determine the relative orientation of the structures. Our preliminary results indicate that it may be possible to use this parameter to characterize the structure.
Energy Technology Data Exchange (ETDEWEB)
Stoller, P; Kim, B-M; Rubenchik, A M; Reiser, K M; Da Silva, L B
2001-03-03
The measurement of the second order nonlinear susceptibility of collagen in various biological tissues has potential applications in the detection of structural changes which are related to different pathological conditions. We investigate second harmonic generation in rat-tail tendon, a highly organized collagen structure consisting of parallel fibers. Using an electro-optic modulator and a quarter-wave plate, we modulate the linear polarization of an ultra-short pulse laser beam that is used to measure second harmonic generation (SHG) in a confocal microscopy setup. Phase-sensitive detection of the generated signal, coupled with a simple model of the collagen protein structures, allows us to measure a parameter {gamma} related to nonlinear susceptibility and to determine the relative orientation of the structures. Our preliminary results indicate that it may be possible to use this parameter to characterize the structure.
Directory of Open Access Journals (Sweden)
Yu Yong A
2011-02-01
Full Text Available Abstract Background In principle, the elimination of malignancies by oncolytic virotherapy could proceed by different mechanisms - e.g. tumor cell specific oncolysis, destruction of the tumor vasculature or an anti-tumoral immunological response. In this study, we analyzed the contribution of these factors to elucidate the responsible mechanism for regression of human breast tumor xenografts upon colonization with an attenuated vaccinia virus (VACV. Methods Breast tumor xenografts were analyzed 6 weeks post VACV infection (p.i.; regression phase by immunohistochemistry and mouse-specific expression arrays. Viral-mediated oncolysis was determined by tumor growth analysis combined with microscopic studies of intratumoral virus distribution. The tumor vasculature was morphologically characterized by diameter and density measurements and vessel functionality was analyzed by lectin perfusion and extravasation studies. Immunological aspects of viral-mediated tumor regression were studied in either immune-deficient mouse strains (T-, B-, NK-cell-deficient or upon cyclophosphamide-induced immunosuppression (MHCII+-cell depletion in nude mice. Results Late stage VACV-infected breast tumors showed extensive necrosis, which was highly specific to cancer cells. The tumor vasculature in infected tumor areas remained functional and the endothelial cells were not infected. However, viral colonization triggers hyperpermeability and dilatation of the tumor vessels, which resembled the activated endothelium in wounded tissue. Moreover, we demonstrated an increased expression of genes involved in leukocyte-endothelial cell interaction in VACV-infected tumors, which orchestrate perivascular inflammatory cell infiltration. The immunohistochemical analysis of infected tumors displayed intense infiltration of MHCII-positive cells and colocalization of tumor vessels with MHCII+/CD31+ vascular leukocytes. However, GI-101A tumor growth analysis upon VACV-infection in
Lo, Men-Tzung; Novak, Vera; Peng, C-K; Liu, Yanhui; Hu, Kun
2009-06-01
Phase interactions among signals of physical and physiological systems can provide useful information about the underlying control mechanisms of the systems. Physical and biological recordings are often noisy and exhibit nonstationarities that can affect the estimation of phase interactions. We systematically studied effects of nonstationarities on two phase analyses including (i) the widely used transfer function analysis (TFA) that is based on Fourier decomposition and (ii) the recently proposed multimodal pressure flow (MMPF) analysis that is based on Hilbert-Huang transform (HHT)-an advanced nonlinear decomposition algorithm. We considered three types of nonstationarities that are often presented in physical and physiological signals: (i) missing segments of data, (ii) linear and step-function trends embedded in data, and (iii) multiple chaotic oscillatory components at different frequencies in data. By generating two coupled oscillatory signals with an assigned phase shift, we quantify the change in the estimated phase shift after imposing artificial nonstationarities into the oscillatory signals. We found that all three types of nonstationarities affect the performances of the Fourier-based and the HHT-based phase analyses, introducing bias and random errors in the estimation of the phase shift between two oscillatory signals. We also provided examples of nonstationarities in real physiological data (cerebral blood flow and blood pressure) and showed how nonstationarities can complicate result interpretation. Furthermore, we propose certain strategies that can be implemented in the TFA and the MMPF methods to reduce the effects of nonstationarities, thus improving the performances of the two methods.
Institute of Scientific and Technical Information of China (English)
Mehran Vahdani Moghaddam; Zeynab Chenari; Hamid Latifi; Vladimir Vladimirovich Shuvalov; Konestantin Valentinovich Rudenko
2008-01-01
@@ We deal with computer simulation of a transient process in a self-pumped phase conjugate plane-curve loop mirror based on BaTiO3. In optimal circumstances the nonlinear reflectivity and fidelity of such a mirror respectively achieve 0.80-0.90 and 0.95-0.98. The generation of conjugate wave-front occurs due to scattering from the dynamic hologram which is produced in the region of self-intersection of forward and backward beams. In such a model the scenario of passing to unstable generation regimes is similar to the self-pumped phase conjugate plane-plane loop mirror and substantially differs from a single-crystal double phase conjugate mirror.
Institute of Scientific and Technical Information of China (English)
赵应桥; 朱鹤元; 刘建华; 孙迭篪; 李富铭
1997-01-01
A time-resolved cross-phase modulation method combined with a modified nonlinear Schrodinger equation is used to study the effects of nonlinear response time on the propagation of ultrashort pulses in nonlinear dispersion media. Evolution of cross-phase modulation spectrum with the different time delay between the probe pulse and pump pulse is simulated using split-step Fourier method. It is shown that both normal self-frequency-shift-red-shift and abnormal self-frequency-shift-blue-shift can occur in the frequency domain for the probe pulse, and a satisfactory theoretical interpretation is given.
DEFF Research Database (Denmark)
Deng, Lei; Pang, Xiaodan; Zhang, Xu
2013-01-01
We report on the transmission of 8 Gb/s 0 dB PAPR 16QAM-OFDM W-band (75-110 GHz) signals over 22.8km SMF without phase noise compensation by using a phase modulator in the optical heterodyne up-convertor.......We report on the transmission of 8 Gb/s 0 dB PAPR 16QAM-OFDM W-band (75-110 GHz) signals over 22.8km SMF without phase noise compensation by using a phase modulator in the optical heterodyne up-convertor....
Directory of Open Access Journals (Sweden)
Matthias Schmid
Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.
Mizuta, Yo; Nagasawa, Minoru; Ohtani, Morimasa; Yamashita, Mikio
2005-12-01
A numerical approach called Fourier direct method (FDM) is applied to nonlinear propagation of optical pulses with the central wavelength 800 nm, the width 2.67-12.00 fs, and the peak power 25-6870 kW in a fused-silica fiber. Bidirectional propagation, delayed Raman response, nonlinear dispersion (self-steepening, core dispersion), as well as correct linear dispersion are incorporated into “bidirectional propagation equations” which are derived directly from Maxwell’s equations. These equations are solved for forward and backward waves, instead of the electric-field envelope as in the nonlinear Schrödinger equation (NLSE). They are integrated as multidimensional simultaneous evolution equations evolved in space. We investigate, both theoretically and numerically, the validity and the limitation of assumptions and approximations used for deriving the NLSE. Also, the accuracy and the efficiency of the FDM are compared quantitatively with those of the finite-difference time-domain numerical approach. The time-domain size 500 fs and the number of grid points in time 2048 are chosen to investigate numerically intensity spectra, spectral phases, and temporal electric-field profiles up to the propagation distance 1.0 mm. On the intensity spectrum of a few-optical-cycle pulses, the self-steepening, core dispersion, and the delayed Raman response appear as dominant, middle, and slight effects, respectively. The delayed Raman response and the core dispersion reduce the effective nonlinearity. Correct linear dispersion is important since it affects the intensity spectrum sensitively. For the compression of femtosecond optical pulses by the complete phase compensation, the shortness and the pulse quality of compressed pulses are remarkably improved by the intense initial peak power rather than by the short initial pulse width or by the propagation distance longer than 0.1 mm. They will be compressed as short as 0.3 fs below the damage threshold of fused-silica fiber 6
Three-Phase Grid-Connected of Photovoltaic Generator Using Nonlinear Control
DEFF Research Database (Denmark)
Yahya, A.; El Fadil, H.; Guerrero, Josep M.
2014-01-01
of PV panels, ii) guaranteeing a power factor unit in the side of the grid, iii) ensuring the global asymptotic stability of the closed loop system. Based on the nonlinear model of the whole system, the controller is carried out using a Lyapunov approach. It is formally shown, using a theoretical...
Vilardy, Juan M.; Millán, María S.; Pérez-Cabré, Elisabet
2017-02-01
A novel nonlinear image encryption scheme based on a fully phase nonzero-order joint transform correlator architecture (JTC) in the Gyrator domain (GD) is proposed. In this encryption scheme, the two non-overlapping data distributions of the input plane of the JTC are fully encoded in phase and this input plane is transformed using the Gyrator transform (GT); the intensity distribution captured in the GD represents a new definition of the joint Gyrator power distribution (JGPD). The JGPD is modified by two nonlinear operations with the purpose of retrieving the encrypted image, with enhancement of the decrypted signal quality and improvement of the overall security. There are three keys used in the encryption scheme, two random phase masks and the rotation angle of the GT, which are all necessary for a proper decryption. Decryption is highly sensitivity to changes of the rotation angle of the GT as well as to little changes in other parameters or keys. The proposed encryption scheme in the GD still preserves the shift-invariance properties originated in the JTC-based encryption in the Fourier domain. The proposed encryption scheme is more resistant to brute force attacks, chosen-plaintext attacks, known-plaintext attacks, and ciphertext-only attacks, as they have been introduced in the cryptanalysis of the JTC-based encryption system. Numerical results are presented and discussed in order to verify and analyze the feasibility and validity of the novel encryption-decryption scheme.
Echeikh, Hamdi; Trabelsi, Ramzi; Iqbal, Atif; Bianchi, Nicola; Mimouni, Mohamed Fouizi
2016-11-01
In this paper non-linear backstepping control (BSC) is employed for high performance five-phase induction motor drive for low speed operation. The traditional control approaches such as direct torque control and indirect rotor field oriented control introduces stability problem at low speed. The proposed BSC is shown to offer stable operation in the sense of Lyapunov and high dynamics at low speed. Experimental results are provided to present the proprieties of the proposed approach at low speed in terms of stability, torque ripple, desired control performance, achievable dynamics and complexity of implementation etc. Copyright © 2016. Published by Elsevier Ltd.
Nonlinear interaction of infrared waves on a VO2 surface at a semiconductor-metal phase transition
Berger, N. K.; Zhukov, E. A.; Novokhatskii, V. V.
1984-04-01
Nonlinear interactions (including wavefront reversal) of light from CW or pulsed 10.6-micron CO2 lasers at the semiconductor-metal phase transition in a VO2 film are investigated experimentally. The results are presented in graphs and characterized in detail. The intensity reflection coefficients of the three-wave interactions are found to be 0.5 percent for a CW reference wave of intensity 900 mW/sq cm and 42 percent for a pulsed reference wave of threshold density 600-800 microjoule/sq cm.
Yang, Houwen; Wang, Bo; Wang, Junhua; Li, Xiaofang; Liu, Zhaojun; Cheng, Wenyong
2017-03-01
We demonstrated an ultraviolet laser at 355 nm using a type-I and a type-II phase-matching nonlinear optical crystal of LiB3O5 (LBO). A method of adjusting temperature for compensation is presented. The crystal temperature is controlled by proportional integral derivative (PID) thermal controllers with a ±0.01 °C resolution. The value of wave vector mismatch, distance of light propagation in nonlinear crystals, effective nonlinear coefficient, theoretical analysis and calculation of conversion efficiency versus temperature are discussed. The experimental results show that the average output power of the 355 nm laser is 1.24 W with the pump power of 13.33 W, when the repetition frequency is 15 kHz. The pulse duration is 9.8 ns, and the beam quality factors are of Mx2 = 1.8, My2 = 1.7. The conversion efficiency from 808 nm to 355 nm laser is 9.3%, which nearly reaches the optimum value reported so far and is limited by the wavelength mismatch between the pumping and absorbing lasers. The 355 nm output power instability of the laser device is 0.45% in 2 h. A compact no-water-cooling ultraviolet laser with high stability and high efficiency is obtained.
Institute of Scientific and Technical Information of China (English)
Xianqiong Zhong; Anping Xiang
2007-01-01
@@ The synthetic effects of group-velocity mismatch and cubic-quintic nonlinearity on cross-phase modulation induced modulation instability in loss single-mode optical fibers have been numerically investigated. The results show that the quintic nonlinearity plays a role similar to the case of neglecting the group-velocity mismatch in modifying the modulation instability, namely, the positive and negative quintic nonlinearities can still enhance and weaken the modulation instability, respectively. The group-velocity mismatch can considerably change the gain spectrum of modulation instability in terms of its shape, peak value, and position. In the normal dispersion regime, with the increase of the group-velocity mismatch parameter,the gain spectrum widens and then narrows, shifts to higher frequencies, and the peak value gets higher before approaching a saturable value. In the abnormal dispersion regime, two separated spectra may occur when the group-velocity mismatch is taken into account. With the increase of the group-velocity mismatch parameter, the peak value of the gain spectrum gets higher and shorter before tending to a saturable value for the first and second spectral regimes, respectively.
The Application of Nonlinear Regression in the Copper Price Prediction%非线性规划在金属铜价格预测中的应用
Institute of Scientific and Technical Information of China (English)
赵雪松; 张宏哲
2013-01-01
金属铜作为一种十分重要的资源在世界经济发展的过程中发挥着越来越重要的作用。金属铜被广泛地运用在建筑、装饰、电线电缆制造等方面。期铜价格不仅对企业投资决策很重要，而且对矿业权评估来说也是一个很重要的参数。文章以期铜每年的中间价格作为历史数据，根据散点图，运用对多项式拟合方法对其价格进行预测。分别用excel的添加趋势线法和变量替换法这两种方法，基于同一数据，进行了非线性拟合，综合评判后，认为第一种方法较优。%Copper as an important resource in the process of development of the world economy is playing an more and more important role. Copper is widely used in construction, decoration, electric wire and cable manufacturing etc. Copper price is important not only for enterprise decisions, but also for mining right evaluation. This paper takes the annual medium prices of the copper as historical data, uses the polynomial fitting method to estimate the price based on the scatter plot diagram. Based on the same data, it uses respectively the excel add a trend line method and the variable substitution method for a nonlinear fitting, the first approach is preferred after an integrated appraisal.
Non-Minimum Phase Nonlinear System Predictive Control Based on Local Recurrent Neural Networks
Institute of Scientific and Technical Information of China (English)
张燕; 陈增强; 袁著祉
2003-01-01
After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent PID controller is adopted to correct the errors including identified model errors and accumulated errors produced in the recursive process. Characterized by predictive control, this method can achieve a good control accuracy and has good robustness. A simulation study shows that this control algorithm is very effective.
Matson, Johnny L.; Kozlowski, Alison M.
2010-01-01
Autistic regression is one of the many mysteries in the developmental course of autism and pervasive developmental disorders not otherwise specified (PDD-NOS). Various definitions of this phenomenon have been used, further clouding the study of the topic. Despite this problem, some efforts at establishing prevalence have been made. The purpose of…
Nick, Todd G; Campbell, Kathleen M
2007-01-01
The Medical Subject Headings (MeSH) thesaurus used by the National Library of Medicine defines logistic regression models as "statistical models which describe the relationship between a qualitative dependent variable (that is, one which can take only certain discrete values, such as the presence or absence of a disease) and an independent variable." Logistic regression models are used to study effects of predictor variables on categorical outcomes and normally the outcome is binary, such as presence or absence of disease (e.g., non-Hodgkin's lymphoma), in which case the model is called a binary logistic model. When there are multiple predictors (e.g., risk factors and treatments) the model is referred to as a multiple or multivariable logistic regression model and is one of the most frequently used statistical model in medical journals. In this chapter, we examine both simple and multiple binary logistic regression models and present related issues, including interaction, categorical predictor variables, continuous predictor variables, and goodness of fit.
Detecting dynamic causal inference in nonlinear two-phase fracture flow
Faybishenko, Boris
2017-08-01
Identifying dynamic causal inference involved in flow and transport processes in complex fractured-porous media is generally a challenging task, because nonlinear and chaotic variables may be positively coupled or correlated for some periods of time, but can then become spontaneously decoupled or non-correlated. In his 2002 paper (Faybishenko, 2002), the author performed a nonlinear dynamical and chaotic analysis of time-series data obtained from the fracture flow experiment conducted by Persoff and Pruess (1995), and, based on the visual examination of time series data, hypothesized that the observed pressure oscillations at both inlet and outlet edges of the fracture result from a superposition of both forward and return waves of pressure propagation through the fracture. In the current paper, the author explores an application of a combination of methods for detecting nonlinear chaotic dynamics behavior along with the multivariate Granger Causality (G-causality) time series test. Based on the G-causality test, the author infers that his hypothesis is correct, and presents a causation loop diagram of the spatial-temporal distribution of gas, liquid, and capillary pressures measured at the inlet and outlet of the fracture. The causal modeling approach can be used for the analysis of other hydrological processes, for example, infiltration and pumping tests in heterogeneous subsurface media, and climatic processes, for example, to find correlations between various meteorological parameters, such as temperature, solar radiation, barometric pressure, etc.
Zhang, Xiaohang; Yu, Liuqi; von Molnár, Stephan; Fisk, Zachary; Xiong, Peng
2009-09-04
This work reports a study of the nonlinear Hall effect (HE) in the semimetallic ferromagnet EuB(6). A distinct switch in its Hall resistivity slope is observed in the paramagnetic phase, which occurs at a single critical magnetization over a wide temperature range. The observation is interpreted as the point of percolation for entities of a more conducting and magnetically ordered phase in a less ordered background. With an increasing applied magnetic field, the conducting regions either increase in number or expand beyond the percolation limit, hence increasing the global conductivity and effective carrier density. An empirical two-component model provides excellent scaling and a quantitative fit to the HE data and may be applicable to other correlated electron systems.
Institute of Scientific and Technical Information of China (English)
HAO Dong-shan; L(U) Jian
2005-01-01
The evolution of the electron phase orbits based on the multi-photon nonlinear Compton scattering with the high power laser-plasma is discussed by using Kroll-Morton-Rosenbluth theory. The random evolution of the un-captured electron phase orbits from periodicity to non-periodicity is found after the energy has been exchanged between the electron and photons. With the increase of the absorbed photon number n by an electron,this evolution will be more and more intense, while which is rapidly decreased with the enhancement of the collision non-flexibility ξ and their initial speeds of the electrons and photons, but this evolution is lower than that in the high power laser field. When the electrons are captured by the laser field, the evolution is finished, and the electrons will stably transport,and the photons don't provide the energy for these electrons any more.
Institute of Scientific and Technical Information of China (English)
SHI Yun-Long; ZHANG Yu-Mei; CHEN Hong; WU Xiang
2001-01-01
The Gaussian wave functional method is applied to a boson system with an array of local nonlinear potentials cos [βφ(nR)] to study the phase diagram of its ground state. The stable ground state is determined by the renormalized mass μ which is a function of the parameter γ = β2/4π, the strength of potential α and the potential concentration c. In different cases γ γ2, μ can have different multiplicities, the phase diagram in parameter space is thus depicted. The value γ = γ1 depends on the concentration c, for c → 0, it coincides with that of the single impurity model; while γ2 = 2 coincides with the conclusion of the continuous model.``
Liu, Xing; Guo, Hairun; Bache, Morten
2015-01-01
We show numerically that ultrashort self-defocusing temporal solitons colliding with a weak pulsed probe in the near-IR can convert the probe to the mid-IR. A near-perfect conversion efficiency is possible for a high effective soliton order. The near-IR self-defocusing soliton can form in a quadratic nonlinear crystal (beta-barium borate) in the normal dispersion regime due to cascaded (phase-mismatched) second-harmonic generation, and the mid-IR converted wave is formed in the anomalous dispersion regime between $\\lambda=2.2-2.4~\\mu\\rm m$ as a resonant dispersive wave. This process relies on non-degenerate four-wave mixing mediated by an effective negative cross-phase modulation term caused by cascaded soliton-probe sum-frequency generation.
