Soil-structure interaction including nonlinear soil
Gicev, Vlado
2008-01-01
There are two types of models of soil-structure system depending upon the rigidity of foundation: models with rigid and models with flexible foundation. Main features of the soil-structure interaction phenomenon: -wave scattering, -radiation damping, -reduction of the system frequencies. In this presentation, the influence of interaction on the development of nonlinear zones in the soil is studied.
CMOS Nonlinear Signal Processing Circuits
2010-01-01
The chapter describes various nonlinear signal processing CMOS circuits, including a high reliable WTA/LTA, simple MED cell, and low-voltage arbitrary order extractor. We focus the discussion on CMOS analog circuit design with reliable, programmable capability, and low voltage operation. It is a practical problem when the multiple identical cells are required to match and realized within a single chip using a conventional process. Thus, the design of high-reliable circuit is indeed needed. Th...
Nonlinear Progressive Collapse Analysis Including Distributed Plasticity
Mohamed Osama Ahmed; Imam Zubair Syed; Khattab Rania
2016-01-01
This paper demonstrates the effect of incorporating distributed plasticity in nonlinear analytical models used to assess the potential for progressive collapse of steel framed regular building structures. Emphasis on this paper is on the deformation response under the notionally removed column, in a typical Alternate Path (AP) method. The AP method employed in this paper is based on the provisions of the Unified Facilities Criteria – Design of Buildings to Resist Progressive Collapse, develop...
Nonlinear Progressive Collapse Analysis Including Distributed Plasticity
Directory of Open Access Journals (Sweden)
Mohamed Osama Ahmed
2016-01-01
Full Text Available This paper demonstrates the effect of incorporating distributed plasticity in nonlinear analytical models used to assess the potential for progressive collapse of steel framed regular building structures. Emphasis on this paper is on the deformation response under the notionally removed column, in a typical Alternate Path (AP method. The AP method employed in this paper is based on the provisions of the Unified Facilities Criteria – Design of Buildings to Resist Progressive Collapse, developed and updated by the U.S. Department of Defense [1]. The AP method is often used for to assess the potential for progressive collapse of building structures that fall under Occupancy Category III or IV. A case study steel building is used to examine the effect of incorporating distributed plasticity, where moment frames were used on perimeter as well as the interior of the three dimensional structural system. It is concluded that the use of moment resisting frames within the structural system will enhance resistance to progressive collapse through ductile deformation response and that it is conserative to ignore the effects of distributed plasticity in determining peak displacement response under the notionally removed column.
The maximal process of nonlinear shot noise
Eliazar, Iddo; Klafter, Joseph
2009-05-01
In the nonlinear shot noise system-model shots’ statistics are governed by general Poisson processes, and shots’ decay-dynamics are governed by general nonlinear differential equations. In this research we consider a nonlinear shot noise system and explore the process tracking, along time, the system’s maximal shot magnitude. This ‘maximal process’ is a stationary Markov process following a decay-surge evolution; it is highly robust, and it is capable of displaying both a wide spectrum of statistical behaviors and a rich variety of random decay-surge sample-path trajectories. A comprehensive analysis of the maximal process is conducted, including its Markovian structure, its decay-surge structure, and its correlation structure. All results are obtained analytically and in closed-form.
Quantum Information Processing using Nonlinear Optical Effects
DEFF Research Database (Denmark)
Andersen, Lasse Mejling
of the converted idler depends on the other pump. This allows for temporal-mode-multiplexing. When the effects of nonlinear phase modulation (NPM) are included, the phases of the natural input and output modes are changed, reducing the separability. These effects are to some degree mediated by pre......This PhD thesis treats applications of nonlinear optical effects for quantum information processing. The two main applications are four-wave mixing in the form of Bragg scattering (BS) for quantum-state-preserving frequency conversion, and sum-frequency generation (SFG) in second-order nonlinear...... to obtain a 100 % conversion efficiency is to use multiple stages of frequency conversion, but this setup suffers from the combined effects of NPM. This problem is circumvented by using asymmetrically pumped BS, where one pump is continuous wave. For this setup, NPM is found to only lead to linear phase...
Nonlinear filtering for LIDAR signal processing
Directory of Open Access Journals (Sweden)
D. G. Lainiotis
1996-01-01
Full Text Available LIDAR (Laser Integrated Radar is an engineering problem of great practical importance in environmental monitoring sciences. Signal processing for LIDAR applications involves highly nonlinear models and consequently nonlinear filtering. Optimal nonlinear filters, however, are practically unrealizable. In this paper, the Lainiotis's multi-model partitioning methodology and the related approximate but effective nonlinear filtering algorithms are reviewed and applied to LIDAR signal processing. Extensive simulation and performance evaluation of the multi-model partitioning approach and its application to LIDAR signal processing shows that the nonlinear partitioning methods are very effective and significantly superior to the nonlinear extended Kalman filter (EKF, which has been the standard nonlinear filter in past engineering applications.
Multiorder nonlinear diffraction in frequency doubling processes
DEFF Research Database (Denmark)
Saltiel, Solomon M.; Neshev, Dragomir N.; Krolikowski, Wieslaw
2009-01-01
We analyze experimentally light scattering from 2 nonlinear gratings and observe two types of second-harmonic frequency-scattering processes. The first process is identified as Raman–Nath type nonlinear diffraction that is explained by applying only transverse phase-matching conditions. The angular...... position of this type of diffraction is defined by the ratio of the second-harmonic wavelength and the grating period. In contrast, the second type of nonlinear scattering process is explained by the longitudinal phase matching only, being insensitive to the nonlinear grating...
Digital signal processing for fiber nonlinearities [Invited
DEFF Research Database (Denmark)
Cartledge, John C.; Guiomar, Fernando P.; Kschischang, Frank R.
2017-01-01
This paper reviews digital signal processing techniques that compensate, mitigate, and exploit fiber nonlinearities in coherent optical fiber transmission systems......This paper reviews digital signal processing techniques that compensate, mitigate, and exploit fiber nonlinearities in coherent optical fiber transmission systems...
Improved Z-scan adjustment to thermal nonlinearities by including nonlinear absorption
Severiano-Carrillo, I.; Alvarado-Méndez, E.; Trejo-Durán, M.; Méndez-Otero, M. M.
2017-08-01
We propose a modified mathematical model of thermal optical nonlinearities which allow us to obtain the nonlinear refraction index and the nonlinear absorption coefficient with only one measurement. This modification is motivated by the influence that nonlinear absorption has on the measurement of the nonlinear refraction index at far field, when the material presents a large nonlinearity. This model, where nonlinear absorption is considered to adjust the curves of nonlinear refraction index obtained by Z-scan technique, has the best agreement with experimental data. The model is validated with two ionic liquids and the organic material Eysenhardtia polystachya, in thin media. We present these results after comparing our proposed model to other reported models.
Input saturation in nonlinear multivariable processes resolved by nonlinear decoupling
Directory of Open Access Journals (Sweden)
Jens G. Balchen
1995-04-01
Full Text Available A new method is presented for the resolution of the problem of input saturation in nonlinear multivariable process control by means of elementary nonlinear decoupling (END. Input saturation can have serious consequences particularly in multivariable control because it may lead to very undesirable system behaviour and quite often system instability. Many authors have searched for systematic techniques for designing multivariable control systems in which saturation may occur in any of the control variables (inputs, manipulated variables. No generally accepted method seems to have been presented so far which gives a solution in closed form. The method of elementary nonlinear decoupling (END can be applied directly to the case of saturation control variables by deriving as many control strategies as there are combinations of saturating control variables. The method is demonstrated by the multivariable control of a simulated Fluidized Catalytic Cracker (FCC with very convincing results.
Nonlinear gauge realization of spacetime symmetries including translations
Julve, J; Tiemblo, A; Tresguerres, R; Julve, J; Tiemblo, A; Tresguerres, R
1994-01-01
We present a general scheme for the nonlinear gauge realizations of spacetime groups on coset spaces of the groups considered. In order to show the relevance of the method for the rigorous treatment of the translations in gravitational gauge theories, we apply it in particular to the affine group. This is an illustration of the family of spacetime symmetries having the form of a semidirect product H\\semidirect T, where H is the stability subgroup and T are the translations . The translational component of the connection behaves like a true tensor under H when coset realizations are involved.
Sensor Network Design for Nonlinear Processes
Institute of Scientific and Technical Information of China (English)
李博; 陈丙珍
2003-01-01
This paper presents a method to design a cost-optimal nonredundant sensor network to observe all variables in a general nonlinear process. A mixed integer linear programming model was used to minimize the cost with data classification to check the observability of all unmeasured variables. This work is a starting point for designing sensor networks for general nonlinear processes based on various criteria, such as reliability and accuracy.
Central Limit Theorem for Nonlinear Hawkes Processes
Zhu, Lingjiong
2012-01-01
Hawkes process is a self-exciting point process with clustering effect whose jump rate depends on its entire past history. It has wide applications in neuroscience, finance and many other fields. Linear Hawkes process has an immigration-birth representation and can be computed more or less explicitly. It has been extensively studied in the past and the limit theorems are well understood. On the contrary, nonlinear Hawkes process lacks the immigration-birth representation and is much harder to analyze. In this paper, we obtain a functional central limit theorem for nonlinear Hawkes process.
DEFF Research Database (Denmark)
Palleti, Hara Naga Krishna Teja; Thomsen, Ole Thybo; Taher, Siavash Talebi;
In this paper, polymer foam cored sandwich structures with fibre reinforced composite face sheets subjected to combined mechanical and thermal loads will be analysed using the commercial FE code ABAQUS® incorporating both material and geometrical nonlinearity. Large displacements and rotations ar...... are included in the analysis. The full nonlinear stress-strain curves up to failure will be considered for the polymer foams at different temperatures to study the effect of material nonlinearity in detail....
Broadband Nonlinear Signal Processing in Silicon Nanowires
DEFF Research Database (Denmark)
Yvind, Kresten; Pu, Minhao; Hvam, Jørn Märcher;
The fast non-linearity of silicon allows Tbit/s optical signal processing. By choosing suitable dimensions of silicon nanowires their dispersion can be tailored to ensure a high nonlinearity at power levels low enough to avoid significant two-photon abso We have fabricated low insertion and propa......The fast non-linearity of silicon allows Tbit/s optical signal processing. By choosing suitable dimensions of silicon nanowires their dispersion can be tailored to ensure a high nonlinearity at power levels low enough to avoid significant two-photon abso We have fabricated low insertion...... and propagation loss silicon nanowires and use them to demonstrate the broadband capabilities of silicon....
A comparison of nonlinear media for parametric all-optical signal processing
DEFF Research Database (Denmark)
Martinez Diaz, Jordi; Bohigas Nadal, Jaume; Vukovic, Dragana;
2013-01-01
We systematically compare nonlinear media for parametric signal processing by determining the minimum pump power that is required for a given conversion efficiency in a degenerate four-wave mixing process, including the effect of nonlinear loss....
Ultrafast Nonlinear Signal Processing in Silicon Waveguides
DEFF Research Database (Denmark)
Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen; Hu, Hao;
2012-01-01
We describe recent demonstrations of exploiting highly nonlinear silicon waveguides for ultrafast optical signal processing. We describe wavelength conversion and serial-to-parallel conversion of 640 Gbit/s data signals and 1.28 Tbit/s demultiplexing and all-optical sampling.......We describe recent demonstrations of exploiting highly nonlinear silicon waveguides for ultrafast optical signal processing. We describe wavelength conversion and serial-to-parallel conversion of 640 Gbit/s data signals and 1.28 Tbit/s demultiplexing and all-optical sampling....
Caffarelli, Luis; Nirenberg, Louis
2011-01-01
The paper concerns singular solutions of nonlinear elliptic equations, which include removable singularities for viscosity solutions, a strengthening of the Hopf Lemma including parabolic equations, Strong maximum principle and Hopf Lemma for viscosity solutions including also parabolic equations.
Institute of Scientific and Technical Information of China (English)
何雪松; 王旭永; 冯正进; 章志新; 杨钦廉
2003-01-01
A nonlinear mathematical model of the injection molding process for electrohydraulic servo injection molding machine (IMM) is developed.It was found necessary to consider the characteristics of asymmetric cylinder for electrohydraulic servo IMM.The model is based on the dynamics of the machine including servo valve,asymmetric cylinder and screw,and the non-Newtonian flow behavior of polymer melt in injection molding is also considered.The performance of the model was evaluated based on novel approach of molding - injection and compress molding,and the results of simulation and experimental data demonstrate the effectiveness of the model.
Recent advances in nonlinear speech processing
Faundez-Zanuy, Marcos; Esposito, Antonietta; Cordasco, Gennaro; Drugman, Thomas; Solé-Casals, Jordi; Morabito, Francesco
2016-01-01
This book presents recent advances in nonlinear speech processing beyond nonlinear techniques. It shows that it exploits heuristic and psychological models of human interaction in order to succeed in the implementations of socially believable VUIs and applications for human health and psychological support. The book takes into account the multifunctional role of speech and what is “outside of the box” (see Björn Schuller’s foreword). To this aim, the book is organized in 6 sections, each collecting a small number of short chapters reporting advances “inside” and “outside” themes related to nonlinear speech research. The themes emphasize theoretical and practical issues for modelling socially believable speech interfaces, ranging from efforts to capture the nature of sound changes in linguistic contexts and the timing nature of speech; labors to identify and detect speech features that help in the diagnosis of psychological and neuronal disease, attempts to improve the effectiveness and performa...
Subrahmanyam, K. B.; Kaza, K. R. V.; Brown, G. V.; Lawrence, C.
1987-01-01
The coupled bending-bending-torsional equations of dynamic motion of rotating, linearly pretwisted blades are derived including large precone, second degree geometric nonlinearities and Coriolis effects. The equations are solved by the Galerkin method and a linear perturbation technique. Accuracy of the present method is verified by conparisons of predicted frequencies and steady state deflections with those from MSC/NASTRAN and from experiments. Parametric results are generated to establish where inclusion of only the second degree geometric nonlinearities is adequate. The nonlinear terms causing torsional divergence in thin blades are identified. The effects of Coriolis terms and several other structurally nonlinear terms are studied, and their relative importance is examined.
Subrahmanyam, K. B.; Kaza, K. R. V.; Brown, G. V.; Lawrence, C.
1986-01-01
The coupled bending-bending-torsional equations of dynamic motion of rotating, linearly pretwisted blades are derived including large precone, second degree geometric nonlinearities and Coriolis effects. The equations are solved by the Galerkin method and a linear perturbation technique. Accuracy of the present method is verified by comparisons of predicted frequencies and steady state deflections with those from MSC/NASTRAN and from experiments. Parametric results are generated to establish where inclusion of only the second degree geometric nonlinearities is adequate. The nonlinear terms causing torsional divergence in thin blades are identified. The effects of Coriolis terms and several other structurally nonlinear terms are studied, and their relative importance is examined.
Nonlinear Acoustics FDTD method including Frequency Power Law Attenuation for Soft Tissue Modeling
Jiménez, Noé; Sánchez-Morcillo, Víctor; Camarena, Francisco; Hou, Yi; Konofagou, Elisa E
2014-01-01
This paper describes a model for nonlinear acoustic wave propagation through absorbing and weakly dispersive media, and its numerical solution by means of finite differences in time domain method (FDTD). The attenuation is based on multiple relaxation processes, and provides frequency dependent absorption and dispersion without using computational expensive convolutional operators. In this way, by using an optimization algorithm the coefficients for the relaxation processes can be obtained in order to fit a frequency power law that agrees the experimentally measured attenuation data for heterogeneous media over the typical frequency range for ultrasound medical applications. Our results show that two relaxation processes are enough to fit attenuation data for most soft tissues in this frequency range including the fundamental and the first ten harmonics. Furthermore, this model can fit experimental attenuation data that do not follow exactly a frequency power law over the frequency range of interest. The main...
Internal Decoupling in Nonlinear Process Control
Directory of Open Access Journals (Sweden)
Jens G. Balchen
1988-07-01
Full Text Available A simple method has been investigated for the total or partial removal of the effect of non-linear process phenomena in multi-variable feedback control systems. The method is based upon computing the control variables which will drive the process at desired rates. It is shown that the effect of model errors in the linearization of the process can be partly removed through the use of large feedback gains. In practice there will be limits on how large gains can he used. The sensitivity to parameter errors is less pronounced and the transient behaviour is superior to that of ordinary PI controllers.
HETC-3STEP included fragmentation process
Energy Technology Data Exchange (ETDEWEB)
Shigyo, Nobuhiro; Iga, Kiminori; Ishibashi, Kenji [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering
1997-03-01
High Energy Transport Code (HETC) based on the cascade-evaporation model is modified to calculate the fragmentation cross section. For the cascade process, nucleon-nucleon cross sections are used for collision computation; effective in-medium-corrected cross sections are adopted instead of the original free-nucleon collision. The exciton model is adopted for improvement of backward nucleon-emission cross section for low-energy nucleon-incident events. The fragmentation reaction is incorporated into the original HETC as a subroutine set by the use of the systematics of the reaction. The modified HETC (HETC-3STEP/FRG) reproduces experimental fragment yields to a reasonable degree. (author)
Institute of Scientific and Technical Information of China (English)
郭金运; 陶华学
2003-01-01
In order to process different kinds of observing data with different precisions, a new solution model of nonlinear dynamic integral least squares adjustment was put forward, which is not dependent on their derivatives. The partial derivative of each component in the target function is not computed while iteratively solving the problem. Especially when the nonlinear target function is more complex and very difficult to solve the problem, the method can greatly reduce the computing load.
Processing Approach of Non-linear Adjustment Models in the Space of Non-linear Models
Institute of Scientific and Technical Information of China (English)
LI Chaokui; ZHU Qing; SONG Chengfang
2003-01-01
This paper investigates the mathematic features of non-linear models and discusses the processing way of non-linear factors which contributes to the non-linearity of a nonlinear model. On the basis of the error definition, this paper puts forward a new adjustment criterion, SGPE.Last, this paper investigates the solution of a non-linear regression model in the non-linear model space and makes the comparison between the estimated values in non-linear model space and those in linear model space.
Nonlinearly perturbed semi-Markov processes
Silvestrov, Dmitrii
2017-01-01
The book presents new methods of asymptotic analysis for nonlinearly perturbed semi-Markov processes with a finite phase space. These methods are based on special time-space screening procedures for sequential phase space reduction of semi-Markov processes combined with the systematical use of operational calculus for Laurent asymptotic expansions. Effective recurrent algorithms are composed for getting asymptotic expansions, without and with explicit upper bounds for remainders, for power moments of hitting times, stationary and conditional quasi-stationary distributions for nonlinearly perturbed semi-Markov processes. These results are illustrated by asymptotic expansions for birth-death-type semi-Markov processes, which play an important role in various applications. The book will be a useful contribution to the continuing intensive studies in the area. It is an essential reference for theoretical and applied researchers in the field of stochastic processes and their applications that will cont...
Extending Newtonian Dynamics to Include Stochastic Processes
Zak, Michail
2009-01-01
A paper presents further results of continuing research reported in several previous NASA Tech Briefs articles, the two most recent being Stochastic Representations of Chaos Using Terminal Attractors (NPO-41519), [Vol. 30, No. 5 (May 2006), page 57] and Physical Principle for Generation of Randomness (NPO-43822) [Vol. 33, No. 5 (May 2009), page 56]. This research focuses upon a mathematical formalism for describing post-instability motions of a dynamical system characterized by exponential divergences of trajectories leading to chaos (including turbulence as a form of chaos). The formalism involves fictitious control forces that couple the equations of motion of the system with a Liouville equation that describes the evolution of the probability density of errors in initial conditions. These stabilizing forces create a powerful terminal attractor in probability space that corresponds to occurrence of a target trajectory with probability one. The effect in configuration space (ordinary three-dimensional space as commonly perceived) is to suppress exponential divergences of neighboring trajectories without affecting the target trajectory. As a result, the post-instability motion is represented by a set of functions describing the evolution of such statistical quantities as expectations and higher moments, and this representation is stable.
Nonlinear Process Fault Diagnosis Based on Serial Principal Component Analysis.
Deng, Xiaogang; Tian, Xuemin; Chen, Sheng; Harris, Chris J
2016-12-22
Many industrial processes contain both linear and nonlinear parts, and kernel principal component analysis (KPCA), widely used in nonlinear process monitoring, may not offer the most effective means for dealing with these nonlinear processes. This paper proposes a new hybrid linear-nonlinear statistical modeling approach for nonlinear process monitoring by closely integrating linear principal component analysis (PCA) and nonlinear KPCA using a serial model structure, which we refer to as serial PCA (SPCA). Specifically, PCA is first applied to extract PCs as linear features, and to decompose the data into the PC subspace and residual subspace (RS). Then, KPCA is performed in the RS to extract the nonlinear PCs as nonlinear features. Two monitoring statistics are constructed for fault detection, based on both the linear and nonlinear features extracted by the proposed SPCA. To effectively perform fault identification after a fault is detected, an SPCA similarity factor method is built for fault recognition, which fuses both the linear and nonlinear features. Unlike PCA and KPCA, the proposed method takes into account both linear and nonlinear PCs simultaneously, and therefore, it can better exploit the underlying process's structure to enhance fault diagnosis performance. Two case studies involving a simulated nonlinear process and the benchmark Tennessee Eastman process demonstrate that the proposed SPCA approach is more effective than the existing state-of-the-art approach based on KPCA alone, in terms of nonlinear process fault detection and identification.
Subrahmanyam, K. B.; Kaza, K. R. V.
1985-01-01
The effects of pretwist, precone, setting angle, Coriolis forces and second degree geometric nonlinearities on the natural frequencies, steady state deflections and mode shapes of rotating, torsionally rigid, cantilevered beams were studied. The governing coupled equations of flap lag extensional motion are derived including the effects of large precone and retaining geometric nonlinearities up to second degree. The Galerkin method, with nonrotating normal modes, is used for the solution of both steady state nonlinear equations and linear perturbation equations. Parametric indicating the individual and collective effects of pretwist, precone, Coriolis forces and second degree geometric nonlinearities on the steady state deflection, natural frequencies and mode shapes of rotating blades are presented. It is indicated that the second degree geometric nonlinear terms, which vanish for zero precone, can produce frequency changes of engineering significance. Further confirmation of the validity of including those generated by MSC NASTRAN. It is indicated that the linear and nonlinear Coriolis effects must be included in analyzing thick blades. The Coriolis effects are significant on the first flatwise and the first edgewise modes.
Bubble nonlinear dynamics and stimulated scattering process
Jie, Shi; De-Sen, Yang; Sheng-Guo, Shi; Bo, Hu; Hao-Yang, Zhang; Shi-Yong, Hu
2016-02-01
A complete understanding of the bubble dynamics is deemed necessary in order to achieve their full potential applications in industry and medicine. For this purpose it is first needed to expand our knowledge of a single bubble behavior under different possible conditions including the frequency and pressure variations of the sound field. In addition, stimulated scattering of sound on a bubble is a special effect in sound field, and its characteristics are associated with bubble oscillation mode. A bubble in liquid can be considered as a representative example of nonlinear dynamical system theory with its resonance, and its dynamics characteristics can be described by the Keller-Miksis equation. The nonlinear dynamics of an acoustically excited gas bubble in water is investigated by using theoretical and numerical analysis methods. Our results show its strongly nonlinear behavior with respect to the pressure amplitude and excitation frequency as the control parameters, and give an intuitive insight into stimulated sound scattering on a bubble. It is seen that the stimulated sound scattering is different from common dynamical behaviors, such as bifurcation and chaos, which is the result of the nonlinear resonance of a bubble under the excitation of a high amplitude acoustic sound wave essentially. The numerical analysis results show that the threshold of stimulated sound scattering is smaller than those of bifurcation and chaos in the common condition. Project supported by the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1228) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11204050 and 11204049).
NONLINEAR DYNAMICS OF LATERAL MICRO-RESONATOR INCLUDING VISCOUS AIR DAMPING
Institute of Scientific and Technical Information of China (English)
GAO Rong; WANG Xiaojing; WANG Min; YU Maohua; XIE Mingchun
2007-01-01
The nonlinear dynamics of the lateral micro-resonator including the air damping effect is researched. The air damping force is varied periodically during the resonator oscillating, and the air damp coefficient can not be fixed as a constant. Therefore the linear dynamic analysis which used the constant air damping coefficient can not describe the actual dynamic characteristics of the micro-resonator. The nonlinear dynamic model including the air damping force is established. On the base of Navier-Stokes equation and nonlinear dynamical equation, a coupled fluid-solid numerical simulation method is developed and demonstrates that damping force is a vital factor in micro-comb structures. Compared with existing experimental result, the nonlinear numerical value has quite good agreement with it. The differences of the amplitudes (peak) between the experimental data and the results by the linear model and the nonlinear model are 74.5% and 6% respectively. Nonlinear numerical value is more exact than linear value and the method can be applied in other micro-electro-mechanical systeme (MEMS) structures to simulate the dynamic performance.
NONLINEAR MODEL PREDICTIVE CONTROL OF CHEMICAL PROCESSES
Directory of Open Access Journals (Sweden)
R. G. SILVA
1999-03-01
Full Text Available A new algorithm for model predictive control is presented. The algorithm utilizes a simultaneous solution and optimization strategy to solve the model's differential equations. The equations are discretized by equidistant collocation, and along with the algebraic model equations are included as constraints in a nonlinear programming (NLP problem. This algorithm is compared with the algorithm that uses orthogonal collocation on finite elements. The equidistant collocation algorithm results in simpler equations, providing a decrease in computation time for the control moves. Simulation results are presented and show a satisfactory performance of this algorithm.
Nonlinear Markov Control Processes and Games
2012-11-15
further research we indicated possible extensions to state spaces with nontrivial geometry, to the controlled nonlinear quantum dynamic semigroups and...space nonlinear Markov semigroup is a one-parameter semigroup of (possibly nonlinear) transformations of the unit simplex in n-dimensional Euclidean...certain mixing property of nonlinear transition probabilities. In case of the semigroup parametrized by continuous time one defines its generator as the
Non-linear simulations of ELMs in ASDEX Upgrade including diamagnetic drift effects
Energy Technology Data Exchange (ETDEWEB)
Lessig, Alexander; Hoelzl, Matthias; Krebs, Isabel; Franck, Emmanuel; Guenter, Sibylle [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, 85748 Garching (Germany); Orain, Francois; Morales, Jorge; Becoulet, Marina [CEA-IRFM, Cadarache, 13108 Saint-Paul-Lez-Durance (France); Huysmans, Guido [ITER Organization, 13067 Saint-Paul-Lez-Durance (France)
2015-05-01
Large edge localized modes (ELMs) are a severe concern for ITER due to high transient heat loads on divertor targets and wall structures. Using the non-linear MHD code JOREK, we have performed ELM simulations for ASDEX Upgrade (AUG) including diamagnetic drift effects. The influence of diamagnetic terms onto the evolution of the toroidal mode spectrum for different AUG equilibria and the non-linear interaction of the toroidal harmonics are investigated. In particular, we confirm the diamagnetic stabilization of high mode numbers and present new features of a previously introduced quadratic mode coupling model for the early non-linear evolution of the mode structure. Preliminary comparisons of full ELM crashes with experimental observations are shown aiming at code validation and the understanding of different ELM types. Work is ongoing to include toroidal and neoclassical poloidal rotation in our simulations.
Nonlinear biochemical signal processing via noise propagation.
Kim, Kyung Hyuk; Qian, Hong; Sauro, Herbert M
2013-10-14
Single-cell studies often show significant phenotypic variability due to the stochastic nature of intra-cellular biochemical reactions. When the numbers of molecules, e.g., transcription factors and regulatory enzymes, are in low abundance, fluctuations in biochemical activities become significant and such "noise" can propagate through regulatory cascades in terms of biochemical reaction networks. Here we develop an intuitive, yet fully quantitative method for analyzing how noise affects cellular phenotypes based on identifying a system's nonlinearities and noise propagations. We observe that such noise can simultaneously enhance sensitivities in one behavioral region while reducing sensitivities in another. Employing this novel phenomenon we designed three biochemical signal processing modules: (a) A gene regulatory network that acts as a concentration detector with both enhanced amplitude and sensitivity. (b) A non-cooperative positive feedback system, with a graded dose-response in the deterministic case, that serves as a bistable switch due to noise-induced ultra-sensitivity. (c) A noise-induced linear amplifier for gene regulation that requires no feedback. The methods developed in the present work allow one to understand and engineer nonlinear biochemical signal processors based on fluctuation-induced phenotypes.
A non-linear model of economic production processes
Ponzi, A.; Yasutomi, A.; Kaneko, K.
2003-06-01
We present a new two phase model of economic production processes which is a non-linear dynamical version of von Neumann's neoclassical model of production, including a market price-setting phase as well as a production phase. The rate of an economic production process is observed, for the first time, to depend on the minimum of its input supplies. This creates highly non-linear supply and demand dynamics. By numerical simulation, production networks are shown to become unstable when the ratio of different products to total processes increases. This provides some insight into observed stability of competitive capitalist economies in comparison to monopolistic economies. Capitalist economies are also shown to have low unemployment.
DEFF Research Database (Denmark)
Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich
2010-01-01
A wave equation, that governs finite amplitude acoustic disturbances in a thermoviscous Newtonian fluid, and includes nonlinear terms up to second order, is proposed. The equation preserves the Hamiltonian structure of the fundamental fluid dynamical equations in the non dissipative limit. An exact...
Recombination Processes and Nonlinear Markov Chains.
Pirogov, Sergey; Rybko, Alexander; Kalinina, Anastasia; Gelfand, Mikhail
2016-09-01
Bacteria are known to exchange genetic information by horizontal gene transfer. Since the frequency of homologous recombination depends on the similarity between the recombining segments, several studies examined whether this could lead to the emergence of subspecies. Most of them simulated fixed-size Wright-Fisher populations, in which the genetic drift should be taken into account. Here, we use nonlinear Markov processes to describe a bacterial population evolving under mutation and recombination. We consider a population structure as a probability measure on the space of genomes. This approach implies the infinite population size limit, and thus, the genetic drift is not assumed. We prove that under these conditions, the emergence of subspecies is impossible.
High-speed signal processing using highly nonlinear optical fibres
DEFF Research Database (Denmark)
Peucheret, Christophe; Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen
2009-01-01
relying on the phase of the optical field. Topics covered include all-optical switching of 640 Gbit/s and 1.28 Tbit/s serial data, wavelength conversion at 640 Gbit/s, optical amplitude regeneration of differential phase shift keying (DPSK) signals, as well as midspan spectral inversion for differential 8......We review recent progress in all-optical signal processing techniques making use of conventional silica-based highly nonlinear fibres. In particular, we focus on recent demonstrations of ultra-fast processing at 640 Gbit/s and above, as well as on signal processing of novel modulation formats...
Global satisfactory control for nonlinear integrator processes with long delay
Institute of Scientific and Technical Information of China (English)
Yiqun YANG; Guobo XIANG
2007-01-01
Integrator processes with long delay are difficult to control. Nonlinear characteristics of actuators make the control problem more challenging. A technique is proposed in this paper for global satisfactory control (GSC) of such processes with relay-type nonlinearity. An oscillatory control signal is injected into the nonlinear process; the amplitude and frequency of the oscillatory signal are designed to linearise the nonlinear process in the sense of harmonic analysis; and a state feedback controller is configured to implement GSC over the linearised process. An illustrative example is given to demonstrate the effectiveness of the proposed method.
Preface "Nonlinear processes in oceanic and atmospheric flows"
Directory of Open Access Journals (Sweden)
E. García-Ladona
2010-05-01
Full Text Available Nonlinear phenomena are essential ingredients in many oceanic and atmospheric processes, and successful understanding of them benefits from multidisciplinary collaboration between oceanographers, meteorologists, physicists and mathematicians. The present Special Issue on "Nonlinear Processes in Oceanic and Atmospheric Flows" contains selected contributions from attendants to the workshop which, in the above spirit, was held in Castro Urdiales, Spain, in July 2008. Here we summarize the Special Issue contributions, which include papers on the characterization of ocean transport in the Lagrangian and in the Eulerian frameworks, generation and variability of jets and waves, interactions of fluid flow with plankton dynamics or heavy drops, scaling in meteorological fields, and statistical properties of El Niño Southern Oscillation.
Preface "Nonlinear processes in oceanic and atmospheric flows"
Mancho, A M; Turiel, A; Hernandez-Garcia, E; Lopez, C; Garcia-Ladona, E; 10.5194/npg-17-283-2010
2010-01-01
Nonlinear phenomena are essential ingredients in many oceanic and atmospheric processes, and successful understanding of them benefits from multidisciplinary collaboration between oceanographers, meteorologists, physicists and mathematicians. The present Special Issue on ``Nonlinear Processes in Oceanic and Atmospheric Flows'' contains selected contributions from attendants to the workshop which, in the above spirit, was held in Castro Urdiales, Spain, in July 2008. Here we summarize the Special Issue contributions, which include papers on the characterization of ocean transport in the Lagrangian and in the Eulerian frameworks, generation and variability of jets and waves, interactions of fluid flow with plankton dynamics or heavy drops, scaling in meteorological fields, and statistical properties of El Ni\\~no Southern Oscillation.
EXACT SOLUTIONS FOR NONLINEAR TRANSIENT FLOW MODEL INCLUDING A QUADRATIC GRADIENT TERM
Institute of Scientific and Technical Information of China (English)
曹绪龙; 同登科; 王瑞和
2004-01-01
The models of the nonlinear radial flow for the infinite and finite reservoirs including a quadratic gradient term were presented. The exact solution was given in real space for flow equation including quadratic gradiet term for both constant-rate and constant pressure production cases in an infinite system by using generalized Weber transform. Analytical solutions for flow equation including quadratic gradient term were also obtained by using the Hankel transform for a finite circular reservoir case. Both closed and constant pressure outer boundary conditions are considered. Moreover, both constant rate and constant pressure inner boundary conditions are considered. The difference between the nonlinear pressure solution and linear pressure solution is analyzed. The difference may be reached about 8% in the long time. The effect of the quadratic gradient term in the large time well test is considered.
Institute of Scientific and Technical Information of China (English)
LIN Xiangguo; LIANG Yong
2005-01-01
The processing of nonlinear data was one of hot topics in surveying and mapping field in recent years.As a result, many linear methods and nonlinear methods have been developed.But the methods for processing generalized nonlinear surveying and mapping data, especially for different data types and including unknown parameters with random or nonrandom, are seldom noticed.A new algorithm model is presented in this paper for processing nonlinear dynamic multiple-period and multiple-accuracy data derived from deformation monitoring network.
2013-01-01
This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.
Wu, Hao; Noé, Frank
2011-03-01
Diffusion processes are relevant for a variety of phenomena in the natural sciences, including diffusion of cells or biomolecules within cells, diffusion of molecules on a membrane or surface, and diffusion of a molecular conformation within a complex energy landscape. Many experimental tools exist now to track such diffusive motions in single cells or molecules, including high-resolution light microscopy, optical tweezers, fluorescence quenching, and Förster resonance energy transfer (FRET). Experimental observations are most often indirect and incomplete: (1) They do not directly reveal the potential or diffusion constants that govern the diffusion process, (2) they have limited time and space resolution, and (3) the highest-resolution experiments do not track the motion directly but rather probe it stochastically by recording single events, such as photons, whose properties depend on the state of the system under investigation. Here, we propose a general Bayesian framework to model diffusion processes with nonlinear drift based on incomplete observations as generated by various types of experiments. A maximum penalized likelihood estimator is given as well as a Gibbs sampling method that allows to estimate the trajectories that have caused the measurement, the nonlinear drift or potential function and the noise or diffusion matrices, as well as uncertainty estimates of these properties. The approach is illustrated on numerical simulations of FRET experiments where it is shown that trajectories, potentials, and diffusion constants can be efficiently and reliably estimated even in cases with little statistics or nonequilibrium measurement conditions.
Generalized Mass Action Law and Thermodynamics of Nonlinear Markov Processes
Gorban, A N
2015-01-01
The nonlinear Markov processes are the measure-valued dynamical systems which preserve positivity. They can be represented as the law of large numbers limits of general Markov models of interacting particles. In physics, the kinetic equations allow Lyapunov functionals (entropy, free energy, etc.). This may be considered as a sort of inheritance of the Lyapunov functionals from the microscopic master equations. We study nonlinear Markov processes that inherit thermodynamic properties from the microscopic linear Markov processes. We develop the thermodynamics of nonlinear Markov processes and analyze the asymptotic assumption, which are sufficient for this inheritance.
Nonlinear spectral unmixing of hyperspectral images using Gaussian processes
Altmann, Yoann; McLaughlin, Steve; Tourneret, Jean-Yves
2012-01-01
This paper presents an unsupervised algorithm for nonlinear unmixing of hyperspectral images. The proposed model assumes that the pixel reflectances result from a nonlinear function of the abundance vectors associated with the pure spectral components. We assume that the spectral signatures of the pure components and the nonlinear function are unknown. The first step of the proposed method consists of the Bayesian estimation of the abundance vectors for all the image pixels and the nonlinear function relating the abundance vectors to the observations. The endmembers are subsequently estimated using Gaussian process regression. The performance of the unmixing strategy is evaluated with simulations conducted on synthetic and real data.
Recent Advances in Graphene-Assisted Nonlinear Optical Signal Processing
Directory of Open Access Journals (Sweden)
Jian Wang
2016-01-01
Full Text Available Possessing a variety of remarkable optical, electronic, and mechanical properties, graphene has emerged as an attractive material for a myriad of optoelectronic applications. The wonderful optical properties of graphene afford multiple functions of graphene based polarizers, modulators, transistors, and photodetectors. So far, the main focus has been on graphene based photonics and optoelectronics devices. Due to the linear band structure allowing interband optical transitions at all photon energies, graphene has remarkably large third-order optical susceptibility χ(3, which is only weakly dependent on the wavelength in the near-infrared frequency range. The graphene-assisted four-wave mixing (FWM based wavelength conversions have been experimentally demonstrated. So, we believe that the potential applications of graphene also lie in nonlinear optical signal processing, where the combination of its unique large χ(3 nonlinearities and dispersionless over the wavelength can be fully exploited. In this review article, we give a brief overview of our recent progress in graphene-assisted nonlinear optical device and their applications, including degenerate FWM based wavelength conversion of quadrature phase-shift keying (QPSK signal, phase conjugated wavelength conversion by degenerate FWM and transparent wavelength conversion by nondegenerate FWM, two-input and three-input high-base optical computing, and high-speed gate-tunable terahertz coherent perfect absorption (CPA using a split-ring graphene.
Coupled parametric processes in binary nonlinear photonic structures
Saygin, M Yu
2016-01-01
We study parametric interactions in a new type of nonlinear photonic structures, which is realized in the vicinity of a pair of nonlinear crystals. In this kind of structure, which we call binary, multiple nonlinear optical processes can be implemented simultaneously, owing to multiple phase-matching conditions, fulfilled separately in the constituent crystals. The coupling between the nonlinear processes by means of modes sharing similar frequency is attained by the spatially-broadband nature of the parametric fields. We investigate the spatial properties of the fields generated in the binary structure constructed from periodically poled crystals for the two examples: 1) single parametric down-conversion, and 2) coupled parametric down-conversion and up-conversion processes. The efficacy of the fields' generation in these examples is analyzed through comparison with the cases of traditional single periodically poled crystal and aperiodic photonic structure, respectively. It has been shown that the relative s...
Yashkir, O. V.; Yashkir, Yu N.
1987-11-01
An investigation is made of nonlinear optical interaction of light propagating in a planar waveguide with surface polaritons. Reduced wave equations for the amplitudes of the waveguide modes and surface polaritons are used to study the characteristics of generation of surface polaritons of difference frequency, parametric frequency up-conversion of the polaritons, and stimulated Raman scattering by the polaritons. An analysis is made of the characteristic properties of the investigated nonlinear optical processes.
SDRE control strategy applied to a nonlinear robotic including drive motor
Energy Technology Data Exchange (ETDEWEB)
Lima, Jeferson J. de, E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br; Tusset, Angelo M., E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br; Janzen, Frederic C., E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br; Piccirillo, Vinicius, E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br; Nascimento, Claudinor B., E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br [UTFPR-PONTA GROSSA, PR (Brazil); Balthazar, José M., E-mail: jmbaltha@rc.unesp.br [UNESP-BAURU, SP (Brazil); Brasil, Reyolando M. L. R. da Fonseca, E-mail: reyolando.brasil@ufabc.edu.br [UFABC-SANTO ANDRE, SP (Brazil)
2014-12-10
A robotic control design considering all the inherent nonlinearities of the robot-engine configuration is developed. The interactions between the robot and joint motor drive mechanism are considered. The proposed control combines two strategies, one feedforward control in order to maintain the system in the desired coordinate, and feedback control system to take the system into a desired coordinate. The feedback control is obtained using State-Dependent Riccati Equation (SDRE). For link positioning two cases are considered. Case I: For control positioning, it is only used motor voltage; Case II: For control positioning, it is used both motor voltage and torque between the links. Simulation results, including parametric uncertainties in control shows the feasibility of the proposed control for the considered system.
Trautmann, L.; Rabenstein, R.
2004-12-01
The functional transformation method (FTM) is a well-established mathematical method for accurate simulations of multidimensional physical systems from various fields of science, including optics, heat and mass transfer, electrical engineering, and acoustics. This paper applies the FTM to real-time simulations of transversal vibrating strings. First, a physical model of a transversal vibrating lossy and dispersive string is derived. Afterwards, this model is solved with the FTM for two cases: the ideally linearly vibrating string and the string interacting nonlinearly with the frets. It is shown that accurate and stable simulations can be achieved with the discretization of the continuous solution at audio rate. Both simulations can also be performed with a multirate approach with only minor degradations of the simulation accuracy but with preservation of stability. This saves almost 80% of the computational cost for the simulation of a six-string guitar and therefore it is in the range of the computational cost for digital waveguide simulations.
SDRE control strategy applied to a nonlinear robotic including drive motor
de Lima, Jeferson J.; Tusset, Angelo M.; Janzen, Frederic C.; Piccirillo, Vinicius; Nascimento, Claudinor B.; Balthazar, José M.; Brasil, Reyolando M. L. R. da Fonseca
2014-12-01
A robotic control design considering all the inherent nonlinearities of the robot-engine configuration is developed. The interactions between the robot and joint motor drive mechanism are considered. The proposed control combines two strategies, one feedforward control in order to maintain the system in the desired coordinate, and feedback control system to take the system into a desired coordinate. The feedback control is obtained using State-Dependent Riccati Equation (SDRE). For link positioning two cases are considered. Case I: For control positioning, it is only used motor voltage; Case II: For control positioning, it is used both motor voltage and torque between the links. Simulation results, including parametric uncertainties in control shows the feasibility of the proposed control for the considered system.
Si-rich Silicon Nitride for Nonlinear Signal Processing Applications.
Lacava, Cosimo; Stankovic, Stevan; Khokhar, Ali Z; Bucio, T Dominguez; Gardes, F Y; Reed, Graham T; Richardson, David J; Petropoulos, Periklis
2017-02-02
Nonlinear silicon photonic devices have attracted considerable attention thanks to their ability to show large third-order nonlinear effects at moderate power levels allowing for all-optical signal processing functionalities in miniaturized components. Although significant efforts have been made and many nonlinear optical functions have already been demonstrated in this platform, the performance of nonlinear silicon photonic devices remains fundamentally limited at the telecom wavelength region due to the two photon absorption (TPA) and related effects. In this work, we propose an alternative CMOS-compatible platform, based on silicon-rich silicon nitride that can overcome this limitation. By carefully selecting the material deposition parameters, we show that both of the device linear and nonlinear properties can be tuned in order to exhibit the desired behaviour at the selected wavelength region. A rigorous and systematic fabrication and characterization campaign of different material compositions is presented, enabling us to demonstrate TPA-free CMOS-compatible waveguides with low linear loss (~1.5 dB/cm) and enhanced Kerr nonlinear response (Re{γ} = 16 Wm(-1)). Thanks to these properties, our nonlinear waveguides are able to produce a π nonlinear phase shift, paving the way for the development of practical devices for future optical communication applications.
Saturation process of nonlinear standing waves
Institute of Scientific and Technical Information of China (English)
马大猷; 刘克
1996-01-01
The sound pressure of the nonlinear standing waves is distorted as expected, but also tends to saturate as being found in standing-wave tube experiments with increasing sinusoidal excitation. Saturation conditions were not actually reached, owing to limited excitation power, but the evidence of tendency to saturation is without question. It is the purpose of this investigation to find the law of saturation from the existing experimental data. The results of curve fitting indicate that negative feedback limits the growth of sound pressure with increasing excitation, the growth of the fundamental and the second harmonic by the negative feedback of their sound pressures, and the growth of the third and higher harmonics, however, by their energies (sound pressures squared). The growth functions of all the harmonics are derived, which are confirmed by the experiments. The saturation pressures and their properties are found.
Adaptive control method for nonlinear time-delay processes
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Two complex properties,varying time-delay and block-oriented nonlinearity,are very common in chemical engineering processes and not easy to be controlled by routine control methods.Aimed at these two complex properties,a novel adaptive control algorithm the basis of nonlinear OFS(orthonormal functional series) model is proposed.First,the hybrid model which combines OFS and Volterra series is introduced.Then,a stable state feedback strategy is used to construct a nonlinear adaptive control algorithm that can guarantee the closed-loop stability and can track the set point curve without steady-state errors.Finally,control simulations and experiments on a nonlinear process with varying time-delay are presented.A number of experimental results validate the efficiency and superiority of this algorithm.
Nonlinear fiber applications for ultrafast all-optical signal processing
Kravtsov, Konstantin
In the present dissertation different aspects of all-optical signal processing, enabled by the use of nonlinear fibers, are studied. In particular, we focus on applications of a novel heavily GeO2-doped (HD) nonlinear fiber, that appears to be superior to many other types of nonlinear fibers because of its high nonlinearity and suitability for the use in nonlinear optical loop mirrors (NOLMs). Different functions, such as all-optical switching, thresholding, and wavelength conversion, are demonstrated with the HD fibers in the NOLM configuration. These basic functions are later used for realization of ultrafast time-domain demultiplexers, clock recovery, detectors of short pulses in stealth communications, and primitive elements for analog computations. Another important technology that benefits from the use of nonlinear fiber-based signal processing is optical code-division multiple access (CDMA). It is shown in both theory and experiment that all-optical thresholding is a unique way of improving existing detection methods for optical CDMA. Also, it is the way of implementation of true asynchronous optical spread-spectrum networks, which allows full realization of optical CDMA potential. Some aspects of quantum signal processing and manipulation of quantum states are also studied in this work. It is shown that propagation and collisions of Thirring solitons lead to a substantial squeezing of quantum states, which may find applications for generation of squeezed light.
Nonlinear Statistical Process Monitoring and Fault Detection Using Kernel ICA
Institute of Scientific and Technical Information of China (English)
ZHANG Xi; YAN Wei-wu; ZHAO Xu; SHAO Hui-he
2007-01-01
A novel nonlinear process monitoring and fault detection method based on kernel independent component analysis (ICA) is proposed. The kernel ICA method is a two-phase algorithm: whitened kernel principal component (KPCA) plus ICA. KPCA spheres data and makes the data structure become as linearly separable as possible by virtue of an implicit nonlinear mapping determined by kernel. ICA seeks the projection directions in the KPCA whitened space, making the distribution of the projected data as non-gaussian as possible. The application to the fluid catalytic cracking unit (FCCU) simulated process indicates that the proposed process monitoring method based on kernel ICA can effectively capture the nonlinear relationship in process variables. Its performance significantly outperforms monitoring method based on ICA or KPCA.
Modeling and stability analysis of the nonlinear reactive sputtering process
Directory of Open Access Journals (Sweden)
György Katalin
2011-12-01
Full Text Available The model of the reactive sputtering process has been determined from the dynamic equilibrium of the reactive gas inside the chamber and the dynamic equilibrium of the sputtered metal atoms which form the compound with the reactive gas atoms on the surface of the substrate. The analytically obtained dynamical model is a system of nonlinear differential equations which can result in a histeresis-type input/output nonlinearity. The reactive sputtering process has been simulated by integrating these differential equations. Linearization has been applied for classical analysis of the sputtering process and control system design.
An Agent Interaction Based Method for Nonlinear Process Plan Scheduling
Institute of Scientific and Technical Information of China (English)
GAO Qinglu; WU Bo; GUO Guang
2006-01-01
This article puts forward a scheduling method for nonlinear process plan shop floor. Task allocation and load balance are realized by bidding mechanism. Though the agent interaction process, the execution of tasks is determined and the coherence of manufacturing decision is verified. The employment of heuristic index can help to optimize the system performance.
Innovation as a Nonlinear Process and the Scientometric Perspective
Leydesdorff, L.; Rotolo, D.; de Nooy, W.; Archambault, E.; Gingras, Y.; Larivière, V.
2012-01-01
The process of innovation follows non-linear patterns across the domains of science, technology, and the economy. Novel bibliometric mapping techniques can be used to investigate and represent distinctive, but complementary perspectives on the innovation process (e.g., "demand" and "supply") as well
Directory of Open Access Journals (Sweden)
R. Rabenstein
2004-06-01
Full Text Available The functional transformation method (FTM is a well-established mathematical method for accurate simulations of multidimensional physical systems from various fields of science, including optics, heat and mass transfer, electrical engineering, and acoustics. This paper applies the FTM to real-time simulations of transversal vibrating strings. First, a physical model of a transversal vibrating lossy and dispersive string is derived. Afterwards, this model is solved with the FTM for two cases: the ideally linearly vibrating string and the string interacting nonlinearly with the frets. It is shown that accurate and stable simulations can be achieved with the discretization of the continuous solution at audio rate. Both simulations can also be performed with a multirate approach with only minor degradations of the simulation accuracy but with preservation of stability. This saves almost 80% of the computational cost for the simulation of a six-string guitar and therefore it is in the range of the computational cost for digital waveguide simulations.
Institute of Scientific and Technical Information of China (English)
XIAO Yong-gang; FU Yi-ming; ZHA Xu-dong
2005-01-01
Based on Reissner plate theory and Hamilton variational principle, the nonlinear equations of motion were derived for the moderate thickness rectangular plates with transverse surface penetrating crack on the two-parameter foundation. Under the condition of free boundary, a set of trial functions satisfying all boundary conditions and crack's continuous conditions were proposed. By employing the Galerkin method and the harmonic balance method, the nonlinear vibration equations were solved and the nonlinear vibration behaviors of the plate were analyzed. In numerical computation, the effects of the different location and depth of crack, the different structural parameters of plates and the different physical parameters of foundation on the nonlinear amplitude frequency response curves of the plate were discussed.
Nonlinear partial least squares with Hellinger distance for nonlinear process monitoring
Harrou, Fouzi
2017-02-16
This paper proposes an efficient data-based anomaly detection method that can be used for monitoring nonlinear processes. The proposed method merges advantages of nonlinear projection to latent structures (NLPLS) modeling and those of Hellinger distance (HD) metric to identify abnormal changes in highly correlated multivariate data. Specifically, the HD is used to quantify the dissimilarity between current NLPLS-based residual and reference probability distributions. The performances of the developed anomaly detection using NLPLS-based HD technique is illustrated using simulated plug flow reactor data.
