Nonlinear chaotic model for predicting storm surges
Siek, M.; Solomatine, D.P.
This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables.
Nonlinear model predictive control theory and algorithms
Grüne, Lars
2017-01-01
This book offers readers a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. An introduction to nonlinear optimal control algorithms yields essential insights into how the nonlinear optimization routine—the core of any nonlinear model predictive controller—works. Accompanying software in MATLAB® and C++ (downloadable from extras.springer.com/), together with an explanatory appendix in the book itself, enables readers to perform computer experiments exploring the possibilities and limitations of NMPC. T...
Nonlinear chaotic model for predicting storm surges
Directory of Open Access Journals (Sweden)
M. Siek
2010-09-01
Full Text Available This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables. We implemented the univariate and multivariate chaotic models with direct and multi-steps prediction techniques and optimized these models using an exhaustive search method. The built models were tested for predicting storm surge dynamics for different stormy conditions in the North Sea, and are compared to neural network models. The results show that the chaotic models can generally provide reliable and accurate short-term storm surge predictions.
NONLINEAR MODEL PREDICTIVE CONTROL OF CHEMICAL PROCESSES
Directory of Open Access Journals (Sweden)
R. G. SILVA
1999-03-01
Full Text Available A new algorithm for model predictive control is presented. The algorithm utilizes a simultaneous solution and optimization strategy to solve the model's differential equations. The equations are discretized by equidistant collocation, and along with the algebraic model equations are included as constraints in a nonlinear programming (NLP problem. This algorithm is compared with the algorithm that uses orthogonal collocation on finite elements. The equidistant collocation algorithm results in simpler equations, providing a decrease in computation time for the control moves. Simulation results are presented and show a satisfactory performance of this algorithm.
Prediction of peptide bonding affinity: kernel methods for nonlinear modeling
Bergeron, Charles; Sundling, C Matthew; Krein, Michael; Katt, Bill; Sukumar, Nagamani; Breneman, Curt M; Bennett, Kristin P
2011-01-01
This paper presents regression models obtained from a process of blind prediction of peptide binding affinity from provided descriptors for several distinct datasets as part of the 2006 Comparative Evaluation of Prediction Algorithms (COEPRA) contest. This paper finds that kernel partial least squares, a nonlinear partial least squares (PLS) algorithm, outperforms PLS, and that the incorporation of transferable atom equivalent features improves predictive capability.
Explicit Nonlinear Model Predictive Control Theory and Applications
Grancharova, Alexandra
2012-01-01
Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: Ø Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; �...
Prakash, J; Srinivasan, K
2009-07-01
In this paper, the authors have represented the nonlinear system as a family of local linear state space models, local PID controllers have been designed on the basis of linear models, and the weighted sum of the output from the local PID controllers (Nonlinear PID controller) has been used to control the nonlinear process. Further, Nonlinear Model Predictive Controller using the family of local linear state space models (F-NMPC) has been developed. The effectiveness of the proposed control schemes has been demonstrated on a CSTR process, which exhibits dynamic nonlinearity.
Nonlinear Economic Model Predictive Control Strategy for Active Smart Buildings
DEFF Research Database (Denmark)
Santos, Rui Mirra; Zong, Yi; Sousa, Joao M. C.
2016-01-01
Nowadays, the development of advanced and innovative intelligent control techniques for energy management in buildings is a key issue within the smart grid topic. A nonlinear economic model predictive control (EMPC) scheme, based on the branch-and-bound tree search used as optimization algorithm...... for solving the nonconvex optimization problem is proposed in this paper. A simulation using the nonlinear model-based controller to control the temperature levels of an intelligent office building (PowerFlexHouse) is addressed. Its performance is compared with a linear model-based controller. The nonlinear...
Nonlinear model predictive control of a packed distillation column
Energy Technology Data Exchange (ETDEWEB)
Patwardhan, A.A.; Edgar, T.F. (Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering)
1993-10-01
A rigorous dynamic model based on fundamental chemical engineering principles was formulated for a packed distillation column separating a mixture of cyclohexane and n-heptane. This model was simplified to a form suitable for use in on-line model predictive control calculations. A packed distillation column was operated at several operating conditions to estimate two unknown model parameters in the rigorous and simplified models. The actual column response to step changes in the feed rate, distillate rate, and reboiler duty agreed well with dynamic model predictions. One unusual characteristic observed was that the packed column exhibited gain-sign changes, which are very difficult to treat using conventional linear feedback control. Nonlinear model predictive control was used to control the distillation column at an operating condition where the process gain changed sign. An on-line, nonlinear model-based scheme was used to estimate unknown/time-varying model parameters.
Recent Advances in Explicit Multiparametric Nonlinear Model Predictive Control
Domínguez, Luis F.