Wang, Xiaogang; Zhao, Daomu
2013-09-01
A nonlinear color and grayscale images cryptosystem based on phase-truncated fractional Fourier transform and optical superposition principle is proposed. In order to realize simultaneous encryption of color and grayscale images, each grayscale image is first converted into two phase masks by using an optical coherent superposition, one of which is treated as a part of input information that will be fractional Fourier transformed while the other in the form of a chaotic random phase mask (CRPM) is used as a decryption key. For the purpose of optical performance, all the processes are performed through three channels, i.e., red, green, and blue. Different from most asymmetric encryption methods, the decryption process is designed to be linear for the sake of effective decryption. The encryption level of a double random phase encryption based on phase-truncated Fourier transform is enhanced by extending it into fractional Fourier domain and the load of the keys management and transmission is lightened by using CRPMs. The security of the proposed cryptosystem is discussed and computer simulation results are presented to verify the validity of the proposed method.
Wang, Danshi; Zhang, Min; Cai, Zhongle; Cui, Yue; Li, Ze; Han, Huanhuan; Fu, Meixia; Luo, Bin
2016-06-01
An effective machine learning algorithm, the support vector machine (SVM), is presented in the context of a coherent optical transmission system. As a classifier, the SVM can create nonlinear decision boundaries to mitigate the distortions caused by nonlinear phase noise (NLPN). Without any prior information or heuristic assumptions, the SVM can learn and capture the link properties from only a few training data. Compared with the maximum likelihood estimation (MLE) algorithm, a lower bit-error rate (BER) is achieved by the SVM for a given launch power; moreover, the launch power dynamic range (LPDR) is increased by 3.3 dBm for 8 phase-shift keying (8 PSK), 1.2 dBm for QPSK, and 0.3 dBm for BPSK. The maximum transmission distance corresponding to a BER of 1 ×10-3 is increased by 480 km for the case of 8 PSK. The larger launch power range and longer transmission distance improve the tolerance to amplitude and phase noise, which demonstrates the feasibility of the SVM in digital signal processing for M-PSK formats. Meanwhile, in order to apply the SVM method to 16 quadratic amplitude modulation (16 QAM) detection, we propose a parameter optimization scheme. By utilizing a cross-validation and grid-search techniques, the optimal parameters of SVM can be selected, thus leading to the LPDR improvement by 2.8 dBm. Additionally, we demonstrate that the SVM is also effective in combating the laser phase noise combined with the inphase and quadrature (I/Q) modulator imperfections, but the improvement is insignificant for the linear noise and separate I/Q imbalance. The computational complexity of SVM is also discussed. The relatively low complexity makes it possible for SVM to implement the real-time processing.
Olive, David J
2017-01-01
This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...
Xia, Shaoyan; Huang, Yong; Tan, Xiaodi
2016-03-01
Partial differential equation (PDE)-based nonlinear diffusion processes have been widely used for image denoising. In the traditional nonlinear anisotropic diffusion denoising techniques, behavior of the diffusion depends highly on the gradient of image. However, it is difficult to get a good effect if we use these methods to reduce noise in optical coherence tomography images. Because background has the gradient that is very similar to regions of interest, so background noise will be mistaken for edge information and cannot be reduced. Therefore, nonlinear complex diffusion approaches using texture feature(NCDTF) for noise reduction in phase-resolved optical coherence tomography is proposed here, which uses texture feature in OCT images and structural OCT images to remove noise in phase-resolved OCT. Taking into account the fact that texture between background and signal region is different, which can be linked with diffusion coefficient of nonlinear complex diffusion model, we use NCDTF method to reduce noises of structure and phase images first. Then, we utilize OCT structure images to filter phase image in OCT. Finally, to validate our method, parameters such as image SNR, contrast-to-noise ratio (CNR), equivalent number of looks (ENL), and edge preservation were compared between our approach and median filter, Gaussian filter, wavelet filter, nonlinear complex diffusion filter (NCDF). Preliminary results demonstrate that NCDTF method is more effective than others in keeping edges and denoising for phase-resolved OCT.
Energy Technology Data Exchange (ETDEWEB)
Li, Huai-Fan; Zhao, Hui-Hua; Zhang, Li-Chun; Zhao, Ren [Shanxi Datong University, Institute of Theoretical Physics, Datong (China); Shanxi Datong University, Department of Physics, Datong (China)
2017-05-15
Using Maxwell's equal area law, we discuss the phase transition of higher dimensional charged topological dilaton AdS black hole with a nonlinear source. The coexisting region of the two phases is found and we depict the coexistence region in the P-v diagrams. The two-phase equilibrium curves in the P-T diagrams are plotted, and we take the first order approximation of volume v in the calculation. To better compare with a general thermodynamic system, the Clapeyron equation is derived for a higher dimensional charged topological black hole with a nonlinear source. The latent heat of an isothermal phase transition is investigated. We also study the effect of the parameters of the black hole on the region of two-phase coexistence. The results show that the black hole may go through a small-large phase transition similar to those of usual non-gravity thermodynamic systems. (orig.)
Li, Huai-Fan; Zhang, Li-Chun; Zhao, Ren
2016-01-01
Using Maxwell's equal area law, we discuss the phase transition of higher dimensional charged topological dilaton AdS black holes with a nonlinear source. The coexisting region of the two phases is found and we depict the coexistence region in $P-v$ diagrams. The two-phase equilibrium curves in $P-T$ diagrams are plotted, and we take the first order approximation of volume $v$ in the calculation. To better compare with a general thermodynamic system, the Clapeyron equation is derived for higher dimensional charged topological black hole with a nonlinear source. The latent heat of isothermal phase transition is investigated. We also study the effect of the parameters of the black hole on the region of two-phases coexistence. The results show that the black hole may go through a small-large phase transition similar to those of usual non-gravity thermodynamic systems.
You, Yi-Zhuang; Bi, Zhen; Mao, Dan; Xu, Cenke
2016-03-01
We propose a series of simple two-dimensional (2D) lattice interacting fermion models that we demonstrate at low energy describe bosonic symmetry-protected topological (SPT) states and quantum phase transitions between them. This is because due to interaction, the fermions are gapped both at the boundary of the SPT states and at the bulk quantum phase transition, thus these models at low energy can be described completely by bosonic degrees of freedom. We show that the bulk of these models is described by a Sp (N ) principal chiral model with a topological Θ term, whose boundary is described by a Sp (N ) principal chiral model with a Wess-Zumino-Witten term at level 1. The quantum phase transition between SPT states in the bulk is tuned by a particular interaction term, which corresponds to tuning Θ in the field theory, and the phase transition occurs at Θ =π . The simplest version of these models with N =1 is equivalent to the familiar O(4) nonlinear sigma model (NLSM) with a topological term, whose boundary is a (1 +1 )D conformal field theory with central charge c =1 . After breaking the O(4) symmetry to its subgroups, this model can be viewed as bosonic SPT states with U(1), or Z2 symmetries, etc. All of these fermion models, including the bulk quantum phase transitions, can be simulated with the determinant quantum Monte Carlo method without the sign problem. Recent numerical results strongly suggest that the quantum disordered phase of the O(4) NLSM with precisely Θ =π is a stable (2 +1 )D conformal field theory with gapless bosonic modes.
Synthesis, phase and reaction mechanism of nonlinear optical material MnTeMoO{sub 6}
Energy Technology Data Exchange (ETDEWEB)
Jin, Chengguo; Shao, Juxiang; Yang, Junsheng; Wan, Mingjie [Yibin University, Key Laboratory of Computational Physics of Sichuan Province, Yibin (China); Yibin University, School of Physics and Electronic Engineering, Yibin (China); Luo, Huafeng [Yibin University, College of Chemistry and Chemical Engineering, Yibin (China); Huang, Xingyong [Yibin University, School of Physics and Electronic Engineering, Yibin (China); Wang, Fanhou [Yibin University, Key Laboratory of Computational Physics of Sichuan Province, Yibin (China)
2016-09-15
Pure polycrystalline MnTeMoO{sub 6} is highly desirable to crystal growth. Polycrystalline MnTeMoO{sub 6} has been synthesized by solid-state reaction techniques. The optimized preparation process, phase purity and reaction mechanism of polycrystalline MnTeMoO{sub 6} were investigated. The reaction will be paused if the atoms cannot pass through the grain boundary and restarted after ground intimately. A new method combined with X-ray diffraction and microscopic observation is employed to determine the phase purity of polycrystalline MnTeMoO{sub 6}. Pure polycrystalline MnTeMoO{sub 6} with gray color and single crystalline phase can be obtained after the reactant was calcined at 500 C for 20 h three times and can be used to crystal growth. This method for determining the phase purity of powder sample can be used in the synthesis of other polycrystalline powders. (orig.)
Harmonic Mitigation in a Single Phase Non-Linear Load Using SAPF with PI Controller
Directory of Open Access Journals (Sweden)
K. Hemachandran
2015-10-01
Full Text Available Power Quality is a major consideration in all office equipments, industries and residential home appliances. Harmonics play a vital role in power quality issues. A harmonic is generated and deteriorating the quality of power due to non-linear load, which is connected to the electrical system. Based upon the load, there will be an increase in harmonic voltage and currents in the system, which will affect the whole system. The limitations for harmonic voltages and harmonic currents have defined in IEEE 519 and IEC standards. That limitation can be achieved by using shunt Active Power Filters. This paper deals on shunt active power filter with PI controller. Shunt active power filter (SAPF is designed by employing voltage source inverter with pulse width modulation (PWM. For R-L non linear load this harmonic mitigation is done. The MATLAB / SIMULINK model of this system is simulated and results are obtained through THD analysis.
Yang, Haijian
2016-12-10
Most existing methods for solving two-phase flow problems in porous media do not take the physically feasible saturation fractions between 0 and 1 into account, which often destroys the numerical accuracy and physical interpretability of the simulation. To calculate the solution without the loss of this basic requirement, we introduce a variational inequality formulation of the saturation equilibrium with a box inequality constraint, and use a conservative finite element method for the spatial discretization and a backward differentiation formula with adaptive time stepping for the temporal integration. The resulting variational inequality system at each time step is solved by using a semismooth Newton algorithm. To accelerate the Newton convergence and improve the robustness, we employ a family of adaptive nonlinear elimination methods as a nonlinear preconditioner. Some numerical results are presented to demonstrate the robustness and efficiency of the proposed algorithm. A comparison is also included to show the superiority of the proposed fully implicit approach over the classical IMplicit Pressure-Explicit Saturation (IMPES) method in terms of the time step size and the total execution time measured on a parallel computer.
Yang, Haijian; Sun, Shuyu; Yang, Chao
2017-03-01
Most existing methods for solving two-phase flow problems in porous media do not take the physically feasible saturation fractions between 0 and 1 into account, which often destroys the numerical accuracy and physical interpretability of the simulation. To calculate the solution without the loss of this basic requirement, we introduce a variational inequality formulation of the saturation equilibrium with a box inequality constraint, and use a conservative finite element method for the spatial discretization and a backward differentiation formula with adaptive time stepping for the temporal integration. The resulting variational inequality system at each time step is solved by using a semismooth Newton algorithm. To accelerate the Newton convergence and improve the robustness, we employ a family of adaptive nonlinear elimination methods as a nonlinear preconditioner. Some numerical results are presented to demonstrate the robustness and efficiency of the proposed algorithm. A comparison is also included to show the superiority of the proposed fully implicit approach over the classical IMplicit Pressure-Explicit Saturation (IMPES) method in terms of the time step size and the total execution time measured on a parallel computer.
Constantoudis, Vassilios; Nicolaides, Cleanthes A
2005-02-22
The dissociation dynamics of a dichromatically laser-driven diatomic Morse molecule vibrating in the ground state is investigated by applying tools of the nonlinear theory of classical Hamiltonian systems. Emphasis is placed on the role of the relative phase of the two fields, phi. First, it is found that, just like in quantum mechanics, there is dependence of the dissociation probability on phi. Then, it is demonstrated that addition of the second laser leads to suppression of probability (stabilization), when the intensity of the first laser is kept constant just above or below the single laser dissociation threshold. This "chemical bond hardening" diminishes as phi increases. These effects are investigated and interpreted in terms of modifications in phase space topology. Variations of phi as well as of the intensity of the second laser may cause (i) appearance/disappearance of the stability island corresponding to the common resonance with the lowest energy and (ii) deformation and movement of the region of Kolmogorov-Arnold-Moser tori that survive from the undriven system. The latter is the main origin in phase space of stabilization and phi dependence. Finally, it is shown that the use of short laser pulses enhances both effects.
Lapa, Matthew F.; Hughes, Taylor L.
2017-08-01
We canonically quantize O (D +2 ) nonlinear sigma models (NLSMs) with a theta term on arbitrary smooth, closed, connected, oriented D -dimensional spatial manifolds M , with the goal of proving the suitability of these models for describing symmetry-protected topological (SPT) phases of bosons in D spatial dimensions. We show that in the disordered phase of the NLSM, and when the coefficient θ of the theta term is an integer multiple of 2 π , the theory on M has a unique ground state and a finite energy gap to all excitations. We also construct the ground state wave functional of the NLSM in this parameter regime, and we show that it is independent of the metric on M and given by the exponential of a Wess-Zumino term for the NLSM field, in agreement with previous results on flat space. Our results show that the NLSM in the disordered phase and at θ =2 π k , k ∈Z , has a symmetry-preserving ground state but no topological order (i.e., no topology-dependent ground state degeneracy), making it an ideal model for describing SPT phases of bosons. Thus, our work places previous results on SPT phases derived using NLSMs on solid theoretical ground. To canonically quantize the NLSM on M , we use Dirac's method for the quantization of systems with second class constraints, suitably modified to account for the curvature of space. In a series of four Appendixes, we provide the technical background needed to follow the discussion in the main sections of the paper.
Cui, Yue; Zhang, Min; Zhan, Yueying; Wang, Danshi; Huang, Shanguo
2016-08-01
A scheme for optical parallel encryption/decryption of quadrature phase shift keying (QPSK) signals is proposed, in which three QPSK signals at 10 Gb/s are encrypted and decrypted simultaneously in the optical domain through nondegenerate four-wave mixing in a highly nonlinear fiber. The results of theoretical analysis and simulations show that the scheme can perform high-speed wiretapping against the encryption of parallel signals and receiver sensitivities of encrypted signal and the decrypted signal are -25.9 and -23.8 dBm, respectively, at the forward error correction threshold. The results are useful for designing high-speed encryption/decryption of advanced modulated signals and thus enhancing the physical layer security of optical networks.
Directory of Open Access Journals (Sweden)
Orlando Soriano-Vargas
2016-12-01
Full Text Available Spinodal decomposition was studied during aging of Fe-Cr alloys by means of the numerical solution of the linear and nonlinear Cahn-Hilliard differential partial equations using the explicit finite difference method. Results of the numerical simulation permitted to describe appropriately the mechanism, morphology and kinetics of phase decomposition during the isothermal aging of these alloys. The growth kinetics of phase decomposition was observed to occur very slowly during the early stages of aging and it increased considerably as the aging progressed. The nonlinear equation was observed to be more suitable for describing the early stages of spinodal decomposition than the linear one.
Institute of Scientific and Technical Information of China (English)
苗宇; 苏宏业; 禇健
2009-01-01
The quality of process data in a chemical plant significantly affects the performance and benefits gained from activities like performance monitoring, online optimization, and control. Since many chemical processes often show nonlinear dynamics, techniques like extended Kalman filter (EKF) and nonlinear dynamic data reconciliation (NDDR) have been developed to improve the data quality. Recently, the recursive nonlinear dynamic data reconciliation (RNDDR) technique has been proposed, which combines the merits of EKF and NDDR techniques. However, the RNDDR technique cannot handle measurements with gross errors. In this paper, a support vector (SV) regression approach for recursive simultaneous data reconciliation and gross error detection in nonlinear dynamical systems is proposed. SV regression is a compromise between the empirical risk and the model complexity, and for data reconciliation it is robust to random and gross errors. By minimizing the regularized risk instead of the maximum likelihood in the RNDDR, our approach could achieve not only recursive nonlinear dynamic data reconciliation but also gross error detection simultaneously. The nonlinear dynamic system simulation results in this paper show that the proposed approach is robust, efficient, stable, and accurate for simultaneous data reconciliation and gross error detection in nonlinear dynamic systems within a recursive real-time estimation framework. It can also give better performance of control.
Nonlinear dynamics of tapping mode atomic force microscopy in the bistable phase
Bahrami, Arash; Nayfeh, Ali H.
2013-03-01
Nonlinear dynamics of amplitude modulation atomic force microscopy (AFM) is studied employing a reduced-order model based on a differential quadrature method (DQM). The AFM microcantilever is assumed to be operating in the dynamic contact or tapping mode while the microcantilever tip being initially located in the bistable region. We have found that the DQM is capable of precise prediction of the static bifurcation diagram and natural frequencies of the microcantilever. We have used the DQM to discretize the partial-differential equation governing the microcantilever motion and a finite difference method (FDM) to calculate limit-cycle responses of the AFM tip. It is shown that a combination of the DQM and FDM applied, respectively, to discretize the spatial and temporal derivatives provides an efficient, accurate procedure to address the complicated dynamic behavior exhibited by the AFM probe. The procedure was, therefore, utilized to study the response of the microcantilever to a base harmonic excitation through several numerical examples. We found that the dynamics of the AFM probe in the bistable region is totally different from those in the monostable region.
Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines.
Reale, D V; Bragg, J-W B; Gonsalves, N R; Johnson, J M; Neuber, A A; Dickens, J C; Mankowski, J J
2014-05-01
Gyromagnetic Nonlinear Transmission Lines (NLTLs) generate microwaves through the damped gyromagnetic precession of the magnetic moments in ferrimagnetic material, and are thus utilized as compact, solid-state, frequency agile, high power microwave (HPM) sources. The output frequency of a NLTL can be adjusted by control of the externally applied bias field and incident voltage pulse without physical alteration to the structure of the device. This property provides a frequency tuning capability not seen in many conventional e-beam based HPM sources. The NLTLs developed and tested are mesoband sources capable of generating MW power levels in the L, S, and C bands of the microwave spectrum. For an individual NLTL the output power at a given frequency is determined by several factors including the intrinsic properties of the ferrimagnetic material and the transmission line structure. Hence, if higher power levels are to be achieved, it is necessary to combine the outputs of multiple NLTLs. This can be accomplished in free space using antennas or in a transmission line via a power combiner. Using a bias-field controlled delay, a transient, high voltage, coaxial, three port, power combiner was designed and tested. Experimental results are compared with the results of a transient COMSOL simulation to evaluate combiner performance.
Directory of Open Access Journals (Sweden)
T McMillen
2008-08-01
Full Text Available Locomotion provides superb examples of cooperation among neuromuscular systems, environmental reaction forces, and sensory feedback. As part of a program to understand the neuromechanics of locomotion, here we construct a model of anguilliform (eel-like swimming in slender fishes. Building on a continuum mechanical representation of the body as an viscoelastic rod, actuated by a traveling wave of preferred curvature and subject to hydrodynamic reaction forces, we incorporate a new version of a calcium release and muscle force model, fitted to data from the lamprey Ichthyomyzon unicuspis, that interactively generates the curvature wave. We use the model to investigate the source of the difference in speeds observed between electromyographic waves of muscle activation and mechanical waves of body curvature, concluding that it is due to a combination of passive viscoelastic and geometric properties of the body and active muscle properties. Moreover, we find that nonlinear force dependence on muscle length and shortening velocity may reduce the work done by the swimming muscles in steady swimming.
Delzanno, G. L.; Finn, J. M.; Lapenta, G.
2002-12-01
The nonlinear dynamics of a Penning trap plasma, including the effect of the finite length and end curvature of the plasma column, is studied. A new cylindrical particle-in-cell code, called KANDINSKY, has been implemented by using a new interpolation scheme. The principal idea is to calculate the volume of each cell from a particle volume, in the same manner as is done for the cell charge. With this new method, the density is conserved along streamlines and artificial sources of compressibility are avoided. The code has been validated with a number of tests. The code is then used to compare the dynamics of three different models: the standard Euler or drift-Poisson model, the modified drift-Poisson model [J. Finn et al. Phys. Plasmas 6, 3744 (1999); Phys. Rev. Lett. 84, 2401 (2000)] with compressional effects, and the quasigeostrophic model of geophysical fluid dynamics in the limit of the γ-plane approximation. The results of this investigation show that Penning traps can be used to simulate geophysical fluids. Moreover, the results for the m=1 diocotron instability reproduce qualitatively the experiments [C. F. Driscoll, Phy. Rev. Lett. 64, 645 (1990); C. F. Driscoll et al. Phys. Fluids B 2, 1359 (1990)]: The instability turns the plasma "inside-out" resulting at the end in a stable, monotonic profile.
Inference for a Nonlinear Semimartingale Regression Model.
