WorldWideScience

Sample records for nonlinear reconstruction algorithms

  1. Some nonlinear space decomposition algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Xue-Cheng; Espedal, M. [Univ. of Bergen (Norway)

    1996-12-31

    Convergence of a space decomposition method is proved for a general convex programming problem. The space decomposition refers to methods that decompose a space into sums of subspaces, which could be a domain decomposition or a multigrid method for partial differential equations. Two algorithms are proposed. Both can be used for linear as well as nonlinear elliptic problems and they reduce to the standard additive and multiplicative Schwarz methods for linear elliptic problems. Two {open_quotes}hybrid{close_quotes} algorithms are also presented. They converge faster than the additive one and have better parallelism than the multiplicative method. Numerical tests with a two level domain decomposition for linear, nonlinear and interface elliptic problems are presented for the proposed algorithms.

  2. Computed laminography and reconstruction algorithm

    International Nuclear Information System (INIS)

    Que Jiemin; Cao Daquan; Zhao Wei; Tang Xiao

    2012-01-01

    Computed laminography (CL) is an alternative to computed tomography if large objects are to be inspected with high resolution. This is especially true for planar objects. In this paper, we set up a new scanning geometry for CL, and study the algebraic reconstruction technique (ART) for CL imaging. We compare the results of ART with variant weighted functions by computer simulation with a digital phantom. It proves that ART algorithm is a good choice for the CL system. (authors)

  3. Beard reconstruction: A surgical algorithm.

    Science.gov (United States)

    Ninkovic, M; Heidekrueger, P I; Ehrl, D; von Spiegel, F; Broer, P N

    2016-06-01

    Facial defects with loss of hair-bearing regions can be caused by trauma, infection, tumor excision, or burn injury. The presented analysis evaluates a series of different surgical approaches with a focus on male beard reconstruction, emphasizing the role of tissue expansion of regional and free flaps. Locoregional and free flap reconstructions were performed in 11 male patients with 14 facial defects affecting the hair-bearing bucco-mandibular or perioral region. In order to minimize donor-site morbidity and obtain large amounts of thin, pliable, hair-bearing tissue, pre-expansion was performed in five of 14 patients. Eight of 14 patients were treated with locoregional flap reconstructions and six with free flap reconstructions. Algorithms regarding pre- and intraoperative decision making are discussed and long-term (mean follow-up 1.5 years) results analyzed. Major complications, including tissue expander infection with the need for removal or exchange, partial or full flap loss, occurred in 0% (0/8) of patients with locoregional flaps and in 17% (1/6) of patients undergoing free flap reconstructions. Secondary refinement surgery was performed in 25% (2/8) of locoregional flaps and in 67% (4/6) of free flaps. Both locoregional and distant tissue transfers play a role in beard reconstruction, while pre-expansion remains an invaluable tool. Paying attention to the presented principles and considering the significance of aesthetic facial subunits, range of motion, aesthetics, and patient satisfaction were improved long term in all our patients while minimizing donor-site morbidity. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  4. NR-code: Nonlinear reconstruction code

    Science.gov (United States)

    Yu, Yu; Pen, Ue-Li; Zhu, Hong-Ming

    2018-04-01

    NR-code applies nonlinear reconstruction to the dark matter density field in redshift space and solves for the nonlinear mapping from the initial Lagrangian positions to the final redshift space positions; this reverses the large-scale bulk flows and improves the precision measurement of the baryon acoustic oscillations (BAO) scale.

  5. Compressively sampled MR image reconstruction using generalized thresholding iterative algorithm

    Science.gov (United States)

    Elahi, Sana; kaleem, Muhammad; Omer, Hammad

    2018-01-01

    Compressed sensing (CS) is an emerging area of interest in Magnetic Resonance Imaging (MRI). CS is used for the reconstruction of the images from a very limited number of samples in k-space. This significantly reduces the MRI data acquisition time. One important requirement for signal recovery in CS is the use of an appropriate non-linear reconstruction algorithm. It is a challenging task to choose a reconstruction algorithm that would accurately reconstruct the MR images from the under-sampled k-space data. Various algorithms have been used to solve the system of non-linear equations for better image quality and reconstruction speed in CS. In the recent past, iterative soft thresholding algorithm (ISTA) has been introduced in CS-MRI. This algorithm directly cancels the incoherent artifacts produced because of the undersampling in k -space. This paper introduces an improved iterative algorithm based on p -thresholding technique for CS-MRI image reconstruction. The use of p -thresholding function promotes sparsity in the image which is a key factor for CS based image reconstruction. The p -thresholding based iterative algorithm is a modification of ISTA, and minimizes non-convex functions. It has been shown that the proposed p -thresholding iterative algorithm can be used effectively to recover fully sampled image from the under-sampled data in MRI. The performance of the proposed method is verified using simulated and actual MRI data taken at St. Mary's Hospital, London. The quality of the reconstructed images is measured in terms of peak signal-to-noise ratio (PSNR), artifact power (AP), and structural similarity index measure (SSIM). The proposed approach shows improved performance when compared to other iterative algorithms based on log thresholding, soft thresholding and hard thresholding techniques at different reduction factors.

  6. Algorithms for reconstructing images for industrial applications

    International Nuclear Information System (INIS)

    Lopes, R.T.; Crispim, V.R.

    1986-01-01

    Several algorithms for reconstructing objects from their projections are being studied in our Laboratory, for industrial applications. Such algorithms are useful locating the position and shape of different composition of materials in the object. A Comparative study of two algorithms is made. The two investigated algorithsm are: The MART (Multiplicative - Algebraic Reconstruction Technique) and the Convolution Method. The comparison are carried out from the point view of the quality of the image reconstructed, number of views and cost. (Author) [pt

  7. Greedy algorithms for diffuse optical tomography reconstruction

    Science.gov (United States)

    Dileep, B. P. V.; Das, Tapan; Dutta, Pranab K.

    2018-03-01

    Diffuse optical tomography (DOT) is a noninvasive imaging modality that reconstructs the optical parameters of a highly scattering medium. However, the inverse problem of DOT is ill-posed and highly nonlinear due to the zig-zag propagation of photons that diffuses through the cross section of tissue. The conventional DOT imaging methods iteratively compute the solution of forward diffusion equation solver which makes the problem computationally expensive. Also, these methods fail when the geometry is complex. Recently, the theory of compressive sensing (CS) has received considerable attention because of its efficient use in biomedical imaging applications. The objective of this paper is to solve a given DOT inverse problem by using compressive sensing framework and various Greedy algorithms such as orthogonal matching pursuit (OMP), compressive sampling matching pursuit (CoSaMP), and stagewise orthogonal matching pursuit (StOMP), regularized orthogonal matching pursuit (ROMP) and simultaneous orthogonal matching pursuit (S-OMP) have been studied to reconstruct the change in the absorption parameter i.e, Δα from the boundary data. Also, the Greedy algorithms have been validated experimentally on a paraffin wax rectangular phantom through a well designed experimental set up. We also have studied the conventional DOT methods like least square method and truncated singular value decomposition (TSVD) for comparison. One of the main features of this work is the usage of less number of source-detector pairs, which can facilitate the use of DOT in routine applications of screening. The performance metrics such as mean square error (MSE), normalized mean square error (NMSE), structural similarity index (SSIM), and peak signal to noise ratio (PSNR) have been used to evaluate the performance of the algorithms mentioned in this paper. Extensive simulation results confirm that CS based DOT reconstruction outperforms the conventional DOT imaging methods in terms of

  8. Attractor reconstruction for non-linear systems: a methodological note

    Science.gov (United States)

    Nichols, J.M.; Nichols, J.D.

    2001-01-01

    Attractor reconstruction is an important step in the process of making predictions for non-linear time-series and in the computation of certain invariant quantities used to characterize the dynamics of such series. The utility of computed predictions and invariant quantities is dependent on the accuracy of attractor reconstruction, which in turn is determined by the methods used in the reconstruction process. This paper suggests methods by which the delay and embedding dimension may be selected for a typical delay coordinate reconstruction. A comparison is drawn between the use of the autocorrelation function and mutual information in quantifying the delay. In addition, a false nearest neighbor (FNN) approach is used in minimizing the number of delay vectors needed. Results highlight the need for an accurate reconstruction in the computation of the Lyapunov spectrum and in prediction algorithms.

  9. A fast sparse reconstruction algorithm for electrical tomography

    International Nuclear Information System (INIS)

    Zhao, Jia; Xu, Yanbin; Tan, Chao; Dong, Feng

    2014-01-01

    Electrical tomography (ET) has been widely investigated due to its advantages of being non-radiative, low-cost and high-speed. However, the image reconstruction of ET is a nonlinear and ill-posed inverse problem and the imaging results are easily affected by measurement noise. A sparse reconstruction algorithm based on L 1 regularization is robust to noise and consequently provides a high quality of reconstructed images. In this paper, a sparse reconstruction by separable approximation algorithm (SpaRSA) is extended to solve the ET inverse problem. The algorithm is competitive with the fastest state-of-the-art algorithms in solving the standard L 2 −L 1 problem. However, it is computationally expensive when the dimension of the matrix is large. To further improve the calculation speed of solving inverse problems, a projection method based on the Krylov subspace is employed and combined with the SpaRSA algorithm. The proposed algorithm is tested with image reconstruction of electrical resistance tomography (ERT). Both simulation and experimental results demonstrate that the proposed method can reduce the computational time and improve the noise robustness for the image reconstruction. (paper)

  10. A combinational fast algorithm for image reconstruction

    International Nuclear Information System (INIS)

    Wu Zhongquan

    1987-01-01

    A combinational fast algorithm has been developed in order to increase the speed of reconstruction. First, an interpolation method based on B-spline functions is used in image reconstruction. Next, the influence of the boundary conditions assumed here on the interpolation of filtered projections and on the image reconstruction is discussed. It is shown that this boundary condition has almost no influence on the image in the central region of the image space, because the error of interpolation rapidly decreases by a factor of ten in shifting two pixels from the edge toward the center. In addition, a fast algorithm for computing the detecting angle has been used with the mentioned interpolation algorithm, and the cost for detecting angle computaton is reduced by a factor of two. The implementation results show that in the same subjective and objective fidelity, the computational cost for the interpolation using this algorithm is about one-twelfth of the conventional algorithm

  11. Algorithms For Integrating Nonlinear Differential Equations

    Science.gov (United States)

    Freed, A. D.; Walker, K. P.

    1994-01-01

    Improved algorithms developed for use in numerical integration of systems of nonhomogenous, nonlinear, first-order, ordinary differential equations. In comparison with integration algorithms, these algorithms offer greater stability and accuracy. Several asymptotically correct, thereby enabling retention of stability and accuracy when large increments of independent variable used. Accuracies attainable demonstrated by applying them to systems of nonlinear, first-order, differential equations that arise in study of viscoplastic behavior, spread of acquired immune-deficiency syndrome (AIDS) virus and predator/prey populations.

  12. Tau reconstruction and identification algorithm

    Indian Academy of Sciences (India)

    CMS has developed sophisticated tau identification algorithms for tau hadronic decay modes. Production of tau lepton decaying to hadrons are studied at 7 TeV centre-of-mass energy with 2011 collision data collected by CMS detector and has been used to measure the performance of tau identification algorithms by ...

  13. UV Reconstruction Algorithm And Diurnal Cycle Variability

    Science.gov (United States)

    Curylo, Aleksander; Litynska, Zenobia; Krzyscin, Janusz; Bogdanska, Barbara

    2009-03-01

    UV reconstruction is a method of estimation of surface UV with the use of available actinometrical and aerological measurements. UV reconstruction is necessary for the study of long-term UV change. A typical series of UV measurements is not longer than 15 years, which is too short for trend estimation. The essential problem in the reconstruction algorithm is the good parameterization of clouds. In our previous algorithm we used an empirical relation between Cloud Modification Factor (CMF) in global radiation and CMF in UV. The CMF is defined as the ratio between measured and modelled irradiances. Clear sky irradiance was calculated with a solar radiative transfer model. In the proposed algorithm, the time variability of global radiation during the diurnal cycle is used as an additional source of information. For elaborating an improved reconstruction algorithm relevant data from Legionowo [52.4 N, 21.0 E, 96 m a.s.l], Poland were collected with the following instruments: NILU-UV multi channel radiometer, Kipp&Zonen pyranometer, radiosonde profiles of ozone, humidity and temperature. The proposed algorithm has been used for reconstruction of UV at four Polish sites: Mikolajki, Kolobrzeg, Warszawa-Bielany and Zakopane since the early 1960s. Krzyscin's reconstruction of total ozone has been used in the calculations.

  14. Sparse Nonlinear Electromagnetic Imaging Accelerated With Projected Steepest Descent Algorithm

    KAUST Repository

    Desmal, Abdulla

    2017-04-03

    An efficient electromagnetic inversion scheme for imaging sparse 3-D domains is proposed. The scheme achieves its efficiency and accuracy by integrating two concepts. First, the nonlinear optimization problem is constrained using L₀ or L₁-norm of the solution as the penalty term to alleviate the ill-posedness of the inverse problem. The resulting Tikhonov minimization problem is solved using nonlinear Landweber iterations (NLW). Second, the efficiency of the NLW is significantly increased using a steepest descent algorithm. The algorithm uses a projection operator to enforce the sparsity constraint by thresholding the solution at every iteration. Thresholding level and iteration step are selected carefully to increase the efficiency without sacrificing the convergence of the algorithm. Numerical results demonstrate the efficiency and accuracy of the proposed imaging scheme in reconstructing sparse 3-D dielectric profiles.

  15. Wind reconstruction algorithm for Viking Lander 1

    Science.gov (United States)

    Kynkäänniemi, Tuomas; Kemppinen, Osku; Harri, Ari-Matti; Schmidt, Walter

    2017-06-01

    The wind measurement sensors of Viking Lander 1 (VL1) were only fully operational for the first 45 sols of the mission. We have developed an algorithm for reconstructing the wind measurement data after the wind measurement sensor failures. The algorithm for wind reconstruction enables the processing of wind data during the complete VL1 mission. The heater element of the quadrant sensor, which provided auxiliary measurement for wind direction, failed during the 45th sol of the VL1 mission. Additionally, one of the wind sensors of VL1 broke down during sol 378. Regardless of the failures, it was still possible to reconstruct the wind measurement data, because the failed components of the sensors did not prevent the determination of the wind direction and speed, as some of the components of the wind measurement setup remained intact for the complete mission. This article concentrates on presenting the wind reconstruction algorithm and methods for validating the operation of the algorithm. The algorithm enables the reconstruction of wind measurements for the complete VL1 mission. The amount of available sols is extended from 350 to 2245 sols.

  16. Wind reconstruction algorithm for Viking Lander 1

    Directory of Open Access Journals (Sweden)

    T. Kynkäänniemi

    2017-06-01

    Full Text Available The wind measurement sensors of Viking Lander 1 (VL1 were only fully operational for the first 45 sols of the mission. We have developed an algorithm for reconstructing the wind measurement data after the wind measurement sensor failures. The algorithm for wind reconstruction enables the processing of wind data during the complete VL1 mission. The heater element of the quadrant sensor, which provided auxiliary measurement for wind direction, failed during the 45th sol of the VL1 mission. Additionally, one of the wind sensors of VL1 broke down during sol 378. Regardless of the failures, it was still possible to reconstruct the wind measurement data, because the failed components of the sensors did not prevent the determination of the wind direction and speed, as some of the components of the wind measurement setup remained intact for the complete mission. This article concentrates on presenting the wind reconstruction algorithm and methods for validating the operation of the algorithm. The algorithm enables the reconstruction of wind measurements for the complete VL1 mission. The amount of available sols is extended from 350 to 2245 sols.

  17. On Secret Sharing with Nonlinear Product Reconstruction

    DEFF Research Database (Denmark)

    Cascudo Pueyo, Ignacio; Cramer, Ronald; Mirandola, Diego

    2015-01-01

    Multiplicative linear secret sharing is a fundamental notion in the area of secure multiparty computation and, since recently, in the area of two-party cryptography as well. In a nutshell, this notion guarantees that the product of two secrets is obtained as a linear function of the vector......-necessarily-linear “product reconstruction function.” Is the resulting notion equivalent to multiplicative linear secret sharing? We show the (perhaps somewhat counterintuitive) result that this relaxed notion is strictly more general. Concretely, fix a finite field ${\\mathbb F}_q$ as the base field over which linear secret...... sharing is considered. Then we show there exists an (exotic) linear secret sharing scheme with an unbounded number of players $n$ such that it has $t$-privacy with $t = \\Omega(n)$ and such that it does admit a product reconstruction function, yet this function is necessarily nonlinear. In addition, we...

  18. Combined algorithms in nonlinear problems of magnetostatics

    International Nuclear Information System (INIS)

    Gregus, M.; Khoromskij, B.N.; Mazurkevich, G.E.; Zhidkov, E.P.

    1988-01-01

    To solve boundary problems of magnetostatics in unbounded two- and three-dimensional regions, we construct combined algorithms based on a combination of the method of boundary integral equations with the grid methods. We study the question of substantiation of the combined method of nonlinear magnetostatic problem without the preliminary discretization of equations and give some results on the convergence of iterative processes that arise in non-linear cases. We also discuss economical iterative processes and algorithms that solve boundary integral equations on certain surfaces. Finally, examples of numerical solutions of magnetostatic problems that arose when modelling the fields of electrophysical installations are given too. 14 refs.; 2 figs.; 1 tab

  19. Iterative Nonlinear Tikhonov Algorithm with Constraints for Electromagnetic Tomography

    Science.gov (United States)

    Xu, Feng; Deshpande, Manohar

    2012-01-01

    Low frequency electromagnetic tomography such as the capacitance tomography (ECT) has been proposed for monitoring and mass-gauging of gas-liquid two-phase system under microgravity condition in NASA's future long-term space missions. Due to the ill-posed inverse problem of ECT, images reconstructed using conventional linear algorithms often suffer from limitations such as low resolution and blurred edges. Hence, new efficient high resolution nonlinear imaging algorithms are needed for accurate two-phase imaging. The proposed Iterative Nonlinear Tikhonov Regularized Algorithm with Constraints (INTAC) is based on an efficient finite element method (FEM) forward model of quasi-static electromagnetic problem. It iteratively minimizes the discrepancy between FEM simulated and actual measured capacitances by adjusting the reconstructed image using the Tikhonov regularized method. More importantly, it enforces the known permittivity of two phases to the unknown pixels which exceed the reasonable range of permittivity in each iteration. This strategy does not only stabilize the converging process, but also produces sharper images. Simulations show that resolution improvement of over 2 times can be achieved by INTAC with respect to conventional approaches. Strategies to further improve spatial imaging resolution are suggested, as well as techniques to accelerate nonlinear forward model and thus increase the temporal resolution.

  20. Multichannel algorithm for fast 3D reconstruction

    International Nuclear Information System (INIS)

    Rodet, Thomas; Grangeat, Pierre; Desbat, Laurent

    2002-01-01

    Some recent medical imaging applications such as functional imaging (PET and SPECT) or interventional imaging (CT fluoroscopy) involve increasing amounts of data. In order to reduce the image reconstruction time, we develop a new fast 3D reconstruction algorithm based on a divide and conquer approach. The proposed multichannel algorithm performs an indirect frequential subband decomposition of the image f to be reconstructed (f=Σf j ) through the filtering of the projections Rf. The subband images f j are reconstructed on a downsampled grid without information suppression. In order to reduce the computation time, we do not backproject the null filtered projections and we downsample the number of projections according to the Shannon conditions associated with the subband image. Our algorithm is based on filtering and backprojection operators. Using the same algorithms for these basic operators, our approach is three and a half times faster than a classical FBP algorithm for a 2D image 512x512 and six times faster for a 3D image 32x512x512. (author)

  1. Nonlinear model predictive control theory and algorithms

    CERN Document Server

    Grüne, Lars

    2017-01-01

    This book offers readers a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. An introduction to nonlinear optimal control algorithms yields essential insights into how the nonlinear optimization routine—the core of any nonlinear model predictive controller—works. Accompanying software in MATLAB® and C++ (downloadable from extras.springer.com/), together with an explanatory appendix in the book itself, enables readers to perform computer experiments exploring the possibilities and limitations of NMPC. T...

  2. A penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography.

    Science.gov (United States)

    Shang, Shang; Bai, Jing; Song, Xiaolei; Wang, Hongkai; Lau, Jaclyn

    2007-01-01

    Conjugate gradient method is verified to be efficient for nonlinear optimization problems of large-dimension data. In this paper, a penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography (FMT) is presented. The algorithm combines the linear conjugate gradient method and the nonlinear conjugate gradient method together based on a restart strategy, in order to take advantage of the two kinds of conjugate gradient methods and compensate for the disadvantages. A quadratic penalty method is adopted to gain a nonnegative constraint and reduce the illposedness of the problem. Simulation studies show that the presented algorithm is accurate, stable, and fast. It has a better performance than the conventional conjugate gradient-based reconstruction algorithms. It offers an effective approach to reconstruct fluorochrome information for FMT.

  3. Sparse Reconstruction Schemes for Nonlinear Electromagnetic Imaging

    KAUST Repository

    Desmal, Abdulla

    2016-03-01

    Electromagnetic imaging is the problem of determining material properties from scattered fields measured away from the domain under investigation. Solving this inverse problem is a challenging task because (i) it is ill-posed due to the presence of (smoothing) integral operators used in the representation of scattered fields in terms of material properties, and scattered fields are obtained at a finite set of points through noisy measurements; and (ii) it is nonlinear simply due the fact that scattered fields are nonlinear functions of the material properties. The work described in this thesis tackles the ill-posedness of the electromagnetic imaging problem using sparsity-based regularization techniques, which assume that the scatterer(s) occupy only a small fraction of the investigation domain. More specifically, four novel imaging methods are formulated and implemented. (i) Sparsity-regularized Born iterative method iteratively linearizes the nonlinear inverse scattering problem and each linear problem is regularized using an improved iterative shrinkage algorithm enforcing the sparsity constraint. (ii) Sparsity-regularized nonlinear inexact Newton method calls for the solution of a linear system involving the Frechet derivative matrix of the forward scattering operator at every iteration step. For faster convergence, the solution of this matrix system is regularized under the sparsity constraint and preconditioned by leveling the matrix singular values. (iii) Sparsity-regularized nonlinear Tikhonov method directly solves the nonlinear minimization problem using Landweber iterations, where a thresholding function is applied at every iteration step to enforce the sparsity constraint. (iv) This last scheme is accelerated using a projected steepest descent method when it is applied to three-dimensional investigation domains. Projection replaces the thresholding operation and enforces the sparsity constraint. Numerical experiments, which are carried out using

  4. Backtracking algorithm for lepton reconstruction with HADES

    International Nuclear Information System (INIS)

    Sellheim, P

    2015-01-01

    The High Acceptance Di-Electron Spectrometer (HADES) at the GSI Helmholtzzentrum für Schwerionenforschung investigates dilepton and strangeness production in elementary and heavy-ion collisions. In April - May 2012 HADES recorded 7 billion Au+Au events at a beam energy of 1.23 GeV/u with the highest multiplicities measured so far. The track reconstruction and particle identification in the high track density environment are challenging. The most important detector component for lepton identification is the Ring Imaging Cherenkov detector. Its main purpose is the separation of electrons and positrons from large background of charged hadrons produced in heavy-ion collisions. In order to improve lepton identification this backtracking algorithm was developed. In this contribution we will show the results of the algorithm compared to the currently applied method for e +/- identification. Efficiency and purity of a reconstructed e +/- sample will be discussed as well. (paper)

  5. A very fast implementation of 2D iterative reconstruction algorithms

    DEFF Research Database (Denmark)

    Toft, Peter Aundal; Jensen, Peter James

    1996-01-01

    that iterative reconstruction algorithms can be implemented and run almost as fast as direct reconstruction algorithms. The method has been implemented in a software package that is available for free, providing reconstruction algorithms using ART, EM, and the Least Squares Conjugate Gradient Method...

  6. Quantitative tomography simulations and reconstruction algorithms

    International Nuclear Information System (INIS)

    Martz, H.E.; Aufderheide, M.B.; Goodman, D.; Schach von Wittenau, A.; Logan, C.; Hall, J.; Jackson, J.; Slone, D.

    2000-01-01

    X-ray, neutron and proton transmission radiography and computed tomography (CT) are important diagnostic tools that are at the heart of LLNL's effort to meet the goals of the DOE's Advanced Radiography Campaign. This campaign seeks to improve radiographic simulation and analysis so that radiography can be a useful quantitative diagnostic tool for stockpile stewardship. Current radiographic accuracy does not allow satisfactory separation of experimental effects from the true features of an object's tomographically reconstructed image. This can lead to difficult and sometimes incorrect interpretation of the results. By improving our ability to simulate the whole radiographic and CT system, it will be possible to examine the contribution of system components to various experimental effects, with the goal of removing or reducing them. In this project, we are merging this simulation capability with a maximum-likelihood (constrained-conjugate-gradient-CCG) reconstruction technique yielding a physics-based, forward-model image-reconstruction code. In addition, we seek to improve the accuracy of computed tomography from transmission radiographs by studying what physics is needed in the forward model. During FY 2000, an improved version of the LLNL ray-tracing code called HADES has been coupled with a recently developed LLNL CT algorithm known as CCG. The problem of image reconstruction is expressed as a large matrix equation relating a model for the object being reconstructed to its projections (radiographs). Using a constrained-conjugate-gradient search algorithm, a maximum likelihood solution is sought. This search continues until the difference between the input measured radiographs or projections and the simulated or calculated projections is satisfactorily small

  7. An efficient control algorithm for nonlinear systems

    International Nuclear Information System (INIS)

    Sinha, S.

    1990-12-01

    We suggest a scheme to step up the efficiency of a recently proposed adaptive control algorithm, which is remarkably effective for regulating nonlinear systems. The technique involves monitoring of the ''stiffness of control'' to get maximum gain while maintaining a predetermined accuracy. The success of the procedure is demonstrated for the case of the logistic map, where we show that the improvement in performance is often factors of tens, and for small control stiffness, even factors of hundreds. (author). 4 refs, 1 fig., 1 tab

  8. Selected event reconstruction algorithms for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Lebedev, Semen; Höhne, Claudia; Lebedev, Andrey; Ososkov, Gennady

    2014-01-01

    Development of fast and efficient event reconstruction algorithms is an important and challenging task in the Compressed Baryonic Matter (CBM) experiment at the future FAIR facility. The event reconstruction algorithms have to process terabytes of input data produced in particle collisions. In this contribution, several event reconstruction algorithms are presented. Optimization of the algorithms in the following CBM detectors are discussed: Ring Imaging Cherenkov (RICH) detector, Transition Radiation Detectors (TRD) and Muon Chamber (MUCH). The ring reconstruction algorithm in the RICH is discussed. In TRD and MUCH track reconstruction algorithms are based on track following and Kalman Filter methods. All algorithms were significantly optimized to achieve maximum speed up and minimum memory consumption. Obtained results showed that a significant speed up factor for all algorithms was achieved and the reconstruction efficiency stays at high level.

  9. Advanced reconstruction algorithms for electron tomography: From comparison to combination

    Energy Technology Data Exchange (ETDEWEB)

    Goris, B. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Roelandts, T. [Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Batenburg, K.J. [Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Centrum Wiskunde and Informatica, Science Park 123, NL-1098XG Amsterdam (Netherlands); Heidari Mezerji, H. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Bals, S., E-mail: sara.bals@ua.ac.be [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2013-04-15

    In this work, the simultaneous iterative reconstruction technique (SIRT), the total variation minimization (TVM) reconstruction technique and the discrete algebraic reconstruction technique (DART) for electron tomography are compared and the advantages and disadvantages are discussed. Furthermore, we describe how the result of a three dimensional (3D) reconstruction based on TVM can provide objective information that is needed as the input for a DART reconstruction. This approach results in a tomographic reconstruction of which the segmentation is carried out in an objective manner. - Highlights: ► A comparative study between different reconstruction algorithms for tomography is performed. ► Reconstruction algorithms that uses prior knowledge about the specimen have a superior result. ► One reconstruction algorithm can provide the prior knowledge for a second algorithm.

  10. Strategies of reconstruction algorithms for computerized tomography

    International Nuclear Information System (INIS)

    Garderet, P.

    1984-10-01

    Image reconstruction from projections has progressively spread out over all fields of medical imaging. As the mathematical aspects of the problem become more and more comprehensively explored a great variety of numerical solutions have been developed best suited to such-and-such imaging medical application and taking into account the physical phenomena related to data collection (a priori properties for signal and noise). The purpose of that survey is to present the general mathematical frame and the fundamental assumptions of various strategies; Fourier methods approximate explicit deterministic inversion formula for the Radon transform. Algebraic reconstruction techniques set up an a priori discrete model through a series expansion approach of the solution. The numerical system to be solved is huge when a fine grid of pixels is to be reconstructed; iterative solutions may then be found. Recently some least square procedures have been shown to be tractable which avoid the use of iterative methods. Finally maximum like hood approach incorporates accurately the Poisson nature of photon noise and are well adapted to emission computed tomography. The various strategies will be analysed from both aspects of theoretical assumptions needed for suitable use and of computing facilities, actual performance and cost. In the end we take a glimpse of the extension of the algorithms from two dimensional imaging to fully three dimensional volume analysis in preparation of the future medical imaging technologies

  11. Accelerated Computing in Magnetic Resonance Imaging: Real-Time Imaging Using Nonlinear Inverse Reconstruction

    Directory of Open Access Journals (Sweden)

    Sebastian Schaetz

    2017-01-01

    Full Text Available Purpose. To develop generic optimization strategies for image reconstruction using graphical processing units (GPUs in magnetic resonance imaging (MRI and to exemplarily report on our experience with a highly accelerated implementation of the nonlinear inversion (NLINV algorithm for dynamic MRI with high frame rates. Methods. The NLINV algorithm is optimized and ported to run on a multi-GPU single-node server. The algorithm is mapped to multiple GPUs by decomposing the data domain along the channel dimension. Furthermore, the algorithm is decomposed along the temporal domain by relaxing a temporal regularization constraint, allowing the algorithm to work on multiple frames in parallel. Finally, an autotuning method is presented that is capable of combining different decomposition variants to achieve optimal algorithm performance in different imaging scenarios. Results. The algorithm is successfully ported to a multi-GPU system and allows online image reconstruction with high frame rates. Real-time reconstruction with low latency and frame rates up to 30 frames per second is demonstrated. Conclusion. Novel parallel decomposition methods are presented which are applicable to many iterative algorithms for dynamic MRI. Using these methods to parallelize the NLINV algorithm on multiple GPUs, it is possible to achieve online image reconstruction with high frame rates.

  12. A Total Variation Regularization Based Super-Resolution Reconstruction Algorithm for Digital Video

    Directory of Open Access Journals (Sweden)

    Zhang Liangpei

    2007-01-01

    Full Text Available Super-resolution (SR reconstruction technique is capable of producing a high-resolution image from a sequence of low-resolution images. In this paper, we study an efficient SR algorithm for digital video. To effectively deal with the intractable problems in SR video reconstruction, such as inevitable motion estimation errors, noise, blurring, missing regions, and compression artifacts, the total variation (TV regularization is employed in the reconstruction model. We use the fixed-point iteration method and preconditioning techniques to efficiently solve the associated nonlinear Euler-Lagrange equations of the corresponding variational problem in SR. The proposed algorithm has been tested in several cases of motion and degradation. It is also compared with the Laplacian regularization-based SR algorithm and other TV-based SR algorithms. Experimental results are presented to illustrate the effectiveness of the proposed algorithm.

  13. Algorithms for adaptive nonlinear pattern recognition

    Science.gov (United States)

    Schmalz, Mark S.; Ritter, Gerhard X.; Hayden, Eric; Key, Gary

    2011-09-01

    In Bayesian pattern recognition research, static classifiers have featured prominently in the literature. A static classifier is essentially based on a static model of input statistics, thereby assuming input ergodicity that is not realistic in practice. Classical Bayesian approaches attempt to circumvent the limitations of static classifiers, which can include brittleness and narrow coverage, by training extensively on a data set that is assumed to cover more than the subtense of expected input. Such assumptions are not realistic for more complex pattern classification tasks, for example, object detection using pattern classification applied to the output of computer vision filters. In contrast, we have developed a two step process, that can render the majority of static classifiers adaptive, such that the tracking of input nonergodicities is supported. Firstly, we developed operations that dynamically insert (or resp. delete) training patterns into (resp. from) the classifier's pattern database, without requiring that the classifier's internal representation of its training database be completely recomputed. Secondly, we developed and applied a pattern replacement algorithm that uses the aforementioned pattern insertion/deletion operations. This algorithm is designed to optimize the pattern database for a given set of performance measures, thereby supporting closed-loop, performance-directed optimization. This paper presents theory and algorithmic approaches for the efficient computation of adaptive linear and nonlinear pattern recognition operators that use our pattern insertion/deletion technology - in particular, tabular nearest-neighbor encoding (TNE) and lattice associative memories (LAMs). Of particular interest is the classification of nonergodic datastreams that have noise corruption with time-varying statistics. The TNE and LAM based classifiers discussed herein have been successfully applied to the computation of object classification in hyperspectral

  14. Versatility of the CFR algorithm for limited angle reconstruction

    International Nuclear Information System (INIS)

    Fujieda, I.; Heiskanen, K.; Perez-Mendez, V.

    1990-01-01

    The constrained Fourier reconstruction (CFR) algorithm and the iterative reconstruction-reprojection (IRR) algorithm are evaluated based on their accuracy for three types of limited angle reconstruction problems. The cFR algorithm performs better for problems such as Xray CT imaging of a nuclear reactor core with one large data gap due to structural blocking of the source and detector pair. For gated heart imaging by Xray CT, radioisotope distribution imaging by PET or SPECT, using a polygonal array of gamma cameras with insensitive gaps between camera boundaries, the IRR algorithm has a slight advantage over the CFR algorithm but the difference is not significant

  15. Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient.

    Science.gov (United States)

    Shi, Junwei; Zhang, Bin; Liu, Fei; Luo, Jianwen; Bai, Jing

    2013-09-15

    For the ill-posed fluorescent molecular tomography (FMT) inverse problem, the L1 regularization can protect the high-frequency information like edges while effectively reduce the image noise. However, the state-of-the-art L1 regularization-based algorithms for FMT reconstruction are expensive in memory, especially for large-scale problems. An efficient L1 regularization-based reconstruction algorithm based on nonlinear conjugate gradient with restarted strategy is proposed to increase the computational speed with low memory consumption. The reconstruction results from phantom experiments demonstrate that the proposed algorithm can obtain high spatial resolution and high signal-to-noise ratio, as well as high localization accuracy for fluorescence targets.

  16. New preconditioned conjugate gradient algorithms for nonlinear unconstrained optimization problems

    International Nuclear Information System (INIS)

    Al-Bayati, A.; Al-Asadi, N.

    1997-01-01

    This paper presents two new predilection conjugate gradient algorithms for nonlinear unconstrained optimization problems and examines their computational performance. Computational experience shows that the new proposed algorithms generally imp lone the efficiency of Nazareth's [13] preconditioned conjugate gradient algorithm. (authors). 16 refs., 1 tab

  17. Low dose reconstruction algorithm for differential phase contrast imaging.

    Science.gov (United States)

    Wang, Zhentian; Huang, Zhifeng; Zhang, Li; Chen, Zhiqiang; Kang, Kejun; Yin, Hongxia; Wang, Zhenchang; Marco, Stampanoni

    2011-01-01

    Differential phase contrast imaging computed tomography (DPCI-CT) is a novel x-ray inspection method to reconstruct the distribution of refraction index rather than the attenuation coefficient in weakly absorbing samples. In this paper, we propose an iterative reconstruction algorithm for DPCI-CT which benefits from the new compressed sensing theory. We first realize a differential algebraic reconstruction technique (DART) by discretizing the projection process of the differential phase contrast imaging into a linear partial derivative matrix. In this way the compressed sensing reconstruction problem of DPCI reconstruction can be transformed to a resolved problem in the transmission imaging CT. Our algorithm has the potential to reconstruct the refraction index distribution of the sample from highly undersampled projection data. Thus it can significantly reduce the dose and inspection time. The proposed algorithm has been validated by numerical simulations and actual experiments.

  18. A new simple iterative reconstruction algorithm for SPECT transmission measurement

    International Nuclear Information System (INIS)

    Hwang, D.S.; Zeng, G.L.

    2005-01-01

    This paper proposes a new iterative reconstruction algorithm for transmission tomography and compares this algorithm with several other methods. The new algorithm is simple and resembles the emission ML-EM algorithm in form. Due to its simplicity, it is easy to implement and fast to compute a new update at each iteration. The algorithm also always guarantees non-negative solutions. Evaluations are performed using simulation studies and real phantom data. Comparisons with other algorithms such as convex, gradient, and logMLEM show that the proposed algorithm is as good as others and performs better in some cases

  19. A fast method to emulate an iterative POCS image reconstruction algorithm.

    Science.gov (United States)

    Zeng, Gengsheng L

    2017-10-01

    Iterative image reconstruction algorithms are commonly used to optimize an objective function, especially when the objective function is nonquadratic. Generally speaking, the iterative algorithms are computationally inefficient. This paper presents a fast algorithm that has one backprojection and no forward projection. This paper derives a new method to solve an optimization problem. The nonquadratic constraint, for example, an edge-preserving denoising constraint is implemented as a nonlinear filter. The algorithm is derived based on the POCS (projections onto projections onto convex sets) approach. A windowed FBP (filtered backprojection) algorithm enforces the data fidelity. An iterative procedure, divided into segments, enforces edge-enhancement denoising. Each segment performs nonlinear filtering. The derived iterative algorithm is computationally efficient. It contains only one backprojection and no forward projection. Low-dose CT data are used for algorithm feasibility studies. The nonlinearity is implemented as an edge-enhancing noise-smoothing filter. The patient studies results demonstrate its effectiveness in processing low-dose x ray CT data. This fast algorithm can be used to replace many iterative algorithms. © 2017 American Association of Physicists in Medicine.

  20. Duality reconstruction algorithm for use in electrical impedance tomography

    International Nuclear Information System (INIS)

    Abdullah, M.Z.; Dickin, F.J.

    1996-01-01

    A duality reconstruction algorithm for solving the inverse problem in electrical impedance tomography (EIT) is described. In this method, an algorithm based on the Geselowitz compensation (GC) theorem is used first to reconstruct an approximate version of the image. It is then fed as a first guessed data to the modified Newton-Raphson (MNR) algorithm which iteratively correct the image until a final acceptable solution is reached. The implementation of the GC and MNR based algorithms using the finite element method will be discussed. Reconstructed images produced by the algorithm will also be presented. Consideration is also given to the most computationally intensive aspects of the algorithm, namely the inversion of the large and sparse matrices. The methods taken to approximately compute the inverse ot those matrices will be outlined. (author)

  1. Algorithms for non-linear M-estimation

    DEFF Research Database (Denmark)

    Madsen, Kaj; Edlund, O; Ekblom, H

    1997-01-01

    In non-linear regression, the least squares method is most often used. Since this estimator is highly sensitive to outliers in the data, alternatives have became increasingly popular during the last decades. We present algorithms for non-linear M-estimation. A trust region approach is used, where...

  2. Parallel Algorithm for Reconstruction of TAC Images

    International Nuclear Information System (INIS)

    Vidal Gimeno, V.

    2012-01-01

    The algebraic reconstruction methods are based on solving a system of linear equations. In a previous study, was used and showed as the PETSc library, was and is a scientific computing tool, which facilitates and enables the optimal use of a computer system in the image reconstruction process.

  3. DART: a practical reconstruction algorithm for discrete tomography.

    Science.gov (United States)

    Batenburg, Kees Joost; Sijbers, Jan

    2011-09-01

    In this paper, we present an iterative reconstruction algorithm for discrete tomography, called discrete algebraic reconstruction technique (DART). DART can be applied if the scanned object is known to consist of only a few different compositions, each corresponding to a constant gray value in the reconstruction. Prior knowledge of the gray values for each of the compositions is exploited to steer the current reconstruction towards a reconstruction that contains only these gray values. Based on experiments with both simulated CT data and experimental μCT data, it is shown that DART is capable of computing more accurate reconstructions from a small number of projection images, or from a small angular range, than alternative methods. It is also shown that DART can deal effectively with noisy projection data and that the algorithm is robust with respect to errors in the estimation of the gray values.

  4. Performance of the ATLAS primary vertex reconstruction algorithms

    CERN Document Server

    Zhang, Matt

    2017-01-01

    The reconstruction of primary vertices in the busy, high pile up environment of the LHC is a challenging task. The challenges and novel methods developed by the ATLAS experiment to reconstruct vertices in such environments will be presented. Such advances in vertex seeding include methods taken from medical imagining, which allow for reconstruction of very nearby vertices will be highlighted. The performance of the current vertexing algorithms using early Run-2 data will be presented and compared to results from simulation.

  5. Search for 'Little Higgs' and reconstruction algorithms developments in Atlas

    International Nuclear Information System (INIS)

    Rousseau, D.

    2007-05-01

    This document summarizes developments of framework and reconstruction algorithms for the ATLAS detector at the LHC. A library of reconstruction algorithms has been developed in a more and more complex environment. The reconstruction software originally designed on an optimistic Monte-Carlo simulation, has been confronted with a more detailed 'as-built' simulation. The 'Little Higgs' is an effective theory which can be taken for granted, or as an opportunity to study heavy resonances. In several cases, these resonances can be detected in original channels like tZ, ZH or WH. (author)

  6. A filtered backprojection reconstruction algorithm for Compton camera

    Energy Technology Data Exchange (ETDEWEB)

    Lojacono, Xavier; Maxim, Voichita; Peyrin, Francoise; Prost, Remy [Lyon Univ., Villeurbanne (France). CNRS, Inserm, INSA-Lyon, CREATIS, UMR5220; Zoglauer, Andreas [California Univ., Berkeley, CA (United States). Space Sciences Lab.

    2011-07-01

    In this paper we present a filtered backprojection reconstruction algorithm for Compton Camera detectors of particles. Compared to iterative methods, widely used for the reconstruction of images from Compton camera data, analytical methods are fast, easy to implement and avoid convergence issues. The method we propose is exact for an idealized Compton camera composed of two parallel plates of infinite dimension. We show that it copes well with low number of detected photons simulated from a realistic device. Images reconstructed from both synthetic data and realistic ones obtained with Monte Carlo simulations demonstrate the efficiency of the algorithm. (orig.)

  7. A new algorithm for 3D reconstruction from support functions

    DEFF Research Database (Denmark)

    Gardner, Richard; Kiderlen, Markus

    2009-01-01

    We introduce a new algorithm for reconstructing an unknown shape from a finite number of noisy measurements of its support function. The algorithm, based on a least squares procedure, is very easy to program in standard software such as Matlab and allows, for the first time, good 3D reconstructio...

  8. Convergence of Algorithms for Reconstructing Convex Bodies and Directional Measures

    DEFF Research Database (Denmark)

    Gardner, Richard; Kiderlen, Markus; Milanfar, Peyman

    2006-01-01

    We investigate algorithms for reconstructing a convex body K in Rn from noisy measurements of its support function or its brightness function in k directions u1, . . . , uk. The key idea of these algorithms is to construct a convex polytope Pk whose support function (or brightness function) best...

  9. Iterative concurrent reconstruction algorithms for emission computed tomography

    International Nuclear Information System (INIS)

    Brown, J.K.; Hasegawa, B.H.; Lang, T.F.

    1994-01-01

    Direct reconstruction techniques, such as those based on filtered backprojection, are typically used for emission computed tomography (ECT), even though it has been argued that iterative reconstruction methods may produce better clinical images. The major disadvantage of iterative reconstruction algorithms, and a significant reason for their lack of clinical acceptance, is their computational burden. We outline a new class of ''concurrent'' iterative reconstruction techniques for ECT in which the reconstruction process is reorganized such that a significant fraction of the computational processing occurs concurrently with the acquisition of ECT projection data. These new algorithms use the 10-30 min required for acquisition of a typical SPECT scan to iteratively process the available projection data, significantly reducing the requirements for post-acquisition processing. These algorithms are tested on SPECT projection data from a Hoffman brain phantom acquired with a 2 x 10 5 counts in 64 views each having 64 projections. The SPECT images are reconstructed as 64 x 64 tomograms, starting with six angular views. Other angular views are added to the reconstruction process sequentially, in a manner that reflects their availability for a typical acquisition protocol. The results suggest that if T s of concurrent processing are used, the reconstruction processing time required after completion of the data acquisition can be reduced by at least 1/3 T s. (Author)

  10. Reconstruction Algorithms in Undersampled AFM Imaging

    DEFF Research Database (Denmark)

    Arildsen, Thomas; Oxvig, Christian Schou; Pedersen, Patrick Steffen

    2016-01-01

    This paper provides a study of spatial undersampling in atomic force microscopy (AFM) imaging followed by different image reconstruction techniques based on sparse approximation as well as interpolation. The main reasons for using undersampling is that it reduces the path length and thereby...... the scanning time as well as the amount of interaction between the AFM probe and the specimen. It can easily be applied on conventional AFM hardware. Due to undersampling, it is then necessary to further process the acquired image in order to reconstruct an approximation of the image. Based on real AFM cell...... images, our simulations reveal that using a simple raster scanning pattern in combination with conventional image interpolation performs very well. Moreover, this combination enables a reduction by a factor 10 of the scanning time while retaining an average reconstruction quality around 36 dB PSNR...

  11. A new iterative algorithm to reconstruct the refractive index.

    Science.gov (United States)

    Liu, Y J; Zhu, P P; Chen, B; Wang, J Y; Yuan, Q X; Huang, W X; Shu, H; Li, E R; Liu, X S; Zhang, K; Ming, H; Wu, Z Y

    2007-06-21

    The latest developments in x-ray imaging are associated with techniques based on the phase contrast. However, the image reconstruction procedures demand significant improvements of the traditional methods, and/or new algorithms have to be introduced to take advantage of the high contrast and sensitivity of the new experimental techniques. In this letter, an improved iterative reconstruction algorithm based on the maximum likelihood expectation maximization technique is presented and discussed in order to reconstruct the distribution of the refractive index from data collected by an analyzer-based imaging setup. The technique considered probes the partial derivative of the refractive index with respect to an axis lying in the meridional plane and perpendicular to the propagation direction. Computer simulations confirm the reliability of the proposed algorithm. In addition, the comparison between an analytical reconstruction algorithm and the iterative method has been also discussed together with the convergent characteristic of this latter algorithm. Finally, we will show how the proposed algorithm may be applied to reconstruct the distribution of the refractive index of an epoxy cylinder containing small air bubbles of about 300 micro of diameter.

  12. Fast parallel algorithm for CT image reconstruction.

    Science.gov (United States)

    Flores, Liubov A; Vidal, Vicent; Mayo, Patricia; Rodenas, Francisco; Verdú, Gumersindo

    2012-01-01

    In X-ray computed tomography (CT) the X rays are used to obtain the projection data needed to generate an image of the inside of an object. The image can be generated with different techniques. Iterative methods are more suitable for the reconstruction of images with high contrast and precision in noisy conditions and from a small number of projections. Their use may be important in portable scanners for their functionality in emergency situations. However, in practice, these methods are not widely used due to the high computational cost of their implementation. In this work we analyze iterative parallel image reconstruction with the Portable Extensive Toolkit for Scientific computation (PETSc).

  13. Improved algorithm for solving nonlinear parabolized stability equations

    Science.gov (United States)

    Zhao, Lei; Zhang, Cun-bo; Liu, Jian-xin; Luo, Ji-sheng

    2016-08-01

    Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. Project supported by the National Natural Science Foundation of China (Grant Nos. 11332007 and 11402167).

  14. Improved algorithm for solving nonlinear parabolized stability equations

    International Nuclear Information System (INIS)

    Zhao Lei; Zhang Cun-bo; Liu Jian-xin; Luo Ji-sheng

    2016-01-01

    Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. (paper)

  15. New vertex reconstruction algorithms for CMS

    CERN Document Server

    Frühwirth, R; Prokofiev, Kirill; Speer, T.; Vanlaer, P.; Chabanat, E.; Estre, N.

    2003-01-01

    The reconstruction of interaction vertices can be decomposed into a pattern recognition problem (``vertex finding'') and a statistical problem (``vertex fitting''). We briefly review classical methods. We introduce novel approaches and motivate them in the framework of high-luminosity experiments like at the LHC. We then show comparisons with the classical methods in relevant physics channels

  16. Applications and algorithms for mixed integer nonlinear programming

    International Nuclear Information System (INIS)

    Leyffer, Sven; Munson, Todd; Linderoth, Jeff; Luedtke, James; Miller, Andrew

    2009-01-01

    The mathematical modeling of systems often requires the use of both nonlinear and discrete components. Discrete decision variables model dichotomies, discontinuities, and general logical relationships. Nonlinear functions are required to accurately represent physical properties such as pressure, stress, temperature, and equilibrium. Problems involving both discrete variables and nonlinear constraint functions are known as mixed-integer nonlinear programs (MINLPs) and are among the most challenging computational optimization problems faced by researchers and practitioners. In this paper, we describe relevant scientific applications that are naturally modeled as MINLPs, we provide an overview of available algorithms and software, and we describe ongoing methodological advances for solving MINLPs. These algorithmic advances are making increasingly larger instances of this important family of problems tractable.

  17. Image-reconstruction algorithms for positron-emission tomography systems

    International Nuclear Information System (INIS)

    Cheng, S.N.C.

    1982-01-01

    The positional uncertainty in the time-of-flight measurement of a positron-emission tomography system is modelled as a Gaussian distributed random variable and the image is assumed to be piecewise constant on a rectilinear lattice. A reconstruction algorithm using maximum-likelihood estimation is derived for the situation in which time-of-flight data are sorted as the most-likely-position array. The algorithm is formulated as a linear system described by a nonseparable, block-banded, Toeplitz matrix, and a sine-transform technique is used to implement this algorithm efficiently. The reconstruction algorithms for both the most-likely-position array and the confidence-weighted array are described by similar equations, hence similar linear systems can be used to described the reconstruction algorithm for a discrete, confidence-weighted array, when the matrix and the entries in the data array are properly identified. It is found that the mean square-error depends on the ratio of the full width at half the maximum of time-of-flight measurement over the size of a pixel. When other parameters are fixed, the larger the pixel size, the smaller is the mean square-error. In the study of resolution, parameters that affect the impulse response of time-of-flight reconstruction algorithms are identified. It is found that the larger the pixel size, the larger is the standard deviation of the impulse response. This shows that small mean square-error and fine resolution are two contradictory requirements

  18. A Linearized Relaxing Algorithm for the Specific Nonlinear Optimization Problem

    Directory of Open Access Journals (Sweden)

    Mio Horai

    2016-01-01

    Full Text Available We propose a new method for the specific nonlinear and nonconvex global optimization problem by using a linear relaxation technique. To simplify the specific nonlinear and nonconvex optimization problem, we transform the problem to the lower linear relaxation form, and we solve the linear relaxation optimization problem by the Branch and Bound Algorithm. Under some reasonable assumptions, the global convergence of the algorithm is certified for the problem. Numerical results show that this method is more efficient than the previous methods.

  19. Fast algorithm of track reconstruction for the Delphy TPC

    International Nuclear Information System (INIS)

    Maillard, J.

    1984-01-01

    We describe a simple geometrical method (polar inversion) to reconstruct tracks. When the magnetic field is constant in magnitude and direction. This method uses geometrical properties of the trajectories. In the case of the DELPHI apparatus, the track reconstruction is done using TPC informations. After explaining the algorithm, we give results on ''GEANT'' simulated events using the ''Lund'' generator. Today we get a computer time of the order of 1.2 milliseconds on a CDC 7600 and an efficiency of 98% [fr

  20. Impulse position control algorithms for nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Sesekin, A. N., E-mail: sesekin@list.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002 (Russian Federation); Institute of Mathematics and Mechanics, Ural Division of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990 (Russian Federation); Nepp, A. N., E-mail: anepp@urfu.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002 (Russian Federation)

    2015-11-30

    The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.

  1. Impulse position control algorithms for nonlinear systems

    Science.gov (United States)

    Sesekin, A. N.; Nepp, A. N.

    2015-11-01

    The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.

  2. Noise propagation in iterative reconstruction algorithms with line searches

    International Nuclear Information System (INIS)

    Qi, Jinyi

    2003-01-01

    In this paper we analyze the propagation of noise in iterative image reconstruction algorithms. We derive theoretical expressions for the general form of preconditioned gradient algorithms with line searches. The results are applicable to a wide range of iterative reconstruction problems, such as emission tomography, transmission tomography, and image restoration. A unique contribution of this paper comparing to our previous work [1] is that the line search is explicitly modeled and we do not use the approximation that the gradient of the objective function is zero. As a result, the error in the estimate of noise at early iterations is significantly reduced

  3. ADART: an adaptive algebraic reconstruction algorithm for discrete tomography.

    Science.gov (United States)

    Maestre-Deusto, F Javier; Scavello, Giovanni; Pizarro, Joaquín; Galindo, Pedro L

    2011-08-01

    In this paper we suggest an algorithm based on the Discrete Algebraic Reconstruction Technique (DART) which is capable of computing high quality reconstructions from substantially fewer projections than required for conventional continuous tomography. Adaptive DART (ADART) goes a step further than DART on the reduction of the number of unknowns of the associated linear system achieving a significant reduction in the pixel error rate of reconstructed objects. The proposed methodology automatically adapts the border definition criterion at each iteration, resulting in a reduction of the number of pixels belonging to the border, and consequently of the number of unknowns in the general algebraic reconstruction linear system to be solved, being this reduction specially important at the final stage of the iterative process. Experimental results show that reconstruction errors are considerably reduced using ADART when compared to original DART, both in clean and noisy environments.

  4. Optimization of reconstruction algorithms using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Hanson, K.M.

    1989-01-01

    A method for optimizing reconstruction algorithms is presented that is based on how well a specified task can be performed using the reconstructed images. Task performance is numerically assessed by a Monte Carlo simulation of the complete imaging process including the generation of scenes appropriate to the desired application, subsequent data taking, reconstruction, and performance of the stated task based on the final image. The use of this method is demonstrated through the optimization of the Algebraic Reconstruction Technique (ART), which reconstructs images from their projections by an iterative procedure. The optimization is accomplished by varying the relaxation factor employed in the updating procedure. In some of the imaging situations studied, it is found that the optimization of constrained ART, in which a non-negativity constraint is invoked, can vastly increase the detectability of objects. There is little improvement attained for unconstrained ART. The general method presented may be applied to the problem of designing neutron-diffraction spectrometers. (author)

  5. A framelet-based iterative maximum-likelihood reconstruction algorithm for spectral CT

    Science.gov (United States)

    Wang, Yingmei; Wang, Ge; Mao, Shuwei; Cong, Wenxiang; Ji, Zhilong; Cai, Jian-Feng; Ye, Yangbo

    2016-11-01

    Standard computed tomography (CT) cannot reproduce spectral information of an object. Hardware solutions include dual-energy CT which scans the object twice in different x-ray energy levels, and energy-discriminative detectors which can separate lower and higher energy levels from a single x-ray scan. In this paper, we propose a software solution and give an iterative algorithm that reconstructs an image with spectral information from just one scan with a standard energy-integrating detector. The spectral information obtained can be used to produce color CT images, spectral curves of the attenuation coefficient μ (r,E) at points inside the object, and photoelectric images, which are all valuable imaging tools in cancerous diagnosis. Our software solution requires no change on hardware of a CT machine. With the Shepp-Logan phantom, we have found that although the photoelectric and Compton components were not perfectly reconstructed, their composite effect was very accurately reconstructed as compared to the ground truth and the dual-energy CT counterpart. This means that our proposed method has an intrinsic benefit in beam hardening correction and metal artifact reduction. The algorithm is based on a nonlinear polychromatic acquisition model for x-ray CT. The key technique is a sparse representation of iterations in a framelet system. Convergence of the algorithm is studied. This is believed to be the first application of framelet imaging tools to a nonlinear inverse problem.

  6. Quantum noise properties of CT images with anatomical textured backgrounds across reconstruction algorithms: FBP and SAFIRE

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Justin, E-mail: justin.solomon@duke.edu [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Samei, Ehsan [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Biomedical Engineering and Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27705 (United States)

    2014-09-15

    Purpose: Quantum noise properties of CT images are generally assessed using simple geometric phantoms with uniform backgrounds. Such phantoms may be inadequate when assessing nonlinear reconstruction or postprocessing algorithms. The purpose of this study was to design anatomically informed textured phantoms and use the phantoms to assess quantum noise properties across two clinically available reconstruction algorithms, filtered back projection (FBP) and sinogram affirmed iterative reconstruction (SAFIRE). Methods: Two phantoms were designed to represent lung and soft-tissue textures. The lung phantom included intricate vessel-like structures along with embedded nodules (spherical, lobulated, and spiculated). The soft tissue phantom was designed based on a three-dimensional clustered lumpy background with included low-contrast lesions (spherical and anthropomorphic). The phantoms were built using rapid prototyping (3D printing) technology and, along with a uniform phantom of similar size, were imaged on a Siemens SOMATOM Definition Flash CT scanner and reconstructed with FBP and SAFIRE. Fifty repeated acquisitions were acquired for each background type and noise was assessed by estimating pixel-value statistics, such as standard deviation (i.e., noise magnitude), autocorrelation, and noise power spectrum. Noise stationarity was also assessed by examining the spatial distribution of noise magnitude. The noise properties were compared across background types and between the two reconstruction algorithms. Results: In FBP and SAFIRE images, noise was globally nonstationary for all phantoms. In FBP images of all phantoms, and in SAFIRE images of the uniform phantom, noise appeared to be locally stationary (within a reasonably small region of interest). Noise was locally nonstationary in SAFIRE images of the textured phantoms with edge pixels showing higher noise magnitude compared to pixels in more homogenous regions. For pixels in uniform regions, noise magnitude was

  7. Quantum noise properties of CT images with anatomical textured backgrounds across reconstruction algorithms: FBP and SAFIRE

    International Nuclear Information System (INIS)

    Solomon, Justin; Samei, Ehsan

    2014-01-01

    Purpose: Quantum noise properties of CT images are generally assessed using simple geometric phantoms with uniform backgrounds. Such phantoms may be inadequate when assessing nonlinear reconstruction or postprocessing algorithms. The purpose of this study was to design anatomically informed textured phantoms and use the phantoms to assess quantum noise properties across two clinically available reconstruction algorithms, filtered back projection (FBP) and sinogram affirmed iterative reconstruction (SAFIRE). Methods: Two phantoms were designed to represent lung and soft-tissue textures. The lung phantom included intricate vessel-like structures along with embedded nodules (spherical, lobulated, and spiculated). The soft tissue phantom was designed based on a three-dimensional clustered lumpy background with included low-contrast lesions (spherical and anthropomorphic). The phantoms were built using rapid prototyping (3D printing) technology and, along with a uniform phantom of similar size, were imaged on a Siemens SOMATOM Definition Flash CT scanner and reconstructed with FBP and SAFIRE. Fifty repeated acquisitions were acquired for each background type and noise was assessed by estimating pixel-value statistics, such as standard deviation (i.e., noise magnitude), autocorrelation, and noise power spectrum. Noise stationarity was also assessed by examining the spatial distribution of noise magnitude. The noise properties were compared across background types and between the two reconstruction algorithms. Results: In FBP and SAFIRE images, noise was globally nonstationary for all phantoms. In FBP images of all phantoms, and in SAFIRE images of the uniform phantom, noise appeared to be locally stationary (within a reasonably small region of interest). Noise was locally nonstationary in SAFIRE images of the textured phantoms with edge pixels showing higher noise magnitude compared to pixels in more homogenous regions. For pixels in uniform regions, noise magnitude was

  8. Reconstructing a nonlinear dynamical framework for testing quantum mechanics

    International Nuclear Information System (INIS)

    Jordan, T.F.

    1993-01-01

    The nonlinear generalization of quantum dynamics constructed by Weinberg as a basis for experimental tests is reconstructed in terms of density-matrix elements to allow independent dynamics for subsystems. Dynamics is generated with a Lie bracket and a nonlinear Hamiltonian function. It takes density matrices to density matrices and pure states to pure states. Each density matrix has a Hamiltonian operator that makes its evolution for an infinitesimal time, but the Hamiltonian operator may be different for different density matrices and may change in time as the density matrix changes. A Hamiltonian function for a subsystem serves also for the entire system. Independence of separate subsystems is confirmed by seeing that brackets are zero for functions from different subsystems and by looking at the Hamiltonian operator for each density matrix. Scaling properties of Hamiltonian functions are found to be important in connection with locality. An example of all this is obtained from every one of the local nonlinear Schroedinger equations described by Bialynicki-Birula and Mycielski. Examples are worked out for spins coupled together or to fields, demonstrating Hamiltonian functions and equations of motion written directly in terms of physical mean values. Observables and states are taken to be the same as in ordinary quantum mechanics. An attempt to find nonlinear representations of observables by characterizing propositions as functions equal to their squares yields a negative result. Sharper interpretation of mixed states is proposed. In a mixture of parts that are prepared separately, time dependence must be calculated separately for each part so different mixtures that yield the same density matrix can be distinguished. No criticism has shown that a consistent interpretation cannot be made this way. Thus, nonlinearity remains a viable hypothesis for experimental tests. 16 refs

  9. Convergence of iterative image reconstruction algorithms for Digital Breast Tomosynthesis

    DEFF Research Database (Denmark)

    Sidky, Emil; Jørgensen, Jakob Heide; Pan, Xiaochuan

    2012-01-01

    Most iterative image reconstruction algorithms are based on some form of optimization, such as minimization of a data-fidelity term plus an image regularizing penalty term. While achieving the solution of these optimization problems may not directly be clinically relevant, accurate optimization s...

  10. A Practical Algorithm for Reconstructing Level-1 Phylogenetic Networks

    NARCIS (Netherlands)

    K.T. Huber; L.J.J. van Iersel (Leo); S.M. Kelk (Steven); R. Suchecki

    2010-01-01

    htmlabstractRecently much attention has been devoted to the construction of phylogenetic networks which generalize phylogenetic trees in order to accommodate complex evolutionary processes. Here we present an efficient, practical algorithm for reconstructing level-1 phylogenetic networks - a type of

  11. A practical algorithm for reconstructing level-1 phylogenetic networks

    NARCIS (Netherlands)

    Huber, K.T.; Iersel, van L.J.J.; Kelk, S.M.; Suchecki, R.

    2011-01-01

    Recently, much attention has been devoted to the construction of phylogenetic networks which generalize phylogenetic trees in order to accommodate complex evolutionary processes. Here, we present an efficient, practical algorithm for reconstructing level-1 phylogenetic networks-a type of network

  12. Inverse Monte Carlo: a unified reconstruction algorithm for SPECT

    International Nuclear Information System (INIS)

    Floyd, C.E.; Coleman, R.E.; Jaszczak, R.J.

    1985-01-01

    Inverse Monte Carlo (IMOC) is presented as a unified reconstruction algorithm for Emission Computed Tomography (ECT) providing simultaneous compensation for scatter, attenuation, and the variation of collimator resolution with depth. The technique of inverse Monte Carlo is used to find an inverse solution to the photon transport equation (an integral equation for photon flux from a specified source) for a parameterized source and specific boundary conditions. The system of linear equations so formed is solved to yield the source activity distribution for a set of acquired projections. For the studies presented here, the equations are solved using the EM (Maximum Likelihood) algorithm although other solution algorithms, such as Least Squares, could be employed. While the present results specifically consider the reconstruction of camera-based Single Photon Emission Computed Tomographic (SPECT) images, the technique is equally valid for Positron Emission Tomography (PET) if a Monte Carlo model of such a system is used. As a preliminary evaluation, experimentally acquired SPECT phantom studies for imaging Tc-99m (140 keV) are presented which demonstrate the quantitative compensation for scatter and attenuation for a two dimensional (single slice) reconstruction. The algorithm may be expanded in a straight forward manner to full three dimensional reconstruction including compensation for out of plane scatter

  13. Iterative reconstruction of transcriptional regulatory networks: an algorithmic approach.

    Directory of Open Access Journals (Sweden)

    Christian L Barrett

    2006-05-01

    Full Text Available The number of complete, publicly available genome sequences is now greater than 200, and this number is expected to rapidly grow in the near future as metagenomic and environmental sequencing efforts escalate and the cost of sequencing drops. In order to make use of this data for understanding particular organisms and for discerning general principles about how organisms function, it will be necessary to reconstruct their various biochemical reaction networks. Principal among these will be transcriptional regulatory networks. Given the physical and logical complexity of these networks, the various sources of (often noisy data that can be utilized for their elucidation, the monetary costs involved, and the huge number of potential experiments approximately 10(12 that can be performed, experiment design algorithms will be necessary for synthesizing the various computational and experimental data to maximize the efficiency of regulatory network reconstruction. This paper presents an algorithm for experimental design to systematically and efficiently reconstruct transcriptional regulatory networks. It is meant to be applied iteratively in conjunction with an experimental laboratory component. The algorithm is presented here in the context of reconstructing transcriptional regulation for metabolism in Escherichia coli, and, through a retrospective analysis with previously performed experiments, we show that the produced experiment designs conform to how a human would design experiments. The algorithm is able to utilize probability estimates based on a wide range of computational and experimental sources to suggest experiments with the highest potential of discovering the greatest amount of new regulatory knowledge.

