WorldWideScience

Sample records for nonlinear programming optimization

  1. Optimality conditions in smooth nonlinear programming

    NARCIS (Netherlands)

    Still, G.; Streng, M.

    1996-01-01

    This survey is concerned with necessary and sufficient optimality conditions for smooth nonlinear programming problems with inequality and equality constraints. These conditions deal with strict local minimizers of order one and two and with isolated minimizers. In most results, no constraint qualif

  2. Constrained optimization for image restoration using nonlinear programming

    Science.gov (United States)

    Yeh, C.-L.; Chin, R. T.

    1985-01-01

    The constrained optimization problem for image restoration, utilizing incomplete information and partial constraints, is formulated using nonlinear proramming techniques. This method restores a distorted image by optimizing a chosen object function subject to available constraints. The penalty function method of nonlinear programming is used. Both linear or nonlinear object function, and linear or nonlinear constraint functions can be incorporated in the formulation. This formulation provides a generalized approach to solve constrained optimization problems for image restoration. Experiments using this scheme have been performed. The results are compared with those obtained from other restoration methods and the comparative study is presented.

  3. A hybrid nonlinear programming method for design optimization

    Science.gov (United States)

    Rajan, S. D.

    1986-01-01

    Solutions to engineering design problems formulated as nonlinear programming (NLP) problems usually require the use of more than one optimization technique. Moreover, the interaction between the user (analysis/synthesis) program and the NLP system can lead to interface, scaling, or convergence problems. An NLP solution system is presented that seeks to solve these problems by providing a programming system to ease the user-system interface. A simple set of rules is used to select an optimization technique or to switch from one technique to another in an attempt to detect, diagnose, and solve some potential problems. Numerical examples involving finite element based optimal design of space trusses and rotor bearing systems are used to illustrate the applicability of the proposed methodology.

  4. Structural Optimization for Reliability Using Nonlinear Goal Programming

    Science.gov (United States)

    El-Sayed, Mohamed E.

    1999-01-01

    This report details the development of a reliability based multi-objective design tool for solving structural optimization problems. Based on two different optimization techniques, namely sequential unconstrained minimization and nonlinear goal programming, the developed design method has the capability to take into account the effects of variability on the proposed design through a user specified reliability design criterion. In its sequential unconstrained minimization mode, the developed design tool uses a composite objective function, in conjunction with weight ordered design objectives, in order to take into account conflicting and multiple design criteria. Multiple design criteria of interest including structural weight, load induced stress and deflection, and mechanical reliability. The nonlinear goal programming mode, on the other hand, provides for a design method that eliminates the difficulty of having to define an objective function and constraints, while at the same time has the capability of handling rank ordered design objectives or goals. For simulation purposes the design of a pressure vessel cover plate was undertaken as a test bed for the newly developed design tool. The formulation of this structural optimization problem into sequential unconstrained minimization and goal programming form is presented. The resulting optimization problem was solved using: (i) the linear extended interior penalty function method algorithm; and (ii) Powell's conjugate directions method. Both single and multi-objective numerical test cases are included demonstrating the design tool's capabilities as it applies to this design problem.

  5. Nonlinear optimization

    CERN Document Server

    Ruszczynski, Andrzej

    2011-01-01

    Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates t

  6. A Novel Nonlinear Programming Model for Distribution Protection Optimization

    NARCIS (Netherlands)

    Zambon, Eduardo; Bossois, Débora Z.; Garcia, Berilhes B.; Azeredo, Elias F.

    2009-01-01

    This paper presents a novel nonlinear binary programming model designed to improve the reliability indices of a distribution network. This model identifies the type and location of protection devices that should be installed in a distribution feeder and is a generalization of the classical optimizat

  7. System design optimization for a Mars-roving vehicle and perturbed-optimal solutions in nonlinear programming

    Science.gov (United States)

    Pavarini, C.

    1974-01-01

    Work in two somewhat distinct areas is presented. First, the optimal system design problem for a Mars-roving vehicle is attacked by creating static system models and a system evaluation function and optimizing via nonlinear programming techniques. The second area concerns the problem of perturbed-optimal solutions. Given an initial perturbation in an element of the solution to a nonlinear programming problem, a linear method is determined to approximate the optimal readjustments of the other elements of the solution. Then, the sensitivity of the Mars rover designs is described by application of this method.

  8. SOME OPTIMALITY AND DUALITY RESULTS FOR AN EFFICIENT SOLUTION OF MULTIOBJECTIVE NONLINEAR FRACTIONAL PROGRAMMING PROBLEM

    Directory of Open Access Journals (Sweden)

    Paras Bhatnagar

    2012-10-01

    Full Text Available Kaul and Kaur [7] obtained necessary optimality conditions for a non-linear programming problem by taking the objective and constraint functions to be semilocally convex and their right differentials at a point to be lower semi-continuous. Suneja and Gupta [12] established the necessary optimality conditions without assuming the semilocal convexity of the objective and constraint functions but their right differentials at the optimal point to be convex. Suneja and Gupta [13] established necessary optimality conditions for an efficient solution of a multiobjective non-linear programming problem by taking the right differentials of the objective functions and constraintfunctions at the efficient point to be convex. In this paper we obtain some results for a properly efficient solution of a multiobjective non-linear fractional programming problem involving semilocally convex and related functions by assuming generalized Slater type constraint qualification.

  9. Optimality Condition and Wolfe Duality for Invex Interval-Valued Nonlinear Programming Problems

    Directory of Open Access Journals (Sweden)

    Jianke Zhang

    2013-01-01

    Full Text Available The concepts of preinvex and invex are extended to the interval-valued functions. Under the assumption of invexity, the Karush-Kuhn-Tucker optimality sufficient and necessary conditions for interval-valued nonlinear programming problems are derived. Based on the concepts of having no duality gap in weak and strong sense, the Wolfe duality theorems for the invex interval-valued nonlinear programming problems are proposed in this paper.

  10. Use of nonlinear programming to optimize performance response to energy density in broiler feed formulation.

    Science.gov (United States)

    Guevara, V R

    2004-02-01

    A nonlinear programming optimization model was developed to maximize margin over feed cost in broiler feed formulation and is described in this paper. The model identifies the optimal feed mix that maximizes profit margin. Optimum metabolizable energy level and performance were found by using Excel Solver nonlinear programming. Data from an energy density study with broilers were fitted to quadratic equations to express weight gain, feed consumption, and the objective function income over feed cost in terms of energy density. Nutrient:energy ratio constraints were transformed into equivalent linear constraints. National Research Council nutrient requirements and feeding program were used for examining changes in variables. The nonlinear programming feed formulation method was used to illustrate the effects of changes in different variables on the optimum energy density, performance, and profitability and was compared with conventional linear programming. To demonstrate the capabilities of the model, I determined the impact of variation in prices. Prices for broiler, corn, fish meal, and soybean meal were increased and decreased by 25%. Formulations were identical in all other respects. Energy density, margin, and diet cost changed compared with conventional linear programming formulation. This study suggests that nonlinear programming can be more useful than conventional linear programming to optimize performance response to energy density in broiler feed formulation because an energy level does not need to be set.

  11. Optimal control for unknown discrete-time nonlinear Markov jump systems using adaptive dynamic programming.

    Science.gov (United States)

    Zhong, Xiangnan; He, Haibo; Zhang, Huaguang; Wang, Zhanshan

    2014-12-01

    In this paper, we develop and analyze an optimal control method for a class of discrete-time nonlinear Markov jump systems (MJSs) with unknown system dynamics. Specifically, an identifier is established for the unknown systems to approximate system states, and an optimal control approach for nonlinear MJSs is developed to solve the Hamilton-Jacobi-Bellman equation based on the adaptive dynamic programming technique. We also develop detailed stability analysis of the control approach, including the convergence of the performance index function for nonlinear MJSs and the existence of the corresponding admissible control. Neural network techniques are used to approximate the proposed performance index function and the control law. To demonstrate the effectiveness of our approach, three simulation studies, one linear case, one nonlinear case, and one single link robot arm case, are used to validate the performance of the proposed optimal control method.

  12. Trajectory optimization for vehicles using control vector parameterization and nonlinear programming

    Energy Technology Data Exchange (ETDEWEB)

    Spangelo, I.

    1994-12-31

    This thesis contains a study of optimal trajectories for vehicles. Highly constrained nonlinear optimal control problems have been solved numerically using control vector parameterization and nonlinear programming. Control vector parameterization with shooting has been described in detail to provide the reader with the theoretical background for the methods which have been implemented, and which are not available in standard text books. Theoretical contributions on accuracy analysis and gradient computations have also been presented. Optimal trajectories have been computed for underwater vehicles controlled in all six degrees of freedom by DC-motor driven thrusters. A class of nonlinear optimal control problems including energy-minimization, possibly combined with time minimization and obstacle avoidance, has been developed. A program system has been specially designed and written in the C language to solve this class of optimal control problems. Control vector parameterization with single shooting was used. This special implementation has made it possible to perform a detailed analysis, and to investigate numerical details of this class of optimization methods which would have been difficult using a general purpose CVP program system. The results show that this method for solving general optimal control problems is well suited for use in guidance and control of marine vehicles. Results from rocket trajectory optimization has been studied in this work to bring knowledge from this area into the new area of trajectory optimization of marine vehicles. 116 refs., 24 figs., 23 tabs.

  13. Nonlinear program based optimization of boost and buck-boost converter designs

    Science.gov (United States)

    Rahman, S.; Lee, F. C.

    1981-01-01

    The facility of an Augmented Lagrangian (ALAG) multiplier based nonlinear programming technique is demonstrated for minimum-weight design optimizations of boost and buck-boost power converters. Certain important features of ALAG are presented in the framework of a comprehensive design example for buck-boost power converter design optimization. The study provides refreshing design insight of power converters and presents such information as weight and loss profiles of various semiconductor components and magnetics as a function of the switching frequency.

  14. Nonlinear Programming Approach to Optimal Scaling of Partially Ordered Categories

    Science.gov (United States)

    Nishisato, Shizuhiko; Arri, P. S.

    1975-01-01

    A modified technique of separable programming was used to maximize the squared correlation ratio of weighted responses to partially ordered categories. The technique employs a polygonal approximation to each single-variable function by choosing mesh points around the initial approximation supplied by Nishisato's method. Numerical examples were…

  15. Model-based optimal design of experiments - semidefinite and nonlinear programming formulations.

    Science.gov (United States)

    Duarte, Belmiro P M; Wong, Weng Kee; Oliveira, Nuno M C

    2016-02-15

    We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D-, A- and E-optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D-optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice.

  16. Nonlinear Time Series Prediction Using LS-SVM with Chaotic Mutation Evolutionary Programming for Parameter Optimization

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Nonlinear time series prediction is studied by using an improved least squares support vector machine (LSSVM) regression based on chaotic mutation evolutionary programming (CMEP) approach for parameter optimization.We analyze how the prediction error varies with different parameters (σ, γ) in LS-SVM. In order to select appropriate parameters for the prediction model, we employ CMEP algorithm. Finally, Nasdaq stock data are predicted by using this LS-SVM regression based on CMEP, and satisfactory results are obtained.

  17. Policy Iteration for H∞ Optimal Control of Polynomial Nonlinear Systems via Sum of Squares Programming.

    Science.gov (United States)

    Zhu, Yuanheng; Zhao, Dongbin; Yang, Xiong; Zhang, Qichao

    2017-01-10

    Sum of squares (SOS) polynomials have provided a computationally tractable way to deal with inequality constraints appearing in many control problems. It can also act as an approximator in the framework of adaptive dynamic programming. In this paper, an approximate solution to the H∞ optimal control of polynomial nonlinear systems is proposed. Under a given attenuation coefficient, the Hamilton-Jacobi-Isaacs equation is relaxed to an optimization problem with a set of inequalities. After applying the policy iteration technique and constraining inequalities to SOS, the optimization problem is divided into a sequence of feasible semidefinite programming problems. With the converged solution, the attenuation coefficient is further minimized to a lower value. After iterations, approximate solutions to the smallest L₂-gain and the associated H∞ optimal controller are obtained. Four examples are employed to verify the effectiveness of the proposed algorithm.

  18. Adaptive optimal control of highly dissipative nonlinear spatially distributed processes with neuro-dynamic programming.

    Science.gov (United States)

    Luo, Biao; Wu, Huai-Ning; Li, Han-Xiong

    2015-04-01

    Highly dissipative nonlinear partial differential equations (PDEs) are widely employed to describe the system dynamics of industrial spatially distributed processes (SDPs). In this paper, we consider the optimal control problem of the general highly dissipative SDPs, and propose an adaptive optimal control approach based on neuro-dynamic programming (NDP). Initially, Karhunen-Loève decomposition is employed to compute empirical eigenfunctions (EEFs) of the SDP based on the method of snapshots. These EEFs together with singular perturbation technique are then used to obtain a finite-dimensional slow subsystem of ordinary differential equations that accurately describes the dominant dynamics of the PDE system. Subsequently, the optimal control problem is reformulated on the basis of the slow subsystem, which is further converted to solve a Hamilton-Jacobi-Bellman (HJB) equation. HJB equation is a nonlinear PDE that has proven to be impossible to solve analytically. Thus, an adaptive optimal control method is developed via NDP that solves the HJB equation online using neural network (NN) for approximating the value function; and an online NN weight tuning law is proposed without requiring an initial stabilizing control policy. Moreover, by involving the NN estimation error, we prove that the original closed-loop PDE system with the adaptive optimal control policy is semiglobally uniformly ultimately bounded. Finally, the developed method is tested on a nonlinear diffusion-convection-reaction process and applied to a temperature cooling fin of high-speed aerospace vehicle, and the achieved results show its effectiveness.

  19. The solution of singular optimal control problems using direct collocation and nonlinear programming

    Science.gov (United States)

    Downey, James R.; Conway, Bruce A.

    1992-08-01

    This paper describes work on the determination of optimal rocket trajectories which may include singular arcs. In recent years direct collocation and nonlinear programming has proven to be a powerful method for solving optimal control problems. Difficulties in the application of this method can occur if the problem is singular. Techniques exist for solving singular problems indirectly using the associated adjoint formulation. Unfortunately, the adjoints are not a part of the direct formulation. It is shown how adjoint information can be obtained from the direct method to allow the solution of singular problems.

  20. Approximate Optimal Control of Affine Nonlinear Continuous-Time Systems Using Event-Sampled Neurodynamic Programming.

    Science.gov (United States)

    Sahoo, Avimanyu; Xu, Hao; Jagannathan, Sarangapani

    2017-03-01

    This paper presents an approximate optimal control of nonlinear continuous-time systems in affine form by using the adaptive dynamic programming (ADP) with event-sampled state and input vectors. The knowledge of the system dynamics is relaxed by using a neural network (NN) identifier with event-sampled inputs. The value function, which becomes an approximate solution to the Hamilton-Jacobi-Bellman equation, is generated by using event-sampled NN approximator. Subsequently, the NN identifier and the approximated value function are utilized to obtain the optimal control policy. Both the identifier and value function approximator weights are tuned only at the event-sampled instants leading to an aperiodic update scheme. A novel adaptive event sampling condition is designed to determine the sampling instants, such that the approximation accuracy and the stability are maintained. A positive lower bound on the minimum inter-sample time is guaranteed to avoid accumulation point, and the dependence of inter-sample time upon the NN weight estimates is analyzed. A local ultimate boundedness of the resulting nonlinear impulsive dynamical closed-loop system is shown. Finally, a numerical example is utilized to evaluate the performance of the near-optimal design. The net result is the design of an event-sampled ADP-based controller for nonlinear continuous-time systems.

  1. Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach.

    Science.gov (United States)

    Duarte, Belmiro P M; Wong, Weng Kee

    2015-08-01

    This paper uses semidefinite programming (SDP) to construct Bayesian optimal design for nonlinear regression models. The setup here extends the formulation of the optimal designs problem as an SDP problem from linear to nonlinear models. Gaussian quadrature formulas (GQF) are used to compute the expectation in the Bayesian design criterion, such as D-, A- or E-optimality. As an illustrative example, we demonstrate the approach using the power-logistic model and compare results in the literature. Additionally, we investigate how the optimal design is impacted by different discretising schemes for the design space, different amounts of uncertainty in the parameter values, different choices of GQF and different prior distributions for the vector of model parameters, including normal priors with and without correlated components. Further applications to find Bayesian D-optimal designs with two regressors for a logistic model and a two-variable generalised linear model with a gamma distributed response are discussed, and some limitations of our approach are noted.

  2. Robust Optimization Using Supremum of the Objective Function for Nonlinear Programming Problems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Se Jung; Park, Gyung Jin [Hanyang University, Seoul (Korea, Republic of)

    2014-05-15

    In the robust optimization field, the robustness of the objective function emphasizes an insensitive design. In general, the robustness of the objective function can be achieved by reducing the change of the objective function with respect to the variation of the design variables and parameters. However, in conventional methods, when an insensitive design is emphasized, the performance of the objective function can be deteriorated. Besides, if the numbers of the design variables are increased, the numerical cost is quite high in robust optimization for nonlinear programming problems. In this research, the robustness index for the objective function and a process of robust optimization are proposed. Moreover, a method using the supremum of linearized functions is also proposed to reduce the computational cost. Mathematical examples are solved for the verification of the proposed method and the results are compared with those from the conventional methods. The proposed approach improves the performance of the objective function and its efficiency.

  3. Optimal in silico target gene deletion through nonlinear programming for genetic engineering.

    Science.gov (United States)

    Hong, Chung-Chien; Song, Mingzhou

    2010-02-24

    Optimal selection of multiple regulatory genes, known as targets, for deletion to enhance or suppress the activities of downstream genes or metabolites is an important problem in genetic engineering. Such problems become more feasible to address in silico due to the availability of more realistic dynamical system models of gene regulatory and metabolic networks. The goal of the computational problem is to search for a subset of genes to knock out so that the activity of a downstream gene or a metabolite is optimized. Based on discrete dynamical system modeling of gene regulatory networks, an integer programming problem is formulated for the optimal in silico target gene deletion problem. In the first result, the integer programming problem is proved to be NP-hard and equivalent to a nonlinear programming problem. In the second result, a heuristic algorithm, called GKONP, is designed to approximate the optimal solution, involving an approach to prune insignificant terms in the objective function, and the parallel differential evolution algorithm. In the third result, the effectiveness of the GKONP algorithm is demonstrated by applying it to a discrete dynamical system model of the yeast pheromone pathways. The empirical accuracy and time efficiency are assessed in comparison to an optimal, but exhaustive search strategy. Although the in silico target gene deletion problem has enormous potential applications in genetic engineering, one must overcome the computational challenge due to its NP-hardness. The presented solution, which has been demonstrated to approximate the optimal solution in a practical amount of time, is among the few that address the computational challenge. In the experiment on the yeast pheromone pathways, the identified best subset of genes for deletion showed advantage over genes that were selected empirically. Once validated in vivo, the optimal target genes are expected to achieve higher genetic engineering effectiveness than a trial

  4. Optimal in silico target gene deletion through nonlinear programming for genetic engineering.

    Directory of Open Access Journals (Sweden)

    Chung-Chien Hong

    Full Text Available BACKGROUND: Optimal selection of multiple regulatory genes, known as targets, for deletion to enhance or suppress the activities of downstream genes or metabolites is an important problem in genetic engineering. Such problems become more feasible to address in silico due to the availability of more realistic dynamical system models of gene regulatory and metabolic networks. The goal of the computational problem is to search for a subset of genes to knock out so that the activity of a downstream gene or a metabolite is optimized. METHODOLOGY/PRINCIPAL FINDINGS: Based on discrete dynamical system modeling of gene regulatory networks, an integer programming problem is formulated for the optimal in silico target gene deletion problem. In the first result, the integer programming problem is proved to be NP-hard and equivalent to a nonlinear programming problem. In the second result, a heuristic algorithm, called GKONP, is designed to approximate the optimal solution, involving an approach to prune insignificant terms in the objective function, and the parallel differential evolution algorithm. In the third result, the effectiveness of the GKONP algorithm is demonstrated by applying it to a discrete dynamical system model of the yeast pheromone pathways. The empirical accuracy and time efficiency are assessed in comparison to an optimal, but exhaustive search strategy. SIGNIFICANCE: Although the in silico target gene deletion problem has enormous potential applications in genetic engineering, one must overcome the computational challenge due to its NP-hardness. The presented solution, which has been demonstrated to approximate the optimal solution in a practical amount of time, is among the few that address the computational challenge. In the experiment on the yeast pheromone pathways, the identified best subset of genes for deletion showed advantage over genes that were selected empirically. Once validated in vivo, the optimal target genes are

  5. A new deterministic global optimization method for general twice-differentiable constrained nonlinear programming problems

    Science.gov (United States)

    Park, Y. C.; Chang, M. H.; Lee, T.-Y.

    2007-06-01

    A deterministic global optimization method that is applicable to general nonlinear programming problems composed of twice-differentiable objective and constraint functions is proposed. The method hybridizes the branch-and-bound algorithm and a convex cut function (CCF). For a given subregion, the difference of a convex underestimator that does not need an iterative local optimizer to determine the lower bound of the objective function is generated. If the obtained lower bound is located in an infeasible region, then the CCF is generated for constraints to cut this region. The cutting region generated by the CCF forms a hyperellipsoid and serves as the basis of a discarding rule for the selected subregion. However, the convergence rate decreases as the number of cutting regions increases. To accelerate the convergence rate, an inclusion relation between two hyperellipsoids should be applied in order to reduce the number of cutting regions. It is shown that the two-hyperellipsoid inclusion relation is determined by maximizing a quadratic function over a sphere, which is a special case of a trust region subproblem. The proposed method is applied to twelve nonlinear programming test problems and five engineering design problems. Numerical results show that the proposed method converges in a finite calculation time and produces accurate solutions.

  6. On large-scale nonlinear programming techniques for solving optimal control problems

    Energy Technology Data Exchange (ETDEWEB)

    Faco, J.L.D.

    1994-12-31

    The formulation of decision problems by Optimal Control Theory allows the consideration of their dynamic structure and parameters estimation. This paper deals with techniques for choosing directions in the iterative solution of discrete-time optimal control problems. A unified formulation incorporates nonlinear performance criteria and dynamic equations, time delays, bounded state and control variables, free planning horizon and variable initial state vector. In general they are characterized by a large number of variables, mostly when arising from discretization of continuous-time optimal control or calculus of variations problems. In a GRG context the staircase structure of the jacobian matrix of the dynamic equations is exploited in the choice of basic and super basic variables and when changes of basis occur along the process. The search directions of the bound constrained nonlinear programming problem in the reduced space of the super basic variables are computed by large-scale NLP techniques. A modified Polak-Ribiere conjugate gradient method and a limited storage quasi-Newton BFGS method are analyzed and modifications to deal with the bounds on the variables are suggested based on projected gradient devices with specific linesearches. Some practical models are presented for electric generation planning and fishery management, and the application of the code GRECO - Gradient REduit pour la Commande Optimale - is discussed.

  7. Stochastic optimal controller design for uncertain nonlinear networked control system via neuro dynamic programming.

    Science.gov (United States)

    Xu, Hao; Jagannathan, Sarangapani

    2013-03-01

    The stochastic optimal controller design for the nonlinear networked control system (NNCS) with uncertain system dynamics is a challenging problem due to the presence of both system nonlinearities and communication network imperfections, such as random delays and packet losses, which are not unknown a priori. In the recent literature, neuro dynamic programming (NDP) techniques, based on value and policy iterations, have been widely reported to solve the optimal control of general affine nonlinear systems. However, for realtime control, value and policy iterations-based methodology are not suitable and time-based NDP techniques are preferred. In addition, output feedback-based controller designs are preferred for implementation. Therefore, in this paper, a novel NNCS representation incorporating the system uncertainties and network imperfections is introduced first by using input and output measurements for facilitating output feedback. Then, an online neural network (NN) identifier is introduced to estimate the control coefficient matrix, which is subsequently utilized for the controller design. Subsequently, the critic and action NNs are employed along with the NN identifier to determine the forward-in-time, time-based stochastic optimal control of NNCS without using value and policy iterations. Here, the value function and control inputs are updated once a sampling instant. By using novel NN weight update laws, Lyapunov theory is used to show that all the closed-loop signals and NN weights are uniformly ultimately bounded in the mean while the approximated control input converges close to its target value with time. Simulation results are included to show the effectiveness of the proposed scheme.

  8. Optimal aeroassisted orbital transfer with plane change using collocation and nonlinear programming

    Science.gov (United States)

    Shi, Yun. Y.; Nelson, R. L.; Young, D. H.

    1990-01-01

    The fuel optimal control problem arising in the non-planar orbital transfer employing aeroassisted technology is addressed. The mission involves the transfer from high energy orbit (HEO) to low energy orbit (LEO) with orbital plane change. The basic strategy here is to employ a combination of propulsive maneuvers in space and aerodynamic maneuvers in the atmosphere. The basic sequence of events for the aeroassisted HEO to LEO transfer consists of three phases. In the first phase, the orbital transfer begins with a deorbit impulse at HEO which injects the vehicle into an elliptic transfer orbit with perigee inside the atmosphere. In the second phase, the vehicle is optimally controlled by lift and bank angle modulations to perform the desired orbital plane change and to satisfy heating constraints. Because of the energy loss during the turn, an impulse is required to initiate the third phase to boost the vehicle back to the desired LEO orbital altitude. The third impulse is then used to circularize the orbit at LEO. The problem is solved by a direct optimization technique which uses piecewise polynomial representation for the state and control variables and collocation to satisfy the differential equations. This technique converts the optimal control problem into a nonlinear programming problem which is solved numerically. Solutions were obtained for cases with and without heat constraints and for cases of different orbital inclination changes. The method appears to be more powerful and robust than other optimization methods. In addition, the method can handle complex dynamical constraints.

  9. Solution of transient optimization problems by using an algorithm based on nonlinear programming

    Science.gov (United States)

    Teren, F.

    1977-01-01

    A new algorithm is presented for solution of dynamic optimization problems which are nonlinear in the state variables and linear in the control variables. It is shown that the optimal control is bang-bang. A nominal bang-bang solution is found which satisfies the system equations and constraints, and influence functions are generated which check the optimality of the solution. Nonlinear optimization (gradient search) techniques are used to find the optimal solution. The algorithm is used to find a minimum time acceleration for a turbofan engine.

  10. Solution of transient optimization problems by using an algorithm based on nonlinear programming

    Science.gov (United States)

    Teren, F.

    1977-01-01

    A new algorithm is presented for solution of dynamic optimization problems which are nonlinear in the state variables and linear in the control variables. It is shown that the optimal control is bang-bang. A nominal bang-bang solution is found which satisfies the system equations and constraints, and influence functions are generated which check the optimality of the solution. Nonlinear optimization (gradient search) techniques are used to find the optimal solution. The algorithm is used to find a minimum time acceleration for a turbofan engine.

  11. Nonlinear programming analysis and methods

    CERN Document Server

    Avriel, Mordecai

    2012-01-01

    This text provides an excellent bridge between principal theories and concepts and their practical implementation. Topics include convex programming, duality, generalized convexity, analysis of selected nonlinear programs, techniques for numerical solutions, and unconstrained optimization methods.

  12. A nonlinear programming optimization model to maximize net revenue in cheese manufacture.

    Science.gov (United States)

    Papadatos, A; Berger, A M; Pratt, J E; Barbano, D M

    2002-11-01

    A nonlinear programming optimization model was developed to maximize net revenue in cheese manufacture and is described in this paper. The model identifies the optimal mix of milk resources together with the types of cheeses and co-products that maximize net revenue. It works in Excel while it takes the data specified by the user from a user-friendly interface created in Access. The user can specify any number of resources, cheese types, and co-products. To demonstrate the capabilities of the model, we determined the impact of variation in milk price and composition in the period 1998 to 2000 on the optimal mix of resources and optimal type of co-product for Cheddar and low-moisture, part-skim Mozzarella. It was also desired to determine the impact of variation in protein content of nonfat dry milk (NDM) on net revenue, and examine the effect of reconstitution of NDM with water versus milk on net revenue. The optimal mix of resources and the net revenue markedly varied as milk resource prices and composition varied. The net revenue for Mozzarella was much higher than for Cheddar when the price of cream was high. Cheese plants that did not optimize the use of resources in response to variations in prices and composition missed a significant profit opportunity. Whey powder was more profitable than 34% whey protein concentrate and lactose in most months. The use of high-protein NDM led to an appreciable increase in net revenue. When the value of the nonfat portion of raw milk was high, reconstitution of NDM with water rather than milk markedly raised net revenue.

  13. Optimal bipedal interactions with dynamic terrain: synthesis and analysis via nonlinear programming

    Science.gov (United States)

    Hubicki, Christian; Goldman, Daniel; Ames, Aaron

    In terrestrial locomotion, gait dynamics and motor control behaviors are tuned to interact efficiently and stably with the dynamics of the terrain (i.e. terradynamics). This controlled interaction must be particularly thoughtful in bipeds, as their reduced contact points render them highly susceptible to falls. While bipedalism under rigid terrain assumptions is well-studied, insights for two-legged locomotion on soft terrain, such as sand and dirt, are comparatively sparse. We seek an understanding of how biological bipeds stably and economically negotiate granular media, with an eye toward imbuing those abilities in bipedal robots. We present a trajectory optimization method for controlled systems subject to granular intrusion. By formulating a large-scale nonlinear program (NLP) with reduced-order resistive force theory (RFT) models and jamming cone dynamics, the optimized motions are informed and shaped by the dynamics of the terrain. Using a variant of direct collocation methods, we can express all optimization objectives and constraints in closed-form, resulting in rapid solving by standard NLP solvers, such as IPOPT. We employ this tool to analyze emergent features of bipedal locomotion in granular media, with an eye toward robotic implementation.

  14. Near Optimal Event-Triggered Control of Nonlinear Discrete-Time Systems Using Neurodynamic Programming.

    Science.gov (United States)

    Sahoo, Avimanyu; Xu, Hao; Jagannathan, Sarangapani

    2016-09-01

    This paper presents an event-triggered near optimal control of uncertain nonlinear discrete-time systems. Event-driven neurodynamic programming (NDP) is utilized to design the control policy. A neural network (NN)-based identifier, with event-based state and input vectors, is utilized to learn the system dynamics. An actor-critic framework is used to learn the cost function and the optimal control input. The NN weights of the identifier, the critic, and the actor NNs are tuned aperiodically once every triggered instant. An adaptive event-trigger condition to decide the trigger instants is derived. Thus, a suitable number of events are generated to ensure a desired accuracy of approximation. A near optimal performance is achieved without using value and/or policy iterations. A detailed analysis of nontrivial inter-event times with an explicit formula to show the reduction in computation is also derived. The Lyapunov technique is used in conjunction with the event-trigger condition to guarantee the ultimate boundedness of the closed-loop system. The simulation results are included to verify the performance of the controller. The net result is the development of event-driven NDP.

  15. Optimal Reservoir Operation for Hydropower Generation using Non-linear Programming Model

    Science.gov (United States)

    Arunkumar, R.; Jothiprakash, V.

    2012-05-01

    Hydropower generation is one of the vital components of reservoir operation, especially for a large multi-purpose reservoir. Deriving optimal operational rules for such a large multi-purpose reservoir serving various purposes like irrigation, hydropower and flood control are complex, because of the large dimension of the problem and the complexity is more if the hydropower production is not an incidental. Thus optimizing the operations of a reservoir serving various purposes requires a systematic study. In the present study such a large multi-purpose reservoir, namely, Koyna reservoir operations are optimized for maximizing the hydropower production subject to the condition of satisfying the irrigation demands using a non-linear programming model. The hydropower production from the reservoir is analysed for three different dependable inflow conditions, representing wet, normal and dry years. For each dependable inflow conditions, various scenarios have been analyzed based on the constraints on the releases and the results are compared. The annual power production, combined monthly power production from all the powerhouses, end of month storage levels, evaporation losses and surplus are discussed. From different scenarios, it is observed that more hydropower can be generated for various dependable inflow conditions, if the restrictions on releases are slightly relaxed. The study shows that Koyna dam is having potential to generate more hydropower.

  16. Nonlinear programming analysis and methods

    CERN Document Server

    Avriel, Mordecai

    2003-01-01

    Comprehensive and complete, this overview provides a single-volume treatment of key algorithms and theories. The author provides clear explanations of all theoretical aspects, with rigorous proof of most results. The two-part treatment begins with the derivation of optimality conditions and discussions of convex programming, duality, generalized convexity, and analysis of selected nonlinear programs. The second part concerns techniques for numerical solutions and unconstrained optimization methods, and it presents commonly used algorithms for constrained nonlinear optimization problems. This g

  17. Value Iteration Adaptive Dynamic Programming for Optimal Control of Discrete-Time Nonlinear Systems.

    Science.gov (United States)

    Wei, Qinglai; Liu, Derong; Lin, Hanquan

    2016-03-01

    In this paper, a value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon undiscounted optimal control problems for discrete-time nonlinear systems. The present value iteration ADP algorithm permits an arbitrary positive semi-definite function to initialize the algorithm. A novel convergence analysis is developed to guarantee that the iterative value function converges to the optimal performance index function. Initialized by different initial functions, it is proven that the iterative value function will be monotonically nonincreasing, monotonically nondecreasing, or nonmonotonic and will converge to the optimum. In this paper, for the first time, the admissibility properties of the iterative control laws are developed for value iteration algorithms. It is emphasized that new termination criteria are established to guarantee the effectiveness of the iterative control laws. Neural networks are used to approximate the iterative value function and compute the iterative control law, respectively, for facilitating the implementation of the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the present method.

  18. Stochastic Optimal Regulation of Nonlinear Networked Control Systems by Using Event-Driven Adaptive Dynamic Programming.

    Science.gov (United States)

    Sahoo, Avimanyu; Jagannathan, Sarangapani

    2017-02-01

    In this paper, an event-driven stochastic adaptive dynamic programming (ADP)-based technique is introduced for nonlinear systems with a communication network within its feedback loop. A near optimal control policy is designed using an actor-critic framework and ADP with event sampled state vector. First, the system dynamics are approximated by using a novel neural network (NN) identifier with event sampled state vector. The optimal control policy is generated via an actor NN by using the NN identifier and value function approximated by a critic NN through ADP. The stochastic NN identifier, actor, and critic NN weights are tuned at the event sampled instants leading to aperiodic weight tuning laws. Above all, an adaptive event sampling condition based on estimated NN weights is designed by using the Lyapunov technique to ensure ultimate boundedness of all the closed-loop signals along with the approximation accuracy. The net result is event-driven stochastic ADP technique that can significantly reduce the computation and network transmissions. Finally, the analytical design is substantiated with simulation results.

  19. The nurse scheduling problem: a goal programming and nonlinear optimization approaches

    Science.gov (United States)

    Hakim, L.; Bakhtiar, T.; Jaharuddin

    2017-01-01

    Nurses scheduling is an activity of allocating nurses to conduct a set of tasks at certain room at a hospital or health centre within a certain period. One of obstacles in the nurse scheduling is the lack of resources in order to fulfil the needs of the hospital. Nurse scheduling which is undertaken manually will be at risk of not fulfilling some nursing rules set by the hospital. Therefore, this study aimed to perform scheduling models that satisfy all the specific rules set by the management of Bogor State Hospital. We have developed three models to overcome the scheduling needs. Model 1 is designed to schedule nurses who are solely assigned to a certain inpatient unit and Model 2 is constructed to manage nurses who are assigned to an inpatient room as well as at Polyclinic room as conjunct nurses. As the assignment of nurses on each shift is uneven, then we propose Model 3 to minimize the variance of the workload in order to achieve equitable assignment on every shift. The first two models are formulated in goal programming framework, while the last model is in nonlinear optimization form.

  20. Adaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with ε-error bound.

    Science.gov (United States)

    Wang, Fei-Yue; Jin, Ning; Liu, Derong; Wei, Qinglai

    2011-01-01

    In this paper, we study the finite-horizon optimal control problem for discrete-time nonlinear systems using the adaptive dynamic programming (ADP) approach. The idea is to use an iterative ADP algorithm to obtain the optimal control law which makes the performance index function close to the greatest lower bound of all performance indices within an ε-error bound. The optimal number of control steps can also be obtained by the proposed ADP algorithms. A convergence analysis of the proposed ADP algorithms in terms of performance index function and control policy is made. In order to facilitate the implementation of the iterative ADP algorithms, neural networks are used for approximating the performance index function, computing the optimal control policy, and modeling the nonlinear system. Finally, two simulation examples are employed to illustrate the applicability of the proposed method.

  1. Optimal tracking control for a class of nonlinear discrete-time systems with time delays based on heuristic dynamic programming.

    Science.gov (United States)

    Zhang, Huaguang; Song, Ruizhuo; Wei, Qinglai; Zhang, Tieyan

    2011-12-01

    In this paper, a novel heuristic dynamic programming (HDP) iteration algorithm is proposed to solve the optimal tracking control problem for a class of nonlinear discrete-time systems with time delays. The novel algorithm contains state updating, control policy iteration, and performance index iteration. To get the optimal states, the states are also updated. Furthermore, the "backward iteration" is applied to state updating. Two neural networks are used to approximate the performance index function and compute the optimal control policy for facilitating the implementation of HDP iteration algorithm. At last, we present two examples to demonstrate the effectiveness of the proposed HDP iteration algorithm.

  2. Construction of pore network models for Berea and Fontainebleau sandstones using non-linear programing and optimization techniques

    Science.gov (United States)

    Sharqawy, Mostafa H.

    2016-12-01

    Pore network models (PNM) of Berea and Fontainebleau sandstones were constructed using nonlinear programming (NLP) and optimization methods. The constructed PNMs are considered as a digital representation of the rock samples which were based on matching the macroscopic properties of the porous media and used to conduct fluid transport simulations including single and two-phase flow. The PNMs consisted of cubic networks of randomly distributed pores and throats sizes and with various connectivity levels. The networks were optimized such that the upper and lower bounds of the pore sizes are determined using the capillary tube bundle model and the Nelder-Mead method instead of guessing them, which reduces the optimization computational time significantly. An open-source PNM framework was employed to conduct transport and percolation simulations such as invasion percolation and Darcian flow. The PNM model was subsequently used to compute the macroscopic properties; porosity, absolute permeability, specific surface area, breakthrough capillary pressure, and primary drainage curve. The pore networks were optimized to allow for the simulation results of the macroscopic properties to be in excellent agreement with the experimental measurements. This study demonstrates that non-linear programming and optimization methods provide a promising method for pore network modeling when computed tomography imaging may not be readily available.

  3. Nonlinear Optimization with Financial Applications

    CERN Document Server

    Bartholomew-Biggs, Michael

    2005-01-01

    The book introduces the key ideas behind practical nonlinear optimization. Computational finance - an increasingly popular area of mathematics degree programs - is combined here with the study of an important class of numerical techniques. The financial content of the book is designed to be relevant and interesting to specialists. However, this material - which occupies about one-third of the text - is also sufficiently accessible to allow the book to be used on optimization courses of a more general nature. The essentials of most currently popular algorithms are described, and their performan

  4. Parallel Nonlinear Optimization for Astrodynamic Navigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — CU Aerospace proposes the development of a new parallel nonlinear program (NLP) solver software package. NLPs allow the solution of complex optimization problems,...

  5. LINEAR AND NONLINEAR SEMIDEFINITE PROGRAMMING

    Directory of Open Access Journals (Sweden)

    Walter Gómez Bofill

    2014-12-01

    Full Text Available This paper provides a short introduction to optimization problems with semidefinite constraints. Basic duality and optimality conditions are presented. For linear semidefinite programming some advances by dealing with degeneracy and the semidefinite facial reduction are discussed. Two relatively recent areas of application are presented. Finally a short overview of relevant literature on algorithmic approaches for efficiently solving linear and nonlinear semidefinite programming is provided.

  6. Optimal Decision-Making in Fuzzy Economic Order Quantity (EOQ Model under Restricted Space: A Non-Linear Programming Approach

    Directory of Open Access Journals (Sweden)

    M. Pattnaik

    2013-08-01

    Full Text Available In this paper the concept of fuzzy Non-Linear Programming Technique is applied to solve an economic order quantity (EOQ model under restricted space. Since various types of uncertainties and imprecision are inherent in real inventory problems they are classically modeled using the approaches from the probability theory. However, there are uncertainties that cannot be appropriately treated by usual probabilistic models. The questions how to define inventory optimization tasks in such environment how to interpret optimal solutions arise. This paper allows the modification of the Single item EOQ model in presence of fuzzy decision making process where demand is related to the unit price and the setup cost varies with the quantity produced/Purchased. This paper considers the modification of objective function and storage area in the presence of imprecisely estimated parameters. The model is developed for the problem by employing different modeling approaches over an infinite planning horizon. It incorporates all concepts of a fuzzy arithmetic approach, the quantity ordered and the demand per unit compares both fuzzy non linear and other models. Investigation of the properties of an optimal solution allows developing an algorithm whose validity is illustrated through an example problem and ugh MATLAB (R2009a version software, the two and three dimensional diagrams are represented to the application. Sensitivity analysis of the optimal solution is also studied with respect to changes in different parameter values and to draw managerial insights of the decision problem.

  7. Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive dynamic programming method.

    Science.gov (United States)

    Zhang, Huaguang; Cui, Lili; Zhang, Xin; Luo, Yanhong

    2011-12-01

    In this paper, a novel data-driven robust approximate optimal tracking control scheme is proposed for unknown general nonlinear systems by using the adaptive dynamic programming (ADP) method. In the design of the controller, only available input-output data is required instead of known system dynamics. A data-driven model is established by a recurrent neural network (NN) to reconstruct the unknown system dynamics using available input-output data. By adding a novel adjustable term related to the modeling error, the resultant modeling error is first guaranteed to converge to zero. Then, based on the obtained data-driven model, the ADP method is utilized to design the approximate optimal tracking controller, which consists of the steady-state controller and the optimal feedback controller. Further, a robustifying term is developed to compensate for the NN approximation errors introduced by implementing the ADP method. Based on Lyapunov approach, stability analysis of the closed-loop system is performed to show that the proposed controller guarantees the system state asymptotically tracking the desired trajectory. Additionally, the obtained control input is proven to be close to the optimal control input within a small bound. Finally, two numerical examples are used to demonstrate the effectiveness of the proposed control scheme.

  8. Infinite horizon optimal control of affine nonlinear discrete switched systems using two-stage approximate dynamic programming

    Science.gov (United States)

    Cao, Ning; Zhang, Huaguang; Luo, Yanhong; Feng, Dezhi

    2012-09-01

    In this article, a novel iteration algorithm named two-stage approximate dynamic programming (TSADP) is proposed to seek the solution of nonlinear switched optimal control problem. At each iteration of TSADP, a multivariate optimal control problem is transformed to be a certain number of univariate optimal control problems. It is shown that the value function at each iteration can be characterised pointwisely by a set of smooth functions recursively obtained from TSADP, and the associated control policy, continuous control and switching control law included, is explicitly provided in a state-feedback form. Moreover, the convergence and optimality of TSADP is strictly proven. To implement this algorithm efficiently, neural networks, critic and action networks, are utilised to approximate the value function and continuous control law, respectively. Thus, the value function is expressed by the weights of critic networks pointwise. Besides, redundant weights are ruled out at each iteration to simplify the exponentially increasing computation burden. Finally, a simulation example is provided to demonstrate its effectiveness.

  9. Optimality test in fuzzy inventory model for restricted budget and space: Move forward to a non-linear programming approach

    Directory of Open Access Journals (Sweden)

    Pattnaik Monalisha

    2015-01-01

    Full Text Available In this paper, the concept of fuzzy Non-Linear Programming Technique is applied to solve an economic order quantity (EOQ model for restricted budget and space. Since various types of uncertainties and imprecision are inherent in real inventory problems, they are classically modeled using the approaches from the probability theory. However, there are uncertainties that cannot be appropriately treated by the usual probabilistic models. The questions are how to define inventory optimization tasks in such environment and how to interpret the optimal solutions. This paper allow the modification of the Single item EOQ model in presence of fuzzy decision making process where demand is related to the unit price, and the setup cost varies with the quantity produced/Purchased. The modification of objective function, budget, and storage area in the presence of imprecisely estimated parameters are considered. The model is developed by employing different approaches over an infinite planning horizon. It incorporates all the concepts of a fuzzy arithmetic approach and comparative analysis with other non linear models. Investigation of the properties of an optimal solution allows developing an algorithm whose validity is illustrated by an example problem, and two and three dimensional diagrams are represented to this application through MATL(R2009a software. Sensitivity analysis of the optimal solution is studied with respect to the changes of different parameter values for obtaining managerial insights of the decision problem.

  10. Optimization under Nonlinear Constraints

    OpenAIRE

    1982-01-01

    In this paper a timesaving method is proposed for maximizing likelihood functions when the parameter space is subject to nonlinear constraints, expressible as second order polynomials. The suggested approach is especially attractive when dealing with systems with many parameters.

  11. Comparison of Traditional Design Nonlinear Programming Optimization and Stochastic Methods for Structural Design

    Science.gov (United States)

    Patnaik, Surya N.; Pai, Shantaram S.; Coroneos, Rula M.

    2010-01-01

    Structural design generated by traditional method, optimization method and the stochastic design concept are compared. In the traditional method, the constraints are manipulated to obtain the design and weight is back calculated. In design optimization, the weight of a structure becomes the merit function with constraints imposed on failure modes and an optimization algorithm is used to generate the solution. Stochastic design concept accounts for uncertainties in loads, material properties, and other parameters and solution is obtained by solving a design optimization problem for a specified reliability. Acceptable solutions were produced by all the three methods. The variation in the weight calculated by the methods was modest. Some variation was noticed in designs calculated by the methods. The variation may be attributed to structural indeterminacy. It is prudent to develop design by all three methods prior to its fabrication. The traditional design method can be improved when the simplified sensitivities of the behavior constraint is used. Such sensitivity can reduce design calculations and may have a potential to unify the traditional and optimization methods. Weight versus reliabilitytraced out an inverted-S-shaped graph. The center of the graph corresponded to mean valued design. A heavy design with weight approaching infinity could be produced for a near-zero rate of failure. Weight can be reduced to a small value for a most failure-prone design. Probabilistic modeling of load and material properties remained a challenge.

  12. A nonlinear programming approach for optimizing two-stage lifting vehicle ascent to orbit

    Science.gov (United States)

    Kamm, J. L.; Johnson, I. L.

    1973-01-01

    An optimal atmospheric flight branched trajectory-shaping capability is presented based on the Davidon-Fletcher-Powell variable metric parameter optimization technique. Gradient information is generated using finite difference methods. A typical atmospheric flight branched optimization problem is analyzed which requires the determination of 31 parameters. This parameter set includes the three-dimensional description of vehicle attitude control angles for three branches of flight: first-stage ascent, second-stage ascent, and first-stage flyback. The important inflight inequality contraints required to maintain the integrity of the vehicles are considered. Some of the numerical methods employed are discussed, along with several new auxiliary techniques developed to improve the compatibility of the numerical gradient and iterator.

  13. Optimizing a multi-echelon supply chain network flow using nonlinear fuzzy multi-objective integer programming: Genetic algorithm approach

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Afshari

    2012-10-01

    Full Text Available The aim of this paper is to present mathematical models optimizing all materials flows in supply chain. In this research a fuzzy multi-objective nonlinear mixed- integer programming model with piecewise linear membership function is applied to design a multi echelon supply chain network (SCN by considering total transportation costs and capacities of all echelons with fuzzy objectives. The model that is proposed in this study has 4 fuzzy functions. The first function is minimizing the total transportation costs between all echelons (suppliers, factories, distribution centers (DCs and customers. The second one is minimizing holding and ordering cost on DCs. The third objective is minimizing the unnecessary and unused capacity of factories and DCs via decreasing variance of transported amounts between echelons. The forth is minimizing the number of total vehicles that ship the materials and products along with SCN. For solving such a problem, as nodes increases in SCN, the traditional method does not have ability to solve large scale problem. So, we applied a Meta heuristic method called Genetic Algorithm. The numerical example is real world applied and compared the results with each other demonstrate the feasibility of applying the proposed model to given problem, and also its advantages are discussed.

  14. Some Duality Results for Fuzzy Nonlinear Programming Problem

    OpenAIRE

    Sangeeta Jaiswal; Geetanjali Panda

    2012-01-01

    The concept of duality plays an important role in optimization theory. This paper discusses some relations between primal and dual nonlinear programming problems in fuzzy environment. Here, fuzzy feasible region for a general fuzzy nonlinear programming is formed and the concept of fuzzy feasible solution is defined. First order dual relation for fuzzy nonlinear programming problem is studied.

  15. Nonlinear programming with feedforward neural networks.

    Energy Technology Data Exchange (ETDEWEB)

    Reifman, J.

    1999-06-02

    We provide a practical and effective method for solving constrained optimization problems by successively training a multilayer feedforward neural network in a coupled neural-network/objective-function representation. Nonlinear programming problems are easily mapped into this representation which has a simpler and more transparent method of solution than optimization performed with Hopfield-like networks and poses very mild requirements on the functions appearing in the problem. Simulation results are illustrated and compared with an off-the-shelf optimization tool.

  16. A Stability Theory in Nonlinear Programming

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We propose a new method for finding the local optimal points ofthe constrained nonlinear programming by Ordinary Differential Equations (ODE), and prove asymptotic stability of the singular points of partial variables in this paper. The condition of overall uniform, asymptotic stability is also given.

  17. Formal Proofs for Nonlinear Optimization

    Directory of Open Access Journals (Sweden)

    Victor Magron

    2015-01-01

    Full Text Available We present a formally verified global optimization framework. Given a semialgebraic or transcendental function f and a compact semialgebraic domain K, we use the nonlinear maxplus template approximation algorithm to provide a certified lower bound of f over K.This method allows to bound in a modular way some of the constituents of f by suprema of quadratic forms with a well chosen curvature. Thus, we reduce the initial goal to a hierarchy of semialgebraic optimization problems, solved by sums of squares relaxations. Our implementation tool interleaves  semialgebraic approximations with sums of squares witnesses to form certificates. It is interfaced with Coq and thus benefits from the trusted arithmetic available inside the proof assistant. This feature is used to produce, from the certificates, both valid underestimators and lower bounds for each approximated constituent.The application range for such a tool is widespread; for instance Hales' proof of Kepler's conjecture yields thousands of multivariate transcendental inequalities. We illustrate the performance of our formal framework on some of these inequalities as well as on examples from the global optimization literature.

  18. Solutions manual to accompany Nonlinear programming

    CERN Document Server

    Bazaraa, Mokhtar S; Shetty, C M

    2014-01-01

    As the Solutions Manual, this book is meant to accompany the main title, Nonlinear Programming: Theory and Algorithms, Third Edition. This book presents recent developments of key topics in nonlinear programming (NLP) using a logical and self-contained format. The volume is divided into three sections: convex analysis, optimality conditions, and dual computational techniques. Precise statements of algortihms are given along with convergence analysis. Each chapter contains detailed numerical examples, graphical illustrations, and numerous exercises to aid readers in understanding the concepts a

  19. Model-free optimal controller design for continuous-time nonlinear systems by adaptive dynamic programming based on a precompensator.

    Science.gov (United States)

    Zhang, Jilie; Zhang, Huaguang; Liu, Zhenwei; Wang, Yingchun

    2015-07-01

    In this paper, we consider the problem of developing a controller for continuous-time nonlinear systems where the equations governing the system are unknown. Using the measurements, two new online schemes are presented for synthesizing a controller without building or assuming a model for the system, by two new implementation schemes based on adaptive dynamic programming (ADP). To circumvent the requirement of the prior knowledge for systems, a precompensator is introduced to construct an augmented system. The corresponding Hamilton-Jacobi-Bellman (HJB) equation is solved by adaptive dynamic programming, which consists of the least-squared technique, neural network approximator and policy iteration (PI) algorithm. The main idea of our method is to sample the information of state, state derivative and input to update the weighs of neural network by least-squared technique. The update process is implemented in the framework of PI. In this paper, two new implementation schemes are presented. Finally, several examples are given to illustrate the effectiveness of our schemes.

  20. Comparison of linear and nonlinear programming approaches for "worst case dose" and "minmax" robust optimization of intensity-modulated proton therapy dose distributions.