1987-11-01
increases. If K is left continuous and of bounded variation , then by integration by parts (see Dellacherie and Meyer (1982), Chapter VIII, (19.4)) for n...dt uniformly in z as n oo, where x- = .K 2(u) du. (c) Suppose A1-A3, B1, B2 hold, K is left continuous, of bounded variation and nwn - 00, nw 3 -3 0
Nonlinear ultrasonic phased array imaging of closed cracks using global preheating and local cooling
Ohara, Yoshikazu; Takahashi, Koji; Ino, Yoshihiro; Yamanaka, Kazushi
2015-10-01
Closed cracks are the main cause of underestimation in ultrasonic inspection, because the ultrasound transmits through the crack. Specifically, the measurement of closed-crack depth in coarse-grained materials, which are highly attenuative due to linear scatterings at the grains, is the most difficult issue. To solve this problem, we have developed a temporary crack opening method, global preheating and local cooling (GPLC), using tensile thermal stress, and a high-selectivity imaging method, load difference phased array (LDPA), based on the subtraction of phased array images between different stresses. To demonstrate our developed method, we formed a closed fatigue crack in coarse-grained stainless steel (SUS316L) specimen. As a result of applying it to the specimen, the high-selectivity imaging performance was successfully demonstrated. This will be useful in improving the measurement accuracy of closed-crack depths in coarse-grained material.
Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links.
Nazarathy, Moshe; Khurgin, Jacob; Weidenfeld, Rakefet; Meiman, Yehuda; Cho, Pak; Noe, Reinhold; Shpantzer, Isaac; Karagodsky, Vadim
2008-09-29
We develop an analytic model of Coherent Optical Orthogonal Frequency Division Multiplexing (OFDM) propagation and detection over multi-span long-haul fiber links, comprehensively and rigorously analyzing the impairments due the combined effects of FWM, Dispersion and ASE noise. Consistent with prior work of Innoe and Schadt in the WDM context, our new closed-form expressions for the total FWM received power fluctuations in the wake of dispersive phase mismatch in OFDM transmission, indicate that the FWM contributions of the multitude of spans build-up on a phased-array basis. For particular ultra-long haul link designs, the effectiveness of dispersion in reducing FWM is far greater than previously assumed in OFDM system analysis. The key is having the dominant FWM intermodulation products due to the multiple spans, destructively interfere, mutually cancelling their FWM intermodulation products, analogous to operating at the null of a phased-array antenna system. By applying the new analysis tools, this mode of effectively mitigating the FWM impairment, is shown under specific dispersion and spectral management conditions, to substantially suppress the FWM power fluctuations. Accounting for the phased-array concept and applying the compact OFDM design formulas developed here, we analyzed system performance of a 40 Gbps coherent OFDM system, over standard G.652 fiber, with cyclic prefix based electronic dispersion compensation but no optical compensation along the link. The transmission range for 10-3 target BER is almost tripled from 2560 km to 6960 km, relative to a reference system performing optical dispersion compensation in every span (ideally accounting for FWM and ASE noise and the cyclic prefix overhead, but excluding additional impairments).
Phase-locking phenomena and excitation of damped and driven nonlinear oscillators
Energy Technology Data Exchange (ETDEWEB)
Shagalov, A G [Institute of Metal Physics, Ekaterinburg 620041 (Russian Federation); Rasmussen, J Juul; Naulin, V [Risoe-DTU, Building 128, PO Box 49, DK-4000 Roskilde (Denmark)], E-mail: shagalov@imp.uran.ru, E-mail: jens.juul.rasmussen@risoe.dk, E-mail: volker.naulin@risoe.dk
2009-01-30
Resonant phase-locking phenomena ('autoresonance') in the van der Pol-Duffing oscillator forced by a small amplitude periodic driving with slowly varying frequency have been studied. We show that autoresonance occurs for oscillators with sufficiently small damping, when the system may have bi-stable states. We find the range of parameters of the oscillator, the thresholds and the appropriate control paths where autoresonant excitation of high amplitude oscillations is possible.
Phase-locking phenomena and excitation of damped and driven nonlinear oscillators
DEFF Research Database (Denmark)
Shagalov, A.G.; Juul Rasmussen, Jens; Naulin, Volker
2009-01-01
Resonant phase-locking phenomena ('autoresonance') in the van der Pol Duffing oscillator forced by a small amplitude periodic driving with slowly varying frequency have been studied. We show that autoresonance occurs for oscillators with sufficiently small damping, when the system may have bi......-stable states. We find the range of parameters of the oscillator, the thresholds and the appropriate control paths where autoresonant excitation of high amplitude oscillations is possible....
A phase insensitive all-optical router based on nonlinear lenslike planar waveguides.
Mateo, Eduardo; Liñares, Jesús
2005-05-02
We present the design of an all-optical router based on the properties of both propagation and interaction of Gaussian beams in lenslike planar guides. Variational results of single co- and counterpropagation are derived and used to design three integrated optical devices, that is, a header extraction device, an optical bistable device and a data routing device, which perform an ultrafast, phase-insensitive and fiber compatible routing operation in the optical domain.
Global well-posedness for passively transported nonlinear moisture dynamics with phase changes
Hittmeir, Sabine; Li, Jinkai; Titi, Edriss S
2016-01-01
We study a moisture model for warm clouds that has been used by Klein and Majda as a basis for multiscale asymptotic expansions for deep convective phenomena. These moisture balance equations correspond to a bulk microphysics closure in the spirit of Kessler and of Grabowski and Smolarkiewicz, in which water is present in the gaseous state as water vapor and in the liquid phase as cloud water and rain water. It thereby contains closures for the phase changes condensation and evaporation, as well as the processes of autoconversion of cloud water into rainwater and the collection of cloud water by the falling rain droplets. Phase changes are associated with enormous amounts of latent heat and therefore provide a strong coupling to the thermodynamic equation. In this work we assume the velocity field to be given and prove rigorously the global existence and uniqueness of uniformly bounded solutions of the moisture model with viscosity, diffusion and heat conduction. To guarantee local well-posedness we first nee...
Directory of Open Access Journals (Sweden)
Fernanda Gomes da Silveira
2011-04-01
Full Text Available Este estudo teve como objetivo utilizar a análise de agrupamento para classificar modelos de regressão não-lineares usados para descrever a curva de crescimento de ovinos cruzados, tendo em vista os resultados de diferentes avaliadores de qualidade de ajuste. Para tanto, utilizaram-se dados de peso-idade dos seguintes cruzamentos entre raças de ovinos de corte: Dorper x Morada Nova, Dorper x Rabo Largo e Dorper x Santa Inês. Após a indicação do melhor modelo, objetivou-se ainda aplicar a técnica de identidade de modelos a fim de identificar o cruzamento mais produtivo. Foram ajustados doze modelos não-lineares, cuja qualidade de ajuste foi medida pelo coeficiente de determinação ajustado, critérios de informação de Akaike e Bayesiano, erro quadrático médio de predição e coeficiente de determinação de predição. A análise de agrupamento indicou o modelo Richards como o mais adequado para descrever as curvas de crescimento dos três grupos genéticos considerados, e os testes de identidade de modelos indicaram o cruzamento Dorper x Santa Inês como sendo o mais indicado para a pecuária local.This study had the objectives to use the cluster analysis in order to classify nonlinear regression models used to describe the growth curve in relation to different quality fit evaluators. Were utilized weight-age data from the following crossbred beef lambs Dorper x Morada Nova, Dorper x Rabo Largo e Dorper x Santa Inês. After the choice of the best model, we aimed also to apply the model identity in order to identify the most efficient crossbred group. Eleven nonlinear models were used, whose fit quality was measured by determination coefficient, Akaike information criterion, Bayesian information criterion, mean quadratic error of prediction and predicted determination coefficient. The cluster analysis indicated the Richards as the best model for the three data sets, and the model identity tests revealed that the Dorper x Santa In
Institute of Scientific and Technical Information of China (English)
贾润达; 毛志忠; 常玉清
2009-01-01
提出了一种径向基函数网络(Radial basis function networks,RBFNs)与偏鲁棒M-回归(Partial robust M-regression,PRM)相结合的非线性PRM (Nonlinear PRM,NLPRM) 建模方法,用以解决鲁棒非线性系统建模问题.该方法首先通过RBF变换获得扩展的输入数据矩阵;接下来PRM算法通过反复迭代计算,自适应地为变换后的数据分配不同的连续权值,用以克服离群点对模型的影响.本文通过仿真实验,验证了方法的有效性;并将其应用于湿法冶金萃取过程萃余液pH值软测量建模问题,获得了相比于偏最小二乘法(Partial least squares,PLS)、PRM以及RBF-PLS方法更高的预测精度.
Institute of Scientific and Technical Information of China (English)
刘建平; 郑崇勋; 张崇
2009-01-01
Computing the Nonlinear regressive (NLR) coefficients of electroencephalogram (EEG) rhythms at different brain cortical areas for the mental fatigue caused by long term cognitive task, the variations of NLR coefficients of EEG rhythms under different mental fatigue level are sought out.The experimental results show that the NLR coefficients of EEG rhythms can effectively characterize the changes of amplitude coupling at different brain cortical areas under different mental fatigue level.The NLR coefficient provides a powerful tool for the EEG functional coupling analysis of mental fatigue.%本文通过对连续长时间脑力劳动前后状态下的脑电节律进行幅度耦合分析,提取了非线性回归系数,研究它们在不同中枢疲劳状态下的变化规律.实验结果表明,非线性回归系数能有效地反映出导联间幅度耦合同步程度随中枢疲劳程度的变化情况.为中枢疲劳脑电幅度耦合分析提供了有力工具.
Directory of Open Access Journals (Sweden)
Marcelo Maia Pereira
2014-12-01
Full Text Available Knowledge of the growth of animals is important so that zootechnical activity can be more accurate and sustainable. The objective of this study was to describe the live weight, development of liver tissue and fat body, leg growth, and cumulative food intake of bullfrogs during the fattening phase using nonlinear models. A total of 2,375 bullfrog froglets with an initial weight of 7.03 ± 0.16 g were housed in five fattening pens (12 m². Ten samplings were performed at intervals of 14 days to obtain the variables studied. These data were used to estimate the parameters of Gompertz and logistic models as a function of time. The estimated values of weight (Wm and food intake (FIm at maturity and time when the growth rate is maximum (t* were closer to expected values when the logistic model was used. The Wm values for live weight and liver, adipose and leg weights and the FIm value for food intake were 343.7, 15.7, 19.6, 96.03 and 369.3 g, respectively, with t* at 109, 98, 105, 109 and 107 days. Therefore, the logistic model was the best model to estimate the growth and food intake of bullfrogs during the fattening phase.
Hu, Jinyu; Ma, Zuju; Li, Jun; He, Chao; Li, Qiaohong; Wu, Kechen
2016-05-01
Borophosphates, particularly BPO4 (BPO) crystals, have attracted attention in laser frequency conversion devices because of their short ultraviolet cutoff edge and relatively large second harmonic generation (SHG) response, which is almost twice as great as that of KH2PO4. However, the birefringence of BPO (approximately 0.005) is too small to satisfy the phase matching condition in the ultraviolet spectral region, restricting the laser output efficiency. Here we systematically examine the influence of mechanical strains on the atomic structure as well as the electronic and optical properties of BPO using first-principles calculations. Interestingly, we find that the birefringence of BPO can be enhanced by ~0.06 through external uniaxial strain along the c-axis. Meanwhile, compressive strain can increase the band gap and SHG coefficients effectively. Refractive-index dispersion is also emphasized in this work. Our results indicate that phase matching in the ultraviolet region (266 nm) can be achieved under -10% strain (3.9 GPa). This investigation is helpful for understanding the structure-property relationship of BPO under strain, and it also indicates its possible use as a promising ultraviolet nonlinear optical crystal.
Phase-referenced nonlinear spectroscopy of the α-quartz/water interface
Energy Technology Data Exchange (ETDEWEB)
Ohno, Paul E.; Saslow, Sarah A.; Wang, Hong-fei; Geiger, Franz M.; Eisenthal, Kenneth B.
2016-12-13
Probing the polarization of water molecules at charged interfaces by second harmonic generation (SHG) spectroscopy1 has been heretofore limited to isotropic solids. The signal intensity follows the interfacial potential, φo, according to I2ω ∝|χ(2)+ χ(3).φo|2, where I2ω is the SHG signal intensity oscillating at frequency 2ω, and χ(2) and χ(3) are the second- and third-order susceptibilities (χ(2) and χ(3)) of the interface probed. Here, we report the first phase-referenced SHG measurements under non-resonant conditions at the interface of z-cut α-quartz and water under conditions of dynamically changing ionic strength and bulk solution pH. Comparison to non-referenced SHG measurements obtained from the fused silica/water interface reveals that the χ(3).φo term takes the form of ( χ(3)±iχ(3)).φo, and that the interference between the χ(3).φo term and the bulk quartz χ(2) term depends on the rotation angle of α-quartz around the z-axis. This newly identified term, iχ(3).φo, which is out of phase from the surface terms, is of bulk origin. The experiment expands the scope of SHG spectroscopy to probe solid/liquid interfaces beyond amorphous and centrosymmetric materials towards crystal classes that lack centrosymmetry. The possibility of internally phase referencing the interfacial SHG response for the interfacial orientation analysis of species or materials in contact with α-quartz are discussed along with the implications for conditions of resonance enhancement.
Global well-posedness for passively transported nonlinear moisture dynamics with phase changes
Hittmeir, Sabine; Klein, Rupert; Li, Jinkai; Titi, Edriss S.
2017-10-01
We study a moisture model for warm clouds that has been used by Klein and Majda (2006 Theor. Comput. Fluid Dyn. 20 525–551) as a basis for multiscale asymptotic expansions for deep convective phenomena. These moisture balance equations correspond to a bulk microphysics closure in the spirit of Kessler (1969 Meteorol. Monogr. 10 1–84) and Grabowski and Smolarkiewicz (1996 Mon. Weather Rev. 124 487–97), in which water is present in the gaseous state as water vapor and in the liquid phase as cloud water and rain water. It thereby contains closures for the phase changes condensation and evaporation, as well as the processes of autoconversion of cloud water into rainwater and the collection of cloud water by the falling rain droplets. Phase changes are associated with enormous amounts of latent heat and therefore provide a strong coupling to the thermodynamic equation. In this work we assume the velocity field to be given and prove rigorously the global existence and uniqueness of uniformly bounded solutions of the moisture model with viscosity, diffusion and heat conduction. To guarantee local well-posedness we first need to establish local existence results for linear parabolic equations, subject to the Robin boundary conditions on the cylindric type of domains under consideration. We then derive a priori estimates, for proving the maximum principle, using the Stampacchia method, as well as the iterative method by Alikakos (1979 J. Differ. Equ. 33 201–25) to obtain uniform boundedness. The evaporation term is of power law type, with an exponent in general less or equal to one and therefore making the proof of uniqueness more challenging. However, these difficulties can be circumvented by introducing new unknowns, which satisfy the required cancellation and monotonicity properties in the source terms.
Jensen, L; van Duijnen, PT
2005-01-01
We have calculated the frequency-dependent refractive index and the third-order nonlinear susceptibility for C-60 in the condensed phase, which is related to third-harmonic generation (THG) and degenerate four-wave mixing (DFWM) experiments. This was done using the recently developed discrete solven
DEFF Research Database (Denmark)
Yu, Jianjun; Jeppesen, Palle
2001-01-01
Using cross-phase modulation in a 1-km high-nonlinearity dispersion-shifted fiber with subsequent filtering by a tunable optical filter, 80-Gb/s pulsewidth maintained wavelength conversion is realized. Penalty-free transmission over 80-km conventional single-mode fiber and 12-km dispersion...
Phase sensitivity of two nonlinear interferometers with inputting entangled coherent states
Wei, Chao-Ping; Xiao-Yu, Hu; Ya-Fei, Yu; Zhi-Ming, Zhang
2016-04-01
We investigate the phase sensitivity of the SU(1,1) interfereometer [SU(1,1)I] and the modified Mach-Zehnder interferometer (MMZI) with the entangled coherent states (ECS) as inputs. We consider the ideal case and the situations in which the photon losses are taken into account. We find that, under ideal conditions, the phase sensitivity of both the MMZI and the SU(1,1)I can beat the shot-noise limit (SNL) and approach the Heisenberg limit (HL). In the presence of photon losses, the ECS can beat the coherent and squeezed states as inputs in the SU(1,1)I, and the MMZI is more robust against internal photon losses than the SU(1,1)I. Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023), the National Natural Science Foundation of China (Grant Nos. 11574092, 61378012, and 60978009), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20124407110009), the National Basic Research Program of China (Grant Nos. 2011CBA00200 and 2013CB921804), and the Program for Innovative Research Team in University (Grant No. IRT1243).
Meta-Regression: A Framework for Robust Reactive Optimization
DEFF Research Database (Denmark)
McClary, Dan; Syrotiuk, Violet R.; Kulahci, Murat
2007-01-01
Maintaining optimal performance as the conditions of a system change is a challenging problem. To solve this problem, we present meta-regression, a general methodology for alleviating traditional difficulties in nonlinear regression modelling. Meta-regression allows for reactive optimization, in ...... of a nonlinear system....
Photonic Nonlinear Transient Computing with Multiple-Delay Wavelength Dynamics
Martinenghi, Romain; Rybalko, Sergei; Jacquot, Maxime; Chembo, Yanne K.; Larger, Laurent
2012-06-01
We report on the experimental demonstration of a hybrid optoelectronic neuromorphic computer based on a complex nonlinear wavelength dynamics including multiple delayed feedbacks with randomly defined weights. This neuromorphic approach is based on a new paradigm of a brain-inspired computational unit, intrinsically differing from Turing machines. This recent paradigm consists in expanding the input information to be processed into a higher dimensional phase space, through the nonlinear transient response of a complex dynamics excited by the input information. The computed output is then extracted via a linear separation of the transient trajectory in the complex phase space. The hyperplane separation is derived from a learning phase consisting of the resolution of a regression problem. The processing capability originates from the nonlinear transient, resulting in nonlinear transient computing. The computational performance is successfully evaluated on a standard benchmark test, namely, a spoken digit recognition task.
Institute of Scientific and Technical Information of China (English)
李清; 任朝阳
2016-01-01
Chaos theory suggested that most of human behavior appeared to be non‐linear .Accounting fraud belonged to the field of behavior accounting . Traditionally ,fraud identification model based on statistical theory limited to linear constraint assumptions mostly . T here may be such defects as model specification errors and information extraction insufficiently . It chose Shanghai and Shenzhen A‐share listed companies subject to regulatory sanctions and matching companies as samples . Based on the nonlinear ideology of Taylor expansion , and the principal component analysis to eliminate variables multicollinearity ,it constructed a nonlinear‐principal component Logistic regression of accounting fraud recognition model . The model has a higher recognition accuracy ratio , more reliability on parameter estimation and has higher goodness of fit than the linear regression model .The model is helpful to extract fraud identification information more fully ,and improves the efficiency of fraud identification .%混沌理论认为，人类行为大多具有非线性特征。会计舞弊属于行为会计的研究范畴，而传统上基于统计理论构建的舞弊识别模型大多受限于线性约束假设，可能存在模型设定偏误和信息提取不充分的缺陷。以沪深A股受到监管处罚的上市公司及其配对公司为样本，借鉴Taylor展开式的非线性思想，并使用主成分分析消除变量多重共线性，构建了非线性－主成分Logistic回归的会计舞弊识别模型。与线性回归模型对比发现，前者具有更高的舞弊识别正确率，模型拟合度更优。应用这一模型有助于更加充分提取舞弊识别信息，提高舞弊识别效率。
Institute of Scientific and Technical Information of China (English)
朱慧明; 周峰; 曾昭法; 李荣; 游万海
2015-01-01
In the method of testing smooth transition cointegration, estimating parameters are uncertain and the problem of cointegration test is complex.This paper proposes a smooth transition regression model and conducts a Bayesian nonlinear cointegration analysis.Based on the selection of parameters prior of the model and the charac-teristics of the posterior conditional distributions of the parameters, Metropolis-Hasting within Gibbs sampling algorithm is designed to estimate the parameters and bayesian unit root test is utilized to test the stationarity of regression residual, addressing the uncertainty of parameters estimation and the complexity of cointegration test. At the same time, the research applies exchange rate of RMB against U.S.dollar and interest rate differential between China and U.S.to conduct an empirical analysis.The research outcome indicates that MH-Gibbs can effectively a estimate the parameters of the smooth transition model, and we find there is smooth transition cointe-gration relationship between exchange rate fluctuation and interest rate differential.%针对平滑转移模型参数估计不确定性导致的协整检验方法相对复杂问题，提出基于平滑转移模型的贝叶斯非线性协整分析。通过模型的统计结构分析，选择参数先验分布，结合参数的后验条件分布特征设计Me-tropolis-Hasting-Gibbs混合抽样方案，据此估计平滑转移模型的参数，并对回归残差进行贝叶斯单位根检验，解决参数估计过程中遇到的参数估计不确定性及协整检验复杂的问题；利用人民币对美元汇率与中美两国的利率数据进行实证分析。研究结果表明：MH-Gibbs抽样方案能够有效估计平滑转移模型的参数，中美汇率波动和利差之间存在平滑转移协整关系。
Institute of Scientific and Technical Information of China (English)
张向达; 张家平
2016-01-01
寻求中国城乡收入差距对财产性犯罪率产生非线性影响的经验证据对进入经济新常态的中国收入分配格局有着十分重要的实践意义。比起二者之间的线性影响，分析非线性效应能够更好地揭示中国转型期复杂的经济社会因素在城乡收入差距对财产性犯罪率产生影响的过程中所起到的关键作用。本文使用中国1981-2012年的数据，运用非线性STR模型对此问题开展经验研究，结果表明中国城乡收入差距是财产性犯罪率变化的单向Granger原因，两者存在的非线性的非对称效应表现出了阶段性的变化特征。我们将其分为四个阶段，包括1987年以前的平衡I期、1987-1991年的迁移I期、1991-1997年的平衡II期和1997-2012年的迁移II期。%Empirical research on the effect of rural-urban income gap on crime rate in China was almost based on classic linear models. Nevertheless, the connection between rural-urban income gap and property crime rate may be dynamically nonlinear instead due to actual influences from many other factors. This is why the paper tries to make an analysis on the related time-series data from 1981 to 2012 based on nonlinear smooth transition regression model. The results show that there are a one-way Granger causal connection and a positive nonlinear relationship between rural-urban income gap and property crime rate in China. Moreover, it has shown the phase characteristics and been divided into four main stages, i. e. the Equilibrium Period I before 1987, and Rapid Fluctuation Period I from 1987 to 1991 followed by the Equilibrium Period II between 1991 and 1997, then the Rapid Fluctuation Period II started from 1997 to 2012.