2011-01-19
In this paper we present recent advances in multiparametric nonlinear programming (mp-NLP) algorithms for explicit nonlinear model predictive control (mp-NMPC). Three mp-NLP algorithms for NMPC are discussed, based on which novel mp-NMPC controllers are derived. The performance of the explicit controllers are then tested and compared in a simulation example involving the operation of a continuous stirred-tank reactor (CSTR). © 2010 American Chemical Society.
UAV Formation Flight Based on Nonlinear Model Predictive Control
Directory of Open Access Journals (Sweden)
Zhou Chao
2012-01-01
Full Text Available We designed a distributed collision-free formation flight control law in the framework of nonlinear model predictive control. Formation configuration is determined in the virtual reference point coordinate system. Obstacle avoidance is guaranteed by cost penalty, and intervehicle collision avoidance is guaranteed by cost penalty combined with a new priority strategy.
A nonlinear regression model-based predictive control algorithm.
Dubay, R; Abu-Ayyad, M; Hernandez, J M
2009-04-01
This paper presents a unique approach for designing a nonlinear regression model-based predictive controller (NRPC) for single-input-single-output (SISO) and multi-input-multi-output (MIMO) processes that are common in industrial applications. The innovation of this strategy is that the controller structure allows nonlinear open-loop modeling to be conducted while closed-loop control is executed every sampling instant. Consequently, the system matrix is regenerated every sampling instant using a continuous function providing a more accurate prediction of the plant. Computer simulations are carried out on nonlinear plants, demonstrating that the new approach is easily implemented and provides tight control. Also, the proposed algorithm is implemented on two real time SISO applications; a DC motor, a plastic injection molding machine and a nonlinear MIMO thermal system comprising three temperature zones to be controlled with interacting effects. The experimental closed-loop responses of the proposed algorithm were compared to a multi-model dynamic matrix controller (MPC) with improved results for various set point trajectories. Good disturbance rejection was attained, resulting in improved tracking of multi-set point profiles in comparison to multi-model MPC.
Application of Nonlinear Predictive Control Based on RBF Network Predictive Model in MCFC Plant
Institute of Scientific and Technical Information of China (English)
CHEN Yue-hua; CAO Guang-yi; ZHU Xin-jian
2007-01-01
This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was too complicated to be used in a control system. Consequently, an off line radial basis function (RBF) network was introduced to build a nonlinear predictive model. And then, the optimal control sequences were obtained by applying golden mean method. The models and controller have been realized in the MATLAB environment. Simulation results indicate the proposed algorithm exhibits satisfying control effect even when the current densities vary largely.
Nonlinear turbulence models for predicting strong curvature effects
Institute of Scientific and Technical Information of China (English)
XU Jing-lei; MA Hui-yang; HUANG Yu-ning
2008-01-01
Prediction of the characteristics of turbulent flows with strong streamline curvature, such as flows in turbomachines, curved channel flows, flows around airfoils and buildings, is of great importance in engineering applicatious and poses a very practical challenge for turbulence modeling. In this paper, we analyze qualitatively the curvature effects on the structure of turbulence and conduct numerical simulations of a turbulent U- duct flow with a number of turbulence models in order to assess their overall performance. The models evaluated in this work are some typical linear eddy viscosity turbulence models, nonlinear eddy viscosity turbulence models (NLEVM) (quadratic and cubic), a quadratic explicit algebraic stress model (EASM) and a Reynolds stress model (RSM) developed based on the second-moment closure. Our numerical results show that a cubic NLEVM that performs considerably well in other benchmark turbulent flows, such as the Craft, Launder and Suga model and the Huang and Ma model, is able to capture the major features of the highly curved turbulent U-duct flow, including the damping of turbulence near the convex wall, the enhancement of turbulence near the concave wall, and the subsequent turbulent flow separation. The predictions of the cubic models are quite close to that of the RSM, in relatively good agreement with the experimental data, which suggests that these inodels may be employed to simulate the turbulent curved flows in engineering applications.
Nonlinear Model Predictive Control for Oil Reservoirs Management
DEFF Research Database (Denmark)
Capolei, Andrea
. With this objective function we link the optimization problem in production optimization to the Markowitz portfolio optimization problem in finance or to the the robust design problem in topology optimization. In this study we focus on open-loop configuration, i.e. without measurement feedback. We demonstrate......, the research community is working on improving current feedback model-based optimal control technologies. The topic of this thesis is production optimization for water flooding in the secondary phase of oil recovery. We developed numerical methods for nonlinear model predictive control (NMPC) of an oil field....... Further, we studied the use of robust control strategies in both open-loop, i.e. without measurement feedback, and closed-loop, i.e. with measurement feedback, configurations. This thesis has three main original contributions: The first contribution in this thesis is to improve the computationally...