Nonlinear Dynamic Characteristics of Combustion Wave in SHS Process
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The characteristic of combustion wave and its change were analyzed by numerical value calculation and computer simulation,based on the combustion dynamical model of SHS process. It is shown that with the change of condition parameters in SHS process various time-space order combustion waves appear.It is concluded from non-liner dynamical mechanism analysis that the strong coupling of two non-linear dynamical processes is the dynamical mechanism causing the time-space order dissipation structures.
Nonlinear Real-Time Optical Signal Processing.
1983-12-01
8217 " University of Southern CaliforniaN JU Los Angeles, California 90089-0272 " --;984. ,’ I ’I Research Sponsored by the ., k Air Force Office of...concentrates on experimental results from the sixteen gate clocked master-slave optical flip-flop. A second paper " Architectures for a Sequential Optical Logic...purpose computer could permit the realization of a number of architectural advantages over semiconductor electronics [27]. These advantages include
Relaxation Processes in Nonlinear Optical Polymer Films
Directory of Open Access Journals (Sweden)
S.N. Fedosov
2010-01-01
Full Text Available Dielectric properties of the guest-host polystyrene/DR1 system have been studied by the AC dielectric spectroscopy method at frequencies from 1 Hz to 0,5 MHz and by the thermally stimulated depolarization current (TSDC method from – 160 to 0 °C. The relaxation peaks at infra-low frequencies from 10 – 5to 10–2 Hz were also calculated using the Hamon’s approximation. Three relaxation processes, namely, α, β and δ ones were identified from the TSDC peaks, while the ε''(fdependence showed a non-Debye ρ-peak narrowing with temperature. The activation energy of the α-relaxation appeared to be 2,57 eV, while that of the γ-process was 0,52 eV. Temperature dependence of the relaxation time is agreed with the Williams-Landel-Ferry model. The ε''(fpeaks were fitted to Havriliak-Negami’s expression and the corresponding distribution parameters were obtained.
Ultra-Fast Optical Signal Processing in Nonlinear Silicon Waveguides
DEFF Research Database (Denmark)
Oxenløwe, Leif Katsuo; Galili, Michael; Pu, Minhao;
2011-01-01
We describe recent demonstrations of exploiting highly nonlinear silicon nanowires for processing Tbit/s optical data signals. We perform demultiplexing and optical waveform sampling of 1.28 Tbit/s and wavelength conversion of 640 Gbit/s data signals....
Institute of Scientific and Technical Information of China (English)
胡业民; 胡希伟
2001-01-01
Numerical analyses for the nonlinear evolutions of stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) processes are given. Various effects of the second- and third-order nonlinear susceptibilities on the SRS and SBS processes are studied. The nonlinear evolutions of SRS and SBS processes are atfected more efficiently than their linear growth rates by the nonlinear susceptibility.
Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity
Directory of Open Access Journals (Sweden)
Isao Ishida
2015-01-01
Full Text Available We introduce and investigate some properties of a class of nonlinear time series models based on the moving sample quantiles in the autoregressive data generating process. We derive a test fit to detect this type of nonlinearity. Using the daily realized volatility data of Standard & Poor’s 500 (S&P 500 and several other indices, we obtained good performance using these models in an out-of-sample forecasting exercise compared with the forecasts obtained based on the usual linear heterogeneous autoregressive and other models of realized volatility.
Nonlinear quantum electrodynamic and electroweak processes in strong laser fields
Energy Technology Data Exchange (ETDEWEB)
Meuren, Sebastian
2015-06-24
Various nonlinear electrodynamic and electroweak processes in strong plane-wave laser fields are considered with an emphasis on short-pulse effects. In particular, the momentum distribution of photoproduced electron-positron pairs is calculated numerically and a semiclassical interpretation of its characteristic features is established. By proving the optical theorem, compact double-integral expressions for the total pair-creation probability are obtained and numerically evaluated. The exponential decay of the photon wave function in a plane wave is included by solving the Schwinger-Dyson equations to leading-order in the quasistatic approximation. In this respect, the polarization operator in a plane wave is investigated and its Ward-Takahashi identity verified. A classical analysis indicates that a photoproduced electron-positron pair recollides for certain initial conditions. The contributions of such recollision processes to the polarization operator are identified and calculated both analytically and numerically. Furthermore, the existence of nontrivial electron-spin dynamics induced by quantum fluctuations is verified for ultra-short laser pulses. Finally, the exchange of weak gauge bosons is considered, which is essential for neutrino-photon interactions. In particular, the axial-vector-vector coupling tensor is calculated and the so-called Adler-Bell-Jackiw (ABJ) anomaly investigated.
New CMOS Compatible Platforms for Integrated Nonlinear Optical Signal Processing
Moss, D J
2014-01-01
Nonlinear photonic chips have succeeded in generating and processing signals all-optically with performance far superior to that possible electronically - particularly with respect to speed. Although silicon-on-insulator has been the leading platform for nonlinear optics, its high two-photon absorption at telecommunications wavelengths poses a fundamental limitation. This paper reviews some of the recent achievements in CMOS-compatible platforms for nonlinear optics, focusing on amorphous silicon and Hydex glass, highlighting their potential future impact as well as the challenges to achieving practical solutions for many key applications. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement.
Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report
Energy Technology Data Exchange (ETDEWEB)
Tataronis, J. A.
2004-06-01
This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfvkn continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named “accumulation continuum” and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory.
Process and meaning: nonlinear dynamics and psychology in visual art.
Zausner, Tobi
2007-01-01
Creating and viewing visual art are both nonlinear experiences. Creating a work of art is an irreversible process involving increasing levels of complexity and unpredictable events. Viewing art is also creative with collective responses forming autopoietic structures that shape cultural history. Artists work largely from the chaos of the unconscious and visual art contains elements of chaos. Works of art by the author are discussed in reference to nonlinear dynamics. "Travelogues" demonstrates continued emerging interpretations and a deterministic chaos. "Advice to the Imperfect" signifies the resolution of paradox in the nonlinear tension of opposites. "Quanah" shows the nonlinear tension of opposites as an ongoing personal evolution. "The Mother of All Things" depicts seemingly separate phenomena arising from undifferentiated chaos. "Memories" refers to emotional fixations as limit cycles. "Compassionate Heart," "Wind on the Lake," and "Le Mal du Pays" are a series of works in fractal format focusing on the archetype of the mother and child. "Sameness, Depth of Mystery" addresses the illusion of hierarchy and the dynamics of symbols. In "Chasadim" the origin of worlds and the regeneration of individuals emerge through chaos. References to chaos in visual art mirror the nonlinear complexity of life.
Nonlinear Processes in Magnetic Nanodots under Perpendicular Pumping: Micromagnetic Simulations
Directory of Open Access Journals (Sweden)
D.V. Slobodiainuk
2013-03-01
Full Text Available Processes that take place in permalloy nanodots under external electromagnetic pumping are considered. It is shown that in such system similar to bulk samples Suhl and kinetic instability processes are possible. Using micromagnetic simulations approach key features of mode excitation with an external pumping power increase were revealed. Results of the simulations were compared with published experimental data dedicated to investigation of magnetic nanodotes in nonlinear regime.
Optoelectronic and nonlinear optical processes in low dimensional semiconductors
Indian Academy of Sciences (India)
B P Singh
2006-11-01
Spatial confinement of quantum excitations on their characteristic wavelength scale in low dimensional materials offers unique possibilities to engineer the electronic structure and thereby control their physical properties by way of simple manipulation of geometrical parameters. This has led to an overwhelming interest in quasi-zero dimensional semiconductors or quantum dots as tunable materials for multitude of exciting applications in optoelectronic and nonlinear optical devices and quantum information processing. Large nonlinear optical response and high luminescence quantum yield expected in these systems is a consequence of huge enhancement of transition probabilities ensuing from quantum confinement. High quantum efficiency of photoluminescence, however, is not usually realized in the case of bare semiconductor nanoparticles owing to the presence of surface states. In this talk, I will focus on the role of quantum confinement and surface states in ascertaining nonlinear optical and optoelectronic properties of II–VI semiconductor quantum dots and their nanocomposites. I will also discuss the influence of nonlinear optical processes on their optoelectronic characteristics.
Institute of Scientific and Technical Information of China (English)
Xiao Li; Zhang Wei; Huang Yi-Dong; Peng Jiang-De
2008-01-01
High nonlinear microstructure fibre (HNMF) is preferred in nonlinear fibre optics, especially in the applications of optical parametric effects, due to its high optical nonlinear coefficient. However, polarization dependent dispersion will impact the nonlinear optical parametric process in HNMFs. In this paper, modulation instability (MI) method is used to measure the polarization dependent dispersion of a piece of commercial HNMF, including the group velocity dispersion, the dispersion slope, the fourth-order dispersion and group birefringence. It also experimentally demonstrates the impact of the polarization dependent dispersion on the continuous wave supercontinuum (SC) generation. On one axis MI sidebands with symmetric frequency dctunings are generated, while on the other axis with larger MI frequency detuning, SC is generated by soliton self-frequency shift.
DEFF Research Database (Denmark)
Pedersen, Preben Terndrup; Jensen, Jørgen Juncher
2009-01-01
-induced loads are evaluated for specific operational profiles. Non-linearity in the wave bending moment is modeled using results derived from a second-order strip theory and water entry solutions for wedge type sections. Hence, bow flare slamming is accounted for through a momentum type of approach....... The stochastic properties of this non-linear response are calculated through a monotonic Hermite transformation. In addition, the impulse loading due to e.g. bottom slamming or a rapid change in bow flare is included using a modal expansion in the two lowest vertical vibration modes. These whipping vibrations...
Directory of Open Access Journals (Sweden)
Yong Zhao
1997-01-01
Full Text Available A nonlinear three dimensional (3D single rack model and a nonlinear 3D whole pool multi-rack model are developed for the spent fuel storage racks of a nuclear power plant (NPP to determine impacts and frictional motion responses when subjected to 3D excitations from the supporting building floor. The submerged free standing rack system and surrounding water are coupled due to hydrodynamic fluid-structure interaction (FSI using potential theory. The models developed have features that allow consideration of geometric and material nonlinearities including (1 the impacts of fuel assemblies to rack cells, a rack to adjacent racks or pool walls, and rack support legs to the pool floor; (2 the hydrodynamic coupling of fuel assemblies with their storing racks, and of a rack with adjacent racks, pool walls, and the pool floor; and (3 the dynamic motion behavior of rocking, twisting, and frictional sliding of rack modules. Using these models 3D nonlinear time history dynamic analyses are performed per the U.S. Nuclear Regulatory Commission (USNRC criteria. Since few such modeling, analyses, and results using both the 3D single and whole pool multiple rack models are available in the literature, this paper emphasizes description of modeling and analysis techniques using the SOLVIA general purpose nonlinear finite element code. Typical response results with different Coulomb friction coefficients are presented and discussed.
Lin, Raymond Chao
The handling qualities evaluation of nonlinear aircraft systems is an area of concern in loss-of-control (LOC) prevention. The Get Transfer Function (GetTF) method was demonstrated for evaluating the handling qualities of flight control systems and aircraft containing nonlinearities. NASA's Generic Transport Model (GTM), a nonlinear model of a civilian jet transport aircraft, was evaluated. Using classical techniques, the stability, control, and augmentation (SCAS) systems were designed to control pitch rate, roll rate, and airspeed. Hess's structural pilot model was used to model pilot dynamics in pitch and roll-attitude tracking. The simulated task was simultaneous tracking of, both, pitch and roll attitudes. Eight cases were evaluated: 1) gain increase of pitch-attitude command signal, 2) gain increase of roll-attitude command signal, 3) gain reduction of elevator command signal, 4) backlash in elevator actuator, 5) combination 3 and 4 in elevator actuator, 6) gain reduction of aileron command signal, 7) backlash in aileron actuator, and 8) combination of 6 and 7 in aileron actuator. The GetTF method was used to estimate the transfer function approximating a linear relationship between the proprioceptive signal of the pilot model and the command input. The transfer function was then used to predict the handling qualities ratings (HQR) and pilot-induced oscillation ratings (PIOR). The HQR is based on the Cooper-Harper rating scale. In pitch-attitude tracking, the nominal aircraft is predicted to have Level 2* HQRpitch and 2 control and aircraft systems. A limited human-in-the-loop pitch tracking exercise was also conducted to validate the structural pilot model.
Viscoelastic Characterization of a Nonlinear, Glass/Epoxy Composite Including the Effects of Damage
1974-10-01
Compliac Figue 12. oparion o exerimnta initliancorn 58-8R pox rsin. 6 270 11 Co CII (1a) V Q) 0 ) CD CJ. CL ~4-) ~ CU 4 0 ; &-* S- C ’L - SL 4- LL ) I C)C...34 Brown University, Technical Report No. 3, January 1968. 114. W. G. Gottenberg, J. 0. Bird and G. L. Agrawal, " An Experimental Study of Nonlinear...the Society of Rheology, Vol. 12 (1968), p. 155. 126. H. B3. Bird and B. 0. Marsh, "Viscoelastic Hysteresis Part 1, Model Prediction; Part II
NON-LINEAR FINITE ELEMENT MODELING OF DEEP DRAWING PROCESS
Directory of Open Access Journals (Sweden)
Hasan YILDIZ
2004-03-01
Full Text Available Deep drawing process is one of the main procedures used in different branches of industry. Finding numerical solutions for determination of the mechanical behaviour of this process will save time and money. In die surfaces, which have complex geometries, it is hard to determine the effects of parameters of sheet metal forming. Some of these parameters are wrinkling, tearing, and determination of the flow of the thin sheet metal in the die and thickness change. However, the most difficult one is determination of material properties during plastic deformation. In this study, the effects of all these parameters are analyzed before producing the dies. The explicit non-linear finite element method is chosen to be used in the analysis. The numerical results obtained for non-linear material and contact models are also compared with the experiments. A good agreement between the numerical and the experimental results is obtained. The results obtained for the models are given in detail.
Nonlinear Silicon Photonic Signal Processing Devices for Future Optical Networks
Directory of Open Access Journals (Sweden)
Cosimo Lacava
2017-01-01
Full Text Available In this paper, we present a review on silicon-based nonlinear devices for all optical nonlinear processing of complex telecommunication signals. We discuss some recent developments achieved by our research group, through extensive collaborations with academic partners across Europe, on optical signal processing using silicon-germanium and amorphous silicon based waveguides as well as novel materials such as silicon rich silicon nitride and tantalum pentoxide. We review the performance of four wave mixing wavelength conversion applied on complex signals such as Differential Phase Shift Keying (DPSK, Quadrature Phase Shift Keying (QPSK, 16-Quadrature Amplitude Modulation (QAM and 64-QAM that dramatically enhance the telecom signal spectral efficiency, paving the way to next generation terabit all-optical networks.
Double resonant processes in $\\chi^{(2)}$ nonlinear periodic media
Konotop, V. V.; Kuzmiak, V.
2000-01-01
In a one-dimensional periodic nonlinear $\\chi^{(2)}$ medium, by choosing a proper material and geometrical parameters of the structure, it is possible to obtain two matching conditions for simultaneous generation of second and third harmonics. This leads to new diversity of the processes of the resonant three-wave interactions, which are discussed within the framework of slowly varying envelope approach. In particular, we concentrate on the fractional conversion of the frequency $\\omega \\to (...
SAR processing with non-linear FM chirp waveforms.
Energy Technology Data Exchange (ETDEWEB)
Doerry, Armin Walter
2006-12-01
Nonlinear FM (NLFM) waveforms offer a radar matched filter output with inherently low range sidelobes. This yields a 1-2 dB advantage in Signal-to-Noise Ratio over the output of a Linear FM (LFM) waveform with equivalent sidelobe filtering. This report presents details of processing NLFM waveforms in both range and Doppler dimensions, with special emphasis on compensating intra-pulse Doppler, often cited as a weakness of NLFM waveforms.
Nonlinear waves in electron–positron–ion plasmas including charge separation
Indian Academy of Sciences (India)
A MUGEMANA; S MOOLLA; I J LAZARUS
2017-02-01
Nonlinear low-frequency electrostatic waves in a magnetized, three-component plasma consisting of hot electrons, hot positrons and warm ions have been investigated. The electrons and positrons are assumed to have Boltzmann density distributions while the motion of the ions are governed by fluid equations. The system is closed with the Poisson equation. This set of equations is numerically solved for the electric field. The effects of the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle are investigated. It is shown that depending on the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle, the numerical solutions exhibit waveforms that are sinusoidal, sawtooth andspiky. The introduction of the Poisson equation increased the Mach number required to generate the waveforms but the driving electric field E0 was reduced. The results are compared with satellite observations.
Hybrid Model Representation of a TLP Including Flexible Topsides in Non-Linear Regular Waves
Directory of Open Access Journals (Sweden)
Christof Wehmeyer
2014-08-01
Full Text Available The rising demand for renewable energy solutions is forcing the established industries to expand and continue evolving. For the wind energy sector, the vast resources in deep sea locations have encouraged research towards the installation of turbines in deeper waters. One of the most promising technologies able to solve this challenge is the floating wind turbine foundation. For the ultimate limit state, where higher order wave loads have a significant influence, a design tool that couples non-linear excitations with structural dynamics is required. To properly describe the behavior of such a structure, a numerical model is proposed and validated by physical test results. The model is applied to a case study of a tension leg platform with a flexible topside mimicking the tower and a lumped mass mimicking the rotor-nacelle assembly. The model is additionally compared to current commercial software, where the need for the coupled higher order dynamics proposed in this paper becomes evident.
Project Interface Requirements Process Including Shuttle Lessons Learned
Bauch, Garland T.
2010-01-01
Most failures occur at interfaces between organizations and hardware. Processing interface requirements at the start of a project life cycle will reduce the likelihood of costly interface changes/failures later. This can be done by adding Interface Control Documents (ICDs) to the Project top level drawing tree, providing technical direction to the Projects for interface requirements, and by funding the interface requirements function directly from the Project Manager's office. The interface requirements function within the Project Systems Engineering and Integration (SE&I) Office would work in-line with the project element design engineers early in the life cycle to enhance communications and negotiate technical issues between the elements. This function would work as the technical arm of the Project Manager to help ensure that the Project cost, schedule, and risk objectives can be met during the Life Cycle. Some ICD Lessons Learned during the Space Shuttle Program (SSP) Life Cycle will include the use of hardware interface photos in the ICD, progressive life cycle design certification by analysis, test, & operations experience, assigning interface design engineers to Element Interface (EI) and Project technical panels, and linking interface design drawings with project build drawings
Nonlinear Statistical Signal Processing: A Particle Filtering Approach
Energy Technology Data Exchange (ETDEWEB)
Candy, J
2007-09-19
A introduction to particle filtering is discussed starting with an overview of Bayesian inference from batch to sequential processors. Once the evolving Bayesian paradigm is established, simulation-based methods using sampling theory and Monte Carlo realizations are discussed. Here the usual limitations of nonlinear approximations and non-gaussian processes prevalent in classical nonlinear processing algorithms (e.g. Kalman filters) are no longer a restriction to perform Bayesian inference. It is shown how the underlying hidden or state variables are easily assimilated into this Bayesian construct. Importance sampling methods are then discussed and shown how they can be extended to sequential solutions implemented using Markovian state-space models as a natural evolution. With this in mind, the idea of a particle filter, which is a discrete representation of a probability distribution, is developed and shown how it can be implemented using sequential importance sampling/resampling methods. Finally, an application is briefly discussed comparing the performance of the particle filter designs with classical nonlinear filter implementations.
Predicting speech intelligibility in conditions with nonlinearly processed noisy speech
DEFF Research Database (Denmark)
Jørgensen, Søren; Dau, Torsten
2013-01-01
The speech-based envelope power spectrum model (sEPSM; [1]) was proposed in order to overcome the limitations of the classical speech transmission index (STI) and speech intelligibility index (SII). The sEPSM applies the signal-tonoise ratio in the envelope domain (SNRenv), which was demonstrated...... to successfully predict speech intelligibility in conditions with nonlinearly processed noisy speech, such as processing with spectral subtraction. Moreover, a multiresolution version (mr-sEPSM) was demonstrated to account for speech intelligibility in various conditions with stationary and fluctuating...... from computational auditory scene analysis and further support the hypothesis that the SNRenv is a powerful metric for speech intelligibility prediction....
Cai, Wenshan
2016-09-01
Metamaterials have offered not only the unprecedented opportunity to generate unconventional electromagnetic properties that are not found in nature, but also the exciting potential to create customized nonlinear media with tailored high-order effects. Two particularly compelling directions of current interests are active metamaterials, where the optical properties can be purposely manipulated by external stimuli, and nonlinear metamaterials, which enable intensity-dependent frequency conversion of light. By exploring the interaction of these two directions, we leverage the electrical and optical functions simultaneously supported in nanostructured metals and demonstrate electrically-controlled nonlinear processes from photonic metamaterials. We show that a variety of nonlinear optical phenomena, including the wave mixing and the optical rectification, can be purposely modulated by applied voltage signals. In addition, electrically-induced and voltage-controlled nonlinear effects facilitate us to demonstrate the backward phase matching in a negative index material, a long standing prediction in nonlinear metamaterials. Other results to be covered in this talk include photon-drag effect in plasmonic metamaterials and ion-assisted nonlinear effects from metamaterials in electrolytes. Our results reveal a grand opportunity to exploit optical metamaterials as self-contained, dynamic electrooptic systems with intrinsically embedded electrical functions and optical nonlinearities. Reference: L. Kang, Y. Cui, S. Lan, S. P. Rodrigues, M. L. Brongersma, and W. Cai, Nature Communications, 5, 4680 (2014). S. P. Rodrigues and W.Cai, Nature Nanotechnology, 10, 387 (2015). S. Lan, L. Kang, D. T. Schoen, S. P. Rodrigues, Y. Cui, M. L. Brongersma, and W. Cai, Nature Materials, 14, 807 (2015).
The effect of process delay on dynamical behaviors in a self-feedback nonlinear oscillator
Yao, Chenggui; Ma, Jun; Li, Chuan; He, Zhiwei
2016-10-01
The delayed feedback loops play a crucial role in the stability of dynamical systems. The effect of process delay in feedback is studied numerically and theoretically in the delayed feedback nonlinear systems including the neural model, periodic system and chaotic oscillator. The process delay is of key importance in determining the evolution of systems, and the rich dynamical phenomena are observed. By introducing a process delay, we find that it can induce bursting electric activities in the neural model. We demonstrate that this novel regime of amplitude death also exists in the parameter space of feedback strength and process delay for the periodic system and chaotic oscillator. Our results extend the effect of process delay in the paper of Zou et al.(2013) where the process delay can eliminate the amplitude death of the coupled nonlinear systems.
Nonlinear processes upon two-photon interband picosecond excitation of PbWO4 crystal
Lukanin, V. I.; Karasik, A. Ya
2016-09-01
A new experimental method is proposed to study the dynamics of nonlinear processes occurring upon two-photon interband picosecond excitation of a lead tungstate crystal and upon its excitation by cw probe radiation in a temporal range from several nanoseconds to several seconds. The method is applied to the case of crystal excitation by a sequence of 25 high-power picosecond pulses with a wavelength of 523.5 nm and 633-nm cw probe radiation. Measuring the probe beam transmittance during crystal excitation, one can investigate the influence of two-photon interband absorption and the thermal nonlinearity of the refractive index on the dynamics of nonlinear processes in a wide range of times (from several nanoseconds to several seconds). The time resolution of the measuring system makes it possible to distinguish fast and slow nonlinear processes of electronic or thermal nature, including the generation of a thermal lens and thermal diffusion. An alternative method is proposed to study the dynamics of induced absorption transformation and, therefore, the dynamics of the development of nonlinear rocesses upon degenerate two-photon excitation of the crystal in the absence of external probe radiation.
Nonlinear analysis and control of a continuous fermentation process
DEFF Research Database (Denmark)
Szederkényi, G.; Kristensen, Niels Rode; Hangos, K.M
2002-01-01
open-loop system properties, to explore the possible control difficulties and to select the system output to be used in the control structure. A wide range of controllers are tested including pole placement and LQ controllers, feedback and input–output linearization controllers and a nonlinear...... controller based on direct passivation. The comparison is based on time-domain performance and on investigating the stability region, robustness and tuning possibilities of the controllers. Controllers using partial state feedback of the substrate concentration and not directly depending on the reaction rate...... are recommended for the simple fermenter. Passivity based controllers have been found to be globally stable, not very sensitive to the uncertainties in the reaction rate and controller parameter but they require full nonlinear state feedback....
Lischner, Johannes; Arias, T A
2010-02-11
We present an accurate free-energy functional for liquid water written in terms of a set of effective potential fields in which fictitious noninteracting water molecules move. The functional contains an exact expression of the entropy of noninteracting molecules and thus provides an ideal starting point for the inclusion of complex intermolecular interactions which depend on the orientation of the interacting molecules. We show how an excess free-energy functional can be constructed to reproduce the following properties of water: the dielectric response; the experimental site-site correlation functions; the surface tension; the bulk modulus of the liquid and the variation of this modulus with pressure; the density of the liquid and the vapor phase; and liquid-vapor coexistence. As a demonstration, we present results for the application of this theory to the behavior of liquid water in a parallel plate capacitor. In particular, we make predictions for the dielectric response of water in the nonlinear regime, finding excellent agreement with known data.
Nonlinear processes in the strong wave-plasma interaction
Pegoraro, Francesco; Califano, Francesco; Attico, Nicola; Bulanov, Sergei
2000-10-01
Nonlinear interactions in hot laboratory and/or astrophysical plasmas are a very efficient mechanism able to transfer the energy from the large to the small spatial scales of the system. As a result, kinetic processes are excited and play a key role in the plasma dynamics since the typical fluid dissipative length scales (where the nonlinear cascade is stopped) are (much) smaller then the kinetic length scales. Then, the key point is the role of the kinetic effects in the global plasma dynamics, i.e. whether the kinetic effects remains confined to the small scales of the system or whether there is a significant feedback on the large scales. Here we will address this problem by discussing the nonlinear kinetic evolution of the electromagnetic beam plasma instability where phase space vortices, as well as large scale vortex like magnetic structures in the physical space, are generated by wave - particle interactions. The role and influence of kinetic effects on the large scale plasma dynamics will be also discussed by addressing the problem of collisionless magnetic reconection.
Experimental characterization of nonlinear processes of whistler branch waves
Tejero, E. M.; Crabtree, C.; Blackwell, D. D.; Amatucci, W. E.; Ganguli, G.; Rudakov, L.
2016-05-01
Experiments in the Space Physics Simulation Chamber at the Naval Research Laboratory isolated and characterized important nonlinear wave-wave and wave-particle interactions that can occur in the Earth's Van Allen radiation belts by launching predominantly electrostatic waves in the intermediate frequency range with wave normal angle greater than 85 ° and measuring the nonlinearly generated electromagnetic scattered waves. The scattered waves have a perpendicular wavelength that is nearly an order of magnitude larger than that of the pump wave. Calculations of scattering efficiency from experimental measurements demonstrate that the scattering efficiency is inversely proportional to the damping rate and trends towards unity as the damping rate approaches zero. Signatures of both wave-wave and wave-particle scatterings are also observed in the triggered emission process in which a launched wave resonant with a counter-propagating electron beam generates a large amplitude chirped whistler wave. The possibility of nonlinear scattering or three wave decay as a saturation mechanism for the triggered emission is suggested. The laboratory experiment has inspired the search for scattering signatures in the in situ data of chorus emission in the radiation belts.
Analytical investigation of machining chatter by considering the nonlinearity of process damping
Ahmadi, Keivan
2017-04-01
In this paper, the well-established problem of self-excited vibrations in machining is revisited to include the nonlinearity of process damping at the tool and workpiece interface. Machining dynamics is modeled using a time-delayed system with nonlinear damping, and the method of averaging is used to obtain the amplitude of the resulting limit cycles. As a result, an analytical relationship is presented to establish the stability charts corresponding with arbitrary limit cycles in machining systems. The presented analytical solutions are verified using experiments and numerical solutions.
Institute of Scientific and Technical Information of China (English)
XU Guang; QIAN Liejia; WANG Tao; FAN Dianyuan; LI Fuming
2004-01-01
It is shown that the cascaded fifth-order nonlinear phase shifts will increase with energy loss in the cascaded processes. Essentially different from the multi-photon absorption accompanied with inherent material nonlinearities, the loss of fundamental wave in a cascaded process is controllable and suppressible. By introducing difference frequencies generated from the reaction between the fundamental and its second harmonic after the cascaded processes, the fundamental wave can be free of energy loss, while the large cascaded fifth-order nonlinear phase shift is maintained.
A nonlinear generalized continuum approach for electro-elasticity including scale effects
Skatulla, S.; Arockiarajan, A.; Sansour, C.
2009-01-01
Materials characterized by an electro-mechanically coupled behaviour fall into the category of so-called smart materials. In particular, electro-active polymers (EAP) recently attracted much interest, because, upon electrical loading, EAP exhibit a large amount of deformation while sustaining large forces. This property can be utilized for actuators in electro-mechanical systems, artificial muscles and so forth. When it comes to smaller structures, it is a well-known fact that the mechanical response deviates from the prediction of classical mechanics theory. These scale effects are due to the fact that the size of the microscopic material constituents of such structures cannot be considered to be negligible small anymore compared to the structure's overall dimensions. In this context so-called generalized continuum formulations have been proven to account for the micro-structural influence to the macroscopic material response. Here, we want to adopt a strain gradient approach based on a generalized continuum framework [Sansour, C., 1998. A unified concept of elastic-viscoplastic Cosserat and micromorphic continua. J. Phys. IV Proc. 8, 341-348; Sansour, C., Skatulla, S., 2007. A higher gradient formulation and meshfree-based computation for elastic rock. Geomech. Geoeng. 2, 3-15] and extend it to also encompass the electro-mechanically coupled behaviour of EAP. The approach introduces new strain and stress measures which lead to the formulation of a corresponding generalized variational principle. The theory is completed by Dirichlet boundary conditions for the displacement field and its derivatives normal to the boundary as well as the electric potential. The basic idea behind this generalized continuum theory is the consideration of a micro- and a macro-space which together span the generalized space. As all quantities are defined in this generalized space, also the constitutive law, which is in this work conventional electro-mechanically coupled nonlinear
Simulation of sub-barrier fusion process including dynamical deformation
Energy Technology Data Exchange (ETDEWEB)
Hata, Kentaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-05-01
Four reactions ({sup 40}Ca+{sup 40}Ca, {sup 58}Ni+{sup 58}Ni, {sup 64}Ni+{sup 64}Ni and {sup 74}Ge+{sup 74}Ge) were simulated as examples of spherical nuclei, {sup 40}Ca and {sup 58}Ni and dynamical deformation, {sup 64}Ni and {sup 74}Ge. The experimental excited functions of sub-barrier fusion reaction were reproduced with high accuracy without free parameters. The sub-barrier fusion process had supposed to pass one-dimensional fusion process estimated by the principle of least action on the potential surface with a freedom of nuclear deformation. (S.Y.)
Nonlinear Optical Microscopy Signal Processing Strategies in Cancer
Adur, Javier; Carvalho, Hernandes F; Cesar, Carlos L; Casco, Víctor H
2014-01-01
This work reviews the most relevant present-day processing methods used to improve the accuracy of multimodal nonlinear images in the detection of epithelial cancer and the supporting stroma. Special emphasis has been placed on methods of non linear optical (NLO) microscopy image processing such as: second harmonic to autofluorescence ageing index of dermis (SAAID), tumor-associated collagen signatures (TACS), fast Fourier transform (FFT) analysis, and gray level co-occurrence matrix (GLCM)-based methods. These strategies are presented as a set of potential valuable diagnostic tools for early cancer detection. It may be proposed that the combination of NLO microscopy and informatics based image analysis approaches described in this review (all carried out on free software) may represent a powerful tool to investigate collagen organization and remodeling of extracellular matrix in carcinogenesis processes. PMID:24737930
A fast and robust hepatocyte quantification algorithm including vein processing
Directory of Open Access Journals (Sweden)
Homeyer André
2010-03-01
Full Text Available Abstract Background Quantification of different types of cells is often needed for analysis of histological images. In our project, we compute the relative number of proliferating hepatocytes for the evaluation of the regeneration process after partial hepatectomy in normal rat livers. Results Our presented automatic approach for hepatocyte (HC quantification is suitable for the analysis of an entire digitized histological section given in form of a series of images. It is the main part of an automatic hepatocyte quantification tool that allows for the computation of the ratio between the number of proliferating HC-nuclei and the total number of all HC-nuclei for a series of images in one processing run. The processing pipeline allows us to obtain desired and valuable results for a wide range of images with different properties without additional parameter adjustment. Comparing the obtained segmentation results with a manually retrieved segmentation mask which is considered to be the ground truth, we achieve results with sensitivity above 90% and false positive fraction below 15%. Conclusions The proposed automatic procedure gives results with high sensitivity and low false positive fraction and can be applied to process entire stained sections.
A simple nonlinear PD controller for integrating processes.
Dey, Chanchal; Mudi, Rajani K; Simhachalam, Dharmana
2014-01-01
Many industrial processes are found to be integrating in nature, for which widely used Ziegler-Nichols tuned PID controllers usually fail to provide satisfactory performance due to excessive overshoot with large settling time. Although, IMC (Internal Model Control) based PID controllers are capable to reduce the overshoot, but little improvement is found in the load disturbance response. Here, we propose an auto-tuning proportional-derivative controller (APD) where a nonlinear gain updating factor α continuously adjusts the proportional and derivative gains to achieve an overall improved performance during set point change as well as load disturbance. The value of α is obtained by a simple relation based on the instantaneous values of normalized error (eN) and change of error (ΔeN) of the controlled variable. Performance of the proposed nonlinear PD controller (APD) is tested and compared with other PD and PID tuning rules for pure integrating plus delay (IPD) and first-order integrating plus delay (FOIPD) processes. Effectiveness of the proposed scheme is verified on a laboratory scale servo position control system.
Double pendulum model for tennis stroke including a collision process
Youn, Sun-Hyun
2015-01-01
By means of adding a collision process between the ball and racket in double pendulum model, we analyzed the tennis stroke. It is possible that the speed of the rebound ball does not simply depend on the angular velocity of the racket, and higher angular velocity sometimes gives lower ball speed. We numerically showed that the proper time lagged racket rotation increases the speed of the rebound ball by 20%. We also showed that the elbow should move in order to add the angular velocity of the racket.
Dynamics behaviour of an elastic non-ideal (NIS) portal frame, including fractional nonlinearities
Balthazar, J. M.; Brasil, R. M. L. F.; Felix, J. L. P.; Tusset, A. M.; Picirillo, V.; Iluik, I.; Rocha, R. T.; Nabarrete, A.; Oliveira, C.
2016-05-01
This paper overviews recent developments on some problems related to elastic structures, such as portal frames, taking into account the full interactions of the vibrating systems, with an energy source of limited power supply (small motors, electro-mechanical shakers). We include a discussion on fractional (rational) damping and stiffness effects on the adopted modelling. This was a plenary lecture, delivered in the event titled: Mechanics of Slender Structures, organized in Northampton, England from 21-22, September 2015.
Inferring time derivatives including cell growth rates using Gaussian processes
Swain, Peter S.; Stevenson, Keiran; Leary, Allen; Montano-Gutierrez, Luis F.; Clark, Ivan B. N.; Vogel, Jackie; Pilizota, Teuta
2016-12-01
Often the time derivative of a measured variable is of as much interest as the variable itself. For a growing population of biological cells, for example, the population's growth rate is typically more important than its size. Here we introduce a non-parametric method to infer first and second time derivatives as a function of time from time-series data. Our approach is based on Gaussian processes and applies to a wide range of data. In tests, the method is at least as accurate as others, but has several advantages: it estimates errors both in the inference and in any summary statistics, such as lag times, and allows interpolation with the corresponding error estimation. As illustrations, we infer growth rates of microbial cells, the rate of assembly of an amyloid fibril and both the speed and acceleration of two separating spindle pole bodies. Our algorithm should thus be broadly applicable.
Directory of Open Access Journals (Sweden)
Hyun-Seob Song
2013-09-01
Full Text Available The nonlinear behavior of metabolic systems can arise from at least two different sources. One comes from the nonlinear kinetics of chemical reactions in metabolism and the other from nonlinearity associated with regulatory processes. Consequently, organisms at a constant growth rate (as experienced in a chemostat could display multiple metabolic states or display complex oscillatory behavior both with potentially serious implications to process operation. This paper explores the nonlinear behavior of a metabolic model of Escherichia coli growth on mixed substrates with sufficient detail to include regulatory features through the cybernetic postulate that metabolic regulation is the consequence of a dynamic objective function ensuring the organism’s survival. The chief source of nonlinearity arises from the optimal formulation with the metabolic state determined by a convex combination of reactions contributing to the objective function. The model for anaerobic growth of E. coli was previously examined for multiple steady states in a chemostat fed by a mixture of glucose and pyruvate substrates under very specific conditions and experimentally verified. In this article, we explore the foregoing model for nonlinear behavior over the full range of parameters, γ (the fractional concentration of glucose in the feed mixture and D (the dilution rate. The observed multiplicity is in the cybernetic variables combining elementary modes. The results show steady-state multiplicity up to seven. No Hopf bifurcation was encountered, however. Bifurcation analysis of cybernetic models is complicated by the non-differentiability of the cybernetic variables for enzyme activities. A methodology is adopted here to overcome this problem, which is applicable to more complicated metabolic networks.
Nonlinear model predictive control for chemical looping process
Energy Technology Data Exchange (ETDEWEB)
Joshi, Abhinaya; Lei, Hao; Lou, Xinsheng
2017-08-22
A control system for optimizing a chemical looping ("CL") plant includes a reduced order mathematical model ("ROM") that is designed by eliminating mathematical terms that have minimal effect on the outcome. A non-linear optimizer provides various inputs to the ROM and monitors the outputs to determine the optimum inputs that are then provided to the CL plant. An estimator estimates the values of various internal state variables of the CL plant. The system has one structure adapted to control a CL plant that only provides pressure measurements in the CL loops A and B, a second structure adapted to a CL plant that provides pressure measurements and solid levels in both loops A, and B, and a third structure adapted to control a CL plant that provides full information on internal state variables. A final structure provides a neural network NMPC controller to control operation of loops A and B.
Nonlinear calibration and data processing of the solar radio burst
Institute of Scientific and Technical Information of China (English)
颜毅华; 谭程明; 徐龙; 姬慧荣; 傅其骏; 宋国乡
2002-01-01
The processes of the sudden energy release and energy transfer, and particle accelerations are the most challenge fundamental problems in solar physics as well as in astrophysics. Nowadays, there has been no direct measurement of the plasma parameters and magnetic fields at the coronal energy release site. Under the certain hypothesis of radiation mechanism and transmission process, radio measurement is almost the only method to diagnose coronal magnetic field. The broadband dynamic solar radio spectrometer that has been finished recently in China has higher time and frequency resolutions. Thus it plays an important role during the research of the 23rd solar cycle in China. Sometimes when there were very large bursts, the spectrometer will be overflowed. It needs to take some special process to discriminate the instrument and interference effects from solar burst signals. According to the characteristic of the solar radio broadband dynamic spectrometer, we developed a nonlinear calibration method to deal with the overflow of instrument, and introduced channel-modification method to deal with images. Finally the interference is eliminated with the help of the wavelet method. Here we take the analysis of the well-known solar-terrestrial event on July 14th, 2000 as the example. It shows the feasibility and validity of the method mentioned above. These methods can also be applied to other issues.
Nonlinear software sensor for monitoring genetic regulation processes with noise and modeling errors
Ibarra-Junquera, V; Rosu, H C; Arguello, G; Collado-Vides, J
2004-01-01
Nonlinear control techniques by means of a software sensor that are commonly used in chemical engineering could be also applied to genetic regulation processes. We provide here a realistic formulation of this procedure by introducing an additive white Gaussian noise, which is usually found in experimental data. Besides, we include model errors, meaning that we assume we do not know the nonlinear regulation function of the process. In order to illustrate this procedure, we employ the Goodwin dynamics of the concentrations (1963) in the simple form recently discussed by De Jong (2002), which involves the dynamics of the mRNA a, given protein A, and metabolite K concentrations. However instead of considering their full dynamics, we use only the data of metabolite K and a designed software sensor. We also show, more generally, that it is possible to rebuild the complete set of n concentrations despite the uncertainties in the regulation function and the perturbation due to the additive white Gaussian noise
The SPH approach to the process of container filling based on non-linear constitutive models
Institute of Scientific and Technical Information of China (English)
Tao Jiang; Jie Ouyang; Lin Zhang; Jin-Lian Ren
2012-01-01
In this work,the transient free surface of container filling with non-linear constitutive equation's fluids is numerically investigated by the smoothed particle hydrodynamics (SPH) method.Specifically,the filling process of a square container is considered for non-linear polymer fluids based on the Cross model.The validity of the presented SPH is first verified by solving the Newtonian fluid and OldroydB fluid jet.Various phenomena in the filling process are shown,including the jet buckling,jet thinning,splashing or spluttering,steady filling.Moreover,a new phenomenon of vortex whirling is more evidently observed for the Cross model fluid compared with the Newtonian fluid case.
Institute of Scientific and Technical Information of China (English)
WANG Yan-bo; BAO Gang
2008-01-01
By applying a nonlinear control and arranging a transient process, the initiative error of the pneumatic servo positioning system is reduced largely, and a larger gain of the controller is used to improve the responding speed of the system at the same damping ratio. Therefore, a compromise is made among the responding speed, overshoot, robustness, adaptability and stability. In addition, a dynamic output feedback controller, including position velocity and acceleration (PVA) feedback, is designed to improve the performance of the system. And a nonlinear controller is reconstructed based on the linear output feedback controller to decrease noises and disturbances. The dynamic responses of the system are simulated and tested. Results show that the error is kept within 0.02 mm under different mass loads and the positioning transient process is smooth, without overshoot and speedy.
Ozguven, H. Nevzat
1991-01-01
A six-degree-of-freedom nonlinear semi-definite model with time varying mesh stiffness has been developed for the dynamic analysis of spur gears. The model includes a spur gear pair, two shafts, two inertias representing load and prime mover, and bearings. As the shaft and bearing dynamics have also been considered in the model, the effect of lateral-torsional vibration coupling on the dynamics of gears can be studied. In the nonlinear model developed several factors such as time varying mesh stiffness and damping, separation of teeth, backlash, single- and double-sided impacts, various gear errors and profile modifications have been considered. The dynamic response to internal excitation has been calculated by using the 'static transmission error method' developed. The software prepared (DYTEM) employs the digital simulation technique for the solution, and is capable of calculating dynamic tooth and mesh forces, dynamic factors for pinion and gear, dynamic transmission error, dynamic bearing forces and torsions of shafts. Numerical examples are given in order to demonstrate the effect of shaft and bearing dynamics on gear dynamics.
Özgüven, H. N.
1991-03-01
A six-degree-of-freedom non-linear semi-definite model with time varying mesh stiffness has been developed for the dynamic analysis of spur gears. The model includes a spur gear pair, two shafts, two inertias representing load and prime mover, and bearings. As the shaft and bearing dynamics have also been considered in the model, the effect of lateral-torsional vibration coupling on the dynamics of gears can be studied. In the non-linear model developed several factors such as time varying mesh stiffness and damping, separation of teeth, backlash, single- and double-sided impacts, various gear errors and profile modifications have been considered. The dynamic response to internal excitation has been calculated by using the "static transmission error method" developed. The software prepared (DYTEM) employs the digital simulation technique for the solution, and is capable of calculating dynamic tooth and mesh forces, dynamic factors for pinion and gear, dynamic transmission error, dynamic bearing forces and torsions of shafts. Numerical examples are given in order to demonstrate the effect of shaft and bearing dynamics on gear dynamics.
Design and implementation of non-linear image processing functions for CMOS image sensor
Musa, Purnawarman; Sudiro, Sunny A.; Wibowo, Eri P.; Harmanto, Suryadi; Paindavoine, Michel
2012-11-01
Today, solid state image sensors are used in many applications like in mobile phones, video surveillance systems, embedded medical imaging and industrial vision systems. These image sensors require the integration in the focal plane (or near the focal plane) of complex image processing algorithms. Such devices must meet the constraints related to the quality of acquired images, speed and performance of embedded processing, as well as low power consumption. To achieve these objectives, low-level analog processing allows extracting the useful information in the scene directly. For example, edge detection step followed by a local maxima extraction will facilitate the high-level processing like objects pattern recognition in a visual scene. Our goal was to design an intelligent image sensor prototype achieving high-speed image acquisition and non-linear image processing (like local minima and maxima calculations). For this purpose, we present in this article the design and test of a 64×64 pixels image sensor built in a standard CMOS Technology 0.35 μm including non-linear image processing. The architecture of our sensor, named nLiRIC (non-Linear Rapid Image Capture), is based on the implementation of an analog Minima/Maxima Unit. This MMU calculates the minimum and maximum values (non-linear functions), in real time, in a 2×2 pixels neighbourhood. Each MMU needs 52 transistors and the pitch of one pixel is 40×40 mu m. The total area of the 64×64 pixels is 12.5mm2. Our tests have shown the validity of the main functions of our new image sensor like fast image acquisition (10K frames per second), minima/maxima calculations in less then one ms.
Nonlinear closure relations theory for transport processes in nonequilibrium systems.
Sonnino, Giorgio
2009-05-01
A decade ago, a macroscopic theory for closure relations has been proposed for systems out of Onsager's region. This theory is referred to as the thermodynamic field theory (TFT). The aim of this work was to determine the nonlinear flux-force relations that respect the thermodynamic theorems for systems far from equilibrium. We propose a formulation of the TFT where one of the basic restrictions, namely, the closed-form solution for the skew-symmetric piece of the transport coefficients, has been removed. In addition, the general covariance principle is replaced by the De Donder-Prigogine thermodynamic covariance principle (TCP). The introduction of TCP requires the application of an appropriate mathematical formalism, which is referred to as the entropy-covariant formalism. By geometrical arguments, we prove the validity of the Glansdorff-Prigogine universal criterion of evolution. A new set of closure equations determining the nonlinear corrections to the linear ("Onsager") transport coefficients is also derived. The geometry of the thermodynamic space is non-Riemannian. However, it tends to be Riemannian for high values of the entropy production. In this limit, we recover the transport equations found by the old theory. Applications of our approach to transport in magnetically confined plasmas, materials submitted to temperature, and electric potential gradients or to unimolecular triangular chemical reactions can be found at references cited herein. Transport processes in tokamak plasmas are of particular interest. In this case, even in the absence of turbulence, the state of the plasma remains close to (but, it is not in) a state of local equilibrium. This prevents the transport relations from being linear.
Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides
DEFF Research Database (Denmark)
Kuyken, B.; Ji, Hua; Clemmen, S.
2011-01-01
We propose hydrogenated amorphous silicon nanowires as a platform for nonlinear optics in the telecommunication wavelength range. Extraction of the nonlinear parameter of these photonic nanowires reveals a figure of merit larger than 2. It is observed that the nonlinear optical properties...... of these waveguides degrade with time, but that this degradation can be reversed by annealing the samples. A four wave mixing conversion efficiency of + 12 dB is demonstrated in a 320 Gbit/s serial optical waveform data sampling experiment in a 4 mm long photonic nanowire....
Bykov, Andrei M; Osipov, Sergei M; Vladimirov, Andrey E
2014-01-01
We present a nonlinear Monte Carlo model of efficient diffusive shock acceleration (DSA) where the magnetic turbulence responsible for particle diffusion is calculated self-consistently from the resonant cosmic-ray (CR) streaming instability, together with non-resonant short- and long-wavelength CR-current-driven instabilities. We include the backpressure from CRs interacting with the strongly amplified magnetic turbulence which decelerates and heats the super-alfvenic flow in the extended shock precursor. Uniquely, in our plane-parallel, steady-state, multi-scale model, the full range of particles, from thermal (~eV) injected at the viscous subshock, to the escape of the highest energy CRs (~PeV) from the shock precursor, are calculated consistently with the shock structure, precursor heating, magnetic field amplification (MFA), and scattering center drift relative to the background plasma. In addition, we show how the cascade of turbulence to shorter wavelengths influences the total shock compression, the d...
All-optical signal processing in quadratic nonlinear materials
DEFF Research Database (Denmark)
Johansen, Steffen Kjær
2002-01-01
of materials with a second order nonlinearity, the so-called X(2) materials, is faster and stronger than that of more conventional materials with a cubic nonlinearity. The X(2) materials support spatial solitons consisting of two coupled components, the fundamental wave (FW) and its second harmonic (SH......). During this project the interaction between such spatial solitons has been investigated theoretically through perturbation theory and experimentally via numerical simulations. The outcome of this research isnew theoretical tools for quantitatively predicting the escape angle, i.e. the angle of incidence...... and exploitation of these cubic nonlinearities in two-period QPM wave-guides has been another area of investigation. Introducing the second period might make practical engineering of the nonlinearities possible. A major result is the discovery that cubic nonlinearities leads to an enhancement of the bandwidth...
Institute of Scientific and Technical Information of China (English)
Zhiyun Zou; Dandan Zhao; Xinghong Liu; Yuqing Guo; Chen Guan; Wenqiang Feng; Ning Guo
2015-01-01
By taking advantage of the separation characteristics of nonlinear gain and dynamic sector inside a Hammerstein model, a novel pole placement self tuning control scheme for nonlinear Hammerstein system was put forward based on the linear system pole placement self tuning control algorithm. And the nonlinear Hammerstein system pole placement self tuning control (NL-PP-STC) algorithm was presented in detail. The identification ability of its parameter estimation algorithm of NL-PP-STC was analyzed, which was always identifiable in closed loop. Two particular problems including the selection of poles and the on-line estimation of model parameters, which may be met in applications of NL-PP-STC to real process control, were discussed. The control simulation of a strong nonlinear pH neutralization process was carried out and good control performance was achieved.
1989-10-30
In this Phase I SBIR study, new methods are developed for the system identification and stochastic filtering of nonlinear controlled Markov processes...state space Markov process models and canonical variate analysis (CVA) for obtaining optimal nonlinear procedures for system identification and stochastic
Application of Novel Nonlinear Optical Materials to Optical Processing
Banerjee, Partha P.
1999-01-01
We describe wave mixing and interactions in nonlinear photorefractive polymers and disodium flourescein. Higher diffracted orders yielding forward phase conjugation can be generated in a two-wave mixing geometry in photorefractive polymers, and this higher order can be used for image edge enhancement and correlation. Four-wave mixing and phase conjugation is studied using nonlinear disodium floureschein, and the nature and properties of gratings written in this material are investigated.