Institute of Scientific and Technical Information of China (English)
侯文; 宋立新; 黄玉洁
2012-01-01
考察了响应变量在随机删失情形下的非线性半参数回归模型,构造了未知参数的经验对数似然比统计量和调整经验对数似然比统计量,证明在一定条件下,所构造的经验似然比统计量渐近于x2分布,并由此构造出未知参数的置信域.此外,又构造了未知参数的最小二乘估计量,证明了它的渐近性质.通过模拟研究表明,经验似然方法在置信域的覆盖概率以及精度方面要优于最小二乘法.%In this paper, a censored nonlinear semiparametric regression model is investigated. Empirical log-likelihood ratio statistics and adjust empirical log-likelihood ratio statistics for the unknown parameters in the model are suggested. It is shown that the proposed statistics have asymptotically chi-squared distribution under some mild conditions, and hence it can be used to construct the confidence region of the unknown parameter. In addition the least squares estimator of unknown parameter is constructed, and its asymptotic behavior is proved. A simulation study is carried out to show the empirical likelihood methods appears to be better than the least-squares method in terms of the confidence regions and its coverage probabilities.
Institute of Scientific and Technical Information of China (English)
牛翔宇; 冯予
2016-01-01
研究了数据缺失情况下广义非线性回归模型的统计诊断问题；在响应变量随机缺失的情况下，先利用经验似然方法进行参数估计，得到其渐近置信区间，并通过随机模拟比较出经验似然方法比一般方法求置信区间的优越性；对模型进行影响分析，提出经验似然距离、经验Cook距离以及标准化残差等诊断统计量，最后通过实例验证统计诊断方法的有效性和可行性。%This paper studies the diagnosis problems of generalized nonlinear regression model under data missing, under random missing of response variables, firstly uses empirical likelihood method to conduct parameter estimation, obtains its asymptotic confidence interval, then through random simulation and comparison, gets that empirical likelihood method is more superior than general methods in solving the asymptotic confidence interval, based on the analysis of the impact of the model, proposes the diagnosis statistical data such as empirical likelihood distance, empirical Cook distance, and standardized pseudo⁃residuals and finally uses examples to verify the effectiveness and feasibility of the statistical diagnosis method.
Indian Academy of Sciences (India)
D Subbarao; R Uma; H Singh; Kamal Goyal; Sanjeev Goyal; Ravinder Kumar
2000-11-01
It is useful to state propagation laws for a self-focusing laser beam or a soliton in grouptheoretical form to be called Lie-optical form for being able to predict self-focusing dynamics conveniently and amongst other things, the geometrical phase. It is shown that the propagation of the gaussian laser beam is governed by a rotation group in a non-absorbing medium and by the Lorentz group in an absorbing medium if the additional symmetry of paraxial propagation is imposed on the laser beam. This latter symmetry, however, needs care in its implementation because the electromagnetic wave of the laser sees a different refractive index proﬁle than the laboratory observer in this approximation. It is explained how to estimate this non-Taylor paraxial power series approximation. The group theoretical laws so-stated are used to predict the geometrical or Berry phase of the laser beam by a technique developed by one of us elsewhere. The group-theoretical Lie-optic (or ABCD) laws are also useful in predicting the laser behavior in a more complex optical arrangement like in a laser cavity etc. The nonlinear dynamical consequences of these laws for long distance (or time) predictions are also dealt with. Ergodic dynamics of an ensemble of laser beams on the torus during absorptionless self-focusing is discussed in this context. From the point of view of new physics concepts, we introduce a stroboscopic invariant torus and a stroboscopic generating function in classical mechanics that is useful for long-distance predictions of absorptionless self-focusing.
Morais, C. V.; Zimmer, F. M.; Lazo, M. J.; Magalhães, S. G.; Nobre, F. D.
2016-06-01
The behavior of the nonlinear susceptibility χ3 and its relation to the spin-glass transition temperature Tf in the presence of random fields are investigated. To accomplish this task, the Sherrington-Kirkpatrick model is studied through the replica formalism, within a one-step replica-symmetry-breaking procedure. In addition, the dependence of the Almeida-Thouless eigenvalue λAT (replicon) on the random fields is analyzed. Particularly, in the absence of random fields, the temperature Tf can be traced by a divergence in the spin-glass susceptibility χSG, which presents a term inversely proportional to the replicon λAT. As a result of a relation between χSG and χ3, the latter also presents a divergence at Tf, which comes as a direct consequence of λAT=0 at Tf. However, our results show that, in the presence of random fields, χ3 presents a rounded maximum at a temperature T* which does not coincide with the spin-glass transition temperature Tf (i.e., T*>Tf for a given applied random field). Thus, the maximum value of χ3 at T* reflects the effects of the random fields in the paramagnetic phase instead of the nontrivial ergodicity breaking associated with the spin-glass phase transition. It is also shown that χ3 still maintains a dependence on the replicon λAT, although in a more complicated way as compared with the case without random fields. These results are discussed in view of recent observations in the LiHoxY1 -xF4 compound.
Energy Technology Data Exchange (ETDEWEB)
Stepinski, Tadeusz (ed.); Ping Wu; Wennerstroem, Erik [Uppsala Univ. (Sweden). Signals and Systems
2004-09-01
This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2003/2004. After a short introduction a review of beam forming fundamentals required for proper understanding phased array operation is included. The factors that determine lateral resolution during ultrasonic imaging of flaws in solids are analyzed and results of simulations modelling contact inspection of copper are presented. In the second chapter an improved synthetic aperture imaging (SAI) technique is introduced. The proposed SAI technique is characterized by an enhanced lateral resolution compared with the previously proposed extended synthetic aperture focusing technique (ESAFT). The enhancement of imaging performance is achieved due to more realistic assumption concerning the probability density function of scatterers in the region of interest. The proposed technique takes the form of a two-step algorithm using the result obtained in the first step as a prior for the second step. Final chapter contains summary of our recent experimental and theoretical research on nonlinear ultrasonics of unbounded interfaces. A new theoretical model for rough interfaces is developed, and the experimental results from the copper specimens that mimic contact cracks of different types are presented. Derivation of the theory and selected measurement results are given in appendix.
Buron, Marylise; Collet, Eric
2005-01-01
This issue is a collection of papers presented at the 2nd International Conference on Photo-Induced Phase Transitions; Cooperative, non-linear and functional properties (PIPT'05), which was held in Rennes (France) on 24-28 May 2005 and chaired by Hervé Cailleau and Tadeusz Luty. The first PIPT conference was organized by Professor Keiichiro Nasu in Tsukuba, Japan, in 2001. During 5 days, PIPT'05 provided an interdisciplinary forum for research communications between solid state physicists, photophysicists, photochemists and photobiologists, as well as material scientists. Scientists came from all around the world (Europe, Japan, USA, Canada, ...). The fascinating scientific challenge of the possibility of triggering physical properties of a material by light excitation was at the heart of the exchange of ideas between scientists of the different fields. The topics of the conference were about light-induced phenomena in functional materials, nano-particles and devices, photo-induced structural, magnetic and/or electronic phase transitions, photo-induced gauge type phase transitions, photo-induced cooperative molecular switching and chemical reactions in solids, dynamics of out-of-equilibrium processes, light-driven non-thermal processes such as coherent phonons, shock waves, surface melting and femtomagnetism, precursor phenomena, coherent, co-operative and non-linear processes in excited states and new investigations by light, x-ray and electron probes. As you will see, the collection of papers presented here cover many of the fields mentioned above. The PIPT conferences, encompassing different areas of light-induced phenomena are also meant to bridge the gap between experimentalists and theoreticians, and to promote communication between scientists working on different continents. The present conference was attended by 148 participants from 17 countries, with the total number of 87 presentations (16 invited, 27 contributed talks and 44 posters). It is encouraging
Chandra, S.; Vardhanan, A. Vishnu; Gangopadhyay, R.
2007-11-01
Optical phase conjugation (OPC) and distributed Raman amplifier (DRA) combination (OPC-DRA) is demonstrated as a potential enabling solution for simultaneous reduction of fiber non-linearities and dispersion compensation of a sub-carrier multiplexed (SCM) optical transmission link. The present work is focused on the use of OPC-DRA combination for system performance improvement in terms of composite second order distortion (CSO) and carrier to noise ratio (CNR) of the SCM link. The analysis further shows that, introduction of DRA with proper pumping scheme significantly reduce fiber non-linearity resulting in improvement of the system performance in terms of CNR, compared to the situation where only mid-way optical phase conjugation is used.
Nonlinear regime-switching state-space (RSSS) models.
Chow, Sy-Miin; Zhang, Guangjian
2013-10-01
Nonlinear dynamic factor analysis models extend standard linear dynamic factor analysis models by allowing time series processes to be nonlinear at the latent level (e.g., involving interaction between two latent processes). In practice, it is often of interest to identify the phases--namely, latent "regimes" or classes--during which a system is characterized by distinctly different dynamics. We propose a new class of models, termed nonlinear regime-switching state-space (RSSS) models, which subsumes regime-switching nonlinear dynamic factor analysis models as a special case. In nonlinear RSSS models, the change processes within regimes, represented using a state-space model, are allowed to be nonlinear. An estimation procedure obtained by combining the extended Kalman filter and the Kim filter is proposed as a way to estimate nonlinear RSSS models. We illustrate the utility of nonlinear RSSS models by fitting a nonlinear dynamic factor analysis model with regime-specific cross-regression parameters to a set of experience sampling affect data. The parallels between nonlinear RSSS models and other well-known discrete change models in the literature are discussed briefly.
Energy Technology Data Exchange (ETDEWEB)
Charles R. Tolle; Mark Pengitore
2009-08-01
This paper explores the overlaps between the Control community’s work on System Identification (SysID) and the Physics, Mathematics, Chaos, and Complexity communities’ work on phase-space reconstruction via time-delay embedding. There are numerous overlaps between the goals of each community. Nevertheless, the Controls community can gain new insight as well as some new very powerful tools for SysID from the latest developments within the Physics, Mathematics, Chaos, and Complexity communities. These insights are gained via the work on phase-space reconstruction of non-linear dynamics. New methods for discovering non-linear differential based equations that evolved from embedding operations can shed new light on hybrid-systems theory, Nyquest-Shannon’s Theories, and network based control theory. This paper strives to guide the Controls community towards a closer inspection of the tools and additional insights being developed within the Physics, Mathematics, Chaos, and Complexity communities for discovery of system dynamics, the first step in control system development. The paper introduces the concepts of phase-space reconstruction via time-delay embedding (made famous byWhitney, Takens, and Sauer’s Thoreoms), intergrate-and-fire embedding, and non-linear differential equation discovery based on Perona’s method.
Institute of Scientific and Technical Information of China (English)
张庆丰; 张浩; 陆彪
2016-01-01
以钢渣作为研究对象，采用水玻璃、氢氧化钠与氢氧化钙三元复合活化剂，制备碱钢渣胶凝材料。基于均匀设计和多元非线性回归法研究了各因素对碱钢渣胶凝材料力学性能的影响。结果表明，各因素对性能影响的主次顺序为：3 d时钢渣用量＞氢氧化钠用量＞水玻璃用量＞氢氧化钙用量，7 d时钢渣用量＞水玻璃用量＞氢氧化钠用量＞氢氧化钙用量，28 d时钢渣用量＞水玻璃用量＞氢氧化钙用量＞氢氧化钠用量；28 d碱钢渣胶凝材料的优化制备方案为：钢渣用量为225 g，水玻璃用量为22.5 g，氢氧化钠用量为9.0 g，氢氧化钙用量为13.2 g；优化制备模型选择正确，其相对误差仅为2.19%。%Alkaline steel slag cement materials were prepared with steel slag as the research object, sodium silicate, sodium hydroxide and calcium hydroxide as the ternary compound activator. The effect of every factor on mechanical property of alkaline steel slag cement materials was studied by orthogonal design and multivariate nonlinear regression. The results show that primary and secondary sequence of factors is steel slag dosage>sodium hydroxide dosage>sodium silicate dosage>calcium hydroxide dosage in 3 d, steel slag dosage>sodium silicate dosage>sodium hydroxide dosage>calcium hydroxide dosage in 7 d, steel slag dosage>sodium silicate dosage>calcium hydroxide dosage>sodium hydroxide dosage in 28 d. The optimization program of alkaline steel slag cement materials in 28 d is steel slag dosage 225 g, sodium silicate dosage 22.5 g, sodium hydroxide dosage 9.0 g and calcium hydroxide dosage 13.2 g. Optimized preparation model is correct, its relative error is only 2.19%.
Institute of Scientific and Technical Information of China (English)
王玉华; 惠晓峰; 李敦亮
2014-01-01
本文应用非线性平滑转换回归模型研究了2002年1月份到2011年12月份我国与美国、欧元区、日本、韩国等有效汇率指数、综合利差之间的关系。实证分析表明，汇率对利率的影响具有明显的非对称性，具有较强的非线性转移动态特征。分国别看，四个国家或地区之间的上期利差均是影响本期利差的重要因素；在短期内汇率对利率影响较大。因此，短期内人民币汇率弹性的扩大应该主动、逐步、稳定进行，防止人民币汇率弹性的急剧扩大导致利率的过度波动。其次，逐步有序加快利率市场化进程并加强与汇率市场化的配合，构建高效的汇率-利率联动机制。%In order to analyze the relationship of interest rate and effective exchange rate , this paper uses the Smooth Transition Regression Model and then chooses the monthly data of these two variables of China 、USA、Eu-rozone、Japan and Korea from Jan .2002 to Dec.2011.The results show that exchange rate has a nonlinear influ-ence on interest rate and obvious asymmetry .The last month interest rate and exchange rate have an important influence on interest rate in these four countries .Based on this , in order to prevent the flexibility of exchange rate surge caused by excessive fluctuations of the interest rate , we should progressively and stablely take the initi-ative to expand the flexibility of exchange rate in the short term .Secondly , we should gradually speed up the process of interest rate and exchange rate co-ordination liberalization ,and build an efficient linkage system .
Institute of Scientific and Technical Information of China (English)
ZHOU En-Bo; ZHANG Xin-Liang; YU Yu; HUANG De-Xiu
2009-01-01
Nonlinear patterning (NLP) effect in wavelength conversion based on transient cross-phase modulation (XPM) in semiconductor optical amplifier (SOA) assisted with a detuning filter is theoretically investigated.A nonadiabatic model is used to estimate the ultrafast dynamics o[ gain,phase and electron temperature in the SOA.Simulation results show that the NLP can be greatly suppressed by introducing an assist light,especially for the probe wavelength distant from gain peak.Furthermore,the results also indicate that the improvement is more evident for long wavelength probe light and assist light in counter-propagating configuration.
Pedrini, D. T.; Pedrini, Bonnie C.
Regression, another mechanism studied by Sigmund Freud, has had much research, e.g., hypnotic regression, frustration regression, schizophrenic regression, and infra-human-animal regression (often directly related to fixation). Many investigators worked with hypnotic age regression, which has a long history, going back to Russian reflexologists.…
Pedrini, D. T.; Pedrini, Bonnie C.
Regression, another mechanism studied by Sigmund Freud, has had much research, e.g., hypnotic regression, frustration regression, schizophrenic regression, and infra-human-animal regression (often directly related to fixation). Many investigators worked with hypnotic age regression, which has a long history, going back to Russian reflexologists.…
Cosmic flows and the expansion of the local Universe from non-linear phase-space reconstructions
Heß, Steffen; Kitaura, Francisco-Shu
2016-03-01
In this work, we investigate the impact of cosmic flows and density perturbations on Hubble constant H0 measurements using non-linear phase-space reconstructions of the Local Universe (LU). In particular, we rely on a set of 25 precise constrained N-body simulations based on Bayesian initial conditions reconstructions of the LU using the Two-Micron Redshift Survey galaxy sample within distances of about 90 h-1 Mpc. These have been randomly extended up to volumes enclosing distances of 360 h-1 Mpc with augmented Lagrangian perturbation theory (750 simulations in total), accounting in this way for gravitational mode coupling from larger scales, correcting for periodic boundary effects, and estimating systematics of missing attractors (σlarge = 134 s-1 km). We report on Local Group (LG) speed reconstructions, which for the first time are compatible with those derived from cosmic microwave background-dipole measurements: |vLG| = 685 ± 137 s-1 km. The direction (l, b) = (260.5° ± 13.3°, 39.1 ± 10.4°) is found to be compatible with the observations after considering the variance of large scales. Considering this effect of large scales, our local bulk flow estimations assuming a Λ cold dark matter model are compatible with the most recent estimates based on velocity data derived from the Tully-Fisher relation. We focus on low-redshift supernova measurements out to 0.01 tension. The first one is caused by the anisotropic distribution of supernovae, which aligns with the velocity dipole and hence induces a systematic boost in H0. The second one is due to the inhomogeneous matter fluctuations in the LU. In particular, a divergent region surrounding the Virgo Supercluster is responsible for an additional positive bias in H0. Taking these effects into account yields a correction of ΔH0 = -1.76 ± 0.21 s- 1 km Mpc- 1, thereby reducing the tension between local probes and more distant probes. Effectively H0 is lower by about 2 per cent.
Masuda, Takanori; Nakaura, Takeshi; Funama, Yoshinori; Higaki, Toru; Kiguchi, Masao; Imada, Naoyuki; Sato, Tomoyasu; Awai, Kazuo
We evaluated the effect of the age, sex, total body weight (TBW), height (HT) and cardiac output (CO) of patients on aortic and hepatic contrast enhancement during hepatic-arterial phase (HAP) and portal venous phase (PVP) computed tomography (CT) scanning. This prospective study received institutional review board approval; prior informed consent to participate was obtained from all 168 patients. All were examined using our routine protocol; the contrast material was 600 mg/kg iodine. Cardiac output was measured with a portable electrical velocimeter within 5 minutes of starting the CT scan. We calculated contrast enhancement (per gram of iodine: [INCREMENT]HU/gI) of the abdominal aorta during the HAP and of the liver parenchyma during the PVP. We performed univariate and multivariate linear regression analysis between all patient characteristics and the [INCREMENT]HU/gI of aortic- and liver parenchymal enhancement. Univariate linear regression analysis demonstrated statistically significant correlations between the [INCREMENT]HU/gI and the age, sex, TBW, HT, and CO (all P linear regression analysis showed that only the TBW and CO were of independent predictive value (P linear regression analysis only the TBW and CO were significantly correlated with aortic and liver parenchymal enhancement; the age, sex, and HT were not. The CO was the only independent factor affecting aortic and liver parenchymal enhancement at hepatic CT when the protocol was adjusted for the TBW.