Nonlinear model predictive control based on collective neurodynamic optimization.
Yan, Zheng; Wang, Jun
2015-04-01
In general, nonlinear model predictive control (NMPC) entails solving a sequential global optimization problem with a nonconvex cost function or constraints. This paper presents a novel collective neurodynamic optimization approach to NMPC without linearization. Utilizing a group of recurrent neural networks (RNNs), the proposed collective neurodynamic optimization approach searches for optimal solutions to global optimization problems by emulating brainstorming. Each RNN is guaranteed to converge to a candidate solution by performing constrained local search. By exchanging information and iteratively improving the starting and restarting points of each RNN using the information of local and global best known solutions in a framework of particle swarm optimization, the group of RNNs is able to reach global optimal solutions to global optimization problems. The essence of the proposed collective neurodynamic optimization approach lies in the integration of capabilities of global search and precise local search. The simulation results of many cases are discussed to substantiate the effectiveness and the characteristics of the proposed approach.
Stabilizing model predictive control for constrained nonlinear distributed delay systems.
Mahboobi Esfanjani, R; Nikravesh, S K Y
2011-04-01
In this paper, a model predictive control scheme with guaranteed closed-loop asymptotic stability is proposed for a class of constrained nonlinear time-delay systems with discrete and distributed delays. A suitable terminal cost functional and also an appropriate terminal region are utilized to achieve asymptotic stability. To determine the terminal cost, a locally asymptotically stabilizing controller is designed and an appropriate Lyapunov-Krasoskii functional of the locally stabilized system is employed as the terminal cost. Furthermore, an invariant set for locally stabilized system which is established by using the Razumikhin Theorem is used as the terminal region. Simple conditions are derived to obtain terminal cost and terminal region in terms of Bilinear Matrix Inequalities. The method is illustrated by a numerical example.
Nonlinear model predictive control of managed pressure drilling.
Nandan, Anirudh; Imtiaz, Syed
2017-07-01
A new design of nonlinear model predictive controller (NMPC) is proposed for managed pressure drilling (MPD) system. The NMPC is based on output feedback control architecture and employs offset-free formulation proposed in [1]. NMPC uses active set method for computing control inputs. The controller implements an automatic switching from constant bottom hole pressure (CBHP) regulation to flow control mode in the event of a reservoir kick. In the flow control mode the controller automatically raises the bottom hole pressure setpoint, and thereby keeps the reservoir fluid flow to the surface within a tunable threshold. This is achieved by exploiting constraint handling capability of NMPC. In addition to kick mitigation the controller demonstrated good performance in containing the bottom hole pressure (BHP) during the pipe connection sequence. The controller also delivered satisfactory performance in the presence of measurement noise and uncertainty in the system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Fuzzy predictive filtering in nonlinear economic model predictive control for demand response
DEFF Research Database (Denmark)
Santos, Rui Mirra; Zong, Yi; Sousa, Joao M. C.;
2016-01-01
The performance of a model predictive controller (MPC) is highly correlated with the model's accuracy. This paper introduces an economic model predictive control (EMPC) scheme based on a nonlinear model, which uses a branch-and-bound tree search for solving the inherent non-convex optimization...... problem. Moreover, to reduce the computation time and improve the controller's performance, a fuzzy predictive filter is introduced. With the purpose of testing the developed EMPC, a simulation controlling the temperature levels of an intelligent office building (PowerFlexHouse), with and without fuzzy...
Sridhar, Upasana Manimegalai; Govindarajan, Anand; Rhinehart, R Russell
2016-01-01
This work reveals the applicability of a relatively new optimization technique, Leapfrogging, for both nonlinear regression modeling and a methodology for nonlinear model-predictive control. Both are relatively simple, yet effective. The application on a nonlinear, pilot-scale, shell-and-tube heat exchanger reveals practicability of the techniques.
Min-max model predictive control for constrained nonlinear systems via multiple LPV embeddings
Institute of Scientific and Technical Information of China (English)
ZHAO Min; LI Ning; LI ShaoYuan
2009-01-01
A min-max model predictive control strategy is proposed for a class of constrained nonlinear system whose trajectories can be embedded within those of a bank of linear parameter varying (LPV) models. The embedding LPV models can yield much better approximation of the nonlinear system dynamics than a single LTV model. For each LPV model, a parameter-dependent Lyapunov function is introduced to obtain poly-quadratically stable control law and to guarantee the feasibility and stability of the original nonlinear system. This approach can greatly reduce computational burden in traditional nonlinear predictive control strategy. Finally a simulation example illustrating the strategy is presented.