Ultrafast nonlinear optical processes in metal-dielectric nanocomposites and nanostructures
Energy Technology Data Exchange (ETDEWEB)
Kim, Kwang-Hyon
2012-04-13
This work reports results of a theoretical study of nonlinear optical processes in metal-dielectric nanocomposites used for the increase of the nonlinear coefficients and for plasmonic field enhancement. The main results include the study of the transient saturable nonlinearity in dielectric composites doped with metal nanoparticles, its physical mechanism as well its applications in nonlinear optics. For the study of the transient response, a time-depending equation for the dielectric function of the nanocomposite using the semi-classical two-temperature model is derived. By using this approach, we study the transient nonlinear characteristics of these materials in comparison with preceding experimental measurements. The results show that these materials behave as efficient saturable absorbers for passive mode-locking of lasers in the spectral range from the visible to near IR. We present results for the modelocked dynamics in short-wavelength solid-state and semiconductor disk lasers; in this spectral range other efficient saturable absorbers do not exist. We suggest a new mechanism for the realization of slow light phenomenon by using glasses doped with metal nanoparticles in a pump-probe regime near the plasmonic resonance. Furthermore, we study femtosecond plasmon generation by mode-locked surface plasmon polariton lasers with Bragg reflectors and metal-gain-absorber layered structures. In the final part of the thesis, we present results for high-order harmonic generation near a metallic fractal rough surface. The results show a possible reduction of the pump intensities by three orders of magnitudes and two orders of magnitudes higher efficiency compared with preceding experimental results by using bow-tie nanostructures.
Nonlinear Model Algorithmic Control of a pH Neutralization Process
Institute of Scientific and Technical Information of China (English)
ZOU Zhiyun; YU Meng; WANG Zhizhen; LIU Xinghong; GUO Yuqing; ZHANG Fengbo; GUO Ning
2013-01-01
Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity.In this paper,the model algorithmic control (MAC) strategy is extended to nonlinear processes using Hammerstein model that consists of a static nonlinear polynomial function followed in series by a linear impulse response dynamic element.A new nonlinear Hammerstein MAC algorithm (named NLH-MAC) is presented in detail.The simulation control results of a pH neutralization process show that NLH-MAC gives better control performance than linear MAC and the commonly used industrial nonlinear propotional plus integral plus derivative (PID) controller.Further simulation experiment demonstrates that NLH-MAC not only gives good control response,but also possesses good stability and robustness even with large modeling errors.
Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy
Wise, Frank W.
2012-01-01
Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse-shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging. PMID:23869163
Gómez-Polo, C.; Duque, J. G. S.; Knobel, M.
2004-07-01
The magnetoimpedance effect and its nonlinear terms are analysed for a (Co0.94Fe0.06)72.5Si12.5B15 amorphous wire. In order to enhance the nonlinear contribution the sample was previously subjected to current annealing (Joule heating) to induce a circumferential anisotropy. The effect of the application of a torsional strain on the nonlinear magnetoimpedance is analysed in terms of the torsional dependence of the magnetic permeability, evaluated through experimental circumferential hysteresis loops. The results obtained clearly confirm the direct correlation between the asymmetric circumferential magnetization process and the occurrence of nonlinear second-harmonic terms in the magnetoimpedance voltage.
Neural Generalized Predictive Control of a non-linear Process
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole
1998-01-01
qualities. The controller is a non-linear version of the well-known generalized predictive controller developed in linear control theory. It involves minimization of a cost function which in the present case has to be done numerically. Therefore, we develop the numerical algorithms necessary in substantial...
Fan, Ting-Bo; Liu, Zhen-Bo; Zhang, Zhe; Zhang, Dong; Gong, Xiu-Fen
2009-08-01
A theoretical model of the nonlinear propagation in multi-layered tissues for strong focused ultrasound is proposed. In this model, the spheroidal beam equation (SBE) is utilized to describe the nonlinear sound propagation in each layer tissue, and generalized oblique incidence theory is used to deal with the sound transmission between two layer tissues. Computer simulation is performed on a fat-muscle-liver tissue model under the irradiation of a 1 MHz focused transducer with a large aperture angle of 35°. The results demonstrate that the tissue layer would change the amplitude of sound pressure at the focal region and cause the increase of side petals.
Photonic Crystal Nanocavity Devices for Nonlinear Signal Processing
DEFF Research Database (Denmark)
Yu, Yi
, membranization of InP/InGaAs structure and wet etching. Experimental investigation of the switching dynamics of InP photonic crystal nanocavity structures are carried out using short-pulse homodyne pump-probe techniques, both in the linear and nonlinear region where the cavity is perturbed by a relatively small......This thesis deals with the investigation of InP material based photonic crystal cavity membrane structures, both experimentally and theoretically. The work emphasizes on the understanding of the physics underlying the structures’ nonlinear properties and their applications for all-optical signal...... and large pump power. The experimental results are compared with coupled mode equations developed based on the first order perturbation theory, and carrier rate equations we established for the dynamics of the carrier density governing the cavity properties. The experimental observations show a good...
Neural Generalized Predictive Control of a non-linear Process
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole
1998-01-01
The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability...... detail and discuss the implementation difficulties. The neural generalized predictive controller is tested on a pneumatic servo sys-tem....
Estimation and filtering of nonlinear systems application to a waste-water treatment process
Energy Technology Data Exchange (ETDEWEB)
Ben Youssef, C.; Dahhou, B. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France). Lab. d`Automatique et d`Analyse des Systemes]|[Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France); Zeng, F.Y.; Rols, J.L. [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France)
1994-04-01
A fundamental task in design and control of biotechnological processes is system modelling. This task is made difficult by the scarceness of on-line direct sensors for some key variables and by the fact that identifiability of models including Michaelis-Menten type of nonlinearities is not straightforward. The use of adaptive estimation approaches constitutes an interesting alternative to circumvent these kind of problems. This paper discusses an identification technique derived to solve the problem of estimating simultaneously inaccessible state variables and time-varying parameters of a nonlinear wastewater treatment process. An extended linearization technique using Kronecker`s calculation provides the error model of the joint observer-estimator procedure which convergence is proved via Lyapunov`s method. Sufficient conditions for stability of this joint identification scheme are given and discussed according to the persistence excitation conditions of the signals. A simulation study with measurement noises and abrupt jumps of the process parameters shows the feasibility and significant robustness of the proposed adaptive estimation methodologies. (author). (author). 10 refs., 3 figs.
2015-09-17
processing - optical frequency conversion and optical DSB -to-SSB conversion 5a. CONTRACT NUMBER FA2386-14-1-0006 5b. GRANT NUMBER Grant 134113...nonlinear dynamics of semiconductor lasers for certain optical signal processing functionalities, including optical DSB -to-SSB conversion, photonic...conversion and optical DSB -to-SSB conversion Performance Period May 30, 2014 ~ May 29, 2015 Principal Investigator Name: Sheng-Kwang Hwang Position
Real-Time Implementation of Nonlinear Optical Processing Functions.
1986-09-30
demonstrating that the memory is nonlinear and selective. The recording medium could be replaced with real-time media such as photorefractive crystals. Thicker...recording media Fi4 4. Schematic of experiment that d,.non* trated ,,pera have the added advantage of higher angular selectiv- "" . e e r aity. thus... geometrica snapes in contact ’A,.n a c-:’:ser ’Figure 51a’ ., and a spher:cal 4:verg.ng reference -eam Upion :"um’latlon of t -" c-’gram by the object beam
Nonlinear software sensor for monitoring genetic regulation processes with noise and modeling errors
Ibarra-Junquera, V.; Torres, L. A.; Rosu, H. C.; Argüello, G.; Collado-Vides, J.
2005-07-01
Nonlinear control techniques by means of a software sensor that are commonly used in chemical engineering could be also applied to genetic regulation processes. We provide here a realistic formulation of this procedure by introducing an additive white Gaussian noise, which is usually found in experimental data. Besides, we include model errors, meaning that we assume we do not know the nonlinear regulation function of the process. In order to illustrate this procedure, we employ the Goodwin dynamics of the concentrations [B. C. Goodwin, Temporal Oscillations in Cells (Academic, New York, 1963)] in the simple form recently applied to single gene systems and some operon cases [H. De Jong, J. Comput. Biol. 9, 67 (2002)], which involves the dynamics of the mRNA, given protein and metabolite concentrations. Further, we present results for a three gene case in coregulated sets of transcription units as they occur in prokaryotes. However, instead of considering their full dynamics, we use only the data of the metabolites and a designed software sensor. We also show, more generally, that it is possible to rebuild the complete set of nonmeasured concentrations despite the uncertainties in the regulation function or, even more, in the case of not knowing the mRNA dynamics. In addition, the rebuilding of concentrations is not affected by the perturbation due to the additive white Gaussian noise and also we managed to filter the noisy output of the biological system.
Directory of Open Access Journals (Sweden)
L. F. Kong
2013-01-01
Full Text Available This paper presents a method to enhance computational efficiency of the nonlinear dynamic analysis of the large-scale deep-hole drilling machine. Based on finite element model, the drilling shaft system is constructed into Timoshenko beam element on the basis of flexible rotary shaft so as to increase the accuracy of numerical calculation. In order to save the calculation time and resources, modal synthesis technique is adopted to reduce the feature modal of linear freedom degrees of drilling shaft system. As a result, the accuracy required by the non-linear analysis will not be loss. On the basis of these, the whirling characteristics of drilling shaft system are studied under the conditions of different shaft lengths, and simultaneously, the stability patterns of drilling shaft motion and its stability region are obtained in the selected drilling depth and cutting speed parameters while drilling intersection holes.
Berjamin, Harold; Vergez, Christophe; Cottanceau, Emmanuel
2015-01-01
A time-domain numerical modeling of brass instruments is proposed. On one hand, outgoing and incoming waves in the resonator are described by the Menguy-Gilbert model, which incorporates three key issues: nonlinear wave propagation, viscothermal losses, and a variable section. The non-linear propagation is simulated by a TVD scheme well-suited to non-smooth waves. The fractional derivatives induced by the viscothermal losses are replaced by a set of local-in-time memory variables. A splitting strategy is followed to couple optimally these dedicated methods. On the other hand, the exciter is described by a one-mass model for the lips. The Newmark method is used to integrate the nonlinear ordinary differential equation so-obtained. At each time step, a coupling is performed between the pressure in the tube and the displacement of the lips. Finally, an extensive set of validation tests is successfully completed. In particular, self-sustained oscillations of the lips are simulated by taking into account the nonli...
Approaches to handle nonlinearities and nonnormalities in process chemometrics
Thissen, Uwe Maria Johannes
2004-01-01
For every industrial process, it is of paramount interest to online monitor the performance of the process and to assess the quality of the products made. In order to meet these goals, the field of process control works on understanding and improving industrial processes. Process chemometrics can be
Frazier, D. O.; Penn, B. G.; Witherow, W. K.; Paley, M. S.
1991-01-01
Research on the growth of second- and third-order nonlinear optical (NLO) organic thin film by vapor deposition is reviewed. Particular attention is given to the experimental methods for growing thin films of p-chlorophenylurea, diacetylenes, and phthalocyanines; characteristics of the resulting films; and approaches for advancing thin film technology. It is concluded that the growth of NLO thin films by vapor processes is a promising method for the fabrication of planar waveguides for nonlinear optical devices. Two innovative approaches are proposed including a method of controlling the input beam frequency to maximize nonlinear effects in thin films and single crystals, and the alternate approach to the molecular design of organic NLO materials by increasing the transition dipole moment between ground and excited states of the molecule.
A nonlinear optoelectronic filter for electronic signal processing
Loh, William; Yegnanarayanan, Siva; Ram, Rajeev J.; Juodawlkis, Paul W.
2014-01-01
The conversion of electrical signals into modulated optical waves and back into electrical signals provides the capacity for low-loss radio-frequency (RF) signal transfer over optical fiber. Here, we show that the unique properties of this microwave-photonic link also enable the manipulation of RF signals beyond what is possible in conventional systems. We achieve these capabilities by realizing a novel nonlinear filter, which acts to suppress a stronger RF signal in the presence of a weaker signal independent of their separation in frequency. Using this filter, we demonstrate a relative suppression of 56 dB for a stronger signal having a 1-GHz center frequency, uncovering the presence of otherwise undetectable weaker signals located as close as 3.5 Hz away. The capabilities of the optoelectronic filter break the conventional limits of signal detection, opening up new possibilities for radar and communication systems, and for the field of precision frequency metrology. PMID:24402418
Institute of Scientific and Technical Information of China (English)
Yun Li; Hiroshi Kashiwagi
2005-01-01
Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but existing design and implementation methods are restricted to linear process models. A chemical process, however, involves severe nonlinearity which cannot be ignored in practice. This paper aims to solve this nonlinear control problem by extending MPC to accommodate nonlinear models. It develops an analytical framework for nonlinear model predictive control (NMPC). It also offers a third-order Volterra series based nonparametric nonlinear modelling technique for NMPC design, which relieves practising engineers from the need for deriving a physical-principles based model first. An on-line realisation technique for implementing NMPC is then developed and applied to a Mitsubishi Chemicals polymerisation reaction process. Results show that this nonlinear MPC technique is feasible and very effective. It considerably outperforms linear and low-order Volterra model based methods. The advantages of the developed approach lie not only in control performance superior to existing NMPC methods, but also in eliminating the need for converting an analytical model and then convert it to a Volterra model obtainable only up to the second order.
Lavdas, Spyros; You, Jie; Osgood, Richard M.; Panoiu, Nicolae C.
2015-08-01
We present recent results pertaining to pulse reshaping and optical signal processing using optical nonlinearities of silicon-based tapered photonic wires and photonic crystal waveguides. In particular, we show how nonlinearity and dispersion engineering of tapered photonic wires can be employed to generate optical similaritons and achieve more than 10× pulse compression. We also discuss the properties of four-wave mixing pulse amplification and frequency conversion efficiency in long-period Bragg waveguides and photonic crystal waveguides. Finally, the influence of linear and nonlinear optical effects on the transmission bit-error rate in uniform photonic wires and photonic crystal waveguides made of silicon is discussed.
Bell, Iris R; Sarter, Barbara; Standish, Leanna J; Banerji, Prasanta; Banerji, Pratip
2015-06-01
The purpose of the present paper is to (a) summarize evidence for the nanoparticle nature and biological effects of traditional homeopathically-prepared medicines at low and ultralow doses; (b) provide details of historically-based homeopathic green manufacturing materials and methods, relating them to top-down mechanical attrition and plant-based biosynthetic processes in modern nanotechnology; (c) outline the potential roles of nonlinear dose-responses and dynamical interactions with complex adaptive systems in generating endogenous amplification processes during low dose treatment. Possible mechanisms of low dose effects, for which there is evidence involving nanoparticles and/or homeopathically-manufactured medicines, include hormesis, time-dependent sensitization, and stochastic resonance. All of the proposed mechanisms depend upon endogenous nonlinear amplification processes in the recipient organism in interaction with the salient, albeit weak signal properties of the medicine. Conventional ligand-receptor mechanisms relevant to higher doses are less likely involved. Effects, especially for homeopathically-prepared nanophytomedicines, include bidirectional host state-dependent changes in function. Homeopathic clinicians report successful treatment of serious infections and cancers. Preclinical biological evidence is consistent with such claims. Controlled biological data on homeopathically-prepared medicines indicate modulation of gene expression and biological signaling pathways regulating cell cycles, immune reactions, and central nervous system function from studies on cells, animals, and human subjects. As a 200-year old system of traditional medicine used by millions of people worldwide, homeopathy offers a pulsed low dose treatment strategy and strong safety record to facilitate progress in translational nanomedicine with plants and other natural products. In turn, modern nanotechnology methods can improve homeopathic manufacturing procedures
Blind Image Deblurring Driven by Nonlinear Processing in the Edge Domain
Directory of Open Access Journals (Sweden)
Stefania Colonnese
2004-12-01
Full Text Available This work addresses the problem of blind image deblurring, that is, of recovering an original image observed through one or more unknown linear channels and corrupted by additive noise. We resort to an iterative algorithm, belonging to the class of Bussgang algorithms, based on alternating a linear and a nonlinear image estimation stage. In detail, we investigate the design of a novel nonlinear processing acting on the Radon transform of the image edges. This choice is motivated by the fact that the Radon transform of the image edges well describes the structural image features and the effect of blur, thus simplifying the nonlinearity design. The effect of the nonlinear processing is to thin the blurred image edges and to drive the overall blind restoration algorithm to a sharp, focused image. The performance of the algorithm is assessed by experimental results pertaining to restoration of blurred natural images.
Slow and fast light using nonlinear processes in semiconductor optical amplifiers
Pesala, Bala Subrahmanyam
Ability to control the velocity of light is usually referred to as slow or fast light depending on whether the group velocity of light is reduced or increased. The slowing of light as it passes through the glass to 2/3rd its original value is a well known phenomenon. This slowing down happens due to the interaction of light with the electrons in the medium. As a general principle, stronger the interaction, larger is the reduction in velocity. Recently, a fascinating field has emerged with the objective of not only slowing down the velocity of light but also speeding it up as it goes through the medium by enhancing light-matter interaction. This unprecedented control opens up several exciting applications in various scientific disciplines ranging from nonlinear science, RF photonics to all-optical networks. Initial experiments succeeded in reducing the velocity of light more than a million times to a very impressive 17 m/s. This speed reduction is extremely useful to enhance various nonlinear processes. For RF photonic applications including phased array antennas and tunable filters, control of phase velocity of light is required while control of group velocity serves various functionalities including packet synchronization and contention resolution in an optical buffer. Within the last 10 years, several material systems have been proposed and investigated for this purpose. Schemes based on semiconductor systems for achieving slow and fast light has the advantage of extremely high speed and electrical control. In addition, they are compact, operate at room temperature and can be easily integrated with other optical subsystems. In this work, we propose to use nonlinear processes in semiconductor optical amplifiers (SOAs) for the purpose of controlling the velocity of light. The versatility of the physical processes present in SOAs enables the control of optical signals ranging from 1GHz to larger than 1000 GHz (1 THz). First, we experimentally demonstrate both
Data Analysis Techniques for Resolving Nonlinear Processes in Plasmas : a Review
de Wit, T. Dudok
1996-01-01
The growing need for a better understanding of nonlinear processes in plasma physics has in the last decades stimulated the development of new and more advanced data analysis techniques. This review lists some of the basic properties one may wish to infer from a data set and then presents appropriate analysis techniques with some recent applications. The emphasis is put on the investigation of nonlinear wave phenomena and turbulence in space plasmas.
Simulations of the Ocean Response to a Hurricane: Nonlinear Processes
Zedler, Sarah E.
2009-10-01
Superinertial internal waves generated by a tropical cyclone can propagate vertically and laterally away from their local generation site and break, contributing to turbulent vertical mixing in the deep ocean and maintenance of the stratification of the main thermocline. In this paper, the results of a modeling study are reported to investigate the mechanism by which superinertial fluctuations are generated in the deep ocean. The general properties of the superinertial wave wake were also characterized as a function of storm speed and central latitude. The Massachusetts Institute of Technology (MIT) Ocean General Circulation Model (OGCM) was used to simulate the open ocean response to realistic westward-tracking hurricane-type surface wind stress and heat and net freshwater buoyancy forcing for regions representative of midlatitudes in the Atlantic, the Caribbean, and low latitudes in the eastern Pacific. The model had high horizontal [Δ(x, y) = 1/6°] and vertical (Δz = 5 m in top 100 m) resolution and employed a parameterization for vertical mixing induced by shear instability. In the horizontal momentum equation, the relative size of the nonlinear advection terms, which had a dominant frequency near twice the inertial, was large only in the upper 200 m of water. Below 200 m, the linear momentum equations obeyed a linear balance to 2%. Fluctuations at nearly twice the inertial frequency (2f) were prevalent throughout the depth of the water column, indicating that these nonlinear advection terms in the upper 200 m forced a linear mode below at nearly twice the inertial frequency via vorticity conservation. Maximum variance at 2f in horizontal velocity occurred on the south side of the track. This was in response to vertical advection of northward momentum, which in the north momentum equation is an oscillatory positive definite term that constituted a net force to the south at a frequency near 2f. The ratio of this term to the Coriolis force was larger on the
Nonlinearities in the quantum measurement process of superconducting qubits
Energy Technology Data Exchange (ETDEWEB)
Serban, Ioana
2008-05-15
The work described in this thesis focuses on the investigation of decoherence and measurement backaction, on the theoretical description of measurement schemes and their improvement. The study presented here is centered around quantum computing implementations using superconducting devices and most important, the Josephson effect. The measured system is invariantly a qubit, i. e. a two-level system. The objective is to study detectors with increasing nonlinearity, e. g. coupling of the qubit to the frequency a driven oscillator, or to the bifurcation amplifier, to determine the performance and backaction of the detector on the measured system and to investigate the importance of a strong qubit-detector coupling for the achievement of a quantum non-demolition type of detection. The first part gives a very basic introduction to quantum information, briefly reviews some of the most promising physical implementations of a quantum computer before focusing on the superconducting devices. The second part presents a series of studies of different qubit measurements, describing the backaction of the measurement onto the measured system and the internal dynamics of the detector. Methodology adapted from quantum optics and chemical physics (master equations, phase-space analysis etc.) combined with the representation of a complex environment yielded a tool capable of describing a nonlinear, non-Markovian environment, which couples arbitrarily strongly to the measured system. This is described in chapter 3. Chapter 4 focuses on the backaction on the qubit and presents novel insights into the qubit dephasing in the strong coupling regime. Chapter 5 uses basically the same system and technical tools to explore the potential of a fast, strong, indirect measurement, and determine how close such a detection would ideally come to the quantum non-demolition regime. Chapter 6 focuses on the internal dynamics of a strongly driven Josephson junction. The analytical results are based on
Kannan, Rohit; Tangirala, Arun K.
2014-06-01
Identification of directional influences in multivariate systems is of prime importance in several applications of engineering and sciences such as plant topology reconstruction, fault detection and diagnosis, and neurosciences. A spectrum of related directionality measures, ranging from linear measures such as partial directed coherence (PDC) to nonlinear measures such as transfer entropy, have emerged over the past two decades. The PDC-based technique is simple and effective, but being a linear directionality measure has limited applicability. On the other hand, transfer entropy, despite being a robust nonlinear measure, is computationally intensive and practically implementable only for bivariate processes. The objective of this work is to develop a nonlinear directionality measure, termed as KPDC, that possesses the simplicity of PDC but is still applicable to nonlinear processes. The technique is founded on a nonlinear measure called correntropy, a recently proposed generalized correlation measure. The proposed method is equivalent to constructing PDC in a kernel space where the PDC is estimated using a vector autoregressive model built on correntropy. A consistent estimator of the KPDC is developed and important theoretical results are established. A permutation scheme combined with the sequential Bonferroni procedure is proposed for testing hypothesis on absence of causality. It is demonstrated through several case studies that the proposed methodology effectively detects Granger causality in nonlinear processes.
Institute of Scientific and Technical Information of China (English)
TAO Hua-xue (陶华学); GUO Jin-yun (郭金运)
2003-01-01
Data are very important to build the digital mine. Data come from many sources, have different types and temporal states. Relations between one class of data and the other one, or between data and unknown parameters are more nonlinear. The unknown parameters are non-random or random, among which the random parameters often dynamically vary with time. Therefore it is not accurate and reliable to process the data in building the digital mine with the classical least squares method or the method of the common nonlinear least squares. So a generalized nonlinear dynamic least squares method to process data in building the digital mine is put forward. In the meantime, the corresponding mathematical model is also given. The generalized nonlinear least squares problem is more complex than the common nonlinear least squares problem and its solution is more difficultly obtained because the dimensions of data and parameters in the former are bigger. So a new solution model and the method are put forward to solve the generalized nonlinear dynamic least squares problem. In fact, the problem can be converted to two sub-problems, each of which has a single variable. That is to say, a complex problem can be separated and then solved. So the dimension of unknown parameters can be reduced to its half, which simplifies the original high dimensional equations. The method lessens the calculating load and opens up a new way to process the data in building the digital mine, which have more sources, different types and more temporal states.
McArthur, Duncan; Hourahine, Ben; Papoff, Francesco
2015-11-24
We model a scheme for the coherent control of light waves and currents in metallic nanospheres which applies independently of the nonlinear multiphoton processes at the origin of waves and currents. Using exact mathematical formulae, we calculate numerically with a custom fortran code the effect of an external control field which enable us to change the radiation pattern and suppress radiative losses or to reduce absorption, enabling the particle to behave as a perfect scatterer or as a perfect absorber. Data are provided in tabular, comma delimited value format and illustrate narrow features in the response of the particles that result in high sensitivity to small variations in the local environment, including subwavelength spatial shifts.
Rodrigo, M A; Seco, A; Ferrer, J; Penya-roja, J M; Valverde, J L
1999-01-01
In this paper, several tuning algorithms, specifically ITAE, IMC and Cohen and Coon, were applied in order to tune an activated sludge aeration PID controller. Performance results of these controllers were compared by simulation with those obtained by using a nonlinear fuzzy PID controller. In order to design this controller, a trial and error procedure was used to determine, as a function of error at current time and at a previous time, sets of parameters (including controller gain, integral time and derivative time) which achieve satisfactory response of a PID controller actuating over the aeration process. Once these sets of data were obtained, neural networks were used to obtain fuzzy membership functions and fuzzy rules of the fuzzy PID controller.
Colbert, Keegan; Naraghi, Mohammad; Boyd, James G.
2017-02-01
This paper presents a model and computational method to predict the steady-state performance of thermal flexure microactuators at high input powers and various levels of partial vacuum. The model accounts for nonlinear temperature dependence of material properties, heat loss due to radiation, and intra-device heat transfer by conduction across an air gap. The model is validated by comparing the model predictions with the experimentally measured voltage, current, and displacement at standard conditions, prior to adjusting for partial vacuum. In order to understand the effect of nonlinearities on model reliability, the predictions of six additional hypothetical models are considered where (1) intra-device heat transfer is neglected, (2) radiation is neglected, (3) the thermal conductivity of silicon is assumed to be temperature-independent, (4) the thermal conductivity of air is assumed to be temperature-independent, (5) the electrical resistivity of silicon is assumed to be linear in temperature, and (6) the thermal expansion coefficient of silicon is assumed to be temperature-independent. All factors except radiation were shown to have a significant influence on the device performance especially at high input powers. The experimentally validated full model is then employed to predict the effect of reduced air pressure on the displacement and heat transfer properties of the actuator. This aspect of the study targets applications of thermal actuators in controlled environments such as space applications, actuators used for in situ micropositioning and tensile testing inside electron microscopy chambers, or actuators incorporated into the design of MEMS resonators. It was demonstrated that the maximum actuator displacement is not a linear function of reduced pressure and that it reaches a maximum at a certain partial vacuum level.
Shinkawa, Mizuki; Ishikura, Norihiro; Hama, Yosuke; Suzuki, Keijiro; Baba, Toshihiko
2011-10-24
We have studied low-dispersion slow light and its nonlinear enhancement in photonic crystal waveguides. In this work, we fabricated the waveguides using Si CMOS-compatible process. It enables us to integrate spotsize converters, which greatly simplifies the optical coupling from fibers as well as demonstration of the nonlinear enhancement. Two-photon absorption, self-phase modulation and four-wave mixing were observed clearly for picosecond pulses in a 200-μm-long device. In comparison with Si wire waveguides, a 60-120 fold higher nonlinearity was evaluated for a group index of 51. Unique intensity response also occurred due to the specific transmission spectrum and enhanced nonlinearities. Such slow light may add various functionalities in Si photonics, while loss reduction is desired for ensuring the advantage of slow light.
Nonlinear Transport Processes in Tokamak Plasmas. Part I: The Collisional Regimes
Sonnino, Giorgio
2008-01-01
An application of the thermodynamic field theory (TFT) to transport processes in L-mode tokamak plasmas is presented. The nonlinear corrections to the linear (Onsager) transport coefficients in the collisional regimes are derived. A quite encouraging result is the appearance of an asymmetry between the Pfirsch-Schlueter (P-S) ion and electron transport coefficients: the latter presents a nonlinear correction, which is absent for the ions, and makes the radial electron coefficients much larger than the former. Explicit calculations and comparisons between the neoclassical results and the TFT predictions for JET plasmas are also reported. We found that the nonlinear electron P-S transport coefficients exceed the values provided by neoclassical theory by a factor, which may be of the order 100. The nonlinear classical coefficients exceed the neoclassical ones by a factor, which may be of order 2. The expressions of the ion transport coefficients, determined by the neoclassical theory in these two regimes, remain...
Leydesdorff, L.; Rotolo, D.; de Nooy, W.
2013-01-01
The process of innovation follows nonlinear patterns across the domains of science, technology, and the economy. Novel bibliometric mapping techniques can be used to investigate and represent distinctive, but complementary perspectives on the innovation process (e.g. ‘demand’ and ‘supply’) as well
Quasilinear Extreme Learning Machine Model Based Internal Model Control for Nonlinear Process
Directory of Open Access Journals (Sweden)
Dazi Li
2015-01-01
Full Text Available A new strategy for internal model control (IMC is proposed using a regression algorithm of quasilinear model with extreme learning machine (QL-ELM. Aimed at the chemical process with nonlinearity, the learning process of the internal model and inverse model is derived. The proposed QL-ELM is constructed as a linear ARX model with a complicated nonlinear coefficient. It shows some good approximation ability and fast convergence. The complicated coefficients are separated into two parts. The linear part is determined by recursive least square (RLS, while the nonlinear part is identified through extreme learning machine. The parameters of linear part and the output weights of ELM are estimated iteratively. The proposed internal model control is applied to CSTR process. The effectiveness and accuracy of the proposed method are extensively verified through numerical results.
A fuzzy model based adaptive PID controller design for nonlinear and uncertain processes.
Savran, Aydogan; Kahraman, Gokalp
2014-03-01
We develop a novel adaptive tuning method for classical proportional-integral-derivative (PID) controller to control nonlinear processes to adjust PID gains, a problem which is very difficult to overcome in the classical PID controllers. By incorporating classical PID control, which is well-known in industry, to the control of nonlinear processes, we introduce a method which can readily be used by the industry. In this method, controller design does not require a first principal model of the process which is usually very difficult to obtain. Instead, it depends on a fuzzy process model which is constructed from the measured input-output data of the process. A soft limiter is used to impose industrial limits on the control input. The performance of the system is successfully tested on the bioreactor, a highly nonlinear process involving instabilities. Several tests showed the method's success in tracking, robustness to noise, and adaptation properties. We as well compared our system's performance to those of a plant with altered parameters with measurement noise, and obtained less ringing and better tracking. To conclude, we present a novel adaptive control method that is built upon the well-known PID architecture that successfully controls highly nonlinear industrial processes, even under conditions such as strong parameter variations, noise, and instabilities.
How to include the nonlinear Cox-Voinov law into sloshing dynamics? A weakly non linear approach
Viola, Francesco; Brun, Pierre-Thomas; Gallaire, Francois
2015-11-01
Fluid sloshing in a glass is a common example of damped oscillator, with the frequency derived in the potential flow limit. The damping rate is then evaluated considering the viscous dissipation at the wall, in the bulk and at the free surface, respectively. This classical theoretical result however differs from what is often seen in the laboratory when the attenuation of gravity waves happens in a small basin. In particular, the damping rate is found to increase as the sloshing amplitude decreases. Here we show that this enhanced damping is due to capillary forces at the contact line between the liquid and the container. The angle θd made by the liquid interface with the container walls (contact angle) is modeled as a non-linear function of the interface speed U, (Cox-Voinov law θd3 α U). We propose a multiple scale expansion scheme to consistently derive an amplitude equation using the Cox-Voinov law as boundary condition at the moving interface. The zero order problem reduces to the classical static meniscus problem, while the first order problem yields an eigenvalue problem defining the viscous sloshing modes. At an higher order, a compatibility condition has to be enforced, yielding an amplitude equation. Solving the later, we recover the expected increase of the damping rate as the sloshing amplitude decreases, an effect thus attributed to capillary effects.
Non-linear thermodynamic laws application to soil processes
Directory of Open Access Journals (Sweden)
Ilgiz Khabirov
2013-01-01
Full Text Available An attempt has been made to analyze the possibility to use nonequilibrium thermodynamics for the soil dynamic open systemstreatment. Entropy change of such a system and the entropy coming from or going into the outer sphere. In the steady state, dynamic soil-formation processes occur within an organized structure and are characterized by stable parameters close to equilibrium. Accordingly, when examining soil, one can proceed from the conventional thermodynamic equilibrium. However, the matter of Onzager-Prigozhin general phenomenological theory applicability to soil processes is more complicated. To study soil stability it is necessary to go beyond the limits of linear thermodynamics.
Nonlinear Optical Signal Processing for Tbit/s Ethernet Applications
DEFF Research Database (Denmark)
Oxenløwe, Leif Katsuo; Galili, Michael; Mulvad, Hans Christian Hansen;
2012-01-01
We review recent experimental demonstrations of Tbaud optical signal processing. In particular, we describe a successful 1.28 Tbit/s serial data generation based on single polarization 1.28 Tbaud symbol rate pulses with binary data modulation (OOK) and subsequent all-optical demultiplexing. We also...
Linear and nonlinear optical processing of polymer matrix nanocomposites
DeJournett, Travis J.; Han, Karen; Olasov, Lauren R.; Zeng, Fan W.; Lee, Brennan; Spicer, James B.
2015-08-01
This work focuses on the scalable synthesis and processing of nanostructures in polymer matrix nanocomposites (PMNCs) for applications that require photochemical functionality of these nanostructures. An in situ vapor deposition process using various metal and metal oxide precursors has been used to create a range of nanocomposites that display photochromic and photocatalytic behaviors. Under specific processing conditions, these composites consist of discrete nanoparticles distributed uniformly throughout the bulk of an optically transparent polymer matrix. Incorporating other chemical species as supplementary deposition agents in the synthesis process can modify these particles and produce complicated nanostructures with enhanced properties. In particular, work has been carried out to structure nanoparticles using laser irradiation. Starting with metallic or metal oxide nanoparticles in the polymer matrix, localized chemical vapor deposition in the near-particle environment has been carried out using laser irradiation to decompose chemical precursors leading to the formation of secondary structures surrounding the seed nanoparticles. Control of the spatial and temporal characteristics of the excitation source allows for synthesis of nanocomposites with a high degree of control over the location, composition and size of nanoparticles in the matrix and presents the opportunity to produce patterned materials with spatially varying properties.
Seider, Warren D.; Ungar, Lyle H.
1987-01-01
Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…
A Kernel Time Structure Independent Component Analysis Method for Nonlinear Process Monitoring☆
Institute of Scientific and Technical Information of China (English)
Lianfang Cai; Xuemin Tian; Ni Zhang
2014-01-01
Kernel independent component analysis (KICA) is a newly emerging nonlinear process monitoring method, which can extract mutually independent latent variables cal ed independent components (ICs) from process var-iables. However, when more than one IC have Gaussian distribution, it cannot extract the IC feature effectively and thus its monitoring performance will be degraded drastical y. To solve such a problem, a kernel time struc-ture independent component analysis (KTSICA) method is proposed for monitoring nonlinear process in this paper. The original process data are mapped into a feature space nonlinearly and then the whitened data are calculated in the feature space by the kernel trick. Subsequently, a time structure independent component analysis algorithm, which has no requirement for the distribution of ICs, is proposed to extract the IC feature. Finally, two monitoring statistics are built to detect process faults. When some fault is detected, a nonlinear fault identification method is developed to identify fault variables based on sensitivity analysis. The proposed monitoring method is applied in the Tennessee Eastman benchmark process. Applications demonstrate the superiority of KTSICA over KICA.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A novel nonlinear combination process monitoring method was proposed based on techniques with memory effect (multivariate exponentially weighted moving average (MEWMA)) and kernel independent component analysis (KICA). The method was developed for dealing with nonlinear issues and detecting small or moderate drifts in one or more process variables with autocorrelation. MEWMA charts use additional information from the past history of the process for keeping the memory effect of the process behavior trend. KICA is a recently developed statistical technique for revealing hidden, nonlinear statistically independent factors that underlie sets of measurements and it is a two-phase algorithm: whitened kernel principal component analysis (KPCA) plus independent component analysis (ICA). The application to the fluid catalytic cracking unit (FCCU) simulated process indicates that the proposed combined method based on MEWMA and KICA can effectively capture the nonlinear relationship and detect small drifts in process variables. Its performance significantly outperforms monitoring method based on ICA, MEWMA-ICA and KICA, especially for long-term performance deterioration.
Hoelzl, M.; Huijsmans, G. T. A.; Merkel, P.; Atanasiu, C.; Lackner, K.; Nardon, E.; Aleynikova, K.; Liu, F.; Strumberger, E.; McAdams, R.; Chapman, I.; Fil, A.
2014-11-01
The dynamics of large scale plasma instabilities can be strongly influenced by the mutual interaction with currents flowing in conducting vessel structures. Especially eddy currents caused by time-varying magnetic perturbations and halo currents flowing directly from the plasma into the walls are important. The relevance of a resistive wall model is directly evident for Resistive Wall Modes (RWMs) or Vertical Displacement Events (VDEs). However, also the linear and non-linear properties of most other large-scale instabilities may be influenced significantly by the interaction with currents in conducting structures near the plasma. The understanding of halo currents arising during disruptions and VDEs, which are a serious concern for ITER as they may lead to strong asymmetric forces on vessel structures, could also benefit strongly from these non-linear modeling capabilities. Modeling the plasma dynamics and its interaction with wall currents requires solving the magneto-hydrodynamic (MHD) equations in realistic toroidal X-point geometry consistently coupled with a model for the vacuum region and the resistive conducting structures. With this in mind, the non-linear finite element MHD code JOREK [1, 2] has been coupled [3] with the resistive wall code STARWALL [4], which allows us to include the effects of eddy currents in 3D conducting structures in non-linear MHD simulations. This article summarizes the capabilities of the coupled JOREK-STARWALL system and presents benchmark results as well as first applications to non-linear simulations of RWMs, VDEs, disruptions triggered by massive gas injection, and Quiescent H-Mode. As an outlook, the perspectives for extending the model to halo currents are described.
Nonlinear signal processing of electroencephalograms for automated sleep monitoring
Wilson, D.; Rowlands, D. D.; James, Daniel A.; Cutmore, T.
2005-02-01
An automated classification technique is desirable to identify the different stages of sleep. In this paper a technique for differentiating the characteristics of each sleep phase has been developed. This is an ideal pre-processor stage for classifying systems such as neural networks. A wavelet based continuous Morlet transform was developed to analyse the EEG signal in both the time and frequency domain. Test results using two 100 epoch EEG test data sets from pre-recorded EEG data are presented. Key rhythms in the EEG signal were identified and classified using the continuous wavelet transform. The wavelet results indicated each sleep phase contained different rhythms and artefacts (noise from muscle movement in the EEG); providing proof that an EEG can be classified accordingly. The coefficients founded by the wavelet transform have been emphasised by statistical techniques. Hypothesis testing was used to highlight major differences between adjacent sleep stages. Various signal processing methods such as power spectrum density and the discrete wavelet transform have been used to emphasise particular characteristics in an EEG. By implementing signal processing methods on an EEG data set specific rules for each sleep stage have been developed suitable for a neural network classification solution.
Non-linear, adaptive array processing for acoustic interference suppression.
Hoppe, Elizabeth; Roan, Michael
2009-06-01
A method is introduced where blind source separation of acoustical sources is combined with spatial processing to remove non-Gaussian, broadband interferers from space-time displays such as bearing track recorder displays. This differs from most standard techniques such as generalized sidelobe cancellers in that the separation of signals is not done spatially. The algorithm performance is compared to adaptive beamforming techniques such as minimum variance distortionless response beamforming. Simulations and experiments using two acoustic sources were used to verify the performance of the algorithm. Simulations were also used to determine the effectiveness of the algorithm under various signal to interference, signal to noise, and array geometry conditions. A voice activity detection algorithm was used to benchmark the performance of the source isolation.
Nonlinear reflection process of linearly-polarized, broadband Alfv\\'en waves in the fast solar wind
Shoda, Munehito
2016-01-01
Using one-dimensional numerical simulations, we study the elementary process of Alfv\\'{e}n wave reflection in a uniform medium, including nonlinear effects. In the linear regime, Alfv\\'{e}n wave reflection is triggered only by the inhomogeneity of the medium, whereas in the nonlinear regime, it can occur via nonlinear wave-wave interactions. Such nonlinear reflection (backscattering) is typified by decay instability. In most studies of decay instabilities, the initial condition has been a circularly polarized Alfv\\'{e}n wave. In this study we consider a linearly polarized Alfv\\'en wave, which drives density fluctuations by its magnetic pressure force. For generality, we also assume a broadband wave with a red-noise spectrum. In the data analysis, we decompose the fluctuations into characteristic variables using local eigenvectors, thus revealing the behaviors of the individual modes. Different from circular-polarization case, we find that the wave steepening produces a new energy channel from the parent Alfv\\...
Age and Creative Productivity: Nonlinear Estimation of an Information-Processing Model.
Simonton, Dean Keith
1989-01-01
Applied two-step cognitive model to relationship between age and creative productivity. Selected ideation and elaboration rates as information-processing parameters that define mathematical function which describes age curves and specifies their variance across disciplines. Applied non-linear estimation program to further validate model. Despite…
Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides
Dekker, R.; Usechak, N.; Först, M.; Driessen, A.
2007-01-01
In this review we present an overview of the progress made in recent years in the field of integrated silicon-on-insulator (SOI) waveguide photonics with a strong emphasis on third-order nonlinear optical processes. Although the focus is on simple waveguide structures the utilization of complex stru
Scene matching based on non-linear pre-processing on reference image and sensed image
Institute of Scientific and Technical Information of China (English)
Zhong Sheng; Zhang Tianxu; Sang Nong
2005-01-01
To solve the heterogeneous image scene matching problem, a non-linear pre-processing method for the original images before intensity-based correlation is proposed. The result shows that the proper matching probability is raised greatly. Especially for the low S/N image pairs, the effect is more remarkable.
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
Making use of disk targets composed of several peculiar materials (foam Au, foam C8H8)and hohlraum with a special structure, experiments have been done at"Xing Guang - II" laser facility,which study the characteristics of hot electrons and therelated nonlinear processes such as StimulatedRaman Scattering (SRS), Two Plasma Decay (TPD), StimulatedBrillouin Scattering (SBS), etc.
Garcia-Retamero, Rocio; Hoffrage, Ulrich; Dieckmann, Anja; Ramos, Manuel
2007-01-01
Three experiments investigated whether participants used Take The Best (TTB) Configural, a fast and frugal heuristic that processes configurations of cues when making inferences concerning which of two alternatives has a higher criterion value. Participants were presented with a compound cue that was nonlinearly separable from its elements. The…
Wei, Song; Chen, Wen; Hon, Y. C.
2016-11-01
This paper investigates the temporal effects in the modeling of flows through porous media and particles transport. Studies will be made among the time fractional diffusion model and two classical nonlinear diffusion models. The effects of the parameters upon the mentioned models have been studied. By simulating the sub-diffusion processes and comparing the numerical results of these models under different boundary conditions, we can conclude that the time fractional diffusion model is more suitable for simulating the sub-diffusion with steady diffusion rate; whereas the nonlinear models are more appropriate for depicting the sub-diffusion under changing diffusion rate.
2-D nonlinear IIR-filters for image processing - An exploratory analysis
Bauer, P. H.; Sartori, M.
1991-01-01
A new nonlinear IIR filter structure is introduced and its deterministic properties are analyzed. It is shown to be better suited for image processing applications than its linear shift-invariant counterpart. The new structure is obtained from causality inversion of a 2D quarterplane causal linear filter with respect to the two directions of propagation. It is demonstrated, that by using this design, a nonlinear 2D lowpass filter can be constructed, which is capable of effectively suppressing Gaussian or impulse noise without destroying important image information.
Institute of Scientific and Technical Information of China (English)
Xiao Huang; Jian Wang; Ling-zhi Zhang; Zhi-gang Cai; Zhao-xi Lianga
2001-01-01
Four phenoxysilicon networks for nonlinear optical (NLO) applications were designed and prepared by an extended sol-gel process without additional H20 and catalyst. All poled polymer network films possess high second-order nonlinear optical coefficients (d33) of 10-?～10-8 esu. The investigation of NLO temporal stability at room temperature and elevated temperature (120°C) indicated that these films exhibit high d33 stability because the orientation of the chromophores are locked in the phenoxysilicon organic/inorganic networks.
2-D nonlinear IIR-filters for image processing - An exploratory analysis
Bauer, P. H.; Sartori, M.
1991-01-01
A new nonlinear IIR filter structure is introduced and its deterministic properties are analyzed. It is shown to be better suited for image processing applications than its linear shift-invariant counterpart. The new structure is obtained from causality inversion of a 2D quarterplane causal linear filter with respect to the two directions of propagation. It is demonstrated, that by using this design, a nonlinear 2D lowpass filter can be constructed, which is capable of effectively suppressing Gaussian or impulse noise without destroying important image information.
Nijp, Jelmer J; Metselaar, Klaas; Limpens, Juul; Teutschbein, Claudia; Peichl, Matthias; Nilsson, Mats B; Berendse, Frank; van der Zee, Sjoerd E A T M
2017-02-15
The water content of the topsoil is one of the key factors controlling biogeochemical processes, greenhouse gas emissions and biosphere - atmosphere interactions in many ecosystems, particularly in northern peatlands. In these wetland ecosystems, the water content of the photosynthetic active peatmoss layer is crucial for ecosystem functioning and carbon sequestration, and is sensitive to future shifts in rainfall and drought characteristics. Current peatland models differ in the degree in which hydrological feedbacks are included, but how this affects peatmoss drought projections is unknown. The aim of this paper was to systematically test whether the level of hydrological detail in models could bias projections of water content and drought stress for peatmoss in northern peatlands using downscaled projections for rainfall and potential evapotranspiration in the current (1991-2020) and future climate (2061-2090). We considered four model variants that either include or exclude moss (rain)water storage and peat volume change, as these are two central processes in the hydrological self-regulation of peatmoss carpets. Model performance was validated using field data of a peatland in northern Sweden. Including moss water storage as well as peat volume change resulted in a significant improvement of model performance, despite the extra parameters added. The best performance was achieved if both processes were included. Including moss water storage and peat volume change consistently reduced projected peatmoss drought frequency with >50%, relative to the model excluding both processes. Projected peatmoss drought frequency in the growing season was 17% smaller under future climate than current climate, but was unaffected by including the hydrological self-regulating processes. Our results suggest that ignoring these two fine-scale processes important in hydrological self-regulation of northern peatlands will have large consequences for projected climate change impact on
CONTROL OF NONLINEAR PROCESS USING NEURAL NETWORK BASED MODEL PREDICTIVE CONTROL
Directory of Open Access Journals (Sweden)
Dr.A.TRIVEDI
2011-04-01
Full Text Available This paper presents a Neural Network based Model Predictive Control (NNMPC strategy to control nonlinear process. Multilayer Perceptron Neural Network (MLP is chosen to represent a Nonlinear Auto Regressive with eXogenous signal (NARX model of a nonlinear system. NARX dynamic model is based on feed-forward architecture and offers good approximation capabilities along with robustness and accuracy. Based on the identified neural model, a generalized predictive control (GPC algorithm is implemented to control the composition in acontinuous stirred tank reactor (CSTR, whose parameters are optimally determined by solving quadratic performance index using well known Levenberg-Marquardt and Quasi-Newton algorithm. NNMPC is tuned by selecting few horizon parameters and weighting factor. The tracking performance of the NNMPC is tested using different amplitude function as a reference signal on CSTR application. Also the robustness and performance is tested in the presence of disturbance on random reference signal.
Hydex Glass and Amorphous Silicon for Integrated Nonlinear Optical Signal Processing
Morandotti, Roberto
2015-01-01
Photonic integrated circuits that exploit nonlinear optics in order to generate and process signals all-optically have achieved performance far superior to that possible electronically - particularly with respect to speed. Although silicon-on-insulator has been the leading platform for nonlinear optics for some time, its high two-photon absorption at telecommunications wavelengths poses a fundamental limitation. We review the recent achievements based in new CMOS-compatible platforms that are better suited than SOI for nonlinear optics, focusing on amorphous silicon and Hydex glass. We highlight their potential as well as the challenges to achieving practical solutions for many key applications. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement.
Nonlinear Pulse Shaping in Fibres for Pulse Generation and Optical Processing
Directory of Open Access Journals (Sweden)
Sonia Boscolo
2012-01-01
Full Text Available The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion.
Chen, Yun; Yang, Hui
2016-06-01
Many real-world systems are evolving over time and exhibit dynamical behaviors. In order to cope with system complexity, sensing devices are commonly deployed to monitor system dynamics. Online sensing brings the proliferation of big data that are nonlinear and nonstationary. Although there is rich information on nonlinear dynamics, significant challenges remain in realizing the full potential of sensing data for system control. This paper presents a new approach of heterogeneous recurrence analysis for online monitoring and anomaly detection in nonlinear dynamic processes. A partition scheme, named as Q-tree indexing, is firstly introduced to delineate local recurrence regions in the multi-dimensional continuous state space. Further, we design a new fractal representation of state transitions among recurrence regions, and then develop new measures to quantify heterogeneous recurrence patterns. Finally, we develop a multivariate detection method for on-line monitoring and predictive control of process recurrences. Case studies show that the proposed approach not only captures heterogeneous recurrence patterns in the transformed space, but also provides effective online control charts to monitor and detect dynamical transitions in the underlying nonlinear processes.
Tene, Yair; Tene, Noam; Tene, G.
1993-08-01
An interactive data fusion methodology of video, audio, and nonlinear structural dynamic analysis for potential application in forensic engineering is presented. The methodology was developed and successfully demonstrated in the analysis of heavy transportable bridge collapse during preparation for testing. Multiple bridge elements failures were identified after the collapse, including fracture, cracks and rupture of high performance structural materials. Videotape recording by hand held camcorder was the only source of information about the collapse sequence. The interactive data fusion methodology resulted in extracting relevant information form the videotape and from dynamic nonlinear structural analysis, leading to full account of the sequence of events during the bridge collapse.
Circuits and systems based on delta modulation linear, nonlinear and mixed mode processing
Zrilic, Djuro G
2005-01-01
This book is intended for students and professionals who are interested in the field of digital signal processing of delta-sigma modulated sequences. The overall focus is on the development of algorithms and circuits for linear, non-linear, and mixed mode processing of delta-sigma modulated pulse streams. The material presented here is directly relevant to applications in digital communication, DSP, instrumentation, and control.
Rius, Manuel; Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José
2015-05-18
We experimentally demonstrate, for the first time, a chirped microwave pulses generator based on the processing of an incoherent optical signal by means of a nonlinear dispersive element. Different capabilities have been demonstrated such as the control of the time-bandwidth product and the frequency tuning increasing the flexibility of the generated waveform compared to coherent techniques. Moreover, the use of differential detection improves considerably the limitation over the signal-to-noise ratio related to incoherent processing.
Institute of Scientific and Technical Information of China (English)
唐圣金; 郭晓松; 于传强; 周志杰; 周召发; 张邦成
2014-01-01
Real time remaining useful life (RUL) prediction based on condition monitoring is an essential part in condition based maintenance (CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item’s individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction.