    Science.gov (United States)

    Zaghian, Maryam; Cao, Wenhua; Liu, Wei; Kardar, Laleh; Randeniya, Sharmalee; Mohan, Radhe; Lim, Gino

    2017-03-01

    Robust optimization of intensity-modulated proton therapy (IMPT) takes uncertainties into account during spot weight optimization and leads to dose distributions that are resilient to uncertainties. Previous studies demonstrated benefits of linear programming (LP) for IMPT in terms of delivery efficiency by considerably reducing the number of spots required for the same quality of plans. However, a reduction in the number of spots may lead to loss of robustness. The purpose of this study was to evaluate and compare the performance in terms of plan quality and robustness of two robust optimization approaches using LP and nonlinear programming (NLP) models. The so-called "worst case dose" and "minmax" robust optimization approaches and conventional planning target volume (PTV)-based optimization approach were applied to designing IMPT plans for five patients: two with prostate cancer, one with skull-based cancer, and two with head and neck cancer. For each approach, both LP and NLP models were used. Thus, for each case, six sets of IMPT plans were generated and assessed: LP-PTV-based, NLP-PTV-based, LP-worst case dose, NLP-worst case dose, LP-minmax, and NLP-minmax. The four robust optimization methods behaved differently from patient to patient, and no method emerged as superior to the others in terms of nominal plan quality and robustness against uncertainties. The plans generated using LP-based robust optimization were more robust regarding patient setup and range uncertainties than were those generated using NLP-based robust optimization for the prostate cancer patients. However, the robustness of plans generated using NLP-based methods was superior for the skull-based and head and neck cancer patients. Overall, LP-based methods were suitable for the less challenging cancer cases in which all uncertainty scenarios were able to satisfy tight dose constraints, while NLP performed better in more difficult cases in which most uncertainty scenarios were hard to meet

  1. Programming for Sparse Minimax Optimization

    DEFF Research Database (Denmark)

    Jonasson, K.; Madsen, Kaj

    1994-01-01

    We present an algorithm for nonlinear minimax optimization which is well suited for large and sparse problems. The method is based on trust regions and sequential linear programming. On each iteration, a linear minimax problem is solved for a basic step. If necessary, this is followed...... by the determination of a minimum norm corrective step based on a first-order Taylor approximation. No Hessian information needs to be stored. Global convergence is proved. This new method has been extensively tested and compared with other methods, including two well known codes for nonlinear programming...

  2. Optimal fleetwide emissions reductions for passenger ferries: an application of a mixed-integer nonlinear programming model for the New York-New Jersey Harbor.

    Science.gov (United States)

    Winebrake, James J; Corbett, James J; Wang, Chengfeng; Farrell, Alexander E; Woods, Pippa

    2005-04-01

    Emissions from passenger ferries operating in urban harbors may contribute significantly to emissions inventories and commuter exposure to air pollution. In particular, ferries are problematic because of high emissions of oxides of nitrogen (NOx) and particulate matter (PM) from primarily unregulated diesel engines. This paper explores technical solutions to reduce pollution from passenger ferries operating in the New York-New Jersey Harbor. The paper discusses and demonstrates a mixed-integer, non-linear programming model used to identify optimal control strategies for meeting NOx and PM reduction targets for 45 privately owned commuter ferries in the harbor. Results from the model can be used by policy-makers to craft programs aimed at achieving least-cost reduction targets.

  3. Optimal design for nonlinear response models

    CERN Document Server

    Fedorov, Valerii V

    2013-01-01

    Optimal Design for Nonlinear Response Models discusses the theory and applications of model-based experimental design with a strong emphasis on biopharmaceutical studies. The book draws on the authors' many years of experience in academia and the pharmaceutical industry. While the focus is on nonlinear models, the book begins with an explanation of the key ideas, using linear models as examples. Applying the linearization in the parameter space, it then covers nonlinear models and locally optimal designs as well as minimax, optimal on average, and Bayesian designs. The authors also discuss ada

  4. Introduction to Nonlinear and Global Optimization

    NARCIS (Netherlands)

    Hendrix, E.M.T.; Tóth, B.

    2010-01-01

    This self-contained text provides a solid introduction to global and nonlinear optimization, providing students of mathematics and interdisciplinary sciences with a strong foundation in applied optimization techniques. The book offers a unique hands-on and critical approach to applied optimization

  5. Optimal planning of co-firing alternative fuels with coal in a power plant by grey nonlinear mixed integer programming model.

    Science.gov (United States)

    Ko, Andi Setiady; Chang, Ni-Bin

    2008-07-01

    Energy supply and use is of fundamental importance to society. Although the interactions between energy and environment were originally local in character, they have now widened to cover regional and global issues, such as acid rain and the greenhouse effect. It is for this reason that there is a need for covering the direct and indirect economic and environmental impacts of energy acquisition, transport, production and use. In this paper, particular attention is directed to ways of resolving conflict between economic and environmental goals by encouraging a power plant to consider co-firing biomass and refuse-derived fuel (RDF) with coal simultaneously. It aims at reducing the emission level of sulfur dioxide (SO(2)) in an uncertain environment, using the power plant in Michigan City, Indiana as an example. To assess the uncertainty by a comparative way both deterministic and grey nonlinear mixed integer programming (MIP) models were developed to minimize the net operating cost with respect to possible fuel combinations. It aims at generating the optimal portfolio of alternative fuels while maintaining the same electricity generation simultaneously. To ease the solution procedure stepwise relaxation algorithm was developed for solving the grey nonlinear MIP model. Breakeven alternative fuel value can be identified in the post-optimization stage for decision-making. Research findings show that the inclusion of RDF does not exhibit comparative advantage in terms of the net cost, albeit relatively lower air pollution impact. Yet it can be sustained by a charge system, subsidy program, or emission credit as the price of coal increases over time.

  6. Structural optimization for nonlinear dynamic response.

    Science.gov (United States)

    Dou, Suguang; Strachan, B Scott; Shaw, Steven W; Jensen, Jakob S

    2015-09-28

    Much is known about the nonlinear resonant response of mechanical systems, but methods for the systematic design of structures that optimize aspects of these responses have received little attention. Progress in this area is particularly important in the area of micro-systems, where nonlinear resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance condition, thereby providing a means for tailoring its nonlinear response. The method is applied to the fundamental nonlinear resonance of a clamped-clamped beam and to the coupled mode response of a frame structure, and the results show that one can modify essential normal form coefficients by an order of magnitude by relatively simple changes in the shape of these elements. We expect the proposed approach, and its extensions, to be useful for the design of systems used for fundamental studies of nonlinear behaviour as well as for the development of commercial devices that exploit nonlinear behaviour.

  7. Newtonian Nonlinear Dynamics for Complex Linear and Optimization Problems

    CERN Document Server

    Vázquez, Luis

    2013-01-01

    Newtonian Nonlinear Dynamics for Complex Linear and Optimization Problems explores how Newton's equation for the motion of one particle in classical mechanics combined with finite difference methods allows creation of a mechanical scenario to solve basic problems in linear algebra and programming. The authors present a novel, unified numerical and mechanical approach and an important analysis method of optimization. This book also: Presents mechanical method for determining matrix singularity or non-independence of dimension and complexity Illustrates novel mathematical applications of classical Newton’s law Offers a new approach and insight to basic, standard problems Includes numerous examples and applications Newtonian Nonlinear Dynamics for Complex Linear and Optimization Problems is an ideal book for undergraduate and graduate students as well as researchers interested in linear problems and optimization, and nonlinear dynamics.      

  8. Structural optimization for nonlinear dynamic response

    DEFF Research Database (Denmark)

    Dou, Suguang; Strachan, B. Scott; Shaw, Steven W.

    2015-01-01

    condition, thereby providing a means for tailoring its nonlinear response. The method is applied to the fundamental nonlinear resonance of a clamped–clamped beam and to the coupled mode response of a frame structure, and the results show that one can modify essential normal form coefficients by an order...... resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described...... by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance...

  9. Mode matching for optimal plasmonic nonlinear generation

    Science.gov (United States)

    O'Brien, Kevin; Suchowski, Haim; Rho, Jun Suk; Kante, Boubacar; Yin, Xiaobo; Zhang, Xiang

    2013-03-01

    Nanostructures and metamaterials have attracted interest in the nonlinear optics community due to the possibility of engineering their nonlinear responses; however, the underlying physics to describe nonlinear light generation in nanostructures and the design rules to maximize the emission are still under debate. We study the geometry dependence of the second harmonic and third harmonic emission from gold nanostructures, by designing arrays of nanostructures whose geometry varies from bars to split ring resonators. We fix the length (and volume) of the nanostructure on one axis, and change the morphology from a split ring resonator on the other axis. We observed that the optimal second harmonic generation does not occur at the morphology indicated by a nonlinear oscillator model with parameters derived from the far field transmission and is not maximized by a spectral overlap of the plasmonic modes; however, we find a near field overlap integral and mode matching considerations accurately predict the optimal geometry.

  10. 96 International Conference on Nonlinear Programming

    CERN Document Server

    1998-01-01

    About 60 scientists and students attended the 96' International Conference on Nonlinear Programming, which was held September 2-5 at Institute of Compu­ tational Mathematics and Scientific/Engineering Computing (ICMSEC), Chi­ nese Academy of Sciences, Beijing, China. 25 participants were from outside China and 35 from China. The conference was to celebrate the 60's birthday of Professor M.J.D. Powell (Fellow of Royal Society, University of Cambridge) for his many contributions to nonlinear optimization. On behalf of the Chinese Academy of Sciences, vice president Professor Zhi­ hong Xu attended the opening ceremony of the conference to express his warm welcome to all the participants. After the opening ceremony, Professor M.J.D. Powell gave the keynote lecture "The use of band matrices for second derivative approximations in trust region methods". 13 other invited lectures on recent advances of nonlinear programming were given during the four day meeting: "Primal-dual methods for nonconvex optimization" by...

  11. Optimal nonlinear feedback control of quasi-Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    朱位秋; 应祖光

    1999-01-01

    An innovative strategy for optimal nonlinear feedback control of linear or nonlinear stochastic dynamic systems is proposed based on the stochastic averaging method for quasi-Hamiltonian systems and stochastic dynamic programming principle. Feedback control forces of a system are divided into conservative parts and dissipative parts. The conservative parts are so selected that the energy distribution in the controlled system is as requested as possible. Then the response of the system with known conservative control forces is reduced to a controlled diffusion process by using the stochastic averaging method. The dissipative parts of control forces are obtained from solving the stochastic dynamic programming equation.

  12. Nonlinear optimization of beam lines

    CERN Document Server

    Tomás Garcia, Rogelio

    2006-01-01

    The current final focus systems of linear colliders have been designed based on the local compensation scheme proposed by P. Raimondi and A. Seryi [1]. However, there exist remaining aberrations that deteriorate the performance of the system. This paper develops a general algorithm for the optimization of beam lines based on the computation of the high orders of the transfer map using MAD-X [2] and PTC [3]. The algorithm is applied to the CLIC [4] Beam Delivery System (BDS).

  13. Nonlinear analysis approximation theory, optimization and applications

    CERN Document Server

    2014-01-01

    Many of our daily-life problems can be written in the form of an optimization problem. Therefore, solution methods are needed to solve such problems. Due to the complexity of the problems, it is not always easy to find the exact solution. However, approximate solutions can be found. The theory of the best approximation is applicable in a variety of problems arising in nonlinear functional analysis and optimization. This book highlights interesting aspects of nonlinear analysis and optimization together with many applications in the areas of physical and social sciences including engineering. It is immensely helpful for young graduates and researchers who are pursuing research in this field, as it provides abundant research resources for researchers and post-doctoral fellows. This will be a valuable addition to the library of anyone who works in the field of applied mathematics, economics and engineering.

  14. Optimized spectral estimation for nonlinear synchronizing systems.

    Science.gov (United States)

    Sommerlade, Linda; Mader, Malenka; Mader, Wolfgang; Timmer, Jens; Thiel, Marco; Grebogi, Celso; Schelter, Björn

    2014-03-01

    In many fields of research nonlinear dynamical systems are investigated. When more than one process is measured, besides the distinct properties of the individual processes, their interactions are of interest. Often linear methods such as coherence are used for the analysis. The estimation of coherence can lead to false conclusions when applied without fulfilling several key assumptions. We introduce a data driven method to optimize the choice of the parameters for spectral estimation. Its applicability is demonstrated based on analytical calculations and exemplified in a simulation study. We complete our investigation with an application to nonlinear tremor signals in Parkinson's disease. In particular, we analyze electroencephalogram and electromyogram data.

  15. Optimal Parametric Feedback Excitation of Nonlinear Oscillators

    Science.gov (United States)

    Braun, David J.

    2016-01-01

    An optimal parametric feedback excitation principle is sought, found, and investigated. The principle is shown to provide an adaptive resonance condition that enables unprecedentedly robust movement generation in a large class of oscillatory dynamical systems. Experimental demonstration of the theory is provided by a nonlinear electronic circuit that realizes self-adaptive parametric excitation without model information, signal processing, and control computation. The observed behavior dramatically differs from the one achievable using classical parametric modulation, which is fundamentally limited by uncertainties in model information and nonlinear effects inevitably present in real world applications.

  16. Optimal control computer programs

    Science.gov (United States)

    Kuo, F.

    1992-01-01

    The solution of the optimal control problem, even with low order dynamical systems, can usually strain the analytical ability of most engineers. The understanding of this subject matter, therefore, would be greatly enhanced if a software package existed that could simulate simple generic problems. Surprisingly, despite a great abundance of commercially available control software, few, if any, address the part of optimal control in its most generic form. The purpose of this paper is, therefore, to present a simple computer program that will perform simulations of optimal control problems that arise from the first necessary condition and the Pontryagin's maximum principle.

  17. Modified Filled Function to Solve NonlinearProgramming Problem

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Filled function method is an approach to find the global minimum of nonlinear functions. Many Problems, such as computing,communication control, and management, in real applications naturally result in global optimization formulations in a form ofnonlinear global integer programming. This paper gives a modified filled function method to solve the nonlinear global integerprogramming problem. The properties of the proposed modified filled function are also discussed in this paper. The results ofpreliminary numerical experiments are also reported.

  18. Optimization Formulations for the Maximum Nonlinear Buckling Load of Composite Structures

    DEFF Research Database (Denmark)

    Lindgaard, Esben; Lund, Erik

    2011-01-01

    , benchmarked on a number of numerical examples of laminated composite structures for the maximization of the buckling load considering fiber angle design variables. The optimization formulations are based on either linear or geometrically nonlinear analysis and formulated as mathematical programming problems...... solved using gradient based techniques. The developed local criterion is formulated such it captures nonlinear effects upon loading and proves useful for both analysis purposes and as a criterion for use in nonlinear buckling optimization. © 2010 Springer-Verlag....

  19. Optimal non-linear health insurance.

    Science.gov (United States)

    Blomqvist, A

    1997-06-01

    Most theoretical and empirical work on efficient health insurance has been based on models with linear insurance schedules (a constant co-insurance parameter). In this paper, dynamic optimization techniques are used to analyse the properties of optimal non-linear insurance schedules in a model similar to one originally considered by Spence and Zeckhauser (American Economic Review, 1971, 61, 380-387) and reminiscent of those that have been used in the literature on optimal income taxation. The results of a preliminary numerical example suggest that the welfare losses from the implicit subsidy to employer-financed health insurance under US tax law may be a good deal smaller than previously estimated using linear models.

  20. Solving Nonlinear Optimization Problems of Real Functions in Complex Variables by Complex-Valued Iterative Methods.

    Science.gov (United States)

    Zhang, Songchuan; Xia, Youshen

    2016-12-28

    Much research has been devoted to complex-variable optimization problems due to their engineering applications. However, the complex-valued optimization method for solving complex-variable optimization problems is still an active research area. This paper proposes two efficient complex-valued optimization methods for solving constrained nonlinear optimization problems of real functions in complex variables, respectively. One solves the complex-valued nonlinear programming problem with linear equality constraints. Another solves the complex-valued nonlinear programming problem with both linear equality constraints and an ℓ₁-norm constraint. Theoretically, we prove the global convergence of the proposed two complex-valued optimization algorithms under mild conditions. The proposed two algorithms can solve the complex-valued optimization problem completely in the complex domain and significantly extend existing complex-valued optimization algorithms. Numerical results further show that the proposed two algorithms have a faster speed than several conventional real-valued optimization algorithms.

  1. Optimal Variational Method for Truly Nonlinear Oscillators

    Directory of Open Access Journals (Sweden)

    Vasile Marinca

    2013-01-01

    Full Text Available The Optimal Variational Method (OVM is introduced and applied for calculating approximate periodic solutions of “truly nonlinear oscillators”. The main advantage of this procedure consists in that it provides a convenient way to control the convergence of approximate solutions in a very rigorous way and allows adjustment of convergence regions where necessary. This approach does not depend upon any small or large parameters. A very good agreement was found between approximate and numerical solution, which proves that OVM is very efficient and accurate.

  2. Nonlinear optimization in electrical engineering with applications in Matlab

    CERN Document Server

    Bakr, Mohamed

    2013-01-01

    Nonlinear Optimization in Electrical Engineering with Applications in MATLAB® provides an introductory course on nonlinear optimization in electrical engineering, with a focus on applications such as the design of electric, microwave, and photonic circuits, wireless communications, and digital filter design. Basic concepts are introduced using a step-by-step approach and illustrated with MATLAB® codes that the reader can use and adapt. Topics covered include: classical optimization methods; one dimensional optimization; unconstrained and constrained optimization; global optimization; space map

  3. Incremental approximate dynamic programming for nonlinear flight control design

    NARCIS (Netherlands)

    Zhou, Y.; Van Kampen, E.J.; Chu, Q.P.

    2015-01-01

    A self-learning adaptive flight control design for non-linear systems allows reliable and effective operation of flight vehicles in a dynamic environment. Approximate dynamic programming (ADP) provides a model-free and computationally effective process for designing adaptive linear optimal

  4. Nonlinear Dynamics and Optimization of Spur Gears

    Science.gov (United States)

    Pellicano, Francesco; Bonori, Giorgio; Faggioni, Marcello; Scagliarini, Giorgio

    In the present study a single degree of freedom oscillator with clearance type non-linearity is considered. Such oscillator represents the simplest model able to analyze a single teeth gear pair, neglecting: bearings and shafts stiffness and multi mesh interactions. One of the test cases considered in the present work represents an actual gear pair that is part of a gear box of an agricultural vehicle; such gear pair gave rise to noise problems. The main gear pair characteristics (mesh stiffness and inertia) are evaluated after an accurate geometrical modelling. The meshing stiffness of the gear pair is piecewise linear and time varying (in particular periodic); it is evaluated numerically using nonlinear finite element analysis (with contact mechanics) for different positions along one mesh cycle, then it is expanded in Fourier series. A direct numerical integration approach and a smoothing technique have been considered to obtain the dynamic scenario. Bifurcation diagrams of Poincaré maps are plotted according to some sample case study from literature. Optimization procedures are proposed, in order to find optimal involute modifications that reduce gears vibration.

  5. Robust adaptive dynamic programming and feedback stabilization of nonlinear systems.

    Science.gov (United States)

    Jiang, Yu; Jiang, Zhong-Ping

    2014-05-01

    This paper studies the robust optimal control design for a class of uncertain nonlinear systems from a perspective of robust adaptive dynamic programming (RADP). The objective is to fill up a gap in the past literature of adaptive dynamic programming (ADP) where dynamic uncertainties or unmodeled dynamics are not addressed. A key strategy is to integrate tools from modern nonlinear control theory, such as the robust redesign and the backstepping techniques as well as the nonlinear small-gain theorem, with the theory of ADP. The proposed RADP methodology can be viewed as an extension of ADP to uncertain nonlinear systems. Practical learning algorithms are developed in this paper, and have been applied to the controller design problems for a jet engine and a one-machine power system.

  6. Recent advances in multiparametric nonlinear programming

    KAUST Repository

    Domínguez, Luis F.

    2010-05-01

    In this paper, we present recent developments in multiparametric nonlinear programming. For the case of convex problems, we highlight key issues regarding the full characterization of the parametric solution space and we discuss, through an illustrative example problem, four alternative state-of-the-art multiparametric nonlinear programming algorithms. We also identify a number of main challenges for the non-convex case and highlight future research directions. © 2009 Elsevier Ltd. All rights reserved.

  7. A ROBUST TRUST REGION ALGORITHM FOR SOLVING GENERAL NONLINEAR PROGRAMMING

    Institute of Scientific and Technical Information of China (English)

    Xin-wei Liu; Ya-xiang Yuan

    2001-01-01

    The trust region approach has been extended to solving nonlinear constrained optimization. Most of these extensions consider only equality constraints and require strong global regularity assumptions. In this paper, a trust region algorithm for solving general nonlinear programming is presented, which solves an unconstrained piecewise quadratic trust region subproblem and a quadratic programming trust region subproblem at each iteration. A new technique for updating the penalty parameter is introduced. Under very mild conditions, the global convergence results are proved. Some local convergence results are also proved. Preliminary numerical results are also reported.

  8. Bifurcations and sensitivity in parametric nonlinear programming

    Science.gov (United States)

    Lundberg, Bruce N.; Poore, Aubrey B.

    1990-01-01

    The parametric nonlinear programming problem is that of determining the behavior of solution(s) as a parameter or vector of parameters alpha belonging to R(sup r) varies over a region of interest for the problem: Minimize over x the set f(x, alpha):h(x, alpha) = 0, g(x, alpha) is greater than or equal to 0, where f:R(sup (n+r)) approaches R, h:R(sup (n+r)) approaches R(sup q) and g:R(sup (n+r)) approaches R(sup p) are assumed to be at least twice continuously differentiable. Some of these parameters may be fixed but not known precisely and others may be varied to enhance the performance of the system. In both cases a fundamentally important problem in the investigation of global sensitivity of the system is to determine the stability boundaries of the regions in parameter space which define regions of qualitatively similar solutions. The objective is to explain how numerical continuation and bifurcation techniques can be used to investigate the parametric nonlinear programming problem in a global sense. Thus, first the problem is converted to a closed system of parameterized nonlinear equations whose solution set contains all local minimizers of the original problem. This system, which will be represented as F(z,alpha) = O, will include all Karush-Kuhn-Tucker and Fritz John points, both feasible and infeasible solutions, and relative minima, maxima, and saddle points of the problem. The local existence and uniqueness of a solution path (z(alpha), alpha) of this system as well as the solution type persist as long as a singularity in the Jacobian D(sub z)F(z,alpha) is not encountered. Thus the nonsingularity of this Jacobian is characterized in terms of conditions on the problem itself. Then, a class of efficient predictor-corrector continuation procedures for tracing solution paths of the system F(z,alpha) = O which are tailored specifically to the parametric programming problem are described. Finally, these procedures and the obtained information are illustrated

  9. Optimization of hardening/softening behavior of plane frame structures using nonlinear normal modes

    DEFF Research Database (Denmark)

    Dou, Suguang; Jensen, Jakob Søndergaard

    2016-01-01

    /softening behavior of nonlinear mechanical systems. The iterative optimization procedure consists of calculation of nonlinear normal modes, solving an adjoint equation system for sensitivity analysis and an update of design variables using a mathematical programming tool. We demonstrate the method with examples......Devices that exploit essential nonlinear behavior such as hardening/softening and inter-modal coupling effects are increasingly used in engineering and fundamental studies. Based on nonlinear normal modes, we present a gradient-based structural optimization method for tailoring the hardening...

  10. COMPARISON OF NONLINEAR DYNAMICS OPTIMIZATION METHODS FOR APS-U

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.; Borland, Michael

    2017-06-25

    Many different objectives and genetic algorithms have been proposed for storage ring nonlinear dynamics performance optimization. These optimization objectives include nonlinear chromaticities and driving/detuning terms, on-momentum and off-momentum dynamic acceptance, chromatic detuning, local momentum acceptance, variation of transverse invariant, Touschek lifetime, etc. In this paper, the effectiveness of several different optimization methods and objectives are compared for the nonlinear beam dynamics optimization of the Advanced Photon Source upgrade (APS-U) lattice. The optimized solutions from these different methods are preliminarily compared in terms of the dynamic acceptance, local momentum acceptance, chromatic detuning, and other performance measures.

  11. Topology optimization of nonlinear optical devices

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    2011-01-01

    This paper considers the design of nonlinear photonic devices. The nonlinearity stems from a nonlinear material model with a permittivity that depends on the local time-averaged intensity of the electric field. A finite element model is developed for time-harmonic wave propagation and an incremen......This paper considers the design of nonlinear photonic devices. The nonlinearity stems from a nonlinear material model with a permittivity that depends on the local time-averaged intensity of the electric field. A finite element model is developed for time-harmonic wave propagation...

  12. Fitting Nonlinear Curves by use of Optimization Techniques

    Science.gov (United States)

    Hill, Scott A.

    2005-01-01

    MULTIVAR is a FORTRAN 77 computer program that fits one of the members of a set of six multivariable mathematical models (five of which are nonlinear) to a multivariable set of data. The inputs to MULTIVAR include the data for the independent and dependent variables plus the user s choice of one of the models, one of the three optimization engines, and convergence criteria. By use of the chosen optimization engine, MULTIVAR finds values for the parameters of the chosen model so as to minimize the sum of squares of the residuals. One of the optimization engines implements a routine, developed in 1982, that utilizes the Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable-metric method for unconstrained minimization in conjunction with a one-dimensional search technique that finds the minimum of an unconstrained function by polynomial interpolation and extrapolation without first finding bounds on the solution. The second optimization engine is a faster and more robust commercially available code, denoted Design Optimization Tool, that also uses the BFGS method. The third optimization engine is a robust and relatively fast routine that implements the Levenberg-Marquardt algorithm.

  13. Optimal second order sliding mode control for nonlinear uncertain systems.

    Science.gov (United States)

    Das, Madhulika; Mahanta, Chitralekha

    2014-07-01

    In this paper, a chattering free optimal second order sliding mode control (OSOSMC) method is proposed to stabilize nonlinear systems affected by uncertainties. The nonlinear optimal control strategy is based on the control Lyapunov function (CLF). For ensuring robustness of the optimal controller in the presence of parametric uncertainty and external disturbances, a sliding mode control scheme is realized by combining an integral and a terminal sliding surface. The resulting second order sliding mode can effectively reduce chattering in the control input. Simulation results confirm the supremacy of the proposed optimal second order sliding mode control over some existing sliding mode controllers in controlling nonlinear systems affected by uncertainty.

  14. Nonlinear Galerkin Optimal Truncated Low—dimensional Dynamical Systems

    Institute of Scientific and Technical Information of China (English)

    ChuijieWU

    1996-01-01

    In this paper,a new theory of constructing nonlinear Galerkin optimal truncated Low-Dimensional Dynamical Systems(LDDSs) directly from partial differential equations has been developed.Applying the new theory to the nonlinear Burgers' equation,it is shown that a nearly perfect LDDS can be gotten,and the initial-boundary conditions are automatically included in the optimal bases.The nonlinear Galerkin method does not have advantages within the optimization process,but it can significantly improve the results,after the Galerkin optimal bases have been gotten.

  15. Industrial cogeneration optimization program

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The purpose of this program was to identify up to 10 good near-term opportunities for cogeneration in 5 major energy-consuming industries which produce food, textiles, paper, chemicals, and refined petroleum; select, characterize, and optimize cogeneration systems for these identified opportunities to achieve maximum energy savings for minimum investment using currently available components of cogenerating systems; and to identify technical, institutional, and regulatory obstacles hindering the use of industrial cogeneration systems. The analysis methods used and results obtained are described. Plants with fuel demands from 100,000 Btu/h to 3 x 10/sup 6/ Btu/h were considered. It was concluded that the major impediments to industrial cogeneration are financial, e.g., high capital investment and high charges by electric utilities during short-term cogeneration facility outages. In the plants considered an average energy savings from cogeneration of 15 to 18% compared to separate generation of process steam and electric power was calculated. On a national basis for the 5 industries considered, this extrapolates to saving 1.3 to 1.6 quads per yr or between 630,000 to 750,000 bbl/d of oil. Properly applied, federal activity can do much to realize a substantial fraction of this potential by lowering the barriers to cogeneration and by stimulating wider implementation of this technology. (LCL)

  16. Bonus algorithm for large scale stochastic nonlinear programming problems

    CERN Document Server

    Diwekar, Urmila

    2015-01-01

    This book presents the details of the BONUS algorithm and its real world applications in areas like sensor placement in large scale drinking water networks, sensor placement in advanced power systems, water management in power systems, and capacity expansion of energy systems. A generalized method for stochastic nonlinear programming based on a sampling based approach for uncertainty analysis and statistical reweighting to obtain probability information is demonstrated in this book. Stochastic optimization problems are difficult to solve since they involve dealing with optimization and uncertainty loops. There are two fundamental approaches used to solve such problems. The first being the decomposition techniques and the second method identifies problem specific structures and transforms the problem into a deterministic nonlinear programming problem. These techniques have significant limitations on either the objective function type or the underlying distributions for the uncertain variables. Moreover, these ...

  17. Optimal scheduling strategy for Elevator control based on nonlinear programming%基于非线性规划的电梯调度研究

    Institute of Scientific and Technical Information of China (English)

    陈希; 麦雪湖; 魏景焕

    2011-01-01

    针对上下班高峰期电梯分区调度的特点,本文首先利用Newton迭代的方法求出了不同分区下电梯平均运行时间t的具体数值,并用Matlab重新拟合出t的二次函数式,进而建立关于所有分区平均运行时间总和最小的非线性整数规划模型,通过计算机搜索算法求解出最优的电梯分区调度方案.结果发明这种方法容易操作,同时又具有很高的可用性和推广性.%We analyzed the fact of elevator running during the peak time, using the method of Newton iterationcal calculated all the average waiting time of elevators in different partition. Then taking passenger' waiting time as objective function, established a nonlinear programming model to work out the solutions. The answer shows that the model attains the purpose of energy saving and Customer Satisfaction improvement

  18. A Recurrent Neural Network for Nonlinear Fractional Programming

    Directory of Open Access Journals (Sweden)

    Quan-Ju Zhang

    2012-01-01

    Full Text Available This paper presents a novel recurrent time continuous neural network model which performs nonlinear fractional optimization subject to interval constraints on each of the optimization variables. The network is proved to be complete in the sense that the set of optima of the objective function to be minimized with interval constraints coincides with the set of equilibria of the neural network. It is also shown that the network is primal and globally convergent in the sense that its trajectory cannot escape from the feasible region and will converge to an exact optimal solution for any initial point being chosen in the feasible interval region. Simulation results are given to demonstrate further the global convergence and good performance of the proposing neural network for nonlinear fractional programming problems with interval constraints.

  19. Approximate Augmented Lagrangian Functions and Nonlinear Semidefinite Programs

    Institute of Scientific and Technical Information of China (English)

    X. X. HUANG; K. L. TEO; X. Q. YANG

    2006-01-01

    In this paper, an approximate augmented Lagrangian function for nonlinear semidefinite programs is introduced. Some basic properties of the approximate augmented Lagrange function such as monotonicity and convexity are discussed. Necessary and sufficient conditions for approximate strong duality results are derived. Conditions for an approximate exact penalty representation in the framework of augmented Lagrangian are given. Under certain conditions, it is shown that any limit point of a sequence of stationary points of approximate augmented Lagrangian problems is a KKT point of the original semidefinite program and that a sequence of optimal solutions to augmented Lagrangian problems converges to a solution of the original semidefinite program.

  20. Mathematical programming methods for large-scale topology optimization problems

    DEFF Research Database (Denmark)

    Rojas Labanda, Susana

    , and at the same time, reduce the number of function evaluations. Nonlinear optimization methods, such as sequential quadratic programming and interior point solvers, have almost not been embraced by the topology optimization community. Thus, this work is focused on the introduction of this kind of second......This thesis investigates new optimization methods for structural topology optimization problems. The aim of topology optimization is finding the optimal design of a structure. The physical problem is modelled as a nonlinear optimization problem. This powerful tool was initially developed...... for the classical minimum compliance problem. Two of the state-of-the-art optimization algorithms are investigated and implemented for this structural topology optimization problem. A Sequential Quadratic Programming (TopSQP) and an interior point method (TopIP) are developed exploiting the specific mathematical...

  1. Tailoring the nonlinear response of MEMS resonators using shape optimization

    DEFF Research Database (Denmark)

    Li, Lily L.; Polunin, Pavel M.; Dou, Suguang

    2017-01-01

    We demonstrate systematic control of mechanical nonlinearities in micro-electromechanical (MEMS) resonators using shape optimization methods. This approach generates beams with non-uniform profiles, which have nonlinearities and frequencies that differ from uniform beams. A set of bridge-type mic......We demonstrate systematic control of mechanical nonlinearities in micro-electromechanical (MEMS) resonators using shape optimization methods. This approach generates beams with non-uniform profiles, which have nonlinearities and frequencies that differ from uniform beams. A set of bridge...

  2. STOCHASTIC OPTIMAL VIBRATION CONTROL OF PARTIALLY OBSERVABLE NONLINEAR QUASI HAMILTONIAN SYSTEMS WITH ACTUATOR SATURATION

    Institute of Scientific and Technical Information of China (English)

    Ronghua Huan; Lincong Chen; Weiliang Jin; Weiqiu Zhu

    2009-01-01

    An optimal vibration control strategy for partially observable nonlinear quasi Hamil-tonian systems with actuator saturation is proposed. First, a controlled partially observable non-linear system is converted into a completely observable linear control system of finite dimension based on the theorem due to Charalambous and Elliott. Then the partially averaged Ito stochas-tic differential equations and dynamical programming equation associated with the completely observable linear system are derived by using the stochastic averaging method and stochastic dynamical programming principle, respectively. The optimal control law is obtained from solving the final dynamical programming equation. The results show that the proposed control strategy has high control effectiveness and control efficiency.

  3. A new topology optimization scheme for nonlinear structures

    Energy Technology Data Exchange (ETDEWEB)

    Eim, Young Sup; Han, Seog Young [Hanyang University, Seoul (Korea, Republic of)

    2014-07-15

    A new topology optimization algorithm based on artificial bee colony algorithm (ABCA) was developed and applied to geometrically nonlinear structures. A finite element method and the Newton-Raphson technique were adopted for the nonlinear topology optimization. The distribution of material is expressed by the density of each element and a filter scheme was implemented to prevent a checkerboard pattern in the optimized layouts. In the application of ABCA for long structures or structures with small volume constraints, optimized topologies may be obtained differently for the same problem at each trial. The calculation speed is also very slow since topology optimization based on the roulette-wheel method requires many finite element analyses. To improve the calculation speed and stability of ABCA, a rank-based method was used. By optimizing several examples, it was verified that the developed topology scheme based on ABCA is very effective and applicable in geometrically nonlinear topology optimization problems.

  4. A Numerical Embedding Method for Solving the Nonlinear Optimization Problem

    Institute of Scientific and Technical Information of China (English)

    田保锋; 戴云仙; 孟泽红; 张建军

    2003-01-01

    A numerical embedding method was proposed for solving the nonlinear optimization problem. By using the nonsmooth theory, the existence and the continuation of the following path for the corresponding homotopy equations were proved. Therefore the basic theory for the algorithm of the numerical embedding method for solving the non-linear optimization problem was established. Based on the theoretical results, a numerical embedding algorithm was designed for solving the nonlinear optimization problem, and prove its convergence carefully. Numerical experiments show that the algorithm is effective.

  5. A novel neural network for nonlinear convex programming.

    Science.gov (United States)

    Gao, Xing-Bao

    2004-05-01

    In this paper, we present a neural network for solving the nonlinear convex programming problem in real time by means of the projection method. The main idea is to convert the convex programming problem into a variational inequality problem. Then a dynamical system and a convex energy function are constructed for resulting variational inequality problem. It is shown that the proposed neural network is stable in the sense of Lyapunov and can converge to an exact optimal solution of the original problem. Compared with the existing neural networks for solving the nonlinear convex programming problem, the proposed neural network has no Lipschitz condition, no adjustable parameter, and its structure is simple. The validity and transient behavior of the proposed neural network are demonstrated by some simulation results.

  6. ON ALTERNATIVE OPTIMAL SOLUTIONS TO QUASIMONOTONIC PROGRAMMING WITH LINEAR CONSTRAINTS

    Institute of Scientific and Technical Information of China (English)

    Xue Shengjia

    2007-01-01

    In this paper, the nonlinear programming problem with quasimonotonic ( both quasiconvex and quasiconcave )objective function and linear constraints is considered. With the decomposition theorem of polyhedral sets, the structure of optimal solution set for the programming problem is depicted. Based on a simplified version of the convex simplex method,the uniqueness condition of optimal solution and the computational procedures to determine all optimal solutions are given, if the uniqueness condition is not satisfied. An illustrative example is also presented.

  7. On a Highly Nonlinear Self-Obstacle Optimal Control Problem

    Energy Technology Data Exchange (ETDEWEB)

    Di Donato, Daniela, E-mail: daniela.didonato@unitn.it [University of Trento, Department of Mathematics (Italy); Mugnai, Dimitri, E-mail: dimitri.mugnai@unipg.it [Università di Perugia, Dipartimento di Matematica e Informatica (Italy)

    2015-10-15

    We consider a non-quadratic optimal control problem associated to a nonlinear elliptic variational inequality, where the obstacle is the control itself. We show that, fixed a desired profile, there exists an optimal solution which is not far from it. Detailed characterizations of the optimal solution are given, also in terms of approximating problems.

  8. Lyapunov optimal feedback control of a nonlinear inverted pendulum

    Science.gov (United States)

    Grantham, W. J.; Anderson, M. J.

    1989-01-01

    Liapunov optimal feedback control is applied to a nonlinear inverted pendulum in which the control torque was constrained to be less than the nonlinear gravity torque in the model. This necessitates a control algorithm which 'rocks' the pendulum out of its potential wells, in order to stabilize it at a unique vertical position. Simulation results indicate that a preliminary Liapunov feedback controller can successfully overcome the nonlinearity and bring almost all trajectories to the target.

  9. Lyapunov optimal feedback control of a nonlinear inverted pendulum

    Science.gov (United States)

    Grantham, W. J.; Anderson, M. J.

    1989-01-01

    Liapunov optimal feedback control is applied to a nonlinear inverted pendulum in which the control torque was constrained to be less than the nonlinear gravity torque in the model. This necessitates a control algorithm which 'rocks' the pendulum out of its potential wells, in order to stabilize it at a unique vertical position. Simulation results indicate that a preliminary Liapunov feedback controller can successfully overcome the nonlinearity and bring almost all trajectories to the target.

  10. Remarks on a benchmark nonlinear constrained optimization problem

    Institute of Scientific and Technical Information of China (English)

    Luo Yazhong; Lei Yongjun; Tang Guojin

    2006-01-01

    Remarks on a benchmark nonlinear constrained optimization problem are made. Due to a citation error, two absolutely different results for the benchmark problem are obtained by independent researchers. Parallel simulated annealing using simplex method is employed in our study to solve the benchmark nonlinear constrained problem with mistaken formula and the best-known solution is obtained, whose optimality is testified by the Kuhn-Tucker conditions.

  11. Optimization of nonlinear controller with an enhanced biogeography approach

    Directory of Open Access Journals (Sweden)

    Mohammed Salem

    2014-07-01

    Full Text Available This paper is dedicated to the optimization of nonlinear controllers basing of an enhanced Biogeography Based Optimization (BBO approach. Indeed, The BBO is combined to a predator and prey model where several predators are used with introduction of a modified migration operator to increase the diversification along the optimization process so as to avoid local optima and reach the optimal solution quickly. The proposed approach is used in tuning the gains of PID controller for nonlinear systems. Simulations are carried out over a Mass spring damper and an inverted pendulum and has given remarkable results when compared to genetic algorithm and BBO.

  12. A new SQP algorithm and numerical experiments for nonlinear inequality constrained optimization problem

    Directory of Open Access Journals (Sweden)

    Mahdi Sohrabi-Haghighat

    2014-06-01

    Full Text Available In this paper, a new algorithm based on SQP method is presented to solve the nonlinear inequality constrained optimization problem. As compared with the other existing SQP methods, per single iteration, the basic feasible descent direction is computed by solving at most two equality constrained quadratic programming. Furthermore, there is no need for any auxiliary problem to obtain the coefficients and update the parameters. Under some suitable conditions, the global and superlinear convergence are shown. Keywords: Global convergence, Inequality constrained optimization, Nonlinear programming problem, SQP method, Superlinear convergence rate.

  13. Optimization of biotechnological systems through geometric programming

    Directory of Open Access Journals (Sweden)

    Torres Nestor V

    2007-09-01

    Full Text Available Abstract Background In the past, tasks of model based yield optimization in metabolic engineering were either approached with stoichiometric models or with structured nonlinear models such as S-systems or linear-logarithmic representations. These models stand out among most others, because they allow the optimization task to be converted into a linear program, for which efficient solution methods are widely available. For pathway models not in one of these formats, an Indirect Optimization Method (IOM was developed where the original model is sequentially represented as an S-system model, optimized in this format with linear programming methods, reinterpreted in the initial model form, and further optimized as necessary. Results A new method is proposed for this task. We show here that the model format of a Generalized Mass Action (GMA system may be optimized very efficiently with techniques of geometric programming. We briefly review the basics of GMA systems and of geometric programming, demonstrate how the latter may be applied to the former, and illustrate the combined method with a didactic problem and two examples based on models of real systems. The first is a relatively small yet representative model of the anaerobic fermentation pathway in S. cerevisiae, while the second describes the dynamics of the tryptophan operon in E. coli. Both models have previously been used for benchmarking purposes, thus facilitating comparisons with the proposed new method. In these comparisons, the geometric programming method was found to be equal or better than the earlier methods in terms of successful identification of optima and efficiency. Conclusion GMA systems are of importance, because they contain stoichiometric, mass action and S-systems as special cases, along with many other models. Furthermore, it was previously shown that algebraic equivalence transformations of variables are sufficient to convert virtually any types of dynamical models into

  14. Discrete-time inverse optimal control for nonlinear systems

    CERN Document Server

    Sanchez, Edgar N

    2013-01-01

    Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). Th

  15. Spike-layer solutions to nonlinear fractional Schrodinger equations with almost optimal nonlinearities

    Directory of Open Access Journals (Sweden)

    Jinmyoung Seok

    2015-07-01

    Full Text Available In this article, we are interested in singularly perturbed nonlinear elliptic problems involving a fractional Laplacian. Under a class of nonlinearity which is believed to be almost optimal, we construct a positive solution which exhibits multiple spikes near any given local minimum components of an exterior potential of the problem.

  16. Aircraft nonlinear optimal control using fuzzy gain scheduling

    Science.gov (United States)

    Nusyirwan, I. F.; Kung, Z. Y.

    2016-10-01

    Fuzzy gain scheduling is a common solution for nonlinear flight control. The highly nonlinear region of flight dynamics is determined throughout the examination of eigenvalues and the irregular pattern of root locus plots that show the nonlinear characteristic. By using the optimal control for command tracking, the pitch rate stability augmented system is constructed and the longitudinal flight control system is established. The outputs of optimal control for 21 linear systems are fed into the fuzzy gain scheduler. This research explores the capability in using both optimal control and fuzzy gain scheduling to improve the efficiency in finding the optimal control gains and to achieve Level 1 flying qualities. The numerical simulation work is carried out to determine the effectiveness and performance of the entire flight control system. The simulation results show that the fuzzy gain scheduling technique is able to perform in real time to find near optimal control law in various flying conditions.

  17. Optimal Transmission Power in a Nonlinear VLC System

    Institute of Scientific and Technical Information of China (English)

    ZHAO Shuang; CAI Sunzeng; KANG Kai; QIAN Hua

    2016-01-01

    In a visible light communication (VLC) system, the light emitting diode (LED) is nonlinear for large signals, which limits the trans⁃mission power or equivalently the coverage of the VLC system. When the input signal amplitude is large, the nonlinear distortion creates harmonic and intermodulation distortion, which degrades the transmission error vector magnitude (EVM). To evaluate the impact of nonlinearity on system performance, the signal to noise and distortion ratio (SNDR) is applied, defined as the linear sig⁃nal power over the thermal noise plus the front end nonlinear distortion. At a given noise level, the optimal system performance can be achieved by maximizing the SNDR, which results in high transmission rate or long transmission range for the VLC system. In this paper, we provide theoretical analysis on the optimization of SNDR with a nonlinear Hammerstein model of LED. Simula⁃tion results and lab experiments validate the theoretical analysis.

  18. Nonlinear Burn Control and Operating Point Optimization in ITER

    Science.gov (United States)

    Boyer, Mark; Schuster, Eugenio

    2013-10-01

    Control of the fusion power through regulation of the plasma density and temperature will be essential for achieving and maintaining desired operating points in fusion reactors and burning plasma experiments like ITER. In this work, a volume averaged model for the evolution of the density of energy, deuterium and tritium fuel ions, alpha-particles, and impurity ions is used to synthesize a multi-input multi-output nonlinear feedback controller for stabilizing and modulating the burn condition. Adaptive control techniques are used to account for uncertainty in model parameters, including particle confinement times and recycling rates. The control approach makes use of the different possible methods for altering the fusion power, including adjusting the temperature through auxiliary heating, modulating the density and isotopic mix through fueling, and altering the impurity density through impurity injection. Furthermore, a model-based optimization scheme is proposed to drive the system as close as possible to desired fusion power and temperature references. Constraints are considered in the optimization scheme to ensure that, for example, density and beta limits are avoided, and that optimal operation is achieved even when actuators reach saturation. Supported by the NSF CAREER award program (ECCS-0645086).

  19. STOCHASTIC OPTIMAL CONTROL OF STRONGLY NONLINEAR SYSTEMS UNDER WIDE-BAND RANDOM EXCITATION WITH ACTUATOR SATURATION

    Institute of Scientific and Technical Information of China (English)

    Changshui Feng; Weiqiu Zhu

    2008-01-01

    A bounded optimal control strategy for strongly non-linear systems under non-white wide-band random excitation with actuator saturation is proposed. First, the stochastic averaging method is introduced for controlled strongly non-linear systems under wide-band random excitation using generalized harmonic functions. Then, the dynamical programming equation for the saturated control problem is formulated from the partially averaged Ito equation based on the dynamical programming principle. The optimal control consisting of the unbounded optimal control and the bounded bang-bang control is determined by solving the dynamical programming equation. Finally, the response of the optimally controlled system is predicted by solving the reduced Fokker-Planck-Kolmogorov (FPK) equation associated with the completed averaged Ito equation. An example is given to illustrate the proposed control strategy. Numerical results show that the proposed control strategy has high control effectiveness and efficiency and the chattering is reduced significantly comparing with the bang-bang control strategy.

  20. On stochastic optimal control of partially observable nonlinear quasi Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    朱位秋; 应祖光

    2004-01-01

    A stochastic optimal control strategy for partially observable nonlinear quasi Hamiltonian systems is proposed.The optimal control forces consist of two parts. The first part is determined by the conditions under which the stochastic optimal control problem of a partially observable nonlinear system is converted into that of a completely observable linear system. The second part is determined by solving the dynamical programming equation derived by applying the stochastic averaging method and stochastic dynamical programming principle to the completely observable linear control system. The response of the optimally controlled quasi Hamiltonian system is predicted by solving the averaged Fokker-Planck-Kolmogorov equation associated with the optimally controlled completely observable linear system and solving the Riccati equation for the estimated error of system states. An example is given to illustrate the procedure and effectiveness of the proposed control strategy.

  1. Science Letters:On stochastic optimal control of partially observable nonlinear quasi Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    朱位秋; 应祖光

    2004-01-01

    A stochastic optimal control strategy for partially observable nonlinear quasi Hamiltonian systems is proposed. The optimal control forces consist of two parts. The first part is determined by the conditions under which the stochastic optimal control problem of a partially observable nonlinear system is converted into that of a completely observable linear system. The second part is determined by solving the dynamical programming equation derived by applying the stochastic averaging method and stochastic dynamical programming principle to the completely observable linear control system. The response of the optimally controlled quasi Hamiltonian system is predicted by solving the averaged Fokker-Planck-Kolmogorov equation associated with the optimally controlled completely observable linear system and solving the Riccati equation for the estimated error of system states. An example is given to illustrate the procedure and effectiveness of the proposed control strategy.

  2. RF Circuit linearity optimization using a general weak nonlinearity model

    NARCIS (Netherlands)

    Cheng, W.; Oude Alink, M.S.; Annema, Anne J.; Croon, Jeroen A.; Nauta, Bram

    2012-01-01

    This paper focuses on optimizing the linearity in known RF circuits, by exploring the circuit design space that is usually available in today’s deep submicron CMOS technologies. Instead of using brute force numerical optimizers we apply a generalized weak nonlinearity model that only involves AC

  3. Optimal decisions principles of programming

    CERN Document Server

    Lange, Oskar

    1971-01-01

    Optimal Decisions: Principles of Programming deals with all important problems related to programming.This book provides a general interpretation of the theory of programming based on the application of the Lagrange multipliers, followed by a presentation of the marginal and linear programming as special cases of this general theory. The praxeological interpretation of the method of Lagrange multipliers is also discussed.This text covers the Koopmans' model of transportation, geometric interpretation of the programming problem, and nature of activity analysis. The solution of t

  4. Optimal Implantable Cardioverter Defibrillator Programming.

    Science.gov (United States)

    Shah, Bindi K

    Optimal programming of implantable cardioverter defibrillators (ICDs) is essential to appropriately treat ventricular tachyarrhythmias and to avoid unnecessary and inappropriate shocks. There have been a series of large clinical trials evaluating tailored programming of ICDs. We reviewed the clinical trials evaluating ICD therapies and detection, and the consensus statement on ICD programming. In doing so, we found that prolonged ICD detection times, higher rate cutoffs, and antitachycardia pacing (ATP) programming decreases inappropriate and painful therapies in a primary prevention population. The use of supraventricular tachyarrhythmia discriminators can also decrease inappropriate shocks. Tailored ICD programming using the knowledge gained from recent ICD trials can decrease inappropriate and unnecessary ICD therapies and decrease mortality.

  5. Reliability-based design optimization for nonlinear energy harvesters

    Science.gov (United States)

    Seong, Sumin; Lee, Soobum; Hu, Chao

    2015-03-01

    The power output of a vibration energy harvesting device is highly sensitive to uncertainties in materials, manufacturing, and operating conditions. Although the use of a nonlinear spring (e.g., snap-through mechanism) in energy harvesting device has been reported to reduce the sensitivity of power output with respect to the excitation frequency, the nonlinear spring characteristic remains significantly sensitive and it causes unreliable power generation. In this paper, we present a reliability-based design optimization (RBDO) study of vibration energy harvesters. For a nonlinear harvester, a purely mechanical nonlinear spring design implemented in the middle of cantilever beam harvester is considered in the study. This design has the curved section in the center of beam that causes bi-stable configuration. When vibrating, the inertia of the tip mass activates the curved shell to cause snap-through buckling and make the nature of vibration nonlinear. In this paper, deterministic optimization (DO) is performed to obtain deterministic optimum of linear and nonlinear energy harvester configuration. As a result of the deterministic optimization, an optimum bi-stable vibration configuration of nonlinear harvester can be obtained for reliable power generation despite uncertainty on input vibration condition. For the linear harvester, RBDO is additionally performed to find the optimum design that satisfies a target reliability on power generation, while accounting for uncertainty in material properties and geometric parameters.

  6. Galerkin approximations of nonlinear optimal control problems in Hilbert spaces

    Directory of Open Access Journals (Sweden)

    Mickael D. Chekroun

    2017-07-01

    Full Text Available Nonlinear optimal control problems in Hilbert spaces are considered for which we derive approximation theorems for Galerkin approximations. Approximation theorems are available in the literature. The originality of our approach relies on the identification of a set of natural assumptions that allows us to deal with a broad class of nonlinear evolution equations and cost functionals for which we derive convergence of the value functions associated with the optimal control problem of the Galerkin approximations. This convergence result holds for a broad class of nonlinear control strategies as well. In particular, we show that the framework applies to the optimal control of semilinear heat equations posed on a general compact manifold without boundary. The framework is then shown to apply to geoengineering and mitigation of greenhouse gas emissions formulated here in terms of optimal control of energy balance climate models posed on the sphere $\\mathbb{S}^2$.

  7. Optimal Nonlinear Filter for INS Alignment

    Institute of Scientific and Technical Information of China (English)

    赵瑞; 顾启泰

    2002-01-01

    All the methods to handle the inertial navigation system (INS) alignment were sub-optimal in the past. In this paper, particle filtering (PF) as an optimal method is used for solving the problem of INS alignment. A sub-optimal two-step filtering algorithm is presented to improve the real-time performance of PF. The approach combines particle filtering with Kalman filtering (KF). Simulation results illustrate the superior performance of these approaches when compared with extended Kalman filtering (EKF).

  8. Introduction to the theory of nonlinear optimization

    CERN Document Server

    Jahn, Johannes

    2007-01-01

    This book serves as an introductory text to optimization theory in normed spaces. The topics of this book are existence results, various differentiability notions together with optimality conditions, the contingent cone, a generalization of the Lagrange multiplier rule, duality theory, extended semidefinite optimization, and the investigation of linear quadratic and time minimal control problems. This textbook presents fundamentals with particular emphasis on the application to problems in the calculus of variations, approximation and optimal control theory. The reader is expected to have a ba

  9. A Composite Algorithm for Mixed Integer Constrained Nonlinear Optimization.

    Science.gov (United States)

    1980-01-01

    algorithm (FLEX) developed by Paviani and Himmelblau [53] is a direct search algorithm for constrained, nonlinear problems. It uses a variation on the...given in an appendix to Himmelblau [32]. Two changes were made to the program as listed in the rcference. Between card number 1340 and 1350 the...1972, pp. 293-308 (32] Himmelblau , D. M., Applied Nonlinear Programming, McGraw-Hill, 1972 (33] Himmelblau , D. M., "A Uniform Evaluation of Unconstrained

  10. Optimization-Based Robust Nonlinear Control

    Science.gov (United States)

    2006-08-01

    IEEE Transactions on Automatic Control , vol. 51, no. 4, pp. 661...systems with two time scales", A.R. Teel, L. Moreau and D. Nesic, IEEE Transactions on Automatic Control , vol. 48, no. 9, pp. 1526-1544, September 2003...Turner, L. Zaccarian, IEEE Transactions on Automatic Control , vol. 48, no. 9, pp. 1509- 1525, September 2003. 5. "Nonlinear Scheduled anti-windup

  11. A new optimization algotithm with application to nonlinear MPC

    Directory of Open Access Journals (Sweden)

    Frode Martinsen

    2005-01-01

    Full Text Available This paper investigates application of SQP optimization algorithm to nonlinear model predictive control. It considers feasible vs. infeasible path methods, sequential vs. simultaneous methods and reduced vs full space methods. A new optimization algorithm coined rFOPT which remains feasibile with respect to inequality constraints is introduced. The suitable choices between these various strategies are assessed informally through a small CSTR case study. The case study also considers the effect various discretization methods have on the optimization problem.