Nonlinear Fuzzy Model Predictive Control for a PWR Nuclear Power Plant
Directory of Open Access Journals (Sweden)
Xiangjie Liu
2014-01-01
Full Text Available Reliable power and temperature control in pressurized water reactor (PWR nuclear power plant is necessary to guarantee high efficiency and plant safety. Since the nuclear plants are quite nonlinear, the paper presents nonlinear fuzzy model predictive control (MPC, by incorporating the realistic constraints, to realize the plant optimization. T-S fuzzy modeling on nuclear power plant is utilized to approximate the nonlinear plant, based on which the nonlinear MPC controller is devised via parallel distributed compensation (PDC scheme in order to solve the nonlinear constraint optimization problem. Improved performance compared to the traditional PID controller for a TMI-type PWR is obtained in the simulation.
Weissel, Florian; Huber, Marco F.; Hanebeck, Uwe D.
2007-01-01
Model identification and measurement acquisition is always to some degree uncertain. Therefore, a framework for Nonlinear Model Predictive Control (NMPC) is proposed that explicitly considers the noise influence on nonlinear dynamic systems with continuous state spaces and a finite set of control inputs in order to significantly increase the control quality. Integral parts of NMPC are the prediction of system states over a finite horizon as well as the problem specific modeling of reward func...
Model Predictive Control of a Nonlinear System with Known Scheduling Variable
DEFF Research Database (Denmark)
Mirzaei, Mahmood; Poulsen, Niels Kjølstad; Niemann, Hans Henrik
2012-01-01
the control problem of the nonlinear system is simplied into a quadratic programming. Wind turbine is chosen as the case study and we choose wind speed as the scheduling variable. Wind speed is measurable ahead of the turbine, therefore the scheduling variable is known for the entire prediction horizon.......Model predictive control (MPC) of a class of nonlinear systems is considered in this paper. We will use Linear Parameter Varying (LPV) model of the nonlinear system. By taking the advantage of having future values of the scheduling variable, we will simplify state prediction. Consequently...
Institute of Scientific and Technical Information of China (English)
钟伟民; 何国龙; 皮道映; 孙优贤
2005-01-01
A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identification method. By solving a cubic equation in the feature space, an explicit predictive control law is obtained through the predictive control mechanism. The effect of controller is demonstrated on a recognized benchmark problem and on the control of continuous-stirred tank reactor (CSTR). Simulation results show that SVM with quadratic polynomial kernel function based predictive controller can be well applied to nonlinear systems, with good performance in following reference trajectory as well as in disturbance-rejection.
Nonlinear model predictive control for chemical looping process
Energy Technology Data Exchange (ETDEWEB)
Joshi, Abhinaya; Lei, Hao; Lou, Xinsheng
2017-08-22
A control system for optimizing a chemical looping ("CL") plant includes a reduced order mathematical model ("ROM") that is designed by eliminating mathematical terms that have minimal effect on the outcome. A non-linear optimizer provides various inputs to the ROM and monitors the outputs to determine the optimum inputs that are then provided to the CL plant. An estimator estimates the values of various internal state variables of the CL plant. The system has one structure adapted to control a CL plant that only provides pressure measurements in the CL loops A and B, a second structure adapted to a CL plant that provides pressure measurements and solid levels in both loops A, and B, and a third structure adapted to control a CL plant that provides full information on internal state variables. A final structure provides a neural network NMPC controller to control operation of loops A and B.
DEFF Research Database (Denmark)
Mirzaei, Mahmood; Poulsen, Niels Kjølstad; Niemann, Hans Henrik
2012-01-01
Robust model predictive control (RMPC) of a class of nonlinear systems is considered in this paper. We will use Linear Parameter Varying (LPV) model of the nonlinear system. By taking the advantage of having future values of the scheduling variable, we will simplify state prediction. Because...... of the special structure of the problem, uncertainty is only in the B matrix (gain) of the state space model. Therefore by taking advantage of this structure, we formulate a tractable minimax optimization problem to solve robust model predictive control problem. Wind turbine is chosen as the case study and we...
Nonlinear model predictive control using parameter varying BP-ARX combination model
Yang, J.-F.; Xiao, L.-F.; Qian, J.-X.; Li, H.
2012-03-01
A novel back-propagation AutoRegressive with eXternal input (BP-ARX) combination model is constructed for model predictive control (MPC) of MIMO nonlinear systems, whose steady-state relation between inputs and outputs can be obtained. The BP neural network represents the steady-state relation, and the ARX model represents the linear dynamic relation between inputs and outputs of the nonlinear systems. The BP-ARX model is a global model and is identified offline, while the parameters of the ARX model are rescaled online according to BP neural network and operating data. Sequential quadratic programming is employed to solve the quadratic objective function online, and a shift coefficient is defined to constrain the effect time of the recursive least-squares algorithm. Thus, a parameter varying nonlinear MPC (PVNMPC) algorithm that responds quickly to large changes in system set-points and shows good dynamic performance when system outputs approach set-points is proposed. Simulation results in a multivariable stirred tank and a multivariable pH neutralisation process illustrate the applicability of the proposed method and comparisons of the control effect between PVNMPC and multivariable recursive generalised predictive controller are also performed.