Soft sensor modeling based on variable partition ensemble method for nonlinear batch processes
Wang, Li; Chen, Xiangguang; Yang, Kai; Jin, Huaiping
2017-01-01
Batch processes are always characterized by nonlinear and system uncertain properties, therefore, the conventional single model may be ill-suited. A local learning strategy soft sensor based on variable partition ensemble method is developed for the quality prediction of nonlinear and non-Gaussian batch processes. A set of input variable sets are obtained by bootstrapping and PMI criterion. Then, multiple local GPR models are developed based on each local input variable set. When a new test data is coming, the posterior probability of each best performance local model is estimated based on Bayesian inference and used to combine these local GPR models to get the final prediction result. The proposed soft sensor is demonstrated by applying to an industrial fed-batch chlortetracycline fermentation process.
Determination of processed animal proteins, including meat and bone meal, in animal feed
Gizzi, G.; Holst, von C.; Baeten, V.; Berben, G.; Raamsdonk, van L.W.D.
2004-01-01
The presence of processed animal proteins (PAP), including meat and bone meal (MBM) from various species, in animal feed was investigated. It was demonstrated that microscopy is the most reliable method for enforcing the current total MBM ban in the European Uion (EU). It was shown that near
Determination of processed animal proteins, including meat and bone meal, in animal feed
Gizzi, G.; Holst, von C.; Baeten, V.; Berben, G.; Raamsdonk, van L.W.D.
2004-01-01
The presence of processed animal proteins (PAP), including meat and bone meal (MBM) from various species, in animal feed was investigated. It was demonstrated that microscopy is the most reliable method for enforcing the current total MBM ban in the European Uion (EU). It was shown that near infrare
Developing a participatory process to include ecosystem services in landscape planing
Onaindia, Miren; Palacios-Agundez, Igone; Rodríguez-Loinaz, Gloria; Peña, Lorena; Madariaga, Iosu; Ametzaga, Ibone
2015-04-01
This work develops an approach that integrates scientific knowledge on ecosystem services and stakeholders demands to get guidelines for landscape planning strategies in the region of Biscay (Basque Country, northern Spain). In the conducted participatory process, forest multi-functionality was considered as a practicable good alternative. This process identified also a knowledge gap on the synergies and trade-offs between biodiversity, timber production and carbon storage, guiding the directions of the research actions. The results from developed spatial analysis converged with those from the participatory process in the adequacy of promoting, where possible and appropriate, natural forest ecosystems restoration. The ongoing stepwise learning strategy is already showing its effectiveness for decision making, with concrete examples of how the results obtained with the applied approach are being included in planning and decision-making processes.
Energy conversion in isothermal nonlinear irreversible processes - struggling for higher efficiency
Ebeling, W.; Feistel, R.
2017-06-01
First we discuss some early work of Ulrike Feudel on structure formation in nonlinear reactions including ions and the efficiency of the conversion of chemical into electrical energy. Then we give some survey about isothermal energy conversion from chemical to higher forms of energy like mechanical, electrical and ecological energy. Isothermal means here that there are no temperature gradients within the model systems. We consider examples of energy conversion in several natural processes and in some devices like fuel cells. Further, as an example, we study analytically the dynamics and efficiency of a simple "active circuit" converting chemical into electrical energy and driving currents which is roughly modeling fuel cells. Finally we investigate an analogous ecological system of Lotka-Volterra type consisting of an "active species" consuming some passive "chemical food". We show analytically for both these models that the efficiency increases with the load, reaches values higher then 50 percent in a narrow regime of optimal load and goes beyond some maximal load abruptly to zero.
Liu, Qian; OuYang, Liangfei; Liang, Heng; Li, Nan; Geng, Xindu
2012-06-01
A novel thermodynamic state recursion (TSR) method, which is based on nonequilibrium thermodynamic path described by the Lagrangian-Eulerian representation, is presented to simulate the whole chromatographic process of frontal analysis using the spatial distribution of solute bands in time series like as a series of images. TSR differs from the current numerical methods using the partial differential equations in Eulerian representation. The novel method is used to simulate the nonideal, nonlinear hydrophobic interaction chromatography (HIC) processes of lysozyme and myoglobin under the discrete complex boundary conditions. The results show that the simulated breakthrough curves agree well with the experimental ones. The apparent diffusion coefficient and the Langmuir isotherm parameters of the two proteins in HIC are obtained by the state recursion inverse method. Due to its the time domain and Markov characteristics, TSR is applicable to the design and online control of the nonlinear multicolumn chromatographic systems.
Photonic Damascene Process for Integrated High-Q Microresonator Based Nonlinear Photonics
Pfeiffer, Martin H P; Brasch, Victor; Zervas, Michael; Geiselmann, Michael; Jost, John D; Kippenberg, Tobias J
2015-01-01
High confinement, integrated silicon nitride (SiN) waveguides have recently emerged as attractive platform for on-chip nonlinear optical devices. The fabrication of high-Q SiN microresonators with anomalous group velocity dispersion (GVD) has enabled broadband nonlinear optical frequency comb generation. Such frequency combs have been successfully applied in coherent communication and ultrashort pulse generation. However, the reliable fabrication of high confinement waveguides from stoichiometric, high stress SiN remains challenging. Here we present a novel photonic Damascene fabrication process enabling the use of substrate topography for stress control and thin film crack prevention. With close to unity sample yield we fabricate microresonators with $1.35\\,\\mu\\mathrm{m}$ thick waveguides and optical Q factors of $3.7\\times10^{6}$ and demonstrate single temporal dissipative Kerr soliton (DKS) based coherent optical frequency comb generation. Our newly developed process is interesting also for other material ...
Effects of non-linear rheology on the electrospinning process: a model study
Pontrelli, Giuseppe; Coluzza, Ivan; Pisignano, Dario; Succi, Sauro
2014-01-01
We develop an analytical bead-spring model to investigate the role of non-linear rheology on the dynamics of electrified jets in the early stage of the electrospinning process. Qualitative arguments, parameter studies as well as numerical simulations, show that the elongation of the charged jet filament is significantly reduced in the presence of a non-zero yield stress. This may have beneficial implications for the optimal design of future electrospinning experiments.
Salcedo-Sanz, S.
2016-10-01
Meta-heuristic algorithms are problem-solving methods which try to find good-enough solutions to very hard optimization problems, at a reasonable computation time, where classical approaches fail, or cannot even been applied. Many existing meta-heuristics approaches are nature-inspired techniques, which work by simulating or modeling different natural processes in a computer. Historically, many of the most successful meta-heuristic approaches have had a biological inspiration, such as evolutionary computation or swarm intelligence paradigms, but in the last few years new approaches based on nonlinear physics processes modeling have been proposed and applied with success. Non-linear physics processes, modeled as optimization algorithms, are able to produce completely new search procedures, with extremely effective exploration capabilities in many cases, which are able to outperform existing optimization approaches. In this paper we review the most important optimization algorithms based on nonlinear physics, how they have been constructed from specific modeling of a real phenomena, and also their novelty in terms of comparison with alternative existing algorithms for optimization. We first review important concepts on optimization problems, search spaces and problems' difficulty. Then, the usefulness of heuristics and meta-heuristics approaches to face hard optimization problems is introduced, and some of the main existing classical versions of these algorithms are reviewed. The mathematical framework of different nonlinear physics processes is then introduced as a preparatory step to review in detail the most important meta-heuristics based on them. A discussion on the novelty of these approaches, their main computational implementation and design issues, and the evaluation of a novel meta-heuristic based on Strange Attractors mutation will be carried out to complete the review of these techniques. We also describe some of the most important application areas, in
Molecular Optics Nonlinear Optical Processes in Organic and Polymeric Crystals and Films. Part 2
1991-11-01
susceptibility gamma ijkl(-omega 4; omega 1, omega 2, omega 3 ) demonstrate that the microscopic origin of the nonresonant third order nonlinear optical...interaction calculations of gamma jkl(-omega 4; omega 1, omega 2, omega 3 ) for the archetypal class of quasi-one dimensional conjugated structures...largest of the two dominant, competing virtual excitation processes that determine gamma ijkl(- omega 4; omega 1, omega 2, omega 3 ). It is also found in
Data-driven design of fault diagnosis systems nonlinear multimode processes
Haghani Abandan Sari, Adel
2014-01-01
In many industrial applications early detection and diagnosis of abnormal behavior of the plant is of great importance. During the last decades, the complexity of process plants has been drastically increased, which imposes great challenges in development of model-based monitoring approaches and it sometimes becomes unrealistic for modern large-scale processes. The main objective of Adel Haghani Abandan Sari is to study eﬃcient fault diagnosis techniques for complex industrial systems using process historical data and considering the nonlinear behavior of the process. To this end, diﬀerent methods are presented to solve the fault diagnosis problem based on the overall behavior of the process and its dynamics. Moreover, a novel technique is proposed for fault isolation and determination of the root-cause of the faults in the system, based on the fault impacts on the process measurements. Contents Process monitoring Fault diagnosis and fault-tolerant control Data-driven approaches and decision making Target...
Development of coherent tunable source in 2–16 m region using nonlinear frequency mixing processes
Indian Academy of Sciences (India)
Udit Chatterjee
2014-01-01
A very convenient way to obtain widely tunable source of coherent radiation in the infrared region is through nonlinear frequency mixing processes like second harmonic generation (SHG), difference-frequency mixing (DFM) or optical parametric oscillation (OPO). Using commonly available Nd:YAG laser and its harmonic pumped dye laser radiation as parent beams, we have been able to generate coherent tunable infrared radiation (IR) in 2–16 m region using different nonlinear crystals by DFM and OPO. We have also generated such IR source in the 4–5 m region through SHG of CO2 laser in different infrared crystals. In the process we have characterized a large number of nonlinear crystals like different borate group of crystals, KTP, KTA, LiIO3, MgO:LiNbO3, GaSe, AgGaSe2, ZnGeP2, AgGa1−InSe2, HgGa2S4 etc. To improve the conversion efficiencies of such frequency conversion processes, we have developed some novel schemes, like multipass configuration (MC) and positive optical feedback (POF). The significance of the obtained results lies in the fact that to get the same conversion in SHG or DFM, one now requires fundamental input radiation with much lower intensity.
Abdeldayem, Hossin; Frazier, Donald O.; Paley, Mark S.; Penn, Benjamin; Witherow, William K.; Bank, Curtis; Shields, Angela; Hicks, Rosline; Ashley, Paul R.
1996-01-01
In this paper, we will take a closer look at the state of the art of polydiacetylene, and metal-free phthalocyanine films, in view of the microgravity impact on their optical properties, their nonlinear optical properties and their potential advantages for integrated optics. These materials have many attractive features with regard to their use in integrated optical circuits and optical switching. Thin films of these materials processed in microgravity environment show enhanced optical quality and better molecular alignment than those processed in unit gravity. Our studies of these materials indicate that microgravity can play a major role in integrated optics technology. Polydiacetylene films are produced by UV irradiation of monomer solution through an optical window. This novel technique of forming polydiacetylene thin films has been modified for constructing sophisticated micro-structure integrated optical patterns using a pre-programmed UV-Laser beam. Wave guiding through these thin films by the prism coupler technique has been demonstrated. The third order nonlinear parameters of these films have been evaluated. Metal-free phthalocyanine films of good optical quality are processed in our laboratories by vapor deposition technique. Initial studies on these films indicate that they have excellent chemical, laser, and environmental stability. They have large nonlinear optical parameters and show intrinsic optical bistability. This bistability is essential for optical logic gates and optical switching applications. Waveguiding and device making investigations of these materials are underway.
Soft Sensor for Inputs and Parameters Using Nonlinear Singular State Observer in Chemical Processes
Institute of Scientific and Technical Information of China (English)
许锋; 汪晔晔; 罗雄麟
2013-01-01
Chemical processes are usually nonlinear singular systems. In this study, a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes, which are augmented as state variables. Based on the observability of the singular system, this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters. When the observability is satisfied, the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer. The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation. With the catalyst circulation rate as the only unknown input without model error, one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst cir-culation rate. However, when uncertain model parameters also exist, additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.
Frank, T. D.
2008-02-01
We discuss two central claims made in the study by Bassler et al. [K.E. Bassler, G.H. Gunaratne, J.L. McCauley, Physica A 369 (2006) 343]. Bassler et al. claimed that Green functions and Langevin equations cannot be defined for nonlinear diffusion equations. In addition, they claimed that nonlinear diffusion equations are linear partial differential equations disguised as nonlinear ones. We review bottom-up and top-down approaches that have been used in the literature to derive Green functions for nonlinear diffusion equations and, in doing so, show that the first claim needs to be revised. We show that the second claim as well needs to be revised. To this end, we point out similarities and differences between non-autonomous linear Fokker-Planck equations and autonomous nonlinear Fokker-Planck equations. In this context, we raise the question whether Bassler et al.’s approach to financial markets is physically plausible because it necessitates the introduction of external traders and causes. Such external entities can easily be eliminated when taking self-organization principles and concepts of nonextensive thermostatistics into account and modeling financial processes by means of nonlinear Fokker-Planck equations.
Processing negative valence of word pairs that include a positive word.
Itkes, Oksana; Mashal, Nira
2016-09-01
Previous research has suggested that cognitive performance is interrupted by negative relative to neutral or positive stimuli. We examined whether negative valence affects performance at the word or phrase level. Participants performed a semantic decision task on word pairs that included either a negative or a positive target word. In Experiment 1, the valence of the target word was congruent with the overall valence conveyed by the word pair (e.g., fat kid). As expected, response times were slower in the negative condition relative to the positive condition. Experiment 2 included target words that were incongruent with the overall valence of the word pair (e.g., fat salary). Response times were longer for word pairs whose overall valence was negative relative to positive, even though these word pairs included a positive word. Our findings support the Cognitive Primacy Hypothesis, according to which emotional valence is extracted after conceptual processing is complete.
Directory of Open Access Journals (Sweden)
W. Kapturkiewicz
2008-12-01
Full Text Available The, developed in this study, simple model and numerical solution of diffusion growth of the solid phase under the conditions of directional solidification allow for the effect of constituent diffusion in both liquid and solid phase and assume the process run in which (like in reality the preset parameter is the velocity of sample (pulling velocity at a preset temperature gradient. The solid/liquid interface velocity is not the process parameter (like it is in numerous other solutions proposed so far but a function of this process. The effect of convection outside the diffusion layer has been included in mass balance under the assumption that in the zone of convection the mixing is complete. The above assumptions enabled solving the kinetics of growth of the solid phase (along with the diffusion field in solid and liquid phase under the conditions of diffusion well reflecting the process run starting with the initial transient state, going through the steady state period in central part of the casting, and ending in a terminal transient state. In the numerical solution obtained by the finite difference method with variable grid dimensions, the error of the mass control balance over the whole process range was 1 - 2 %.
Luo, Biao; Wu, Huai-Ning; Li, Han-Xiong
2015-04-01
Highly dissipative nonlinear partial differential equations (PDEs) are widely employed to describe the system dynamics of industrial spatially distributed processes (SDPs). In this paper, we consider the optimal control problem of the general highly dissipative SDPs, and propose an adaptive optimal control approach based on neuro-dynamic programming (NDP). Initially, Karhunen-Loève decomposition is employed to compute empirical eigenfunctions (EEFs) of the SDP based on the method of snapshots. These EEFs together with singular perturbation technique are then used to obtain a finite-dimensional slow subsystem of ordinary differential equations that accurately describes the dominant dynamics of the PDE system. Subsequently, the optimal control problem is reformulated on the basis of the slow subsystem, which is further converted to solve a Hamilton-Jacobi-Bellman (HJB) equation. HJB equation is a nonlinear PDE that has proven to be impossible to solve analytically. Thus, an adaptive optimal control method is developed via NDP that solves the HJB equation online using neural network (NN) for approximating the value function; and an online NN weight tuning law is proposed without requiring an initial stabilizing control policy. Moreover, by involving the NN estimation error, we prove that the original closed-loop PDE system with the adaptive optimal control policy is semiglobally uniformly ultimately bounded. Finally, the developed method is tested on a nonlinear diffusion-convection-reaction process and applied to a temperature cooling fin of high-speed aerospace vehicle, and the achieved results show its effectiveness.
Multivariable adaptive control and estimation of a nonlinear wastewater treatment process
Energy Technology Data Exchange (ETDEWEB)
Ben Youssef, C.; Dahhou, B. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France)]|[Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France)
1995-12-31
In this paper, an approach for estimating biological state and parameter variables and for controlling a non linear wastewater treatment process is developed. Combination of a nonlinear estimation procedure and a multivariable reference model control law provides favourable performances for tracking a given model-based reference model despite disturbances and system parameter uncertainties. Convergence of both estimation and control scheme are demonstrated via Lyapunov`s method. Simulation study with additive measurements noises and parameter jumps shows the efficiency and significant robustness of the control methodology developed for this non linear process. (author) 13 refs.
De Siena, S; Illuminati, F; Siena, Silvio De; Lisi, Antonio Di; Illuminati, Fabrizio
2002-01-01
We introduce nonlinear canonical transformations that yield effective Hamiltonians of multiphoton down conversion processes, and we define the associated non-Gaussian multiphoton squeezed states as the coherent states of the multiphoton Hamiltonians. We study in detail the four-photon processes and the associated non-Gaussian four-photon squeezed states. The realization of squeezing, the behavior of the field statistics, and the structure of the phase space distributions show that these states realize a natural four-photon generalization of the two-photon squeezed states.
Nonlinear tracking in a diffusion process with a Bayesian filter and the finite element method
DEFF Research Database (Denmark)
Pedersen, Martin Wæver; Thygesen, Uffe Høgsbro; Madsen, Henrik
2011-01-01
A new approach to nonlinear state estimation and object tracking from indirect observations of a continuous time process is examined. Stochastic differential equations (SDEs) are employed to model the dynamics of the unobservable state. Tracking problems in the plane subject to boundaries...... become complicated using SMC because Monte Carlo randomness is introduced. The finite element (FE) method solves the Kolmogorov equations of the SDE numerically on a triangular unstructured mesh for which boundary conditions to the state-space are simple to incorporate. The FE approach to nonlinear state...... estimation is suited for off-line data analysis because the computed smoothed state densities, maximum a posteriori parameter estimates and state sequence are deterministic conditional on the finite element mesh and the observations. The proposed method is conceptually similar to existing point...
Nonlinear dynamics of three-magnon process driven by ferromagnetic resonance in yttrium iron garnet
Energy Technology Data Exchange (ETDEWEB)
Cunha, R. O. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Centro Interdisciplinar de Ciências da Natureza, Universidade Federal da Integração Latino-Americana, 85867-970 Foz do Iguaçu, PR (Brazil); Holanda, J.; Azevedo, A.; Rezende, S. M., E-mail: rezende@df.ufpe.br [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Vilela-Leão, L. H. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, 55002-970 Caruaru, PE (Brazil); Rodríguez-Suárez, R. L. [Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago (Chile)
2015-05-11
We report an investigation of the dynamics of the three-magnon splitting process associated with the ferromagnetic resonance (FMR) in films of the insulating ferrimagnet yttrium iron garnet (YIG). The experiments are performed with a 6 μm thick YIG film close to a microstrip line fed by a microwave generator operating in the 2–6 GHz range. The magnetization precession is driven by the microwave rf magnetic field perpendicular to the static magnetic field, and its dynamics is observed by monitoring the amplitude of the FMR absorption peak. The time evolution of the amplitude reveals that if the frequency is lowered below a critical value of 3.3 GHz, the FMR mode pumps two magnons with opposite wave vectors that react back on the FMR, resulting in a nonlinear dynamics of the magnetization. The results are explained by a model with coupled nonlinear equations describing the time evolution of the magnon modes.
Directory of Open Access Journals (Sweden)
Hong Qin
2000-08-01
Full Text Available Collective processes in intense charged particle beams described self-consistently by the Vlasov-Maxwell equations are studied using a 3D multispecies nonlinear perturbative particle simulation method. The newly developed beam equilibrium, stability, and transport (BEST code is used to simulate the nonlinear stability properties of intense beam propagation, surface eigenmodes in a high-intensity beam, and the electron-proton (e-p two-stream instability observed in the Proton Storage Ring (PSR experiment. Detailed simulations in a parameter regime characteristic of the PSR experiment show that the dipole-mode two-stream instability is stabilized by a modest spread (about 0.1% in axial momentum of the beam particles.
Numerical simulation of nonlinear processes in a beam-plasma system
Energy Technology Data Exchange (ETDEWEB)
Efimova, A. A., E-mail: anna.an.efimova@gmail.com; Berendeev, E. A.; Vshivkov, V. A. [Institute of Computational Mathematics and Mathematical Geophysics SB RAS 6 Acad. Lavrentyev Ave., Novosibirsk 630090 (Russian Federation); Dudnikova, G. I. [University of Maryland, College Park, MD 20742 (United States); Institute of Computational Technologies SB RAS, 6 Acad. Lavrentyev Ave., Novosibirsk 630090 (Russian Federation)
2015-10-28
In the present paper we consider the efficiency of the electromagnetic radiation generation due to various nonlinear processes in the beam-plasma system. The beam and plasma parameters were chosen close to the parameters in the experiment on the GOL-3 facility (BINP SB RAS). The model of the collisionless plasma is described by system of the Vlasov-Maxwell equations with periodic boundary conditions. The parallel numerical algorithm is based on the particles-in-cell method (PIC) with mixed Euler-Lagrangian domain decomposition. Various scenarios of nonlinear evolution in the beam-plasma system under the influence of an external magnetic field in case of a low density beam were studied. The energy transfer from one unstable mode to the others modes was observed.
DEFF Research Database (Denmark)
Porto da Silva, Edson
Digital signal processing (DSP) has become one of the main enabling technologies for the physical layer of coherent optical communication networks. The DSP subsystems are used to implement several functionalities in the digital domain, from synchronization to channel equalization. Flexibility...... nonlinearity compensation, (II) spectral shaping, and (III) adaptive equalization. For (I), original contributions are presented to the study of the nonlinearity compensation (NLC) with digital backpropagation (DBP). Numerical and experimental performance investigations are shown for different application...... scenarios. Concerning (II), it is demonstrated how optical and electrical (digital) pulse shaping can be allied to improve the spectral confinement of a particular class of optical time-division multiplexing (OTDM) signals that can be used as a building block for fast signaling single-carrier transceivers...
Anticipation and the Non-linear Dynamics of Meaning-Processing in Social Systems
Leydesdorff, Loet
2009-01-01
Social order does not exist as a stable phenomenon, but can be considered as "an order of reproduced expectations." When anticipations operate upon one another, they can generate a non-linear dynamics which processes meaning. Although specific meanings can be stabilized, for example in social institutions, all meaning arises from a global horizon of possible meanings. Using Luhmann's (1984) social systems theory and Rosen's (1985) theory of anticipatory systems, I submit algorithms for modeling the non-linear dynamics of meaning in social systems. First, a self-referential system can use a model of itself for the anticipation. Under the condition of functional differentiation, the social system can be expected to entertain a set of models; each model can also contain a model of the other models. Two anticipatory mechanisms are then possible: a transversal one between the models, and a longitudinal one providing the system with a variety of meanings. A system containing two anticipatory mechanisms can become h...
A complete model of CH+ rotational excitation including radiative and chemical pumping processes
Godard, Benjamin
2012-01-01
Aims. Excitation of far-infrared and submillimetric molecular lines may originate from nonreactive collisions, chemical formation, or far infrared, near-infrared, and optical fluorescences. As a template, we investigate the impact of each of these processes on the excitation of the methylidyne cation CH+ and on the intensities of its rotational transitions recently detected in emission in dense photodissociation regions (PDRs) and in planetary nebulae. Methods. We have developed a nonlocal thermodynamic equilibrium (non-LTE) excitation model that includes the entire energy structure of CH+, i.e. taking into account the pumping of its vibrational and bound and unbound electronic states by near-infrared and optical photons. The model includes the theoretical cross-sections of nonreactive collisions with H, H2, He, and e-, and a Boltzmann distribution is used to describe the probability of populating the excited levels of CH+ during its chemical formation by hydrogenation of C+. To confirm our results we also pe...
Uncovering Molecular Relaxation Processes with Nonlinear Spectroscopies in the Deep UV
West, Brantley Andrew
Conical intersections mediate internal conversion dynamics that compete with even the fastest nuclear motions in molecular systems. Traditional kinetic models do not apply in this regime of commensurate electronic and nuclear motion because the surroundings do not maintain equilibrium throughout the relaxation process. This dissertation focuses on uncovering the physics associated with vibronic interactions at conical intersections. Of particular interest are coherent nuclear motions driven by steep excited state potential energy gradients. Technical advances have only recently made these dynamics accessible in many systems including DNA nucleobases and cyclic polyene molecules. Optical analogues of multidimensional NMR spectroscopies have recently yielded transformative insight in relaxation processes ranging from energy transfer in photosynthesis to bond making and breaking in liquids. Prior to the start of this research, such experiments had only been conducted at infrared and visible wavelengths. Applications in the ultraviolet were motivated by studies of numerous biological systems (e.g., DNA, proteins), but had been challenged by technical issues. The work presented in this dissertation combines pulse generation techniques developed in the optical physics community with spectroscopic techniques largely pioneered by physical chemists to implement two-dimensional ultraviolet spectroscopy (2DUV). This technique is applied at the shortest wavelengths and with the best signal-to-noise ratios reported to date. Sub-picosecond excited state deactivation processes provide photo stability to the DNA double helix. Vibrational energy transfer from the solute to surrounding solvent enables relaxation of the highly non-equilibrium ground state produced by fast internal conversion. In this dissertation, nonlinear spectroscopies carried out at cryogenic temperatures are used to uncover the particular nuclear modes in the solvent that primarily accept vibrational energy from
Non-linear processes in thin titanium nitride transmission lines for parametric amplification
Vissers, Michael; Gao, Jiansong; Chaudhuri, Suptarshi; Bockstiegel, Clint; Sandberg, Martin; Pappas, David P.
2013-03-01
Nitride superconductors, such as titanium nitride and niobium titanium nitride, are a non-linear, low dissipation medium at microwave frequencies. The lossless nonlinearity may be probed and utilized. Important applications include generation of higher harmonics, e.g. 3f, and a microwave version of the optical paramagnetic amplifier, i.e. the degenerate-pump case of four-photon mixing (FPM). An amplifier based on these principles should allow for very wide bandwidth, low noise (quantum limited) and high dynamic range devices. These measurements are performed via a single layer, 3 meter long TiN spiral and measured at temperatures below 100 mK. Initial results of the design, fabrication, testing, and impedance optimization of a titanium nitride based parametric amplifier are presented.
Taylor, Z A; Cheng, M; Ourselin, S
2008-05-01
The use of biomechanical modelling, especially in conjunction with finite element analysis, has become common in many areas of medical image analysis and surgical simulation. Clinical employment of such techniques is hindered by conflicting requirements for high fidelity in the modelling approach, and fast solution speeds. We report the development of techniques for high-speed nonlinear finite element analysis for surgical simulation. We use a fully nonlinear total Lagrangian explicit finite element formulation which offers significant computational advantages for soft tissue simulation. However, the key contribution of the work is the presentation of a fast graphics processing unit (GPU) solution scheme for the finite element equations. To the best of our knowledge, this represents the first GPU implementation of a nonlinear finite element solver. We show that the present explicit finite element scheme is well suited to solution via highly parallel graphics hardware, and that even a midrange GPU allows significant solution speed gains (up to 16.8 x) compared with equivalent CPU implementations. For the models tested the scheme allows real-time solution of models with up to 16,000 tetrahedral elements. The use of GPUs for such purposes offers a cost-effective high-performance alternative to expensive multi-CPU machines, and may have important applications in medical image analysis and surgical simulation.
Selvendran, S.; Sivanantharaja, A.; Arivazhagan, S.; Kannan, M.
2016-09-01
We propose an index profiled, highly nonlinear ultraflattened dispersion fibre (HN-UFF) with appreciable values of fibre parameters such as dispersion, dispersion slope, effective area, nonlinearity, bending loss and splice loss. The designed fibre has normal zero flattened dispersion over S, C, L, U bands and extends up to 1.9857 μm. The maximum dispersion variation observed for this fibre is as low as 1.61 ps km-1 nm-1 over the 500-nm optical fibre transmission spectrum. This fibre also has two zero dispersion wavelengths at 1.487 and 1.9857 μm and the respective dispersion slopes are 0.02476 and 0.0068 ps nm-2 km-1. The fibre has a very low ITU-T cutoff wavelength of 1.2613 μm and a virtuous nonlinear coefficient of 9.43 W-1 km-1. The wide spectrum of zero flattened dispersion and a good nonlinear coefficient make the designed fibre very promising for different nonlinear optical signal processing applications.
Non-equilibrium condensation process in holographic superconductor with nonlinear electrodynamics
Liu, Yunqi; Wang, Bin
2015-01-01
We study the non-equilibrium condensation process in a holographic superconductor with nonlinear corrections to the U(1) gauge field. We start with an asymptotic Anti-de-Sitter(AdS) black hole against a complex scalar perturbation at the initial time, and solve the dynamics of the gravitational systems in the bulk. When the black hole temperature T is smaller than a critical value Tc, the scalar perturbation grows exponentially till saturation, the final state of spacetime approaches to a hairy black hole. In the bulk theory, we find the clue of the influence of nonlinear corrections in the gauge field on the process of the scalar field condensation. We show that the bulk dynamics in the non-equilibrium process is completely consistent with the observations on the boundary order parameter. Furthermore we examine the time evolution of horizons in the bulk non-equilibrium transformation process from the bald AdS black hole to the AdS hairy hole. Both the evolution of apparent and event horizons show that the or...
Vavulin, D. N.; Sukhorukov, A. A.
2016-08-01
We present an analytical description of the process of spontaneous four-wave mixing in a cubic nonlinear fiber with linear losses. We consider the generation of photon pairs in the fiber when in the input of fiber is fed the pumping wave and single signal photon. The focus of attention is on three cases: when the signal photon propagates in the fiber without generating of biphotons; when the photon pair is generated; and when the photon is lost in the fiber. We also consider the cascade processes, but do not give them an analytical description because of their smallness. Description of the biphotons generation process we provide using the Schrodinger-type equation, and take into account the losses in the fiber through the introduction of the virtual beam splitters. We demonstrate the effectiveness of the generation of photon pairs through parametric processes.
Definition of distance for nonlinear time series analysis of marked point process data
Energy Technology Data Exchange (ETDEWEB)
Iwayama, Koji, E-mail: koji@sat.t.u-tokyo.ac.jp [Research Institute for Food and Agriculture, Ryukoku Univeristy, 1-5 Yokotani, Seta Oe-cho, Otsu-Shi, Shiga 520-2194 (Japan); Hirata, Yoshito; Aihara, Kazuyuki [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)
2017-01-30
Marked point process data are time series of discrete events accompanied with some values, such as economic trades, earthquakes, and lightnings. A distance for marked point process data allows us to apply nonlinear time series analysis to such data. We propose a distance for marked point process data which can be calculated much faster than the existing distance when the number of marks is small. Furthermore, under some assumptions, the Kullback–Leibler divergences between posterior distributions for neighbors defined by this distance are small. We performed some numerical simulations showing that analysis based on the proposed distance is effective. - Highlights: • A new distance for marked point process data is proposed. • The distance can be computed fast enough for a small number of marks. • The method to optimize parameter values of the distance is also proposed. • Numerical simulations indicate that the analysis based on the distance is effective.
Intrinsic Nonlinearities and Layout Impacts of 100 V Integrated Power MOSFETs in Partial SOI Process
DEFF Research Database (Denmark)
Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger
Parasitic capacitances of power semiconductors are a part of the key design parameters of state-of-the-art very high frequency (VHF) power supplies. In this poster, four 100 V integrated power MOSFETs with different layout structures are designed, implemented, and analyzed in a 0.18 ȝm partial...... Silicon-on-Insulator (SOI) process with a die area 2.31 mm2. A small-signal model of power MOSFETs is proposed to systematically analyze the nonlinear parasitic capacitances in different transistor states: off-state, sub-threshold region, and on-state in the linear region. 3D plots are used to summarize...
Time-ordering effects in the generation of entangled photons using nonlinear optical processes.
Quesada, Nicolás; Sipe, J E
2015-03-06
We study the effects of time ordering in photon generation processes such as spontaneous parametric down-conversion (SPDC) and four wave mixing (SFWM). The results presented here are used to construct an intuitive picture that allows us to predict when time-ordering effects significantly modify the joint spectral amplitude (JSA) of the photons generated in SPDC and SFWM. These effects become important only when the photons being generated lie with the pump beam that travels through the nonlinear material for a significant amount of time. Thus sources of spectrally separable photons are ideal candidates for the observation of modifications of the JSA due to time ordering.
Imitation learning of Non-Linear Point-to-Point Robot Motions using Dirichlet Processes
DEFF Research Database (Denmark)
Krüger, Volker; Tikhanoff, Vadim; Natale, Lorenzo
2012-01-01
In this paper we discuss the use of the infinite Gaussian mixture model and Dirichlet processes for learning robot movements from demonstrations. Starting point of this work is an earlier paper where the authors learn a non-linear dynamic robot movement model from a small number of observations....... The model in that work is learned using a classical finite Gaussian mixture model (FGMM) where the Gaussian mixtures are appropriately constrained. The problem with this approach is that one needs to make a good guess for how many mixtures the FGMM should use. In this work, we generalize this approach...
Calatroni, Luca
2013-08-01
We present directional operator splitting schemes for the numerical solution of a fourth-order, nonlinear partial differential evolution equation which arises in image processing. This equation constitutes the H -1-gradient flow of the total variation and represents a prototype of higher-order equations of similar type which are popular in imaging for denoising, deblurring and inpainting problems. The efficient numerical solution of this equation is very challenging due to the stiffness of most numerical schemes. We show that the combination of directional splitting schemes with implicit time-stepping provides a stable and computationally cheap numerical realisation of the equation.
A process fault estimation strategy for non-linear dynamic systems
Pazera, Marcin; Korbicz, Józef
2017-01-01
The paper deals with the problem of simultaneous state and process fault estimation for non-linear dynamic systems. Instead of estimating the fault directly, its product with state and the state itself are estimated. To derive the fault from the product, a simple algebraic approach is proposed. The estimation strategy is based on the quadratic boundedness approach. The final part of the paper presents an illustrative example concerning a laboratory multi-tank system. The real data experiments clearly exhibit the performance of the proposed approach.
A new cellular nonlinear network emulation on FPGA for EEG signal processing in epilepsy
Müller, Jens; Müller, Jan; Tetzlaff, Ronald
2011-05-01
For processing of EEG signals, we propose a new architecture for the hardware emulation of discrete-time Cellular Nonlinear Networks (DT-CNN). Our results show the importance of a high computational accuracy in EEG signal prediction that cannot be achieved with existing analogue VLSI circuits. The refined architecture of the processing elements and its resource schedule, the cellular network structure with local couplings, the FPGA-based embedded system containing the DT-CNN, and the data flow in the entire system will be discussed in detail. The proposed DT-CNN design has been implemented and tested on an Xilinx FPGA development platform. The embedded co-processor with a multi-threading kernel is utilised for control and pre-processing tasks and data exchange to the host via Ethernet. The performance of the implemented DT-CNN has been determined for a popular example and compared to that of a conventional computer.
DEFF Research Database (Denmark)
Koefoed, Jacob Gade; Christensen, Jesper Bjerge; Rottwitt, Karsten
2017-01-01
We present a general model, based on a Hamiltonian approach, for the joint quantum state of photon pairs generated through pulsed spontaneous four-wave mixing, including nonlinear phase modulation and a finite material response time. For the case of a silica fiber, it is found that the pair......-dependent change in quantum-mechanical purity may be observed in silica. This shows that Raman scattering not only introduces noise, but can also drastically change the spectral correlations in photon pairs when pumped with short pulses....
Barros, A. P.; Wilson, A. M.; Miller, D. K.; Tao, J.; Genereux, D. P.; Prat, O.; Petersen, W. A.; Brunsell, N. A.; Petters, M. D.; Duan, Y.
2015-12-01
Using the planet as a study domain and collecting observations over unprecedented ranges of spatial and temporal scales, NASA's EOS (Earth Observing System) program was an agent of transformational change in Earth Sciences over the last thirty years. The remarkable space-time organization and variability of atmospheric and terrestrial moist processes that emerged from the analysis of comprehensive satellite observations provided much impetus to expand the scope of land-atmosphere interaction studies in Hydrology and Hydrometeorology. Consequently, input and output terms in the mass and energy balance equations evolved from being treated as fluxes that can be used as boundary conditions, or forcing, to being viewed as dynamic processes of a coupled system interacting at multiple scales. Measurements of states or fluxes are most useful if together they map, reveal and/or constrain the underlying physical processes and their interactions. This can only be accomplished through an integrated observing system designed to capture the coupled physics, including nonlinear feedbacks and tipping points. Here, we first review and synthesize lessons learned from hydrometeorology studies in the Southern Appalachians and in the Southern Great Plains using both ground-based and satellite observations, physical models and data-assimilation systems. We will specifically focus on mapping and understanding nonlinearity and multiscale memory of rainfall-runoff processes in mountainous regions. It will be shown that beyond technical rigor, variety, quantity and duration of measurements, the utility of observing systems is determined by their interpretive value in the context of physical models to describe the linkages among different observations. Second, we propose a framework for designing science-grade and science-minded process-oriented integrated observing and modeling platforms for hydrometeorological studies.
EM Monitoring of Crustal Processes Including the Use of the Network-MT Observations
Uyeshima, Makoto
2007-05-01
There are several kinds of coupling mechanisms which can convert mechanical, chemical or thermal energies due to seismic or volcanic activities into electromagnetic energies. As a result of concentrated efforts in laboratory and theoretical research, the basic relationship between the intensity of electromagnetic sources and changes in mechanical, chemical and thermal state is becoming established. Also with the progress of the electromagnetic simulation techniques, it has been possible to evaluate in situ sensitivity. Based on this progress and also due to extensive improvement in measuring techniques, many field experiments have been performed to elucidate subsurface geophysical processes underlying the preparation stage, onset, and subsequent healing stage of earthquakes and volcanic eruptions. In volcanic studies, many studies have reported the measurement of electromagnetic signals which were successfully interpreted in terms of various driving mechanisms. Although there have been numerous reports about the existence of precursory electromagnetic signals in seismic studies, only a few of them could be successfully explained by the proposed mechanisms, whereas coseismic phenomena are often consistent with those mechanisms including the absence of detectable signals. In many cases, one or two orders of higher sensitivity were required, especially for precursory signals. Generally, electromagnetic methods are more sensitive to near-surface phenomena. It will be necessary to discriminate electromagnetic signals due to these near-surface sources, which often possess no relationship with the crustal activities. Further efforts to enhance in situ sensitivity through improvements in observation techniques and in data processing techniques are recommended. At the same time, multi-disciplinary confirmation against the validity of electromagnetic phenomena will inevitably be necessary. A Network-MT observation technique has been developed to determine large-scale deep
Unsaturated Seepage Analysis of Cracked Soil including Development Process of Cracks
Directory of Open Access Journals (Sweden)
Ling Cao
2016-01-01
Full Text Available Cracks in soil provide preferential pathways for water flow and their morphological parameters significantly affect the hydraulic conductivity of the soil. To study the hydraulic properties of cracks, the dynamic development of cracks in the expansive soil during drying and wetting has been measured in the laboratory. The test results enable the development of the relationships between the cracks morphological parameters and the water content. In this study, the fractal model has been used to predict the soil-water characteristic curve (SWCC of the cracked soil, including the developmental process of the cracks. The cracked expansive soil has been considered as a crack-pore medium. A dual media flow model has been developed to simulate the seepage characteristics of the cracked expansive soil. The variations in pore water pressure at different part of the model are quite different due to the impact of the cracks. This study proves that seepage characteristics can be better predicted if the impact of cracks is taken into account.
Kundin, J.; Raabe, D.; Emmerich, H.
2011-10-01
If alloys undergo an incoherent martensitic transformation, then plastic accommodation and relaxation accompany the transformation. To capture these mechanisms we develop an improved 3D microelastic-plastic phase-field model. It is based on the classical concepts of phase-field modeling of microelastic problems (Chen, L.Q., Wang Y., Khachaturyan, A.G., 1992. Philos. Mag. Lett. 65, 15-23). In addition to these it takes into account the incoherent formation of accommodation dislocations in the austenitic matrix, as well as their inheritance into the martensitic plates based on the crystallography of the martensitic transformation. We apply this new phase-field approach to the butterfly-type martensitic transformation in a Fe-30 wt%Ni alloy in direct comparison to recent experimental data (Sato, H., Zaefferer, S., 2009. Acta Mater. 57, 1931-1937). It is shown that the therein proposed mechanisms of plastic accommodation during the transformation can indeed explain the experimentally observed morphology of the martensitic plates as well as the orientation between martensitic plates and the austenitic matrix. The developed phase-field model constitutes a general simulations approach for different kinds of phase transformation phenomena that inherently include dislocation based accommodation processes. The approach does not only predict the final equilibrium topology, misfit, size, crystallography, and aspect ratio of martensite-austenite ensembles resulting from a transformation, but it also resolves the associated dislocation dynamics and the distribution, and the size of the crystals itself.
Munck, Sebastian; Miskiewicz, Katarzyna; Sannerud, Ragna; Menchon, Silvia A; Jose, Liya; Heintzmann, Rainer; Verstreken, Patrik; Annaert, Wim
2012-05-01
Visualization of organelles and molecules at nanometer resolution is revolutionizing the biological sciences. However, such technology is still limited for many cell biologists. We present here a novel approach using photobleaching microscopy with non-linear processing (PiMP) for sub-diffraction imaging. Bleaching of fluorophores both within the single-molecule regime and beyond allows visualization of stochastic representations of sub-populations of fluorophores by imaging the same region over time. Our method is based on enhancing the probable positions of the fluorophores underlying the images. The random nature of the bleached fluorophores is assessed by calculating the deviation of the local actual bleached fluorescence intensity to the average bleach expectation as given by the overall decay of intensity. Subtracting measured from estimated decay images yields differential images. Non-linear enhancement of maxima in these diffraction-limited differential images approximates the positions of the underlying structure. Summing many such processed differential images yields a super-resolution PiMP image. PiMP allows multi-color, three-dimensional sub-diffraction imaging of cells and tissues using common fluorophores and can be implemented on standard wide-field or confocal systems.
Li, Huanhuan; Chen, Diyi; Zhang, Hao; Wang, Feifei; Ba, Duoduo
2016-12-01
In order to study the nonlinear dynamic behaviors of a hydro-turbine governing system in the process of sudden load increase transient, we establish a novel nonlinear dynamic model of the hydro-turbine governing system which considers the elastic water-hammer model of the penstock and the second-order model of the generator. The six nonlinear dynamic transfer coefficients of the hydro-turbine are innovatively proposed by utilizing internal characteristics and analyzing the change laws of the characteristic parameters of the hydro-turbine governing system. Moreover, from the point of view of engineering, the nonlinear dynamic behaviors of the above system are exhaustively investigated based on bifurcation diagrams and time waveforms. More importantly, all of the above analyses supply theoretical basis for allowing a hydropower station to maintain a stable operation in the process of sudden load increase transient.
Institute of Scientific and Technical Information of China (English)
陶华学; 郭金运
2003-01-01
Data coming from different sources have different types and temporal states. Relations between one type of data and another ones, or between data and unknown parameters are almost nonlinear. It is not accurate and reliable to process the data in building the digital earth with the classical least squares method or the method of the common nonlinear least squares. So a generalized nonlinear dynamic least squares method was put forward to process data in building the digital earth. A separating solution model and the iterative calculation method were used to solve the generalized nonlinear dynamic least squares problem. In fact, a complex problem can be separated and then solved by converting to two sub-problems, each of which has a single variable. Therefore the dimension of unknown parameters can be reduced to its half, which simplifies the original high dimensional equations.
Institute of Scientific and Technical Information of China (English)
Kechang FU; Liankui DAI; Tiejun WU; Ming ZHU
2009-01-01
A new sensor fault diagnosis method based on structured kernel principal component analysis (KPCA) is proposed for nonlinear processes.By performing KPCA on subsets of variables,a set of structured residuals,i.e.,scaled powers of KPCA,can be obtained in the same way as partial PCA.The structured residuals are utilized in composing an isolation scheme for sensor fault diagnosis,according to a properly designed incidence matrix.Sensor fault sensitivity and critical sensitivity are defined,based on which an incidence matrix optimization algorithm is proposed to improve the performance of the structured KPCA.The effectiveness of the proposed method is demonstrated on the simulated continuous stirred tank reactor (CSTR) process.
Development of a robust calibration model for nonlinear in-line process data
Despagne; Massart; Chabot
2000-04-01
A comparative study involving a global linear method (partial least squares), a local linear method (locally weighted regression), and a nonlinear method (neural networks) has been performed in order to implement a calibration model on an industrial process. The models were designed to predict the water content in a reactor during a distillation process, using in-line measurements from a near-infrared analyzer. Curved effects due to changes in temperature and variations between the different batches make the problem particularly challenging. The influence of spectral range selection and data preprocessing has been studied. With each calibration method, specific procedures have been applied to promote model robustness. In particular, the use of a monitoring set with neural networks does not always prevent overfitting. Therefore, we developed a model selection criterion based on the determination of the median of monitoring error over replicate trials. The back-propagation neural network models selected were found to outperform the other methods on independent test data.
Nonlinear mechanisms to Rogue events in the process of interaction between optical filaments
Kovachev, L M
2015-01-01
We investigate two types of nonlinear interaction between collinear femtosecond laser pulses with power slightly above the critical for self-focusing $P_{cr}$. In the first case we study energy exchange between filaments. The model describes this process through degenerate four-photon parametric mixing (FPPM) scheme and requests initial phase difference between the waves. When there are no initial phase difference between the pulses, the FPPM process does not work. In this case it is obtained the second type of interaction as merging between two, three or four filaments in a single filament with higher power. It is found that in the second case the interflow between the filaments has potential of interaction due to cross-phase modulation (CPM).
Improved Kernel PLS-based Fault Detection Approach for Nonlinear Chemical Processes
Institute of Scientific and Technical Information of China (English)
王丽; 侍洪波
2014-01-01
In this paper, an improved nonlinear process fault detection method is proposed based on modified ker-nel partial least squares (KPLS). By integrating the statistical local approach (SLA) into the KPLS framework, two new statistics are established to monitor changes in the underlying model. The new modeling strategy can avoid the Gaussian distribution assumption of KPLS. Besides, advantage of the proposed method is that the kernel latent variables can be obtained directly through the eigen value decomposition instead of the iterative calculation, which can improve the computing speed. The new method is applied to fault detection in the simulation benchmark of the Tennessee Eastman process. The simulation results show superiority on detection sensitivity and accuracy in com-parison to KPLS monitoring.
Leydesdorff, Loet; de Nooy, Wouter
2012-01-01
The process of innovation follows non-linear patterns across the domains of science, technology, and the economy. Novel bibliometric mapping techniques can be used to investigate and represent distinctive, but complementary perspectives on the innovation process (e.g., "demand" and "supply") as well as the interactions among these perspectives. The perspectives can be represented as "continents" of data related to varying extents over time. For example, the different branches of Medical Subject Headings (MeSH) in the Medline database provide sources of such perspectives (e.g., "Diseases" versus "Drugs and Chemicals"). The multiple-perspective approach enables us to reconstruct facets of the dynamics of innovation, in terms of selection mechanisms shaping localizable trajectories and/or resulting in more globalized regimes. By expanding the data with patents and scholarly publications, we demonstrate the use of this multi-perspective approach in the case of RNA Interference (RNAi). The possibility to develop a...
Directory of Open Access Journals (Sweden)
G.S. Vorobyov
2014-04-01
Full Text Available The article describes the experimental equipment and the results of investigations of nonlinear processes occurring during the excitation of electromagnetic oscillations in the resonant electron beam devices such as an orotron-generator of diffraction radiation. These devices are finding wide application in physics and microwave technology, now. A technique for experimental research, which bases on the using of the universal electro vacuum equipment diffraction radiation analyzer and the microprocessor system for collecting and processing data. The experimental investigations results of the energy and frequency characteristics for the most common modes of the excitation oscillations in the open resonant systems such as an orotron. The implementations on the optimum modes for the oscillations excitation in such devices were recommended.
Zhang, Bo
The past decade has witnessed astounding boom in telecommunication network traffic. With the emergence of multimedia over Internet, the high-capacity optical transport systems have started to shift focus from the core network towards the end users. This trend leads to diverse optical networks with transparency and reconfigurability requirement. As single channel data rate continues to increase and channel spacing continues to shrink for high capacity, high spectral efficiency, the workload on conventional electronic signal processing elements in the router nodes continues to build up. Performing signal processing functions in the optical domain can potentially alleviate the speed bottleneck if the unique optical properties are efficiently leveraged to assist electronic processing methodologies. Ultra-high bandwidth capability along with the promise for multi-channel and format-transparent operation make optical signal processing an attractive technology which is expected to have great impact on future optical networks. For optical signal processing applications in fiber-optic network and systems, a laudable goal would be to explore the unique nonlinear optical processes in novel photonic devices. This dissertation investigates novel optical signal processing techniques through simulations and experimental demonstrations, analyzes limitations of these nonlinear processing elements and proposes techniques to enhance the system performance or designs for functional photonic modules. Two key signal-processing building blocks for future optical networks, namely slow-light-based tunable optical delay lines and SOA-based high-speed wavelength converters, are presented in the first part of the dissertation. Phase preserving and spectrally efficient slow light are experimentally demonstrated using advanced modulation formats. Functional and novel photonic modules, such as multi-channel synchronizer and variable-bit-rate optical time division multiplexer are designed and
Prasad, Paras N.
2017-02-01
Chiral control of nonlinear optical functions holds a great promise for a wide range of applications including optical signal processing, bio-sensing and chiral bio-imaging. In chiral polyfluorene thin films, we demonstrated extremely large chiral nonlinearity. The physics of manipulating excitation dynamics for photon transformation will be discussed, along with nanochemistry control of upconversion in hierarchically built organic chromophore coupled-core-multiple shell nanostructures which enable introduce new, organic-inorganic energy transfer routes for broadband light harvesting and increased upconversion efficiency via multistep cascaded energy transfer. We are pursuing the applications of photon conversion technology in IR harvesting for photovoltaics, high contrast bioimaging, photoacoustic imaging, photodynamic therapy, and optogenetics. An important application is in Brain research and Neurophotonics for functional mapping and modulation of brain activities. Another new direction pursued is magnetic field control of light in in a chiral polymer nanocomposite to achieve large magneto-optic coefficient which can enable sensing of extremely weak magnetic field due to brain waves. Finally, we will consider the thought provoking concept of utilizing photons to quantify, through magneto-optics, and augment - through nanoptogenetics, the cognitive states, thus paving the path way to a quantified human paradigm.
Directory of Open Access Journals (Sweden)
J. Azaña
2012-01-01
Full Text Available We review recent work on all-fiber (long-period fiber grating devices for optical pulse shaping, particularly flat-top pulse generation, down to the subpicosecond range and their application for nonlinear switching (demultiplexing of optical time-division multiplexed (OTDM data signals in fiber-optic telecommunication links operating up to 640 Gbit/s. Experiments are presented demonstrating error-free 640-to-10 Gbit/s demultiplexing of the 64 tributary channels using the generated flat-top pulses for temporal gating in a Kerr-effect-based nonlinear optical loop mirror. The use of flat-top pulses has critical benefits in the demultiplexing process, including a significantly increased timing-jitter tolerance (up to ~500 fs, i.e., 30% of the bit period and the associated improvement in the bit-error-rate performance (e.g., with a sensitivity increase of up to ~13 dB as compared with the use of Gaussian-like gating pulses. Long-period fiber grating pulse shapers with reduced polarization dependence are fabricated and successfully used for polarization-independent 640-to-10 Gbit/s demultiplexing experiments.