  14. Preconditioned alternating projection algorithms for maximum a posteriori ECT reconstruction

    International Nuclear Information System (INIS)

    Krol, Andrzej; Li, Si; Shen, Lixin; Xu, Yuesheng

    2012-01-01

    We propose a preconditioned alternating projection algorithm (PAPA) for solving the maximum a posteriori (MAP) emission computed tomography (ECT) reconstruction problem. Specifically, we formulate the reconstruction problem as a constrained convex optimization problem with the total variation (TV) regularization. We then characterize the solution of the constrained convex optimization problem and show that it satisfies a system of fixed-point equations defined in terms of two proximity operators raised from the convex functions that define the TV-norm and the constraint involved in the problem. The characterization (of the solution) via the proximity operators that define two projection operators naturally leads to an alternating projection algorithm for finding the solution. For efficient numerical computation, we introduce to the alternating projection algorithm a preconditioning matrix (the EM-preconditioner) for the dense system matrix involved in the optimization problem. We prove theoretically convergence of the PAPA. In numerical experiments, performance of our algorithms, with an appropriately selected preconditioning matrix, is compared with performance of the conventional MAP expectation-maximization (MAP-EM) algorithm with TV regularizer (EM-TV) and that of the recently developed nested EM-TV algorithm for ECT reconstruction. Based on the numerical experiments performed in this work, we observe that the alternating projection algorithm with the EM-preconditioner outperforms significantly the EM-TV in all aspects including the convergence speed, the noise in the reconstructed images and the image quality. It also outperforms the nested EM-TV in the convergence speed while providing comparable image quality. (paper)

  15. Honey bee-inspired algorithms for SNP haplotype reconstruction problem

    Science.gov (United States)

    PourkamaliAnaraki, Maryam; Sadeghi, Mehdi

    2016-03-01

    Reconstructing haplotypes from SNP fragments is an important problem in computational biology. There have been a lot of interests in this field because haplotypes have been shown to contain promising data for disease association research. It is proved that haplotype reconstruction in Minimum Error Correction model is an NP-hard problem. Therefore, several methods such as clustering techniques, evolutionary algorithms, neural networks and swarm intelligence approaches have been proposed in order to solve this problem in appropriate time. In this paper, we have focused on various evolutionary clustering techniques and try to find an efficient technique for solving haplotype reconstruction problem. It can be referred from our experiments that the clustering methods relying on the behaviour of honey bee colony in nature, specifically bees algorithm and artificial bee colony methods, are expected to result in more efficient solutions. An application program of the methods is available at the following link. http://www.bioinf.cs.ipm.ir/software/haprs/

  16. A reconstruction algorithms for helical cone-beam SPECT

    International Nuclear Information System (INIS)

    Weng, Y.; Zeng, G.L.; Gullberg, G.T.

    1993-01-01

    Cone-beam SPECT provides improved sensitivity for imaging small organs like the brain and heart. However, current cone-beam tomography with the focal point traversing a planar orbit does not acquire sufficient data to give an accurate reconstruction. In this paper, the authors employ a data-acquisition method which obtains complete data for cone-beam SPECT by simultaneously rotating the gamma camera and translating the patient bed, so that cone-beam projections can be obtained with the focal point traversing a helix surrounding the patient. An implementation of Grangeat's algorithm for helical cone-beam projections is developed. The algorithm requires a rebinning step to convert cone-beam data to parallel-beam data which are then reconstructed using the 3D Radon inversion. A fast new rebinning scheme is developed which uses all of the detected data to reconstruct the image and properly normalizes any multiply scanned data. This algorithm is shown to produce less artifacts than the commonly used Feldkamp algorithm when applied to either a circular planar orbit or a helical orbit acquisition. The algorithm can easily be extended to any arbitrary orbit

  17. Event Reconstruction Algorithms for the ATLAS Trigger

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca-Martin, T.; /CERN; Abolins, M.; /Michigan State U.; Adragna, P.; /Queen Mary, U. of London; Aleksandrov, E.; /Dubna, JINR; Aleksandrov, I.; /Dubna, JINR; Amorim, A.; /Lisbon, LIFEP; Anderson, K.; /Chicago U., EFI; Anduaga, X.; /La Plata U.; Aracena, I.; /SLAC; Asquith, L.; /University Coll. London; Avolio, G.; /CERN; Backlund, S.; /CERN; Badescu, E.; /Bucharest, IFIN-HH; Baines, J.; /Rutherford; Barria, P.; /Rome U. /INFN, Rome; Bartoldus, R.; /SLAC; Batreanu, S.; /Bucharest, IFIN-HH /CERN; Beck, H.P.; /Bern U.; Bee, C.; /Marseille, CPPM; Bell, P.; /Manchester U.; Bell, W.H.; /Glasgow U. /Pavia U. /INFN, Pavia /Regina U. /CERN /Annecy, LAPP /Paris, IN2P3 /Royal Holloway, U. of London /Napoli Seconda U. /INFN, Naples /Argonne /CERN /UC, Irvine /Barcelona, IFAE /Barcelona, Autonoma U. /CERN /Montreal U. /CERN /Glasgow U. /Michigan State U. /Bucharest, IFIN-HH /Napoli Seconda U. /INFN, Naples /New York U. /Barcelona, IFAE /Barcelona, Autonoma U. /Salento U. /INFN, Lecce /Pisa U. /INFN, Pisa /Bucharest, IFIN-HH /UC, Irvine /CERN /Glasgow U. /INFN, Genoa /Genoa U. /Lisbon, LIFEP /Napoli Seconda U. /INFN, Naples /UC, Irvine /Valencia U. /Rio de Janeiro Federal U. /University Coll. London /New York U.; /more authors..

    2011-11-09

    The ATLAS experiment under construction at CERN is due to begin operation at the end of 2007. The detector will record the results of proton-proton collisions at a center-of-mass energy of 14 TeV. The trigger is a three-tier system designed to identify in real-time potentially interesting events that are then saved for detailed offline analysis. The trigger system will select approximately 200 Hz of potentially interesting events out of the 40 MHz bunch-crossing rate (with 10{sup 9} interactions per second at the nominal luminosity). Algorithms used in the trigger system to identify different event features of interest will be described, as well as their expected performance in terms of selection efficiency, background rejection and computation time per event. The talk will concentrate on recent improvements and on performance studies, using a very detailed simulation of the ATLAS detector and electronics chain that emulates the raw data as it will appear at the input to the trigger system.

  18. Event reconstruction algorithms for the ATLAS trigger

    Energy Technology Data Exchange (ETDEWEB)

    F-Martin, T; Avolio, G; Backlund, S [European Laboratory for Particle Physics (CERN), Geneva (Switzerland); Abolins, M [Michigan State University, Department of Physics and Astronomy, East Lansing, Michigan (United States); Adragna, P [Department of Physics, Queen Mary and Westfield College, University of London, London (United Kingdom); Aleksandrov, E; Aleksandrov, I [Joint Institute for Nuclear Research, Dubna (Russian Federation); Amorim, A [Laboratorio de Instrumentacao e Fisica Experimental, Lisboa (Portugal); Anderson, K [University of Chicago, Enrico Fermi Institute, Chicago, Illinois (United States); Anduaga, X [National University of La Plata, La Plata (United States); Aracena, I; Bartoldus, R [Stanford Linear Accelerator Center (SLAC), Stanford (United States); Asquith, L [Department of Physics and Astronomy, University College London, London (United Kingdom); Badescu, E [National Institute for Physics and Nuclear Engineering, Institute of Atomic Physics, Bucharest (Romania); Baines, J [Rutherford Appleton Laboratory, Chilton, Didcot (United Kingdom); Beck, H P [Laboratory for High Energy Physics, University of Bern, Bern (Switzerland); Bee, C [Centre de Physique des Particules de Marseille, IN2P3-CNRS, Marseille (France); Bell, P [Department of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Barria, P; Batreanu, S [and others

    2008-07-01

    The ATLAS experiment under construction at CERN is due to begin operation at the end of 2007. The detector will record the results of proton-proton collisions at a center-of-mass energy of 14 TeV. The trigger is a three-tier system designed to identify in real-time potentially interesting events that are then saved for detailed offline analysis. The trigger system will select approximately 200 Hz of potentially interesting events out of the 40 MHz bunch-crossing rate (with 10{sup 9} interactions per second at the nominal luminosity). Algorithms used in the trigger system to identify different event features of interest will be described, as well as their expected performance in terms of selection efficiency, background rejection and computation time per event. The talk will concentrate on recent improvements and on performance studies, using a very detailed simulation of the ATLAS detector and electronics chain that emulates the raw data as it will appear at the input to the trigger system.

  19. Event reconstruction algorithms for the ATLAS trigger

    International Nuclear Information System (INIS)

    F-Martin, T; Avolio, G; Backlund, S; Abolins, M; Adragna, P; Aleksandrov, E; Aleksandrov, I; Amorim, A; Anderson, K; Anduaga, X; Aracena, I; Bartoldus, R; Asquith, L; Badescu, E; Baines, J; Beck, H P; Bee, C; Bell, P; Barria, P; Batreanu, S

    2008-01-01

    The ATLAS experiment under construction at CERN is due to begin operation at the end of 2007. The detector will record the results of proton-proton collisions at a center-of-mass energy of 14 TeV. The trigger is a three-tier system designed to identify in real-time potentially interesting events that are then saved for detailed offline analysis. The trigger system will select approximately 200 Hz of potentially interesting events out of the 40 MHz bunch-crossing rate (with 10 9 interactions per second at the nominal luminosity). Algorithms used in the trigger system to identify different event features of interest will be described, as well as their expected performance in terms of selection efficiency, background rejection and computation time per event. The talk will concentrate on recent improvements and on performance studies, using a very detailed simulation of the ATLAS detector and electronics chain that emulates the raw data as it will appear at the input to the trigger system

  20. Concise quantum associative memories with nonlinear search algorithm

    International Nuclear Information System (INIS)

    Tchapet Njafa, J.P.; Nana Engo, S.G.

    2016-01-01

    The model of Quantum Associative Memories (QAM) we propose here consists in simplifying and generalizing that of Rigui Zhou et al. [1] which uses the quantum matrix with the binary decision diagram put forth by David Rosenbaum [2] and the Abrams and Lloyd's nonlinear search algorithm [3]. Our model gives the possibility to retrieve one of the sought states in multi-values retrieving scheme when a measurement is done on the first register in O(c-r) time complexity. It is better than Grover's algorithm and its modified form which need O(√((2 n )/(m))) steps when they are used as the retrieval algorithm. n is the number of qubits of the first register and m the number of x values for which f(x) = 1. As the nonlinearity makes the system highly susceptible to the noise, an analysis of the influence of the single qubit noise channels on the Nonlinear Search Algorithm of our model of QAM shows a fidelity of about 0.7 whatever the number of qubits existing in the first register, thus demonstrating the robustness of our model. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Sequential reconstruction of driving-forces from nonlinear nonstationary dynamics

    Science.gov (United States)

    Güntürkün, Ulaş

    2010-07-01

    This paper describes a functional analysis-based method for the estimation of driving-forces from nonlinear dynamic systems. The driving-forces account for the perturbation inputs induced by the external environment or the secular variations in the internal variables of the system. The proposed algorithm is applicable to the problems for which there is too little or no prior knowledge to build a rigorous mathematical model of the unknown dynamics. We derive the estimator conditioned on the differentiability of the unknown system’s mapping, and smoothness of the driving-force. The proposed algorithm is an adaptive sequential realization of the blind prediction error method, where the basic idea is to predict the observables, and retrieve the driving-force from the prediction error. Our realization of this idea is embodied by predicting the observables one-step into the future using a bank of echo state networks (ESN) in an online fashion, and then extracting the raw estimates from the prediction error and smoothing these estimates in two adaptive filtering stages. The adaptive nature of the algorithm enables to retrieve both slowly and rapidly varying driving-forces accurately, which are illustrated by simulations. Logistic and Moran-Ricker maps are studied in controlled experiments, exemplifying chaotic state and stochastic measurement models. The algorithm is also applied to the estimation of a driving-force from another nonlinear dynamic system that is stochastic in both state and measurement equations. The results are judged by the posterior Cramer-Rao lower bounds. The method is finally put into test on a real-world application; extracting sun’s magnetic flux from the sunspot time series.

  2. Evaluation of reconstruction algorithms in SPECT neuroimaging: Pt. 1

    International Nuclear Information System (INIS)

    Heejoung Kim; Zeeberg, B.R.; Reba, R.C.

    1993-01-01

    In the presence of statistical noise, an iterative reconstruction algorithm (IRA) for the quantitative reconstruction of single-photon-emission computed tomographic (SPECT) brain images overcomes major limitations of applying the standard filtered back projection (FBP) reconstruction algorithm to projection data which have been degraded by convolution of the true radioactivity distribution with a finite-resolution distance-dependent detector response: (a) the non-uniformity within the grey (or white) matter voxels which results even though the true model is uniform within these voxels; (b) a significantly lower ratio of grey/white matter voxel values than in the true model; and (c) an inability to detect an altered radioactivity value within the grey (or white) matter voxels. It is normally expected that an algorithm which improves spatial resolution and quantitative accuracy might also increase the magnitude of the statistical noise in the reconstructed image. However, the noise properties in the IRA images are very similar to those in the FBP images. (Author)

  3. A subzone reconstruction algorithm for efficient staggered compatible remapping

    Energy Technology Data Exchange (ETDEWEB)

    Starinshak, D.P., E-mail: starinshak1@llnl.gov; Owen, J.M., E-mail: mikeowen@llnl.gov

    2015-09-01

    Staggered-grid Lagrangian hydrodynamics algorithms frequently make use of subzonal discretization of state variables for the purposes of improved numerical accuracy, generality to unstructured meshes, and exact conservation of mass, momentum, and energy. For Arbitrary Lagrangian–Eulerian (ALE) methods using a geometric overlay, it is difficult to remap subzonal variables in an accurate and efficient manner due to the number of subzone–subzone intersections that must be computed. This becomes prohibitive in the case of 3D, unstructured, polyhedral meshes. A new procedure is outlined in this paper to avoid direct subzonal remapping. The new algorithm reconstructs the spatial profile of a subzonal variable using remapped zonal and nodal representations of the data. The reconstruction procedure is cast as an under-constrained optimization problem. Enforcing conservation at each zone and node on the remapped mesh provides the set of equality constraints; the objective function corresponds to a quadratic variation per subzone between the values to be reconstructed and a set of target reference values. Numerical results for various pure-remapping and hydrodynamics tests are provided. Ideas for extending the algorithm to staggered-grid radiation-hydrodynamics are discussed as well as ideas for generalizing the algorithm to include inequality constraints.

  4. Blind spectrum reconstruction algorithm with L0-sparse representation

    International Nuclear Information System (INIS)

    Liu, Hai; Zhang, Zhaoli; Liu, Sanyan; Shu, Jiangbo; Liu, Tingting; Zhang, Tianxu

    2015-01-01

    Raman spectrum often suffers from band overlap and Poisson noise. This paper presents a new blind Poissonian Raman spectrum reconstruction method, which incorporates the L 0 -sparse prior together with the total variation constraint into the maximum a posteriori framework. Furthermore, the greedy analysis pursuit algorithm is adopted to solve the L 0 -based minimization problem. Simulated and real spectrum experimental results show that the proposed method can effectively preserve spectral structure and suppress noise. The reconstructed Raman spectra are easily used for interpreting unknown chemical mixtures. (paper)

  5. Development of Image Reconstruction Algorithms in electrical Capacitance Tomography

    International Nuclear Information System (INIS)

    Fernandez Marron, J. L.; Alberdi Primicia, J.; Barcala Riveira, J. M.

    2007-01-01

    The Electrical Capacitance Tomography (ECT) has not obtained a good development in order to be used at industrial level. That is due first to difficulties in the measurement of very little capacitances (in the range of femto farads) and second to the problem of reconstruction on- line of the images. This problem is due also to the small numbers of electrodes (maximum 16), that made the usual algorithms of reconstruction has many errors. In this work it is described a new purely geometrical method that could be used for this purpose. (Author) 4 refs

  6. Parametric boundary reconstruction algorithm for industrial CT metrology application.

    Science.gov (United States)

    Yin, Zhye; Khare, Kedar; De Man, Bruno

    2009-01-01

    High-energy X-ray computed tomography (CT) systems have been recently used to produce high-resolution images in various nondestructive testing and evaluation (NDT/NDE) applications. The accuracy of the dimensional information extracted from CT images is rapidly approaching the accuracy achieved with a coordinate measuring machine (CMM), the conventional approach to acquire the metrology information directly. On the other hand, CT systems generate the sinogram which is transformed mathematically to the pixel-based images. The dimensional information of the scanned object is extracted later by performing edge detection on reconstructed CT images. The dimensional accuracy of this approach is limited by the grid size of the pixel-based representation of CT images since the edge detection is performed on the pixel grid. Moreover, reconstructed CT images usually display various artifacts due to the underlying physical process and resulting object boundaries from the edge detection fail to represent the true boundaries of the scanned object. In this paper, a novel algorithm to reconstruct the boundaries of an object with uniform material composition and uniform density is presented. There are three major benefits in the proposed approach. First, since the boundary parameters are reconstructed instead of image pixels, the complexity of the reconstruction algorithm is significantly reduced. The iterative approach, which can be computationally intensive, will be practical with the parametric boundary reconstruction. Second, the object of interest in metrology can be represented more directly and accurately by the boundary parameters instead of the image pixels. By eliminating the extra edge detection step, the overall dimensional accuracy and process time can be improved. Third, since the parametric reconstruction approach shares the boundary representation with other conventional metrology modalities such as CMM, boundary information from other modalities can be directly

  7. Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem

    DEFF Research Database (Denmark)

    Delbary, Fabrice; Knudsen, Kim

    2014-01-01

    to the generalized Laplace equation. The 3D problem was solved in theory in late 1980s using complex geometrical optics solutions and a scattering transform. Several approximations to the reconstruction method have been suggested and implemented numerically in the literature, but here, for the first time, a complete...... computer implementation of the full nonlinear algorithm is given. First a boundary integral equation is solved by a Nystrom method for the traces of the complex geometrical optics solutions, second the scattering transform is computed and inverted using fast Fourier transform, and finally a boundary value...

  8. Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.

    Science.gov (United States)

    Ullah, Azmat; Malik, Suheel Abdullah; Alimgeer, Khurram Saleem

    2018-01-01

    In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA) with Interior Point Algorithm (IPA) is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.

  9. Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.

    Directory of Open Access Journals (Sweden)

    Azmat Ullah

    Full Text Available In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA with Interior Point Algorithm (IPA is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.

  10. Cone-beam and fan-beam image reconstruction algorithms based on spherical and circular harmonics

    International Nuclear Information System (INIS)

    Zeng, Gengsheng L; Gullberg, Grant T

    2004-01-01

    A cone-beam image reconstruction algorithm using spherical harmonic expansions is proposed. The reconstruction algorithm is in the form of a summation of inner products of two discrete arrays of spherical harmonic expansion coefficients at each cone-beam point of acquisition. This form is different from the common filtered backprojection algorithm and the direct Fourier reconstruction algorithm. There is no re-sampling of the data, and spherical harmonic expansions are used instead of Fourier expansions. As a special case, a new fan-beam image reconstruction algorithm is also derived in terms of a circular harmonic expansion. Computer simulation results for both cone-beam and fan-beam algorithms are presented for circular planar orbit acquisitions. The algorithms give accurate reconstructions; however, the implementation of the cone-beam reconstruction algorithm is computationally intensive. A relatively efficient algorithm is proposed for reconstructing the central slice of the image when a circular scanning orbit is used

  11. Image Reconstruction Algorithm For Electrical Capacitance Tomography (ECT)

    International Nuclear Information System (INIS)

    Arko

    2001-01-01

    ). Most image reconstruction algorithms for electrical capacitance tomography (ECT) use sensitivity maps as weighting factors. The computation is fast, involving a simple multiply-and- accumulate (MAC) operation, but the resulting image suffers from blurring due to the soft-field effect of the sensor. This paper presents a low cost iterative method employing proportional thresholding, which improves image quality dramatically. The strategy for implementation, computational cost, and achievable speed is examined when using a personal computer (PC) and Digital Signal Processor (DSP). For PC implementation, Watcom C++ 10.6 and Visual C++ 5.0 compilers were used. The experimental results are compared to the images reconstructed by commercially available software. The new algorithm improves the image quality significantly at a cost of a few iterations. This technique can be readily exploited for online applications

  12. Energy reconstruction and calibration algorithms for the ATLAS electromagnetic calorimeter

    CERN Document Server

    Delmastro, M

    2003-01-01

    The work of this thesis is devoted to the study, development and optimization of the algorithms of energy reconstruction and calibration for the electromagnetic calorimeter (EMC) of the ATLAS experiment, presently under installation and commissioning at the CERN Large Hadron Collider in Geneva (Switzerland). A deep study of the electrical characteristics of the detector and of the signals formation and propagation is conduced: an electrical model of the detector is developed and analyzed through simulations; a hardware model (mock-up) of a group of the EMC readout cells has been built, allowing the direct collection and properties study of the signals emerging from the EMC cells. We analyze the existing multiple-sampled signal reconstruction strategy, showing the need of an improvement in order to reach the advertised performances of the detector. The optimal filtering reconstruction technique is studied and implemented, taking into account the differences between the ionization and calibration waveforms as e...

  13. Enhanced spatial resolution in fluorescence molecular tomography using restarted L1-regularized nonlinear conjugate gradient algorithm.

    Science.gov (United States)

    Shi, Junwei; Liu, Fei; Zhang, Guanglei; Luo, Jianwen; Bai, Jing

    2014-04-01

    Owing to the high degree of scattering of light through tissues, the ill-posedness of fluorescence molecular tomography (FMT) inverse problem causes relatively low spatial resolution in the reconstruction results. Unlike L2 regularization, L1 regularization can preserve the details and reduce the noise effectively. Reconstruction is obtained through a restarted L1 regularization-based nonlinear conjugate gradient (re-L1-NCG) algorithm, which has been proven to be able to increase the computational speed with low memory consumption. The algorithm consists of inner and outer iterations. In the inner iteration, L1-NCG is used to obtain the L1-regularized results. In the outer iteration, the restarted strategy is used to increase the convergence speed of L1-NCG. To demonstrate the performance of re-L1-NCG in terms of spatial resolution, simulation and physical phantom studies with fluorescent targets located with different edge-to-edge distances were carried out. The reconstruction results show that the re-L1-NCG algorithm has the ability to resolve targets with an edge-to-edge distance of 0.1 cm at a depth of 1.5 cm, which is a significant improvement for FMT.

  14. A novel standalone track reconstruction algorithm for the LHCb upgrade

    CERN Multimedia

    Quagliani, Renato

    2018-01-01

    During the LHC Run III, starting in 2020, the instantaneous luminosity of LHCb will be increased up to 2×1033 cm−2 s−1, five times larger than in Run II. The LHCb detector will then have to be upgraded in 2019. In fact, a full software event reconstruction will be performed at the full bunch crossing rate by the trigger, in order to profit of the higher instantaneous luminosity provided by the accelerator. In addition, all the tracking devices will be replaced and, in particular, a scintillating fiber tracker (SciFi) will be installed after the magnet, allowing to cope with the higher occupancy. The new running conditions, and the tighter timing constraints in the software trigger, represent a big challenge for the track reconstruction. This talk presents the design and performance of a novel algorithm that has been developed to reconstruct track segments using solely hits from the SciFi. This algorithm is crucial for the reconstruction of tracks originating from long-lived particles such as KS and Λ. ...

  15. SINS/CNS Nonlinear Integrated Navigation Algorithm for Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Yong-jun Yu

    2015-01-01

    Full Text Available Celestial Navigation System (CNS has characteristics of accurate orientation and strong autonomy and has been widely used in Hypersonic Vehicle. Since the CNS location and orientation mainly depend upon the inertial reference that contains errors caused by gyro drifts and other error factors, traditional Strap-down Inertial Navigation System (SINS/CNS positioning algorithm setting the position error between SINS and CNS as measurement is not effective. The model of altitude azimuth, platform error angles, and horizontal position is designed, and the SINS/CNS tightly integrated algorithm is designed, in which CNS altitude azimuth is set as measurement information. GPF (Gaussian particle filter is introduced to solve the problem of nonlinear filtering. The results of simulation show that the precision of SINS/CNS algorithm which reaches 130 m using three stars is improved effectively.

  16. Optimization of reconstruction algorithms using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Hanson, K.M.

    1989-01-01

    A method for optimizing reconstruction algorithms is presented that is based on how well a specified task can be performed using the reconstructed images. Task performance is numerically assessed by a Monte Carlo simulation of the complete imaging process including the generation of scenes appropriate to the desired application, subsequent data taking, reconstruction, and performance of the stated task based on the final image. The use of this method is demonstrated through the optimization of the Algebraic Reconstruction Technique (ART), which reconstructs images from their projections by a iterative procedure. The optimization is accomplished by varying the relaxation factor employed in the updating procedure. In some of the imaging situations studied, it is found that the optimization of constrained ART, in which a nonnegativity constraint is invoked, can vastly increase the detectability of objects. There is little improvement attained for unconstrained ART. The general method presented may be applied to the problem of designing neutron-diffraction spectrometers. 11 refs., 6 figs., 2 tabs

  17. First results of genetic algorithm application in ML image reconstruction in emission tomography

    International Nuclear Information System (INIS)

    Smolik, W.

    1999-01-01

    This paper concerns application of genetic algorithm in maximum likelihood image reconstruction in emission tomography. The example of genetic algorithm for image reconstruction is presented. The genetic algorithm was based on the typical genetic scheme modified due to the nature of solved problem. The convergence of algorithm was examined. The different adaption functions, selection and crossover methods were verified. The algorithm was tested on simulated SPECT data. The obtained results of image reconstruction are discussed. (author)

  18. The AOLI Non-Linear Curvature Wavefront Sensor: High sensitivity reconstruction for low-order AO

    Science.gov (United States)

    Crass, Jonathan; King, David; Mackay, Craig

    2013-12-01

    Many adaptive optics (AO) systems in use today require bright reference objects to determine the effects of atmospheric distortions on incoming wavefronts. This requirement is because Shack Hartmann wavefront sensors (SHWFS) distribute incoming light from reference objects into a large number of sub-apertures. Bright natural reference objects occur infrequently across the sky leading to the use of laser guide stars which add complexity to wavefront measurement systems. The non-linear curvature wavefront sensor as described by Guyon et al. has been shown to offer a significant increase in sensitivity when compared to a SHWFS. This facilitates much greater sky coverage using natural guide stars alone. This paper describes the current status of the non-linear curvature wavefront sensor being developed as part of an adaptive optics system for the Adaptive Optics Lucky Imager (AOLI) project. The sensor comprises two photon-counting EMCCD detectors from E2V Technologies, recording intensity at four near-pupil planes. These images are used with a reconstruction algorithm to determine the phase correction to be applied by an ALPAO 241-element deformable mirror. The overall system is intended to provide low-order correction for a Lucky Imaging based multi CCD imaging camera. We present the current optical design of the instrument including methods to minimise inherent optical effects, principally chromaticity. Wavefront reconstruction methods are discussed and strategies for their optimisation to run at the required real-time speeds are introduced. Finally, we discuss laboratory work with a demonstrator setup of the system.

  19. A GREIT-type linear reconstruction algorithm for EIT using eigenimages

    International Nuclear Information System (INIS)

    Antink, Christoph Hoog; Pikkemaat, Robert; Leonhardt, Steffen

    2013-01-01

    Reconstruction in electrical impedance tomography (EIT) is a nonlinear, ill-posed inverse problem. Based on point-shaped training and evaluation data, the 'Graz consensus Reconstruction algorithm for EIT' (GREIT) constitutes a universal, homogenous method. While this is a very reasonable approach to the general problem, we ask the question if an optimized reconstruction method for a specific application of EIT, i.e. thoracic imaging, can be found. Instead of point-shaped training data we propose to use spatially extended training data consisting of eigenimages. To evaluate the quality of reconstruction of the proposed approach, figures of merit (FOMs) derived from the ones used in GREIT are developed. For the application of thoracic imaging, lung-shapes were segmented from a publicly available CT-database (www.dir-lab.com) and used to calculate the novel FOMs. With those, the general feasibility of using eigenimages is demonstrated and compared to the standard approach. In addition, it is shown that by using different sets of training data, the creation of an individually optimized linear method of reconstruction is possible.

  20. New reconstruction algorithm in helical-volume CT

    International Nuclear Information System (INIS)

    Toki, Y.; Rifu, T.; Aradate, H.; Hirao, Y.; Ohyama, N.

    1990-01-01

    This paper reports on helical scanning that is an application of continuous scanning CT to acquire volume data in a short time for three-dimensional study. In a helical scan, the patient couch sustains movement during continuous-rotation scanning and then the acquired data is processed to synthesize a projection data set of vertical section by interpolation. But the synthesized section is not thin enough; also, the image may have artifacts caused by couch movement. A new reconstruction algorithm that helps resolve such problems has been developed and compared with the ordinary algorithm. The authors constructed a helical scan system based on TCT-900S, which can perform 1-second rotation continuously for 30 seconds. The authors measured section thickness using both algorithms on an AAPM phantom, and we also compared degree of artifacts on clinical data

  1. Impact of Reconstruction Algorithms on CT Radiomic Features of Pulmonary Tumors: Analysis of Intra- and Inter-Reader Variability and Inter-Reconstruction Algorithm Variability.

    Science.gov (United States)

    Kim, Hyungjin; Park, Chang Min; Lee, Myunghee; Park, Sang Joon; Song, Yong Sub; Lee, Jong Hyuk; Hwang, Eui Jin; Goo, Jin Mo

    2016-01-01

    To identify the impact of reconstruction algorithms on CT radiomic features of pulmonary tumors and to reveal and compare the intra- and inter-reader and inter-reconstruction algorithm variability of each feature. Forty-two patients (M:F = 19:23; mean age, 60.43±10.56 years) with 42 pulmonary tumors (22.56±8.51mm) underwent contrast-enhanced CT scans, which were reconstructed with filtered back projection and commercial iterative reconstruction algorithm (level 3 and 5). Two readers independently segmented the whole tumor volume. Fifteen radiomic features were extracted and compared among reconstruction algorithms. Intra- and inter-reader variability and inter-reconstruction algorithm variability were calculated using coefficients of variation (CVs) and then compared. Among the 15 features, 5 first-order tumor intensity features and 4 gray level co-occurrence matrix (GLCM)-based features showed significant differences (palgorithms. As for the variability, effective diameter, sphericity, entropy, and GLCM entropy were the most robust features (CV≤5%). Inter-reader variability was larger than intra-reader or inter-reconstruction algorithm variability in 9 features. However, for entropy, homogeneity, and 4 GLCM-based features, inter-reconstruction algorithm variability was significantly greater than inter-reader variability (palgorithms. Inter-reconstruction algorithm variability was greater than inter-reader variability for entropy, homogeneity, and GLCM-based features.

  2. Bonus algorithm for large scale stochastic nonlinear programming problems

    CERN Document Server

    Diwekar, Urmila

    2015-01-01

    This book presents the details of the BONUS algorithm and its real world applications in areas like sensor placement in large scale drinking water networks, sensor placement in advanced power systems, water management in power systems, and capacity expansion of energy systems. A generalized method for stochastic nonlinear programming based on a sampling based approach for uncertainty analysis and statistical reweighting to obtain probability information is demonstrated in this book. Stochastic optimization problems are difficult to solve since they involve dealing with optimization and uncertainty loops. There are two fundamental approaches used to solve such problems. The first being the decomposition techniques and the second method identifies problem specific structures and transforms the problem into a deterministic nonlinear programming problem. These techniques have significant limitations on either the objective function type or the underlying distributions for the uncertain variables. Moreover, these ...

  3. Development of computed tomography system and image reconstruction algorithm

    International Nuclear Information System (INIS)

    Khairiah Yazid; Mohd Ashhar Khalid; Azaman Ahmad; Khairul Anuar Mohd Salleh; Ab Razak Hamzah

    2006-01-01

    Computed tomography is one of the most advanced and powerful nondestructive inspection techniques, which is currently used in many different industries. In several CT systems, detection has been by combination of an X-ray image intensifier and charge -coupled device (CCD) camera or by using line array detector. The recent development of X-ray flat panel detector has made fast CT imaging feasible and practical. Therefore this paper explained the arrangement of a new detection system which is using the existing high resolution (127 μm pixel size) flat panel detector in MINT and the image reconstruction technique developed. The aim of the project is to develop a prototype flat panel detector based CT imaging system for NDE. The prototype consisted of an X-ray tube, a flat panel detector system, a rotation table and a computer system to control the sample motion and image acquisition. Hence this project is divided to two major tasks, firstly to develop image reconstruction algorithm and secondly to integrate X-ray imaging components into one CT system. The image reconstruction algorithm using filtered back-projection method is developed and compared to other techniques. The MATLAB program is the tools used for the simulations and computations for this project. (Author)

  4. Fast half-sibling population reconstruction: theory and algorithms.

    Science.gov (United States)

    Dexter, Daniel; Brown, Daniel G

    2013-07-12

    Kinship inference is the task of identifying genealogically related individuals. Kinship information is important for determining mating structures, notably in endangered populations. Although many solutions exist for reconstructing full sibling relationships, few exist for half-siblings. We consider the problem of determining whether a proposed half-sibling population reconstruction is valid under Mendelian inheritance assumptions. We show that this problem is NP-complete and provide a 0/1 integer program that identifies the minimum number of individuals that must be removed from a population in order for the reconstruction to become valid. We also present SibJoin, a heuristic-based clustering approach based on Mendelian genetics, which is strikingly fast. The software is available at http://github.com/ddexter/SibJoin.git+. Our SibJoin algorithm is reasonably accurate and thousands of times faster than existing algorithms. The heuristic is used to infer a half-sibling structure for a population which was, until recently, too large to evaluate.

  5. Angle Statistics Reconstruction: a robust reconstruction algorithm for Muon Scattering Tomography

    Science.gov (United States)

    Stapleton, M.; Burns, J.; Quillin, S.; Steer, C.

    2014-11-01

    Muon Scattering Tomography (MST) is a technique for using the scattering of cosmic ray muons to probe the contents of enclosed volumes. As a muon passes through material it undergoes multiple Coulomb scattering, where the amount of scattering is dependent on the density and atomic number of the material as well as the path length. Hence, MST has been proposed as a means of imaging dense materials, for instance to detect special nuclear material in cargo containers. Algorithms are required to generate an accurate reconstruction of the material density inside the volume from the muon scattering information and some have already been proposed, most notably the Point of Closest Approach (PoCA) and Maximum Likelihood/Expectation Maximisation (MLEM) algorithms. However, whilst PoCA-based algorithms are easy to implement, they perform rather poorly in practice. Conversely, MLEM is a complicated algorithm to implement and computationally intensive and there is currently no published, fast and easily-implementable algorithm that performs well in practice. In this paper, we first provide a detailed analysis of the source of inaccuracy in PoCA-based algorithms. We then motivate an alternative method, based on ideas first laid out by Morris et al, presenting and fully specifying an algorithm that performs well against simulations of realistic scenarios. We argue this new algorithm should be adopted by developers of Muon Scattering Tomography as an alternative to PoCA.

  6. A Nonlinear GMRES Optimization Algorithm for Canonical Tensor Decomposition

    OpenAIRE

    De Sterck, Hans

    2011-01-01

    A new algorithm is presented for computing a canonical rank-R tensor approximation that has minimal distance to a given tensor in the Frobenius norm, where the canonical rank-R tensor consists of the sum of R rank-one components. Each iteration of the method consists of three steps. In the first step, a tentative new iterate is generated by a stand-alone one-step process, for which we use alternating least squares (ALS). In the second step, an accelerated iterate is generated by a nonlinear g...

  7. An improved muon reconstruction algorithm for INO-ICAL experiment

    International Nuclear Information System (INIS)

    Bhattacharya, Kolahal; MandaI, Naba K.

    2013-01-01

    The charge current interaction of neutrino in INO-ICAL detector will be identified with a muon (μ ± ) in the detector whose kinematics is related with the kinematics of the neutrino. So, muon reconstruction is a very important step in achieving INO physics goals. The existing muon reconstruction package for INO-ICAL has poor performance in specific regimes of experimental interest: (a) for larger zenith angle (θ > 50°), (b) for lower energies (E < 1 GeV); mainly due to poor error propagation scheme insensitive to energy E, angle (θ, φ) and inhomogeneous magnetic field along the muon track. Since, a significant fraction of muons from atmospheric neutrino interactions will have initial energy < 1 GeV and almost uniform distribution in cosθ a robust package for muon reconstruction is essential. We have implemented higher order correction terms in the propagation of the state and error covariance matrices of the Kalman Iter. The algorithm ensures track element merging in most cases and also increases reconstruction efficiency. The performance of this package will be presented in comparison with the previous one. (author)

  8. Research on compressive sensing reconstruction algorithm based on total variation model

    Science.gov (United States)

    Gao, Yu-xuan; Sun, Huayan; Zhang, Tinghua; Du, Lin

    2017-12-01

    Compressed sensing for breakthrough Nyquist sampling theorem provides a strong theoretical , making compressive sampling for image signals be carried out simultaneously. In traditional imaging procedures using compressed sensing theory, not only can it reduces the storage space, but also can reduce the demand for detector resolution greatly. Using the sparsity of image signal, by solving the mathematical model of inverse reconfiguration, realize the super-resolution imaging. Reconstruction algorithm is the most critical part of compression perception, to a large extent determine the accuracy of the reconstruction of the image.The reconstruction algorithm based on the total variation (TV) model is more suitable for the compression reconstruction of the two-dimensional image, and the better edge information can be obtained. In order to verify the performance of the algorithm, Simulation Analysis the reconstruction result in different coding mode of the reconstruction algorithm based on the TV reconstruction algorithm. The reconstruction effect of the reconfigurable algorithm based on TV based on the different coding methods is analyzed to verify the stability of the algorithm. This paper compares and analyzes the typical reconstruction algorithm in the same coding mode. On the basis of the minimum total variation algorithm, the Augmented Lagrangian function term is added and the optimal value is solved by the alternating direction method.Experimental results show that the reconstruction algorithm is compared with the traditional classical algorithm based on TV has great advantages, under the low measurement rate can be quickly and accurately recovers target image.

  9. Optimization of the muon reconstruction algorithms for LHCb Run 2

    CERN Document Server

    Aaij, Roel; Dettori, Francesco; Dungs, Kevin; Lopes, Helder; Martinez Santos, Diego; Prisciandaro, Jessica; Sciascia, Barbara; Syropoulos, Vasileios; Stahl, Sascha; Vazquez Gomez, Ricardo

    2017-01-01

    The muon identification algorithm in the LHCb HLT software trigger and offline reconstruction has been revisited in view of the LHC Run 2. This software has undergone a significant refactorisation, resulting in a modularized common code base between the HLT and offline event processing. Because of the latter, the muon identification is now identical in HLT and offline. The HLT1 algorithm sequence has been updated given the new rate and timing constraints. Also, information from the TT subdetector is used in order to reduce ghost tracks and optimize for low $p_T$ muons. The current software is presented here together with performance studies showing improved efficiencies and reduced timing.

  10. Shape reconstruction from apparent contours theory and algorithms

    CERN Document Server

    Bellettini, Giovanni; Paolini, Maurizio

    2015-01-01

    Motivated by a variational model concerning the depth of the objects in a picture and the problem of hidden and illusory contours, this book investigates one of the central problems of computer vision: the topological and algorithmic reconstruction of a smooth three dimensional scene starting from the visible part of an apparent contour. The authors focus their attention on the manipulation of apparent contours using a finite set of elementary moves, which correspond to diffeomorphic deformations of three dimensional scenes. A large part of the book is devoted to the algorithmic part, with implementations, experiments, and computed examples. The book is intended also as a user's guide to the software code appcontour, written for the manipulation of apparent contours and their invariants. This book is addressed to theoretical and applied scientists working in the field of mathematical models of image segmentation.

  11. The SRT reconstruction algorithm for semiquantification in PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kastis, George A., E-mail: gkastis@academyofathens.gr [Research Center of Mathematics, Academy of Athens, Athens 11527 (Greece); Gaitanis, Anastasios [Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens 11527 (Greece); Samartzis, Alexandros P. [Nuclear Medicine Department, Evangelismos General Hospital, Athens 10676 (Greece); Fokas, Athanasios S. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB30WA, United Kingdom and Research Center of Mathematics, Academy of Athens, Athens 11527 (Greece)

    2015-10-15

    Purpose: The spline reconstruction technique (SRT) is a new, fast algorithm based on a novel numerical implementation of an analytic representation of the inverse Radon transform. The mathematical details of this algorithm and comparisons with filtered backprojection were presented earlier in the literature. In this study, the authors present a comparison between SRT and the ordered-subsets expectation–maximization (OSEM) algorithm for determining contrast and semiquantitative indices of {sup 18}F-FDG uptake. Methods: The authors implemented SRT in the software for tomographic image reconstruction (STIR) open-source platform and evaluated this technique using simulated and real sinograms obtained from the GE Discovery ST positron emission tomography/computer tomography scanner. All simulations and reconstructions were performed in STIR. For OSEM, the authors used the clinical protocol of their scanner, namely, 21 subsets and two iterations. The authors also examined images at one, four, six, and ten iterations. For the simulation studies, the authors analyzed an image-quality phantom with cold and hot lesions. Two different versions of the phantom were employed at two different hot-sphere lesion-to-background ratios (LBRs), namely, 2:1 and 4:1. For each noiseless sinogram, 20 Poisson realizations were created at five different noise levels. In addition to making visual comparisons of the reconstructed images, the authors determined contrast and bias as a function of the background image roughness (IR). For the real-data studies, sinograms of an image-quality phantom simulating the human torso were employed. The authors determined contrast and LBR as a function of the background IR. Finally, the authors present plots of contrast as a function of IR after smoothing each reconstructed image with Gaussian filters of six different sizes. Statistical significance was determined by employing the Wilcoxon rank-sum test. Results: In both simulated and real studies, SRT

  12. The SRT reconstruction algorithm for semiquantification in PET imaging

    International Nuclear Information System (INIS)

    Kastis, George A.; Gaitanis, Anastasios; Samartzis, Alexandros P.; Fokas, Athanasios S.

    2015-01-01

    Purpose: The spline reconstruction technique (SRT) is a new, fast algorithm based on a novel numerical implementation of an analytic representation of the inverse Radon transform. The mathematical details of this algorithm and comparisons with filtered backprojection were presented earlier in the literature. In this study, the authors present a comparison between SRT and the ordered-subsets expectation–maximization (OSEM) algorithm for determining contrast and semiquantitative indices of 18 F-FDG uptake. Methods: The authors implemented SRT in the software for tomographic image reconstruction (STIR) open-source platform and evaluated this technique using simulated and real sinograms obtained from the GE Discovery ST positron emission tomography/computer tomography scanner. All simulations and reconstructions were performed in STIR. For OSEM, the authors used the clinical protocol of their scanner, namely, 21 subsets and two iterations. The authors also examined images at one, four, six, and ten iterations. For the simulation studies, the authors analyzed an image-quality phantom with cold and hot lesions. Two different versions of the phantom were employed at two different hot-sphere lesion-to-background ratios (LBRs), namely, 2:1 and 4:1. For each noiseless sinogram, 20 Poisson realizations were created at five different noise levels. In addition to making visual comparisons of the reconstructed images, the authors determined contrast and bias as a function of the background image roughness (IR). For the real-data studies, sinograms of an image-quality phantom simulating the human torso were employed. The authors determined contrast and LBR as a function of the background IR. Finally, the authors present plots of contrast as a function of IR after smoothing each reconstructed image with Gaussian filters of six different sizes. Statistical significance was determined by employing the Wilcoxon rank-sum test. Results: In both simulated and real studies, SRT

  13. Genetic algorithms applied to nonlinear and complex domains; TOPICAL

    International Nuclear Information System (INIS)

    Barash, D; Woodin, A E

    1999-01-01

    The dissertation, titled ''Genetic Algorithms Applied to Nonlinear and Complex Domains'', describes and then applies a new class of powerful search algorithms (GAS) to certain domains. GAS are capable of solving complex and nonlinear problems where many parameters interact to produce a ''final'' result such as the optimization of the laser pulse in the interaction of an atom with an intense laser field. GAS can very efficiently locate the global maximum by searching parameter space in problems which are unsuitable for a search using traditional methods. In particular, the dissertation contains new scientific findings in two areas. First, the dissertation examines the interaction of an ultra-intense short laser pulse with atoms. GAS are used to find the optimal frequency for stabilizing atoms in the ionization process. This leads to a new theoretical formulation, to explain what is happening during the ionization process and how the electron is responding to finite (real-life) laser pulse shapes. It is shown that the dynamics of the process can be very sensitive to the ramp of the pulse at high frequencies. The new theory which is formulated, also uses a novel concept (known as the (t,t') method) to numerically solve the time-dependent Schrodinger equation Second, the dissertation also examines the use of GAS in modeling decision making problems. It compares GAS with traditional techniques to solve a class of problems known as Markov Decision Processes. The conclusion of the dissertation should give a clear idea of where GAS are applicable, especially in the physical sciences, in problems which are nonlinear and complex, i.e. difficult to analyze by other means

  14. Genetic algorithms applied to nonlinear and complex domains

    International Nuclear Information System (INIS)

    Barash, D; Woodin, A E

    1999-01-01

    The dissertation, titled ''Genetic Algorithms Applied to Nonlinear and Complex Domains'', describes and then applies a new class of powerful search algorithms (GAS) to certain domains. GAS are capable of solving complex and nonlinear problems where many parameters interact to produce a ''final'' result such as the optimization of the laser pulse in the interaction of an atom with an intense laser field. GAS can very efficiently locate the global maximum by searching parameter space in problems which are unsuitable for a search using traditional methods. In particular, the dissertation contains new scientific findings in two areas. First, the dissertation examines the interaction of an ultra-intense short laser pulse with atoms. GAS are used to find the optimal frequency for stabilizing atoms in the ionization process. This leads to a new theoretical formulation, to explain what is happening during the ionization process and how the electron is responding to finite (real-life) laser pulse shapes. It is shown that the dynamics of the process can be very sensitive to the ramp of the pulse at high frequencies. The new theory which is formulated, also uses a novel concept (known as the (t,t') method) to numerically solve the time-dependent Schrodinger equation Second, the dissertation also examines the use of GAS in modeling decision making problems. It compares GAS with traditional techniques to solve a class of problems known as Markov Decision Processes. The conclusion of the dissertation should give a clear idea of where GAS are applicable, especially in the physical sciences, in problems which are nonlinear and complex, i.e. difficult to analyze by other means

  15. Computed tomography imaging with the Adaptive Statistical Iterative Reconstruction (ASIR) algorithm: dependence of image quality on the blending level of reconstruction.

    Science.gov (United States)

    Barca, Patrizio; Giannelli, Marco; Fantacci, Maria Evelina; Caramella, Davide

    2018-06-01

    Computed tomography (CT) is a useful and widely employed imaging technique, which represents the largest source of population exposure to ionizing radiation in industrialized countries. Adaptive Statistical Iterative Reconstruction (ASIR) is an iterative reconstruction algorithm with the potential to allow reduction of radiation exposure while preserving diagnostic information. The aim of this phantom study was to assess the performance of ASIR, in terms of a number of image quality indices, when different reconstruction blending levels are employed. CT images of the Catphan-504 phantom were reconstructed using conventional filtered back-projection (FBP) and ASIR with reconstruction blending levels of 20, 40, 60, 80, and 100%. Noise, noise power spectrum (NPS), contrast-to-noise ratio (CNR) and modulation transfer function (MTF) were estimated for different scanning parameters and contrast objects. Noise decreased and CNR increased non-linearly up to 50 and 100%, respectively, with increasing blending level of reconstruction. Also, ASIR has proven to modify the NPS curve shape. The MTF of ASIR reconstructed images depended on tube load/contrast and decreased with increasing blending level of reconstruction. In particular, for low radiation exposure and low contrast acquisitions, ASIR showed lower performance than FBP, in terms of spatial resolution for all blending levels of reconstruction. CT image quality varies substantially with the blending level of reconstruction. ASIR has the potential to reduce noise whilst maintaining diagnostic information in low radiation exposure CT imaging. Given the opposite variation of CNR and spatial resolution with the blending level of reconstruction, it is recommended to use an optimal value of this parameter for each specific clinical application.

  16. Track reconstruction algorithms for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Lebedev, Andrey; Hoehne, Claudia; Kisel, Ivan; Ososkov, Gennady

    2010-01-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR accelerator complex at Darmstadt is being designed for a comprehensive measurement of hadron and lepton production in heavy-ion collisions from 8-45 AGeV beam energy, producing events with large track multiplicity and high hit density. The setup consists of several detectors including as tracking detectors the silicon tracking system (STS), the muon detector (MUCH) or alternatively a set of Transition Radiation Detectors (TRD). In this contribution, the status of the track reconstruction software including track finding, fitting and propagation is presented for the MUCH and TRD detectors. The track propagation algorithm takes into account an inhomogeneous magnetic field and includes accurate calculation of multiple scattering and energy losses in the detector material. Track parameters and covariance matrices are estimated using the Kalman filter method and a Kalman filter modification by assigning weights to hits and using simulated annealing. Three different track finder algorithms based on track following have been developed which either allow for track branches, just select nearest hits or use the mentioned weighting method. The track reconstruction efficiency for central Au+Au collisions at 25 AGeV beam energy using events from the UrQMD model is at the level of 93-95% for both detectors.

  17. Data Reduction Algorithm Using Nonnegative Matrix Factorization with Nonlinear Constraints

    Science.gov (United States)

    Sembiring, Pasukat

    2017-12-01

    Processing ofdata with very large dimensions has been a hot topic in recent decades. Various techniques have been proposed in order to execute the desired information or structure. Non- Negative Matrix Factorization (NMF) based on non-negatives data has become one of the popular methods for shrinking dimensions. The main strength of this method is non-negative object, the object model by a combination of some basic non-negative parts, so as to provide a physical interpretation of the object construction. The NMF is a dimension reduction method thathasbeen used widely for numerous applications including computer vision,text mining, pattern recognitions,and bioinformatics. Mathematical formulation for NMF did not appear as a convex optimization problem and various types of algorithms have been proposed to solve the problem. The Framework of Alternative Nonnegative Least Square(ANLS) are the coordinates of the block formulation approaches that have been proven reliable theoretically and empirically efficient. This paper proposes a new algorithm to solve NMF problem based on the framework of ANLS.This algorithm inherits the convergenceproperty of the ANLS framework to nonlinear constraints NMF formulations.

  18. An algorithm for nonlinear thermal analysis of fuel bearing pads

    International Nuclear Information System (INIS)

    Attia, M.H.; D'Silva, N.

    1983-01-01

    An algorithm has been developed for accurate prediction of the temperature field in a CANDU fuel bearing pad and the extent of the nucleate boiling in the crevice region. The methodology recognizes the nonlinear nature of the problem due to the fact that local boiling is both controlling and being controlled by the conditions of heat transfer at the boundaries. The finite difference model accounts for the volumetric effect of the thermal contact resistance at the bearing pad/pressure tube interface. It also allows the evaluation of the thermal barrier effect caused by applying an oxide film on the radiused surface of the bearing pad. Information pertaining to the distribution of the coefficient of heat transfer over water-cooled surfaces has been generated. Analysis of the results indicated the significance of considering the nonlinear behaviour of the system in determining its state of equilibrium. It also indicated that, depending on the thickness of the oxide layer and the position of the bearing pad along the core of the reactor, the nucleate boiling process can be prevented

  19. Quantitatively assessed CT imaging measures of pulmonary interstitial pneumonia: Effects of reconstruction algorithms on histogram parameters

    International Nuclear Information System (INIS)

    Koyama, Hisanobu; Ohno, Yoshiharu; Yamazaki, Youichi; Nogami, Munenobu; Kusaka, Akiko; Murase, Kenya; Sugimura, Kazuro

    2010-01-01

    This study aimed the influences of reconstruction algorithm for quantitative assessments in interstitial pneumonia patients. A total of 25 collagen vascular disease patients (nine male patients and 16 female patients; mean age, 57.2 years; age range 32-77 years) underwent thin-section MDCT examinations, and MDCT data were reconstructed with three kinds of reconstruction algorithm (two high-frequencies [A and B] and one standard [C]). In reconstruction algorithm B, the effect of low- and middle-frequency space was suppressed compared with reconstruction algorithm A. As quantitative CT parameters, kurtosis, skewness, and mean lung density (MLD) were acquired from a frequency histogram of the whole lung parenchyma in each reconstruction algorithm. To determine the difference of quantitative CT parameters affected by reconstruction algorithms, these parameters were compared statistically. To determine the relationships with the disease severity, these parameters were correlated with PFTs. In the results, all the histogram parameters values had significant differences each other (p < 0.0001) and those of reconstruction algorithm C were the highest. All MLDs had fair or moderate correlation with all parameters of PFT (-0.64 < r < -0.45, p < 0.05). Though kurtosis and skewness in high-frequency reconstruction algorithm A had significant correlations with all parameters of PFT (-0.61 < r < -0.45, p < 0.05), there were significant correlations only with diffusing capacity of carbon monoxide (DLco) and total lung capacity (TLC) in reconstruction algorithm C and with forced expiratory volume in 1 s (FEV1), DLco and TLC in reconstruction algorithm B. In conclusion, reconstruction algorithm has influence to quantitative assessments on chest thin-section MDCT examination in interstitial pneumonia patients.

  20. Quantitatively assessed CT imaging measures of pulmonary interstitial pneumonia: Effects of reconstruction algorithms on histogram parameters

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Hisanobu [Department of Radiology, Hyogo Kaibara Hospital, 5208-1 Kaibara, Kaibara-cho, Tanba 669-3395 (Japan)], E-mail: hisanobu19760104@yahoo.co.jp; Ohno, Yoshiharu [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan)], E-mail: yosirad@kobe-u.ac.jp; Yamazaki, Youichi [Department of Medical Physics and Engineering, Faculty of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita 565-0871 (Japan)], E-mail: y.yamazk@sahs.med.osaka-u.ac.jp; Nogami, Munenobu [Division of PET, Institute of Biomedical Research and Innovation, 2-2 MInamimachi, Minatojima, Chu0-ku, Kobe 650-0047 (Japan)], E-mail: aznogami@fbri.org; Kusaka, Akiko [Division of Radiology, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan)], E-mail: a.kusaka@hosp.kobe-u.ac.jp; Murase, Kenya [Department of Medical Physics and Engineering, Faculty of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita 565-0871 (Japan)], E-mail: murase@sahs.med.osaka-u.ac.jp; Sugimura, Kazuro [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan)], E-mail: sugimura@med.kobe-u.ac.jp

    2010-04-15

    This study aimed the influences of reconstruction algorithm for quantitative assessments in interstitial pneumonia patients. A total of 25 collagen vascular disease patients (nine male patients and 16 female patients; mean age, 57.2 years; age range 32-77 years) underwent thin-section MDCT examinations, and MDCT data were reconstructed with three kinds of reconstruction algorithm (two high-frequencies [A and B] and one standard [C]). In reconstruction algorithm B, the effect of low- and middle-frequency space was suppressed compared with reconstruction algorithm A. As quantitative CT parameters, kurtosis, skewness, and mean lung density (MLD) were acquired from a frequency histogram of the whole lung parenchyma in each reconstruction algorithm. To determine the difference of quantitative CT parameters affected by reconstruction algorithms, these parameters were compared statistically. To determine the relationships with the disease severity, these parameters were correlated with PFTs. In the results, all the histogram parameters values had significant differences each other (p < 0.0001) and those of reconstruction algorithm C were the highest. All MLDs had fair or moderate correlation with all parameters of PFT (-0.64 < r < -0.45, p < 0.05). Though kurtosis and skewness in high-frequency reconstruction algorithm A had significant correlations with all parameters of PFT (-0.61 < r < -0.45, p < 0.05), there were significant correlations only with diffusing capacity of carbon monoxide (DLco) and total lung capacity (TLC) in reconstruction algorithm C and with forced expiratory volume in 1 s (FEV1), DLco and TLC in reconstruction algorithm B. In conclusion, reconstruction algorithm has influence to quantitative assessments on chest thin-section MDCT examination in interstitial pneumonia patients.

  1. Nonlinear inversion of borehole-radar tomography data to reconstruct velocity and attenuation distribution in earth materials

    Science.gov (United States)

    Zhou, C.; Liu, L.; Lane, J.W.

    2001-01-01

    A nonlinear tomographic inversion method that uses first-arrival travel-time and amplitude-spectra information from cross-hole radar measurements was developed to simultaneously reconstruct electromagnetic velocity and attenuation distribution in earth materials. Inversion methods were developed to analyze single cross-hole tomography surveys and differential tomography surveys. Assuming the earth behaves as a linear system, the inversion methods do not require estimation of source radiation pattern, receiver coupling, or geometrical spreading. The data analysis and tomographic inversion algorithm were applied to synthetic test data and to cross-hole radar field data provided by the US Geological Survey (USGS). The cross-hole radar field data were acquired at the USGS fractured-rock field research site at Mirror Lake near Thornton, New Hampshire, before and after injection of a saline tracer, to monitor the transport of electrically conductive fluids in the image plane. Results from the synthetic data test demonstrate the algorithm computational efficiency and indicate that the method robustly can reconstruct electromagnetic (EM) wave velocity and attenuation distribution in earth materials. The field test results outline zones of velocity and attenuation anomalies consistent with the finding of previous investigators; however, the tomograms appear to be quite smooth. Further work is needed to effectively find the optimal smoothness criterion in applying the Tikhonov regularization in the nonlinear inversion algorithms for cross-hole radar tomography. ?? 2001 Elsevier Science B.V. All rights reserved.

  2. A parallel stereo reconstruction algorithm with applications in entomology (APSRA)

    Science.gov (United States)

    Bhasin, Rajesh; Jang, Won Jun; Hart, John C.

    2012-03-01

    We propose a fast parallel algorithm for the reconstruction of 3-Dimensional point clouds of insects from binocular stereo image pairs using a hierarchical approach for disparity estimation. Entomologists study various features of insects to classify them, build their distribution maps, and discover genetic links between specimens among various other essential tasks. This information is important to the pesticide and the pharmaceutical industries among others. When considering the large collections of insects entomologists analyze, it becomes difficult to physically handle the entire collection and share the data with researchers across the world. With the method presented in our work, Entomologists can create an image database for their collections and use the 3D models for studying the shape and structure of the insects thus making it easier to maintain and share. Initial feedback shows that the reconstructed 3D models preserve the shape and size of the specimen. We further optimize our results to incorporate multiview stereo which produces better overall structure of the insects. Our main contribution is applying stereoscopic vision techniques to entomology to solve the problems faced by entomologists.

  3. Principle and Reconstruction Algorithm for Atomic-Resolution Holography

    Science.gov (United States)

    Matsushita, Tomohiro; Muro, Takayuki; Matsui, Fumihiko; Happo, Naohisa; Hosokawa, Shinya; Ohoyama, Kenji; Sato-Tomita, Ayana; Sasaki, Yuji C.; Hayashi, Kouichi

    2018-06-01

    Atomic-resolution holography makes it possible to obtain the three-dimensional (3D) structure around a target atomic site. Translational symmetry of the atomic arrangement of the sample is not necessary, and the 3D atomic image can be measured when the local structure of the target atomic site is oriented. Therefore, 3D local atomic structures such as dopants and adsorbates are observable. Here, the atomic-resolution holography comprising photoelectron holography, X-ray fluorescence holography, neutron holography, and their inverse modes are treated. Although the measurement methods are different, they can be handled with a unified theory. The algorithm for reconstructing 3D atomic images from holograms plays an important role. Although Fourier transform-based methods have been proposed, they require the multiple-energy holograms. In addition, they cannot be directly applied to photoelectron holography because of the phase shift problem. We have developed methods based on the fitting method for reconstructing from single-energy and photoelectron holograms. The developed methods are applicable to all types of atomic-resolution holography.

  4. A fast iterative soft-thresholding algorithm for few-view CT reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junfeng; Mou, Xuanqin; Zhang, Yanbo [Jiaotong Univ., Xi' an (China). Inst. of Image Processing and Pattern Recognition

    2011-07-01

    Iterative soft-thresholding algorithms with total variation regularization can produce high-quality reconstructions from few views and even in the presence of noise. However, these algorithms are known to converge quite slowly, with a proven theoretically global convergence rate O(1/k), where k is iteration number. In this paper, we present a fast iterative soft-thresholding algorithm for few-view fan beam CT reconstruction with a global convergence rate O(1/k{sup 2}), which is significantly faster than the iterative soft-thresholding algorithm. Simulation results demonstrate the superior performance of the proposed algorithm in terms of convergence speed and reconstruction quality. (orig.)

  5. Novel image reconstruction algorithm for multi-phase flow tomography system using γ ray method

    International Nuclear Information System (INIS)

    Hao Kuihong; Wang Huaxiang; Gao Mei

    2007-01-01

    After analyzing the reason of image reconstructed algorithm by using the conventional back projection (IBP) is prone to produce spurious line, and considering the characteristic of multi-phase flow tomography, a novel image reconstruction algorithm is proposed, which carries out the intersection calculation using back projection data. This algorithm can obtain a perfect system point spread function, and can eliminate spurious line better. Simulating results show that the algorithm is effective for identifying multi-phase flow pattern. (authors)

  6. A Super-resolution Reconstruction Algorithm for Surveillance Video

    Directory of Open Access Journals (Sweden)

    Jian Shao

    2017-01-01

    Full Text Available Recent technological developments have resulted in surveillance video becoming a primary method of preserving public security. Many city crimes are observed in surveillance video. The most abundant evidence collected by the police is also acquired through surveillance video sources. Surveillance video footage offers very strong support for solving criminal cases, therefore, creating an effective policy, and applying useful methods to the retrieval of additional evidence is becoming increasingly important. However, surveillance video has had its failings, namely, video footage being captured in low resolution (LR and bad visual quality. In this paper, we discuss the characteristics of surveillance video and describe the manual feature registration – maximum a posteriori – projection onto convex sets to develop a super-resolution reconstruction method, which improves the quality of surveillance video. From this method, we can make optimal use of information contained in the LR video image, but we can also control the image edge clearly as well as the convergence of the algorithm. Finally, we make a suggestion on how to adjust the algorithm adaptability by analyzing the prior information of target image.

  7. Motion tolerant iterative reconstruction algorithm for cone-beam helical CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hisashi; Goto, Taiga; Hirokawa, Koichi; Miyazaki, Osamu [Hitachi Medical Corporation, Chiba-ken (Japan). CT System Div.

    2011-07-01

    We have developed a new advanced iterative reconstruction algorithm for cone-beam helical CT. The features of this algorithm are: (a) it uses separable paraboloidal surrogate (SPS) technique as a foundation for reconstruction to reduce noise and cone-beam artifact, (b) it uses a view weight in the back-projection process to reduce motion artifact. To confirm the improvement of our proposed algorithm over other existing algorithm, such as Feldkamp-Davis-Kress (FDK) or SPS algorithm, we compared the motion artifact reduction, image noise reduction (standard deviation of CT number), and cone-beam artifact reduction on simulated and clinical data set. Our results demonstrate that the proposed algorithm dramatically reduces motion artifacts compared with the SPS algorithm, and decreases image noise compared with the FDK algorithm. In addition, the proposed algorithm potentially improves time resolution of iterative reconstruction. (orig.)

  8. Intermediate view reconstruction using adaptive disparity search algorithm for real-time 3D processing

    Science.gov (United States)

    Bae, Kyung-hoon; Park, Changhan; Kim, Eun-soo

    2008-03-01

    In this paper, intermediate view reconstruction (IVR) using adaptive disparity search algorithm (ASDA) is for realtime 3-dimensional (3D) processing proposed. The proposed algorithm can reduce processing time of disparity estimation by selecting adaptive disparity search range. Also, the proposed algorithm can increase the quality of the 3D imaging. That is, by adaptively predicting the mutual correlation between stereo images pair using the proposed algorithm, the bandwidth of stereo input images pair can be compressed to the level of a conventional 2D image and a predicted image also can be effectively reconstructed using a reference image and disparity vectors. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm improves the PSNRs of a reconstructed image to about 4.8 dB by comparing with that of conventional algorithms, and reduces the Synthesizing time of a reconstructed image to about 7.02 sec by comparing with that of conventional algorithms.

  9. Algorithm of hadron energy reconstruction for combined calorimeters in the DELPHI detector

    International Nuclear Information System (INIS)

    Gotra, Yu.N.; Tsyganov, E.N.; Zimin, N.I.; Zinchenko, A.I.