  12. Optimal beamforming in MIMO systems with HPA nonlinearity

    KAUST Repository

    Qi, Jian

    2010-09-01

    In this paper, multiple-input multiple-output (MIMO) transmit beamforming (TB) systems under the consideration of nonlinear high-power amplifiers (HPAs) are investigated. The optimal beamforming scheme, with the optimal beamforming weight vector and combining vector, is proposed for MIMO systems with HPA nonlinearity. The performance of the proposed MIMO beamforming scheme in the presence of HPA nonlinearity is evaluated in terms of average symbol error probability (SEP), outage probability and system capacity, considering transmission over uncorrelated quasi-static frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects of several system parameters, namely, parameters of nonlinear HPA, numbers of transmit and receive antennas, and modulation order of phase-shift keying (PSK), on performance. ©2010 IEEE.

  13. Nonlinearly-constrained optimization using asynchronous parallel generating set search.

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Joshua D.; Kolda, Tamara Gibson

    2007-05-01

    Many optimization problems in computational science and engineering (CS&E) are characterized by expensive objective and/or constraint function evaluations paired with a lack of derivative information. Direct search methods such as generating set search (GSS) are well understood and efficient for derivative-free optimization of unconstrained and linearly-constrained problems. This paper addresses the more difficult problem of general nonlinear programming where derivatives for objective or constraint functions are unavailable, which is the case for many CS&E applications. We focus on penalty methods that use GSS to solve the linearly-constrained problems, comparing different penalty functions. A classical choice for penalizing constraint violations is {ell}{sub 2}{sup 2}, the squared {ell}{sub 2} norm, which has advantages for derivative-based optimization methods. In our numerical tests, however, we show that exact penalty functions based on the {ell}{sub 1}, {ell}{sub 2}, and {ell}{sub {infinity}} norms converge to good approximate solutions more quickly and thus are attractive alternatives. Unfortunately, exact penalty functions are discontinuous and consequently introduce theoretical problems that degrade the final solution accuracy, so we also consider smoothed variants. Smoothed-exact penalty functions are theoretically attractive because they retain the differentiability of the original problem. Numerically, they are a compromise between exact and {ell}{sub 2}{sup 2}, i.e., they converge to a good solution somewhat quickly without sacrificing much solution accuracy. Moreover, the smoothing is parameterized and can potentially be adjusted to balance the two considerations. Since many CS&E optimization problems are characterized by expensive function evaluations, reducing the number of function evaluations is paramount, and the results of this paper show that exact and smoothed-exact penalty functions are well-suited to this task.

  14. Nonlinear model predictive control based on collective neurodynamic optimization.

    Science.gov (United States)

    Yan, Zheng; Wang, Jun

    2015-04-01

    In general, nonlinear model predictive control (NMPC) entails solving a sequential global optimization problem with a nonconvex cost function or constraints. This paper presents a novel collective neurodynamic optimization approach to NMPC without linearization. Utilizing a group of recurrent neural networks (RNNs), the proposed collective neurodynamic optimization approach searches for optimal solutions to global optimization problems by emulating brainstorming. Each RNN is guaranteed to converge to a candidate solution by performing constrained local search. By exchanging information and iteratively improving the starting and restarting points of each RNN using the information of local and global best known solutions in a framework of particle swarm optimization, the group of RNNs is able to reach global optimal solutions to global optimization problems. The essence of the proposed collective neurodynamic optimization approach lies in the integration of capabilities of global search and precise local search. The simulation results of many cases are discussed to substantiate the effectiveness and the characteristics of the proposed approach.

  15. A TRUST-REGION ALGORITHM FOR NONLINEAR INEQUALITY CONSTRAINED OPTIMIZATION

    Institute of Scientific and Technical Information of China (English)

    Xiaojiao Tong; Shuzi Zhou

    2003-01-01

    This paper presents a new trust-region algorithm for n-dimension nonlinear optimization subject to m nonlinear inequality constraints. Equivalent KKT conditions are derived,which is the basis for constructing the new algorithm. Global convergence of the algorithm to a first-order KKT point is established under mild conditions on the trial steps, local quadratic convergence theorem is proved for nondegenerate minimizer point. Numerical experiment is presented to show the effectiveness of our approach.

  16. Optimal power flow using sequential quadratic programming

    Science.gov (United States)

    Nejdawi, Imad M.

    1999-11-01

    Optimal power flow (OPF) is an operational as well as a planning tool used by electric utilities to help them operate their network in the most economic and secure mode of operation. Various algorithms to solve the OPF problem evolved over the past three decades; linear programming (LP) techniques were among the major mathematical programming methods utilized. The linear models of the objective function and the linearization of the constraints are the main features of these techniques. The main advantages of the LP approach are simplicity and speed. Nonlinear programming techniques have been applied to OPF solution. The major drawback is the expensive solution of large sparse systems of equations. This research is concerned with the development of a new OPF solution algorithm using sequential quadratic programming (SQP). In this formulation, a small dense system the size of which is equal to the number of control variables is solved in an inner loop. The Jacobian and Hessian terms are calculated in an outer loop. The total number of outer loop iterations is comparable to those in an ordinary load flow in contrast to 20--30 iterations in other nonlinear methods. In addition, the total number of floating point operations is less than that encountered in direct methods by two orders of magnitude. We also model dispatch over a twenty four-hour time horizon in a transmission constrained power network that includes price-responsive loads where large energy customers can operate their loads in time intervals with lowest spot prices.

  17. Multiple optimal solutions to a sort of nonlinear optimization problem

    Institute of Scientific and Technical Information of China (English)

    Xue Shengjia

    2007-01-01

    The optimization problem is considered in which the objective function is pseudolinear(both pseudoconvex and pseudoconcave) and the constraints are linear. The general expression for the optimal solutions to the problem is derived with the representation theorem of polyhedral sets, and the uniqueness condition of the optimal solution and the computational procedures to determine all optimal solutions ( ifthe uniqueness condition is not satisfied ) are provided. Finally, an illustrative example is also given.

  18. STEW A Nonlinear Data Modeling Computer Program

    CERN Document Server

    Chen, H

    2000-01-01

    A nonlinear data modeling computer program, STEW, employing the Levenberg-Marquardt algorithm, has been developed to model the experimental sup 2 sup 3 sup 9 Pu(n,f) and sup 2 sup 3 sup 5 U(n,f) cross sections. This report presents results of the modeling of the sup 2 sup 3 sup 9 Pu(n,f) and sup 2 sup 3 sup 5 U(n,f) cross-section data. The calculation of the fission transmission coefficient is based on the double-humped-fission-barrier model of Bjornholm and Lynn. Incident neutron energies of up to 5 MeV are considered.

  19. A New Approach to Solving Nonlinear Programming

    Institute of Scientific and Technical Information of China (English)

    SHEN Jie; CHEN Ling

    2002-01-01

    A method for solving nonlinear programming using genetic algorithm is presented. In the operations of crossover and mutation in each generation, to ensure the new solutions are all feasible, we present a method in which the bounds of every variable in the solution are estimated beforehand according to the constrained conditions. For the operation of mutation, we present two methods of cube bounding and variable bounding. The experimental results are given and analyzed. They show that the method is efficient and can obtain the results in less generation.

  20. STEW: A Nonlinear Data Modeling Computer Program

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.

    2000-03-04

    A nonlinear data modeling computer program, STEW, employing the Levenberg-Marquardt algorithm, has been developed to model the experimental {sup 239}Pu(n,f) and {sup 235}U(n,f) cross sections. This report presents results of the modeling of the {sup 239}Pu(n,f) and {sup 235}U(n,f) cross-section data. The calculation of the fission transmission coefficient is based on the double-humped-fission-barrier model of Bjornholm and Lynn. Incident neutron energies of up to 5 MeV are considered.

  1. Penalized interior point approach for constrained nonlinear programming

    Institute of Scientific and Technical Information of China (English)

    LU Wen-ting; YAO Yi-rong; ZHANG Lian-sheng

    2009-01-01

    A penalized interior point approach for constrained nonlinear programming is examined in this work. To overcome the difficulty of initialization for the interior point method, a problem equivalent to the primal problem via incorporating an auxiliary variable is constructed. A combined approach of logarithm barrier and quadratic penalty function is proposed to solve the problem. Based on Newton's method, the global convergence of interior point and line search algorithm is proven.Only a finite number of iterations is required to reach an approximate optimal solution. Numerical tests are given to show the effectiveness of the method.

  2. Nonlinear stochastic optimal bounded control of hysteretic systems with actuator saturation

    Institute of Scientific and Technical Information of China (English)

    Rong-hua HUAN; Wei-qiu ZHU; Yong-jun WU

    2008-01-01

    A modified nonlinear stochastic optimal bounded control strategy for random excited hysteretic systems with actuator saturation is proposed. First, a controlled hysteretic system is converted into an equivalent nonlinear nonhysteretic stochastic system. Then, the partially averaged It6 stochastic differential equation and dynamical programming equation are established, respectively, by using the stochastic averaging method for quasi non-integrable Hamiltonian systems and stochastic dynamical programming principle, from which the optimal control law consisting of optimal unbounded control and bang-bang control is derived. Finally, the response of optimally controlled system is predicted by solving the Fokker-Planck-Kolmogorov (FPK) equation associated with the fully averaged It6 equation. Numerical results show that the proposed control strategy has high control effectiveness and efficiency.

  3. Conference on High Performance Software for Nonlinear Optimization

    CERN Document Server

    Murli, Almerico; Pardalos, Panos; Toraldo, Gerardo

    1998-01-01

    This book contains a selection of papers presented at the conference on High Performance Software for Nonlinear Optimization (HPSN097) which was held in Ischia, Italy, in June 1997. The rapid progress of computer technologies, including new parallel architec­ tures, has stimulated a large amount of research devoted to building software environments and defining algorithms able to fully exploit this new computa­ tional power. In some sense, numerical analysis has to conform itself to the new tools. The impact of parallel computing in nonlinear optimization, which had a slow start at the beginning, seems now to increase at a fast rate, and it is reasonable to expect an even greater acceleration in the future. As with the first HPSNO conference, the goal of the HPSN097 conference was to supply a broad overview of the more recent developments and trends in nonlinear optimization, emphasizing the algorithmic and high performance software aspects. Bringing together new computational methodologies with theoretical...

  4. Numerical methods of mathematical optimization with Algol and Fortran programs

    CERN Document Server

    Künzi, Hans P; Zehnder, C A; Rheinboldt, Werner

    1971-01-01

    Numerical Methods of Mathematical Optimization: With ALGOL and FORTRAN Programs reviews the theory and the practical application of the numerical methods of mathematical optimization. An ALGOL and a FORTRAN program was developed for each one of the algorithms described in the theoretical section. This should result in easy access to the application of the different optimization methods.Comprised of four chapters, this volume begins with a discussion on the theory of linear and nonlinear optimization, with the main stress on an easily understood, mathematically precise presentation. In addition

  5. Nonlinear optimization of load allocation in a manufacturing system

    Institute of Scientific and Technical Information of China (English)

    GUO Cai-fen; WANG Ning-sheng

    2006-01-01

    Based on the queuing theory, a nonlinear optimization model is proposed in this paper. A novel transformation of optimization variables is devised and the constraints are properly combined so as to make this model into a convex one, from which the Lagrangian function and the KKT conditions are derived. The interiorpoint method for convex optimization is presented here as a computationally efficient tool. Finally, this model is evaluated on a real example, from which such conclusions are drawn that the optimum result can ensure the full utilization of machines and the least amount of WIP in manufacturing systems; the interior-point method for convex optimization needs fewer iterations with significant computational savings. It appears that many non-linear optimization problems in the industrial engineering field would be amenable to this method of solution.

  6. Applying Nonlinear Programming to Solve Optimal Control for Soft Landing of Lunar Probe%应用非线性规划求解月球探测器着陆轨道最优控制

    Institute of Scientific and Technical Information of China (English)

    肖刚

    2015-01-01

    In order to decrease the fuel consumption under a finite thrust, a method of nonlinear program-ming is presented to solve the optimal control problem on the soft landing of a lunar probe.The lunar soft land-ing problem is transformed into a two point boundary value problem in mathematics.In consideration of the bound condition, applying on Lagrang principle, the two-point boundary value problem is converted into a pa-rameter optimization problem.The simulated result demonstrates that the proposed method leads to a success-ful implementation of the lunar soft landing, which shows that the proposed design scheme is effective.%为了减少有限推力作用下月球探测器软着陆所需的燃料消耗,提出了应用非线性规划方法来求解该最优控制问题。首先,将有限推力作用下月球软着陆问题转化为数学上的两点边值问题;在考虑边界条件的前提下,利用拉格朗日原理将该两点边值问题转化为针对控制变量的优化问题;然后应用非线性规划方法求解所形成的参数优化问题。实验仿真结果显示,该方法能够成功实现月面软着陆,表明提出的设计方法简单有效。

  7. Novel Approach to Nonlinear PID Parameter Optimization Using Ant Colony Optimization Algorithm

    Institute of Scientific and Technical Information of China (English)

    Duan Hai-bin; Wang Dao-bo; Yu Xiu-fen

    2006-01-01

    This paper presents an application of an Ant Colony Optimization (ACO) algorithm to optimize the parameters in the design of a type of nonlinear PID controller. The ACO algorithm is a novel heuristic bionic algorithm, which is based on the behaviour of real ants in nature searching for food. In order to optimize the parameters of the nonlinear PID controller using ACO algorithm,an objective function based on position tracing error was constructed, and elitist strategy was adopted in the improved ACO algorithm. Detailed simulation steps are presented. This nonlinear PID controller using the ACO algorithm has high precision of control and quick response.

  8. Nonlinear Non-convex Optimization of Hydraulic Networks

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat; Kallesøe, Carsten; Leth, John-Josef

    2013-01-01

    Pressure management in water supply systems is an effective way to reduce the leakage in a system. In this paper, the pressure management and the reduction of power consumption of a water supply system is formulated as an optimization problem. The problem is to minimize the power consumption...... in pumps and also to regulate the pressure at the end-user valves to a desired value. The optimization problem which is solved is a nonlinear and non-convex optimization. The barrier method is used to solve this problem. The modeling framework and the optimization technique which are used are general...

  9. An Approximate Algorithm for a Class of Nonlinear Bilevel Integer Programming

    Institute of Scientific and Technical Information of China (English)

    LI Lei; TENG Chun-xian; TIAN Guang-yue

    2002-01-01

    The algorithm for a class of nonlinear bilevel integer programming is discussed in this paper. It is based on the theory and algorithm for nonlinear integer programming. The continuity methods for integer programming are studied in this paper. After simulated annealing algorithm is applied to the upper-level programming problem and the thought of filled function method for continuous global optimization is applied to the corresponding lower-level programming, an approximate algorithm is established. The satisfactory algorithm is elaborated in the following example.

  10. Asynchronous parallel pattern search for nonlinear optimization

    Energy Technology Data Exchange (ETDEWEB)

    P. D. Hough; T. G. Kolda; V. J. Torczon

    2000-01-01

    Parallel pattern search (PPS) can be quite useful for engineering optimization problems characterized by a small number of variables (say 10--50) and by expensive objective function evaluations such as complex simulations that take from minutes to hours to run. However, PPS, which was originally designed for execution on homogeneous and tightly-coupled parallel machine, is not well suited to the more heterogeneous, loosely-coupled, and even fault-prone parallel systems available today. Specifically, PPS is hindered by synchronization penalties and cannot recover in the event of a failure. The authors introduce a new asynchronous and fault tolerant parallel pattern search (AAPS) method and demonstrate its effectiveness on both simple test problems as well as some engineering optimization problems

  11. Modified constrained differential evolution for solving nonlinear global optimization problems

    OpenAIRE

    2013-01-01

    Nonlinear optimization problems introduce the possibility of multiple local optima. The task of global optimization is to find a point where the objective function obtains its most extreme value while satisfying the constraints. Some methods try to make the solution feasible by using penalty function methods, but the performance is not always satisfactory since the selection of the penalty parameters for the problem at hand is not a straightforward issue. Differential evolut...

  12. Optimal state discrimination and unstructured search in nonlinear quantum mechanics

    Science.gov (United States)

    Childs, Andrew M.; Young, Joshua

    2016-02-01

    Nonlinear variants of quantum mechanics can solve tasks that are impossible in standard quantum theory, such as perfectly distinguishing nonorthogonal states. Here we derive the optimal protocol for distinguishing two states of a qubit using the Gross-Pitaevskii equation, a model of nonlinear quantum mechanics that arises as an effective description of Bose-Einstein condensates. Using this protocol, we present an algorithm for unstructured search in the Gross-Pitaevskii model, obtaining an exponential improvement over a previous algorithm of Meyer and Wong. This result establishes a limitation on the effectiveness of the Gross-Pitaevskii approximation. More generally, we demonstrate similar behavior under a family of related nonlinearities, giving evidence that the ability to quickly discriminate nonorthogonal states and thereby solve unstructured search is a generic feature of nonlinear quantum mechanics.

  13. Optimal Variational Asymptotic Method for Nonlinear Fractional Partial Differential Equations.

    Science.gov (United States)

    Baranwal, Vipul K; Pandey, Ram K; Singh, Om P

    2014-01-01

    We propose optimal variational asymptotic method to solve time fractional nonlinear partial differential equations. In the proposed method, an arbitrary number of auxiliary parameters γ 0, γ 1, γ 2,… and auxiliary functions H 0(x), H 1(x), H 2(x),… are introduced in the correction functional of the standard variational iteration method. The optimal values of these parameters are obtained by minimizing the square residual error. To test the method, we apply it to solve two important classes of nonlinear partial differential equations: (1) the fractional advection-diffusion equation with nonlinear source term and (2) the fractional Swift-Hohenberg equation. Only few iterations are required to achieve fairly accurate solutions of both the first and second problems.

  14. Dynamic Simulations of Nonlinear Multi-Domain Systems Based on Genetic Programming and Bond Graphs

    Institute of Scientific and Technical Information of China (English)

    DI Wenhui; SUN Bo; XU Lixin

    2009-01-01

    A dynamic simulation method for non-linear systems based on genetic programming (GP) and bond graphs (BG) was developed to improve the design of nonlinear multi-domain energy conversion sys-tems. The genetic operators enable the embryo bond graph to evolve towards the target graph according to the fitness function. Better simulation requires analysis of the optimization of the eigenvalue and the filter circuit evolution. The open topological design and space search ability of this method not only gives a more optimized convergence for the operation, but also reduces the generation time for the new circuit graph for the design of nonlinear multi-domain systems.

  15. Special section on analysis, design and optimization of nonlinear circuits

    Science.gov (United States)

    Okumura, Kohshi

    Nonlinear theory plays an indispensable role in analysis, design and optimization of electric/electronic circuits because almost all circuits in the real world are modeled by nonlinear systems. Also, as the scale and complexity of circuits increase, more effective and systematic methods for the analysis, design and optimization are desired. The goal of this special section is to bring together research results from a variety of perspectives and academic disciplines related to nonlinear electric/electronic circuits.This special section includes three invited papers and six regular papers. The first invited paper by Kennedy entitled “Recent advances in the analysis, design and optimization of digital delta-sigma modulators” gives an overview of digital delta-sigma modulators and some techniques for improving their efficiency. The second invited paper by Trajkovic entitled “DC operating points of transistor circuits” surveys main theoretical results on the analysis of DC operating points of transistor circuits and discusses numerical methods for calculating them. The third invited paper by Nishi et al. entitled “Some properties of solution curves of a class of nonlinear equations and the number of solutions” gives several new theorems concerning solution curves of a class of nonlinear equations which is closely related to DC operating point analysis of nonlinear circuits. The six regular papers cover a wide range of areas such as memristors, chaos circuits, filters, sigma-delta modulators, energy harvesting systems and analog circuits for solving optimization problems.The guest editor would like to express his sincere thanks to the authors who submitted their papers to this special section. He also thanks the reviewers and the editorial committee members of this special section for their support during the review process. Last, but not least, he would also like to acknowledge the editorial staff of the NOLTA journal for their continuous support of this

  16. 利用微粒群优化算法求解非线性规划问题%Applying Particle Swarm Optimization to Solve Nonlinear Programming Problem

    Institute of Scientific and Technical Information of China (English)

    毕荣山; 杨霞; 项曙光

    2004-01-01

    针对过程系统优化中的非线性规划(NLP)问题,应用微粒群优化算法(Particle Swarm Optimization,PSO)对其进行求解.系统介绍了PSO算法的基本思想和解题步骤,通过引入罚函数把PSO算法应用到NLP问题的求解中,可以对一般的NLP问题和非凸的NLP问题进行有效地求解.利用两个测试函数和一个过程系统优化的实例对其进行了测试并与其它算法所得的结果进行了比较.结果表明,PSO算法在使用的普遍性、求解的准确性方面都优于一般的算法,是一种有效的求解NLP问题的方法.

  17. Route Monopolie and Optimal Nonlinear Pricing

    Science.gov (United States)

    Tournut, Jacques

    2003-01-01

    To cope with air traffic growth and congested airports, two solutions are apparent on the supply side: 1) use larger aircraft in the hub and spoke system; or 2) develop new routes through secondary airports. An enlarged route system through secondary airports may increase the proportion of route monopolies in the air transport market.The monopoly optimal non linear pricing policy is well known in the case of one dimension (one instrument, one characteristic) but not in the case of several dimensions. This paper explores the robustness of the one dimensional screening model with respect to increasing the number of instruments and the number of characteristics. The objective of this paper is then to link and fill the gap in both literatures. One of the merits of the screening model has been to show that a great varieD" of economic questions (non linear pricing, product line choice, auction design, income taxation, regulation...) could be handled within the same framework.VCe study a case of non linear pricing (2 instruments (2 routes on which the airline pro_ddes customers with services), 2 characteristics (demand of services on these routes) and two values per characteristic (low and high demand of services on these routes)) and we show that none of the conclusions of the one dimensional analysis remain valid. In particular, upward incentive compatibility constraint may be binding at the optimum. As a consequence, they may be distortion at the top of the distribution. In addition to this, we show that the optimal solution often requires a kind of form of bundling, we explain explicitly distortions and show that it is sometimes optimal for the monopolist to only produce one good (instead of two) or to exclude some buyers from the market. Actually, this means that the monopolist cannot fully apply his monopoly power and is better off selling both goods independently.We then define all the possible solutions in the case of a quadratic cost function for a uniform

  18. Fully localised nonlinear energy growth optimals in pipe flow

    CERN Document Server

    Pringle, Chris C T; Kerswell, Rich R

    2014-01-01

    A new, fully-localised, energy growth optimal is found over large times and in long pipe domains at a given mass flow rate. This optimal emerges at a threshold disturbance energy below which a nonlinear version of the known (streamwise-independent) linear optimal (Schmid \\& Henningson 1994) is selected, and appears to remain the optimal up until the critical energy at which transition is triggered. The form of this optimal is similar to that found in short pipes (Pringle et al.\\ 2012) albeit now with full localisation in the streamwise direction. This fully-localised optimal perturbation represents the best approximation yet of the {\\em minimal seed} (the smallest perturbation capable of triggering a turbulent episode) for `real' (laboratory) pipe flows.

  19. Stochastic optimal control of partially observable nonlinear quasi-integrable Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The stochastic optimal control of partially observable nonlinear quasi-integrable Hamiltonian systems is investigated. First, the stochastic optimal control problem of a partially observable nonlinear quasi-integrable Hamiltonian system is converted into that of a completely observable linear system based on a theorem due to Charalambous and Elliot. Then, the converted stochastic optimal control problem is solved by applying the stochastic averaging method and the stochastic dynamical programming principle. The response of the controlled quasi Hamiltonian system is predicted by solving the averaged Fokker-Planck-Kolmogorov equation and the Riccati equation for the estimated error of system states. As an example to illustrate the procedure and effectiveness of the proposed method, the stochastic optimal control problem of a partially observable two-degree-of-freedom quasi-integrable Hamiltonian system is worked out in detail.

  20. A general-purpose optimization program for engineering design

    Science.gov (United States)

    Vanderplaats, G. N.; Sugimoto, H.

    1986-01-01

    A new general-purpose optimization program for engineering design is described. ADS (Automated Design Synthesis) is a FORTRAN program for nonlinear constrained (or unconstrained) function minimization. The optimization process is segmented into three levels: Strategy, Optimizer, and One-dimensional search. At each level, several options are available so that a total of nearly 100 possible combinations can be created. An example of available combinations is the Augmented Lagrange Multiplier method, using the BFGS variable metric unconstrained minimization together with polynomial interpolation for the one-dimensional search.

  1. Optimization of optical nonlinearities in quantum cascade lasers

    Science.gov (United States)

    Bai, Jing

    Nonlinearities in quantum cascade lasers (QCL's) have wide applications in wavelength tunability and ultra-short pulse generation. In this thesis, optical nonlinearities in InGaAs/AlInAs-based mid-infrared (MIR) QCL's with quadruple resonant levels are investigated. Design optimization for the second-harmonic generation (SHG) of the device is presented. Performance characteristics associated with the third-order nonlinearities are also analyzed. The design optimization for SHG efficiency is obtained utilizing techniques from supersymmetric quantum mechanics (SUSYQM) with both material-dependent effective mass and band nonparabolicity. Current flow and power output of the structure are analyzed by self-consistently solving rate equations for the carriers and photons. Nonunity pumping efficiency from one period of the QCL to the next is taken into account by including all relevant electron-electron (e-e) and longitudinal (LO) phonon scattering mechanisms between the injector/collector and active regions. Two-photon absorption processes are analyzed for the resonant cascading triple levels designed for enhancing SHG. Both sequential and simultaneous two-photon absorption processes are included in the rate-equation model. The current output characteristics for both the original and optimized structures are analyzed and compared. Stronger resonant tunneling in the optimized structure is manifested by enhanced negative differential resistance. Current-dependent linear optical output power is derived based on the steady-state photon populations in the active region. The second-harmonic (SH) power is derived from the Maxwell equations with the phase mismatch included. Due to stronger coupling between lasing levels, the optimized structure has both higher linear and nonlinear output powers. Phase mismatch effects are significant for both structures leading to a substantial reduction of the linear-to-nonlinear conversion efficiency. The optimized structure can be fabricated

  2. Optimal Control Of Nonlinear Wave Energy Point Converters

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Zhou, Qiang; Kramer, Morten

    2013-01-01

    In this paper the optimal control law for a single nonlinear point absorber in irregular sea-states is derived, and proven to be a closed-loop controller with feedback from measured displacement, velocity and acceleration of the floater. However, a non-causal integral control component dependent...... idea behind the control strategy is to enforce the stationary velocity response of the absorber into phase with the wave excitation force at any time. The controller is optimal under monochromatic wave excitation. It is demonstrated that the devised causal controller, in plane irregular sea states......, absorbs almost the same power as the optimal controller....

  3. Nonlinear programming strategies for source detection of municipal water networks.

    Energy Technology Data Exchange (ETDEWEB)

    van Bloemen Waanders, Bart Gustaaf; Biegler, Lorenz T. (Carnegie Mellon University, Pittsburgh, PA); Bartlett, Roscoe Ainsworth; Laird, Carl Damon (Carnegie Mellon University, Pittsburgh, PA)

    2003-01-01

    Increasing concerns for the security of the national infrastructure have led to a growing need for improved management and control of municipal water networks. To deal with this issue, optimization offers a general and extremely effective method to identify (possibly harmful) disturbances, assess the current state of the network, and determine operating decisions that meet network requirements and lead to optimal performance. This paper details an optimization strategy for the identification of source disturbances in the network. Here we consider the source inversion problem modeled as a nonlinear programming problem. Dynamic behavior of municipal water networks is simulated using EPANET. This approach allows for a widely accepted, general purpose user interface. For the source inversion problem, flows and concentrations of the network will be reconciled and unknown sources will be determined at network nodes. Moreover, intrusive optimization and sensitivity analysis techniques are identified to assess the influence of various parameters and models in the network in a computational efficient manner. A number of numerical comparisons are made to demonstrate the effectiveness of various optimization approaches.

  4. An SQP Algorithm for Recourse-based Stochastic Nonlinear Programming

    Directory of Open Access Journals (Sweden)

    Xinshun Ma

    2016-05-01

    Full Text Available The stochastic nonlinear programming problem with completed recourse and nonlinear constraints is studied in this paper. We present a sequential quadratic programming method for solving the problem based on the certainty extended nonlinear model. This algorithm is obtained by combing the active set method and filter method. The convergence of the method is established under some standard assumptions. Moreover, a practical design is presented and numerical results are provided.

  5. Tilt stability in nonlinear programming under Mangasarian-Fromovitz constraint qualification

    OpenAIRE

    Mordukhovich, B. S.; Outrata, J. (Jiří)

    2013-01-01

    The paper concerns the study of tilt stability of local minimizers in standard problems of nonlinear programming. This notion plays an important role in both theoretical and numerical aspects of optimization and has drawn a lot of attention in optimization theory and its applications, especially in recent years. Under the classical Mangasarian–Fromovitz Constraint Qualification, we establish relationships between tilt stability and some other stability notions in constrained optimization. I...

  6. Nonlinear Non-convex Optimization of Hydraulic Networks

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat; Kallesøe, Carsten; Leth, John-Josef

    2013-01-01

    Pressure management in water supply systems is an effective way to reduce the leakage in a system. In this paper, the pressure management and the reduction of power consumption of a water supply system is formulated as an optimization problem. The problem is to minimize the power consumption...... in pumps and also to regulate the pressure at the end-user valves to a desired value. The optimization problem which is solved is a nonlinear and non-convex optimization. The barrier method is used to solve this problem. The modeling framework and the optimization technique which are used are general....... They can be used for a general hydraulic networks to optimize the leakage and energy consumption and to satisfy the demands at the end-users. The results in this paper show that the power consumption of the pumps is reduced....

  7. An Algorithm for Linearly Constrained Nonlinear Programming Programming Problems.

    Science.gov (United States)

    1980-01-01

    ALGORITHM FOR LINEARLY CONSTRAINED NONLINEAR PROGRAMMING PROBLEMS Mokhtar S. Bazaraa and Jamie J. Goode In this paper an algorithm for solving a linearly...distance pro- gramr.ing, as in the works of Bazaraa and Goode 12], and Wolfe [16 can be used for solving this problem. Special methods that take advantage of...34 Pacific Journal of Mathematics, Volume 16, pp. 1-3, 1966. 2. M. S. Bazaraa and J. j. Goode, "An Algorithm for Finding the Shortest Element of a

  8. A nonlinear optimization approach for UPFC power flow control and voltage security

    Science.gov (United States)

    Kalyani, Radha Padma

    This dissertation provides a nonlinear optimization algorithm for the long term control of Unified Power Flow Controller (UPFC) to remove overloads and voltage violations by optimized control of power flows and voltages in the power network. It provides a control strategy for finding the long term control settings of one or more UPFCs by considering all the possible settings and all the (N-1) topologies of a power network. Also, a simple evolutionary algorithm (EA) has been proposed for the placement of more than one UPFC in large power systems. In this publication dissertation, Paper 1 proposes the algorithm and provides the mathematical and empirical evidence. Paper 2 focuses on comparing the proposed algorithm with Linear Programming (LP) based corrective method proposed in literature recently and mitigating cascading failures in larger power systems. EA for placement along with preliminary results of the nonlinear optimization is given in Paper 3.

  9. Non-linear DSGE Models and The Optimized Particle Filter

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller

    This paper improves the accuracy and speed of particle filtering for non-linear DSGE models with potentially non-normal shocks. This is done by introducing a new proposal distribution which i) incorporates information from new observables and ii) has a small optimization step that minimizes...... the distance to the optimal proposal distribution. A particle filter with this proposal distribution is shown to deliver a high level of accuracy even with relatively few particles, and this filter is therefore much more efficient than the standard particle filter....

  10. Converting general nonlinear programming problems into separable programming problems with feedforward neural networks.

    Science.gov (United States)

    Lu, Bao-Liang; Ito, Koji

    2003-09-01

    In this paper we present a method for converting general nonlinear programming (NLP) problems into separable programming (SP) problems by using feedforward neural networks (FNNs). The basic idea behind the method is to use two useful features of FNNs: their ability to approximate arbitrary continuous nonlinear functions with a desired degree of accuracy and their ability to express nonlinear functions in terms of parameterized compositions of functions of single variables. According to these two features, any nonseparable objective functions and/or constraints in NLP problems can be approximately expressed as separable functions with FNNs. Therefore, any NLP problems can be converted into SP problems. The proposed method has three prominent features. (a) It is more general than existing transformation techniques; (b) it can be used to formulate optimization problems as SP problems even when their precise analytic objective function and/or constraints are unknown; (c) the SP problems obtained by the proposed method may highly facilitate the selection of grid points for piecewise linear approximation of nonlinear functions. We analyze the computational complexity of the proposed method and compare it with an existing transformation approach. We also present several examples to demonstrate the method and the performance of the simplex method with the restricted basis entry rule for solving SP problems.

  11. A high-performance feedback neural network for solving convex nonlinear programming problems.

    Science.gov (United States)

    Leung, Yee; Chen, Kai-Zhou; Gao, Xing-Bao

    2003-01-01

    Based on a new idea of successive approximation, this paper proposes a high-performance feedback neural network model for solving convex nonlinear programming problems. Differing from existing neural network optimization models, no dual variables, penalty parameters, or Lagrange multipliers are involved in the proposed network. It has the least number of state variables and is very simple in structure. In particular, the proposed network has better asymptotic stability. For an arbitrarily given initial point, the trajectory of the network converges to an optimal solution of the convex nonlinear programming problem under no more than the standard assumptions. In addition, the network can also solve linear programming and convex quadratic programming problems, and the new idea of a feedback network may be used to solve other optimization problems. Feasibility and efficiency are also substantiated by simulation examples.

  12. Nonlinear programming extensions to rational function approximations of unsteady aerodynamics

    Science.gov (United States)

    Tiffany, Sherwood H.; Adams, William M., Jr.

    1987-01-01

    This paper deals with approximating unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft. Two methods of formulating these approximations are extended to include both the same flexibility in constraining them and the same methodology in optimizing nonlinear parameters as another currently used 'extended least-squares' method. Optimal selection of 'nonlinear' parameters is made in each of the three methods by use of the same nonlinear (nongradient) optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is of lower order than that required when no optimization of the nonlinear terms is performed. The free 'linear' parameters are determined using least-squares matrix techniques on a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from the different approaches are described, and results are presented which show comparative evaluations from application of each of the extended methods to a numerical example. The results obtained for the example problem show a significant (up to 63 percent) reduction in the number of differential equations used to represent the unsteady aerodynamic forces in linear time-invariant equations of motion as compared to a conventional method in which nonlinear terms are not optimized.

  13. Application of Optimization Techniques to a Nonlinear Problem of Communication Network Design With Nonlinear Constraints

    Science.gov (United States)

    2002-06-01

    IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE 2002 1033 Application of Optimization Techniques to a Nonlinear Problem of Communication... IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE 2002 We consider J source-destination pairs, each of which is assigned a fixed multihop...blocking probabilities are at the maximum permitted value. IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE

  14. Approximating electrical distribution networks via mixed-integer nonlinear programming

    Energy Technology Data Exchange (ETDEWEB)

    Lakhera, Sanyogita [Citibank, New York City, NY (United States); Shanbhag, Uday V. [Department of Industrial and Enterprise Systems Engineering at the University of Illinois at Urbana-Champaign, 117 Transportation Building, 104 S. Mathews Ave., Urbana, IL 61801 (United States); McInerney, Michael K. [Construction Engineering Research Laboratory (CERL) (United States)

    2011-02-15

    Given urban data derived from a geographical information system (GIS), we consider the problem of constructing an estimate of the electrical distribution system of an urban area. We employ the image data to obtain an approximate electrical load distribution over a network of a prespecificed discretization. Together with partial information about existing substations, we determine the optimal placement of electrical substations to sustain such a load that minimizes the cost of capital and losses. This requires solving large-scale quadratic programs with discrete variables for which we present a novel penalization-smoothing scheme. The choice of locations allows one to determine the optimal flows in this network, as required by physical requirements which provide us with an approximation of the distribution network. Furthermore, the scheme allows for approximating systems in the presence of no-go areas, such as lakes and fields. We examine the performance of our algorithm on the solution of a set of location problems and observe that the scheme is capable of solving large-scale instances, well beyond the realm of existing mixed-integer nonlinear programming solvers. We conclude with a case study in which a stage-wise extension of this scheme is developed to reflect the temporal evolution of load. (author)

  15. A new method for nonlinear optimization - experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Loskovska, S.; Percinkova, B.

    1994-12-31

    In this paper an application of a new method for nonlinear optimization problems suggested and presented by B. Percinkova is performed. The method is originally developed and applicated on nonlinear systems. Basis of the method is following: A system of n-nonlinear equations gives as F{sub i}(x{sub 1}, x{sub 2}, x{sub 3}, ..., x{sub n}) = 0; 1 = 1, 2, ..., n and solution domain x{sub pi} {<=} x{sub i} {<=} x{sub ki} i = 1, 2, ..., n is modified by introducing a new variable z. The new system is given by: F{sub i}(x{sub 1}, x{sub 2}, x{sub 3}, ..., x{sub n}) = z; i = 1, 2, ..., n. The system defines a curve in (n + 1) dimensional space. System`s point X = (x{sub i}, x{sub 2}, x{sub 3}, ..., x{sub n}, z) that, the solution of the system is obtained using an interative procedure moving along the curve until the point with z = 0 is reached. In order to applicate method on optimization problems, a basic optimization model given with (min, max)F{sub i}(x{sub 1}, x{sub 2}, x{sub 3}, ..., x{sub n}) with the following optimization space: F{sub i}(x{sub 1}, x{sub 2}, x{sub 3}, ..., x{sub n}) ({<=}{>=})0 : i = 1, 2, ..., n is transformed into a system equivalent to system (2) by (dF/dx{sub i}) = z; i - 1, 2, ..., n. The main purpose of this work is to make relevant evaluation of the method by standard test problems.

  16. Spin glasses and nonlinear constraints in portfolio optimization

    Energy Technology Data Exchange (ETDEWEB)

    Andrecut, M., E-mail: mircea.andrecut@gmail.com

    2014-01-17

    We discuss the portfolio optimization problem with the obligatory deposits constraint. Recently it has been shown that as a consequence of this nonlinear constraint, the solution consists of an exponentially large number of optimal portfolios, completely different from each other, and extremely sensitive to any changes in the input parameters of the problem, making the concept of rational decision making questionable. Here we reformulate the problem using a quadratic obligatory deposits constraint, and we show that from the physics point of view, finding an optimal portfolio amounts to calculating the mean-field magnetizations of a random Ising model with the constraint of a constant magnetization norm. We show that the model reduces to an eigenproblem, with 2N solutions, where N is the number of assets defining the portfolio. Also, in order to illustrate our results, we present a detailed numerical example of a portfolio of several risky common stocks traded on the Nasdaq Market.

  17. Spin glasses and nonlinear constraints in portfolio optimization

    Science.gov (United States)

    Andrecut, M.

    2014-01-01

    We discuss the portfolio optimization problem with the obligatory deposits constraint. Recently it has been shown that as a consequence of this nonlinear constraint, the solution consists of an exponentially large number of optimal portfolios, completely different from each other, and extremely sensitive to any changes in the input parameters of the problem, making the concept of rational decision making questionable. Here we reformulate the problem using a quadratic obligatory deposits constraint, and we show that from the physics point of view, finding an optimal portfolio amounts to calculating the mean-field magnetizations of a random Ising model with the constraint of a constant magnetization norm. We show that the model reduces to an eigenproblem, with 2N solutions, where N is the number of assets defining the portfolio. Also, in order to illustrate our results, we present a detailed numerical example of a portfolio of several risky common stocks traded on the Nasdaq Market.

  18. Economic Optimization of Spray Dryer Operation using Nonlinear Model Predictive Control with State Estimation

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Jørgensen, John Bagterp; Rawlings, James B.

    2015-01-01

    In this paper, we develop an economically optimizing Nonlinear Model Predictive Controller (E-NMPC) for a complete spray drying plant with multiple stages. In the E-NMPC the initial state is estimated by an extended Kalman Filter (EKF) with noise covariances estimated by an autocovariance least...... squares method (ALS). We present a model for the spray drying plant and use this model for simulation as well as for prediction in the E-NMPC. The open-loop optimal control problem in the E-NMPC is solved using the single-shooting method combined with a quasi-Newton Sequential Quadratic programming (SQP...

  19. Optimal Control for Multistage Nonlinear Dynamic System of Microbial Bioconversion in Batch Culture

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2011-01-01

    Full Text Available In batch culture of glycerol biodissimilation to 1,3-propanediol (1,3-PD, the aim of adding glycerol is to obtain as much 1,3-PD as possible. Taking the yield intensity of 1,3-PD as the performance index and the initial concentration of biomass, glycerol, and terminal time as the control vector, we propose an optimal control model subject to a multistage nonlinear dynamical system and constraints of continuous state. A computational approach is constructed to seek the solution of the above model. Firstly, we transform the optimal control problem into the one with fixed terminal time. Secondly, we transcribe the optimal control model into an unconstrained one based on the penalty functions and an extension of the state space. Finally, by approximating the control function with simple functions, we transform the unconstrained optimal control problem into a sequence of nonlinear programming problems, which can be solved using gradient-based optimization techniques. The convergence analysis and optimality function of the algorithm are also investigated. Numerical results show that, by employing the optimal control, the concentration of 1,3-PD at the terminal time can be increased, compared with the previous results.

  20. A General Nonlinear Optimization Algorithm for Lower Bound Limit Analysis

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Damkilde, Lars

    2003-01-01

    The non-linear programming problem associated with the discrete lower bound limit analysis problem is treated by means of an algorithm where the need to linearize the yield criteria is avoided. The algorithm is an interior point method and is completely general in the sense that no particular...... finite element discretization or yield criterion is required. As with interior point methods for linear programming the number of iterations is affected only little by the problem size. Some practical implementation issues are discussed with reference to the special structure of the common lower bound...

  1. Simulation-based optimal Bayesian experimental design for nonlinear systems

    KAUST Repository

    Huan, Xun

    2013-01-01

    The optimal selection of experimental conditions is essential to maximizing the value of data for inference and prediction, particularly in situations where experiments are time-consuming and expensive to conduct. We propose a general mathematical framework and an algorithmic approach for optimal experimental design with nonlinear simulation-based models; in particular, we focus on finding sets of experiments that provide the most information about targeted sets of parameters.Our framework employs a Bayesian statistical setting, which provides a foundation for inference from noisy, indirect, and incomplete data, and a natural mechanism for incorporating heterogeneous sources of information. An objective function is constructed from information theoretic measures, reflecting expected information gain from proposed combinations of experiments. Polynomial chaos approximations and a two-stage Monte Carlo sampling method are used to evaluate the expected information gain. Stochastic approximation algorithms are then used to make optimization feasible in computationally intensive and high-dimensional settings. These algorithms are demonstrated on model problems and on nonlinear parameter inference problems arising in detailed combustion kinetics. © 2012 Elsevier Inc.

  2. An hp symplectic pseudospectral method for nonlinear optimal control

    Science.gov (United States)

    Peng, Haijun; Wang, Xinwei; Li, Mingwu; Chen, Biaosong

    2017-01-01

    An adaptive symplectic pseudospectral method based on the dual variational principle is proposed and is successfully applied to solving nonlinear optimal control problems in this paper. The proposed method satisfies the first order necessary conditions of continuous optimal control problems, also the symplectic property of the original continuous Hamiltonian system is preserved. The original optimal control problem is transferred into a set of nonlinear equations which can be solved easily by Newton-Raphson iterations, and the Jacobian matrix is found to be sparse and symmetric. The proposed method, on one hand, exhibits exponent convergence rates when the number of collocation points are increasing with the fixed number of sub-intervals; on the other hand, exhibits linear convergence rates when the number of sub-intervals is increasing with the fixed number of collocation points. Furthermore, combining with the hp method based on the residual error of dynamic constraints, the proposed method can achieve given precisions in a few iterations. Five examples highlight the high precision and high computational efficiency of the proposed method.

  3. Global Optimization of Nonlinear Blend-Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Pedro A. Castillo Castillo

    2017-04-01

    Full Text Available The scheduling of gasoline-blending operations is an important problem in the oil refining industry. This problem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but also non-convex nonlinear behavior, due to the blending of various materials with different quality properties. In this work, a global optimization algorithm is proposed to solve a previously published continuous-time mixed-integer nonlinear scheduling model for gasoline blending. The model includes blend recipe optimization, the distribution problem, and several important operational features and constraints. The algorithm employs piecewise McCormick relaxation (PMCR and normalized multiparametric disaggregation technique (NMDT to compute estimates of the global optimum. These techniques partition the domain of one of the variables in a bilinear term and generate convex relaxations for each partition. By increasing the number of partitions and reducing the domain of the variables, the algorithm is able to refine the estimates of the global solution. The algorithm is compared to two commercial global solvers and two heuristic methods by solving four examples from the literature. Results show that the proposed global optimization algorithm performs on par with commercial solvers but is not as fast as heuristic approaches.

  4. On filter-successive linearization methods for nonlinear semidefinite programming

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper we present a filter-successive linearization method with trust region for solutions of nonlinear semidefinite programming. Such a method is based on the concept of filter for nonlinear programming introduced by Fletcher and Leyffer in 2002. We describe the new algorithm and prove its global convergence under weaker assumptions. Some numerical results are reported and show that the new method is potentially effcient.

  5. On filter-successive linearization methods for nonlinear semidefinite programming

    Institute of Scientific and Technical Information of China (English)

    LI ChengJin; SUN WenYui

    2009-01-01

    In this paper we present a filter-successive linearization method with trust region for solutions of nonlinear semidefinite programming. Such a method is based on the concept of filter for nonlinear programming introduced by Fletcher and Leyffer in 2002. We describe the new algorithm and prove its global convergence under weaker assumptions. Some numerical results are reported and show that the new method is potentially efficient.

  6. Infinite horizon self-learning optimal control of nonaffine discrete-time nonlinear systems.

    Science.gov (United States)

    Wei, Qinglai; Liu, Derong; Yang, Xiong

    2015-04-01

    In this paper, a novel iterative adaptive dynamic programming (ADP)-based infinite horizon self-learning optimal control algorithm, called generalized policy iteration algorithm, is developed for nonaffine discrete-time (DT) nonlinear systems. Generalized policy iteration algorithm is a general idea of interacting policy and value iteration algorithms of ADP. The developed generalized policy iteration algorithm permits an arbitrary positive semidefinite function to initialize the algorithm, where two iteration indices are used for policy improvement and policy evaluation, respectively. It is the first time that the convergence, admissibility, and optimality properties of the generalized policy iteration algorithm for DT nonlinear systems are analyzed. Neural networks are used to implement the developed algorithm. Finally, numerical examples are presented to illustrate the performance of the developed algorithm.

  7. Nonlinear Identification Using Orthogonal Forward Regression With Nested Optimal Regularization.

    Science.gov (United States)

    Hong, Xia; Chen, Sheng; Gao, Junbin; Harris, Chris J

    2015-12-01

    An efficient data based-modeling algorithm for nonlinear system identification is introduced for radial basis function (RBF) neural networks with the aim of maximizing generalization capability based on the concept of leave-one-out (LOO) cross validation. Each of the RBF kernels has its own kernel width parameter and the basic idea is to optimize the multiple pairs of regularization parameters and kernel widths, each of which is associated with a kernel, one at a time within the orthogonal forward regression (OFR) procedure. Thus, each OFR step consists of one model term selection based on the LOO mean square error (LOOMSE), followed by the optimization of the associated kernel width and regularization parameter, also based on the LOOMSE. Since like our previous state-of-the-art local regularization assisted orthogonal least squares (LROLS) algorithm, the same LOOMSE is adopted for model selection, our proposed new OFR algorithm is also capable of producing a very sparse RBF model with excellent generalization performance. Unlike our previous LROLS algorithm which requires an additional iterative loop to optimize the regularization parameters as well as an additional procedure to optimize the kernel width, the proposed new OFR algorithm optimizes both the kernel widths and regularization parameters within the single OFR procedure, and consequently the required computational complexity is dramatically reduced. Nonlinear system identification examples are included to demonstrate the effectiveness of this new approach in comparison to the well-known approaches of support vector machine and least absolute shrinkage and selection operator as well as the LROLS algorithm.

  8. Non-linear theory of elasticity and optimal design

    CERN Document Server

    Ratner, LW

    2003-01-01

    In order to select an optimal structure among possible similar structures, one needs to compare the elastic behavior of the structures. A new criterion that describes elastic behavior is the rate of change of deformation. Using this criterion, the safe dimensions of a structure that are required by the stress distributed in a structure can be calculated. The new non-linear theory of elasticity allows one to determine the actual individual limit of elasticity/failure of a structure using a simple non-destructive method of measurement of deformation on the model of a structure while presently it

  9. Optimized interpolations and nonlinearity in numerical studies of woodwind instruments

    CERN Document Server

    Skouroupathis, A

    2005-01-01

    We study the impedance spectra of woodwind instruments with arbitrary axisymmetric geometry. We perform piecewise interpolations of the instruments' profile, using interpolating functions amenable to analytic solutions of the Webster equation. Our algorithm optimizes on the choice of such functions, while ensuring compatibility of wavefronts at the joining points. Employing a standard mathematical model of a single-reed mouthpiece as well as the time-domain reflection function, which we derive from our impedance results, we solve the Schumacher equation for the pressure evolution in time. We make analytic checks that, despite the nonlinearity in the reed model and in the evolution equation, solutions are unique and singularity-free.

  10. Transmitter and Precoding Order Optimization for Nonlinear Downlink Beamforming

    CERN Document Server

    Michel, Thomas

    2007-01-01

    The downlink of a multiple-input multiple output (MIMO) broadcast channel (BC) is considered, where each receiver is equipped with a single antenna and the transmitter performs nonlinear Dirty-Paper Coding (DPC). We present an efficient algorithm that finds the optimum transmit filters and power allocation as well as the optimum precoding order(s) possibly affording time-sharing between individual DPC orders. Subsequently necessary and sufficient conditions for the optimality of an arbitrary precoding order are derived. Based on these we propose a suboptimal algorithm showing excellent performance and having low complexity.

  11. A Projected Lagrangian Algorithm for Nonlinear Minimax Optimization.

    Science.gov (United States)

    1979-11-01

    T Problem 5: Charalambous and Bandler (1976) # 1. f 1(x ) 2- + _ f3(x) = 2 exp(-x+ X2) Starting Pointz xO (1,..1)T 61 Problem 6: Rosen and Suzuki...Charalambous and Bandler ,#l) 2 3 1 6 6 6 (Rosen and Suzuki) 4 4 2 7 10 The results demonstrate that at least on a limited set of test problems the...and Numerical Methods for Stiff Differential Equations. Charalambous, C. and J.W. Bandler (1974). Nonlinear minimax optimization as a sequence of least

  12. Adaptive nearly optimal control for a class of continuous-time nonaffine nonlinear systems with inequality constraints.

    Science.gov (United States)

    Fan, Quan-Yong; Yang, Guang-Hong

    2017-01-01

    The state inequality constraints have been hardly considered in the literature on solving the nonlinear optimal control problem based the adaptive dynamic programming (ADP) method. In this paper, an actor-critic (AC) algorithm is developed to solve the optimal control problem with a discounted cost function for a class of state-constrained nonaffine nonlinear systems. To overcome the difficulties resulting from the inequality constraints and the nonaffine nonlinearities of the controlled systems, a novel transformation technique with redesigned slack functions and a pre-compensator method are introduced to convert the constrained optimal control problem into an unconstrained one for affine nonlinear systems. Then, based on the policy iteration (PI) algorithm, an online AC scheme is proposed to learn the nearly optimal control policy for the obtained affine nonlinear dynamics. Using the information of the nonlinear model, novel adaptive update laws are designed to guarantee the convergence of the neural network (NN) weights and the stability of the affine nonlinear dynamics without the requirement for the probing signal. Finally, the effectiveness of the proposed method is validated by simulation studies.

  13. Approximate optimal control for a class of nonlinear discrete-time systems with saturating actuators

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, we solve the approximate optimal control problem for a class of nonlinear discrete-time systems with saturating actu- ators via greedy iterative Heuristic Dynamic Programming (GI-HDP) algorithm. In order to deal with the saturating problem of actu- ators, a novel nonquadratic functional is developed. Based on the nonquadratic functional, the GI-HDP algorithm is introduced to obtain the optimal saturated controller with a rigorous convergence analysis. For facilitating the implementation of the iterative algo- rithm, three neural networks are used to approximate the value function, compute the optimal control policy and model the unknown plant, respectively. An example is given to demonstrate the validity of the proposed optimal control scheme.