Prediction accuracy and stability of regression with optimal scaling transformations
Kooij, van der Anita J.
2007-01-01
The central topic of this thesis is the CATREG approach to nonlinear regression. This approach finds optimal quantifications for categorical variables and/or nonlinear transformations for numerical variables in regression analysis. (CATREG is implemented in SPSS Categories by the author of the thesi
Logistic Regression for Evolving Data Streams Classification
Institute of Scientific and Technical Information of China (English)
YIN Zhi-wu; HUANG Shang-teng; XUE Gui-rong
2007-01-01
Logistic regression is a fast classifier and can achieve higher accuracy on small training data. Moreover,it can work on both discrete and continuous attributes with nonlinear patterns. Based on these properties of logistic regression, this paper proposed an algorithm, called evolutionary logistical regression classifier (ELRClass), to solve the classification of evolving data streams. This algorithm applies logistic regression repeatedly to a sliding window of samples in order to update the existing classifier, to keep this classifier if its performance is deteriorated by the reason of bursting noise, or to construct a new classifier if a major concept drift is detected. The intensive experimental results demonstrate the effectiveness of this algorithm.
Larom, Bar; Nazarathy, Moshe; Rudnitsky, Arkady; Nevet, Amir; Zalevsky, Zeev
2010-06-21
Feasibility of cascading and reconfiguring a pair of linear-nonlinear all-optical logic gate structures is experimentally demonstrated using RF photonics. Progress in highly integrated O/E/O repeaters over Si/InP hybrid platforms enables large-scale reconfigurable gate arrays.
2013-11-06
the nonlinear parametric processes in the AFB KTP plates, see Fig. 3. The pump beam at 539 nm is an output generated by a MOPO system (10 Hz, 5 ns...ps pulse width) is from an output of Master Oscillator/Power Oscillator ( MOPO ), with wide range wavelength tenability. The pump beam is split into
Regression analysis by example
National Research Council Canada - National Science Library
Chatterjee, Samprit; Hadi, Ali S
2012-01-01
.... The emphasis continues to be on exploratory data analysis rather than statistical theory. The coverage offers in-depth treatment of regression diagnostics, transformation, multicollinearity, logistic regression, and robust regression...
Eltaif, Tawfig
2017-05-01
This work investigates the advantages of nonlinear optics of a cascaded intensity modulator (IM) and phase modulator (PM) to generate an initial optical frequency comb. The results show that when the direct current bias to amplitude ratio, α=0.1, and the IM and PM have the same modulation index and are equal 10, seed comb is achieved; it is generated by the modulation of two continuous wave lasers. Hence, based on these parameters, an intense four-wave mixing is created through 9 m of photonic crystal fiber. Moreover, a broadband spectrum was achieved, spaced by a 30-GHz microwave frequency.
Alonso-Izquierdo, Alberto
2016-01-01
In this paper zero modes of fluctuation are dissected around the two species of BPS vortices existing in the critical Higgs phase, where the scalar and vector meson masses are equal, of a gauged $\\mathbb{U}(1)$ nonlinear $\\mathbb{CP}^1$-model. If $2\\pi n$, $n\\in \\mathbb{Z}$, is the quantized magnetic flux of the two species of BPS vortex solutions, $2n$ linearly independent vortex zero modes for each species are found and described. The existence of two species of moduli spaces of dimension $2n$ of these stringy topological defects is thus locally shown.
Regression modeling of ground-water flow
Cooley, R.L.; Naff, R.L.
1985-01-01
Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)
Hui, Zhan-Qiang; Zhang, Jian-Guo
2012-05-01
We propose the use of cross-phase modulation (XPM) and four-wave mixing (FWM) in dispersion-flattened highly nonlinear photonic crystal fibers (HNL-PCFs) to implement the functionalities of wavelength conversion, simultaneous time demultiplexing and wavelength multicasting in optical time-division multiplexing (OTDM) systems. The experiments on wavelength conversion at 80 Gbit s-1and OTDM demultiplexing from 80 to 10 Gbit s-1 with wavelength multicasting of two channels are successfully demonstrated to validate the proposed scheme, which are carried out by using two segments of dispersion-flattened HNL-PCFs with lengths of 100 and 50 m, respectively. Moreover, the bit error rate (BER) performance is also measured. The results show that our designed system can achieve a power penalty of less than 4.6 dB for two multicasting channels with a 24 nm wavelength span at the BER of 10-9 when compared with the 10 Gbit/s back-to-back measurement. The proposed system is transparent to bit rate since only an ultrafast third-order nonlinear effect is used. The resulting configuration is compact, robust and reliable, benefiting from the use of dispersion-flattened HNL-PCFs with short lengths. This also makes the proposed system more flexible in the operational wavelengths than those based on dispersion-shifted fibers and traditional highly nonlinear fibers. The work was supported in part by the CAS/SAFEA International Partnership Program for Creative Research Teams.
Maker, Ajay V.; Phan, Giao Q.; Attia, Peter; Yang, James C.; Sherry, Richard M.; Topalian, Suzanne L.; Kammula, Udai S.; Royal, Richard E.; Haworth, Leah R.; Levy, Catherine; Kleiner, David; Mavroukakis, Sharon A.; Yellin, Michael; Rosenberg, Steven A.
2006-01-01
Background Cytotoxic T lymphocyte–associated antigen (CTLA)-4 can inhibit T-cell responses and is involved in tolerance against self antigens. We previously reported autoimmune manifestations and objective cancer regressions in patients with metastatic melanoma treated with CTLA-4 blockade. The possibility of activating tumor-reactive T cells while removing inhibitory activity with CTLA-4 blockade has stimulated interest in using anti–CTLA-4 antibodies in combination with other cancer immunotherapies to improve clinical outcomes. In this study, we assessed the antitumor activity and autoimmune toxicity of CTLA-4 blockade in combination with an immune-activating stimulus, interleukin (IL)-2, in patients with metastatic melanoma. Methods Thirty-six patients received anti–CTLA-4 antibody every 3 weeks. Three patients per cohort received doses of .1, .3, 1.0, and 2.0 mg/kg. Twenty-four patients received 3.0 mg/kg. All patients received IL-2 therapy (720,000 IU/kg every 8 hours to a maximum of 15 doses). Results Eight patients (22%) experienced objective tumor responses (three complete and five partial), including metastases in the lungs, lymph nodes, mediastinum, and subcutaneous tissues. Six of the eight patients have ongoing objective responses at 11 to 19 months. Five patients (14%) developed grade III/IV autoimmune toxicities secondary to anti–CTLA-4 administration, including four patients with enterocolitis and one with arthritis and uveitis. Conclusions There is not evidence to support a synergistic effect of CTLA-4 blockade plus IL-2 administration, because the 22% objective response rate is that expected from the sum of these two agents administered alone. Durable cancer regressions were seen in patients treated with this combination. PMID:16283570
Regression Testing Cost Reduction Suite
Directory of Open Access Journals (Sweden)
Mohamed Alaa El-Din
2014-08-01
Full Text Available The estimated cost of software maintenance exceeds 70 percent of total software costs [1], and large portion of this maintenance expenses is devoted to regression testing. Regression testing is an expensive and frequently executed maintenance activity used to revalidate the modified software. Any reduction in the cost of regression testing would help to reduce the software maintenance cost. Test suites once developed are reused and updated frequently as the software evolves. As a result, some test cases in the test suite may become redundant when the software is modified over time since the requirements covered by them are also covered by other test cases. Due to the resource and time constraints for re-executing large test suites, it is important to develop techniques to minimize available test suites by removing redundant test cases. In general, the test suite minimization problem is NP complete. This paper focuses on proposing an effective approach for reducing the cost of regression testing process. The proposed approach is applied on real-time case study. It was found that the reduction in cost of regression testing for each regression testing cycle is ranging highly improved in the case of programs containing high number of selected statements which in turn maximize the benefits of using it in regression testing of complex software systems. The reduction in the regression test suite size will reduce the effort and time required by the testing teams to execute the regression test suite. Since regression testing is done more frequently in software maintenance phase, the overall software maintenance cost can be reduced considerably by applying the proposed approach.
DEFF Research Database (Denmark)
Johansen, Søren
2008-01-01
The reduced rank regression model is a multivariate regression model with a coefficient matrix with reduced rank. The reduced rank regression algorithm is an estimation procedure, which estimates the reduced rank regression model. It is related to canonical correlations and involves calculating e...
Park, D H; Pagán, V R; Murphy, T E; Luo, J; Jen, A K-Y; Herman, W N
2015-04-06
We report in-plane slotted patch antenna-coupled electro-optic phase modulators with a carrier-to-sideband ratio (CSR) of 22 dB under an RF power density of 120 W/m(2) and a figure of merit of 2.0 W(-1/2) at the millimeter wave frequencies of 36-37 GHz based on guest-host type of second-order nonlinear polymer SEO125. CSR was improved more than 20 dB by using a SiO(2) protection layer. We demonstrate detection of 3 GHz modulation of the RF carrier. We also derive closed-form expressions for the modulated phase of optical wave and carrier-to-sideband ratio. Design, simulation, fabrication, and experimental results are discussed.
DEFF Research Database (Denmark)
Clausen, Carl A. Balslev; Christiansen, Peter Leth; Torner, L.
1999-01-01
We show that with the quasi-phase-matching technique it is possible to fabricate stripes of nonlinearity that trap and guide light like waveguides. We investigate an array of such stripes and find that when the stripes are sufficiently narrow, the beam dynamics is governed by a quadratic nonlinear...
Yuldashev, Petr V; Shmeleva, Svetlana M; Ilyin, Sergey A; Sapozhnikov, Oleg A; Gavrilov, Leonid R; Khokhlova, Vera A
2013-04-21
The goal of this study was to investigate theoretically the effects of nonlinear propagation in a high-intensity focused ultrasound (HIFU) field produced by a therapeutic phased array and the resultant heating of tissue behind a rib cage. Three configurations of focusing were simulated: in water, in water with ribs in the beam path and in water with ribs backed by a layer of soft tissue. The Westervelt equation was used to model the nonlinear HIFU field, and a 1 MHz phased array consisting of 254 circular elements was used as a boundary condition to the model. The temperature rise in tissue was modelled using the bioheat equation, and thermally necrosed volumes were calculated using the thermal dose formulation. The shapes of lesions predicted by the modelling were compared with those previously obtained in in vitro experiments at low-power sonications. Intensity levels at the face of the array elements that corresponded to the formation of high-amplitude shock fronts in the focal region were determined as 10 W cm(-2) in the free field in water and 40 W cm(-2) in the presence of ribs. It was shown that exposures with shocks provided a substantial increase in tissue heating, and its better spatial localization in the main focal region only. The relative effects of overheating ribs and splitting of the focus due to the periodic structure of the ribs were therefore reduced. These results suggest that utilizing nonlinear propagation and shock formation effects can be beneficial for inducing confined HIFU lesions when irradiating through obstructions such as ribs. Design of compact therapeutic arrays to provide maximum power outputs with lower intensity levels at the elements is necessary to achieve shock wave regimes for clinically relevant sonication depths in tissue.
Javanbakht, J; Pedram, B; Taheriyan, M R; Khadivar, F; Hosseini, S H; Abdi, F S; Hosseini, E; Moloudizargari, M; Aghajanshakeri, S H; Javaherypour, S; Shafiee, R; Emrani Bidi, R
2014-06-01
In this study, 12 dogs affected by canine transmissible venereal tumor (CTVT) and testicular seminoma tumor were studied retrospectively. The cytological sample was smeared onto a glass slide and either air-dried for May-Grünwald-stain, and masses were surgically removed. The tumors were grossly examined, and sections of 4-μm thick were obtained from each sample and stained with H&E. For chemotherapy, vincristine sulfate was administered weekly as an infusion over 3 min via the cephalic vein at a dose of 0.025 mg/kg after diluting with physiological saline to a total amount of 10 ml. If no remission was observed after 8 weeks, chemotherapy was continued with weekly doxorubicin infusion at a dose of 1 mg/kg. All the tumor samples were divided into four cytohistopathologic groups, namely: multilobular (six cases), papillary (two cases), pedunculated (two cases), and tubular (two cases of seminoma). The most frequently represented tumor type was multilobular (6/10, 60 %) followed by pedunculated (2/10, 20 %), papillary (2/10, 20 %), and tubular (two cases of seminoma, 100 %). Cytological smears from eight tumors in regression after chemotherapy were poorly cellular, and many cells were fragmented. In two progressive tumors, there was an average of 1,406 ± 972 CTVT 200 cells/μl or 96.71 % of total cells counted. Thus, tumor cells represented 96.71 % of total cells within the biopsy specimens and the leukocytes 4.29 % (leukocyte, tumor cell ratio=0.062 ± 0.031). In eight regressive tumors, there was an average of 1,245 ± 1,032 CTVT 200 cells/μl or 97.31 % of total cells counted. Thus, tumor cells represented 97.31 % of total cells and leukocytes 2.69 % (leukocyte, tumor cell ratio=0.071 ± 0.174). Our data suggested that combination treatment with vincristine and doxorubicin in the future could be an excellent therapeutic alternative for the treatment of TVT for probably reducing the resistance to vincristine, and also, treatment success could easily be followed
Ho, Keang-Po
2003-01-01
The characteristic function of soliton phase jitter is found analytically when the soliton is perturbed by amplifier noise. In additional to that from amplitude jitter, the nonlinear phase noise due to frequency and timing jitter is also analyzed. Because the nonlinear phase noise is not Gaussian distributed, the overall phase jitter is also non-Gaussian. For a fixed mean nonlinear phase shift, the contribution of nonlinear phase noise from frequency and timing jitter decreases with distance ...
2009-01-01
Phase interactions among signals of physical and physiological systems can provide useful information about the underlying control mechanisms of the systems. Physical and biological recordings are often noisy and exhibit nonstationarities that can affect the estimation of phase interactions. We systematically studied effects of nonstationarities on two phase analyses including (i) the widely used transfer function analysis (TFA) that is based on Fourier decomposition and (ii) the recently pro...
A Non-linear Controller for Single-Phase AC-AC Power Converter to meet UPS Performance Index
Directory of Open Access Journals (Sweden)
Abdelhafid Ait Elmahjoub
2012-07-01
Full Text Available This article focuses on AC-AC power converter that can be used for uninterruptible power supply (UPS. The converter is built on two stages: a AC-DC input stage and a DC-AC output stage. The two blocks are connected by an intermediate DC bus. The aim of control is threefold: i power factor correction ii regulation of DC bus iii generating a sinusoidal voltage at the output. The synthesis of controllers has been achieved through the technique of nonlinear backstepping control. A detailed analysis of the stability control system is presented. The performances of regulators have been validated by numerical simulation in MATLAB / SIMULINK.
Organic nonlinear optical materials
Umegaki, S.
1987-01-01
Recently, it became clear that organic compounds with delocalized pi electrons show a great nonlinear optical response. Especially, secondary nonlinear optical constants of more than 2 digits were often seen in the molecular level compared to the existing inorganic crystals such as LiNbO3. The crystallization was continuously tried. Organic nonlinear optical crystals have a new future as materials for use in the applied physics such as photomodulation, optical frequency transformation, opto-bistabilization, and phase conjugation optics. Organic nonlinear optical materials, e.g., urea, O2NC6H4NH2, I, II, are reviewed with 50 references.
Institute of Scientific and Technical Information of China (English)
武大勇; 李锋
2015-01-01
The linear semiparametric regression models with missing data were considered.The maximum empirical es-timations of the regression coefficients,and the smoothing function were obtained by the maximum empirical method. The asymptotic normality and consistency of the proposed estimations were proved under some appropriate conditions.%考虑了随机缺失数据下非线性回归模型的估计问题，利用最大经验似然估计的方法给出了回归系数、光滑函数的最大经验似然估计，并在一定条件下证明了所得估计量的渐近正态性和强相合性。
Regression analysis by example
Chatterjee, Samprit
2012-01-01
Praise for the Fourth Edition: ""This book is . . . an excellent source of examples for regression analysis. It has been and still is readily readable and understandable."" -Journal of the American Statistical Association Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded
Unitary Response Regression Models
Lipovetsky, S.
2007-01-01
The dependent variable in a regular linear regression is a numerical variable, and in a logistic regression it is a binary or categorical variable. In these models the dependent variable has varying values. However, there are problems yielding an identity output of a constant value which can also be modelled in a linear or logistic regression with…
Flexible survival regression modelling
DEFF Research Database (Denmark)
Cortese, Giuliana; Scheike, Thomas H; Martinussen, Torben
2009-01-01
Regression analysis of survival data, and more generally event history data, is typically based on Cox's regression model. We here review some recent methodology, focusing on the limitations of Cox's regression model. The key limitation is that the model is not well suited to represent time-varyi...
DEFF Research Database (Denmark)
Fitzenberger, Bernd; Wilke, Ralf Andreas
2015-01-01
Quantile regression is emerging as a popular statistical approach, which complements the estimation of conditional mean models. While the latter only focuses on one aspect of the conditional distribution of the dependent variable, the mean, quantile regression provides more detailed insights by m...... treatment of the topic is based on the perspective of applied researchers using quantile regression in their empirical work....
Chouvarda, I; Mendez, M O; Alba, A; Bianchi, A M; Grassi, A; Arce-Santana, E; Rosso, V; Terzano, M G; Parrino, L
2012-01-01
This study analyzes the nonlinear properties of the EEG at transition points of the sequences that build the Cyclic Alternating Pattern (CAP). CAP is a sleep phenomenon built up by consecutive sequences of activations and non-activations observed during the sleep time. The sleep condition can be evaluated from the patterns formed by these sequences. Eleven recordings from healthy and good sleepers were included in this study. We investigated the complexity properties of the signal at the onset and offset of the activations. The results show that EEG signals present significant differences (p<0.05) between activations and non-activations in the Sample Entropy and Tsallis Entropy indices. These indices could be useful in the development of automatic methods for detecting the onset and offset of the activations, leading to significant savings of the physician's time by simplifying the manual inspection task.
Energy Technology Data Exchange (ETDEWEB)
Chow, Weng Wah; Wanke, Michael Clement; Allen, Dan G.; Yang, Zhenshan; Waldmueller, Ines
2010-10-01
Optical nonlinearities and quantum coherences have the potential to enable efficient, high-temperature generation of coherent THz radiation. This LDRD proposal involves the exploration of the underlying physics using intersubband transitions in a quantum cascade structure. Success in the device physics aspect will give Sandia the state-of-the-art technology for high-temperature THz quantum cascade lasers. These lasers are useful for imaging and spectroscopy in medicine and national defense. Success may have other far-reaching consequences. Results from the in-depth study of coherences, dephasing and dynamics will eventually impact the fields of quantum computing, optical communication and cryptology, especially if we are successful in demonstrating entangled photons or slow light. An even farther reaching development is if we can show that the QC nanostructure, with its discrete atom-like intersubband resonances, can replace the atom in quantum optics experiments. Having such an 'artificial atom' will greatly improve flexibility and preciseness in experiments, thereby enhancing the discovery of new physics. This is because we will no longer be constrained by what natural can provide. Rather, one will be able to tailor transition energies and optical matrix elements to enhance the physics of interest. This report summarizes a 3-year LDRD program at Sandia National Laboratories exploring optical nonlinearities in intersubband devices. Experimental and theoretical investigations were made to develop a fundamental understanding of light-matter interaction in a semiconductor system and to explore how this understanding can be used to develop mid-IR to THz emitters and nonclassical light sources.
Naghshpour, Shahdad
2012-01-01
Regression analysis is the most commonly used statistical method in the world. Although few would characterize this technique as simple, regression is in fact both simple and elegant. The complexity that many attribute to regression analysis is often a reflection of their lack of familiarity with the language of mathematics. But regression analysis can be understood even without a mastery of sophisticated mathematical concepts. This book provides the foundation and will help demystify regression analysis using examples from economics and with real data to show the applications of the method. T
Directory of Open Access Journals (Sweden)
Larissa Ribeiro de Andrade
2014-01-01
Full Text Available The bootstrap method is generally performed by presupposing that each sample unit would show the same probability of being re-sampled. However, when a sample with outliers is taken into account, the empirical distribution generated by this method may be influenced, or rather, it may not accurately represent the original sample. Current study proposes a bootstrap algorithm that allows the use of measures of influence in the calculation of re-sampling probabilities. The method was reproduced in simulation scenarios taking into account the logistic growth curve model and the CovRatio measurement to evaluate the impact of an influential observation in the determinacy of the matrix of the co-variance of parameter estimates. In most cases, bias estimates were reduced. Consequently, the method is suitable to be used in non-linear models and allows the researcher to apply other measures for better bias reductions.