Directory of Open Access Journals (Sweden)
Li Sun
2016-01-01
Full Text Available It is assumed that the drift parameter is dependent on the acceleration variables and the diffusion coefficient remains the same across the whole accelerated degradation test (ADT in most of the literature based on Wiener process. However, the diffusion coefficient variation would also become obvious in some applications with the stress increasing. Aiming at the phenomenon, the paper concludes that both the drift parameter and the diffusion parameter depend on stress variables based on the invariance principle of failure mechanism and Nelson assumption. Accordingly, constant stress accelerated degradation process (CSADP and step stress accelerated degradation process (SSADP with random effects are modeled. The unknown parameters in the established model are estimated based on the property of degradation and degradation increment, separately for CASDT and SSADT, by the maximum likelihood estimation approach with measurement error. In addition, the simulation steps of accelerated degradation data are provided and simulated step stress accelerated degradation data is designed to validate the proposed model compared to other models. Finally, a case study of CSADT is conducted to demonstrate the benefits of our model in the practical engineering.
Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers
Isaienko, Oleksandr; Robel, István
2016-03-01
Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7-20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to the oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ(2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. The pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations PNL of the impulsively excited phonons and those of parametrically amplified waves.
Valenza, Gaetano; Citi, Luca; Scilingo, Enzo Pasquale; Barbieri, Riccardo
2014-01-01
Measures of entropy have been proved as powerful quantifiers of complex nonlinear systems, particularly when applied to stochastic series of heartbeat dynamics. Despite the remarkable achievements obtained through standard definitions of approximate and sample entropy, a time-varying definition of entropy characterizing the physiological dynamics at each moment in time is still missing. To this extent, we propose two novel measures of entropy based on the inho-mogeneous point-process theory. The RR interval series is modeled through probability density functions (pdfs) which characterize and predict the time until the next event occurs as a function of the past history. Laguerre expansions of the Wiener-Volterra autoregressive terms account for the long-term nonlinear information. As the proposed measures of entropy are instantaneously defined through such probability functions, the proposed indices are able to provide instantaneous tracking of autonomic nervous system complexity. Of note, the distance between the time-varying phase-space vectors is calculated through the Kolmogorov-Smirnov distance of two pdfs. Experimental results, obtained from the analysis of RR interval series extracted from ten healthy subjects during stand-up tasks, suggest that the proposed entropy indices provide instantaneous tracking of the heartbeat complexity, also allowing for the definition of complexity variability indices.
Energy Technology Data Exchange (ETDEWEB)
Geniet, F; Leon, J [Physique Mathematique et Theorique, CNRS-UMR 5825, 34095 Montpellier (France)
2003-05-07
A nonlinear system possessing a natural forbidden band gap can transmit energy of a signal with a frequency in the gap, as recently shown for a nonlinear chain of coupled pendulums (Geniet and Leon 2002 Phys. Rev. Lett. 89 134102). This process of nonlinear supratransmission, occurring at a threshold that is exactly predictable in many cases, is shown to have a simple experimental realization with a mechanical chain of pendulums coupled by a coil spring. It is then analysed in more detail. First we go to different (nonintegrable) systems which do sustain nonlinear supratransmission. Then a Josephson transmission line (a one-dimensional array of short Josephson junctions coupled through superconducting wires) is shown to also sustain nonlinear supratransmission, though being related to a different class of boundary conditions, and despite the presence of damping, finiteness, and discreteness. Finally, the mechanism at the origin of nonlinear supratransmission is found to be a nonlinear instability, and this is briefly discussed here.
2010-11-12
..., 2010 (75 FR 34174). At the request of the State agency, the Department reviewed the certification for... Employment and Training Administration Health Net, Inc., Claims Processing Group and Systems Configuration..., applicable to workers of Health Net, Inc., Claims Processing Group and Systems Configuration...
Determination of processed animal proteins, including meat and bone meal, in animal feed.
Gizzi, Giséile; von Holst, Christoph; Baeten, Vincent; Berben, Gilbert; van Raamsdonk, Leo
2004-01-01
An intercomparison study was conducted to determine the presence of processed animal proteins (PAPs), including meat and bone meal (MBM) from various species, in animal feed. The performances of different methods, such as microscopy, polymerase chain reaction (PCR), immunoassays, and a protocol based on iquid chromatography (LC), were compared. Laboratories were asked to analyze for PAPs from all terrestrial animals and fish (total PAPs); mammalian PAPs; ruminant PAPs; and porcine PAPs. They were free to use their method of choice. In addition, laboratories using microscopy were asked to determine the presence of PAPs from terrestrial animals, which is applicable only to microscopy. For total PAPs microscopy, LC and some immunoassays showed sufficient results at a concentration as low as 0.1% MBM in the feed. In contrast, PCR was not fit for purpose. In differentiating between MBM from terrestrial animals and fishmeal, microscopy detected 0.5% of terrestrial MBM in feed in the presence of 5% fishmeal, but was less successful when the concentration of MBM from terrestrial animals was 0.1%. The animal-specific determination of MBM from mammals or, more specifically from either ruminants or pigs, by PCR showed poor results, as indicated by a high number of false-positive and false-negative results. The only PCR method that scored quite well was applied by a member of the organizer team of the study. Immunoassays scored much better than PCR, showing sufficient sensitivity but some deficiency in terms of specificity. The results also demonstrated that the reliable determination of MBM from ruminants has not been resolved, especially for low concentrations of MBM (0.1%) in feed. Comparison of the results for mammalian MBM from all methods indicated that, for control purposes, the immunoassay method, especially when applied as dipsticks, could be used as a rapid screening method combined with microscopy to confirm the positive samples. However, implementation of such a
Nonlinear modeling of activated sludge process using the Hammerstein-Wiener structure
Directory of Open Access Journals (Sweden)
Frącz Paweł
2016-01-01
Full Text Available The paper regards to physical model of the Activated Sludge Process, which is a part of the wastewater treatment. The aim of the study was to describe nitrogen transformation process and the demand of chemical fractions, involved in the ASP process. Moreover, the non-linear relationship between the flow of wastewater and the consumed electrical energy, used by the blowers, was determined. Such analyses are important from the economical and environmental point of view. Assuming that the total power does not change the blower is charging during a year an energy amount of approx. 613 MW. This illustrates in particular the scale of the demand for energy consumption in the biological aeration unit. The aim is to minimize the energy consumption through first building a model of ASP and then through optimization of the overall process by modifying chosen parameter in numerical simulations. In this paper example measurement and analysis results of nitrite and ammonium nitrogen concentrations in the aeration reactor and the active power consumed by blowers for the aeration process were presented. Further the ASP modeling procedure, which uses the Hammerstein-Wiener structure and example verification results were presented. Based on the achieved results it was stated that the developed set of methodologies may be used to improve and expand the overriding control system for system for wastewater treatment plant.
Directory of Open Access Journals (Sweden)
Ahmad Mamandi
2011-01-01
Full Text Available In this study, the nonlinear vibrations analysis of an inclined pinned-pinned self-weight Timoshenko beam made of linear, homogenous and isotropic material with a constant cross section and finite length subjected to a traveling mass/force with constant velocity is investigated. The nonlinear coupled partial differential equations of motion for the rotation of warped cross section, longitudinal and transverse displacements are derived using the Hamilton's principle. These nonlinear coupled PDEs are solved by applying the Galerkin's method to obtain dynamic responses of the beam. The dynamic magnification factor and normalized time histories of mid-point of the beam are obtained for various load velocity ratios and the outcome results have been compared to the results with those obtained from linear solution. The influence of the large deflections caused by a stretching effect due to the beam's fixed ends is captured. It was seen that existence of quadratic-cubic nonlinear terms in the nonlinear governing coupled PDEs of motion causes stiffening (hardening behavior of the dynamic responses of the self-weight beam under the act of a traveling mass as well as equivalent concentrated moving force. Furthermore, in a case where the object leaves the beam, its planar motion path is derived and the targeting accuracy is investigated and compared with those from the rigid solution assumption.
Henriksen, James A.; Heasley, John; Kennen, Jonathan G.; Nieswand, Steven
2006-01-01
This manual is a user’s guide to four computer software tools that have been developed for the Hydroecological Integrity Assessment Process. The Hydroecological Integrity Assessment Process recognizes that streamflow is strongly related to many critical physiochemical components of rivers, such as dissolved oxygen, channel geomorphology, and water temperature, and can be considered a “master variable” that limits the disturbance, abundance, and diversity of many aquatic plant and animal species.
Helmdach, Daniel; Yaseneva, Polina; Heer, Parminder K; Schweidtmann, Artur M; Lapkin, Alexei A
2017-09-22
A decision support tool has been developed that uses global multiobjective optimization based on 1) the environmental impacts, evaluated within the framework of full life cycle assessment; and 2) process costs, evaluated by using rigorous process models. This approach is particularly useful in developing biorenewable-based energy solutions and chemicals manufacturing, for which multiple criteria must be evaluated and optimization-based decision-making processes are particularly attractive. The framework is demonstrated by using a case study of the conversion of terpenes derived from biowaste feedstocks into reactive intermediates. A two-step chemical conversion/separation sequence was implemented as a rigorous process model and combined with a life cycle model. A life cycle inventory for crude sulfate turpentine was developed, as well as a conceptual process of its separation into pure terpene feedstocks. The performed single- and multiobjective optimizations demonstrate the functionality of the optimization-based process development and illustrate the approach. The most significant advance is the ability to perform multiobjective global optimization, resulting in identification of a region of Pareto-optimal solutions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Speech-Language Therapists' Process of Including Significant Others in Aphasia Rehabilitation
Hallé, Marie-Christine; Le Dorze, Guylaine; Mingant, Anne
2014-01-01
Background: Although aphasia rehabilitation should include significant others, it is currently unknown how this recommendation is adopted in speech-language therapy practice. Speech-language therapists' (SLTs) experience of including significant others in aphasia rehabilitation is also understudied, yet a better understanding of clinical…
DEFF Research Database (Denmark)
Peucheret, Christophe; Da Ros, Francesco; Vukovic, Dragana;
- compatible fabrication process, degrees of freedom in dispersion engineering, and high nonlinear coecient. However, the detrimental eect of free-carrier absorption induced by two-photon absorp- tion has so far prevented them from being used for the demonstration of phase-sensitive processing. Thanks...
Nonlinear Sagnac interferometer based on the four-wave mixing process.
Xin, Jun; Liu, Jinming; Jing, Jietai
2017-01-23
A new nonlinear Sagnac interferometer (NSI) is proposed by replacing the beam-splitter in the traditional Sagnac interferometer (TSI) with a four-wave mixing process. Such a NSI has better angular velocity sensitivity than the one of the TSI. The standard quantum limit can be beaten and the Heisenberg Limit can even be reached for the ideal case by the NSI. We study the effect of the losses on the angular velocity sensitivity of the NSI and find that the optimal angular velocity, where the best angular velocity sensitivity can be obtained, of the NSI may be dependent on the losses inside the interferometer. Such a NSI has its advantages compared with the TSI and may find its potential applications in quantum metrology.
Baranov, Denis G; Milichko, Valentin A; Kudryashov, Sergey I; Krasnok, Alexander E; Belov, Pavel A
2016-01-01
Optically generated electron-hole plasma in high-index dielectric nanostructures was demonstrated as a means of tuning of their optical properties. However, until now an ultrafast operation regime of such plasma driven nanostructures has not been attained. Here, we perform pump-probe experiments with resonant silicon nanoparticles and report on dense optical plasma generation near the magnetic dipole resonance with ultrafast (about 2.5 ps) relaxation rate. Basing on experimental results, we develop an analytical model describing transient response of a nanocrystalline silicon nanoparticle to an intense laser pulse and show theoretically that plasma induced optical nonlinearity leads to ultrafast reconfiguration of the scattering power pattern. We demonstrate 100 fs switching to unidirectional scattering regime upon irradiation of the nanoparticle by an intense femtosecond pulse. Our work lays the foundation for developing ultracompact and ultrafast all-optical signal processing devices.
Nonlinear color-image decomposition for image processing of a digital color camera
Saito, Takahiro; Aizawa, Haruya; Yamada, Daisuke; Komatsu, Takashi
2009-01-01
This paper extends the BV (Bounded Variation) - G and/or the BV-L1 variational nonlinear image-decomposition approaches, which are considered to be useful for image processing of a digital color camera, to genuine color-image decomposition approaches. For utilizing inter-channel color cross-correlations, this paper first introduces TV (Total Variation) norms of color differences and TV norms of color sums into the BV-G and/or BV-L1 energy functionals, and then derives denoising-type decomposition-algorithms with an over-complete wavelet transform, through applying the Besov-norm approximation to the variational problems. Our methods decompose a noisy color image without producing undesirable low-frequency colored artifacts in its separated BV-component, and they achieve desirable high-quality color-image decomposition, which is very robust against colored random noise.
Directory of Open Access Journals (Sweden)
Naveed Ishtiaq Chaudhary
2013-01-01
Full Text Available A novel algorithm is developed based on fractional signal processing approach for parameter estimation of input nonlinear control autoregressive (INCAR models. The design scheme consists of parameterization of INCAR systems to obtain linear-in-parameter models and to use fractional least mean square algorithm (FLMS for adaptation of unknown parameter vectors. The performance analyses of the proposed scheme are carried out with third-order Volterra least mean square (VLMS and kernel least mean square (KLMS algorithms based on convergence to the true values of INCAR systems. It is found that the proposed FLMS algorithm provides most accurate and convergent results than those of VLMS and KLMS under different scenarios and by taking the low-to-high signal-to-noise ratio.
Chaudhary, Naveed Ishtiaq; Raja, Muhammad Asif Zahoor; Khan, Junaid Ali; Aslam, Muhammad Saeed
2013-01-01
A novel algorithm is developed based on fractional signal processing approach for parameter estimation of input nonlinear control autoregressive (INCAR) models. The design scheme consists of parameterization of INCAR systems to obtain linear-in-parameter models and to use fractional least mean square algorithm (FLMS) for adaptation of unknown parameter vectors. The performance analyses of the proposed scheme are carried out with third-order Volterra least mean square (VLMS) and kernel least mean square (KLMS) algorithms based on convergence to the true values of INCAR systems. It is found that the proposed FLMS algorithm provides most accurate and convergent results than those of VLMS and KLMS under different scenarios and by taking the low-to-high signal-to-noise ratio. PMID:23853538
Directory of Open Access Journals (Sweden)
Luiz Augusto da Cruz Meleiro
2005-06-01
Full Text Available In this work a MIMO non-linear predictive controller was developed for an extractive alcoholic fermentation process. The internal model of the controller was represented by two MISO Functional Link Networks (FLNs, identified using simulated data generated from a deterministic mathematical model whose kinetic parameters were determined experimentally. The FLN structure presents as advantages fast training and guaranteed convergence, since the estimation of the weights is a linear optimization problem. Besides, the elimination of non-significant weights generates parsimonious models, which allows for fast execution in an MPC-based algorithm. The proposed algorithm showed good potential in identification and control of non-linear processes.Neste trabalho um controlador preditivo não linear multivariável foi desenvolvido para um processo de fermentação alcoólica extrativa. O modelo interno do controlador foi representado por duas redes do tipo Functional Link (FLN, identificadas usando dados de simulação gerados a partir de um modelo validado experimentalmente. A estrutura FLN apresenta como vantagem o treinamento rápido e convergência garantida, já que a estimação dos seus pesos é um problema de otimização linear. Além disso, a eliminação de pesos não significativos gera modelos parsimoniosos, o que permite a rápida execução em algoritmos de controle preditivo baseado em modelo. Os resultados mostram que o algoritmo proposto tem grande potencial para identificação e controle de processos não lineares.
In-TFT-Array-Process Micro Defect Inspection Using Nonlinear Principal Component Analysis
Directory of Open Access Journals (Sweden)
Zhi-Hao Kang
2009-10-01
Full Text Available Defect inspection plays a critical role in thin film transistor liquid crystal display (TFT-LCD manufacture, and has received much attention in the field of automatic optical inspection (AOI. Previously, most focus was put on the problems of macro-scale Mura-defect detection in cell process, but it has recently been found that the defects which substantially influence the yield rate of LCD panels are actually those in the TFT array process, which is the first process in TFT-LCD manufacturing. Defect inspection in TFT array process is therefore considered a difficult task. This paper presents a novel inspection scheme based on kernel principal component analysis (KPCA algorithm, which is a nonlinear version of the well-known PCA algorithm. The inspection scheme can not only detect the defects from the images captured from the surface of LCD panels, but also recognize the types of the detected defects automatically. Results, based on real images provided by a LCD manufacturer in Taiwan, indicate that the KPCA-based defect inspection scheme is able to achieve a defect detection rate of over 99% and a high defect classification rate of over 96% when the imbalanced support vector machine (ISVM with 2-norm soft margin is employed as the classifier. More importantly, the inspection time is less than 1 s per input image.
Institute of Scientific and Technical Information of China (English)
Hasan ABBASI NOZARI; Hamed DEHGHAN BANADAKI; Mohammad MOKHTARE; Somaveh HEKMATI VAHED
2012-01-01
This study deals with the neuro-fuzzy (NF) modelling of a real industrial winding process in which the acquired NF model can be exploited to improve control performance and achieve a robust fault-tolerant system.A new simulator model is proposed for a winding process using non-linear identification based on a recurrent local linear neuro-fuzzy (RLLNF) network trained by local linear model tree (LOLIMOT),which is an incremental tree-based learning algorithm.The proposed NF models are compared with other known intelligent identifiers,namely multilayer perceptron (MLP) and radial basis function (RBF).Comparison of our proposed non-linear models and associated models obtained through the least square error (LSE) technique (the optimal modelling method for linear systems) confirms that the winding process is a non-linear system.Experimental results show the effectiveness of our proposed NF modelling approach.
Method of solution preparation of polyolefin class polymers for electrospinning processing included
Rabolt, John F. (Inventor); Lee, Keun-Hyung (Inventor); Givens, Steven R. (Inventor)
2011-01-01
A process to make a polyolefin fiber which has the following steps: mixing at least one polyolefin into a solution at room temperature or a slightly elevated temperature to form a polymer solution and electrospinning at room temperature said polymer solution to form a fiber.
A Model Predictive Algorithm for Active Control of Nonlinear Noise Processes
Directory of Open Access Journals (Sweden)
Qi-Zhi Zhang
2005-01-01
Full Text Available In this paper, an improved nonlinear Active Noise Control (ANC system is achieved by introducing an appropriate secondary source. For ANC system to be successfully implemented, the nonlinearity of the primary path and time delay of the secondary path must be overcome. A nonlinear Model Predictive Control (MPC strategy is introduced to deal with the time delay in the secondary path and the nonlinearity in the primary path of the ANC system. An overall online modeling technique is utilized for online secondary path and primary path estimation. The secondary path is estimated using an adaptive FIR filter, and the primary path is estimated using a Neural Network (NN. The two models are connected in parallel with the two paths. In this system, the mutual disturbances between the operation of the nonlinear ANC controller and modeling of the secondary can be greatly reduced. The coefficients of the adaptive FIR filter and weight vector of NN are adjusted online. Computer simulations are carried out to compare the proposed nonlinear MPC method with the nonlinear Filter-x Least Mean Square (FXLMS algorithm. The results showed that the convergence speed of the proposed nonlinear MPC algorithm is faster than that of nonlinear FXLMS algorithm. For testing the robust performance of the proposed nonlinear ANC system, the sudden changes in the secondary path and primary path of the ANC system are considered. Results indicated that the proposed nonlinear ANC system can rapidly track the sudden changes in the acoustic paths of the nonlinear ANC system, and ensure the adaptive algorithm stable when the nonlinear ANC system is time variable.
Aires, Filipe; Rossow, William B.; Hansen, James E. (Technical Monitor)
2001-01-01
A new approach is presented for the analysis of feedback processes in a nonlinear dynamical system by observing its variations. The new methodology consists of statistical estimates of the sensitivities between all pairs of variables in the system based on a neural network modeling of the dynamical system. The model can then be used to estimate the instantaneous, multivariate and nonlinear sensitivities, which are shown to be essential for the analysis of the feedbacks processes involved in the dynamical system. The method is described and tested on synthetic data from the low-order Lorenz circulation model where the correct sensitivities can be evaluated analytically.
Process for removing and detoxifying cadmium from scrap metal including mixed waste
Energy Technology Data Exchange (ETDEWEB)
Kronberg, J.W.
1994-07-01
Cadmium-bearing scrap from nuclear applications, such as neutron shielding and reactor control and safety rods, must usually be handled as mixed waste since it is radioactive and the cadmium in it is both leachable and highly toxic. Removing the cadmium from this scrap, and converting it to a nonleachable and minimally radioactive form, would greatly simplify disposal or recycling. A process now under development will do this by shredding the scrap; leaching it with reagents which selectively dissolve out the cadmium; reprecipitating the cadmium as its highly insoluble sulfide; then fusing the sulfide into a glassy matrix to bring its leachability below EPA limits before disposal. Alternatively, the cadmium may be recovered for reuse. A particular advantage of the process is that all reagents (except the glass frit) can easily be recovered and reused in a nearly closed cycle, minimizing the risk of radioactive release. The process does not harm common metals such as aluminum, iron and stainless steel, and is also applicable to non-nuclear cadmium-bearing scrap such as nickel-cadmium batteries.
Fast phase processing in off-axis holography by CUDA including parallel phase unwrapping.
Backoach, Ohad; Kariv, Saar; Girshovitz, Pinhas; Shaked, Natan T
2016-02-22
We present parallel processing implementation for rapid extraction of the quantitative phase maps from off-axis holograms on the Graphics Processing Unit (GPU) of the computer using computer unified device architecture (CUDA) programming. To obtain efficient implementation, we parallelized both the wrapped phase map extraction algorithm and the two-dimensional phase unwrapping algorithm. In contrast to previous implementations, we utilized unweighted least squares phase unwrapping algorithm that better suits parallelism. We compared the proposed algorithm run times on the CPU and the GPU of the computer for various sizes of off-axis holograms. Using the GPU implementation, we extracted the unwrapped phase maps from the recorded off-axis holograms at 35 frames per second (fps) for 4 mega pixel holograms, and at 129 fps for 1 mega pixel holograms, which presents the fastest processing framerates obtained so far, to the best of our knowledge. We then used common-path off-axis interferometric imaging to quantitatively capture the phase maps of a micro-organism with rapid flagellum movements.
Furan and Alkylated Furans in Heat Processed Food, Including Home Cooked Products
DEFF Research Database (Denmark)
Fromberg, Arvid; Mariotti, Maria S.; Pedreschi, Franco
2014-01-01
of carbohydrates. Interestingly, breakfast cereals, dry bread products, and dried fruit products including raisins, plums and bananas contained furan at levels up to 387 mu g/kg. Furan was also found in the dry ingredients of cookies and bread, and in snacks such as crisps and popcorn. The 2-alkylfurans, 2...
Çoklar, Ahmet Naci; Efilti, Erkan; Sahin, Yusef Levent; Akçay, Arif
2016-01-01
Techno-stress is defined as a modern adaptation disorder resulting from the failure in coping with new technologies in a healthy way. Techno-stress affects many occupational groups, including teachers. FATIH project and many other previous studies conducted in Turkey in recent years have necessitated the use of technology for teachers. The present…
Schwinger-Dyson equations in large-N quantum field theories and nonlinear random processes
Buividovich, P V
2010-01-01
We study stochastic methods for solving Schwinger-Dyson equations in large-N quantum field theories. Expectation values of single-trace operators are sampled by stationary probability distributions of so-called nonlinear random processes. The set of all histories of such processes corresponds to the set of all planar diagrams in the perturbative expansion of the theory. We describe stochastic algorithms for summation of planar diagrams in matrix-valued scalar field theory and in the Weingarten model of random planar surfaces on the lattice. For compact field variables, the method does not converge in the physically most interesting weak-coupling limit. In this case one can absorb the divergences into the self-consistent redefinition of expansion parameters. Stochastic solution of the self-consistency conditions can be implemented as a random process with memory. We illustrate this idea on the example of two-dimensional O(N) sigma-model. Extension to non-Abelian lattice gauge theories is discussed.
Nonlinear Stokes Mueller Polarimetry
Samim, Masood; Barzda, Virginijus
2015-01-01
The Stokes Mueller polarimetry is generalized to include nonlinear optical processes such as second- and third-harmonic generation, sum- and difference-frequency generations. The overall algebraic form of the polarimetry is preserved, where the incoming and outgoing radiations are represented by column vectors and the intervening medium is represented by a matrix. Expressions for the generalized nonlinear Stokes vector and the Mueller matrix are provided in terms of coherency and correlation matrices, expanded by higher-dimensional analogues of Pauli matrices. In all cases, the outgoing radiation is represented by the conventional $4\\times 1$ Stokes vector, while dimensions of the incoming radiation Stokes vector and Mueller matrix depend on the order of the process being examined. In addition, relation between nonlinear susceptibilities and the measured Mueller matrices are explicitly provided. Finally, the approach of combining linear and nonlinear optical elements is discussed within the context of polarim...
Double pendulum model for a tennis stroke including a collision process
Youn, Sun-Hyun
2015-10-01
By means of adding a collision process between the ball and racket in the double pendulum model, we analyzed the tennis stroke. The ball and the racket system may be accelerated during the collision time; thus, the speed of the rebound ball does not simply depend on the angular velocity of the racket. A higher angular velocity sometimes gives a lower rebound ball speed. We numerically showed that the proper time-lagged racket rotation increased the speed of the rebound ball by 20%. We also showed that the elbow should move in the proper direction in order to add the angular velocity of the racket.
2012-09-14
... Employment and Training Administration New Process Gear, a Division of Magna Powertrain, Including On- Site... of New Process Gear, a division of Magna Powertrain, East Syracuse, New York, The workers produce... Syracuse, New York location of New Process Gear, a division of Magna Powertrain. The Department...
Diehl, S; Zambrano, J; Carlsson, B
2016-01-01
A reduced model of a completely stirred-tank bioreactor coupled to a settling tank with recycle is analyzed in its steady states. In the reactor, the concentrations of one dominant particulate biomass and one soluble substrate component are modelled. While the biomass decay rate is assumed to be constant, growth kinetics can depend on both substrate and biomass concentrations, and optionally model substrate inhibition. Compressive and hindered settling phenomena are included using the Bürger-Diehl settler model, which consists of a partial differential equation. Steady-state solutions of this partial differential equation are obtained from an ordinary differential equation, making steady-state analysis of the entire plant difficult. A key result showing that the ordinary differential equation can be replaced with an approximate algebraic equation simplifies model analysis. This algebraic equation takes the location of the sludge-blanket during normal operation into account, allowing for the limiting flux capacity caused by compressive settling to easily be included in the steady-state mass balance equations for the entire plant system. This novel approach grants the possibility of more realistic solutions than other previously published reduced models, comprised of yet simpler settler assumptions. The steady-state concentrations, solids residence time, and the wastage flow ratio are functions of the recycle ratio. Solutions are shown for various growth kinetics; with different values of biomass decay rate, influent volumetric flow, and substrate concentration.
Sahimi, Muhammad
1998-12-01
We review and discuss recent progress in modelling non-linear and non-local transport processes in heterogeneous media. The non-locality that we consider is caused by long-range correlations that either exist in the morphology of the media, or are caused by the transport processes themselves. The interplay between the non-linearity and non-locality is discussed in depth with the aim of establishing that, often non-linearity and non-locality are “two sides of the same coin”, such that one may have no meaning without the presence of the other one. First, we discuss linear and scalar, but non-local transport processes and, in particular, consider those in percolation systems with long-range correlations. It appears that there are significant differences between percolative transport processes in which the long-range correlations (or the covariance function) decrease with the distance r between two points, and those in which they increase as r does. Application of this problem to flow and transport in geological formations is discussed. We then consider linear vector percolation, one type of which, the rigidity percolation, provides an example of a non-local vector transport in heterogeneous media. Applications of vector percolation to modelling elastic properties of glasses, composite solids and rock, mechanical and viscoelastic properties of polymers, and vibrations and dynamical properties of heterogeneous materials are discussed. Non-linear and non-local scalar transport processes are discussed next, including various breakdown phenomena in disordered composites, power-law transport, piecewise linear transport characterized by a threshold, and non-linear processes that arise as a result of imposing a large external potential gradient on a heterogeneous medium. Their relevance to flow of non-Newtonian fluids in porous media, to electrical currents and dielectric breakdown in composite solids and doped polycrystalline semiconductors, and several other problems is
Hoelzl, M; Merkel, P; Atanasiu, C; Lackner, K; Nardon, E; Aleynikova, K; Liu, F; Strumberger, E; McAdams, R; Chapman, I; Fil, A
2014-01-01
The dynamics of large scale plasma instabilities can strongly be influenced by the mutual interaction with currents flowing in conducting vessel structures. Especially eddy currents caused by time-varying magnetic perturbations and halo currents flowing directly from the plasma into the walls are important. The relevance of a resistive wall model is directly evident for Resistive Wall Modes (RWMs) or Vertical Displacement Events (VDEs). However, also the linear and non-linear properties of most other large-scale instabilities may be influenced significantly by the interaction with currents in conducting structures near the plasma. The understanding of halo currents arising during disruptions and VDEs, which are a serious concern for ITER as they may lead to strong asymmetric forces on vessel structures, could also benefit strongly from these non-linear modeling capabilities. Modeling the plasma dynamics and its interaction with wall currents requires solving the magneto-hydrodynamic (MHD) equations in realist...
Extreme-Point Symmetric Mode Decomposition Method for Nonlinear and Non-Stationary Signal Processing
Wang, Jin-Liang
2013-01-01
To process nonlinear and non-stationary signals, an extreme-point symmetric mode decomposition (ESMD) method is developed. It can be seen as a new alternate of the well-known Hilbert-Huang transform (HHT) method which is widely used nowadays. There are two parts for it. The first part is the decomposition approach which yields a series of intrinsic mode functions (IMFs) together with an optimal adaptive global mean (AGM) curve, the second part is the direct interpolating (DI) approach which yields instantaneous amplitudes and frequencies for the IMFs together with a time-varying energy. Relative to the HHT method it has five characteristics as follows: (1) Different from constructing 2 outer envelopes, its sifting process is implemented by the aid of 1, 2 or 3 inner interpolating curves; (2) It does not decompose the signal to the last trend curve with at most one extreme point, it optimizes the residual component to be an optimal AGM curve which possesses a certain number of extreme points; (3) Its symmetry ...
Fundamental nonlinearities of the reactor-settler interaction in the activated sludge process.
Diehl, Stefan; Farås, Sebastian
2012-01-01
The activated sludge process can be modelled by ordinary and partial differential equations for the biological reactors and secondary settlers, respectively. Because of the complexity of such a system, simulation models are most often used to investigate them. However, simulation models cannot give general rules on how to control a complex nonlinear process. For a reduced-order model with only two components, soluble substrate and particulate biomass, general results on steady-state solutions have recently been obtained, such as existence, uniqueness and stability of solutions. The aim of the present paper is to utilize those results to formulate some implications of practical importance. In particular, strategies are described for the manual control of the effluent substrate concentration subject to the constraint that the settler is maintained in normal operation (with a sludge blanket in the thickening zone) in steady state. Such strategies contain how the two control parameters, the recycle and waste volumetric flow ratios, should be chosen for any (steady-state) values of the input variables.
Sadeghi, Saman; Thompson, Michael
2010-01-01
It is evident that complex animate materials, which operate far from equilibrium, exhibit sensory responses to the environment through emergent patterns. Formation of such patterns is often the underlying mechanism of an active response to environmental changes and can be interpreted as a result of the distributed parallel information processing taking place within the material. Such emergent patterns are not limited to biological entities; indeed there is a wide range of complex nonlinear dissipative systems which exhibit interesting emergent patterns within a range of parameters. As one example, the present paper describes the detection of emergent phenomena associated with surface electrochemical processes that allow the system to respond to input information through evolving patterns in space and time. Associative mapping of this sort offers the opportunity to devise an electrochemical cognitive system (ECS), where pattern formation can be looked at as a macroscopic phenomenon resulting from the extensive distributive computing that occurs at the microscopic level. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Process for desalting and dehydration of crude oil including hot water washing and gas stripping
Energy Technology Data Exchange (ETDEWEB)
Popp, V.V.; Suditu, I.; Neagu, P.; Fotescu, L.; Mihalache, I.; Tirboiu, D.
1979-12-25
Process and apparatus for the desalting and dehydration of crude oil is described, in which the crude oil is washed in one or several stages using fresh or recirculated hot water containing a demulsifier. The crude oil is also passed through a coalescence stage, and a settling stage aimed at obtaining a salt content to meet crude oil specifications. Subsequently the crude oil is led into a lower stripping compartment of a column, in which dehydration is carried out to the desired level by using fuel or combustion gas. The stripping temperature is reached by heating the crude or the gas or both. The gas-vapor mixture is cooled in the upper compartment of the column by a cooling fluid such as the untreated crude oil or recirculated or fresh water, depending upon the nature and salt content of the crude. The cooled gas is recirculated within the column or led to a pipeline for consumption, while the cooling fluid, in the case of water, is recirculated in the unit.
Including natural systems into the system engineering process: benefits to spaceflight and beyond
Studor, George
2014-03-01
How did we get to the point where we don't have time to be inspired by the wonders of Nature? Our office walls, homes and city streets are so plain that even when we do escape to a retreat with nature all around us, we may be blind to its magnificence. Yet there are many who have applied what can be known of natural systems (NS) to create practical solutions, but often definite applications for them are lacking. Mimicry of natural systems is not only more possible than ever before, but the education and research programs in many major universities are churning out graduates with a real appreciation for Nature's complex integrated systems. What if these skills and perspectives were employed in the teams of systems engineers and the technology developers that support them to help the teams think "outside-the-box" of manmade inventions? If systems engineers (SE) and technology developers regularly asked the question, "what can we learn from Nature that will help us?" as a part of their processes, they would discover another set of potential solutions. Biomimicry and knowledge of natural systems is exploding. What does this mean for systems engineering and technology? Some disciplines such as robotics and medical devices must consider nature constantly. Perhaps it's time for all technology developers and systems engineers to perceive natural systems experts as potential providers of the technologies they need.
Directory of Open Access Journals (Sweden)
Erkan Karacabey
2016-08-01
Full Text Available Aromatization of olive oil especially by spices and herbs has been widely used technique throughout the ages in Mediterranean diets. The present study was focused on aromatization of olive oil by rosemary (Rosmarinus officinalis L.. Aromatization process was optimized by response surface methodology as a function of malaxation’s conditions (temperature and time. According to authors’ best knowledge it was first time for examination of oil yield performance with antioxidant potential and pigments under effect of aromatization parameters. For all oil samples, values of the free acidity, peroxide, K232 and K270 as quality parameters fell within the ranges established for the highest quality category “extra virgin oil”. Oil yield (mL oil/kg olive paste changed from 158 to 208 with respect to design parameters. Total phenolic content and free radical scavenging activity as antioxidant potential of olive oil samples were varied in the range of 182.44 – 348.65 mg gallic acid equivalent/kg oil and 28.91 – 88.75 % inhibition of 2,2-Diphenyl-1-picrylhydrazyl-(DPPH•, respectively. Total contents of carotenoid, chlorophyll and pheophytin a as pigments in oil samples were found to be in between 0.09 – 0.48 mg carotenoid/kg oil, 0.11 – 0.96 mg chlorophyll/kg oil, 0.15 – 4.44 mg pheo α/kg oil, respectively. The proposed models for yield, pigments and antioxidant potential responses were found to be good enough for successful prediction of experimental results. Total phenolics, carotenoids and free radical scavenging activity of aromatized olive oil and oil yield were maximized to gather and optimal conditions were determined as 25°C, 84 min, and 2 % (Rosemary/olive paste; w/w.
Directory of Open Access Journals (Sweden)
S. I. Samsudin
2014-01-01
Full Text Available The wastewater treatment plant (WWTP is highly known with the nonlinearity of the control parameters, thus it is difficult to be controlled. In this paper, the enhancement of nonlinear PI controller (ENon-PI to compensate the nonlinearity of the activated sludge WWTP is proposed. The ENon-PI controller is designed by cascading a sector-bounded nonlinear gain to linear PI controller. The rate variation of the nonlinear gain kn is automatically updated based on adaptive interaction algorithm. Initiative to simplify the ENon-PI control structure by adapting kn has been proved by significant improvement under various dynamic influents. More than 30% of integral square error and 14% of integral absolute error are reduced compared to benchmark PI for DO control and nitrate in nitrogen removal control. Better average effluent qualities, less number of effluent violations, and lower aeration energy consumption resulted.
1976-10-29
clipping level. The nonlinear processing method described in this report provides at least 10 dB of S/N improvement over the performance obtained without...0001s Ii 0110 151 to-, ,n o 151. 1 iK) Il O( M I ( lf clipper performance was also eviden -t in the January 1974 data. Table 7 contains statisti- cal
Schertzer, D.; Lovejoy, S.
1. The conference The third conference on "Nonlinear VAriability in Geophysics: scaling and multifractal processes" (NVAG 3) was held in Cargese, Corsica, Sept. 10-17, 1993. NVAG3 was joint American Geophysical Union Chapman and European Geophysical Society Richardson Memorial conference, the first specialist conference jointly sponsored by the two organizations. It followed NVAG1 (Montreal, Aug. 1986), NVAG2 (Paris, June 1988; Schertzer and Lovejoy, 1991), five consecutive annual sessions at EGS general assemblies and two consecutive spring AGU meeting sessions. As with the other conferences and workshops mentioned above, the aim was to develop confrontation between theories and experiments on scaling/multifractal behaviour of geophysical fields. Subjects covered included climate, clouds, earthquakes, atmospheric and ocean dynamics, tectonics, precipitation, hydrology, the solar cycle and volcanoes. Areas of focus included new methods of data analysis (especially those used for the reliable estimation of multifractal and scaling exponents), as well as their application to rapidly growing data bases from in situ networks and remote sensing. The corresponding modelling, prediction and estimation techniques were also emphasized as were the current debates about stochastic and deterministic dynamics, fractal geometry and multifractals, self-organized criticality and multifractal fields, each of which was the subject of a specific general discussion. The conference started with a one day short course of multifractals featuring four lectures on a) Fundamentals of multifractals: dimension, codimensions, codimension formalism, b) Multifractal estimation techniques: (PDMS, DTM), c) Numerical simulations, Generalized Scale Invariance analysis, d) Advanced multifractals, singular statistics, phase transitions, self-organized criticality and Lie cascades (given by D. Schertzer and S. Lovejoy, detailed course notes were sent to participants shortly after the conference). This
Directory of Open Access Journals (Sweden)
D. Schertzer
1994-01-01
Full Text Available 1. The conference The third conference on "Nonlinear VAriability in Geophysics: scaling and multifractal processes" (NVAG 3 was held in Cargese, Corsica, Sept. 10-17, 1993. NVAG3 was joint American Geophysical Union Chapman and European Geophysical Society Richardson Memorial conference, the first specialist conference jointly sponsored by the two organizations. It followed NVAG1 (Montreal, Aug. 1986, NVAG2 (Paris, June 1988; Schertzer and Lovejoy, 1991, five consecutive annual sessions at EGS general assemblies and two consecutive spring AGU meeting sessions. As with the other conferences and workshops mentioned above, the aim was to develop confrontation between theories and experiments on scaling/multifractal behaviour of geophysical fields. Subjects covered included climate, clouds, earthquakes, atmospheric and ocean dynamics, tectonics, precipitation, hydrology, the solar cycle and volcanoes. Areas of focus included new methods of data analysis (especially those used for the reliable estimation of multifractal and scaling exponents, as well as their application to rapidly growing data bases from in situ networks and remote sensing. The corresponding modelling, prediction and estimation techniques were also emphasized as were the current debates about stochastic and deterministic dynamics, fractal geometry and multifractals, self-organized criticality and multifractal fields, each of which was the subject of a specific general discussion. The conference started with a one day short course of multifractals featuring four lectures on a Fundamentals of multifractals: dimension, codimensions, codimension formalism, b Multifractal estimation techniques: (PDMS, DTM, c Numerical simulations, Generalized Scale Invariance analysis, d Advanced multifractals, singular statistics, phase transitions, self-organized criticality and Lie cascades (given by D. Schertzer and S. Lovejoy, detailed course notes were sent to participants shortly after the
Directory of Open Access Journals (Sweden)
Zhen Chen
2016-01-01
Full Text Available Accelerated degradation test (ADT has been widely used to assess highly reliable products’ lifetime. To conduct an ADT, an appropriate degradation model and test plan should be determined in advance. Although many historical studies have proposed quite a few models, there is still room for improvement. Hence we propose a Nonlinear Generalized Wiener Process (NGWP model with consideration of the effects of stress level, product-to-product variability, and measurement errors for a higher estimation accuracy and a wider range of use. Then under the constraints of sample size, test duration, and test cost, the plans of constant-stress ADT (CSADT with multiple stress levels based on the NGWP are designed by minimizing the asymptotic variance of the reliability estimation of the products under normal operation conditions. An optimization algorithm is developed to determine the optimal stress levels, the number of units allocated to each level, inspection frequency, and measurement times simultaneously. In addition, a comparison based on degradation data of LEDs is made to show better goodness-of-fit of the NGWP than that of other models. Finally, optimal two-level and three-level CSADT plans under various constraints and a detailed sensitivity analysis are demonstrated through examples in this paper.
New Space Weather and Nonlinear Waves and Processes Prize announced for 2013
Thompson, Victoria
2012-01-01
At the 2011 Fall Meeting in San Francisco, Calif., AGU announced the creation of a new award: the Space Weather and Nonlinear Waves and Processes Prize. The prize, which is being made possible by a generous contribution from longtime AGU members and NASA Jet Propulsion Laboratory (JPL), California Institute of Technology, scientists Bruce Tsurutani and Olga Verkhoglyadova, will recognize an AGU member scientist and will come with a $10,000 award. Tsurutani has served as a researcher with JPL since 1972 and is currently a senior research scientist. He was also the president of AGU's Space Physics and Aeronomy section from 1990 to 1992 and is a recipient of AGU's John Adam Fleming Medal, given “for original research and technical leadership in geomagnetism, atmospheric electricity, aeronomy, space physics, and related sciences.” Verkhoglyadova served as a professor of space physics in the Department of Astrophysics and Space Physics at Taras Shevchenko National University of Kyiv, in the Ukraine, prior to coming to the United States. Their leadership and dedication to AGU and to their field are apparent in their passion for this prize.
Three novel high-resolution nonlinear methods for fast signal processing
Belkić, Dž.; Dando, P. A.; Main, J.; Taylor, H. S.
2000-10-01
Three novel nonlinear parameter estimators are devised and implemented for accurate and fast processing of experimentally measured or theoretically generated time signals of arbitrary length. The new techniques can also be used as powerful tools for diagonalization of large matrices that are customarily encountered in quantum chemistry and elsewhere. The key to the success and the common denominator of the proposed methods is a considerably reduced dimensionality of the original data matrix. This is achieved in a preprocessing stage called beamspace windowing or band-limited decimation. The methods are decimated signal diagonalization (DSD), decimated linear predictor (DLP), and decimated Padé approximant (DPA). Their mutual equivalence is shown for the signals that are modeled by a linear combination of time-dependent damped exponentials with stationary amplitudes. The ability to obtain all the peak parameters first and construct the required spectra afterwards enables the present methods to phase correct the absorption mode. Additionally, a new noise reduction technique, based upon the stabilization method from resonance scattering theory, is proposed. The results obtained using both synthesized and experimental time signals show that DSD/DLP/DPA exhibit an enhanced resolution power relative to the standard fast Fourier transform. Of the three methods, DPA is found to be the most efficient computationally.
Does the cerebral cortex exploit high dimensional, non-linear dynamics for information processing?
Directory of Open Access Journals (Sweden)
Wolf Singer
2016-09-01
Full Text Available The discovery of stimulus induced synchronisation in the visual cortex suggested the possibility that the relations among low-level stimulus features are encoded by the temporal relationship between neuronal discharges. In this framework, temporal coherence is considered a signature of perceptual grouping. This insight triggered a large number of experimental studies which sought to investigate the relationship between temporal coordination and cognitive functions. While some core predictions derived from the initial hypothesis were confirmed, these studies, also revealed a rich dynamical landscape beyond simple coherence whose role in signal processing is still poorly understood. In this paper a framework is presented which establishes links between the various manifestations of cortical dynamics by assigning specific coding functions to low dimensional dynamic features such as synchronized oscillations and phase shifts on the one hand and high dimensional non-linear, non-stationary dynamics on the other. The data serving as basis for this synthetic approach have been obtained with chronic multisite recordings from the visual cortex of anesthetized cats and from monkeys trained to solve cognitive tasks. It is proposed that the low dimensional dynamics characterized by synchronized oscillations and large-scale correlations are sub-states that represent the results of computations performed in the high dimensional state space provided by recurrently coupled networks.
Nagula, Karuna Narsappa; Pandit, Aniruddha Bhalchandra
2016-08-01
Different methods of pretreatment including alkali treatment, treatment with ultrasound, biological treatment using laccase enzyme and combined treatment like ultrasound-laccase for Napier grass have been tried. With alkali pretreatment optimized conditions obtained were sodium hydroxide 0.3% w/v giving 86% delignification at temperature of 80°C, treatment time of 2h. In physical methods of treatment ultrasound, at a temperature of 45°C, treatment time of 2h, operating at frequency 24kHz and power of 100W gave 18% delignification. For laccase pretreatment, optimized conditions obtained were 300rpm impeller speed, enzyme concentration 10U/gm of Napier grass gave 50% delignification with cellulose. The optimized conditions for delignification by using combination treatment of ultrasound & enzymatic were obtained at 24kHz frequency, 100W giving 75% of delignification in 6h. An enhancement in lignin degradation by 25% and reduction in the treatment time from 12 to 6h is achieved as compared to only laccase treatment.
求解非线性化工过程鲁棒数据校正的新方法%A New Method to Solve Robust Data Reconciliation in Nonlinear Process
Institute of Scientific and Technical Information of China (English)
周凌柯; 苏宏业; 褚健
2006-01-01
Data reconciliation is an effective technique for providing accurate and consistent value for chemical process. However, the presence of gross errors can severely bias the reconciled results. Robust estimators can significantly reduce the effect of gross errors and yield less-biased results. In this article, a new method is proposed to solve the robust data reconciliation problem of nonlinear chemical process. By using several technologies including linearization method, penalty function, virtual observation equation, and equivalent weights method, the robust data reconciliation problem can be transformed into least squares estimator problem which leads to the convenience in computation. Simulation results in a nonlinear chemical process demonstrate the efficiency of the proposed method.
Liang, Heng; Jia, Zhenbin
2007-11-01
In the optimal design and control of preparative chromatographic processes, the obstacles appear when one tries to link the Wilson' s framework of chromatographic theories based on partial differential equations (PDEs) with the Eulerian presentation to optimal control approaches based on discrete time states, such as Markov decision processes (MDP) or Model predictive control (MPC). In this paper, the 0-1 model is presented to overcome the obstacles for nonlinear transport chromatography (NTC). With the Lagrangian-Eulerian description (L-ED), one solute cell unit is split into two solute cells, one (SCm) in the mobile phase with the linear velocity of the mobile phase, and the other (SCs) in the stationary phase with zero-velocity. The thermodynamic state vector, S(k), which comprises four vector components, i.e., the sequence number, the position and the local solute concentrations in both SCms and SCses, is introduced to describe the local thermodynamic path (LTP) and the macroscopical thermodynamic path (MTP). For the NTC, the LTP is designed for a solute zone to evolve from the state, S(k), to the virtual migration state, S(M), undergoing the virtual net migration sub-process, and then to the state, S(k+1), undergoing the virtual net inter phase mass transfer sub-process in a short time interval. Complete thermodynamic state iterations with the Markov characteristics are derived by using the local equilibrium isotherm and the local lumped mass transfer coefficient. When the local thermodynamic equilibrium is retained, excellent properties, such as consistency, stability, conservation, accuracy, etc., of the numerical solution of the 0-1 model are observed in the theoretical analysis and in the numerical experiments of the nonlinear ideal chromatography. It is found that the 0-1 model could properly link up with the MDP or optimal control approaches based on discrete time states.
International Conference on Applications in Nonlinear Dynamics
Longhini, Patrick; Palacios, Antonio
2017-01-01
This book presents collaborative research works carried out by experimentalists and theorists around the world in the field of nonlinear dynamical systems. It provides a forum for applications of nonlinear systems while solving practical problems in science and engineering. Topics include: Applied Nonlinear Optics, Sensor, Radar & Communication Signal Processing, Nano Devices, Nonlinear Biomedical Applications, Circuits & Systems, Coupled Nonlinear Oscillator, Precision Timing Devices, Networks, and other contemporary topics in the general field of Nonlinear Science. This book provides a comprehensive report of the various research projects presented at the International Conference on Applications in Nonlinear Dynamics (ICAND 2016) held in Denver, Colorado, 2016. It can be a valuable tool for scientists and engineering interested in connecting ideas and methods in nonlinear dynamics with actual design, fabrication and implementation of engineering applications or devices.
The Expansion of Dynamic Solving Process About a Class of Non-linear Programming Problems
Institute of Scientific and Technical Information of China (English)
ZANG Zhen-chun
2001-01-01
In this paper, we research non-linear programming problems which have a given specialstructure, some simple forms of this kind structure have been solved in some papers, here we focus on othercomplex ones.
Haroon, Muhammad; Adams, Douglas E.
2007-04-01
Fatigue tests on a stabilizer bar link of an automotive suspension system are used to initiate a crack and grow the crack size. During these tests, slow sine sweeps are used to extract narrowband restoring forces across the stabilizer bar link. The restoring forces are shown to characterize the nonlinear changes in component internal forces due to crack growth. Broadband frequency response domain techniques are used to analyze the durability response data. Nonlinear frequency domain models of the dynamic transmissibility across the cracked region are shown to change as a function of crack growth. Higher order spectra are used to show the increase in nonlinear coupling of response frequency components with the appearance and growth of the crack. It is shown that crack growth can be detected and characterized by the changes in nonlinear indicators.
Rapoport, Yu G.; Boardman, A. D.; Grimalsky, V. V.; Ivchenko, V. M.; Kalinich, N.