  14. A general non-linear optimization algorithm for lower bound limit analysis

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Damkilde, Lars

    2003-01-01

    The non-linear programming problem associated with the discrete lower bound limit analysis problem is treated by means of an algorithm where the need to linearize the yield criteria is avoided. The algorithm is an interior point method and is completely general in the sense that no particular...... finite element discretization or yield criterion is required. As with interior point methods for linear programming the number of iterations is affected only little by the problem size. Some practical implementation issues are discussed with reference to the special structure of the common lower bound...... load optimization problem. and finally the efficiency and accuracy of the method is demonstrated by means of examples of plate and slab structures obeying different non-linear yield criteria. Copyright (C) 2002 John Wiley Sons. Ltd....

  15. Choosing Markovian Credit Migration Matrices by Nonlinear Optimization

    Directory of Open Access Journals (Sweden)

    Maximilian Hughes

    2016-08-01

    Full Text Available Transition matrices, containing credit risk information in the form of ratings based on discrete observations, are published annually by rating agencies. A substantial issue arises, as for higher rating classes practically no defaults are observed yielding default probabilities of zero. This does not always reflect reality. To circumvent this shortcoming, estimation techniques in continuous-time can be applied. However, raw default data may not be available at all or not in the desired granularity, leaving the practitioner to rely on given one-year transition matrices. Then, it becomes necessary to transform the one-year transition matrix to a generator matrix. This is known as the embedding problem and can be formulated as a nonlinear optimization problem, minimizing the distance between the exponential of a potential generator matrix and the annual transition matrix. So far, in credit risk-related literature, solving this problem directly has been avoided, but approximations have been preferred instead. In this paper, we show that this problem can be solved numerically with sufficient accuracy, thus rendering approximations unnecessary. Our direct approach via nonlinear optimization allows one to consider further credit risk-relevant constraints. We demonstrate that it is thus possible to choose a proper generator matrix with additional structural properties.

  16. Non-linear and signal energy optimal asymptotic filter design

    Directory of Open Access Journals (Sweden)

    Josef Hrusak

    2003-10-01

    Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.

  17. Incorporation of Fixed Installation Costs into Optimization of Groundwater Remediation with a New Efficient Surrogate Nonlinear Mixed Integer Optimization Algorithm

    Science.gov (United States)

    Shoemaker, Christine; Wan, Ying

    2016-04-01

    Optimization of nonlinear water resources management issues which have a mixture of fixed (e.g. construction cost for a well) and variable (e.g. cost per gallon of water pumped) costs has been not well addressed because prior algorithms for the resulting nonlinear mixed integer problems have required many groundwater simulations (with different configurations of decision variable), especially when the solution space is multimodal. In particular heuristic methods like genetic algorithms have often been used in the water resources area, but they require so many groundwater simulations that only small systems have been solved. Hence there is a need to have a method that reduces the number of expensive groundwater simulations. A recently published algorithm for nonlinear mixed integer programming using surrogates was shown in this study to greatly reduce the computational effort for obtaining accurate answers to problems involving fixed costs for well construction as well as variable costs for pumping because of a substantial reduction in the number of groundwater simulations required to obtain an accurate answer. Results are presented for a US EPA hazardous waste site. The nonlinear mixed integer surrogate algorithm is general and can be used on other problems arising in hydrology with open source codes in Matlab and python ("pySOT" in Bitbucket).

  18. Parallel Programming Archetypes in Combinatorics and Optimization

    Science.gov (United States)

    1995-06-12

    A parallel programming archetype is a language independent program design strategy. We describe two archetypes in combinatorics and optimization...the systematic design of efficient sequential and parallel programs. The research whose results are presented in this document is part of the ongoing project on Parallel Programming Archetype.

  19. Noise and nonlinear estimation with optimal schemes in DTI.

    Science.gov (United States)

    Özcan, Alpay

    2010-11-01

    In general, the estimation of the diffusion properties for diffusion tensor experiments (DTI) is accomplished via least squares estimation (LSE). The technique requires applying the logarithm to the measurements, which causes bad propagation of errors. Moreover, the way noise is injected to the equations invalidates the least squares estimate as the best linear unbiased estimate. Nonlinear estimation (NE), despite its longer computation time, does not possess any of these problems. However, all of the conditions and optimization methods developed in the past are based on the coefficient matrix obtained in a LSE setup. In this article, NE for DTI is analyzed to demonstrate that any result obtained relatively easily in a linear algebra setup about the coefficient matrix can be applied to the more complicated NE framework. The data, obtained using non-optimal and optimized diffusion gradient schemes, are processed with NE. In comparison with LSE, the results show significant improvements, especially for the optimization criterion. However, NE does not resolve the existing conflicts and ambiguities displayed with LSE methods.

  20. An Adaptive Neural Network Model for Nonlinear Programming Problems

    Institute of Scientific and Technical Information of China (English)

    Xiang-sun Zhang; Xin-jian Zhuo; Zhu-jun Jing

    2002-01-01

    In this paper a canonical neural network with adaptively changing synaptic weights and activation function parameters is presented to solve general nonlinear programming problems. The basic part of the model is a sub-network used to find a solution of quadratic programming problems with simple upper and lower bounds. By sequentially activating the sub-network under the control of an external computer or a special analog or digital processor that adjusts the weights and parameters, one then solves general nonlinear programming problems. Convergence proof and numerical results are given.

  1. Using genetic programming to discover nonlinear variable interactions.

    Science.gov (United States)

    Westbury, Chris; Buchanan, Lori; Sanderson, Michael; Rhemtulla, Mijke; Phillips, Leah

    2003-05-01

    Psychology has to deal with many interacting variables. The analyses usually used to uncover such relationships have many constraints that limit their utility. We briefly discuss these and describe recent work that uses genetic programming to evolve equations to combine variables in nonlinear ways in a number of different domains. We focus on four studies of interactions from lexical access experiments and psychometric problems. In all cases, genetic programming described nonlinear combinations of items in a manner that was subsequently independently verified. We discuss the general implications of genetic programming and related computational methods for multivariate problems in psychology.

  2. Optimal control for nonlinear dynamical system of microbial fed-batch culture

    Science.gov (United States)

    Liu, Chongyang

    2009-10-01

    In fed-batch culture of glycerol bio-dissimilation to 1, 3-propanediol (1, 3-PD), the aim of adding glycerol is to obtain as much 1, 3-PD as possible. So a proper feeding rate is required during the process. Taking the concentration of 1, 3-PD at the terminal time as the performance index and the feeding rate of glycerol as the control function, we propose an optimal control model subject to a nonlinear dynamical system and constraints of continuous state and non-stationary control. A computational approach is constructed to seek the solution of the above model in two aspects. On the one hand we transcribe the optimal control model into an unconstrained one based on the penalty functions and an extension of the state space; on the other hand, by approximating the control function with simple functions, we transform the unconstrained optimal control problem into a sequence of nonlinear programming problems, which can be solved using gradient-based optimization techniques. The convergence analysis of this approximation is also investigated. Numerical results show that, by employing the optimal control policy, the concentration of 1, 3-PD at the terminal time can be increased considerably.

  3. A Space-Time Finite Element Model for Design and Control Optimization of Nonlinear Dynamic Response

    Directory of Open Access Journals (Sweden)

    P.P. Moita

    2008-01-01

    Full Text Available A design and control sensitivity analysis and multicriteria optimization formulation is derived for flexible mechanical systems. This formulation is implemented in an optimum design code and it is applied to the nonlinear dynamic response. By extending the spatial domain to the space-time domain and treating the design variables as control variables that do not change with time, the design space is included in the control space. Thus, one can unify in one single formulation the problems of optimum design and optimal control. Structural dimensions as well as lumped damping and stiffness parameters plus control driven forces, are considered as decision variables. The dynamic response and its sensitivity with respect to the design and control variables are discretized via space-time finite elements, and are integrated at-once, as it is traditionally used for static response. The adjoint system approach is used to determine the design sensitivities. Design optimization numerical examples are performed. Nonlinear programming and optimality criteria may be used for the optimization process. A normalized weighted bound formulation is used to handle multicriteria problems.

  4. An Evaluation and Comparison of Three Nonlinear Programming Codes

    Science.gov (United States)

    1976-03-01

    sixth problem was selected from the Himmelblau collection [Ref. 11] and the remaining two were adaptations cf an inventory model and an entropy model...both require utilization of the main nonlinear codes with their high core and corresponding time requirements. Himmelblau estimated preparation times...Nonlinear Program mincf Moclel for "Determining a Huni/Eions ITix, By R*.J. CTasen, E.¥.Graves ana J.Y7 Iu, 3arch 1974. 11. Himmelblau . D.M., Applied

  5. Design optimization of a twist compliant mechanism with nonlinear stiffness

    Science.gov (United States)

    Tummala, Y.; Frecker, M. I.; Wissa, A. A.; Hubbard, J. E., Jr.

    2014-10-01

    A contact-aided compliant mechanism called a twist compliant mechanism (TCM) is presented in this paper. This mechanism has nonlinear stiffness when it is twisted in both directions along its axis. The inner core of the mechanism is primarily responsible for its flexibility in one twisting direction. The contact surfaces of the cross-members and compliant sectors are primarily responsible for its high stiffness in the opposite direction. A desired twist angle in a given direction can be achieved by tailoring the stiffness of a TCM. The stiffness of a compliant twist mechanism can be tailored by varying thickness of its cross-members, thickness of the core and thickness of its sectors. A multi-objective optimization problem with three objective functions is proposed in this paper, and used to design an optimal TCM with desired twist angle. The objective functions are to minimize the mass and maximum von-Mises stress observed, while minimizing or maximizing the twist angles under specific loading conditions. The multi-objective optimization problem proposed in this paper is solved for an ornithopter flight research platform as a case study, with the goal of using the TCM to achieve passive twisting of the wing during upstroke, while keeping the wing fully extended and rigid during the downstroke. Prototype TCMs have been fabricated using 3D printing and tested. Testing results are also presented in this paper.

  6. Optimization of Nonlinear Transport-Production Task of Medical Waste

    Science.gov (United States)

    Michlowicz, Edward

    2012-09-01

    The paper reflects on optimization of transportation - production tasks for the processing of medical waste. For the existing network of collection points and processing plants, according to its algorithm, the optimal allocation of tasks to the cost of transport to the respective plants has to be determined. It was assumed that the functions determining the processing costs are polynomials of the second degree. To solve the problem, a program written in MatLab environment equalization algorithm based on a marginal cost JCC was used.

  7. Robust Homography Estimation Based on Nonlinear Least Squares Optimization

    Directory of Open Access Journals (Sweden)

    Wei Mou

    2014-01-01

    Full Text Available The homography between image pairs is normally estimated by minimizing a suitable cost function given 2D keypoint correspondences. The correspondences are typically established using descriptor distance of keypoints. However, the correspondences are often incorrect due to ambiguous descriptors which can introduce errors into following homography computing step. There have been numerous attempts to filter out these erroneous correspondences, but it is unlikely to always achieve perfect matching. To deal with this problem, we propose a nonlinear least squares optimization approach to compute homography such that false matches have no or little effect on computed homography. Unlike normal homography computation algorithms, our method formulates not only the keypoints’ geometric relationship but also their descriptor similarity into cost function. Moreover, the cost function is parametrized in such a way that incorrect correspondences can be simultaneously identified while the homography is computed. Experiments show that the proposed approach can perform well even with the presence of a large number of outliers.

  8. Indoor Wireless Localization-hybrid and Unconstrained Nonlinear Optimization Approach

    Directory of Open Access Journals (Sweden)

    R. Jayabharathy

    2013-07-01

    Full Text Available In this study, a hybrid TOA/RSSI wireless localization is proposed for accurate positioning in indoor UWB systems. The major problem in indoor localization is the effect of Non-Line of Sight (NLOS propagation. To mitigate the NLOS effects, an unconstrained nonlinear optimization approach is utilized to process Time-of-Arrival (TOA and Received Signal Strength (RSS in the location system.TOA range measurements and path loss model are used to discriminate LOS and NLOS conditions. The weighting factors assigned by hypothesis testing, is used for solving the objective function in the proposed approach. This approach is used for describing the credibility of the TOA range measurement. Performance of the proposed technique is done based on MATLAB simulation. The result shows that the proposed technique performs well and achieves improved positioning under severe NLOS conditions.

  9. Robust C subroutines for non-linear optimization

    DEFF Research Database (Denmark)

    Brock, Pernille; Madsen, Kaj; Nielsen, Hans Bruun

    2004-01-01

    This report presents a package of robust and easy-to-use C subroutines for solving unconstrained and constrained non-linear optimization problems. The intention is that the routines should use the currently best algorithms available. All routines have standardized calls, and the user does not have...... by changing 1 to 0. The present report is a new and updated version of a previous report NI-91-03 with the same title, [16]. Both the previous and the present report describe a collection of subroutines, which have been translated from Fortran to C. The reason for writing the present report is that some...... of the C subroutines have been replaced by more effective and robust versions translated from the original Fortran subroutines to C by the Bandler Group, see [1]. Also the test examples have been modi ed to some extent. For a description of the original Fortran subroutines see the report [17]. The software...

  10. Optimal operating points of oscillators using nonlinear resonators.

    Science.gov (United States)

    Kenig, Eyal; Cross, M C; Villanueva, L G; Karabalin, R B; Matheny, M H; Lifshitz, Ron; Roukes, M L

    2012-11-01

    We demonstrate an analytical method for calculating the phase sensitivity of a class of oscillators whose phase does not affect the time evolution of the other dynamic variables. We show that such oscillators possess the possibility for complete phase noise elimination. We apply the method to a feedback oscillator which employs a high Q weakly nonlinear resonator and provide explicit parameter values for which the feedback phase noise is completely eliminated and others for which there is no amplitude-phase noise conversion. We then establish an operational mode of the oscillator which optimizes its performance by diminishing the feedback noise in both quadratures, thermal noise, and quality factor fluctuations. We also study the spectrum of the oscillator and provide specific results for the case of 1/f noise sources.

  11. Improved simple optimization (SOPT algorithm for unconstrained non-linear optimization problems

    Directory of Open Access Journals (Sweden)

    J. Thomas

    2016-09-01

    Full Text Available In the recent years, population based meta-heuristic are developed to solve non-linear optimization problems. These problems are difficult to solve using traditional methods. Simple optimization (SOPT algorithm is one of the simple and efficient meta-heuristic techniques to solve the non-linear optimization problems. In this paper, SOPT is compared with some of the well-known meta-heuristic techniques viz. Artificial Bee Colony algorithm (ABC, Particle Swarm Optimization (PSO, Genetic Algorithm (GA and Differential Evolutions (DE. For comparison, SOPT algorithm is coded in MATLAB and 25 standard test functions for unconstrained optimization having different characteristics are run for 30 times each. The results of experiments are compared with previously reported results of other algorithms. Promising and comparable results are obtained for most of the test problems. To improve the performance of SOPT, an improvement in the algorithm is proposed which helps it to come out of local optima when algorithm gets trapped in it. In almost all the test problems, improved SOPT is able to get the actual solution at least once in 30 runs.

  12. Economic Optimization of Spray Dryer Operation using Nonlinear Model Predictive Control

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2014-01-01

    In this paper we investigate an economically optimizing Nonlinear Model Predictive Control (E-NMPC) for a spray drying process. By simulation we evaluate the economic potential of this E-NMPC compared to a conventional PID based control strategy. Spray drying is the preferred process to reduce......-shooting method combined with a quasi-Newton Sequential Quadratic Programming (SQP) algorithm and the adjoint method for computation of gradients. The E-NMPC improves the cost of spray drying by 26.7% compared to conventional PI control in our simulations....

  13. Graphic Interface for LCP2 Optimization Program

    DEFF Research Database (Denmark)

    Nicolae, Taropa Laurentiu; Gaunholt, Hans

    1998-01-01

    This report provides information about the software interface that is programmed for the Optimization Program LCP2. The first part is about the general description of the program followed by a guide for using the interface. The last chapters contain a discussion about problems or futute extension...

  14. Optimization of nonlinear structural resonance using the incremental harmonic balance method

    DEFF Research Database (Denmark)

    Dou, Suguang; Jensen, Jakob Søndergaard

    2015-01-01

    We present an optimization procedure for tailoring the nonlinear structural resonant response with time-harmonic loads. A nonlinear finite element method is used for modeling beam structures with a geometric nonlinearity and the incremental harmonic balance method is applied for accurate nonlinea...

  15. Nonlinear programming technique for analyzing flocculent settling data.

    Science.gov (United States)

    Rashid, Md Mamunur; Hayes, Donald F

    2014-04-01

    The traditional graphical approach for drawing iso-concentration curves to analyze flocculent settling data and design sedimentation basins poses difficulties for computer-based design methods. Thus, researchers have developed empirical approaches to analyze settling data. In this study, the ability of five empirical approaches to fit flocculent settling test data is compared. Particular emphasis is given to compare rule-based SETTLE and rule-based nonlinear programming (NLP) techniques as a viable alternative to the modeling methods of Berthouex and Stevens (1982), San (1989), and Ozer (1994). Published flocculent settling data are used to test the suitability of these empirical approaches. The primary objective, however, is to determine if the results of a NLP optimization technique are more reliable than those of other approaches. For this, mathematical curve fitting is conducted and the modeled concentration data are graphically compared to the observed data. The design results in terms of average solid removal efficiency as a function of detention times are also compared. Finally, the sum of squared errors values from these approaches are compared. The results indicate a strong correlation between observed and NLP modeled concentration data. The SETTLE and NLP approaches tend to be more conservative at lower retention times and less conservative at longer retention times. The SETTLE approach appears to be the most conservative. In terms of sum of squared errors values, NLP appears to be rank number one (i.e., best model) for eight data sets and number two for six data sets among 15 data sets. Therefore, NLP is recommended for analyzing flocculent settling data as a logical extension of other approaches. The NLP approach is further recommended as it is an optimization technique and uses conventional mathematical algorithms that can be solved using widely available software such as EXCEL and LINGO.

  16. Geometry Optimization of a Segmented Thermoelectric Generator Based on Multi-parameter and Nonlinear Optimization Method

    Science.gov (United States)

    Cai, Lanlan; Li, Peng; Luo, Qi; Zhai, Pengcheng; Zhang, Qingjie

    2017-03-01

    As no single thermoelectric material has presented a high figure-of-merit (ZT) over a very wide temperature range, segmented thermoelectric generators (STEGs), where the p- and n-legs are formed of different thermoelectric material segments joined in series, have been developed to improve the performance of thermoelectric generators. A crucial but difficult problem in a STEG design is to determine the optimal values of the geometrical parameters, like the relative lengths of each segment and the cross-sectional area ratio of the n- and p-legs. Herein, a multi-parameter and nonlinear optimization method, based on the Improved Powell Algorithm in conjunction with the discrete numerical model, was implemented to solve the STEG's geometrical optimization problem. The multi-parameter optimal results were validated by comparison with the optimal outcomes obtained from the single-parameter optimization method. Finally, the effect of the hot- and cold-junction temperatures on the geometry optimization was investigated. Results show that the optimal geometry parameters for maximizing the specific output power of a STEG are different from those for maximizing the conversion efficiency. Data also suggest that the optimal geometry parameters and the interfacial temperatures of the adjacent segments optimized for maximum specific output power or conversion efficiency vary with changing hot- and cold-junction temperatures. Through the geometry optimization, the CoSb3/Bi2Te3-based STEG can obtain a maximum specific output power up to 1725.3 W/kg and a maximum efficiency of 13.4% when operating at a hot-junction temperature of 823 K and a cold-junction temperature of 298 K.

  17. An algorithm of sequential systems of linear equations for nonlinear optimization problems with arbitrary initial point

    Institute of Scientific and Technical Information of China (English)

    高自友; 贺国平; 吴方

    1997-01-01

    For current sequential quadratic programming (SQP) type algorithms, there exist two problems; (i) in order to obtain a search direction, one must solve one or more quadratic programming subproblems per iteration, and the computation amount of this algorithm is very large. So they are not suitable for the large-scale problems; (ii) the SQP algorithms require that the related quadratic programming subproblems be solvable per iteration, but it is difficult to be satisfied. By using e-active set procedure with a special penalty function as the merit function, a new algorithm of sequential systems of linear equations for general nonlinear optimization problems with arbitrary initial point is presented This new algorithm only needs to solve three systems of linear equations having the same coefficient matrix per iteration, and has global convergence and local superlinear convergence. To some extent, the new algorithm can overcome the shortcomings of the SQP algorithms mentioned above.

  18. Optimized Waterspace Management and Scheduling Using Mixed-Integer Linear Programming

    Science.gov (United States)

    2016-01-01

    TECHNICAL REPORT NSWC PCD TR 2015-003 OPTIMIZED WATERSPACE MANAGEMENT AND SCHEDULING USING MIXED-INTEGER LINEAR PROGRAMMING...constraints required for the mathematical formulation of the MCM scheduling problem pertaining to the survey constraints and logistics management . The...Floudas, Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications, Oxford University Press, 1995. [10] M. J. Bays, A. Shende, D. J

  19. Modified Lagrangian and Least Root Approaches for General Nonlinear Optimization Problems

    Institute of Scientific and Technical Information of China (English)

    W. Oettli; X.Q. Yang

    2002-01-01

    In this paper we study nonlinear Lagrangian methods for optimization problems with side constraints.Nonlinear Lagrangian dual problems are introduced and their relations with the original problem are established.Moreover, a least root approach is investigated for these optimization problems.

  20. A nonlinear programming method for system design with results that have been implemented

    Science.gov (United States)

    Hauser, F.

    1984-01-01

    A general nonlinear programming algorithm (NICO) is discussed. An academic optimization example is given. The NICO multi-input, multi-output control system design is discussed. NICO applications relative to launch vehicle autopilot design, space shuttle static balance, transient response criteria in the design of a reentry vehicle control system, and waterjet propulsion and lift system components sized to a large surface effect ship are noted.

  1. Ant colony optimization and constraint programming

    CERN Document Server

    Solnon, Christine

    2013-01-01

    Ant colony optimization is a metaheuristic which has been successfully applied to a wide range of combinatorial optimization problems. The author describes this metaheuristic and studies its efficiency for solving some hard combinatorial problems, with a specific focus on constraint programming. The text is organized into three parts. The first part introduces constraint programming, which provides high level features to declaratively model problems by means of constraints. It describes the main existing approaches for solving constraint satisfaction problems, including complete tree search

  2. Programmable Nonlinear ADC Using Optimal-Sized ROM

    OpenAIRE

    K Dinesh; Anvekar, *; Sonde, BE

    1991-01-01

    A new programmable successive approximation ADC useful for realizing nonlinear transfer characteristics often required in instrumentation and communications is presented. This nonlinear ADC (NADC) requires a much smaller sized ROM than an NADC reported earlier

  3. Integrating Pareto Optimization into Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Thomas Gatter

    2016-01-01

    Full Text Available Pareto optimization combines independent objectives by computing the Pareto front of the search space, yielding a set of optima where none scores better on all objectives than any other. Recently, it was shown that Pareto optimization seamlessly integrates with algebraic dynamic programming: when scoring schemes A and B can correctly evaluate the search space via dynamic programming, then so can Pareto optimization with respect to A and B. However, the integration of Pareto optimization into dynamic programming opens a wide range of algorithmic alternatives, which we study in substantial detail in this article, using real-world applications in biosequence analysis, a field where dynamic programming is ubiquitous. Our results are two-fold: (1 We introduce the operation of a “Pareto algebra product” in the dynamic programming framework of Bellman’s GAP. Users of this framework can now ask for Pareto optimization with a single keystroke. Careful evaluation of the implementation alternatives by means of an extended Bellman’s GAP compiler demonstrates the dependence of the best implementation choice on the application at hand. (2 We extract from our experiments several pieces of advice to programmers who do not use a system such as Bellman’s GAP, but who choose to hand-craft their dynamic programming recurrences, incorporating Pareto optimization from scratch.

  4. Specifying and Executing Optimizations for Parallel Programs

    Directory of Open Access Journals (Sweden)

    William Mansky

    2014-07-01

    Full Text Available Compiler optimizations, usually expressed as rewrites on program graphs, are a core part of all modern compilers. However, even production compilers have bugs, and these bugs are difficult to detect and resolve. The problem only becomes more complex when compiling parallel programs; from the choice of graph representation to the possibility of race conditions, optimization designers have a range of factors to consider that do not appear when dealing with single-threaded programs. In this paper we present PTRANS, a domain-specific language for formal specification of compiler transformations, and describe its executable semantics. The fundamental approach of PTRANS is to describe program transformations as rewrites on control flow graphs with temporal logic side conditions. The syntax of PTRANS allows cleaner, more comprehensible specification of program optimizations; its executable semantics allows these specifications to act as prototypes for the optimizations themselves, so that candidate optimizations can be tested and refined before going on to include them in a compiler. We demonstrate the use of PTRANS to state, test, and refine the specification of a redundant store elimination optimization on parallel programs.

  5. Dynamic programming for QFD in PES optimization

    Energy Technology Data Exchange (ETDEWEB)

    Sorrentino, R. [Mediterranean Univ. of Reggio Calabria, Reggio Calabria (Italy). Dept. of Computer Science and Electrical Technology

    2008-07-01

    Quality function deployment (QFD) is a method for linking the needs of the customer with design, development, engineering, manufacturing, and service functions. In the electric power industry, QFD is used to help designers concentrate on the most important technical attributes to develop better electrical services. Most optimization approaches used in QFD analysis have been based on integer or linear programming. These approaches perform well in certain circumstances, but there are problems that hinder their practical use. This paper proposed an approach to optimize Power and Energy Systems (PES). A dynamic programming approach was used along with an extended House of Quality to gather information. Dynamic programming was used to allocate the limited resources to the technical attributes. The approach integrated dynamic programming into the electrical service design process. The dynamic programming approach did not require the full relationship curve between technical attributes and customer satisfaction, or the relationship between technical attributes and cost. It only used a group of discrete points containing information about customer satisfaction, technical attributes, and the cost to find the optimal product design. Therefore, it required less time and resources than other approaches. At the end of the optimization process, the value of each technical attribute, the related cost, and the overall customer satisfaction were obtained at the same time. It was concluded that compared with other optimization methods, the dynamic programming method requires less information and the optimal results are more relevant. 21 refs., 2 tabs., 2 figs.

  6. An SQP algorithm for mathematical programs with nonlinear complementarity constraints

    Institute of Scientific and Technical Information of China (English)

    Zhi-bin ZHU; Jin-bao JIAN; Cong ZHANG

    2009-01-01

    In this paper,we describe a successive approximation and smooth sequential quadratic programming (SQP) method for mathematical programs with nonlinear complementarity constraints (MPCC). We introduce a class of smooth programs to approximate the MPCC. Using an l1 penalty function,the line search assures global convergence,while the superlinear convergence rate is shown under the strictly complementary and second-order sufficient conditions. Moreover,we prove that the current iterated point is an exact stationary point of the mathematical programs with equilibrium constraints (MPEC) when the algorithm terminates finitely.

  7. Intuitionistic Fuzzy Goal Programming Technique for Solving Non-Linear Multi-objective Structural Problem

    Directory of Open Access Journals (Sweden)

    Samir Dey

    2015-07-01

    Full Text Available This paper proposes a new multi-objective intuitionistic fuzzy goal programming approach to solve a multi-objective nonlinear programming problem in context of a structural design. Here we describe some basic properties of intuitionistic fuzzy optimization. We have considered a multi-objective structural optimization problem with several mutually conflicting objectives. The design objective is to minimize weight of the structure and minimize the vertical deflection at loading point of a statistically loaded three-bar planar truss subjected to stress constraints on each of the truss members. This approach is used to solve the above structural optimization model based on arithmetic mean and compare with the solution by intuitionistic fuzzy goal programming approach. A numerical solution is given to illustrate our approach.

  8. A Filter Method for Nonlinear Semidefinite Programming with Global Convergence

    Institute of Scientific and Technical Information of China (English)

    Zhi Bin ZHU; Hua Li ZHU

    2014-01-01

    In this study, a new filter algorithm is presented for solving the nonlinear semidefinite programming. This algorithm is inspired by the classical sequential quadratic programming method. Unlike the traditional filter methods, the suffi cient descent is ensured by changing the step size instead of the trust region radius. Under some suitable conditions, the global convergence is obtained. In the end, some numerical experiments are given to show that the algorithm is eff ective.

  9. Gradient-based optimization in nonlinear structural dynamics

    DEFF Research Database (Denmark)

    Dou, Suguang

    The intrinsic nonlinearity of mechanical structures can give rise to rich nonlinear dynamics. Recently, nonlinear dynamics of micro-mechanical structures have contributed to developing new Micro-Electro-Mechanical Systems (MEMS), for example, atomic force microscope, passive frequency divider, fr...

  10. Adaptive dynamic programming with applications in optimal control

    CERN Document Server

    Liu, Derong; Wang, Ding; Yang, Xiong; Li, Hongliang

    2017-01-01

    This book covers the most recent developments in adaptive dynamic programming (ADP). The text begins with a thorough background review of ADP making sure that readers are sufficiently familiar with the fundamentals. In the core of the book, the authors address first discrete- and then continuous-time systems. Coverage of discrete-time systems starts with a more general form of value iteration to demonstrate its convergence, optimality, and stability with complete and thorough theoretical analysis. A more realistic form of value iteration is studied where value function approximations are assumed to have finite errors. Adaptive Dynamic Programming also details another avenue of the ADP approach: policy iteration. Both basic and generalized forms of policy-iteration-based ADP are studied with complete and thorough theoretical analysis in terms of convergence, optimality, stability, and error bounds. Among continuous-time systems, the control of affine and nonaffine nonlinear systems is studied using the ADP app...

  11. A nonlinear bi-level programming approach for product portfolio management.

    Science.gov (United States)

    Ma, Shuang

    2016-01-01

    Product portfolio management (PPM) is a critical decision-making for companies across various industries in today's competitive environment. Traditional studies on PPM problem have been motivated toward engineering feasibilities and marketing which relatively pay less attention to other competitors' actions and the competitive relations, especially in mathematical optimization domain. The key challenge lies in that how to construct a mathematical optimization model to describe this Stackelberg game-based leader-follower PPM problem and the competitive relations between them. The primary work of this paper is the representation of a decision framework and the optimization model to leverage the PPM problem of leader and follower. A nonlinear, integer bi-level programming model is developed based on the decision framework. Furthermore, a bi-level nested genetic algorithm is put forward to solve this nonlinear bi-level programming model for leader-follower PPM problem. A case study of notebook computer product portfolio optimization is reported. Results and analyses reveal that the leader-follower bi-level optimization model is robust and can empower product portfolio optimization.

  12. A trust region algorithm for optimization with nonlinear equality and linear inequality constraints

    Institute of Scientific and Technical Information of China (English)

    陈中文; 韩继业

    1996-01-01

    A new algorithm of trust region type is presented to minimize a differentiable function ofmany variables with nonlinear equality and linear inequality constraints. Under the milder conditions, theglobal convergence of the main algorithm is proved. Moreover, since any nonlinear inequality constraint can beconverted into an equation by introducing a slack variable, the trust region method can be used in solving general nonlinear programming problems.

  13. Nonlinear programming for classification problems in machine learning

    Science.gov (United States)

    Astorino, Annabella; Fuduli, Antonio; Gaudioso, Manlio

    2016-10-01

    We survey some nonlinear models for classification problems arising in machine learning. In the last years this field has become more and more relevant due to a lot of practical applications, such as text and web classification, object recognition in machine vision, gene expression profile analysis, DNA and protein analysis, medical diagnosis, customer profiling etc. Classification deals with separation of sets by means of appropriate separation surfaces, which is generally obtained by solving a numerical optimization model. While linear separability is the basis of the most popular approach to classification, the Support Vector Machine (SVM), in the recent years using nonlinear separating surfaces has received some attention. The objective of this work is to recall some of such proposals, mainly in terms of the numerical optimization models. In particular we tackle the polyhedral, ellipsoidal, spherical and conical separation approaches and, for some of them, we also consider the semisupervised versions.

  14. Ensemble prediction experiments using conditional nonlinear optimal perturbation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two methods for initialization of ensemble forecasts are compared, namely, singular vector (SV) and conditional nonlinear optimal perturbation (CNOP). The comparison is done for forecast lengths of up to 10 days with a three-level quasi-geostrophic (QG) atmospheric model in a perfect model scenario. Ten cases are randomly selected from 1982/1983 winter to 1993/1994 winter (from December to the following February). Anomaly correlation coefficient (ACC) is adopted as a tool to measure the quality of the predicted ensembles on the Northern Hemisphere 500 hPa geopotential height. The results show that the forecast quality of ensemble samples in which the first SV is replaced by CNOP is higher than that of samples composed of only SVs in the medium range, based on the occurrence of weather re-gime transitions in Northern Hemisphere after about four days. Besides, the reliability of ensemble forecasts is evaluated by the Rank Histograms. The above conclusions confirm and extend those reached earlier by the authors, which stated that the introduction of CNOP improves the forecast skill under the condition that the analysis error belongs to a kind of fast-growing error by using a barotropic QG model.

  15. Ensemble prediction experiments using conditional nonlinear optimal perturbation

    Institute of Scientific and Technical Information of China (English)

    JIANG ZhiNa; MU Mu; WANG DongHai

    2009-01-01

    Two methods for initialization of ensemble forecasts are compared, namely, singular vector (SV) and conditional nonlinear optimal perturbation (CNOP). The comparison is done for forecast lengths of up to 10 days with a three-level quasi-geostrophic (QG) atmospheric model in a perfect model scenario. Ten cases are randomly selected from 1982/1983 winter to 1993/1994 winter (from 12 to the following February). Anomaly correlation coefficient (ACC) is adopted as a tool to measure the quality of the predicted ensembles on the Northern Hemisphere 500 hPa geopotential height. The results show that the forecast quality of ensemble samples in which the first SV is replaced by CNOP is higher than that of samples composed of only SVs in the medium range, based on the occurrence of weather re-gime transitions in Northern Hemisphere after about four days. Besides, the reliability of ensemble forecasts is evaluated by the Rank Histograms. The above conclusions confirm .and extend those reached earlier by the authors, which stated that the introduction of CNOP improves the forecast skill under the condition that the analysis error belongs to a kind of fast-growing error by using a barotropic QG model.

  16. A FORTRAN program for calculating nonlinear seismic ground response

    Science.gov (United States)

    Joyner, William B.

    1977-01-01

    The program described here was designed for calculating the nonlinear seismic response of a system of horizontal soil layers underlain by a semi-infinite elastic medium representing bedrock. Excitation is a vertically incident shear wave in the underlying medium. The nonlinear hysteretic behavior of the soil is represented by a model consisting of simple linear springs and Coulomb friction elements arranged as shown. A boundary condition is used which takes account of finite rigidity in the elastic substratum. The computations are performed by an explicit finite-difference scheme that proceeds step by step in space and time. A brief program description is provided here with instructions for preparing the input and a source listing. A more detailed discussion of the method is presented elsewhere as is the description of a different program employing implicit integration.

  17. Final Report---Next-Generation Solvers for Mixed-Integer Nonlinear Programs: Structure, Search, and Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Linderoth, Jeff T. [University of Wisconsin-Madison; Luedtke, James R. [University of Wisconsin-Madison

    2013-05-30

    The mathematical modeling of systems often requires the use of both nonlinear and discrete components. Problems involving both discrete and nonlinear components are known as mixed-integer nonlinear programs (MINLPs) and are among the most challenging computational optimization problems. This research project added to the understanding of this area by making a number of fundamental advances. First, the work demonstrated many novel, strong, tractable relaxations designed to deal with non-convexities arising in mathematical formulation. Second, the research implemented the ideas in software that is available to the public. Finally, the work demonstrated the importance of these ideas on practical applications and disseminated the work through scholarly journals, survey publications, and conference presentations.

  18. Particle Swarm Optimization-Proximal Point Algorithm for Nonlinear Complementarity Problems

    OpenAIRE

    Chai Jun-Feng; Wang Shu-Yan

    2013-01-01

    A new algorithm is presented for solving the nonlinear complementarity problem by combining the particle swarm and proximal point algorithm, which is called the particle swarm optimization-proximal point algorithm. The algorithm mainly transforms nonlinear complementarity problems into unconstrained optimization problems of smooth functions using the maximum entropy function and then optimizes the problem using the proximal point algorithm as the outer algorithm and particle swarm algorithm a...

  19. A new method of determining the optimal embedding dimension based on nonlinear prediction

    Institute of Scientific and Technical Information of China (English)

    Meng Qing-Fang; Peng Yu-Hua; Xue Pei-Jun

    2007-01-01

    A new method is proposed to determine the optimal embedding dimension from a scalar time series in this paper. This method determines the optimal embedding dimension by optimizing the nonlinear autoregressive prediction model parameterized by the embedding dimension and the nonlinear degree. Simulation results show the effectiveness of this method. And this method is applicable to a short time series, stable to noise, computationally efficient, and without any purposely introduced parameters.

  20. Pareto optimal calibration of highly nonlinear reactive transport groundwater models using particle swarm optimization

    Science.gov (United States)

    Siade, A. J.; Prommer, H.; Welter, D.

    2014-12-01

    Groundwater management and remediation requires the implementation of numerical models in order to evaluate the potential anthropogenic impacts on aquifer systems. In many situations, the numerical model must, not only be able to simulate groundwater flow and transport, but also geochemical and biological processes. Each process being simulated carries with it a set of parameters that must be identified, along with differing potential sources of model-structure error. Various data types are often collected in the field and then used to calibrate the numerical model; however, these data types can represent very different processes and can subsequently be sensitive to the model parameters in extremely complex ways. Therefore, developing an appropriate weighting strategy to address the contributions of each data type to the overall least-squares objective function is not straightforward. This is further compounded by the presence of potential sources of model-structure errors that manifest themselves differently for each observation data type. Finally, reactive transport models are highly nonlinear, which can lead to convergence failure for algorithms operating on the assumption of local linearity. In this study, we propose a variation of the popular, particle swarm optimization algorithm to address trade-offs associated with the calibration of one data type over another. This method removes the need to specify weights between observation groups and instead, produces a multi-dimensional Pareto front that illustrates the trade-offs between data types. We use the PEST++ run manager, along with the standard PEST input/output structure, to implement parallel programming across multiple desktop computers using TCP/IP communications. This allows for very large swarms of particles without the need of a supercomputing facility. The method was applied to a case study in which modeling was used to gain insight into the mobilization of arsenic at a deepwell injection site

  1. Application of Semidefinite Programming to Truss Design Optimization

    Directory of Open Access Journals (Sweden)

    Rasa Giniūnaitė

    2015-07-01

    Full Text Available Semidefinite Programming (SDP is a fairly recent way of solving optimization problems which are becoming more and more important in our fast moving world. It is a minimization of linear function over the intersection of the cone of positive semidefinite matrices with an affine space, i.e. non-linear but convex constraints. All linear problems and many engineering and combinatorial optimization problems can be expressed as SDP, so it is highly applicable. There are many packages that use different algorithms to solve SDP problems. They can be downloaded from internet and easily learnt how to use, two of these are SeDuMi and SDPT-3. In this paper truss structure optimization problem with the goal of minimizing the mass of the truss structure was solved. After doing some algebraic manipulation the problem was formulated suitably for Semidefinite Programming. SeDuMi and SDPT-3 packages were used to solve it. The choice of the initial solution had a great impact on the result using SeDuMi. The mass obtained using SDPT-3 was on average smaller than the one obtained using SeDuMi. Moreover, SDPT-3 worked more efficiently. However, the comparison of my approach and two versions of particle swarm optimization algorithm implied that semidefinite programming is in general more appropriate for solving such problems.

  2. Management of occupational exposure to engineered nanoparticles through a chance-constrained nonlinear programming approach.

    Science.gov (United States)

    Chen, Zhi; Yuan, Yuan; Zhang, Shu-Shen; Chen, Yu; Yang, Feng-Lin

    2013-03-26

    Critical environmental and human health concerns are associated with the rapidly growing fields of nanotechnology and manufactured nanomaterials (MNMs). The main risk arises from occupational exposure via chronic inhalation of nanoparticles. This research presents a chance-constrained nonlinear programming (CCNLP) optimization approach, which is developed to maximize the nanaomaterial production and minimize the risks of workplace exposure to MNMs. The CCNLP method integrates nonlinear programming (NLP) and chance-constrained programming (CCP), and handles uncertainties associated with both the nanomaterial production and workplace exposure control. The CCNLP method was examined through a single-walled carbon nanotube (SWNT) manufacturing process. The study results provide optimal production strategies and alternatives. It reveal that a high control measure guarantees that environmental health and safety (EHS) standards regulations are met, while a lower control level leads to increased risk of violating EHS regulations. The CCNLP optimization approach is a decision support tool for the optimization of the increasing MNMS manufacturing with workplace safety constraints under uncertainties.

  3. Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems.

    Science.gov (United States)

    Liu, Derong; Wei, Qinglai

    2014-03-01

    This paper is concerned with a new discrete-time policy iteration adaptive dynamic programming (ADP) method for solving the infinite horizon optimal control problem of nonlinear systems. The idea is to use an iterative ADP technique to obtain the iterative control law, which optimizes the iterative performance index function. The main contribution of this paper is to analyze the convergence and stability properties of policy iteration method for discrete-time nonlinear systems for the first time. It shows that the iterative performance index function is nonincreasingly convergent to the optimal solution of the Hamilton-Jacobi-Bellman equation. It is also proven that any of the iterative control laws can stabilize the nonlinear systems. Neural networks are used to approximate the performance index function and compute the optimal control law, respectively, for facilitating the implementation of the iterative ADP algorithm, where the convergence of the weight matrices is analyzed. Finally, the numerical results and analysis are presented to illustrate the performance of the developed method.

  4. Discrete-time nonlinear HJB solution using approximate dynamic programming: convergence proof.

    Science.gov (United States)

    Al-Tamimi, Asma; Lewis, Frank L; Abu-Khalaf, Murad

    2008-08-01

    Convergence of the value-iteration-based heuristic dynamic programming (HDP) algorithm is proven in the case of general nonlinear systems. That is, it is shown that HDP converges to the optimal control and the optimal value function that solves the Hamilton-Jacobi-Bellman equation appearing in infinite-horizon discrete-time (DT) nonlinear optimal control. It is assumed that, at each iteration, the value and action update equations can be exactly solved. The following two standard neural networks (NN) are used: a critic NN is used to approximate the value function, whereas an action network is used to approximate the optimal control policy. It is stressed that this approach allows the implementation of HDP without knowing the internal dynamics of the system. The exact solution assumption holds for some classes of nonlinear systems and, specifically, in the specific case of the DT linear quadratic regulator (LQR), where the action is linear and the value quadratic in the states and NNs have zero approximation error. It is stressed that, for the LQR, HDP may be implemented without knowing the system A matrix by using two NNs. This fact is not generally appreciated in the folklore of HDP for the DT LQR, where only one critic NN is generally used.

  5. From Nonlinear Optimization to Convex Optimization through Firefly Algorithm and Indirect Approach with Applications to CAD/CAM

    Directory of Open Access Journals (Sweden)

    Akemi Gálvez

    2013-01-01

    Full Text Available Fitting spline curves to data points is a very important issue in many applied fields. It is also challenging, because these curves typically depend on many continuous variables in a highly interrelated nonlinear way. In general, it is not possible to compute these parameters analytically, so the problem is formulated as a continuous nonlinear optimization problem, for which traditional optimization techniques usually fail. This paper presents a new bioinspired method to tackle this issue. In this method, optimization is performed through a combination of two techniques. Firstly, we apply the indirect approach to the knots, in which they are not initially the subject of optimization but precomputed with a coarse approximation scheme. Secondly, a powerful bioinspired metaheuristic technique, the firefly algorithm, is applied to optimization of data parameterization; then, the knot vector is refined by using De Boor’s method, thus yielding a better approximation to the optimal knot vector. This scheme converts the original nonlinear continuous optimization problem into a convex optimization problem, solved by singular value decomposition. Our method is applied to some illustrative real-world examples from the CAD/CAM field. Our experimental results show that the proposed scheme can solve the original continuous nonlinear optimization problem very efficiently.

  6. Mixed Nonlinear Complementarity Problems via Nonlinear Optimization: Numerical Results on Multi-Rigid-Body Contact Problems with Friction

    Science.gov (United States)

    Andreani, Roberto; Friedlander, Ana; Mello, Margarida P.; Santos, Sandra A.

    2005-06-01

    In this work we show that the mixed nonlinear complementarity problem may be formulated as an equivalent nonlinear bound-constrained optimization problem that preserves the smoothness of the original data. One may thus take advantage of existing codes for bound-constrained optimization. This approach is implemented and tested by means of an extensive set of numerical experiments, showing promising results. The mixed nonlinear complementarity problems considered in the tests arise from the discretization of a motion planning problem concerning a set of rigid 3D bodies in contact in the presence of friction. We solve the complementarity problem associated with a single time frame, thus calculating the contact forces and accelerations of the bodies involved.

  7. Portfolio optimization using fuzzy linear programming

    Science.gov (United States)

    Pandit, Purnima K.

    2013-09-01

    Portfolio Optimization (PO) is a problem in Finance, in which investor tries to maximize return and minimize risk by carefully choosing different assets. Expected return and risk are the most important parameters with regard to optimal portfolios. In the simple form PO can be modeled as quadratic programming problem which can be put into equivalent linear form. PO problems with the fuzzy parameters can be solved as multi-objective fuzzy linear programming problem. In this paper we give the solution to such problems with an illustrative example.

  8. Relaxation and decomposition methods for mixed integer nonlinear programming

    CERN Document Server

    Nowak, Ivo; Bank, RE

    2005-01-01

    This book presents a comprehensive description of efficient methods for solving nonconvex mixed integer nonlinear programs, including several numerical and theoretical results, which are presented here for the first time. It contains many illustrations and an up-to-date bibliography. Because on the emphasis on practical methods, as well as the introduction into the basic theory, the book is accessible to a wide audience. It can be used both as a research and as a graduate text.

  9. An application of Matlab c on Dimensional Nonlinear Programming

    OpenAIRE

    Fernando Giménez Palomares; María José Marín Fernández

    2014-01-01

    [EN] Nonlinear Programming (NLP) is a widely applicable tool in modeling real life problems applied to business, economics and engineering. Is to maximize or minimize a scalar field whose domain is given as a set of constraints given by equalities and/or inequalities not necessarily linear. In this paper we present a virtual laboratory to study the PNL graphically and numerically in the case of two variables [EN] La Programación No Lineal (PNL) constituye una herramienta de amp...

  10. A Nonlinear Physics-Based Optimal Control Method for Magnetostrictive Actuators

    Science.gov (United States)

    Smith, Ralph C.

    1998-01-01

    This paper addresses the development of a nonlinear optimal control methodology for magnetostrictive actuators. At moderate to high drive levels, the output from these actuators is highly nonlinear and contains significant magnetic and magnetomechanical hysteresis. These dynamics must be accommodated by models and control laws to utilize the full capabilities of the actuators. A characterization based upon ferromagnetic mean field theory provides a model which accurately quantifies both transient and steady state actuator dynamics under a variety of operating conditions. The control method consists of a linear perturbation feedback law used in combination with an optimal open loop nonlinear control. The nonlinear control incorporates the hysteresis and nonlinearities inherent to the transducer and can be computed offline. The feedback control is constructed through linearization of the perturbed system about the optimal system and is efficient for online implementation. As demonstrated through numerical examples, the combined hybrid control is robust and can be readily implemented in linear PDE-based structural models.

  11. An iterative symplectic pseudospectral method to solve nonlinear state-delayed optimal control problems

    Science.gov (United States)

    Peng, Haijun; Wang, Xinwei; Zhang, Sheng; Chen, Biaosong

    2017-07-01

    Nonlinear state-delayed optimal control problems have complex nonlinear characters. To solve this complex nonlinear problem, an iterative symplectic pseudospectral method based on quasilinearization techniques, the dual variational principle and pseudospectral methods is proposed in this paper. First, the proposed method transforms the original nonlinear optimal control problem into a series of linear quadratic optimal control problems. Then, a symplectic pseudospectral method is developed to solve these converted linear quadratic state-delayed optimal control problems. Coefficient matrices in the proposed method are sparse and symmetric since the dual variational principle is used, which makes the proposed method highly efficient. Converged numerical solutions with high precision can be obtained after a few iterations due to the benefit of the local pseudospectral method and quasilinearization techniques. In the numerical simulations, other numerical methods were used for comparisons. The numerical simulation results show that the proposed method is highly accurate, efficient and robust.

  12. AN SQP METHOD BASED ON SMOOTHING PENALTY FUNCTION FOR NONLINEAR OPTIMIZATION WITH INEQUALITY CONSTRAINT

    Institute of Scientific and Technical Information of China (English)

    ZHANG Juliang; ZHANG Xiangsun

    2001-01-01

    In this paper, we use the smoothing penalty function proposed in [1] as the merit function of SQP method for nonlinear optimization with inequality constraints. The global convergence of the method is obtained.

  13. A simulation test approach to the evaluation and comparison of unconstrained nonlinear optimization algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Hillstrom, K. E.

    1976-02-01

    A simulation test technique was developed to evaluate and compare unconstrained nonlinear optimization computer algorithms. Descriptions of the test technique, test problems, computer algorithms tested, and test results are provided. (auth)

  14. Optimal precursors triggering the Kuroshio Extension state transition obtained by the Conditional Nonlinear Optimal Perturbation approach

    Science.gov (United States)

    Zhang, Xing; Mu, Mu; Wang, Qiang; Pierini, Stefano

    2017-06-01

    In this study, the initial perturbations that are the easiest to trigger the Kuroshio Extension (KE) transition connecting a basic weak jet state and a strong, fairly stable meandering state, are investigated using a reduced-gravity shallow water ocean model and the CNOP (Conditional Nonlinear Optimal Perturbation) approach. This kind of initial perturbation is called an optimal precursor (OPR). The spatial structures and evolutionary processes of the OPRs are analyzed in detail. The results show that most of the OPRs are in the form of negative sea surface height (SSH) anomalies mainly located in a narrow band region south of the KE jet, in basic agreement with altimetric observations. These negative SSH anomalies reduce the meridional SSH gradient within the KE, thus weakening the strength of the jet. The KE jet then becomes more convoluted, with a high-frequency and large-amplitude variability corresponding to a high eddy kinetic energy level; this gradually strengthens the KE jet through an inverse energy cascade. Eventually, the KE reaches a high-energy state characterized by two well defined and fairly stable anticyclonic meanders. Moreover, sensitivity experiments indicate that the spatial structures of the OPRs are not sensitive to the model parameters and to the optimization times used in the analysis.

  15. RAOPS: Resource Allocation Optimization Program for Safegurards

    Energy Technology Data Exchange (ETDEWEB)

    Zardecki, A.; Markin, J.T.

    1994-03-01

    RAOPS--Resource Allocation Optimization Program for Safeguards is extended to a multiobjective return function having the detection probability and expected detection time as criteria. The expected detection time is included as a constraint, based on the well-known Avenhaus model of the optimum number of inventory periods. Examples of computation are provided.

  16. SURFACE MINE PLANNING OPTIMIZATION BY GOAL PROGRAMMING

    Institute of Scientific and Technical Information of China (English)

    陈意平; 张幼蒂

    1991-01-01

    This paper introduced an approach to surface mine planning optimization-Goal Programming.The multiobjective[0-1] model has been built and the software has been developed.The method has been applied to a huge surface coal mine,the result of which shows that it is effective and feasible.

  17. Grid-Optimization Program for Photovoltaic Cells

    Science.gov (United States)

    Daniel, R. E.; Lee, T. S.

    1986-01-01

    CELLOPT program developed to assist in designing grid pattern of current-conducting material on photovoltaic cell. Analyzes parasitic resistance losses and shadow loss associated with metallized grid pattern on both round and rectangular solar cells. Though performs sensitivity studies, used primarily to optimize grid design in terms of bus bar and grid lines by minimizing power loss. CELLOPT written in APL.

  18. Investigation of Utilizing a Secant Stiffness Matrix for 2D Nonlinear Shape Optimization and Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    Asghar Vatani Oskouie

    2016-12-01

    Full Text Available In this article the general non-symmetric parametric form of the incremental secant stiffness matrix for nonlinear analysis of solids have been investigated to present a semi analytical sensitivity analysis approach for geometric nonlinear shape optimization. To approach this aim the analytical formulas of secant stiffness matrix are presented. The models were validated and used to perform investigating different parameters affecting the shape optimization. Numerical examples utilized for this investigating sensitivity analysis with detailed discussions presented.

  19. Design of asymptotic estimators: an approach based on neural networks and nonlinear programming.

    Science.gov (United States)

    Alessandri, Angelo; Cervellera, Cristiano; Sanguineti, Marcello

    2007-01-01

    A methodology to design state estimators for a class of nonlinear continuous-time dynamic systems that is based on neural networks and nonlinear programming is proposed. The estimator has the structure of a Luenberger observer with a linear gain and a parameterized (in general, nonlinear) function, whose argument is an innovation term representing the difference between the current measurement and its prediction. The problem of the estimator design consists in finding the values of the gain and of the parameters that guarantee the asymptotic stability of the estimation error. Toward this end, if a neural network is used to take on this function, the parameters (i.e., the neural weights) are chosen, together with the gain, by constraining the derivative of a quadratic Lyapunov function for the estimation error to be negative definite on a given compact set. It is proved that it is sufficient to impose the negative definiteness of such a derivative only on a suitably dense grid of sampling points. The gain is determined by solving a Lyapunov equation. The neural weights are searched for via nonlinear programming by minimizing a cost penalizing grid-point constraints that are not satisfied. Techniques based on low-discrepancy sequences are applied to deal with a small number of sampling points, and, hence, to reduce the computational burden required to optimize the parameters. Numerical results are reported and comparisons with those obtained by the extended Kalman filter are made.