Regression Cloud Models and Their Applications in Energy Consumption of Data Center
Directory of Open Access Journals (Sweden)
Yanshuang Zhou
2015-01-01
Full Text Available As cloud data center consumes more and more energy, both researchers and engineers aim to minimize energy consumption while keeping its services available. A good energy model can reflect the relationships between running tasks and the energy consumed by hardware and can be further used to schedule tasks for saving energy. In this paper, we analyzed linear and nonlinear regression energy model based on performance counters and system utilization and proposed a support vector regression energy model. For performance counters, we gave a general linear regression framework and compared three linear regression models. For system utilization, we compared our support vector regression model with linear regression and three nonlinear regression models. The experiments show that linear regression model is good enough to model performance counters, nonlinear regression is better than linear regression model for modeling system utilization, and support vector regression model is better than polynomial and exponential regression models.
Directory of Open Access Journals (Sweden)
G.G. Zhemerov
2015-12-01
Full Text Available Purpose. The contradictions in the use of the term «reactive power» require justification by clarifying its physical meaning. The aim of the paper is to reveal the physical meaning of the term «reactive power» applied to three-phase three-wire and four-wire energy supply systems. Methodology. We have applied the modern theory of instantaneous active and reactive power, the graphical filling complex branched energy supply system of simplified design scheme, the theory of electrical circuits, computer Matlab-simulation. Results. We have provided answers to six basic questions that reveal the physical meaning and definition of the concept of «reactive power». We have justified the assumptions suggesting a universal calculation formula to determine the relative total power loss in the three-phase energy supply system as the sum of four components caused by: a minimal losses, reactive power, active power pulsations and instantaneous current flow in the neutral wire. Originality. We have developed the definition that reveals the physical meaning of the term «reactive power» for three-phase energy supply systems corresponding to modern theories of instantaneous active and reactive power. Practical value. We have proposed energy efficiency method ideas of energy supply systems with non-linear load based on the additional components of the power losses calculation. The further development of the method will allow to amend the design, selection and operation of the power active filters practices.
Tawfik, Walid
2016-08-01
A source of white-light radiation that generates few-cycle pulses with controlled peak power values has been developed. These ultrafast pulses have been observed by spectral broadening of 32 fs pulses through nonlinear self-phase modulation in a neon-filled hollow-fiber then compressed with a pair of chirped mirrors for dispersion compensation. The observed pulses reached transform-limited duration of 5.77 fs and their peak power values varied from 57 GW up to 104 GW at repetition rate of 1 kHz. Moreover, the applied method is used for a direct tuning of the peak power of the output pulses through varying the chirping of the input pulses at different neon pressures. The observed results may give an opportunity to control the ultrafast interaction dynamics on the femtosecond time scale and facilitate the regeneration of attosecond pulses.
DEFF Research Database (Denmark)
Bache, Morten; Guo, Hairun; Zhou, Binbin
2013-01-01
of the promising crystals: in one case soliton pulse compression from 50 fs to 15 fs (1.5 cycles) at 3.0 μm is achieved, and at the same time a 3-cycle dispersive wave at 5.0 μm is formed that can be isolated using a long-pass filter. In another example we show that extremely broadband supercontinua can form......We discuss a novel method for generating octave-spanning supercontinua and few-cycle pulses in the important mid-IR wavelength range. The technique relies on strongly phase-mismatched cascaded second-harmonic generation (SHG) in mid-IR nonlinear frequency conversion crystals. Importantly we here...
Directory of Open Access Journals (Sweden)
Zhan-Qiang Hui
2014-01-01
Full Text Available All-optical multicasting of performing data routing from single node to multiple destinations in the optical domain is promising for next generation ultrahigh-peed photonic networks. Based on the self-phase modulation in dispersion flattened highly nonlinear photonic crystal fiber and followed spectral filtering, simultaneous 1-to-8 all-optical wavelength multicasting return-to-zero (RZ signal at 20 Gbit/s with 100 GHz channel spaced is achieved. Wavelength tunable range and dynamic characteristic of proposed wavelength multicasting scheme is further investigated. The results show our designed scheme achieve operation wavelength range of 25 nm, OSNR of 32.01 dB and Q factor of 12.8. Moreover, the scheme has simple structure as well as high tolerance to signal power fluctuation.
Suto, H.; Butz, A.; Kuze, A.
2014-12-01
To observe the global column concentration of carbon dioxide (CO2) and methane (CH4) from space, the Greenhouse gases Observing SATellite (GOSAT) was launched on January 23, 2009, and has started the operational observation. Thermal and Near Infrared Sensor for Carbon Observation - Fourier Transform Spectrometer (TANSO-FTS) has been continuously measuring CO2 and CH4 distributions globally, and the retrieved column CO2 and CH4 data have been distributed to the public. To make a successful retrieval of XCO2 and XCH4, the spectral quality of Oxygen A-band is the most importance. Over five years in-orbit operation of TANSO-FTS, the spectral distortion related with input radiance on Oxygen A-band have been observed and reduced the retrieval accuracy and precision of XCO2 and XCH4. It suggests that the Oxygen A-band signal chain has non-linear response against input radiance. To characterize the non-linear response of signal chain against input signal levels, the test procedure is newly developed coupled with the modulated laser light, simultaneous signal acquisition system and on-ground TANSO-FTS, which called engineering model. The results present clearly that the analogue signal chain of Oxygen A-band excites the non-linear response both of amplitude and phase delay against input signal levels. Also, the non-linear interferogram drives both of the artificial spectra on the out-band region and the spectral distortion linked with absorption spectral lines. To improve the spectral quality of Oxygen A-band, these artificial and distorted spectra have to correct with properly. The newly correction algorithm for level-1 processing was developed and the corrected spectra were retrieved and validated by applying RemoTeC algorithm. Comparing with the previous version of level-1 products, the agreement between observation and theoretical calculation is well improved and the biases of biases of XCO2 and XCH4 against ground validation site are reduced.
ARC Code TI: Block-GP: Scalable Gaussian Process Regression
National Aeronautics and Space Administration — Block GP is a Gaussian Process regression framework for multimodal data, that can be an order of magnitude more scalable than existing state-of-the-art nonlinear...
Maximum likelihood polynomial regression for robust speech recognition
Institute of Scientific and Technical Information of China (English)
LU Yong; WU Zhenyang
2011-01-01
The linear hypothesis is the main disadvantage of maximum likelihood linear re- gression （MLLR）. This paper applies the polynomial regression method to model adaptation and establishes a nonlinear model adaptation algorithm using maximum likelihood polyno
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.
2012-01-01
We investigate the self-phase modulation (SPM) of a single-cycle terahertz pulse in a semiconductor, using bulk n-GaAs as a model system. The SPM arises from the heating of free electrons in the electric field of the terahertz pulse, leading to an ultrafast reduction of the plasma frequency, and ...
DEFF Research Database (Denmark)
Fehenberger, Tobias; Yankov, Metodi Plamenov; Barletta, Luca;
2015-01-01
Exploiting temporal correlations in the phase, achievable rates are studied and a blind trellis-based receiver is presented. Gains of 0.5 bit per symbol are found in point-to-point links irrespective of the symbol rate. These gains disappear in network configurations....
Autistic epileptiform regression.
Canitano, Roberto; Zappella, Michele
2006-01-01
Autistic regression is a well known condition that occurs in one third of children with pervasive developmental disorders, who, after normal development in the first year of life, undergo a global regression during the second year that encompasses language, social skills and play. In a portion of these subjects, epileptiform abnormalities are present with or without seizures, resembling, in some respects, other epileptiform regressions of language and behaviour such as Landau-Kleffner syndrome. In these cases, for a more accurate definition of the clinical entity, the term autistic epileptifom regression has been suggested. As in other epileptic syndromes with regression, the relationships between EEG abnormalities, language and behaviour, in autism, are still unclear. We describe two cases of autistic epileptiform regression selected from a larger group of children with autistic spectrum disorders, with the aim of discussing the clinical features of the condition, the therapeutic approach and the outcome.
Scaled Sparse Linear Regression
Sun, Tingni
2011-01-01
Scaled sparse linear regression jointly estimates the regression coefficients and noise level in a linear model. It chooses an equilibrium with a sparse regression method by iteratively estimating the noise level via the mean residual squares and scaling the penalty in proportion to the estimated noise level. The iterative algorithm costs nearly nothing beyond the computation of a path of the sparse regression estimator for penalty levels above a threshold. For the scaled Lasso, the algorithm is a gradient descent in a convex minimization of a penalized joint loss function for the regression coefficients and noise level. Under mild regularity conditions, we prove that the method yields simultaneously an estimator for the noise level and an estimated coefficient vector in the Lasso path satisfying certain oracle inequalities for the estimation of the noise level, prediction, and the estimation of regression coefficients. These oracle inequalities provide sufficient conditions for the consistency and asymptotic...
Rolling Regressions with Stata
Kit Baum
2004-01-01
This talk will describe some work underway to add a "rolling regression" capability to Stata's suite of time series features. Although commands such as "statsby" permit analysis of non-overlapping subsamples in the time domain, they are not suited to the analysis of overlapping (e.g. "moving window") samples. Both moving-window and widening-window techniques are often used to judge the stability of time series regression relationships. We will present an implementation of a rolling regression...
Directory of Open Access Journals (Sweden)
T. Santosh Kumar
2014-01-01
Full Text Available This paper presents the detailed model, control and simulation of H-Bridge VSI topology based DSTATCOM. It also describes the control of multilevel inverter supplied by Photovoltaic system and a battery bank which is connected to the supply system. It is well known that the Power Quality of the Multililevel Inverter signals depends upon the number of levels. Basic structure and operating principle of the Cascaded H-Bridge Multilevel Inverter are explored. The phase shifted SPWM is used for reducing the lower order harmonics of the output voltage and the Park’s transformation is employed to decouple the active and reactive power components for regulating the compensation power. The controller equations are such that the phase shifted SPWM pulses are generated automatically for any number of levels. The effectiveness of the proposal method is evaluated in simulation by using Matlab/Simulink. The results of the simulation are analyzed and discussed.
Institute of Scientific and Technical Information of China (English)
朱雷; 金宁德; 高忠科; 杜萌; 王振亚
2012-01-01
Based on the conductance fluctuation signals measured from vertical upward oil-gas-water three-phase flow experiment, time frequency representation and surrogate data method were used to investigate dynamical characteristics of oil-in-water type bubble and slug flows. The results indicate that oil-in-water type bubble flow will turn to deterministic motion with the increase of oil phase fraction f o and superficial gas velocity U sg under fixed flowrate of oil-water mixture Q mix . The dynamics of oil-in-water type slug flow becomes more complex with the increase of U sg under fixed flowrate of oil-water mixture. The change of f o leads to irregular influence on the dynamics of slug flow. These interesting findings suggest that the surrogate data method can be a faithful tool for characterizing dynamic characteristics of oil-in-water type bubble and slug flows.
T Santosh Kumar; Dr. K. B. Madhu Sahu
2014-01-01
This paper presents the detailed model, control and simulation of H-Bridge VSI topology based DSTATCOM. It also describes the control of multilevel inverter supplied by Photovoltaic system and a battery bank which is connected to the supply system. It is well known that the Power Quality of the Multililevel Inverter signals depends upon the number of levels. Basic structure and operating principle of the Cascaded H-Bridge Multilevel Inverter are explored. The phase shifted SPW...
Novikov, A; Odoulov, S; Jungen, R; Tschudi, T
1991-12-15
The development of a spatial subharmonic, i.e., of a light wave propagating at the bisector of two pump waves, with orthogonal polarizations incident upon a BaTiO(3) crystal in a plane normal to the optical axis is observed and studied. Parametric amplification of a seed wave meeting the phase-matching condition in the presence of two pump waves is shown to be the main reason for subharmonic generation in this crystal.
Institute of Scientific and Technical Information of China (English)
Guijun YANG; Lu LIN; Runchu ZHANG
2007-01-01
Quasi-regression, motivated by the problems arising in the computer experiments, focuses mainly on speeding up evaluation. However, its theoretical properties are unexplored systemically. This paper shows that quasi-regression is unbiased, strong convergent and asymptotic normal for parameter estimations but it is biased for the fitting of curve. Furthermore, a new method called unbiased quasi-regression is proposed. In addition to retaining the above asymptotic behaviors of parameter estimations, unbiased quasi-regression is unbiased for the fitting of curve.
Introduction to regression graphics
Cook, R Dennis
2009-01-01
Covers the use of dynamic and interactive computer graphics in linear regression analysis, focusing on analytical graphics. Features new techniques like plot rotation. The authors have composed their own regression code, using Xlisp-Stat language called R-code, which is a nearly complete system for linear regression analysis and can be utilized as the main computer program in a linear regression course. The accompanying disks, for both Macintosh and Windows computers, contain the R-code and Xlisp-Stat. An Instructor's Manual presenting detailed solutions to all the problems in the book is ava
Weisberg, Sanford
2005-01-01
Master linear regression techniques with a new edition of a classic text Reviews of the Second Edition: ""I found it enjoyable reading and so full of interesting material that even the well-informed reader will probably find something new . . . a necessity for all of those who do linear regression."" -Technometrics, February 1987 ""Overall, I feel that the book is a valuable addition to the now considerable list of texts on applied linear regression. It should be a strong contender as the leading text for a first serious course in regression analysis."" -American Scientist, May-June 1987
Resource Letter NO-1: Nonlinear Optics
Garmire, Elsa
2011-03-01
This Resource Letter provides a guide to the literature on nonlinear optics. Books, journals, and websites are introduced that cover the general subject. Journal articles and websites are cited covering the following topics: second-order nonlinearities in transparent media including second-harmonic generation and optical parametric oscillation, third-order and higher nonlinearities, nonlinear refractive index, absorptive nonlinearities such as saturable absorption and multiphoton absorption, and scattering nonlinearities such as stimulated Raman scattering and stimulated Brillouin scattering. Steady-state and transient phenomena, fiber optics, solitons, nonlinear wave mixing, optical phase conjugation, nonlinear spectroscopy, and multiphoton microscopy are all outlined.
Cycle slipping in nonlinear circuits under periodic nonlinearities and time delays
Smirnova, Vera; Proskurnikov, Anton; Utina, Natalia V.
2014-01-01
Phase-locked loops (PLL), Costas loops and other synchronizing circuits are featured by the presence of a nonlinear phase detector, described by a periodic nonlinearity. In general, nonlinearities can cause complex behavior of the system such multi-stability and chaos. However, even phase locking ma
Energy Technology Data Exchange (ETDEWEB)
Gerber, Samuel [Univ. of Utah, Salt Lake City, UT (United States); Rubel, Oliver [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bremer, Peer -Timo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pascucci, Valerio [Univ. of Utah, Salt Lake City, UT (United States); Whitaker, Ross T. [Univ. of Utah, Salt Lake City, UT (United States)
2012-01-19
This paper introduces a novel partition-based regression approach that incorporates topological information. Partition-based regression typically introduces a quality-of-fit-driven decomposition of the domain. The emphasis in this work is on a topologically meaningful segmentation. Thus, the proposed regression approach is based on a segmentation induced by a discrete approximation of the Morse–Smale complex. This yields a segmentation with partitions corresponding to regions of the function with a single minimum and maximum that are often well approximated by a linear model. This approach yields regression models that are amenable to interpretation and have good predictive capacity. Typically, regression estimates are quantified by their geometrical accuracy. For the proposed regression, an important aspect is the quality of the segmentation itself. Thus, this article introduces a new criterion that measures the topological accuracy of the estimate. The topological accuracy provides a complementary measure to the classical geometrical error measures and is very sensitive to overfitting. The Morse–Smale regression is compared to state-of-the-art approaches in terms of geometry and topology and yields comparable or improved fits in many cases. Finally, a detailed study on climate-simulation data demonstrates the application of the Morse–Smale regression. Supplementary Materials are available online and contain an implementation of the proposed approach in the R package msr, an analysis and simulations on the stability of the Morse–Smale complex approximation, and additional tables for the climate-simulation study.
DEFF Research Database (Denmark)
Bordacconi, Mats Joe; Larsen, Martin Vinæs
2014-01-01
Humans are fundamentally primed for making causal attributions based on correlations. This implies that researchers must be careful to present their results in a manner that inhibits unwarranted causal attribution. In this paper, we present the results of an experiment that suggests regression...... models – one of the primary vehicles for analyzing statistical results in political science – encourage causal interpretation. Specifically, we demonstrate that presenting observational results in a regression model, rather than as a simple comparison of means, makes causal interpretation of the results...... of equivalent results presented as either regression models or as a test of two sample means. Our experiment shows that the subjects who were presented with results as estimates from a regression model were more inclined to interpret these results causally. Our experiment implies that scholars using regression...
Babu, B.; Chandrasekaran, J.; Thirumurugan, R.; Anitha, K.; Saravanabhavan, M.
2017-09-01
2-Amino 4-methylpyridinium 3-chlorobenzoate (2A4M3CB) was synthesized and good quality single crystals of the size of 8 × 2 × 1.2 mm3 were harvested from methanol by the slow evaporation solution growth technique at ambient temperature. Single crystal XRD reveals that 2A4M3CB crystallized in monoclinic system with the noncentrosymmetric space group P21. The crystalline phases and functional groups of 2A4M3CB have been identified and confirmed through powder X-ray diffraction and Fourier transform infrared (FTIR) studies, respectively. 1H and 13C NMR were recorded to interpret the molecular structure. The optical transmittance window and the lower cutoff wavelength of the 2A4M3CB have been identified by UV-Vis-NIR studies. Thermal and mechanical stability of the 2A4M3CB crystals were explained by TG/DTA and Vickers hardness analysis. Charge transport mechanism and photo response properties were analyzed through dielectric and photoconductivity studies. Powder second harmonic generation (SHG) characteristics and phase matching ability were explored by Kurtz and Perry powder SHG technique.
Carroll, Laura M; Bergholz, Teresa M; Hildebrandt, Ian M; Marks, Bradley P
2016-07-01
Sublethal heating, which can occur during slow cooking of meat products, is known to induce increased thermal resistance in Salmonella. However, very few studies have addressed the kinetics of this response. Although several recent studies have reported improved thermal inactivation models that include the effect of prior sublethal history on subsequent thermal resistance, none of these models were based on cellular-level responses to sublethal thermal stress. The goal of this study was to determine whether a nonlinear model could accurately portray the response of Salmonella to heat stress induced by prolonged exposure to sublethal temperatures. To accomplish this, stationary-phase Salmonella Montevideo cultures were subjected to various heating profiles (held at either 40 or 45°C for 0, 5, 10, 15, 30, 60, 90, 180, or 240 min) using a PCR thermal cycler. Differential plating on selective and nonselective media was used to confirm the presence of cellular injury. Reverse transcription quantitative PCR was used to screen the transcript levels of six heat stress-related genes to find candidate genes for nonlinear modeling. Injury was detected in populations of Salmonella held at 45°C for 30, 60, and 90 min and at 40°C for 0, 5, and 90 min (P 0.05). The transcript levels of ibpA, which codes for a small heat shock protein associated with the ClpB and DnaK-DnaJ-GrpE chaperone systems, showed the greatest increase relative to the transcript levels at 0 min, which was significant at 5, 10, 15, 30, 60, 90, and 180 min at 45°C and at 5, 10, 15, 30, 60, and 90 min at 40°C (P < 0.05). Using ibpA transcript levels as an indicator of adaptation to thermal stress, a nonlinear model for sublethal injury is proposed. The use of variables indicating the physiological state of the pathogen during stress has the potential to increase the accuracy of thermal inactivation models that must account for prolonged exposure to sublethal temperatures.
Directory of Open Access Journals (Sweden)
N. Suparna
2012-10-01
Full Text Available This project presents a power quality improvement of unified power quality conditioner (UPQC to compensate current and voltage quality problems of sensitive loads. The UPQC consists of the series and shunt converter having a common dc link. The series converter mitigates voltage sag from the supply side and shunt converter eliminates current harmonics from the nonlimear load side. The developed controllers for series and shunt converters are based on a reference signal generation method (phase-locked loop. The dc link control strategy is based on the fuzzy-logic controllers. The conventional method using dq transformation to show the superiority of the proposed sag detection method. A fast sag detection method is also is presented. The efficiency of the proposed system is tested through simulation studies using the MATLAB/SIMULINK environment.