2014-05-01
The idea of nonlinear ‘transformation optics-inspired’ [1-6] electromagnetic cylindrical field concentrators has been taken up in a preliminary manner in a number of conference reports [7-9]. Such a concentrator includes both external linear region with a dielectric constant increased towards the centre and internal region with nonlinearity characterized by constant coefficients. Then, in the process of farther investigations we realized the following factors considered neither in [7-9] nor in the recent paper [10]: saturation of nonlinearity, nonlinear losses, linear gain, numerical convergence, when nonlinear effect becomes very strong and formation of ‘hotspots’ starts. It is clearly demonstrated here that such a strongly nonlinear process starts when the nonlinear amplitude of any incident beam(s) exceeds some ‘threshold’ value. Moreover, it is shown that the formation of hotspots may start as the result of any of the following processes: an increase of the input amplitude, increasing the linear amplification in the central nonlinear region, decreasing the nonlinear losses, a decrease in the saturation of the nonlinearity. Therefore, a tendency to a formation of ‘hotspots’ is a rather universal feature of the strongly nonlinear behaviour of the ‘nonlinear resonator’ system, while at the same time the system is not sensitive to the ‘prehistory’ of approaching nonlinear threshold intensity (amplitude). The new proposed method includes a full-wave nonlinear solution analysis (in the nonlinear region), a new form of complex geometric optics (in the linear inhomogeneous external cylinder), and new boundary conditions, matching both solutions. The observed nonlinear phenomena will have a positive impact upon socially and environmentally important devices of the future. Although a graded-index concentrator is used here, it is a direct outcome of transformation optics. Numerical evaluations show that for known materials these nonlinear effects
Advances in nonlinear optical materials and devices
Byer, Robert L.
1991-01-01
The recent progress in the application of nonlinear techniques to extend the frequency of laser sources has come from the joint progress in laser sources and in nonlinear materials. A brief summary of the progress in diode pumped solid state lasers is followed by an overview of progress in nonlinear frequency extension by harmonic generation and parametric processes. Improved nonlinear materials including bulk crystals, quasiphasematched interactions, guided wave devices, and quantum well intersubband studies are discussed with the idea of identifying areas of future progress in nonlinear materials and devices.
Modeling human auditory evoked brainstem responses based on nonlinear cochlear processing
DEFF Research Database (Denmark)
Harte, James; Rønne, Filip Munch; Dau, Torsten
2010-01-01
(ABR) to transient sounds and frequency following responses (FFR) to tones. The model includes important cochlear processing stages (Zilany and Bruce, 2006) such as basilar-membrane (BM) tuning and compression, inner hair-cell (IHC) transduction, and IHC auditory-nerve (AN) synapse adaptation...
Properties of Nonlinear Dynamo Waves
Tobias, S. M.
1997-01-01
Dynamo theory offers the most promising explanation of the generation of the sun's magnetic cycle. Mean field electrodynamics has provided the platform for linear and nonlinear models of solar dynamos. However, the nonlinearities included are (necessarily) arbitrarily imposed in these models. This paper conducts a systematic survey of the role of nonlinearities in the dynamo process, by considering the behaviour of dynamo waves in the nonlinear regime. It is demonstrated that only by considering realistic nonlinearities that are non-local in space and time can modulation of the basic dynamo wave he achieved. Moreover, this modulation is greatest when there is a large separation of timescales provided by including a low magnetic Prandtl number in the equation for the velocity perturbations.
Leslie, Thomas M.
1995-01-01
Data obtained from the electric field induced second harmonic generation (EFISH) and Kurtz Powder Methods will be provided to MSFC for further refinement of their method. A theoretical model for predicting the second-order nonlinearities of organic salts is being worked on. Another task is the synthesis of a number of salts with various counterions. Several salts with promising SHG activities and new salts will be tested for the presence of two crystalline forms. The materials will be recrystallized from dry and wet solvents and compared for SHG efficiency. Salts that have a high SHG efficiency and no tendency to form hydrates will be documented. The synthesis of these materials are included in this report. A third task involves method to aid in the growth of large, high quality single crystals by solution processes. These crystals will be characterized for their applicability in the fabrication of devices that will be incorporated into optical computers in future programs. Single crystals of optimum quality may be obtained by crystal growth in low-gravity. The final task is the design of a temperature lowering single crystal growth apparatus for ground based work. At least one prototype will be built.
Nonlinear solution for radiation boundary condition of heat transfer process in human eye.
Dehghani, A; Moradi, A; Dehghani, M; Ahani, A
2011-01-01
In this paper we propose a new method based on finite element method for solving radiation boundary condition of heat equation inside the human eye and other applications. Using this method, we can solve heat equation inside human eye without need to model radiation boundary condition to a robin boundary condition. Using finite element method we can obtain a nonlinear equation, and finally we use nonlinear algorithm to solve it. The human eye is modeled as a composition of several homogeneous regions. The Ritz method in the finite element method is used for solving heat differential equation. Applying the boundary conditions, the heat radiation condition and the robin condition on the cornea surface of the eye and on the outer part of sclera are used, respectively. Simulation results of solving nonlinear boundary condition show the accuracy of the proposed method.
Koons, H. C.; Roeder, J. L.; Bauer, O. H.; Haerendel, G.; Treumann, R.
1987-01-01
Nonlinear wave decay processes have been detected in the solar wind by the plasma wave experiment aboard the Active Magnetospheric Particle Tracer Explorers (AMPTE) IRM spacecraft. The main process is the generation of ultralow-frequency ion acoustic waves from the decay of Langmuir waves near the electron plasma frequency. Frequently, this is accompanied by an enhancement of emissions near twice the plasma frequency. This enhancement is most likely due to the generation of electromagnetic waves from the coalescence of two Langmuir waves. These processes occur within the electron foreshock in front of the earth's bow shock.
Directory of Open Access Journals (Sweden)
Juan Eduardo González
2015-12-01
Full Text Available We present a scheme for conversion of pulsed light from the infrared to the red spectral region, using an aperiodically poled ferroelectric crystal within a resonant cavity in which two cascaded nonlinear optical processes occur when pumped with a pulsed Nd:YAG laser. This device emits 9 ns pulses of over 1 mJ at 710 nm and is a viable source for future biomedical applications.
A 3-D nonlinear recursive digital filter for video image processing
Bauer, P. H.; Qian, W.
1991-01-01
This paper introduces a recursive 3-D nonlinear digital filter, which is capable of performing noise suppression without degrading important image information such as edges in space or time. It also has the property of unnoticeable bandwidth reduction immediately after a scene change, which makes the filter an attractive preprocessor to many interframe compression algorithms. The filter consists of a nonlinear 2-D spatial subfilter and a 1-D temporal filter. In order to achieve the required computational speed and increase the flexibility of the filter, all of the linear shift-variant filter modules are of the IIR type.
Pattison, Sue
2010-01-01
This paper presents a proactive process to include young people with learning disabilities in mainstream counselling in secondary schools in the UK based on the findings of a consequential mixed methods research study. Data were collected from a quantitative and qualitative survey (n = 396) and qualitative semi-structured interviews (n = 15) with…
Yu, G. Y.; Luo, E. C.; Dai, W.; Hu, J. Y.
2007-10-01
This article focuses on using computational fluid dynamics (CFD) method to study several important nonlinear phenomenon and processes of a large experimental thermoacoustic-Stirling heat engine. First, the simulated physical model was introduced, and the suitable numerical scheme and algorithm for the time-dependent compressible thermoacoustic system was determined through extensive numerical tests. Then, the simulation results of the entire evolution process of self-excited thermoacoustic oscillation and the acoustical characteristics of pressure and velocity waves were presented and analyzed. Especially, the onset temperature and the saturation process of dynamic pressure were captured by the CFD simulation. In addition, another important nonlinear phenomenon accompanying the acoustic wave, which is the steady mass flow through the traveling-wave loop inside the thermoacoustic engine, was studied. To suppress the steady mass flow numerically, a fan model was adopted in the simulation. Finally, the multidimensional effects of vortex formation in the thermal buffer tube and other components were displayed numerically. Most importantly, a substantial comparison between the simulation and experiments was made, which demonstrated well the validity and powerfulness of the CFD simulation for characterizing several complicated nonlinear phenomenon involved in the self-excited thermoacoustic heat engine.
Truccolo, Wilson
2017-01-01
Point process generalized linear models (PP-GLMs) provide an important statistical framework for modeling spiking activity in single-neurons and neuronal networks. Stochastic stability is essential when sampling from these models, as done in computational neuroscience to analyze statistical properties of neuronal dynamics and in neuro-engineering to implement closed-loop applications. Here we show, however, that despite passing common goodness-of-fit tests, PP-GLMs estimated from data are often unstable, leading to divergent firing rates. The inclusion of absolute refractory periods is not a satisfactory solution since the activity then typically settles into unphysiological rates. To address these issues, we derive a framework for determining the existence and stability of fixed points of the expected conditional intensity function (CIF) for general PP-GLMs. Specifically, in nonlinear Hawkes PP-GLMs, the CIF is expressed as a function of the previous spike history and exogenous inputs. We use a mean-field quasi-renewal (QR) approximation that decomposes spike history effects into the contribution of the last spike and an average of the CIF over all spike histories prior to the last spike. Fixed points for stationary rates are derived as self-consistent solutions of integral equations. Bifurcation analysis and the number of fixed points predict that the original models can show stable, divergent, and metastable (fragile) dynamics. For fragile models, fluctuations of the single-neuron dynamics predict expected divergence times after which rates approach unphysiologically high values. This metric can be used to estimate the probability of rates to remain physiological for given time periods, e.g., for simulation purposes. We demonstrate the use of the stability framework using simulated single-neuron examples and neurophysiological recordings. Finally, we show how to adapt PP-GLM estimation procedures to guarantee model stability. Overall, our results provide a
Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Yu, Hao-Ran
2016-01-01
We present a direct approach to non-parametrically reconstruct the linear density field from an observed non-linear map. We solve for the unique displacement potential consistent with the non-linear density and positive definite coordinate transformation using a multigrid algorithm. We show that we recover the linear initial conditions up to $k\\sim 1\\ h/\\mathrm{Mpc}$ with minimal computational cost. This reconstruction approach generalizes the linear displacement theory to fully non-linear fields, potentially substantially expanding the BAO and RSD information content of dense large scale structure surveys, including for example SDSS main sample and 21cm intensity mapping.
Boyd, Robert W
2013-01-01
Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q
New Robust Nonlinear Controller Design Based on Predictive Control for Industrial Processes
Directory of Open Access Journals (Sweden)
Hossein Esfroghy
2007-12-01
Full Text Available In this paper a new sliding mode controller based on predictive control is used for the first order system, which is a good model for the industrial process. In this method a developed predictive control is used to optimize the sliding mode control including sliding surface and switching function coefficient at every moment. A new smooth function is used to reduce the chattering problems. Simulation results show the high effectiveness of the proposed controller.
Mathematical modeling suggests that periodontitis behaves as a non-linear chaotic dynamical process
Papantonopoulos, G.H.; Takahashi, K.; Bountis, T.; Loos, B.G.
2013-01-01
Background: This study aims to expand on a previously presented cellular automata model and further explore the non-linear dynamics of periodontitis. Additionally the authors investigated whether their mathematical model could predict the two known types of periodontitis, aggressive (AgP) and
The Nonlinear Interaction Process in the Wave Assimilation Model and Its Experiments
Institute of Scientific and Technical Information of China (English)
杨永增; 纪永刚; 袁业立
2003-01-01
This paper presents a composite interaction formula based on the discrete-interactionoperator of wave-wave nonlinear interaction for deriving its adjoint source function in the wave assimilation model. Assimilation experiments were performed using the significant wave heights observed by the TOPES/POSEIDON satellite, and the gradient distribution in the physical space wasalso analyzed preliminarily.
Mathematical modeling suggests that periodontitis behaves as a non-linear chaotic dynamical process
Papantonopoulos, G.H.; Takahashi, K.; Bountis, T.; Loos, B.G.
2013-01-01
Background: This study aims to expand on a previously presented cellular automata model and further explore the non-linear dynamics of periodontitis. Additionally the authors investigated whether their mathematical model could predict the two known types of periodontitis, aggressive (AgP) and chroni
Directory of Open Access Journals (Sweden)
P. Y. Rogov
2015-09-01
Full Text Available The paper deals with mathematical model of linear and nonlinear processes occurring at the propagation of femtosecond laser pulses in the vitreous of the human eye. Methods of computing modeling are applied for the nonlinear spectral equation solution describing the dynamics of a two-dimensional TE-polarized radiation in a homogeneous isotropic medium with cubic fast-response nonlinearity without the usage of slowly varying envelope approximation. Environments close to the optical media parameters of the eye were used for the simulation. The model of femtosecond radiation propagation takes into account the process dynamics for dispersion broadening of pulses in time and the occurence of the self-focusing near the retina when passing through the vitreous body of the eye. Dependence between the pulse duration on the retina has been revealed and the duration of the input pulse and the values of power density at which there is self-focusing have been found. It is shown that the main mechanism of radiation damage with the use of titanium-sapphire laser is photoionization. The results coincide with those obtained by the other scientists, and are usable for creation Russian laser safety standards for femtosecond laser systems.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Dual-point composition control for a high-purity ideal heat integrated distillation column (HIDiC) is addressed in this work. Three measures are suggested and combined for overcoming process inherent nonlinearities:(1) variable scaling; (2) multi-model representation of process dynamics and (3) feedforward compensation. These strategies can offer the developed control systems with several distinct advantages: (1) capability of dealing with severe disturbances; (2) tight tuning of controller parameters and (3) high robustness with respect to variation of operating conditions. Simulation results demonstrate the effectiveness of the proposed methodology.
Mathematical modeling and applications in nonlinear dynamics
Merdan, Hüseyin
2016-01-01
The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems. Provides methods for mathematical models with switching, thresholds, and impulses, each of particular importance for discontinuous processes Includes qualitative analysis of behaviors on Tumor-Immune Systems and methods of analysis for DNA, neural networks and epidemiology Introduces...
Directory of Open Access Journals (Sweden)
E. D. Resende
2007-09-01
Full Text Available The freezing process is considered as a propagation problem and mathematically classified as an "initial value problem." The mathematical formulation involves a complex situation of heat transfer with simultaneous changes of phase and abrupt variation in thermal properties. The objective of the present work is to solve the non-linear heat transfer equation for food freezing processes using orthogonal collocation on finite elements. This technique has not yet been applied to freezing processes and represents an alternative numerical approach in this area. The results obtained confirmed the good capability of the numerical method, which allows the simulation of the freezing process in approximately one minute of computer time, qualifying its application in a mathematical optimising procedure. The influence of the latent heat released during the crystallisation phenomena was identified by the significant increase in heat load in the early stages of the freezing process.
Nonlinear analysis on the coupling process of electromagnetic vibrator and earth
Institute of Scientific and Technical Information of China (English)
CHEN; Zubin; TENG; Jiwen; LIN; Jun; ZHANG; Linhang; JIANG
2005-01-01
The linear model based on the hydraulic pressure vibrator has been no longer adaptable to the electromagnetic vibrator. In order to realize the effective transmission of the limited energy from the vibrator to the ground, it is important to study the coupling model of the electromagnetic vibrator and the earth. In this paper, a nonlinear restore term was introduced to the coupling model because of the existence of a large amount of harmonics in the vibrator baseplate. The nonlinear vibration analysis was applied to the model by the multiscale method. In the course of energy transmission from the vibrator to the ground, ultraharmonic resonance was used to explain the generation of harmonics. An improved scheme was advanced to select the cross correlation reference signal in the vibrator seismic exploration. Good application results were obtained in field experiments.
Partial and total actuator faults accommodation for input-affine nonlinear process plants.
Mihankhah, Amin; Salmasi, Farzad R; Salahshoor, Karim
2013-05-01
In this paper, a new fault-tolerant control system is proposed for input-affine nonlinear plants based on Model Reference Adaptive System (MRAS) structure. The proposed method has the capability to accommodate both partial and total actuator failures along with bounded external disturbances. In this methodology, the conventional MRAS control law is modified by augmenting two compensating terms. One of these terms is added to eliminate the nonlinear dynamic, while the other is reinforced to compensate the distractive effects of the total actuator faults and external disturbances. In addition, no Fault Detection and Diagnosis (FDD) unit is needed in the proposed method. Moreover, the control structure has good robustness capability against the parameter variation. The performance of this scheme is evaluated using a CSTR system and the results were satisfactory.
Noury, Nima; Hipp, Joerg F; Siegel, Markus
2016-10-15
Transcranial electric stimulation (tES) is a promising tool to non-invasively manipulate neuronal activity in the human brain. Several studies have shown behavioral effects of tES, but stimulation artifacts complicate the simultaneous investigation of neural activity with EEG or MEG. Here, we first show for EEG and MEG, that contrary to previous assumptions, artifacts do not simply reflect stimulation currents, but that heartbeat and respiration non-linearly modulate stimulation artifacts. These modulations occur irrespective of the stimulation frequency, i.e. during both transcranial alternating and direct current stimulations (tACS and tDCS). Second, we show that, although at first sight previously employed artifact rejection methods may seem to remove artifacts, data are still contaminated by non-linear stimulation artifacts. Because of their complex nature and dependence on the subjects' physiological state, these artifacts are prone to be mistaken as neural entrainment. In sum, our results uncover non-linear tES artifacts, show that current techniques fail to fully remove them, and pave the way for new artifact rejection methods.
Directory of Open Access Journals (Sweden)
David Perez-Diaz de Cerio
2017-03-01
Full Text Available The purpose of this paper is to evaluate from a real perspective the performance of Bluetooth Low Energy (BLE as a technology that enables fast and reliable discovery of a large number of users/devices in a short period of time. The BLE standard specifies a wide range of configurable parameter values that determine the discovery process and need to be set according to the particular application requirements. Many previous works have been addressed to investigate the discovery process through analytical and simulation models, according to the ideal specification of the standard. However, measurements show that additional scanning gaps appear in the scanning process, which reduce the discovery capabilities. These gaps have been identified in all of the analyzed devices and respond to both regular patterns and variable events associated with the decoding process. We have demonstrated that these non-idealities, which are not taken into account in other studies, have a severe impact on the discovery process performance. Extensive performance evaluation for a varying number of devices and feasible parameter combinations has been done by comparing simulations and experimental measurements. This work also includes a simple mathematical model that closely matches both the standard implementation and the different chipset peculiarities for any possible parameter value specified in the standard and for any number of simultaneous advertising devices under scanner coverage.
Perez-Diaz de Cerio, David; Hernández, Ángela; Valenzuela, Jose Luis; Valdovinos, Antonio
2017-03-03
The purpose of this paper is to evaluate from a real perspective the performance of Bluetooth Low Energy (BLE) as a technology that enables fast and reliable discovery of a large number of users/devices in a short period of time. The BLE standard specifies a wide range of configurable parameter values that determine the discovery process and need to be set according to the particular application requirements. Many previous works have been addressed to investigate the discovery process through analytical and simulation models, according to the ideal specification of the standard. However, measurements show that additional scanning gaps appear in the scanning process, which reduce the discovery capabilities. These gaps have been identified in all of the analyzed devices and respond to both regular patterns and variable events associated with the decoding process. We have demonstrated that these non-idealities, which are not taken into account in other studies, have a severe impact on the discovery process performance. Extensive performance evaluation for a varying number of devices and feasible parameter combinations has been done by comparing simulations and experimental measurements. This work also includes a simple mathematical model that closely matches both the standard implementation and the different chipset peculiarities for any possible parameter value specified in the standard and for any number of simultaneous advertising devices under scanner coverage.
Directory of Open Access Journals (Sweden)
Maruthai Suresh
2010-10-01
Full Text Available A nonlinear process, the heat exchanger whose parameters vary with respect to the process variable, is considered. The time constant and gain of the chosen process vary as a function of temperature. The limitations of the conventional feedback controller tuned using Ziegler-Nichols settings for the chosen process are brought out. The servo and regulatory responses through simulation and experimentation for various magnitudes of set-point changes and load changes at various operating points with the controller tuned only at a chosen nominal operating point are obtained and analyzed. Regulatory responses for output load changes are studied. The efficiency of feedforward controller and the effects of modeling error have been brought out. An IMC based system is presented to understand clearly how variations of system parameters affect the performance of the controller. The present work illustrates the effectiveness of Feedforward and IMC controller.
Shell-model half-lives for r-process waiting point nuclei including first-forbidden contributions
Zhi, Q; Cuenca-García, J J; Langanke, K; Martínez-Pinedo, G; Sieja, K
2013-01-01
We have performed large-scale shell-model calculations of the half-lives and neutron-branching probabilities of the r-process waiting point nuclei at the magic neutron numbers N=50, 82, and 126. The calculations include contributions from allowed Gamow-Teller and first-forbidden transitions. We find good agreement with the measured half-lives for the N=50 nuclei with charge numbers Z=28-32 and for the N=82 nuclei 129Ag and 130Cd. The contribution of forbidden transitions reduce the half-lives of the N=126 waiting point nuclei significantly, while they have only a small effect on the half-lives of the N=50 and 82 r-process nuclei.
Institute of Scientific and Technical Information of China (English)
CHEN Yu-Li; LIU Bin; YIN Ya-Jun; HUANG Yong-Gang; HWUANG Keh-Chih
2008-01-01
The tensile deformations and fractures of super carbon nanotubes (SCNTs) with armchair-armchair topology are investigated by using the atomic-scale finite element method. SCNTs generated from carbon nanotubes (CNTs) with different characteristic aspect ratios are found to have different nonlinear behaviours under uniaxiai tensions. Specifically, an SCNT with higher aspect ratio has three distinct stages: rotation, stretch and rupture, while an SCNT with lower aspect ratio has only two stages. This information may compensate for previous work and enrich our knowledge about Y-branched CNTs and SCNTs.
Martinez, Jennifer S.; Swanson, Basil I.; Shively, John E.; Li, Lin
2009-06-02
An assay element is described including recognition ligands adapted for binding to carcinoembryonic antigen (CEA) bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of CEA is described including injecting a possible CEA-containing sample into a sensor cell including the assay element, maintaining the sample within the sensor cell for time sufficient for binding to occur between CEA present within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.
Neubert, M.; Winkler, J.
2012-12-01
This contribution continues an article series [1,2] about the nonlinear model-based control of the Czochralski crystal growth process. The key idea of the presented approach is to use a sophisticated combination of nonlinear model-based and conventional (linear) PI controllers for tracking of both, crystal radius and growth rate. Using heater power and pulling speed as manipulated variables several controller structures are possible. The present part tries to systematize the properties of the materials to be grown in order to get unambiguous decision criteria for a most profitable choice of the controller structure. For this purpose a material specific constant M called interface mobility and a more process specific constant S called system response number are introduced. While the first one summarizes important material properties like thermal conductivity and latent heat the latter one characterizes the process by evaluating the average axial thermal gradients at the phase boundary and the actual growth rate at which the crystal is grown. Furthermore these characteristic numbers are useful for establishing a scheduling strategy for the PI controller parameters in order to improve the controller performance. Finally, both numbers give a better understanding of the general thermal system dynamics of the Czochralski technique.
Ding, Shun-Liang; Song, En-Zhe; Yang, Li-Ping; Yao, Chong; Ma, Xiu-Zhen
2017-02-01
The nonlinear dynamics of the combustion process in the lean-burn premixed natural gas engine are studied in this paper. Based on nonlinear dynamic theory, the complexity of the combustion process is analyzed under different injection timing conditions. The phase spaces are reconstructed for the experimentally obtained in-cylinder pressure real-time series and the return maps are plotted for the IMEP time series. The results of phase space reconstruction manifest that the attractors are limited to the finite range in the reconstructed phase space. The attractors have a folded and twist geometry structure. The attractors under medium injection timing conditions are looser and more complex. The return maps indicate the coexistence of the stochastic and deterministic components in the patterns combustion process. With the injection timing increasing, there are both a transition from stochastic to deterministic and a transition from deterministic to stochastic, forming the region of deterministic behavior. The largest Lyapunov exponents (LLE) for in-cylinder pressure time series are calculated and the coefficients of variations (COV) of IMEP are also analyzed. The results express that the LLE values are positive. There are a "steep increase" and a "steep decrease" for the LLE and COV values as the injection timing increasing.
Fuhry, Martin; Krivodonova, Lilia
2016-01-01
We present a novel implementation of the modal discontinuous Galerkin (DG) method for hyperbolic conservation laws in two dimensions on graphics processing units (GPUs) using NVIDIA's Compute Unified Device Architecture (CUDA). Both flexible and highly accurate, DG methods accommodate parallel architectures well as their discontinuous nature produces element-local approximations. High performance scientific computing suits GPUs well, as these powerful, massively parallel, cost-effective devices have recently included support for double-precision floating point numbers. Computed examples for Euler equations over unstructured triangle meshes demonstrate the effectiveness of our implementation on an NVIDIA GTX 580 device. Profiling of our method reveals performance comparable to an existing nodal DG-GPU implementation for linear problems.
Self-Organized Criticality in Astrophysics The Statistics of Nonlinear Processes in the Universe
Aschwanden, Markus
2011-01-01
The concept of ‘self-organized criticality’ (SOC) has been applied to a variety of problems, ranging from population growth and traffic jams to earthquakes, landslides and forest fires. The technique is now being applied to a wide range of phenomena in astrophysics, such as planetary magnetospheres, solar flares, cataclysmic variable stars, accretion disks, black holes and gamma-ray bursts, and also to phenomena in galactic physics and cosmology. Self-organized Criticality in Astrophysics introduces the concept of SOC and shows that, due to its universality and ubiquity, it is a law of nature. The theoretical framework and specific physical models are described, together with a range of applications in various aspects of astrophyics. The mathematical techniques, including the statistics of random processes, time series analysis, time scale and waiting time distributions, are presented and the results are applied to specific observations of astrophysical phenomena.
Reconstruction of nonlinear wave propagation
Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie
2013-04-23
Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.
Song, Seok Goo; Dalguer, Luis A.
2017-03-01
Recent studies in dynamic source modeling and kinematic source inversion show that earthquake rupture may contain greater complexity than we previously anticipated, including multiple slipping at a given point on a fault. Finite source inversion methods suffer from the nonuniqueness of solutions, and it may become more serious if we aim to resolve more complex rupture models. In this study, we perform synthetic inversion tests with dynamically generated complex rupture models, including both supershear rupture and slip reactivation, to understand the possibility of resolving complex rupture processes by inverting seismic waveform data. We adopt a linear source inversion method with multiple windows, allowing for slipping from the nucleation of rupture to the termination at all locations along a fault. We regularize the model space effectively in the Bayesian framework and perform multiple inversion tests by considering the effect of inaccurate Green's functions and station distributions. We also perform a spectral stability analysis. Our results show that it may be possible to resolve both a supershear rupture front and reactivated secondary slipping using the linear inversion method if those complex features are well separated from the main rupture and produce a fair amount of seismic energy. It may be desirable to assume the full complexity of an earthquake rupture when we first develop finite source models after a major event occurs and then assume a simple rupture model for stability if the estimated models do not show a clear pattern of complex rupture processes.
Finite-dimensional constrained fuzzy control for a class of nonlinear distributed process systems.
Wu, Huai-Ning; Li, Han-Xiong
2007-10-01
This correspondence studies the problem of finite-dimensional constrained fuzzy control for a class of systems described by nonlinear parabolic partial differential equations (PDEs). Initially, Galerkin's method is applied to the PDE system to derive a nonlinear ordinary differential equation (ODE) system that accurately describes the dynamics of the dominant (slow) modes of the PDE system. Subsequently, a systematic modeling procedure is given to construct exactly a Takagi-Sugeno (T-S) fuzzy model for the finite-dimensional ODE system under state constraints. Then, based on the T-S fuzzy model, a sufficient condition for the existence of a stabilizing fuzzy controller is derived, which guarantees that the state constraints are satisfied and provides an upper bound on the quadratic performance function for the finite-dimensional slow system. The resulting fuzzy controllers can also guarantee the exponential stability of the closed-loop PDE system. Moreover, a local optimization algorithm based on the linear matrix inequalities is proposed to compute the feedback gain matrices of a suboptimal fuzzy controller in the sense of minimizing the quadratic performance bound. Finally, the proposed design method is applied to the control of the temperature profile of a catalytic rod.
Rapid prediction method for nonlinear expansion process of medical vascular stent
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
A neural network model with high nonlinear recognition capability was constructed to describe the relationship between the deformation impact factors and the deformation results of vascular stent.Then,using the weighted correction method with the attached momentum term,the network training algorithm was optimized by introducing learning factor η and momentum factor ψ,so the speed of the network training and the system robustness were enhanced.The network was trained by some practi-cal cases,and the statistical hypothesis validation was made for the predictive errors.It was shown that the average difference between the intelligent predictive result of vascular stent deformation neu-ral network and the nonlinear finite element analysis result was less than 0.03%,and the trained net-work could perfectly predict the vascular stent deformation.Further more,the rapid evaluation tool for the vascular stent mechanics performance was established using the Pro/Toolkit and the intelligent neural network predictive model of vascular stent expansion.The proposed tool system with strong practicality and high efficiency can significantly shorten the product development cycle of vascular stent.
Analog CMOS Nonlinear Cells and Their Applications in VLSI Signal and Information Processing
Khachab, Nabil Ibrahim
1990-01-01
The development of reconfigurable analog CMOS building blocks and their applications in analog VLSI is discussed and introduced in much the same way a logic gate is used in digital VLSI. They simultaneously achieve four -quadrant multiplication and division. These applications include multiplication, signal squaring, division, signal inversion, amplitude modulation. New all MOS implementations of the Hopfield like neural networks are developed by using the new cells. In addition new and novel techniques for sensor linearization and for MOSFET-C programmable-Q and omega_{n} filters are introduced. The new designs are simple, versatile, programmable and make effective use of analog CAD tools. Moreover, they are easily extendable to other technologies such as GaAs and BiCMOS. The objective of these designs is to achieve reduction in Silicon area and power consumption and reduce the interconnections between cells. It is also sought to provide a robust design that is CAD-compatible and make effective use of the standard cell library approach. This will offer more versatility and flexibility for analog signal processing systems and neural networks. Some of these new cells and a 3-neuron neural system are fabricated in a 2mum CMOS process. Experimental results of these circuits verify the validity of this new design approach.
Scott, Gregory D; Karns, Christina M; Dow, Mark W; Stevens, Courtney; Neville, Helen J
2014-01-01
Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl's gyrus. In addition to reorganized auditory cortex (cross-modal plasticity), a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case), as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral vs. perifoveal visual stimulation (11-15° vs. 2-7°) in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl's gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl's gyrus) indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral vs. perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory, and multisensory and/or supramodal regions, such as posterior parietal cortex (PPC), frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal, and multisensory regions, to altered visual processing in congenitally deaf adults.
Directory of Open Access Journals (Sweden)
Gregory D. Scott
2014-03-01
Full Text Available Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl’s gyrus. In addition to reorganized auditory cortex (cross-modal plasticity, a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case, as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral versus perifoveal visual stimulation (11-15° vs. 2°-7° in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl’s gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl’s gyrus indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral versus perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory and multisensory and/or supramodal regions, such as posterior parietal cortex, frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal and multisensory regions, to altered visual processing in
Nonlinear optics quantum computing with circuit QED.
Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M
2013-02-08
One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.
Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo
2016-07-01
This letter addresses the reservoir design problem in the context of delay-based reservoir computers for multidimensional input signals, parallel architectures, and real-time multitasking. First, an approximating reservoir model is presented in those frameworks that provides an explicit functional link between the reservoir architecture and its performance in the execution of a specific task. Second, the inference properties of the ridge regression estimator in the multivariate context are used to assess the impact of finite sample training on the decrease of the reservoir capacity. Finally, an empirical study is conducted that shows the adequacy of the theoretical results with the empirical performances exhibited by various reservoir architectures in the execution of several nonlinear tasks with multidimensional inputs. Our results confirm the robustness properties of the parallel reservoir architecture with respect to task misspecification and parameter choice already documented in the literature.
THz Generation by Optical Rectification and Competition with Other Nonlinear Processes
Institute of Scientific and Technical Information of China (English)
ZHAO Zhen-Yu; HAMEAU Sophie; TIGNON Jér(o)me
2008-01-01
We present a study of the competition between tera-hertz (THz) generation by optical rectification in (110)Zn Te crystals,two-photon absorption,second harmonic generation and flee-carrier absorption.The two-photon nonlinear absorption coefficient,second harmonic generation efficiency and flee-carrier absorption coefficient in the THz range are measured independently.The incident pump field is shown to be depleted by two-photon absorption and the THz radiation is shown to be reduced,upon focusing,by free-carrier absorption.The reduction of the generated THz radiation upon tight focusing is explained,provided that one also takes into account diffraction effects from the sub-wavelength THz source.
Jamali, A.; Khaleghi, E.; Gholaminezhad, I.; Nariman-zadeh, N.
2016-05-01
In this paper, a new multi-objective genetic programming (GP) with a diversity preserving mechanism and a real number alteration operator is presented and successfully used for Pareto optimal modelling of some complex non-linear systems using some input-output data. In this study, two different input-output data-sets of a non-linear mathematical model and of an explosive cutting process are considered separately in three-objective optimisation processes. The pertinent conflicting objective functions that have been considered for such Pareto optimisations are namely, training error (TE), prediction error (PE), and the length of tree (complexity of the network) (TL) of the GP models. Such three-objective optimisation implementations leads to some non-dominated choices of GP-type models for both cases representing the trade-offs among those objective functions. Therefore, optimal Pareto fronts of such GP models exhibit the trade-off among the corresponding conflicting objectives and, thus, provide different non-dominated optimal choices of GP-type models. Moreover, the results show that no significant optimality in TE and PE may occur when the TL of the corresponding GP model exceeds some values.
Meng, Linghua; Lozano, Yves; Bombarda, Isabelle; Gaydou, Emile; Li, Bin
2006-06-14
Extraction and concentration at a pilot plant scale of anthocyanins and flavonoids from Perilla frutescens var. frutescens harvested in the Guangzhou area of China were investigated. The study of extraction efficiency using mineral acids and organic acids showed that 0.01 mol/L nitric acid was the most suitable to extract flavonoids from this slightly red leaf cultivar. The red extract contained 12 mg/L (as cyanidin equivalent) anthocyanins and other flavones. The multistep process included cross-flow microfiltration (CFM) with a ceramic type membrane, reverse osmosis (RO), and rotating evaporation (RE). The filtration fluxes were high and constant for CFM (150 L/h/m2 at 0.6 b) and for RO (22 L/h/m2 at 40 b). The red extract was concentrated 9.4 times by RO and then 5.4 times by RE. It contained 422 mg/L anthocyanins, representing 77% of the total extracted anthocyanin. The proportion of flavonoids was found unchanged during processing. The concentrated extract showed a pH of 2.7, and its free acidity was found to be 46% of the acidity added for extraction, because of the buffering capacity of the extract. At the concentration level reached, a crystallized deposit occurred and was identified as tartrate.
Energy Technology Data Exchange (ETDEWEB)
Sayyar-Rodsari, Bijan; Schweiger, Carl; Hartman, Eric
2007-10-07
The difficult problems being tackled in the accelerator community are those that are nonlinear, substantially unmodeled, and vary over time. Such problems are ideal candidates for model-based optimization and control if representative models of the problem can be developed that capture the necessary mathematical relations and remain valid throughout the operation region of the system, and through variations in system dynamics. The goal of this proposal is to develop the methodology and the algorithms for building high-fidelity mathematical representations of complex nonlinear systems via constrained training of combined first-principles and neural network models.
2015-01-01
From the Back Cover: The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications re...
Directory of Open Access Journals (Sweden)
Meleiro L.A.C.
2000-01-01
Full Text Available Most advanced computer-aided control applications rely on good dynamics process models. The performance of the control system depends on the accuracy of the model used. Typically, such models are developed by conducting off-line identification experiments on the process. These experiments for identification often result in input-output data with small output signal-to-noise ratio, and using these data results in inaccurate model parameter estimates [1]. In this work, a multivariable adaptive self-tuning controller (STC was developed for a biotechnological process application. Due to the difficulties involving the measurements or the excessive amount of variables normally found in industrial process, it is proposed to develop "soft-sensors" which are based fundamentally on artificial neural networks (ANN. A second approach proposed was set in hybrid models, results of the association of deterministic models (which incorporates the available prior knowledge about the process being modeled with artificial neural networks. In this case, kinetic parameters - which are very hard to be accurately determined in real time industrial plants operation - were obtained using ANN predictions. These methods are especially suitable for the identification of time-varying and nonlinear models. This advanced control strategy was applied to a fermentation process to produce ethyl alcohol (ethanol in industrial scale. The reaction rate considered for substratum consumption, cells and ethanol productions are validated with industrial data for typical operating conditions. The results obtained show that the proposed procedure in this work has a great potential for application.
Non-linear dynamics of inlet film thickness during unsteady rolling process
Fu, Kuo; Zang, Yong; Gao, Zhiying; Qin, Qin; Wu, Diping
2016-05-01
The inlet film thickness directly affects film and stress distribution of rolling interfaces. Unsteady factors, such as unsteady back tension, may disturb the inlet film thickness. However, the current models of unsteady inlet film thickness lack unsteady disturbance factors and do not take surface topography into consideration. In this paper, based on the hydrodynamic analysis of inlet zone an unsteady rolling film model which concerns the direction of surface topography is built up. Considering the small fluctuation of inlet angle, absolute reduction, reduction ratio, inlet strip thickness and roll radius as the input variables and the fluctuation of inlet film thickness as the output variable, the non-linear relationship between the input and output is discussed. The discussion results show that there is 180° phase difference between the inlet film thickness and the input variables, such as the fluctuant absolute reduction, the fluctuant reduction ratio and non-uniform inlet strip thickness, but there is no phase difference between unsteady roll radius and the output. The inlet angle, the steady roll radius and the direction of surface topography have significant influence on the fluctuant amplitude of unsteady inlet film thickness. This study proposes an analysis method for unsteady inlet film thickness which takes surface topography and new disturbance factors into consideration.
Lei, Dangyuan
2016-09-01
In the first part of this talk, I will show our experimental investigation on the linear and nonlinear optical properties of metal film-coupled nanosphere monomers and dimers both with nanometric gaps. We have developed a new methodology - polarization resolved spectral decomposition and color decoding to "visualizing" unambiguously the spectral and radiation properties of the complex plasmonic gap modes in these hybrid nanostructures. Single-particle spectroscopic measurements indicate that these hybrid nanostructures can simultaneously enhance several nonlinear optical processes, such as second harmonic generation, two-photon absorption induced luminescence, and hyper-Raman scattering. In the second part, I will show how the polarization state of the emissions from sub-10 nm upconversion nanocrystals (UCNCs) can be modulated when they form a hybrid complex with a gold nanorod (GNR). Our single-particle scattering experiments expose how an interplay between excitation polarization and GNR orientation gives rise to an extraordinary polarized nature of the upconversion emissions from an individual hybrid nanostructure. We support our results by numerical simulations and, using Förster resonance energy transfer theory, we uncover how an overlap between the UCNC emission and GNR extinction bands as well as the mutual orientation between emission and plasmonic dipoles jointly determine the polarization state of the UC emissions.
Shi, Huaitao; Liu, Jianchang; Wu, Yuhou; Zhang, Ke; Zhang, Lixiu; Xue, Peng
2016-04-01
It is pretty significant for fault diagnosis timely and accurately to improve the dependability of industrial processes. In this study, fault diagnosis of nonlinear and large-scale processes by variable-weighted kernel Fisher discriminant analysis (KFDA) based on improved biogeography-based optimisation (IBBO) is proposed, referred to as IBBO-KFDA, where IBBO is used to determine the parameters of variable-weighted KFDA, and variable-weighted KFDA is used to solve the multi-classification overlapping problem. The main contributions of this work are four-fold to further improve the performance of KFDA for fault diagnosis. First, a nonlinear fault diagnosis approach with variable-weighted KFDA is developed for maximising separation between the overlapping fault samples. Second, kernel parameters and features selection of variable-weighted KFDA are simultaneously optimised using IBBO. Finally, a single fitness function that combines erroneous diagnosis rate with feature cost is created, a novel mixed kernel function is introduced to improve the classification capability in the feature space and diagnosis accuracy of the IBBO-KFDA, and serves as the target function in the optimisation problem. Moreover, an IBBO approach is developed to obtain the better quality of solution and faster convergence speed. On the one hand, the proposed IBBO-KFDA method is first used on Tennessee Eastman process benchmark data sets to validate the feasibility and efficiency. On the other hand, IBBO-KFDA is applied to diagnose faults of automation gauge control system. Simulation results demonstrate that IBBO-KFDA can obtain better kernel parameters and feature vectors with a lower computing cost, higher diagnosis accuracy and a better real-time capacity.
Conrad, Jan
2004-04-01
A Fortran 77 routine has been developed to calculate confidence intervals with and without systematic uncertainties using a frequentist confidence interval construction with a Bayesian treatment of the systematic uncertainties. The routine can account for systematic uncertainties in the background prediction and signal/background efficiencies. The uncertainties may be separately parametrized by a Gauss, log-normal or flat probability density function (PDF), though since a Monte Carlo approach is chosen to perform the necessary integrals a generalization to other parameterizations is particularly simple. Full correlation between signal and background efficiency is optional. The ordering schemes for frequentist construction currently supported are the likelihood ratio ordering (also known as Feldman-Cousins) and Neyman ordering. Optionally, both schemes can be used with conditioning, meaning the probability density function is conditioned on the fact that the actual outcome of the background process can not have been larger than the number of observed events. Program summaryTitle of program: POLE version 1.0 Catalogue identifier: ADTA Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTA Program available from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Computer for which the program is designed: DELL PC 1 GB 2.0 Ghz Pentium IV Operating system under which the program has been tested: RH Linux 7.2 Kernel 2.4.7-10 Programming language used: Fortran 77 Memory required to execute with typical data: ˜1.6 Mbytes No. of bytes in distributed program, including test data, etc.: 373745 No. of lines in distributed program, including test data, etc.: 2700 Distribution format: tar gzip file Keywords: Confidence interval calculation, Systematic uncertainties Nature of the physical problem: The problem is to calculate a frequentist confidence interval on the parameter of a Poisson process with known background in presence of
Shortell, Matthew P; Jaatinen, Esa A; Chang, Jin; Waclawik, Eric R
2014-03-24
We report a new approach that uses the single beam Z-scan technique, to discriminate between excited state absorption (ESA) and two and three photon nonlinear absorption. By measuring the apparent delay or advance of the pulse in reaching the detector, the nonlinear absorption can be unambiguously identified as either instantaneous or transient. The simple method does not require a large range of input fluences or sophisticated pulse-probe experimental apparatus. The technique is easily extended to any absorption process dependent on pulse width and to nonlinear refraction measurements. We demonstrate in particular, that the large nonlinear absorption in ZnO nanocones when exposed to nanosecond 532 nm pulses, is due mostly to ESA, not pure two-photon absorption.
Hussain, Mirza Zahid; Li, Fuguo; Wang, Jing; Yuan, Zhanwei; Li, Pan; Wu, Tao
2015-07-01
The present study comprises the determination of constitutive relationship for thermo-mechanical processing of INCONEL 718 through double multivariate nonlinear regression, a newly developed approach which not only considers the effect of strain, strain rate, and temperature on flow stress but also explains the interaction effect of these thermo-mechanical parameters on flow behavior of the alloy. Hot isothermal compression experiments were performed on Gleeble-3500 thermo-mechanical testing machine in the temperature range of 1153 to 1333 K within the strain rate range of 0.001 to 10 s-1. The deformation behavior of INCONEL 718 is analyzed and summarized by establishing the high temperature deformation constitutive equation. The calculated correlation coefficient ( R) and average absolute relative error ( AARE) underline the precision of proposed constitutive model.
Kaulakys, B.; Alaburda, M.; Ruseckas, J.
2016-05-01
A well-known fact in the financial markets is the so-called ‘inverse cubic law’ of the cumulative distributions of the long-range memory fluctuations of market indicators such as a number of events of trades, trading volume and the logarithmic price change. We propose the nonlinear stochastic differential equation (SDE) giving both the power-law behavior of the power spectral density and the long-range dependent inverse cubic law of the cumulative distribution. This is achieved using the suggestion that when the market evolves from calm to violent behavior there is a decrease of the delay time of multiplicative feedback of the system in comparison to the driving noise correlation time. This results in a transition from the Itô to the Stratonovich sense of the SDE and yields a long-range memory process.
Radu, A.; Duque, C. A.
2015-08-01
The conduction subband structure of a triangular cross-section GaAs/AlGaAs quantum well wire under intense laser field is theoretically investigated by taking into account a finite confining potential. The calculation of the subband energy levels is based on a two-dimensional finite element method within the effective mass approximation. It is shown that a transversally polarized laser field non-uniformly shifts the subband energy levels and could be used for tuning the intersubband transitions and altering the related optical susceptibilities. We found that the non-resonant laser field allows the magnification and the red- or blueshift of the third-order non-linear susceptibility peaks for particular polarizations of the pump light and proper laser parameter values. The effects of the laser dressing field on the intersubband third harmonic generation and quadratic electro-optical process are discussed.
Vergnole, Sébastien; Lévesque, Daniel; Lamouche, Guy
2010-05-10
We evaluate various signal processing methods to handle the non-linearity in wavenumber space exhibited by most laser sources for swept-source optical coherence tomography. The following methods are compared for the same set of experimental data: non-uniform discrete Fourier transforms with Vandermonde matrix or with Lomb periodogram, resampling with linear interpolation or spline interpolation prior to fast-Fourier transform (FFT), and resampling with convolution prior to FFT. By selecting an optimized Kaiser-Bessel window to perform the convolution, we show that convolution followed by FFT is the most efficient method. It allows small fractional oversampling factor between 1 and 2, thus a minimal computational time, while retaining an excellent image quality. (c) 2010 Optical Society of America.
Takabe, Yugo; Kameda, Ippei; Suzuki, Ryosuke; Nishimura, Fumitake; Itoh, Sadahiko
2014-09-01
In this study, changes of microbial substrate metabolic patterns by BIOLOG assay were discussed through a sequential wastewater reuse process, which includes activated sludge and treated effluent in wastewater treatment plant and soil aquifer treatment (SAT), especially focussing on the surface sand layer in conjunction with the vadose zone, concerning sand depth. A SAT pilot-scale reactor, in which the height of packed sand was 237 cm (vadose zone: 17 cm and saturated zone 220 cm), was operated and fed continuously by discharged anaerobic-anoxic-oxic (A2O) treated water. Continuous water quality measurements over a period of 10 months indicated that the treatment performance of the reactor, such as 83.2% dissolved organic carbon removal, appeared to be stable. Core sampling was conducted for the surface sand to a 30 cm depth, and the sample was divided into six 5 cm sections. Microbial activities, as evaluated by fluorescein diacetate, sharply decreased with increasing distance from the surface of the 30 cm core sample, which included significant decreases only 5 cm from the top surface. A similar microbial metabolic pattern containing a high degree of carbohydrates was obtained among the activated sludge, A2O treated water (influent to the SAT reactor) and the 0-5 cm layer of sand. Meanwhile, the 10-30 cm sand core layers showed dramatically different metabolic patterns containing a high degree of carboxylic acid and esters, and it is possible that the metabolic pattern exhibited by the 5-10 cm layer is at a midpoint of the changing pattern. This suggests that the removal of different organic compounds by biodegradation would be expected to occur in the activated sludge and in the SAT sand layers immediately below 5 cm from the top surface. It is possible that changes in the composition of the organic matter and/or transit of the limiting factor for microbial activities from carbon to phosphorus might have contributed to the observed dramatic changes
Hutka, Stefanie; Bidelman, Gavin M; Moreno, Sylvain
2013-12-30
There is convincing empirical evidence for bidirectional transfer between music and language, such that experience in either domain can improve mental processes required by the other. This music-language relationship has been studied using linear models (e.g., comparing mean neural activity) that conceptualize brain activity as a static entity. The linear approach limits how we can understand the brain's processing of music and language because the brain is a nonlinear system. Furthermore, there is evidence that the networks supporting music and language processing interact in a nonlinear manner. We therefore posit that the neural processing and transfer between the domains of language and music are best viewed through the lens of a nonlinear framework. Nonlinear analysis of neurophysiological activity may yield new insight into the commonalities, differences, and bidirectionality between these two cognitive domains not measurable in the local output of a cortical patch. We thus propose a novel application of brain signal variability (BSV) analysis, based on mutual information and signal entropy, to better understand the bidirectionality of music-to-language transfer in the context of a nonlinear framework. This approach will extend current methods by offering a nuanced, network-level understanding of the brain complexity involved in music-language transfer.
Bagheri, Abdollah
The in-situ measurement of thermal stress in civil and mechanical structures may prevent structural anomalies such as unexpected buckling. In the first half of the dissertation, we present a study where highly nonlinear solitary waves (HNSWs) were utilized to measure axial stress in slender beams. HNSWs are compact non-dispersive waves that can form and travel in nonlinear systems such as one-dimensional chains of particles. The effect of the axial stress acting in a beam on the propagation of HNSWs was studied. We found that certain features of the solitary waves enable the measurement of the stress. In general, most guided ultrasonic waves (GUWs)-based health monitoring approaches for structural waveguides are based on the comparison of testing data to baseline data. In the second half of the dissertation, we present a study where some baseline-free signal processing algorithms were presented and applied to numerical and experimental data for the structural health monitoring (SHM) of underwater or dry structures. The algorithms are based on one or more of the following: continuous wavelet transform, empirical mode decomposition, Hilbert transform, competitive optimization algorithm, probabilistic methods. Moreover, experimental data were also processed to extract some features from the time, frequency, and joint time-frequency domains. These features were then fed to a supervised learning algorithm based on artificial neural networks to classify the types of defect. The methods were validated using the numerical model of a plate and a pipe, and the experimental study of a plate in water. In experiment, the propagation of ultrasonic waves was induced by means of laser pulses or transducer and detected with an array of immersion transducers. The results demonstrated that the algorithms are effective, robust against noise, and able to localize and classify the damage.
Lee, Kwang Jo; Liu, Sheng; Gallo, Katia; Petropoulos, Periklis; Richardson, David J
2011-04-25
We report a systematic and comparative study of the acceptance bandwidths of two cascaded quadratic nonlinear processes in periodically poled lithium niobate waveguides, namely cascaded second-harmonic generation and difference-frequency generation (cSHG/DFG) and cascaded sum-frequency generation and difference-frequency generation (cSFG/DFG). We first theoretically and experimentally study the acceptance bandwidths of both the individual second-harmonic generation (SHG) and sum-frequency generation (SFG) processes in the continuous wave (CW) and pulsed-pump regimes. Our results show that the SHG bandwidth is approximately half that of the SFG process in the CW regime, whereas the SHG acceptance bandwidth can approach the CW SFG bandwidth limit when pulsed-pump is used. As a consequence we conclude that the tuning bandwidths of both cascaded processes should be similar in the pulsed pump regime once the pump pulse bandwidths approach that of SFG (i.e. the cSHG/DFG bandwidth is not limited by the CW SHG bandwidth). We confirm that this is the case experimentally.
Yothers, Mitchell P; Bumm, Lloyd A
2016-01-01
We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly-resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors (NNs) are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform (DHCT). Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional re...
Goldman, H.; Wolf, M.
1979-01-01
The manufacturing methods for photovoltaic solar energy utilization are assessed. Economic and technical data on the current front junction formation processes of gaseous diffusion and ion implantation are presented. Future proposals, including modifying gaseous diffusion and using ion implantation, to decrease the cost of junction formation are studied. Technology developments in current processes and an economic evaluation of the processes are included.