  20. Optimal Determination of Respiratory Airflow Patterns Using a Nonlinear Multicompartment Model for a Lung Mechanics System

    Directory of Open Access Journals (Sweden)

    Hancao Li

    2012-01-01

    Full Text Available We develop optimal respiratory airflow patterns using a nonlinear multicompartment model for a lung mechanics system. Specifically, we use classical calculus of variations minimization techniques to derive an optimal airflow pattern for inspiratory and expiratory breathing cycles. The physiological interpretation of the optimality criteria used involves the minimization of work of breathing and lung volume acceleration for the inspiratory phase, and the minimization of the elastic potential energy and rapid airflow rate changes for the expiratory phase. Finally, we numerically integrate the resulting nonlinear two-point boundary value problems to determine the optimal airflow patterns over the inspiratory and expiratory breathing cycles.

  1. Optimal determination of respiratory airflow patterns using a nonlinear multicompartment model for a lung mechanics system.

    Science.gov (United States)

    Li, Hancao; Haddad, Wassim M

    2012-01-01

    We develop optimal respiratory airflow patterns using a nonlinear multicompartment model for a lung mechanics system. Specifically, we use classical calculus of variations minimization techniques to derive an optimal airflow pattern for inspiratory and expiratory breathing cycles. The physiological interpretation of the optimality criteria used involves the minimization of work of breathing and lung volume acceleration for the inspiratory phase, and the minimization of the elastic potential energy and rapid airflow rate changes for the expiratory phase. Finally, we numerically integrate the resulting nonlinear two-point boundary value problems to determine the optimal airflow patterns over the inspiratory and expiratory breathing cycles.

  2. Distributed Optimization for a Class of Nonlinear Multiagent Systems With Disturbance Rejection.

    Science.gov (United States)

    Wang, Xinghu; Hong, Yiguang; Ji, Haibo

    2016-07-01

    The paper studies the distributed optimization problem for a class of nonlinear multiagent systems in the presence of external disturbances. To solve the problem, we need to achieve the optimal multiagent consensus based on local cost function information and neighboring information and meanwhile to reject local disturbance signals modeled by an exogenous system. With convex analysis and the internal model approach, we propose a distributed optimization controller for heterogeneous and nonlinear agents in the form of continuous-time minimum-phase systems with unity relative degree. We prove that the proposed design can solve the exact optimization problem with rejecting disturbances.

  3. SEQUENTIAL SYSTEMS OF LINEAR EQUATIONS ALGORITHM FOR NONLINEAR OPTIMIZATION PROBLEMS - INEQUALITY CONSTRAINED PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Zi-you Gao; Tian-de Guo; Guo-ping He; Fang Wu

    2002-01-01

    In this paper, a new superlinearly convergent algorithm of sequential systems of linear equations (SSLE) for nonlinear optimization problems with inequality constraints is proposed. Since the new algorithm only needs to solve several systems of linear equations having a same coefficient matrix per iteration, the computation amount of the algorithm is much less than that of the existing SQP algorithms per iteration. Moreover, for the SQPtype algorithms, there exist so-called inconsistent problems, i.e., quadratic programming subproblems of the SQP algorithms may not have a solution at some iterations, but this phenomenon will not occur with the SSLE algorithms because the related systems of linear equations always have solutions. Some numerical results are reported.

  4. Efficient high-precision matrix algebra on parallel architectures for nonlinear combinatorial optimization

    KAUST Repository

    Gunnels, John

    2010-06-01

    We provide a first demonstration of the idea that matrix-based algorithms for nonlinear combinatorial optimization problems can be efficiently implemented. Such algorithms were mainly conceived by theoretical computer scientists for proving efficiency. We are able to demonstrate the practicality of our approach by developing an implementation on a massively parallel architecture, and exploiting scalable and efficient parallel implementations of algorithms for ultra high-precision linear algebra. Additionally, we have delineated and implemented the necessary algorithmic and coding changes required in order to address problems several orders of magnitude larger, dealing with the limits of scalability from memory footprint, computational efficiency, reliability, and interconnect perspectives. © Springer and Mathematical Programming Society 2010.

  5. Subcritical transition scenarios via linear and nonlinear localized optimal perturbations in plane Poiseuille flow

    Science.gov (United States)

    Farano, Mirko; Cherubini, Stefania; Robinet, Jean-Christophe; De Palma, Pietro

    2016-12-01

    Subcritical transition in plane Poiseuille flow is investigated by means of a Lagrange-multiplier direct-adjoint optimization procedure with the aim of finding localized three-dimensional perturbations optimally growing in a given time interval (target time). Space localization of these optimal perturbations (OPs) is achieved by choosing as objective function either a p-norm (with p\\gg 1) of the perturbation energy density in a linear framework; or the classical (1-norm) perturbation energy, including nonlinear effects. This work aims at analyzing the structure of linear and nonlinear localized OPs for Poiseuille flow, and comparing their transition thresholds and scenarios. The nonlinear optimization approach provides three types of solutions: a weakly nonlinear, a hairpin-like and a highly nonlinear optimal perturbation, depending on the value of the initial energy and the target time. The former shows localization only in the wall-normal direction, whereas the latter appears much more localized and breaks the spanwise symmetry found at lower target times. Both solutions show spanwise inclined vortices and large values of the streamwise component of velocity already at the initial time. On the other hand, p-norm optimal perturbations, although being strongly localized in space, keep a shape similar to linear 1-norm optimal perturbations, showing streamwise-aligned vortices characterized by low values of the streamwise velocity component. When used for initializing direct numerical simulations, in most of the cases nonlinear OPs provide the most efficient route to transition in terms of time to transition and initial energy, even when they are less localized in space than the p-norm OP. The p-norm OP follows a transition path similar to the oblique transition scenario, with slightly oscillating streaks which saturate and eventually experience secondary instability. On the other hand, the nonlinear OP rapidly forms large-amplitude bent streaks and skips the phases

  6. A DUAL-RELAX PENALTY FUNCTION APPROACH FOR SOLVING NONLINEAR BILEVEL PROGRAMMING WITH LINEAR LOWER LEVEL PROBLEM

    Institute of Scientific and Technical Information of China (English)

    Wan Zhongping; Wang Guangrain; Lv Yibing

    2011-01-01

    The penalty function method, presented many years ago, is an important nu- merical method for the mathematical programming problems. In this article, we propose a dual-relax penalty function approach, which is significantly different from penalty func- tion approach existing for solving the bilevel programming, to solve the nonlinear bilevel programming with linear lower level problem. Our algorithm will redound to the error analysis for computing an approximate solution to the bilevel programming. The error estimate is obtained among the optimal objective function value of the dual-relax penalty problem and of the original bilevel programming problem. An example is illustrated to show the feasibility of the proposed approach.

  7. Optimization of Passive and Active Non-Linear Vibration Mounting Systems Based on Vibratory Power Transmission

    Science.gov (United States)

    Royston, T. J.; Singh, R.

    1996-07-01

    While significant non-linear behavior has been observed in many vibration mounting applications, most design studies are typically based on the concept of linear system theory in terms of force or motion transmissibility. In this paper, an improved analytical strategy is presented for the design optimization of complex, active of passive, non-linear mounting systems. This strategy is built upon the computational Galerkin method of weighted residuals, and incorporates order reduction and numerical continuation in an iterative optimization scheme. The overall dynamic characteristics of the mounting system are considered and vibratory power transmission is minimized via adjustment of mount parameters by using both passive and active means. The method is first applied through a computational example case to the optimization of basic passive and active, non-linear isolation configurations. It is found that either active control or intentionally introduced non-linearity can improve the mount's performance; but a combination of both produces the greatest benefit. Next, a novel experimental, active, non-linear isolation system is studied. The effect of non-linearity on vibratory power transmission and active control are assessed via experimental measurements and the enhanced Galerkin method. Results show how harmonic excitation can result in multiharmonic vibratory power transmission. The proposed optimization strategy offers designers some flexibility in utilizing both passive and active means in combination with linear and non-linear components for improved vibration mounts.

  8. Robust Optimal Design of a Nonlinear Dynamic Vibration Absorber Combining Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    R.A. Borges

    2010-01-01

    Full Text Available Dynamic vibration absorbers are discrete devices developed in the beginning of the last century used to attenuate the vibrations of different engineering structures. They have been used in several engineering applications, such as ships, power lines, aeronautic structures, civil engineering constructions subjected to seismic induced excitations, compressor systems, etc. However, in the context of nonlinear dynamics, few works have been proposed regarding the robust optimal design of nonlinear dynamic vibration absorbers. In this paper, a robust optimization strategy combined with sensitivity analysis of systems incorporating nonlinear dynamic vibration absorbers is proposed. Although sensitivity analysis is a well known numerical technique, the main contribution intended for this study is its extension to nonlinear systems. Due to the numerical procedure used to solve the nonlinear equations, the sensitivities addressed herein are computed from the first-order finite-difference approximations. With the aim of increasing the efficiency of the nonlinear dynamic absorber into a frequency band of interest, and to augment the robustness of the optimal design, a robust optimization strategy combined with the previous sensitivities is addressed. After presenting the underlying theoretical foundations, the proposed robust design methodology is performed for a two degree-of-freedom system incorporating a nonlinear dynamic vibration absorber. Based on the obtained results, the usefulness of the proposed methodology is highlighted.

  9. Localization and identification of structural nonlinearities using cascaded optimization and neural networks

    Science.gov (United States)

    Koyuncu, A.; Cigeroglu, E.; Özgüven, H. N.

    2017-10-01

    In this study, a new approach is proposed for identification of structural nonlinearities by employing cascaded optimization and neural networks. Linear finite element model of the system and frequency response functions measured at arbitrary locations of the system are used in this approach. Using the finite element model, a training data set is created, which appropriately spans the possible nonlinear configurations space of the system. A classification neural network trained on these data sets then localizes and determines the types of all nonlinearities associated with the nonlinear degrees of freedom in the system. A new training data set spanning the parametric space associated with the determined nonlinearities is created to facilitate parametric identification. Utilizing this data set, initially, a feed forward regression neural network is trained, which parametrically identifies the classified nonlinearities. Then, the results obtained are further improved by carrying out an optimization which uses network identified values as starting points. Unlike identification methods available in literature, the proposed approach does not require data collection from the degrees of freedoms where nonlinear elements are attached, and furthermore, it is sufficiently accurate even in the presence of measurement noise. The application of the proposed approach is demonstrated on an example system with nonlinear elements and on a real life experimental setup with a local nonlinearity.

  10. Non-linear stochastic optimal control of acceleration parametrically excited systems

    Science.gov (United States)

    Wang, Yong; Jin, Xiaoling; Huang, Zhilong

    2016-02-01

    Acceleration parametrical excitations have not been taken into account due to the lack of physical significance in macroscopic structures. The explosive development of microtechnology and nanotechnology, however, motivates the investigation of the acceleration parametrically excited systems. The adsorption and desorption effects dramatically change the mass of nano-sized structures, which significantly reduces the precision of nanoscale sensors or can be reasonably utilised to detect molecular mass. This manuscript proposes a non-linear stochastic optimal control strategy for stochastic systems with acceleration parametric excitation based on stochastic averaging of energy envelope and stochastic dynamic programming principle. System acceleration is approximately expressed as a function of system displacement in a short time range under the conditions of light damping and weak excitations, and the acceleration parametrically excited system is shown to be equivalent to a constructed system with an additional displacement parametric excitation term. Then, the controlled system is converted into a partially averaged Itô equation with respect to the total system energy through stochastic averaging of energy envelope, and the optimal control strategy for the averaged system is derived from solving the associated dynamic programming equation. Numerical results for a controlled Duffing oscillator indicate the efficacy of the proposed control strategy.

  11. Simulation of diets for dairy goats and growing doelings using nonlinear optimization procedures

    Directory of Open Access Journals (Sweden)

    Leonardo Siqueira Glória

    2016-02-01

    Full Text Available ABSTRACT The objective of this study was to simulate total dry matter intake and cost of diets optimized by nonlinear programming to meet the nutritional requirements of dairy does and growing doelings. The mathematical model was programmed in a Microsoft Excel(r spreadsheet. Increasing values of body mass and average daily weight gain for growing doelings and increasing body mass values and milk yield for dairy does were used as inputs for optimizations. Three objective functions were considered: minimization of the dietary cost, dry matter intake maximization, and maximization of the efficiency of use of the ingested crude protein. To solve the proposed problems we used the Excel(r Solver(r algorithm. The Excel(r Solver(r was able to balance diets containing different objective functions and provided different spaces of feasible solutions. The best solutions are obtained by least-cost formulations; the other two objective functions, namely maximize dry matter intake and maximize crude protein use, do not produce favorable diets in terms of costs.

  12. A Nonlinear Programming Perspective on Sensitivity Calculations for Systems Governed by State Equations

    Science.gov (United States)

    Lewis, Robert Michael

    1997-01-01

    This paper discusses the calculation of sensitivities. or derivatives, for optimization problems involving systems governed by differential equations and other state relations. The subject is examined from the point of view of nonlinear programming, beginning with the analytical structure of the first and second derivatives associated with such problems and the relation of these derivatives to implicit differentiation and equality constrained optimization. We also outline an error analysis of the analytical formulae and compare the results with similar results for finite-difference estimates of derivatives. We then attend to an investigation of the nature of the adjoint method and the adjoint equations and their relation to directions of steepest descent. We illustrate the points discussed with an optimization problem in which the variables are the coefficients in a differential operator.

  13. Constructing Low-Dimensional Dynamical Systems of Nonlinear Partial Differential Equations Using Optimization

    Directory of Open Access Journals (Sweden)

    Jun Shuai

    2013-11-01

    Full Text Available A new approach using optimization technique for constructing low-dimensional dynamical systems of nonlinear partial differential equations (PDEs is presented. After the spatial basis functions of the nonlinear PDEs are chosen, spatial basis functions expansions combined with weighted residual methods are used for time/space separation and truncation to obtain a high-dimensional dynamical system. Secondly, modes of lower-dimensional dynamical systems are obtained by linear combination from the modes of the high-dimensional dynamical systems (ordinary differential equations of nonlinear PDEs. An error function for matrix of the linear combination coefficients is derived, and a simple algorithm to determine the optimal combination matrix is also introduced. A numerical example shows that the optimal dynamical system can use much smaller number of modes to capture the dynamics of nonlinear partial differential equations.

  14. Pareto optimization in algebraic dynamic programming.

    Science.gov (United States)

    Saule, Cédric; Giegerich, Robert

    2015-01-01

    Pareto optimization combines independent objectives by computing the Pareto front of its search space, defined as the set of all solutions for which no other candidate solution scores better under all objectives. This gives, in a precise sense, better information than an artificial amalgamation of different scores into a single objective, but is more costly to compute. Pareto optimization naturally occurs with genetic algorithms, albeit in a heuristic fashion. Non-heuristic Pareto optimization so far has been used only with a few applications in bioinformatics. We study exact Pareto optimization for two objectives in a dynamic programming framework. We define a binary Pareto product operator [Formula: see text] on arbitrary scoring schemes. Independent of a particular algorithm, we prove that for two scoring schemes A and B used in dynamic programming, the scoring scheme [Formula: see text] correctly performs Pareto optimization over the same search space. We study different implementations of the Pareto operator with respect to their asymptotic and empirical efficiency. Without artificial amalgamation of objectives, and with no heuristics involved, Pareto optimization is faster than computing the same number of answers separately for each objective. For RNA structure prediction under the minimum free energy versus the maximum expected accuracy model, we show that the empirical size of the Pareto front remains within reasonable bounds. Pareto optimization lends itself to the comparative investigation of the behavior of two alternative scoring schemes for the same purpose. For the above scoring schemes, we observe that the Pareto front can be seen as a composition of a few macrostates, each consisting of several microstates that differ in the same limited way. We also study the relationship between abstract shape analysis and the Pareto front, and find that they extract information of a different nature from the folding space and can be meaningfully combined.

  15. Optimal Control Problems for Nonlinear Variational Evolution Inequalities

    Directory of Open Access Journals (Sweden)

    Eun-Young Ju

    2013-01-01

    Full Text Available We deal with optimal control problems governed by semilinear parabolic type equations and in particular described by variational inequalities. We will also characterize the optimal controls by giving necessary conditions for optimality by proving the Gâteaux differentiability of solution mapping on control variables.

  16. Reliability optimization of friction-damped systems using nonlinear modes

    Science.gov (United States)

    Krack, Malte; Tatzko, Sebastian; Panning-von Scheidt, Lars; Wallaschek, Jörg

    2014-06-01

    A novel probabilistic approach for the design of mechanical structures with friction interfaces is proposed. The objective function is defined as the probability that a specified performance measure of the forced vibration response is achieved subject to parameter uncertainties. The practicability of the approach regarding the extensive amount of required design evaluations is strictly related to the computational efficiency of the nonlinear dynamic analysis. Therefore, it is proposed to employ a recently developed parametric reduced order model (ROM) based on nonlinear modes of vibration, which can facilitate a decrease of the computational burden by several orders of magnitude.

  17. A convergence theory for a class of nonlinear programming problems.

    Science.gov (United States)

    Rauch, S. W.

    1973-01-01

    A recent convergence theory of Elkin concerning methods for unconstrained minimization is extended to a certain class of nonlinear programming problems. As in Elkin's original approach, the analysis of a variety of step-length algorithms is treated entirely separately from that of several direction algorithms. This allows for their combination into many different methods for solving the constrained problem. These include some of the methods of Rosen and Zoutendijk. We also extend the results of Topkis and Veinott to nonconvex sets and drop their requirement of the uniform feasibility of a subsequence of the search directions.

  18. A Class of Semilocal E-Preinvex Functions and Its Applications in Nonlinear Programming

    Directory of Open Access Journals (Sweden)

    Hehua Jiao

    2012-01-01

    Full Text Available A kind of generalized convex set, called as local star-shaped E-invex set with respect to η, is presented, and some of its important characterizations are derived. Based on this concept, a new class of functions, named as semilocal E-preinvex functions, which is a generalization of semi-E-preinvex functions and semilocal E-convex functions, is introduced. Simultaneously, some of its basic properties are discussed. Furthermore, as its applications, some optimality conditions and duality results are established for a nonlinear programming.

  19. A NEW SQP-FILTER METHOD FOR SOLVING NONLINEAR PROGRAMMING PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Duoquan Li

    2006-01-01

    In [4],Fletcher and Leyffer present a new method that solves nonlinear programming problems without a penalty function by SQP-Filter algorithm. It has attracted much attention due to its good numerical results. In this paper we propose a new SQP-Filter method which can overcome Maratos effect more effectively. We give stricter acceptant criteria when the iterative points are far from the optimal points and looser ones vice-versa. About this new method,the proof of global convergence is also presented under standard assumptions. Numerical results show that our method is efficient.

  20. CAD of control systems: Application of nonlinear programming to a linear quadratic formulation

    Science.gov (United States)

    Fleming, P.

    1983-01-01

    The familiar suboptimal regulator design approach is recast as a constrained optimization problem and incorporated in a Computer Aided Design (CAD) package where both design objective and constraints are quadratic cost functions. This formulation permits the separate consideration of, for example, model following errors, sensitivity measures and control energy as objectives to be minimized or limits to be observed. Efficient techniques for computing the interrelated cost functions and their gradients are utilized in conjunction with a nonlinear programming algorithm. The effectiveness of the approach and the degree of insight into the problem which it affords is illustrated in a helicopter regulation design example.

  1. GLOBAL CONVERGENCE AND IMPLEMENTATION OF NGTN METHOD FOR SOLVING LARGE-SCALE SPARSE NONLINEAR PROGRAMMING PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Qin Ni

    2001-01-01

    An NGTN method was proposed for solving large-scale sparse nonlinear programming (NLP) problems. This is a hybrid method of a truncated Newton direction and a modified negative gradient direction, which is suitable for handling sparse data structure and possesses Q-quadratic convergence rate. The global convergence of this new method is proved,the convergence rate is further analysed, and the detailed implementation is discussed in this paper. Some numerical tests for solving truss optimization and large sparse problems are reported. The theoretical and numerical results show that the new method is efficient for solving large-scale sparse NLP problems.

  2. Nonsingularity Conditions for FB System of Reformulating Nonlinear Second-Order Cone Programming

    Directory of Open Access Journals (Sweden)

    Shaohua Pan

    2013-01-01

    Full Text Available This paper is a counterpart of Bi et al., 2011. For a locally optimal solution to the nonlinear second-order cone programming (SOCP, specifically, under Robinson’s constraint qualification, we establish the equivalence among the following three conditions: the nonsingularity of Clarke’s Jacobian of Fischer-Burmeister (FB nonsmooth system for the Karush-Kuhn-Tucker conditions, the strong second-order sufficient condition and constraint nondegeneracy, and the strong regularity of the Karush-Kuhn-Tucker point.

  3. NLSCIDNT user's guide maximum likehood parameter identification computer program with nonlinear rotorcraft model

    Science.gov (United States)

    1979-01-01

    A nonlinear, maximum likelihood, parameter identification computer program (NLSCIDNT) is described which evaluates rotorcraft stability and control coefficients from flight test data. The optimal estimates of the parameters (stability and control coefficients) are determined (identified) by minimizing the negative log likelihood cost function. The minimization technique is the Levenberg-Marquardt method, which behaves like the steepest descent method when it is far from the minimum and behaves like the modified Newton-Raphson method when it is nearer the minimum. Twenty-one states and 40 measurement variables are modeled, and any subset may be selected. States which are not integrated may be fixed at an input value, or time history data may be substituted for the state in the equations of motion. Any aerodynamic coefficient may be expressed as a nonlinear polynomial function of selected 'expansion variables'.

  4. Pushing the Boundaries: Level-set Methods and Geometrical Nonlinearities in Structural Topology Optimization

    NARCIS (Netherlands)

    Van Dijk, N.P.

    2012-01-01

    This thesis aims at understanding and improving topology optimization techniques focusing on density-based level-set methods and geometrical nonlinearities. Central in this work are the numerical modeling of the mechanical response of a design and the consistency of the optimization process itself.

  5. Neural Network Nonlinear Predictive Control Based on Tent-map Chaos Optimization%基于Tent混沌优化的神经网络预测控制

    Institute of Scientific and Technical Information of China (English)

    宋莹; 陈增强; 袁著祉

    2007-01-01

    With the unique ergodicity, irregularity, and special ability to avoid being trapped in local optima, chaos optimization has been a novel global optimization technique and has attracted considerable attention for application in various fields, such as nonlinear programming problems. In this article, a novel neural network nonlinear predictive control (NNPC) strategy based on the new Tent-map chaos optimization algorithm (TCOA) is presented. The feedforward neural network is used as the multi-step predictive model. In addition, the TCOA is applied to perform the nonlinear rolling optimization to enhance the convergence and accuracy in the NNPC. Simulation on a laboratory-scale liquid-level system is given to illustrate the effectiveness of the proposed method.

  6. Policy Gradient Adaptive Dynamic Programming for Data-Based Optimal Control.

    Science.gov (United States)

    Luo, Biao; Liu, Derong; Wu, Huai-Ning; Wang, Ding; Lewis, Frank L

    2016-11-22

    The model-free optimal control problem of general discrete-time nonlinear systems is considered in this paper, and a data-based policy gradient adaptive dynamic programming (PGADP) algorithm is developed to design an adaptive optimal controller method. By using offline and online data rather than the mathematical system model, the PGADP algorithm improves control policy with a gradient descent scheme. The convergence of the PGADP algorithm is proved by demonstrating that the constructed.

  7. Application of nonlinear optimization method to sensitivity analysis of numerical model

    Institute of Scientific and Technical Information of China (English)

    XU Hui; MU Mu; LUO Dehai

    2004-01-01

    A nonlinear optimization method is applied to sensitivity analysis of a numerical model. Theoretical analysis and numerical experiments indicate that this method can give not only a quantitative assessment whether the numerical model is able to simulate the observations or not, but also the initial field that yields the optimal simulation. In particular, when the simulation results are apparently satisfactory, and sometimes both model error and initial error are considerably large, the nonlinear optimization method, under some conditions, can identify the error that plays a dominant role.

  8. Construction of 1-Resilient Boolean Functions with Optimal Algebraic Immunity and Good Nonlinearity

    Institute of Scientific and Technical Information of China (English)

    Sen-Shan Pan; Xiao-Tong Fu; Wei-Guo Zhangx

    2011-01-01

    This paper presents a construction for a class of 1-resilient functions with optimal algebraic immunity on an even number of variables. The construction is based on the concatenation of two balanced functions in associative classes. For some n, a part of 1-resilient functions with maximum algebraic immunity constructed in the paper can achieve almost optimal nonlinearity. Apart from their high nonlinearity, the functions reach Siegenthaler's upper bound of algebraic degree. Also a class of 1-resilient functions on any number n > 2 of variables with at least sub-optimal algebraic immunity is provided.

  9. Lossless Convexification of Control Constraints for a Class of Nonlinear Optimal Control Problems

    Science.gov (United States)

    Blackmore, Lars; Acikmese, Behcet; Carson, John M.,III

    2012-01-01

    In this paper we consider a class of optimal control problems that have continuous-time nonlinear dynamics and nonconvex control constraints. We propose a convex relaxation of the nonconvex control constraints, and prove that the optimal solution to the relaxed problem is the globally optimal solution to the original problem with nonconvex control constraints. This lossless convexification enables a computationally simpler problem to be solved instead of the original problem. We demonstrate the approach in simulation with a planetary soft landing problem involving a nonlinear gravity field.

  10. A Novel Differential Evolution Invasive Weed Optimization Algorithm for Solving Nonlinear Equations Systems

    Directory of Open Access Journals (Sweden)

    Yongquan Zhou

    2013-01-01

    Full Text Available In view of the traditional numerical method to solve the nonlinear equations exist is sensitive to initial value and the higher accuracy of defects. This paper presents an invasive weed optimization (IWO algorithm which has population diversity with the heuristic global search of differential evolution (DE algorithm. In the iterative process, the global exploration ability of invasive weed optimization algorithm provides effective search area for differential evolution; at the same time, the heuristic search ability of differential evolution algorithm provides a reliable guide for invasive weed optimization. Based on the test of several typical nonlinear equations and a circle packing problem, the results show that the differential evolution invasive weed optimization (DEIWO algorithm has a higher accuracy and speed of convergence, which is an efficient and feasible algorithm for solving nonlinear systems of equations.

  11. APPLICATIONS OF NONLINEAR OPTIMIZATION METHOD TO NUMERICAL STUDIES OF ATMOSPHERIC AND OCEANIC SCIENCES

    Institute of Scientific and Technical Information of China (English)

    DUAN Wan-suo; MU Mu

    2005-01-01

    Linear singular vector and linear singular value can only describe the evolution of sufficiently small perturbations during the period in which the tangent linear model is valid.With this in mind, the applications of nonlinear optimization methods to the atmospheric and oceanic sciences are introduced, which include nonlinear singular vector (NSV) and nonlinear singular value (NSVA), conditional nonlinear optimal perturbation (CNOP), and their applications to the studies of predictability in numerical weather and climate prediction.The results suggest that the nonlinear characteristics of the motions of atmosphere and oceans can be explored by NSV and CNOP. Also attentions are paid to the introduction of the classification of predictability problems, which are related to the maximum predictable time,the maximum prediction error, and the maximum allowing error of initial value and the parameters. All the information has the background of application to the evaluation of products of numerical weather and climate prediction. Furthermore the nonlinear optimization methods of the sensitivity analysis with numerical model are also introduced, which can give a quantitative assessment whether a numerical model is able to simulate the observations and find the initial field that yield the optimal simulation. Finally, the difficulties in the lack of ripe algorithms are also discussed, which leave future work to both computational mathematics and scientists in geophysics.

  12. On the solution of mixed-integer nonlinear programming models for computer aided molecular design.

    Science.gov (United States)

    Ostrovsky, Guennadi M; Achenie, Luke E K; Sinha, Manish

    2002-11-01

    This paper addresses the efficient solution of computer aided molecular design (CAMD) problems, which have been posed as mixed-integer nonlinear programming models. The models of interest are those in which the number of linear constraints far exceeds the number of nonlinear constraints, and with most variables participating in the nonconvex terms. As a result global optimization methods are needed. A branch-and-bound algorithm (BB) is proposed that is specifically tailored to solving such problems. In a conventional BB algorithm, branching is performed on all the search variables that appear in the nonlinear terms. This translates to a large number of node traversals. To overcome this problem, we have proposed a new strategy for branching on a set of linear branchingfunctions, which depend linearly on the search variables. This leads to a significant reduction in the dimensionality of the search space. The construction of linear underestimators for a class of functions is also presented. The CAMD problem that is considered is the design of optimal solvents to be used as cleaning agents in lithographic printing.

  13. Optimal multi-floor plant layout based on the mathematical programming and particle swarm optimization.

    Science.gov (United States)

    Lee, Chang Jun

    2015-01-01

    In the fields of researches associated with plant layout optimization, the main goal is to minimize the costs of pipelines and pumping between connecting equipment under various constraints. However, what is the lacking of considerations in previous researches is to transform various heuristics or safety regulations into mathematical equations. For example, proper safety distances between equipments have to be complied for preventing dangerous accidents on a complex plant. Moreover, most researches have handled single-floor plant. However, many multi-floor plants have been constructed for the last decade. Therefore, the proper algorithm handling various regulations and multi-floor plant should be developed. In this study, the Mixed Integer Non-Linear Programming (MINLP) problem including safety distances, maintenance spaces, etc. is suggested based on mathematical equations. The objective function is a summation of pipeline and pumping costs. Also, various safety and maintenance issues are transformed into inequality or equality constraints. However, it is really hard to solve this problem due to complex nonlinear constraints. Thus, it is impossible to use conventional MINLP solvers using derivatives of equations. In this study, the Particle Swarm Optimization (PSO) technique is employed. The ethylene oxide plant is illustrated to verify the efficacy of this study.

  14. Fault Diagnosis of Nonlinear Systems Based on Hybrid PSOSA Optimization Algorithm

    Institute of Scientific and Technical Information of China (English)

    Ling-Lai Li; Dong-Hua Zhou; Ling Wang

    2007-01-01

    Fault diagnosis of nonlinear systems is of great importance in theory and practice, and the parameter estimation method is an effective strategy. Based on the framework of moving horizon estimation, fault parameters are identified by a proposed intelligent optimization algorithm called PSOSA, which could avoid premature convergence of standard particle swarm optimization (PSO) by introducing the probabilistic jumping property of simulated annealing (SA). Simulations on a three-tank system show the effectiveness of this optimization based fault diagnosis strategy.

  15. Nonlinear optimization of buoyancy-driven ventilation flow

    Science.gov (United States)

    Nabi, Saleh; Grover, Piyush; Caulfield, C. P.

    2016-11-01

    We consider the optimization of buoyancy-driven flows governed by Boussinesq equations using the Direct-Adjoint-Looping method. We use incompressible Reynolds-averaged Navier-Stokes (RANS) equations, derive the corresponding adjoint equations and solve the resulting sensitivity equations with respect to inlet conditions. For validation, we solve a series of inverse-design problems, for which we recover known globally optimal solutions. For a displacement ventilation scenario with a line source, the numerical results are compared with analytically obtained optimal inlet conditions available from classical plume theory. Our results show that depending on Archimedes number, defined as the ratio of the inlet Reynolds number to the Rayleigh number associated with the plume, qualitatively different optimal solutions are obtained. For steady and transient plumes, and subject to an enthalpy constraint on the incoming flow, we identify boundary conditions leading to 'optimal' temperature distributions in the occupied zone.

  16. Robust optimization for nonlinear time-delay dynamical system of dha regulon with cost sensitivity constraint in batch culture

    Science.gov (United States)

    Yuan, Jinlong; Zhang, Xu; Liu, Chongyang; Chang, Liang; Xie, Jun; Feng, Enmin; Yin, Hongchao; Xiu, Zhilong

    2016-09-01

    Time-delay dynamical systems, which depend on both the current state of the system and the state at delayed times, have been an active area of research in many real-world applications. In this paper, we consider a nonlinear time-delay dynamical system of dha-regulonwith unknown time-delays in batch culture of glycerol bioconversion to 1,3-propanediol induced by Klebsiella pneumonia. Some important properties and strong positive invariance are discussed. Because of the difficulty in accurately measuring the concentrations of intracellular substances and the absence of equilibrium points for the time-delay system, a quantitative biological robustness for the concentrations of intracellular substances is defined by penalizing a weighted sum of the expectation and variance of the relative deviation between system outputs before and after the time-delays are perturbed. Our goal is to determine optimal values of the time-delays. To this end, we formulate an optimization problem in which the time delays are decision variables and the cost function is to minimize the biological robustness. This optimization problem is subject to the time-delay system, parameter constraints, continuous state inequality constraints for ensuring that the concentrations of extracellular and intracellular substances lie within specified limits, a quality constraint to reflect operational requirements and a cost sensitivity constraint for ensuring that an acceptable level of the system performance is achieved. It is approximated as a sequence of nonlinear programming sub-problems through the application of constraint transcription and local smoothing approximation techniques. Due to the highly complex nature of this optimization problem, the computational cost is high. Thus, a parallel algorithm is proposed to solve these nonlinear programming sub-problems based on the filled function method. Finally, it is observed that the obtained optimal estimates for the time-delays are highly satisfactory

  17. Non-linear dynamic characteristics and optimal control of giant magnetostrictive film subjected to in-plane stochastic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Z. W., E-mail: zhuzhiwen@tju.edu.cn [Department of Mechanics, Tianjin University, 300072, Tianjin (China); Tianjin Key Laboratory of Non-linear Dynamics and Chaos Control, 300072, Tianjin (China); Zhang, W. D., E-mail: zhangwenditju@126.com; Xu, J., E-mail: xujia-ld@163.com [Department of Mechanics, Tianjin University, 300072, Tianjin (China)

    2014-03-15

    The non-linear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF) subjected to in-plane stochastic excitation were studied. Non-linear differential items were introduced to interpret the hysteretic phenomena of the GMF, and the non-linear dynamic model of the GMF subjected to in-plane stochastic excitation was developed. The stochastic stability was analysed, and the probability density function was obtained. The condition of stochastic Hopf bifurcation and noise-induced chaotic response were determined, and the fractal boundary of the system's safe basin was provided. The reliability function was solved from the backward Kolmogorov equation, and an optimal control strategy was proposed in the stochastic dynamic programming method. Numerical simulation shows that the system stability varies with the parameters, and stochastic Hopf bifurcation and chaos appear in the process; the area of the safe basin decreases when the noise intensifies, and the boundary of the safe basin becomes fractal; the system reliability improved through stochastic optimal control. Finally, the theoretical and numerical results were proved by experiments. The results are helpful in the engineering applications of GMF.

  18. Exploration of automatic optimization for CUDA programming

    KAUST Repository

    Al-Mouhamed, Mayez

    2012-12-01

    Graphic processing Units (GPUs) are gaining ground in high-performance computing. CUDA (an extension to C) is most widely used parallel programming framework for general purpose GPU computations. However, the task of writing optimized CUDA program is complex even for experts. We present a method for restructuring loops into an optimized CUDA kernels based on a 3-step algorithm which are loop tiling, coalesced memory access, and resource optimization. We also establish the relationships between the influencing parameters and propose a method for finding possible tiling solutions with coalesced memory access that best meets the identified constraints. We also present a simplified algorithm for restructuring loops and rewrite them as an efficient CUDA Kernel. The execution model of synthesized kernel consists of uniformly distributing the kernel threads to keep all cores busy while transferring a tailored data locality which is accessed using coalesced pattern to amortize the long latency of the secondary memory. In the evaluation, we implement some simple applications using the proposed restructuring strategy and evaluate the performance in terms of execution time and GPU throughput. © 2012 IEEE.

  19. On optimal performance of nonlinear energy sinks in multiple-degree-of-freedom systems

    Science.gov (United States)

    Tripathi, Astitva; Grover, Piyush; Kalmár-Nagy, Tamás

    2017-02-01

    We study the problem of optimizing the performance of a nonlinear spring-mass-damper attached to a class of multiple-degree-of-freedom systems. We aim to maximize the rate of one-way energy transfer from primary system to the attachment, and focus on impulsive excitation of a two-degree-of-freedom primary system with an essentially nonlinear attachment. The nonlinear attachment is shown to be able to perform as a 'nonlinear energy sink' (NES) by taking away energy from the primary system irreversibly for some types of impulsive excitations. Using perturbation analysis and exploiting separation of time scales, we perform dimensionality reduction of this strongly nonlinear system. Our analysis shows that efficient energy transfer to nonlinear attachment in this system occurs for initial conditions close to homoclinic orbit of the slow time-scale undamped system, a phenomenon that has been previously observed for the case of single-degree-of-freedom primary systems. Analytical formulae for optimal parameters for given impulsive excitation input are derived. Generalization of this framework to systems with arbitrary number of degrees-of-freedom of the primary system is also discussed. The performance of both linear and nonlinear optimally tuned attachments is compared. While NES performance is sensitive to magnitude of the initial impulse, our results show that NES performance is more robust than linear tuned mass damper to several parametric perturbations. Hence, our work provides evidence that homoclinic orbits of the underlying Hamiltonian system play a crucial role in efficient nonlinear energy transfers, even in high dimensional systems, and gives new insight into robustness of systems with essential nonlinearity.

  20. An Efficient Pseudospectral Method for Solving a Class of Nonlinear Optimal Control Problems

    OpenAIRE

    Emran Tohidi; Atena Pasban; Kilicman, A.; S. Lotfi Noghabi

    2013-01-01

    This paper gives a robust pseudospectral scheme for solving a class of nonlinear optimal control problems (OCPs) governed by differential inclusions. The basic idea includes two major stages. At the first stage, we linearize the nonlinear dynamical system by an interesting technique which is called linear combination property of intervals. After this stage, the linearized dynamical system is transformed into a multi domain dynamical system via computational interval partitioning. Moreover,...

  1. Decentralized observers for optimal stabilization of large class of nonlinear interconnected systems

    OpenAIRE

    BEL HAJ FREJ, GHAZI; Thabet, Assem; Boutayeb, Mohamed; Aoun, Mohamed

    2016-01-01

    International audience; This paper focuses on the design of decentralized state observers based on optimal guaranteed cost control for a class of systems which are composed of linear subsystems coupled by non-linear time-varying interconnections. One of the main contributions lies in the use of the differential mean value theorem (DMVT) to simplify the design of estimation and control matrices gains. This has the advantage of introducing a general condition on the nonlinear time-varying inter...

  2. Singular Value Decomposition-Based Method for Sliding Mode Control and Optimization of Nonlinear Neutral Systems

    OpenAIRE

    Heli Hu; Dan Zhao; Qingling Zhang

    2013-01-01

    The sliding mode control and optimization are investigated for a class of nonlinear neutral systems with the unmatched nonlinear term. In the framework of Lyapunov stability theory, the existence conditions for the designed sliding surface and the stability bound ${\\alpha }^{\\ast }$ are derived via twice transformations. The further results are to develop an efficient sliding mode control law with tuned parameters to attract the state trajectories onto the sliding surface in finit...

  3. Automatic design of synthetic gene circuits through mixed integer non-linear programming.

    Science.gov (United States)

    Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias

    2012-01-01

    Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits.

  4. Schwartz' distributions in nonlinear setting: Applications to differential equations, filtering and optimal control

    Directory of Open Access Journals (Sweden)

    Y. Orlov

    2002-01-01

    Full Text Available The paper is intended to be of tutorial value for Schwartz' distributions theory in nonlinear setting. Mathematical models are presented for nonlinear systems which admit both standard and impulsive inputs. These models are governed by differential equations in distributions whose meaning is generalized to involve nonlinear, non single-valued operating over distributions. The set of generalized solutions of these differential equations is defined via closure, in a certain topology, of the set of the conventional solutions corresponding to standard integrable inputs. The theory is exemplified by mechanical systems with impulsive phenomena, optimal impulsive feedback synthesis, sampled-data filtering of stochastic and deterministic dynamic systems.

  5. Performance characteristics and optimal analysis of a nonlinear diode refrigerator

    Institute of Scientific and Technical Information of China (English)

    Wang Xiu-Mei; He Ji-Zhou; Liang Hong-Ni

    2011-01-01

    This paper establishes a model of a nonlinear diode refrigerator consisting of two diodes switched in the opposite directions and located in two heat reservoirs with different temperatures. Based on the theory of thermal fluctuations, the expressions of the heat flux absorbed from the heat reservoirs are derived. After the heat leak between the two reservoirs is considered, the cooling rate and the coefficient of performance are obtained analytically. The influence of the heat leak and the temperature ratio on the performance characteristics of the refrigerator is analysed in detail.

  6. Optimal frequency conversion in the nonlinear stage of modulation instability

    CERN Document Server

    Bendahmane, A; Kudlinski, A; Szriftgiser, P; Conforti, M; Wabnitz, S; Trillo, S

    2015-01-01

    We investigate multi-wave mixing associated with the strongly pump depleted regime of induced modulation instability (MI) in optical fibers. For a complete transfer of pump power into the sideband modes, we theoretically and experimentally demonstrate that it is necessary to use a much lower seeding modulation frequency than the peak MI gain value. Our analysis shows that a record 95 % of the input pump power is frequency converted into the comb of sidebands, in good quantitative agreement with analytical predictions based on the simplest exact breather solution of the nonlinear Schr\\"odinger equation.

  7. A Parameter Estimation Method for Nonlinear Systems Based on Improved Boundary Chicken Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Shaolong Chen

    2016-01-01

    Full Text Available Parameter estimation is an important problem in nonlinear system modeling and control. Through constructing an appropriate fitness function, parameter estimation of system could be converted to a multidimensional parameter optimization problem. As a novel swarm intelligence algorithm, chicken swarm optimization (CSO has attracted much attention owing to its good global convergence and robustness. In this paper, a method based on improved boundary chicken swarm optimization (IBCSO is proposed for parameter estimation of nonlinear systems, demonstrated and tested by Lorenz system and a coupling motor system. Furthermore, we have analyzed the influence of time series on the estimation accuracy. Computer simulation results show it is feasible and with desirable performance for parameter estimation of nonlinear systems.

  8. Optimum sensitivity derivatives of objective functions in nonlinear programming

    Science.gov (United States)

    Barthelemy, J.-F. M.; Sobieszczanski-Sobieski, J.

    1983-01-01

    The feasibility of eliminating second derivatives from the input of optimum sensitivity analyses of optimization problems is demonstrated. This elimination restricts the sensitivity analysis to the first-order sensitivity derivatives of the objective function. It is also shown that when a complete first-order sensitivity analysis is performed, second-order sensitivity derivatives of the objective function are available at little additional cost. An expression is derived whose application to linear programming is presented.

  9. Optimization Algorithms in School Scheduling Programs: Study, Analysis and Results

    Directory of Open Access Journals (Sweden)

    Lina PUPEIKIENE

    2009-04-01

    Full Text Available To create good and optimal school schedule is very important and practical task. Currently in Lithuania schools are using two programs for making the school schedule at the moment. But none of these programs is very effective. Optimization Department of Lithuanian Institute of Mathematics and Informatics (IMI has created ``School schedule optimization program''. It has three optimization algorithms for making best school schedule. A user can choose not only few optimization options and get few optimal schedules, but some subjective and objectives parameters. The making of initial data file is advanced in this program. XML format is used for creating initial data file and getting all optimal results files. The purpose of this study is to analyze used optimization algorithms used in ``School schedule optimization program'' and to compare results with two most popular commercial school scheduling programs in Lithuania.

  10. Optimal control of nonlinear continuous-time systems in strict-feedback form.

    Science.gov (United States)

    Zargarzadeh, Hassan; Dierks, Travis; Jagannathan, Sarangapani

    2015-10-01

    This paper proposes a novel optimal tracking control scheme for nonlinear continuous-time systems in strict-feedback form with uncertain dynamics. The optimal tracking problem is transformed into an equivalent optimal regulation problem through a feedforward adaptive control input that is generated by modifying the standard backstepping technique. Subsequently, a neural network-based optimal control scheme is introduced to estimate the cost, or value function, over an infinite horizon for the resulting nonlinear continuous-time systems in affine form when the internal dynamics are unknown. The estimated cost function is then used to obtain the optimal feedback control input; therefore, the overall optimal control input for the nonlinear continuous-time system in strict-feedback form includes the feedforward plus the optimal feedback terms. It is shown that the estimated cost function minimizes the Hamilton-Jacobi-Bellman estimation error in a forward-in-time manner without using any value or policy iterations. Finally, optimal output feedback control is introduced through the design of a suitable observer. Lyapunov theory is utilized to show the overall stability of the proposed schemes without requiring an initial admissible controller. Simulation examples are provided to validate the theoretical results.

  11. 旋转回归结合非线性规划在优化提取丝瓜籽油工艺参数的应用%Searching Optimal Sponge Melon Seed Oil Extraction Production Parameters with Response Surface and Nonlinear Programming Methodologies

    Institute of Scientific and Technical Information of China (English)

    闵嗣璠; 彭会娟; 周雯雯; 杨寅桂; 钟八莲

    2012-01-01

    采用通用旋转回归组合设计结合非线性规划探讨以石油醚为溶剂微波辅助浸提丝瓜籽油的最优化生产工艺参数(溶剂体积、水浴浸提时间、微波处理时间、微波处理温度).结果表明:二次多项式方程能较好地说明参试因子与丝瓜籽油得率之间的数值关系.具有显著的回归关系(p-值<0.05),不存在失拟现象(p-值约为0.5).根据这一数量关系模型应用非线性规划获取最优化生产工艺参数(溶剂体积为60ml;水浴浸提时间为180分;微波处理时间为160.4064秒;微波处理温度为86.32436°).验证试验说明这一最优化试验因子组合具有较高的提取率(18.55071%Taking sponge melon (Luffa cylindrica, Cucurbitaceae) seed oil extraction with petroleum ether base extraction procedure as the experimental target, this paper focuses on searching optimal production parameters and their verification with response surface and nonlinear programming methodologies on the basis of 4 factor quadratic composite rotation experimental design, petroleum ether the solvent (ml), water extraction period (minutes), microwave processing period (second), and microwave processing temperature (degree Celsius). The analytical results showed that quadratic polynomial equation was an appropriate model to describe the numerical relation between experimental response (seed oil extraction ratio) and the levels of all experimental design factors with statistically significant regression relation and without statistically significant lack of fit. Via nonlinear programming calculator the optimal production parameters(petroleum ether b. p. 60~90 °volume 60 ml, water extraction period 180 minutes, microwave processing period 160.4064 seconds, microwave processing temperature 86.32436 degrees)were obtained. The verification result showed that under this experimental factor combination the oil yield ratio (18.55071%) was similar as the best combination from response surface.

  12. A BPTT-like Min-Max Optimal Control Algorithm for Nonlinear Systems

    Science.gov (United States)

    Milić, Vladimir; Kasać, Josip; Majetić, Dubravko; Šitum, Željko

    2010-09-01

    This paper presents a conjugate gradient-based algorithm for feedback min-max optimal control of nonlinear systems. The algorithm has a backward-in-time recurrent structure similar to the back propagation through time (BPTT) algorithm. The control law is given as the output of the one-layer neural network. Main contribution of the paper includes the integration of BPTT techniques, conjugate gradient methods, Adams method for solving ODEs and automatic differentiation (AD), to provide an effective, novel algorithm for solving numerically optimally min-max control problems. The proposed algorithm is applied to the rotational/translational actuator (RTAC) nonlinear benchmark problem with control and state vector constraints.

  13. Stable sequential Kuhn-Tucker theorem in iterative form or a regularized Uzawa algorithm in a regular nonlinear programming problem

    Science.gov (United States)

    Sumin, M. I.

    2015-06-01

    A parametric nonlinear programming problem in a metric space with an operator equality constraint in a Hilbert space is studied assuming that its lower semicontinuous value function at a chosen individual parameter value has certain subdifferentiability properties in the sense of nonlinear (nonsmooth) analysis. Such subdifferentiability can be understood as the existence of a proximal subgradient or a Fréchet subdifferential. In other words, an individual problem has a corresponding generalized Kuhn-Tucker vector. Under this assumption, a stable sequential Kuhn-Tucker theorem in nondifferential iterative form is proved and discussed in terms of minimizing sequences on the basis of the dual regularization method. This theorem provides necessary and sufficient conditions for the stable construction of a minimizing approximate solution in the sense of Warga in the considered problem, whose initial data can be approximately specified. A substantial difference of the proved theorem from its classical same-named analogue is that the former takes into account the possible instability of the problem in the case of perturbed initial data and, as a consequence, allows for the inherited instability of classical optimality conditions. This theorem can be treated as a regularized generalization of the classical Uzawa algorithm to nonlinear programming problems. Finally, the theorem is applied to the "simplest" nonlinear optimal control problem, namely, to a time-optimal control problem.

  14. A novel infinite-time optimal tracking control scheme for a class of discrete-time nonlinear systems via the greedy HDP iteration algorithm.

    Science.gov (United States)

    Zhang, Huaguang; Wei, Qinglai; Luo, Yanhong

    2008-08-01

    In this paper, we aim to solve the infinite-time optimal tracking control problem for a class of discrete-time nonlinear systems using the greedy heuristic dynamic programming (HDP) iteration algorithm. A new type of performance index is defined because the existing performance indexes are very difficult in solving this kind of tracking problem, if not impossible. Via system transformation, the optimal tracking problem is transformed into an optimal regulation problem, and then, the greedy HDP iteration algorithm is introduced to deal with the regulation problem with rigorous convergence analysis. Three neural networks are used to approximate the performance index, compute the optimal control policy, and model the nonlinear system for facilitating the implementation of the greedy HDP iteration algorithm. An example is given to demonstrate the validity of the proposed optimal tracking control scheme.

  15. Research on an augmented Lagrangian penalty function algorithm for nonlinear programming

    Science.gov (United States)

    Frair, L.

    1978-01-01

    The augmented Lagrangian (ALAG) Penalty Function Algorithm for optimizing nonlinear mathematical models is discussed. The mathematical models of interest are deterministic in nature and finite dimensional optimization is assumed. A detailed review of penalty function techniques in general and the ALAG technique in particular is presented. Numerical experiments are conducted utilizing a number of nonlinear optimization problems to identify an efficient ALAG Penalty Function Technique for computer implementation.

  16. A monotonic method for solving nonlinear optimal control problems

    CERN Document Server

    Salomon, Julien

    2009-01-01

    Initially introduced in the framework of quantum control, the so-called monotonic algorithms have shown excellent numerical results when dealing with various bilinear optimal control problems. This paper aims at presenting a unified formulation of such procedures and the intrinsic assumptions they require. In this framework, we prove the feasibility of the general algorithm. Finally, we explain how these assumptions can be relaxed.

  17. Global Optimization Algorithm for Nonlinear Sum of Ratios Problems%非线性比式和问题的全局优化算法

    Institute of Scientific and Technical Information of China (English)

    焦红伟; 郭运瑞; 陈永强

    2008-01-01

    In this paper,a global optimization algorithm is proposed for nonlinear sum of ratios problem(P).The algorithm works by globally solving problem(P1)that is equivalent to problem(P),by utilizing linearization technique a linear relaxation programming of the(P1)is then obtained.The proposed algorithm is convergent to the global minimum of(P1)through the successive refinement of linear relaxation of the feasible region of objective function and solutions of a series of linear relaxation programming.Numerical results indicate that the proposed algorithm is feasible and can be used to globally solve nonlinear sum of ratios problems(P).

  18. Adaptive Event-Triggered Control Based on Heuristic Dynamic Programming for Nonlinear Discrete-Time Systems.

    Science.gov (United States)

    Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo

    2016-04-08

    This paper presents the design of a novel adaptive event-triggered control method based on the heuristic dynamic programming (HDP) technique for nonlinear discrete-time systems with unknown system dynamics. In the proposed method, the control law is only updated when the event-triggered condition is violated. Compared with the periodic updates in the traditional adaptive dynamic programming (ADP) control, the proposed method can reduce the computation and transmission cost. An actor-critic framework is used to learn the optimal event-triggered control law and the value function. Furthermore, a model network is designed to estimate the system state vector. The main contribution of this paper is to design a new trigger threshold for discrete-time systems. A detailed Lyapunov stability analysis shows that our proposed event-triggered controller can asymptotically stabilize the discrete-time systems. Finally, we test our method on two different discrete-time systems, and the simulation results are included.

  19. A high performance neural network for solving nonlinear programming problems with hybrid constraints

    Science.gov (United States)

    Tao, Qing; Cao, Jinde; Xue, Meisheng; Qiao, Hong

    2001-09-01

    A continuous neural network is proposed in this Letter for solving optimization problems. It not only can solve nonlinear programming problems with the constraints of equality and inequality, but also has a higher performance. The main advantage of the network is that it is an extension of Newton's gradient method for constrained problems, the dynamic behavior of the network under special constraints and the convergence rate can be investigated. Furthermore, the proposed network is simpler than the existing networks even for solving positive definite quadratic programming problems. The network considered is constrained by a projection operator on a convex set. The advanced performance of the proposed network is demonstrated by means of simulation of several numerical examples.