Nonlinear model identification and adaptive model predictive control using neural networks.
Akpan, Vincent A; Hassapis, George D
2011-04-01
This paper presents two new adaptive model predictive control algorithms, both consisting of an on-line process identification part and a predictive control part. Both parts are executed at each sampling instant. The predictive control part of the first algorithm is the Nonlinear Model Predictive Control strategy and the control part of the second algorithm is the Generalized Predictive Control strategy. In the identification parts of both algorithms the process model is approximated by a series-parallel neural network structure which is trained by a recursive least squares (ARLS) method. The two control algorithms have been applied to: 1) the temperature control of a fluidized bed furnace reactor (FBFR) of a pilot plant and 2) the auto-pilot control of an F-16 aircraft. The training and validation data of the neural network are obtained from the open-loop simulation of the FBFR and the nonlinear F-16 aircraft models. The identification and control simulation results show that the first algorithm outperforms the second one at the expense of extra computation time.
A Model Predictive Algorithm for Active Control of Nonlinear Noise Processes
Directory of Open Access Journals (Sweden)
Qi-Zhi Zhang
2005-01-01
Full Text Available In this paper, an improved nonlinear Active Noise Control (ANC system is achieved by introducing an appropriate secondary source. For ANC system to be successfully implemented, the nonlinearity of the primary path and time delay of the secondary path must be overcome. A nonlinear Model Predictive Control (MPC strategy is introduced to deal with the time delay in the secondary path and the nonlinearity in the primary path of the ANC system. An overall online modeling technique is utilized for online secondary path and primary path estimation. The secondary path is estimated using an adaptive FIR filter, and the primary path is estimated using a Neural Network (NN. The two models are connected in parallel with the two paths. In this system, the mutual disturbances between the operation of the nonlinear ANC controller and modeling of the secondary can be greatly reduced. The coefficients of the adaptive FIR filter and weight vector of NN are adjusted online. Computer simulations are carried out to compare the proposed nonlinear MPC method with the nonlinear Filter-x Least Mean Square (FXLMS algorithm. The results showed that the convergence speed of the proposed nonlinear MPC algorithm is faster than that of nonlinear FXLMS algorithm. For testing the robust performance of the proposed nonlinear ANC system, the sudden changes in the secondary path and primary path of the ANC system are considered. Results indicated that the proposed nonlinear ANC system can rapidly track the sudden changes in the acoustic paths of the nonlinear ANC system, and ensure the adaptive algorithm stable when the nonlinear ANC system is time variable.
Singh, Kunwar P; Gupta, Shikha; Rai, Premanjali
2014-05-01
Kernel function-based regression models were constructed and applied to a nonlinear hydro-chemical dataset pertaining to surface water for predicting the dissolved oxygen levels. Initial features were selected using nonlinear approach. Nonlinearity in the data was tested using BDS statistics, which revealed the data with nonlinear structure. Kernel ridge regression, kernel principal component regression, kernel partial least squares regression, and support vector regression models were developed using the Gaussian kernel function and their generalization and predictive abilities were compared in terms of several statistical parameters. Model parameters were optimized using the cross-validation procedure. The proposed kernel regression methods successfully captured the nonlinear features of the original data by transforming it to a high dimensional feature space using the kernel function. Performance of all the kernel-based modeling methods used here were comparable both in terms of predictive and generalization abilities. Values of the performance criteria parameters suggested for the adequacy of the constructed models to fit the nonlinear data and their good predictive capabilities.
Nonlinear model predictive control with guaraneed stability based on pesudolinear neural networks
Institute of Scientific and Technical Information of China (English)
WANG Yongji; WANG Hong
2004-01-01
A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is investigated. The stability of the closed loop model predictive control system is analyzed based on Lyapunov theory to obtain the sufficient condition for the asymptotical stability of the neural predictive control system. A simulation was carried out for an exothermic first-order reaction in a continuous stirred tank reactor. It is demonstrated that the proposed control strategy is applicable to some of nonlinear systems.