    1989-01-01

    The algorithm of hadron energy reconstruction from responses of electromagnetic and hadron calorimeters is described. The investigations have been carried out using the full-scale prototype of the hadron calorimeter cylindrical part modules. The supposed algorithm allows one to improve energy resolution by 5-7% with conserving the linearly of reconstructed hadron energy. 5 refs.; 4 figs.; 1 tab

  10. The influence of image reconstruction algorithms on linear thorax EIT image analysis of ventilation

    International Nuclear Information System (INIS)

    Zhao, Zhanqi; Möller, Knut; Frerichs, Inéz; Pulletz, Sven; Müller-Lisse, Ullrich

    2014-01-01

    Analysis methods of electrical impedance tomography (EIT) images based on different reconstruction algorithms were examined. EIT measurements were performed on eight mechanically ventilated patients with acute respiratory distress syndrome. A maneuver with step increase of airway pressure was performed. EIT raw data were reconstructed offline with (1) filtered back-projection (BP); (2) the Dräger algorithm based on linearized Newton–Raphson (DR); (3) the GREIT (Graz consensus reconstruction algorithm for EIT) reconstruction algorithm with a circular forward model (GR C ) and (4) GREIT with individual thorax geometry (GR T ). Individual thorax contours were automatically determined from the routine computed tomography images. Five indices were calculated on the resulting EIT images respectively: (a) the ratio between tidal and deep inflation impedance changes; (b) tidal impedance changes in the right and left lungs; (c) center of gravity; (d) the global inhomogeneity index and (e) ventilation delay at mid-dorsal regions. No significant differences were found in all examined indices among the four reconstruction algorithms (p > 0.2, Kruskal–Wallis test). The examined algorithms used for EIT image reconstruction do not influence the selected indices derived from the EIT image analysis. Indices that validated for images with one reconstruction algorithm are also valid for other reconstruction algorithms. (paper)

  11. The influence of image reconstruction algorithms on linear thorax EIT image analysis of ventilation.

    Science.gov (United States)

    Zhao, Zhanqi; Frerichs, Inéz; Pulletz, Sven; Müller-Lisse, Ullrich; Möller, Knut

    2014-06-01

    Analysis methods of electrical impedance tomography (EIT) images based on different reconstruction algorithms were examined. EIT measurements were performed on eight mechanically ventilated patients with acute respiratory distress syndrome. A maneuver with step increase of airway pressure was performed. EIT raw data were reconstructed offline with (1) filtered back-projection (BP); (2) the Dräger algorithm based on linearized Newton-Raphson (DR); (3) the GREIT (Graz consensus reconstruction algorithm for EIT) reconstruction algorithm with a circular forward model (GR(C)) and (4) GREIT with individual thorax geometry (GR(T)). Individual thorax contours were automatically determined from the routine computed tomography images. Five indices were calculated on the resulting EIT images respectively: (a) the ratio between tidal and deep inflation impedance changes; (b) tidal impedance changes in the right and left lungs; (c) center of gravity; (d) the global inhomogeneity index and (e) ventilation delay at mid-dorsal regions. No significant differences were found in all examined indices among the four reconstruction algorithms (p > 0.2, Kruskal-Wallis test). The examined algorithms used for EIT image reconstruction do not influence the selected indices derived from the EIT image analysis. Indices that validated for images with one reconstruction algorithm are also valid for other reconstruction algorithms.

  12. A general algorithm for the reconstruction of jet events in e+e- annihilation

    International Nuclear Information System (INIS)

    Goddard, M.C.

    1981-01-01

    A general method is described to reconstruct a predetermined number of jets. It can reconstruct the jet axes as accurately as any existing algorithm and is up to one hundred times faster. Results are shown from the reconstruction of 2-jet, 3-jet and 4-jet Monte Carlo events. (author)

  13. A Design of a Hybrid Non-Linear Control Algorithm

    Directory of Open Access Journals (Sweden)

    Farinaz Behrooz

    2017-11-01

    Full Text Available One of the high energy consuming devices in the buildings is the air-conditioning system. Designing a proper controller to consider the thermal comfort and simultaneously control the energy usage of the device will impact on the system energy efficiency and its performance. The aim of this study was to design a Multiple-Input and Multiple-Output (MIMO, non-linear, and intelligent controller on direct expansion air-conditioning system The control algorithm uses the Fuzzy Cognitive Map method as a main controller and the Generalized Predictive Control method is used for assigning the initial weights of the main controller. The results of the proposed controller shows that the controller was successfully designed and works in set point tracking and under disturbance rejection tests. The obtained results of the Generalized Predictive Control-Fuzzy Cognitive Map controller are compared with the previous MIMO Linear Quadratic Gaussian control design on the same direct expansion air-conditioning system under the same conditions. The comparative results indicate energy savings would be achieved with the proposed controller with long-term usage. Energy efficiency and thermal comfort conditions are achieved by the proposed controller.

  14. Performance comparison between total variation (TV)-based compressed sensing and statistical iterative reconstruction algorithms

    International Nuclear Information System (INIS)

    Tang Jie; Nett, Brian E; Chen Guanghong

    2009-01-01

    Of all available reconstruction methods, statistical iterative reconstruction algorithms appear particularly promising since they enable accurate physical noise modeling. The newly developed compressive sampling/compressed sensing (CS) algorithm has shown the potential to accurately reconstruct images from highly undersampled data. The CS algorithm can be implemented in the statistical reconstruction framework as well. In this study, we compared the performance of two standard statistical reconstruction algorithms (penalized weighted least squares and q-GGMRF) to the CS algorithm. In assessing the image quality using these iterative reconstructions, it is critical to utilize realistic background anatomy as the reconstruction results are object dependent. A cadaver head was scanned on a Varian Trilogy system at different dose levels. Several figures of merit including the relative root mean square error and a quality factor which accounts for the noise performance and the spatial resolution were introduced to objectively evaluate reconstruction performance. A comparison is presented between the three algorithms for a constant undersampling factor comparing different algorithms at several dose levels. To facilitate this comparison, the original CS method was formulated in the framework of the statistical image reconstruction algorithms. Important conclusions of the measurements from our studies are that (1) for realistic neuro-anatomy, over 100 projections are required to avoid streak artifacts in the reconstructed images even with CS reconstruction, (2) regardless of the algorithm employed, it is beneficial to distribute the total dose to more views as long as each view remains quantum noise limited and (3) the total variation-based CS method is not appropriate for very low dose levels because while it can mitigate streaking artifacts, the images exhibit patchy behavior, which is potentially harmful for medical diagnosis.

  15. Reconstruction algorithm in compressed sensing based on maximum a posteriori estimation

    International Nuclear Information System (INIS)

    Takeda, Koujin; Kabashima, Yoshiyuki

    2013-01-01

    We propose a systematic method for constructing a sparse data reconstruction algorithm in compressed sensing at a relatively low computational cost for general observation matrix. It is known that the cost of ℓ 1 -norm minimization using a standard linear programming algorithm is O(N 3 ). We show that this cost can be reduced to O(N 2 ) by applying the approach of posterior maximization. Furthermore, in principle, the algorithm from our approach is expected to achieve the widest successful reconstruction region, which is evaluated from theoretical argument. We also discuss the relation between the belief propagation-based reconstruction algorithm introduced in preceding works and our approach

  16. Time Reversal Reconstruction Algorithm Based on PSO Optimized SVM Interpolation for Photoacoustic Imaging

    Directory of Open Access Journals (Sweden)

    Mingjian Sun

    2015-01-01

    Full Text Available Photoacoustic imaging is an innovative imaging technique to image biomedical tissues. The time reversal reconstruction algorithm in which a numerical model of the acoustic forward problem is run backwards in time is widely used. In the paper, a time reversal reconstruction algorithm based on particle swarm optimization (PSO optimized support vector machine (SVM interpolation method is proposed for photoacoustics imaging. Numerical results show that the reconstructed images of the proposed algorithm are more accurate than those of the nearest neighbor interpolation, linear interpolation, and cubic convolution interpolation based time reversal algorithm, which can provide higher imaging quality by using significantly fewer measurement positions or scanning times.

  17. A Superresolution Image Reconstruction Algorithm Based on Landweber in Electrical Capacitance Tomography

    Directory of Open Access Journals (Sweden)

    Chen Deyun

    2013-01-01

    Full Text Available According to the image reconstruction accuracy influenced by the “soft field” nature and ill-conditioned problems in electrical capacitance tomography, a superresolution image reconstruction algorithm based on Landweber is proposed in the paper, which is based on the working principle of the electrical capacitance tomography system. The method uses the algorithm which is derived by regularization of solutions derived and derives closed solution by fast Fourier transform of the convolution kernel. So, it ensures the certainty of the solution and improves the stability and quality of image reconstruction results. Simulation results show that the imaging precision and real-time imaging of the algorithm are better than Landweber algorithm, and this algorithm proposes a new method for the electrical capacitance tomography image reconstruction algorithm.

  18. A quadratic approximation-based algorithm for the solution of multiparametric mixed-integer nonlinear programming problems

    KAUST Repository

    Domí nguez, Luis F.; Pistikopoulos, Efstratios N.

    2012-01-01

    An algorithm for the solution of convex multiparametric mixed-integer nonlinear programming problems arising in process engineering problems under uncertainty is introduced. The proposed algorithm iterates between a multiparametric nonlinear

  19. Real time equilibrium reconstruction algorithm in EAST tokamak

    International Nuclear Information System (INIS)

    Wang Huazhong; Luo Jiarong; Huang Qinchao

    2004-01-01

    The EAST (HT-7U) superconducting tokamak is a national project of China on fusion research, with a capability of long-pulse (∼1000 s) operation. In order to realize a long-duration steady-state operation of EAST, some significant capability of real-time control is required. It would be very crucial to obtain the current profile parameters and the plasma shapes in real time by a flexible control system. As those discharge parameters cannot be directly measured, so a current profile consistent with the magnetohydrodynamic equilibrium should be evaluated from external magnetic measurements, based on a linearized iterative least square method, which can meet the requirements of the measurements. The arithmetic that the EFIT (equilibrium fitting code) is used for reference will be given in this paper and the computational efforts are reduced by parameterizing the current profile linearly in terms of a number of physical parameters. In order to introduce this reconstruction algorithm clearly, the main hardware design will be listed also. (authors)

  20. Parallelization of the model-based iterative reconstruction algorithm DIRA

    International Nuclear Information System (INIS)

    Oertenberg, A.; Sandborg, M.; Alm Carlsson, G.; Malusek, A.; Magnusson, M.

    2016-01-01

    New paradigms for parallel programming have been devised to simplify software development on multi-core processors and many-core graphical processing units (GPU). Despite their obvious benefits, the parallelization of existing computer programs is not an easy task. In this work, the use of the Open Multiprocessing (OpenMP) and Open Computing Language (OpenCL) frameworks is considered for the parallelization of the model-based iterative reconstruction algorithm DIRA with the aim to significantly shorten the code's execution time. Selected routines were parallelized using OpenMP and OpenCL libraries; some routines were converted from MATLAB to C and optimised. Parallelization of the code with the OpenMP was easy and resulted in an overall speedup of 15 on a 16-core computer. Parallelization with OpenCL was more difficult owing to differences between the central processing unit and GPU architectures. The resulting speedup was substantially lower than the theoretical peak performance of the GPU; the cause was explained. (authors)

  1. FPGA Hardware Acceleration of a Phylogenetic Tree Reconstruction with Maximum Parsimony Algorithm

    OpenAIRE

    BLOCK, Henry; MARUYAMA, Tsutomu

    2017-01-01

    In this paper, we present an FPGA hardware implementation for a phylogenetic tree reconstruction with a maximum parsimony algorithm. We base our approach on a particular stochastic local search algorithm that uses the Progressive Neighborhood and the Indirect Calculation of Tree Lengths method. This method is widely used for the acceleration of the phylogenetic tree reconstruction algorithm in software. In our implementation, we define a tree structure and accelerate the search by parallel an...

  2. Neural network algorithm for image reconstruction using the grid friendly projections

    International Nuclear Information System (INIS)

    Cierniak, R.

    2011-01-01

    Full text: The presented paper describes a development of original approach to the reconstruction problem using a recurrent neural network. Particularly, the 'grid-friendly' angles of performed projections are selected according to the discrete Radon transform (DRT) concept to decrease the number of projections required. The methodology of our approach is consistent with analytical reconstruction algorithms. Reconstruction problem is reformulated in our approach to optimization problem. This problem is solved in present concept using method based on the maximum likelihood methodology. The reconstruction algorithm proposed in this work is consequently adapted for more practical discrete fan beam projections. Computer simulation results show that the neural network reconstruction algorithm designed to work in this way improves obtained results and outperforms conventional methods in reconstructed image quality. (author)

  3. A maximum-likelihood reconstruction algorithm for tomographic gamma-ray nondestructive assay

    International Nuclear Information System (INIS)

    Prettyman, T.H.; Estep, R.J.; Cole, R.A.; Sheppard, G.A.

    1994-01-01

    A new tomographic reconstruction algorithm for nondestructive assay with high resolution gamma-ray spectroscopy (HRGS) is presented. The reconstruction problem is formulated using a maximum-likelihood approach in which the statistical structure of both the gross and continuum measurements used to determine the full-energy response in HRGS is precisely modeled. An accelerated expectation-maximization algorithm is used to determine the optimal solution. The algorithm is applied to safeguards and environmental assays of large samples (for example, 55-gal. drums) in which high continuum levels caused by Compton scattering are routinely encountered. Details of the implementation of the algorithm and a comparative study of the algorithm's performance are presented

  4. Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle–Pock algorithm

    DEFF Research Database (Denmark)

    Sidky, Emil Y.; Jørgensen, Jakob Heide; Pan, Xiaochuan

    2012-01-01

    The primal–dual optimization algorithm developed in Chambolle and Pock (CP) (2011 J. Math. Imag. Vis. 40 1–26) is applied to various convex optimization problems of interest in computed tomography (CT) image reconstruction. This algorithm allows for rapid prototyping of optimization problems...... for the purpose of designing iterative image reconstruction algorithms for CT. The primal–dual algorithm is briefly summarized in this paper, and its potential for prototyping is demonstrated by explicitly deriving CP algorithm instances for many optimization problems relevant to CT. An example application...

  5. A fast 4D cone beam CT reconstruction method based on the OSC-TV algorithm.

    Science.gov (United States)

    Mascolo-Fortin, Julia; Matenine, Dmitri; Archambault, Louis; Després, Philippe

    2018-01-01

    Four-dimensional cone beam computed tomography allows for temporally resolved imaging with useful applications in radiotherapy, but raises particular challenges in terms of image quality and computation time. The purpose of this work is to develop a fast and accurate 4D algorithm by adapting a GPU-accelerated ordered subsets convex algorithm (OSC), combined with the total variation minimization regularization technique (TV). Different initialization schemes were studied to adapt the OSC-TV algorithm to 4D reconstruction: each respiratory phase was initialized either with a 3D reconstruction or a blank image. Reconstruction algorithms were tested on a dynamic numerical phantom and on a clinical dataset. 4D iterations were implemented for a cluster of 8 GPUs. All developed methods allowed for an adequate visualization of the respiratory movement and compared favorably to the McKinnon-Bates and adaptive steepest descent projection onto convex sets algorithms, while the 4D reconstructions initialized from a prior 3D reconstruction led to better overall image quality. The most suitable adaptation of OSC-TV to 4D CBCT was found to be a combination of a prior FDK reconstruction and a 4D OSC-TV reconstruction with a reconstruction time of 4.5 minutes. This relatively short reconstruction time could facilitate a clinical use.

  6. Nonlinear dynamics optimization with particle swarm and genetic algorithms for SPEAR3 emittance upgrade

    International Nuclear Information System (INIS)

    Huang, Xiaobiao; Safranek, James

    2014-01-01

    Nonlinear dynamics optimization is carried out for a low emittance upgrade lattice of SPEAR3 in order to improve its dynamic aperture and Touschek lifetime. Two multi-objective optimization algorithms, a genetic algorithm and a particle swarm algorithm, are used for this study. The performance of the two algorithms are compared. The result shows that the particle swarm algorithm converges significantly faster to similar or better solutions than the genetic algorithm and it does not require seeding of good solutions in the initial population. These advantages of the particle swarm algorithm may make it more suitable for many accelerator optimization applications

  7. Nonlinear dynamics optimization with particle swarm and genetic algorithms for SPEAR3 emittance upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaobiao, E-mail: xiahuang@slac.stanford.edu; Safranek, James

    2014-09-01

    Nonlinear dynamics optimization is carried out for a low emittance upgrade lattice of SPEAR3 in order to improve its dynamic aperture and Touschek lifetime. Two multi-objective optimization algorithms, a genetic algorithm and a particle swarm algorithm, are used for this study. The performance of the two algorithms are compared. The result shows that the particle swarm algorithm converges significantly faster to similar or better solutions than the genetic algorithm and it does not require seeding of good solutions in the initial population. These advantages of the particle swarm algorithm may make it more suitable for many accelerator optimization applications.

  8. A mixed-order nonlinear diffusion compressed sensing MR image reconstruction.

    Science.gov (United States)

    Joy, Ajin; Paul, Joseph Suresh

    2018-03-07

    Avoid formation of staircase artifacts in nonlinear diffusion-based MR image reconstruction without compromising computational speed. Whereas second-order diffusion encourages the evolution of pixel neighborhood with uniform intensities, fourth-order diffusion considers smooth region to be not necessarily a uniform intensity region but also a planar region. Therefore, a controlled application of fourth-order diffusivity function is used to encourage second-order diffusion to reconstruct the smooth regions of the image as a plane rather than a group of blocks, while not being strong enough to introduce the undesirable speckle effect. Proposed method is compared with second- and fourth-order nonlinear diffusion reconstruction, total variation (TV), total generalized variation, and higher degree TV using in vivo data sets for different undersampling levels with application to dictionary learning-based reconstruction. It is observed that the proposed technique preserves sharp boundaries in the image while preventing the formation of staircase artifacts in the regions of smoothly varying pixel intensities. It also shows reduced error measures compared with second-order nonlinear diffusion reconstruction or TV and converges faster than TV-based methods. Because nonlinear diffusion is known to be an effective alternative to TV for edge-preserving reconstruction, the crucial aspect of staircase artifact removal is addressed. Reconstruction is found to be stable for the experimentally determined range of fourth-order regularization parameter, and therefore not does not introduce a parameter search. Hence, the computational simplicity of second-order diffusion is retained. © 2018 International Society for Magnetic Resonance in Medicine.

  9. A Model Predictive Algorithm for Active Control of Nonlinear Noise Processes

    Directory of Open Access Journals (Sweden)

    Qi-Zhi Zhang

    2005-01-01

    Full Text Available In this paper, an improved nonlinear Active Noise Control (ANC system is achieved by introducing an appropriate secondary source. For ANC system to be successfully implemented, the nonlinearity of the primary path and time delay of the secondary path must be overcome. A nonlinear Model Predictive Control (MPC strategy is introduced to deal with the time delay in the secondary path and the nonlinearity in the primary path of the ANC system. An overall online modeling technique is utilized for online secondary path and primary path estimation. The secondary path is estimated using an adaptive FIR filter, and the primary path is estimated using a Neural Network (NN. The two models are connected in parallel with the two paths. In this system, the mutual disturbances between the operation of the nonlinear ANC controller and modeling of the secondary can be greatly reduced. The coefficients of the adaptive FIR filter and weight vector of NN are adjusted online. Computer simulations are carried out to compare the proposed nonlinear MPC method with the nonlinear Filter-x Least Mean Square (FXLMS algorithm. The results showed that the convergence speed of the proposed nonlinear MPC algorithm is faster than that of nonlinear FXLMS algorithm. For testing the robust performance of the proposed nonlinear ANC system, the sudden changes in the secondary path and primary path of the ANC system are considered. Results indicated that the proposed nonlinear ANC system can rapidly track the sudden changes in the acoustic paths of the nonlinear ANC system, and ensure the adaptive algorithm stable when the nonlinear ANC system is time variable.

  10. Nonlinear rotor dynamics of 2D molecular array: topology reconstruction

    International Nuclear Information System (INIS)

    Lykah, V.A.; Syrkin, E.S.

    2011-01-01

    Molecular layers with rotational degrees of freedom and quadrupolar interaction between linear molecules are investigated theoretically. We found earlier that alternative orientation of the molecules along and perpendicular to an axis of the rectangular lattice is preferable. Here we find the integral of motion and give the topology analysis of the possible dynamical phases and special points in the long-wave limit. We find the strong anisotropy in the angle space: directions of easy excitation ('valleys') exist. We show the potential relief reconstruction in dependence on the adsorbed lattice anisotropy.

  11. Research on Image Reconstruction Algorithms for Tuber Electrical Resistance Tomography System

    Directory of Open Access Journals (Sweden)

    Jiang Zili

    2016-01-01

    Full Text Available The application of electrical resistance tomography (ERT technology has been expanded to the field of agriculture, and the concept of TERT (Tuber Electrical Resistance Tomography is proposed. On the basis of the research on the forward and the inverse problems of the TERT system, a hybrid algorithm based on genetic algorithm is proposed, which can be used in TERT system to monitor the growth status of the plant tubers. The image reconstruction of TERT system is different from the conventional ERT system for two phase-flow measurement. Imaging of TERT needs more precision measurement and the conventional ERT cares more about the image reconstruction speed. A variety of algorithms are analyzed and optimized for the purpose of making them suitable for TERT system. For example: linear back projection, modified Newton-Raphson and genetic algorithm. Experimental results showed that the novel hybrid algorithm is superior to other algorithm and it can effectively improve the image reconstruction quality.

  12. Sparse Nonlinear Electromagnetic Imaging Accelerated With Projected Steepest Descent Algorithm

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2017-01-01

    steepest descent algorithm. The algorithm uses a projection operator to enforce the sparsity constraint by thresholding the solution at every iteration. Thresholding level and iteration step are selected carefully to increase the efficiency without

  13. Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms.

    Science.gov (United States)

    Kim, Ye-seul; Park, Hye-suk; Lee, Haeng-Hwa; Choi, Young-Wook; Choi, Jae-Gu; Kim, Hak Hee; Kim, Hee-Joung

    2016-02-01

    Digital breast tomosynthesis (DBT) is a recently developed system for three-dimensional imaging that offers the potential to reduce the false positives of mammography by preventing tissue overlap. Many qualitative evaluations of digital breast tomosynthesis were previously performed by using a phantom with an unrealistic model and with heterogeneous background and noise, which is not representative of real breasts. The purpose of the present work was to compare reconstruction algorithms for DBT by using various breast phantoms; validation was also performed by using patient images. DBT was performed by using a prototype unit that was optimized for very low exposures and rapid readout. Three algorithms were compared: a back-projection (BP) algorithm, a filtered BP (FBP) algorithm, and an iterative expectation maximization (EM) algorithm. To compare the algorithms, three types of breast phantoms (homogeneous background phantom, heterogeneous background phantom, and anthropomorphic breast phantom) were evaluated, and clinical images were also reconstructed by using the different reconstruction algorithms. The in-plane image quality was evaluated based on the line profile and the contrast-to-noise ratio (CNR), and out-of-plane artifacts were evaluated by means of the artifact spread function (ASF). Parenchymal texture features of contrast and homogeneity were computed based on reconstructed images of an anthropomorphic breast phantom. The clinical images were studied to validate the effect of reconstruction algorithms. The results showed that the CNRs of masses reconstructed by using the EM algorithm were slightly higher than those obtained by using the BP algorithm, whereas the FBP algorithm yielded much lower CNR due to its high fluctuations of background noise. The FBP algorithm provides the best conspicuity for larger calcifications by enhancing their contrast and sharpness more than the other algorithms; however, in the case of small-size and low

  14. Joint-2D-SL0 Algorithm for Joint Sparse Matrix Reconstruction

    Directory of Open Access Journals (Sweden)

    Dong Zhang

    2017-01-01

    Full Text Available Sparse matrix reconstruction has a wide application such as DOA estimation and STAP. However, its performance is usually restricted by the grid mismatch problem. In this paper, we revise the sparse matrix reconstruction model and propose the joint sparse matrix reconstruction model based on one-order Taylor expansion. And it can overcome the grid mismatch problem. Then, we put forward the Joint-2D-SL0 algorithm which can solve the joint sparse matrix reconstruction problem efficiently. Compared with the Kronecker compressive sensing method, our proposed method has a higher computational efficiency and acceptable reconstruction accuracy. Finally, simulation results validate the superiority of the proposed method.

  15. Level-set-based reconstruction algorithm for EIT lung images: first clinical results.

    Science.gov (United States)

    Rahmati, Peyman; Soleimani, Manuchehr; Pulletz, Sven; Frerichs, Inéz; Adler, Andy

    2012-05-01

    We show the first clinical results using the level-set-based reconstruction algorithm for electrical impedance tomography (EIT) data. The level-set-based reconstruction method (LSRM) allows the reconstruction of non-smooth interfaces between image regions, which are typically smoothed by traditional voxel-based reconstruction methods (VBRMs). We develop a time difference formulation of the LSRM for 2D images. The proposed reconstruction method is applied to reconstruct clinical EIT data of a slow flow inflation pressure-volume manoeuvre in lung-healthy and adult lung-injury patients. Images from the LSRM and the VBRM are compared. The results show comparable reconstructed images, but with an improved ability to reconstruct sharp conductivity changes in the distribution of lung ventilation using the LSRM.

  16. Level-set-based reconstruction algorithm for EIT lung images: first clinical results

    International Nuclear Information System (INIS)

    Rahmati, Peyman; Adler, Andy; Soleimani, Manuchehr; Pulletz, Sven; Frerichs, Inéz

    2012-01-01

    We show the first clinical results using the level-set-based reconstruction algorithm for electrical impedance tomography (EIT) data. The level-set-based reconstruction method (LSRM) allows the reconstruction of non-smooth interfaces between image regions, which are typically smoothed by traditional voxel-based reconstruction methods (VBRMs). We develop a time difference formulation of the LSRM for 2D images. The proposed reconstruction method is applied to reconstruct clinical EIT data of a slow flow inflation pressure–volume manoeuvre in lung-healthy and adult lung-injury patients. Images from the LSRM and the VBRM are compared. The results show comparable reconstructed images, but with an improved ability to reconstruct sharp conductivity changes in the distribution of lung ventilation using the LSRM. (paper)

  17. Detector independent cellular automaton algorithm for track reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kisel, Ivan; Kulakov, Igor; Zyzak, Maksym [Goethe Univ. Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany); Collaboration: CBM-Collaboration

    2013-07-01

    Track reconstruction is one of the most challenging problems of data analysis in modern high energy physics (HEP) experiments, which have to process per second of the order of 10{sup 7} events with high track multiplicity and density, registered by detectors of different types and, in many cases, located in non-homogeneous magnetic field. Creation of reconstruction package common for all experiments is considered to be important in order to consolidate efforts. The cellular automaton (CA) track reconstruction approach has been used successfully in many HEP experiments. It is very simple, efficient, local and parallel. Meanwhile it is intrinsically independent of detector geometry and good candidate for common track reconstruction. The CA implementation for the CBM experiment has been generalized and applied to the ALICE ITS and STAR HFT detectors. Tests with simulated collisions have been performed. The track reconstruction efficiencies are at the level of 95% for majority of the signal tracks for all detectors.

  18. An efficient algorithm for reconstruction of spect images in the presence of spatially varying attenuation

    International Nuclear Information System (INIS)

    Zeeberg, B.R.; Bacharach, S.; Carson, R.; Green, M.V.; Larson, S.M.; Soucaille, J.F.

    1985-01-01

    An algorithm is presented which permits the reconstruction of SPECT images in the presence of spatially varying attenuation. The algorithm considers the spatially variant attenuation as a perturbation of the constant attenuation case and computes a reconstructed image and a correction image to estimate the effects of this perturbation. The corrected image will be computed from these two images and is of comparable quality both visually and quantitatively to those simulated for zero or constant attenuation taken as standard reference images. In addition, the algorithm is time efficient, in that the time required is approximately 2.5 times that for a standard convolution-back projection algorithm

  19. Image reconstruction for an electrical capacitance tomography system based on a least-squares support vector machine and a self-adaptive particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Chen, Xia; Hu, Hong-li; Liu, Fei; Gao, Xiang Xiang

    2011-01-01

    The task of image reconstruction for an electrical capacitance tomography (ECT) system is to determine the permittivity distribution and hence the phase distribution in a pipeline by measuring the electrical capacitances between sets of electrodes placed around its periphery. In view of the nonlinear relationship between the permittivity distribution and capacitances and the limited number of independent capacitance measurements, image reconstruction for ECT is a nonlinear and ill-posed inverse problem. To solve this problem, a new image reconstruction method for ECT based on a least-squares support vector machine (LS-SVM) combined with a self-adaptive particle swarm optimization (PSO) algorithm is presented. Regarded as a special small sample theory, the SVM avoids the issues appearing in artificial neural network methods such as difficult determination of a network structure, over-learning and under-learning. However, the SVM performs differently with different parameters. As a relatively new population-based evolutionary optimization technique, PSO is adopted to realize parameters' effective selection with the advantages of global optimization and rapid convergence. This paper builds up a 12-electrode ECT system and a pneumatic conveying platform to verify this image reconstruction algorithm. Experimental results indicate that the algorithm has good generalization ability and high-image reconstruction quality

  20. Efficient operator splitting algorithm for joint sparsity-regularized SPIRiT-based parallel MR imaging reconstruction.

    Science.gov (United States)

    Duan, Jizhong; Liu, Yu; Jing, Peiguang

    2018-02-01

    Self-consistent parallel imaging (SPIRiT) is an auto-calibrating model for the reconstruction of parallel magnetic resonance imaging, which can be formulated as a regularized SPIRiT problem. The Projection Over Convex Sets (POCS) method was used to solve the formulated regularized SPIRiT problem. However, the quality of the reconstructed image still needs to be improved. Though methods such as NonLinear Conjugate Gradients (NLCG) can achieve higher spatial resolution, these methods always demand very complex computation and converge slowly. In this paper, we propose a new algorithm to solve the formulated Cartesian SPIRiT problem with the JTV and JL1 regularization terms. The proposed algorithm uses the operator splitting (OS) technique to decompose the problem into a gradient problem and a denoising problem with two regularization terms, which is solved by our proposed split Bregman based denoising algorithm, and adopts the Barzilai and Borwein method to update step size. Simulation experiments on two in vivo data sets demonstrate that the proposed algorithm is 1.3 times faster than ADMM for datasets with 8 channels. Especially, our proposal is 2 times faster than ADMM for the dataset with 32 channels. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. An Approximate Cone Beam Reconstruction Algorithm for Gantry-Tilted CT Using Tangential Filtering

    Directory of Open Access Journals (Sweden)

    Ming Yan

    2006-01-01

    Full Text Available FDK algorithm is a well-known 3D (three-dimensional approximate algorithm for CT (computed tomography image reconstruction and is also known to suffer from considerable artifacts when the scanning cone angle is large. Recently, it has been improved by performing the ramp filtering along the tangential direction of the X-ray source helix for dealing with the large cone angle problem. In this paper, we present an FDK-type approximate reconstruction algorithm for gantry-tilted CT imaging. The proposed method improves the image reconstruction by filtering the projection data along a proper direction which is determined by CT parameters and gantry-tilted angle. As a result, the proposed algorithm for gantry-tilted CT reconstruction can provide more scanning flexibilities in clinical CT scanning and is efficient in computation. The performance of the proposed algorithm is evaluated with turbell clock phantom and thorax phantom and compared with FDK algorithm and a popular 2D (two-dimensional approximate algorithm. The results show that the proposed algorithm can achieve better image quality for gantry-tilted CT image reconstruction.

  2. A multiresolution approach to iterative reconstruction algorithms in X-ray computed tomography.

    Science.gov (United States)

    De Witte, Yoni; Vlassenbroeck, Jelle; Van Hoorebeke, Luc

    2010-09-01

    In computed tomography, the application of iterative reconstruction methods in practical situations is impeded by their high computational demands. Especially in high resolution X-ray computed tomography, where reconstruction volumes contain a high number of volume elements (several giga voxels), this computational burden prevents their actual breakthrough. Besides the large amount of calculations, iterative algorithms require the entire volume to be kept in memory during reconstruction, which quickly becomes cumbersome for large data sets. To overcome this obstacle, we present a novel multiresolution reconstruction, which greatly reduces the required amount of memory without significantly affecting the reconstructed image quality. It is shown that, combined with an efficient implementation on a graphical processing unit, the multiresolution approach enables the application of iterative algorithms in the reconstruction of large volumes at an acceptable speed using only limited resources.

  3. Comparison of different reconstruction algorithms for three-dimensional ultrasound imaging in a neurosurgical setting.

    Science.gov (United States)

    Miller, D; Lippert, C; Vollmer, F; Bozinov, O; Benes, L; Schulte, D M; Sure, U

    2012-09-01

    Freehand three-dimensional ultrasound imaging (3D-US) is increasingly used in image-guided surgery. During image acquisition, a set of B-scans is acquired that is distributed in a non-parallel manner over the area of interest. Reconstructing these images into a regular array allows 3D visualization. However, the reconstruction process may introduce artefacts and may therefore reduce image quality. The aim of the study is to compare different algorithms with respect to image quality and diagnostic value for image guidance in neurosurgery. 3D-US data sets were acquired during surgery of various intracerebral lesions using an integrated ultrasound-navigation device. They were stored for post-hoc evaluation. Five different reconstruction algorithms, a standard multiplanar reconstruction with interpolation (MPR), a pixel nearest neighbour method (PNN), a voxel nearest neighbour method (VNN) and two voxel based distance-weighted algorithms (VNN2 and DW) were tested with respect to image quality and artefact formation. The capability of the algorithm to fill gaps within the sample volume was investigated and a clinical evaluation with respect to the diagnostic value of the reconstructed images was performed. MPR was significantly worse than the other algorithms in filling gaps. In an image subtraction test, VNN2 and DW reliably reconstructed images even if large amounts of data were missing. However, the quality of the reconstruction improved, if data acquisition was performed in a structured manner. When evaluating the diagnostic value of reconstructed axial, sagittal and coronal views, VNN2 and DW were judged to be significantly better than MPR and VNN. VNN2 and DW could be identified as robust algorithms that generate reconstructed US images with a high diagnostic value. These algorithms improve the utility and reliability of 3D-US imaging during intraoperative navigation. Copyright © 2012 John Wiley & Sons, Ltd.

  4. A parallel implementation of a maximum entropy reconstruction algorithm for PET images in a visual language

    International Nuclear Information System (INIS)

    Bastiens, K.; Lemahieu, I.

    1994-01-01

    The application of a maximum entropy reconstruction algorithm to PET images requires a lot of computing resources. A parallel implementation could seriously reduce the execution time. However, programming a parallel application is still a non trivial task, needing specialized people. In this paper a programming environment based on a visual programming language is used for a parallel implementation of the reconstruction algorithm. This programming environment allows less experienced programmers to use the performance of multiprocessor systems. (authors)

  5. A parallel implementation of a maximum entropy reconstruction algorithm for PET images in a visual language

    Energy Technology Data Exchange (ETDEWEB)

    Bastiens, K; Lemahieu, I [University of Ghent - ELIS Department, St. Pietersnieuwstraat 41, B-9000 Ghent (Belgium)

    1994-12-31

    The application of a maximum entropy reconstruction algorithm to PET images requires a lot of computing resources. A parallel implementation could seriously reduce the execution time. However, programming a parallel application is still a non trivial task, needing specialized people. In this paper a programming environment based on a visual programming language is used for a parallel implementation of the reconstruction algorithm. This programming environment allows less experienced programmers to use the performance of multiprocessor systems. (authors). 8 refs, 3 figs, 1 tab.

  6. A practical exact maximum compatibility algorithm for reconstruction of recent evolutionary history

    OpenAIRE

    Cherry, Joshua L.

    2017-01-01

    Background Maximum compatibility is a method of phylogenetic reconstruction that is seldom applied to molecular sequences. It may be ideal for certain applications, such as reconstructing phylogenies of closely-related bacteria on the basis of whole-genome sequencing. Results Here I present an algorithm that rapidly computes phylogenies according to a compatibility criterion. Although based on solutions to the maximum clique problem, this algorithm deals properly with ambiguities in the data....

  7. Array diagnostics, spatial resolution, and filtering of undesired radiation with the 3D reconstruction algorithm

    DEFF Research Database (Denmark)

    Cappellin, C.; Pivnenko, Sergey; Jørgensen, E.

    2013-01-01

    This paper focuses on three important features of the 3D reconstruction algorithm of DIATOOL: the identification of array elements improper functioning and failure, the obtainable spatial resolution of the reconstructed fields and currents, and the filtering of undesired radiation and scattering...

  8. An efficient algorithm for MR image reconstruction and compression

    International Nuclear Information System (INIS)

    Wang, Hang; Rosenfeld, D.; Braun, M.; Yan, Hong

    1992-01-01

    In magnetic resonance imaging (MRI), the original data are sampled in the spatial frequency domain. The sampled data thus constitute a set of discrete Fourier transform (DFT) coefficients. The image is usually reconstructed by taking inverse DFT. The image data may then be efficiently compressed using the discrete cosine transform (DCT). A method of using DCT to treat the sampled data is presented which combines two procedures, image reconstruction and data compression. This method may be particularly useful in medical picture archiving and communication systems where both image reconstruction and compression are important issues. 11 refs., 3 figs

  9. Aitken extrapolation and epsilon algorithm for an accelerated solution of weakly singular nonlinear Volterra integral equations

    International Nuclear Information System (INIS)

    Mesgarani, H; Parmour, P; Aghazadeh, N

    2010-01-01

    In this paper, we apply Aitken extrapolation and epsilon algorithm as acceleration technique for the solution of a weakly singular nonlinear Volterra integral equation of the second kind. In this paper, based on Tao and Yong (2006 J. Math. Anal. Appl. 324 225-37.) the integral equation is solved by Navot's quadrature formula. Also, Tao and Yong (2006) for the first time applied Richardson extrapolation to accelerating convergence for the weakly singular nonlinear Volterra integral equations of the second kind. To our knowledge, this paper may be the first attempt to apply Aitken extrapolation and epsilon algorithm for the weakly singular nonlinear Volterra integral equations of the second kind.

  10. Accurate 3D reconstruction by a new PDS-OSEM algorithm for HRRT

    International Nuclear Information System (INIS)

    Chen, Tai-Been; Horng-Shing Lu, Henry; Kim, Hang-Keun; Son, Young-Don; Cho, Zang- Hee

    2014-01-01

    State-of-the-art high resolution research tomography (HRRT) provides high resolution PET images with full 3D human brain scanning. But, a short time frame in dynamic study causes many problems related to the low counts in the acquired data. The PDS-OSEM algorithm was proposed to reconstruct the HRRT image with a high signal-to-noise ratio that provides accurate information for dynamic data. The new algorithm was evaluated by simulated image, empirical phantoms, and real human brain data. Meanwhile, the time activity curve was adopted to validate a reconstructed performance of dynamic data between PDS-OSEM and OP-OSEM algorithms. According to simulated and empirical studies, the PDS-OSEM algorithm reconstructs images with higher quality, higher accuracy, less noise, and less average sum of square error than those of OP-OSEM. The presented algorithm is useful to provide quality images under the condition of low count rates in dynamic studies with a short scan time. - Highlights: • The PDS-OSEM reconstructs PET images with iteratively compensating random and scatter corrections from prompt sinogram. • The PDS-OSEM can reconstruct PET images with low count data and data contaminations. • The PDS-OSEM provides less noise and higher quality of reconstructed images than those of OP-OSEM algorithm in statistical sense

  11. The Reach-and-Evolve Algorithm for Reachability Analysis of Nonlinear Dynamical Systems

    NARCIS (Netherlands)

    P.J. Collins (Pieter); A. Goldsztejn

    2008-01-01

    htmlabstractThis paper introduces a new algorithm dedicated to the rigorous reachability analysis of nonlinear dynamical systems. The algorithm is initially presented in the context of discrete time dynamical systems, and then extended to continuous time dynamical systems driven by ODEs. In

  12. Motion Cueing Algorithm Development: Human-Centered Linear and Nonlinear Approaches

    Science.gov (United States)

    Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.

    2005-01-01

    While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. Prior research identified viable features from two algorithms: the nonlinear "adaptive algorithm", and the "optimal algorithm" that incorporates human vestibular models. A novel approach to motion cueing, the "nonlinear algorithm" is introduced that combines features from both approaches. This algorithm is formulated by optimal control, and incorporates a new integrated perception model that includes both visual and vestibular sensation and the interaction between the stimuli. Using a time-varying control law, the matrix Riccati equation is updated in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. The neurocomputing approach was crucial in that the number of presentations of an input vector could be reduced to meet the real time requirement without degrading the quality of the motion cues.

  13. Quasi Gradient Projection Algorithm for Sparse Reconstruction in Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Xin Meng

    2014-02-01

    Full Text Available Compressed sensing is a novel signal sampling theory under the condition that the signal is sparse or compressible. The existing recovery algorithms based on the gradient projection can either need prior knowledge or recovery the signal poorly. In this paper, a new algorithm based on gradient projection is proposed, which is referred as Quasi Gradient Projection. The algorithm presented quasi gradient direction and two step sizes schemes along this direction. The algorithm doesn’t need any prior knowledge of the original signal. Simulation results demonstrate that the presented algorithm cans recovery the signal more correctly than GPSR which also don’t need prior knowledge. Meanwhile, the algorithm has a lower computation complexity.

  14. Comparative efficiencies of three parallel algorithms for nonlinear ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    This algorithm is better suited for large size problems on coarse ... and reliable time integration algorithms for solving the second-order dynamic equilibrium equations that arise due ... Programming models required to take advantage of the parallel and distributed ..... In addition, MPI added the concept of a 'virtual topology'.

  15. Evaluation of digital breast tomosynthesis reconstruction algorithms using synchrotron radiation in standard geometry

    International Nuclear Information System (INIS)

    Bliznakova, K.; Kolitsi, Z.; Speller, R. D.; Horrocks, J. A.; Tromba, G.; Pallikarakis, N.

    2010-01-01

    Purpose: In this article, the image quality of reconstructed volumes by four algorithms for digital tomosynthesis, applied in the case of breast, is investigated using synchrotron radiation. Methods: An angular data set of 21 images of a complex phantom with heterogeneous tissue-mimicking background was obtained using the SYRMEP beamline at ELETTRA Synchrotron Light Laboratory, Trieste, Italy. The irradiated part was reconstructed using the multiple projection algorithm (MPA) and the filtered backprojection with ramp followed by hamming windows (FBR-RH) and filtered backprojection with ramp (FBP-R). Additionally, an algorithm for reducing the noise in reconstructed planes based on noise mask subtraction from the planes of the originally reconstructed volume using MPA (MPA-NM) has been further developed. The reconstruction techniques were evaluated in terms of calculations and comparison of the contrast-to-noise ratio (CNR) and artifact spread function. Results: It was found that the MPA-NM resulted in higher CNR, comparable with the CNR of FBP-RH for high contrast details. Low contrast objects are well visualized and characterized by high CNR using the simple MPA and the MPA-NM. In addition, the image quality of the reconstructed features in terms of CNR and visual appearance as a function of the initial number of projection images and the reconstruction arc was carried out. Slices reconstructed with more input projection images result in less reconstruction artifacts and higher detail CNR, while those reconstructed from projection images acquired in reduced angular range causes pronounced streak artifacts. Conclusions: Of the reconstruction algorithms implemented, the MPA-NM and MPA are a good choice for detecting low contrast objects, while the FBP-RH, FBP-R, and MPA-NM provide high CNR and well outlined edges in case of microcalcifications.

  16. Parallel processors and nonlinear structural dynamics algorithms and software

    Science.gov (United States)

    Belytschko, Ted

    1989-01-01

    A nonlinear structural dynamics finite element program was developed to run on a shared memory multiprocessor with pipeline processors. The program, WHAMS, was used as a framework for this work. The program employs explicit time integration and has the capability to handle both the nonlinear material behavior and large displacement response of 3-D structures. The elasto-plastic material model uses an isotropic strain hardening law which is input as a piecewise linear function. Geometric nonlinearities are handled by a corotational formulation in which a coordinate system is embedded at the integration point of each element. Currently, the program has an element library consisting of a beam element based on Euler-Bernoulli theory and trianglar and quadrilateral plate element based on Mindlin theory.

  17. NONLINEAR FILTER METHOD OF GPS DYNAMIC POSITIONING BASED ON BANCROFT ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    ZHANGQin; TAOBen-zao; ZHAOChao-ying; WANGLi

    2005-01-01

    Because of the ignored items after linearization, the extended Kalman filter (EKF) becomes a form of suboptimal gradient descent algorithm. The emanative tendency exists in GPS solution when the filter equations are ill-posed. The deviation in the estimation cannot be avoided. Furthermore, the true solution may be lost in pseudorange positioning because the linearized pseudorange equations are partial solutions. To solve the above problems in GPS dynamic positioning by using EKF, a closed-form Kalman filter method called the two-stage algorithm is presented for the nonlinear algebraic solution of GPS dynamic positioning based on the global nonlinear least squares closed algorithm--Bancroft numerical algorithm of American. The method separates the spatial parts from temporal parts during processing the GPS filter problems, and solves the nonlinear GPS dynamic positioning, thus getting stable and reliable dynamic positioning solutions.

  18. TV-constrained incremental algorithms for low-intensity CT image reconstruction

    DEFF Research Database (Denmark)

    Rose, Sean D.; Andersen, Martin S.; Sidky, Emil Y.

    2015-01-01

    constraint can be guided by an image reconstructed by filtered backprojection (FBP). We apply our algorithm to low-dose synchrotron X-ray CT data from the Advanced Photon Source (APS) at Argonne National Labs (ANL) to demonstrate its potential utility. We find that the algorithm provides a means of edge-preserving...

  19. A First-Order Primal-Dual Reconstruction Algorithm for Few-View SPECT

    DEFF Research Database (Denmark)

    Wolf, Paul; Jørgensen, Jakob Heide; Gilat-Schmidt, Taly

    2012-01-01

    A sparsity-exploiting algorithm intended for few-view Single Photon Emission Computed Tomography (SPECT) reconstruction is proposed and characterized. The algorithm models the object as piecewise constant subject to a blurring operation. Monte Carlo simulations were performed to provide more proj...

  20. Reconstruction of a uniform star object from interior x-ray data: uniqueness, stability and algorithm

    International Nuclear Information System (INIS)

    Van Gompel, Gert; Batenburg, K Joost; Defrise, Michel

    2009-01-01

    In this paper we consider the problem of reconstructing a two-dimensional star-shaped object of uniform density from truncated projections of the object. In particular, we prove that such an object is uniquely determined by its parallel projections sampled over a full π angular range with a detector that only covers an interior field-of-view, even if the density of the object is not known a priori. We analyze the stability of this reconstruction problem and propose a reconstruction algorithm. Simulation experiments demonstrate that the algorithm is capable of reconstructing a star-shaped object from interior data, even if the interior region is much smaller than the size of the object. In addition, we present results for a heuristic reconstruction algorithm called DART, that was recently proposed. The heuristic method is shown to yield accurate reconstructions if the density is known in advance, and to have a very good stability in the presence of noisy projection data. Finally, the performance of the DBP and DART algorithms is illustrated for the reconstruction of real micro-CT data of a diamond

  1. Acceleration of the direct reconstruction of linear parametric images using nested algorithms

    International Nuclear Information System (INIS)

    Wang Guobao; Qi Jinyi

    2010-01-01

    Parametric imaging using dynamic positron emission tomography (PET) provides important information for biological research and clinical diagnosis. Indirect and direct methods have been developed for reconstructing linear parametric images from dynamic PET data. Indirect methods are relatively simple and easy to implement because the image reconstruction and kinetic modeling are performed in two separate steps. Direct methods estimate parametric images directly from raw PET data and are statistically more efficient. However, the convergence rate of direct algorithms can be slow due to the coupling between the reconstruction and kinetic modeling. Here we present two fast gradient-type algorithms for direct reconstruction of linear parametric images. The new algorithms decouple the reconstruction and linear parametric modeling at each iteration by employing the principle of optimization transfer. Convergence speed is accelerated by running more sub-iterations of linear parametric estimation because the computation cost of the linear parametric modeling is much less than that of the image reconstruction. Computer simulation studies demonstrated that the new algorithms converge much faster than the traditional expectation maximization (EM) and the preconditioned conjugate gradient algorithms for dynamic PET.

  2. A tracking algorithm for the reconstruction of the daughters of long-lived particles in LHCb

    CERN Document Server

    Dendek, Adam Mateusz

    2018-01-01

    A tracking algorithm for the reconstruction of the daughters of long-lived particles in LHCb 5 Jun 2018, 16:00 1h 30m Library, Centro San Domenico () LHC experiments Posters session Speaker Katharina Mueller (Universitaet Zuerich (CH)) Description The LHCb experiment at CERN operates a high precision and robust tracking system to reach its physics goals, including precise measurements of CP-violation phenomena in the heavy flavour quark sector and searches for New Physics beyond the Standard Model. The track reconstruction procedure is performed by a number of algorithms. One of these, PatLongLivedTracking, is optimised to reconstruct "downstream tracks", which are tracks originating from decays outside the LHCb vertex detector of long-lived particles, such as Ks or Λ0. After an overview of the LHCb tracking system, we provide a detailed description of the LHCb downstream track reconstruction algorithm. Its computational intelligence part is described in details, including the adaptation of the employed...

  3. A reconstruction algorithm for coherent scatter computed tomography based on filtered back-projection

    International Nuclear Information System (INIS)

    Stevendaal, U. van; Schlomka, J.-P.; Harding, A.; Grass, M.

    2003-01-01

    Coherent scatter computed tomography (CSCT) is a reconstructive x-ray imaging technique that yields the spatially resolved coherent-scatter form factor of the investigated object. Reconstruction from coherently scattered x-rays is commonly done using algebraic reconstruction techniques (ART). In this paper, we propose an alternative approach based on filtered back-projection. For the first time, a three-dimensional (3D) filtered back-projection technique using curved 3D back-projection lines is applied to two-dimensional coherent scatter projection data. The proposed algorithm is tested with simulated projection data as well as with projection data acquired with a demonstrator setup similar to a multi-line CT scanner geometry. While yielding comparable image quality as ART reconstruction, the modified 3D filtered back-projection algorithm is about two orders of magnitude faster. In contrast to iterative reconstruction schemes, it has the advantage that subfield-of-view reconstruction becomes feasible. This allows a selective reconstruction of the coherent-scatter form factor for a region of interest. The proposed modified 3D filtered back-projection algorithm is a powerful reconstruction technique to be implemented in a CSCT scanning system. This method gives coherent scatter CT the potential of becoming a competitive modality for medical imaging or nondestructive testing

  4. Reconstruction algorithm medical imaging DRR; Algoritmo de construccion de imagenes medicas DRR

    Energy Technology Data Exchange (ETDEWEB)

    Estrada Espinosa, J. C.

    2013-07-01

    The method of reconstruction for digital radiographic Imaging (DRR), is based on two orthogonal images, on the dorsal and lateral decubitus position of the simulation. DRR images are reconstructed with an algorithm that simulates running a conventional X-ray, a single rendition team, beam emitted is not divergent, in this case, the rays are considered to be parallel in the image reconstruction DRR, for this purpose, it is necessary to use all the values of the units (HU) hounsfield of each voxel in all axial cuts that form the study TC, finally obtaining the reconstructed image DRR performing a transformation from 3D to 2D. (Author)

  5. Practical algorithms for simulation and reconstruction of digital in-line holograms.

    Science.gov (United States)

    Latychevskaia, Tatiana; Fink, Hans-Werner

    2015-03-20

    Here we present practical methods for simulation and reconstruction of in-line digital holograms recorded with plane and spherical waves. The algorithms described here are applicable to holographic imaging of an object exhibiting absorption as well as phase-shifting properties. Optimal parameters, related to distances, sampling rate, and other factors for successful simulation and reconstruction of holograms are evaluated and criteria for the achievable resolution are worked out. Moreover, we show that the numerical procedures for the reconstruction of holograms recorded with plane and spherical waves are identical under certain conditions. Experimental examples of holograms and their reconstructions are also discussed.

  6. TauFinder: A Reconstruction Algorithm for τ Leptons at Linear Colliders

    CERN Document Server

    Muennich, A

    2010-01-01

    An algorithm to find and reconstruct τ leptons was developed, which targets τs that produce high energetic, low multiplicity jets as can be observed at multi TeV e+e− collisions. However, it makes no assumption about the decay of the τ candidate thus finding hadronic as well as leptonic decays. The algorithm delivers a reconstructed τ as seen by the detector. This note provides an overview of the algorithm, the cuts used and gives some evaluation of the performance. A first implementation is available within the ILC software framework as a MAR- LIN processor . Appendix A is intended as a short user manual.

  7. A BPF-FBP tandem algorithm for image reconstruction in reverse helical cone-beam CT

    International Nuclear Information System (INIS)

    Cho, Seungryong; Xia, Dan; Pellizzari, Charles A.; Pan Xiaochuan

    2010-01-01

    Purpose: Reverse helical cone-beam computed tomography (CBCT) is a scanning configuration for potential applications in image-guided radiation therapy in which an accurate anatomic image of the patient is needed for image-guidance procedures. The authors previously developed an algorithm for image reconstruction from nontruncated data of an object that is completely within the reverse helix. The purpose of this work is to develop an image reconstruction approach for reverse helical CBCT of a long object that extends out of the reverse helix and therefore constitutes data truncation. Methods: The proposed approach comprises of two reconstruction steps. In the first step, a chord-based backprojection-filtration (BPF) algorithm reconstructs a volumetric image of an object from the original cone-beam data. Because there exists a chordless region in the middle of the reverse helix, the image obtained in the first step contains an unreconstructed central-gap region. In the second step, the gap region is reconstructed by use of a Pack-Noo-formula-based filteredbackprojection (FBP) algorithm from the modified cone-beam data obtained by subtracting from the original cone-beam data the reprojection of the image reconstructed in the first step. Results: The authors have performed numerical studies to validate the proposed approach in image reconstruction from reverse helical cone-beam data. The results confirm that the proposed approach can reconstruct accurate images of a long object without suffering from data-truncation artifacts or cone-angle artifacts. Conclusions: They developed and validated a BPF-FBP tandem algorithm to reconstruct images of a long object from reverse helical cone-beam data. The chord-based BPF algorithm was utilized for converting the long-object problem into a short-object problem. The proposed approach is applicable to other scanning configurations such as reduced circular sinusoidal trajectories.

  8. Reconstruction of a digital core containing clay minerals based on a clustering algorithm

    Science.gov (United States)

    He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling

    2017-10-01

    It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K -means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.

  9. Reconstruction of a digital core containing clay minerals based on a clustering algorithm.

    Science.gov (United States)

    He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling

    2017-10-01

    It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K-means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.

  10. A three-dimensional reconstruction algorithm for an inverse-geometry volumetric CT system

    International Nuclear Information System (INIS)

    Schmidt, Taly Gilat; Fahrig, Rebecca; Pelc, Norbert J.

    2005-01-01

    An inverse-geometry volumetric computed tomography (IGCT) system has been proposed capable of rapidly acquiring sufficient data to reconstruct a thick volume in one circular scan. The system uses a large-area scanned source opposite a smaller detector. The source and detector have the same extent in the axial, or slice, direction, thus providing sufficient volumetric sampling and avoiding cone-beam artifacts. This paper describes a reconstruction algorithm for the IGCT system. The algorithm first rebins the acquired data into two-dimensional (2D) parallel-ray projections at multiple tilt and azimuthal angles, followed by a 3D filtered backprojection. The rebinning step is performed by gridding the data onto a Cartesian grid in a 4D projection space. We present a new method for correcting the gridding error caused by the finite and asymmetric sampling in the neighborhood of each output grid point in the projection space. The reconstruction algorithm was implemented and tested on simulated IGCT data. Results show that the gridding correction reduces the gridding errors to below one Hounsfield unit. With this correction, the reconstruction algorithm does not introduce significant artifacts or blurring when compared to images reconstructed from simulated 2D parallel-ray projections. We also present an investigation of the noise behavior of the method which verifies that the proposed reconstruction algorithm utilizes cross-plane rays as efficiently as in-plane rays and can provide noise comparable to an in-plane parallel-ray geometry for the same number of photons. Simulations of a resolution test pattern and the modulation transfer function demonstrate that the IGCT system, using the proposed algorithm, is capable of 0.4 mm isotropic resolution. The successful implementation of the reconstruction algorithm is an important step in establishing feasibility of the IGCT system

  11. Optimization, evaluation, and comparison of standard algorithms for image reconstruction with the VIP-PET.

    Science.gov (United States)

    Mikhaylova, E; Kolstein, M; De Lorenzo, G; Chmeissani, M

    2014-07-01

    A novel positron emission tomography (PET) scanner design based on a room-temperature pixelated CdTe solid-state detector is being developed within the framework of the Voxel Imaging PET (VIP) Pathfinder project [1]. The simulation results show a great potential of the VIP to produce high-resolution images even in extremely challenging conditions such as the screening of a human head [2]. With unprecedented high channel density (450 channels/cm 3 ) image reconstruction is a challenge. Therefore optimization is needed to find the best algorithm in order to exploit correctly the promising detector potential. The following reconstruction algorithms are evaluated: 2-D Filtered Backprojection (FBP), Ordered Subset Expectation Maximization (OSEM), List-Mode OSEM (LM-OSEM), and the Origin Ensemble (OE) algorithm. The evaluation is based on the comparison of a true image phantom with a set of reconstructed images obtained by each algorithm. This is achieved by calculation of image quality merit parameters such as the bias, the variance and the mean square error (MSE). A systematic optimization of each algorithm is performed by varying the reconstruction parameters, such as the cutoff frequency of the noise filters and the number of iterations. The region of interest (ROI) analysis of the reconstructed phantom is also performed for each algorithm and the results are compared. Additionally, the performance of the image reconstruction methods is compared by calculating the modulation transfer function (MTF). The reconstruction time is also taken into account to choose the optimal algorithm. The analysis is based on GAMOS [3] simulation including the expected CdTe and electronic specifics.

  12. PRESS-based EFOR algorithm for the dynamic parametrical modeling of nonlinear MDOF systems

    Science.gov (United States)

    Liu, Haopeng; Zhu, Yunpeng; Luo, Zhong; Han, Qingkai

    2017-09-01

    In response to the identification problem concerning multi-degree of freedom (MDOF) nonlinear systems, this study presents the extended forward orthogonal regression (EFOR) based on predicted residual sums of squares (PRESS) to construct a nonlinear dynamic parametrical model. The proposed parametrical model is based on the non-linear autoregressive with exogenous inputs (NARX) model and aims to explicitly reveal the physical design parameters of the system. The PRESS-based EFOR algorithm is proposed to identify such a model for MDOF systems. By using the algorithm, we built a common-structured model based on the fundamental concept of evaluating its generalization capability through cross-validation. The resulting model aims to prevent over-fitting with poor generalization performance caused by the average error reduction ratio (AERR)-based EFOR algorithm. Then, a functional relationship is established between the coefficients of the terms and the design parameters of the unified model. Moreover, a 5-DOF nonlinear system is taken as a case to illustrate the modeling of the proposed algorithm. Finally, a dynamic parametrical model of a cantilever beam is constructed from experimental data. Results indicate that the dynamic parametrical model of nonlinear systems, which depends on the PRESS-based EFOR, can accurately predict the output response, thus providing a theoretical basis for the optimal design of modeling methods for MDOF nonlinear systems.

  13. A Fourier reconstruction algorithm with constant attenuation compensation using 1800 acquisition data for SPECT

    International Nuclear Information System (INIS)

    Tang Qiulin; Zeng, Gengsheng L; Gullberg, Grant T

    2007-01-01

    In this paper, we develop an approximate analytical reconstruction algorithm that compensates for uniform attenuation in 2D parallel-beam SPECT with a 180 0 acquisition. This new algorithm is in the form of a direct Fourier reconstruction. The complex variable central slice theorem is used to derive this algorithm. The image is reconstructed with the following steps: first, the attenuated projection data acquired over 180 deg. are extended to 360 deg. and the value for the uniform attenuator is changed to a negative value. The Fourier transform (FT) of the image in polar coordinates is obtained from the Fourier transform of an analytic function interpolated from an extension of the projection data according to the complex central slice theorem. Finally, the image is obtained by performing a 2D inverse Fourier transform. Computer simulations and comparison studies with a 360 deg. full-scan algorithm are provided

  14. A study of reconstruction artifacts in cone beam tomography using filtered backprojection and iterative EM algorithms

    International Nuclear Information System (INIS)

    Zeng, G.L.; Gullberg, G.T.

    1990-01-01

    Reconstruction artifacts in cone beam tomography are studied for filtered backprojection (Feldkamp) and iterative EM algorithms. The filtered backprojection algorithm uses a voxel-driven, interpolated backprojection to reconstruct the cone beam data; whereas, the iterative EM algorithm performs ray-driven projection and backprojection operations for each iteration. Two weight in schemes for the projection and backprojection operations in the EM algorithm are studied. One weights each voxel by the length of the ray through the voxel and the other equates the value of a voxel to the functional value of the midpoint of the line intersecting the voxel, which is obtained by interpolating between eight neighboring voxels. Cone beam reconstruction artifacts such as rings, bright vertical extremities, and slice-to slice cross talk are not found with parallel beam and fan beam geometries

  15. A quasi-Newton algorithm for large-scale nonlinear equations

    Directory of Open Access Journals (Sweden)

    Linghua Huang

    2017-02-01

    Full Text Available Abstract In this paper, the algorithm for large-scale nonlinear equations is designed by the following steps: (i a conjugate gradient (CG algorithm is designed as a sub-algorithm to obtain the initial points of the main algorithm, where the sub-algorithm’s initial point does not have any restrictions; (ii a quasi-Newton algorithm with the initial points given by sub-algorithm is defined as main algorithm, where a new nonmonotone line search technique is presented to get the step length α k $\\alpha_{k}$ . The given nonmonotone line search technique can avoid computing the Jacobian matrix. The global convergence and the 1 + q $1+q$ -order convergent rate of the main algorithm are established under suitable conditions. Numerical results show that the proposed method is competitive with a similar method for large-scale problems.

  16. Tau Reconstruction, Identification Algorithms and Performance in ATLAS

    DEFF Research Database (Denmark)

    Simonyan, M.

    2013-01-01

    identification of hadronically decaying tau leptons is achieved by using detailed information from tracking and calorimeter detector components. Variables describing the properties of calorimeter energy deposits and track reconstruction within tau candidates are combined in multi-variate discriminants...... by investigating single hadron calorimeter response, as well as kinematic distributions in Z¿ tt events....

  17. Algorithms For Phylogeny Reconstruction In a New Mathematical Model

    NARCIS (Netherlands)

    Lenzini, Gabriele; Marianelli, Silvia

    1997-01-01

    The evolutionary history of a set of species is represented by a tree called phylogenetic tree or phylogeny. Its structure depends on precise biological assumptions about the evolution of species. Problems related to phylogeny reconstruction (i.e., finding a tree representation of information

  18. 3D noise power spectrum applied on clinical MDCT scanners: effects of reconstruction algorithms and reconstruction filters

    Science.gov (United States)

    Miéville, Frédéric A.; Bolard, Gregory; Benkreira, Mohamed; Ayestaran, Paul; Gudinchet, François; Bochud, François; Verdun, Francis R.

    2011-03-01

    The noise power spectrum (NPS) is the reference metric for understanding the noise content in computed tomography (CT) images. To evaluate the noise properties of clinical multidetector (MDCT) scanners, local 2D and 3D NPSs were computed for different acquisition reconstruction parameters. A 64- and a 128-MDCT scanners were employed. Measurements were performed on a water phantom in axial and helical acquisition modes. CT dose index was identical for both installations. Influence of parameters such as the pitch, the reconstruction filter (soft, standard and bone) and the reconstruction algorithm (filtered-back projection (FBP), adaptive statistical iterative reconstruction (ASIR)) were investigated. Images were also reconstructed in the coronal plane using a reformat process. Then 2D and 3D NPS methods were computed. In axial acquisition mode, the 2D axial NPS showed an important magnitude variation as a function of the z-direction when measured at the phantom center. In helical mode, a directional dependency with lobular shape was observed while the magnitude of the NPS was kept constant. Important effects of the reconstruction filter, pitch and reconstruction algorithm were observed on 3D NPS results for both MDCTs. With ASIR, a reduction of the NPS magnitude and a shift of the NPS peak to the low frequency range were visible. 2D coronal NPS obtained from the reformat images was impacted by the interpolation when compared to 2D coronal NPS obtained from 3D measurements. The noise properties of volume measured in last generation MDCTs was studied using local 3D NPS metric. However, impact of the non-stationarity noise effect may need further investigations.

  19. Controller Parameter Optimization for Nonlinear Systems Using Enhanced Bacteria Foraging Algorithm

    Directory of Open Access Journals (Sweden)

    V. Rajinikanth

    2012-01-01

    Full Text Available An enhanced bacteria foraging optimization (EBFO algorithm-based Proportional + integral + derivative (PID controller tuning is proposed for a class of nonlinear process models. The EBFO algorithm is a modified form of standard BFO algorithm. A multiobjective performance index is considered to guide the EBFO algorithm for discovering the best possible value of controller parameters. The efficiency of the proposed scheme has been validated through a comparative study with classical BFO, adaptive BFO, PSO, and GA based controller tuning methods proposed in the literature. The proposed algorithm is tested in real time on a nonlinear spherical tank system. The real-time results show that, EBFO tuned PID controller gives a smooth response for setpoint tracking performance.

  20. New human-centered linear and nonlinear motion cueing algorithms for control of simulator motion systems

    Science.gov (United States)

    Telban, Robert J.

    While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. To address this, new human-centered motion cueing algorithms were developed. A revised "optimal algorithm" uses time-invariant filters developed by optimal control, incorporating human vestibular system models. The "nonlinear algorithm" is a novel approach that is also formulated by optimal control, but can also be updated in real time. It incorporates a new integrated visual-vestibular perception model that includes both visual and vestibular sensation and the interaction between the stimuli. A time-varying control law requires the matrix Riccati equation to be solved in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. As a result of unsatisfactory sensation, an augmented turbulence cue was added to the vertical mode for both the optimal and nonlinear algorithms. The relative effectiveness of the algorithms, in simulating aircraft maneuvers, was assessed with an eleven-subject piloted performance test conducted on the NASA Langley Visual Motion Simulator (VMS). Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input

  1. A New Track Reconstruction Algorithm suitable for Parallel Processing based on Hit Triplets and Broken Lines

    Directory of Open Access Journals (Sweden)

    Schöning André

    2016-01-01

    Full Text Available Track reconstruction in high track multiplicity environments at current and future high rate particle physics experiments is a big challenge and very time consuming. The search for track seeds and the fitting of track candidates are usually the most time consuming steps in the track reconstruction. Here, a new and fast track reconstruction method based on hit triplets is proposed which exploits a three-dimensional fit model including multiple scattering and hit uncertainties from the very start, including the search for track seeds. The hit triplet based reconstruction method assumes a homogeneous magnetic field which allows to give an analytical solutions for the triplet fit result. This method is highly parallelizable, needs fewer operations than other standard track reconstruction methods and is therefore ideal for the implementation on parallel computing architectures. The proposed track reconstruction algorithm has been studied in the context of the Mu3e-experiment and a typical LHC experiment.