  20. Interval Solution for Nonlinear Programming of Maximizing the Fatigue Life of V-Belt under Polymorphic Uncertain Environment

    Directory of Open Access Journals (Sweden)

    Zhong Wan

    2013-01-01

    Full Text Available In accord with the practical engineering design conditions, a nonlinear programming model is constructed for maximizing the fatigue life of V-belt drive in which some polymorphic uncertainties are incorporated. For a given satisfaction level and a confidence level, an equivalent formulation of this uncertain optimization model is obtained where only interval parameters are involved. Based on the concepts of maximal and minimal range inequalities for describing interval inequality, the interval parameter model is decomposed into two standard nonlinear programming problems, and an algorithm, called two-step based sampling algorithm, is developed to find an interval optimal solution for the original problem. Case study is employed to demonstrate the validity and practicability of the constructed model and the algorithm.

  1. hp-Pseudospectral method for solving continuous-time nonlinear optimal control problems

    Science.gov (United States)

    Darby, Christopher L.

    2011-12-01

    In this dissertation, a direct hp-pseudospectral method for approximating the solution to nonlinear optimal control problems is proposed. The hp-pseudospectral method utilizes a variable number of approximating intervals and variable-degree polynomial approximations of the state within each interval. Using the hp-discretization, the continuous-time optimal control problem is transcribed to a finite-dimensional nonlinear programming problem (NLP). The differential-algebraic constraints of the optimal control problem are enforced at a finite set of collocation points, where the collocation points are either the Legendre-Gauss or Legendre-Gauss-Radau quadrature points. These sets of points are chosen because they correspond to high-accuracy Gaussian quadrature rules for approximating the integral of a function. Moreover, Runge phenomenon for high-degree Lagrange polynomial approximations to the state is avoided by using these points. The key features of the hp-method include computational sparsity associated with low-order polynomial approximations and rapid convergence rates associated with higher-degree polynomials approximations. Consequently, the hp-method is both highly accurate and computationally efficient. Two hp-adaptive algorithms are developed that demonstrate the utility of the hp-approach. The algorithms are shown to accurately approximate the solution to general continuous-time optimal control problems in a computationally efficient manner without a priori knowledge of the solution structure. The hp-algorithms are compared empirically against local (h) and global (p) collocation methods over a wide range of problems and are found to be more efficient and more accurate. The hp-pseudospectral approach developed in this research not only provides a high-accuracy approximation to the state and control of an optimal control problem, but also provides high-accuracy approximations to the costate of the optimal control problem. The costate is approximated by

  2. Modeling and Optimization of Vehicle Suspension Employing a Nonlinear Fluid Inerter

    Directory of Open Access Journals (Sweden)

    Yujie Shen

    2016-01-01

    Full Text Available An ideal inerter has been applied to various vibration engineering fields because of its superior vibration isolation performance. This paper proposes a new type of fluid inerter and analyzes the nonlinearities including friction and nonlinear damping force caused by the viscosity of fluid. The nonlinear model of fluid inerter is demonstrated by the experiments analysis. Furthermore, the full-car dynamic model involving the nonlinear fluid inerter is established. It has been detected that the performance of the vehicle suspension may be influenced by the nonlinearities of inerter. So, parameters of the suspension system including the spring stiffness and the damping coefficient are optimized by means of QGA (quantum genetic algorithm, which combines the genetic algorithm and quantum computing. Results indicate that, compared with the original nonlinear suspension system, the RMS (root-mean-square of vertical body acceleration of optimized suspension has decreased by 9.0%, the RMS of pitch angular acceleration has decreased by 19.9%, and the RMS of roll angular acceleration has decreased by 9.6%.

  3. Nonlinear Systems Feedback Linearization Optimal Zero-State-Error Control Under Disturbances Compensation

    Directory of Open Access Journals (Sweden)

    Gao Dexin

    2012-10-01

    Full Text Available This paper concentrates on the solution of state feedback exact linearization zero steady-state error optimal control problem for nonlinear systems affected by external disturbances. Firstly, the nonlinear system model with external disturbances is converted to quasi-linear system model by differential homeomorphism. Using Internal Model Optional Control (IMOC, the disturbances compensator is designed, which exactly offset the impact of external disturbances on the system. Taking the  system and the disturbances compensator in series, a new augmented system is obtained. Then the zero steady-state error optimal control problem is transformed into the optimal regulator design problem of an augmented system, and the optimal static error feedback control law is designed according to the different quadratic performance index. At last, the simulation results show the effectiveness of the method.

  4. Nonlinear Control of an Autonomous Quadrotor Unmanned Aerial Vehicle using Backstepping Controller Optimized by Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Mohd Ariffanan Mohd Basri

    2015-09-01

    Full Text Available Quadrotor unmanned aerial vehicle (UAV is an unstable nonlinear control system. Therefore, the development of a high performance controller for such a multi-input and multi-output (MIMO system is important. The backstepping controller (BC has been successfully applied to control a variety of nonlinear systems. Conventionally, control parameters of a BC are usually chosen arbitrarily. The problems in this method are the adjustment is time demanding and a designer can never tell exactly what are the optimal control parameters should be selected. In this paper, the contribution is focused on an optimal control design for stabilization and trajectory tracking of a quadrotor UAV. Firstly, a dynamic model of the aerial vehicle is mathematically formulated. Then, an optimal backstepping controller (OBC is proposed. The particle swarm optimization (PSO algorithm is used to compute control parameters of the OBC. Finally, simulation results of a highly nonlinear quadrotor system are presented to demonstrate the effectiveness of the proposed control method. From the simulation results it is observed that the OBC tuned by PSO provides a high control performance of an autonomous quadrotor UAV.

  5. Fuzzy physical programming for Space Manoeuvre Vehicles trajectory optimization based on hp-adaptive pseudospectral method

    Science.gov (United States)

    Chai, Runqi; Savvaris, Al; Tsourdos, Antonios

    2016-06-01

    In this paper, a fuzzy physical programming (FPP) method has been introduced for solving multi-objective Space Manoeuvre Vehicles (SMV) skip trajectory optimization problem based on hp-adaptive pseudospectral methods. The dynamic model of SMV is elaborated and then, by employing hp-adaptive pseudospectral methods, the problem has been transformed to nonlinear programming (NLP) problem. According to the mission requirements, the solutions were calculated for each single-objective scenario. To get a compromised solution for each target, the fuzzy physical programming (FPP) model is proposed. The preference function is established with considering the fuzzy factor of the system such that a proper compromised trajectory can be acquired. In addition, the NSGA-II is tested to obtain the Pareto-optimal solution set and verify the Pareto optimality of the FPP solution. Simulation results indicate that the proposed method is effective and feasible in terms of dealing with the multi-objective skip trajectory optimization for the SMV.

  6. Efficient Output Solution for Nonlinear Stochastic Optimal Control Problem with Model-Reality Differences

    Directory of Open Access Journals (Sweden)

    Sie Long Kek

    2015-01-01

    Full Text Available A computational approach is proposed for solving the discrete time nonlinear stochastic optimal control problem. Our aim is to obtain the optimal output solution of the original optimal control problem through solving the simplified model-based optimal control problem iteratively. In our approach, the adjusted parameters are introduced into the model used such that the differences between the real system and the model used can be computed. Particularly, system optimization and parameter estimation are integrated interactively. On the other hand, the output is measured from the real plant and is fed back into the parameter estimation problem to establish a matching scheme. During the calculation procedure, the iterative solution is updated in order to approximate the true optimal solution of the original optimal control problem despite model-reality differences. For illustration, a wastewater treatment problem is studied and the results show the efficiency of the approach proposed.

  7. Manual of phosphoric acid fuel cell power plant optimization model and computer program

    Science.gov (United States)

    Lu, C. Y.; Alkasab, K. A.

    1984-01-01

    An optimized cost and performance model for a phosphoric acid fuel cell power plant system was derived and developed into a modular FORTRAN computer code. Cost, energy, mass, and electrochemical analyses were combined to develop a mathematical model for optimizing the steam to methane ratio in the reformer, hydrogen utilization in the PAFC plates per stack. The nonlinear programming code, COMPUTE, was used to solve this model, in which the method of mixed penalty function combined with Hooke and Jeeves pattern search was chosen to evaluate this specific optimization problem.

  8. Nonlinear optimal filter technique for analyzing energy depositions in TES sensors driven into saturation

    Directory of Open Access Journals (Sweden)

    B. Shank

    2014-11-01

    Full Text Available We present a detailed thermal and electrical model of superconducting transition edge sensors (TESs connected to quasiparticle (qp traps, such as the W TESs connected to Al qp traps used for CDMS (Cryogenic Dark Matter Search Ge and Si detectors. We show that this improved model, together with a straightforward time-domain optimal filter, can be used to analyze pulses well into the nonlinear saturation region and reconstruct absorbed energies with optimal energy resolution.

  9. Nonlinear Optimal Filter Technique For Analyzing Energy Depositions In TES Sensors Driven Into Saturation

    CERN Document Server

    Shank, B; Cabrera, B; Kreikebaum, J M; Moffatt, R; Redl, P; Young, B A; Brink, P L; Cherry, M; Tomada, A

    2014-01-01

    We present a detailed thermal and electrical model of superconducting transition edge sensors (TESs) connected to quasiparticle (qp) traps, such as the W TESs connected to Al qp traps used for CDMS (Cryogenic Dark Matter Search) Ge and Si detectors. We show that this improved model, together with a straightforward time-domain optimal filter, can be used to analyze pulses well into the nonlinear saturation region and reconstruct absorbed energies with optimal energy resolution.

  10. RCLED Optimization and Nonlinearity Compensation in a Polymer Optical Fiber DMT System

    Directory of Open Access Journals (Sweden)

    Pu Miao

    2016-09-01

    Full Text Available In polymer optical fiber (POF systems, the nonlinear transfer function of the resonant cavity light emitting diode (RCLED drastically degrades the communication performance. After investigating the characteristics of the RCLED nonlinear behavior, an improved digital look-up-table (LUT pre-distorter, based on an adaptive iterative algorithm, is proposed. Additionally, the system parameters, including the bias current, the average electrical power, the LUT size and the step factor are also jointly optimized to achieve a trade-off between the system linearity, reliability and the computational complexity. With the proposed methodology, both the operating point and efficiency of RCLED are enhanced. Moreover, in the practical 50 m POF communication system with the discrete multi-tone (DMT modulation, the bit error rate performance is improved by over 12 dB when RCLED is operating in the nonlinear region. Therefore, the proposed pre-distorter can both resist the nonlinearity and improve the operating point of RCLED.

  11. A Class of Parameter Estimation Methods for Nonlinear Muskingum Model Using Hybrid Invasive Weed Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Aijia Ouyang

    2015-01-01

    Full Text Available Nonlinear Muskingum models are important tools in hydrological forecasting. In this paper, we have come up with a class of new discretization schemes including a parameter θ to approximate the nonlinear Muskingum model based on general trapezoid formulas. The accuracy of these schemes is second order, if θ≠1/3, but interestingly when θ=1/3, the accuracy of the presented scheme gets improved to third order. Then, the present schemes are transformed into an unconstrained optimization problem which can be solved by a hybrid invasive weed optimization (HIWO algorithm. Finally, a numerical example is provided to illustrate the effectiveness of the present methods. The numerical results substantiate the fact that the presented methods have better precision in estimating the parameters of nonlinear Muskingum models.

  12. Simple procedures for imposing constraints for nonlinear least squares optimization

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, R. [Petrobras, Rio de Janeiro (Brazil); Thompson, L.G.; Redner, R.; Reynolds, A.C. [Univ. of Tulsa, OK (United States)

    1995-12-31

    Nonlinear regression method (least squares, least absolute value, etc.) have gained acceptance as practical technology for analyzing well-test pressure data. Even for relatively simple problems, however, commonly used algorithms sometimes converge to nonfeasible parameter estimates (e.g., negative permeabilities) resulting in a failure of the method. The primary objective of this work is to present a new method for imaging the objective function across all boundaries imposed to satisfy physical constraints on the parameters. The algorithm is extremely simple and reliable. The method uses an equivalent unconstrained objective function to impose the physical constraints required in the original problem. Thus, it can be used with standard unconstrained least squares software without reprogramming and provides a viable alternative to penalty functions for imposing constraints when estimating well and reservoir parameters from pressure transient data. In this work, the authors also present two methods of implementing the penalty function approach for imposing parameter constraints in a general unconstrained least squares algorithm. Based on their experience, the new imaging method always converges to a feasible solution in less time than the penalty function methods.

  13. A New Kind of Simple Smooth Exact Penalty Function of Constrained Nonlinear Programming

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The penalty function method is one basic method for solving constrained nonlinear programming, in which simple smooth exact penalty functions draw much attention for their simpleness and smoothness. This article offers a new kind of simple smooth approximative exact penalty function of general constrained nonlinear programmings and analyzes its properties.

  14. Optimal experimental design for non-linear models theory and applications

    CERN Document Server

    Kitsos, Christos P

    2013-01-01

    This book tackles the Optimal Non-Linear Experimental Design problem from an applications perspective. At the same time it offers extensive mathematical background material that avoids technicalities, making it accessible to non-mathematicians: Biologists, Medical Statisticians, Sociologists, Engineers, Chemists and Physicists will find new approaches to conducting their experiments. The book is recommended for Graduate Students and Researchers.

  15. Conditional nonlinear optimal perturbations of the double-gyre ocean circulation

    NARCIS (Netherlands)

    Terwisscha van Scheltinga, A.D.; Dijkstra, H.A.

    2008-01-01

    In this paper, we study the development of finite amplitude perturbations on linearly stable steady barotropic double-gyre flows in a rectangular basin using the concept of Conditional Nonlinear Optimal Perturbation (CNOP). The CNOPs depend on a time scale of evolution te and an initial perturbation

  16. Iterative Adaptive Dynamic Programming for Solving Unknown Nonlinear Zero-Sum Game Based on Online Data.

    Science.gov (United States)

    Zhu, Yuanheng; Zhao, Dongbin; Li, Xiangjun

    2017-03-01

    H∞ control is a powerful method to solve the disturbance attenuation problems that occur in some control systems. The design of such controllers relies on solving the zero-sum game (ZSG). But in practical applications, the exact dynamics is mostly unknown. Identification of dynamics also produces errors that are detrimental to the control performance. To overcome this problem, an iterative adaptive dynamic programming algorithm is proposed in this paper to solve the continuous-time, unknown nonlinear ZSG with only online data. A model-free approach to the Hamilton-Jacobi-Isaacs equation is developed based on the policy iteration method. Control and disturbance policies and value are approximated by neural networks (NNs) under the critic-actor-disturber structure. The NN weights are solved by the least-squares method. According to the theoretical analysis, our algorithm is equivalent to a Gauss-Newton method solving an optimization problem, and it converges uniformly to the optimal solution. The online data can also be used repeatedly, which is highly efficient. Simulation results demonstrate its feasibility to solve the unknown nonlinear ZSG. When compared with other algorithms, it saves a significant amount of online measurement time.

  17. Nonlinear Multidimensional Assignment Problems Efficient Conic Optimization Methods and Applications

    Science.gov (United States)

    2015-06-24

    CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0153 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Mittelmann, Hans D 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...problems. The size 16 three-dimensional quadratic assignment problem Q3AP from wireless communications was solved using a sophisticated approach...placement of the sensors. However, available MINLP solvers are not sufficiently effective, even in the convex case, and a hybrid Benders

  18. Optimal Relay Power Allocation for Amplify-and-Forward Relay Networks with Non-linear Power Amplifiers

    OpenAIRE

    Zhang, Chao; Ren, Pinyi; Peng, Jingbo; Wei, Guo; Du, Qinghe; Wang, Yichen

    2011-01-01

    In this paper, we propose an optimal relay power allocation of an Amplify-and-Forward relay networks with non-linear power amplifiers. Based on Bussgang Linearization Theory, we depict the non-linear amplifying process into a linear system, which lets analyzing system performance easier. To obtain spatial diversity, we design a complete practical framework of a non-linear distortion aware receiver. Consider a total relay power constraint, we propose an optimal power allocation scheme to maxim...

  19. Nonlinear Thermodynamic Analysis and Optimization of a Carnot Engine Cycle

    Directory of Open Access Journals (Sweden)

    Michel Feidt

    2016-06-01

    Full Text Available As part of the efforts to unify the various branches of Irreversible Thermodynamics, the proposed work reconsiders the approach of the Carnot engine taking into account the finite physical dimensions (heat transfer conductances and the finite speed of the piston. The models introduce the irreversibility of the engine by two methods involving different constraints. The first method introduces the irreversibility by a so-called irreversibility ratio in the entropy balance applied to the cycle, while in the second method it is emphasized by the entropy generation rate. Various forms of heat transfer laws are analyzed, but most of the results are given for the case of the linear law. Also, individual cases are studied and reported in order to provide a simple analytical form of the results. The engine model developed allowed a formal optimization using the calculus of variations.

  20. Robust C subroutines for non-linear optimization

    DEFF Research Database (Denmark)

    Brock, Pernille; Madsen, Kaj; Nielsen, Hans Bruun

    2004-01-01

    to worry about special parameters controlling the iterations. For convenience we include an option for numerical checking of the user s implementation of the gradient. Note that another report [3] presents a collection of robust subroutines for both unconstrained and constrained optimization...... by changing 1 to 0. The present report is a new and updated version of a previous report NI-91-03 with the same title, [16]. Both the previous and the present report describe a collection of subroutines, which have been translated from Fortran to C. The reason for writing the present report is that some...... of the C subroutines have been replaced by more effective and robust versions translated from the original Fortran subroutines to C by the Bandler Group, see [1]. Also the test examples have been modi ed to some extent. For a description of the original Fortran subroutines see the report [17]. The software...

  1. Aquifer reclamation design: the use of contaminant transport simulation combined with nonlinear programing.

    Science.gov (United States)

    Gorelick, S.M.; Voss, C.I.; Gill, P.E.; Murray, W.; Saunders, M.A.; Wright, M.H.

    1984-01-01

    A simulation-management methodology is demonstrated for the rehabilitation of aquifers that have been subjected to chemical contamination. Finite element groundwater flow and contaminant transport simulation are combined with nonlinear optimization. The model is capable of determining well locations plus pumping and injection rates for groundwater quality control. Examples demonstrate linear or nonlinear objective functions subject to linear and nonlinear simulation and water management constraints. -from Authors

  2. Automatic Parallelization and Optimization of Programs by Proof Rewriting

    NARCIS (Netherlands)

    Hurlin, C.; Palsberg, J.; Su, Z.

    2009-01-01

    We show how, given a program and its separation logic proof, one can parallelize and optimize this program and transform its proof simultaneously to obtain a proven parallelized and optimized program. To achieve this goal, we present new proof rules for generating proof trees and a rewrite system on

  3. Nonlinear dynamics optimization with particle swarm and genetic algorithms for SPEAR3 emittance upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaobiao; Safranek, James

    2014-09-01

    Nonlinear dynamics optimization is carried out for a low emittance upgrade lattice of SPEAR3 in order to improve its dynamic aperture and Touschek lifetime. Two multi-objective optimization algorithms, a genetic algorithm and a particle swarm algorithm, are used for this study. The performance of the two algorithms are compared. The result shows that the particle swarm algorithm converges significantly faster to similar or better solutions than the genetic algorithm and it does not require seeding of good solutions in the initial population. These advantages of the particle swarm algorithm may make it more suitable for many accelerator optimization applications.

  4. Optimal Parameter Tuning in a Predictive Nonlinear Control Method for a Mobile Robot

    Directory of Open Access Journals (Sweden)

    D. Hazry

    2006-01-01

    Full Text Available This study contributes to a new optimal parameter tuning in a predictive nonlinear control method for stable trajectory straight line tracking with a non-holonomic mobile robot. In this method, the focus lies in finding the optimal parameter estimation and to predict the path that the mobile robot will follow for stable trajectory straight line tracking system. The stability control contains three parameters: 1 deflection parameter for the traveling direction of the mobile robot 2 deflection parameter for the distance across traveling direction of the mobile robot and 3 deflection parameter for the steering angle of the mobile robot . Two hundred and seventy three experimental were performed and the results have been analyzed and described herewith. It is found that by using a new optimal parameter tuning in a predictive nonlinear control method derived from the extension of kinematics model, the movement of the mobile robot is stabilized and adhered to the reference posture

  5. Reinforcement learning for adaptive optimal control of unknown continuous-time nonlinear systems with input constraints

    Science.gov (United States)

    Yang, Xiong; Liu, Derong; Wang, Ding

    2014-03-01

    In this paper, an adaptive reinforcement learning-based solution is developed for the infinite-horizon optimal control problem of constrained-input continuous-time nonlinear systems in the presence of nonlinearities with unknown structures. Two different types of neural networks (NNs) are employed to approximate the Hamilton-Jacobi-Bellman equation. That is, an recurrent NN is constructed to identify the unknown dynamical system, and two feedforward NNs are used as the actor and the critic to approximate the optimal control and the optimal cost, respectively. Based on this framework, the action NN and the critic NN are tuned simultaneously, without the requirement for the knowledge of system drift dynamics. Moreover, by using Lyapunov's direct method, the weights of the action NN and the critic NN are guaranteed to be uniformly ultimately bounded, while keeping the closed-loop system stable. To demonstrate the effectiveness of the present approach, simulation results are illustrated.

  6. Strong Combination of Ant Colony Optimization with Constraint Programming Optimization

    Science.gov (United States)

    Khichane, Madjid; Albert, Patrick; Solnon, Christine

    We introduce an approach which combines ACO (Ant Colony Optimization) and IBM ILOG CP Optimizer for solving COPs (Combinatorial Optimization Problems). The problem is modeled using the CP Optimizer modeling API. Then, it is solved in a generic way by a two-phase algorithm. The first phase aims at creating a hot start for the second: it samples the solution space and applies reinforcement learning techniques as implemented in ACO to create pheromone trails. During the second phase, CP Optimizer performs a complete tree search guided by the pheromone trails previously accumulated. The first experimental results on knapsack, quadratic assignment and maximum independent set problems show that this new algorithm enhances the performance of CP Optimizer alone.

  7. Evolution of optimal Hill coefficients in nonlinear public goods games.

    Science.gov (United States)

    Archetti, Marco; Scheuring, István

    2016-10-07

    In evolutionary game theory, the effect of public goods like diffusible molecules has been modelled using linear, concave, sigmoid and step functions. The observation that biological systems are often sigmoid input-output functions, as described by the Hill equation, suggests that a sigmoid function is more realistic. The Michaelis-Menten model of enzyme kinetics, however, predicts a concave function, and while mechanistic explanations of sigmoid kinetics exist, we lack an adaptive explanation: what is the evolutionary advantage of a sigmoid benefit function? We analyse public goods games in which the shape of the benefit function can evolve, in order to determine the optimal and evolutionarily stable Hill coefficients. We find that, while the dynamics depends on whether output is controlled at the level of the individual or the population, intermediate or high Hill coefficients often evolve, leading to sigmoid input-output functions that for some parameters are so steep to resemble a step function (an on-off switch). Our results suggest that, even when the shape of the benefit function is unknown, biological public goods should be modelled using a sigmoid or step function rather than a linear or concave function.

  8. Constrained Optimal Stochastic Control of Non-Linear Wave Energy Point Absorbers

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Chen, Jian-Bing; Kramer, Morten

    2014-01-01

    The paper deals with the stochastic optimal control of a wave energy point absorber with strong nonlinear buoyancy forces using the reactive force from the electric generator on the absorber as control force. The considered point absorber has only one degree of freedom, heave motion, which is used...... presented in the paper. The effect of nonlinear buoyancy force – in comparison to linear buoyancy force – and constraints of the controller on the power outtake of the device have been studied in details and supported by numerical simulations....

  9. On the algebraic representation of certain optimal non-linear binary codes

    CERN Document Server

    Greferath, Marcus

    2011-01-01

    This paper investigates some optimal non-linear codes, in particular cyclic codes, by considering them as (non-linear) codes over Z_4. We use the Fourier transform as well as subgroups of the unit group of a group ring to analyse these codes. In particular we find a presentation of Best's (10, 40, 4) code as a coset of a subgroup in the unit group of a ring, and derive a simple decoding algorithm from this presentation. We also apply this technique to analyse Julin's (12, 144, 4) code and the (12, 24, 12) Hadamard code, as well as to construct a (14, 56, 6) binary code.

  10. Hamiltonian-Driven Adaptive Dynamic Programming for Continuous Nonlinear Dynamical Systems.

    Science.gov (United States)

    Yang, Yongliang; Wunsch, Donald; Yin, Yixin

    2017-02-01

    This paper presents a Hamiltonian-driven framework of adaptive dynamic programming (ADP) for continuous time nonlinear systems, which consists of evaluation of an admissible control, comparison between two different admissible policies with respect to the corresponding the performance function, and the performance improvement of an admissible control. It is showed that the Hamiltonian can serve as the temporal difference for continuous-time systems. In the Hamiltonian-driven ADP, the critic network is trained to output the value gradient. Then, the inner product between the critic and the system dynamics produces the value derivative. Under some conditions, the minimization of the Hamiltonian functional is equivalent to the value function approximation. An iterative algorithm starting from an arbitrary admissible control is presented for the optimal control approximation with its convergence proof. The implementation is accomplished by a neural network approximation. Two simulation studies demonstrate the effectiveness of Hamiltonian-driven ADP.

  11. Assimilation of ERBE data with a nonlinear programming technique to improve cloud-cover diagnosis

    Science.gov (United States)

    Wu, Xiangqian; Smith, William L.

    1992-01-01

    A method is developed to assimilate satellite data for the purpose of improving the diagnosis of fractional cloud cover within a numerical weather prediction model. The method makes use of a nonlinear programming technique to find a set of parameters for the cloud diagnosis that minimizes the difference between the observed and model-produced outgoing longwave radiation (OLR). The algorithm and theoretical basis of the method are presented. The method has been applied in two forecast experiments using a numerical weather prediction model. The results from a winter case demonstrate that the root-mean-square (rms) difference between the observed and forecasted OLR can be reduced by 50 percent when the optimized cloud diagnosis is used, with the remaining rms difference within the background noise.

  12. An inner-outer nonlinear programming approach for constrained quadratic matrix model updating

    Science.gov (United States)

    Andretta, M.; Birgin, E. G.; Raydan, M.

    2016-01-01

    The Quadratic Finite Element Model Updating Problem (QFEMUP) concerns with updating a symmetric second-order finite element model so that it remains symmetric and the updated model reproduces a given set of desired eigenvalues and eigenvectors by replacing the corresponding ones from the original model. Taking advantage of the special structure of the constraint set, it is first shown that the QFEMUP can be formulated as a suitable constrained nonlinear programming problem. Using this formulation, a method based on successive optimizations is then proposed and analyzed. To avoid that spurious modes (eigenvectors) appear in the frequency range of interest (eigenvalues) after the model has been updated, additional constraints based on a quadratic Rayleigh quotient are dynamically included in the constraint set. A distinct practical feature of the proposed method is that it can be implemented by computing only a few eigenvalues and eigenvectors of the associated quadratic matrix pencil.

  13. Mathematical Programs with Equilibrium Constraints: Solution Techniques from Parametric Optimization

    NARCIS (Netherlands)

    Allende, Gemayqzel Bouza; Bouza Allende, G.

    2006-01-01

    Equilibrium constrained problems form a special class of mathematical programs where the decision variables satisfy a finite number of constraints together with an equilibrium condition. Optimization problems with a variational inequality constraint, bilevel problems and semi-infinite programs can

  14. Simplex sliding mode control for nonlinear uncertain systems via chaos optimization

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhao; Shieh, Leang-San; Chen, Guanrong; Coleman, Norman P

    2005-02-01

    As an emerging effective approach to nonlinear robust control, simplex sliding mode control demonstrates some attractive features not possessed by the conventional sliding mode control method, from both theoretical and practical points of view. However, no systematic approach is currently available for computing the simplex control vectors in nonlinear sliding mode control. In this paper, chaos-based optimization is exploited so as to develop a systematic approach to seeking the simplex control vectors; particularly, the flexibility of simplex control is enhanced by making the simplex control vectors dependent on the Euclidean norm of the sliding vector rather than being constant, which result in both reduction of the chattering and speedup of the convergence. Computer simulation on a nonlinear uncertain system is given to illustrate the effectiveness of the proposed control method.

  15. Nonlinear Dissipation Heat Devices in Finite-Time Thermodynamics: An Analysis of the Trade-Off Optimization

    Science.gov (United States)

    Lu, Can-can; Bai, Long

    2017-06-01

    The nonlinear dissipation heat devices are proposed by means of generalizing the low-dissipation heat devices to the quadratic order case. The dimensionless formulas of the output (input) power and the efficiency (coefficient of performance) for the nonlinear dissipation heat engines (refrigerators) are derived in terms of characteristic parameters for heat devices and the dimensional analysis. Based on the trade-off criterion, the optimal performance of the nonlinear dissipation heat devices is discussed in depth, and some system-specific properties for the nonlinear dissipation heat devices under the trade-off optimization are also uncovered. Our results may provide practical insight for designing actual heat engines and refrigerators.

  16. Heliocentric interplanetary low thrust trajectory optimization program, supplement 1

    Science.gov (United States)

    Mann, F. I.; Horsewood, J. L.

    1974-01-01

    The modifications and improvements made to the HILTOP electric propulsion trajectory optimization computer program up through the end of 1974 is described. New program features include the simulation of power degradation, housekeeping power, launch asymptote declination optimization, and powered and unpowered ballistic multiple swingby missions with an optional deep space burn. The report contains the new analysis describing these features, a complete description of program input quantities, and sample cases of computer output illustrating the new program capabilities.

  17. An optimal approach to active damping of nonlinear vibrations in composite plates using piezoelectric patches

    Science.gov (United States)

    Saviz, M. R.

    2015-11-01

    In this paper a nonlinear approach to studying the vibration characteristic of laminated composite plate with surface-bonded piezoelectric layer/patch is formulated, based on the Green Lagrange type of strain-displacements relations, by incorporating higher-order terms arising from nonlinear relations of kinematics into mathematical formulations. The equations of motion are obtained through the energy method, based on Lagrange equations and by using higher-order shear deformation theories with von Karman-type nonlinearities, so that transverse shear strains vanish at the top and bottom surfaces of the plate. An isoparametric finite element model is provided to model the nonlinear dynamics of the smart plate with piezoelectric layer/ patch. Different boundary conditions are investigated. Optimal locations of piezoelectric patches are found using a genetic algorithm to maximize spatial controllability/observability and considering the effect of residual modes to reduce spillover effect. Active attenuation of vibration of laminated composite plate is achieved through an optimal control law with inequality constraint, which is related to the maximum and minimum values of allowable voltage in the piezoelectric elements. To keep the voltages of actuator pairs in an allowable limit, the Pontryagin’s minimum principle is implemented in a system with multi-inequality constraint of control inputs. The results are compared with similar ones, proving the accuracy of the model especially for the structures undergoing large deformations. The convergence is studied and nonlinear frequencies are obtained for different thickness ratios. The structural coupling between plate and piezoelectric actuators is analyzed. Some examples with new features are presented, indicating that the piezo-patches significantly improve the damping characteristics of the plate for suppressing the geometrically nonlinear transient vibrations.

  18. Enhanced nonlinearity interval mapping scheme for high-performance simulation-optimization of watershed-scale BMP placement

    Science.gov (United States)

    Zou, Rui; Riverson, John; Liu, Yong; Murphy, Ryan; Sim, Youn

    2015-03-01

    Integrated continuous simulation-optimization models can be effective predictors of a process-based responses for cost-benefit optimization of best management practices (BMPs) selection and placement. However, practical application of simulation-optimization model is computationally prohibitive for large-scale systems. This study proposes an enhanced Nonlinearity Interval Mapping Scheme (NIMS) to solve large-scale watershed simulation-optimization problems several orders of magnitude faster than other commonly used algorithms. An efficient interval response coefficient (IRC) derivation method was incorporated into the NIMS framework to overcome a computational bottleneck. The proposed algorithm was evaluated using a case study watershed in the Los Angeles County Flood Control District. Using a continuous simulation watershed/stream-transport model, Loading Simulation Program in C++ (LSPC), three nested in-stream compliance points (CP)—each with multiple Total Maximum Daily Loads (TMDL) targets—were selected to derive optimal treatment levels for each of the 28 subwatersheds, so that the TMDL targets at all the CP were met with the lowest possible BMP implementation cost. Genetic Algorithm (GA) and NIMS were both applied and compared. The results showed that the NIMS took 11 iterations (about 11 min) to complete with the resulting optimal solution having a total cost of 67.2 million, while each of the multiple GA executions took 21-38 days to reach near optimal solutions. The best solution obtained among all the GA executions compared had a minimized cost of 67.7 million—marginally higher, but approximately equal to that of the NIMS solution. The results highlight the utility for decision making in large-scale watershed simulation-optimization formulations.

  19. Event-Based Robust Control for Uncertain Nonlinear Systems Using Adaptive Dynamic Programming.

    Science.gov (United States)

    Zhang, Qichao; Zhao, Dongbin; Wang, Ding

    2016-10-18

    In this paper, the robust control problem for a class of continuous-time nonlinear system with unmatched uncertainties is investigated using an event-based control method. First, the robust control problem is transformed into a corresponding optimal control problem with an augmented control and an appropriate cost function. Under the event-based mechanism, we prove that the solution of the optimal control problem can asymptotically stabilize the uncertain system with an adaptive triggering condition. That is, the designed event-based controller is robust to the original uncertain system. Note that the event-based controller is updated only when the triggering condition is satisfied, which can save the communication resources between the plant and the controller. Then, a single network adaptive dynamic programming structure with experience replay technique is constructed to approach the optimal control policies. The stability of the closed-loop system with the event-based control policy and the augmented control policy is analyzed using the Lyapunov approach. Furthermore, we prove that the minimal intersample time is bounded by a nonzero positive constant, which excludes Zeno behavior during the learning process. Finally, two simulation examples are provided to demonstrate the effectiveness of the proposed control scheme.

  20. Fully Nonlinear Boussinesq-Type Equations with Optimized Parameters for Water Wave Propagation

    Institute of Scientific and Technical Information of China (English)

    荆海晓; 刘长根; 龙文; 陶建华

    2015-01-01

    For simulating water wave propagation in coastal areas, various Boussinesq-type equations with improved properties in intermediate or deep water have been presented in the past several decades. How to choose proper Boussinesq-type equations has been a practical problem for engineers. In this paper, approaches of improving the characteristics of the equations, i.e. linear dispersion, shoaling gradient and nonlinearity, are reviewed and the advantages and disadvantages of several different Boussinesq-type equations are compared for the applications of these Boussinesq-type equations in coastal engineering with relatively large sea areas. Then for improving the properties of Boussinesq-type equations, a new set of fully nonlinear Boussinseq-type equations with modified representative velocity are derived, which can be used for better linear dispersion and nonlinearity. Based on the method of minimizing the overall error in different ranges of applications, sets of parameters are determined with optimized linear dispersion, linear shoaling and nonlinearity, respectively. Finally, a test example is given for validating the results of this study. Both results show that the equations with optimized parameters display better characteristics than the ones obtained by matching with padé approximation.

  1. Fully nonlinear Boussinesq-type equations with optimized parameters for water wave propagation

    Science.gov (United States)

    Jing, Hai-xiao; Liu, Chang-gen; Long, Wen; Tao, Jian-hua

    2015-06-01

    For simulating water wave propagation in coastal areas, various Boussinesq-type equations with improved properties in intermediate or deep water have been presented in the past several decades. How to choose proper Boussinesq-type equations has been a practical problem for engineers. In this paper, approaches of improving the characteristics of the equations, i.e. linear dispersion, shoaling gradient and nonlinearity, are reviewed and the advantages and disadvantages of several different Boussinesq-type equations are compared for the applications of these Boussinesq-type equations in coastal engineering with relatively large sea areas. Then for improving the properties of Boussinesq-type equations, a new set of fully nonlinear Boussinseq-type equations with modified representative velocity are derived, which can be used for better linear dispersion and nonlinearity. Based on the method of minimizing the overall error in different ranges of applications, sets of parameters are determined with optimized linear dispersion, linear shoaling and nonlinearity, respectively. Finally, a test example is given for validating the results of this study. Both results show that the equations with optimized parameters display better characteristics than the ones obtained by matching with padé approximation.

  2. Study on Rail Profile Optimization Based on the Nonlinear Relationship between Profile and Wear Rate

    Directory of Open Access Journals (Sweden)

    Jianxi Wang

    2017-01-01

    Full Text Available This paper proposes a rail profile optimization method that takes account of wear rate within design cycle so as to minimize rail wear at the curve in heavy haul railway and extend the service life of rail. Taking rail wear rate as the object function, the vertical coordinate of rail profile at range optimization as independent variable, and the geometric characteristics and grinding depth of rail profile as constraint conditions, the support vector machine regression theory was used to fit the nonlinear relationship between rail profile and its wear rate. Then, the profile optimization model was built. Based on the optimization principle of genetic algorithm, the profile optimization model was solved to achieve the optimal rail profile. A multibody dynamics model was used to check the dynamic performance of carriage running on optimal rail profile. The result showed that the average relative error of support vector machine regression model remained less than 10% after a number of training processes. The dynamic performance of carriage running on optimized rail profile met the requirements on safety index and stability. The wear rate of optimized profile was lower than that of standard profile by 5.8%; the allowable carrying gross weight increased by 12.7%.

  3. A Quadratic precision generalized nonlinear global optimization migration velocity inversion method

    Institute of Scientific and Technical Information of China (English)

    Zhao Taiyin; Hu Guangmin; He Zhenhua; Huang Deji

    2009-01-01

    An important research topic for prospecting seismology is to provide a fast accurate velocity model from pre-stack depth migration. Aiming at such a problem, we propose a quadratic precision generalized nonlinear global optimization migration velocity inversion. First we discard the assumption that there is a linear relationship between residual depth and residual velocity and propose a velocity model correction equation with quadratic precision which enables the velocity model from each iteration to approach the real model as quickly as possible. Second, we use a generalized nonlinear inversion to get the global optimal velocity perturbation model to all traces. This method can expedite the convergence speed and also can decrease the probability of falling into a local minimum during inversion. The synthetic data and Marmousi data examples show that our method has a higher precision and needs only a few iterations and consequently enhances the practicability and accuracy of migration velocity analysis (MVA) in complex areas.

  4. Optimal filtering for uncertain systems with stochastic nonlinearities, correlated noises and missing measurements

    Institute of Scientific and Technical Information of China (English)

    Shuo Zhang,Yan Zhao,Min Li,; Jianhui Zhao

    2015-01-01

    The global y optimal recursive filtering problem is stu-died for a class of systems with random parameter matrices, stochastic nonlinearities, correlated noises and missing measure-ments. The stochastic nonlinearities are presented in the system model to reflect multiplicative random disturbances, and the addi-tive noises, process noise and measurement noise, are assumed to be one-step autocorrelated as wel as two-step cross-correlated. A series of random variables is introduced as the missing rates governing the intermittent measurement losses caused by un-favorable network conditions. The aim of the addressed filtering problem is to design an optimal recursive filter for the uncertain systems based on an innovation approach such that the filtering error is global y minimized at each sampling time. A numerical simulation example is provided to il ustrate the effectiveness and applicability of the proposed algorithm.

  5. Series-based approximate approach of optimal tracking control for nonlinear systems with time-delay

    Institute of Scientific and Technical Information of China (English)

    Gongyou Tang; Mingqu Fan

    2008-01-01

    The optimal output tracking control (OTC) problem for nonlinear systems with time-delay is considered.Using a series-based approx-imate approach,the original OTC problem is transformed into iteration solving linear two-point boundary value problems without time-delay.The OTC law obtained consists of analytical linear feedback and feedforward terms and a nonlinear compensation term with an infinite series of the adjoint vectors.By truncating a finite sum of the adjoint vector series,an approximate optimal tracking control law is obtained.A reduced-order reference input observer is constructed to make the feedforward term physically realizable.Simulation exam-pies are used to test the validity of the series-based approximate approach.

  6. A NONMONOTONE TRUST REGION ALGORITHM FOR NONLINEAR OPTIMIZATION SUBJECT TO GENERAL CONSTRAINTS

    Institute of Scientific and Technical Information of China (English)

    Hongchao Zhang

    2003-01-01

    In this paper we present a nonmonotone trust region algorithm for general nonlinear constrained optimization problems. The main idea of this paper is to combine Yuan's technique[1] with a nonmonotone method similar to Ke and Han [2]. This new algorithm may not only keep the robust properties of the algorithm given by Yuan, but also have some advantages led by the nonmonotone technique. Under very mild conditions, global convergence for the algorithm is given. Numerical experiments demonstrate the efficiency of the algorithm.

  7. Field computation in non-linear magnetic media using particle swarm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Adly, A.A. E-mail: amradlya@intouch.com; Abd-El-Hafiz, S.K

    2004-05-01

    This paper presents an automated particle swarm optimization approach using which field computations may be carried out in devices involving non-linear magnetic media. Among the advantages of the proposed approach are its ability to handle complex geometries and its computational efficiency. The proposed approach has been implemented and computations were carried out for an electromagnet subject to different DC excitation conditions. These computations showed good agreement with the results obtained by the finite-element approach.

  8. A New Subspace Correction Method for Nonlinear Unconstrained Convex Optimization Problems

    Institute of Scientific and Technical Information of China (English)

    Rong-liang CHEN; Jin-ping ZENG

    2012-01-01

    This paper gives a new subspace correction algorithm for nonlinear unconstrained convex optimization problems based on the multigrid approach proposed by S.Nash in 2000 and the subspace correction algorithm proposed by X.Tai and J.Xu in 2001.Under some reasonable assumptions,we obtain the convergence as well as a convergence rate estimate for the algorithm.Numerical results show that the algorithm is effective.

  9. Role of the conjugated spacer in the optimization of second-order nonlinear chromophores

    Science.gov (United States)

    Pérez-Moreno, Javier; Clays, Koen; Kuzyk, Mark G.

    2009-08-01

    We investigate the role of the conjugated spacer in the optimization of the first hyperpolarizability of organic chromophores. We propose a novel strategy for the optimization of the first hyperpolarizability that is based on the variation of the degree of conjugation for the bridge that separates the donor and acceptors at the end of push-pull type chromophores. The correlation between the type of conjugated spacer and the experimental nonlinear performance of the chromophores is investigated and interpreted in the context of the quantum limits.

  10. A differentiable reformulation for E-optimal design of experiments in nonlinear dynamic biosystems.

    Science.gov (United States)

    Telen, Dries; Van Riet, Nick; Logist, Flip; Van Impe, Jan

    2015-06-01

    Informative experiments are highly valuable for estimating parameters in nonlinear dynamic bioprocesses. Techniques for optimal experiment design ensure the systematic design of such informative experiments. The E-criterion which can be used as objective function in optimal experiment design requires the maximization of the smallest eigenvalue of the Fisher information matrix. However, one problem with the minimal eigenvalue function is that it can be nondifferentiable. In addition, no closed form expression exists for the computation of eigenvalues of a matrix larger than a 4 by 4 one. As eigenvalues are normally computed with iterative methods, state-of-the-art optimal control solvers are not able to exploit automatic differentiation to compute the derivatives with respect to the decision variables. In the current paper a reformulation strategy from the field of convex optimization is suggested to circumvent these difficulties. This reformulation requires the inclusion of a matrix inequality constraint involving positive semidefiniteness. In this paper, this positive semidefiniteness constraint is imposed via Sylverster's criterion. As a result the maximization of the minimum eigenvalue function can be formulated in standard optimal control solvers through the addition of nonlinear constraints. The presented methodology is successfully illustrated with a case study from the field of predictive microbiology.

  11. Lessons from the quantum control landscape: Robust optimal control of quantum systems and optimal control of nonlinear Schrodinger equations

    Science.gov (United States)

    Hocker, David Lance

    The control of quantum systems occurs across a broad range of length and energy scales in modern science, and efforts have demonstrated that locating suitable controls to perform a range of objectives has been widely successful. The justification for this success arises from a favorable topology of a quantum control landscape, defined as a mapping of the controls to a cost function measuring the success of the operation. This is summarized in the landscape principle that no suboptimal extrema exist on the landscape for well-suited control problems, explaining a trend of successful optimizations in both theory and experiment. This dissertation explores what additional lessons may be gleaned from the quantum control landscape through numerical and theoretical studies. The first topic examines the experimentally relevant problem of assessing and reducing disturbances due to noise. The local curvature of the landscape is found to play an important role on noise effects in the control of targeted quantum unitary operations, and provides a conceptual framework for assessing robustness to noise. Software for assessing noise effects in quantum computing architectures was also developed and applied to survey the performance of current quantum control techniques for quantum computing. A lack of competition between robustness and perfect unitary control operation was discovered to fundamentally limit noise effects, and highlights a renewed focus upon system engineering for reducing noise. This convergent behavior generally arises for any secondary objective in the situation of high primary objective fidelity. The other dissertation topic examines the utility of quantum control for a class of nonlinear Hamiltonians not previously considered under the landscape principle. Nonlinear Schrodinger equations are commonly used to model the dynamics of Bose-Einstein condensates (BECs), one of the largest known quantum objects. Optimizations of BEC dynamics were performed in which the

  12. The Expansion of Dynamic Solving Process About a Class of Non-linear Programming Problems

    Institute of Scientific and Technical Information of China (English)

    ZANG Zhen-chun

    2001-01-01

    In this paper, we research non-linear programming problems which have a given specialstructure, some simple forms of this kind structure have been solved in some papers, here we focus on othercomplex ones.

  13. Nonlinear optimal control of bypass transition in a boundary layer flow

    Science.gov (United States)

    Xiao, Dandan; Papadakis, George

    2017-05-01

    The central aim of the paper is to apply and assess a nonlinear optimal control strategy to suppress bypass transition, due to bimodal interactions [T. A. Zaki and P. A. Durbin, "Mode interaction and the bypass route to transition," J. Fluid Mech. 531, 85 (2005)] in a zero-pressure-gradient boundary layer. To this end, a Lagrange variational formulation is employed that results in a set of adjoint equations. The optimal wall actuation (blowing and suction from a control slot) is found by solving iteratively the nonlinear Navier-Stokes and the adjoint equations in a forward/backward loop using direct numerical simulation. The optimization is performed in a finite time horizon. Large values of optimization horizon result in the instability of the adjoint equations. The control slot is located exactly in the region of transition. The results show that the control is able to significantly reduce the objective function, which is defined as the spatial and temporal integral of the quadratic deviation from the Blasius profile plus a term that quantifies the control cost. The physical mechanism with which the actuation interacts with the flow field is investigated and analysed in relation to the objective function employed. Examination of the joint probability density function shows that the control velocity is correlated with the streamwise velocity in the near wall region but this correlation is reduced as time elapses. The spanwise averaged velocity is distorted by the control action, resulting in a significant reduction of the skin friction coefficient. Results are presented with and without zero-net mass flow constraint of the actuation velocity. The skin friction coefficient drops below the laminar value if there is no mass constraint; it remains however larger than laminar when this constraint is imposed. Results are also compared with uniform blowing using the same time-average velocity obtained from the nonlinear optimal algorithm.

  14. COYOTE: a finite-element computer program for nonlinear heat-conduction problems

    Energy Technology Data Exchange (ETDEWEB)

    Gartling, D.K.

    1982-10-01

    COYOTE is a finite element computer program designed for the solution of two-dimensional, nonlinear heat conduction problems. The theoretical and mathematical basis used to develop the code is described. Program capabilities and complete user instructions are presented. Several example problems are described in detail to demonstrate the use of the program.

  15. A One-parameter Filled Function Method for Nonlinear Integer Programming

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This paper gives a new definition of the filled function for nonlinear integer programming problem. A filled function satisfying our definition is presented. This function contains only one parameter. The properties of the proposed filled function and the method using this filled function to solve nonlinear integer programming problem are also discussed. Numerical results indicate the efficiency and reliability of the proposed filled function algorithm.

  16. One-parameter quasi-filled function algorithm for nonlinear integer programming

    Institute of Scientific and Technical Information of China (English)

    SHANG You-lin; HAN Bo-shun

    2005-01-01

    A definition of the quasi-filled function for nonlinear integer programming problem is given in this paper. A quasi-filled function satisfying our definition is presented. This function contains only one parameter. The properties of the proposed quasi-filled function and the method using this quasi-filled function to solve nonlinear integer programming problem are also discussed in this paper. Numerical results indicated the efficiency and reliability of the proposed quasi-filled function algorithm.

  17. Optimal explicit strong stability preserving Runge–Kutta methods with high linear order and optimal nonlinear order

    KAUST Repository

    Gottlieb, Sigal

    2015-04-10

    High order spatial discretizations with monotonicity properties are often desirable for the solution of hyperbolic PDEs. These methods can advantageously be coupled with high order strong stability preserving time discretizations. The search for high order strong stability time-stepping methods with large allowable strong stability coefficient has been an active area of research over the last two decades. This research has shown that explicit SSP Runge-Kutta methods exist only up to fourth order. However, if we restrict ourselves to solving only linear autonomous problems, the order conditions simplify and this order barrier is lifted: explicit SSP Runge-Kutta methods of any linear order exist. These methods reduce to second order when applied to nonlinear problems. In the current work we aim to find explicit SSP Runge-Kutta methods with large allowable time-step, that feature high linear order and simultaneously have the optimal fourth order nonlinear order. These methods have strong stability coefficients that approach those of the linear methods as the number of stages and the linear order is increased. This work shows that when a high linear order method is desired, it may still be worthwhile to use methods with higher nonlinear order.

  18. FINANCIAL STRUCTURE OPTIMIZATION BY USING A GOAL PROGRAMMING APPROACH

    Directory of Open Access Journals (Sweden)

    Tunjo Perić

    2012-12-01

    Full Text Available This paper proposes a new methodology for solving the multiple objective fractional linear programming problems using Taylor’s formula and goal programming techniques. The proposed methodology is tested on the example of company's financial structure optimization. The obtained results indicate the possibility of efficient application of the proposed methodology for company's financial structure optimization as well as for solving other multi-criteria fractional programming problems.

  19. Weighted Optimization-Based Distributed Kalman Filter for Nonlinear Target Tracking in Collaborative Sensor Networks.

    Science.gov (United States)

    Chen, Jie; Li, Jiahong; Yang, Shuanghua; Deng, Fang

    2016-07-21

    The identification of the nonlinearity and coupling is crucial in nonlinear target tracking problem in collaborative sensor networks. According to the adaptive Kalman filtering (KF) method, the nonlinearity and coupling can be regarded as the model noise covariance, and estimated by minimizing the innovation or residual errors of the states. However, the method requires large time window of data to achieve reliable covariance measurement, making it impractical for nonlinear systems which are rapidly changing. To deal with the problem, a weighted optimization-based distributed KF algorithm (WODKF) is proposed in this paper. The algorithm enlarges the data size of each sensor by the received measurements and state estimates from its connected sensors instead of the time window. A new cost function is set as the weighted sum of the bias and oscillation of the state to estimate the "best" estimate of the model noise covariance. The bias and oscillation of the state of each sensor are estimated by polynomial fitting a time window of state estimates and measurements of the sensor and its neighbors weighted by the measurement noise covariance. The best estimate of the model noise covariance is computed by minimizing the weighted cost function using the exhaustive method. The sensor selection method is in addition to the algorithm to decrease the computation load of the filter and increase the scalability of the sensor network. The existence, suboptimality and stability analysis of the algorithm are given. The local probability data association method is used in the proposed algorithm for the multitarget tracking case. The algorithm is demonstrated in simulations on tracking examples for a random signal, one nonlinear target, and four nonlinear targets. Results show the feasibility and superiority of WODKF against other filtering algorithms for a large class of systems.

  20. Optimization of a nonlinear model for predicting the ground vibration using the combinational particle swarm optimization-genetic algorithm

    Science.gov (United States)

    Samareh, Hossein; Khoshrou, Seyed Hassan; Shahriar, Kourosh; Ebadzadeh, Mohammad Mehdi; Eslami, Mohammad

    2017-09-01

    When particle's wave velocity resulting from mining blasts exceeds a certain level, then the intensity of produced vibrations incur damages to the structures around the blasting regions. Development of mathematical models for predicting the peak particle velocity (PPV) based on the properties of the wave emission environment is an appropriate method for better designing of blasting parameters, since the probability of incurred damages can considerably be mitigated by controlling the intensity of vibrations at the building sites. In this research, first out of 11 blasting and geo-mechanical parameters of rock masses, four parameters which had the greatest influence on the vibrational wave velocities were specified using regression analysis. Thereafter, some models were developed for predicting the PPV by nonlinear regression analysis (NLRA) and artificial neural network (ANN) with correlation coefficients of 0.854 and 0.662, respectively. Afterward, the coefficients associated with the parameters in the NLRA model were optimized using optimization particle swarm-genetic algorithm. The values of PPV were estimated for 18 testing dataset in order to evaluate the accuracy of the prediction and performance of the developed models. By calculating statistical indices for the test recorded maps, it was found that the optimized model can predict the PPV with a lower error than the other two models. Furthermore, considering the correlation coefficient (0.75) between the values of the PPV measured and predicted by the optimized nonlinear model, it was found that this model possesses a more desirable performance for predicting the PPV than the other two models.