DEFF Research Database (Denmark)
Nielsen, Jesper Kjær; Jensen, Tobias Lindstrøm; Jensen, Jesper Rindom;
2016-01-01
time. Additionally, we show via three common examples how the grid size depends on parameters such as the number of data points or the number of sensors in DOA estimation. We also demonstrate that the computation time can potentially be lowered by several orders of magnitude by combining a coarse grid......In many spectral estimation and array processing problems, the process of finding estimates of model parameters often involves the optimisation of a cost function containing multiple peaks and dips. Such non-convex problems are hard to solve using traditional optimisation algorithms developed...
Nonlinear Parasitic Capacitance Modelling of High Voltage Power MOSFETs in Partial SOI Process
DEFF Research Database (Denmark)
Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger
2016-01-01
: off-state, sub-threshold region, and on-state in the linear region. A high voltage power MOSFET is designed in a partial Silicon on Insulator (SOI) process, with the bulk as a separate terminal. 3D plots and contour plots of the capacitances versus bias voltages for the transistor summarize...
Optimization of Nonlinear Figure-of-Merits of Integrated Power MOSFETs in Partial SOI Process
DEFF Research Database (Denmark)
Fan, Lin; Jørgensen, Ivan Harald Holger; Knott, Arnold
2016-01-01
different operating conditions. A systematic analysis of the optimization of these FOMs has not been previously established. The optimization methods are verified on a 100 V power MOSFET implemented in a 0.18 µm partial SOI process. Its FOMs are lowered by 1.3-18.3 times and improved by 22...
Keller, Florian; Feist, Markus; Nirschl, Hermann; Dörfler, Willy
2010-04-01
In this article we study the settling process of a colloidal particle under the influence of a gravitational or centrifugal field in an unbounded electrolyte solution. Since particles in aqueous solutions normally carry a non-zero surface charge, a microscopic electric field develops which alters the sedimentation process compared to an uncharged particle. This process can be mathematically modelled via the Stokes-Poisson-Nernst-Planck system, a system of coupled partial differential equations that have to be solved in an exterior domain. After a dimensional analysis we investigate the influence of the various characteristic dimensionless numbers on the sedimentation velocity. Thereby the linear-response (weak-field) approximation that underpins almost all existing theoretical work on classical electrokinetic phenomena is relaxed, such that no additional assumption on the thickness of the double layer as well as on its displacement is needed. We show that there exists a strong influence of the fluid Reynolds number and the ionic strength on the sedimentation velocity. Further we have developed an asymptotic expansion to describe the limit of small values of the surface potential of a single particle. This expansion incorporates all nonlinear effects and extends the well-known results of Booth (1954) [1] and Ohshima et al. (1984) [2] to higher fluid Reynolds numbers.
Deng, Xiaogang; Wang, Lei
2017-10-07
Traditional kernel principal component analysis (KPCA) based nonlinear process monitoring method may not perform well because its Gaussian distribution assumption is often violated in the real industrial processes. To overcome this deficiency, this paper proposes a modified KPCA method based on double-weighted local outlier factor (DWLOF-KPCA). In order to avoid the assumption of specific data distribution, local outlier factor (LOF) is introduced to construct two LOF-based monitoring statistics, which are used to substitute for the traditional T(2) and SPE statistics, respectively. To provide better online monitoring performance, a double-weighted LOF method is further designed, which assigns the weights for each component to highlight the key components with significant fault information, and uses the moving window to weight the historical statistics for reducing the drastic fluctuations in the monitoring results. Finally, simulations on a numerical example and the Tennessee Eastman (TE) benchmark process are used to demonstrate the superiority of the proposed DWLOF-KPCA method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Shukla, P. K.; Bingham, R.; Stenflo, L.; Dawson, J. M.
1996-01-01
Starting in 1989 we have created a forum at the International Centre for Theoretical Physics, Trieste, where scientists from different parts of the world can meet and exchange information in the frontier areas of physics. In the three previous meetings, we focused on large amplitude waves and fields in plasmas, the physics of dusty plasmas, and wave-particle interactions and energization in plasmas. In 1995, we came up with a fresh idea of organizing somewhat enlarged but still well focused research topics that are cross-disciplinary. Thus, the usual 'fourth-week activity' of the Plasma Physics College at the ICTP was replaced by an International Topical Workshop on Plasma Physics: Coherent Processes in Nonlinear Media, which was held at the ICTP during the period 16-20 October, 1995. This provided us an opportunity to draw eminent speakers from many closely related fields such as plasma physics, fluid dynamics, nonlinear optics, and astrophysics. The Workshop was attended by 82 delegates from 34 countries, and the participation from the industrial and the developing countries was about half each. The programme included 4 review and 29 topical invited lectures. In addition, about 30 contributed papers were presented as posters in two sessions. The latter were created in order to give opportunities to younger physicists for displaying the results of their recent work and to obtain constructive comments from the other participants. During the five days at the ICTP, we focused on almost all the various aspects of nonlinear phenomena that are common in different branches of science. The review and topical lectures as well as the posters dealt with the most recent advances in coherent nonlinear processes in space and astrophysical plasmas, in fluids and optics, in low temperature dusty plasmas, as well as in laser produced and magnetically confined laboratory plasmas. The focus was on the physics of various types of waves and their generation mechanisms, the development
Equilibrium theory-based analysis of nonlinear waves in separation processes.
Mazzotti, Marco; Rajendran, Arvind
2013-01-01
Different areas of engineering, particularly separation process technology, deal with one-dimensional, nonstationary processes that under reasonable assumptions, namely negligible dispersion effects and transport resistances, are described by mathematical models consisting of systems of first-order partial differential equations. Their behavior is characterized by continuous or discontinuous composition (or thermal) fronts that propagate along the separation unit. The equilibrium theory (i.e., the approach discussed here to determine the solution to these model equations) predicts this with remarkable accuracy, despite the simplifications and assumptions. Interesting applications are in adsorption, chromatography and ion-exchange, distillation, gas injection, heat storage, sedimentation, precipitation, and dissolution waves. We show how mathematics can enlighten the engineering aspects, and we guide the researcher not only to reach a synthetic understanding of properties of fundamental and applicative interest but also to discover new, unexpected, and fascinating phenomena. The tools presented here are useful to teachers, researchers, and practitioners alike.
Linear and nonlinear post-processing of numerically forecasted surface temperature
Directory of Open Access Journals (Sweden)
M. Casaioli
2003-01-01
Full Text Available In this paper we test different approaches to the statistical post-processing of gridded numerical surface air temperatures (provided by the European Centre for Medium-Range Weather Forecasts onto the temperature measured at surface weather stations located in the Italian region of Puglia. We consider simple post-processing techniques, like correction for altitude, linear regression from different input parameters and Kalman filtering, as well as a neural network training procedure, stabilised (i.e. driven into the absolute minimum of the error function over the learning set by means of a Simulated Annealing method. A comparative analysis of the results shows that the performance with neural networks is the best. It is encouraging for systematic use in meteorological forecast-analysis service operations.
Burgner, Jessica; Kahrs, Lüder Alexander; Raczkowsky, Jörg; Wörn, Heinz
2009-01-01
Material processing using laser became a widely used method especially in the scope of industrial automation. The systems are mostly based on a precise model of the laser process and the according parameterization. Beside the industrial use the laser as an instrument to treat human tissue has become an integral part in medicine as well. Human tissue as an inhomogeneous material to process, poses the question of how to determine a model, which reflects the interaction processes with a specific laser.Recently it could be shown that the pulsed CO2 laser is suitable to ablate bony and cartilage tissue. Until now this thermo-mechanical bone ablation is not characterized as a discrete process. In order to plan and simulate the ablation process in the correct level of detail, the parameterization is indispensable. We developed a planning and simulation environment, determined parameters by confocal measurements of bony specimen and use these results to transfer planned cutting trajectories into a pulse sequence and corresponding robot locations.
Energy Technology Data Exchange (ETDEWEB)
Gorbatov, P.A.; Plyungin, A.V. (Donetskii Politekhnicheskii Institut (USSR))
1990-12-01
Presents calculation methods and mathematical models of dynamic processes that occur in feed systems of cutter loaders with rigid pulling elements. Characteristics of dynamic interactions between driving wheels and the working section of the pulling system are taken into account. Mathematical models are given that describe the dynamic operation of the feed system. A method for calculation of a hydraulic vibration compensating system and its mathematical model is presented. Effectiveness of the vibration compensating system is discussed. 2 refs.
Sadhu, Arunangshu; Sarkar, Somenath
2016-05-01
We report a simple and straightforward approximate analysis to investigate the effect of Kerr type nonlinear optical processes in sub-wavelength diameter step index optical fibers based on Marcuse method in single mode region. Optimum core diameters of such fibers, predicted by us, together with relevant core nonlinearity coefficient and effective area are seen to be compatible with the analytical values indicating the validity of this novel application of the elegant approximate method. However, the corresponding values, obtained by earlier variational method, show larger discrepancy with analytical findings in comparison with ours. Also, maximum enhancement of nonlinear processes within single mode region, confirming almost the analytical method, assures less diffraction. Formulations, coupled with simplicity and novelty of the present analysis, should find wide use by system users and experimentalists in this emerging area.
Cinque, Kathy; Jayasuriya, Niranjali
2010-12-01
To ensure the protection of drinking water an understanding of the catchment processes which can affect water quality is important as it enables targeted catchment management actions to be implemented. In this study factor analysis (FA) and comparing event mean concentrations (EMCs) with baseline values were techniques used to asses the relationships between water quality parameters and linking those parameters to processes within an agricultural drinking water catchment. FA found that 55% of the variance in the water quality data could be explained by the first factor, which was dominated by parameters usually associated with erosion. Inclusion of pathogenic indicators in an additional FA showed that Enterococcus and Clostridium perfringens (C. perfringens) were also related to the erosion factor. Analysis of the EMCs found that most parameters were significantly higher during periods of rainfall runoff. This study shows that the most dominant processes in an agricultural catchment are surface runoff and erosion. It also shows that it is these processes which mobilise pathogenic indicators and are therefore most likely to influence the transport of pathogens. Catchment management efforts need to focus on reducing the effect of these processes on water quality.
Bohrer, Markus; Vaupel, Matthias; Nirnberger, Robert; Weinberger, Bernhard
2016-03-01
Laser engraving is used for decades as a well-established process e. g. for the production of print and embossing forms for many goods in daily life, e. g. decorated cans and printed bank notes. Up to now it is more or less a so-called fire-and-forget process. From the original artist's plan to the digitization, then from the laser source itself (with electronic signals, RF and plasma discharge regarding CO2 lasers) to the behavior of the optical beam delivery — especially if an AOM is used — to the interaction of the laser beam with the material itself is a long process chain. The most recent results using CO2 lasers with AOMs and the research done with scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM) — as a set for correlative microscopy to evaluate the high speed engraving characteristics — are presented in this paper.
Energy Technology Data Exchange (ETDEWEB)
Denton, Mark S. [ATG, Inc.(United States); Vance, Jene N. [V and V, Inc. (United States)
1999-07-01
The advanced water processing system (AWPS) has the potential for wide spread success on a worldwide scale in both PWR and BWRs. The AWPS incorporates the advanced features (patent pending) of advanced filtration and advanced ion selective technologies (patented). Typical problems encountered in current filtration systems include: (1) poor effluent quality, (2) short run lengths on filters, (3) frequent filter change-outs/backwashes, (4) large waste volumes, and (5) failed filter cartridges. The advanced filtration system (AFS) features reduced waste production per million gallons of water processed, cleaner water for recycle or release to the environment, filter element volume 100 times less than that of competitive filters, and a far lower capital cost compared to systems with similar performance. The AWPS should be of interest to plants that are upgrading, or to new plants to lower both their capital and operating costs, as well as total curie discharge levels. In addition, the AWPS will function in non-nuclear, as well as nuclear, applications of water purification, specially where pre coat filtration/ion exchange or reverse osmosis (RO) is being applied to process water with high concentrations of colloidal contaminants. Pilot testing has been successfully completed in the U. S. at the Byron (PWR), LaSalle (BWR), and Dresden(BWR) nuclear plants for Commonwealth Edison, and the Bruce several spent filters in a High Integrated Container these bench- and pilot-scale demonstrations will be presented herein. Full-scale designs or systems have been shipped to these locations. In all cases, the testing demonstrated: (1) longer run lengths (300,000 gallons between backwashes--a 100 fold improvement), (2) recoverability of cartridge filters after backwash (cartridge lives of approximately 6 months to a year--a 5 to 10 fold improvement in filter life), (3) large removal efficiencies for colloidal particles (reduced discharge curies), and (4) reduced waste volumes
Osborn, D. E.; Lynch, D. C.; Fozzolari, R.
1991-01-01
A technique for photo generation of radicals is discussed that can be used in the recovery of oxygen and metals from extraterrestrial resources. The concept behind this work was to examine methods whereby radicals can be generated and used in the processing of refractory materials. In that regard, the focus is on the use of sunlight. Sunlight provides useful energy for processing in the forms of both thermal and quantum energy. A number of experiments were conducted in the chlorination of metals with and without the aid of UV and near UV light. The results of some of those experiments are discussed.
3D modelling of non-linear visco-elasto-plastic crustal and lithospheric processes using LaMEM
Popov, Anton; Kaus, Boris
2016-04-01
LaMEM (Lithosphere and Mantle Evolution Model) is a three-dimensional thermo-mechanical numerical code to simulate crustal and lithospheric deformation. The code is based on a staggered finite difference (FDSTAG) discretization in space, which is a stable and very efficient technique to solve the (nearly) incompressible Stokes equations that does not suffer from spurious pressure modes or artificial compressibility (a typical feature of low-order finite element techniques). Higher order finite element methods are more accurate than FDSTAG methods under idealized test cases where the jump in viscosity is exactly aligned with the boundaries of the elements. Yet, geodynamically more realistic cases involve evolving subduction zones, nonlinear rheologies or localized plastic shear bands. In these cases, the viscosity pattern evolves spontaneously during a simulation or even during nonlinear iterations, and the advantages of higher order methods disappear and they all converge with approximately first order accuracy, similar to that of FDSTAG [1]. Yet, since FDSTAG methods have considerably less degrees of freedom than quadratic finite element methods, they require about an order of magnitude less memory for the same number of nodes in 3D which also implies that every matrix-vector multiplication is significantly faster. LaMEM is build on top of the PETSc library and uses the particle-in-cell technique to track material properties, history variables which makes it straightforward to incorporate effects like phase changes or chemistry. An internal free surface is present, together with (simple) erosion and sedimentation processes, and a number of methods are available to import complex geometries into the code (e.g, http://geomio.bitbucket.org). Customized Galerkin coupled geometric multigrid preconditioners are implemented which resulted in a good parallel scalability of the code (we have tested LaMEM on 458'752 cores [2]). Yet, the drawback of using FDSTAG
Institute of Scientific and Technical Information of China (English)
Hong-xia Xi; Zhong Li; Zhao-xi Liang
2001-01-01
A new organic/inorganic hybrid nonlinear optical (NLO) material was developed by the sol-gel process of an alkoxysilane dye with tetraethoxysilane. A NLO moiety based on 4-nitro-4′-hydroxy azobenzene was covalently bonded to the triethoxysilane derivative, i.e. γ-isocyanatopropyl triethoxysilane. The preparation process and properties of the sol-gel derived NLO polymer were studied and characterized by SEM, FTIR, 1H-NMR, UV-Vis, DSC and second harmonic generation (SHG) measurement. The results indicated that the chemical bonding of the chromophores to the inorganic SiO2 networks induces Iow dipole alignment relaxation and preferable orientational stability. The SHG measurements also showed that the bonded polymer film containing 75 wt% of the akoxysilane dye has a high electro-optic coefficient (r33) of7. 1 pm/V at 1.1 μm wavelength, and exhibit good SHG stability, the r33 values can maintain about 92.7% of its initial value at room temperature for 90 days, and can maintain about 59.3% at 100℃ for 300 min.``
Nonlinear dynamics and complexity
Luo, Albert; Fu, Xilin
2014-01-01
This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.
Pi, Zhongling; Hong, Jianzhong
2016-01-01
Video podcasts have become one of the fastest developing trends in learning and teaching. The study explored the effect of the presenting mode of educational video podcasts on the learning process and learning outcomes. Prior to viewing a video podcast, the 94 Chinese undergraduates participating in the study completed a demographic questionnaire…
Building a Steganography Program Including How to Load, Process, and Save JPEG and PNG Files in Java
Courtney, Mary F.; Stix, Allen
2006-01-01
Instructors teaching beginning programming classes are often interested in exercises that involve processing photographs (i.e., files stored as .jpeg). They may wish to offer activities such as color inversion, the color manipulation effects archived with pixel thresholding, or steganography, all of which Stevenson et al. [4] assert are sought by…
Building a Steganography Program Including How to Load, Process, and Save JPEG and PNG Files in Java
Courtney, Mary F.; Stix, Allen
2006-01-01
Instructors teaching beginning programming classes are often interested in exercises that involve processing photographs (i.e., files stored as .jpeg). They may wish to offer activities such as color inversion, the color manipulation effects archived with pixel thresholding, or steganography, all of which Stevenson et al. [4] assert are sought by…
DEFF Research Database (Denmark)
Nielsen, Chris Valentin; Martins, Paulo A. F.; Bay, Niels Oluf
2016-01-01
New equipment for testing asperity deformation at various normal loads and subsurface elongations is presented. Resulting real contact area ratios increase heavily with increasing subsurface expansion due to lowered yield pressure on the asperities when imposing subsurface normal stress parallel ...... for estimating friction in the numerical modelling of metal forming processes....
2010-07-01
.... Hydrotreating Asphalt Processes 18. Asphalt Production 32. 200° F Softening Point Unfluxed Asphalt 43. Asphalt... Chilling 27. MEK Dewaxing, Ketone Dewaxing, MEK-Toluene Dewaxing 28. Deoiling (wax) 29. Naphthenic Lubes Production 30. SO2 Extraction 34. Wax Pressing 35. Wax Plant (with Neutral Separation) 36. Furfural...
Ganeev, R. A.
2017-08-01
The nonlinear spectroscopy using harmonic generation in the extreme ultraviolet range became a versatile tool for the analysis of the optical, structural and morphological properties of matter. The carbon-contained materials have shown the advanced properties among other studied species, which allowed both the definition of the role of structural properties on the nonlinear optical response and the analysis of the fundamental features of carbon as the attractive material for generation of coherent short-wavelength radiation. We review the studies of the high-order harmonic generation by focusing ultrashort pulses into the plasmas produced during laser ablation of various organic compounds. We discuss the role of ionic transitions of ablated carbon-containing molecules on the harmonic yield. We also show the similarities and distinctions of the harmonic and plasma spectra of organic compounds and graphite. We discuss the studies of the generation of harmonics up to the 27th order (λ = 29.9 nm) of 806 nm radiation in the boron carbide plasma and analyze the advantages and disadvantages of this target compared with the ingredients comprising B4C (solid boron and graphite) by comparing plasma emission and harmonic spectra from three species. We also show that the coincidence of harmonic and plasma emission wavelengths in most cases does not cause the enhancement or decrease of the conversion efficiency of this harmonic.
AlGaAs-On-Insulator Nonlinear Photonics
Pu, Minhao; Semenova, Elizaveta; Yvind, Kresten
2015-01-01
The combination of nonlinear and integrated photonics has recently seen a surge with Kerr frequency comb generation in micro-resonators as the most significant achievement. Efficient nonlinear photonic chips have myriad applications including high speed optical signal processing, on-chip multi-wavelength lasers, metrology, molecular spectroscopy, and quantum information science. Aluminium gallium arsenide (AlGaAs) exhibits very high material nonlinearity and low nonlinear loss when operated below half its bandgap energy. However, difficulties in device processing and low device effective nonlinearity made Kerr frequency comb generation elusive. Here, we demonstrate AlGaAs-on-insulator as a nonlinear platform at telecom wavelengths. Using newly developed fabrication processes, we show high-quality-factor (Q>100,000) micro-resonators with integrated bus waveguides in a planar circuit where optical parametric oscillation is achieved with a record low threshold power of 3 mW and a frequency comb spanning 350 nm i...
Multi input single output model predictive control of non-linear bio-polymerization process
Energy Technology Data Exchange (ETDEWEB)
Arumugasamy, Senthil Kumar; Ahmad, Z. [School of Chemical Engineering, Univerisiti Sains Malaysia, Engineering Campus, Seri Ampangan,14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)
2015-05-15
This paper focuses on Multi Input Single Output (MISO) Model Predictive Control of bio-polymerization process in which mechanistic model is developed and linked with the feedforward neural network model to obtain a hybrid model (Mechanistic-FANN) of lipase-catalyzed ring-opening polymerization of ε-caprolactone (ε-CL) for Poly (ε-caprolactone) production. In this research, state space model was used, in which the input to the model were the reactor temperatures and reactor impeller speeds and the output were the molecular weight of polymer (M{sub n}) and polymer polydispersity index. State space model for MISO created using System identification tool box of Matlab™. This state space model is used in MISO MPC. Model predictive control (MPC) has been applied to predict the molecular weight of the biopolymer and consequently control the molecular weight of biopolymer. The result shows that MPC is able to track reference trajectory and give optimum movement of manipulated variable.
All-Optical Signal processing using Highly Nonlinear Photonic Crystal Fiber
DEFF Research Database (Denmark)
Andersen, Peter Andreas
2006-01-01
The use of HNL-PCF in optical communication systems has been investigated in this thesis. The investigation has been done with respect to the future of telecommunications in an all-optical system. The PCFs used have all been used for all-optical signal processing as part of an optical component...... and the possibility of large differences between the refractive indices of the core and the cladding by using air-holes, makes PCFs suited for custom made components. By testing a HNL-PCF as a medium for supercontinuum generation at various dispersion values and at the same time using that supercontinuum...... of modulation format of the signal. The modulation format is also dependent on transmission in the optical system and dependent on the pulse source used to generate the supercontinuum. It is believed that by satisfying strict demands on the pulse sources and the fiber design, could the use of a supercontinuum...
Honda, S; Kajino, T; Ando, H; Beers, T C; Izumiura, H; Sadakane, K; Takada-Hidai, M
2004-01-01
We present the abundance analyses for the neutron-capture elements, and discuss the observed abundance distributions in very metal-poor stars with excesses of r-process elements. As has been found by previous abundance studies, the star-to-star scatter in the abundances of neutron-capture elements are very large. The abundance patterns of the heavy neutron-capture elements (56 $\\leq$ Z $\\leq$ 70) in seven objects with moderate to large excesses of the neutron-capture elements are similar to that of the solar system r-process component. These results strongly suggest that the heavy neutron-capture elements in these objects are primarily synthesized by the r-process. On the other hand, the abundance ratios of the light neutron-capture elements (38 $\\leq$ Z $\\leq$ 46) exhibit a rather large dispersion. Our inspection of the correlation between Sr and Ba abundances in very metal-poor stars reveals that the dispersion of the Sr abundances clearly decreases with increasing Ba abundance. This results support previou...
Colloquium: Nonlinear Collective Interactions in Dense Plasmas
Shukla, P K
2010-01-01
The current understanding of some important collective processes in dense quantum plasmas is presented. After reviewing the basic properties of dense quantum plasmas with degenerate electrons, we present model equations (e.g. the quantum hydrodynamic and effective nonlinear Schr\\"odinger-Poisson equations) that describe collective nonlinear phenomena at nanoscales. The effects of the electron degeneracy arise due to Heisenberg's uncertainty principle and Pauli's exclusion principle for overlapping electron wave functions that result in a nonlinear quantum electron pressure and tunneling/diffusion of electrons through a nonlinear quantum Bohm potential. Since degenerate electrons have $1/2-$spin due to their Fermionic nature, there also appear a spin electron current and a spin force acting on the electrons due to the Bohr magnetization. The present nonlinear equations do not include strong electron correlations and electron-exchange interactions. The quantum effects caused by the electron degeneracy produce n...
Dynamics and vibrations progress in nonlinear analysis
Kachapi, Seyed Habibollah Hashemi
2014-01-01
Dynamical and vibratory systems are basically an application of mathematics and applied sciences to the solution of real world problems. Before being able to solve real world problems, it is necessary to carefully study dynamical and vibratory systems and solve all available problems in case of linear and nonlinear equations using analytical and numerical methods. It is of great importance to study nonlinearity in dynamics and vibration; because almost all applied processes act nonlinearly, and on the other hand, nonlinear analysis of complex systems is one of the most important and complicated tasks, especially in engineering and applied sciences problems. There are probably a handful of books on nonlinear dynamics and vibrations analysis. Some of these books are written at a fundamental level that may not meet ambitious engineering program requirements. Others are specialized in certain fields of oscillatory systems, including modeling and simulations. In this book, we attempt to strike a balance between th...
Ultrafast and nonlinear optical characterization of optical limiting processes in fullerenes
Energy Technology Data Exchange (ETDEWEB)
Kohlman, R.; Klimov, V.; Shi, X. [and others
1997-10-01
The authors present recent results of broadband femotosecond (fs) transient absorption (TA) and broadband nanosecond (ns) optical limiting (OL) studies of C{sub 60} and derivatized C{sub 60}. Improvements in measurement techniques for fs TA spectra provide sensitivity to 10{sup {minus}5} in differential transmission, allowing detailed comparison of excited-state spectra with established energy level diagrams, as well as comparison of the ratio of triplet to singlet excited-state absorption cross sections from TA spectra with those obtained by modeling time transients at different wavelengths. For derivatized fullerenes, which provide enhanced solubility and a ground-state absorption extended into the infrared compared with C{sub 60} there is no spectral region where the triplet absorption cross section dominates the singlet as strongly as demonstrating broadband limiting in all 6, 6 mono-adducts and neat C{sub 60}. The authors report new approaches to processing sol-gel encapsulated fullerenes to improve the OL performance of solid-state materials to approach the response of solution limiters.
2013-11-30
Nickelate in 18650 Cell 24 8. Installation of Resistance Welder 25 9. Bi-Cell Vacuum Dryer and with Activation Box 26 10. Semi...DOD lithium-ion rechargeable cells/batteries are composed of combinations using Asian 18650 cells including the BB2590. This dependence is due to the...much lower cost of the Asian and particularly the Chinese 18650 cells which are made on very large scale and also with lower labor costs. LithChem
Directory of Open Access Journals (Sweden)
E. Gutknecht
2013-06-01
Full Text Available The Eastern Boundary Upwelling Systems (EBUS contribute to one fifth of the global catches in the ocean. Often associated with Oxygen Minimum Zones (OMZs, EBUS represent key regions for the oceanic nitrogen (N cycle. Important bioavailable N loss due to denitrification and anammox processes as well as greenhouse gas emissions (e.g, N2O occur also in these EBUS. However, their dynamics are currently crudely represented in global models. In the climate change context, improving our capability to properly represent these areas is crucial due to anticipated changes in the winds, productivity, and oxygen content. We developed a biogeochemical model (BioEBUS taking into account the main processes linked with EBUS and associated OMZs. We implemented this model in a 3-D realistic coupled physical/biogeochemical configuration in the Namibian upwelling system (northern Benguela using the high-resolution hydrodynamic ROMS model. We present here a validation using in situ and satellite data as well as diagnostic metrics and sensitivity analyses of key parameters and N2O parameterizations. The impact of parameter values on the OMZ off Namibia, on N loss, and on N2O concentrations and emissions is detailed. The model realistically reproduces the vertical distribution and seasonal cycle of observed oxygen, nitrate, and chlorophyll a concentrations, and the rates of microbial processes (e.g, NH4+ and NO2− oxidation, NO3− reduction, and anammox as well. Based on our sensitivity analyses, biogeochemical parameter values associated with organic matter decomposition, vertical sinking, and nitrification play a key role for the low-oxygen water content, N loss, and N2O concentrations in the OMZ. Moreover, the explicit parameterization of both steps of nitrification, ammonium oxidation to nitrate with nitrite as an explicit intermediate, is necessary to improve the representation of microbial activity linked with the OMZ. The simulated minimum oxygen
Yu, Lin; McCracken, Lance M
2016-02-01
Acceptance and commitment therapy (ACT) is one of the so called "third-wave" cognitive behavioral therapies. It has been increasingly applied to chronic pain, and there is accumulating evidence to support its effectiveness. ACT is based on a model of general human functioning called the psychological flexibility (PF) model. Most facets of the PF model have been examined in chronic pain. However, a potential key facet related to "self" appears underappreciated. Indeed, a positive or healthy sense of self seems essential to our well-being, and there have been numerous studies of the self in chronic pain. At the same time, these studies are not currently well organized or easy to summarize. This lack of clarity and integration creates barriers to progress in this area of research. PF with its explicit inclusion of self-related therapeutic processes within a broad, integrative, theoretical model may help. The current review summarizes the PF model in the context of chronic pain with a specific emphasis on the parts of the model that address self-related processes.
Directory of Open Access Journals (Sweden)
Hongtu Xie
2016-11-01
Full Text Available With the rapid development of the one-stationary bistatic forward-looking synthetic aperture radar (OS-BFSAR technology, the huge amount of the remote sensing data presents challenges for real-time imaging processing. In this paper, an efficient time-domain algorithm (ETDA considering the motion errors for the OS-BFSAR imaging processing, is presented. This method can not only precisely handle the large spatial variances, serious range-azimuth coupling and motion errors, but can also greatly improve the imaging efficiency compared with the direct time-domain algorithm (DTDA. Besides, it represents the subimages on polar grids in the ground plane instead of the slant-range plane, and derives the sampling requirements considering motion errors for the polar grids to offer a near-optimum tradeoff between the imaging precision and efficiency. First, OS-BFSAR imaging geometry is built, and the DTDA for the OS-BFSAR imaging is provided. Second, the polar grids of subimages are defined, and the subaperture imaging in the ETDA is derived. The sampling requirements for polar grids are derived from the point of view of the bandwidth. Finally, the implementation and computational load of the proposed ETDA are analyzed. Experimental results based on simulated and measured data validate that the proposed ETDA outperforms the DTDA in terms of the efficiency improvement.
Xie, Hongtu; Shi, Shaoying; Xiao, Hui; Xie, Chao; Wang, Feng; Fang, Qunle
2016-11-12
With the rapid development of the one-stationary bistatic forward-looking synthetic aperture radar (OS-BFSAR) technology, the huge amount of the remote sensing data presents challenges for real-time imaging processing. In this paper, an efficient time-domain algorithm (ETDA) considering the motion errors for the OS-BFSAR imaging processing, is presented. This method can not only precisely handle the large spatial variances, serious range-azimuth coupling and motion errors, but can also greatly improve the imaging efficiency compared with the direct time-domain algorithm (DTDA). Besides, it represents the subimages on polar grids in the ground plane instead of the slant-range plane, and derives the sampling requirements considering motion errors for the polar grids to offer a near-optimum tradeoff between the imaging precision and efficiency. First, OS-BFSAR imaging geometry is built, and the DTDA for the OS-BFSAR imaging is provided. Second, the polar grids of subimages are defined, and the subaperture imaging in the ETDA is derived. The sampling requirements for polar grids are derived from the point of view of the bandwidth. Finally, the implementation and computational load of the proposed ETDA are analyzed. Experimental results based on simulated and measured data validate that the proposed ETDA outperforms the DTDA in terms of the efficiency improvement.
Nonlinear Approaches in Engineering Applications
Jazar, Reza
2012-01-01
Nonlinear Approaches in Engineering Applications focuses on nonlinear phenomena that are common in the engineering field. The nonlinear approaches described in this book provide a sound theoretical base and practical tools to design and analyze engineering systems with high efficiency and accuracy and with less energy and downtime. Presented here are nonlinear approaches in areas such as dynamic systems, optimal control and approaches in nonlinear dynamics and acoustics. Coverage encompasses a wide range of applications and fields including mathematical modeling and nonlinear behavior as applied to microresonators, nanotechnologies, nonlinear behavior in soil erosion,nonlinear population dynamics, and optimization in reducing vibration and noise as well as vibration in triple-walled carbon nanotubes. This book also: Provides a complete introduction to nonlinear behavior of systems and the advantages of nonlinearity as a tool for solving engineering problems Includes applications and examples drawn from the el...
Nonlinear predictive control in the LHC accelerator
Blanco, E; Cristea, S; Casas, J
2009-01-01
This paper describes the application of a nonlinear model-based control strategy in a real challenging process. A predictive controller based on a nonlinear model derived from physical relationships, mainly heat and mass balances, has been developed and commissioned in the inner triplet heat exchanger unit (IT-HXTU) of the large hadron collider (LHC) particle accelerator at European Center for Nuclear Research (CERN). The advanced regulation\\ maintains the magnets temperature at about 1.9 K. The development includes a constrained nonlinear state estimator with a receding horizon estimation procedure to improve the regulator predictions.
Directory of Open Access Journals (Sweden)
CASTRO, V. S.
2015-06-01
Full Text Available This paper aims to present the results of the literature review about the application of agile methods to support the implementation of CMMI and MPS.BR quality models, specifically for the Technical Solution process area and Product Design and Construction process. The research result is to identify which agile methods are applied in the quality models context. In addition, we sought to identify agile practices that support the implementation of these processes.
Energy Technology Data Exchange (ETDEWEB)
T.M. Lillo; R.L. Williamson; T.R. Reed; C.B. Davis; D.M. Ginosar
2005-09-01
The need to locate advanced hydrogen production facilities a finite distance away from a nuclear power source necessitates the need for an intermediate heat transport loop (IHTL). This IHTL must not only efficiently transport energy over distances up to 500 meters but must also be capable of operating at high temperatures (>850oC) for many years. High temperature, long term operation raises concerns of material strength, creep resistance and general material stability (corrosion resistance). IHTL design is currently in the initial stages. Many questions remain to be answered before intelligent design can begin. The report begins to look at some of the issues surrounding the main components of an IHTL. Specifically, a stress analysis of a compact heat exchanger design under expected operating conditions is reported. Also the results of a thermal analysis performed on two ITHL pipe configurations for different heat transport fluids are presented. The configurations consist of separate hot supply and cold return legs as well as annular design in which the hot fluid is carried in an inner pipe and the cold return fluids travels in the opposite direction in the annular space around the hot pipe. The effects of insulation configurations on pipe configuration performance are also reported. Finally, a simple analysis of two different process heat exchanger designs, one a tube in shell type and the other a compact or microchannel reactor are evaluated in light of catalyst requirements. Important insights into the critical areas of research and development are gained from these analyses, guiding the direction of future areas of research.
Directory of Open Access Journals (Sweden)
Christian Jungreuthmayer
Full Text Available Despite the significant progress made in recent years, the computation of the complete set of elementary flux modes of large or even genome-scale metabolic networks is still impossible. We introduce a novel approach to speed up the calculation of elementary flux modes by including transcriptional regulatory information into the analysis of metabolic networks. Taking into account gene regulation dramatically reduces the solution space and allows the presented algorithm to constantly eliminate biologically infeasible modes at an early stage of the computation procedure. Thereby, computational costs, such as runtime, memory usage, and disk space, are extremely reduced. Moreover, we show that the application of transcriptional rules identifies non-trivial system-wide effects on metabolism. Using the presented algorithm pushes the size of metabolic networks that can be studied by elementary flux modes to new and much higher limits without the loss of predictive quality. This makes unbiased, system-wide predictions in large scale metabolic networks possible without resorting to any optimization principle.
Nonlinear Processes in Plasmas.
1980-02-25
27. P. N. Guzdar, L. Chen, P. K. Kaw and C. Oberman, "Effect of Magnetic Shear on the Drift Dissipative Instability," Physical Review Letters , 40...1566-1570, 1978. 28. L. Chen, P. N. Guzdar, R. B. White, P. K. Kaw and C. Oberman, "Theory of the Universal Drift Instability," Physical Review Letters 41...34Particle Diffusion by Magnetic Perturbations of Axisymmetric Geometries," Physical Review Letters 43, 1506-1509, 1979. 42. P. K. Kaw, E. 3. Valeo and P. H
Directory of Open Access Journals (Sweden)
W. L. Fouché
1983-03-01
Full Text Available In this article we discuss some aspects of nonlinear functional analysis. It included reviews of Banach’s contraction theorem, Schauder’s fixed point theorem, globalising techniques and applications of homotopy theory to nonlinear functional analysis. The author emphasises that fundamentally new ideas are required in order to achieve a better understanding of phenomena which contain both nonlinear and definite infinite dimensional features.
Menon, P. K. A.; Badgett, M. E.; Walker, R. A.
1992-01-01
Trajectory-control laws based on singular-perturbation theory and nonlinear dynamical modeling. Nonlinear maneuver autopilot commands flight-test trajectories of F-15 airplane. Underlying theory of controller enables separation of variables processed in fast and slow control loops, reducing amount of computation required.
Strong nonlinear oscillators analytical solutions
Cveticanin, Livija
2017-01-01
This book outlines an analytical solution procedure of the pure nonlinear oscillator system, offering a solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter. Includes exercises.
Nonlinear estimation and classification
Hansen, Mark; Holmes, Christopher; Mallick, Bani; Yu, Bin
2003-01-01
Researchers in many disciplines face the formidable task of analyzing massive amounts of high-dimensional and highly-structured data This is due in part to recent advances in data collection and computing technologies As a result, fundamental statistical research is being undertaken in a variety of different fields Driven by the complexity of these new problems, and fueled by the explosion of available computer power, highly adaptive, non-linear procedures are now essential components of modern "data analysis," a term that we liberally interpret to include speech and pattern recognition, classification, data compression and signal processing The development of new, flexible methods combines advances from many sources, including approximation theory, numerical analysis, machine learning, signal processing and statistics The proposed workshop intends to bring together eminent experts from these fields in order to exchange ideas and forge directions for the future
Energy Technology Data Exchange (ETDEWEB)
Conger, W.L.; Funk, J.E.; Carty, R.H.; Soliman, M.A.; Cox, K.E.
1976-01-01
The procedure for analyzing thermochemical water-splitting processes using the figure of merit is expanded to include individual stage efficiencies, and loss coefficients. The use of these quantities to establish the thermodynamic inefficiencies of each stage is shown. A number of processes are used to illustrate these concepts and procedures and to demonstrate the facility with which process steps contributing most to the cycle efficiency are found. The procedure allows attention to be directed to those steps of the process where the greatest increase in total cycle efficiency can be obtained.
Quantum nonlinear optics: nonlinear optics meets the quantum world (Conference Presentation)
Boyd, Robert W.
2016-02-01
This presentation first reviews the historical development of the field of nonlinear optics, starting from its inception in 1961. It then reviews some of its more recent developments, including especially how nonlinear optics has become a crucial tool for the developing field of quantum technologies. Fundamental quantum processes enabled by nonlinear optics, such as the creation of squeezed and entangled light states, are reviewed. We then illustrate these concepts by means of specific applications, such as the development of secure communication systems based on the quantum states of light.
Nonlinear effects in optical fibers
Ferreira, Mario F
2011-01-01
Cutting-edge coverage of nonlinear phenomena occurring inside optical fibers Nonlinear fiber optics is a specialized part of fiber optics dealing with optical nonlinearities and their applications. As fiber-optic communication systems have become more advanced and complex, the nonlinear effects in optical fibers have increased in importance, as they adversely affect system performance. Paradoxically, the same nonlinear phenomena also offer the promise of addressing the bandwidth bottleneck for signal processing for future ultra-high speed optical networks. Nonlinear Effects in Optical Fiber
Asymptotics for Nonlinear Transformations of Fractionally Integrated Time Series
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The asymptotic theory for nonlinear transformations of fractionally integrated time series is developed. By the use of fractional Occupation Times Formula, various nonlinear functions of fractionally integrated series such as ARFIMA time series are studied, and the asymptotic distributions of the sample moments of such functions are obtained and analyzed. The transformations considered in this paper includes a variety of functions such as regular functions, integrable functions and asymptotically homogeneous functions that are often used in practical nonlinear econometric analysis. It is shown that the asymptotic theory of nonlinear transformations of original and normalized fractionally integrated processes is different from that of fractionally integrated processes, but is similar to the asymptotic theory of nonlinear transformations of integrated processes.
Explicit Nonlinear Model Predictive Control Theory and Applications
Grancharova, Alexandra
2012-01-01
Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: Ø Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; �...
DEFF Research Database (Denmark)
Azaña, J.; Oxenløwe, Leif Katsuo; Palushani, Evarist
2012-01-01
-optic telecommunication links operating up to 640 Gbit/s. Experiments are presented demonstrating error-free 640-to-10 Gbit/s demultiplexing of the 64 tributary channels using the generated flat-top pulses for temporal gating in a Kerr-effect-based nonlinear optical loop mirror. The use of flat-top pulses has critical...
Theory and application of nonlinear river dynamics
Institute of Scientific and Technical Information of China (English)
Yu-chuan BAI; Zhao-yin WANG
2014-01-01
A theoretical model for river evolution including riverbed formation and meandering pattern formation is presented in this paper. Based on nonlinear mathematic theory, the nonlinear river dynamic theory is set up for river dynamic process. Its core content includes the stability and tropism characteristics of flow motion in river and river selves’ evolution. The stability of river dynamic process depends on the response of river selves to the external disturbance, if the disturbance and the resulting response will eventually attenuate, and the river dynamics process can be restored to new equilibrium state, the river dynamic process is known as stable;otherwise, the river dynamic process is unstable. The river dynamic process tropism refers to that the evolution tendency of river morphology after the disturbance. As an application of this theory, the dynamical stability of the constant curvature river bend is calculated for its coherent vortex disturbance and response. In addition, this paper discusses the nonlinear evolution of the river peristaltic process under a large-scale disturbance, showing the nonlinear tendency of river dynamic processes, such as river filtering and butterfly effect.
Focus issue introduction: nonlinear optics 2013.
Dadap, Jerry I; Karlsson, Magnus; Panoiu, Nicolae C
2013-12-16
Nonlinear Optics has continued to develop over the last few years at an extremely fast pace, with significant advances being reported in nonlinear optical metamaterials, optical signal processing, quantum optics, nonlinear optics at subwavelength scale, and biophotonics. These exciting new developments have generated significant potential for a broad spectrum of technological applications in which nonlinear-optical processes play a central role.
Fault Detection for Nonlinear Systems
DEFF Research Database (Denmark)
Stoustrup, Jakob; Niemann, H.H.
1998-01-01
The paper describes a general method for designing fault detection and isolation (FDI) systems for nonlinear processes. For a rich class of nonlinear systems, a nonlinear FDI system can be designed using convex optimization procedures. The proposed method is a natural extension of methods based...
Nonlinear theory of kinetic instabilities near threshold
Energy Technology Data Exchange (ETDEWEB)
Berk, H.L.; Pekker, M.S. [Univ. of Texas, Austin, TX (United States). Inst. for Fusion Studies; Breizman, B.N. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies]|[Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation)
1997-05-01
A new nonlinear equation has been derived and solved for the evolution of an unstable collective mode in a kinetic system close to the threshold of linear instability. The resonant particle response produces the dominant nonlinearity, which can be calculated iteratively in the near-threshold regime as long as the mode doe snot trap resonant particles. With sources and classical relaxation processes included, the theory describes both soft nonlinear regimes, where the mode saturation level is proportional to an increment above threshold, and explosive nonlinear regimes, where the mode grows to a level that is independent of the closeness to threshold. The explosive solutions exhibit mode frequency shifting. For modes that exist in the absence of energetic particles, the frequency shift is both upward and downward. For modes that require energetic particles for their existence, there is a preferred direction of the frequency shift. The frequency shift continues even after the mode traps resonant particles.
Bloembergen, Nicolaas
1996-01-01
Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe
Sadhu, Arunangshu; Sarkar, Somenath
2016-08-01
We investigate the Kerr nonlinear optical processes (NOPs) in the case of a single-mode trapezoidal index fiber based on recently formulated and appropriate Marcuse-type relations for spot size in terms of normalized frequency corresponding to such fiber having various aspect ratios. With the help of these relations, we have analyzed the maximum NOP in these fibers having prospective the merits of tight light confinement in the subwavelength diameter waveguiding region. The comparative investigation reveals that the aspect ratio having a value of 0.7 is the most promising candidate for maximum optical nonlinearity, constructional convenience, and less diffraction. The analysis should be attractive for system users as a ready reference.
基于核PLS方法的非线性过程在线监控%Online nonlinear process monitoring using kernel partial least squares
Institute of Scientific and Technical Information of China (English)
胡益; 王丽; 马贺贺; 侍洪波
2011-01-01
针对过程监控数据的非线性特点,提出了一种基于核偏最小二乘(KPLS)的监控方法.KPLS方法是将原始输入数据通过核函数映射到高维特征空间,然后在高维特征空间再进行偏最小二乘(PLS)运算.与线性PIS相比,KPLS方法能充分利用样本空间信息,建立起输入输出变量之间的非线性关系.与其他非线性PLS方法不同,KPLS方法只需要进行线性运算,从而避免非线性优化问题.在对过程进行监控时,首先采用KPLS方法建立模型,得到得分向量,然后计算出T2和SPE统计量及其相应的控制限.Tennessee Eastman (TE)模型上的仿真研究结果表明,所提方法比线性PLS方法具有更好的过程监控性能.%To handle the nonlinear problem for process monitoring, a new technique based on kernel partial least squares (KPLS) is developed. KPLS is an improved partial least squares (PLS) method, and its main idea is to first map the input space into a high-dimensional feature space via a nonlinear kernel function and then to use the standard PLS in that feature space. Compared to linear PLS, KPLS can make full use of the sample space information, and effectively capture the nonlinear relationship between input variables and output variables. Different from other nonlinear PLS, KPLS requires only linear algebra and does not involve any nonlinear optimization. For process data, firstly KPLS was used to derive regression model and got the score vectors, and then two statistics, T2 and SPE, and corresponding control limits were calculated. A case study of the Tennessee-Eastman (TE) process illustrated that the proposed approach showed superior process monitoring performance compared to linear PLS.
Institute of Scientific and Technical Information of China (English)
1996-01-01
3.1 A Unified Nonlinear Feedback Functional Method for Study Both Control and Synchronization of Spatiotemporal Chaos Fang Jinqing Ali M. K. (Department of Physics, The University of Lethbridge,Lethbridge, Alberta T1K 3M4,Canada) Two fundamental questions dominate future chaos control theories.The first is the problem of controlling hyperchaos in higher dimensional systems.The second question has yet to be addressed:the problem of controlling spatiotemporal chaos in a spatiotemporal system.In recent years, control and synchronization of spatiotemporal chaos and hyperchaos have became a much more important and challenging subject. The reason for this is the control and synchronism of such behaviours have extensive and great potential of interdisciplinary applications, such as security communication, information processing, medicine and so on. However, this subject is not much known and remains an outstanding open.
Sincore, Alex; Bodnar, Nathan; Bradford, Joshua; Abdulfattah, Ali; Shah, Lawrence; Richardson, Martin C.
2017-03-01
This work studies the accumulated nonlinearities when amplifying a narrow linewidth 2053 nm seed in a single mode Tm:fiber amplifier. A control of repetition rate and pulse duration (>30 ns). The pulses are subsequently amplified and the repetition rate is further reduced using a second acousto-optic modulator. It is well known that spectral degradation occurs in such fibers for peak powers over 100's of watts due to self-phase modulation, four-wave mixing, and stimulated Raman scattering. In addition to enabling a thorough test bed to study such spectral broadening, this system will also enable the investigation of stimulated Brillouin scattering thresholds in the same system. This detailed study of the nonlinearities encountered in 2 μm fiber amplifiers is important in a range of applications from telecommunications to the amplification of ultrashort laser pulses.
Experimental study of nonlinear processes in a swept-wing boundary layer at the mach number M=2
Yermolaev, Yu. G.; Kosinov, A. D.; Semionov, N. V.
2014-09-01
Results of experiments aimed at studying the linear and nonlinear stages of the development of natural disturbances in the boundary layer on a swept wing at supersonic velocities are presented. The experiments are performed on a swept wing model with a lens-shaped airfoil, leading-edge sweep angle of 45°, and relative thickness of 3%. The disturbances in the flow are recorded by a constant-temperature hot-wire anemometer. For determining the nonlinear interaction of disturbances, the kurtosis and skewness are estimated for experimentally obtained distributions of the oscillating signal over the streamwise coordinate or along the normal to the surface. The disturbances are found to increase in the frequency range from 8 to 35 kHz in the region of their linear development, whereas enhancement of high-frequency disturbances is observed in the region of their nonlinear evolution. It is demonstrated that the growth of disturbances in the high-frequency spectral range ( f > 35 kHz) is caused by the secondary instability.
Nonlinear electrodynamics in cytoskeletal protein lattices
Energy Technology Data Exchange (ETDEWEB)
Hameroff, S.R.; Smith, S.A.; Watt, R.C.
1983-01-01
Cytoskeletal lattice proteins including microtubules are particularly involved in dynamic regulation of intracellular movements and activities. This paper considers possibilities and implications of biological information processing due to coupling of Davydov solitons, Frohlich coherent oscillations and other nonlinear electrodynamic phenomena to conformational states of the grid-like polymer subunits of cytoskeletal microtubules. 39 references.
Nonlinear optics and photonics
He, Guang S
2015-01-01
This book provides a comprehensive presentation on most of the major topics in nonlinear optics and photonics, with equal emphasis on principles, experiments, techniques, and applications. It covers many major new topics including optical solitons, multi-photon effects, nonlinear photoelectric effects, fast and slow light , and Terahertz photonics. Chapters 1-10 present the fundamentals of modern nonlinear optics, and could be used as a textbook with problems provided at the end of each chapter. Chapters 11-17 cover the more advanced topics of techniques and applications of nonlinear optics and photonics, serving as a highly informative reference for researchers and experts working in related areas. There are also 16 pages of color photographs to illustrate the visual appearances of some typical nonlinear optical effects and phenomena. The book could be adopted as a textbook for both undergraduates and graduate students, and serve as a useful reference work for researchers and experts in the fields of physics...
Lugiato, Luigi; Brambilla, Massimo
2015-01-01
Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.
Directory of Open Access Journals (Sweden)
Syam Syafiie
2014-06-01
Full Text Available A comparative study of Model Predictive Control (MPC using active-set method and interior point methods is proposed as a control technique for highly non-linear pH process. The process is a strong acid-strong base system. A strong acid of hydrochloric acid (HCl and a strong base of sodium hydroxide (NaOH with the presence of buffer solution sodium bicarbonate (NaHCO3 are used in a neutralization process flowing into reactor. The non-linear pH neutralization model governed in this process is presented by multi-linear models. Performance of both controllers is studied by evaluating its ability of set-point tracking and disturbance-rejection. Besides, the optimization time is compared between these two methods; both MPC shows the similar performance with no overshoot, offset, and oscillation. However, the conventional active-set method gives a shorter control action time for small scale optimization problem compared to MPC using IPM method for pH control.
Teslic, Luka; Hartmann, Benjamin; Nelles, Oliver; Skrjanc, Igor
2011-12-01
This paper deals with the problem of fuzzy nonlinear model identification in the framework of a local model network (LMN). A new iterative identification approach is proposed, where supervised and unsupervised learning are combined to optimize the structure of the LMN. For the purpose of fitting the cluster-centers to the process nonlinearity, the Gustafsson-Kessel (GK) fuzzy clustering, i.e., unsupervised learning, is applied. In combination with the LMN learning procedure, a new incremental method to define the number and the initial locations of the cluster centers for the GK clustering algorithm is proposed. Each data cluster corresponds to a local region of the process and is modeled with a local linear model. Since the validity functions are calculated from the fuzzy covariance matrices of the clusters, they are highly adaptable and thus the process can be described with a very sparse amount of local models, i.e., with a parsimonious LMN model. The proposed method for constructing the LMN is finally tested on a drug absorption spectral process and compared to two other methods, namely, Lolimot and Hilomot. The comparison between the experimental results when using each method shows the usefulness of the proposed identification algorithm.