  2. Volume reconstruction optimization for tomo-PIV algorithms applied to experimental data

    Science.gov (United States)

    Martins, Fabio J. W. A.; Foucaut, Jean-Marc; Thomas, Lionel; Azevedo, Luis F. A.; Stanislas, Michel

    2015-08-01

    Tomographic PIV is a three-component volumetric velocity measurement technique based on the tomographic reconstruction of a particle distribution imaged by multiple camera views. In essence, the performance and accuracy of this technique is highly dependent on the parametric adjustment and the reconstruction algorithm used. Although synthetic data have been widely employed to optimize experiments, the resulting reconstructed volumes might not have optimal quality. The purpose of the present study is to offer quality indicators that can be applied to data samples in order to improve the quality of velocity results obtained by the tomo-PIV technique. The methodology proposed can potentially lead to significantly reduction in the time required to optimize a tomo-PIV reconstruction, also leading to better quality velocity results. Tomo-PIV data provided by a six-camera turbulent boundary-layer experiment were used to optimize the reconstruction algorithms according to this methodology. Velocity statistics measurements obtained by optimized BIMART, SMART and MART algorithms were compared with hot-wire anemometer data and velocity measurement uncertainties were computed. Results indicated that BIMART and SMART algorithms produced reconstructed volumes with equivalent quality as the standard MART with the benefit of reduced computational time.

  3. Volume reconstruction optimization for tomo-PIV algorithms applied to experimental data

    International Nuclear Information System (INIS)

    Martins, Fabio J W A; Foucaut, Jean-Marc; Stanislas, Michel; Thomas, Lionel; Azevedo, Luis F A

    2015-01-01

    Tomographic PIV is a three-component volumetric velocity measurement technique based on the tomographic reconstruction of a particle distribution imaged by multiple camera views. In essence, the performance and accuracy of this technique is highly dependent on the parametric adjustment and the reconstruction algorithm used. Although synthetic data have been widely employed to optimize experiments, the resulting reconstructed volumes might not have optimal quality. The purpose of the present study is to offer quality indicators that can be applied to data samples in order to improve the quality of velocity results obtained by the tomo-PIV technique. The methodology proposed can potentially lead to significantly reduction in the time required to optimize a tomo-PIV reconstruction, also leading to better quality velocity results. Tomo-PIV data provided by a six-camera turbulent boundary-layer experiment were used to optimize the reconstruction algorithms according to this methodology. Velocity statistics measurements obtained by optimized BIMART, SMART and MART algorithms were compared with hot-wire anemometer data and velocity measurement uncertainties were computed. Results indicated that BIMART and SMART algorithms produced reconstructed volumes with equivalent quality as the standard MART with the benefit of reduced computational time. (paper)

  4. An Algorithmic Approach for the Reconstruction of Nasal Skin Defects: Retrospective Analysis of 130 Cases

    Directory of Open Access Journals (Sweden)

    Berrak Akşam

    2016-06-01

    Full Text Available Objective: Most of the malignant cutaneous carcinomas are seen in the nasal region. Reconstruction of nasal defects is challenging because of the unique anatomic properties and complex structure of this region. In this study, we present our algorithm for the nasal skin defects that occurred after malignant skin tumor excisions. Material and Methods: Patients whose nasal skin was reconstructed after malignant skin tumor excision were included in the study. These patients were evaluated by their age, gender, comorbities, tumor location, tumor size, reconstruction type, histopathological diagnosis, and tumor recurrence. Results: A total of 130 patients (70 female, 60 male were evaluated. The average age of the patients was 67.8 years. Tumors were located mostly at the dorsum, alar region, and tip of the nose. When reconstruction methods were evaluated, primary closure was preferred in 14.6% patients, full thickness skin grafts were used in 25.3% patients, and reconstruction with flaps were the choice in 60% patients. Different flaps were used according to the subunits. Mostly, dorsal nasal flaps, bilobed flaps, nasolabial flaps, and forehead flaps were used. Conclusion: The defect-only reconstruction principle was accepted in this study. Previously described subunits, such as the dorsum, tip, alar region, lateral wall, columella, and soft triangles, of the nose were further divided into subregions by their anatomical relations. An algorithm was planned with these sub regions. In nasal skin reconstruction, this algorithm helps in selection the methods for the best results and minimize the complications.

  5. Spectral CT metal artifact reduction with an optimization-based reconstruction algorithm

    Science.gov (United States)

    Gilat Schmidt, Taly; Barber, Rina F.; Sidky, Emil Y.

    2017-03-01

    Metal objects cause artifacts in computed tomography (CT) images. This work investigated the feasibility of a spectral CT method to reduce metal artifacts. Spectral CT acquisition combined with optimization-based reconstruction is proposed to reduce artifacts by modeling the physical effects that cause metal artifacts and by providing the flexibility to selectively remove corrupted spectral measurements in the spectral-sinogram space. The proposed Constrained `One-Step' Spectral CT Image Reconstruction (cOSSCIR) algorithm directly estimates the basis material maps while enforcing convex constraints. The incorporation of constraints on the reconstructed basis material maps is expected to mitigate undersampling effects that occur when corrupted data is excluded from reconstruction. The feasibility of the cOSSCIR algorithm to reduce metal artifacts was investigated through simulations of a pelvis phantom. The cOSSCIR algorithm was investigated with and without the use of a third basis material representing metal. The effects of excluding data corrupted by metal were also investigated. The results demonstrated that the proposed cOSSCIR algorithm reduced metal artifacts and improved CT number accuracy. For example, CT number error in a bright shading artifact region was reduced from 403 HU in the reference filtered backprojection reconstruction to 33 HU using the proposed algorithm in simulation. In the dark shading regions, the error was reduced from 1141 HU to 25 HU. Of the investigated approaches, decomposing the data into three basis material maps and excluding the corrupted data demonstrated the greatest reduction in metal artifacts.

  6. Computed Tomography Image Quality Evaluation of a New Iterative Reconstruction Algorithm in the Abdomen (Adaptive Statistical Iterative Reconstruction-V) a Comparison With Model-Based Iterative Reconstruction, Adaptive Statistical Iterative Reconstruction, and Filtered Back Projection Reconstructions.

    Science.gov (United States)

    Goodenberger, Martin H; Wagner-Bartak, Nicolaus A; Gupta, Shiva; Liu, Xinming; Yap, Ramon Q; Sun, Jia; Tamm, Eric P; Jensen, Corey T

    The purpose of this study was to compare abdominopelvic computed tomography images reconstructed with adaptive statistical iterative reconstruction-V (ASIR-V) with model-based iterative reconstruction (Veo 3.0), ASIR, and filtered back projection (FBP). Abdominopelvic computed tomography scans for 36 patients (26 males and 10 females) were reconstructed using FBP, ASIR (80%), Veo 3.0, and ASIR-V (30%, 60%, 90%). Mean ± SD patient age was 32 ± 10 years with mean ± SD body mass index of 26.9 ± 4.4 kg/m. Images were reviewed by 2 independent readers in a blinded, randomized fashion. Hounsfield unit, noise, and contrast-to-noise ratio (CNR) values were calculated for each reconstruction algorithm for further comparison. Phantom evaluation of low-contrast detectability (LCD) and high-contrast resolution was performed. Adaptive statistical iterative reconstruction-V 30%, ASIR-V 60%, and ASIR 80% were generally superior qualitatively compared with ASIR-V 90%, Veo 3.0, and FBP (P ASIR-V 60% with respective CNR values of 5.54 ± 2.39, 8.78 ± 3.15, and 3.49 ± 1.77 (P ASIR 80% had the best and worst spatial resolution, respectively. Adaptive statistical iterative reconstruction-V 30% and ASIR-V 60% provided the best combination of qualitative and quantitative performance. Adaptive statistical iterative reconstruction 80% was equivalent qualitatively, but demonstrated inferior spatial resolution and LCD.

  7. Linear array implementation of the EM algorithm for PET image reconstruction

    International Nuclear Information System (INIS)

    Rajan, K.; Patnaik, L.M.; Ramakrishna, J.

    1995-01-01

    The PET image reconstruction based on the EM algorithm has several attractive advantages over the conventional convolution back projection algorithms. However, the PET image reconstruction based on the EM algorithm is computationally burdensome for today's single processor systems. In addition, a large memory is required for the storage of the image, projection data, and the probability matrix. Since the computations are easily divided into tasks executable in parallel, multiprocessor configurations are the ideal choice for fast execution of the EM algorithms. In tis study, the authors attempt to overcome these two problems by parallelizing the EM algorithm on a multiprocessor systems. The parallel EM algorithm on a linear array topology using the commercially available fast floating point digital signal processor (DSP) chips as the processing elements (PE's) has been implemented. The performance of the EM algorithm on a 386/387 machine, IBM 6000 RISC workstation, and on the linear array system is discussed and compared. The results show that the computational speed performance of a linear array using 8 DSP chips as PE's executing the EM image reconstruction algorithm is about 15.5 times better than that of the IBM 6000 RISC workstation. The novelty of the scheme is its simplicity. The linear array topology is expandable with a larger number of PE's. The architecture is not dependant on the DSP chip chosen, and the substitution of the latest DSP chip is straightforward and could yield better speed performance

  8. Quantitative analysis of emphysema and airway measurements according to iterative reconstruction algorithms: comparison of filtered back projection, adaptive statistical iterative reconstruction and model-based iterative reconstruction

    International Nuclear Information System (INIS)

    Choo, Ji Yung; Goo, Jin Mo; Park, Chang Min; Park, Sang Joon; Lee, Chang Hyun; Shim, Mi-Suk

    2014-01-01

    To evaluate filtered back projection (FBP) and two iterative reconstruction (IR) algorithms and their effects on the quantitative analysis of lung parenchyma and airway measurements on computed tomography (CT) images. Low-dose chest CT obtained in 281 adult patients were reconstructed using three algorithms: FBP, adaptive statistical IR (ASIR) and model-based IR (MBIR). Measurements of each dataset were compared: total lung volume, emphysema index (EI), airway measurements of the lumen and wall area as well as average wall thickness. Accuracy of airway measurements of each algorithm was also evaluated using an airway phantom. EI using a threshold of -950 HU was significantly different among the three algorithms in decreasing order of FBP (2.30 %), ASIR (1.49 %) and MBIR (1.20 %) (P < 0.01). Wall thickness was also significantly different among the three algorithms with FBP (2.09 mm) demonstrating thicker walls than ASIR (2.00 mm) and MBIR (1.88 mm) (P < 0.01). Airway phantom analysis revealed that MBIR showed the most accurate value for airway measurements. The three algorithms presented different EIs and wall thicknesses, decreasing in the order of FBP, ASIR and MBIR. Thus, care should be taken in selecting the appropriate IR algorithm on quantitative analysis of the lung. (orig.)

  9. Quantitative analysis of emphysema and airway measurements according to iterative reconstruction algorithms: comparison of filtered back projection, adaptive statistical iterative reconstruction and model-based iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Ji Yung [Seoul National University Medical Research Center, Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul (Korea, Republic of); Korea University Ansan Hospital, Ansan-si, Department of Radiology, Gyeonggi-do (Korea, Republic of); Goo, Jin Mo; Park, Chang Min; Park, Sang Joon [Seoul National University Medical Research Center, Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul (Korea, Republic of); Seoul National University, Cancer Research Institute, Seoul (Korea, Republic of); Lee, Chang Hyun; Shim, Mi-Suk [Seoul National University Medical Research Center, Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul (Korea, Republic of)

    2014-04-15

    To evaluate filtered back projection (FBP) and two iterative reconstruction (IR) algorithms and their effects on the quantitative analysis of lung parenchyma and airway measurements on computed tomography (CT) images. Low-dose chest CT obtained in 281 adult patients were reconstructed using three algorithms: FBP, adaptive statistical IR (ASIR) and model-based IR (MBIR). Measurements of each dataset were compared: total lung volume, emphysema index (EI), airway measurements of the lumen and wall area as well as average wall thickness. Accuracy of airway measurements of each algorithm was also evaluated using an airway phantom. EI using a threshold of -950 HU was significantly different among the three algorithms in decreasing order of FBP (2.30 %), ASIR (1.49 %) and MBIR (1.20 %) (P < 0.01). Wall thickness was also significantly different among the three algorithms with FBP (2.09 mm) demonstrating thicker walls than ASIR (2.00 mm) and MBIR (1.88 mm) (P < 0.01). Airway phantom analysis revealed that MBIR showed the most accurate value for airway measurements. The three algorithms presented different EIs and wall thicknesses, decreasing in the order of FBP, ASIR and MBIR. Thus, care should be taken in selecting the appropriate IR algorithm on quantitative analysis of the lung. (orig.)

  10. Nonlinear Algorithms for Channel Equalization and Map Symbol Detection.

    Science.gov (United States)

    Giridhar, K.

    The transfer of information through a communication medium invariably results in various kinds of distortion to the transmitted signal. In this dissertation, a feed -forward neural network-based equalizer, and a family of maximum a posteriori (MAP) symbol detectors are proposed for signal recovery in the presence of intersymbol interference (ISI) and additive white Gaussian noise. The proposed neural network-based equalizer employs a novel bit-mapping strategy to handle multilevel data signals in an equivalent bipolar representation. It uses a training procedure to learn the channel characteristics, and at the end of training, the multilevel symbols are recovered from the corresponding inverse bit-mapping. When the channel characteristics are unknown and no training sequences are available, blind estimation of the channel (or its inverse) and simultaneous data recovery is required. Convergence properties of several existing Bussgang-type blind equalization algorithms are studied through computer simulations, and a unique gain independent approach is used to obtain a fair comparison of their rates of convergence. Although simple to implement, the slow convergence of these Bussgang-type blind equalizers make them unsuitable for many high data-rate applications. Rapidly converging blind algorithms based on the principle of MAP symbol-by -symbol detection are proposed, which adaptively estimate the channel impulse response (CIR) and simultaneously decode the received data sequence. Assuming a linear and Gaussian measurement model, the near-optimal blind MAP symbol detector (MAPSD) consists of a parallel bank of conditional Kalman channel estimators, where the conditioning is done on each possible data subsequence that can convolve with the CIR. This algorithm is also extended to the recovery of convolutionally encoded waveforms in the presence of ISI. Since the complexity of the MAPSD algorithm increases exponentially with the length of the assumed CIR, a suboptimal

  11. Analytical fan-beam and cone-beam reconstruction algorithms with uniform attenuation correction for SPECT

    International Nuclear Information System (INIS)

    Tang Qiulin; Zeng, Gengsheng L; Gullberg, Grant T

    2005-01-01

    In this paper, we developed an analytical fan-beam reconstruction algorithm that compensates for uniform attenuation in SPECT. The new fan-beam algorithm is in the form of backprojection first, then filtering, and is mathematically exact. The algorithm is based on three components. The first one is the established generalized central-slice theorem, which relates the 1D Fourier transform of a set of arbitrary data and the 2D Fourier transform of the backprojected image. The second one is the fact that the backprojection of the fan-beam measurements is identical to the backprojection of the parallel measurements of the same object with the same attenuator. The third one is the stable analytical reconstruction algorithm for uniformly attenuated Radon data, developed by Metz and Pan. The fan-beam algorithm is then extended into a cone-beam reconstruction algorithm, where the orbit of the focal point of the cone-beam imaging geometry is a circle. This orbit geometry does not satisfy Tuy's condition and the obtained cone-beam algorithm is an approximation. In the cone-beam algorithm, the cone-beam data are first backprojected into the 3D image volume; then a slice-by-slice filtering is performed. This slice-by-slice filtering procedure is identical to that of the fan-beam algorithm. Both the fan-beam and cone-beam algorithms are efficient, and computer simulations are presented. The new cone-beam algorithm is compared with Bronnikov's cone-beam algorithm, and it is shown to have better performance with noisy projections

  12. Nonlinear PI Control with Adaptive Interaction Algorithm for Multivariable Wastewater Treatment Process

    Directory of Open Access Journals (Sweden)

    S. I. Samsudin

    2014-01-01

    Full Text Available The wastewater treatment plant (WWTP is highly known with the nonlinearity of the control parameters, thus it is difficult to be controlled. In this paper, the enhancement of nonlinear PI controller (ENon-PI to compensate the nonlinearity of the activated sludge WWTP is proposed. The ENon-PI controller is designed by cascading a sector-bounded nonlinear gain to linear PI controller. The rate variation of the nonlinear gain kn is automatically updated based on adaptive interaction algorithm. Initiative to simplify the ENon-PI control structure by adapting kn has been proved by significant improvement under various dynamic influents. More than 30% of integral square error and 14% of integral absolute error are reduced compared to benchmark PI for DO control and nitrate in nitrogen removal control. Better average effluent qualities, less number of effluent violations, and lower aeration energy consumption resulted.

  13. Medical Image Fusion Algorithm Based on Nonlinear Approximation of Contourlet Transform and Regional Features

    Directory of Open Access Journals (Sweden)

    Hui Huang

    2017-01-01

    Full Text Available According to the pros and cons of contourlet transform and multimodality medical imaging, here we propose a novel image fusion algorithm that combines nonlinear approximation of contourlet transform with image regional features. The most important coefficient bands of the contourlet sparse matrix are retained by nonlinear approximation. Low-frequency and high-frequency regional features are also elaborated to fuse medical images. The results strongly suggested that the proposed algorithm could improve the visual effects of medical image fusion and image quality, image denoising, and enhancement.

  14. Algorithms of estimation for nonlinear systems a differential and algebraic viewpoint

    CERN Document Server

    Martínez-Guerra, Rafael

    2017-01-01

    This book acquaints readers with recent developments in dynamical systems theory and its applications, with a strong focus on the control and estimation of nonlinear systems. Several algorithms are proposed and worked out for a set of model systems, in particular so-called input-affine or bilinear systems, which can serve to approximate a wide class of nonlinear control systems. These can either take the form of state space models or be represented by an input-output equation. The approach taken here further highlights the role of modern mathematical and conceptual tools, including differential algebraic theory, observer design for nonlinear systems and generalized canonical forms.

  15. A Spectral Reconstruction Algorithm of Miniature Spectrometer Based on Sparse Optimization and Dictionary Learning.

    Science.gov (United States)

    Zhang, Shang; Dong, Yuhan; Fu, Hongyan; Huang, Shao-Lun; Zhang, Lin

    2018-02-22

    The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer.

  16. Implementation techniques and acceleration of DBPF reconstruction algorithm based on GPGPU for helical cone beam CT

    International Nuclear Information System (INIS)

    Shen Le; Xing Yuxiang

    2010-01-01

    The derivative back-projection filtered algorithm for a helical cone-beam CT is a newly developed exact reconstruction method. Due to its large computational complexity, the reconstruction is rather slow for practical use. General purpose graphic processing unit (GPGPU) is an SIMD paralleled hardware architecture with powerful float-point operation capacity. In this paper,we propose a new method for PI-line choice and sampling grid, and a paralleled PI-line reconstruction algorithm implemented on NVIDIA's Compute Unified Device Architecture (CUDA). Numerical simulation studies are carried out to validate our method. Compared with conventional CPU implementation, the CUDA accelerated method provides images of the same quality with a speedup factor of 318. Optimization strategies for the GPU acceleration are presented. Finally, influence of the parameters of the PI-line samples on the reconstruction speed and image quality is discussed. (authors)

  17. A Spectral Reconstruction Algorithm of Miniature Spectrometer Based on Sparse Optimization and Dictionary Learning

    Science.gov (United States)

    Zhang, Shang; Fu, Hongyan; Huang, Shao-Lun; Zhang, Lin

    2018-01-01

    The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer. PMID:29470406

  18. An ART iterative reconstruction algorithm for computed tomography of diffraction enhanced imaging

    International Nuclear Information System (INIS)

    Wang Zhentian; Zhang Li; Huang Zhifeng; Kang Kejun; Chen Zhiqiang; Fang Qiaoguang; Zhu Peiping

    2009-01-01

    X-ray diffraction enhanced imaging (DEI) has extremely high sensitivity for weakly absorbing low-Z samples in medical and biological fields. In this paper, we propose an Algebra Reconstruction Technique (ART) iterative reconstruction algorithm for computed tomography of diffraction enhanced imaging (DEI-CT). An Ordered Subsets (OS) technique is used to accelerate the ART reconstruction. Few-view reconstruction is also studied, and a partial differential equation (PDE) type filter which has the ability of edge-preserving and denoising is used to improve the image quality and eliminate the artifacts. The proposed algorithm is validated with both the numerical simulations and the experiment at the Beijing synchrotron radiation facility (BSRF). (authors)

  19. A stand-alone track reconstruction algorithm for the scintillating fibre tracker at the LHCb upgrade

    CERN Multimedia

    Quagliani, Renato

    2017-01-01

    The LHCb upgrade detector project foresees the presence of a scintillating fiber tracker (SciFi) to be used during the LHC Run III, starting in 2020. The instantaneous luminosity will be increased up to $2\\times10^{33}$, five times larger than in Run II and a full software event reconstruction will be performed at the full bunch crossing rate by the trigger. The new running conditions, and the tighter timing constraints in the software trigger, represent a big challenge for track reconstruction. This poster presents the design and performance of a novel algorithm that has been developed to reconstruct track segments using solely hits from the SciFi. This algorithm is crucial for the reconstruction of tracks originating from long-lived particles such as $K_{S}^{0}$ and $\\Lambda$ and allows to greatly enhance the physics potential and capabilities of the LHCb upgrade when compared to its previous implementation.

  20. Rapid maximum likelihood ancestral state reconstruction of continuous characters: A rerooting-free algorithm.

    Science.gov (United States)

    Goolsby, Eric W

    2017-04-01

    Ancestral state reconstruction is a method used to study the evolutionary trajectories of quantitative characters on phylogenies. Although efficient methods for univariate ancestral state reconstruction under a Brownian motion model have been described for at least 25 years, to date no generalization has been described to allow more complex evolutionary models, such as multivariate trait evolution, non-Brownian models, missing data, and within-species variation. Furthermore, even for simple univariate Brownian motion models, most phylogenetic comparative R packages compute ancestral states via inefficient tree rerooting and full tree traversals at each tree node, making ancestral state reconstruction extremely time-consuming for large phylogenies. Here, a computationally efficient method for fast maximum likelihood ancestral state reconstruction of continuous characters is described. The algorithm has linear complexity relative to the number of species and outperforms the fastest existing R implementations by several orders of magnitude. The described algorithm is capable of performing ancestral state reconstruction on a 1,000,000-species phylogeny in fewer than 2 s using a standard laptop, whereas the next fastest R implementation would take several days to complete. The method is generalizable to more complex evolutionary models, such as phylogenetic regression, within-species variation, non-Brownian evolutionary models, and multivariate trait evolution. Because this method enables fast repeated computations on phylogenies of virtually any size, implementation of the described algorithm can drastically alleviate the computational burden of many otherwise prohibitively time-consuming tasks requiring reconstruction of ancestral states, such as phylogenetic imputation of missing data, bootstrapping procedures, Expectation-Maximization algorithms, and Bayesian estimation. The described ancestral state reconstruction algorithm is implemented in the Rphylopars

  1. Application aspects of advanced antenna diagnostics with the 3D reconstruction algorithm

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Pivnenko, Sergey

    2015-01-01

    This paper focuses on two important applications of the 3D reconstruction algorithm of the commercial software DIATOOL for antenna diagnostics. The first one is the accurate and detailed identification of array malfunctioning, thanks to the available enhanced spatial resolution of the reconstruct...... fields and currents. The second one is the filtering of the scattering from support structures and feed network leakage. Representative experimental results are presented and guidelines on the recommended measurement parameters for obtaining the best diagnostics results are provided....

  2. Experimental study of stochastic noise propagation in SPECT images reconstructed using the conjugate gradient algorithm.

    Science.gov (United States)

    Mariano-Goulart, D; Fourcade, M; Bernon, J L; Rossi, M; Zanca, M

    2003-01-01

    Thanks to an experimental study based on simulated and physical phantoms, the propagation of the stochastic noise in slices reconstructed using the conjugate gradient algorithm has been analysed versus iterations. After a first increase corresponding to the reconstruction of the signal, the noise stabilises before increasing linearly with iterations. The level of the plateau as well as the slope of the subsequent linear increase depends on the noise in the projection data.

  3. Performances of new reconstruction algorithms for CT-TDLAS (computer tomography-tunable diode laser absorption spectroscopy)

    International Nuclear Information System (INIS)

    Jeon, Min-Gyu; Deguchi, Yoshihiro; Kamimoto, Takahiro; Doh, Deog-Hee; Cho, Gyeong-Rae

    2017-01-01

    Highlights: • The measured data were successfully used for generating absorption spectra. • Four different reconstruction algorithms, ART, MART, SART and SMART were evaluated. • The calculation speed of convergence by the SMART algorithm was the fastest. • SMART was the most reliable algorithm for reconstructing the multiple signals. - Abstract: Recent advent of the tunable lasers made to measure simultaneous temperature and concentration fields of the gases. CT-TDLAS (computed tomography-tunable diode laser absorption spectroscopy) is one the leading techniques for the measurements of temperature and concentration fields of the gases. In CT-TDLAS, the accuracies of the measurement results are strongly dependent upon the reconstruction algorithms. In this study, four different reconstruction algorithms have been tested numerically using experimental data sets measured by thermocouples for combustion fields. Three reconstruction algorithms, MART (multiplicative algebraic reconstruction technique) algorithm, SART (simultaneous algebraic reconstruction technique) algorithm and SMART (simultaneous multiplicative algebraic reconstruction technique) algorithm, are newly proposed for CT-TDLAS in this study. The calculation results obtained by the three algorithms have been compared with previous algorithm, ART (algebraic reconstruction technique) algorithm. Phantom data sets have been generated by the use of thermocouples data obtained in an actual experiment. The data of the Harvard HITRAN table in which the thermo-dynamical properties and the light spectrum of the H_2O are listed were used for the numerical test. The reconstructed temperature and concentration fields were compared with the original HITRAN data, through which the constructed methods are validated. The performances of the four reconstruction algorithms were demonstrated. This method is expected to enhance the practicality of CT-TDLAS.

  4. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging.

    Science.gov (United States)

    Yi, Tianzhu; He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing

    2017-11-07

    This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC). However, the azimuth depth of focusing (ADOF) is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS) algorithm that is proposed in this paper uses the method of series reverse (MSR) to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data.

  5. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging

    Directory of Open Access Journals (Sweden)

    Tianzhu Yi

    2017-11-01

    Full Text Available This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR data processing. Several nonlinear chirp scaling (NLCS algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC. However, the azimuth depth of focusing (ADOF is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS algorithm that is proposed in this paper uses the method of series reverse (MSR to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data.

  6. Performance comparison of attitude determination, attitude estimation, and nonlinear observers algorithms

    Science.gov (United States)

    MOHAMMED, M. A. SI; BOUSSADIA, H.; BELLAR, A.; ADNANE, A.

    2017-01-01

    This paper presents a brief synthesis and useful performance analysis of different attitude filtering algorithms (attitude determination algorithms, attitude estimation algorithms, and nonlinear observers) applied to Low Earth Orbit Satellite in terms of accuracy, convergence time, amount of memory, and computation time. This latter is calculated in two ways, using a personal computer and also using On-board computer 750 (OBC 750) that is being used in many SSTL Earth observation missions. The use of this comparative study could be an aided design tool to the designer to choose from an attitude determination or attitude estimation or attitude observer algorithms. The simulation results clearly indicate that the nonlinear Observer is the more logical choice.

  7. Reconstructing Genetic Regulatory Networks Using Two-Step Algorithms with the Differential Equation Models of Neural Networks.

    Science.gov (United States)

    Chen, Chi-Kan

    2017-07-26

    -step algorithms can potentially incorporate with different nonlinear differential equation models to reconstruct the GRN.

  8. A combination-weighted Feldkamp-based reconstruction algorithm for cone-beam CT

    International Nuclear Information System (INIS)

    Mori, Shinichiro; Endo, Masahiro; Komatsu, Shuhei; Kandatsu, Susumu; Yashiro, Tomoyasu; Baba, Masayuki

    2006-01-01

    The combination-weighted Feldkamp algorithm (CW-FDK) was developed and tested in a phantom in order to reduce cone-beam artefacts and enhance cranio-caudal reconstruction coverage in an attempt to improve image quality when utilizing cone-beam computed tomography (CBCT). Using a 256-slice cone-beam CT (256CBCT), image quality (CT-number uniformity and geometrical accuracy) was quantitatively evaluated in phantom and clinical studies, and the results were compared to those obtained with the original Feldkamp algorithm. A clinical study was done in lung cancer patients under breath holding and free breathing. Image quality for the original Feldkamp algorithm is degraded at the edge of the scan region due to the missing volume, commensurate with the cranio-caudal distance between the reconstruction and central planes. The CW-FDK extended the reconstruction coverage to equal the scan coverage and improved reconstruction accuracy, unaffected by the cranio-caudal distance. The extended reconstruction coverage with good image quality provided by the CW-FDK will be clinically investigated for improving diagnostic and radiotherapy applications. In addition, this algorithm can also be adapted for use in relatively wide cone-angle CBCT such as with a flat-panel detector CBCT

  9. Incorporation of local dependent reliability information into the Prior Image Constrained Compressed Sensing (PICCS) reconstruction algorithm

    International Nuclear Information System (INIS)

    Vaegler, Sven; Sauer, Otto; Stsepankou, Dzmitry; Hesser, Juergen

    2015-01-01

    The reduction of dose in cone beam computer tomography (CBCT) arises from the decrease of the tube current for each projection as well as from the reduction of the number of projections. In order to maintain good image quality, sophisticated image reconstruction techniques are required. The Prior Image Constrained Compressed Sensing (PICCS) incorporates prior images into the reconstruction algorithm and outperforms the widespread used Feldkamp-Davis-Kress-algorithm (FDK) when the number of projections is reduced. However, prior images that contain major variations are not appropriately considered so far in PICCS. We therefore propose the partial-PICCS (pPICCS) algorithm. This framework is a problem-specific extension of PICCS and enables the incorporation of the reliability of the prior images additionally. We assumed that the prior images are composed of areas with large and small deviations. Accordingly, a weighting matrix considered the assigned areas in the objective function. We applied our algorithm to the problem of image reconstruction from few views by simulations with a computer phantom as well as on clinical CBCT projections from a head-and-neck case. All prior images contained large local variations. The reconstructed images were compared to the reconstruction results by the FDK-algorithm, by Compressed Sensing (CS) and by PICCS. To show the gain of image quality we compared image details with the reference image and used quantitative metrics (root-mean-square error (RMSE), contrast-to-noise-ratio (CNR)). The pPICCS reconstruction framework yield images with substantially improved quality even when the number of projections was very small. The images contained less streaking, blurring and inaccurately reconstructed structures compared to the images reconstructed by FDK, CS and conventional PICCS. The increased image quality is also reflected in large RMSE differences. We proposed a modification of the original PICCS algorithm. The pPICCS algorithm

  10. A spectral image processing algorithm for evaluating the influence of the illuminants on the reconstructed reflectance

    Science.gov (United States)

    Toadere, Florin

    2017-12-01

    A spectral image processing algorithm that allows the illumination of the scene with different illuminants together with the reconstruction of the scene's reflectance is presented. Color checker spectral image and CIE A (warm light 2700 K), D65 (cold light 6500 K) and Cree TW Series LED T8 (4000 K) are employed for scene illumination. Illuminants used in the simulations have different spectra and, as a result of their illumination, the colors of the scene change. The influence of the illuminants on the reconstruction of the scene's reflectance is estimated. Demonstrative images and reflectance showing the operation of the algorithm are illustrated.

  11. Dual Super-Systolic Core for Real-Time Reconstructive Algorithms of High-Resolution Radar/SAR Imaging Systems

    Science.gov (United States)

    Atoche, Alejandro Castillo; Castillo, Javier Vázquez

    2012-01-01

    A high-speed dual super-systolic core for reconstructive signal processing (SP) operations consists of a double parallel systolic array (SA) machine in which each processing element of the array is also conceptualized as another SA in a bit-level fashion. In this study, we addressed the design of a high-speed dual super-systolic array (SSA) core for the enhancement/reconstruction of remote sensing (RS) imaging of radar/synthetic aperture radar (SAR) sensor systems. The selected reconstructive SP algorithms are efficiently transformed in their parallel representation and then, they are mapped into an efficient high performance embedded computing (HPEC) architecture in reconfigurable Xilinx field programmable gate array (FPGA) platforms. As an implementation test case, the proposed approach was aggregated in a HW/SW co-design scheme in order to solve the nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) from a remotely sensed scene. We show how such dual SSA core, drastically reduces the computational load of complex RS regularization techniques achieving the required real-time operational mode. PMID:22736964

  12. A wavelet-based regularized reconstruction algorithm for SENSE parallel MRI with applications to neuroimaging

    International Nuclear Information System (INIS)

    Chaari, L.; Pesquet, J.Ch.; Chaari, L.; Ciuciu, Ph.; Benazza-Benyahia, A.

    2011-01-01

    To reduce scanning time and/or improve spatial/temporal resolution in some Magnetic Resonance Imaging (MRI) applications, parallel MRI acquisition techniques with multiple coils acquisition have emerged since the early 1990's as powerful imaging methods that allow a faster acquisition process. In these techniques, the full FOV image has to be reconstructed from the resulting acquired under sampled k-space data. To this end, several reconstruction techniques have been proposed such as the widely-used Sensitivity Encoding (SENSE) method. However, the reconstructed image generally presents artifacts when perturbations occur in both the measured data and the estimated coil sensitivity profiles. In this paper, we aim at achieving accurate image reconstruction under degraded experimental conditions (low magnetic field and high reduction factor), in which neither the SENSE method nor the Tikhonov regularization in the image domain give convincing results. To this end, we present a novel method for SENSE-based reconstruction which proceeds with regularization in the complex wavelet domain by promoting sparsity. The proposed approach relies on a fast algorithm that enables the minimization of regularized non-differentiable criteria including more general penalties than a classical l 1 term. To further enhance the reconstructed image quality, local convex constraints are added to the regularization process. In vivo human brain experiments carried out on Gradient-Echo (GRE) anatomical and Echo Planar Imaging (EPI) functional MRI data at 1.5 T indicate that our algorithm provides reconstructed images with reduced artifacts for high reduction factors. (authors)

  13. Algebraic dynamics solutions and algebraic dynamics algorithm for nonlinear ordinary differential equations

    Institute of Scientific and Technical Information of China (English)

    WANG; Shunjin; ZHANG; Hua

    2006-01-01

    The problem of preserving fidelity in numerical computation of nonlinear ordinary differential equations is studied in terms of preserving local differential structure and approximating global integration structure of the dynamical system.The ordinary differential equations are lifted to the corresponding partial differential equations in the framework of algebraic dynamics,and a new algorithm-algebraic dynamics algorithm is proposed based on the exact analytical solutions of the ordinary differential equations by the algebraic dynamics method.In the new algorithm,the time evolution of the ordinary differential system is described locally by the time translation operator and globally by the time evolution operator.The exact analytical piece-like solution of the ordinary differential equations is expressd in terms of Taylor series with a local convergent radius,and its finite order truncation leads to the new numerical algorithm with a controllable precision better than Runge Kutta Algorithm and Symplectic Geometric Algorithm.

  14. Weighted expectation maximization reconstruction algorithms with application to gated megavoltage tomography

    International Nuclear Information System (INIS)

    Zhang Jin; Shi Daxin; Anastasio, Mark A; Sillanpaa, Jussi; Chang Jenghwa

    2005-01-01

    We propose and investigate weighted expectation maximization (EM) algorithms for image reconstruction in x-ray tomography. The development of the algorithms is motivated by the respiratory-gated megavoltage tomography problem, in which the acquired asymmetric cone-beam projections are limited in number and unevenly sampled over view angle. In these cases, images reconstructed by use of the conventional EM algorithm can contain ring- and streak-like artefacts that are attributable to a combination of data inconsistencies and truncation of the projection data. By use of computer-simulated and clinical gated fan-beam megavoltage projection data, we demonstrate that the proposed weighted EM algorithms effectively mitigate such image artefacts. (note)

  15. Missing texture reconstruction method based on error reduction algorithm using Fourier transform magnitude estimation scheme.

    Science.gov (United States)

    Ogawa, Takahiro; Haseyama, Miki

    2013-03-01

    A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.

  16. A new hybrid-FBP inversion algorithm with inverse distance backprojection weight for CT reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhadhan, A.V.; Rajgopal, Kasi

    2011-07-01

    This paper presents a new hybrid filtered backprojection (FBP) algorithm for fan-beam and cone-beam scan. The hybrid reconstruction kernel is the sum of the ramp and Hilbert filters. We modify the redundancy weighting function to reduce the inverse square distance weighting in the backprojection to inverse distance weight. The modified weight also eliminates the derivative associated with the Hilbert filter kernel. Thus, the proposed reconstruction algorithm has the advantages of the inverse distance weight in the backprojection. We evaluate the performance of the new algorithm in terms of the magnitude level and uniformity in noise for the fan-beam geometry. The computer simulations show that the spatial resolution is nearly identical to the standard fan-beam ramp filtered algorithm while the noise is spatially uniform and the noise variance is reduced. (orig.)

  17. A conjugate gradients/trust regions algorithms for training multilayer perceptrons for nonlinear mapping

    Science.gov (United States)

    Madyastha, Raghavendra K.; Aazhang, Behnaam; Henson, Troy F.; Huxhold, Wendy L.

    1992-01-01

    This paper addresses the issue of applying a globally convergent optimization algorithm to the training of multilayer perceptrons, a class of Artificial Neural Networks. The multilayer perceptrons are trained towards the solution of two highly nonlinear problems: (1) signal detection in a multi-user communication network, and (2) solving the inverse kinematics for a robotic manipulator. The research is motivated by the fact that a multilayer perceptron is theoretically capable of approximating any nonlinear function to within a specified accuracy. The algorithm that has been employed in this study combines the merits of two well known optimization algorithms, the Conjugate Gradients and the Trust Regions Algorithms. The performance is compared to a widely used algorithm, the Backpropagation Algorithm, that is basically a gradient-based algorithm, and hence, slow in converging. The performances of the two algorithms are compared with the convergence rate. Furthermore, in the case of the signal detection problem, performances are also benchmarked by the decision boundaries drawn as well as the probability of error obtained in either case.

  18. High performance graphics processor based computed tomography reconstruction algorithms for nuclear and other large scale applications.

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Edward S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Orr, Laurel J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thompson, Kyle R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-09-01

    The goal of this work is to develop a fast computed tomography (CT) reconstruction algorithm based on graphics processing units (GPU) that achieves significant improvement over traditional central processing unit (CPU) based implementations. The main challenge in developing a CT algorithm that is capable of handling very large datasets is parallelizing the algorithm in such a way that data transfer does not hinder performance of the reconstruction algorithm. General Purpose Graphics Processing (GPGPU) is a new technology that the Science and Technology (S&T) community is starting to adopt in many fields where CPU-based computing is the norm. GPGPU programming requires a new approach to algorithm development that utilizes massively multi-threaded environments. Multi-threaded algorithms in general are difficult to optimize since performance bottlenecks occur that are non-existent in single-threaded algorithms such as memory latencies. If an efficient GPU-based CT reconstruction algorithm can be developed; computational times could be improved by a factor of 20. Additionally, cost benefits will be realized as commodity graphics hardware could potentially replace expensive supercomputers and high-end workstations. This project will take advantage of the CUDA programming environment and attempt to parallelize the task in such a way that multiple slices of the reconstruction volume are computed simultaneously. This work will also take advantage of the GPU memory by utilizing asynchronous memory transfers, GPU texture memory, and (when possible) pinned host memory so that the memory transfer bottleneck inherent to GPGPU is amortized. Additionally, this work will take advantage of GPU-specific hardware (i.e. fast texture memory, pixel-pipelines, hardware interpolators, and varying memory hierarchy) that will allow for additional performance improvements.

  19. Super-Relaxed ( -Proximal Point Algorithms, Relaxed ( -Proximal Point Algorithms, Linear Convergence Analysis, and Nonlinear Variational Inclusions

    Directory of Open Access Journals (Sweden)

    Agarwal RaviP

    2009-01-01

    Full Text Available We glance at recent advances to the general theory of maximal (set-valued monotone mappings and their role demonstrated to examine the convex programming and closely related field of nonlinear variational inequalities. We focus mostly on applications of the super-relaxed ( -proximal point algorithm to the context of solving a class of nonlinear variational inclusion problems, based on the notion of maximal ( -monotonicity. Investigations highlighted in this communication are greatly influenced by the celebrated work of Rockafellar (1976, while others have played a significant part as well in generalizing the proximal point algorithm considered by Rockafellar (1976 to the case of the relaxed proximal point algorithm by Eckstein and Bertsekas (1992. Even for the linear convergence analysis for the overrelaxed (or super-relaxed ( -proximal point algorithm, the fundamental model for Rockafellar's case does the job. Furthermore, we attempt to explore possibilities of generalizing the Yosida regularization/approximation in light of maximal ( -monotonicity, and then applying to first-order evolution equations/inclusions.

  20. Flaw characterization through nonlinear ultrasonics and wavelet cross-correlation algorithms

    Science.gov (United States)

    Bunget, Gheorghe; Yee, Andrew; Stewart, Dylan; Rogers, James; Henley, Stanley; Bugg, Chris; Cline, John; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz

    2018-04-01

    Ultrasonic measurements have become increasingly important non-destructive techniques to characterize flaws found within various in-service industrial components. The prediction of remaining useful life based on fracture analysis depends on the accurate estimation of flaw size and orientation. However, amplitude-based ultrasonic measurements are not able to estimate the plastic zones that exist ahead of crack tips. Estimating the size of the plastic zone is an advantage since some flaws may propagate faster than others. This paper presents a wavelet cross-correlation (WCC) algorithm that was applied to nonlinear analysis of ultrasonically guided waves (GW). By using this algorithm, harmonics present in the waveforms were extracted and nonlinearity parameters were used to indicate both the tip of the cracks and size of the plastic zone. B-scans performed with the quadratic nonlinearities were sensitive to micro-damage specific to plastic zones.

  1. On-line reconstruction algorithms for the CBM and ALICE experiments

    International Nuclear Information System (INIS)

    Gorbunov, Sergey

    2013-01-01

    This thesis presents various algorithms which have been developed for on-line event reconstruction in the CBM experiment at GSI, Darmstadt and the ALICE experiment at CERN, Geneve. Despite the fact that the experiments are different - CBM is a fixed target experiment with forward geometry, while ALICE has a typical collider geometry - they share common aspects when reconstruction is concerned. The thesis describes: - general modifications to the Kalman filter method, which allows one to accelerate, to improve, and to simplify existing fit algorithms; - developed algorithms for track fit in CBM and ALICE experiment, including a new method for track extrapolation in non-homogeneous magnetic field. - developed algorithms for primary and secondary vertex fit in the both experiments. In particular, a new method of reconstruction of decayed particles is presented. - developed parallel algorithm for the on-line tracking in the CBM experiment. - developed parallel algorithm for the on-line tracking in High Level Trigger of the ALICE experiment. - the realisation of the track finders on modern hardware, such as SIMD CPU registers and GPU accelerators. All the presented methods have been developed by or with the direct participation of the author.

  2. Implementation of non-linear filters for iterative penalized maximum likelihood image reconstruction

    International Nuclear Information System (INIS)

    Liang, Z.; Gilland, D.; Jaszczak, R.; Coleman, R.

    1990-01-01

    In this paper, the authors report on the implementation of six edge-preserving, noise-smoothing, non-linear filters applied in image space for iterative penalized maximum-likelihood (ML) SPECT image reconstruction. The non-linear smoothing filters implemented were the median filter, the E 6 filter, the sigma filter, the edge-line filter, the gradient-inverse filter, and the 3-point edge filter with gradient-inverse filter, and the 3-point edge filter with gradient-inverse weight. A 3 x 3 window was used for all these filters. The best image obtained, by viewing the profiles through the image in terms of noise-smoothing, edge-sharpening, and contrast, was the one smoothed with the 3-point edge filter. The computation time for the smoothing was less than 1% of one iteration, and the memory space for the smoothing was negligible. These images were compared with the results obtained using Bayesian analysis

  3. Nonlinear Prediction As A Tool For Determining Parameters For Phase Space Reconstruction In Meteorology

    Science.gov (United States)

    Miksovsky, J.; Raidl, A.

    Time delays phase space reconstruction represents one of useful tools of nonlinear time series analysis, enabling number of applications. Its utilization requires the value of time delay to be known, as well as the value of embedding dimension. There are sev- eral methods how to estimate both these parameters. Typically, time delay is computed first, followed by embedding dimension. Our presented approach is slightly different - we reconstructed phase space for various combinations of mentioned parameters and used it for prediction by means of the nearest neighbours in the phase space. Then some measure of prediction's success was computed (correlation or RMSE, e.g.). The position of its global maximum (minimum) should indicate the suitable combination of time delay and embedding dimension. Several meteorological (particularly clima- tological) time series were used for the computations. We have also created a MS- Windows based program in order to implement this approach - its basic features will be presented as well.

  4. Optimization of Proton CT Detector System and Image Reconstruction Algorithm for On-Line Proton Therapy.

    Directory of Open Access Journals (Sweden)

    Chae Young Lee

    Full Text Available The purposes of this study were to optimize a proton computed tomography system (pCT for proton range verification and to confirm the pCT image reconstruction algorithm based on projection images generated with optimized parameters. For this purpose, we developed a new pCT scanner using the Geometry and Tracking (GEANT 4.9.6 simulation toolkit. GEANT4 simulations were performed to optimize the geometric parameters representing the detector thickness and the distance between the detectors for pCT. The system consisted of four silicon strip detectors for particle tracking and a calorimeter to measure the residual energies of the individual protons. The optimized pCT system design was then adjusted to ensure that the solution to a CS-based convex optimization problem would converge to yield the desired pCT images after a reasonable number of iterative corrections. In particular, we used a total variation-based formulation that has been useful in exploiting prior knowledge about the minimal variations of proton attenuation characteristics in the human body. Examinations performed using our CS algorithm showed that high-quality pCT images could be reconstructed using sets of 72 projections within 20 iterations and without any streaks or noise, which can be caused by under-sampling and proton starvation. Moreover, the images yielded by this CS algorithm were found to be of higher quality than those obtained using other reconstruction algorithms. The optimized pCT scanner system demonstrated the potential to perform high-quality pCT during on-line image-guided proton therapy, without increasing the imaging dose, by applying our CS based proton CT reconstruction algorithm. Further, we make our optimized detector system and CS-based proton CT reconstruction algorithm potentially useful in on-line proton therapy.

  5. Partial fourier and parallel MR image reconstruction with integrated gradient nonlinearity correction.

    Science.gov (United States)

    Tao, Shengzhen; Trzasko, Joshua D; Shu, Yunhong; Weavers, Paul T; Huston, John; Gray, Erin M; Bernstein, Matt A

    2016-06-01

    To describe how integrated gradient nonlinearity (GNL) correction can be used within noniterative partial Fourier (homodyne) and parallel (SENSE and GRAPPA) MR image reconstruction strategies, and demonstrate that performing GNL correction during, rather than after, these routines mitigates the image blurring and resolution loss caused by postreconstruction image domain based GNL correction. Starting from partial Fourier and parallel magnetic resonance imaging signal models that explicitly account for GNL, noniterative image reconstruction strategies for each accelerated acquisition technique are derived under the same core mathematical assumptions as their standard counterparts. A series of phantom and in vivo experiments on retrospectively undersampled data were performed to investigate the spatial resolution benefit of integrated GNL correction over conventional postreconstruction correction. Phantom and in vivo results demonstrate that the integrated GNL correction reduces the image blurring introduced by the conventional GNL correction, while still correcting GNL-induced coarse-scale geometrical distortion. Images generated from undersampled data using the proposed integrated GNL strategies offer superior depiction of fine image detail, for example, phantom resolution inserts and anatomical tissue boundaries. Noniterative partial Fourier and parallel imaging reconstruction methods with integrated GNL correction reduce the resolution loss that occurs during conventional postreconstruction GNL correction while preserving the computational efficiency of standard reconstruction techniques. Magn Reson Med 75:2534-2544, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  6. Dendroclimatic transfer functions revisited: Little Ice Age and Medieval Warm Period summer temperatures reconstructed using artificial neural networks and linear algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Helama, S.; Holopainen, J.; Eronen, M. [Department of Geology, University of Helsinki, (Finland); Makarenko, N.G. [Russian Academy of Sciences, St. Petersburg (Russian Federation). Pulkovo Astronomical Observatory; Karimova, L.M.; Kruglun, O.A. [Institute of Mathematics, Almaty (Kazakhstan); Timonen, M. [Finnish Forest Research Institute, Rovaniemi Research Unit (Finland); Merilaeinen, J. [SAIMA Unit of the Savonlinna Department of Teacher Education, University of Joensuu (Finland)

    2009-07-01

    Tree-rings tell of past climates. To do so, tree-ring chronologies comprising numerous climate-sensitive living-tree and subfossil time-series need to be 'transferred' into palaeoclimate estimates using transfer functions. The purpose of this study is to compare different types of transfer functions, especially linear and nonlinear algorithms. Accordingly, multiple linear regression (MLR), linear scaling (LSC) and artificial neural networks (ANN, nonlinear algorithm) were compared. Transfer functions were built using a regional tree-ring chronology and instrumental temperature observations from Lapland (northern Finland and Sweden). In addition, conventional MLR was compared with a hybrid model whereby climate was reconstructed separately for short- and long-period timescales prior to combining the bands of timescales into a single hybrid model. The fidelity of the different reconstructions was validated against instrumental climate data. The reconstructions by MLR and ANN showed reliable reconstruction capabilities over the instrumental period (AD 1802-1998). LCS failed to reach reasonable verification statistics and did not qualify as a reliable reconstruction: this was due mainly to exaggeration of the low-frequency climatic variance. Over this instrumental period, the reconstructed low-frequency amplitudes of climate variability were rather similar by MLR and ANN. Notably greater differences between the models were found over the actual reconstruction period (AD 802-1801). A marked temperature decline, as reconstructed by MLR, from the Medieval Warm Period (AD 931-1180) to the Little Ice Age (AD 1601-1850), was evident in all the models. This decline was approx. 0.5 C as reconstructed by MLR. Different ANN based palaeotemperatures showed simultaneous cooling of 0.2 to 0.5 C, depending on algorithm. The hybrid MLR did not seem to provide further benefit above conventional MLR in our sample. The robustness of the conventional MLR over the calibration

  7. An improved energy conserving implicit time integration algorithm for nonlinear dynamic structural analysis

    International Nuclear Information System (INIS)

    Haug, E.; Rouvray, A.L. de; Nguyen, Q.S.

    1977-01-01

    This study proposes a general nonlinear algorithm stability criterion; it introduces a nonlinear algorithm, easily implemented in existing incremental/iterative codes, and it applies the new scheme beneficially to problems of linear elastic dynamic snap buckling. Based on the concept of energy conservation, the paper outlines an algorithm which degenerates into the trapezoidal rule, if applied to linear systems. The new algorithm conserves energy in systems having elastic potentials up to the fourth order in the displacements. This is true in the important case of nonlinear total Lagrange formulations where linear elastic material properties are substituted. The scheme is easily implemented in existing incremental-iterative codes with provisions for stiffness reformation and containing the basic Newmark scheme. Numerical analyses of dynamic stability can be dramatically sensitive to amplitude errors, because damping algorithms may mask, and overestimating schemes may numerically trigger, the physical instability. The newly proposed scheme has been applied with larger time steps and less cost to the dynamic snap buckling of simple one and multi degree-of-freedom structures for various initial conditions

  8. Performance Comparison of Reconstruction Algorithms in Discrete Blind Multi-Coset Sampling

    DEFF Research Database (Denmark)

    Grigoryan, Ruben; Arildsen, Thomas; Tandur, Deepaknath

    2012-01-01

    This paper investigates the performance of different reconstruction algorithms in discrete blind multi-coset sampling. Multi-coset scheme is a promising compressed sensing architecture that can replace traditional Nyquist-rate sampling in the applications with multi-band frequency sparse signals...

  9. An ensemble based nonlinear orthogonal matching pursuit algorithm for sparse history matching of reservoir models

    KAUST Repository

    Fsheikh, Ahmed H.

    2013-01-01

    A nonlinear orthogonal matching pursuit (NOMP) for sparse calibration of reservoir models is presented. Sparse calibration is a challenging problem as the unknowns are both the non-zero components of the solution and their associated weights. NOMP is a greedy algorithm that discovers at each iteration the most correlated components of the basis functions with the residual. The discovered basis (aka support) is augmented across the nonlinear iterations. Once the basis functions are selected from the dictionary, the solution is obtained by applying Tikhonov regularization. The proposed algorithm relies on approximate gradient estimation using an iterative stochastic ensemble method (ISEM). ISEM utilizes an ensemble of directional derivatives to efficiently approximate gradients. In the current study, the search space is parameterized using an overcomplete dictionary of basis functions built using the K-SVD algorithm.

  10. Research on Modified Root-MUSIC Algorithm of DOA Estimation Based on Covariance Matrix Reconstruction

    Directory of Open Access Journals (Sweden)

    Changgan SHU

    2014-09-01

    Full Text Available In the standard root multiple signal classification algorithm, the performance of direction of arrival estimation will reduce and even lose effect in circumstances that a low signal noise ratio and a small signals interval. By reconstructing and weighting the covariance matrix of received signal, the modified algorithm can provide more accurate estimation results. The computer simulation and performance analysis are given next, which show that under the condition of lower signal noise ratio and stronger correlation between signals, the proposed modified algorithm could provide preferable azimuth estimating performance than the standard method.

  11. A chaos-based evolutionary algorithm for general nonlinear programming problems

    International Nuclear Information System (INIS)

    El-Shorbagy, M.A.; Mousa, A.A.; Nasr, S.M.

    2016-01-01

    In this paper we present a chaos-based evolutionary algorithm (EA) for solving nonlinear programming problems named chaotic genetic algorithm (CGA). CGA integrates genetic algorithm (GA) and chaotic local search (CLS) strategy to accelerate the optimum seeking operation and to speed the convergence to the global solution. The integration of global search represented in genetic algorithm and CLS procedures should offer the advantages of both optimization methods while offsetting their disadvantages. By this way, it is intended to enhance the global convergence and to prevent to stick on a local solution. The inherent characteristics of chaos can enhance optimization algorithms by enabling it to escape from local solutions and increase the convergence to reach to the global solution. Twelve chaotic maps have been analyzed in the proposed approach. The simulation results using the set of CEC’2005 show that the application of chaotic mapping may be an effective strategy to improve the performances of EAs.

  12. A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems.

    Science.gov (United States)

    Kazemi, Mahdi; Arefi, Mohammad Mehdi

    2017-03-01

    In this paper, an online identification algorithm is presented for nonlinear systems in the presence of output colored noise. The proposed method is based on extended recursive least squares (ERLS) algorithm, where the identified system is in polynomial Wiener form. To this end, an unknown intermediate signal is estimated by using an inner iterative algorithm. The iterative recursive algorithm adaptively modifies the vector of parameters of the presented Wiener model when the system parameters vary. In addition, to increase the robustness of the proposed method against variations, a robust RLS algorithm is applied to the model. Simulation results are provided to show the effectiveness of the proposed approach. Results confirm that the proposed method has fast convergence rate with robust characteristics, which increases the efficiency of the proposed model and identification approach. For instance, the FIT criterion will be achieved 92% in CSTR process where about 400 data is used. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Accelerated fast iterative shrinkage thresholding algorithms for sparsity-regularized cone-beam CT image reconstruction

    International Nuclear Information System (INIS)

    Xu, Qiaofeng; Sawatzky, Alex; Anastasio, Mark A.; Yang, Deshan; Tan, Jun

    2016-01-01

    Purpose: The development of iterative image reconstruction algorithms for cone-beam computed tomography (CBCT) remains an active and important research area. Even with hardware acceleration, the overwhelming majority of the available 3D iterative algorithms that implement nonsmooth regularizers remain computationally burdensome and have not been translated for routine use in time-sensitive applications such as image-guided radiation therapy (IGRT). In this work, two variants of the fast iterative shrinkage thresholding algorithm (FISTA) are proposed and investigated for accelerated iterative image reconstruction in CBCT. Methods: Algorithm acceleration was achieved by replacing the original gradient-descent step in the FISTAs by a subproblem that is solved by use of the ordered subset simultaneous algebraic reconstruction technique (OS-SART). Due to the preconditioning matrix adopted in the OS-SART method, two new weighted proximal problems were introduced and corresponding fast gradient projection-type algorithms were developed for solving them. We also provided efficient numerical implementations of the proposed algorithms that exploit the massive data parallelism of multiple graphics processing units. Results: The improved rates of convergence of the proposed algorithms were quantified in computer-simulation studies and by use of clinical projection data corresponding to an IGRT study. The accelerated FISTAs were shown to possess dramatically improved convergence properties as compared to the standard FISTAs. For example, the number of iterations to achieve a specified reconstruction error could be reduced by an order of magnitude. Volumetric images reconstructed from clinical data were produced in under 4 min. Conclusions: The FISTA achieves a quadratic convergence rate and can therefore potentially reduce the number of iterations required to produce an image of a specified image quality as compared to first-order methods. We have proposed and investigated

  14. Accelerated fast iterative shrinkage thresholding algorithms for sparsity-regularized cone-beam CT image reconstruction

    Science.gov (United States)

    Xu, Qiaofeng; Yang, Deshan; Tan, Jun; Sawatzky, Alex; Anastasio, Mark A.

    2016-01-01

    Purpose: The development of iterative image reconstruction algorithms for cone-beam computed tomography (CBCT) remains an active and important research area. Even with hardware acceleration, the overwhelming majority of the available 3D iterative algorithms that implement nonsmooth regularizers remain computationally burdensome and have not been translated for routine use in time-sensitive applications such as image-guided radiation therapy (IGRT). In this work, two variants of the fast iterative shrinkage thresholding algorithm (FISTA) are proposed and investigated for accelerated iterative image reconstruction in CBCT. Methods: Algorithm acceleration was achieved by replacing the original gradient-descent step in the FISTAs by a subproblem that is solved by use of the ordered subset simultaneous algebraic reconstruction technique (OS-SART). Due to the preconditioning matrix adopted in the OS-SART method, two new weighted proximal problems were introduced and corresponding fast gradient projection-type algorithms were developed for solving them. We also provided efficient numerical implementations of the proposed algorithms that exploit the massive data parallelism of multiple graphics processing units. Results: The improved rates of convergence of the proposed algorithms were quantified in computer-simulation studies and by use of clinical projection data corresponding to an IGRT study. The accelerated FISTAs were shown to possess dramatically improved convergence properties as compared to the standard FISTAs. For example, the number of iterations to achieve a specified reconstruction error could be reduced by an order of magnitude. Volumetric images reconstructed from clinical data were produced in under 4 min. Conclusions: The FISTA achieves a quadratic convergence rate and can therefore potentially reduce the number of iterations required to produce an image of a specified image quality as compared to first-order methods. We have proposed and investigated

  15. High-speed computation of the EM algorithm for PET image reconstruction

    International Nuclear Information System (INIS)

    Rajan, K.; Patnaik, L.M.; Ramakrishna, J.

    1994-01-01

    The PET image reconstruction based on the EM algorithm has several attractive advantages over the conventional convolution backprojection algorithms. However, two major drawbacks have impeded the routine use of the EM algorithm, namely, the long computational time due to slow convergence and the large memory required for the storage of the image, projection data and the probability matrix. In this study, the authors attempts to solve these two problems by parallelizing the EM algorithm on a multiprocessor system. The authors have implemented an extended hypercube (EH) architecture for the high-speed computation of the EM algorithm using the commercially available fast floating point digital signal processor (DSP) chips as the processing elements (PEs). The authors discuss and compare the performance of the EM algorithm on a 386/387 machine, CD 4360 mainframe, and on the EH system. The results show that the computational speed performance of an EH using DSP chips as PEs executing the EM image reconstruction algorithm is about 130 times better than that of the CD 4360 mainframe. The EH topology is expandable with more number of PEs

  16. Microstructure Reconstruction of Sheet Molding Composite Using a Random Chips Packing Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Tianyu; Xu, Hongyi; Chen, Wei

    2017-04-06

    Fiber-reinforced polymer composites are strong candidates for structural materials to replace steel and light alloys in lightweight vehicle design because of their low density and relatively high strength. In the integrated computational materials engineering (ICME) development of carbon fiber composites, microstructure reconstruction algorithms are needed to generate material microstructure representative volume element (RVE) based on the material processing information. The microstructure RVE reconstruction enables the material property prediction by finite element analysis (FEA)This paper presents an algorithm to reconstruct the microstructure of a chopped carbon fiber/epoxy laminate material system produced by compression molding, normally known as sheet molding compounds (SMC). The algorithm takes the result from material’s manufacturing process as inputs, such as the orientation tensor of fibers, the chopped fiber sheet geometry, and the fiber volume fraction. The chopped fiber sheets are treated as deformable rectangle chips and a random packing algorithm is developed to pack these chips into a square plate. The RVE is built in a layer-by-layer fashion until the desired number of lamina is reached, then a fine tuning process is applied to finalize the reconstruction. Compared to the previous methods, this new approach has the ability to model bended fibers by allowing limited amount of overlaps of rectangle chips. Furthermore, the method does not need SMC microstructure images, for which the image-based characterization techniques have not been mature enough, as inputs. Case studies are performed and the results show that the statistics of the reconstructed microstructures generated by the algorithm matches well with the target input parameters from processing.

  17. Accurate 3D reconstruction by a new PDS-OSEM algorithm for HRRT

    Science.gov (United States)

    Chen, Tai-Been; Horng-Shing Lu, Henry; Kim, Hang-Keun; Son, Young-Don; Cho, Zang-Hee

    2014-03-01

    State-of-the-art high resolution research tomography (HRRT) provides high resolution PET images with full 3D human brain scanning. But, a short time frame in dynamic study causes many problems related to the low counts in the acquired data. The PDS-OSEM algorithm was proposed to reconstruct the HRRT image with a high signal-to-noise ratio that provides accurate information for dynamic data. The new algorithm was evaluated by simulated image, empirical phantoms, and real human brain data. Meanwhile, the time activity curve was adopted to validate a reconstructed performance of dynamic data between PDS-OSEM and OP-OSEM algorithms. According to simulated and empirical studies, the PDS-OSEM algorithm reconstructs images with higher quality, higher accuracy, less noise, and less average sum of square error than those of OP-OSEM. The presented algorithm is useful to provide quality images under the condition of low count rates in dynamic studies with a short scan time.

  18. Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms

    International Nuclear Information System (INIS)

    Sidky, Emil Y.; Pan Xiaochuan; Reiser, Ingrid S.; Nishikawa, Robert M.; Moore, Richard H.; Kopans, Daniel B.

    2009-01-01

    Purpose: The authors develop a practical, iterative algorithm for image-reconstruction in undersampled tomographic systems, such as digital breast tomosynthesis (DBT). Methods: The algorithm controls image regularity by minimizing the image total p variation (TpV), a function that reduces to the total variation when p=1.0 or the image roughness when p=2.0. Constraints on the image, such as image positivity and estimated projection-data tolerance, are enforced by projection onto convex sets. The fact that the tomographic system is undersampled translates to the mathematical property that many widely varied resultant volumes may correspond to a given data tolerance. Thus the application of image regularity serves two purposes: (1) Reduction in the number of resultant volumes out of those allowed by fixing the data tolerance, finding the minimum image TpV for fixed data tolerance, and (2) traditional regularization, sacrificing data fidelity for higher image regularity. The present algorithm allows for this dual role of image regularity in undersampled tomography. Results: The proposed image-reconstruction algorithm is applied to three clinical DBT data sets. The DBT cases include one with microcalcifications and two with masses. Conclusions: Results indicate that there may be a substantial advantage in using the present image-reconstruction algorithm for microcalcification imaging.