  1. Data-Driven Zero-Sum Neuro-Optimal Control for a Class of Continuous-Time Unknown Nonlinear Systems With Disturbance Using ADP.

    Science.gov (United States)

    Wei, Qinglai; Song, Ruizhuo; Yan, Pengfei

    2016-02-01

    This paper is concerned with a new data-driven zero-sum neuro-optimal control problem for continuous-time unknown nonlinear systems with disturbance. According to the input-output data of the nonlinear system, an effective recurrent neural network is introduced to reconstruct the dynamics of the nonlinear system. Considering the system disturbance as a control input, a two-player zero-sum optimal control problem is established. Adaptive dynamic programming (ADP) is developed to obtain the optimal control under the worst case of the disturbance. Three single-layer neural networks, including one critic and two action networks, are employed to approximate the performance index function, the optimal control law, and the disturbance, respectively, for facilitating the implementation of the ADP method. Convergence properties of the ADP method are developed to show that the system state will converge to a finite neighborhood of the equilibrium. The weight matrices of the critic and the two action networks are also convergent to finite neighborhoods of their optimal ones. Finally, the simulation results will show the effectiveness of the developed data-driven ADP methods.

  2. Nonlinear programming extensions to rational function approximation methods for unsteady aerodynamic forces

    Science.gov (United States)

    Tiffany, Sherwood H.; Adams, William M., Jr.

    1988-01-01

    The approximation of unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft are discussed. Two methods of formulating these approximations are extended to include the same flexibility in constraining the approximations and the same methodology in optimizing nonlinear parameters as another currently used extended least-squares method. Optimal selection of nonlinear parameters is made in each of the three methods by use of the same nonlinear, nongradient optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is lower order than that required when no optimization of the nonlinear terms is performed. The free linear parameters are determined using the least-squares matrix techniques of a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from different approaches are described and results are presented that show comparative evaluations from application of each of the extended methods to a numerical example.

  3. On the number of support points of maximin and Bayesian D-optimal designs in nonlinear regression models

    OpenAIRE

    Braess, Dietrich; Dette, Holger

    2004-01-01

    We consider maximin and Bayesian D -optimal designs for nonlinear regression models. The maximin criterion requires the specification of a region for the nonlinear parameters in the model, while the Bayesian optimality criterion assumes that a prior distribution for these parameters is available. It was observed empirically by many authors that an increase of uncertainty in the prior information (i.e. a larger range for the parameter space in the maximin criterion or a larger variance of the ...

  4. Optimal Energy Measurement in Nonlinear Systems: An Application of Differential Geometry

    Science.gov (United States)

    Fixsen, Dale J.; Moseley, S. H.; Gerrits, T.; Lita, A.; Nam, S. W.

    2014-01-01

    Design of TES microcalorimeters requires a tradeoff between resolution and dynamic range. Often, experimenters will require linearity for the highest energy signals, which requires additional heat capacity be added to the detector. This results in a reduction of low energy resolution in the detector. We derive and demonstrate an algorithm that allows operation far into the nonlinear regime with little loss in spectral resolution. We use a least squares optimal filter that varies with photon energy to accommodate the nonlinearity of the detector and the non-stationarity of the noise. The fitting process we use can be seen as an application of differential geometry. This recognition provides a set of well-developed tools to extend our work to more complex situations. The proper calibration of a nonlinear microcalorimeter requires a source with densely spaced narrow lines. A pulsed laser multi-photon source is used here, and is seen to be a powerful tool for allowing us to develop practical systems with significant detector nonlinearity. The combination of our analysis techniques and the multi-photon laser source create a powerful tool for increasing the performance of future TES microcalorimeters.

  5. THE SECOND-ORDER OPTIMALITY CONDITIONS FOR VARIABLE PROGRAMMING

    Institute of Scientific and Technical Information of China (English)

    Yanping Wang; Chuanlong Wang

    2008-01-01

    We study in this paper the continuity of the objective function for variable program-ming. In particular, we study the second-order optimality conditions for unconstrained and constrained variable programming. Some new second-order sufficient and necessary conditions are obtained.

  6. Extended Application of the Conditional Nonlinear Optimal Parameter Perturbation Method in the Common Land Model

    Institute of Scientific and Technical Information of China (English)

    WANG Bo; HUO Zhenhua

    2013-01-01

    An extension of the conditional nonlinear optimal parameter perturbation (CNOP-P) method is applied to the parameter optimization of the Common Land Model (CoLM) for the North China Plain with the differential evolution (DE) method.Using National Meteorological Center (NMC) Reanalysis 6-hourly surface flux data and National Center for Environmental Prediction/Department of Energy (NCEP/DOE)Atmospheric Model Intercomparison Project II (AMIP-II) 6-hourly Reanalysis Gaussian Grid data,two experiments (I and II) were designed to investigate the impact of the percentages of sand and clay in the shallow soil in CoLM on its ability to simulate shallow soil moisture.A third experiment (III) was designed to study the shallow soil moisture and latent heat flux simultaneously.In all the three experiments,after the optimization stage,the percentages of sand and clay of the shallow soil were used to predict the shallow soil moisture in the following month.The results show that the optimal parameters can enable CoLM to better simulate shallow soil moisture,with the simulation results of CoLM after the double-parameter optimal experiment being better than the single-parameter optimal experiment in the optimization slot.Furthermore,the optimal parameters were able to significantly improve the prediction results of CoLM at the prediction stage.In addition,whether or not the atmospheric forcing and observational data are accurate can seriously affect the results of optimization,and the more accurate the data are,the more significant the results of optimization may be.

  7. Optimal Control of Nonlinear Hydraulic Networks in the Presence of Disturbance

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat; Leth, John-Josef; Kallesøe, Carsten;

    2014-01-01

    Water leakage is an important component of water loss. Many methods have emerged from urban water supply systems for leakage control, but it still remains a challenge in many countries. Pressure management is an effective way to reduce the leakage in a system. It can also reduce the power consump...... control problem is the interior point method. The method which is used in this paper can be used for a general hydraulic networks to optimize the leakage and energy consumption and to satisfy the demands at the end-users....... consumption. To this end, an optimal control strategy is proposed in this paper. In the water supply system model, the hydraulic resistance of the valve is estimated by the real data from a water supply system and it is considered to be a disturbance. The method which is used to solve the nonlinear optimal...

  8. Cavity-enhanced second harmonic generation via nonlinear-overlap optimization

    CERN Document Server

    Lin, Zin; Loncar, Marko; Johnson, Steven G; Rodriguez, Alejandro W

    2015-01-01

    We describe an approach based on topology optimization that enables automatic discovery of wavelength-scale photonic structures for achieving high-efficiency second-harmonic generation (SHG). A key distinction from previous formulation and designs that seek to maximize Purcell factors at individual frequencies is that our method not only aims to achieve frequency matching (across an entire octave) and large radiative lifetimes, but also optimizes the equally important nonlinear--coupling figure of merit $\\bar{\\beta}$, involving a complicated spatial overlap-integral between modes. We apply this method to the particular problem of optimizing micropost and grating-slab cavities (one-dimensional multilayered structures) and demonstrate that a variety of material platforms can support modes with the requisite frequencies, large lifetimes $Q \\gtrsim 10^3$, small modal volumes $\\sim (\\lambda/n)^3$, and extremely large $\\bar{\\beta} \\gtrsim 10^{-2}$, orders of magnitude larger than the state of the art.

  9. Optimal Algorithms and the BFGS Updating Techniques for Solving Unconstrained Nonlinear Minimization Problems

    Directory of Open Access Journals (Sweden)

    Chein-Shan Liu

    2014-01-01

    Full Text Available To solve an unconstrained nonlinear minimization problem, we propose an optimal algorithm (OA as well as a globally optimal algorithm (GOA, by deflecting the gradient direction to the best descent direction at each iteration step, and with an optimal parameter being derived explicitly. An invariant manifold defined for the model problem in terms of a locally quadratic function is used to derive a purely iterative algorithm and the convergence is proven. Then, the rank-two updating techniques of BFGS are employed, which result in several novel algorithms as being faster than the steepest descent method (SDM and the variable metric method (DFP. Six numerical examples are examined and compared with exact solutions, revealing that the new algorithms of OA, GOA, and the updated ones have superior computational efficiency and accuracy.

  10. Nonlinear Dynamic Characteristics and Optimal Control of SMA Composite Wings Subjected to Stochastic Excitation

    Directory of Open Access Journals (Sweden)

    Zhi-Wen Zhu

    2015-01-01

    Full Text Available A kind of high-aspect-ratio shape memory alloy (SMA composite wing is proposed to reduce the wing’s fluttering. The nonlinear dynamic characteristics and optimal control of the SMA composite wings subjected to in-plane stochastic excitation are investigated where the great bending under the flight loads is considered. The stochastic stability of the system is analyzed, and the system’s response is obtained. The conditions of stochastic Hopf bifurcation are determined, and the probability density of the first-passage time is obtained. Finally, the optimal control strategy is proposed. Numerical simulation shows that the stability of the system varies with bifurcation parameters, and stochastic Hopf bifurcation appears in the process; the reliability of the system is improved through optimal control, and the first-passage time is delayed. Finally, the effects of the control strategy are proved by experiments. The results of this paper are helpful for engineering applications of SMA.

  11. 有限时区非线性系统的最优切换控制%Optimal Switching Control for Nonlinear Systems in A Finite Duration

    Institute of Scientific and Technical Information of China (English)

    慕小武; 刘海军

    2006-01-01

    This paper proposes a optimal control problem for a general nonlinear systems with finitely many admissible control settings and with costs assigned to switching of controls. With dynamic programming and viscosity solution theory we show that the switching lower-value function is a viscosity solution of the appropriate systems of quasi-variational inequalities(the appropriate generalization of the Hamilton-Jacobi equation in this context)and that the minimal such switching-storage function is equal to the continuous switching lower-value for the game. With the lower value function a optimal switching control is designed for minimizing the cost of running the systems.

  12. Optimal impulse control problems and linear programming.

    OpenAIRE

    Bauso, D.

    2009-01-01

    Optimal impulse control problems are, in general, difficult to solve. A current research goal is to isolate those problems that lead to tractable solutions. In this paper, we identify a special class of optimal impulse control problems which are easy to solve. Easy to solve means that solution algorithms are polynomial in time and therefore suitable to the on-line implementation in real-time problems. We do this by using a paradigm borrowed from the Operations Research field. As main result, ...

  13. Optimality Conditions in Nondifferentiable G-Invex Multiobjective Programming

    Directory of Open Access Journals (Sweden)

    Do Sang Kim

    2010-01-01

    Full Text Available We consider a class of nondifferentiable multiobjective programs with inequality and equality constraints in which each component of the objective function contains a term involving the support function of a compact convex set. We introduce G-Karush-Kuhn-Tucker conditions and G-Fritz John conditions for our nondifferentiable multiobjective programs. By using suitable G-invex functions, we establish G-Karush-Kuhn-Tucker necessary and sufficient optimality conditions, and G-Fritz John necessary and sufficient optimality conditions of our nondifferentiable multiobjective programs. Our optimality conditions generalize and improve the results in Antczak (2009 to the nondifferentiable case.

  14. AN ALGORITHM FOR FINDING GLOBAL MINIMUM OF NONLINEAR INTEGER PROGRAMMING

    Institute of Scientific and Technical Information of China (English)

    Wei-wenTian; Lian-shengZhang

    2004-01-01

    A filled function is proposed by R.Ge[2] for finding a global minimizer of a function of several continuous variables. In [4], an approach for finding a global integer minimizer of nonlinear flmction using the above filled function is given. Meanwhile a major obstacle is met: if ρ > 0 is small, and ‖xI- xI* is large, where xI - an integer point, xI* - a current local integer minimizer, then the value of the filled function almost equals zero. Thus it is difficult to recognize the size of the value of the filled flmction and can not to find the global integer minimizer of nonlinear function. In this paper, two new filled functions are proposed for finding global integer minimizer of nonlinear flmction, the new filled function improves some properties of the filled function proposed by R. Ge [2]. Some numerical results are given, which indicate the new filled function (4.1) to find global integer minimizer of nonlinear function is efficient.

  15. Solution of nonlinear finite difference ocean models by optimization methods with sensitivity and observational strategy analysis

    Science.gov (United States)

    Schroeter, Jens; Wunsch, Carl

    1986-01-01

    The paper studies with finite difference nonlinear circulation models the uncertainties in interesting flow properties, such as western boundary current transport, potential and kinetic energy, owing to the uncertainty in the driving surface boundary condition. The procedure is based upon nonlinear optimization methods. The same calculations permit quantitative study of the importance of new information as a function of type, region of measurement and accuracy, providing a method to study various observing strategies. Uncertainty in a model parameter, the bottom friction coefficient, is studied in conjunction with uncertain measurements. The model is free to adjust the bottom friction coefficient such that an objective function is minimized while fitting a set of data to within prescribed bounds. The relative importance of the accuracy of the knowledge about the friction coefficient with respect to various kinds of observations is then quantified, and the possible range of the friction coefficients is calculated.

  16. The optimal antenna for nonlinear spectroscopy of weakly and strongly scattering nanoobjects

    Science.gov (United States)

    Schumacher, Thorsten; Brandstetter, Matthias; Wolf, Daniela; Kratzer, Kai; Hentschel, Mario; Giessen, Harald; Lippitz, Markus

    2016-04-01

    Optical nanoantennas, i.e., arrangements of plasmonic nanostructures, promise to enhance the light-matter interaction on the nanoscale. In particular, nonlinear optical spectroscopy of single nanoobjects would profit from such an antenna, as nonlinear optical effects are already weak for bulk material, and become almost undetectable for single nanoobjects. We investigate the design of optical nanoantennas for transient absorption spectroscopy in two different cases: the mechanical breathing mode of a metal nanodisk and the quantum-confined carrier dynamics in a single CdSe nanowire. In the latter case, an antenna with a resonance at the desired wavelength optimally increases the light intensity at the nanoobject. In the first case, the perturbation of the antenna by the investigated nanosystem cannot be neglected and off-resonant antennas become most efficient.

  17. Exploring nonlinear relations: models of clinical decision making by regression with optimal scaling.

    Science.gov (United States)

    Hartmann, Armin; Van Der Kooij, Anita J; Zeeck, Almut

    2009-07-01

    In explorative regression studies, linear models are often applied without questioning the linearity of the relations between the predictor variables and the dependent variable, or linear relations are taken as an approximation. In this study, the method of regression with optimal scaling transformations is demonstrated. This method does not require predefined nonlinear functions and results in easy-to-interpret transformations that will show the form of the relations. The method is illustrated using data from a German multicenter project on the indication criteria for inpatient or day clinic psychotherapy treatment. The indication criteria to include in the regression model were selected with the Lasso, which is a tool for predictor selection that overcomes the disadvantages of stepwise regression methods. The resulting prediction model indicates that treatment status is (approximately) linearly related to some criteria and nonlinearly related to others.

  18. Controller Parameter Optimization for Nonlinear Systems Using Enhanced Bacteria Foraging Algorithm

    Directory of Open Access Journals (Sweden)

    V. Rajinikanth

    2012-01-01

    Full Text Available An enhanced bacteria foraging optimization (EBFO algorithm-based Proportional + integral + derivative (PID controller tuning is proposed for a class of nonlinear process models. The EBFO algorithm is a modified form of standard BFO algorithm. A multiobjective performance index is considered to guide the EBFO algorithm for discovering the best possible value of controller parameters. The efficiency of the proposed scheme has been validated through a comparative study with classical BFO, adaptive BFO, PSO, and GA based controller tuning methods proposed in the literature. The proposed algorithm is tested in real time on a nonlinear spherical tank system. The real-time results show that, EBFO tuned PID controller gives a smooth response for setpoint tracking performance.

  19. Assessment of ship manoeuvrability by using a coupling between a nonlinear transient manoeuvring model and mathematical programming techniques

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    In this paper, a numerical method based on a coupling between a mathematical model of nonlinear transient ship manoeu-vring motion in the horizontal plane and Mathematical Programming (MP) techniques is proposed. The aim of the proposed proce-dure is an efficient estimation of optimal ship hydrodynamic parameters in a dynamic model at the early design stage. The proposed procedure has been validated through turning circle and zigzag manoeuvres based on experimental data of sea trials of the 190 000-dwt oil tanker. Comparisons between experimental and computed data show a good agreement of overall tendency in manoeuvring trajectories.

  20. Applications of Conditional Nonlinear Optimal Perturbation in Predictability Study and Sensitivity Analysis of Weather and Climate

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Considering the limitation of the linear theory of singular vector (SV), the authors and their collaborators proposed conditional nonlinear optimal perturbation (CNOP) and then applied it in the predictability study and the sensitivity analysis of weather and climate system. To celebrate the 20th anniversary of Chinese National Committee for World Climate Research Programme (WCRP), this paper is devoted to reviewing the main results of these studies. First, CNOP represents the initial perturbation that has largest nonlinear evolution at prediction time, which is different from linear singular vector (LSV) for the large magnitude of initial perturbation or/and the long optimization time interval. Second, CNOP,rather than linear singular vector (LSV), represents the initial anomaly that evolves into ENSO events most probably. It is also the CNOP that induces the most prominent seasonal variation of error growth for ENSO predictability; furthermore, CNOP was applied to investigate the decadal variability of ENSO asymmetry. It is demonstrated that the changing nonlinearity causes the change of ENSO asymmetry.Third, in the studies of the sensitivity and stability of ocean's thermohaline circulation (THC), the non-linear asymmetric response of THC to finite amplitude of initial perturbations was revealed by CNOP.Through this approach the passive mechanism of decadal variation of THC was demonstrated; Also the authors studies the instability and sensitivity analysis of grassland ecosystem by using CNOP and show the mechanism of the transitions between the grassland and desert states. Finally, a detailed discussion on the results obtained by CNOP suggests the applicability of CNOP in predictability studies and sensitivity analysis.

  1. Nonlinear approach for oil field optimization based on gas lift optimization

    Energy Technology Data Exchange (ETDEWEB)

    Khamehchi, Ehsan; Rashidi, Fariborz [Amirkabir Univ. of Technology, Tehran (Iran). Faculty of Chemical Engineering; Karimi, Behrooz [Amirkabir Univ. of Technology, Tehran (Iran). Faculty of Industrial Engineering; Pourafshary, Peyman [Tehran Univ. (Iran). Petroleum Engineering Inst.

    2009-12-15

    When the initial energy of a virgin reservoir is not sufficient or when this energy falls below a certain limit after a production history, the production rates won't be able to meet economic margins. It is then time for artificial lift methods to come to aid. Among which, gas lift is the most commonly used scenario. Being somehow an ancient tool with an age of over a century, gas lift is though still a challenging problem when overall optimization is the concern. When the injection gas is of limited supply the problem is finding the best gas allocation scheme. However there are ever more cases emerging in certain geographic localities where the gas supplies are usually unlimited. The optimization problem then totally relates to the wellbore and completion string and fully engages with multiphase flow concepts. In the present study an intelligent genetic algorithm has been developed to simultaneously optimize all role playing factors, namely gas injection rate, injection depth and tubing diameter towards the maximum oil production rate with the water cut and injection pressure as the restrictions. The computations and real field data are mutually compared. (orig.)

  2. A programing system for research and applications in structural optimization

    Science.gov (United States)

    Sobieszczanski-Sobieski, J.; Rogers, J. L., Jr.

    1981-01-01

    The paper describes a computer programming system designed to be used for methodology research as well as applications in structural optimization. The flexibility necessary for such diverse utilizations is achieved by combining, in a modular manner, a state-of-the-art optimization program, a production level structural analysis program, and user supplied and problem dependent interface programs. Standard utility capabilities existing in modern computer operating systems are used to integrate these programs. This approach results in flexibility of the optimization procedure organization and versatility in the formulation of contraints and design variables. Features shown in numerical examples include: (1) variability of structural layout and overall shape geometry, (2) static strength and stiffness constraints, (3) local buckling failure, and (4) vibration constraints. The paper concludes with a review of the further development trends of this programing system.

  3. Conditional nonlinear optimal perturbations based on the particle swarm optimization and their applications to the predictability problems

    Science.gov (United States)

    Zheng, Qin; Yang, Zubin; Sha, Jianxin; Yan, Jun

    2017-02-01

    In predictability problem research, the conditional nonlinear optimal perturbation (CNOP) describes the initial perturbation that satisfies a certain constraint condition and causes the largest prediction error at the prediction time. The CNOP has been successfully applied in estimation of the lower bound of maximum predictable time (LBMPT). Generally, CNOPs are calculated by a gradient descent algorithm based on the adjoint model, which is called ADJ-CNOP. This study, through the two-dimensional Ikeda model, investigates the impacts of the nonlinearity on ADJ-CNOP and the corresponding precision problems when using ADJ-CNOP to estimate the LBMPT. Our conclusions are that (1) when the initial perturbation is large or the prediction time is long, the strong nonlinearity of the dynamical model in the prediction variable will lead to failure of the ADJ-CNOP method, and (2) when the objective function has multiple extreme values, ADJ-CNOP has a large probability of producing local CNOPs, hence making a false estimation of the LBMPT. Furthermore, the particle swarm optimization (PSO) algorithm, one kind of intelligent algorithm, is introduced to solve this problem. The method using PSO to compute CNOP is called PSO-CNOP. The results of numerical experiments show that even with a large initial perturbation and long prediction time, or when the objective function has multiple extreme values, PSO-CNOP can always obtain the global CNOP. Since the PSO algorithm is a heuristic search algorithm based on the population, it can overcome the impact of nonlinearity and the disturbance from multiple extremes of the objective function. In addition, to check the estimation accuracy of the LBMPT presented by PSO-CNOP and ADJ-CNOP, we partition the constraint domain of initial perturbations into sufficiently fine grid meshes and take the LBMPT obtained by the filtering method as a benchmark. The result shows that the estimation presented by PSO-CNOP is closer to the true value than the

  4. Modelling and prediction of complex non-linear processes by using Pareto multi-objective genetic programming

    Science.gov (United States)

    Jamali, A.; Khaleghi, E.; Gholaminezhad, I.; Nariman-zadeh, N.

    2016-05-01

    In this paper, a new multi-objective genetic programming (GP) with a diversity preserving mechanism and a real number alteration operator is presented and successfully used for Pareto optimal modelling of some complex non-linear systems using some input-output data. In this study, two different input-output data-sets of a non-linear mathematical model and of an explosive cutting process are considered separately in three-objective optimisation processes. The pertinent conflicting objective functions that have been considered for such Pareto optimisations are namely, training error (TE), prediction error (PE), and the length of tree (complexity of the network) (TL) of the GP models. Such three-objective optimisation implementations leads to some non-dominated choices of GP-type models for both cases representing the trade-offs among those objective functions. Therefore, optimal Pareto fronts of such GP models exhibit the trade-off among the corresponding conflicting objectives and, thus, provide different non-dominated optimal choices of GP-type models. Moreover, the results show that no significant optimality in TE and PE may occur when the TL of the corresponding GP model exceeds some values.

  5. An optimization approach for analysing nonlinear stability with transition to turbulence in fluids as an exemplar.

    Science.gov (United States)

    Kerswell, R R; Pringle, C C T; Willis, A P

    2014-08-01

    This article introduces and reviews recent work using a simple optimization technique for analysing the nonlinear stability of a state in a dynamical system. The technique can be used to identify the most efficient way to disturb a system such that it transits from one stable state to another. The key idea is introduced within the framework of a finite-dimensional set of ordinary differential equations (ODEs) and then illustrated for a very simple system of two ODEs which possesses bistability. Then the transition to turbulence problem in fluid mechanics is used to show how the technique can be formulated for a spatially-extended system described by a set of partial differential equations (the well-known Navier-Stokes equations). Within that context, the optimization technique bridges the gap between (linear) optimal perturbation theory and the (nonlinear) dynamical systems approach to fluid flows. The fact that the technique has now been recently shown to work in this very high dimensional setting augurs well for its utility in other physical systems.

  6. Quantum-behaved particle swarm optimization with collaborative attractors for nonlinear numerical problems

    Science.gov (United States)

    Liu, Tianyu; Jiao, Licheng; Ma, Wenping; Shang, Ronghua

    2017-03-01

    In this paper, an improved quantum-behaved particle swarm optimization (CL-QPSO), which adopts a new collaborative learning strategy to generate local attractors for particles, is proposed to solve nonlinear numerical problems. Local attractors, which directly determine the convergence behavior of particles, play an important role in quantum-behaved particle swarm optimization (QPSO). In order to get a promising and efficient local attractor for each particle, a collaborative learning strategy is introduced to generate local attractors in the proposed algorithm. Collaborative learning strategy consists of two operators, namely orthogonal operator and comparison operator. For each particle, orthogonal operator is used to discover the useful information that lies in its personal and global best positions, while comparison operator is used to enhance the particle's ability of jumping out of local optima. By using a probability parameter, the two operators cooperate with each other to generate local attractors for particles. A comprehensive comparison of CL-QPSO with some state-of-the-art evolutionary algorithms on nonlinear numeric optimization functions demonstrates the effectiveness of the proposed algorithm.

  7. Discrete homotopy analysis for optimal trading execution with nonlinear transient market impact

    Science.gov (United States)

    Curato, Gianbiagio; Gatheral, Jim; Lillo, Fabrizio

    2016-10-01

    Optimal execution in financial markets is the problem of how to trade a large quantity of shares incrementally in time in order to minimize the expected cost. In this paper, we study the problem of the optimal execution in the presence of nonlinear transient market impact. Mathematically such problem is equivalent to solve a strongly nonlinear integral equation, which in our model is a weakly singular Urysohn equation of the first kind. We propose an approach based on Homotopy Analysis Method (HAM), whereby a well behaved initial trading strategy is continuously deformed to lower the expected execution cost. Specifically, we propose a discrete version of the HAM, i.e. the DHAM approach, in order to use the method when the integrals to compute have no closed form solution. We find that the optimal solution is front loaded for concave instantaneous impact even when the investor is risk neutral. More important we find that the expected cost of the DHAM strategy is significantly smaller than the cost of conventional strategies.

  8. Automatic weight determination in nonlinear model predictive control of wind turbines using swarm optimization technique

    Science.gov (United States)

    Tofighi, Elham; Mahdizadeh, Amin

    2016-09-01

    This paper addresses the problem of automatic tuning of weighting coefficients for the nonlinear model predictive control (NMPC) of wind turbines. The choice of weighting coefficients in NMPC is critical due to their explicit impact on efficiency of the wind turbine control. Classically, these weights are selected based on intuitive understanding of the system dynamics and control objectives. The empirical methods, however, may not yield optimal solutions especially when the number of parameters to be tuned and the nonlinearity of the system increase. In this paper, the problem of determining weighting coefficients for the cost function of the NMPC controller is formulated as a two-level optimization process in which the upper- level PSO-based optimization computes the weighting coefficients for the lower-level NMPC controller which generates control signals for the wind turbine. The proposed method is implemented to tune the weighting coefficients of a NMPC controller which drives the NREL 5-MW wind turbine. The results are compared with similar simulations for a manually tuned NMPC controller. Comparison verify the improved performance of the controller for weights computed with the PSO-based technique.

  9. GPAW optimized for Blue Gene/P using hybrid programming

    DEFF Research Database (Denmark)

    Kristensen, Mads Ruben Burgdorff; Happe, Hans Henrik; Vinter, Brian

    2009-01-01

    In this work we present optimizations of a Grid-based projector-augmented wave method software, GPAW for the Blue Gene/P architecture. The improvements are achieved by exploring the advantage of shared and distributed memory programming also known as hybrid programming. The work focuses on optimi......In this work we present optimizations of a Grid-based projector-augmented wave method software, GPAW for the Blue Gene/P architecture. The improvements are achieved by exploring the advantage of shared and distributed memory programming also known as hybrid programming. The work focuses...

  10. An Optimal Homotopy Asymptotic Approach Applied to Nonlinear MHD Jeffery-Hamel Flow

    Directory of Open Access Journals (Sweden)

    Vasile Marinca

    2011-01-01

    Full Text Available A simple and effective procedure is employed to propose a new analytic approximate solution for nonlinear MHD Jeffery-Hamel flow. This technique called the Optimal Homotopy Asymptotic Method (OHAM does not depend upon any small/large parameters and provides us with a convenient way to control the convergence of the solution. The examples given in this paper lead to the conclusion that the accuracy of the obtained results is growing along with increasing the number of constants in the auxiliary function, which are determined using a computer technique. The results obtained through the proposed method are in very good agreement with the numerical results.

  11. Optimization of coherent optical OFDM transmitter using DP-IQ modulator with nonlinear response

    Science.gov (United States)

    Chang, Sun Hyok; Kang, Hun-Sik; Moon, Sang-Rok; Lee, Joon Ki

    2016-07-01

    In this paper, we investigate the performance of dual polarization orthogonal frequency division multiplexing (DP-OFDM) signal generation when the signal is generated by a DP-IQ optical modulator. The DP-IQ optical modulator is made of four parallel Mach-Zehnder modulators (MZMs) which have nonlinear responses and limited extinction ratios. We analyze the effects of the MZM in the DP-OFDM signal generation by numerical simulation. The operating conditions of the DP-IQ modulator are optimized to have the best performance of the DP-OFDM signal.

  12. Comparison of Linear and Nonlinear Model Predictive Control for Optimization of Spray Dryer Operation

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik;

    2015-01-01

    In this paper, we compare the performance of an economically optimizing Nonlinear Model Predictive Controller (E-NMPC) to a linear tracking Model Predictive Controller (MPC) for a spray drying plant. We find in this simulation study, that the economic performance of the two controllers are almost...... equal. We evaluate the economic performance with an industrially recorded disturbance scenario, where unmeasured disturbances and model mismatch are present. The state of the spray dryer, used in the E-NMPC and MPC, is estimated using Kalman Filters with noise covariances estimated by a maximum...

  13. Global stability, periodic solutions, and optimal control in a nonlinear differential delay model

    Directory of Open Access Journals (Sweden)

    Anatoli F. Ivanov

    2010-09-01

    Full Text Available A nonlinear differential equation with delay serving as a mathematical model of several applied problems is considered. Sufficient conditions for the global asymptotic stability and for the existence of periodic solutions are given. Two particular applications are treated in detail. The first one is a blood cell production model by Mackey, for which new periodicity criteria are derived. The second application is a modified economic model with delay due to Ramsey. An optimization problem for a maximal consumption is stated and solved for the latter.

  14. The Projection Neural Network for Solving Convex Nonlinear Programming

    Science.gov (United States)

    Yang, Yongqing; Xu, Xianyun

    In this paper, a projection neural network for solving convex optimization is investigated. Using Lyapunov stability theory and LaSalle invariance principle, the proposed network is showed to be globally stable and converge to exact optimal solution. Two examples show the effectiveness of the proposed neural network model.

  15. Comparison of linear, mixed integer and non-linear programming methods in energy system dispatch modelling

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    differences and differences between the solution found by each optimisation method. One of the investigated approaches utilises LP (linear programming) for optimisation, one uses LP with binary operation constraints, while the third approach uses NLP (non-linear programming). The LP model is used...... of selected units by 23%, while for a non-linear approach the increase can be higher than 39%. The results indicate a higher coherence between the two latter approaches, and that the MLP (mixed integer programming) optimisation is most appropriate from a viewpoint of accuracy and runtime. © 2014 Elsevier Ltd...

  16. Multimedia Macros for Portable Optimized Programs

    Science.gov (United States)

    2007-11-02

    SUM2_U32x4(dst, src) \\ dst = src##_0 + src##_2; Other Approaches Parallelizing compilers Optimized kernel libraries BLAS , Intel® IPP, VSIPL Data-parallel...languages Fortran 90, SWARC, Vector Pascal C++ SIMD classes Automatic code generators SPIRAL, FFTW, ATLAS None of these approaches achieves

  17. Is programmed aging a cause for optimism?

    Science.gov (United States)

    Mitteldorf, Josh

    2015-01-01

    Aging is now viewed as programmed under genetic control by a growing minority of evolutionary biologists, and a larger proportion of researchers in gerontology. The hypothesis of programmed aging has been regarded as encouraging for anti-aging science. Some mechanisms of programmed aging may present ready targets for medical interference [mitigation alleviation attenuation], while other kinds of programmed mechanism may yet prove to be refractory. The most promising possibility is that the machinery responsible for maintenance of the vibrant and youthful state of the body is never really lost, but de-commissioned by hormonal signals in the aging body; restoring a youthful signaling environment should then be sufficient to prompt the body to restore itself. But it is also possible that aging may be programmed in a way that does not facilitate anti-aging interventions. We identify two possible cases: In the first, the body is programmed to age via neglect rather than by affirmative self-destruction, so that damage is accumulating that the body is beyond the body's power to repair. In the second, aging is controlled by an epigenetic clock whose workings are so intricate as to be intractable for human mastery in the foreseeable future. There is substantial evidence that first of these is not a likely scenario, but the jury is still out on the second.

  18. Nonlinear Modeling, Dynamic Analysis, and Optimal Design and Operation of Electromechanical Valve Systems

    Science.gov (United States)

    Naseradinmousavi, Peiman

    In this dissertation, the actuator-valve systems as a critical part of the automation system are analyzed. Using physics-based high fidelity modeling, this research provides a set of tools to help understand, predict, optimize, and control the real performance of these complex systems. The work carried out is expected to add to the suite of analytical and numerical tools that are essential for the development of highly automated ship systems. We present an accurate dynamic model, perform nonlinear analysis, and develop optimal design and operation for electromechanical valve systems. The mathematical model derived includes electromagnetics, fluid mechanics, and mechanical dynamics. Nondimensionalization has been carried out in order to reduce the large number of parameters to a few critical independent sets to help carry out a parametric analysis. The system stability analysis is then carried out with the aid of the tools from nonlinear dynamic analysis. This reveals that the system is unstable in a certain region of the parameter space. The system is also shown to exhibit crisis and transient chaotic responses. Smart valves are often operated under local power supply (for various mission-critical reasons) and need to consume as little energy as possible in order to ensure continued operability. The Simulated Annealing (SA) algorithm is utilized to optimize the actuation subsystem yielding the most efficient configuration from the point of view of energy consumption for two sets of design variables. The optimization is particularly important when the smart valves are used in a distributed network. Another aspect of optimality is more subtle and concerns optimal operation given a designed system. Optimal operation comes after the optimal design process to explore if there is any particular method of the valve operation that would yield the minimum possible energy used. The results of our model developed are also validated with the aid of an experimental setup

  19. Optimizing optical nonlinearities in GaInAs/AlInAs quantum cascade lasers

    Directory of Open Access Journals (Sweden)

    Gajić Aleksandra D.

    2014-01-01

    Full Text Available Regardless of the huge advances made in the design and fabrication of mid-infrared and terahertz quantum cascade lasers, success in accessing the ~3-4 mm region of the electromagnetic spectrum has remained limited. This fact has brought about the need to exploit resonant intersubband transitions as powerful nonlinear oscillators, consequently enabling the occurrence of large nonlinear optical susceptibilities as a means of reaching desired wavelengths. In this work, we present a computational model developed for the optimization of second-order optical nonlinearities in In0.53Ga0.47As/Al0.48In0.52As quantum cascade laser structures based on the implementation of the Genetic algorithm. The carrier transport and the power output of the structure were calculated by self-consistent solutions to the system of rate equations for carriers and photons. Both stimulated and simultaneous double-photon absorption processes occurring between the second harmonic generation-relevant levels are incorporated into rate equations and the material-dependent effective mass and band non-parabolicity are taken into account, as well. The developed method is quite general and can be applied to any higher order effect which requires the inclusion of the photon density equation. [Projekat Ministarstva nauke Republike Srbije, br. III 45010

  20. Optimization of highly nonlinear dispersion-flattened photonic crystal fiber for supercontinuum generation

    Institute of Scientific and Technical Information of China (English)

    Zhang Ya-Ni

    2013-01-01

    A simple type of photonic crystal fiber (PCF) for supercontinuum generation is proposed for the first time.The proposed PCF is composed of a solid silica core and a cladding with square lattice uniform elliptical air holes,which offers not only a large nonlinear coefficient but also a high birefringence and low leakage losses.The PCF with nonlinear coefficient as large as 46 W-1 · km-1 at the wavelength of 1.55 μm and a total dispersion as low as ±2.5 ps.nm-1 · km-1 over an ultra-broad waveband range of the S-C-L band (wavelength from 1.46 μm to 1.625 μm) is optimized by adjusting its structure parameter,such as the lattice constant A,the air-filling fraction f,and the air-hole ellipticity η.The novel PCF with ultra-flattened dispersion,highly nonlinear coefficient,and nearly zero negative dispersion slope will offer a possibility of efficient super-continuum generation in telecommunication windows using a few ps pulses.

  1. Improved nonlinear optimization in the storage ring of the modern synchrotron radiation light source

    Institute of Scientific and Technical Information of China (English)

    TIAN Shun-Qiang; LIU Gui-Min; HOU Jie; CHEN Guang-Ling; CHEN Sen-Yu

    2009-01-01

    In the storage ring of the third generation light sources,nonlinear optimization is an indispensable course in order to obtain ample dynamic acceptances and to reach high injection efficiency and long beam lifetime,especially in a low emittance lattice.An improved optimization algorithm based on the single resonance approach,which takes relative weight and initial Harmonic Sextupole Integral Strength (HSIS) as search variables,is discussed in this paper.Applications of the improved method in several test lattices are presented.Detailed analysis of the storage ring of the Shanghai Synchrotron Radiation Facility (SSRF) is particularly emphasized.Furthermore,cancellation of the driving terms is investigated to reveal the physical mechanism of the harmonic sextupole compensation.Sensitivity to the weight and the initial HSIS as well as dependence of the optimum solution on the convergent factor is analyzed.

  2. Neural network solution for finite-horizon H-infinity constrained optimal control of nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    Tao CHENG; Frank L.LEWIS

    2007-01-01

    In this paper,neural networks are used to approximately solve the finite-horizon constrained input H-infiniy state feedback control problem.The method is based on solving a related Hamilton-Jacobi-Isaacs equation of the corresponding finite-horizon zero-sum game.The game value function is approximated by a neural network wlth timevarying weights.It is shown that the neural network approximation converges uniformly to the game-value function and the resulting almost optimal constrained feedback controller provides closed-loop stability and bounded L2 gain.The result is an almost optimal H-infinity feedback controller with time-varying coefficients that is solved a priori off-line.The effectiveness of the method is shown on the Rotational/Translational Actuator benchmark nonlinear control problem.

  3. Optimal geometry of nonlinear silicon slot waveguides accounting for the effect of waveguide losses.

    Science.gov (United States)

    Ong, Jun Rong; Chen, Valerian H

    2015-12-28

    The optimal geometry of silicon-organic hybrid slot waveguides is investigated in the context of the efficiency of four-wave mixing (FWM), a χ(3) nonlinear optical process. We study the effect of slot and waveguide widths, as well as waveguide asymmetry on the two-photon absorption (TPA) figure of merit and the roughness scattering loss. The optimal waveguide core width is shown to be 220nm (symmetric) with a slot width of 120nm, at a fixed waveguide height of 220nm. We also show that state-of-the-art slot waveguides can outperform rib waveguides, especially at high powers, due to the high TPA figure-of-merit.

  4. Landmark Optimization Using Local Curvature for Point-Based Nonlinear Rodent Brain Image Registration

    Directory of Open Access Journals (Sweden)

    Yutong Liu

    2012-01-01

    Full Text Available Purpose. To develop a technique to automate landmark selection for point-based interpolating transformations for nonlinear medical image registration. Materials and Methods. Interpolating transformations were calculated from homologous point landmarks on the source (image to be transformed and target (reference image. Point landmarks are placed at regular intervals on contours of anatomical features, and their positions are optimized along the contour surface by a function composed of curvature similarity and displacements of the homologous landmarks. The method was evaluated in two cases (=5 each. In one, MRI was registered to histological sections; in the second, geometric distortions in EPI MRI were corrected. Normalized mutual information and target registration error were calculated to compare the registration accuracy of the automatically and manually generated landmarks. Results. Statistical analyses demonstrated significant improvement (<0.05 in registration accuracy by landmark optimization in most data sets and trends towards improvement (<0.1 in others as compared to manual landmark selection.

  5. Modified nonlinear conjugate gradient method with sufficient descent condition for unconstrained optimization

    Directory of Open Access Journals (Sweden)

    Liu Jinkui

    2011-01-01

    Full Text Available Abstract In this paper, an efficient modified nonlinear conjugate gradient method for solving unconstrained optimization problems is proposed. An attractive property of the modified method is that the generated direction in each step is always descending without any line search. The global convergence result of the modified method is established under the general Wolfe line search condition. Numerical results show that the modified method is efficient and stationary by comparing with the well-known Polak-Ribiére-Polyak method, CG-DESCENT method and DSP-CG method using the unconstrained optimization problems from More and Garbow (ACM Trans Math Softw 7, 17-41, 1981, so it can be widely used in scientific computation. Mathematics Subject Classification (2010 90C26 · 65H10

  6. Robust Fault Detection for a Class of Uncertain Nonlinear Systems Based on Multiobjective Optimization

    Directory of Open Access Journals (Sweden)

    Bingyong Yan

    2015-01-01

    Full Text Available A robust fault detection scheme for a class of nonlinear systems with uncertainty is proposed. The proposed approach utilizes robust control theory and parameter optimization algorithm to design the gain matrix of fault tracking approximator (FTA for fault detection. The gain matrix of FTA is designed to minimize the effects of system uncertainty on residual signals while maximizing the effects of system faults on residual signals. The design of the gain matrix of FTA takes into account the robustness of residual signals to system uncertainty and sensitivity of residual signals to system faults simultaneously, which leads to a multiobjective optimization problem. Then, the detectability of system faults is rigorously analyzed by investigating the threshold of residual signals. Finally, simulation results are provided to show the validity and applicability of the proposed approach.

  7. Optimizing the second-order optical nonlinearities of organic molecules: asymmetric cyanines and highly polarized polyenes

    Science.gov (United States)

    Marder, Seth R.; Gorman, Christopher B.; Cheng, Lap-Tak A.; Tiemann, Bruce G.

    1993-02-01

    We recently reported that there is an optimal combination of donor and acceptor strengths for a given molecular length and bridge structure that maximizes (beta) . For this combination, there is the correct degree of bond length alternation and asymmetry in the molecule. Our recent findings suggest that molecules that can be viewed as asymmetric cyanines with relatively small amounts of bond length alternation are nearly optimal. In this manner, we have identified molecules with nonlinearities many times that of conventional chromophores for a given length. In this paper, we will present a new computational analysis that allows the correlation of bond length alternation with hyperpolarizabilities and will present EFISH data on simple donor-acceptor polyene chromophores.

  8. Robust non-gradient C subroutines for non-linear optimization

    DEFF Research Database (Denmark)

    Brock, Pernille; Madsen, Kaj; Nielsen, Hans Bruun

    2004-01-01

    This report presents a package of robust and easy-to-use C subroutines for solving unconstrained and constrained non-linear optimization problems, where gradient information is not required. The intention is that the routines should use the currently best algorithms available. All routines have...... subroutines are obtained by changing 0 to 1. The present report is a new and updated version of a previous report NI-91-04 with the title Non-gradient c Subroutines for Non- Linear Optimization, [16]. Both the previous and the present report describe a collection of subroutines, which have been translated...... from Fortran to C. The reason for writing the present report is that some of the C subroutines have been replaced by more e ective and robust versions translated from the original Fortran subroutines to C by the Bandler Group, see [1]. Also the test examples have been modified to some extent...

  9. Error bounds of adaptive dynamic programming algorithms for solving undiscounted optimal control problems.

    Science.gov (United States)

    Liu, Derong; Li, Hongliang; Wang, Ding

    2015-06-01

    In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms.

  10. Nonlinear Optimization-Based Device-Free Localization with Outlier Link Rejection

    Directory of Open Access Journals (Sweden)

    Wendong Xiao

    2015-04-01

    Full Text Available Device-free localization (DFL is an emerging wireless technique for estimating the location of target that does not have any attached electronic device. It has found extensive use in Smart City applications such as healthcare at home and hospitals, location-based services at smart spaces, city emergency response and infrastructure security. In DFL, wireless devices are used as sensors that can sense the target by transmitting and receiving wireless signals collaboratively. Many DFL systems are implemented based on received signal strength (RSS measurements and the location of the target is estimated by detecting the changes of the RSS measurements of the wireless links. Due to the uncertainty of the wireless channel, certain links may be seriously polluted and result in erroneous detection. In this paper, we propose a novel nonlinear optimization approach with outlier link rejection (NOOLR for RSS-based DFL. It consists of three key strategies, including: (1 affected link identification by differential RSS detection; (2 outlier link rejection via geometrical positional relationship among links; (3 target location estimation by formulating and solving a nonlinear optimization problem. Experimental results demonstrate that NOOLR is robust to the fluctuation of the wireless signals with superior localization accuracy compared with the existing Radio Tomographic Imaging (RTI approach.

  11. Integrated Network Decompositions and Dynamic Programming for Graph Optimization (INDDGO)

    Energy Technology Data Exchange (ETDEWEB)

    2012-05-31

    The INDDGO software package offers a set of tools for finding exact solutions to graph optimization problems via tree decompositions and dynamic programming algorithms. Currently the framework offers serial and parallel (distributed memory) algorithms for finding tree decompositions and solving the maximum weighted independent set problem. The parallel dynamic programming algorithm is implemented on top of the MADNESS task-based runtime.

  12. The Uniqueness of Optimal Solution for Linear Programming Problem

    Institute of Scientific and Technical Information of China (English)

    QuanlingWei; HongYan; JunWang

    2004-01-01

    This paper investigates an old problem in operations research, the uniqueness of the optimal solution to a linear programming problem. We discuss the problem on a general polyhedron, give some equivalent conditions for uniqueness testing. In addition, we discuss the implementation issues for linear programming based decision making procedures,which motivated this research.

  13. Does programmed CTL proliferation optimize virus control?

    DEFF Research Database (Denmark)

    Wodarz, Dominik; Thomsen, Allan Randrup

    2005-01-01

    CD8 T-cell or cytotoxic T-lymphocyte responses develop through an antigen-independent proliferation and differentiation program. This is in contrast to the previous thinking, which was that continuous antigenic stimulation was required. This Opinion discusses why nature has chosen the proliferati...

  14. Optimizing Exercise Programs for Arthritis Patients.

    Science.gov (United States)

    Boulware, Dennis W.; Byrd, Shannon L.

    1993-01-01

    Exercise can help decrease pain and improve function in people with rheumatoid arthritis or osteoarthritis. Physicians must provide individualized, realistic, enjoyable exercise programs that help affected joints, build fitness, and maximize patient compliance. Physicians must also provide appropriate follow-up care, adjusting the exercise program…

  15. Minimum fuel coplanar aeroassisted orbital transfer using collocation and nonlinear programming

    Science.gov (United States)

    Shi, Yun Yuan; Young, D. H.

    1991-01-01

    The fuel optimal control problem arising in coplanar orbital transfer employing aeroassisted technology is addressed. The mission involves the transfer from high energy orbit (HEO) to low energy orbit (LEO) without plane change. The basic approach here is to employ a combination of propulsive maneuvers in space and aerodynamic maneuvers in the atmosphere. The basic sequence of events for the coplanar aeroassisted HEO to LEO orbit transfer consists of three phases. In the first phase, the transfer begins with a deorbit impulse at HEO which injects the vehicle into a elliptic transfer orbit with perigee inside the atmosphere. In the second phase, the vehicle is optimally controlled by lift and drag modulation to satisfy heating constraints and to exit the atmosphere with the desired flight path angle and velocity so that the apogee of the exit orbit is the altitude of the desired LEO. Finally, the second impulse is required to circularize the orbit at LEO. The performance index is maximum final mass. Simulation results show that the coplanar aerocapture is quite different from the case where orbital plane changes are made inside the atmosphere. In the latter case, the vehicle has to penetrate deeper into the atmosphere to perform the desired orbital plane change. For the coplanar case, the vehicle needs only to penetrate the atmosphere deep enough to reduce the exit velocity so the vehicle can be captured at the desired LEO. The peak heating rates are lower and the entry corridor is wider. From the thermal protection point of view, the coplanar transfer may be desirable. Parametric studies also show the maximum peak heating rates and the entry corridor width are functions of maximum lift coefficient. The problem is solved using a direct optimization technique which uses piecewise polynomial representation for the states and controls and collocation to represent the differential equations. This converts the optimal control problem into a nonlinear programming problem

  16. An efficient identification approach for stable and unstable nonlinear systems using Colliding Bodies Optimization algorithm.

    Science.gov (United States)

    Pal, Partha S; Kar, R; Mandal, D; Ghoshal, S P

    2015-11-01

    This paper presents an efficient approach to identify different stable and practically useful Hammerstein models as well as unstable nonlinear process along with its stable closed loop counterpart with the help of an evolutionary algorithm as Colliding Bodies Optimization (CBO) optimization algorithm. The performance measures of the CBO based optimization approach such as precision, accuracy are justified with the minimum output mean square value (MSE) which signifies that the amount of bias and variance in the output domain are also the least. It is also observed that the optimization of output MSE in the presence of outliers has resulted in a very close estimation of the output parameters consistently, which also justifies the effective general applicability of the CBO algorithm towards the system identification problem and also establishes the practical usefulness of the applied approach. Optimum values of the MSEs, computational times and statistical information of the MSEs are all found to be the superior as compared with those of the other existing similar types of stochastic algorithms based approaches reported in different recent literature, which establish the robustness and efficiency of the applied CBO based identification scheme.

  17. Identification of a Non-Linear Landing Gear Model Using Nature-Inspired Optimization

    Directory of Open Access Journals (Sweden)

    Felipe A.C. Viana

    2008-01-01

    Full Text Available This work deals with the application of a nature-inspired optimization technique to solve an inverse problem represented by the identification of an aircraft landing gear model. The model is described in terms of the landing gear geometry, internal volumes and areas, shock absorber travel, tire type, and gas and oil characteristics of the shock absorber. The solution to this inverse problem can be obtained by using classical gradient-based optimization methods. However, this is a difficult task due to the existence of local minima in the design space and the requirement of an initial guess. These aspects have motivated the authors to explore a nature-inspired approach using a method known as LifeCycle Model. In the present formulation two nature-based methods, namely the Genetic Algorithms and the Particle Swarm Optimization were used. An optimization problem is formulated in which the objective function represents the difference between the measured characteristics of the system and its model counterpart. The polytropic coefficient of the gas and the damping parameter of the shock absorber are assumed as being unknown: they are considered as design variables. As an illustration, experimental drop test data, obtained under zero horizontal speed, were used in the non-linear landing gear model updating of a small aircraft.

  18. Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics.

    Science.gov (United States)

    Heydari, Ali; Balakrishnan, Sivasubramanya N

    2013-01-01

    To synthesize fixed-final-time control-constrained optimal controllers for discrete-time nonlinear control-affine systems, a single neural network (NN)-based controller called the Finite-horizon Single Network Adaptive Critic is developed in this paper. Inputs to the NN are the current system states and the time-to-go, and the network outputs are the costates that are used to compute optimal feedback control. Control constraints are handled through a nonquadratic cost function. Convergence proofs of: 1) the reinforcement learning-based training method to the optimal solution; 2) the training error; and 3) the network weights are provided. The resulting controller is shown to solve the associated time-varying Hamilton-Jacobi-Bellman equation and provide the fixed-final-time optimal solution. Performance of the new synthesis technique is demonstrated through different examples including an attitude control problem wherein a rigid spacecraft performs a finite-time attitude maneuver subject to control bounds. The new formulation has great potential for implementation since it consists of only one NN with single set of weights and it provides comprehensive feedback solutions online, though it is trained offline.

  19. National Medical School Matching Program: optimizing outcomes

    Science.gov (United States)

    Eltorai, Adam EM; Daniels, Alan H

    2016-01-01

    The medical school admissions process is inefficient and costly to both applicants and medical schools. For the many rejected applicants, this process represents a costly, unproductive use of time. For medical schools, numerous applications are reviewed that ultimately do not yield matriculants, representing a substantial inefficiency. In order to streamline the process and reduce costs, we propose the development of a national medical school matching program. PMID:27445512

  20. Multiplex protein pattern unmixing using a non-linear variable-weighted support vector machine as optimized by a particle swarm optimization algorithm.

    Science.gov (United States)

    Yang, Qin; Zou, Hong-Yan; Zhang, Yan; Tang, Li-Juan; Shen, Guo-Li; Jiang, Jian-Hui; Yu, Ru-Qin

    2016-01-15

    Most of the proteins locate more than one organelle in a cell. Unmixing the localization patterns of proteins is critical for understanding the protein functions and other vital cellular processes. Herein, non-linear machine learning technique is proposed for the first time upon protein pattern unmixing. Variable-weighted support vector machine (VW-SVM) is a demonstrated robust modeling technique with flexible and rational variable selection. As optimized by a global stochastic optimization technique, particle swarm optimization (PSO) algorithm, it makes VW-SVM to be an adaptive parameter-free method for automated unmixing of protein subcellular patterns. Results obtained by pattern unmixing of a set of fluorescence microscope images of cells indicate VW-SVM as optimized by PSO is able to extract useful pattern features by optimally rescaling each variable for non-linear SVM modeling, consequently leading to improved performances in multiplex protein pattern unmixing compared with conventional SVM and other exiting pattern unmixing methods.