2016-07-01
Advanced Research Projects Agency (DARPA) Dynamics-Enabled Frequency Sources (DEFYS) program is focused on the convergence of nonlinear dynamics and...Early work in this program has shown that nonlinear dynamics can provide performance advantages. However, the pathway from initial results to...dependent nonlinear stiffness observed in these devices. This work is ongoing, and will continue through the final period of this program . Reference 9
Nayfeh, Ali Hasan
1995-01-01
Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim
Yoshida, Zensho
2010-01-01
This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl
Nanda, Sudarsan
2013-01-01
"Nonlinear analysis" presents recent developments in calculus in Banach space, convex sets, convex functions, best approximation, fixed point theorems, nonlinear operators, variational inequality, complementary problem and semi-inner-product spaces. Nonlinear Analysis has become important and useful in the present days because many real world problems are nonlinear, nonconvex and nonsmooth in nature. Although basic concepts have been presented here but many results presented have not appeared in any book till now. The book could be used as a text for graduate students and also it will be useful for researchers working in this field.
Takei, Takaaki; Ikeda, Mitsuru; Imai, Kuniharu; Yamauchi-Kawaura, Chiyo; Kato, Katsuhiko; Isoda, Haruo
2013-09-01
The automated contrast-detail (C-D) analysis methods developed so-far cannot be expected to work well on images processed with nonlinear methods, such as noise reduction methods. Therefore, we have devised a new automated C-D analysis method by applying support vector machine (SVM), and tested for its robustness to nonlinear image processing. We acquired the CDRAD (a commercially available C-D test object) images at a tube voltage of 120 kV and a milliampere-second product (mAs) of 0.5-5.0. A partial diffusion equation based technique was used as noise reduction method. Three radiologists and three university students participated in the observer performance study. The training data for our SVM method was the classification data scored by the one radiologist for the CDRAD images acquired at 1.6 and 3.2 mAs and their noise-reduced images. We also compared the performance of our SVM method with the CDRAD Analyser algorithm. The mean C-D diagrams (that is a plot of the mean of the smallest visible hole diameter vs. hole depth) obtained from our devised SVM method agreed well with the ones averaged across the six human observers for both original and noise-reduced CDRAD images, whereas the mean C-D diagrams from the CDRAD Analyser algorithm disagreed with the ones from the human observers for both original and noise-reduced CDRAD images. In conclusion, our proposed SVM method for C-D analysis will work well for the images processed with the non-linear noise reduction method as well as for the original radiographic images.
Resource Letter NO-1: Nonlinear Optics
Garmire, Elsa
2011-03-01
This Resource Letter provides a guide to the literature on nonlinear optics. Books, journals, and websites are introduced that cover the general subject. Journal articles and websites are cited covering the following topics: second-order nonlinearities in transparent media including second-harmonic generation and optical parametric oscillation, third-order and higher nonlinearities, nonlinear refractive index, absorptive nonlinearities such as saturable absorption and multiphoton absorption, and scattering nonlinearities such as stimulated Raman scattering and stimulated Brillouin scattering. Steady-state and transient phenomena, fiber optics, solitons, nonlinear wave mixing, optical phase conjugation, nonlinear spectroscopy, and multiphoton microscopy are all outlined.
Chen, Xiaobo; Song, Zengfu; Hu, Lili; Zhang, Junjie; Wen, Lei
2007-07-01
We study the nonlinear photonics of rare-earth-doped oxyfluoride nanophase vitroceramics (FOV), oxyfluoride glass (FOG), and ZBLAN fluoride glass. We found that an interesting fluorescence intensity inversion phenomenon between red and green fluorescence occurs from Er(0.5)Yb(3):FOV. The dynamic range ∑ of the intensity inversion between red and green fluorescence of Er(0.5)Yb(3):FOV is about 5.753×102, which is 100 to 1000 times larger than those of other materials. One of the applications of this phenomenon is double-wavelength fluorescence falsification-preventing technology, which is proved to possess the novel antifriction loss and antiscribble properties.
Complex motions and chaos in nonlinear systems
Machado, José; Zhang, Jiazhong
2016-01-01
This book brings together 10 chapters on a new stream of research examining complex phenomena in nonlinear systems—including engineering, physics, and social science. Complex Motions and Chaos in Nonlinear Systems provides readers a particular vantage of the nature and nonlinear phenomena in nonlinear dynamics that can develop the corresponding mathematical theory and apply nonlinear design to practical engineering as well as the study of other complex phenomena including those investigated within social science.
Will Nonlinear Backcalculation Help?
DEFF Research Database (Denmark)
Ullidtz, Per
2000-01-01
demonstrates, that treating the subgrade as a nonlinear elastic material, can result in more realistic moduli and a much better agreement between measured and calculated stresses and strains.The response of nonlinear elastic materials can be calculated using the Finite Element Method (FEM). A much simpler...... approach is to use the Method of Equivalent Thicknesses (MET), modified for a nonlinear subgrade. The paper includes an example where moduli backcalculated using FEM, linear elastic theory and MET are compared. Stresses and strains predicted by the three methods are also compared to measured values...
Nonlinear vibrating system identification via Hilbert decomposition
Feldman, Michael; Braun, Simon
2017-02-01
This paper deals with the identification of nonlinear vibration systems, based on measured signals for free and forced vibration regimes. Two categories of time domain signal are analyzed, one of a fast inter-modulation signal and a second as composed of several mono-components. To some extent, this attempts to imitate analytic studies of such systems, with its two major analysis groups - the perturbation and the harmonic balance methods. Two appropriate signal processing methods are then investigated, one based on demodulation and the other on signal decomposition. The Hilbert Transform (HT) has been shown to enable effective and simple methods of analysis. We show that precise identification of the nonlinear parameters can be obtained, contrary to other average HT based methods where only approximation parameters are obtained. The effectiveness of the proposed methods is demonstrated for the precise nonlinear system identification, using both the signal demodulation and the signal decomposition methods. Following the exposition of the tools used, both the signal demodulation as well as decomposition are applied to classical examples of nonlinear systems. Cases of nonlinear stiffness and damping forces are analyzed. These include, among other, an asymmetric Helmholtz oscillator, a backlash with nonlinear turbulent square friction, and a Duffing oscillator with dry friction.
Discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities
DEFF Research Database (Denmark)
Khare, A.; Rasmussen, Kim Ø; Salerno, M.
2006-01-01
A class of discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrodinger equation and the Ablowi......-Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and moving solutions, are investigated....
Zweig, George
2016-05-01
An earlier paper characterizing the linear mechanical response of the organ of Corti [J. Acoust. Soc. Am. 138, 1102-1121 (2015)] is extended to the nonlinear domain. Assuming the existence of nonlinear oscillators nonlocally coupled through the pressure they help create, the oscillator equations are derived and examined when the stimuli are modulated tones and clicks. The nonlinearities are constrained by the requirements of oscillator stability and the invariance of zero crossings in the click response to changes in click amplitude. The nonlinear oscillator equations for tones are solved in terms of the fluid pressure that drives them, and its time derivative, presumably a proxy for forces created by outer hair cells. The pressure equation is reduced to quadrature, the integrand depending on the oscillators' responses. The resulting nonlocally coupled nonlinear equations for the pressure, and oscillator amplitudes and phases, are solved numerically in terms of the fluid pressure at the stapes. Methods for determining the nonlinear damping directly from measurements are described. Once the oscillators have been characterized from their tone and click responses, the mechanical response of the cochlea to natural sounds may be computed numerically. Signal processing inspired by cochlear mechanics opens up a new area of nonlocal nonlinear time-frequency analysis.
Mani, S.; Jang, J. I.; Ketterson, J. B.
2010-09-01
Employing a modified Z-scan technique at 2 K, we monitor not only the fundamental (ω) but also the frequency-doubled (2ω) and tripled (3ω) Z-scan responses in Cu2O when the input laser frequency ω is tuned to the two-photon quadrupole polariton resonance. The Z-scan response at ω allows us to accurately estimate the absolute number of polaritons generated via two-photon absorption. A striking dip is observed near the 2ω Z-scan focus which basically arises from Auger-type recombination of polaritons. Under high excitation levels, the 3ω Z-scan shows strong third harmonic generation. Based on the nonlinear optical parameters determined, we estimate the experimental polariton density achievable and propose a direction for polariton-based Bose-Einstein condensation in Cu2O .
Nonlinear propagation and control of acoustic waves in phononic superlattices
Jiménez, Noé; Picó, Rubén; García-Raffi, Lluís M; Sánchez-Morcillo, Víctor J
2015-01-01
The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band-gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g. cubic) nonlinearities, or extremely linear media (where distortion can be cancelled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime.
Multipolar interference for non-reciprocal nonlinear generation
Poutrina, Ekaterina
2015-01-01
We show that nonlinear multipolar interference allows achieving not only unidirectional, but also non-reciprocal nonlinear generation from a nanoelement, with the direction of the nonlinearly produced light decoupled from that of at least one or several of the excitation beams. Alternatively, it may allow inhibiting the specified nonlinear response in a nanoelement or in its periodic arrangement by reversing the direction of one of the pumps. The described phenomena exploit the fact that, contrary to the linear response case, nonlinear magneto-electric interference stems from a combination of additive and multiplicative processes and includes an interference between various terms within the electric and magnetic partial waves themselves. We demonstrate the introduced concept numerically using an example of a plasmonic dimer geometry with realistic material parameters.
Transmitting information by controlling nonlinear oscillators
Tôrres, Leonardo A. B.; Aguirre, Luis A.
2004-09-01
The transmission of information relying on the perturbation of nonlinear oscillators vector fields can be approached in a unified manner. This can be accomplished by making use of the Information Transmission Via Control principle, which is stated and proved in the present work. In short, this principle establishes that any controller used to identically synchronize pairs of nonlinear oscillators, including chaotic ones as a special case, can be actually employed as demodulator/decoder in the process of information recovery. Other theoretical results related to the practical realization of the ITVC principle are presented and experimental data is provided showing a good agreement with the proposed theory.
Martinez, Jennifer S.; Swanson, Basil I.; Grace, Karen M.; Grace, Wynne K.; Shreve, Andrew P.
2009-06-02
An assay element is described including recognition ligands bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of a biological target is described including injecting a biological target-containing sample into a sensor cell including the assay element, with the recognition ligands adapted for binding to selected biological targets, maintaining the sample within the sensor cell for time sufficient for binding to occur between selected biological targets within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting the fluorescent-label in any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.
Leburn, Christopher; Reid, Derryck
2013-01-01
The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrasho...
Filamentation with nonlinear Bessel vortices.
Jukna, V; Milián, C; Xie, C; Itina, T; Dudley, J; Courvoisier, F; Couairon, A
2014-10-20
We present a new type of ring-shaped filaments featured by stationary nonlinear high-order Bessel solutions to the laser beam propagation equation. Two different regimes are identified by direct numerical simulations of the nonlinear propagation of axicon focused Gaussian beams carrying helicity in a Kerr medium with multiphoton absorption: the stable nonlinear propagation regime corresponds to a slow beam reshaping into one of the stationary nonlinear high-order Bessel solutions, called nonlinear Bessel vortices. The region of existence of nonlinear Bessel vortices is found semi-analytically. The influence of the Kerr nonlinearity and nonlinear losses on the beam shape is presented. Direct numerical simulations highlight the role of attractors played by nonlinear Bessel vortices in the stable propagation regime. Large input powers or small cone angles lead to the unstable propagation regime where nonlinear Bessel vortices break up into an helical multiple filament pattern or a more irregular structure. Nonlinear Bessel vortices are shown to be sufficiently intense to generate a ring-shaped filamentary ionized channel in the medium which is foreseen as opening the way to novel applications in laser material processing of transparent dielectrics.
Nonlinear Galerkin Optimal Truncated Low—dimensional Dynamical Systems
Institute of Scientific and Technical Information of China (English)
ChuijieWU
1996-01-01
In this paper,a new theory of constructing nonlinear Galerkin optimal truncated Low-Dimensional Dynamical Systems(LDDSs) directly from partial differential equations has been developed.Applying the new theory to the nonlinear Burgers' equation,it is shown that a nearly perfect LDDS can be gotten,and the initial-boundary conditions are automatically included in the optimal bases.The nonlinear Galerkin method does not have advantages within the optimization process,but it can significantly improve the results,after the Galerkin optimal bases have been gotten.
Solitons in nonlinear lattices
Kartashov, Yaroslav V; Torner, Lluis
2010-01-01
This article offers a comprehensive survey of results obtained for solitons and complex nonlinear wave patterns supported by purely nonlinear lattices (NLs), which represent a spatially periodic modulation of the local strength and sign of the nonlinearity, and their combinations with linear lattices. A majority of the results obtained, thus far, in this field and reviewed in this article are theoretical. Nevertheless, relevant experimental settings are surveyed too, with emphasis on perspectives for implementation of the theoretical predictions in the experiment. Physical systems discussed in the review belong to the realms of nonlinear optics (including artificial optical media, such as photonic crystals, and plasmonics) and Bose-Einstein condensation (BEC). The solitons are considered in one, two, and three dimensions (1D, 2D, and 3D). Basic properties of the solitons presented in the review are their existence, stability, and mobility. Although the field is still far from completion, general conclusions c...
DEFF Research Database (Denmark)
Nguyen-Duy, Khiem
and remains the prime source of energy in non-terrestrial applications such as those in sky-explorers. However, a renewable energy source is expensive, bulky, and its performance is weather dependent, which make testing of downstream converters very difficult. As a result, a nonlinear source emulator (NSE......) is a good solution to solve the problems associated with the use of real nonlinear sources in testing phases. However, a recent technical survey conducted during this work shows that most existing NSEs have only been concerned with simulating nonlinear systems in terrestrial applications. Furthermore......, their dynamic performance were not fast enough in order to imitate how a real nonlinear energy source would react under extreme conditions and operation modes. Particularly, a system in the sky can experience a step change of sunlight irradiation. Moreover, operation modes may include load step between nominal...
Introduction to nonlinear science
Nicolis, G
1995-01-01
One of the most unexpected results in science in recent years is that quite ordinary systems obeying simple laws can give rise to complex, nonlinear or chaotic, behavior. In this book, the author presents a unified treatment of the concepts and tools needed to analyze nonlinear phenomena and to outline some representative applications drawn from the physical, engineering, and biological sciences. Some of the interesting topics covered include: dynamical systems with a finite number of degrees of freedom, linear stability analysis of fixed points, nonlinear behavior of fixed points, bifurcation analysis, spatially distributed systems, broken symmetries, pattern formation, and chaotic dynamics. The author makes a special effort to provide a logical connection between ordinary dynamical systems and spatially extended systems, and to balance the emphasis on chaotic behavior and more classical nonlinear behavior. He also develops a statistical approach to complex systems and compares it to traditional deterministi...
Merging Nonlinear Optics and Negative-Index Metamaterials
Popov, Alexander K
2011-01-01
The extraordinary properties of nonlinear optical propagation processes in double-domain positive/negative index metamaterials are reviewed. These processes include second harmonic generation, three- and four-wave frequency mixing, and optical parametric amplification. Striking contrasts with the properties of the counterparts in ordinary materials are shown. We also discuss the possibilities for compensating strong losses inherent to plasmonic metamaterials, which present a major obstacle in numerous exciting applications, and the possibilities for creation of unique ultracompact photonic devices such as data processing chips and nonlinear-optical sensors. Finally, we propose similar extraordinary three-wave mixing processes in crystals based on optical phonons with negative dispersion.
Ma, Weilin; Liu, Jiande; Dong, Sheng; Zhang, Xin; Ma, Xiaozhou
2017-02-01
In order to theoretically study the buckle propagation of subsea pipelines with slip-on buckle arrestors, a two-dimensional ring model was set up to represent the pipeline and a nonlinear spring model was adopted to simulate the contact between pipeline's inner walls and between pipeline's outer wall and slip-on buckle arrestor's inner wall during buckle propagation. In addition, some reverse springs are added to prevent the wall of left and right sides separating from the inner wall of slip-on buckle arrestors. Considering large deformation kinematics relations and the elastic-plastic constitutive relation of material, balance equations were established with the principle of virtual work. The variation of external pressure with respect to the cross-sectional area of pipelines was analyzed, and the lower bound of the crossover pressure of slip-on buckle arrestors was calculated based on Maxwell's energy balance method. By comparing the theoretical results with experiment and finite element numerical simulation, the theoretical method is proved to be correct and reliable.
Nonlinear optical properties of semiconductor nanocrystals
Ricard, Gianpiero Banfi Vittorio Degiorgio Daniel
1998-05-01
nanocrystals can be tailored by controlling the temperature or time of the treatment. The major problem is the size dispersion of the crystallites, which is intrinsic to the diffusion process. At present, this is the major source of the undesired inhomogeneous broadening of the optical transition lines of the SDGs. Efforts are at present being made to fabricate materials, SDGs included, which embed nanocrystals with a reduced spread of sizes. The interest in the nonlinear optical properties is due not only to fundamental reasons but also to possible applications for optical devices. Generally speaking, resonant nonlinearities are much larger than non-resonant nonlinearities, but they are not necessarily the most interesting for applications because materials at resonance absorb the incident radiation and also present long response times. The studies below the bandgap seem to indicate that the values of the intrinsic nonlinearities of nanocrystals in the structures which are at present available are similar to those of the bulk. New and better controlled structures are now under development and have to be tested from the viewpoint of optical nonlinearities. In several situations SDGs cannot be modelled as an ensemble of freely standing nanocrystals, with the glass matrix playing the role of an inert support. Phenomena such as trapping and darkening, which are very probably connected with electronic states at the glasssemiconductor interface, may play a role in determining the optical response. They might give rise to an extrinsic optical nonlinearity which can be even larger than the intrinsic nonlinearity. The physical processes which are involved in these extrinsic nonlinearities are poorly understood and at present being investigated.
Ruszczynski, Andrzej
2011-01-01
Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates t
Chiumenti, M.; Cervera, M.; Agelet de Saracibar, C.; Dialami, N.
2013-05-01
In this work a novel finite element technology based on a three-field mixed formulation is presented. The Variational Multi Scale (VMS) method is used to circumvent the LBB stability condition allowing the use of linear piece-wise interpolations for displacement, stress and pressure fields, respectively. The result is an enhanced stress field approximation which enables for stress-accurate results in nonlinear computational mechanics. The use of an independent nodal variable for the pressure field allows for an adhoc treatment of the incompressibility constraint. This is a mandatory requirement due to the isochoric nature of the plastic strain in metal forming processes. The highly non-linear stress field typically encountered in the Friction Stir Welding (FSW) process is used as an example to show the performance of this new FE technology. The numerical simulation of the FSW process is tackled by means of an Arbitrary-Lagrangian-Eulerian (ALE) formulation. The computational domain is split into three different zones: the work.piece (defined by a rigid visco-plastic behaviour in the Eulerian framework), the pin (within the Lagrangian framework) and finally the stirzone (ALE formulation). A fully coupled thermo-mechanical analysis is introduced showing the heat fluxes generated by the plastic dissipation in the stir-zone (Sheppard rigid-viscoplastic constitutive model) as well as the frictional dissipation at the contact interface (Norton frictional contact model). Finally, tracers have been implemented to show the material flow around the pin allowing a better understanding of the welding mechanism. Numerical results are compared with experimental evidence.
Applications of nonlinear fiber optics
Agrawal, Govind
2008-01-01
* The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo
Yang, Qianli; Pitkow, Xaq
2015-03-01
Most interesting natural sensory stimuli are encoded in the brain in a form that can only be decoded nonlinearly. But despite being a core function of the brain, nonlinear population codes are rarely studied and poorly understood. Interestingly, the few existing models of nonlinear codes are inconsistent with known architectural features of the brain. In particular, these codes have information content that scales with the size of the cortical population, even if that violates the data processing inequality by exceeding the amount of information entering the sensory system. Here we provide a valid theory of nonlinear population codes by generalizing recent work on information-limiting correlations in linear population codes. Although these generalized, nonlinear information-limiting correlations bound the performance of any decoder, they also make decoding more robust to suboptimal computation, allowing many suboptimal decoders to achieve nearly the same efficiency as an optimal decoder. Although these correlations are extremely difficult to measure directly, particularly for nonlinear codes, we provide a simple, practical test by which one can use choice-related activity in small populations of neurons to determine whether decoding is suboptimal or optimal and limited by correlated noise. We conclude by describing an example computation in the vestibular system where this theory applies. QY and XP was supported by a grant from the McNair foundation.
Nonlinear Multiantenna Detection Methods
Directory of Open Access Journals (Sweden)
Chen Sheng
2004-01-01
Full Text Available A nonlinear detection technique designed for multiple-antenna assisted receivers employed in space-division multiple-access systems is investigated. We derive the optimal solution of the nonlinear spatial-processing assisted receiver for binary phase shift keying signalling, which we refer to as the Bayesian detector. It is shown that this optimal Bayesian receiver significantly outperforms the standard linear beamforming assisted receiver in terms of a reduced bit error rate, at the expense of an increased complexity, while the achievable system capacity is substantially enhanced with the advent of employing nonlinear detection. Specifically, when the spatial separation expressed in terms of the angle of arrival between the desired and interfering signals is below a certain threshold, a linear beamformer would fail to separate them, while a nonlinear detection assisted receiver is still capable of performing adequately. The adaptive implementation of the optimal Bayesian detector can be realized using a radial basis function network. Two techniques are presented for constructing block-data-based adaptive nonlinear multiple-antenna assisted receivers. One of them is based on the relevance vector machine invoked for classification, while the other on the orthogonal forward selection procedure combined with the Fisher ratio class-separability measure. A recursive sample-by-sample adaptation procedure is also proposed for training nonlinear detectors based on an amalgam of enhanced -means clustering techniques and the recursive least squares algorithm.
Nonlinear estimation and control of automotive drivetrains
Chen, Hong
2014-01-01
Nonlinear Estimation and Control of Automotive Drivetrains discusses the control problems involved in automotive drivetrains, particularly in hydraulic Automatic Transmission (AT), Dual Clutch Transmission (DCT) and Automated Manual Transmission (AMT). Challenging estimation and control problems, such as driveline torque estimation and gear shift control, are addressed by applying the latest nonlinear control theories, including constructive nonlinear control (Backstepping, Input-to-State Stable) and Model Predictive Control (MPC). The estimation and control performance is improved while the calibration effort is reduced significantly. The book presents many detailed examples of design processes and thus enables the readers to understand how to successfully combine purely theoretical methodologies with actual applications in vehicles. The book is intended for researchers, PhD students, control engineers and automotive engineers. Hong Chen is a professor at the State Key Laboratory of Automotive Simulation and...
Directory of Open Access Journals (Sweden)
Vahideh Alipour
2011-11-01
Full Text Available The Zonouz kaolin deposit is located ~15 km northeast of Marand, East-Azarbaidjan province. Based on physical features in field investigations, such as color, five distinct kaolin types including (1 white, (2 lemon, (3 gray, (4 brown, and (5 yellow are distinguished in the deposit. Field evidence and petrographic studies indicate that the deposit is genetically close to trachy-andesite rocks. According to mineralogical data, the deposit contains quartz, kaolinite, montmorillonite, calcite, pyrophyllite, chlorite, muscovite-illite, dolomite, hematite, and anatase minerals. Geochemical data indicate that function of alteration processes on trachy-andesite rocks during development of Zonouz ore deposit was accompanied by leaching of elements such as Al, Na, K, Rb, Ba, V, Hf, Cu, Zr, Tm, Yb, and Lu, enrichment of elements such as U, Nb, and Ta, and leaching-fixation of elements such as Si, Fe, Ca, Mg, Ti, Mn, P, Cs, Sr, Th, Co, Cr, Ni, Y, Ga, LREE, Tb, Dy, Ho, and Er. Incorporation of obtained results from mineralogical and geochemical studies show that physico-chemical conditions of alteration environment, the relative stability of primary minerals, surface adsorption, preferential sorption by metallic oxides, existing of organic matters, scavenging and concentration processes, and fixation in neomorphic mineralogical phases played important role in distribution of elements in the deposit. Geochemical studies show that development of the deposit is relative to two types of processes, (1 hypogene and (2 supergene. The distribution pattern of REEs indicates that differentiation degree of LREEs from HREEs in supergene kaolins is more than hypogene kaolins. Geochemical studies indicate that minerals such as Mn-oxides, zircon, anatase, hematite, cerianite, and secondary phosphates (monazite, rhabdophane, churchite, and zenotime are the potential hosts for rare earth elements in this deposit.
Recent Issues on Nonlinear Effects in Optical Fibers
Institute of Scientific and Technical Information of China (English)
Takashi; Inoue; Osamu; Aso; Shu; Namiki
2003-01-01
This talk will discuss the types of optical signal degradation due to fiber nonlinearity and review recently invented fibers for suppressing the effects. It also introduces efficiency of highly nonlinear fibers and their applications to nonlinear signal processing.
Mo, Yun-Fei; Liu, Rang-Su; Tian, Ze-An; Liang, Yong-Chao; Zhang, Hai-Tao; Hou, Zhao-Yang; Liu, Hai-Rong; Zhang, Ai-long; Zhou, Li-Li; Peng, Ping; Xie, Zhong
2015-05-01
A MD simulation of liquid Cu46Zr54 alloys has been performed for understanding the effects of initial melt temperatures on the microstructural evolution and mechanical properties during quenching process. By using several microstructural analyzing methods, it is found that the icosahedral and defective icosahedral clusters play a key role in the microstructure transition. All the final solidification structures obtained at different initial melt temperatures are of amorphous structures, and their structural and mechanical properties are non-linearly related to the initial melt temperatures, and fluctuated in a certain range. Especially, there exists a best initial melt temperature, from which the glass configuration possesses the highest packing density, the optimal elastic constants, and the smaller extent of structural softening under deforming.
Institute of Scientific and Technical Information of China (English)
WANG Geli; YAN Jianjun; YANG Peicai
2012-01-01
In this paper the bromine family and radiative effects are considered in an updated box model under the framework of ozone temperature feedback,in order to further analyze the possible behavior of atmospheric ozone in the lower mid-latitude stratosphere.Results show that this updated photochemical system can present several different solutions,within a certain domain of parameters,with fixed-point and periodic states appearing in turn.The temperature feedback effect introduced in this box model has not changed the topology of the ozone system.This result presents nonlinear characteristics of the ozone system,and possible trends in the stratospheric atmosphere between complex chemistry and radiation processes.
Photonic Nonlinear Transient Computing with Multiple-Delay Wavelength Dynamics
Martinenghi, Romain; Rybalko, Sergei; Jacquot, Maxime; Chembo, Yanne K.; Larger, Laurent
2012-06-01
We report on the experimental demonstration of a hybrid optoelectronic neuromorphic computer based on a complex nonlinear wavelength dynamics including multiple delayed feedbacks with randomly defined weights. This neuromorphic approach is based on a new paradigm of a brain-inspired computational unit, intrinsically differing from Turing machines. This recent paradigm consists in expanding the input information to be processed into a higher dimensional phase space, through the nonlinear transient response of a complex dynamics excited by the input information. The computed output is then extracted via a linear separation of the transient trajectory in the complex phase space. The hyperplane separation is derived from a learning phase consisting of the resolution of a regression problem. The processing capability originates from the nonlinear transient, resulting in nonlinear transient computing. The computational performance is successfully evaluated on a standard benchmark test, namely, a spoken digit recognition task.
Optical Nonlinearities in Chalcogenide Glasses and their Applications
Zakery, A
2007-01-01
Photonics, which uses photons for information and image processing, has been labeled the technology of the 21st century, for which non-linear optical processes provide the key functions of frequency conversion and optical switching. Chalcogenide glass fiber is one of the most promising candidates for use as a non-linear optical medium because of its high optical nonlinearity and long interaction length. Since the chalcogenide glass fibers transmit into the IR, there are numerous potential applications in the civil, medical and military areas. One of the most exciting developments in the future is going to be in the area of rare-earth ion doping of chalcogenide fibers for IR fluorescence emission. The IR light sources, lasers and amplifiers developed using this phenomena will be very useful in civil, medical and military applications. Remote IR spectroscopy and imaging using flexible fibers will be realized for applications. Other future research areas which will inevitably be explored includes non-linear opti...
Research on Nonlinear Dynamical Systems.
1983-01-10
investigated fundamental aspects of functional differential equations, including qualitative questions (stability, nonlinear oscillations ), in 142,45,47,52...Bifurcation in the Duffing equation with several parameters, II. Proc. of the Royal Society of Edinburgh, Series A, 79A (1977), pp.317-326. 1I.J (with ;Ibtoas...Lecture Notes in Mathematics, Vol. 730 (1979). [54] Nonlinear oscillations in equations with delays. Proc. at A.M.S. 10th Summer Seminar on Nonlinear
In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Leung, Daniel; Liu, Norman; Meadows, Brian K.; Gordon, Frank; Bulsara, Adi R.; Palacios, Antonio
2012-12-01
The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.
Kuperman, Roman G; Siciliano, Steven D; Römbke, Jörg; Oorts, Koen
2014-07-01
Although it is widely recognized that microorganisms are essential for sustaining soil fertility, structure, nutrient cycling, groundwater purification, and other soil functions, soil microbial toxicity data were excluded from the derivation of Ecological Soil Screening Levels (Eco-SSL) in the United States. Among the reasons for such exclusion were claims that microbial toxicity tests were too difficult to interpret because of the high variability of microbial responses, uncertainty regarding the relevance of the various endpoints, and functional redundancy. Since the release of the first draft of the Eco-SSL Guidance document by the US Environmental Protection Agency in 2003, soil microbial toxicity testing and its use in ecological risk assessments have substantially improved. A wide range of standardized and nonstandardized methods became available for testing chemical toxicity to microbial functions in soil. Regulatory frameworks in the European Union and Australia have successfully incorporated microbial toxicity data into the derivation of soil threshold concentrations for ecological risk assessments. This article provides the 3-part rationale for including soil microbial processes in the development of soil clean-up values (SCVs): 1) presenting a brief overview of relevant test methods for assessing microbial functions in soil, 2) examining data sets for Cu, Ni, Zn, and Mo that incorporated soil microbial toxicity data into regulatory frameworks, and 3) offering recommendations on how to integrate the best available science into the method development for deriving site-specific SCVs that account for bioavailability of metals and metalloids in soil. Although the primary focus of this article is on the development of the approach for deriving SCVs for metals and metalloids in the United States, the recommendations provided in this article may also be applicable in other jurisdictions that aim at developing ecological soil threshold values for protection of
Energy Technology Data Exchange (ETDEWEB)
Turchetti, G. (Bologna Univ. (Italy). Dipt. di Fisica)
1989-01-01
Research in nonlinear dynamics is rapidly expanding and its range of applications is extending beyond the traditional areas of science where it was first developed. Indeed while linear analysis and modelling, which has been very successful in mathematical physics and engineering, has become a mature science, many elementary phenomena of intrinsic nonlinear nature were recently experimentally detected and investigated, suggesting new theoretical work. Complex systems, as turbulent fluids, were known to be governed by intrinsically nonlinear laws since a long time ago, but received purely phenomenological descriptions. The pioneering works of Boltzmann and Poincare, probably because of their intrinsic difficulty, did not have a revolutionary impact at their time; it is only very recently that their message is reaching a significant number of mathematicians and physicists. Certainly the development of computers and computer graphics played an important role in developing geometric intuition of complex phenomena through simple numerical experiments, while a new mathematical framework to understand them was being developed.
Lamb, Richard; Cavagnetto, Andy; Akmal, Tariq
2016-01-01
A critical problem with the examination of learning in education is that there is an underlying assumption that the dynamic systems associated with student information processing can be measured using static linear assessments. This static linear approach does not provide sufficient ability to characterize learning. Much of the modern research…
Zhu, Wenlong; Ma, Shoufeng; Tian, Junfang; Li, Geng
2016-11-01
Travelers' route adjustment behaviors in a congested road traffic network are acknowledged as a dynamic game process between them. Existing Proportional-Switch Adjustment Process (PSAP) models have been extensively investigated to characterize travelers' route choice behaviors; PSAP has concise structure and intuitive behavior rule. Unfortunately most of which have some limitations, i.e., the flow over adjustment problem for the discrete PSAP model, the absolute cost differences route adjustment problem, etc. This paper proposes a relative-Proportion-based Route Adjustment Process (rePRAP) maintains the advantages of PSAP and overcomes these limitations. The rePRAP describes the situation that travelers on higher cost route switch to those with lower cost at the rate that is unilaterally depended on the relative cost differences between higher cost route and its alternatives. It is verified to be consistent with the principle of the rational behavior adjustment process. The equivalence among user equilibrium, stationary path flow pattern and stationary link flow pattern is established, which can be applied to judge whether a given network traffic flow has reached UE or not by detecting the stationary or non-stationary state of link flow pattern. The stability theorem is proved by the Lyapunov function approach. A simple example is tested to demonstrate the effectiveness of the rePRAP model.
Rooij, M.M.J.W. van; Favela, L.H.
2016-01-01
Dual-processing accounts of reasoning have gained renewed attention in the past decade, particularly in the fields of social judgment, learning, and decision-making under uncertainty. Although the various accounts differ, the common thread is the distinction between two qualitatively different types
Nonlinear fibre optics overview
DEFF Research Database (Denmark)
Travers, J. C.; Frosz, Michael Henoch; Dudley, J. M.
2010-01-01
, provides a background to the associated nonlinear optical processes, treats the generation mechanisms from continuous wave to femtosecond pulse pump regimes and highlights the diverse applications. A full discussion of numerical methods and comprehensive computer code are also provided, enabling readers...
Global Analysis of Nonlinear Dynamics
Luo, Albert
2012-01-01
Global Analysis of Nonlinear Dynamics collects chapters on recent developments in global analysis of non-linear dynamical systems with a particular emphasis on cell mapping methods developed by Professor C.S. Hsu of the University of California, Berkeley. This collection of contributions prepared by a diverse group of internationally recognized researchers is intended to stimulate interests in global analysis of complex and high-dimensional nonlinear dynamical systems, whose global properties are largely unexplored at this time. This book also: Presents recent developments in global analysis of non-linear dynamical systems Provides in-depth considerations and extensions of cell mapping methods Adopts an inclusive style accessible to non-specialists and graduate students Global Analysis of Nonlinear Dynamics is an ideal reference for the community of nonlinear dynamics in different disciplines including engineering, applied mathematics, meteorology, life science, computational science, and medicine.
Nonlinear GARCH model and 1 / f noise
Kononovicius, A.; Ruseckas, J.
2015-06-01
Auto-regressive conditionally heteroskedastic (ARCH) family models are still used, by practitioners in business and economic policy making, as a conditional volatility forecasting models. Furthermore ARCH models still are attracting an interest of the researchers. In this contribution we consider the well known GARCH(1,1) process and its nonlinear modifications, reminiscent of NGARCH model. We investigate the possibility to reproduce power law statistics, probability density function and power spectral density, using ARCH family models. For this purpose we derive stochastic differential equations from the GARCH processes in consideration. We find the obtained equations to be similar to a general class of stochastic differential equations known to reproduce power law statistics. We show that linear GARCH(1,1) process has power law distribution, but its power spectral density is Brownian noise-like. However, the nonlinear modifications exhibit both power law distribution and power spectral density of the 1 /fβ form, including 1 / f noise.
Schmidt, Bruno E; Ernotte, Guilmot; Clerici, Matteo; Morandotti, Roberto; Ibrahim, Heide; Legare, Francois
2016-01-01
In the framework of linear optics, light fields do not interact with each other in a medium. Yet, when their field amplitude becomes comparable to the electron binding energies of matter, the nonlinear motion of these electrons emits new dipole radiation whose amplitude, frequency and phase differ from the incoming fields. Such high fields are typically achieved with ultra-short, femtosecond (1fs = 10-15 sec.) laser pulses containing very broad frequency spectra. Here, the matter not only couples incoming and outgoing fields but also causes different spectral components to interact and mix through a convolution process. In this contribution, we describe how frequency domain nonlinear optics overcomes the shortcomings arising from this convolution in conventional time domain nonlinear optics1. We generate light fields with previously inaccessible properties because the uncontrolled coupling of amplitudes and phases is turned off. For example, arbitrary phase functions are transferred linearly to the second har...
Nonlinear Metamaterials for Holography
Almeida, Euclides; Prior, Yehiam
2015-01-01
A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multi-layer metamaterial holograms where by the nonlinear process of Third Harmonic Generation, a background free image is formed at a new frequency which is the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analyzed and prospects for future device applications are discussed.
Nonlinear process fault detection based on KSFDA and SVDD%基于KSFDA-SVDD的非线性过程故障检测方法
Institute of Scientific and Technical Information of China (English)
张汉元; 田学民
2016-01-01
Slow feature analysis (SFA) is an unsupervised liner learning algorithm and lacks the ability to consider class label information and data nonlinearity. In order to solve this problem, a novel nonlinear process fault detection method is proposed based on kernel slow feature discriminant analysis and support vector data description (KSFDA-SVDD). Firstly, process data is mapped from the original space into a high dimension feature space via kernel trick. Then, the discriminant matrix that maximizes the temporal variation of between-class pseudo-time series and minimizes the temporal variation of within-class pseudo-time series simultaneously is calculated. Finally, SVDD is applied to describe the distribution region of normal operation data which is projected to the discriminant matrix and one monitoring index is constructed to indicate the occurrence of the abnormal event. Simulation results on the continuous stirring tank reactor (CSTR) process show that the proposed method is more effective than the traditional KPCA method in terms of detecting faults.%慢特征分析（SFA）是一种无监督的线性学习算法，没有考虑过程数据的类别信息和非线性特征。针对此问题，提出一种基于核慢特征判别分析（KSFDA）和支持向量数据描述（SVDD）的非线性过程故障检测方法KSFDA-SVDD。该方法首先利用核技巧将数据从原始空间映射到高维空间，然后通过最大化正常工况数据和故障模式数据之间伪时间序列的时间变化同时最小化正常工况数据内部伪时间序列的时间变化计算判别矩阵，最后利用SVDD描述采用判别矩阵降维后的正常工况数据的分布域，构建监控统计量检测过程故障。在连续搅拌反应器（CSTR）过程上的仿真结果表明所提出方法的故障检测性能优于传统的KPCA方法。
Wideband nonlinear time reversal seismo-acoustic method for landmine detection.
Sutin, Alexander; Libbey, Brad; Fillinger, Laurent; Sarvazyan, Armen
2009-04-01
Acoustic and seismic waves provide a method to localize compliant mines by vibrating the top plate and a thin soil layer above the mine. This vibration is mostly linear, but also includes a small nonlinear deviation. The main goal of this paper is to introduce a method of processing that uses phase-inversion to observe nonlinear effects in a wide frequency band. The method extracts a nonlinear part of surface velocity from two similar broadcast signals of opposite sign by summing and cancelling the linear components and leaving the nonlinear components. This phase-inversion method is combined with time reversal focusing to provide increased seismic vibration and enhance the nonlinear effect. The experiments used six loudspeakers in a wood box placed over sand in which inert landmines were buried. The nonlinear surface velocity of the sand with a mine compared to the sand without a mine was greater as compared to a linear technique.
Palazzo, S.; Murari, A.; Vagliasindi, G.; Arena, P.; Mazon, D.; de Maack, A.; Jet-Efda Contributors
2010-08-01
In the past years cameras have become increasingly common tools in scientific applications. They are now quite systematically used in magnetic confinement fusion, to the point that infrared imaging is starting to be used systematically for real-time machine protection in major devices. However, in order to guarantee that the control system can always react rapidly in case of critical situations, the time required for the processing of the images must be as predictable as possible. The approach described in this paper combines the new computational paradigm of cellular nonlinear networks (CNNs) with field-programmable gate arrays and has been tested in an application for the detection of hot spots on the plasma facing components in JET. The developed system is able to perform real-time hot spot recognition, by processing the image stream captured by JET wide angle infrared camera, with the guarantee that computational time is constant and deterministic. The statistical results obtained from a quite extensive set of examples show that this solution approximates very well an ad hoc serial software algorithm, with no false or missed alarms and an almost perfect overlapping of alarm intervals. The computational time can be reduced to a millisecond time scale for 8 bit 496×560-sized images. Moreover, in our implementation, the computational time, besides being deterministic, is practically independent of the number of iterations performed by the CNN—unlike software CNN implementations.
Agrawal, Govind
2012-01-01
Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o
Energy Technology Data Exchange (ETDEWEB)
Smetanin, I.V.; Levchenko, A.O.; Shutov, A.V.; Ustinovskii, N.N. [P.N. Lebedev Physical Institute of Russian Academy of Sciences, 53 Leninskii pr., 119991 Moscow (Russian Federation); Zvorykin, V.D. [P.N. Lebedev Physical Institute of Russian Academy of Sciences, 53 Leninskii pr., 119991 Moscow (Russian Federation); National Research Nuclear University “MEPhI”, 31 Kashirskoe sh., 115409 Moscow (Russian Federation)
2016-02-15
Recent experiments on multiple filamentation of sub-picosecond terawatt-level KrF laser pulse in air and multi-photon ionization of air revealed an extremely low electron density in filaments, which is out of the conventional filamentation model considering Kerr self-focusing and plasma de-focusing. We propose here the coherent resonant scattering and ionization processes at the pulse durations significantly less than the polarization relaxation time to be possible explanation of the observed filamentation peculiarities. Namely, we argue that the plasma production results from the resonance enhanced (2+1)-photon ionization of the oxygen molecules through the two-photon excitation of the 3s metastable Rydberg state. Coherent Raman self-scattering at rotational transitions of nitrogen molecules provides self-induced focusing of the ultrashort UV laser pulse and filament formation.
Nonlinear Dynamic Force Spectroscopy
Björnham, Oscar
2016-01-01
Dynamic force spectroscopy (DFS) is an experimental technique that is commonly used to assess information of the strength, energy landscape, and lifetime of noncovalent bio-molecular interactions. DFS traditionally requires an applied force that increases linearly with time so that the bio-complex under investigation is exposed to a constant loading rate. However, tethers or polymers can modulate the applied force in a nonlinear regime. For example, bacterial adhesion pili and polymers with worm-like chain properties are examples of structures that show nonlinear force responses. In these situations, the theory for traditional DFS cannot be readily applied. In this work we expand the theory for DFS to also include nonlinear external forces while still maintaining compatibility with the linear DFS theory. To validate the theory we modeled a bio-complex expressed on a stiff, an elastic and a worm-like chain polymer, using Monte Carlo methods, and assessed the corresponding rupture force spectra. It was found th...
Duruk, Umit; Akgün, Abuzer; Dogan, Ceylan; Gülsuyu, Fatma
2017-01-01
Science process skills have provided a valuable chance for everyone to construct their own knowledge by means of scientific inquiry. If students are to understand what science is and how it actually works, then they should necessarily make use of their science process skills as well as scientific content knowledge compulsory to be learned in any…
Nonlinear hyperbolic waves in multidimensions
Prasad, Phoolan
2001-01-01
The propagation of curved, nonlinear wavefronts and shock fronts are very complex phenomena. Since the 1993 publication of his work Propagation of a Curved Shock and Nonlinear Ray Theory, author Phoolan Prasad and his research group have made significant advances in the underlying theory of these phenomena. This volume presents their results and provides a self-contained account and gradual development of mathematical methods for studying successive positions of these fronts.Nonlinear Hyperbolic Waves in Multidimensions includes all introductory material on nonlinear hyperbolic waves and the theory of shock waves. The author derives the ray theory for a nonlinear wavefront, discusses kink phenomena, and develops a new theory for plane and curved shock propagation. He also derives a full set of conservation laws for a front propagating in two space dimensions, and uses these laws to obtain successive positions of a front with kinks. The treatment includes examples of the theory applied to converging wavefronts...
Directory of Open Access Journals (Sweden)
Viola Tamási
Full Text Available Venlafaxine (VLX, a serotonine-noradrenaline reuptake inhibitor, is one of the most commonly used antidepressant drugs in clinical practice for the treatment of major depressive disorder (MDD. Despite being more potent than its predecessors, similarly to them, the therapeutical effect of VLX is visible only 3-4 weeks after the beginning of treatment. Furthermore, recent papers show that antidepressants, including also VLX, enhance the motor recovery after stroke even in non depressed persons. In the present, transcriptomic-based study we looked for changes in gene expressions after a long-term VLX administration.Osmotic minipumps were implanted subcutaneously into Dark Agouti rats providing a continuous (40 mg/kg/day VLX delivery for three weeks. Frontal regions of the cerebral cortex were isolated and analyzed using Illumina bead arrays to detect genes showing significant chances in expression. Gene set enrichment analysis was performed to identify specific regulatory networks significantly affected by long term VLX treatment.Chronic VLX administration may have an effect on neurotransmitter release via the regulation of genes involved in vesicular exocytosis and receptor endocytosis (such as Kif proteins, Myo5a, Sv2b, Syn2 or Synj2. Simultaneously, VLX activated the expression of genes involved in neurotrophic signaling (Ntrk2, Ntrk3, glutamatergic transmission (Gria3, Grin2b and Grin2a, neuroplasticity (Camk2g/b, Cd47, synaptogenesis (Epha5a, Gad2 and cognitive processes (Clstn2. Interestingly, VLX increased the expression of genes involved in mitochondrial antioxidant activity (Bcl2 and Prdx1. Additionally, VLX administration also modulated genes related to insulin signaling pathway (Negr1, Ppp3r1, Slc2a4 and Enpp1, a mechanism that has recently been linked to neuroprotection, learning and memory.Our results strongly suggest that chronic VLX treatment improves functional reorganization and brain plasticity by influencing gene expression in
Nonlinear airship aeroelasticity
Bessert, N.; Frederich, O.
2005-12-01
The aeroelastic derivatives for today's aircraft are calculated in the concept phase using a standard procedure. This scheme has to be extended for large airships, due to various nonlinearities in structural and aerodynamic behaviour. In general, the structural model of an airship is physically as well as geometrically nonlinear. The main sources of nonlinearity are large deformations and the nonlinear material behaviour of membranes. The aerodynamic solution is also included in the nonlinear problem, because the deformed airship influences the surrounding flow. Due to these nonlinearities, the aeroelastic problem for airships can only be solved by an iterative procedure. As one possibility, the coupled aerodynamic and structural dynamic problem was handled using linked standard solvers. On the structural side, the Finite-Element program package ABAQUS was extended with an interface to the aerodynamic solver VSAERO. VSAERO is based on the aerodynamic panel method using potential flow theory. The equilibrium of the internal structural and the external aerodynamic forces leads to the structural response and a trimmed flight state for the specified flight conditions (e.g. speed, altitude). The application of small perturbations around a trimmed state produces reaction forces and moments. These constraint forces are then transferred into translational and rotational acceleration fields by performing an inertia relief analysis of the disturbed structural model. The change between the trimmed flight state and the disturbed one yields the respective aeroelastic derivatives. By including the calculated derivatives in the linearised equation of motion system, it is possible to judge the stability and controllability of the investigated airship.
Nonlinear Michelson interferometer for improved quantum metrology
Luis, Alfredo; Rivas, Ángel
2015-08-01
We examine quantum detection via a Michelson interferometer embedded in a gas with Kerr nonlinearity. This nonlinear interferometer is illuminated by pulses of classical light. This strategy combines the robustness against practical imperfections of classical light with the improvement provided by nonlinear processes. Regarding ultimate quantum limits, we stress that, as a difference with linear schemes, the nonlinearity introduces pulse duration as a new variable into play along with the energy resources.
Nonlinear Michelson interferometer for improved quantum metrology
Luis Aina, Alfredo; Rivas Vargas, Ángel
2015-01-01
We examine quantum detection via a Michelson interferometer embedded in a gas with Kerr nonlinearity. This nonlinear interferometer is illuminated by pulses of classical light. This strategy combines the robustness against practical imperfections of classical light with the improvement provided by nonlinear processes. Regarding ultimate quantum limits, we stress that, as a difference with linear schemes, the nonlinearity introduces pulse duration as a new variable into play along with the ene...
Star Formation On Sub-kpc Scale Triggered By Non-linear Processes In Nearby Spiral Galaxies
Momose, Rieko; Kennicutt, Robert C; Egusa, Fumi; Calzetti, Daniela; Liu, Guilin; Meyer, Jennifer Donovan; Okumura, Sachiko K; Scoville, Nick Z; Sawada, Tsuyoshi; Kuno, Nario
2013-01-01
We report a super-linear correlation for the star formation law based on new CO($J$=1-0) data from the CARMA and NOBEYAMA Nearby-galaxies (CANON) CO survey. The sample includes 10 nearby spiral galaxies, in which structures at sub-kpc scales are spatially resolved. Combined with the star formation rate surface density traced by H$\\alpha$ and 24 $\\mu$m images, CO($J$=1-0) data provide a super-linear slope of $N$ = 1.3. The slope becomes even steeper ($N$ = 1.8) when the diffuse stellar and dust background emission is subtracted from the H$\\alpha$ and 24 $\\mu$m images. In contrast to the recent results with CO($J$=2-1) that found a constant star formation efficiency (SFE) in many spiral galaxies, these results suggest that the SFE is not independent of environment, but increases with molecular gas surface density. We suggest that the excitation of CO($J$=2-1) is likely enhanced in the regions with higher star formation and does not linearly trace the molecular gas mass. In addition, the diffuse emission contami...
Generalized Nonlinear Yule Models
Lansky, Petr; Polito, Federico; Sacerdote, Laura
2016-10-01
With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.
Nonlinear phased array imaging
Croxford, Anthony J.; Cheng, Jingwei; Potter, Jack N.
2016-04-01
A technique is presented for imaging acoustic nonlinearity within a specimen using ultrasonic phased arrays. Acoustic nonlinearity is measured by evaluating the difference in energy of the transmission bandwidth within the diffuse field produced through different focusing modes. The two different modes being classical beam forming, where delays are applied to different element of a phased array to physically focus the energy at a single location (parallel firing) and focusing in post processing, whereby one element at a time is fired and a focused image produced in post processing (sequential firing). Although these two approaches are linearly equivalent the difference in physical displacement within the specimen leads to differences in nonlinear effects. These differences are localized to the areas where the amplitude is different, essentially confining the differences to the focal point. Direct measurement at the focal point are however difficult to make. In order to measure this the diffuse field is used. It is a statistical property of the diffuse field that it represents the total energy in the system. If the energy in the diffuse field for both the sequential and parallel firing case is measured then the difference between these, within the input signal bandwidth, is largely due to differences at the focal spot. This difference therefore gives a localized measurement of where energy is moving out of the transmission bandwidth due to nonlinear effects. This technique is used to image fatigue cracks and other damage types undetectable with conventional linear ultrasonic measurements.
Generalized Nonlinear Yule Models
Lansky, Petr; Polito, Federico; Sacerdote, Laura
2016-11-01
With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.