Khan, Iftekhar; Morris, Stephen
2014-11-12
The performance of the Beta Binomial (BB) model is compared with several existing models for mapping the EORTC QLQ-C30 (QLQ-C30) on to the EQ-5D-3L using data from lung cancer trials. Data from 2 separate non small cell lung cancer clinical trials (TOPICAL and SOCCAR) are used to develop and validate the BB model. Comparisons with Linear, TOBIT, Quantile, Quadratic and CLAD models are carried out. The mean prediction error, R(2), proportion predicted outside the valid range, clinical interpretation of coefficients, model fit and estimation of Quality Adjusted Life Years (QALY) are reported and compared. Monte-Carlo simulation is also used. The Beta-Binomial regression model performed 'best' among all models. For TOPICAL and SOCCAR trials, respectively, residual mean square error (RMSE) was 0.09 and 0.11; R(2) was 0.75 and 0.71; observed vs. predicted means were 0.612 vs. 0.608 and 0.750 vs. 0.749. Mean difference in QALY's (observed vs. predicted) were 0.051 vs. 0.053 and 0.164 vs. 0.162 for TOPICAL and SOCCAR respectively. Models tested on independent data show simulated 95% confidence from the BB model containing the observed mean more often (77% and 59% for TOPICAL and SOCCAR respectively) compared to the other models. All algorithms over-predict at poorer health states but the BB model was relatively better, particularly for the SOCCAR data. The BB model may offer superior predictive properties amongst mapping algorithms considered and may be more useful when predicting EQ-5D-3L at poorer health states. We recommend the algorithm derived from the TOPICAL data due to better predictive properties and less uncertainty.
Cortazar, E; Usobiaga, A; Fernández, L A; de, Diego A; Madariaga, J M
2002-02-01
A MATHEMATICA package, 'CONDU.M', has been developed to find the polynomial in concentration and temperature which best fits conductimetric data of the type (kappa, c, T) or (kappa, c1, c2, T) of electrolyte solutions (kappa: specific conductivity; ci: concentration of component i; T: temperature). In addition, an interface, 'TKONDU', has been written in the TCL/Tk language to facilitate the use of CONDU.M by an operator not familiarised with MATHEMATICA. All this software is available on line (UPV/EHU, 2001). 'CONDU.M' has been programmed to: (i) select the optimum grade in c1 and/or c2; (ii) compare models with linear or quadratic terms in temperature; (iii) calculate the set of adjustable parameters which best fits data; (iv) simplify the model by elimination of 'a priori' included adjustable parameters which after the regression analysis result in low statistical significance; (v) facilitate the location of outlier data by graphical analysis of the residuals; and (vi) provide quantitative statistical information on the quality of the fit, allowing a critical comparison among different models. Due to the multiple options offered the software allows testing different conductivity models in a short time, even if a large set of conductivity data is being considered simultaneously. Then, the user can choose the best model making use of the graphical and statistical information provided in the output file. Although the program has been initially designed to treat conductimetric data, it can be also applied for processing data with similar structure, e.g. (P, c, T) or (P, c1, c2, T), being P any appropriate transport, physical or thermodynamic property.
Femtosecond nonlinear polarization evolution based on cascade quadratic nonlinearities.
Liu, X; Ilday, F O; Beckwitt, K; Wise, F W
2000-09-15
We experimentally demonstrate that one can exploit nonlinear phase shifts produced in type I phase-mismatched second-harmonic generation to produce intensity-dependent polarization evolution with 100-fs pulses. An amplitude modulator based on nonlinear polarization rotation provides passive amplitude-modulation depth of up to ~50%. Applications of the amplitude and phase modulations to mode locking of femtosecond bulk and fiber lasers are promising and are discussed.
Hosmer, David W; Sturdivant, Rodney X
2013-01-01
A new edition of the definitive guide to logistic regression modeling for health science and other applications This thoroughly expanded Third Edition provides an easily accessible introduction to the logistic regression (LR) model and highlights the power of this model by examining the relationship between a dichotomous outcome and a set of covariables. Applied Logistic Regression, Third Edition emphasizes applications in the health sciences and handpicks topics that best suit the use of modern statistical software. The book provides readers with state-of-
Weisberg, Sanford
2013-01-01
Praise for the Third Edition ""...this is an excellent book which could easily be used as a course text...""-International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illus
Model selection in kernel ridge regression
DEFF Research Database (Denmark)
Exterkate, Peter
2013-01-01
Kernel ridge regression is a technique to perform ridge regression with a potentially infinite number of nonlinear transformations of the independent variables as regressors. This method is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts....... The influence of the choice of kernel and the setting of tuning parameters on forecast accuracy is investigated. Several popular kernels are reviewed, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. The latter two kernels are interpreted in terms of their smoothing properties......, and the tuning parameters associated to all these kernels are related to smoothness measures of the prediction function and to the signal-to-noise ratio. Based on these interpretations, guidelines are provided for selecting the tuning parameters from small grids using cross-validation. A Monte Carlo study...
Processing Approach of Non-linear Adjustment Models in the Space of Non-linear Models
Institute of Scientific and Technical Information of China (English)
LI Chaokui; ZHU Qing; SONG Chengfang
2003-01-01
This paper investigates the mathematic features of non-linear models and discusses the processing way of non-linear factors which contributes to the non-linearity of a nonlinear model. On the basis of the error definition, this paper puts forward a new adjustment criterion, SGPE.Last, this paper investigates the solution of a non-linear regression model in the non-linear model space and makes the comparison between the estimated values in non-linear model space and those in linear model space.
Ravindra, H. J.; John Kiran, A.; Nooji, Satheesha Rai; Dharmaprakash, S. M.; Chandrasekharan, K.; Kalluraya, Balakrishna; Rotermund, Fabian
2008-05-01
Good quality single crystals of p-chloro dibenzylideneacetone (CDBA) of size 13 mm×8 mm×2 mm were grown by slow evaporation solution growth technique. The grown crystals were confirmed by elemental analysis, Fourier transform infrared (FTIR) analysis and single crystal X-ray diffraction techniques. From the thermo gravimetric/differential thermal (TG/DT) analysis, the CDBA was found to be thermally stable up to 250 °C. The mechanical stability of the crystal is comparable with that of the other reported chalcones. The lower optical cut-off wavelength for this crystal was observed at 440 nm. The laser damage threshold of the crystal was 0.6 GW/cm 2 at 532 nm. The second harmonic generation conversion efficiency of the powder sample of CDBA was found to be 4.5 times greater than that of urea. We also demonstrate the existence of the phase matching property in this crystal using Kurtz powder technique.
Schmidt, Bruno E; Ernotte, Guilmot; Clerici, Matteo; Morandotti, Roberto; Ibrahim, Heide; Legare, Francois
2016-01-01
In the framework of linear optics, light fields do not interact with each other in a medium. Yet, when their field amplitude becomes comparable to the electron binding energies of matter, the nonlinear motion of these electrons emits new dipole radiation whose amplitude, frequency and phase differ from the incoming fields. Such high fields are typically achieved with ultra-short, femtosecond (1fs = 10-15 sec.) laser pulses containing very broad frequency spectra. Here, the matter not only couples incoming and outgoing fields but also causes different spectral components to interact and mix through a convolution process. In this contribution, we describe how frequency domain nonlinear optics overcomes the shortcomings arising from this convolution in conventional time domain nonlinear optics1. We generate light fields with previously inaccessible properties because the uncontrolled coupling of amplitudes and phases is turned off. For example, arbitrary phase functions are transferred linearly to the second har...
Directory of Open Access Journals (Sweden)
Robson Marcelo Rossi
2010-02-01
Full Text Available This paper shows the Bayesian approach as an alternative to the classical analysis of nonlinear models for ruminal degradation data. The data set was obtained from a Latin square experimental design, established for testing the ruminal degradation of dry matter, crude protein and fiber in neutral detergent of three silages: elephant grass (Pennisetum purpureum Schum with bacterial inoculant or enzyme-bacterial inoculant and corn silage (Zea mays L.. The incubation times were 0, 2, 6, 12, 24, 48, 72 and 96 hours. The parameter estimates of the equations fitted by both methods showed small differences, but by the Bayesian approach it was possible to compare the estimates correctly, that does not happen with the frequentist methodology because it is much more restricted in the applications due to the demand for a larger number of presuppositions.Neste trabalho a abordagem Bayesiana é apresentada como alternativa à abordagem clássica na modelagem não-linear de dados de degradação ruminal. Foram utilizados dados provenientes de um experimento em delineamento quadrado latino para avaliar a degradabilidade da matéria seca, da proteína bruta e da fibra em detergente neutro de três silagens: silagem de capim-elefante (Pennisetum purpureum Schum com inoculante bacteriano, com inoculante enzimo-bacteriano e silagem de milho (Zea mays L., nos tempos de incubação: 0, 2, 6, 12, 24, 48, 72 e 96 horas. Obtidas as estimativas dos parâmetros do modelo ajustado, pelos dois métodos, observou-se que não há diferenças marcantes entre as mesmas para nenhuma das variáveis estudadas. No entanto, por meio da metodologia Bayesiana, foi possível comparar as estimativas dos parâmetros para cada tratamento, o que não ocorre com a metodologia frequentista, por ser muito mais restrita nas aplicações devido à exigência de maior número de pressuposições.
Transductive Ordinal Regression
Seah, Chun-Wei; Ong, Yew-Soon
2011-01-01
Ordinal regression is commonly formulated as a multi-class problem with ordinal constraints. The challenge of designing accurate classifiers for ordinal regression generally increases with the number of classes involved, due to the large number of labeled patterns that are needed. The availability of ordinal class labels, however, are often costly to calibrate or difficult to obtain. Unlabeled patterns, on the other hand, often exist in much greater abundance and are freely available. To take benefits from the abundance of unlabeled patterns, we present a novel transductive learning paradigm for ordinal regression in this paper, namely Transductive Ordinal Regression (TOR). The key challenge of the present study lies in the precise estimation of both the ordinal class label of the unlabeled data and the decision functions of the ordinal classes, simultaneously. The core elements of the proposed TOR include an objective function that caters to several commonly used loss functions casted in transductive setting...
Nonparametric Predictive Regression
Ioannis Kasparis; Elena Andreou; Phillips, Peter C.B.
2012-01-01
A unifying framework for inference is developed in predictive regressions where the predictor has unknown integration properties and may be stationary or nonstationary. Two easily implemented nonparametric F-tests are proposed. The test statistics are related to those of Kasparis and Phillips (2012) and are obtained by kernel regression. The limit distribution of these predictive tests holds for a wide range of predictors including stationary as well as non-stationary fractional and near unit...
A Spline Regression Model for Latent Variables
Harring, Jeffrey R.
2014-01-01
Spline (or piecewise) regression models have been used in the past to account for patterns in observed data that exhibit distinct phases. The changepoint or knot marking the shift from one phase to the other, in many applications, is an unknown parameter to be estimated. As an extension of this framework, this research considers modeling the…
Bloembergen, Nicolaas
1996-01-01
Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe
Zhong, Xian-Qiong; Zhang, Xiao-Xia; Du, Xian-Tong; Liu, Yong; Cheng, Ke
2015-10-01
The approximate analytical frequency chirps and the critical distances for cross-phase modulation induced optical wave breaking (OWB) of the initial hyperbolic-secant optical pulses propagating in optical fibers with quintic nonlinearity (QN) are presented. The pulse evolutions in terms of the frequency chirps, shapes and spectra are numerically calculated in the normal dispersion regime. The results reveal that, depending on different QN parameters, the traditional OWB or soliton or soliton pulse trains may occur. The approximate analytical critical distances are found to be in good agreement with the numerical ones only for the traditional OWB whereas the approximate analytical frequency chirps accords well with the numerical ones at the initial evolution stages of the pulses. Supported by the Postdoctoral Fund of China under Grant No. 2011M501402, the Key Project of Chinese Ministry of Education under Grant No. 210186, the Major Project of Natural Science Supported by the Educational Department of Sichuan Province under Grant No. 13ZA0081, the Key Project of National Natural Science Foundation of China under Grant No 61435010, and the National Natural Science Foundation of China under Grant No. 61275039
Zhao, Li-Ming; Zhou, Yun-Song; Wang, Ai-Hua
2017-02-01
Second harmonic generation (SHG) in a two-dimensional (2D) nonlinear photonic crystal (NPC) with finite width along z-direction that is embedded in air is investigated, without adopting the traditional approximations such as a plane-wave approximation (PWA) and slowly varying amplitude approximation (SVAA). The so-called quasi-phase-matching (QPM) and the corresponding SHG conversion efficiency can be modulated significantly by the field of fundamental wave (FW). It is assumed that the incident light, along z-direction, is normally launched upon the surface of the sample, and QPM for different directions is investigated. It is found that the QPM shows significant differences, compared with the traditional QPM along the two different directions: in the direction of finite width of the sample, the peak value of SHG conversion efficiency is deviated from the traditional case and it gets to its peak values when the transmittance resonance occurs. However, in the other direction, the deviation from the traditional QPM arises from the field modulation of the second harmonic wave (SHW) and in this direction, it is investigated that the full width at half maximum of QPM is much wider than that in the direction of finite width of the sample. These results can be used to provide a theoretical guidance for achieving QPM SHG.
Some Asymptotic Inference in Multinomial Nonlinear Models (a Geometric Approach)
Institute of Scientific and Technical Information of China (English)
WEIBOCHENG
1996-01-01
A geometric framework is proposed for multinomlat nonlinear modelsbased on a modified vemlon of the geometric structure presented by Bates & Watts[4]. We use this geometric framework to study some asymptotic inference in terms ofcurvtures for multlnomial nonlinear models. Our previous results [15] for ordlnary nonlinear regression models are extended to multlnomlal nonlinear models.
Rashidian Vaziri, Mohammad Reza
2013-07-10
In this paper, the Z-scan theory for nonlocal nonlinear media has been further developed when nonlinear absorption and nonlinear refraction appear simultaneously. To this end, the nonlinear photoinduced phase shift between the impinging and outgoing Gaussian beams from a nonlocal nonlinear sample has been generalized. It is shown that this kind of phase shift will reduce correctly to its known counterpart for the case of pure refractive nonlinearity. Using this generalized form of phase shift, the basic formulas for closed- and open-aperture beam transmittances in the far field have been provided, and a simple procedure for interpreting the Z-scan results has been proposed. In this procedure, by separately performing open- and closed-aperture Z-scan experiments and using the represented relations for the far-field transmittances, one can measure the nonlinear absorption coefficient and nonlinear index of refraction as well as the order of nonlocality. Theoretically, it is shown that when the absorptive nonlinearity is present in addition to the refractive nonlinearity, the sample nonlocal response can noticeably suppress the peak and enhance the valley of the Z-scan closed-aperture transmittance curves, which is due to the nonlocal action's ability to change the beam transverse dimensions.
Intrinsic nonlinear response of surface plasmon polaritons
Im, Song-Jin; Kim, Gum-Hyok
2015-01-01
We offer a model to describe the intrinsic nonlinear response of surface plasmon polaritons (SPPs). Relation of the complex nonlinear coefficient of SPPs to the third-order nonlinear susceptibility of the metal is provided. As reported in a recent study, gold is highly lossy and simultaneously highly nonlinear due to interband absorption and interband thermo-modulation at a wavelength shorter than 700 nm. The effect of the high loss of the metal on the SPP nonlinear propagation is taken into account in our model. With the model we show difference in sign of real and imaginary parts between the nonlinear propagation coefficient and the nonlinear susceptibility of component material for the first time to our knowledge. Our model could have practical importance in studying plasmonic devices utilizing the nonlinear phase modulation and the nonlinear absorption of SPPs. For example, it allows one to extract the complex nonlinear susceptibility of gold through a measurement of SPP nonlinear propagation at the visib...
Energy Technology Data Exchange (ETDEWEB)
Geniet, F; Leon, J [Physique Mathematique et Theorique, CNRS-UMR 5825, 34095 Montpellier (France)
2003-05-07
A nonlinear system possessing a natural forbidden band gap can transmit energy of a signal with a frequency in the gap, as recently shown for a nonlinear chain of coupled pendulums (Geniet and Leon 2002 Phys. Rev. Lett. 89 134102). This process of nonlinear supratransmission, occurring at a threshold that is exactly predictable in many cases, is shown to have a simple experimental realization with a mechanical chain of pendulums coupled by a coil spring. It is then analysed in more detail. First we go to different (nonintegrable) systems which do sustain nonlinear supratransmission. Then a Josephson transmission line (a one-dimensional array of short Josephson junctions coupled through superconducting wires) is shown to also sustain nonlinear supratransmission, though being related to a different class of boundary conditions, and despite the presence of damping, finiteness, and discreteness. Finally, the mechanism at the origin of nonlinear supratransmission is found to be a nonlinear instability, and this is briefly discussed here.
Zweig, George
2016-05-01
An earlier paper characterizing the linear mechanical response of the organ of Corti [J. Acoust. Soc. Am. 138, 1102-1121 (2015)] is extended to the nonlinear domain. Assuming the existence of nonlinear oscillators nonlocally coupled through the pressure they help create, the oscillator equations are derived and examined when the stimuli are modulated tones and clicks. The nonlinearities are constrained by the requirements of oscillator stability and the invariance of zero crossings in the click response to changes in click amplitude. The nonlinear oscillator equations for tones are solved in terms of the fluid pressure that drives them, and its time derivative, presumably a proxy for forces created by outer hair cells. The pressure equation is reduced to quadrature, the integrand depending on the oscillators' responses. The resulting nonlocally coupled nonlinear equations for the pressure, and oscillator amplitudes and phases, are solved numerically in terms of the fluid pressure at the stapes. Methods for determining the nonlinear damping directly from measurements are described. Once the oscillators have been characterized from their tone and click responses, the mechanical response of the cochlea to natural sounds may be computed numerically. Signal processing inspired by cochlear mechanics opens up a new area of nonlocal nonlinear time-frequency analysis.
[Understanding logistic regression].
El Sanharawi, M; Naudet, F
2013-10-01
Logistic regression is one of the most common multivariate analysis models utilized in epidemiology. It allows the measurement of the association between the occurrence of an event (qualitative dependent variable) and factors susceptible to influence it (explicative variables). The choice of explicative variables that should be included in the logistic regression model is based on prior knowledge of the disease physiopathology and the statistical association between the variable and the event, as measured by the odds ratio. The main steps for the procedure, the conditions of application, and the essential tools for its interpretation are discussed concisely. We also discuss the importance of the choice of variables that must be included and retained in the regression model in order to avoid the omission of important confounding factors. Finally, by way of illustration, we provide an example from the literature, which should help the reader test his or her knowledge.
DEFF Research Database (Denmark)
Nguyen-Duy, Khiem
and remains the prime source of energy in non-terrestrial applications such as those in sky-explorers. However, a renewable energy source is expensive, bulky, and its performance is weather dependent, which make testing of downstream converters very difficult. As a result, a nonlinear source emulator (NSE......) is a good solution to solve the problems associated with the use of real nonlinear sources in testing phases. However, a recent technical survey conducted during this work shows that most existing NSEs have only been concerned with simulating nonlinear systems in terrestrial applications. Furthermore......, their dynamic performance were not fast enough in order to imitate how a real nonlinear energy source would react under extreme conditions and operation modes. Particularly, a system in the sky can experience a step change of sunlight irradiation. Moreover, operation modes may include load step between nominal...
Practical Session: Logistic Regression
Clausel, M.; Grégoire, G.
2014-12-01
An exercise is proposed to illustrate the logistic regression. One investigates the different risk factors in the apparition of coronary heart disease. It has been proposed in Chapter 5 of the book of D.G. Kleinbaum and M. Klein, "Logistic Regression", Statistics for Biology and Health, Springer Science Business Media, LLC (2010) and also by D. Chessel and A.B. Dufour in Lyon 1 (see Sect. 6 of http://pbil.univ-lyon1.fr/R/pdf/tdr341.pdf). This example is based on data given in the file evans.txt coming from http://www.sph.emory.edu/dkleinb/logreg3.htm#data.
Biswas, S.; Kumbhakar, P.
2017-02-01
We have reported here, for the first time, to the best of our knowledge, a high nonlinear refractive index (n2e) of a natural pigment extracted from Hibiscus rosa-sinensis leaves by using spatial self-phase modulation technique (SSPM) with a low power CW He-Ne laser radiation at 632.8 nm. It is found by UV-Vis absorption spectroscopic analysis that chlrophyll-a, chlrophyll-b and carotenoid are present in the pigment extract with 56%, 25% and 19%, respectively. The photoluminescence (PL) emission characteristics of the extracted samples have also been measured at room temperature as well as in the temperature range of 283-333 K to investigate the effect of temperature on luminescent properties of the sample. By analyzing the SSPM experimental data, the nonlinear refractive index value of pigment extract has been determined to be 3.5 × 10- 5 cm2/W. The large nonlinear refractive index has been assigned due to asymmetrical structure, molecular reorientation and thermally induced nonlinearity in the sample. The presented results might open new avenues for the green and economical technique of syntheses of organic dyes with such a large nonlinear optical property.