  1. On the reformulation of topology optimization problems as linear or convex quadratic mixed 0–1 programs

    DEFF Research Database (Denmark)

    Stolpe, Mathias

    2007-01-01

    We consider equivalent reformulations of nonlinear mixed 0–1 optimization problems arising from a broad range of recent applications of topology optimization for the design of continuum structures and composite materials. We show that the considered problems can equivalently be cast as either...... linear or convex quadratic mixed 0–1 programs. The reformulations provide new insight into the structure of the problems and may provide a foundation for the development of new methods and heuristics for solving topology optimization problems. The applications considered are maximum stiffness design...

  2. On the reformulation of topology optimization problems as linear or convex quadratic mixed 0-1 programs

    DEFF Research Database (Denmark)

    Stolpe, Mathias

    2004-01-01

    We consider equivalent reformulations of nonlinear mixed 0-1 optimization problems arising from a broad range of recent applications of topology optimization for the design of continuum structures and composite materials. It is shown that the considered problems may equivalently be cast as either...... linear or as convex quadratic mixed 0-1 programs. The reformulations provide new insight into the structure of the problems and may provide a foundation for the development of new methods and heuristics for solving topology optimization problems. The applications considered are maximum stiffness design...

  3. New version of Optimal Homotopy Asymptotic Method for the solution of nonlinear boundary value problems in finite and infinite intervals

    Directory of Open Access Journals (Sweden)

    Liaqat Ali

    2016-09-01

    Full Text Available In this research work a new version of Optimal Homotopy Asymptotic Method is applied to solve nonlinear boundary value problems (BVPs in finite and infinite intervals. It comprises of initial guess, auxiliary functions (containing unknown convergence controlling parameters and a homotopy. The said method is applied to solve nonlinear Riccati equations and nonlinear BVP of order two for thin film flow of a third grade fluid on a moving belt. It is also used to solve nonlinear BVP of order three achieved by Mostafa et al. for Hydro-magnetic boundary layer and micro-polar fluid flow over a stretching surface embedded in a non-Darcian porous medium with radiation. The obtained results are compared with the existing results of Runge-Kutta (RK-4 and Optimal Homotopy Asymptotic Method (OHAM-1. The outcomes achieved by this method are in excellent concurrence with the exact solution and hence it is proved that this method is easy and effective.

  4. Two-parameters quasi-filled function algorithm for nonlinear integer programming

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-xiang; SHANG You-lin; ZHANG Lian-sheng

    2006-01-01

    A quasi-filled function for nonlinear integer programming problem is given in this paper. This function contains two parameters which are easily to be chosen. Theoretical properties of the proposed quasi-filled function are investigated. Moreover,we also propose a new solution algorithm using this quasi-filled function to solve nonlinear integer programming problem in this paper. The examples with 2 to 6 variables are tested and computational results indicated the efficiency and reliability of the proposed quasi-filled function algorithm.

  5. Multilevel adaptive solution procedure for material nonlinear problems in visual programming environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.; Ghanem, R. [State Univ. of New York, Buffalo, NY (United States)

    1994-12-31

    Multigrid solution technique to solve a material nonlinear problem in a visual programming environment using the finite element method is discussed. The nonlinear equation of equilibrium is linearized to incremental form using Newton-Rapson technique, then multigrid solution technique is used to solve linear equations at each Newton-Rapson step. In the process, adaptive mesh refinement, which is based on the bisection of a pair of triangles, is used to form grid hierarchy for multigrid iteration. The solution process is implemented in a visual programming environment with distributed computing capability, which enables more intuitive understanding of solution process, and more effective use of resources.

  6. Program Optimization Using Abstract State Machines

    Directory of Open Access Journals (Sweden)

    Gabriel SOFONEA

    2006-01-01

    Full Text Available Usually the result code of source code by a compiler is not necessary the best one, and can be improved to run faster or to use less memory. This kind of improvement is done in compiling phase after parsing. Some good techniques in optimization are in folding the constants, elimination of dead code, or improvement of the loops. Here it is considered the runtime overhead and present how can this be improved. The source is specific for objectoriented languages with late binding, where a name of method to be called is bound to method dynamically. It increases the computation time by a cost of traversing the class hierarchy each time a method is called.

  7. Identifying the preferred subset of enzymatic profiles in nonlinear kinetic metabolic models via multiobjective global optimization and Pareto filters.

    Directory of Open Access Journals (Sweden)

    Carlos Pozo

    Full Text Available Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study

  8. Identifying the preferred subset of enzymatic profiles in nonlinear kinetic metabolic models via multiobjective global optimization and Pareto filters.

    Science.gov (United States)

    Pozo, Carlos; Guillén-Gosálbez, Gonzalo; Sorribas, Albert; Jiménez, Laureano

    2012-01-01

    Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the

  9. Compiler Optimization Techniques for OpenMP Programs

    Directory of Open Access Journals (Sweden)

    Shigehisa Satoh

    2001-01-01

    Full Text Available We have developed compiler optimization techniques for explicit parallel programs using the OpenMP API. To enable optimization across threads, we designed dataflow analysis techniques in which interactions between threads are effectively modeled. Structured description of parallelism and relaxed memory consistency in OpenMP make the analyses effective and efficient. We developed algorithms for reaching definitions analysis, memory synchronization analysis, and cross-loop data dependence analysis for parallel loops. Our primary target is compiler-directed software distributed shared memory systems in which aggressive compiler optimizations for software-implemented coherence schemes are crucial to obtaining good performance. We also developed optimizations applicable to general OpenMP implementations, namely redundant barrier removal and privatization of dynamically allocated objects. Experimental results for the coherency optimization show that aggressive compiler optimizations are quite effective for a shared-write intensive program because the coherence-induced communication volume in such a program is much larger than that in shared-read intensive programs.

  10. φq-field theory for portfolio optimization: “fat tails” and nonlinear correlations

    Science.gov (United States)

    Sornette, D.; Simonetti, P.; Andersen, J. V.

    2000-08-01

    Physics and finance are both fundamentally based on the theory of random walks (and their generalizations to higher dimensions) and on the collective behavior of large numbers of correlated variables. The archetype examplifying this situation in finance is the portfolio optimization problem in which one desires to diversify on a set of possibly dependent assets to optimize the return and minimize the risks. The standard mean-variance solution introduced by Markovitz and its subsequent developments is basically a mean-field Gaussian solution. It has severe limitations for practical applications due to the strongly non-Gaussian structure of distributions and the nonlinear dependence between assets. Here, we present in details a general analytical characterization of the distribution of returns for a portfolio constituted of assets whose returns are described by an arbitrary joint multivariate distribution. In this goal, we introduce a non-linear transformation that maps the returns onto Gaussian variables whose covariance matrix provides a new measure of dependence between the non-normal returns, generalizing the covariance matrix into a nonlinear covariance matrix. This nonlinear covariance matrix is chiseled to the specific fat tail structure of the underlying marginal distributions, thus ensuring stability and good conditioning. The portfolio distribution is then obtained as the solution of a mapping to a so-called φq field theory in particle physics, of which we offer an extensive treatment using Feynman diagrammatic techniques and large deviation theory, that we illustrate in details for multivariate Weibull distributions. The interaction (non-mean field) structure in this field theory is a direct consequence of the non-Gaussian nature of the distribution of asset price returns. We find that minimizing the portfolio variance (i.e. the relatively “small” risks) may often increase the large risks, as measured by higher normalized cumulants. Extensive

  11. A Neurodynamic Optimization Approach to Bilevel Quadratic Programming.

    Science.gov (United States)

    Qin, Sitian; Le, Xinyi; Wang, Jun

    2016-08-19

    This paper presents a neurodynamic optimization approach to bilevel quadratic programming (BQP). Based on the Karush-Kuhn-Tucker (KKT) theorem, the BQP problem is reduced to a one-level mathematical program subject to complementarity constraints (MPCC). It is proved that the global solution of the MPCC is the minimal one of the optimal solutions to multiple convex optimization subproblems. A recurrent neural network is developed for solving these convex optimization subproblems. From any initial state, the state of the proposed neural network is convergent to an equilibrium point of the neural network, which is just the optimal solution of the convex optimization subproblem. Compared with existing recurrent neural networks for BQP, the proposed neural network is guaranteed for delivering the exact optimal solutions to any convex BQP problems. Moreover, it is proved that the proposed neural network for bilevel linear programming is convergent to an equilibrium point in finite time. Finally, three numerical examples are elaborated to substantiate the efficacy of the proposed approach.

  12. Using linear programming to analyze and optimize stochastic flow lines

    DEFF Research Database (Denmark)

    Helber, Stefan; Schimmelpfeng, Katja; Stolletz, Raik

    2011-01-01

    This paper presents a linear programming approach to analyze and optimize flow lines with limited buffer capacities and stochastic processing times. The basic idea is to solve a huge but simple linear program that models an entire simulation run of a multi-stage production process in discrete tim...... programming and hence allows us to solve buffer allocation problems. We show under which conditions our method works well by comparing its results to exact values for two-machine models and approximate simulation results for longer lines.......This paper presents a linear programming approach to analyze and optimize flow lines with limited buffer capacities and stochastic processing times. The basic idea is to solve a huge but simple linear program that models an entire simulation run of a multi-stage production process in discrete time...

  13. Generic Optimization Program User Manual Version 3.0.0

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2009-05-11

    GenOpt is an optimization program for the minimization of a cost function that is evaluated by an external simulation program. It has been developed for optimization problems where the cost function is computationally expensive and its derivatives are not available or may not even exist. GenOpt can be coupled to any simulation program that reads its input from text files and writes its output to text files. The independent variables can be continuous variables (possibly with lower and upper bounds), discrete variables, or both, continuous and discrete variables. Constraints on dependent variables can be implemented using penalty or barrier functions. GenOpt uses parallel computing to evaluate the simulations. GenOpt has a library with local and global multi-dimensional and one-dimensional optimization algorithms, and algorithms for doing parametric runs. An algorithm interface allows adding new minimization algorithms without knowing the details of the program structure. GenOpt is written in Java so that it is platform independent. The platform independence and the general interface make GenOpt applicable to a wide range of optimization problems. GenOpt has not been designed for linear programming problems, quadratic programming problems, and problems where the gradient of the cost function is available. For such problems, as well as for other problems, special tailored software exists that is more efficient.

  14. A-optimal encoding weights for nonlinear inverse problems, with application to the Helmholtz inverse problem

    Science.gov (United States)

    Crestel, Benjamin; Alexanderian, Alen; Stadler, Georg; Ghattas, Omar

    2017-07-01

    The computational cost of solving an inverse problem governed by PDEs, using multiple experiments, increases linearly with the number of experiments. A recently proposed method to decrease this cost uses only a small number of random linear combinations of all experiments for solving the inverse problem. This approach applies to inverse problems where the PDE solution depends linearly on the right-hand side function that models the experiment. As this method is stochastic in essence, the quality of the obtained reconstructions can vary, in particular when only a small number of combinations are used. We develop a Bayesian formulation for the definition and computation of encoding weights that lead to a parameter reconstruction with the least uncertainty. We call these weights A-optimal encoding weights. Our framework applies to inverse problems where the governing PDE is nonlinear with respect to the inversion parameter field. We formulate the problem in infinite dimensions and follow the optimize-then-discretize approach, devoting special attention to the discretization and the choice of numerical methods in order to achieve a computational cost that is independent of the parameter discretization. We elaborate our method for a Helmholtz inverse problem, and derive the adjoint-based expressions for the gradient of the objective function of the optimization problem for finding the A-optimal encoding weights. The proposed method is potentially attractive for real-time monitoring applications, where one can invest the effort to compute optimal weights offline, to later solve an inverse problem repeatedly, over time, at a fraction of the initial cost.

  15. Spur-gear optimization using SPUROPT computer program

    Science.gov (United States)

    Coe, Harold H.

    1991-01-01

    A computer program developed for optimizing spur gear designs, SPUROPT, was updated by installing a new subroutine that uses AGMA 908-B89 standards to calculate the J-factor for determining tooth-bending stress. The updated SPUROPT program was then used to optimize a spur gear set for maximum fatigue life, minimum dynamic load, or minimum weight. All calculations were made with constraints on as many as 13 parameters by using three design variables: the number of teeth, diametral pitch, and tooth-face width. Results depended largely on constraints values. When the limiting bending stress was set at a high value, the optimal solution was the highest allowable number of teeth. When the allowable bending stress was lowered, the optimal solution moved toward the fewest number of teeth permitted. Final results were also affected by the amount of transmission error. A lower error permitted a higher number of teeth.

  16. OPTIMIZED AGRICULTURAL PLANNING OF SUGARCANE USING LINEAR PROGRAMMING

    Directory of Open Access Journals (Sweden)

    Maximiliano Salles Scarpari* and Edgar Gomes Ferreira de Beauclair**

    2010-03-01

    Full Text Available Optimized agricultural planning is a fundamental activity in business profitability because it can increase the returns from an operation with low additional costs. Nonetheless, the use of operations research adapted to sugarcane plantation management is still limited, resulting in decision-making at management level being primarily empirical. The goal of this work was to develop an optimized planning model for sugarcane farming using a linear programming tool. The program language used was General Algebraic Modelling System (GAMS as this system was seen to be an excellent tool to allow profit maximization and harvesting time schedule optimization in the sugar mill studied. The results presented support this optimized planning model as being a very useful tool for sugarcane management.

  17. Optimal Constant-Stress Accelerated Degradation Test Plans Using Nonlinear Generalized Wiener Process

    Directory of Open Access Journals (Sweden)

    Zhen Chen

    2016-01-01

    Full Text Available Accelerated degradation test (ADT has been widely used to assess highly reliable products’ lifetime. To conduct an ADT, an appropriate degradation model and test plan should be determined in advance. Although many historical studies have proposed quite a few models, there is still room for improvement. Hence we propose a Nonlinear Generalized Wiener Process (NGWP model with consideration of the effects of stress level, product-to-product variability, and measurement errors for a higher estimation accuracy and a wider range of use. Then under the constraints of sample size, test duration, and test cost, the plans of constant-stress ADT (CSADT with multiple stress levels based on the NGWP are designed by minimizing the asymptotic variance of the reliability estimation of the products under normal operation conditions. An optimization algorithm is developed to determine the optimal stress levels, the number of units allocated to each level, inspection frequency, and measurement times simultaneously. In addition, a comparison based on degradation data of LEDs is made to show better goodness-of-fit of the NGWP than that of other models. Finally, optimal two-level and three-level CSADT plans under various constraints and a detailed sensitivity analysis are demonstrated through examples in this paper.

  18. Near-Optimal Control for Nonzero-Sum Differential Games of Continuous-Time Nonlinear Systems Using Single-Network ADP.

    Science.gov (United States)

    Zhang, Huaguang; Cui, Lili; Luo, Yanhong

    2013-02-01

    In this paper, a near-optimal control scheme is proposed to solve the nonzero-sum differential games of continuous-time nonlinear systems. The single-network adaptive dynamic programming (ADP) is utilized to obtain the optimal control policies which make the cost functions reach the Nash equilibrium of nonzero-sum differential games, where only one critic network is used for each player instead of the action-critic dual network used in a typical ADP architecture. Furthermore, the novel weight tuning laws for critic neural networks are proposed, which not only ensure the Nash equilibrium to be reached but also guarantee the system to be stable. No initial stabilizing control policy is required for each player. Moreover, Lyapunov theory is utilized to demonstrate the uniform ultimate boundedness of the closed-loop system. Finally, a simulation example is given to verify the effectiveness of the proposed near-optimal control scheme.

  19. A Linear Programming Model to Optimize Various Objective Functions of a Foundation Type State Support Program.

    Science.gov (United States)

    Matzke, Orville R.

    The purpose of this study was to formulate a linear programming model to simulate a foundation type support program and to apply this model to a state support program for the public elementary and secondary school districts in the State of Iowa. The model was successful in producing optimal solutions to five objective functions proposed for…

  20. Nonlinear optimal control of bypass transition in a boundary layer flow

    Science.gov (United States)

    Xiao, Dandan; Papadakis, George

    2016-11-01

    Bypass transition is observed in a flat-plate boundary-layer flow when high levels of free stream turbulence are present. This scenario is characterized by the formation of streamwise elongated streaks inside the boundary layer, their break down into turbulent spots and eventually fully turbulent flow. In the current work, we perform DNS simulations of control of bypass transition in a zero-pressure-gradient boundary layer. A non-linear optimal control algorithm is developed that employs the direct-adjoint approach to minimise a quadratic cost function based on the deviation from the Blasius velocity profile. Using the Lagrange variational approach, the distribution of the blowing/suction control velocity is found by solving iteratively the non-linear Navier-Stokes and its adjoint equations in a forward/backward loop. The optimisation is performed over a finite time horizon during which the Lagrange functional is to be minimised. Large values of optimisation horizon result in instability of the adjoint equations. The results show that the controller is able to reduce the turbulent kinetic energy of the flow in the region where the objective function is defined and the velocity profile is seen to approach the Blasius solution. Significant drag reduction is also achieved.

  1. Optimization of eigenstates and spectra for quasi-linear nonlinear optical systems

    CERN Document Server

    Lytel, Rick; Kuzyk, Mark G

    2015-01-01

    Quasi-one-dimensional quantum structures with spectra scaling faster than the square of the eigenmode number (superscaling) can generate intrinsic, off-resonant optical nonlinearities near the fundamental physical limits, independent of the details of the potential energy along the structure. The scaling of spectra is determined by the topology of the structure, while the magnitudes of the transition moments are set by the geometry of the structure. This paper presents a comprehensive study of the geometrical optimization of superscaling quasi-one-dimensional structures and provides heuristics for designing molecules to maximize intrinsic response. A main result is that designers of conjugated structures should attach short side groups at least a third of the way along the bridge, not near its end as is conventionally done. A second result is that once a side group is properly placed, additional side groups do not further enhance the response.

  2. Use of stochastic optimization techniques for damage detection in complex nonlinear systems

    Directory of Open Access Journals (Sweden)

    Jafarkhani R.

    2012-07-01

    Full Text Available In this study, the performance of stochastic optimization techniques in the finite element model updating approach was investigated for damage detection in a quarter-scale two-span reinforced concrete bridge system which was tested experimentally at the University of Nevada, Reno. The damage sequence in the structure was induced by a range of progressively increasing excitations in the transverse direction of the specimen. Intermediate non-destructive white noise excitations and response measurements were used for system identification and damage detection purposes. It is shown that, when evaluated together with the strain gauge measurements and visual inspection results, the applied finite element model updating algorithm on this complex nonlinear system could accurately detect, localize, and quantify the damage in the tested bridge columns throughout the different phases of the experiment.

  3. Application of optimal homotopy asymptotic method to nonlinear Bingham fluid dampers

    CERN Document Server

    Marinca, Vasile; Bereteu, Liviu

    2015-01-01

    Magnetorheological fluids (MR) are stable suspensions of magnetizable microparticles, characterized by the property to change the rheological characteristics when subjected to the action of magnetic field. Together with another class of materials that change their rheological characteristics in the presence of an electric field, called electrorheological materials are known in the literature as the smart materials or controlled materials. In the absence of a magnetic field the particles in MR fluid are dispersed in the base fluid and its flow through the apertures is behaves as a Newtonian fluid having a constant shear stress. When the magnetic field is applying a MR fluid behavior change, and behaves like a Bingham fluid with a variable shear stress. Dynamic response time is an important characteristic for determining the performance of MR dampers in practical civil engineering applications. The purpose of this paper is to show how to use the Optimal Homotopy Asymptotic Method (OHAM) to solve the nonlinear d...

  4. Generation of stable subfemtosecond hard x-ray pulses with optimized nonlinear bunch compression

    Directory of Open Access Journals (Sweden)

    Senlin Huang

    2014-12-01

    Full Text Available In this paper, we propose a simple scheme that leverages existing x-ray free-electron laser hardware to produce stable single-spike, subfemtosecond x-ray pulses. By optimizing a high-harmonic radio-frequency linearizer to achieve nonlinear compression of a low-charge (20 pC electron beam, we obtain a sharp current profile possessing a few-femtosecond full width at half maximum temporal duration. A reverse undulator taper is applied to enable lasing only within the current spike, where longitudinal space charge forces induce an electron beam time-energy chirp. Simulations based on the Linac Coherent Light Source parameters show that stable single-spike x-ray pulses with a duration less than 200 attoseconds can be obtained.

  5. An Improved Control Vector Iteration Approach for Nonlinear Dynamic Optimization. II. Problems with Path Constraints

    Institute of Scientific and Technical Information of China (English)

    胡云卿; 刘兴高; 薛安克

    2014-01-01

    This paper considers dealing with path constraints in the framework of the improved control vector it-eration (CVI) approach. Two available ways for enforcing equality path constraints are presented, which can be di-rectly incorporated into the improved CVI approach. Inequality path constraints are much more difficult to deal with, even for small scale problems, because the time intervals where the inequality path constraints are active are unknown in advance. To overcome the challenge, the l1 penalty function and a novel smoothing technique are in-troduced, leading to a new effective approach. Moreover, on the basis of the relevant theorems, a numerical algo-rithm is proposed for nonlinear dynamic optimization problems with inequality path constraints. Results obtained from the classic batch reactor operation problem are in agreement with the literature reports, and the computational efficiency is also high.

  6. A computer program for predicting nonlinear uniaxial material responses using viscoplastic models

    Science.gov (United States)

    Chang, T. Y.; Thompson, R. L.

    1984-01-01

    A computer program was developed for predicting nonlinear uniaxial material responses using viscoplastic constitutive models. Four specific models, i.e., those due to Miller, Walker, Krieg-Swearengen-Rhode, and Robinson, are included. Any other unified model is easily implemented into the program in the form of subroutines. Analysis features include stress-strain cycling, creep response, stress relaxation, thermomechanical fatigue loop, or any combination of these responses. An outline is given on the theoretical background of uniaxial constitutive models, analysis procedure, and numerical integration methods for solving the nonlinear constitutive equations. In addition, a discussion on the computer program implementation is also given. Finally, seven numerical examples are included to demonstrate the versatility of the computer program developed.

  7. An integer optimization algorithm for robust identification of non-linear gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Chemmangattuvalappil Nishanth

    2012-09-01

    Full Text Available Abstract Background Reverse engineering gene networks and identifying regulatory interactions are integral to understanding cellular decision making processes. Advancement in high throughput experimental techniques has initiated innovative data driven analysis of gene regulatory networks. However, inherent noise associated with biological systems requires numerous experimental replicates for reliable conclusions. Furthermore, evidence of robust algorithms directly exploiting basic biological traits are few. Such algorithms are expected to be efficient in their performance and robust in their prediction. Results We have developed a network identification algorithm to accurately infer both the topology and strength of regulatory interactions from time series gene expression data in the presence of significant experimental noise and non-linear behavior. In this novel formulism, we have addressed data variability in biological systems by integrating network identification with the bootstrap resampling technique, hence predicting robust interactions from limited experimental replicates subjected to noise. Furthermore, we have incorporated non-linearity in gene dynamics using the S-system formulation. The basic network identification formulation exploits the trait of sparsity of biological interactions. Towards that, the identification algorithm is formulated as an integer-programming problem by introducing binary variables for each network component. The objective function is targeted to minimize the network connections subjected to the constraint of maximal agreement between the experimental and predicted gene dynamics. The developed algorithm is validated using both in silico and experimental data-sets. These studies show that the algorithm can accurately predict the topology and connection strength of the in silico networks, as quantified by high precision and recall, and small discrepancy between the actual and predicted kinetic parameters

  8. Programmed evolution for optimization of orthogonal metabolic output in bacteria.

    Directory of Open Access Journals (Sweden)

    Todd T Eckdahl

    Full Text Available Current use of microbes for metabolic engineering suffers from loss of metabolic output due to natural selection. Rather than combat the evolution of bacterial populations, we chose to embrace what makes biological engineering unique among engineering fields - evolving materials. We harnessed bacteria to compute solutions to the biological problem of metabolic pathway optimization. Our approach is called Programmed Evolution to capture two concepts. First, a population of cells is programmed with DNA code to enable it to compute solutions to a chosen optimization problem. As analog computers, bacteria process known and unknown inputs and direct the output of their biochemical hardware. Second, the system employs the evolution of bacteria toward an optimal metabolic solution by imposing fitness defined by metabolic output. The current study is a proof-of-concept for Programmed Evolution applied to the optimization of a metabolic pathway for the conversion of caffeine to theophylline in E. coli. Introduced genotype variations included strength of the promoter and ribosome binding site, plasmid copy number, and chaperone proteins. We constructed 24 strains using all combinations of the genetic variables. We used a theophylline riboswitch and a tetracycline resistance gene to link theophylline production to fitness. After subjecting the mixed population to selection, we measured a change in the distribution of genotypes in the population and an increased conversion of caffeine to theophylline among the most fit strains, demonstrating Programmed Evolution. Programmed Evolution inverts the standard paradigm in metabolic engineering by harnessing evolution instead of fighting it. Our modular system enables researchers to program bacteria and use evolution to determine the combination of genetic control elements that optimizes catabolic or anabolic output and to maintain it in a population of cells. Programmed Evolution could be used for applications in

  9. Ultimate limit state design of sheet pile walls by finite elements and nonlinear programming

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Damkilde, Lars; Krabbenhøft, Sven

    2005-01-01

    as a nonlinear programming problem where the yield moment of the wall is minimized subject to equilibrium and yield conditions. The finite element discretization used enables exact fulfillment of these conditions and thus, according to the lower bound theorem, the solutions are safe....

  10. A Smooth Newton Method for Nonlinear Programming Problems with Inequality Constraints

    Directory of Open Access Journals (Sweden)

    Vasile Moraru

    2012-02-01

    Full Text Available The paper presents a reformulation of the Karush-Kuhn-Tucker (KKT system associated nonlinear programming problem into an equivalent system of smooth equations. Classical Newton method is applied to solve the system of equations. The superlinear convergence of the primal sequence, generated by proposed method, is proved. The preliminary numerical results with a problems test set are presented.

  11. Minimum time acceleration of aircraft turbofan engines by using an algorithm based on nonlinear programming

    Science.gov (United States)

    Teren, F.

    1977-01-01

    Minimum time accelerations of aircraft turbofan engines are presented. The calculation of these accelerations was made by using a piecewise linear engine model, and an algorithm based on nonlinear programming. Use of this model and algorithm allows such trajectories to be readily calculated on a digital computer with a minimal expenditure of computer time.

  12. Ultimate Limit State Design Of Sheet Pile Walls By Finite Elements And Nonlinear Programming

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Damkilde, Lars; Krabbenhøft, Sven

    2005-01-01

    as a nonlinear programming problem where the yield moment of the wall is minimized subject to equilibrium and yield conditions. The finite element discretization used enables exact fulfillment of these conditions and thus, according to the lower bound theorem, the solutions are safe...

  13. A linear programming approach for optimal contrast-tone mapping.

    Science.gov (United States)

    Wu, Xiaolin

    2011-05-01

    This paper proposes a novel algorithmic approach of image enhancement via optimal contrast-tone mapping. In a fundamental departure from the current practice of histogram equalization for contrast enhancement, the proposed approach maximizes expected contrast gain subject to an upper limit on tone distortion and optionally to other constraints that suppress artifacts. The underlying contrast-tone optimization problem can be solved efficiently by linear programming. This new constrained optimization approach for image enhancement is general, and the user can add and fine tune the constraints to achieve desired visual effects. Experimental results demonstrate clearly superior performance of the new approach over histogram equalization and its variants.

  14. Reentry trajectory optimization with waypoint and no-fly zone constraints using multiphase convex programming

    Science.gov (United States)

    Zhao, Dang-Jun; Song, Zheng-Yu

    2017-08-01

    This study proposes a multiphase convex programming approach for rapid reentry trajectory generation that satisfies path, waypoint and no-fly zone (NFZ) constraints on Common Aerial Vehicles (CAVs). Because the time when the vehicle reaches the waypoint is unknown, the trajectory of the vehicle is divided into several phases according to the prescribed waypoints, rendering a multiphase optimization problem with free final time. Due to the requirement of rapidity, the minimum flight time of each phase index is preferred over other indices in this research. The sequential linearization is used to approximate the nonlinear dynamics of the vehicle as well as the nonlinear concave path constraints on the heat rate, dynamic pressure, and normal load; meanwhile, the convexification techniques are proposed to relax the concave constraints on control variables. Next, the original multiphase optimization problem is reformulated as a standard second-order convex programming problem. Theoretical analysis is conducted to show that the original problem and the converted problem have the same solution. Numerical results are presented to demonstrate that the proposed approach is efficient and effective.

  15. A quasi-Newton approach to optimization problems with probability density constraints. [problem solving in mathematical programming

    Science.gov (United States)

    Tapia, R. A.; Vanrooy, D. L.

    1976-01-01

    A quasi-Newton method is presented for minimizing a nonlinear function while constraining the variables to be nonnegative and sum to one. The nonnegativity constraints were eliminated by working with the squares of the variables and the resulting problem was solved using Tapia's general theory of quasi-Newton methods for constrained optimization. A user's guide for a computer program implementing this algorithm is provided.

  16. Simulation-based inexact chance-constrained nonlinear programming for eutrophication management in the Xiangxi Bay of Three Gorges Reservoir.

    Science.gov (United States)

    Huang, Y L; Huang, G H; Liu, D F; Zhu, H; Sun, W

    2012-10-15

    Although integrated simulation and optimization approaches under stochastic uncertainty have been applied to eutrophication management problems, few studies are reported in eutrophication control planning where multiple formats of uncertainties and nonlinearities are addressed in forms of intervals and probabilistic distributions within an integrated framework. Since the impounding of Three Gorges Reservoir (TGR), China in 2003, the hydraulic conditions and aquatic environment of the Xiangxi Bay (XXB) have changed significantly. The resulting emergence of eutrophication and algal blooms leads to its deteriorated water quality. The XXB becomes an ideal case study area. Thus, a simulation-based inexact chance-constrained nonlinear programming (SICNP) model is developed and applied to eutrophication control planning in the XXB of the TGR under uncertainties. In the SICNP, the wastewater treatment costs for removing total phosphorus (TP) are set as the objective function; effluent discharge standards, stream water quality standards and eutrophication control standards are considered in the constraints; a steady-state simulation model for phosphorus transport and fate is embedded in the environmental standards constraints; the interval programming and chance-constrained approaches are integrated to provide interval decision variables but also the associated risk levels in violating the system constraints. The model results indicate that changes in the violating level (q) will result in different strategy distributions at spatial and temporal scales; the optimal value of cost objective is from [2.74, 13.41] million RMB to [2.25, 13.08] million RMB when q equals from 0.01 to 0.25; the required TP treatment efficiency for the Baisha plant is the most stringent, which is followed by the Xiakou Town and the Zhaojun Town, while the requirement for the Pingyikou cement plant is the least stringent. The model results are useful for making optimal policies on eutrophication

  17. PID Controller Design of Nonlinear System using a New Modified Particle Swarm Optimization with Time-Varying Constriction Coefficient

    Directory of Open Access Journals (Sweden)

    Alrijadjis .

    2014-12-01

    Full Text Available The proportional integral derivative (PID controllers have been widely used in most process control systems for a long time. However, it is a very important problem how to choose PID parameters, because these parameters give a great influence on the control performance. Especially, it is difficult to tune these parameters for nonlinear systems. In this paper, a new modified particle swarm optimization (PSO is presented to search for optimal PID parameters for such system. The proposed algorithm is to modify constriction coefficient which is nonlinearly decreased time-varying for improving the final accuracy and the convergence speed of PSO. To validate the control performance of the proposed method, a typical nonlinear system control, a continuous stirred tank reactor (CSTR process, is illustrated. The results testify that a new modified PSO algorithm can perform well in the nonlinear PID control system design in term of lesser overshoot, rise-time, settling-time, IAE and ISE. Keywords: PID controller, Particle Swarm Optimization (PSO,constriction factor, nonlinear system.

  18. Thermodynamic design of a cascade refrigeration system of liquefied natural gas by applying mixed integer non-linear programming

    Institute of Scientific and Technical Information of China (English)

    Meysam Kamalinejad; Majid Amidpour; S.M. Mousavi Naeynian

    2015-01-01

    Liquefied natural gas (LNG) is the most economical way of transporting natural gas (NG) over long distances. Liq-uefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due to lack of systematic design methods for multistage refrigeration cycles, conventional approaches to determine op-timal cycle are largely trial-and-error. In this paper a novel mixed integer non-linear programming (MINLP) model is introduced to select optimal synthesis of refrigeration systems to reduce both operating and capital costs of an LNG plant. Better conceptual understanding of design improvement is illustrated on composite curve (CC) and exergetic grand composite curve (EGCC) of pinch analysis diagrams. In this method a superstruc-ture representation of complex refrigeration system is developed to select and optimize key decision variables in refrigeration cycles (i.e. partition temperature, compression configuration, refrigeration features, refrigerant flow rate and economic trade-off). Based on this method a program (LNG-Pro) is developed which integrates VBA, Refprop and Excel MINLP Solver to automate the methodology. Design procedure is applied on a sample LNG plant to illustrate advantages of using this method which shows a 3.3% reduction in total shaft work consumption.

  19. River water quality management considering agricultural return flows: application of a nonlinear two-stage stochastic fuzzy programming.

    Science.gov (United States)

    Tavakoli, Ali; Nikoo, Mohammad Reza; Kerachian, Reza; Soltani, Maryam

    2015-04-01

    In this paper, a new fuzzy methodology is developed to optimize water and waste load allocation (WWLA) in rivers under uncertainty. An interactive two-stage stochastic fuzzy programming (ITSFP) method is utilized to handle parameter uncertainties, which are expressed as fuzzy boundary intervals. An iterative linear programming (ILP) is also used for solving the nonlinear optimization model. To accurately consider the impacts of the water and waste load allocation strategies on the river water quality, a calibrated QUAL2Kw model is linked with the WWLA optimization model. The soil, water, atmosphere, and plant (SWAP) simulation model is utilized to determine the quantity and quality of each agricultural return flow. To control pollution loads of agricultural networks, it is assumed that a part of each agricultural return flow can be diverted to an evaporation pond and also another part of it can be stored in a detention pond. In detention ponds, contaminated water is exposed to solar radiation for disinfecting pathogens. Results of applying the proposed methodology to the Dez River system in the southwestern region of Iran illustrate its effectiveness and applicability for water and waste load allocation in rivers. In the planning phase, this methodology can be used for estimating the capacities of return flow diversion system and evaporation and detention ponds.

  20. A Comparison of Multi-Parametric Programming, Mixed-Integer Programming, Gradient Descent Based, and the Embedding Approach on Four Published Hybrid Optimal Control Examples

    CERN Document Server

    Meyer, Richard; DeCarlo, Raymond A

    2012-01-01

    This paper compares the embedding approach for solving hybrid optimal control problems to multi-parameter programming, mixed-integer programming, and gradient-descent based methods in the context of four published examples. The four examples include a spring-mass system, moving-target tracking for a mobile robot, two-tank filling, and a DC-DC boost converter. Numerical advantages of the embedding approach are set forth and validated for each example: significantly faster solution time, no ad hoc assumptions (such as predetermined mode sequences) or control models, lower performance index costs, and algorithm convergence when other methods fail. Specific (theoretical) advantages of the embedding approach over the other methods are also described: guaranteed existence of a solution under mild conditions, convexity of the embedded optimization problem solvable with traditional techniques such as sequential quadratic programming with no need for any mixed-integer programming, applicability to nonlinear systems, e...

  1. Decoupled ARX and RBF Neural Network Modeling Using PCA and GA Optimization for Nonlinear Distributed Parameter Systems.

    Science.gov (United States)

    Zhang, Ridong; Tao, Jili; Lu, Renquan; Jin, Qibing

    2016-12-08

    Modeling of distributed parameter systems is difficult because of their nonlinearity and infinite-dimensional characteristics. Based on principal component analysis (PCA), a hybrid modeling strategy that consists of a decoupled linear autoregressive exogenous (ARX) model and a nonlinear radial basis function (RBF) neural network model are proposed. The spatial-temporal output is first divided into a few dominant spatial basis functions and finite-dimensional temporal series by PCA. Then, a decoupled ARX model is designed to model the linear dynamics of the dominant modes of the time series. The nonlinear residual part is subsequently parameterized by RBFs, where genetic algorithm is utilized to optimize their hidden layer structure and the parameters. Finally, the nonlinear spatial-temporal dynamic system is obtained after the time/space reconstruction. Simulation results of a catalytic rod and a heat conduction equation demonstrate the effectiveness of the proposed strategy compared to several other methods.

  2. A new method of thermal network modeling - A nonlinear programming approach

    Science.gov (United States)

    Adachi, M.; Miyaoka, S.; Muramatsu, A.; Funabashi, M.; Nakajima, T.

    A new method for correcting thermal network model coefficients is described. This method sharply reduces discrepancies obtained by the nonlinear programming approach in the conductance coefficients and radiation coefficients for determining the heat balance of a spacecraft. The method consists of an experimental design and a nonlinear parameter identification. An experimental design for obtaining useful data for the thermal network model correction is discussed. A simulation study has shown that the standard deviation of the estimated temperature and estimation error of the parameters are reduced by 50 percent and 70 percent respectively.

  3. Dynamic Programming Approach for Exact Decision Rule Optimization

    KAUST Repository

    Amin, Talha

    2013-01-01

    This chapter is devoted to the study of an extension of dynamic programming approach that allows sequential optimization of exact decision rules relative to the length and coverage. It contains also results of experiments with decision tables from UCI Machine Learning Repository. © Springer-Verlag Berlin Heidelberg 2013.

  4. Stan: A Probabilistic Programming Language for Bayesian Inference and Optimization

    Science.gov (United States)

    Gelman, Andrew; Lee, Daniel; Guo, Jiqiang

    2015-01-01

    Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia and has great promise for fitting large and complex statistical models in many areas of application. We discuss Stan from users' and developers'…

  5. BILGO: Bilateral greedy optimization for large scale semidefinite programming

    KAUST Repository

    Hao, Zhifeng

    2013-10-03

    Many machine learning tasks (e.g. metric and manifold learning problems) can be formulated as convex semidefinite programs. To enable the application of these tasks on a large-scale, scalability and computational efficiency are considered as desirable properties for a practical semidefinite programming algorithm. In this paper, we theoretically analyze a new bilateral greedy optimization (denoted BILGO) strategy in solving general semidefinite programs on large-scale datasets. As compared to existing methods, BILGO employs a bilateral search strategy during each optimization iteration. In such an iteration, the current semidefinite matrix solution is updated as a bilateral linear combination of the previous solution and a suitable rank-1 matrix, which can be efficiently computed from the leading eigenvector of the descent direction at this iteration. By optimizing for the coefficients of the bilateral combination, BILGO reduces the cost function in every iteration until the KKT conditions are fully satisfied, thus, it tends to converge to a global optimum. In fact, we prove that BILGO converges to the global optimal solution at a rate of O(1/k), where k is the iteration counter. The algorithm thus successfully combines the efficiency of conventional rank-1 update algorithms and the effectiveness of gradient descent. Moreover, BILGO can be easily extended to handle low rank constraints. To validate the effectiveness and efficiency of BILGO, we apply it to two important machine learning tasks, namely Mahalanobis metric learning and maximum variance unfolding. Extensive experimental results clearly demonstrate that BILGO can solve large-scale semidefinite programs efficiently.

  6. Fitting aerodynamic forces in the Laplace domain: An application of a nonlinear nongradient technique to multilevel constrained optimization

    Science.gov (United States)

    Tiffany, S. H.; Adams, W. M., Jr.

    1984-01-01

    A technique which employs both linear and nonlinear methods in a multilevel optimization structure to best approximate generalized unsteady aerodynamic forces for arbitrary motion is described. Optimum selection of free parameters is made in a rational function approximation of the aerodynamic forces in the Laplace domain such that a best fit is obtained, in a least squares sense, to tabular data for purely oscillatory motion. The multilevel structure and the corresponding formulation of the objective models are presented which separate the reduction of the fit error into linear and nonlinear problems, thus enabling the use of linear methods where practical. Certain equality and inequality constraints that may be imposed are identified; a brief description of the nongradient, nonlinear optimizer which is used is given; and results which illustrate application of the method are presented.

  7. Optimization of elstomeric micro-fluidic valve dimensions using non-linear finite element methods

    Directory of Open Access Journals (Sweden)

    H Khawaja

    2016-04-01

    Full Text Available We use a nonlinear finite element (FE method model to compare,optimize and determine the limits for useful geometries of microfluidicvalves in elastomer polydimethylsiloxane (PDMS. Simulations havebeen performed with the aim of finding the optimal shape, size andlocation of pressurization that minimizes the pressure required to operatethe valve. One important constraint governing the design parameters isthat the stresses should be within elastic limits, so that the componentremains safe from any type of structural failure. To obtain reliable results,non-linear stress analysis was performed using the Mooney-Rivlin 9parameter approximation which is based on the Hyper Elastic MaterialModel. A 20 noded brick element was used for the development of FEmodel. Mesh sensitivity analysis was also performed to assess the qualityof the results. The simulations were performed with commerciallyavailable FE modeling software, developed by ANSYS Inc. to determinethe effect of varying different geometric parameters on the performanceof micro-fluidic valves.The aim of this work is to determine the geometry of the channel crosssectionthat would result in the largest deflection for the least appliedpressure, i.e. to minimize the pressure needed to operate the valve.

  8. Nonlinear dynamic analysis and optimal trajectory planning of a high-speed macro-micro manipulator

    Science.gov (United States)

    Yang, Yi-ling; Wei, Yan-ding; Lou, Jun-qiang; Fu, Lei; Zhao, Xiao-wei

    2017-09-01

    This paper reports the nonlinear dynamic modeling and the optimal trajectory planning for a flexure-based macro-micro manipulator, which is dedicated to the large-scale and high-speed tasks. In particular, a macro- micro manipulator composed of a servo motor, a rigid arm and a compliant microgripper is focused. Moreover, both flexure hinges and flexible beams are considered. By combining the pseudorigid-body-model method, the assumed mode method and the Lagrange equation, the overall dynamic model is derived. Then, the rigid-flexible-coupling characteristics are analyzed by numerical simulations. After that, the microscopic scale vibration excited by the large-scale motion is reduced through the trajectory planning approach. Especially, a fitness function regards the comprehensive excitation torque of the compliant microgripper is proposed. The reference curve and the interpolation curve using the quintic polynomial trajectories are adopted. Afterwards, an improved genetic algorithm is used to identify the optimal trajectory by minimizing the fitness function. Finally, the numerical simulations and experiments validate the feasibility and the effectiveness of the established dynamic model and the trajectory planning approach. The amplitude of the residual vibration reduces approximately 54.9%, and the settling time decreases 57.1%. Therefore, the operation efficiency and manipulation stability are significantly improved.

  9. Computer program for nonlinear static stress analysis of shuttle thermal protection system: User's manual

    Science.gov (United States)

    Giles, G. L.; Wallas, M.

    1981-01-01

    User documentation is presented for a computer program which considers the nonlinear properties of the strain isolator pad (SIP) in the static stress analysis of the shuttle thermal protection system. This program is generalized to handle an arbitrary SIP footprint including cutouts for instrumentation and filler bar. Multiple SIP surfaces are defined to model tiles in unique locations such as leading edges, intersections, and penetrations. The nonlinearity of the SIP is characterized by experimental stress displacement data for both normal and shear behavior. Stresses in the SIP are calculated using a Newton iteration procedure to determine the six rigid body displacements of the tile which develop reaction forces in the SIP to equilibrate the externally applied loads. This user documentation gives an overview of the analysis capabilities, a detailed description of required input data and an example to illustrate use of the program.

  10. Integer programming model for optimizing bus timetable using genetic algorithm

    Science.gov (United States)

    Wihartiko, F. D.; Buono, A.; Silalahi, B. P.

    2017-01-01

    Bus timetable gave an information for passengers to ensure the availability of bus services. Timetable optimal condition happened when bus trips frequency could adapt and suit with passenger demand. In the peak time, the number of bus trips would be larger than the off-peak time. If the number of bus trips were more frequent than the optimal condition, it would make a high operating cost for bus operator. Conversely, if the number of trip was less than optimal condition, it would make a bad quality service for passengers. In this paper, the bus timetabling problem would be solved by integer programming model with modified genetic algorithm. Modification was placed in the chromosomes design, initial population recovery technique, chromosomes reconstruction and chromosomes extermination on specific generation. The result of this model gave the optimal solution with accuracy 99.1%.

  11. Industrial cogeneration optimization program. Final report, September 1979

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Jerry; McWhinney, Jr., Robert T.

    1980-01-01

    This study program is part of the DOE Integrated Industry Cogeneration Program to optimize, evaluate, and demonstrate cogeneration systems, with direct participation of the industries most affected. One objective is to characterize five major energy-intensive industries with respect to their energy-use profiles. The industries are: petroleum refining and related industries, textile mill products, paper and allied products, chemicals and allied products, and food and kindred products. Another objective is to select optimum cogeneration systems for site-specific reference case plants in terms of maximum energy savings subject to given return on investment hurdle rates. Analyses were made that define the range of optimal cogeneration systems for each reference-case plant considering technology applicability, economic factors, and energy savings by type of fuel. This study also provides guidance to other parts of the program through information developed with regard to component development requirements, institutional and regulatory barriers, as well as fuel use and environmental considerations. (MCW)

  12. Memetic Algorithms to Solve a Global Nonlinear Optimization Problem. A Review

    Directory of Open Access Journals (Sweden)

    M. K. Sakharov

    2015-01-01

    Full Text Available In recent decades, evolutionary algorithms have proven themselves as the powerful optimization techniques of search engine. Their popularity is due to the fact that they are easy to implement and can be used in all areas, since they are based on the idea of universal evolution. For example, in the problems of a large number of local optima, the traditional optimization methods, usually, fail in finding the global optimum. To solve such problems using a variety of stochastic methods, in particular, the so-called population-based algorithms, which are a kind of evolutionary methods. The main disadvantage of this class of methods is their slow convergence to the exact solution in the neighborhood of the global optimum, as these methods incapable to use the local information about the landscape of the function. This often limits their use in largescale real-world problems where the computation time is a critical factor.One of the promising directions in the field of modern evolutionary computation are memetic algorithms, which can be regarded as a combination of population search of the global optimum and local procedures for verifying solutions, which gives a synergistic effect. In the context of memetic algorithms, the meme is an implementation of the local optimization method to refine solution in the search.The concept of memetic algorithms provides ample opportunities for the development of various modifications of these algorithms, which can vary the frequency of the local search, the conditions of its end, and so on. The practically significant memetic algorithm modifications involve the simultaneous use of different memes. Such algorithms are called multi-memetic.The paper gives statement of the global problem of nonlinear unconstrained optimization, describes the most promising areas of AI modifications, including hybridization and metaoptimization. The main content of the work is the classification and review of existing varieties of

  13. Optimization of Electrical Discharge Machining Characteristics of SiCp/LM25 Al Composites Using Goal Programming

    Institute of Scientific and Technical Information of China (English)

    R.Karthikeyan; S. Raju; R.S.Naagarazan; B. C. Pai

    2001-01-01

    In the present study an effort has been made to optimize the machining conditions for electric discharge machining of LM25 Al (7 Si, 0.33 Mg, 0.3 Mn, 0.5 Fe, 0.1 Cu, 0.1 Ni,.2 Ti) reinforced with green bonded SiC particles with approximate size of 25 μm. Polynomial models were developed for the various EDM characteristics such as metal removal rate, tool wear rate and surface roughness in terms of the process parameters such as volume fraction of SiC, current and pulse time. The models were used to optimize the EDM characteristics using nonlinear goal programming.

  14. A study of the use of linear programming techniques to improve the performance in design optimization problems

    Science.gov (United States)

    Young, Katherine C.; Sobieszczanski-Sobieski, Jaroslaw

    1988-01-01

    This project has two objectives. The first is to determine whether linear programming techniques can improve performance when handling design optimization problems with a large number of design variables and constraints relative to the feasible directions algorithm. The second purpose is to determine whether using the Kreisselmeier-Steinhauser (KS) function to replace the constraints with one constraint will reduce the cost of total optimization. Comparisons are made using solutions obtained with linear and non-linear methods. The results indicate that there is no cost saving using the linear method or in using the KS function to replace constraints.

  15. Energy-optimal programming and scheduling of the manufacturing operations

    Science.gov (United States)

    Badea, N.; Frumuşanu, G.; Epureanu, A.

    2016-08-01

    The shop floor energy system covers the energy consumed for both the air conditioning and manufacturing processes. At the same time, most of energy consumed in manufacturing processes is converted in heat released in the shop floor interior and has a significant influence on the microclimate. Both these components of the energy consumption have a time variation that can be realistic assessed. Moreover, the consumed energy decisively determines the environmental sustainability of the manufacturing operation, while the expenditure for running the shop floor energy system is a significant component of the manufacturing operations cost. Finally yet importantly, the energy consumption can be fundamentally influenced by properly programming and scheduling of the manufacturing operations. In this paper, we present a method for modeling and energy-optimal programming & scheduling the manufacturing operations. In this purpose, we have firstly identified two optimization targets, namely the environmental sustainability and the economic efficiency. Then, we have defined three optimization criteria, which can assess the degree of achieving these targets. Finally, we have modeled the relationship between the optimization criteria and the parameters of programming and scheduling. In this way, it has been revealed that by adjusting these parameters one can significantly improve the sustainability and efficiency of manufacturing operations. A numerical simulation has proved the feasibility and the efficiency of the proposed method.

  16. A non-linear branch and cut method for solving discrete minimum compliance problems to global optimality

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Bendsøe, Martin P.

    2007-01-01

    This paper present some initial results pertaining to a search for globally optimal solutions to a challenging benchmark example proposed by Zhou and Rozvany. This means that we are dealing with global optimization of the classical single load minimum compliance topology design problem with a fixed...... finite element discretization and with discrete design variables. Global optimality is achieved by the implementation of some specially constructed convergent nonlinear branch and cut methods, based on the use of natural relaxations and by applying strengthening constraints (linear valid inequalities...

  17. The near optimality of the stabilizing control in a weakly nonlinear system with state-dependent coefficients

    Science.gov (United States)

    Dmitriev, Mikhail G.; Makarov, Dmitry A.

    2016-08-01

    We carried out analysis of near optimality of one computationally effective nonlinear stabilizing control built for weakly nonlinear systems with coefficients depending on the state and the formal small parameter. First investigation of that problem was made in [M. G. Dmitriev, and D. A. Makarov, "The suboptimality of stabilizing regulator in a quasi-linear system with state-depended coefficients," in 2016 International Siberian Conference on Control and Communications (SIBCON) Proceedings, National Research University, Moscow, 2016]. In this paper, another optimal control and gain matrix representations were used and theoretical results analogous to cited work above were obtained. Also as in the cited work above the form of quality criterion on which this close-loop control is optimal was constructed.

  18. Optimization-Based Drift Prevention for Learning Control of Underdetermined Linear and Weakly Nonlinear Time-Varying Systems

    Energy Technology Data Exchange (ETDEWEB)

    DRIESSEN,BRIAN JAMES; SADEGH,NADER; KWOK,KWAN S.

    2000-10-20

    In this paper an optimization-based method of drift prevention is presented for learning control of underdetermined linear and weakly nonlinear time-varying dynamic systems. By defining a fictitious cost function and the associated model-based sub-optimality conditions, a new set of equations results, whose solution is unique, thus preventing large drifts from the initial input. Moreover, in the limiting case where the modeling error approaches zero, the input that the proposed method converges to is the unique feasible (zero error) input that minimizes the fictitious cost function, in the linear case, and locally minimizes it in the (weakly) nonlinear case. Otherwise, under mild restrictions on the modeling error, the method converges to a feasible sub-optimal input.

  19. Application of Linear and Non-linear Programming Model to Assess the Sustainability of Water Resources in Agricultural Patterns

    Directory of Open Access Journals (Sweden)

    Seyed Abolghasem Mortazavi

    2014-03-01

    Full Text Available Water resources sustainability is one of the major issues in the agricultural sustainability. In this study sustainability of water resources has been investigated by use of linear and non-linear models in six models based on optimal utilization of water resources in the north parts farms of Iran because of incorrect use of agricultural water resources, from 2011 to 2012. Also “gross margin per a unit of water consumption” and “employment per a unit of water consumption” are used as indicators for assessing the sustainability of cropping patterns. The results show that cropping pattern of fractional goal programming (FGP model has been near to current situation and has shown realistic conditions according to expertise and advantage of this area in cultivation of certain crops. So the FGP model has desirability in each of indicators than other five models.

  20. Optimized Parallel Execution of Declarative Programs on Distributed Memory Multiprocessors

    Institute of Scientific and Technical Information of China (English)

    沈美明; 田新民; 等

    1993-01-01

    In this paper,we focus on the compiling implementation of parlalel logic language PARLOG and functional language ML on distributed memory multiprocessors.Under the graph rewriting framework, a Heterogeneous Parallel Graph Rewriting Execution Model(HPGREM)is presented firstly.Then based on HPGREM,a parallel abstact machine PAM/TGR is described.Furthermore,several optimizing compilation schemes for executing declarative programs on transputer array are proposed.The performance statistics on transputer array demonstrate the effectiveness of our model,parallel abstract machine,optimizing compilation strategies and compiler.