  19. A theoretically exact reconstruction algorithm for helical cone-beam differential phase-contrast computed tomography

    International Nuclear Information System (INIS)

    Li Jing; Sun Yi; Zhu Peiping

    2013-01-01

    Differential phase-contrast computed tomography (DPC-CT) reconstruction problems are usually solved by using parallel-, fan- or cone-beam algorithms. For rod-shaped objects, the x-ray beams cannot recover all the slices of the sample at the same time. Thus, if a rod-shaped sample is required to be reconstructed by the above algorithms, one should alternately perform translation and rotation on this sample, which leads to lower efficiency. The helical cone-beam CT may significantly improve scanning efficiency for rod-shaped objects over other algorithms. In this paper, we propose a theoretically exact filter-backprojection algorithm for helical cone-beam DPC-CT, which can be applied to reconstruct the refractive index decrement distribution of the samples directly from two-dimensional differential phase-contrast images. Numerical simulations are conducted to verify the proposed algorithm. Our work provides a potential solution for inspecting the rod-shaped samples using DPC-CT, which may be applicable with the evolution of DPC-CT equipments. (paper)

  20. Statistical image reconstruction for transmission tomography using relaxed ordered subset algorithms

    International Nuclear Information System (INIS)

    Kole, J S

    2005-01-01

    Statistical reconstruction methods offer possibilities for improving image quality as compared to analytical methods, but current reconstruction times prohibit routine clinical applications in x-ray computed tomography (CT). To reduce reconstruction times, we have applied (under) relaxation to ordered subset algorithms. This enables us to use subsets consisting of only single projection angle, effectively increasing the number of image updates within an entire iteration. A second advantage of applying relaxation is that it can help improve convergence by removing the limit cycle behaviour of ordered subset algorithms, which normally do not converge to an optimal solution but rather a suboptimal limit cycle consisting of as many points as there are subsets. Relaxation suppresses the limit cycle behaviour by decreasing the stepsize for approaching the solution. A simulation study for a 2D mathematical phantom and three different ordered subset algorithms shows that all three algorithms benefit from relaxation: equal noise-to-resolution trade-off can be achieved using fewer iterations than the conventional algorithms, while a lower minimal normalized mean square error (NMSE) clearly indicates a better convergence. Two different schemes for setting the relaxation parameter are studied, and both schemes yield approximately the same minimal NMSE

  1. Implementation of a virtual laryngoscope system using efficient reconstruction algorithms.

    Science.gov (United States)

    Luo, Shouhua; Yan, Yuling

    2009-08-01

    Conventional fiberoptic laryngoscope may cause discomfort to the patient and in some cases it can lead to side effects that include perforation, infection and hemorrhage. Virtual laryngoscopy (VL) can overcome this problem and further it may lower the risk of operation failures. Very few virtual endoscope (VE) based investigations of the larynx have been described in the literature. CT data sets from a healthy subject were used for the VL studies. An algorithm of preprocessing and region-growing for 3-D image segmentation is developed. An octree based approach is applied in our VL system which facilitates a rapid construction of iso-surfaces. Some locating techniques are used for fast rendering and navigation (fly-through). Our VL visualization system provides for real time and efficient 'fly-through' navigation. The virtual camera can be arranged so that it moves along the airway in either direction. Snap shots were taken during fly-throughs. The system can automatically adjust the direction of the virtual camera and prevent collisions of the camera and the wall of the airway. A virtual laryngoscope (VL) system using OpenGL (Open Graphics Library) platform for interactive rendering and 3D visualization of the laryngeal framework and upper airway is established. OpenGL is supported on major operating systems and works with every major windowing system. The VL system runs on regular PC workstations and was successfully tested and evaluated using CT data from a normal subject.

  2. Dense Matching Comparison Between Census and a Convolutional Neural Network Algorithm for Plant Reconstruction

    Science.gov (United States)

    Xia, Y.; Tian, J.; d'Angelo, P.; Reinartz, P.

    2018-05-01

    3D reconstruction of plants is hard to implement, as the complex leaf distribution highly increases the difficulty level in dense matching. Semi-Global Matching has been successfully applied to recover the depth information of a scene, but may perform variably when different matching cost algorithms are used. In this paper two matching cost computation algorithms, Census transform and an algorithm using a convolutional neural network, are tested for plant reconstruction based on Semi-Global Matching. High resolution close-range photogrammetric images from a handheld camera are used for the experiment. The disparity maps generated based on the two selected matching cost methods are comparable with acceptable quality, which shows the good performance of Census and the potential of neural networks to improve the dense matching.

  3. DENSE MATCHING COMPARISON BETWEEN CENSUS AND A CONVOLUTIONAL NEURAL NETWORK ALGORITHM FOR PLANT RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Y. Xia

    2018-05-01

    Full Text Available 3D reconstruction of plants is hard to implement, as the complex leaf distribution highly increases the difficulty level in dense matching. Semi-Global Matching has been successfully applied to recover the depth information of a scene, but may perform variably when different matching cost algorithms are used. In this paper two matching cost computation algorithms, Census transform and an algorithm using a convolutional neural network, are tested for plant reconstruction based on Semi-Global Matching. High resolution close-range photogrammetric images from a handheld camera are used for the experiment. The disparity maps generated based on the two selected matching cost methods are comparable with acceptable quality, which shows the good performance of Census and the potential of neural networks to improve the dense matching.

  4. Advanced Emergency Braking Control Based on a Nonlinear Model Predictive Algorithm for Intelligent Vehicles

    Directory of Open Access Journals (Sweden)

    Ronghui Zhang

    2017-05-01

    Full Text Available Focusing on safety, comfort and with an overall aim of the comprehensive improvement of a vision-based intelligent vehicle, a novel Advanced Emergency Braking System (AEBS is proposed based on Nonlinear Model Predictive Algorithm. Considering the nonlinearities of vehicle dynamics, a vision-based longitudinal vehicle dynamics model is established. On account of the nonlinear coupling characteristics of the driver, surroundings, and vehicle itself, a hierarchical control structure is proposed to decouple and coordinate the system. To avoid or reduce the collision risk between the intelligent vehicle and collision objects, a coordinated cost function of tracking safety, comfort, and fuel economy is formulated. Based on the terminal constraints of stable tracking, a multi-objective optimization controller is proposed using the theory of non-linear model predictive control. To quickly and precisely track control target in a finite time, an electronic brake controller for AEBS is designed based on the Nonsingular Fast Terminal Sliding Mode (NFTSM control theory. To validate the performance and advantages of the proposed algorithm, simulations are implemented. According to the simulation results, the proposed algorithm has better integrated performance in reducing the collision risk and improving the driving comfort and fuel economy of the smart car compared with the existing single AEBS.

  5. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Simon; Bolzern, Roman; Battaglia, Marina, E-mail: simon.felix@fhnw.ch, E-mail: roman.bolzern@fhnw.ch, E-mail: marina.battaglia@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland FHNW, 5210 Windisch (Switzerland)

    2017-11-01

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS-CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS-CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.

  6. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    Science.gov (United States)

    Felix, Simon; Bolzern, Roman; Battaglia, Marina

    2017-11-01

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS_CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS_CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.

  7. Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part I--Theory and simulations.

    Science.gov (United States)

    Pogue, Brian W; Song, Xiaomei; Tosteson, Tor D; McBride, Troy O; Jiang, Shudong; Paulsen, Keith D

    2002-07-01

    Near-infrared (NIR) diffuse tomography is an emerging method for imaging the interior of tissues to quantify concentrations of hemoglobin and exogenous chromophores non-invasively in vivo. It often exploits an optical diffusion model-based image reconstruction algorithm to estimate spatial property values from measurements of the light flux at the surface of the tissue. In this study, mean-squared error (MSE) over the image is used to evaluate methods for regularizing the ill-posed inverse image reconstruction problem in NIR tomography. Estimates of image bias and image standard deviation were calculated based upon 100 repeated reconstructions of a test image with randomly distributed noise added to the light flux measurements. It was observed that the bias error dominates at high regularization parameter values while variance dominates as the algorithm is allowed to approach the optimal solution. This optimum does not necessarily correspond to the minimum projection error solution, but typically requires further iteration with a decreasing regularization parameter to reach the lowest image error. Increasing measurement noise causes a need to constrain the minimum regularization parameter to higher values in order to achieve a minimum in the overall image MSE.

  8. Parameter selection in limited data cone-beam CT reconstruction using edge-preserving total variation algorithms

    Science.gov (United States)

    Lohvithee, Manasavee; Biguri, Ander; Soleimani, Manuchehr

    2017-12-01

    There are a number of powerful total variation (TV) regularization methods that have great promise in limited data cone-beam CT reconstruction with an enhancement of image quality. These promising TV methods require careful selection of the image reconstruction parameters, for which there are no well-established criteria. This paper presents a comprehensive evaluation of parameter selection in a number of major TV-based reconstruction algorithms. An appropriate way of selecting the values for each individual parameter has been suggested. Finally, a new adaptive-weighted projection-controlled steepest descent (AwPCSD) algorithm is presented, which implements the edge-preserving function for CBCT reconstruction with limited data. The proposed algorithm shows significant robustness compared to three other existing algorithms: ASD-POCS, AwASD-POCS and PCSD. The proposed AwPCSD algorithm is able to preserve the edges of the reconstructed images better with fewer sensitive parameters to tune.

  9. High resolution reconstruction of PET images using the iterative OSEM algorithm

    International Nuclear Information System (INIS)

    Doll, J.; Bublitz, O.; Werling, A.; Haberkorn, U.; Semmler, W.; Adam, L.E.; Pennsylvania Univ., Philadelphia, PA; Brix, G.

    2004-01-01

    Aim: Improvement of the spatial resolution in positron emission tomography (PET) by incorporation of the image-forming characteristics of the scanner into the process of iterative image reconstruction. Methods: All measurements were performed at the whole-body PET system ECAT EXACT HR + in 3D mode. The acquired 3D sinograms were sorted into 2D sinograms by means of the Fourier rebinning (FORE) algorithm, which allows the usage of 2D algorithms for image reconstruction. The scanner characteristics were described by a spatially variant line-spread function (LSF), which was determined from activated copper-64 line sources. This information was used to model the physical degradation processes in PET measurements during the course of 2D image reconstruction with the iterative OSEM algorithm. To assess the performance of the high-resolution OSEM algorithm, phantom measurements performed at a cylinder phantom, the hotspot Jaszczack phantom, and the 3D Hoffmann brain phantom as well as different patient examinations were analyzed. Results: Scanner characteristics could be described by a Gaussian-shaped LSF with a full-width at half-maximum increasing from 4.8 mm at the center to 5.5 mm at a radial distance of 10.5 cm. Incorporation of the LSF into the iteration formula resulted in a markedly improved resolution of 3.0 and 3.5 mm, respectively. The evaluation of phantom and patient studies showed that the high-resolution OSEM algorithm not only lead to a better contrast resolution in the reconstructed activity distributions but also to an improved accuracy in the quantification of activity concentrations in small structures without leading to an amplification of image noise or even the occurrence of image artifacts. Conclusion: The spatial and contrast resolution of PET scans can markedly be improved by the presented image restauration algorithm, which is of special interest for the examination of both patients with brain disorders and small animals. (orig.)

  10. New reconstruction algorithm for digital breast tomosynthesis: better image quality for humans and computers.

    Science.gov (United States)

    Rodriguez-Ruiz, Alejandro; Teuwen, Jonas; Vreemann, Suzan; Bouwman, Ramona W; van Engen, Ruben E; Karssemeijer, Nico; Mann, Ritse M; Gubern-Merida, Albert; Sechopoulos, Ioannis

    2017-01-01

    Background The image quality of digital breast tomosynthesis (DBT) volumes depends greatly on the reconstruction algorithm. Purpose To compare two DBT reconstruction algorithms used by the Siemens Mammomat Inspiration system, filtered back projection (FBP), and FBP with iterative optimizations (EMPIRE), using qualitative analysis by human readers and detection performance of machine learning algorithms. Material and Methods Visual grading analysis was performed by four readers specialized in breast imaging who scored 100 cases reconstructed with both algorithms (70 lesions). Scoring (5-point scale: 1 = poor to 5 = excellent quality) was performed on presence of noise and artifacts, visualization of skin-line and Cooper's ligaments, contrast, and image quality, and, when present, lesion visibility. In parallel, a three-dimensional deep-learning convolutional neural network (3D-CNN) was trained (n = 259 patients, 51 positives with BI-RADS 3, 4, or 5 calcifications) and tested (n = 46 patients, nine positives), separately with FBP and EMPIRE volumes, to discriminate between samples with and without calcifications. The partial area under the receiver operating characteristic curve (pAUC) of each 3D-CNN was used for comparison. Results EMPIRE reconstructions showed better contrast (3.23 vs. 3.10, P = 0.010), image quality (3.22 vs. 3.03, P algorithm provides DBT volumes with better contrast and image quality, fewer artifacts, and improved visibility of calcifications for human observers, as well as improved detection performance with deep-learning algorithms.

  11. An efficient algorithm for some highly nonlinear fractional PDEs in mathematical physics.

    Directory of Open Access Journals (Sweden)

    Jamshad Ahmad

    Full Text Available In this paper, a fractional complex transform (FCT is used to convert the given fractional partial differential equations (FPDEs into corresponding partial differential equations (PDEs and subsequently Reduced Differential Transform Method (RDTM is applied on the transformed system of linear and nonlinear time-fractional PDEs. The results so obtained are re-stated by making use of inverse transformation which yields it in terms of original variables. It is observed that the proposed algorithm is highly efficient and appropriate for fractional PDEs and hence can be extended to other complex problems of diversified nonlinear nature.

  12. A frequency bin-wise nonlinear masking algorithm in convolutive mixtures for speech segregation.

    Science.gov (United States)

    Chi, Tai-Shih; Huang, Ching-Wen; Chou, Wen-Sheng

    2012-05-01

    A frequency bin-wise nonlinear masking algorithm is proposed in the spectrogram domain for speech segregation in convolutive mixtures. The contributive weight from each speech source to a time-frequency unit of the mixture spectrogram is estimated by a nonlinear function based on location cues. For each sound source, a non-binary mask is formed from the estimated weights and is multiplied to the mixture spectrogram to extract the sound. Head-related transfer functions (HRTFs) are used to simulate convolutive sound mixtures perceived by listeners. Simulation results show our proposed method outperforms convolutive independent component analysis and degenerate unmixing and estimation technique methods in almost all test conditions.

  13. A nonlinear filtering algorithm for denoising HR(S)TEM micrographs

    International Nuclear Information System (INIS)

    Du, Hongchu

    2015-01-01

    Noise reduction of micrographs is often an essential task in high resolution (scanning) transmission electron microscopy (HR(S)TEM) either for a higher visual quality or for a more accurate quantification. Since HR(S)TEM studies are often aimed at resolving periodic atomistic columns and their non-periodic deviation at defects, it is important to develop a noise reduction algorithm that can simultaneously handle both periodic and non-periodic features properly. In this work, a nonlinear filtering algorithm is developed based on widely used techniques of low-pass filter and Wiener filter, which can efficiently reduce noise without noticeable artifacts even in HR(S)TEM micrographs with contrast of variation of background and defects. The developed nonlinear filtering algorithm is particularly suitable for quantitative electron microscopy, and is also of great interest for beam sensitive samples, in situ analyses, and atomic resolution EFTEM. - Highlights: • A nonlinear filtering algorithm for denoising HR(S)TEM images is developed. • It can simultaneously handle both periodic and non-periodic features properly. • It is particularly suitable for quantitative electron microscopy. • It is of great interest for beam sensitive samples, in situ analyses, and atomic resolution EFTEM

  14. Reconstruction of sparse-view X-ray computed tomography using adaptive iterative algorithms.

    Science.gov (United States)

    Liu, Li; Lin, Weikai; Jin, Mingwu

    2015-01-01

    In this paper, we propose two reconstruction algorithms for sparse-view X-ray computed tomography (CT). Treating the reconstruction problems as data fidelity constrained total variation (TV) minimization, both algorithms adapt the alternate two-stage strategy: projection onto convex sets (POCS) for data fidelity and non-negativity constraints and steepest descent for TV minimization. The novelty of this work is to determine iterative parameters automatically from data, thus avoiding tedious manual parameter tuning. In TV minimization, the step sizes of steepest descent are adaptively adjusted according to the difference from POCS update in either the projection domain or the image domain, while the step size of algebraic reconstruction technique (ART) in POCS is determined based on the data noise level. In addition, projection errors are used to compare with the error bound to decide whether to perform ART so as to reduce computational costs. The performance of the proposed methods is studied and evaluated using both simulated and physical phantom data. Our methods with automatic parameter tuning achieve similar, if not better, reconstruction performance compared to a representative two-stage algorithm. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Optimization of CT image reconstruction algorithms for the lung tissue research consortium (LTRC)

    Science.gov (United States)

    McCollough, Cynthia; Zhang, Jie; Bruesewitz, Michael; Bartholmai, Brian

    2006-03-01

    To create a repository of clinical data, CT images and tissue samples and to more clearly understand the pathogenetic features of pulmonary fibrosis and emphysema, the National Heart, Lung, and Blood Institute (NHLBI) launched a cooperative effort known as the Lung Tissue Resource Consortium (LTRC). The CT images for the LTRC effort must contain accurate CT numbers in order to characterize tissues, and must have high-spatial resolution to show fine anatomic structures. This study was performed to optimize the CT image reconstruction algorithms to achieve these criteria. Quantitative analyses of phantom and clinical images were conducted. The ACR CT accreditation phantom containing five regions of distinct CT attenuations (CT numbers of approximately -1000 HU, -80 HU, 0 HU, 130 HU and 900 HU), and a high-contrast spatial resolution test pattern, was scanned using CT systems from two manufacturers (General Electric (GE) Healthcare and Siemens Medical Solutions). Phantom images were reconstructed using all relevant reconstruction algorithms. Mean CT numbers and image noise (standard deviation) were measured and compared for the five materials. Clinical high-resolution chest CT images acquired on a GE CT system for a patient with diffuse lung disease were reconstructed using BONE and STANDARD algorithms and evaluated by a thoracic radiologist in terms of image quality and disease extent. The clinical BONE images were processed with a 3 x 3 x 3 median filter to simulate a thicker slice reconstructed in smoother algorithms, which have traditionally been proven to provide an accurate estimation of emphysema extent in the lungs. Using a threshold technique, the volume of emphysema (defined as the percentage of lung voxels having a CT number lower than -950 HU) was computed for the STANDARD, BONE, and BONE filtered. The CT numbers measured in the ACR CT Phantom images were accurate for all reconstruction kernels for both manufacturers. As expected, visual evaluation of the

  16. X-ray dose reduction in abdominal computed tomography using advanced iterative reconstruction algorithms.

    Directory of Open Access Journals (Sweden)

    Peigang Ning

    Full Text Available OBJECTIVE: This work aims to explore the effects of adaptive statistical iterative reconstruction (ASiR and model-based iterative reconstruction (MBIR algorithms in reducing computed tomography (CT radiation dosages in abdominal imaging. METHODS: CT scans on a standard male phantom were performed at different tube currents. Images at the different tube currents were reconstructed with the filtered back-projection (FBP, 50% ASiR and MBIR algorithms and compared. The CT value, image noise and contrast-to-noise ratios (CNRs of the reconstructed abdominal images were measured. Volumetric CT dose indexes (CTDIvol were recorded. RESULTS: At different tube currents, 50% ASiR and MBIR significantly reduced image noise and increased the CNR when compared with FBP. The minimal tube current values required by FBP, 50% ASiR, and MBIR to achieve acceptable image quality using this phantom were 200, 140, and 80 mA, respectively. At the identical image quality, 50% ASiR and MBIR reduced the radiation dose by 35.9% and 59.9% respectively when compared with FBP. CONCLUSIONS: Advanced iterative reconstruction techniques are able to reduce image noise and increase image CNRs. Compared with FBP, 50% ASiR and MBIR reduced radiation doses by 35.9% and 59.9%, respectively.

  17. On Newton-Raphson formulation and algorithm for displacement based structural dynamics problem with quadratic damping nonlinearity

    Directory of Open Access Journals (Sweden)

    Koh Kim Jie

    2017-01-01

    Full Text Available Quadratic damping nonlinearity is challenging for displacement based structural dynamics problem as the problem is nonlinear in time derivative of the primitive variable. For such nonlinearity, the formulation of tangent stiffness matrix is not lucid in the literature. Consequently, ambiguity related to kinematics update arises when implementing the time integration-iterative algorithm. In present work, an Euler-Bernoulli beam vibration problem with quadratic damping nonlinearity is addressed as the main source of quadratic damping nonlinearity arises from drag force estimation, which is generally valid only for slender structures. Employing Newton-Raphson formulation, tangent stiffness components associated with quadratic damping nonlinearity requires velocity input for evaluation purpose. For this reason, two mathematically equivalent algorithm structures with different kinematics arrangement are tested. Both algorithm structures result in the same accuracy and convergence characteristic of solution.

  18. Improved iterative image reconstruction algorithm for the exterior problem of computed tomography

    International Nuclear Information System (INIS)

    Guo, Yumeng; Zeng, Li

    2017-01-01

    In industrial applications that are limited by the angle of a fan-beam and the length of a detector, the exterior problem of computed tomography (CT) uses only the projection data that correspond to the external annulus of the objects to reconstruct an image. Because the reconstructions are not affected by the projection data that correspond to the interior of the objects, the exterior problem is widely applied to detect cracks in the outer wall of large-sized objects, such as in-service pipelines. However, image reconstruction in the exterior problem is still a challenging problem due to truncated projection data and beam-hardening, both of which can lead to distortions and artifacts. Thus, developing an effective algorithm and adopting a scanning trajectory suited for the exterior problem may be valuable. In this study, an improved iterative algorithm that combines total variation minimization (TVM) with a region scalable fitting (RSF) model was developed for a unilateral off-centered scanning trajectory and can be utilized to inspect large-sized objects for defects. Experiments involving simulated phantoms and real projection data were conducted to validate the practicality of our algorithm. Furthermore, comparative experiments show that our algorithm outperforms others in suppressing the artifacts caused by truncated projection data and beam-hardening.

  19. A reconstruction algorithm for three-dimensional object-space data using spatial-spectral multiplexing

    Science.gov (United States)

    Wu, Zhejun; Kudenov, Michael W.

    2017-05-01

    This paper presents a reconstruction algorithm for the Spatial-Spectral Multiplexing (SSM) optical system. The goal of this algorithm is to recover the three-dimensional spatial and spectral information of a scene, given that a one-dimensional spectrometer array is used to sample the pupil of the spatial-spectral modulator. The challenge of the reconstruction is that the non-parametric representation of the three-dimensional spatial and spectral object requires a large number of variables, thus leading to an underdetermined linear system that is hard to uniquely recover. We propose to reparameterize the spectrum using B-spline functions to reduce the number of unknown variables. Our reconstruction algorithm then solves the improved linear system via a least- square optimization of such B-spline coefficients with additional spatial smoothness regularization. The ground truth object and the optical model for the measurement matrix are simulated with both spatial and spectral assumptions according to a realistic field of view. In order to test the robustness of the algorithm, we add Poisson noise to the measurement and test on both two-dimensional and three-dimensional spatial and spectral scenes. Our analysis shows that the root mean square error of the recovered results can be achieved within 5.15%.

  20. Improved iterative image reconstruction algorithm for the exterior problem of computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yumeng [Chongqing University, College of Mathematics and Statistics, Chongqing 401331 (China); Chongqing University, ICT Research Center, Key Laboratory of Optoelectronic Technology and System of the Education Ministry of China, Chongqing 400044 (China); Zeng, Li, E-mail: drlizeng@cqu.edu.cn [Chongqing University, College of Mathematics and Statistics, Chongqing 401331 (China); Chongqing University, ICT Research Center, Key Laboratory of Optoelectronic Technology and System of the Education Ministry of China, Chongqing 400044 (China)

    2017-01-11

    In industrial applications that are limited by the angle of a fan-beam and the length of a detector, the exterior problem of computed tomography (CT) uses only the projection data that correspond to the external annulus of the objects to reconstruct an image. Because the reconstructions are not affected by the projection data that correspond to the interior of the objects, the exterior problem is widely applied to detect cracks in the outer wall of large-sized objects, such as in-service pipelines. However, image reconstruction in the exterior problem is still a challenging problem due to truncated projection data and beam-hardening, both of which can lead to distortions and artifacts. Thus, developing an effective algorithm and adopting a scanning trajectory suited for the exterior problem may be valuable. In this study, an improved iterative algorithm that combines total variation minimization (TVM) with a region scalable fitting (RSF) model was developed for a unilateral off-centered scanning trajectory and can be utilized to inspect large-sized objects for defects. Experiments involving simulated phantoms and real projection data were conducted to validate the practicality of our algorithm. Furthermore, comparative experiments show that our algorithm outperforms others in suppressing the artifacts caused by truncated projection data and beam-hardening.

  1. An efficient polyenergetic SART (pSART) reconstruction algorithm for quantitative myocardial CT perfusion

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yuan, E-mail: yuan.lin@duke.edu; Samei, Ehsan [Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, 2424 Erwin Road, Suite 302, Durham, North Carolina 27705 (United States)

    2014-02-15

    Purpose: In quantitative myocardial CT perfusion imaging, beam hardening effect due to dense bone and high concentration iodinated contrast agent can result in visible artifacts and inaccurate CT numbers. In this paper, an efficient polyenergetic Simultaneous Algebraic Reconstruction Technique (pSART) was presented to eliminate the beam hardening artifacts and to improve the CT quantitative imaging ability. Methods: Our algorithm made threea priori assumptions: (1) the human body is composed of several base materials (e.g., fat, breast, soft tissue, bone, and iodine); (2) images can be coarsely segmented to two types of regions, i.e., nonbone regions and noniodine regions; and (3) each voxel can be decomposed into a mixture of two most suitable base materials according to its attenuation value and its corresponding region type information. Based on the above assumptions, energy-independent accumulated effective lengths of all base materials can be fast computed in the forward ray-tracing process and be used repeatedly to obtain accurate polyenergetic projections, with which a SART-based equation can correctly update each voxel in the backward projecting process to iteratively reconstruct artifact-free images. This approach effectively reduces the influence of polyenergetic x-ray sources and it further enables monoenergetic images to be reconstructed at any arbitrarily preselected target energies. A series of simulation tests were performed on a size-variable cylindrical phantom and a realistic anthropomorphic thorax phantom. In addition, a phantom experiment was also performed on a clinical CT scanner to further quantitatively validate the proposed algorithm. Results: The simulations with the cylindrical phantom and the anthropomorphic thorax phantom showed that the proposed algorithm completely eliminated beam hardening artifacts and enabled quantitative imaging across different materials, phantom sizes, and spectra, as the absolute relative errors were reduced

  2. An efficient polyenergetic SART (pSART) reconstruction algorithm for quantitative myocardial CT perfusion

    International Nuclear Information System (INIS)

    Lin, Yuan; Samei, Ehsan

    2014-01-01

    Purpose: In quantitative myocardial CT perfusion imaging, beam hardening effect due to dense bone and high concentration iodinated contrast agent can result in visible artifacts and inaccurate CT numbers. In this paper, an efficient polyenergetic Simultaneous Algebraic Reconstruction Technique (pSART) was presented to eliminate the beam hardening artifacts and to improve the CT quantitative imaging ability. Methods: Our algorithm made threea priori assumptions: (1) the human body is composed of several base materials (e.g., fat, breast, soft tissue, bone, and iodine); (2) images can be coarsely segmented to two types of regions, i.e., nonbone regions and noniodine regions; and (3) each voxel can be decomposed into a mixture of two most suitable base materials according to its attenuation value and its corresponding region type information. Based on the above assumptions, energy-independent accumulated effective lengths of all base materials can be fast computed in the forward ray-tracing process and be used repeatedly to obtain accurate polyenergetic projections, with which a SART-based equation can correctly update each voxel in the backward projecting process to iteratively reconstruct artifact-free images. This approach effectively reduces the influence of polyenergetic x-ray sources and it further enables monoenergetic images to be reconstructed at any arbitrarily preselected target energies. A series of simulation tests were performed on a size-variable cylindrical phantom and a realistic anthropomorphic thorax phantom. In addition, a phantom experiment was also performed on a clinical CT scanner to further quantitatively validate the proposed algorithm. Results: The simulations with the cylindrical phantom and the anthropomorphic thorax phantom showed that the proposed algorithm completely eliminated beam hardening artifacts and enabled quantitative imaging across different materials, phantom sizes, and spectra, as the absolute relative errors were reduced

  3. Optimising Aesthetic Reconstruction of Scalp Soft Tissue by an Algorithm Based on Defect Size and Location.

    Science.gov (United States)

    Ooi, Adrian Sh; Kanapathy, Muholan; Ong, Yee Siang; Tan, Kok Chai; Tan, Bien Keem

    2015-11-01

    Scalp soft tissue defects are common and result from a variety of causes. Reconstructive methods should maximise cosmetic outcomes by maintaining hair-bearing tissue and aesthetic hairlines. This article outlines an algorithm based on a diverse clinical case series to optimise scalp soft tissue coverage. A retrospective analysis of scalp soft tissue reconstruction cases performed at the Singapore General Hospital between January 2004 and December 2013 was conducted. Forty-one patients were included in this study. The majority of defects aesthetic outcome while minimising complications and repeat procedures.

  4. Study on beam geometry and image reconstruction algorithm in fast neutron computerized tomography at NECTAR facility

    Science.gov (United States)

    Guo, J.; Bücherl, T.; Zou, Y.; Guo, Z.

    2011-09-01

    Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.

  5. Study on beam geometry and image reconstruction algorithm in fast neutron computerized tomography at NECTAR facility

    International Nuclear Information System (INIS)

    Guo, J.; Buecherl, T.; Zou, Y.; Guo, Z.

    2011-01-01

    Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.

  6. Study on beam geometry and image reconstruction algorithm in fast neutron computerized tomography at NECTAR facility

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J. [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China); Lehrstuhl fuer Radiochemie, Technische Universitaet Muenchen, Garching 80748 (Germany); Buecherl, T. [Lehrstuhl fuer Radiochemie, Technische Universitaet Muenchen, Garching 80748 (Germany); Zou, Y., E-mail: zouyubin@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China); Guo, Z. [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China)

    2011-09-21

    Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.

  7. On Inverse Coefficient Heat-Conduction Problems on Reconstruction of Nonlinear Components of the Thermal-Conductivity Tensor of Anisotropic Bodies

    Science.gov (United States)

    Formalev, V. F.; Kolesnik, S. A.

    2017-11-01

    The authors are the first to present a closed procedure for numerical solution of inverse coefficient problems of heat conduction in anisotropic materials used as heat-shielding ones in rocket and space equipment. The reconstructed components of the thermal-conductivity tensor depend on temperature (are nonlinear). The procedure includes the formation of experimental data, the implicit gradient-descent method, the economical absolutely stable method of numerical solution of parabolic problems containing mixed derivatives, the parametric identification, construction, and numerical solution of the problem for elements of sensitivity matrices, the development of a quadratic residual functional and regularizing functionals, and also the development of algorithms and software systems. The implicit gradient-descent method permits expanding the quadratic functional in a Taylor series with retention of the linear terms for the increments of the sought functions. This substantially improves the exactness and stability of solution of the inverse problems. Software systems are developed with account taken of the errors in experimental data and disregarding them. On the basis of a priori assumptions of the qualitative behavior of the functional dependences of the components of the thermal-conductivity tensor on temperature, regularizing functionals are constructed by means of which one can reconstruct the components of the thermal-conductivity tensor with an error no higher than the error of the experimental data. Results of the numerical solution of the inverse coefficient problems on reconstruction of nonlinear components of the thermal-conductivity tensor have been obtained and are discussed.

  8. Embedded algorithms within an FPGA-based system to process nonlinear time series data

    Science.gov (United States)

    Jones, Jonathan D.; Pei, Jin-Song; Tull, Monte P.

    2008-03-01

    This paper presents some preliminary results of an ongoing project. A pattern classification algorithm is being developed and embedded into a Field-Programmable Gate Array (FPGA) and microprocessor-based data processing core in this project. The goal is to enable and optimize the functionality of onboard data processing of nonlinear, nonstationary data for smart wireless sensing in structural health monitoring. Compared with traditional microprocessor-based systems, fast growing FPGA technology offers a more powerful, efficient, and flexible hardware platform including on-site (field-programmable) reconfiguration capability of hardware. An existing nonlinear identification algorithm is used as the baseline in this study. The implementation within a hardware-based system is presented in this paper, detailing the design requirements, validation, tradeoffs, optimization, and challenges in embedding this algorithm. An off-the-shelf high-level abstraction tool along with the Matlab/Simulink environment is utilized to program the FPGA, rather than coding the hardware description language (HDL) manually. The implementation is validated by comparing the simulation results with those from Matlab. In particular, the Hilbert Transform is embedded into the FPGA hardware and applied to the baseline algorithm as the centerpiece in processing nonlinear time histories and extracting instantaneous features of nonstationary dynamic data. The selection of proper numerical methods for the hardware execution of the selected identification algorithm and consideration of the fixed-point representation are elaborated. Other challenges include the issues of the timing in the hardware execution cycle of the design, resource consumption, approximation accuracy, and user flexibility of input data types limited by the simplicity of this preliminary design. Future work includes making an FPGA and microprocessor operate together to embed a further developed algorithm that yields better

  9. Direct cone-beam cardiac reconstruction algorithm with cardiac banding artifact correction

    International Nuclear Information System (INIS)

    Taguchi, Katsuyuki; Chiang, Beshan S.; Hein, Ilmar A.

    2006-01-01

    Multislice helical computed tomography (CT) is a promising noninvasive technique for coronary artery imaging. Various factors can cause inconsistencies in cardiac CT data, which can result in degraded image quality. These inconsistencies may be the result of the patient physiology (e.g., heart rate variations), the nature of the data (e.g., cone-angle), or the reconstruction algorithm itself. An algorithm which provides the best temporal resolution for each slice, for example, often provides suboptimal image quality for the entire volume since the cardiac temporal resolution (TRc) changes from slice to slice. Such variations in TRc can generate strong banding artifacts in multi-planar reconstruction images or three-dimensional images. Discontinuous heart walls and coronary arteries may compromise the accuracy of the diagnosis. A β-blocker is often used to reduce and stabilize patients' heart rate but cannot eliminate the variation. In order to obtain robust and optimal image quality, a software solution that increases the temporal resolution and decreases the effect of heart rate is highly desirable. This paper proposes an ECG-correlated direct cone-beam reconstruction algorithm (TCOT-EGR) with cardiac banding artifact correction (CBC) and disconnected projections redundancy compensation technique (DIRECT). First the theory and analytical model of the cardiac temporal resolution is outlined. Next, the performance of the proposed algorithms is evaluated by using computer simulations as well as patient data. It will be shown that the proposed algorithms enhance the robustness of the image quality against inconsistencies by guaranteeing smooth transition of heart cycles used in reconstruction

  10. A Numerical Algorithm for Solving a Four-Point Nonlinear Fractional Integro-Differential Equations

    Directory of Open Access Journals (Sweden)

    Er Gao

    2012-01-01

    Full Text Available We provide a new algorithm for a four-point nonlocal boundary value problem of nonlinear integro-differential equations of fractional order q∈(1,2] based on reproducing kernel space method. According to our work, the analytical solution of the equations is represented in the reproducing kernel space which we construct and so the n-term approximation. At the same time, the n-term approximation is proved to converge to the analytical solution. An illustrative example is also presented, which shows that the new algorithm is efficient and accurate.

  11. Modified Hyperspheres Algorithm to Trace Homotopy Curves of Nonlinear Circuits Composed by Piecewise Linear Modelled Devices

    Directory of Open Access Journals (Sweden)

    H. Vazquez-Leal

    2014-01-01

    Full Text Available We present a homotopy continuation method (HCM for finding multiple operating points of nonlinear circuits composed of devices modelled by using piecewise linear (PWL representations. We propose an adaptation of the modified spheres path tracking algorithm to trace the homotopy trajectories of PWL circuits. In order to assess the benefits of this proposal, four nonlinear circuits composed of piecewise linear modelled devices are analysed to determine their multiple operating points. The results show that HCM can find multiple solutions within a single homotopy trajectory. Furthermore, we take advantage of the fact that homotopy trajectories are PWL curves meant to replace the multidimensional interpolation and fine tuning stages of the path tracking algorithm with a simple and highly accurate procedure based on the parametric straight line equation.

  12. An accelerated threshold-based back-projection algorithm for Compton camera image reconstruction

    International Nuclear Information System (INIS)

    Mundy, Daniel W.; Herman, Michael G.

    2011-01-01

    Purpose: Compton camera imaging (CCI) systems are currently under investigation for radiotherapy dose reconstruction and verification. The ability of such a system to provide real-time images during dose delivery will be limited by the computational speed of the image reconstruction algorithm. In this work, the authors present a fast and simple method by which to generate an initial back-projected image from acquired CCI data, suitable for use in a filtered back-projection algorithm or as a starting point for iterative reconstruction algorithms, and compare its performance to the current state of the art. Methods: Each detector event in a CCI system describes a conical surface that includes the true point of origin of the detected photon. Numerical image reconstruction algorithms require, as a first step, the back-projection of each of these conical surfaces into an image space. The algorithm presented here first generates a solution matrix for each slice of the image space by solving the intersection of the conical surface with the image plane. Each element of the solution matrix is proportional to the distance of the corresponding voxel from the true intersection curve. A threshold function was developed to extract those pixels sufficiently close to the true intersection to generate a binary intersection curve. This process is repeated for each image plane for each CCI detector event, resulting in a three-dimensional back-projection image. The performance of this algorithm was tested against a marching algorithm known for speed and accuracy. Results: The threshold-based algorithm was found to be approximately four times faster than the current state of the art with minimal deficit to image quality, arising from the fact that a generically applicable threshold function cannot provide perfect results in all situations. The algorithm fails to extract a complete intersection curve in image slices near the detector surface for detector event cones having axes nearly

  13. Parallel supercomputing: Advanced methods, algorithms, and software for large-scale linear and nonlinear problems

    Energy Technology Data Exchange (ETDEWEB)

    Carey, G.F.; Young, D.M.

    1993-12-31

    The program outlined here is directed to research on methods, algorithms, and software for distributed parallel supercomputers. Of particular interest are finite element methods and finite difference methods together with sparse iterative solution schemes for scientific and engineering computations of very large-scale systems. Both linear and nonlinear problems will be investigated. In the nonlinear case, applications with bifurcation to multiple solutions will be considered using continuation strategies. The parallelizable numerical methods of particular interest are a family of partitioning schemes embracing domain decomposition, element-by-element strategies, and multi-level techniques. The methods will be further developed incorporating parallel iterative solution algorithms with associated preconditioners in parallel computer software. The schemes will be implemented on distributed memory parallel architectures such as the CRAY MPP, Intel Paragon, the NCUBE3, and the Connection Machine. We will also consider other new architectures such as the Kendall-Square (KSQ) and proposed machines such as the TERA. The applications will focus on large-scale three-dimensional nonlinear flow and reservoir problems with strong convective transport contributions. These are legitimate grand challenge class computational fluid dynamics (CFD) problems of significant practical interest to DOE. The methods developed and algorithms will, however, be of wider interest.

  14. A parallel algorithm for 3D particle tracking and Lagrangian trajectory reconstruction

    International Nuclear Information System (INIS)

    Barker, Douglas; Zhang, Yuanhui; Lifflander, Jonathan; Arya, Anshu

    2012-01-01

    Particle-tracking methods are widely used in fluid mechanics and multi-target tracking research because of their unique ability to reconstruct long trajectories with high spatial and temporal resolution. Researchers have recently demonstrated 3D tracking of several objects in real time, but as the number of objects is increased, real-time tracking becomes impossible due to data transfer and processing bottlenecks. This problem may be solved by using parallel processing. In this paper, a parallel-processing framework has been developed based on frame decomposition and is programmed using the asynchronous object-oriented Charm++ paradigm. This framework can be a key step in achieving a scalable Lagrangian measurement system for particle-tracking velocimetry and may lead to real-time measurement capabilities. The parallel tracking algorithm was evaluated with three data sets including the particle image velocimetry standard 3D images data set #352, a uniform data set for optimal parallel performance and a computational-fluid-dynamics-generated non-uniform data set to test trajectory reconstruction accuracy, consistency with the sequential version and scalability to more than 500 processors. The algorithm showed strong scaling up to 512 processors and no inherent limits of scalability were seen. Ultimately, up to a 200-fold speedup is observed compared to the serial algorithm when 256 processors were used. The parallel algorithm is adaptable and could be easily modified to use any sequential tracking algorithm, which inputs frames of 3D particle location data and outputs particle trajectories

  15. Fast parallel MR image reconstruction via B1-based, adaptive restart, iterative soft thresholding algorithms (BARISTA).

    Science.gov (United States)

    Muckley, Matthew J; Noll, Douglas C; Fessler, Jeffrey A

    2015-02-01

    Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms.

  16. Unveiling the development of intracranial injury using dynamic brain EIT: an evaluation of current reconstruction algorithms.

    Science.gov (United States)

    Li, Haoting; Chen, Rongqing; Xu, Canhua; Liu, Benyuan; Tang, Mengxing; Yang, Lin; Dong, Xiuzhen; Fu, Feng

    2017-08-21

    Dynamic brain electrical impedance tomography (EIT) is a promising technique for continuously monitoring the development of cerebral injury. While there are many reconstruction algorithms available for brain EIT, there is still a lack of study to compare their performance in the context of dynamic brain monitoring. To address this problem, we develop a framework for evaluating different current algorithms with their ability to correctly identify small intracranial conductivity changes. Firstly, a simulation 3D head phantom with realistic layered structure and impedance distribution is developed. Next several reconstructing algorithms, such as back projection (BP), damped least-square (DLS), Bayesian, split Bregman (SB) and GREIT are introduced. We investigate their temporal response, noise performance, location and shape error with respect to different noise levels on the simulation phantom. The results show that the SB algorithm demonstrates superior performance in reducing image error. To further improve the location accuracy, we optimize SB by incorporating the brain structure-based conductivity distribution priors, in which differences of the conductivities between different brain tissues and the inhomogeneous conductivity distribution of the skull are considered. We compare this novel algorithm (called SB-IBCD) with SB and DLS using anatomically correct head shaped phantoms with spatial varying skull conductivity. Main results and Significance: The results showed that SB-IBCD is the most effective in unveiling small intracranial conductivity changes, where it can reduce the image error by an average of 30.0% compared to DLS.

  17. Reconstruction algorithms in the Super-Kamiokande large water Cherenkov detector

    International Nuclear Information System (INIS)

    Shiozawa, M.

    1999-01-01

    The Super-Kamiokande experiment, using a large underground water Cherenkov detector, has started its operation since first April, 1996. One of the main physics goals of this experiment is to measure the atmospheric neutrinos. Proton decay search is also an important topic. For these analyses, all measurement of physical quantities of an event such as vertex position, the number of Cherenkov rings, momentum, particle type and the number of decay electrons, is automatically performed by reconstruction algorithms. We attain enough quality of the analyses using these algorithms and several impressive results have been addressed

  18. Reconstruction algorithms in the Super-Kamiokande large water Cherenkov detector

    CERN Document Server

    Shiozawa, M

    1999-01-01

    The Super-Kamiokande experiment, using a large underground water Cherenkov detector, has started its operation since first April, 1996. One of the main physics goals of this experiment is to measure the atmospheric neutrinos. Proton decay search is also an important topic. For these analyses, all measurement of physical quantities of an event such as vertex position, the number of Cherenkov rings, momentum, particle type and the number of decay electrons, is automatically performed by reconstruction algorithms. We attain enough quality of the analyses using these algorithms and several impressive results have been addressed.

  19. Applicability of a set of tomographic reconstruction algorithms for quantitative SPECT on irradiated nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsson Svärd, Staffan, E-mail: staffan.jacobsson_svard@physics.uu.se; Holcombe, Scott; Grape, Sophie

    2015-05-21

    A fuel assembly operated in a nuclear power plant typically contains 100–300 fuel rods, depending on fuel type, which become strongly radioactive during irradiation in the reactor core. For operational and security reasons, it is of interest to experimentally deduce rod-wise information from the fuel, preferably by means of non-destructive measurements. The tomographic SPECT technique offers such possibilities through its two-step application; (1) recording the gamma-ray flux distribution around the fuel assembly, and (2) reconstructing the assembly's internal source distribution, based on the recorded radiation field. In this paper, algorithms for performing the latter step and extracting quantitative relative rod-by-rod data are accounted for. As compared to application of SPECT in nuclear medicine, nuclear fuel assemblies present a much more heterogeneous distribution of internal attenuation to gamma radiation than the human body, typically with rods containing pellets of heavy uranium dioxide surrounded by cladding of a zirconium alloy placed in water or air. This inhomogeneity severely complicates the tomographic quantification of the rod-wise relative source content, and the deduction of conclusive data requires detailed modelling of the attenuation to be introduced in the reconstructions. However, as shown in this paper, simplified models may still produce valuable information about the fuel. Here, a set of reconstruction algorithms for SPECT on nuclear fuel assemblies are described and discussed in terms of their quantitative performance for two applications; verification of fuel assemblies' completeness in nuclear safeguards, and rod-wise fuel characterization. It is argued that a request not to base the former assessment on any a priori information brings constraints to which reconstruction methods that may be used in that case, whereas the use of a priori information on geometry and material content enables highly accurate quantitative

  20. Layer-oriented multigrid wavefront reconstruction algorithms for multi-conjugate adaptive optics

    Science.gov (United States)

    Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.

    2003-02-01

    Multi-conjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of AO degrees of freedom. In this paper, we develop an iterative sparse matrix implementation of minimum variance wavefront reconstruction for telescope diameters up to 32m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method, using a multigrid preconditioner incorporating a layer-oriented (block) symmetric Gauss-Seidel iterative smoothing operator. We present open-loop numerical simulation results to illustrate algorithm convergence.

  1. Convergence of SART + OS + TV iterative reconstruction algorithm for optical CT imaging of gel dosimeters

    International Nuclear Information System (INIS)

    Du, Yi; Yu, Gongyi; Xiang, Xincheng; Wang, Xiangang; De Deene, Yves

    2017-01-01

    Computational simulations are used to investigate the convergence of a hybrid iterative algorithm for optical CT reconstruction, i.e. the simultaneous algebraic reconstruction technique (SART) integrated with ordered subsets (OS) iteration and total variation (TV) minimization regularization, or SART+OS+TV for short. The influence of parameter selection to reach convergence, spatial dose gradient integrity, MTF and convergent speed are discussed. It’s shown that the results of SART+OS+TV algorithm converge to the true values without significant bias, and MTF and convergent speed are affected by different parameter sets used for iterative calculation. In conclusion, the performance of the SART+OS+TV depends on parameter selection, which also implies that careful parameter tuning work is required and necessary for proper spatial performance and fast convergence. (paper)

  2. An electron tomography algorithm for reconstructing 3D morphology using surface tangents of projected scattering interfaces

    Science.gov (United States)

    Petersen, T. C.; Ringer, S. P.

    2010-03-01

    Upon discerning the mere shape of an imaged object, as portrayed by projected perimeters, the full three-dimensional scattering density may not be of particular interest. In this situation considerable simplifications to the reconstruction problem are possible, allowing calculations based upon geometric principles. Here we describe and provide an algorithm which reconstructs the three-dimensional morphology of specimens from tilt series of images for application to electron tomography. Our algorithm uses a differential approach to infer the intersection of projected tangent lines with surfaces which define boundaries between regions of different scattering densities within and around the perimeters of specimens. Details of the algorithm implementation are given and explained using reconstruction calculations from simulations, which are built into the code. An experimental application of the algorithm to a nano-sized Aluminium tip is also presented to demonstrate practical analysis for a real specimen. Program summaryProgram title: STOMO version 1.0 Catalogue identifier: AEFS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2988 No. of bytes in distributed program, including test data, etc.: 191 605 Distribution format: tar.gz Programming language: C/C++ Computer: PC Operating system: Windows XP RAM: Depends upon the size of experimental data as input, ranging from 200 Mb to 1.5 Gb Supplementary material: Sample output files, for the test run provided, are available. Classification: 7.4, 14 External routines: Dev-C++ ( http://www.bloodshed.net/devcpp.html) Nature of problem: Electron tomography of specimens for which conventional back projection may fail and/or data for which there is a limited angular

  3. An integer optimization algorithm for robust identification of non-linear gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Chemmangattuvalappil Nishanth

    2012-09-01

    Full Text Available Abstract Background Reverse engineering gene networks and identifying regulatory interactions are integral to understanding cellular decision making processes. Advancement in high throughput experimental techniques has initiated innovative data driven analysis of gene regulatory networks. However, inherent noise associated with biological systems requires numerous experimental replicates for reliable conclusions. Furthermore, evidence of robust algorithms directly exploiting basic biological traits are few. Such algorithms are expected to be efficient in their performance and robust in their prediction. Results We have developed a network identification algorithm to accurately infer both the topology and strength of regulatory interactions from time series gene expression data in the presence of significant experimental noise and non-linear behavior. In this novel formulism, we have addressed data variability in biological systems by integrating network identification with the bootstrap resampling technique, hence predicting robust interactions from limited experimental replicates subjected to noise. Furthermore, we have incorporated non-linearity in gene dynamics using the S-system formulation. The basic network identification formulation exploits the trait of sparsity of biological interactions. Towards that, the identification algorithm is formulated as an integer-programming problem by introducing binary variables for each network component. The objective function is targeted to minimize the network connections subjected to the constraint of maximal agreement between the experimental and predicted gene dynamics. The developed algorithm is validated using both in silico and experimental data-sets. These studies show that the algorithm can accurately predict the topology and connection strength of the in silico networks, as quantified by high precision and recall, and small discrepancy between the actual and predicted kinetic parameters

  4. A Self-Reconstructing Algorithm for Single and Multiple-Sensor Fault Isolation Based on Auto-Associative Neural Networks

    Directory of Open Access Journals (Sweden)

    Hamidreza Mousavi

    2017-01-01

    Full Text Available Recently different approaches have been developed in the field of sensor fault diagnostics based on Auto-Associative Neural Network (AANN. In this paper we present a novel algorithm called Self reconstructing Auto-Associative Neural Network (S-AANN which is able to detect and isolate single faulty sensor via reconstruction. We have also extended the algorithm to be applicable in multiple fault conditions. The algorithm uses a calibration model based on AANN. AANN can reconstruct the faulty sensor using non-faulty sensors due to correlation between the process variables, and mean of the difference between reconstructed and original data determines which sensors are faulty. The algorithms are tested on a Dimerization process. The simulation results show that the S-AANN can isolate multiple faulty sensors with low computational time that make the algorithm appropriate candidate for online applications.

  5. Acoustical source reconstruction from non-synchronous sequential measurements by Fast Iterative Shrinkage Thresholding Algorithm

    Science.gov (United States)

    Yu, Liang; Antoni, Jerome; Leclere, Quentin; Jiang, Weikang

    2017-11-01

    Acoustical source reconstruction is a typical inverse problem, whose minimum frequency of reconstruction hinges on the size of the array and maximum frequency depends on the spacing distance between the microphones. For the sake of enlarging the frequency of reconstruction and reducing the cost of an acquisition system, Cyclic Projection (CP), a method of sequential measurements without reference, was recently investigated (JSV,2016,372:31-49). In this paper, the Propagation based Fast Iterative Shrinkage Thresholding Algorithm (Propagation-FISTA) is introduced, which improves CP in two aspects: (1) the number of acoustic sources is no longer needed and the only making assumption is that of a "weakly sparse" eigenvalue spectrum; (2) the construction of the spatial basis is much easier and adaptive to practical scenarios of acoustical measurements benefiting from the introduction of propagation based spatial basis. The proposed Propagation-FISTA is first investigated with different simulations and experimental setups and is next illustrated with an industrial case.

  6. Quantitative analysis of emphysema in 3D using MDCT: Influence of different reconstruction algorithms

    International Nuclear Information System (INIS)

    Ley-Zaporozhan, Julia; Ley, Sebastian; Weinheimer, Oliver; Iliyushenko, Svitlana; Erdugan, Serap; Eberhardt, Ralf; Fuxa, Adelheid; Mews, Juergen; Kauczor, Hans-Ulrich

    2008-01-01

    Purpose: The aim of the study was to compare the influence of different reconstruction algorithms on quantitative emphysema analysis in patients with severe emphysema. Material and methods: Twenty-five patients suffering from severe emphysema were included in the study. All patients underwent inspiratory MDCT (Aquilion-16, slice thickness 1/0.8 mm). The raw data were reconstructed using six different algorithms: bone kernel with beam hardening correction (BHC), soft tissue kernel with BHC; standard soft tissue kernel, smooth soft tissue kernel (internal reference standard), standard lung kernel, and high-convolution kernel. The only difference between image data sets was the algorithm employed to reconstruct the raw data, no additional radiation was required. CT data were analysed using self-written emphysema detection and quantification software providing lung volume, emphysema volume (EV), emphysema index (EI) and mean lung density (MLD). Results: The use of kernels with BHC led to a significant decrease in MLD (5%) and EI (61-79%) in comparison with kernels without BHC. The absolute difference (from smooth soft tissue kernel) in MLD ranged from -0.6 to -6.1 HU and were significant different for all kernels. The EV showed absolute differences between -0.05 and -0.4 L and was significantly different for all kernels. The EI showed absolute differences between -0.8 and -5.1 and was significantly different for all kernels. Conclusion: The use of kernels with BHC led to a significant decrease in MLD and EI. The absolute differences between different kernels without BHC were small but they were larger than the known interscan variation in patients. Thus, for follow-up examinations the same reconstruction algorithm has to be used and use of BHC has to be avoided

  7. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT.

    Science.gov (United States)

    Matenine, Dmitri; Mascolo-Fortin, Julia; Goussard, Yves; Després, Philippe

    2015-11-01

    The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can potentially improve the rendering of

  8. Imaging reconstruction based on improved wavelet denoising combined with parallel-beam filtered back-projection algorithm

    Science.gov (United States)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2012-11-01

    The image reconstruction is a key step in medical imaging (MI) and its algorithm's performance determinates the quality and resolution of reconstructed image. Although some algorithms have been used, filter back-projection (FBP) algorithm is still the classical and commonly-used algorithm in clinical MI. In FBP algorithm, filtering of original projection data is a key step in order to overcome artifact of the reconstructed image. Since simple using of classical filters, such as Shepp-Logan (SL), Ram-Lak (RL) filter have some drawbacks and limitations in practice, especially for the projection data polluted by non-stationary random noises. So, an improved wavelet denoising combined with parallel-beam FBP algorithm is used to enhance the quality of reconstructed image in this paper. In the experiments, the reconstructed effects were compared between the improved wavelet denoising and others (directly FBP, mean filter combined FBP and median filter combined FBP method). To determine the optimum reconstruction effect, different algorithms, and different wavelet bases combined with three filters were respectively test. Experimental results show the reconstruction effect of improved FBP algorithm is better than that of others. Comparing the results of different algorithms based on two evaluation standards i.e. mean-square error (MSE), peak-to-peak signal-noise ratio (PSNR), it was found that the reconstructed effects of the improved FBP based on db2 and Hanning filter at decomposition scale 2 was best, its MSE value was less and the PSNR value was higher than others. Therefore, this improved FBP algorithm has potential value in the medical imaging.

  9. Design of 4D x-ray tomography experiments for reconstruction using regularized iterative algorithms

    Science.gov (United States)

    Mohan, K. Aditya

    2017-10-01

    4D X-ray computed tomography (4D-XCT) is widely used to perform non-destructive characterization of time varying physical processes in various materials. The conventional approach to improving temporal resolution in 4D-XCT involves the development of expensive and complex instrumentation that acquire data faster with reduced noise. It is customary to acquire data with many tomographic views at a high signal to noise ratio. Instead, temporal resolution can be improved using regularized iterative algorithms that are less sensitive to noise and limited views. These algorithms benefit from optimization of other parameters such as the view sampling strategy while improving temporal resolution by reducing the total number of views or the detector exposure time. This paper presents the design principles of 4D-XCT experiments when using regularized iterative algorithms derived using the framework of model-based reconstruction. A strategy for performing 4D-XCT experiments is presented that allows for improving the temporal resolution by progressively reducing the number of views or the detector exposure time. Theoretical analysis of the effect of the data acquisition parameters on the detector signal to noise ratio, spatial reconstruction resolution, and temporal reconstruction resolution is also presented in this paper.

  10. Improved Wallis Dodging Algorithm for Large-Scale Super-Resolution Reconstruction Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Chong Fan

    2017-03-01

    Full Text Available A sub-block algorithm is usually applied in the super-resolution (SR reconstruction of images because of limitations in computer memory. However, the sub-block SR images can hardly achieve a seamless image mosaicking because of the uneven distribution of brightness and contrast among these sub-blocks. An effectively improved weighted Wallis dodging algorithm is proposed, aiming at the characteristic that SR reconstructed images are gray images with the same size and overlapping region. This algorithm can achieve consistency of image brightness and contrast. Meanwhile, a weighted adjustment sequence is presented to avoid the spatial propagation and accumulation of errors and the loss of image information caused by excessive computation. A seam line elimination method can share the partial dislocation in the seam line to the entire overlapping region with a smooth transition effect. Subsequently, the improved method is employed to remove the uneven illumination for 900 SR reconstructed images of ZY-3. Then, the overlapping image mosaic method is adopted to accomplish a seamless image mosaic based on the optimal seam line.

  11. Effect of filters and reconstruction algorithms on I-124 PET in Siemens Inveon PET scanner

    Science.gov (United States)

    Ram Yu, A.; Kim, Jin Su

    2015-10-01

    Purpose: To assess the effects of filtering and reconstruction on Siemens I-124 PET data. Methods: A Siemens Inveon PET was used. Spatial resolution of I-124 was measured to a transverse offset of 50 mm from the center FBP, 2D ordered subset expectation maximization (OSEM2D), 3D re-projection algorithm (3DRP), and maximum a posteriori (MAP) methods were tested. Non-uniformity (NU), recovery coefficient (RC), and spillover ratio (SOR) parameterized image quality. Mini deluxe phantom data of I-124 was also assessed. Results: Volumetric resolution was 7.3 mm3 from the transverse FOV center when FBP reconstruction algorithms with ramp filter was used. MAP yielded minimal NU with β =1.5. OSEM2D yielded maximal RC. SOR was below 4% for FBP with ramp, Hamming, Hanning, or Shepp-Logan filters. Based on the mini deluxe phantom results, an FBP with Hanning or Parzen filters, or a 3DRP with Hanning filter yielded feasible I-124 PET data.Conclusions: Reconstruction algorithms and filters were compared. FBP with Hanning or Parzen filters, or 3DRP with Hanning filter yielded feasible data for quantifying I-124 PET.

  12. Fast noise level estimation algorithm based on principal component analysis transform and nonlinear rectification

    Science.gov (United States)

    Xu, Shaoping; Zeng, Xiaoxia; Jiang, Yinnan; Tang, Yiling

    2018-01-01

    We proposed a noniterative principal component analysis (PCA)-based noise level estimation (NLE) algorithm that addresses the problem of estimating the noise level with a two-step scheme. First, we randomly extracted a number of raw patches from a given noisy image and took the smallest eigenvalue of the covariance matrix of the raw patches as the preliminary estimation of the noise level. Next, the final estimation was directly obtained with a nonlinear mapping (rectification) function that was trained on some representative noisy images corrupted with different known noise levels. Compared with the state-of-art NLE algorithms, the experiment results show that the proposed NLE algorithm can reliably infer the noise level and has robust performance over a wide range of image contents and noise levels, showing a good compromise between speed and accuracy in general.

  13. Exact fan-beam image reconstruction algorithm for truncated projection data acquired from an asymmetric half-size detector

    International Nuclear Information System (INIS)

    Leng Shuai; Zhuang Tingliang; Nett, Brian E; Chen Guanghong

    2005-01-01

    In this paper, we present a new algorithm designed for a specific data truncation problem in fan-beam CT. We consider a scanning configuration in which the fan-beam projection data are acquired from an asymmetrically positioned half-sized detector. Namely, the asymmetric detector only covers one half of the scanning field of view. Thus, the acquired fan-beam projection data are truncated at every view angle. If an explicit data rebinning process is not invoked, this data acquisition configuration will reek havoc on many known fan-beam image reconstruction schemes including the standard filtered backprojection (FBP) algorithm and the super-short-scan FBP reconstruction algorithms. However, we demonstrate that a recently developed fan-beam image reconstruction algorithm which reconstructs an image via filtering a backprojection image of differentiated projection data (FBPD) survives the above fan-beam data truncation problem. Namely, we may exactly reconstruct the whole image object using the truncated data acquired in a full scan mode (2π angular range). We may also exactly reconstruct a small region of interest (ROI) using the truncated projection data acquired in a short-scan mode (less than 2π angular range). The most important characteristic of the proposed reconstruction scheme is that an explicit data rebinning process is not introduced. Numerical simulations were conducted to validate the new reconstruction algorithm

  14. New recursive-least-squares algorithms for nonlinear active control of sound and vibration using neural networks.

    Science.gov (United States)

    Bouchard, M

    2001-01-01

    In recent years, a few articles describing the use of neural networks for nonlinear active control of sound and vibration were published. Using a control structure with two multilayer feedforward neural networks (one as a nonlinear controller and one as a nonlinear plant model), steepest descent algorithms based on two distinct gradient approaches were introduced for the training of the controller network. The two gradient approaches were sometimes called the filtered-x approach and the adjoint approach. Some recursive-least-squares algorithms were also introduced, using the adjoint approach. In this paper, an heuristic procedure is introduced for the development of recursive-least-squares algorithms based on the filtered-x and the adjoint gradient approaches. This leads to the development of new recursive-least-squares algorithms for the training of the controller neural network in the two networks structure. These new algorithms produce a better convergence performance than previously published algorithms. Differences in the performance of algorithms using the filtered-x and the adjoint gradient approaches are discussed in the paper. The computational load of the algorithms discussed in the paper is evaluated for multichannel systems of nonlinear active control. Simulation results are presented to compare the convergence performance of the algorithms, showing the convergence gain provided by the new algorithms.

  15. Algorithm Design and Validation for Adaptive Nonlinear Control Enhancement (ADVANCE) Technology Development for Resilient Flight Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI proposes to develop and test a framework referred to as the ADVANCE (Algorithm Design and Validation for Adaptive Nonlinear Control Enhancement), within which...

  16. A low-count reconstruction algorithm for Compton-based prompt gamma imaging

    Science.gov (United States)

    Huang, Hsuan-Ming; Liu, Chih-Chieh; Jan, Meei-Ling; Lee, Ming-Wei

    2018-04-01

    The Compton camera is an imaging device which has been proposed to detect prompt gammas (PGs) produced by proton–nuclear interactions within tissue during proton beam irradiation. Compton-based PG imaging has been developed to verify proton ranges because PG rays, particularly characteristic ones, have strong correlations with the distribution of the proton dose. However, accurate image reconstruction from characteristic PGs is challenging because the detector efficiency and resolution are generally low. Our previous study showed that point spread functions can be incorporated into the reconstruction process to improve image resolution. In this study, we proposed a low-count reconstruction algorithm to improve the image quality of a characteristic PG emission by pooling information from other characteristic PG emissions. PGs were simulated from a proton beam irradiated on a water phantom, and a two-stage Compton camera was used for PG detection. The results show that the image quality of the reconstructed characteristic PG emission is improved with our proposed method in contrast to the standard reconstruction method using events from only one characteristic PG emission. For the 4.44 MeV PG rays, both methods can be used to predict the positions of the peak and the distal falloff with a mean accuracy of 2 mm. Moreover, only the proposed method can improve the estimated positions of the peak and the distal falloff of 5.25 MeV PG rays, and a mean accuracy of 2 mm can be reached.

  17. Energy demand forecasting in Iranian metal industry using linear and nonlinear models based on evolutionary algorithms

    International Nuclear Information System (INIS)

    Piltan, Mehdi; Shiri, Hiva; Ghaderi, S.F.