Institute of Scientific and Technical Information of China (English)
Yun Li; Hiroshi Kashiwagi
2005-01-01
Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but existing design and implementation methods are restricted to linear process models. A chemical process, however, involves severe nonlinearity which cannot be ignored in practice. This paper aims to solve this nonlinear control problem by extending MPC to accommodate nonlinear models. It develops an analytical framework for nonlinear model predictive control (NMPC). It also offers a third-order Volterra series based nonparametric nonlinear modelling technique for NMPC design, which relieves practising engineers from the need for deriving a physical-principles based model first. An on-line realisation technique for implementing NMPC is then developed and applied to a Mitsubishi Chemicals polymerisation reaction process. Results show that this nonlinear MPC technique is feasible and very effective. It considerably outperforms linear and low-order Volterra model based methods. The advantages of the developed approach lie not only in control performance superior to existing NMPC methods, but also in eliminating the need for converting an analytical model and then convert it to a Volterra model obtainable only up to the second order.
2015-04-24
Allgwer and A. Zheng, Nonlinear model predictive control vol. 26: Springer , 2000. [10] J. M. Park, D. W. Kim, Y. S. Yoon, H. J. Kim, and K. S. Yi...include modeling, simulation, and control of dynamic systems, with applications to energy systems, multibody dynamics, vehicle systems, and biomechanics
CONTROL OF NONLINEAR PROCESS USING NEURAL NETWORK BASED MODEL PREDICTIVE CONTROL
Directory of Open Access Journals (Sweden)
Dr.A.TRIVEDI
2011-04-01
Full Text Available This paper presents a Neural Network based Model Predictive Control (NNMPC strategy to control nonlinear process. Multilayer Perceptron Neural Network (MLP is chosen to represent a Nonlinear Auto Regressive with eXogenous signal (NARX model of a nonlinear system. NARX dynamic model is based on feed-forward architecture and offers good approximation capabilities along with robustness and accuracy. Based on the identified neural model, a generalized predictive control (GPC algorithm is implemented to control the composition in acontinuous stirred tank reactor (CSTR, whose parameters are optimally determined by solving quadratic performance index using well known Levenberg-Marquardt and Quasi-Newton algorithm. NNMPC is tuned by selecting few horizon parameters and weighting factor. The tracking performance of the NNMPC is tested using different amplitude function as a reference signal on CSTR application. Also the robustness and performance is tested in the presence of disturbance on random reference signal.
Constrained predictive control based on T-S fuzzy model for nonlinear systems
Institute of Scientific and Technical Information of China (English)
Su Baili; Chen Zengqiang; Yuan Zhuzhi
2007-01-01
A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonal least square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented.This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.
RBFNN Model for Predicting Nonlinear Response of Uniformly Loaded Paddle Cantilever
Directory of Open Access Journals (Sweden)
Abdullah H. Abdullah
2009-01-01
Full Text Available The Radial basis Function neural network (RBFNN model has been developed for the prediction of nonlinear response for paddle Cantilever with built-in edges and different sizes, thickness and uniform loads. Learning data was performed by using a nonlinear finite element program, incremental stages of the nonlinear finite element analysis were generated by using 25 schemes of built paddle Cantilevers with different thickness and uniform distributed loads. The neural network model has 5 input nodes representing the uniform distributed load and paddle size, length, width and thickness, eight nodes at hidden layer and one output node representing the max. deflection response (1500×1 represent the deflection response of load. Regression analysis between finite element results and values predicted by the neural network model shows the least error.
Institute of Scientific and Technical Information of China (English)
SU Cheng-li; WANG Shu-qing
2006-01-01
An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is presented. In this approach, the minimization problem of the "worst-case" objective function is converted into the linear objective minimization problem involving linear matrix inequalities (LMIs) constraints. The state feedback control law is obtained by solving convex optimization of a set of LMIs. Sufficient condition for stability and a new upper bound on robust performance index are given for these kinds of uncertain fuzzy systems with state time-delay. Simulation results of CSTR process show that the proposed robust predictive control approach is effective and feasible.
C code generation applied to nonlinear model predictive control for an artificial pancreas
DEFF Research Database (Denmark)
Boiroux, Dimitri; Jørgensen, John Bagterp
2017-01-01
This paper presents a method to generate C code from MATLAB code applied to a nonlinear model predictive control (NMPC) algorithm. The C code generation uses the MATLAB Coder Toolbox. It can drastically reduce the time required for development compared to a manual porting of code from MATLAB to C...
Yao, Weigang; Liou, Meng-Sing
2016-08-01
To preserve nonlinearity of a full-order system over a range of parameters of interest, we propose an accurate and robust nonlinear modeling approach by assembling a set of piecewise linear local solutions expanded about some sampling states. The work by Rewienski and White [1] on micromachined devices inspired our use of piecewise linear local solutions to study nonlinear unsteady aerodynamics. These local approximations are assembled via nonlinear weights of radial basis functions. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving with different pitching motions, specifically AGARD's CT2 and CT5 problems [27], in which the flows exhibit different nonlinear behaviors. Furthermore, application of the developed aerodynamic model to a two-dimensional aero-elastic system proves the approach is capable of predicting limit cycle oscillations (LCOs) by using AGARD's CT6 [28] as a benchmark test. All results, based on inviscid solutions, confirm that our nonlinear model is stable and accurate, against the full model solutions and measurements, and for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robust for inputs that considerably depart from the base trajectory in form and magnitude. This modeling provides a very efficient way for predicting unsteady flowfields with varying parameters because it needs only a tiny fraction of the cost of a full-order modeling for each new condition-the more cases studied, the more savings rendered. Hence, the present approach is especially useful for parametric studies, such as in the case of design optimization and exploration of flow phenomena.
Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models
Daunizeau, J.; Friston, K. J.; Kiebel, S. J.
2009-11-01
In this paper, we describe a general variational Bayesian approach for approximate inference on nonlinear stochastic dynamic models. This scheme extends established approximate inference on hidden-states to cover: (i) nonlinear evolution and observation functions, (ii) unknown parameters and (precision) hyperparameters and (iii) model comparison and prediction under uncertainty. Model identification or inversion entails the estimation of the marginal likelihood or evidence of a model. This difficult integration problem can be finessed by optimising a free-energy bound on the evidence using results from variational calculus. This yields a deterministic update scheme that optimises an approximation to the posterior density on the unknown model variables. We derive such a variational Bayesian scheme in the context of nonlinear stochastic dynamic hierarchical models, for both model identification and time-series prediction. The computational complexity of the scheme is comparable to that of an extended Kalman filter, which is critical when inverting high dimensional models or long time-series. Using Monte-Carlo simulations, we assess the estimation efficiency of this variational Bayesian approach using three stochastic variants of chaotic dynamic systems. We also demonstrate the model comparison capabilities of the method, its self-consistency and its predictive power.
Convergence Guaranteed Nonlinear Constraint Model Predictive Control via I/O Linearization
Directory of Open Access Journals (Sweden)
Xiaobing Kong
2013-01-01
Full Text Available Constituting reliable optimal solution is a key issue for the nonlinear constrained model predictive control. Input-output feedback linearization is a popular method in nonlinear control. By using an input-output feedback linearizing controller, the original linear input constraints will change to nonlinear constraints and sometimes the constraints are state dependent. This paper presents an iterative quadratic program (IQP routine on the continuous-time system. To guarantee its convergence, another iterative approach is incorporated. The proposed algorithm can reach a feasible solution over the entire prediction horizon. Simulation results on both a numerical example and the continuous stirred tank reactors (CSTR demonstrate the effectiveness of the proposed method.
Recursive prediction error methods for online estimation in nonlinear state-space models
Directory of Open Access Journals (Sweden)
Dag Ljungquist
1994-04-01
Full Text Available Several recursive algorithms for online, combined state and parameter estimation in nonlinear state-space models are discussed in this paper. Well-known algorithms such as the extended Kalman filter and alternative formulations of the recursive prediction error method are included, as well as a new method based on a line-search strategy. A comparison of the algorithms illustrates that they are very similar although the differences can be important for the online tracking capabilities and robustness. Simulation experiments on a simple nonlinear process show that the performance under certain conditions can be improved by including a line-search strategy.
DEFF Research Database (Denmark)
Petersen, Lars Norbert; Jørgensen, John Bagterp; Rawlings, James B.
2015-01-01
In this paper, we develop an economically optimizing Nonlinear Model Predictive Controller (E-NMPC) for a complete spray drying plant with multiple stages. In the E-NMPC the initial state is estimated by an extended Kalman Filter (EKF) with noise covariances estimated by an autocovariance least...... squares method (ALS). We present a model for the spray drying plant and use this model for simulation as well as for prediction in the E-NMPC. The open-loop optimal control problem in the E-NMPC is solved using the single-shooting method combined with a quasi-Newton Sequential Quadratic programming (SQP...
DEFF Research Database (Denmark)
Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik;
2015-01-01
In this paper, we compare the performance of an economically optimizing Nonlinear Model Predictive Controller (E-NMPC) to a linear tracking Model Predictive Controller (MPC) for a spray drying plant. We find in this simulation study, that the economic performance of the two controllers are almost...... equal. We evaluate the economic performance with an industrially recorded disturbance scenario, where unmeasured disturbances and model mismatch are present. The state of the spray dryer, used in the E-NMPC and MPC, is estimated using Kalman Filters with noise covariances estimated by a maximum...