Unsupervised K-Nearest Neighbor Regression
Kramer, Oliver
2011-01-01
In many scientific disciplines structures in high-dimensional data have to be found, e.g., in stellar spectra, in genome data, or for face recognition tasks. In this work we present a novel approach to non-linear dimensionality reduction. It is based on fitting K-nearest neighbor regression to the unsupervised regression framework for learning of low-dimensional manifolds. Similar to related approaches that are mostly based on kernel methods, unsupervised K-nearest neighbor (UKNN) regression optimizes latent variables w.r.t. the data space reconstruction error employing the K-nearest neighbor heuristic. The problem of optimizing latent neighborhoods is difficult to solve, but the UKNN formulation allows an efficient strategy of iteratively embedding latent points to fixed neighborhood topologies. The approaches will be tested experimentally.
Regression Test Selection for C# Programs
Directory of Open Access Journals (Sweden)
Nashat Mansour
2009-01-01
Full Text Available We present a regression test selection technique for C# programs. C# is fairly new and is often used within the Microsoft .Net framework to give programmers a solid base to develop a variety of applications. Regression testing is done after modifying a program. Regression test selection refers to selecting a suitable subset of test cases from the original test suite in order to be rerun. It aims to provide confidence that the modifications are correct and did not affect other unmodified parts of the program. The regression test selection technique presented in this paper accounts for C#.Net specific features. Our technique is based on three phases; the first phase builds an Affected Class Diagram consisting of classes that are affected by the change in the source code. The second phase builds a C# Interclass Graph (CIG from the affected class diagram based on C# specific features. In this phase, we reduce the number of selected test cases. The third phase involves further reduction and a new metric for assigning weights to test cases for prioritizing the selected test cases. We have empirically validated the proposed technique by using case studies. The empirical results show the usefulness of the proposed regression testing technique for C#.Net programs.
Time Series with Tailored Nonlinearities
Raeth, C
2015-01-01
It is demonstrated how to generate time series with tailored nonlinearities by inducing well- defined constraints on the Fourier phases. Correlations between the phase information of adjacent phases and (static and dynamic) measures of nonlinearities are established and their origin is explained. By applying a set of simple constraints on the phases of an originally linear and uncor- related Gaussian time series, the observed scaling behavior of the intensity distribution of empirical time series can be reproduced. The power law character of the intensity distributions being typical for e.g. turbulence and financial data can thus be explained in terms of phase correlations.
Multiple linear regression analysis
Edwards, T. R.
1980-01-01
Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.
Adaptive metric kernel regression
DEFF Research Database (Denmark)
Goutte, Cyril; Larsen, Jan
2000-01-01
regression by minimising a cross-validation estimate of the generalisation error. This allows to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms...
Software Regression Verification
2013-12-11
of recursive procedures. Acta Informatica , 45(6):403 – 439, 2008. [GS11] Benny Godlin and Ofer Strichman. Regression verifica- tion. Technical Report...functions. Therefore, we need to rede - fine m-term. – Mutual termination. If either function f or function f ′ (or both) is non- deterministic, then their
Seber, George A F
2012-01-01
Concise, mathematically clear, and comprehensive treatment of the subject.* Expanded coverage of diagnostics and methods of model fitting.* Requires no specialized knowledge beyond a good grasp of matrix algebra and some acquaintance with straight-line regression and simple analysis of variance models.* More than 200 problems throughout the book plus outline solutions for the exercises.* This revision has been extensively class-tested.
Space curves, anholonomy and nonlinearity
Indian Academy of Sciences (India)
Radha Balakrishnan
2005-04-01
Using classical differential geometry, we discuss the phenomenon of anholonomy that gets associated with a static and a moving curve. We obtain the expressions for the respective geometric phases in the two cases and interpret them. We show that there is a close connection between anholonomy and nonlinearity in a wide class of nonlinear systems.
2016-07-01
Advanced Research Projects Agency (DARPA) Dynamics-Enabled Frequency Sources (DEFYS) program is focused on the convergence of nonlinear dynamics and...Early work in this program has shown that nonlinear dynamics can provide performance advantages. However, the pathway from initial results to...dependent nonlinear stiffness observed in these devices. This work is ongoing, and will continue through the final period of this program . Reference 9
Nayfeh, Ali Hasan
1995-01-01
Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim
Yoshida, Zensho
2010-01-01
This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl
Nanda, Sudarsan
2013-01-01
"Nonlinear analysis" presents recent developments in calculus in Banach space, convex sets, convex functions, best approximation, fixed point theorems, nonlinear operators, variational inequality, complementary problem and semi-inner-product spaces. Nonlinear Analysis has become important and useful in the present days because many real world problems are nonlinear, nonconvex and nonsmooth in nature. Although basic concepts have been presented here but many results presented have not appeared in any book till now. The book could be used as a text for graduate students and also it will be useful for researchers working in this field.
Krishna, Anuj; Vijayan, N.; Riscob, B.; Gour, B. S.; Haranath, D.; Philip, J.; Verma, S.; Jayalakshmy, M. S.; Bhagavannarayana, G.; Halder, S. K.
2014-03-01
A potential semiorganic nonlinear optical material, L-alanine cadmium chloride monohydrate has been successfully synthesised and single crystals have been grown by slow evaporation solution growth technique at room temperature by using double distilled water as the solvent. The lattice dimensions of the grown crystal have been analysed by adopting powder X-ray diffraction technique and found that it crystallised in monoclinic system with space group C2. The crystalline perfection of the as-grown crystal has been assessed by high resolution X-ray diffraction and X-ray topography techniques and observed that the quality of the grown specimen is reasonably good. Its optical properties were examined by UV-Vis and photoluminescence techniques and found that there is no absorption in the entire visible range. Its functional groups were identified from FT-Raman and observed that there is no incorporation of other impurities during crystallisation. Its relative second harmonic generation efficiency has been tested with different particle size by Kurtz powder technique and found that within the coherence length the title compound is phase matchable. Its various thermal properties like thermal conductivity, specific heat, thermal effusivity, etc. have been evaluated by photopyroelectric technique and compared with other organic and inorganic materials. To confirm its piezoelectric response, its piezoelectric charge coefficient was measured using piezometer and found low. Its optical homogeneity as well as birefringence measurement of the grown specimen has been carried out by interferometric technique. The surface defects of the grown LACCM single crystal were analysed with etching at room temperature using water as an etchant.
Energy Technology Data Exchange (ETDEWEB)
Krishna, Anuj; Vijayan, N.; Haranath, D.; Bhagavannarayana, G.; Halder, S.K. [CSIR - National Physical Laboratory, New Delhi (India); Riscob, B. [CSIR - National Physical Laboratory, New Delhi (India); Institute of Plasma Research, Bhat, Gandhinagar (India); Gour, B.S. [Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal (India); Philip, J.; Jayalakshmy, M.S. [Cochin University of Science and Technology, Cochin (India); Verma, S. [Raja Ramanna Centre for Advanced Technology, Laser Materials Development and Devices Division, Indore (India)
2014-03-15
A potential semiorganic nonlinear optical material, L-alanine cadmium chloride monohydrate has been successfully synthesised and single crystals have been grown by slow evaporation solution growth technique at room temperature by using double distilled water as the solvent. The lattice dimensions of the grown crystal have been analysed by adopting powder X-ray diffraction technique and found that it crystallised in monoclinic system with space group C2. The crystalline perfection of the as-grown crystal has been assessed by high resolution X-ray diffraction and X-ray topography techniques and observed that the quality of the grown specimen is reasonably good. Its optical properties were examined by UV-Vis and photoluminescence techniques and found that there is no absorption in the entire visible range. Its functional groups were identified from FT-Raman and observed that there is no incorporation of other impurities during crystallisation. Its relative second harmonic generation efficiency has been tested with different particle size by Kurtz powder technique and found that within the coherence length the title compound is phase matchable. Its various thermal properties like thermal conductivity, specific heat, thermal effusivity, etc. have been evaluated by photopyroelectric technique and compared with other organic and inorganic materials. To confirm its piezoelectric response, its piezoelectric charge coefficient was measured using piezometer and found low. Its optical homogeneity as well as birefringence measurement of the grown specimen has been carried out by interferometric technique. The surface defects of the grown LACCM single crystal were analysed with etching at room temperature using water as an etchant. (orig.)
Analysing the forward premium anomaly using a Logistic Smooth Transition Regression model.
Sofiane Amri
2008-01-01
Several researchers have suggested that exchange rates may be characterized by nonlinear behaviour. This paper examines these nonlinearities and asymetries and estimates a Logistic Transition Regression (LSTR) of Fama Regression with the Risk Adjusted Forward Premia as transition variable. Results confirm the existence of nonlinear dynamics in the relationship between spot exchange rate differential and the forward premium for all the currencies of the sample and for all maturities (three and...
Low rank Multivariate regression
Giraud, Christophe
2010-01-01
We consider in this paper the multivariate regression problem, when the target regression matrix $A$ is close to a low rank matrix. Our primary interest in on the practical case where the variance of the noise is unknown. Our main contribution is to propose in this setting a criterion to select among a family of low rank estimators and prove a non-asymptotic oracle inequality for the resulting estimator. We also investigate the easier case where the variance of the noise is known and outline that the penalties appearing in our criterions are minimal (in some sense). These penalties involve the expected value of the Ky-Fan quasi-norm of some random matrices. These quantities can be evaluated easily in practice and upper-bounds can be derived from recent results in random matrix theory.
Subset selection in regression
Miller, Alan
2002-01-01
Originally published in 1990, the first edition of Subset Selection in Regression filled a significant gap in the literature, and its critical and popular success has continued for more than a decade. Thoroughly revised to reflect progress in theory, methods, and computing power, the second edition promises to continue that tradition. The author has thoroughly updated each chapter, incorporated new material on recent developments, and included more examples and references. New in the Second Edition:A separate chapter on Bayesian methodsComplete revision of the chapter on estimationA major example from the field of near infrared spectroscopyMore emphasis on cross-validationGreater focus on bootstrappingStochastic algorithms for finding good subsets from large numbers of predictors when an exhaustive search is not feasible Software available on the Internet for implementing many of the algorithms presentedMore examplesSubset Selection in Regression, Second Edition remains dedicated to the techniques for fitting...
Conditional least squares estimation in nonstationary nonlinear stochastic regression models
Jacob, Christine
2010-01-01
Let $\\{Z_n\\}$ be a real nonstationary stochastic process such that $E(Z_n|{\\mathcaligr F}_{n-1})\\stackrel{\\mathrm{a.s.}}{<}\\infty$ and $E(Z^2_n|{\\mathcaligr F}_{n-1})\\stackrel{\\mathrm{a.s.}}{<}\\infty$, where $\\{{\\mathcaligr F}_n\\}$ is an increasing sequence of $\\sigma$-algebras. Assuming that $E(Z_n|{\\mathcaligr F}_{n-1})=g_n(\\theta_0,\
Focus issue introduction: nonlinear optics.
Boulanger, Benoît; Cundiff, Steven T; Gauthier, Daniel J; Karlsson, Magnus; Lu, Yan-Qing; Norwood, Robert A; Skryabin, Dmitry; Taira, Takunori
2011-11-07
It is now fifty years since the original observation of second harmonic generation ushered in the field of nonlinear optics, close on the heels of the invention of the laser. This feature issue celebrates this anniversary with papers that span the range from new nonlinear optical materials, through the increasingly novel methods that have been developed for phase matching, to emerging areas such as nonlinear metamaterials and plasmonic enhancement of optical properties. It is clear that the next fifty years of nonlinear optics will witness a proliferation of new applications with increasing technological impact.
Classification and regression trees
Breiman, Leo; Olshen, Richard A; Stone, Charles J
1984-01-01
The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.
DEFF Research Database (Denmark)
Hansen, Henrik; Tarp, Finn
2001-01-01
. There are, however, decreasing returns to aid, and the estimated effectiveness of aid is highly sensitive to the choice of estimator and the set of control variables. When investment and human capital are controlled for, no positive effect of aid is found. Yet, aid continues to impact on growth via...... investment. We conclude by stressing the need for more theoretical work before this kind of cross-country regressions are used for policy purposes....
Robust Nonstationary Regression
1993-01-01
This paper provides a robust statistical approach to nonstationary time series regression and inference. Fully modified extensions of traditional robust statistical procedures are developed which allow for endogeneities in the nonstationary regressors and serial dependence in the shocks that drive the regressors and the errors that appear in the equation being estimated. The suggested estimators involve semiparametric corrections to accommodate these possibilities and they belong to the same ...
TWO REGRESSION CREDIBILITY MODELS
Directory of Open Access Journals (Sweden)
Constanţa-Nicoleta BODEA
2010-03-01
Full Text Available In this communication we will discuss two regression credibility models from Non – Life Insurance Mathematics that can be solved by means of matrix theory. In the first regression credibility model, starting from a well-known representation formula of the inverse for a special class of matrices a risk premium will be calculated for a contract with risk parameter θ. In the next regression credibility model, we will obtain a credibility solution in the form of a linear combination of the individual estimate (based on the data of a particular state and the collective estimate (based on aggregate USA data. To illustrate the solution with the properties mentioned above, we shall need the well-known representation theorem for a special class of matrices, the properties of the trace for a square matrix, the scalar product of two vectors, the norm with respect to a positive definite matrix given in advance and the complicated mathematical properties of conditional expectations and of conditional covariances.
Directory of Open Access Journals (Sweden)
Hong-Juan Li
2013-04-01
Full Text Available Electric load forecasting is an important issue for a power utility, associated with the management of daily operations such as energy transfer scheduling, unit commitment, and load dispatch. Inspired by strong non-linear learning capability of support vector regression (SVR, this paper presents a SVR model hybridized with the empirical mode decomposition (EMD method and auto regression (AR for electric load forecasting. The electric load data of the New South Wales (Australia market are employed for comparing the forecasting performances of different forecasting models. The results confirm the validity of the idea that the proposed model can simultaneously provide forecasting with good accuracy and interpretability.
Nonlinear Multiantenna Detection Methods
Directory of Open Access Journals (Sweden)
Chen Sheng
2004-01-01
Full Text Available A nonlinear detection technique designed for multiple-antenna assisted receivers employed in space-division multiple-access systems is investigated. We derive the optimal solution of the nonlinear spatial-processing assisted receiver for binary phase shift keying signalling, which we refer to as the Bayesian detector. It is shown that this optimal Bayesian receiver significantly outperforms the standard linear beamforming assisted receiver in terms of a reduced bit error rate, at the expense of an increased complexity, while the achievable system capacity is substantially enhanced with the advent of employing nonlinear detection. Specifically, when the spatial separation expressed in terms of the angle of arrival between the desired and interfering signals is below a certain threshold, a linear beamformer would fail to separate them, while a nonlinear detection assisted receiver is still capable of performing adequately. The adaptive implementation of the optimal Bayesian detector can be realized using a radial basis function network. Two techniques are presented for constructing block-data-based adaptive nonlinear multiple-antenna assisted receivers. One of them is based on the relevance vector machine invoked for classification, while the other on the orthogonal forward selection procedure combined with the Fisher ratio class-separability measure. A recursive sample-by-sample adaptation procedure is also proposed for training nonlinear detectors based on an amalgam of enhanced -means clustering techniques and the recursive least squares algorithm.
Functional uniform priors for nonlinear modeling.
Bornkamp, Björn
2012-09-01
This article considers the topic of finding prior distributions when a major component of the statistical model depends on a nonlinear function. Using results on how to construct uniform distributions in general metric spaces, we propose a prior distribution that is uniform in the space of functional shapes of the underlying nonlinear function and then back-transform to obtain a prior distribution for the original model parameters. The primary application considered in this article is nonlinear regression, but the idea might be of interest beyond this case. For nonlinear regression the so constructed priors have the advantage that they are parametrization invariant and do not violate the likelihood principle, as opposed to uniform distributions on the parameters or the Jeffrey's prior, respectively. The utility of the proposed priors is demonstrated in the context of design and analysis of nonlinear regression modeling in clinical dose-finding trials, through a real data example and simulation.
Pysher, Matthew; Bahabad, Alon; Peng, Peng; Arie, Ady; Pfister, Olivier
2010-02-15
We report the successful design and experimental implementation of three coincident nonlinear interactions, namely ZZZ (type 0), ZYY (type I), and YYZ/YZY (type II) second-harmonic generation of 780 nm light from a 1560 nm pump beam in a single, multigrating, periodically poled KTiOPO(4) crystal. The resulting nonlinear medium is the key component for making a scalable quantum computer over the optical frequency comb of a single optical parametric oscillator.
Regression analysis using dependent Polya trees.
Schörgendorfer, Angela; Branscum, Adam J
2013-11-30
Many commonly used models for linear regression analysis force overly simplistic shape and scale constraints on the residual structure of data. We propose a semiparametric Bayesian model for regression analysis that produces data-driven inference by using a new type of dependent Polya tree prior to model arbitrary residual distributions that are allowed to evolve across increasing levels of an ordinal covariate (e.g., time, in repeated measurement studies). By modeling residual distributions at consecutive covariate levels or time points using separate, but dependent Polya tree priors, distributional information is pooled while allowing for broad pliability to accommodate many types of changing residual distributions. We can use the proposed dependent residual structure in a wide range of regression settings, including fixed-effects and mixed-effects linear and nonlinear models for cross-sectional, prospective, and repeated measurement data. A simulation study illustrates the flexibility of our novel semiparametric regression model to accurately capture evolving residual distributions. In an application to immune development data on immunoglobulin G antibodies in children, our new model outperforms several contemporary semiparametric regression models based on a predictive model selection criterion. Copyright © 2013 John Wiley & Sons, Ltd.
Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Yu, Hao-Ran
2016-01-01
We present a direct approach to non-parametrically reconstruct the linear density field from an observed non-linear map. We solve for the unique displacement potential consistent with the non-linear density and positive definite coordinate transformation using a multigrid algorithm. We show that we recover the linear initial conditions up to $k\\sim 1\\ h/\\mathrm{Mpc}$ with minimal computational cost. This reconstruction approach generalizes the linear displacement theory to fully non-linear fields, potentially substantially expanding the BAO and RSD information content of dense large scale structure surveys, including for example SDSS main sample and 21cm intensity mapping.
Boyd, Robert W
2013-01-01
Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q
Institute of Scientific and Technical Information of China (English)
黄朝志; 肖发远
2011-01-01
This paper obtains the nonlinear decoupled control laws of 3-phase integrating magnetic VRM by differential geometry theory. The unified switch impulse function is given, and the three input and three output affine nonlinear model is built up;the state variable feedback linearization control law of 3-phase integrating magnetic VRM is given based on the differential geometry theory. At last, the simulation results show the performance on dynamic and steady state of integrating magnetic VRM is good based on differential geometry theory non-linearization control.%以三相磁集成VRM为研究对象,应用微分几何理论实现三相磁集成VRM的非线性解耦控制.在统一的开关脉冲函数下,基于微分几何理论得到三相磁集成VRM的状态反馈线性化解耦控制规律.建立三输入三输出仿射非线性模型,仿真实验表明,基于微分几何非线性控制的磁集成VRM具有良好的动态品质和稳态特性.
Nonlinear Metamaterials for Holography
Almeida, Euclides; Prior, Yehiam
2015-01-01
A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multi-layer metamaterial holograms where by the nonlinear process of Third Harmonic Generation, a background free image is formed at a new frequency which is the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analyzed and prospects for future device applications are discussed.
Modified Regression Correlation Coefficient for Poisson Regression Model
Kaengthong, Nattacha; Domthong, Uthumporn
2017-09-01
This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).
Ruszczynski, Andrzej
2011-01-01
Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates t
Directory of Open Access Journals (Sweden)
Karim Hardani*
2012-05-01
Full Text Available A 10-month-old baby presented with developmental delay. He had flaccid paralysis on physical examination.An MRI of the spine revealed malformation of the ninth and tenth thoracic vertebral bodies with complete agenesis of the rest of the spine down that level. The thoracic spinal cord ends at the level of the fifth thoracic vertebra with agenesis of the posterior arches of the eighth, ninth and tenth thoracic vertebral bodies. The roots of the cauda equina appear tightened down and backward and ended into a subdermal fibrous fatty tissue at the level of the ninth and tenth thoracic vertebral bodies (closed meningocele. These findings are consistent with caudal regression syndrome.