    2012-01-01

    Highlights: ► Investigating different fitness functions for evolutionary algorithms in energy forecasting. ► Energy forecasting of Iranian metal industry by value added, energy prices, investment and employees. ► Using real-coded instead of binary-coded genetic algorithm decreases energy forecasting error. - Abstract: Developing energy-forecasting models is known as one of the most important steps in long-term planning. In order to achieve sustainable energy supply toward economic development and social welfare, it is required to apply precise forecasting model. Applying artificial intelligent models for estimation complex economic and social functions is growing up considerably in many researches recently. In this paper, energy consumption in industrial sector as one of the critical sectors in the consumption of energy has been investigated. Two linear and three nonlinear functions have been used in order to forecast and analyze energy in the Iranian metal industry, Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs) are applied to attain parameters of the models. The Real-Coded Genetic Algorithm (RCGA) has been developed based on real numbers, which is introduced as a new approach in the field of energy forecasting. In the proposed model, electricity consumption has been considered as a function of different variables such as electricity tariff, manufacturing value added, prevailing fuel prices, the number of employees, the investment in equipment and consumption in the previous years. Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Deviation (MAD) and Mean Absolute Percent Error (MAPE) are the four functions which have been used as the fitness function in the evolutionary algorithms. The results show that the logarithmic nonlinear model using PSO algorithm with 1.91 error percentage has the best answer. Furthermore, the prediction of electricity consumption in industrial sector of Turkey and also Turkish industrial sector

  18. Novel automated inversion algorithm for temperature reconstruction using gas isotopes from ice cores

    Directory of Open Access Journals (Sweden)

    M. Döring

    2018-06-01

    Full Text Available Greenland past temperature history can be reconstructed by forcing the output of a firn-densification and heat-diffusion model to fit multiple gas-isotope data (δ15N or δ40Ar or δ15Nexcess extracted from ancient air in Greenland ice cores using published accumulation-rate (Acc datasets. We present here a novel methodology to solve this inverse problem, by designing a fully automated algorithm. To demonstrate the performance of this novel approach, we begin by intentionally constructing synthetic temperature histories and associated δ15N datasets, mimicking real Holocene data that we use as true values (targets to be compared to the output of the algorithm. This allows us to quantify uncertainties originating from the algorithm itself. The presented approach is completely automated and therefore minimizes the subjective impact of manual parameter tuning, leading to reproducible temperature estimates. In contrast to many other ice-core-based temperature reconstruction methods, the presented approach is completely independent from ice-core stable-water isotopes, providing the opportunity to validate water-isotope-based reconstructions or reconstructions where water isotopes are used together with δ15N or δ40Ar. We solve the inverse problem T(δ15N, Acc by using a combination of a Monte Carlo based iterative approach and the analysis of remaining mismatches between modelled and target data, based on cubic-spline filtering of random numbers and the laboratory-determined temperature sensitivity for nitrogen isotopes. Additionally, the presented reconstruction approach was tested by fitting measured δ40Ar and δ15Nexcess data, which led as well to a robust agreement between modelled and measured data. The obtained final mismatches follow a symmetric standard-distribution function. For the study on synthetic data, 95 % of the mismatches compared to the synthetic target data are in an envelope between 3.0 to 6.3 permeg for δ15N and 0.23 to 0

  19. A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging.

    Science.gov (United States)

    Yan, Hao; Zhen, Xin; Folkerts, Michael; Li, Yongbao; Pan, Tinsu; Cervino, Laura; Jiang, Steve B; Jia, Xun

    2014-07-01

    4D cone beam CT (4D-CBCT) has been utilized in radiation therapy to provide 4D image guidance in lung and upper abdomen area. However, clinical application of 4D-CBCT is currently limited due to the long scan time and low image quality. The purpose of this paper is to develop a new 4D-CBCT reconstruction method that restores volumetric images based on the 1-min scan data acquired with a standard 3D-CBCT protocol. The model optimizes a deformation vector field that deforms a patient-specific planning CT (p-CT), so that the calculated 4D-CBCT projections match measurements. A forward-backward splitting (FBS) method is invented to solve the optimization problem. It splits the original problem into two well-studied subproblems, i.e., image reconstruction and deformable image registration. By iteratively solving the two subproblems, FBS gradually yields correct deformation information, while maintaining high image quality. The whole workflow is implemented on a graphic-processing-unit to improve efficiency. Comprehensive evaluations have been conducted on a moving phantom and three real patient cases regarding the accuracy and quality of the reconstructed images, as well as the algorithm robustness and efficiency. The proposed algorithm reconstructs 4D-CBCT images from highly under-sampled projection data acquired with 1-min scans. Regarding the anatomical structure location accuracy, 0.204 mm average differences and 0.484 mm maximum difference are found for the phantom case, and the maximum differences of 0.3-0.5 mm for patients 1-3 are observed. As for the image quality, intensity errors below 5 and 20 HU compared to the planning CT are achieved for the phantom and the patient cases, respectively. Signal-noise-ratio values are improved by 12.74 and 5.12 times compared to results from FDK algorithm using the 1-min data and 4-min data, respectively. The computation time of the algorithm on a NVIDIA GTX590 card is 1-1.5 min per phase. High-quality 4D-CBCT imaging based

  20. A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hao; Folkerts, Michael; Jiang, Steve B., E-mail: xun.jia@utsouthwestern.edu, E-mail: steve.jiang@UTSouthwestern.edu; Jia, Xun, E-mail: xun.jia@utsouthwestern.edu, E-mail: steve.jiang@UTSouthwestern.edu [Department of Radiation Oncology, The University of Texas, Southwestern Medical Center, Dallas, Texas 75390 (United States); Zhen, Xin [Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515 (China); Li, Yongbao [Department of Radiation Oncology, The University of Texas, Southwestern Medical Center, Dallas, Texas 75390 and Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Pan, Tinsu [Department of Imaging Physics, The University of Texas, MD Anderson Cancer Center, Houston, Texas 77030 (United States); Cervino, Laura [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093 (United States)

    2014-07-15

    Purpose: 4D cone beam CT (4D-CBCT) has been utilized in radiation therapy to provide 4D image guidance in lung and upper abdomen area. However, clinical application of 4D-CBCT is currently limited due to the long scan time and low image quality. The purpose of this paper is to develop a new 4D-CBCT reconstruction method that restores volumetric images based on the 1-min scan data acquired with a standard 3D-CBCT protocol. Methods: The model optimizes a deformation vector field that deforms a patient-specific planning CT (p-CT), so that the calculated 4D-CBCT projections match measurements. A forward-backward splitting (FBS) method is invented to solve the optimization problem. It splits the original problem into two well-studied subproblems, i.e., image reconstruction and deformable image registration. By iteratively solving the two subproblems, FBS gradually yields correct deformation information, while maintaining high image quality. The whole workflow is implemented on a graphic-processing-unit to improve efficiency. Comprehensive evaluations have been conducted on a moving phantom and three real patient cases regarding the accuracy and quality of the reconstructed images, as well as the algorithm robustness and efficiency. Results: The proposed algorithm reconstructs 4D-CBCT images from highly under-sampled projection data acquired with 1-min scans. Regarding the anatomical structure location accuracy, 0.204 mm average differences and 0.484 mm maximum difference are found for the phantom case, and the maximum differences of 0.3–0.5 mm for patients 1–3 are observed. As for the image quality, intensity errors below 5 and 20 HU compared to the planning CT are achieved for the phantom and the patient cases, respectively. Signal-noise-ratio values are improved by 12.74 and 5.12 times compared to results from FDK algorithm using the 1-min data and 4-min data, respectively. The computation time of the algorithm on a NVIDIA GTX590 card is 1–1.5 min per phase

  1. A practical exact maximum compatibility algorithm for reconstruction of recent evolutionary history.

    Science.gov (United States)

    Cherry, Joshua L

    2017-02-23

    Maximum compatibility is a method of phylogenetic reconstruction that is seldom applied to molecular sequences. It may be ideal for certain applications, such as reconstructing phylogenies of closely-related bacteria on the basis of whole-genome sequencing. Here I present an algorithm that rapidly computes phylogenies according to a compatibility criterion. Although based on solutions to the maximum clique problem, this algorithm deals properly with ambiguities in the data. The algorithm is applied to bacterial data sets containing up to nearly 2000 genomes with several thousand variable nucleotide sites. Run times are several seconds or less. Computational experiments show that maximum compatibility is less sensitive than maximum parsimony to the inclusion of nucleotide data that, though derived from actual sequence reads, has been identified as likely to be misleading. Maximum compatibility is a useful tool for certain phylogenetic problems, such as inferring the relationships among closely-related bacteria from whole-genome sequence data. The algorithm presented here rapidly solves fairly large problems of this type, and provides robustness against misleading characters than can pollute large-scale sequencing data.

  2. Study on the effects of sample selection on spectral reflectance reconstruction based on the algorithm of compressive sensing

    International Nuclear Information System (INIS)

    Zhang, Leihong; Liang, Dong

    2016-01-01

    In order to solve the problem that reconstruction efficiency and precision is not high, in this paper different samples are selected to reconstruct spectral reflectance, and a new kind of spectral reflectance reconstruction method based on the algorithm of compressive sensing is provided. Four different color numbers of matte color cards such as the ColorChecker Color Rendition Chart and Color Checker SG, the copperplate paper spot color card of Panton, and the Munsell colors card are chosen as training samples, the spectral image is reconstructed respectively by the algorithm of compressive sensing and pseudo-inverse and Wiener, and the results are compared. These methods of spectral reconstruction are evaluated by root mean square error and color difference accuracy. The experiments show that the cumulative contribution rate and color difference of the Munsell colors card are better than those of the other three numbers of color cards in the same conditions of reconstruction, and the accuracy of the spectral reconstruction will be affected by the training sample of different numbers of color cards. The key technology of reconstruction means that the uniformity and representation of the training sample selection has important significance upon reconstruction. In this paper, the influence of the sample selection on the spectral image reconstruction is studied. The precision of the spectral reconstruction based on the algorithm of compressive sensing is higher than that of the traditional algorithm of spectral reconstruction. By the MATLAB simulation results, it can be seen that the spectral reconstruction precision and efficiency are affected by the different color numbers of the training sample. (paper)

  3. Performance of 3DOSEM and MAP algorithms for reconstructing low count SPECT acquisitions

    Energy Technology Data Exchange (ETDEWEB)

    Grootjans, Willem [Radboud Univ. Medical Center, Nijmegen (Netherlands). Dept. of Radiology and Nuclear Medicine; Leiden Univ. Medical Center (Netherlands). Dept. of Radiology; Meeuwis, Antoi P.W.; Gotthardt, Martin; Visser, Eric P. [Radboud Univ. Medical Center, Nijmegen (Netherlands). Dept. of Radiology and Nuclear Medicine; Slump, Cornelis H. [Univ. Twente, Enschede (Netherlands). MIRA Inst. for Biomedical Technology and Technical Medicine; Geus-Oei, Lioe-Fee de [Radboud Univ. Medical Center, Nijmegen (Netherlands). Dept. of Radiology and Nuclear Medicine; Univ. Twente, Enschede (Netherlands). MIRA Inst. for Biomedical Technology and Technical Medicine; Leiden Univ. Medical Center (Netherlands). Dept. of Radiology

    2016-07-01

    Low count single photon emission computed tomography (SPECT) is becoming more important in view of whole body SPECT and reduction of radiation dose. In this study, we investigated the performance of several 3D ordered subset expectation maximization (3DOSEM) and maximum a posteriori (MAP) algorithms for reconstructing low count SPECT images. Phantom experiments were conducted using the National Electrical Manufacturers Association (NEMA) NU2 image quality (IQ) phantom. The background compartment of the phantom was filled with varying concentrations of pertechnetate and indiumchloride, simulating various clinical imaging conditions. Images were acquired using a hybrid SPECT/CT scanner and reconstructed with 3DOSEM and MAP reconstruction algorithms implemented in Siemens Syngo MI.SPECT (Flash3D) and Hermes Hybrid Recon Oncology (Hyrid Recon 3DOSEM and MAP). Image analysis was performed by calculating the contrast recovery coefficient (CRC),percentage background variability (N%), and contrast-to-noise ratio (CNR), defined as the ratio between CRC and N%. Furthermore, image distortion is characterized by calculating the aspect ratio (AR) of ellipses fitted to the hot spheres. Additionally, the performance of these algorithms to reconstruct clinical images was investigated. Images reconstructed with 3DOSEM algorithms demonstrated superior image quality in terms of contrast and resolution recovery when compared to images reconstructed with filtered-back-projection (FBP), OSEM and 2DOSEM. However, occurrence of correlated noise patterns and image distortions significantly deteriorated the quality of 3DOSEM reconstructed images. The mean AR for the 37, 28, 22, and 17 mm spheres was 1.3, 1.3, 1.6, and 1.7 respectively. The mean N% increase in high and low count Flash3D and Hybrid Recon 3DOSEM from 5.9% and 4.0% to 11.1% and 9.0%, respectively. Similarly, the mean CNR decreased in high and low count Flash3D and Hybrid Recon 3DOSEM from 8.7 and 8.8 to 3.6 and 4

  4. Memetic Algorithms to Solve a Global Nonlinear Optimization Problem. A Review

    Directory of Open Access Journals (Sweden)

    M. K. Sakharov

    2015-01-01

    Full Text Available In recent decades, evolutionary algorithms have proven themselves as the powerful optimization techniques of search engine. Their popularity is due to the fact that they are easy to implement and can be used in all areas, since they are based on the idea of universal evolution. For example, in the problems of a large number of local optima, the traditional optimization methods, usually, fail in finding the global optimum. To solve such problems using a variety of stochastic methods, in particular, the so-called population-based algorithms, which are a kind of evolutionary methods. The main disadvantage of this class of methods is their slow convergence to the exact solution in the neighborhood of the global optimum, as these methods incapable to use the local information about the landscape of the function. This often limits their use in largescale real-world problems where the computation time is a critical factor.One of the promising directions in the field of modern evolutionary computation are memetic algorithms, which can be regarded as a combination of population search of the global optimum and local procedures for verifying solutions, which gives a synergistic effect. In the context of memetic algorithms, the meme is an implementation of the local optimization method to refine solution in the search.The concept of memetic algorithms provides ample opportunities for the development of various modifications of these algorithms, which can vary the frequency of the local search, the conditions of its end, and so on. The practically significant memetic algorithm modifications involve the simultaneous use of different memes. Such algorithms are called multi-memetic.The paper gives statement of the global problem of nonlinear unconstrained optimization, describes the most promising areas of AI modifications, including hybridization and metaoptimization. The main content of the work is the classification and review of existing varieties of

  5. A reconstruction algorithm for electrical impedance tomography based on sparsity regularization

    KAUST Repository

    Jin, Bangti

    2011-08-24

    This paper develops a novel sparse reconstruction algorithm for the electrical impedance tomography problem of determining a conductivity parameter from boundary measurements. The sparsity of the \\'inhomogeneity\\' with respect to a certain basis is a priori assumed. The proposed approach is motivated by a Tikhonov functional incorporating a sparsity-promoting ℓ 1-penalty term, and it allows us to obtain quantitative results when the assumption is valid. A novel iterative algorithm of soft shrinkage type was proposed. Numerical results for several two-dimensional problems with both single and multiple convex and nonconvex inclusions were presented to illustrate the features of the proposed algorithm and were compared with one conventional approach based on smoothness regularization. © 2011 John Wiley & Sons, Ltd.

  6. A cone-beam reconstruction algorithm using shift-variant filtering and cone-beam backprojection

    International Nuclear Information System (INIS)

    Defrise, M.; Clack, R.

    1994-01-01

    An exact inversion formula written in the form of shift-variant filtered-backprojection (FBP) is given for reconstruction from cone-beam data taken from any orbit satisfying Tuy's sufficiency conditions. The method is based on a result of Grangeat, involving the derivative of the three-dimensional (3-D) Radon transform, but unlike Grangeat's algorithm, no 3D rebinning step is required. Data redundancy, which occurs when several cone-beam projections supply the same values in the Radon domain, is handled using an elegant weighting function and without discarding data. The algorithm is expressed in a convenient cone-beam detector reference frame, and a specific example for the case of a dual orthogonal circular orbit is presented. When the method is applied to a single circular orbit, it is shown to be equivalent to the well-known algorithm of Feldkamp et al

  7. Fully 3D PET image reconstruction using a fourier preconditioned conjugate-gradient algorithm

    International Nuclear Information System (INIS)

    Fessler, J.A.; Ficaro, E.P.

    1996-01-01

    Since the data sizes in fully 3D PET imaging are very large, iterative image reconstruction algorithms must converge in very few iterations to be useful. One can improve the convergence rate of the conjugate-gradient (CG) algorithm by incorporating preconditioning operators that approximate the inverse of the Hessian of the objective function. If the 3D cylindrical PET geometry were not truncated at the ends, then the Hessian of the penalized least-squares objective function would be approximately shift-invariant, i.e. G'G would be nearly block-circulant, where G is the system matrix. We propose a Fourier preconditioner based on this shift-invariant approximation to the Hessian. Results show that this preconditioner significantly accelerates the convergence of the CG algorithm with only a small increase in computation

  8. A novel algorithm of super-resolution image reconstruction based on multi-class dictionaries for natural scene

    Science.gov (United States)

    Wu, Wei; Zhao, Dewei; Zhang, Huan

    2015-12-01

    Super-resolution image reconstruction is an effective method to improve the image quality. It has important research significance in the field of image processing. However, the choice of the dictionary directly affects the efficiency of image reconstruction. A sparse representation theory is introduced into the problem of the nearest neighbor selection. Based on the sparse representation of super-resolution image reconstruction method, a super-resolution image reconstruction algorithm based on multi-class dictionary is analyzed. This method avoids the redundancy problem of only training a hyper complete dictionary, and makes the sub-dictionary more representatives, and then replaces the traditional Euclidean distance computing method to improve the quality of the whole image reconstruction. In addition, the ill-posed problem is introduced into non-local self-similarity regularization. Experimental results show that the algorithm is much better results than state-of-the-art algorithm in terms of both PSNR and visual perception.

  9. Identifying Septal Support Reconstructions for Saddle Nose Deformity: The Cakmak Algorithm.

    Science.gov (United States)

    Cakmak, Ozcan; Emre, Ismet Emrah; Ozkurt, Fazil Emre

    2015-01-01

    The saddle nose deformity is one of the most challenging problems in nasal surgery with a less predictable and reproducible result than other nasal procedures. The main feature of this deformity is loss of septal support with both functional and aesthetic implications. Most reports on saddle nose have focused on aesthetic improvement and neglected the reestablishment of septal support to improve airway. To explain how the Cakmak algorithm, an algorithm that describes various fixation techniques and grafts in different types of saddle nose deformities, aids in identifying saddle nose reconstructions that restore supportive nasal framework and provide the aesthetic improvements typically associated with procedures to correct saddle nose deformities. This algorithm presents septal support reconstruction of patients with saddle nose deformity based on the experience of the senior author in 206 patients with saddle nose deformity. Preoperative examination, intraoperative assessment, reconstruction techniques, graft materials, and patient evaluation of aesthetic success were documented, and 4 different types of saddle nose deformities were defined. The Cakmak algorithm classifies varying degrees of saddle nose deformity from type 0 to type 4 and helps identify the most appropriate surgical procedure to restore the supportive nasal framework and aesthetic dorsum. Among the 206 patients, 110 women and 96 men, mean (range) age was 39.7 years (15-68 years), and mean (range) of follow-up was 32 months (6-148 months). All but 12 patients had a history of previous nasal surgeries. Application of the Cakmak algorithm resulted in 36 patients categorized with type 0 saddle nose deformities; 79, type 1; 50, type 2; 20, type 3a; 7, type 3b; and 14, type 4. Postoperative photographs showed improvement of deformities, and patient surveys revealed aesthetic improvement in 201 patients and improvement in nasal breathing in 195 patients. Three patients developed postoperative infection

  10. Nonlinear Filtering with IMM Algorithm for Ultra-Tight GPS/INS Integration

    Directory of Open Access Journals (Sweden)

    Dah-Jing Jwo

    2013-05-01

    Full Text Available Abstract This paper conducts a performance evaluation for the ultra-tight integration of a Global positioning system (GPS and an inertial navigation system (INS, using nonlinear filtering approaches with an interacting multiple model (IMM algorithm. An ultra-tight GPS/INS architecture involves the integration of in-phase and quadrature components from the correlator of a GPS receiver with INS data. An unscented Kalman filter (UKF, which employs a set of sigma points by deterministic sampling, avoids the error caused by linearization as in an extended Kalman filter (EKF. Based on the filter structural adaptation for describing various dynamic behaviours, the IMM nonlinear filtering provides an alternative for designing the adaptive filter in the ultra-tight GPS/INS integration. The use of IMM enables tuning of an appropriate value for the process of noise covariance so as to maintain good estimation accuracy and tracking capability. Two examples are provided to illustrate the effectiveness of the design and demonstrate the effective improvement in navigation estimation accuracy. A performance comparison among various filtering methods for ultra-tight integration of GPS and INS is also presented. The IMM based nonlinear filtering approach demonstrates the effectiveness of the algorithm for improved positioning performance.

  11. An evolutionary algorithm for tomographic reconstructions in limited data sets problems

    International Nuclear Information System (INIS)

    Turcanu, Catrinel; Craciunescu, Teddy

    2000-01-01

    The paper proposes a new method for tomographic reconstructions. Unlike nuclear medicine applications, in physical science problems we are often confronted with limited data sets: constraints in the number of projections or limited angle views. The problem of image reconstruction from projections may be considered as a problem of finding an image (solution) having projections that match the experimental ones. In our approach, we choose a statistical correlation coefficient to evaluate the fitness of any potential solution. The optimization process is carried out by an evolutionary algorithm. Our algorithm has some problem-oriented characteristics. One of them is that a chromosome, representing a potential solution, is not linear but coded as a matrix of pixels corresponding to a two-dimensional image. This kind of internal representation reflects the genuine manifestation and slight differences between two points situated in the original problem space give rise to similar differences once they become coded. Another particular feature is a newly built crossover operator: the grid-based crossover, suitable for high dimension two-dimensional chromosomes. Except for the population size and the dimension of the cutting grid for the grid-based crossover, all the other parameters of the algorithm are independent of the geometry of the tomographic reconstruction. The performances of the method are evaluated in comparison with a traditional tomographic method, based on the maximization of the entropy of the image, that proved to work well with limited data sets. The test phantom is typical for an application with limited data sets: the determination of the neutron energy spectra with time resolution in case of short-pulsed neutron emission. The qualitative judgement and also the quantitative one, based on some figures of merit, point out that the proposed method ensures an improved reconstruction of shapes, sizes and resolution in the image, even in the presence of noise

  12. Derivation and implementation of a cone-beam reconstruction algorithm for nonplanar orbits

    International Nuclear Information System (INIS)

    Kudo, Hiroyuki; Saito, Tsuneo

    1994-01-01

    Smith and Grangeat derived a cone-beam inversion formula that can be applied when a nonplanar orbit satisfying the completeness condition is used. Although Grangeat's inversion formula is mathematically different from Smith's, they have similar overall structures to each other. The contribution of this paper is two-fold. First, based on the derivation of Smith, the authors point out that Grangeat's inversion formula and Smith's can be conveniently described using a single formula (the Smith-Grangeat inversion formula) that is in the form of space-variant filtering followed by cone-beam backprojection. Furthermore, the resulting formula is reformulated for data acquisition systems with a planar detector to obtain a new reconstruction algorithm. Second, the authors make two significant modifications to the new algorithm to reduce artifacts and numerical errors encountered in direct implementation of the new algorithm. As for exactness of the new algorithm, the following fact can be stated. The algorithm based on Grangeat's intermediate function is exact for any complete orbit, whereas that based on Smith's intermediate function should be considered as an approximate inverse excepting the special case where almost every plane in 3-D space meets the orbit. The validity of the new algorithm is demonstrated by simulation studies

  13. Algebraic dynamics solutions and algebraic dynamics algorithm for nonlinear partial differential evolution equations of dynamical systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using functional derivative technique in quantum field theory, the algebraic dy-namics approach for solution of ordinary differential evolution equations was gen-eralized to treat partial differential evolution equations. The partial differential evo-lution equations were lifted to the corresponding functional partial differential equations in functional space by introducing the time translation operator. The functional partial differential evolution equations were solved by algebraic dynam-ics. The algebraic dynamics solutions are analytical in Taylor series in terms of both initial functions and time. Based on the exact analytical solutions, a new nu-merical algorithm—algebraic dynamics algorithm was proposed for partial differ-ential evolution equations. The difficulty of and the way out for the algorithm were discussed. The application of the approach to and computer numerical experi-ments on the nonlinear Burgers equation and meteorological advection equation indicate that the algebraic dynamics approach and algebraic dynamics algorithm are effective to the solution of nonlinear partial differential evolution equations both analytically and numerically.

  14. Real-time cardiovascular magnetic resonance at high temporal resolution: radial FLASH with nonlinear inverse reconstruction

    Directory of Open Access Journals (Sweden)

    Merboldt Klaus-Dietmar

    2010-07-01

    Full Text Available Abstract Background Functional assessments of the heart by dynamic cardiovascular magnetic resonance (CMR commonly rely on (i electrocardiographic (ECG gating yielding pseudo real-time cine representations, (ii balanced gradient-echo sequences referred to as steady-state free precession (SSFP, and (iii breath holding or respiratory gating. Problems may therefore be due to the need for a robust ECG signal, the occurrence of arrhythmia and beat to beat variations, technical instabilities (e.g., SSFP "banding" artefacts, and limited patient compliance and comfort. Here we describe a new approach providing true real-time CMR with image acquisition times as short as 20 to 30 ms or rates of 30 to 50 frames per second. Methods The approach relies on a previously developed real-time MR method, which combines a strongly undersampled radial FLASH CMR sequence with image reconstruction by regularized nonlinear inversion. While iterative reconstructions are currently performed offline due to limited computer speed, online monitoring during scanning is accomplished using gridding reconstructions with a sliding window at the same frame rate but with lower image quality. Results Scans of healthy young subjects were performed at 3 T without ECG gating and during free breathing. The resulting images yield T1 contrast (depending on flip angle with an opposed-phase or in-phase condition for water and fat signals (depending on echo time. They completely avoid (i susceptibility-induced artefacts due to the very short echo times, (ii radiofrequency power limitations due to excitations with flip angles of 10° or less, and (iii the risk of peripheral nerve stimulation due to the use of normal gradient switching modes. For a section thickness of 8 mm, real-time images offer a spatial resolution and total acquisition time of 1.5 mm at 30 ms and 2.0 mm at 22 ms, respectively. Conclusions Though awaiting thorough clinical evaluation, this work describes a robust and

  15. Real-time cardiovascular magnetic resonance at high temporal resolution: radial FLASH with nonlinear inverse reconstruction.

    Science.gov (United States)

    Zhang, Shuo; Uecker, Martin; Voit, Dirk; Merboldt, Klaus-Dietmar; Frahm, Jens

    2010-07-08

    Functional assessments of the heart by dynamic cardiovascular magnetic resonance (CMR) commonly rely on (i) electrocardiographic (ECG) gating yielding pseudo real-time cine representations, (ii) balanced gradient-echo sequences referred to as steady-state free precession (SSFP), and (iii) breath holding or respiratory gating. Problems may therefore be due to the need for a robust ECG signal, the occurrence of arrhythmia and beat to beat variations, technical instabilities (e.g., SSFP "banding" artefacts), and limited patient compliance and comfort. Here we describe a new approach providing true real-time CMR with image acquisition times as short as 20 to 30 ms or rates of 30 to 50 frames per second. The approach relies on a previously developed real-time MR method, which combines a strongly undersampled radial FLASH CMR sequence with image reconstruction by regularized nonlinear inversion. While iterative reconstructions are currently performed offline due to limited computer speed, online monitoring during scanning is accomplished using gridding reconstructions with a sliding window at the same frame rate but with lower image quality. Scans of healthy young subjects were performed at 3 T without ECG gating and during free breathing. The resulting images yield T1 contrast (depending on flip angle) with an opposed-phase or in-phase condition for water and fat signals (depending on echo time). They completely avoid (i) susceptibility-induced artefacts due to the very short echo times, (ii) radiofrequency power limitations due to excitations with flip angles of 10 degrees or less, and (iii) the risk of peripheral nerve stimulation due to the use of normal gradient switching modes. For a section thickness of 8 mm, real-time images offer a spatial resolution and total acquisition time of 1.5 mm at 30 ms and 2.0 mm at 22 ms, respectively. Though awaiting thorough clinical evaluation, this work describes a robust and flexible acquisition and reconstruction technique for

  16. Level-set reconstruction algorithm for ultrafast limited-angle X-ray computed tomography of two-phase flows.

    Science.gov (United States)

    Bieberle, M; Hampel, U

    2015-06-13

    Tomographic image reconstruction is based on recovering an object distribution from its projections, which have been acquired from all angular views around the object. If the angular range is limited to less than 180° of parallel projections, typical reconstruction artefacts arise when using standard algorithms. To compensate for this, specialized algorithms using a priori information about the object need to be applied. The application behind this work is ultrafast limited-angle X-ray computed tomography of two-phase flows. Here, only a binary distribution of the two phases needs to be reconstructed, which reduces the complexity of the inverse problem. To solve it, a new reconstruction algorithm (LSR) based on the level-set method is proposed. It includes one force function term accounting for matching the projection data and one incorporating a curvature-dependent smoothing of the phase boundary. The algorithm has been validated using simulated as well as measured projections of known structures, and its performance has been compared to the algebraic reconstruction technique and a binary derivative of it. The validation as well as the application of the level-set reconstruction on a dynamic two-phase flow demonstrated its applicability and its advantages over other reconstruction algorithms. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. A conservative Fourier pseudospectral algorithm for a coupled nonlinear Schrödinger system

    International Nuclear Information System (INIS)

    Cai Jia-Xiang; Wang Yu-Shun

    2013-01-01

    We derive a new method for a coupled nonlinear Schrödinger system by using the square of first-order Fourier spectral differentiation matrix D 1 instead of traditional second-order Fourier spectral differentiation matrix D 2 to approximate the second derivative. We prove the proposed method preserves the charge and energy conservation laws exactly. In numerical tests, we display the accuracy of numerical solution and the role of the nonlinear coupling parameter in cases of soliton collisions. Numerical experiments also exhibit the excellent performance of the method in preserving the charge and energy conservation laws. These numerical results verify that the proposed method is both a charge-preserving and an energy-preserving algorithm

  18. Fast parallel algorithm for three-dimensional distance-driven model in iterative computed tomography reconstruction

    International Nuclear Information System (INIS)

    Chen Jian-Lin; Li Lei; Wang Lin-Yuan; Cai Ai-Long; Xi Xiao-Qi; Zhang Han-Ming; Li Jian-Xin; Yan Bin

    2015-01-01

    The projection matrix model is used to describe the physical relationship between reconstructed object and projection. Such a model has a strong influence on projection and backprojection, two vital operations in iterative computed tomographic reconstruction. The distance-driven model (DDM) is a state-of-the-art technology that simulates forward and back projections. This model has a low computational complexity and a relatively high spatial resolution; however, it includes only a few methods in a parallel operation with a matched model scheme. This study introduces a fast and parallelizable algorithm to improve the traditional DDM for computing the parallel projection and backprojection operations. Our proposed model has been implemented on a GPU (graphic processing unit) platform and has achieved satisfactory computational efficiency with no approximation. The runtime for the projection and backprojection operations with our model is approximately 4.5 s and 10.5 s per loop, respectively, with an image size of 256×256×256 and 360 projections with a size of 512×512. We compare several general algorithms that have been proposed for maximizing GPU efficiency by using the unmatched projection/backprojection models in a parallel computation. The imaging resolution is not sacrificed and remains accurate during computed tomographic reconstruction. (paper)

  19. Evaluation of imaging protocol for ECT based on CS image reconstruction algorithm

    International Nuclear Information System (INIS)

    Zhou Xiaolin; Yun Mingkai; Cao Xuexiang; Liu Shuangquan; Wang Lu; Huang Xianchao; Wei Long

    2014-01-01

    Single-photon emission computerized tomography and positron emission tomography are essential medical imaging tools, for which the sampling angle number and scan time should be carefully chosen to give a good compromise between image quality and radiopharmaceutical dose. In this study, the image quality of different acquisition protocols was evaluated via varied angle number and count number per angle with Monte Carlo simulation data. It was shown that, when similar imaging counts were used, the factor of acquisition counts was more important than that of the sampling number in emission computerized tomography. To further reduce the activity requirement and the scan duration, an iterative image reconstruction algorithm for limited-view and low-dose tomography based on compressed sensing theory has been developed. The total variation regulation was added to the reconstruction process to improve the signal to noise Ratio and reduce artifacts caused by the limited angle sampling. Maximization of the maximum likelihood of the estimated image and the measured data and minimization of the total variation of the image are alternatively implemented. By using this advanced algorithm, the reconstruction process is able to achieve image quality matching or exceed that of normal scans with only half of the injection radiopharmaceutical dose. (authors)

  20. Analytical algorithm for the generation of polygonal projection data for tomographic reconstruction

    International Nuclear Information System (INIS)

    Davis, G.R.

    1996-01-01

    Tomographic reconstruction algorithms and filters can be tested using a mathematical phantom, that is, a computer program which takes numerical data as its input and outputs derived projection data. The input data is usually in the form of pixel ''densities'' over a regular grid, or position and dimensions of simple, geometrical objects. The former technique allows a greater variety of objects to be simulated, but is less suitable in the case when very small (relative to the ray-spacing) features are to be simulated. The second technique is normally used to simulate biological specimens, typically a human skull, modelled as a number of ellipses. This is not suitable for simulating non-biological specimens with features such as straight edges and fine cracks. We have therefore devised an algorithm for simulating objects described as a series of polygons. These polygons, or parts of them, may be smaller than the ray-spacing and there is no limit, except that imposed by computing resources, on the complexity, number or superposition of polygons. A simple test of such a phantom, reconstructed using the filtered back-projection method, revealed reconstruction artefacts not normally seen with ''biological'' phantoms. (orig.)

  1. Algorithm for three dimension reconstruction of magnetic resonance tomographs and X-ray images based on Fast Fourier Transform

    International Nuclear Information System (INIS)

    Bueno, Josiane M.; Traina, Agma Juci M.; Cruvinel, Paulo E.

    1995-01-01

    This work presents an algorithm for three-dimensional digital image reconstruction. Such algorithms based on the combination of both a Fast Fourier Transform method with Hamming Window and the use of a tri-linear interpolation function. The algorithm allows not only the generation of three-dimensional spatial spin distribution maps for Magnetic Resonance Tomography data but also X and Y-rays linear attenuation coefficient maps for CT scanners. Results demonstrates the usefulness of the algorithm in three-dimensional image reconstruction by doing first two-dimensional reconstruction and rather after interpolation. The algorithm was developed in C++ language, and there are two available versions: one under the DOS environment, and the other under the UNIX/Sun environment. (author)

  2. Influence of adaptive statistical iterative reconstruction algorithm on image quality in coronary computed tomography angiography.

    Science.gov (United States)

    Precht, Helle; Thygesen, Jesper; Gerke, Oke; Egstrup, Kenneth; Waaler, Dag; Lambrechtsen, Jess

    2016-12-01

    Coronary computed tomography angiography (CCTA) requires high spatial and temporal resolution, increased low contrast resolution for the assessment of coronary artery stenosis, plaque detection, and/or non-coronary pathology. Therefore, new reconstruction algorithms, particularly iterative reconstruction (IR) techniques, have been developed in an attempt to improve image quality with no cost in radiation exposure. To evaluate whether adaptive statistical iterative reconstruction (ASIR) enhances perceived image quality in CCTA compared to filtered back projection (FBP). Thirty patients underwent CCTA due to suspected coronary artery disease. Images were reconstructed using FBP, 30% ASIR, and 60% ASIR. Ninety image sets were evaluated by five observers using the subjective visual grading analysis (VGA) and assessed by proportional odds modeling. Objective quality assessment (contrast, noise, and the contrast-to-noise ratio [CNR]) was analyzed with linear mixed effects modeling on log-transformed data. The need for ethical approval was waived by the local ethics committee as the study only involved anonymously collected clinical data. VGA showed significant improvements in sharpness by comparing FBP with ASIR, resulting in odds ratios of 1.54 for 30% ASIR and 1.89 for 60% ASIR ( P  = 0.004). The objective measures showed significant differences between FBP and 60% ASIR ( P  < 0.0001) for noise, with an estimated ratio of 0.82, and for CNR, with an estimated ratio of 1.26. ASIR improved the subjective image quality of parameter sharpness and, objectively, reduced noise and increased CNR.

  3. An Algorithmic Approach to Total Breast Reconstruction with Free Tissue Transfer

    Directory of Open Access Journals (Sweden)

    Seong Cheol Yu

    2013-05-01

    Full Text Available As microvascular techniques continue to improve, perforator flap free tissue transfer is now the gold standard for autologous breast reconstruction. Various options are available for breast reconstruction with autologous tissue. These include the free transverse rectus abdominis myocutaneous (TRAM flap, deep inferior epigastric perforator flap, superficial inferior epigastric artery flap, superior gluteal artery perforator flap, and transverse/vertical upper gracilis flap. In addition, pedicled flaps can be very successful in the right hands and the right patient, such as the pedicled TRAM flap, latissimus dorsi flap, and thoracodorsal artery perforator. Each flap comes with its own advantages and disadvantages related to tissue properties and donor-site morbidity. Currently, the problem is how to determine the most appropriate flap for a particular patient among those potential candidates. Based on a thorough review of the literature and accumulated experiences in the author’s institution, this article provides a logical approach to autologous breast reconstruction. The algorithms presented here can be helpful to customize breast reconstruction to individual patient needs.

  4. Comparison of phase unwrapping algorithms for topography reconstruction based on digital speckle pattern interferometry

    Science.gov (United States)

    Li, Yuanbo; Cui, Xiaoqian; Wang, Hongbei; Zhao, Mengge; Ding, Hongbin

    2017-10-01

    Digital speckle pattern interferometry (DSPI) can diagnose the topography evolution in real-time, continuous and non-destructive, and has been considered as a most promising technique for Plasma-Facing Components (PFCs) topography diagnostic under the complicated environment of tokamak. It is important for the study of digital speckle pattern interferometry to enhance speckle patterns and obtain the real topography of the ablated crater. In this paper, two kinds of numerical model based on flood-fill algorithm has been developed to obtain the real profile by unwrapping from the wrapped phase in speckle interference pattern, which can be calculated through four intensity images by means of 4-step phase-shifting technique. During the process of phase unwrapping by means of flood-fill algorithm, since the existence of noise pollution, and other inevitable factors will lead to poor quality of the reconstruction results, this will have an impact on the authenticity of the restored topography. The calculation of the quality parameters was introduced to obtain the quality-map from the wrapped phase map, this work presents two different methods to calculate the quality parameters. Then quality parameters are used to guide the path of flood-fill algorithm, and the pixels with good quality parameters are given priority calculation, so that the quality of speckle interference pattern reconstruction results are improved. According to the comparison between the flood-fill algorithm which is suitable for speckle pattern interferometry and the quality-guided flood-fill algorithm (with two different calculation approaches), the errors which caused by noise pollution and the discontinuous of the strips were successfully reduced.

  5. Development of an image reconstruction algorithm for a few number of projection data

    International Nuclear Information System (INIS)

    Vieira, Wilson S.; Brandao, Luiz E.; Braz, Delson

    2007-01-01

    An image reconstruction algorithm was developed for specific cases of radiotracer applications in industry (rotating cylindrical mixers), involving a very few number of projection data. The algorithm was planned for imaging radioactive isotope distributions around the center of circular planes. The method consists of adapting the original expectation maximization algorithm (EM) to solve the ill-posed emission tomography inverse problem in order to reconstruct transversal 2D images of an object with only four projections. To achieve this aim, counts of photons emitted by selected radioactive sources in the plane, after they had been simulated using the commercial software MICROSHIELD 5.05, constitutes the projections and a computational code (SPECTEM) was developed to generate activity vectors or images related to those sources. SPECTEM is flexible to support simultaneous changes of the detectors's geometry, the medium under investigation and the properties of the gamma radiation. As a consequence of the code had been followed correctly the proposed method, good results were obtained and they encouraged us to continue the next step of the research: the validation of SPECTEM utilizing experimental data to check its real performance. We aim this code will improve considerably radiotracer methodology, making easier the diagnosis of fails in industrial processes. (author)

  6. Development of an image reconstruction algorithm for a few number of projection data

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Wilson S.; Brandao, Luiz E. [Instituto de Engenharia Nuclear (IEN-CNEN/RJ), Rio de Janeiro , RJ (Brazil)]. E-mails: wilson@ien.gov.br; brandao@ien.gov.br; Braz, Delson [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programa de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mail: delson@mailhost.lin.ufrj.br

    2007-07-01

    An image reconstruction algorithm was developed for specific cases of radiotracer applications in industry (rotating cylindrical mixers), involving a very few number of projection data. The algorithm was planned for imaging radioactive isotope distributions around the center of circular planes. The method consists of adapting the original expectation maximization algorithm (EM) to solve the ill-posed emission tomography inverse problem in order to reconstruct transversal 2D images of an object with only four projections. To achieve this aim, counts of photons emitted by selected radioactive sources in the plane, after they had been simulated using the commercial software MICROSHIELD 5.05, constitutes the projections and a computational code (SPECTEM) was developed to generate activity vectors or images related to those sources. SPECTEM is flexible to support simultaneous changes of the detectors's geometry, the medium under investigation and the properties of the gamma radiation. As a consequence of the code had been followed correctly the proposed method, good results were obtained and they encouraged us to continue the next step of the research: the validation of SPECTEM utilizing experimental data to check its real performance. We aim this code will improve considerably radiotracer methodology, making easier the diagnosis of fails in industrial processes. (author)

  7. A Numerical Algorithm for Solving a Four-Point Nonlinear Fractional Integro-Differential Equations

    OpenAIRE

    Gao, Er; Song, Songhe; Zhang, Xinjian

    2012-01-01

    We provide a new algorithm for a four-point nonlocal boundary value problem of nonlinear integro-differential equations of fractional order q∈(1,2] based on reproducing kernel space method. According to our work, the analytical solution of the equations is represented in the reproducing kernel space which we construct and so the n-term approximation. At the same time, the n-term approximation is proved to converge to the analytical solution. An illustrative example is also presented, which sh...

  8. The genetic algorithm for the nonlinear programming of water pollution control system

    Energy Technology Data Exchange (ETDEWEB)

    Wei, J.; Zhang, J. [China University of Geosciences (China)

    1999-08-01

    In the programming of water pollution control system the combined method of optimization with simulation is used generally. It is not only laborious in calculation, but also the global optimum of the obtained solution is guaranteed difficult. In this paper, the genetic algorithm (GA) used in the nonlinear programming of water pollution control system is given, by which the preferred conception for the programming of waste water system is found in once-through operation. It is more succinct than the conventional method and the global optimum of the obtained solution could be ensured. 6 refs., 4 figs., 3 tabs.

  9. A Nonmonotone Line Search Filter Algorithm for the System of Nonlinear Equations

    Directory of Open Access Journals (Sweden)

    Zhong Jin

    2012-01-01

    Full Text Available We present a new iterative method based on the line search filter method with the nonmonotone strategy to solve the system of nonlinear equations. The equations are divided into two groups; some equations are treated as constraints and the others act as the objective function, and the two groups are just updated at the iterations where it is needed indeed. We employ the nonmonotone idea to the sufficient reduction conditions and filter technique which leads to a flexibility and acceptance behavior comparable to monotone methods. The new algorithm is shown to be globally convergent and numerical experiments demonstrate its effectiveness.

  10. Stack emission monitoring using non-dispersive infrared spectroscopy with an optimized nonlinear absorption cross interference correction algorithm

    Directory of Open Access Journals (Sweden)

    Y. W. Sun

    2013-08-01

    Full Text Available In this paper, we present an optimized analysis algorithm for non-dispersive infrared (NDIR to in situ monitor stack emissions. The proposed algorithm simultaneously compensates for nonlinear absorption and cross interference among different gases. We present a mathematical derivation for the measurement error caused by variations in interference coefficients when nonlinear absorption occurs. The proposed algorithm is derived from a classical one and uses interference functions to quantify cross interference. The interference functions vary proportionally with the nonlinear absorption. Thus, interference coefficients among different gases can be modeled by the interference functions whether gases are characterized by linear or nonlinear absorption. In this study, the simultaneous analysis of two components (CO2 and CO serves as an example for the validation of the proposed algorithm. The interference functions in this case can be obtained by least-squares fitting with third-order polynomials. Experiments show that the results of cross interference correction are improved significantly by utilizing the fitted interference functions when nonlinear absorptions occur. The dynamic measurement ranges of CO2 and CO are improved by about a factor of 1.8 and 3.5, respectively. A commercial analyzer with high accuracy was used to validate the CO and CO2 measurements derived from the NDIR analyzer prototype in which the new algorithm was embedded. The comparison of the two analyzers show that the prototype works well both within the linear and nonlinear ranges.

  11. Algorithms of CT value correction for reconstructing a radiotherapy simulation image through axial CT images

    International Nuclear Information System (INIS)

    Ogino, Takashi; Egawa, Sunao

    1991-01-01

    New algorithms of CT value correction for reconstructing a radiotherapy simulation image through axial CT images were developed. One, designated plane weighting method, is to correct CT value in proportion to the position of the beam element passing through the voxel. The other, designated solid weighting method, is to correct CT value in proportion to the length of the beam element passing through the voxel and the volume of voxel. Phantom experiments showed fair spatial resolution in the transverse direction. In the longitudinal direction, however, spatial resolution of under slice thickness could not be obtained. Contrast resolution was equivalent for both methods. In patient studies, the reconstructed radiotherapy simulation image was almost similar in visual perception of the density resolution to a simulation film taken by X-ray simulator. (author)

  12. Improvement of the temporal resolution of cardiac CT reconstruction algorithms using an optimized filtering step

    International Nuclear Information System (INIS)

    Roux, S.; Desbat, L.; Koenig, A.; Grangeat, P.

    2005-01-01

    In this paper we study a property of the filtering step of multi-cycle reconstruction algorithm used in the field of cardiac CT. We show that the common filtering step procedure is not optimal in the case of divergent geometry and decrease slightly the temporal resolution. We propose to use the filtering procedure related to the work of Noo at al ( F.Noo, M. Defrise, R. Clakdoyle, and H. Kudo. Image reconstruction from fan-beam projections on less than a short-scan. Phys. Med.Biol., 47:2525-2546, July 2002)and show that this alternative allows to reach the optimal temporal resolution with the same computational effort. (N.C.)

  13. Model-independent nonlinear control algorithm with application to a liquid bridge experiment

    International Nuclear Information System (INIS)

    Petrov, V.; Haaning, A.; Muehlner, K.A.; Van Hook, S.J.; Swinney, H.L.

    1998-01-01

    We present a control method for high-dimensional nonlinear dynamical systems that can target remote unstable states without a priori knowledge of the underlying dynamical equations. The algorithm constructs a high-dimensional look-up table based on the system's responses to a sequence of random perturbations. The method is demonstrated by stabilizing unstable flow of a liquid bridge surface-tension-driven convection experiment that models the float zone refining process. Control of the dynamics is achieved by heating or cooling two thermoelectric Peltier devices placed in the vicinity of the liquid bridge surface. The algorithm routines along with several example programs written in the MATLAB language can be found at ftp://ftp.mathworks.com/pub/contrib/v5/control/nlcontrol. copyright 1998 The American Physical Society

  14. An algorithm for robust non-linear analysis of radioimmunoassays and other bioassays

    International Nuclear Information System (INIS)

    Normolle, D.P.

    1993-01-01

    The four-parameter logistic function is an appropriate model for many types of bioassays that have continuous response variables, such as radioimmunoassays. By modelling the variance of replicates in an assay, one can modify the usual parameter estimation techniques (for example, Gauss-Newton or Marquardt-Levenberg) to produce parameter estimates for the standard curve that are robust against outlying observations. This article describes the computation of robust (M-) estimates for the parameters of the four-parameter logistic function. It describes techniques for modelling the variance structure of the replicates, modifications to the usual iterative algorithms for parameter estimation in non-linear models, and a formula for inverse confidence intervals. To demonstrate the algorithm, the article presents examples where the robustly estimated four-parameter logistic model is compared with the logit-log and four-parameter logistic models with least-squares estimates. (author)

  15. Structural algorithm to reservoir reconstruction using passive seismic data (synthetic example)

    Energy Technology Data Exchange (ETDEWEB)

    Smaglichenko, Tatyana A.; Volodin, Igor A.; Lukyanitsa, Andrei A.; Smaglichenko, Alexander V.; Sayankina, Maria K. [Oil and Gas Research Institute, Russian Academy of Science, Gubkina str.3, 119333, Moscow (Russian Federation); Faculty of Computational Mathematics and Cybernetics, M.V. Lomonosov Moscow State University, Leninskie gory, 1, str.52,Second Teaching Building.119991 Moscow (Russian Federation); Shmidt' s Institute of Physics of the Earth, Russian Academy of Science, Bolshaya Gruzinskaya str. 10, str.1, 123995 Moscow (Russian Federation); Oil and Gas Research Institute, Russian Academy of Science, Gubkina str.3, 119333, Moscow (Russian Federation)

    2012-09-26

    Using of passive seismic observations to detect a reservoir is a new direction of prospecting and exploration of hydrocarbons. In order to identify thin reservoir model we applied the modification of Gaussian elimination method in conditions of incomplete synthetic data. Because of the singularity of a matrix conventional method does not work. Therefore structural algorithm has been developed by analyzing the given model as a complex model. Numerical results demonstrate of its advantage compared with usual way of solution. We conclude that the gas reservoir is reconstructed by retrieving of the image of encasing shale beneath it.

  16. Study of system for segmentation of images and elaboration of algorithms for three dimensional scene reconstruction

    International Nuclear Information System (INIS)

    Bufacchi, A.; Tripi, A.

    1995-09-01

    The aim of this paper is the presentation of a series of methodologies to recognize and to obtain a three-dimensional reconstruction of an inner architectural scene, using a gray level image obtained using a TV camera. In the first part of the work, a series of methods used to find the edges in an effective way are critically compared, obtaining a binary image, and then the application of the Hough transform to such binary image to find the straight lines in the original image are discussed. In the second part, an algorithm is shown in order to find the vanishing points in such image

  17. Enhanced temporal resolution at cardiac CT with a novel CT image reconstruction algorithm: Initial patient experience

    Energy Technology Data Exchange (ETDEWEB)

    Apfaltrer, Paul, E-mail: paul.apfaltrer@medma.uni-heidelberg.de [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, PO Box 250322, 169 Ashley Avenue, Charleston, SC 29425 (United States); Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Schoendube, Harald, E-mail: harald.schoendube@siemens.com [Siemens Healthcare, CT Division, Forchheim Siemens, Siemensstr. 1, 91301 Forchheim (Germany); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, PO Box 250322, 169 Ashley Avenue, Charleston, SC 29425 (United States); Allmendinger, Thomas, E-mail: thomas.allmendinger@siemens.com [Siemens Healthcare, CT Division, Forchheim Siemens, Siemensstr. 1, 91301 Forchheim (Germany); Tricarico, Francesco, E-mail: francescotricarico82@gmail.com [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, PO Box 250322, 169 Ashley Avenue, Charleston, SC 29425 (United States); Department of Bioimaging and Radiological Sciences, Catholic University of the Sacred Heart, “A. Gemelli” Hospital, Largo A. Gemelli 8, Rome (Italy); Schindler, Andreas, E-mail: andreas.schindler@campus.lmu.de [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, PO Box 250322, 169 Ashley Avenue, Charleston, SC 29425 (United States); Vogt, Sebastian, E-mail: sebastian.vogt@siemens.com [Siemens Healthcare, CT Division, Forchheim Siemens, Siemensstr. 1, 91301 Forchheim (Germany); Sunnegårdh, Johan, E-mail: johan.sunnegardh@siemens.com [Siemens Healthcare, CT Division, Forchheim Siemens, Siemensstr. 1, 91301 Forchheim (Germany); and others

    2013-02-15

    Objective: To evaluate the effect of a temporal resolution improvement method (TRIM) for cardiac CT on diagnostic image quality for coronary artery assessment. Materials and methods: The TRIM-algorithm employs an iterative approach to reconstruct images from less than 180° of projections and uses a histogram constraint to prevent the occurrence of limited-angle artifacts. This algorithm was applied in 11 obese patients (7 men, 67.2 ± 9.8 years) who had undergone second generation dual-source cardiac CT with 120 kV, 175–426 mAs, and 500 ms gantry rotation. All data were reconstructed with a temporal resolution of 250 ms using traditional filtered-back projection (FBP) and of 200 ms using the TRIM-algorithm. Contrast attenuation and contrast-to-noise-ratio (CNR) were measured in the ascending aorta. The presence and severity of coronary motion artifacts was rated on a 4-point Likert scale. Results: All scans were considered of diagnostic quality. Mean BMI was 36 ± 3.6 kg/m{sup 2}. Average heart rate was 60 ± 9 bpm. Mean effective dose was 13.5 ± 4.6 mSv. When comparing FBP- and TRIM reconstructed series, the attenuation within the ascending aorta (392 ± 70.7 vs. 396.8 ± 70.1 HU, p > 0.05) and CNR (13.2 ± 3.2 vs. 11.7 ± 3.1, p > 0.05) were not significantly different. A total of 110 coronary segments were evaluated. All studies were deemed diagnostic; however, there was a significant (p < 0.05) difference in the severity score distribution of coronary motion artifacts between FBP (median = 2.5) and TRIM (median = 2.0) reconstructions. Conclusion: The algorithm evaluated here delivers diagnostic imaging quality of the coronary arteries despite 500 ms gantry rotation. Possible applications include improvement of cardiac imaging on slower gantry rotation systems or mitigation of the trade-off between temporal resolution and CNR in obese patients.

  18. An improved cone-beam filtered backprojection reconstruction algorithm based on x-ray angular correction and multiresolution analysis

    International Nuclear Information System (INIS)

    Sun, Y.; Hou, Y.; Yan, Y.

    2004-01-01

    With the extensive application of industrial computed tomography in the field of non-destructive testing, how to improve the quality of the reconstructed image is receiving more and more concern. It is well known that in the existing cone-beam filtered backprojection reconstruction algorithms the cone angle is controlled within a narrow range. The reason of this limitation is the incompleteness of projection data when the cone angle increases. Thus the size of the tested workpiece is limited. Considering the characteristic of X-ray cone angle, an improved cone-beam filtered back-projection reconstruction algorithm taking account of angular correction is proposed in this paper. The aim of our algorithm is to correct the cone-angle effect resulted from the incompleteness of projection data in the conventional algorithm. The basis of the correction is the angular relationship among X-ray source, tested workpiece and the detector. Thus the cone angle is not strictly limited and this algorithm may be used to detect larger workpiece. Further more, adaptive wavelet filter is used to make multiresolution analysis, which can modify the wavelet decomposition series adaptively according to the demand for resolution of local reconstructed area. Therefore the computation and the time of reconstruction can be reduced, and the quality of the reconstructed image can also be improved. (author)

  19. An efficient identification approach for stable and unstable nonlinear systems using Colliding Bodies Optimization algorithm.

    Science.gov (United States)

    Pal, Partha S; Kar, R; Mandal, D; Ghoshal, S P

    2015-11-01

    This paper presents an efficient approach to identify different stable and practically useful Hammerstein models as well as unstable nonlinear process along with its stable closed loop counterpart with the help of an evolutionary algorithm as Colliding Bodies Optimization (CBO) optimization algorithm. The performance measures of the CBO based optimization approach such as precision, accuracy are justified with the minimum output mean square value (MSE) which signifies that the amount of bias and variance in the output domain are also the least. It is also observed that the optimization of output MSE in the presence of outliers has resulted in a very close estimation of the output parameters consistently, which also justifies the effective general applicability of the CBO algorithm towards the system identification problem and also establishes the practical usefulness of the applied approach. Optimum values of the MSEs, computational times and statistical information of the MSEs are all found to be the superior as compared with those of the other existing similar types of stochastic algorithms based approaches reported in different recent literature, which establish the robustness and efficiency of the applied CBO based identification scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Simulation of 4-turn algorithms for reconstructing lattice optic functions from orbit measurements

    International Nuclear Information System (INIS)

    Koscielniak, S.; Iliev, A.

    1994-06-01

    We describe algorithms for reconstructing tune, closed-orbit, beta-function and phase advance from four individual turns of beam orbit acquisition data, under the assumption of coherent, almost linear and uncoupled betatron oscillations. To estimate the beta-function at, and phase advance between, position monitors, we require at least one anchor location consisting of two monitors separated by a drift. The algorithms were submitted to a Monte Carlo analysis to find the likely measurement accuracy of the optics functions in the KAON Factory Booster ring racetrack lattice, assuming beam position monitors with surveying and reading errors, and assuming an imperfect lattice with gradient and surveying errors. Some of the results of this study are reported. (author)

  1. A new approximate algorithm for image reconstruction in cone-beam spiral CT at small cone-angles

    International Nuclear Information System (INIS)

    Schaller, S.; Flohr, T.; Steffen, P.

    1996-01-01

    This paper presents a new approximate algorithm for image reconstruction with cone-beam spiral CT data at relatively small cone-angles. Based on the algorithm of Wang et al., our method combines a special complementary interpolation with filtered backprojection. The presented algorithm has three main advantages over Wang's algorithm: (1) It overcomes the pitch limitation of Wang's algorithm. (2) It significantly improves z-resolution when suitable sampling schemes are applied. (3) It avoids the waste of applied radiation dose inherent to Wang's algorithm. Usage of the total applied dose is an important requirement in medical imaging. Our method has been implemented on a standard workstation. Reconstructions of computer-simulated data of different phantoms, assuming sampling conditions and image quality requirements typical to medical CT, show encouraging results

  2. Multilayer perceptron for robust nonlinear interval regression analysis using genetic algorithms.

    Science.gov (United States)

    Hu, Yi-Chung

    2014-01-01

    On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets.

  3. A measurement fusion method for nonlinear system identification using a cooperative learning algorithm.

    Science.gov (United States)

    Xia, Youshen; Kamel, Mohamed S

    2007-06-01

    Identification of a general nonlinear noisy system viewed as an estimation of a predictor function is studied in this article. A measurement fusion method for the predictor function estimate is proposed. In the proposed scheme, observed data are first fused by using an optimal fusion technique, and then the optimal fused data are incorporated in a nonlinear function estimator based on a robust least squares support vector machine (LS-SVM). A cooperative learning algorithm is proposed to implement the proposed measurement fusion method. Compared with related identification methods, the proposed method can minimize both the approximation error and the noise error. The performance analysis shows that the proposed optimal measurement fusion function estimate has a smaller mean square error than the LS-SVM function estimate. Moreover, the proposed cooperative learning algorithm can converge globally to the optimal measurement fusion function estimate. Finally, the proposed measurement fusion method is applied to ARMA signal and spatial temporal signal modeling. Experimental results show that the proposed measurement fusion method can provide a more accurate model.

  4. Study of a reconstruction algorithm for electrons in the ATLAS experiment in LHC

    International Nuclear Information System (INIS)

    Kerschen, N.

    2006-09-01

    The ATLAS experiment is a general purpose particle physics experiment mainly aimed at the discovery of the origin of mass through the research of the Higgs boson. In order to achieve this, the Large Hadron Collider at CERN will accelerate two proton beams and make them collide at the centre of the experiment. ATLAS will discover new particles through the measurement of their decay products. Electrons are such decay products: they produce an electromagnetic shower in the calorimeter by which they lose all their energy. The calorimeter is divided into cells and the deposited energy is reconstructed using an algorithm to assemble the cells into clusters. The purpose of this thesis is to study a new kind of algorithm adapting the cluster to the shower topology. In order to reconstruct the energy of the initially created electron, the cluster has to be calibrated by taking into account the energy lost in the dead material in front of the calorimeter. Therefore. a Monte-Carlo simulation of the ATLAS detector has been used to correct for effects of response modulation in position and in energy and to optimise the energy resolution as well as the linearity. An analysis of test beam data has been performed to study the behaviour of the algorithm in a more realistic environment. We show that the requirements of the experiment can be met for the linearity and resolution. The improvement of this new algorithm, compared to a fixed sized cluster. is the better recovery of Bremsstrahlung photons emitted by the electron in the material in front of the calorimeter. A Monte-Carlo analysis of the Higgs boson decay in four electrons confirms this result. (author)

  5. Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm

    Science.gov (United States)

    Chen, C.; Xia, J.; Liu, J.; Feng, G.

    2006-01-01

    Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant

  6. Superiorized algorithm for reconstruction of CT images from sparse-view and limited-angle polyenergetic data

    Science.gov (United States)

    Humphries, T.; Winn, J.; Faridani, A.

    2017-08-01

    Recent work in CT image reconstruction has seen increasing interest in the use of total variation (TV) and related penalties to regularize problems involving reconstruction from undersampled or incomplete data. Superiorization is a recently proposed heuristic which provides an automatic procedure to ‘superiorize’ an iterative image reconstruction algorithm with respect to a chosen objective function, such as TV. Under certain conditions, the superiorized algorithm is guaranteed to find a solution that is as satisfactory as any found by the original algorithm with respect to satisfying the constraints of the problem; this solution is also expected to be superior with respect to the chosen objective. Most work on superiorization has used reconstruction algorithms which assume a linear measurement model, which in the case of CT corresponds to data generated from a monoenergetic x-ray beam. Many CT systems generate x-rays from a polyenergetic spectrum, however, in which the measured data represent an integral of object attenuation over all energies in the spectrum. This inconsistency with the linear model produces the well-known beam hardening artifacts, which impair analysis of CT images. In this work we superiorize an iterative algorithm for reconstruction from polyenergetic data, using both TV and an anisotropic TV (ATV) penalty. We apply the superiorized algorithm in numerical phantom experiments modeling both sparse-view and limited-angle scenarios. In our experiments, the superiorized algorithm successfully finds solutions which are as constraints-compatible as those found by the original algorithm, with significantly reduced TV and ATV values. The superiorized algorithm thus produces images with greatly reduced sparse-view and limited angle artifacts, which are also largely free of the beam hardening artifacts that would be present if a superiorized version of a monoenergetic algorithm were used.

  7. Update on the non-prewhitening model observer in computed tomography for the assessment of the adaptive statistical and model-based iterative reconstruction algorithms

    Science.gov (United States)

    Ott, Julien G.; Becce, Fabio; Monnin, Pascal; Schmidt, Sabine; Bochud, François O.; Verdun, Francis R.

    2014-08-01

    The state of the art to describe image quality in medical imaging is to assess the performance of an observer conducting a task of clinical interest. This can be done by using a model observer leading to a figure of merit such as the signal-to-noise ratio (SNR). Using the non-prewhitening (NPW) model observer, we objectively characterised the evolution of its figure of merit in various acquisition conditions. The NPW model observer usually requires the use of the modulation transfer function (MTF) as well as noise power spectra. However, although the computation of the MTF poses no problem when dealing with the traditional filtered back-projection (FBP) algorithm, this is not the case when using iterative reconstruction (IR) algorithms, such as adaptive statistical iterative reconstruction (ASIR) or model-based iterative reconstruction (MBIR). Given that the target transfer function (TTF) had already shown it could accurately express the system resolution even with non-linear algorithms, we decided to tune the NPW model observer, replacing the standard MTF by the TTF. It was estimated using a custom-made phantom containing cylindrical inserts surrounded by water. The contrast differences between the inserts and water were plotted for each acquisition condition. Then, mathematical transformations were performed leading to the TTF. As expected, the first results showed a dependency of the image contrast and noise levels on the TTF for both ASIR and MBIR. Moreover, FBP also proved to be dependent of the contrast and noise when using the lung kernel. Those results were then introduced in the NPW model observer. We observed an enhancement of SNR every time we switched from FBP to ASIR to MBIR. IR algorithms greatly improve image quality, especially in low-dose conditions. Based on our results, the use of MBIR could lead to further dose reduction in several clinical applications.

  8. Characterization of adaptive statistical iterative reconstruction algorithm for dose reduction in CT: A pediatric oncology perspective

    International Nuclear Information System (INIS)

    Brady, S. L.; Yee, B. S.; Kaufman, R. A.

    2012-01-01

    Purpose: This study demonstrates a means of implementing an adaptive statistical iterative reconstruction (ASiR™) technique for dose reduction in computed tomography (CT) while maintaining similar noise levels in the reconstructed image. The effects of image quality and noise texture were assessed at all implementation levels of ASiR™. Empirically derived dose reduction limits were established for ASiR™ for imaging of the trunk for a pediatric oncology population ranging from 1 yr old through adolescence/adulthood. Methods: Image quality was assessed using metrics established by the American College of Radiology (ACR) CT accreditation program. Each image quality metric was tested using the ACR CT phantom with 0%–100% ASiR™ blended with filtered back projection (FBP) reconstructed images. Additionally, the noise power spectrum (NPS) was calculated for three common reconstruction filters of the trunk. The empirically derived limitations on ASiR™ implementation for dose reduction were assessed using (1, 5, 10) yr old and adolescent/adult anthropomorphic phantoms. To assess dose reduction limits, the phantoms were scanned in increments of increased noise index (decrementing mA using automatic tube current modulation) balanced with ASiR™ reconstruction to maintain noise equivalence of the 0% ASiR™ image. Results: The ASiR™ algorithm did not produce any unfavorable effects on image quality as assessed by ACR criteria. Conversely, low-contrast resolution was found to improve due to the reduction of noise in the reconstructed images. NPS calculations demonstrated that images with lower frequency noise had lower noise variance and coarser graininess at progressively higher percentages of ASiR™ reconstruction; and in spite of the similar magnitudes of noise, the image reconstructed with 50% or more ASiR™ presented a more smoothed appearance than the pre-ASiR™ 100% FBP image. Finally, relative to non-ASiR™ images with 100% of standard dose across the

  9. Characterization of adaptive statistical iterative reconstruction algorithm for dose reduction in CT: A pediatric oncology perspective

    Energy Technology Data Exchange (ETDEWEB)

    Brady, S. L.; Yee, B. S.; Kaufman, R. A. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee 38105 (United States)

    2012-09-15

    Purpose: This study demonstrates a means of implementing an adaptive statistical iterative reconstruction (ASiR Trade-Mark-Sign ) technique for dose reduction in computed tomography (CT) while maintaining similar noise levels in the reconstructed image. The effects of image quality and noise texture were assessed at all implementation levels of ASiR Trade-Mark-Sign . Empirically derived dose reduction limits were established for ASiR Trade-Mark-Sign for imaging of the trunk for a pediatric oncology population ranging from 1 yr old through adolescence/adulthood. Methods: Image quality was assessed using metrics established by the American College of Radiology (ACR) CT accreditation program. Each image quality metric was tested using the ACR CT phantom with 0%-100% ASiR Trade-Mark-Sign blended with filtered back projection (FBP) reconstructed images. Additionally, the noise power spectrum (NPS) was calculated for three common reconstruction filters of the trunk. The empirically derived limitations on ASiR Trade-Mark-Sign implementation for dose reduction were assessed using (1, 5, 10) yr old and adolescent/adult anthropomorphic phantoms. To assess dose reduction limits, the phantoms were scanned in increments of increased noise index (decrementing mA using automatic tube current modulation) balanced with ASiR Trade-Mark-Sign reconstruction to maintain noise equivalence of the 0% ASiR Trade-Mark-Sign image. Results: The ASiR Trade-Mark-Sign algorithm did not produce any unfavorable effects on image quality as assessed by ACR criteria. Conversely, low-contrast resolution was found to improve due to the reduction of noise in the reconstructed images. NPS calculations demonstrated that images with lower frequency noise had lower noise variance and coarser graininess at progressively higher percentages of ASiR Trade-Mark-Sign reconstruction; and in spite of the similar magnitudes of noise, the image reconstructed with 50% or more ASiR Trade-Mark-Sign presented a more

  10. Tomographic reconstruction of binary fields

    International Nuclear Information System (INIS)

    Roux, Stéphane; Leclerc, Hugo; Hild, François

    2012-01-01

    A novel algorithm is proposed for reconstructing binary images from their projection along a set of different orientations. Based on a nonlinear transformation of the projection data, classical back-projection procedures can be used iteratively to converge to the sought image. A multiscale implementation allows for a faster convergence. The algorithm is tested on images up to 1 Mb definition, and an error free reconstruction is achieved with a very limited number of projection data, saving a factor of about 100 on the number of projections required for classical reconstruction algorithms.

  11. Evaluation of 3D reconstruction algorithms for a small animal PET camera

    International Nuclear Information System (INIS)

    Johnson, C.A.; Gandler, W.R.; Seidel, J.

    1996-01-01

    The use of paired, opposing position-sensitive phototube scintillation cameras (SCs) operating in coincidence for small animal imaging with positron emitters is currently under study. Because of the low sensitivity of the system even in 3D mode and the need to produce images with high resolution, it was postulated that a 3D expectation maximization (EM) reconstruction algorithm might be well suited for this application. We investigated four reconstruction algorithms for the 3D SC PET camera: 2D filtered back-projection (FBP), 2D ordered subset EM (OSEM), 3D reprojection (3DRP), and 3D OSEM. Noise was assessed for all slices by the coefficient of variation in a simulated uniform cylinder. Resolution was assessed from a simulation of 15 point sources in the warm background of the uniform cylinder. At comparable noise levels, the resolution achieved with OSEM (0.9-mm to 1.2-mm) is significantly better than that obtained with FBP or 3DRP (1.5-mm to 2.0-mm.) Images of a rat skull labeled with 18 F-fluoride suggest that 3D OSEM can improve image quality of a small animal PET camera

  12. Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM.

    Science.gov (United States)

    López, J D; Litvak, V; Espinosa, J J; Friston, K; Barnes, G R

    2014-01-01

    The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy-an approximation to the marginal likelihood or evidence of the solution. In this manuscript, we revisit the algorithm for MEG/EEG source reconstruction with a view to providing a didactic and practical guide. The aim is to promote and help standardise the development and consolidation of other schemes within the same framework. We describe the implementation in the Statistical Parametric Mapping (SPM) software package, carefully explaining each of its stages with the help of a simple simulated data example. We focus on the Multiple Sparse Priors (MSP) model, which we compare with the well-known Minimum Norm and LORETA models, using the negative variational Free energy for model comparison. The manuscript is accompanied by Matlab scripts to allow the reader to test and explore the underlying algorithm. © 2013. Published by Elsevier Inc. All rights reserved.

  13. Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM☆

    Science.gov (United States)

    López, J.D.; Litvak, V.; Espinosa, J.J.; Friston, K.; Barnes, G.R.

    2014-01-01

    The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy—an approximation to the marginal likelihood or evidence of the solution. In this manuscript, we revisit the algorithm for MEG/EEG source reconstruction with a view to providing a didactic and practical guide. The aim is to promote and help standardise the development and consolidation of other schemes within the same framework. We describe the implementation in the Statistical Parametric Mapping (SPM) software package, carefully explaining each of its stages with the help of a simple simulated data example. We focus on the Multiple Sparse Priors (MSP) model, which we compare with the well-known Minimum Norm and LORETA models, using the negative variational Free energy for model comparison. The manuscript is accompanied by Matlab scripts to allow the reader to test and explore the underlying algorithm. PMID:24041874

  14. Performance of the reconstruction algorithms of the FIRST experiment pixel sensors vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Rescigno, R., E-mail: regina.rescigno@iphc.cnrs.fr [Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, 67037 Strasbourg Cedex 2 (France); Finck, Ch.; Juliani, D. [Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, 67037 Strasbourg Cedex 2 (France); Spiriti, E. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Frascati (Italy); Istituto Nazionale di Fisica Nucleare - Sezione di Roma 3 (Italy); Baudot, J. [Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, 67037 Strasbourg Cedex 2 (France); Abou-Haidar, Z. [CNA, Sevilla (Spain); Agodi, C. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (Italy); Alvarez, M.A.G. [CNA, Sevilla (Spain); Aumann, T. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Battistoni, G. [Istituto Nazionale di Fisica Nucleare - Sezione di Milano (Italy); Bocci, A. [CNA, Sevilla (Spain); Böhlen, T.T. [European Organization for Nuclear Research CERN, Geneva (Switzerland); Medical Radiation Physics, Karolinska Institutet and Stockholm University, Stockholm (Sweden); Boudard, A. [CEA-Saclay, IRFU/SPhN, Gif sur Yvette Cedex (France); Brunetti, A.; Carpinelli, M. [Istituto Nazionale di Fisica Nucleare - Sezione di Cagliari (Italy); Università di Sassari (Italy); Cirrone, G.A.P. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (Italy); Cortes-Giraldo, M.A. [Departamento de Fisica Atomica, Molecular y Nuclear, University of Sevilla, 41080-Sevilla (Spain); Cuttone, G.; De Napoli, M. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (Italy); Durante, M. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); and others

    2014-12-11

    Hadrontherapy treatments use charged particles (e.g. protons and carbon ions) to treat tumors. During a therapeutic treatment with carbon ions, the beam undergoes nuclear fragmentation processes giving rise to significant yields of secondary charged particles. An accurate prediction of these production rates is necessary to estimate precisely the dose deposited into the tumours and the surrounding healthy tissues. Nowadays, a limited set of double differential carbon fragmentation cross-section is available. Experimental data are necessary to benchmark Monte Carlo simulations for their use in hadrontherapy. The purpose of the FIRST experiment is to study nuclear fragmentation processes of ions with kinetic energy in the range from 100 to 1000 MeV/u. Tracks are reconstructed using information from a pixel silicon detector based on the CMOS technology. The performances achieved using this device for hadrontherapy purpose are discussed. For each reconstruction step (clustering, tracking and vertexing), different methods are implemented. The algorithm performances and the accuracy on reconstructed observables are evaluated on the basis of simulated and experimental data.

  15. Median prior constrained TV algorithm for sparse view low-dose CT reconstruction.

    Science.gov (United States)

    Liu, Yi; Shangguan, Hong; Zhang, Quan; Zhu, Hongqing; Shu, Huazhong; Gui, Zhiguo

    2015-05-01

    It is known that lowering the X-ray tube current (mAs) or tube voltage (kVp) and simultaneously reducing the total number of X-ray views (sparse view) is an effective means to achieve low-dose in computed tomography (CT) scan. However, the associated image quality by the conventional filtered back-projection (FBP) usually degrades due to the excessive quantum noise. Although sparse-view CT reconstruction algorithm via total variation (TV), in the scanning protocol of reducing X-ray tube current, has been demonstrated to be able to result in significant radiation dose reduction while maintain image quality, noticeable patchy artifacts still exist in reconstructed images. In this study, to address the problem of patchy artifacts, we proposed a median prior constrained TV regularization to retain the image quality by introducing an auxiliary vector m in register with the object. Specifically, the approximate action of m is to draw, in each iteration, an object voxel toward its own local median, aiming to improve low-dose image quality with sparse-view projection measurements. Subsequently, an alternating optimization algorithm is adopted to optimize the associative objective function. We refer to the median prior constrained TV regularization as "TV_MP" for simplicity. Experimental results on digital phantoms and clinical phantom demonstrated that the proposed TV_MP with appropriate control parameters can not only ensure a higher signal to noise ratio (SNR) of the reconstructed image, but also its resolution compared with the original TV method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Influence of radiation dose and iterative reconstruction algorithms for measurement accuracy and reproducibility of pulmonary nodule volumetry: A phantom study

    International Nuclear Information System (INIS)

    Kim, Hyungjin; Park, Chang Min; Song, Yong Sub; Lee, Sang Min; Goo, Jin Mo

    2014-01-01

    Purpose: To evaluate the influence of radiation dose settings and reconstruction algorithms on the measurement accuracy and reproducibility of semi-automated pulmonary nodule volumetry. Materials and methods: CT scans were performed on a chest phantom containing various nodules (10 and 12 mm; +100, −630 and −800 HU) at 120 kVp with tube current–time settings of 10, 20, 50, and 100 mAs. Each CT was reconstructed using filtered back projection (FBP), iDose 4 and iterative model reconstruction (IMR). Semi-automated volumetry was performed by two radiologists using commercial volumetry software for nodules at each CT dataset. Noise, contrast-to-noise ratio and signal-to-noise ratio of CT images were also obtained. The absolute percentage measurement errors and differences were then calculated for volume and mass. The influence of radiation dose and reconstruction algorithm on measurement accuracy, reproducibility and objective image quality metrics was analyzed using generalized estimating equations. Results: Measurement accuracy and reproducibility of nodule volume and mass were not significantly associated with CT radiation dose settings or reconstruction algorithms (p > 0.05). Objective image quality metrics of CT images were superior in IMR than in FBP or iDose 4 at all radiation dose settings (p < 0.05). Conclusion: Semi-automated nodule volumetry can be applied to low- or ultralow-dose chest CT with usage of a novel iterative reconstruction algorithm without losing measurement accuracy and reproducibility

  17. Influence of radiation dose and iterative reconstruction algorithms for measurement accuracy and reproducibility of pulmonary nodule volumetry: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyungjin, E-mail: khj.snuh@gmail.com [Department of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Medical Research Center, 101, Daehangno, Jongno-gu, Seoul 110-744 (Korea, Republic of); Park, Chang Min, E-mail: cmpark@radiol.snu.ac.kr [Department of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Medical Research Center, 101, Daehangno, Jongno-gu, Seoul 110-744 (Korea, Republic of); Cancer Research Institute, Seoul National University, 101, Daehangno, Jongno-gu, Seoul 110-744 (Korea, Republic of); Song, Yong Sub, E-mail: terasong@gmail.com [Department of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Medical Research Center, 101, Daehangno, Jongno-gu, Seoul 110-744 (Korea, Republic of); Lee, Sang Min, E-mail: sangmin.lee.md@gmail.com [Department of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Medical Research Center, 101, Daehangno, Jongno-gu, Seoul 110-744 (Korea, Republic of); Goo, Jin Mo, E-mail: jmgoo@plaza.snu.ac.kr [Department of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Medical Research Center, 101, Daehangno, Jongno-gu, Seoul 110-744 (Korea, Republic of); Cancer Research Institute, Seoul National University, 101, Daehangno, Jongno-gu, Seoul 110-744 (Korea, Republic of)

    2014-05-15

    Purpose: To evaluate the influence of radiation dose settings and reconstruction algorithms on the measurement accuracy and reproducibility of semi-automated pulmonary nodule volumetry. Materials and methods: CT scans were performed on a chest phantom containing various nodules (10 and 12 mm; +100, −630 and −800 HU) at 120 kVp with tube current–time settings of 10, 20, 50, and 100 mAs. Each CT was reconstructed using filtered back projection (FBP), iDose{sup 4} and iterative model reconstruction (IMR). Semi-automated volumetry was performed by two radiologists using commercial volumetry software for nodules at each CT dataset. Noise, contrast-to-noise ratio and signal-to-noise ratio of CT images were also obtained. The absolute percentage measurement errors and differences were then calculated for volume and mass. The influence of radiation dose and reconstruction algorithm on measurement accuracy, reproducibility and objective image quality metrics was analyzed using generalized estimating equations. Results: Measurement accuracy and reproducibility of nodule volume and mass were not significantly associated with CT radiation dose settings or reconstruction algorithms (p > 0.05). Objective image quality metrics of CT images were superior in IMR than in FBP or iDose{sup 4} at all radiation dose settings (p < 0.05). Conclusion: Semi-automated nodule volumetry can be applied to low- or ultralow-dose chest CT with usage of a novel iterative reconstruction algorithm without losing measurement accuracy and reproducibility.

  18. Influence of radiation dose and iterative reconstruction algorithms for measurement accuracy and reproducibility of pulmonary nodule volumetry: A phantom study.

    Science.gov (United States)

    Kim, Hyungjin; Park, Chang Min; Song, Yong Sub; Lee, Sang Min; Goo, Jin Mo

    2014-05-01

    To evaluate the influence of radiation dose settings and reconstruction algorithms on the measurement accuracy and reproducibility of semi-automated pulmonary nodule volumetry. CT scans were performed on a chest phantom containing various nodules (10 and 12mm; +100, -630 and -800HU) at 120kVp with tube current-time settings of 10, 20, 50, and 100mAs. Each CT was reconstructed using filtered back projection (FBP), iDose(4) and iterative model reconstruction (IMR). Semi-automated volumetry was performed by two radiologists using commercial volumetry software for nodules at each CT dataset. Noise, contrast-to-noise ratio and signal-to-noise ratio of CT images were also obtained. The absolute percentage measurement errors and differences were then calculated for volume and mass. The influence of radiation dose and reconstruction algorithm on measurement accuracy, reproducibility and objective image quality metrics was analyzed using generalized estimating equations. Measurement accuracy and reproducibility of nodule volume and mass were not significantly associated with CT radiation dose settings or reconstruction algorithms (p>0.05). Objective image quality metrics of CT images were superior in IMR than in FBP or iDose(4) at all radiation dose settings (pvolumetry can be applied to low- or ultralow-dose chest CT with usage of a novel iterative reconstruction algorithm without losing measurement accuracy and reproducibility. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. An Algorithmic Comparison of the Hyper-Reduction and the Discrete Empirical Interpolation Method for a Nonlinear Thermal Problem

    Directory of Open Access Journals (Sweden)

    Felix Fritzen

    2018-02-01

    Full Text Available A novel algorithmic discussion of the methodological and numerical differences of competing parametric model reduction techniques for nonlinear problems is presented. First, the Galerkin reduced basis (RB formulation is presented, which fails at providing significant gains with respect to the computational efficiency for nonlinear problems. Renowned methods for the reduction of the computing time of nonlinear reduced order models are the Hyper-Reduction and the (Discrete Empirical Interpolation Method (EIM, DEIM. An algorithmic description and a methodological comparison of both methods are provided. The accuracy of the predictions of the hyper-reduced model and the (DEIM in comparison to the Galerkin RB is investigated. All three approaches are applied to a simple uncertainty quantification of a planar nonlinear thermal conduction problem. The results are compared to computationally intense finite element simulations.

  20. Low dose CT reconstruction via L1 norm dictionary learning using alternating minimization algorithm and balancing principle.

    Science.gov (United States)

    Wu, Junfeng; Dai, Fang; Hu, Gang; Mou, Xuanqin

    2018-04-18

    Excessive radiation exposure in computed tomography (CT) scans increases the chance of developing cancer and has become a major clinical concern. Recently, statistical iterative reconstruction (SIR) with l0-norm dictionary learning regularization has been developed to reconstruct CT images from the low dose and few-view dataset in order to reduce radiation dose. Nonetheless, the sparse regularization term adopted in this approach is l0-norm, which cannot guarantee the global convergence of the proposed algorithm. To address this problem, in this study we introduced the l1-norm dictionary learning penalty into SIR framework for low dose CT image reconstruction, and developed an alternating minimization algorithm to minimize the associated objective function, which transforms CT image reconstruction problem into a sparse coding subproblem and an image updating subproblem. During the image updating process, an efficient model function approach based on balancing principle is applied to choose the regularization parameters. The proposed alternating minimization algorithm was evaluated first using real projection data of a sheep lung CT perfusion and then using numerical simulation based on sheep lung CT image and chest image. Both visual assessment and quantitative comparison using terms of root mean square error (RMSE) and structural similarity (SSIM) index demonstrated that the new image reconstruction algorithm yielded similar performance with l0-norm dictionary learning penalty and outperformed the conventional filtered backprojection (FBP) and total variation (TV) minimization algorithms.

  1. A compressed sensing based reconstruction algorithm for synchrotron source propagation-based X-ray phase contrast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Melli, Seyed Ali, E-mail: sem649@mail.usask.ca [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Wahid, Khan A. [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Babyn, Paul [Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK (Canada); Montgomery, James [College of Medicine, University of Saskatchewan, Saskatoon, SK (Canada); Snead, Elisabeth [Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK (Canada); El-Gayed, Ali [College of Medicine, University of Saskatchewan, Saskatoon, SK (Canada); Pettitt, Murray; Wolkowski, Bailey [College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK (Canada); Wesolowski, Michal [Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK (Canada)

    2016-01-11

    Synchrotron source propagation-based X-ray phase contrast computed tomography is increasingly used in pre-clinical imaging. However, it typically requires a large number of projections, and subsequently a large radiation dose, to produce high quality images. To improve the applicability of this imaging technique, reconstruction algorithms that can reduce the radiation dose and acquisition time without degrading image quality are needed. The proposed research focused on using a novel combination of Douglas–Rachford splitting and randomized Kaczmarz algorithms to solve large-scale total variation based optimization in a compressed sensing framework to reconstruct 2D images from a reduced number of projections. Visual assessment and quantitative performance evaluations of a synthetic abdomen phantom and real reconstructed image of an ex-vivo slice of canine prostate tissue demonstrate that the proposed algorithm is competitive in reconstruction process compared with other well-known algorithms. An additional potential benefit of reducing the number of projections would be reduction of time for motion artifact to occur if the sample moves during image acquisition. Use of this reconstruction algorithm to reduce the required number of projections in synchrotron source propagation-based X-ray phase contrast computed tomography is an effective form of dose reduction that may pave the way for imaging of in-vivo samples.

  2. A fully three-dimensional reconstruction algorithm with the nonstationary filter for improved single-orbit cone beam SPECT

    International Nuclear Information System (INIS)

    Cao, Z.J.; Tsui, B.M.

    1993-01-01

    Conventional single-orbit cone beam tomography presents special problems. They include incomplete sampling and inadequate three-dimensional (3D) reconstruction algorithm. The commonly used Feldkamp reconstruction algorithm simply extends the two-dimensional (2D) fan beam algorithm to 3D cone beam geometry. A truly 3D reconstruction formulation has been derived for the single-orbit cone beam SPECT based on the 3D Fourier slice theorem. In the formulation, a nonstationary filter which depends on the distance from the central plane of the cone beam was derived. The filter is applied to the 2D projection data in directions along and normal to the axis-of-rotation. The 3D reconstruction algorithm with the nonstationary filter was evaluated using both computer simulation and experimental measurements. Significant improvement in image quality was demonstrated in terms of decreased artifacts and distortions in cone beam reconstructed images. However, compared with the Feldkamp algorithm, a five-fold increase in processing time is required. Further improvement in image quality needs complete sampling in frequency space

  3. Algorithms for Reconstruction of Undersampled Atomic Force Microscopy Images Supplementary Material

    DEFF Research Database (Denmark)

    2017-01-01

    Two Jupyter Notebooks showcasing reconstructions of undersampled atomic force microscopy images. The reconstructions were obtained using a variety of interpolation and reconstruction methods.......Two Jupyter Notebooks showcasing reconstructions of undersampled atomic force microscopy images. The reconstructions were obtained using a variety of interpolation and reconstruction methods....

  4. Nonlinear Rayleigh wave inversion based on the shuffled frog-leaping algorithm

    Science.gov (United States)

    Sun, Cheng-Yu; Wang, Yan-Yan; Wu, Dun-Shi; Qin, Xiao-Jun

    2017-12-01

    At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear global optimization problem. In order to alleviate the risk of falling into a local optimal solution, this paper introduces a new global optimization method, the shuffle frog-leaping algorithm (SFLA), into the Rayleigh wave dispersion-curve inversion process. SFLA is a swarm-intelligence-based algorithm that simulates a group of frogs searching for food. It uses a few parameters, achieves rapid convergence, and is capability of effective global searching. In order to test the reliability and calculation performance of SFLA, noise-free and noisy synthetic datasets were inverted. We conducted a comparative analysis with other established algorithms using the noise-free dataset, and then tested the ability of SFLA to cope with data noise. Finally, we inverted a real-world example to examine the applicability of SFLA. Results from both synthetic and field data demonstrated the effectiveness of SFLA in the interpretation of Rayleigh wave dispersion curves. We found that SFLA is superior to the established methods in terms of both reliability and computational efficiency, so it offers great potential to improve our ability to solve geophysical inversion problems.

  5. Influence of adaptive statistical iterative reconstruction algorithm on image quality in coronary computed tomography angiography

    Directory of Open Access Journals (Sweden)

    Helle Precht

    2016-12-01

    Full Text Available Background Coronary computed tomography angiography (CCTA requires high spatial and temporal resolution, increased low contrast resolution for the assessment of coronary artery stenosis, plaque detection, and/or non-coronary pathology. Therefore, new reconstruction algorithms, particularly iterative reconstruction (IR techniques, have been developed in an attempt to improve image quality with no cost in radiation exposure. Purpose To evaluate whether adaptive statistical iterative reconstruction (ASIR enhances perceived image quality in CCTA compared to filtered back projection (FBP. Material and Methods Thirty patients underwent CCTA due to suspected coronary artery disease. Images were reconstructed using FBP, 30% ASIR, and 60% ASIR. Ninety image sets were evaluated by five observers using the subjective visual grading analysis (VGA and assessed by proportional odds modeling. Objective quality assessment (contrast, noise, and the contrast-to-noise ratio [CNR] was analyzed with linear mixed effects modeling on log-transformed data. The need for ethical approval was waived by the local ethics committee as the study only involved anonymously collected clinical data. Results VGA showed significant improvements in sharpness by comparing FBP with ASIR, resulting in odds ratios of 1.54 for 30% ASIR and 1.89 for 60% ASIR (P = 0.004. The objective measures showed significant differences between FBP and 60% ASIR (P < 0.0001 for noise, with an estimated ratio of 0.82, and for CNR, with an estimated ratio of 1.26. Conclusion ASIR improved the subjective image quality of parameter sharpness and, objectively, reduced noise and increased CNR.

  6. Regularized non-stationary morphological reconstruction algorithm for weak signal detection in microseismic monitoring: methodology

    Science.gov (United States)

    Huang, Weilin; Wang, Runqiu; Chen, Yangkang

    2018-05-01

    Microseismic signal is typically weak compared with the strong background noise. In order to effectively detect the weak signal in microseismic data, we propose a mathematical morphology based approach. We decompose the initial data into several morphological multiscale components. For detection of weak signal, a non-stationary weighting operator is proposed and introduced into the process of reconstruction of data by morphological multiscale components. The non-stationary weighting operator can be obtained by solving an inversion problem. The regularized non-stationary method can be understood as a non-stationary matching filtering method, where the matching filter has the same size as the data to be filtered. In this paper, we provide detailed algorithmic descriptions and analysis. The detailed algorithm framework, parameter selection and computational issue for the regularized non-stationary morphological reconstruction (RNMR) method are presented. We validate the presented method through a comprehensive analysis through different data examples. We first test the proposed technique using a synthetic data set. Then the proposed technique is applied to a field project, where the signals induced from hydraulic fracturing are recorded by 12 three-component geophones in a monitoring well. The result demonstrates that the RNMR can improve the detectability of the weak microseismic signals. Using the processed data, the short-term-average over long-term average picking algorithm and Geiger's method are applied to obtain new locations of microseismic events. In addition, we show that the proposed RNMR method can be used not only in microseismic data but also in reflection seismic data to detect the weak signal. We also discussed the extension of RNMR from 1-D to 2-D or a higher dimensional version.

  7. The reconstruction algorithm used for [{sup 68}Ga]PSMA-HBED-CC PET/CT reconstruction significantly influences the number of detected lymph node metastases and coeliac ganglia

    Energy Technology Data Exchange (ETDEWEB)

    Krohn, Thomas [RWTH University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany); Ulm University, Department of Nuclear Medicine, Ulm (Germany); Birmes, Anita; Winz, Oliver H.; Drude, Natascha I. [RWTH University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany); Mottaghy, Felix M. [RWTH University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany); Maastricht UMC+, Department of Nuclear Medicine, Maastricht (Netherlands); Behrendt, Florian F. [RWTH University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany); Radiology Institute ' ' Aachen Land' ' , Wuerselen (Germany); Verburg, Frederik A. [RWTH University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany); University Hospital Giessen and Marburg, Department of Nuclear Medicine, Marburg (Germany)

    2017-04-15

    To investigate whether the numbers of lymph node metastases and coeliac ganglia delineated on [{sup 68}Ga]PSMA-HBED-CC PET/CT scans differ among datasets generated using different reconstruction algorithms. Data were constructed using the BLOB-OS-TF, BLOB-OS and 3D-RAMLA algorithms. All reconstructions were assessed by two nuclear medicine physicians for the number of pelvic/paraaortal lymph node metastases as well the number of coeliac ganglia. Standardized uptake values (SUV) were also calculated in different regions. At least one [{sup 68}Ga]PSMA-HBED-CC PET/CT-positive pelvic or paraaortal lymph node metastasis was found in 49 and 35 patients using the BLOB-OS-TF algorithm, in 42 and 33 patients using the BLOB-OS algorithm, and in 41 and 31 patients using the 3D-RAMLA algorithm, respectively, and a positive ganglion was found in 92, 59 and 24 of 100 patients using the three algorithms, respectively. Quantitatively, the SUVmean and SUVmax were significantly higher with the BLOB-OS algorithm than with either the BLOB-OS-TF or the 3D-RAMLA algorithm in all measured regions (p < 0.001 for all comparisons). The differences between the SUVs with the BLOB-OS-TF- and 3D-RAMLA algorithms were not significant in the aorta (SUVmean, p = 0.93; SUVmax, p = 0.97) but were significant in all other regions (p < 0.001 in all cases). The SUVmean ganglion/gluteus ratio was significantly higher with the BLOB-OS-TF algorithm than with either the BLOB-OS or the 3D-RAMLA algorithm and was significantly higher with the BLOB-OS than with the 3D-RAMLA algorithm (p < 0.001 in all cases). The results of [{sup 68}Ga]PSMA-HBED-CC PET/CT are affected by the reconstruction algorithm used. The highest number of lesions and physiological structures will be visualized using a modern algorithm employing time-of-flight information. (orig.)

  8. Conditional probability distribution associated to the E-M image reconstruction algorithm for neutron stimulated emission tomography

    International Nuclear Information System (INIS)

    Viana, R.S.; Yoriyaz, H.; Santos, A.

    2011-01-01

    The Expectation-Maximization (E-M) algorithm is an iterative computational method for maximum likelihood (M-L) estimates, useful in a variety of incomplete-data problems. Due to its stochastic nature, one of the most relevant applications of E-M algorithm is the reconstruction of emission tomography images. In this paper, the statistical formulation of the E-M algorithm was applied to the in vivo spectrographic imaging of stable isotopes called Neutron Stimulated Emission Computed Tomography (NSECT). In the process of E-M algorithm iteration, the conditional probability distribution plays a very important role to achieve high quality image. This present work proposes an alternative methodology for the generation of the conditional probability distribution associated to the E-M reconstruction algorithm, using the Monte Carlo code MCNP5 and with the application of the reciprocity theorem. (author)

  9. Conditional probability distribution associated to the E-M image reconstruction algorithm for neutron stimulated emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Viana, R.S.; Yoriyaz, H.; Santos, A., E-mail: rodrigossviana@gmail.com, E-mail: hyoriyaz@ipen.br, E-mail: asantos@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The Expectation-Maximization (E-M) algorithm is an iterative computational method for maximum likelihood (M-L) estimates, useful in a variety of incomplete-data problems. Due to its stochastic nature, one of the most relevant applications of E-M algorithm is the reconstruction of emission tomography images. In this paper, the statistical formulation of the E-M algorithm was applied to the in vivo spectrographic imaging of stable isotopes called Neutron Stimulated Emission Computed Tomography (NSECT). In the process of E-M algorithm iteration, the conditional probability distribution plays a very important role to achieve high quality image. This present work proposes an alternative methodology for the generation of the conditional probability distribution associated to the E-M reconstruction algorithm, using the Monte Carlo code MCNP5 and with the application of the reciprocity theorem. (author)

  10. Mouse obesity network reconstruction with a variational Bayes algorithm to employ aggressive false positive control

    Directory of Open Access Journals (Sweden)

    Logsdon Benjamin A

    2012-04-01

    Full Text Available Abstract Background We propose a novel variational Bayes network reconstruction algorithm to extract the most relevant disease factors from high-throughput genomic data-sets. Our algorithm is the only scalable method for regularized network recovery that employs Bayesian model averaging and that can internally estimate an appropriate level of sparsity to ensure few false positives enter the model without the need for cross-validation or a model selection criterion. We use our algorithm to characterize the effect of genetic markers and liver gene expression traits on mouse obesity related phenotypes, including weight, cholesterol, glucose, and free fatty acid levels, in an experiment previously used for discovery and validation of network connections: an F2 intercross between the C57BL/6 J and C3H/HeJ mouse strains, where apolipoprotein E is null on the background. Results We identified eleven genes, Gch1, Zfp69, Dlgap1, Gna14, Yy1, Gabarapl1, Folr2, Fdft1, Cnr2, Slc24a3, and Ccl19, and a quantitative trait locus directly connected to weight, glucose, cholesterol, or free fatty acid levels in our network. None of these genes were identified by other network analyses of this mouse intercross data-set, but all have been previously associated with obesity or related pathologies in independent studies. In addition, through both simulations and data analysis we demonstrate that our algorithm achieves superior performance in terms of power and type I error control than other network recovery algorithms that use the lasso and have bounds on type I error control. Conclusions Our final network contains 118 previously associated and novel genes affecting weight, cholesterol, glucose, and free fatty acid levels that are excellent obesity risk candidates.

  11. A comparison of semiglobal and local dense matching algorithms for surface reconstruction

    Directory of Open Access Journals (Sweden)

    E. Dall'Asta

    2014-06-01

    Full Text Available Encouraged by the growing interest in automatic 3D image-based reconstruction, the development and improvement of robust stereo matching techniques is one of the most investigated research topic of the last years in photogrammetry and computer vision. The paper is focused on the comparison of some stereo matching algorithms (local and global which are very popular both in photogrammetry and computer vision. In particular, the Semi-Global Matching (SGM, which realizes a pixel-wise matching and relies on the application of consistency constraints during the matching cost aggregation, will be discussed. The results of some tests performed on real and simulated stereo image datasets, evaluating in particular the accuracy of the obtained digital surface models, will be presented. Several algorithms and different implementation are considered in the comparison, using freeware software codes like MICMAC and OpenCV, commercial software (e.g. Agisoft PhotoScan and proprietary codes implementing Least Square e Semi-Global Matching algorithms. The comparisons will also consider the completeness and the level of detail within fine structures, and the reliability and repeatability of the obtainable data.

  12. A comparison of semiglobal and local dense matching algorithms for surface reconstruction

    Science.gov (United States)

    Dall'Asta, E.; Roncella, R.

    2014-06-01

    Encouraged by the growing interest in automatic 3D image-based reconstruction, the development and improvement of robust stereo matching techniques is one of the most investigated research topic of the last years in photogrammetry and computer vision. The paper is focused on the comparison of some stereo matching algorithms (local and global) which are very popular both in photogrammetry and computer vision. In particular, the Semi-Global Matching (SGM), which realizes a pixel-wise matching and relies on the application of consistency constraints during the matching cost aggregation, will be discussed. The results of some tests performed on real and simulated stereo image datasets, evaluating in particular the accuracy of the obtained digital surface models, will be presented. Several algorithms and different implementation are considered in the comparison, using freeware software codes like MICMAC and OpenCV, commercial software (e.g. Agisoft PhotoScan) and proprietary codes implementing Least Square e Semi-Global Matching algorithms. The comparisons will also consider the completeness and the level of detail within fine structures, and the reliability and repeatability of the obtainable data.

  13. Research on non-uniform strain profile reconstruction along fiber Bragg grating via genetic programming algorithm and interrelated experimental verification

    Science.gov (United States)

    Zheng, Shijie; Zhang, Nan; Xia, Yanjun; Wang, Hongtao

    2014-03-01

    A new heuristic strategy for the non-uniform strain profile reconstruction along Fiber Bragg Gratings is proposed in this paper, which is based on the modified transfer matrix and Genetic Programming(GP) algorithm. The present method uses Genetic Programming to determine the applied strain field as a function of position along the fiber length. The structures that undergo adaptation in genetic programming are hierarchical structures which are different from that of conventional genetic algorithm operating on strings. GP regress the strain profile function which matches the 'measured' spectrum best and makes space resolution of strain reconstruction arbitrarily high, or even infinite. This paper also presents an experimental verification of the reconstruction of non-homogeneous strain fields using GP. The results are compared with numerical calculations of finite element method. Both the simulation examples and experimental results demonstrate that Genetic Programming can effectively reconstruct continuous profile expression along the whole FBG, and greatly improves its computational efficiency and accuracy.

  14. A nonlinear relaxation/quasi-Newton algorithm for the compressible Navier-Stokes equations

    Science.gov (United States)

    Edwards, Jack R.; Mcrae, D. S.

    1992-01-01

    A highly efficient implicit method for the computation of steady, two-dimensional compressible Navier-Stokes flowfields is presented. The discretization of the governing equations is hybrid in nature, with flux-vector splitting utilized in the streamwise direction and central differences with flux-limited artificial dissipation used for the transverse fluxes. Line Jacobi relaxation is used to provide a suitable initial guess for a new nonlinear iteration strategy based on line Gauss-Seidel sweeps. The applicability of quasi-Newton methods as convergence accelerators for this and other line relaxation algorithms is discussed, and efficient implementations of such techniques are presented. Convergence histories and comparisons with experimental data are presented for supersonic flow over a flat plate and for several high-speed compression corner interactions. Results indicate a marked improvement in computational efficiency over more conventional upwind relaxation strategies, particularly for flowfields containing large pockets of streamwise subsonic flow.

  15. An inertia-free filter line-search algorithm for large-scale nonlinear programming

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Nai-Yuan; Zavala, Victor M.

    2016-02-15

    We present a filter line-search algorithm that does not require inertia information of the linear system. This feature enables the use of a wide range of linear algebra strategies and libraries, which is essential to tackle large-scale problems on modern computing architectures. The proposed approach performs curvature tests along the search step to detect negative curvature and to trigger convexification. We prove that the approach is globally convergent and we implement the approach within a parallel interior-point framework to solve large-scale and highly nonlinear problems. Our numerical tests demonstrate that the inertia-free approach is as efficient as inertia detection via symmetric indefinite factorizations. We also demonstrate that the inertia-free approach can lead to reductions in solution time because it reduces the amount of convexification needed.

  16. Identification of time-varying nonlinear systems using differential evolution algorithm

    DEFF Research Database (Denmark)

    Perisic, Nevena; Green, Peter L; Worden, Keith

    2013-01-01

    (DE) algorithm for the identification of time-varying systems. DE is an evolutionary optimisation method developed to perform direct search in a continuous space without requiring any derivative estimation. DE is modified so that the objective function changes with time to account for the continuing......, thus identification of time-varying systems with nonlinearities can be a very challenging task. In order to avoid conventional least squares and gradient identification methods which require uni-modal and double differentiable objective functions, this work proposes a modified differential evolution...... inclusion of new data within an error metric. This paper presents results of identification of a time-varying SDOF system with Coulomb friction using simulated noise-free and noisy data for the case of time-varying friction coefficient, stiffness and damping. The obtained results are promising and the focus...

  17. Evaluation of noise and blur effects with SIRT-FISTA-TV reconstruction algorithm: Application to fast environmental transmission electron tomography.

    Science.gov (United States)

    Banjak, Hussein; Grenier, Thomas; Epicier, Thierry; Koneti, Siddardha; Roiban, Lucian; Gay, Anne-Sophie; Magnin, Isabelle; Peyrin, Françoise; Maxim, Voichita

    2018-06-01

    Fast tomography in Environmental Transmission Electron Microscopy (ETEM) is of a great interest for in situ experiments where it allows to observe 3D real-time evolution of nanomaterials under operating conditions. In this context, we are working on speeding up the acquisition step to a few seconds mainly with applications on nanocatalysts. In order to accomplish such rapid acquisitions of the required tilt series of projections, a modern 4K high-speed camera is used, that can capture up to 100 images per second in a 2K binning mode. However, due to the fast rotation of the sample during the tilt procedure, noise and blur effects may occur in many projections which in turn would lead to poor quality reconstructions. Blurred projections make classical reconstruction algorithms inappropriate and require the use of prior information. In this work, a regularized algebraic reconstruction algorithm named SIRT-FISTA-TV is proposed. The performance of this algorithm using blurred data is studied by means of a numerical blur introduced into simulated images series to mimic possible mechanical instabilities/drifts during fast acquisitions. We also present reconstruction results from noisy data to show the robustness of the algorithm to noise. Finally, we show reconstructions with experimental datasets and we demonstrate the interest of fast tomography with an ultra-fast acquisition performed under environmental conditions, i.e. gas and temperature, in the ETEM. Compared to classically used SIRT and SART approaches, our proposed SIRT-FISTA-TV reconstruction algorithm provides higher quality tomograms allowing easier segmentation of the reconstructed volume for a better final processing and analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Nonlinear Bayesian Algorithms for Gas Plume Detection and Estimation from Hyper-spectral Thermal Image Data

    Energy Technology Data Exchange (ETDEWEB)

    Heasler, Patrick G.; Posse, Christian; Hylden, Jeff L.; Anderson, Kevin K.

    2007-06-13

    This paper presents a nonlinear Bayesian regression algorithm for the purpose of detecting and estimating gas plume content from hyper-spectral data. Remote sensing data, by its very nature, is collected under less controlled conditions than laboratory data. As a result, the physics-based model that is used to describe the relationship between the observed remotesensing spectra, and the terrestrial (or atmospheric) parameters that we desire to estimate, is typically littered with many unknown "nuisance" parameters (parameters that we are not interested in estimating, but also appear in the model). Bayesian methods are well-suited for this context as they automatically incorporate the uncertainties associated with all nuisance parameters into the error estimates of the parameters of interest. The nonlinear Bayesian regression methodology is illustrated on realistic simulated data from a three-layer model for longwave infrared (LWIR) measurements from a passive instrument. This shows that this approach should permit more accurate estimation as well as a more reasonable description of estimate uncertainty.

  19. Nonlinear smooth orthogonal decomposition of kinematic features of sawing reconstructs muscle fatigue evolution as indicated by electromyography.

    Science.gov (United States)

    Segala, David B; Gates, Deanna H; Dingwell, Jonathan B; Chelidze, David

    2011-03-01

    Tracking or predicting physiological fatigue is important for developing more robust training protocols and better energy supplements and/or reducing muscle injuries. Current methodologies are usually impractical and/or invasive and may not be realizable outside of laboratory settings. It was recently demonstrated that smooth orthogonal decomposition (SOD) of phase space warping (PSW) features of motion kinematics can identify fatigue in individual muscle groups. We hypothesize that a nonlinear extension of SOD will identify more optimal fatigue coordinates and provide a lower-dimensional reconstruction of local fatigue dynamics than the linear SOD. Both linear and nonlinear SODs were applied to PSW features estimated from measured kinematics to reconstruct muscle fatigue dynamics in subjects performing a sawing motion. Ten healthy young right-handed subjects pushed a weighted handle back and forth until voluntary exhaustion. Three sets of joint kinematic angles were measured from the right upper extremity in addition to surface electromyography (EMG) recordings. The SOD coordinates of kinematic PSW features were compared against independently measured fatigue markers (i.e., mean and median EMG spectrum frequencies of individual muscle groups). This comparison was based on a least-squares linear fit of a fixed number of the dominant SOD coordinates to the appropriate local fatigue markers. Between subject variability showed that at most four to five nonlinear SOD coordinates were needed to reconstruct fatigue in local muscle groups, while on average 15 coordinates were needed for the linear SOD. Thus, the nonlinear coordinates provided a one-order-of-magnitude improvement over the linear ones.

  20. Comparative Study of Evolutionary Multi-objective Optimization Algorithms for a Non-linear Greenhouse Climate Control Problem

    DEFF Research Database (Denmark)

    Ghoreishi, Newsha; Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard

    2015-01-01

    Non-trivial real world decision-making processes usually involve multiple parties having potentially conflicting interests over a set of issues. State-of-the-art multi-objective evolutionary algorithms (MOEA) are well known to solve this class of complex real-world problems. In this paper, we...... compare the performance of state-of-the-art multi-objective evolutionary algorithms to solve a non-linear multi-objective multi-issue optimisation problem found in Greenhouse climate control. The chosen algorithms in the study includes NSGAII, eNSGAII, eMOEA, PAES, PESAII and SPEAII. The performance...... of all aforementioned algorithms is assessed and compared using performance indicators to evaluate proximity, diversity and consistency. Our insights to this comparative study enhanced our understanding of MOEAs performance in order to solve a non-linear complex climate control problem. The empirical...

  1. On structure-exploiting trust-region regularized nonlinear least squares algorithms for neural-network learning.

    Science.gov (United States)

    Mizutani, Eiji; Demmel, James W

    2003-01-01

    This paper briefly introduces our numerical linear algebra approaches for solving structured nonlinear least squares problems arising from 'multiple-output' neural-network (NN) models. Our algorithms feature trust-region regularization, and exploit sparsity of either the 'block-angular' residual Jacobian matrix or the 'block-arrow' Gauss-Newton Hessian (or Fisher information matrix in statistical sense) depending on problem scale so as to render a large class of NN-learning algorithms 'efficient' in both memory and operation costs. Using a relatively large real-world nonlinear regression application, we shall explain algorithmic strengths and weaknesses, analyzing simulation results obtained by both direct and iterative trust-region algorithms with two distinct NN models: 'multilayer perceptrons' (MLP) and 'complementary mixtures of MLP-experts' (or neuro-fuzzy modular networks).

  2. MO-FG-204-04: How Iterative Reconstruction Algorithms Affect the NPS of CT Images

    International Nuclear Information System (INIS)

    Li, G; Liu, X; Dodge, C; Jensen, C; Rong, J

    2015-01-01

    Purpose: To evaluate how the third generation model based iterative reconstruction (MBIR) compares with filtered back-projection (FBP), adaptive statistical iterative reconstruction (ASiR), and the second generation MBIR based on noise power spectrum (NPS) analysis over a wide range of clinically applicable dose levels. Methods: The Catphan 600 CTP515 module, surrounded by an oval, fat-equivalent ring to mimic patient size/shape, was scanned on a GE HD750 CT scanner at 1, 2, 3, 6, 12 and 19mGy CTDIvol levels with typical patient scan parameters: 120kVp, 0.8s, 40mm beam width, large SFOV, 0.984 pitch and reconstructed thickness 2.5mm (VEO3.0: Abd/Pelvis with Texture and NR05). At each CTDIvol level, 10 repeated scans were acquired for achieving sufficient data sampling. The images were reconstructed using Standard kernel with FBP; 20%, 40% and 70% ASiR; and two versions of MBIR (VEO2.0 and 3.0). For evaluating the effect of the ROI spatial location to the Result of NPS, 4 ROI groups were categorized based on their distances from the center of the phantom. Results: VEO3.0 performed inferiorly comparing to VEO2.0 over all dose levels. On the other hand, at low dose levels (less than 3 mGy), it clearly outperformed ASiR and FBP, in NPS values. Therefore, the lower the dose level, the relative performance of MBIR improves. However, the shapes of the NPS show substantial differences in horizontal and vertical sampling dimensions. These differences may determine the characteristics of the noise/texture features in images, and hence, play an important role in image interpretation. Conclusion: The third generation MBIR did not improve over the second generation MBIR in term of NPS analysis. The overall performance of both versions of MBIR improved as compared to other reconstruction algorithms when dose was reduced. The shapes of the NPS curves provided additional value for future characterization of the image noise/texture features

  3. MO-FG-204-04: How Iterative Reconstruction Algorithms Affect the NPS of CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Li, G; Liu, X; Dodge, C; Jensen, C; Rong, J [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To evaluate how the third generation model based iterative reconstruction (MBIR) compares with filtered back-projection (FBP), adaptive statistical iterative reconstruction (ASiR), and the second generation MBIR based on noise power spectrum (NPS) analysis over a wide range of clinically applicable dose levels. Methods: The Catphan 600 CTP515 module, surrounded by an oval, fat-equivalent ring to mimic patient size/shape, was scanned on a GE HD750 CT scanner at 1, 2, 3, 6, 12 and 19mGy CTDIvol levels with typical patient scan parameters: 120kVp, 0.8s, 40mm beam width, large SFOV, 0.984 pitch and reconstructed thickness 2.5mm (VEO3.0: Abd/Pelvis with Texture and NR05). At each CTDIvol level, 10 repeated scans were acquired for achieving sufficient data sampling. The images were reconstructed using Standard kernel with FBP; 20%, 40% and 70% ASiR; and two versions of MBIR (VEO2.0 and 3.0). For evaluating the effect of the ROI spatial location to the Result of NPS, 4 ROI groups were categorized based on their distances from the center of the phantom. Results: VEO3.0 performed inferiorly comparing to VEO2.0 over all dose levels. On the other hand, at low dose levels (less than 3 mGy), it clearly outperformed ASiR and FBP, in NPS values. Therefore, the lower the dose level, the relative performance of MBIR improves. However, the shapes of the NPS show substantial differences in horizontal and vertical sampling dimensions. These differences may determine the characteristics of the noise/texture features in images, and hence, play an important role in image interpretation. Conclusion: The third generation MBIR did not improve over the second generation MBIR in term of NPS analysis. The overall performance of both versions of MBIR improved as compared to other reconstruction algorithms when dose was reduced. The shapes of the NPS curves provided additional value for future characterization of the image noise/texture features.

  4. High-definition computed tomography for coronary artery stents imaging: Initial evaluation of the optimal reconstruction algorithm.

    Science.gov (United States)

    Cui, Xiaoming; Li, Tao; Li, Xin; Zhou, Weihua

    2015-05-01

    The aim of this study was to evaluate the in vivo performance of four image reconstruction algorithms in a high-definition CT (HDCT) scanner with improved spatial resolution for the evaluation of coronary artery stents and intrastent lumina. Thirty-nine consecutive patients with a total of 71 implanted coronary stents underwent coronary CT angiography (CCTA) on a HDCT (Discovery CT 750 HD; GE Healthcare) with the high-resolution scanning mode. Four different reconstruction algorithms (HD-stand, HD-detail; HD-stand-plus; HD-detail-plus) were applied to reconstruct the stented coronary arteries. Image quality for stent characterization was assessed. Image noise and intrastent luminal diameter were measured. The relationship between the measurement of inner stent diameter (ISD) and the true stent diameter (TSD) and stent type were analysed. The stent-dedicated kernel (HD-detail) offered the highest percentage (53.5%) of good image quality for stent characterization and the highest ratio (68.0±8.4%) of visible stent lumen/true stent lumen for luminal diameter measurement at the expense of an increased overall image noise. The Pearson correlation coefficient between the ISD and TSD measurement and spearman correlation coefficient between the ISD measurement and stent type were 0.83 and 0.48, respectively. Compared with standard reconstruction algorithms, high-definition CT imaging technique with dedicated high-resolution reconstruction algorithm provides more accurate stent characterization and intrastent luminal diameter measurement. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. An efficient reconstruction algorithm for differential phase-contrast tomographic images from a limited number of views

    International Nuclear Information System (INIS)

    Sunaguchi, Naoki; Yuasa, Tetsuya; Gupta, Rajiv; Ando, Masami

    2015-01-01

    The main focus of this paper is reconstruction of tomographic phase-contrast image from a set of projections. We propose an efficient reconstruction algorithm for differential phase-contrast computed tomography that can considerably reduce the number of projections required for reconstruction. The key result underlying this research is a projection theorem that states that the second derivative of the projection set is linearly related to the Laplacian of the tomographic image. The proposed algorithm first reconstructs the Laplacian image of the phase-shift distribution from the second-derivative of the projections using total variation regularization. The second step is to obtain the phase-shift distribution by solving a Poisson equation whose source is the Laplacian image previously reconstructed under the Dirichlet condition. We demonstrate the efficacy of this algorithm using both synthetically generated simulation data and projection data acquired experimentally at a synchrotron. The experimental phase data were acquired from a human coronary artery specimen using dark-field-imaging optics pioneered by our group. Our results demonstrate that the proposed algorithm can reduce the number of projections to approximately 33% as compared with the conventional filtered backprojection method, without any detrimental effect on the image quality

  6. Triggerless Readout with Time and Amplitude Reconstruction of Event Based on Deconvolution Algorithm

    International Nuclear Information System (INIS)

    Kulis, S.; Idzik, M.

    2011-01-01

    In future linear colliders like CLIC, where the period between the bunch crossings is in a sub-nanoseconds range ( 500 ps), an appropriate detection technique with triggerless signal processing is needed. In this work we discuss a technique, based on deconvolution algorithm, suitable for time and amplitude reconstruction of an event. In the implemented method the output of a relatively slow shaper (many bunch crossing periods) is sampled and digitalised in an ADC and then the deconvolution procedure is applied to digital data. The time of an event can be found with a precision of few percent of sampling time. The signal to noise ratio is only slightly decreased after passing through the deconvolution filter. The performed theoretical and Monte Carlo studies are confirmed by the results of preliminary measurements obtained with the dedicated system comprising of radiation source, silicon sensor, front-end electronics, ADC and further digital processing implemented on a PC computer. (author)

  7. Complex amplitude reconstruction by iterative amplitude-phase retrieval algorithm with reference

    Science.gov (United States)

    Shen, Cheng; Guo, Cheng; Tan, Jiubin; Liu, Shutian; Liu, Zhengjun

    2018-06-01

    Multi-image iterative phase retrieval methods have been successfully applied in plenty of research fields due to their simple but efficient implementation. However, there is a mismatch between the measurement of the first long imaging distance and the sequential interval. In this paper, an amplitude-phase retrieval algorithm with reference is put forward without additional measurements or priori knowledge. It gets rid of measuring the first imaging distance. With a designed update formula, it significantly raises the convergence speed and the reconstruction fidelity, especially in phase retrieval. Its superiority over the original amplitude-phase retrieval (APR) method is validated by numerical analysis and experiments. Furthermore, it provides a conceptual design of a compact holographic image sensor, which can achieve numerical refocusing easily.

  8. An Adaptive Threshold Image Reconstruction Algorithm of Oil-Water Two-Phase Flow in Electrical Capacitance Tomography System

    International Nuclear Information System (INIS)

    Qin, M; Chen, D Y; Wang, L L; Yu, X Y

    2006-01-01

    The subject investigated in this paper is the ECT system of 8-electrode oil-water two-phase flow, and the measuring principle is analysed. In ART image-reconstruction algorithm, an adaptive threshold image reconstruction is presented to improve quality of image reconstruction and calculating accuracy of concentration, and generally the measurement error is about 1%. Such method can well solve many defects that other measurement methods may have, such as slow speed, high cost, and poor security and so on. Therefore, it offers a new method for the concentration measurement of oil-water two-phase flow

  9. Reconstruction of core axial power shapes using the alternating conditional expectation algorithm

    International Nuclear Information System (INIS)

    Lee, Eun Ki; Kim, Yong Hee; Cha, Kune Ho; Park, Moon Ghu

    1999-01-01

    We have introduced the alternating conditional expectation (ACE) algorithm in reconstructing 20-node axial core power shapes from five-level in-core detector powers. The core design code, Reactor Operation and Control Simulation (ROCS), calculates 3-dimensional power distributions for various core states, and the reference core-averaged axial power shapes and corresponding simulated detector powers are utilized to synthesize the axial power shape. By using the ACE algorithm, the optimal relationship between a dependent variable, the plane power, and independent variables, five detector powers, is determined without any preprocessing. A total of ∼3490 data sets per each cycle of YongGwang Nuclear (YGN) power plant units 3 and 4 is used for the regression. Continuous analytic function corresponding to each optimal transformation is calculated by simple regression model. The reconstructed axial power shapes of ∼21,200 cases are compared to the original ROCS axial power shapes. Also, to test the validity and accuracy of the new method, its performance is compared with that of the Fourier fitting method (FFM), a typical method of the deterministic approach. For a total of 21,204 data cases, the averages of root mean square (rms) error, axial peak error (ΔF z ), and axial shape index error (ΔASI) of new method are calculated as 0.81%, 0.51% and 0.00204, while those of FFM are 2.29%, 2.37% and 0.00264, respectively. We also evaluated the wide range of axial power profiles from the xenon-oscillation. The results show that the newly developed method is far superior to FFM; average rms and axial peak error are just ∼35 and ∼20% of those of FFM, respectively

  10. SU-F-T-441: Dose Calculation Accuracy in CT Images Reconstructed with Artifact Reduction Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C; Chan, S; Lee, F; Ngan, R [Queen Elizabeth Hospital (Hong Kong); Lee, V [University of Hong Kong, Hong Kong, HK (Hong Kong)

    2016-06-15

    Purpose: Accuracy of radiotherapy dose calculation in patients with surgical implants is complicated by two factors. First is the accuracy of CT number, second is the dose calculation accuracy. We compared measured dose with dose calculated on CT images reconstructed with FBP and an artifact reduction algorithm (OMAR, Philips) for a phantom with high density inserts. Dose calculation were done with Varian AAA and AcurosXB. Methods: A phantom was constructed with solid water in which 2 titanium or stainless steel rods could be inserted. The phantom was scanned with the Philips Brillance Big Bore CT. Image reconstruction was done with FBP and OMAR. Two 6 MV single field photon plans were constructed for each phantom. Radiochromic films were placed at different locations to measure the dose deposited. One plan has normal incidence on the titanium/steel rods. In the second plan, the beam is at almost glancing incidence on the metal rods. Measurements were then compared with dose calculated with AAA and AcurosXB. Results: The use of OMAR images slightly improved the dose calculation accuracy. The agreement between measured and calculated dose was best with AXB and image reconstructed with OMAR. Dose calculated on titanium phantom has better agreement with measurement. Large discrepancies were seen at points directly above and below the high density inserts. Both AAA and AXB underestimated the dose directly above the metal surface, while overestimated the dose below the metal surface. Doses measured downstream of metal were all within 3% of calculated values. Conclusion: When doing treatment planning for patients with metal implants, care must be taken to acquire correct CT images to improve dose calculation accuracy. Moreover, great discrepancies in measured and calculated dose were observed at metal/tissue interface. Care must be taken in estimating the dose in critical structures that come into contact with metals.

  11. Fast cross-projection algorithm for reconstruction of seeds in prostate brachytherapy

    International Nuclear Information System (INIS)

    Narayanan, Sreeram; Cho, Paul S.; Marks, Robert J. II

    2002-01-01

    A fast method of seed matching and reconstruction in prostrate brachytherapy is proposed. Previous approaches have required all seeds to be matched with all other seeds in other projections. The fast cross-projection algorithm for the reconstruction of seeds (Fast-CARS) allows for matching of a given seed with a subset of seeds in other projections. This subset lies in a proximal region centered about the projection of a line, connecting the seed to its source, onto other projection planes. The proposed technique permits a significant reduction in computational overhead, as measured by the required number of matching tests. The number of multiplications and additions is also vastly reduced at no trade-off in accuracy. Because of its speed, Fast-CARS can be used in applications requiring real-time performance such as intraoperative dosimetry of prostate brachytherapy. Furthermore, the proposed method makes practical the use of a larger number of views as opposed to previous techniques limited to a maximum use of three views

  12. Superficial temporal artery flap for reconstruction of complex facial defects: A new algorithm

    Directory of Open Access Journals (Sweden)

    Tarek M. Elbanoby

    2018-03-01

    Full Text Available Background A variety of island flaps can be based on the superficial temporal artery with variable tissue composition. They can be used for defect reconstruction, cavity resurfacing, facial hair restoration, or contracture release. Methods Seventy-two patients underwent facial reconstruction using a superficial temporal artery island flap from October 2010 to October 2014. The defects had various etiologies, including trauma, burns, tumors, exposed hardware, and congenital causes. We classified the patients by indication into 5 groups: cavity resurfacing, contracture release, facial hair restoration, skin coverage, and combined. The demographic data of the patients, defect characteristics, operative procedures, postoperative results, and complications were retrospectively documented. The follow-up period ranged from 24 to 54 months. Results A total of 24 females and 48 males were included in this study. The mean age of the patients was 33.7±15.6 years. The flaps were used for contracture release in 13 cases, cavity resurfacing in 10 cases, skin coverage in 17 cases, facial hair restoration in 19 cases, and combined defects in 13 cases. No major complications were reported. Conclusion: Based on our experiences with the use of superficial temporal artery island flaps, we have developed a detailed approach for the optimal management of patients with composite facial defects. The aim of this article is to provide the reader with a systematic algorithm to use for such patients.

  13. Compositional-prior-guided image reconstruction algorithm for multi-modality imaging

    Science.gov (United States)

    Fang, Qianqian; Moore, Richard H.; Kopans, Daniel B.; Boas, David A.

    2010-01-01

    The development of effective multi-modality imaging methods typically requires an efficient information fusion model, particularly when combining structural images with a complementary imaging modality that provides functional information. We propose a composition-based image segmentation method for X-ray digital breast tomosynthesis (DBT) and a structural-prior-guided image reconstruction for a combined DBT and diffuse optical tomography (DOT) breast imaging system. Using the 3D DBT images from 31 clinically measured healthy breasts, we create an empirical relationship between the X-ray intensities for adipose and fibroglandular tissue. We use this relationship to then segment another 58 healthy breast DBT images from 29 subjects into compositional maps of different tissue types. For each breast, we build a weighted-graph in the compositional space and construct a regularization matrix to incorporate the structural priors into a finite-element-based DOT image reconstruction. Use of the compositional priors enables us to fuse tissue anatomy into optical images with less restriction than when using a binary segmentation. This allows us to recover the image contrast captured by DOT but not by DBT. We show that it is possible to fine-tune the strength of the structural priors by changing a single regularization parameter. By estimating the optical properties for adipose and fibroglandular tissue using the proposed algorithm, we found the results are comparable or superior to those estimated with expert-segmentations, but does not involve the time-consuming manual selection of regions-of-interest. PMID:21258460

  14. Development of tomographic reconstruction algorithms for the PIXE analysis of biological samples

    International Nuclear Information System (INIS)

    Nguyen, D.T.

    2008-05-01

    The development of 3-dimensional microscopy techniques offering a spatial resolution of 1 μm or less has opened a large field of investigation in Cell Biology. Amongst them, an interesting advantage of ion beam micro-tomography is its ability to give quantitative results in terms of local concentrations in a direct way, using Particle Induced X-ray Emission (PIXET) combined to Scanning Transmission Ion Microscopy (STIMT) Tomography. After a brief introduction of existing reconstruction techniques, we present the principle of the DISRA code, the most complete written so far, which is the basis of the present work. We have modified and extended the DISRA algorithm by considering the specific aspects of biologic specimens. Moreover, correction procedures were added in the code to reduce noise in the tomograms. For portability purpose, a Windows graphic interface was designed to easily enter and modify experimental parameters used in the reconstruction, and control the several steps of data reduction. Results of STIMT and PIXET experiments on reference specimens and on human cancer cells will be also presented. (author)

  15. Super resolution reconstruction of μ-CT image of rock sample using neighbour embedding algorithm

    Science.gov (United States)

    Wang, Yuzhu; Rahman, Sheik S.; Arns, Christoph H.

    2018-03-01

    X-ray computed tomography (μ-CT) is considered to be the most effective way to obtain the inner structure of rock sample without destructions. However, its limited resolution hampers its ability to probe sub-micro structures which is critical for flow transportation of rock sample. In this study, we propose an innovative methodology to improve the resolution of μ-CT image using neighbour embedding algorithm where low frequency information is provided by μ-CT image itself while high frequency information is supplemented by high resolution scanning electron microscopy (SEM) image. In order to obtain prior for reconstruction, a large number of image patch pairs contain high- and low- image patches are extracted from the Gaussian image pyramid generated by SEM image. These image patch pairs contain abundant information about tomographic evolution of local porous structures under different resolution spaces. Relying on the assumption of self-similarity of porous structure, this prior information can be used to supervise the reconstruction of high resolution μ-CT image effectively. The experimental results show that the proposed method is able to achieve the state-of-the-art performance.

  16. Fast and Easy 3D Reconstruction with the Help of Geometric Constraints and Genetic Algorithms

    Science.gov (United States)

    Annich, Afafe; El Abderrahmani, Abdellatif; Satori, Khalid

    2017-09-01

    The purpose of the work presented in this paper is to describe new method of 3D reconstruction from one or more uncalibrated images. This method is based on two important concepts: geometric constraints and genetic algorithms (GAs). At first, we are going to discuss the combination between bundle adjustment and GAs that we have proposed in order to improve 3D reconstruction efficiency and success. We used GAs in order to improve fitness quality of initial values that are used in the optimization problem. It will increase surely convergence rate. Extracted geometric constraints are used first to obtain an estimated value of focal length that helps us in the initialization step. Matching homologous points and constraints is used to estimate the 3D model. In fact, our new method gives us a lot of advantages: reducing the estimated parameter number in optimization step, decreasing used image number, winning time and stabilizing good quality of 3D results. At the end, without any prior information about our 3D scene, we obtain an accurate calibration of the cameras, and a realistic 3D model that strictly respects the geometric constraints defined before in an easy way. Various data and examples will be used to highlight the efficiency and competitiveness of our present approach.

  17. Accelerating statistical image reconstruction algorithms for fan-beam x-ray CT using cloud computing

    Science.gov (United States)

    Srivastava, Somesh; Rao, A. Ravishankar; Sheinin, Vadim

    2011-03-01

    Statistical image reconstruction algorithms potentially offer many advantages to x-ray computed tomography (CT), e.g. lower radiation dose. But, their adoption in practical CT scanners requires extra computation power, which is traditionally provided by incorporating additional computing hardware (e.g. CPU-clusters, GPUs, FPGAs etc.) into a scanner. An alternative solution is to access the required computation power over the internet from a cloud computing service, which is orders-of-magnitude more cost-effective. This is because users only pay a small pay-as-you-go fee for the computation resources used (i.e. CPU time, storage etc.), and completely avoid purchase, maintenance and upgrade costs. In this paper, we investigate the benefits and shortcomings of using cloud computing for statistical image reconstruction. We parallelized the most time-consuming parts of our application, the forward and back projectors, using MapReduce, the standard parallelization library on clouds. From preliminary investigations, we found that a large speedup is possible at a very low cost. But, communication overheads inside MapReduce can limit the maximum speedup, and a better MapReduce implementation might become necessary in the future. All the experiments for this paper, including development and testing, were completed on the Amazon Elastic Compute Cloud (EC2) for less than $20.

  18. An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters.

    Directory of Open Access Journals (Sweden)

    Afnizanfaizal Abdullah

    Full Text Available The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test.

  19. Genetic Algorithm for Mixed Integer Nonlinear Bilevel Programming and Applications in Product Family Design

    Directory of Open Access Journals (Sweden)

    Chenlu Miao

    2016-01-01

    Full Text Available Many leader-follower relationships exist in product family design engineering problems. We use bilevel programming (BLP to reflect the leader-follower relationship and describe such problems. Product family design problems have unique characteristics; thus, mixed integer nonlinear BLP (MINLBLP, which has both continuous and discrete variables and multiple independent lower-level problems, is widely used in product family optimization. However, BLP is difficult in theory and is an NP-hard problem. Consequently, using traditional methods to solve such problems is difficult. Genetic algorithms (GAs have great value in solving BLP problems, and many studies have designed GAs to solve BLP problems; however, such GAs are typically designed for special cases that do not involve MINLBLP with one or multiple followers. Therefore, we propose a bilevel GA to solve these particular MINLBLP problems, which are widely used in product family problems. We give numerical examples to demonstrate the effectiveness of the proposed algorithm. In addition, a reducer family case study is examined to demonstrate practical applications of the proposed BLGA.

  20. An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters.

    Science.gov (United States)

    Abdullah, Afnizanfaizal; Deris, Safaai; Anwar, Sohail; Arjunan, Satya N V

    2013-01-01

    The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test.

  1. Nested sampling algorithm for subsurface flow model selection, uncertainty quantification, and nonlinear calibration

    KAUST Repository

    Elsheikh, A. H.

    2013-12-01

    Calibration of subsurface flow models is an essential step for managing ground water aquifers, designing of contaminant remediation plans, and maximizing recovery from hydrocarbon reservoirs. We investigate an efficient sampling algorithm known as nested sampling (NS), which can simultaneously sample the posterior distribution for uncertainty quantification, and estimate the Bayesian evidence for model selection. Model selection statistics, such as the Bayesian evidence, are needed to choose or assign different weights to different models of different levels of complexities. In this work, we report the first successful application of nested sampling for calibration of several nonlinear subsurface flow problems. The estimated Bayesian evidence by the NS algorithm is used to weight different parameterizations of the subsurface flow models (prior model selection). The results of the numerical evaluation implicitly enforced Occam\\'s razor where simpler models with fewer number of parameters are favored over complex models. The proper level of model complexity was automatically determined based on the information content of the calibration data and the data mismatch of the calibrated model.

  2. High-definition computed tomography for coronary artery stents imaging: Initial evaluation of the optimal reconstruction algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaoming, E-mail: mmayzy2008@126.com; Li, Tao, E-mail: litaofeivip@163.com; Li, Xin, E-mail: lx0803@sina.com.cn; Zhou, Weihua, E-mail: wangxue0606@gmail.com

    2015-05-15

    Highlights: • High-resolution scan mode is appropriate for imaging coronary stent. • HD-detail reconstruction algorithm is stent-dedicated kernel. • The intrastent lumen visibility also depends on stent diameter and material. - Abstract: Objective: The aim of this study was to evaluate the in vivo performance of four image reconstruction algorithms in a high-definition CT (HDCT) scanner with improved spatial resolution for the evaluation of coronary artery stents and intrastent lumina. Materials and methods: Thirty-nine consecutive patients with a total of 71 implanted coronary stents underwent coronary CT angiography (CCTA) on a HDCT (Discovery CT 750 HD; GE Healthcare) with the high-resolution scanning mode. Four different reconstruction algorithms (HD-stand, HD-detail; HD-stand-plus; HD-detail-plus) were applied to reconstruct the stented coronary arteries. Image quality for stent characterization was assessed. Image noise and intrastent luminal diameter were measured. The relationship between the measurement of inner stent diameter (ISD) and the true stent diameter (TSD) and stent type were analysed. Results: The stent-dedicated kernel (HD-detail) offered the highest percentage (53.5%) of good image quality for stent characterization and the highest ratio (68.0 ± 8.4%) of visible stent lumen/true stent lumen for luminal diameter measurement at the expense of an increased overall image noise. The Pearson correlation coefficient between the ISD and TSD measurement and spearman correlation coefficient between the ISD measurement and stent type were 0.83 and 0.48, respectively. Conclusions: Compared with standard reconstruction algorithms, high-definition CT imaging technique with dedicated high-resolution reconstruction algorithm provides more accurate stent characterization and intrastent luminal diameter measurement.

  3. Algorithm Development for Multi-Energy SXR based Electron Temperature Profile Reconstruction

    Science.gov (United States)

    Clayton, D. J.; Tritz, K.; Finkenthal, M.; Kumar, D.; Stutman, D.

    2012-10-01

    New techniques utilizing computational tools such as neural networks and genetic algorithms are being developed to infer plasma electron temperature profiles on fast time scales (> 10 kHz) from multi-energy soft-x-ray (ME-SXR) diagnostics. Traditionally, a two-foil SXR technique, using the ratio of filtered continuum emission measured by two SXR detectors, has been employed on fusion devices as an indirect method of measuring electron temperature. However, these measurements can be susceptible to large errors due to uncertainties in time-evolving impurity density profiles, leading to unreliable temperature measurements. To correct this problem, measurements using ME-SXR diagnostics, which use three or more filtered SXR arrays to distinguish line and continuum emission from various impurities, in conjunction with constraints from spectroscopic diagnostics, can be used to account for unknown or time evolving impurity profiles [K. Tritz et al, Bull. Am. Phys. Soc. Vol. 56, No. 12 (2011), PP9.00067]. On NSTX, ME-SXR diagnostics can be used for fast (10-100 kHz) temperature profile measurements, using a Thomson scattering diagnostic (60 Hz) for periodic normalization. The use of more advanced algorithms, such as neural network processing, can decouple the reconstruction of the temperature profile from spectral modeling.

  4. constNJ: an algorithm to reconstruct sets of phylogenetic trees satisfying pairwise topological constraints.

    Science.gov (United States)

    Matsen, Frederick A

    2010-06-01

    This article introduces constNJ (constrained neighbor-joining), an algorithm for phylogenetic reconstruction of sets of trees with constrained pairwise rooted subtree-prune-regraft (rSPR) distance. We are motivated by the problem of constructing sets of trees that must fit into a recombination, hybridization, or similar network. Rather than first finding a set of trees that are optimal according to a phylogenetic criterion (e.g., likelihood or parsimony) and then attempting to fit them into a network, constNJ estimates the trees while enforcing specified rSPR distance constraints. The primary input for constNJ is a collection of distance matrices derived from sequence blocks which are assumed to have evolved in a tree-like manner, such as blocks of an alignment which do not contain any recombination breakpoints. The other input is a set of rSPR constraint inequalities for any set of pairs of trees. constNJ is consistent and a strict generalization of the neighbor-joining algorithm; it uses the new notion of maximum agreement partitions (MAPs) to assure that the resulting trees satisfy the given rSPR distance constraints.

  5. Improved adaptive genetic algorithm with sparsity constraint applied to thermal neutron CT reconstruction of two-phase flow

    Science.gov (United States)

    Yan, Mingfei; Hu, Huasi; Otake, Yoshie; Taketani, Atsushi; Wakabayashi, Yasuo; Yanagimachi, Shinzo; Wang, Sheng; Pan, Ziheng; Hu, Guang

    2018-05-01

    Thermal neutron computer tomography (CT) is a useful tool for visualizing two-phase flow due to its high imaging contrast and strong penetrability of neutrons for tube walls constructed with metallic material. A novel approach for two-phase flow CT reconstruction based on an improved adaptive genetic algorithm with sparsity constraint (IAGA-SC) is proposed in this paper. In the algorithm, the neighborhood mutation operator is used to ensure the continuity of the reconstructed object. The adaptive crossover probability P c and mutation probability P m are improved to help the adaptive genetic algorithm (AGA) achieve the global optimum. The reconstructed results for projection data, obtained from Monte Carlo simulation, indicate that the comprehensive performance of the IAGA-SC algorithm exceeds the adaptive steepest descent-projection onto convex sets (ASD-POCS) algorithm in restoring typical and complex flow regimes. It especially shows great advantages in restoring the simply connected flow regimes and the shape of object. In addition, the CT experiment for two-phase flow phantoms was conducted on the accelerator-driven neutron source to verify the performance of the developed IAGA-SC algorithm.

  6. Development of imaging and reconstructions algorithms on parallel processing architectures for applications in non-destructive testing

    International Nuclear Information System (INIS)

    Pedron, Antoine

    2013-01-01

    This thesis work is placed between the scientific domain of ultrasound non-destructive testing and algorithm-architecture adequation. Ultrasound non-destructive testing includes a group of analysis techniques used in science and industry to evaluate the properties of a material, component, or system without causing damage. In order to characterise possible defects, determining their position, size and shape, imaging and reconstruction tools have been developed at CEA-LIST, within the CIVA software platform. Evolution of acquisition sensors implies a continuous growth of datasets and consequently more and more computing power is needed to maintain interactive reconstructions. General purpose processors (GPP) evolving towards parallelism and emerging architectures such as GPU allow large acceleration possibilities than can be applied to these algorithms. The main goal of the thesis is to evaluate the acceleration than can be obtained for two reconstruction algorithms on these architectures. These two algorithms differ in their parallelization scheme. The first one can be properly parallelized on GPP whereas on GPU, an intensive use of atomic instructions is required. Within the second algorithm, parallelism is easier to express, but loop ordering on GPP, as well as thread scheduling and a good use of shared memory on GPU are necessary in order to obtain efficient results. Different API or libraries, such as OpenMP, CUDA and OpenCL are evaluated through chosen benchmarks. An integration of both algorithms in the CIVA software platform is proposed and different issues related to code maintenance and durability are discussed. (author) [fr

  7. A faster ordered-subset convex algorithm for iterative reconstruction in a rotation-free micro-CT system

    International Nuclear Information System (INIS)

    Quan, E; Lalush, D S

    2009-01-01

    We present a faster iterative reconstruction algorithm based on the ordered-subset convex (OSC) algorithm for transmission CT. The OSC algorithm was modified such that it calculates the normalization term before the iterative process in order to save computational cost. The modified version requires only one backprojection per iteration as compared to two required for the original OSC. We applied the modified OSC (MOSC) algorithm to a rotation-free micro-CT system that we proposed previously, observed its performance, and compared with the OSC algorithm for 3D cone-beam reconstruction. Measurements on the reconstructed images as well as the point spread functions show that MOSC is quite similar to OSC; in noise-resolution trade-off, MOSC is comparable with OSC in a regular-noise situation and it is slightly worse than OSC in an extremely high-noise situation. The timing record shows that MOSC saves 25-30% CPU time, depending on the number of iterations used. We conclude that the MOSC algorithm is more efficient than OSC and provides comparable images.

  8. SU-E-J-218: Evaluation of CT Images Created Using a New Metal Artifact Reduction Reconstruction Algorithm for Radiation Therapy Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Niemkiewicz, J; Palmiotti, A; Miner, M; Stunja, L; Bergene, J [Lehigh Valley Health Network, Allentown, PA (United States)

    2014-06-01

    Purpose: Metal in patients creates streak artifacts in CT images. When used for radiation treatment planning, these artifacts make it difficult to identify internal structures and affects radiation dose calculations, which depend on HU numbers for inhomogeneity correction. This work quantitatively evaluates a new metal artifact reduction (MAR) CT image reconstruction algorithm (GE Healthcare CT-0521-04.13-EN-US DOC1381483) when metal is present. Methods: A Gammex Model 467 Tissue Characterization phantom was used. CT images were taken of this phantom on a GE Optima580RT CT scanner with and without steel and titanium plugs using both the standard and MAR reconstruction algorithms. HU values were compared pixel by pixel to determine if the MAR algorithm altered the HUs of normal tissues when no metal is present, and to evaluate the effect of using the MAR algorithm when metal is present. Also, CT images of patients with internal metal objects using standard and MAR reconstruction algorithms were compared. Results: Comparing the standard and MAR reconstructed images of the phantom without metal, 95.0% of pixels were within ±35 HU and 98.0% of pixels were within ±85 HU. Also, the MAR reconstruction algorithm showed significant improvement in maintaining HUs of non-metallic regions in the images taken of the phantom with metal. HU Gamma analysis (2%, 2mm) of metal vs. non-metal phantom imaging using standard reconstruction resulted in an 84.8% pass rate compared to 96.6% for the MAR reconstructed images. CT images of patients with metal show significant artifact reduction when reconstructed with the MAR algorithm. Conclusion: CT imaging using the MAR reconstruction algorithm provides improved visualization of internal anatomy and more accurate HUs when metal is present compared to the standard reconstruction algorithm. MAR reconstructed CT images provide qualitative and quantitative improvements over current reconstruction algorithms, thus improving radiation

  9. SU-E-J-218: Evaluation of CT Images Created Using a New Metal Artifact Reduction Reconstruction Algorithm for Radiation Therapy Treatment Planning

    International Nuclear Information System (INIS)

    Niemkiewicz, J; Palmiotti, A; Miner, M; Stunja, L; Bergene, J

    2014-01-01

    Purpose: Metal in patients creates streak artifacts in CT images. When used for radiation treatment planning, these artifacts make it difficult to identify internal structures and affects radiation dose calculations, which depend on HU numbers for inhomogeneity correction. This work quantitatively evaluates a new metal artifact reduction (MAR) CT image reconstruction algorithm (GE Healthcare CT-0521-04.13-EN-US DOC1381483) when metal is present. Methods: A Gammex Model 467 Tissue Characterization phantom was used. CT images were taken of this phantom on a GE Optima580RT CT scanner with and without steel and titanium plugs using both the standard and MAR reconstruction algorithms. HU values were compared pixel by pixel to determine if the MAR algorithm altered the HUs of normal tissues when no metal is present, and to evaluate the effect of using the MAR algorithm when metal is present. Also, CT images of patients with internal metal objects using standard and MAR reconstruction algorithms were compared. Results: Comparing the standard and MAR reconstructed images of the phantom without metal, 95.0% of pixels were within ±35 HU and 98.0% of pixels were within ±85 HU. Also, the MAR reconstruction algorithm showed significant improvement in maintaining HUs of non-metallic regions in the images taken of the phantom with metal. HU Gamma analysis (2%, 2mm) of metal vs. non-metal phantom imaging using standard reconstruction resulted in an 84.8% pass rate compared to 96.6% for the MAR reconstructed images. CT images of patients with metal show significant artifact reduction when reconstructed with the MAR algorithm. Conclusion: CT imaging using the MAR reconstruction algorithm provides improved visualization of internal anatomy and more accurate HUs when metal is present compared to the standard reconstruction algorithm. MAR reconstructed CT images provide qualitative and quantitative improvements over current reconstruction algorithms, thus improving radiation

  10. Resilient algorithms for reconstructing and simulating gappy flow fields in CFD

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungjoon; Karniadakis, George Em [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States); Kevrekidis, Ioannis G, E-mail: george_karniadakis@brown.edu [Department of Chemical and Biological Engineering, Brown University, Providence, RI 02912 (United States); PACM, Princeton University, Princeton, NJ 08544 (United States)

    2015-10-15

    It is anticipated that in future generations of massively parallel computer systems a significant portion of processors may suffer from hardware or software faults rendering large-scale computations useless. In this work we address this problem from the algorithmic side, proposing resilient algorithms that can recover from such faults irrespective of their fault origin. In particular, we set the foundations of a new class of algorithms that will combine numerical approximations with machine learning methods. To this end, we consider three types of fault scenarios: (1) a gappy region but with no previous gaps and no contamination of surrounding simulation data, (2) a space–time gappy region but with full spatiotemporal information and no contamination, and (3) previous gaps with contamination of surrounding data. To recover from such faults we employ different reconstruction and simulation methods, namely the projective integration, the co-Kriging interpolation, and the resimulation method. In order to compare the effectiveness of these methods for the different processor faults and to quantify the error propagation in each case, we perform simulations of two benchmark flows, flow in a cavity and flow past a circular cylinder. In general, the projective integration seems to be the most effective method when the time gaps are small, and the resimulation method is the best when the time gaps are big while the co-Kriging method is independent of time gaps. Furthermore, the projective integration method and the co-Kriging method are found to be good estimation methods for the initial and boundary conditions of the resimulation method in scenario (3). (paper)

  11. A quadratic approximation-based algorithm for the solution of multiparametric mixed-integer nonlinear programming problems

    KAUST Repository

    Domínguez, Luis F.

    2012-06-25

    An algorithm for the solution of convex multiparametric mixed-integer nonlinear programming problems arising in process engineering problems under uncertainty is introduced. The proposed algorithm iterates between a multiparametric nonlinear programming subproblem and a mixed-integer nonlinear programming subproblem to provide a series of parametric upper and lower bounds. The primal subproblem is formulated by fixing the integer variables and solved through a series of multiparametric quadratic programming (mp-QP) problems based on quadratic approximations of the objective function, while the deterministic master subproblem is formulated so as to provide feasible integer solutions for the next primal subproblem. To reduce the computational effort when infeasibilities are encountered at the vertices of the critical regions (CRs) generated by the primal subproblem, a simplicial approximation approach is used to obtain CRs that are feasible at each of their vertices. The algorithm terminates when there does not exist an integer solution that is better than the one previously used by the primal problem. Through a series of examples, the proposed algorithm is compared with a multiparametric mixed-integer outer approximation (mp-MIOA) algorithm to demonstrate its computational advantages. © 2012 American Institute of Chemical Engineers (AIChE).

  12. An Improved Global Harmony Search Algorithm for the Identification of Nonlinear Discrete-Time Systems Based on Volterra Filter Modeling

    Directory of Open Access Journals (Sweden)

    Zongyan Li

    2016-01-01

    Full Text Available This paper describes an improved global harmony search (IGHS algorithm for identifying the nonlinear discrete-time systems based on second-order Volterra model. The IGHS is an improved version of the novel global harmony search (NGHS algorithm, and it makes two significant improvements on the NGHS. First, the genetic mutation operation is modified by combining normal distribution and Cauchy distribution, which enables the IGHS to fully explore and exploit the solution space. Second, an opposition-based learning (OBL is introduced and modified to improve the quality of harmony vectors. The IGHS algorithm is implemented on two numerical examples, and they are nonlinear discrete-time rational system and the real heat exchanger, respectively. The results of the IGHS are compared with those of the other three methods, and it has been verified to be more effective than the other three methods on solving the above two problems with different input signals and system memory sizes.

  13. The use of anatomical information for molecular image reconstruction algorithms: Attention/Scatter correction, motion compensation, and noise reduction

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Se Young [School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of)

    2016-03-15

    PET and SPECT are important tools for providing valuable molecular information about patients to clinicians. Advances in nuclear medicine hardware technologies and statistical image reconstruction algorithms enabled significantly improved image quality. Sequentially or simultaneously acquired anatomical images such as CT and MRI from hybrid scanners are also important ingredients for improving the image quality of PET or SPECT further. High-quality anatomical information has been used and investigated for attenuation and scatter corrections, motion compensation, and noise reduction via post-reconstruction filtering and regularization in inverse problems. In this article, we will review works using anatomical information for molecular image reconstruction algorithms for better image quality by describing mathematical models, discussing sources of anatomical information for different cases, and showing some examples.

  14. Nonlinear and parallel algorithms for finite element discretizations of the incompressible Navier-Stokes equations

    Science.gov (United States)

    Arteaga, Santiago Egido

    1998-12-01

    linearization strategies considered and whose computational cost is negligible. The algebraic properties of these systems depend on both the discretization and nonlinear method used. We study in detail the positive definiteness and skewsymmetry of the advection submatrices (essentially, convection-diffusion problems). We propose a discretization based on a new trilinear form for Newton's method. We solve the linear systems using three Krylov subspace methods, GMRES, QMR and TFQMR, and compare the advantages of each. Our emphasis is on parallel algorithms, and so we consider preconditioners suitable for parallel computers such as line variants of the Jacobi and Gauss- Seidel methods, alternating direction implicit methods, and Chebyshev and least squares polynomial preconditioners. These work well for moderate viscosities (moderate Reynolds number). For small viscosities we show that effective parallel solution of the advection subproblem is a critical factor to improve performance. Implementation details on a CM-5 are presented.

  15. Comparison between different tomographic reconstruction algorithms in nuclear medicine imaging; Comparacion entre distintos algoritmos de reconstruccion tomografica en imagenes de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Llacer Martos, S.; Herraiz Lablanca, M. D.; Puchal Ane, R.

    2011-07-01

    This paper compares the image quality obtained with each of the algorithms is evaluated and its running time, to optimize the choice of algorithm to use taking into account both the quality of the reconstructed image as the time spent on the reconstruction.

  16. Contrast improvement of continuous wave diffuse optical tomography reconstruction by hybrid approach using least square and genetic algorithm

    Science.gov (United States)

    Patra, Rusha; Dutta, Pranab K.

    2015-07-01

    Reconstruction of the absorption coefficient of tissue with good contrast is of key importance in functional diffuse optical imaging. A hybrid approach using model-based iterative image reconstruction and a genetic algorithm is proposed to enhance the contrast of the reconstructed image. The proposed method yields an observed contrast of 98.4%, mean square error of 0.638×10-3, and object centroid error of (0.001 to 0.22) mm. Experimental validation of the proposed method has also been provided with tissue-like phantoms which shows a significant improvement in image quality and thus establishes the potential of the method for functional diffuse optical tomography reconstruction with continuous wave setup. A case study of finger joint imaging is illustrated as well to show the prospect of the proposed method in clinical diagnosis. The method can also be applied to the concentration measurement of a region of interest in a turbid medium.

  17. A trial to reduce cardiac motion artifact on HR-CT images of the lung with the use of subsecond scan and special cine reconstruction algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Fumikazu; Tsuuchi, Yasuhiko; Suzuki, Keiko; Ueno, Keiko; Yamada, Takayuki; Okawa, Tomohiko [Tokyo Women`s Medical Coll. (Japan); Yun, Shen; Horiuchi, Tetsuya; Kimura, Fumiko

    1998-05-01

    We describe our trial to reduce cardiac motion artifacts on HR-CT images caused by cardiac pulsation by combining use of subsecond CT (scan time 0.8 s) and a special cine reconstruction algorithm (cine reconstruction algorithm with 180-degree helical interpolation). Eleven to 51 HR-CT images were reconstructed with the special cine reconstruction algorithm at the pitch of 0.1 (0.08 s) from the data obtained by two to six contigious rotation scans at the same level. Images with the fewest cardiac motion artifacts were selected for evaluation. These images were compared with those reconstructed with a conventional cine reconstruction algorithm and step-by-step scan. In spite of its increased radiation exposure, technical complexity and slight degradation of spatial resolution, our method was useful in reducing cardiac motion artifacts on HR-CT images in regions adjacent to the heart. (author)

  18. A multicenter evaluation of seven commercial ML-EM algorithms for SPECT image reconstruction using simulation data

    International Nuclear Information System (INIS)

    Matsumoto, Keiichi; Ohnishi, Hideo; Niida, Hideharu; Nishimura, Yoshihiro; Wada, Yasuhiro; Kida, Tetsuo

    2003-01-01

    The maximum likelihood expectation maximization (ML-EM) algorithm has become available as an alternative to filtered back projection in SPECT. The actual physical performance may be different depending on the manufacturer and model, because of differences in computational details. The purpose of this study was to investigate the characteristics of seven different types of ML-EM algorithms using simple simulation data. Seven ML-EM algorithm programs were used: Genie (GE), esoft (Siemens), HARP-III (Hitachi), GMS-5500UI (Toshiba), Pegasys (ADAC), ODYSSEY-FX (Marconi), and Windows-PC (original software). Projection data of a 2-pixel-wide line source in the center of the field of view were simulated without attenuation or scatter. Images were reconstructed with ML-EM by changing the number of iterations from 1 to 45 for each algorithm. Image quality was evaluated after a reconstruction using full width at half maximum (FWHM), full width at tenth maximum (FWTM), and the total counts of the reconstructed images. In the maximum number of iterations, the difference in the FWHM value was up to 1.5 pixels, and that of FWTM, no less than 2.0 pixels. The total counts of the reconstructed images in the initial few iterations were larger or smaller than the converged value depending on the initial values. Our results for the simplest simulation data suggest that each ML-EM algorithm itself provides a simulation image. We should keep in mind which algorithm is being used and its computational details, when physical and clinical usefulness are compared. (author)

  19. Calibration of Mine Ventilation Network Models Using the Non-Linear Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Guang Xu

    2017-12-01

    Full Text Available Effective ventilation planning is vital to underground mining. To ensure stable operation of the ventilation system and to avoid airflow disorder, mine ventilation network (MVN models have been widely used in simulating and optimizing the mine ventilation system. However, one of the challenges for MVN model simulation is that the simulated airflow distribution results do not match the measured data. To solve this problem, a simple and effective calibration method is proposed based on the non-linear optimization algorithm. The calibrated model not only makes simulated airflow distribution results in accordance with the on-site measured data, but also controls the errors of other parameters within a minimum range. The proposed method was then applied to calibrate an MVN model in a real case, which is built based on ventilation survey results and Ventsim software. Finally, airflow simulation experiments are carried out respectively using data before and after calibration, whose results were compared and analyzed. This showed that the simulated airflows in the calibrated model agreed much better to the ventilation survey data, which verifies the effectiveness of calibrating method.

  20. Nonlinear inversion of resistivity sounding data for 1-D earth models using the Neighbourhood Algorithm

    Science.gov (United States)

    Ojo, A. O.; Xie, Jun; Olorunfemi, M. O.

    2018-01-01

    To reduce ambiguity related to nonlinearities in the resistivity model-data relationships, an efficient direct-search scheme employing the Neighbourhood Algorithm (NA) was implemented to solve the 1-D resistivity problem. In addition to finding a range of best-fit models which are more likely to be global minimums, this method investigates the entire multi-dimensional model space and provides additional information about the posterior model covariance matrix, marginal probability density function and an ensemble of acceptable models. This provides new insights into how well the model parameters are constrained and make assessing trade-offs between them possible, thus avoiding some common interpretation pitfalls. The efficacy of the newly developed program is tested by inverting both synthetic (noisy and noise-free) data and field data from other authors employing different inversion methods so as to provide a good base for comparative performance. In all cases, the inverted model parameters were in good agreement with the true and recovered model parameters from other methods and remarkably correlate with the available borehole litho-log and known geology for the field dataset. The NA method has proven to be useful whilst a good starting model is not available and the reduced number of unknowns in the 1-D resistivity inverse problem makes it an attractive alternative to the linearized methods. Hence, it is concluded that the newly developed program offers an excellent complementary tool for the global inversion of the layered resistivity structure.

  1. Prediction of Flood Warning in Taiwan Using Nonlinear SVM with Simulated Annealing Algorithm

    Science.gov (United States)

    Lee, C.

    2013-12-01

    The issue of the floods is important in Taiwan. It is because the narrow and high topography of the island make lots of rivers steep in Taiwan. The tropical depression likes typhoon always causes rivers to flood. Prediction of river flow under the extreme rainfall circumstances is important for government to announce the warning of flood. Every time typhoon passed through Taiwan, there were always floods along some rivers. The warning is classified to three levels according to the warning water levels in Taiwan. The propose of this study is to predict the level of floods warning from the information of precipitation, rainfall duration and slope of riverbed. To classify the level of floods warning by the above-mentioned information and modeling the problems, a machine learning model, nonlinear Support vector machine (SVM), is formulated to classify the level of floods warning. In addition, simulated annealing (SA), a probabilistic heuristic algorithm, is used to determine the optimal parameter of the SVM model. A case study of flooding-trend rivers of different gradients in Taiwan is conducted. The contribution of this SVM model with simulated annealing is capable of making efficient announcement for flood warning and keeping the danger of flood from residents along the rivers.

  2. Ship nonlinear-feedback course keeping algorithm based on MMG model driven by bipolar sigmoid function for berthing

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2017-09-01

    Full Text Available Course keeping is hard to implement under the condition of the propeller stopping or reversing at slow speed for berthing due to the ship's dynamic motion becoming highly nonlinear. To solve this problem, a practical Maneuvering Modeling Group (MMG ship mathematic model with propeller reversing transverse forces and low speed correction is first discussed to be applied for the right-handed single-screw ship. Secondly, a novel PID-based nonlinear feedback algorithm driven by bipolar sigmoid function is proposed. The PID parameters are determined by a closed-loop gain shaping algorithm directly, while the closed-loop gain shaping theory was employed for effects analysis of this algorithm. Finally, simulation experiments were carried out on an LPG ship. It is shown that the energy consumption and the smoothness performance of the nonlinear feedback control are reduced by 4.2% and 14.6% with satisfactory control effects; the proposed algorithm has the advantages of robustness, energy saving and safety in berthing practice.

  3. Optimization of image quality and acquisition time for lab-based X-ray microtomography using an iterative reconstruction algorithm

    Science.gov (United States)

    Lin, Qingyang; Andrew, Matthew; Thompson, William; Blunt, Martin J.; Bijeljic, Branko

    2018-05-01

    Non-invasive laboratory-based X-ray microtomography has been widely applied in many industrial and research disciplines. However, the main barrier to the use of laboratory systems compared to a synchrotron beamline is its much longer image acquisition time (hours per scan compared to seconds to minutes at a synchrotron), which results in limited application for dynamic in situ processes. Therefore, the majority of existing laboratory X-ray microtomography is limited to static imaging; relatively fast imaging (tens of minutes per scan) can only be achieved by sacrificing imaging quality, e.g. reducing exposure time or number of projections. To alleviate this barrier, we introduce an optimized implementation of a well-known iterative reconstruction algorithm that allows users to reconstruct tomographic images with reasonable image quality, but requires lower X-ray signal counts and fewer projections than conventional methods. Quantitative analysis and comparison between the iterative and the conventional filtered back-projection reconstruction algorithm was performed using a sandstone rock sample with and without liquid phases in the pore space. Overall, by implementing the iterative reconstruction algorithm, the required image acquisition time for samples such as this, with sparse object structure, can be reduced by a factor of up to 4 without measurable loss of sharpness or signal to noise ratio.

  4. Direct 2-D reconstructions of conductivity and permittivity from EIT data on a human chest.

    Science.gov (United States)

    Herrera, Claudia N L; Vallejo, Miguel F M; Mueller, Jennifer L; Lima, Raul G

    2015-01-01

    A novel direct D-bar reconstruction algorithm is presented for reconstructing a complex conductivity distribution from 2-D EIT data. The method is applied to simulated data and archival human chest data. Permittivity reconstructions with the aforementioned method and conductivity reconstructions with the previously existing nonlinear D-bar method for real-valued conductivities depicting ventilation and perfusion in the human chest are presented. This constitutes the first fully nonlinear D-bar reconstructions of human chest data and the first D-bar permittivity reconstructions of experimental data. The results of the human chest data reconstructions are compared on a circular domain versus a chest-shaped domain.

  5. The Nonlocal Sparse Reconstruction Algorithm by Similarity Measurement with Shearlet Feature Vector

    Directory of Open Access Journals (Sweden)

    Wu Qidi

    2014-01-01

    Full Text Available Due to the limited accuracy of conventional methods with image restoration, the paper supplied a nonlocal sparsity reconstruction algorithm with similarity measurement. To improve the performance of restoration results, we proposed two schemes to dictionary learning and sparse coding, respectively. In the part of the dictionary learning, we measured the similarity between patches from degraded image by constructing the Shearlet feature vector. Besides, we classified the patches into different classes with similarity and trained the cluster dictionary for each class, by cascading which we could gain the universal dictionary. In the part of sparse coding, we proposed a novel optimal objective function with the coding residual item, which can suppress the residual between the estimate coding and true sparse coding. Additionally, we show the derivation of self-adaptive regularization parameter in optimization under the Bayesian framework, which can make the performance better. It can be indicated from the experimental results that by taking full advantage of similar local geometric structure feature existing in the nonlocal patches and the coding residual suppression, the proposed method shows advantage both on visual perception and PSNR compared to the conventional methods.

  6. Reproducibility of UAV-based earth topography reconstructions based on Structure-from-Motion algorithms

    Science.gov (United States)

    Clapuyt, Francois; Vanacker, Veerle; Van Oost, Kristof

    2016-05-01

    Combination of UAV-based aerial pictures and Structure-from-Motion (SfM) algorithm provides an efficient, low-cost and rapid framework for remote sensing and monitoring of dynamic natural environments. This methodology is particularly suitable for repeated topographic surveys in remote or poorly accessible areas. However, temporal analysis of landform topography requires high accuracy of measurements and reproducibility of the methodology as differencing of digital surface models leads to error propagation. In order to assess the repeatability of the SfM technique, we surveyed a study area characterized by gentle topography with an UAV platform equipped with a standard reflex camera, and varied the focal length of the camera and location of georeferencing targets between flights. Comparison of different SfM-derived topography datasets shows that precision of measurements is in the order of centimetres for identical replications which highlights the excellent performance of the SfM workflow, all parameters being equal. The precision is one order of magnitude higher for 3D topographic reconstructions involving independent sets of ground control points, which results from the fact that the accuracy of the localisation of ground control points strongly propagates into final results.

  7. Image-based point spread function implementation in a fully 3D OSEM reconstruction algorithm for PET.

    Science.gov (United States)

    Rapisarda, E; Bettinardi, V; Thielemans, K; Gilardi, M C

    2010-07-21

    The interest in positron emission tomography (PET) and particularly in hybrid integrated PET/CT systems has significantly increased in the last few years due to the improved quality of the obtained images. Nevertheless, one of the most important limits of the PET imaging technique is still its poor spatial resolution due to several physical factors originating both at the emission (e.g. positron range, photon non-collinearity) and at detection levels (e.g. scatter inside the scintillating crystals, finite dimensions of the crystals and depth of interaction). To improve the spatial resolution of the images, a possible way consists of measuring the point spread function (PSF) of the system and then accounting for it inside the reconstruction algorithm. In this work, the system response of the GE Discovery STE operating in 3D mode has been characterized by acquiring (22)Na point sources in different positions of the scanner field of view. An image-based model of the PSF was then obtained by fitting asymmetric two-dimensional Gaussians on the (22)Na images reconstructed with small pixel sizes. The PSF was then incorporated, at the image level, in a three-dimensional ordered subset maximum likelihood expectation maximization (OS-MLEM) reconstruction algorithm. A qualitative and quantitative validation of the algorithm accounting for the PSF has been performed on phantom and clinical data, showing improved spatial resolution, higher contrast and lower noise compared with the corresponding images obtained using the standard OS-MLEM algorithm.

  8. Parallel performances of three 3D reconstruction methods on MIMD computers: Feldkamp, block ART and SIRT algorithms

    International Nuclear Information System (INIS)

    Laurent, C.; Chassery, J.M.; Peyrin, F.; Girerd, C.

    1996-01-01

    This paper deals with the parallel implementations of reconstruction methods in 3D tomography. 3D tomography requires voluminous data and long computation times. Parallel computing, on MIMD computers, seems to be a good approach to manage this problem. In this study, we present the different steps of the parallelization on an abstract parallel computer. Depending on the method, we use two main approaches to parallelize the algorithms: the local approach and the global approach. Experimental results on MIMD computers are presented. Two 3D images reconstructed from realistic data are showed

  9. Fractional Fourier domain optical image hiding using phase retrieval algorithm based on iterative nonlinear double random phase encoding.

    Science.gov (United States)

    Wang, Xiaogang; Chen, Wen; Chen, Xudong

    2014-09-22

    We present a novel image hiding method based on phase retrieval algorithm under the framework of nonlinear double random phase encoding in fractional Fourier domain. Two phase-only masks (POMs) are efficiently determined by using the phase retrieval algorithm, in which two cascaded phase-truncated fractional Fourier transforms (FrFTs) are involved. No undesired information disclosure, post-processing of the POMs or digital inverse computation appears in our proposed method. In order to achieve the reduction in key transmission, a modified image hiding method based on the modified phase retrieval algorithm and logistic map is further proposed in this paper, in which the fractional orders and the parameters with respect to the logistic map are regarded as encryption keys. Numerical results have demonstrated the feasibility and effectiveness of the proposed algorithms.

  10. Estimating model error covariances in nonlinear state-space models using Kalman smoothing and the expectation-maximisation algorithm

    KAUST Repository

    Dreano, Denis

    2017-04-05

    Specification and tuning of errors from dynamical models are important issues in data assimilation. In this work, we propose an iterative expectation-maximisation (EM) algorithm to estimate the model error covariances using classical extended and ensemble versions of the Kalman smoother. We show that, for additive model errors, the estimate of the error covariance converges. We also investigate other forms of model error, such as parametric or multiplicative errors. We show that additive Gaussian model error is able to compensate for non additive sources of error in the algorithms we propose. We also demonstrate the limitations of the extended version of the algorithm and recommend the use of the more robust and flexible ensemble version. This article is a proof of concept of the methodology with the Lorenz-63 attractor. We developed an open-source Python library to enable future users to apply the algorithm to their own nonlinear dynamical models.

  11. Development of a new prior knowledge based image reconstruction algorithm for the cone-beam-CT in radiation therapy

    International Nuclear Information System (INIS)

    Vaegler, Sven

    2016-01-01

    The treatment of cancer in radiation therapy is achievable today by techniques that enable highly conformal dose distributions and steep dose gradients. In order to avoid mistreatment, these irradiation techniques have necessitated enhanced patient localization techniques. With an integrated x-ray tube at modern linear accelerators kV-projections can be acquired over a sufficiently large angular space and can be reconstructed to a volumetric image data set from the current situation of the patient prior to irradiation. The so-called Cone-Beam-CT (CBCT) allows a precise verification of patient positioning as well as adaptive radiotherapy. The benefits of an improved patient positioning due to a daily performed CBCT's is contrary to an increased and not negligible radiation exposure of the patient. In order to decrease the radiation exposure, substantial research effort is focused on various dose reduction strategies. Prominent strategies are the decrease of the charge per projection, the reduction of the number of projections as well as the reduction of the acquisition space. Unfortunately, these acquisition schemes lead to images with degraded quality with the widely used Feldkamp-Davis-Kress image reconstruction algorithm. More sophisticated image reconstruction techniques can deal with these dose-reduction strategies without degrading the image quality. A frequently investigated method is the image reconstruction by minimizing the total variation (TV), which is also known as Compressed Sensing (CS). A Compressed Sensing-based reconstruction framework that includes prior images into the reconstruction algorithm is the Prior-Image-Constrained- Compressed-Sensing algorithm (PICCS). The images reconstructed by PICCS outperform the reconstruction results of the conventional Feldkamp-Davis-Kress algorithm (FDK) based method if only a small number of projections are available. However, a drawback of PICCS is that major deviations between prior image data sets and the

  12. Quantum associative memory with linear and non-linear algorithms for the diagnosis of some tropical diseases.

    Science.gov (United States)

    Tchapet Njafa, J-P; Nana Engo, S G

    2018-01-01

    This paper presents the QAMDiagnos, a model of Quantum Associative Memory (QAM) that can be a helpful tool for medical staff without experience or laboratory facilities, for the diagnosis of four tropical diseases (malaria, typhoid fever, yellow fever and dengue) which have several similar signs and symptoms. The memory can distinguish a single infection from a polyinfection. Our model is a combination of the improved versions of the original linear quantum retrieving algorithm proposed by Ventura and the non-linear quantum search algorithm of Abrams and Lloyd. From the given simulation results, it appears that the efficiency of recognition is good when particular signs and symptoms of a disease are inserted given that the linear algorithm is the main algorithm. The non-linear algorithm helps confirm or correct the diagnosis or give some advice to the medical staff for the treatment. So, our QAMDiagnos that has a friendly graphical user interface for desktop and smart-phone is a sensitive and a low-cost diagnostic tool that enables rapid and accurate diagnosis of four tropical diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. An Error-Entropy Minimization Algorithm for Tracking Control of Nonlinear Stochastic Systems with Non-Gaussian Variables

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong; Wang, Aiping; Guo, Lei; Wang, Hong

    2017-07-09

    This paper presents an error-entropy minimization tracking control algorithm for a class of dynamic stochastic system. The system is represented by a set of time-varying discrete nonlinear equations with non-Gaussian stochastic input, where the statistical properties of stochastic input are unknown. By using Parzen windowing with Gaussian kernel to estimate the probability densities of errors, recursive algorithms are then proposed to design the controller such that the tracking error can be minimized. The performance of the error-entropy minimization criterion is compared with the mean-square-error minimization in the simulation results.

  14. 33rd International School of Mathematics "G Stampacchia ": High Performance Algorithms and Software for Nonlinear Optics "Ettore Majorana"

    CERN Document Server

    Murli, Almerico; High Performance Algorithms and Software for Nonlinear Optics

    2003-01-01

    This volume contains the edited texts of the lectures presented at the Workshop on High Performance Algorithms and Software for Nonlinear Optimization held in Erice, Sicily, at the "G. Stampacchia" School of Mathematics of the "E. Majorana" Centre for Scientific Culture, June 30 - July 8, 2001. In the first year of the new century, the aim of the Workshop was to assess the past and to discuss the future of Nonlinear Optimization, and to highlight recent achieve­ ments and promising research trends in this field. An emphasis was requested on algorithmic and high performance software developments and on new computational experiences, as well as on theoretical advances. We believe that such goal was basically achieved. The Workshop was attended by 71 people from 22 countries. Although not all topics were covered, the presentations gave indeed a wide overview of the field, from different and complementary stand­ points. Besides the lectures, several formal and informal discussions took place. We wish ...

  15. Ant-Based Phylogenetic Reconstruction (ABPR: A new distance algorithm for phylogenetic estimation based on ant colony optimization

    Directory of Open Access Journals (Sweden)

    Karla Vittori

    2008-12-01

    Full Text Available We propose a new distance algorithm for phylogenetic estimation based on Ant Colony Optimization (ACO, named Ant-Based Phylogenetic Reconstruction (ABPR. ABPR joins two taxa iteratively based on evolutionary distance among sequences, while also accounting for the quality of the phylogenetic tree built according to the total length of the tree. Similar to optimization algorithms for phylogenetic estimation, the algorithm allows exploration of a larger set of nearly optimal solutions. We applied the algorithm to four empirical data sets of mitochondrial DNA ranging from 12 to 186 sequences, and from 898 to 16,608 base pairs, and covering taxonomic levels from populations to orders. We show that ABPR performs better than the commonly used Neighbor-Joining algorithm, except when sequences are too closely related (e.g., population-level sequences. The phylogenetic relationships recovered at and above species level by ABPR agree with conventional views. However, like other algorithms of phylogenetic estimation, the proposed algorithm failed to recover expected relationships when distances are too similar or when rates of evolution are very variable, leading to the problem of long-branch attraction. ABPR, as well as other ACO-based algorithms, is emerging as a fast and accurate alternative method of phylogenetic estimation for large data sets.

  16. An FDK-like cone-beam SPECT reconstruction algorithm for non-uniform attenuated projections acquired using a circular trajectory

    International Nuclear Information System (INIS)

    Huang, Q; Zeng, G L; You, J; Gullberg, G T

    2005-01-01

    In this paper, Novikov's inversion formula of the attenuated two-dimensional (2D) Radon transform is applied to the reconstruction of attenuated fan-beam projections acquired with equal detector spacing and of attenuated cone-beam projections acquired with a flat planar detector and circular trajectory. The derivation of the fan-beam algorithm is obtained by transformation from parallel-beam coordinates to fan-beam coordinates. The cone-beam reconstruction algorithm is an extension of the fan-beam reconstruction algorithm using Feldkamp-Davis-Kress's (FDK) method. Computer simulations indicate that the algorithm is efficient and is accurate in reconstructing slices close to the central slice of the cone-beam orbit plane. When the attenuation map is set to zero the implementation is equivalent to the FDK method. Reconstructed images are also shown for noise corrupted projections

  17. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering

    Science.gov (United States)

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-01-01

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level. PMID:27223293

  18. Numerical reconstruction of wave field spatial distributions at the output and input planes of nonlinear medium with use of digital holography

    International Nuclear Information System (INIS)

    Nalegaev, S S; Petrov, N V; Bespalov, V G

    2014-01-01

    A numerical reconstruction of spatial distributions of optical radiation propagating through a volume of nonlinear medium at input and output planes of the medium was demonstrated using a scheme of digital holography. A nonlinear Schrodinger equation with Fourier Split-Step method was used as a tool to propagate wavefront in the volume of the medium. Time dependence of the refractive index change was not taken into account.

  19. Comparison of linear and non-linear monotonicity-based shape reconstruction using exact matrix characterizations

    DEFF Research Database (Denmark)

    Garde, Henrik

    2018-01-01

    . For a fair comparison, exact matrix characterizations are used when probing the monotonicity relations to avoid errors from numerical solution to PDEs and numerical integration. Using a special factorization of the Neumann-to-Dirichlet map also makes the non-linear method as fast as the linear method...

  20. A new algorithm for $H\\rightarrow\\tau\\bar{\\tau}$ invariant mass reconstruction using Deep Neural Networks

    CERN Document Server

    Dietrich, Felix

    2017-01-01

    Reconstructing the invariant mass in a Higgs boson decay event containing tau leptons turns out to be a challenging endeavour. The aim of this summer student project is to implement a new algorithm for this task, using deep neural networks and machine learning. The results are compared to SVFit, an existing algorithm that uses dynamical likelihood techniques. A neural network is found that reaches the accuracy of SVFit at low masses and even surpasses it at higher masses, while at the same time providing results a thousand times faster.

  1. Influence of radiation dose and reconstruction algorithm in MDCT assessment of airway wall thickness: A phantom study

    International Nuclear Information System (INIS)

    Gomez-Cardona, Daniel; Nagle, Scott K.; Li, Ke; Chen, Guang-Hong; Robinson, Terry E.

    2015-01-01

    Purpose: Wall thickness (WT) is an airway feature of great interest for the assessment of morphological changes in the lung parenchyma. Multidetector computed tomography (MDCT) has recently been used to evaluate airway WT, but the potential risk of radiation-induced carcinogenesis—particularly in younger patients—might limit a wider use of this imaging method in clinical practice. The recent commercial implementation of the statistical model-based iterative reconstruction (MBIR) algorithm, instead of the conventional filtered back projection (FBP) algorithm, has enabled considerable radiation dose reduction in many other clinical applications of MDCT. The purpose of this work was to study the impact of radiation dose and MBIR in the MDCT assessment of airway WT. Methods: An airway phantom was scanned using a clinical MDCT system (Discovery CT750 HD, GE Healthcare) at 4 kV levels and 5 mAs levels. Both FBP and a commercial implementation of MBIR (Veo TM , GE Healthcare) were used to reconstruct CT images of the airways. For each kV–mAs combination and each reconstruction algorithm, the contrast-to-noise ratio (CNR) of the airways was measured, and the WT of each airway was measured and compared with the nominal value; the relative bias and the angular standard deviation in the measured WT were calculated. For each airway and reconstruction algorithm, the overall performance of WT quantification across all of the 20 kV–mAs combinations was quantified by the sum of squares (SSQs) of the difference between the measured and nominal WT values. Finally, the particular kV–mAs combination and reconstruction algorithm that minimized radiation dose while still achieving a reference WT quantification accuracy level was chosen as the optimal acquisition and reconstruction settings. Results: The wall thicknesses of seven airways of different sizes were analyzed in the study. Compared with FBP, MBIR improved the CNR of the airways, particularly at low radiation dose

  2. A regularized relaxed ordered subset list-mode reconstruction algorithm and its preliminary application to undersampling PET imaging

    International Nuclear Information System (INIS)

    Cao, Xiaoqing; Xie, Qingguo; Xiao, Peng

    2015-01-01

    List mode format is commonly used in modern positron emission tomography (PET) for image reconstruction due to certain special advantages. In this work, we proposed a list mode based regularized relaxed ordered subset (LMROS) algorithm for static PET imaging. LMROS is able to work with regularization terms which can be formulated as twice differentiable convex functions. Such a versatility would make LMROS a convenient and general framework for fulfilling different regularized list mode reconstruction methods. LMROS was applied to two simulated undersampling PET imaging scenarios to verify its effectiveness. Convex quadratic function, total variation constraint, non-local means and dictionary learning based regularization methods were successfully realized for different cases. The results showed that the LMROS algorithm was effective and some regularization methods greatly reduced the distortions and artifacts caused by undersampling. (paper)

  3. Influence of radiation dose and reconstruction algorithm in MDCT assessment of airway wall thickness: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cardona, Daniel [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Nagle, Scott K. [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Li, Ke; Chen, Guang-Hong, E-mail: gchen7@wisc.edu [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Robinson, Terry E. [Department of Pediatrics, Stanford School of Medicine, 770 Welch Road, Palo Alto, California 94304 (United States)

    2015-10-15

    Purpose: Wall thickness (WT) is an airway feature of great interest for the assessment of morphological changes in the lung parenchyma. Multidetector computed tomography (MDCT) has recently been used to evaluate airway WT, but the potential risk of radiation-induced carcinogenesis—particularly in younger patients—might limit a wider use of this imaging method in clinical practice. The recent commercial implementation of the statistical model-based iterative reconstruction (MBIR) algorithm, instead of the conventional filtered back projection (FBP) algorithm, has enabled considerable radiation dose reduction in many other clinical applications of MDCT. The purpose of this work was to study the impact of radiation dose and MBIR in the MDCT assessment of airway WT. Methods: An airway phantom was scanned using a clinical MDCT system (Discovery CT750 HD, GE Healthcare) at 4 kV levels and 5 mAs levels. Both FBP and a commercial implementation of MBIR (Veo{sup TM}, GE Healthcare) were used to reconstruct CT images of the airways. For each kV–mAs combination and each reconstruction algorithm, the contrast-to-noise ratio (CNR) of the airways was measured, and the WT of each airway was measured and compared with the nominal value; the relative bias and the angular standard deviation in the measured WT were calculated. For each airway and reconstruction algorithm, the overall performance of WT quantification across all of the 20 kV–mAs combinations was quantified by the sum of squares (SSQs) of the difference between the measured and nominal WT values. Finally, the particular kV–mAs combination and reconstruction algorithm that minimized radiation dose while still achieving a reference WT quantification accuracy level was chosen as the optimal acquisition and reconstruction settings. Results: The wall thicknesses of seven airways of different sizes were analyzed in the study. Compared with FBP, MBIR improved the CNR of the airways, particularly at low radiation dose

  4. Effects of acquisition time and reconstruction algorithm on image quality, quantitative parameters, and clinical interpretation of myocardial perfusion imaging

    DEFF Research Database (Denmark)

    Enevoldsen, Lotte H; Menashi, Changez A K; Andersen, Ulrik B

    2013-01-01

    time (HT) protocols and Evolution for Cardiac Software. METHODS: We studied 45 consecutive, non-selected patients referred for a clinically indicated routine 2-day stress/rest (99m)Tc-Sestamibi myocardial perfusion SPECT. All patients underwent an FT and an HT scan. Both FT and HT scans were processed......-RR) and for quantitative analysis (FT-FBP, HT-FBP, and HT-RR). The datasets were analyzed using commercially available QGS/QPS software and read by two observers evaluating image quality and clinical interpretation. Image quality was assessed on a 10-cm visual analog scale score. RESULTS: HT imaging was associated......: Use of RR reconstruction algorithms compensates for loss of image quality associated with reduced scan time. Both HT acquisition and RR reconstruction algorithm had significant effects on motion and perfusion parameters obtained with standard software, but these effects were relatively small...

  5. A joint Richardson—Lucy deconvolution algorithm for the reconstruction of multifocal structured illumination microscopy data

    International Nuclear Information System (INIS)

    Ströhl, Florian; Kaminski, Clemens F

    2015-01-01

    We demonstrate the reconstruction of images obtained by multifocal structured illumination microscopy, MSIM, using a joint Richardson–Lucy, jRL-MSIM, deconvolution algorithm, which is based on an underlying widefield image-formation model. The method is efficient in the suppression of out-of-focus light and greatly improves image contrast and resolution. Furthermore, it is particularly well suited for the processing of noise corrupted data. The principle is verified on simulated as well as experimental data and a comparison of the jRL-MSIM approach with the standard reconstruction procedure, which is based on image scanning microscopy, ISM, is made. Our algorithm is efficient and freely available in a user friendly software package. (paper)

  6. Adaptive algorithms of position and energy reconstruction in Anger-camera type detectors: experimental data processing in ANTS

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, A; Fraga, F A F; Fraga, M M F R; Margato, L M S; Pereira, L [LIP-Coimbra and Departamento de Física, Universidade de Coimbra, Rua Larga, Coimbra (Portugal); Defendi, I; Jurkovic, M [Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), TUM, Lichtenbergstr. 1, Garching (Germany); Engels, R; Kemmerling, G [Zentralinstitut für Elektronik, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, Jülich (Germany); Gongadze, A; Guerard, B; Manzin, G; Niko, H; Peyaud, A; Piscitelli, F [Institut Laue Langevin, 6 Rue Jules Horowitz, Grenoble (France); Petrillo, C; Sacchetti, F [Istituto Nazionale per la Fisica della Materia, Unità di Perugia, Via A. Pascoli, Perugia (Italy); Raspino, D; Rhodes, N J; Schooneveld, E M, E-mail: andrei@coimbra.lip.pt [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot (United Kingdom); others, and

    2013-05-01

    The software package ANTS (Anger-camera type Neutron detector: Toolkit for Simulations), developed for simulation of Anger-type gaseous detectors for thermal neutron imaging was extended to include a module for experimental data processing. Data recorded with a sensor array containing up to 100 photomultiplier tubes (PMT) or silicon photomultipliers (SiPM) in a custom configuration can be loaded and the positions and energies of the events can be reconstructed using the Center-of-Gravity, Maximum Likelihood or Least Squares algorithm. A particular strength of the new module is the ability to reconstruct the light response functions and relative gains of the photomultipliers from flood field illumination data using adaptive algorithms. The performance of the module is demonstrated with simulated data generated in ANTS and experimental data recorded with a 19 PMT neutron detector. The package executables are publicly available at http://coimbra.lip.pt/∼andrei/.

  7. Algorithmic aspects for the reconstruction of spatio-spectral data cubes in the perspective of the SKA

    Science.gov (United States)

    Mary, D.; Ferrari, A.; Ferrari, C.; Deguignet, J.; Vannier, M.

    2016-12-01

    With millions of receivers leading to TerraByte data cubes, the story of the giant SKA telescope is also that of collaborative efforts from radioastronomy, signal processing, optimization and computer sciences. Reconstructing SKA cubes poses two challenges. First, the majority of existing algorithms work in 2D and cannot be directly translated into 3D. Second, the reconstruction implies solving an inverse problem and it is not clear what ultimate limit we can expect on the error of this solution. This study addresses (of course partially) both challenges. We consider an extremely simple data acquisition model, and we focus on strategies making it possible to implement 3D reconstruction algorithms that use state-of-the-art image/spectral regularization. The proposed approach has two main features: (i) reduced memory storage with respect to a previous approach; (ii) efficient parallelization and ventilation of the computational load over the spectral bands. This work will allow to implement and compare various 3D reconstruction approaches in a large scale framework.

  8. Linear: A Novel Algorithm for Reconstructing Slitless Spectroscopy from HST/WFC3

    Science.gov (United States)

    Ryan, R. E., Jr.; Casertano, S.; Pirzkal, N.

    2018-03-01

    We present a grism extraction package (LINEAR) designed to reconstruct 1D spectra from a collection of slitless spectroscopic images, ideally taken at a variety of orientations, dispersion directions, and/or dither positions. Our approach is to enumerate every transformation between all direct image positions (i.e., a potential source) and the collection of grism images at all relevant wavelengths. This leads to solving a large, sparse system of linear equations, which we invert using the standard LSQR algorithm. We implement a number of color and geometric corrections (such as flat field, pixel-area map, source morphology, and spectral bandwidth), but assume many effects have been calibrated out (such as basic reductions, background subtraction, and astrometric refinement). We demonstrate the power of our approach with several Monte Carlo simulations and the analysis of archival data. The simulations include astrometric and photometric uncertainties, sky-background estimation, and signal-to-noise calculations. The data are G141 observations obtained with the Wide-Field Camera 3 of the Hubble Ultra-Deep Field, and show the power of our formalism by improving the spectral resolution without sacrificing the signal-to-noise (a tradeoff that is often made by current approaches). Additionally, our approach naturally accounts for source contamination, which is only handled heuristically by present softwares. We conclude with a discussion of various observations where our approach will provide much improved spectral 1D spectra, such as crowded fields (star or galaxy clusters), spatially resolved spectroscopy, or surveys with strict completeness requirements. At present our software is heavily geared for Wide-Field Camera 3 IR, however we plan extend the codebase for additional instruments.

  9. Reconstruction of DNA sequences using genetic algorithms and cellular automata: towards mutation prediction?

    Science.gov (United States)

    Mizas, Ch; Sirakoulis, G Ch; Mardiris, V; Karafyllidis, I; Glykos, N; Sandaltzopoulos, R

    2008-04-01

    Change of DNA sequence that fuels evolution is, to a certain extent, a deterministic process because mutagenesis does not occur in an absolutely random manner. So far, it has not been possible to decipher the rules that govern DNA sequence evolution due to the extreme complexity of the entire process. In our attempt to approach this issue we focus solely on the mechanisms of mutagenesis and deliberately disregard the role of natural selection. Hence, in this analysis, evolution refers to the accumulation of genetic alterations that originate from mutations and are transmitted through generations without being subjected to natural selection. We have developed a software tool that allows modelling of a DNA sequence as a one-dimensional cellular automaton (CA) with four states per cell which correspond to the four DNA bases, i.e. A, C, T and G. The four states are represented by numbers of the quaternary number system. Moreover, we have developed genetic algorithms (GAs) in order to determine the rules of CA evolution that simulate the DNA evolution process. Linear evolution rules were considered and square matrices were used to represent them. If DNA sequences of different evolution steps are available, our approach allows the determination of the underlying evolution rule(s). Conversely, once the evolution rules are deciphered, our tool may reconstruct the DNA sequence in any previous evolution step for which the exact sequence information was unknown. The developed tool may be used to test various parameters that could influence evolution. We describe a paradigm relying on the assumption that mutagenesis is governed by a near-neighbour-dependent mechanism. Based on the satisfactory performance of our system in the deliberately simplified example, we propose that our approach could offer a starting point for future attempts to understand the mechanisms that govern evolution. The developed software is open-source and has a user-friendly graphical input interface.

  10. A system for the 3D reconstruction of retracted-septa PET data using the EM algorithm

    International Nuclear Information System (INIS)

    Johnson, C.A.; Yan, Y.; Carson, R.E.; Martino, R.L.; Daube-Witherspoon, M.E.

    1995-01-01

    The authors have implemented the EM reconstruction algorithm for volume acquisition from current generation retracted-septa PET scanners. Although the software was designed for a GE Advance scanner, it is easily adaptable to other 3D scanners. The reconstruction software was written for an Intel iPSC/860 parallel computer with 128 compute nodes. Running on 32 processors, the algorithm requires approximately 55 minutes per iteration to reconstruct a 128 x 128 x 35 image. No projection data compression schemes or other approximations were used in the implementation. Extensive use of EM system matrix (C ij ) symmetries (including the 8-fold in-plane symmetries, 2-fold axial symmetries, and axial parallel line redundancies) reduces the storage cost by a factor of 188. The parallel algorithm operates on distributed projection data which are decomposed by base-symmetry angles. Symmetry operators copy and index the C ij chord to the form required for the particular symmetry. The use of asynchronous reads, lookup tables, and optimized image indexing improves computational performance

  11. Iterative image reconstruction algorithms in coronary CT angiography improve the detection of lipid-core plaque - a comparison with histology

    International Nuclear Information System (INIS)

    Puchner, Stefan B.; Ferencik, Maros; Maurovich-Horvat, Pal; Nakano, Masataka; Otsuka, Fumiyuki; Virmani, Renu; Kauczor, Hans-Ulrich; Hoffmann, Udo; Schlett, Christopher L.

    2015-01-01

    To evaluate whether iterative reconstruction algorithms improve the diagnostic accuracy of coronary CT angiography (CCTA) for detection of lipid-core plaque (LCP) compared to histology. CCTA and histological data were acquired from three ex vivo hearts. CCTA images were reconstructed using filtered back projection (FBP), adaptive-statistical (ASIR) and model-based (MBIR) iterative algorithms. Vessel cross-sections were co-registered between FBP/ASIR/MBIR and histology. Plaque area 2 : 5.78 ± 2.29 vs. 3.39 ± 1.68 FBP; 5.92 ± 1.87 vs. 3.43 ± 1.62 ASIR; 6.40 ± 1.55 vs. 3.49 ± 1.50 MBIR; all p < 0.0001). AUC for detecting LCP was 0.803/0.850/0.903 for FBP/ASIR/MBIR and was significantly higher for MBIR compared to FBP (p = 0.01). MBIR increased sensitivity for detection of LCP by CCTA. Plaque area <60 HU in CCTA was associated with LCP in histology regardless of the reconstruction algorithm. However, MBIR demonstrated higher accuracy for detecting LCP, which may improve vulnerable plaque detection by CCTA. (orig.)

  12. Algorithm Validation of the Current Profile Reconstruction of EAST Based on Polarimeter/Interferometer

    International Nuclear Information System (INIS)

    Qian Jinping; Ren Qilong; Wan Baonian; Liu Haiqin; Zeng Long; Luo Zhengping; Chen Dalong; Shi Tonghui; Sun Youwen; Shen Biao; Xiao Bingjia; Lao, L. L.; Hanada, K.

    2015-01-01

    The method of plasma current profile reconstruction using the polarimeter/interferometer (POINT) data from a simulated equilibrium is explored and validated. It is shown that the safety factor (q) profile can be generally reconstructed from the external magnetic and POINT data. The reconstructed q profile is found to reasonably agree with the initial equilibriums. Comparisons of reconstructed q and density profiles using the magnetic data and the POINT data with 3%, 5% and 10% random errors are investigated. The result shows that the POINT data could be used to a reasonably accurate determination of the q profile. (fusion engineering)

  13. A sparsity-based iterative algorithm for reconstruction of micro-CT images from highly undersampled projection datasets obtained with a synchrotron X-ray source

    Science.gov (United States)

    Melli, S. Ali; Wahid, Khan A.; Babyn, Paul; Cooper, David M. L.; Gopi, Varun P.

    2016-12-01

    Synchrotron X-ray Micro Computed Tomography (Micro-CT) is an imaging technique which is increasingly used for non-invasive in vivo preclinical imaging. However, it often requires a large number of projections from many different angles to reconstruct high-quality images leading to significantly high radiation doses and long scan times. To utilize this imaging technique further for in vivo imaging, we need to design reconstruction algorithms that reduce the radiation dose and scan time without reduction of reconstructed image quality. This research is focused on using a combination of gradient-based Douglas-Rachford splitting and discrete wavelet packet shrinkage image denoising methods to design an algorithm for reconstruction of large-scale reduced-view synchrotron Micro-CT images with acceptable quality metrics. These quality metrics are computed by comparing the reconstructed images with a high-dose reference image reconstructed from 1800 equally spaced projections spanning 180°. Visual and quantitative-based performance assessment of a synthetic head phantom and a femoral cortical bone sample imaged in the biomedical imaging and therapy bending magnet beamline at the Canadian Light Source demonstrates that the proposed algorithm is superior to the existing reconstruction algorithms. Using the proposed reconstruction algorithm to reduce the number of projections in synchrotron Micro-CT is an effective way to reduce the overall radiation dose and scan time which improves in vivo imaging protocols.

  14. Fully automated reconstruction of three-dimensional vascular tree structures from two orthogonal views using computational algorithms and productionrules

    Science.gov (United States)

    Liu, Iching; Sun, Ying

    1992-10-01

    A system for reconstructing 3-D vascular structure from two orthogonally projected images is presented. The formidable problem of matching segments between two views is solved using knowledge of the epipolar constraint and the similarity of segment geometry and connectivity. The knowledge is represented in a rule-based system, which also controls the operation of several computational algorithms for tracking segments in each image, representing 2-D segments with directed graphs, and reconstructing 3-D segments from matching 2-D segment pairs. Uncertain reasoning governs the interaction between segmentation and matching; it also provides a framework for resolving the matching ambiguities in an iterative way. The system was implemented in the C language and the C Language Integrated Production System (CLIPS) expert system shell. Using video images of a tree model, the standard deviation of reconstructed centerlines was estimated to be 0.8 mm (1.7 mm) when the view direction was parallel (perpendicular) to the epipolar plane. Feasibility of clinical use was shown using x-ray angiograms of a human chest phantom. The correspondence of vessel segments between two views was accurate. Computational time for the entire reconstruction process was under 30 s on a workstation. A fully automated system for two-view reconstruction that does not require the a priori knowledge of vascular anatomy is demonstrated.

  15. Hybrid Projected Gradient-Evolutionary Search Algorithm for Mixed Integer Nonlinear Optimization Problems

    National Research Council Canada - National Science Library

    Homaifar, Abdollah; Esterline, Albert; Kimiaghalam, Bahram

    2005-01-01

    The Hybrid Projected Gradient-Evolutionary Search Algorithm (HPGES) algorithm uses a specially designed evolutionary-based global search strategy to efficiently create candidate solutions in the solution space...

  16. Pediatric chest HRCT using the iDose4 Hybrid Iterative Reconstruction Algorithm: Which iDose level to choose?

    International Nuclear Information System (INIS)

    Smarda, M; Alexopoulou, E; Mazioti, A; Kordolaimi, S; Ploussi, A; Efstathopoulos, E; Priftis, K

    2015-01-01

    Purpose of the study is to determine the appropriate iterative reconstruction (IR) algorithm level that combines image quality and diagnostic confidence, for pediatric patients undergoing high-resolution computed tomography (HRCT). During the last 2 years, a total number of 20 children up to 10 years old with a clinical presentation of chronic bronchitis underwent HRCT in our department's 64-detector row CT scanner using the iDose IR algorithm, with almost similar image settings (80kVp, 40-50 mAs). CT images were reconstructed with all iDose levels (level 1 to 7) as well as with filtered-back projection (FBP) algorithm. Subjective image quality was evaluated by 2 experienced radiologists in terms of image noise, sharpness, contrast and diagnostic acceptability using a 5-point scale (1=excellent image, 5=non-acceptable image). Artifacts existance was also pointed out. All mean scores from both radiologists corresponded to satisfactory image quality (score ≤3), even with the FBP algorithm use. Almost excellent (score <2) overall image quality was achieved with iDose levels 5 to 7, but oversmoothing artifacts appearing with iDose levels 6 and 7 affected the diagnostic confidence. In conclusion, the use of iDose level 5 enables almost excellent image quality without considerable artifacts affecting the diagnosis. Further evaluation is needed in order to draw more precise conclusions. (paper)

  17. Fast volume reconstruction in positron emission tomography: Implementation of four algorithms on a high-performance scalable parallel platform

    International Nuclear Information System (INIS)

    Egger, M.L.; Scheurer, A.H.; Joseph, C.

    1996-01-01

    The issue of long reconstruction times in PET has been addressed from several points of view, resulting in an affordable dedicated system capable of handling routine 3D reconstruction in a few minutes per frame: on the hardware side using fast processors and a parallel architecture, and on the software side, using efficient implementations of computationally less intensive algorithms. Execution times obtained for the PRT-1 data set on a parallel system of five hybrid nodes, each combining an Alpha processor for computation and a transputer for communication, are the following (256 sinograms of 96 views by 128 radial samples): Ramp algorithm 56 s, Favor 81 s and reprojection algorithm of Kinahan and Rogers 187 s. The implementation of fast rebinning algorithms has shown our hardware platform to become communications-limited; they execute faster on a conventional single-processor Alpha workstation: single-slice rebinning 7 s, Fourier rebinning 22 s, 2D filtered backprojection 5 s. The scalability of the system has been demonstrated, and a saturation effect at network sizes above ten nodes has become visible; new T9000-based products lifting most of the constraints on network topology and link throughput are expected to result in improved parallel efficiency and scalability properties

  18. Implementation and evaluation of an ordered subsets reconstruction algorithm for transmission PET studies using median root prior and inter-update median filtering

    International Nuclear Information System (INIS)

    Bettinardi, V.; Gilardi, M.C.; Fazio, F.; Alenius, S.; Ruotsalainen, U.; Numminen, P.; Teraes, M.

    2003-01-01

    An ordered subsets (OS) reconstruction algorithm based on the median root prior (MRP) and inter-update median filtering was implemented for the reconstruction of low count statistics transmission (TR) scans. The OS-MRP-TR algorithm was evaluated using an experimental phantom, simulating positron emission tomography (PET) whole-body (WB) studies, as well as patient data. Various experimental conditions, in terms of TR scan time (from 1 h to 1 min), covering a wide range of TR count statistics were evaluated. The performance of the algorithm was assessed by comparing the mean value of the attenuation coefficient (MVAC) of known tissue types and the coefficient of variation (CV) for low-count TR images, reconstructed with the OS-MRP-TR algorithm, with reference values obtained from high-count TR images reconstructed with a filtered back-projection (FBP) algorithm. The reco