Traffic chaos and its prediction based on a nonlinear car-following model
Institute of Scientific and Technical Information of China (English)
Hui FU; Jianmin XU; Lunhui XU
2005-01-01
This paper discusses the dynamic behavior and its predictions for a simulated traffic flow based on the nonlinear response of a vehicle to the leading car's movement in a single lane.Traffic chaos is a promising field,and chaos theory has been applied to identify and predict its chaotic movement.A simulated traffic flow is generated using a car-following model(GM model),and the distance between two cars is investigated for its dynamic properties.A positive Lyapunov exponent confirms the existence of chaotic behavior in the GM model.A new algorithm using a RBF NN (radial basis function neural network) is proposed to predict this traffic chaos.The experiment shows that the chaotic degree and predictable degree are determined by the first Lyapunov exponent.The algorithm proposed in this paper can be generalized to recognize and predict the chaos of short-time traffic flow series.
Model predictive control of non-linear systems over networks with data quantization and packet loss.
Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping
2015-11-01
This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method.
Directory of Open Access Journals (Sweden)
Ronghui Zhang
2017-05-01
Full Text Available Focusing on safety, comfort and with an overall aim of the comprehensive improvement of a vision-based intelligent vehicle, a novel Advanced Emergency Braking System (AEBS is proposed based on Nonlinear Model Predictive Algorithm. Considering the nonlinearities of vehicle dynamics, a vision-based longitudinal vehicle dynamics model is established. On account of the nonlinear coupling characteristics of the driver, surroundings, and vehicle itself, a hierarchical control structure is proposed to decouple and coordinate the system. To avoid or reduce the collision risk between the intelligent vehicle and collision objects, a coordinated cost function of tracking safety, comfort, and fuel economy is formulated. Based on the terminal constraints of stable tracking, a multi-objective optimization controller is proposed using the theory of non-linear model predictive control. To quickly and precisely track control target in a finite time, an electronic brake controller for AEBS is designed based on the Nonsingular Fast Terminal Sliding Mode (NFTSM control theory. To validate the performance and advantages of the proposed algorithm, simulations are implemented. According to the simulation results, the proposed algorithm has better integrated performance in reducing the collision risk and improving the driving comfort and fuel economy of the smart car compared with the existing single AEBS.
Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling.
Kawashima, Issaku; Kumano, Hiroaki
2017-01-01
Mind-wandering (MW), task-unrelated thought, has been examined by researchers in an increasing number of articles using models to predict whether subjects are in MW, using numerous physiological variables. However, these models are not applicable in general situations. Moreover, they output only binary classification. The current study suggests that the combination of electroencephalogram (EEG) variables and non-linear regression modeling can be a good indicator of MW intensity. We recorded EEGs of 50 subjects during the performance of a Sustained Attention to Response Task, including a thought sampling probe that inquired the focus of attention. We calculated the power and coherence value and prepared 35 patterns of variable combinations and applied Support Vector machine Regression (SVR) to them. Finally, we chose four SVR models: two of them non-linear models and the others linear models; two of the four models are composed of a limited number of electrodes to satisfy model usefulness. Examination using the held-out data indicated that all models had robust predictive precision and provided significantly better estimations than a linear regression model using single electrode EEG variables. Furthermore, in limited electrode condition, non-linear SVR model showed significantly better precision than linear SVR model. The method proposed in this study helps investigations into MW in various little-examined situations. Further, by measuring MW with a high temporal resolution EEG, unclear aspects of MW, such as time series variation, are expected to be revealed. Furthermore, our suggestion that a few electrodes can also predict MW contributes to the development of neuro-feedback studies.
Billings, S. A.
1988-03-01
Time and frequency domain identification methods for nonlinear systems are reviewed. Parametric methods, prediction error methods, structure detection, model validation, and experiment design are discussed. Identification of a liquid level system, a heat exchanger, and a turbocharge automotive diesel engine are illustrated. Rational models are introduced. Spectral analysis for nonlinear systems is treated. Recursive estimation is mentioned.
A computer program for predicting nonlinear uniaxial material responses using viscoplastic models
Chang, T. Y.; Thompson, R. L.
1984-01-01
A computer program was developed for predicting nonlinear uniaxial material responses using viscoplastic constitutive models. Four specific models, i.e., those due to Miller, Walker, Krieg-Swearengen-Rhode, and Robinson, are included. Any other unified model is easily implemented into the program in the form of subroutines. Analysis features include stress-strain cycling, creep response, stress relaxation, thermomechanical fatigue loop, or any combination of these responses. An outline is given on the theoretical background of uniaxial constitutive models, analysis procedure, and numerical integration methods for solving the nonlinear constitutive equations. In addition, a discussion on the computer program implementation is also given. Finally, seven numerical examples are included to demonstrate the versatility of the computer program developed.
Improved nonlinear prediction method
Adenan, Nur Hamiza; Md Noorani, Mohd Salmi
2014-06-01
The analysis and prediction of time series data have been addressed by researchers. Many techniques have been developed to be applied in various areas, such as weather forecasting, financial markets and hydrological phenomena involving data that are contaminated by noise. Therefore, various techniques to improve the method have been introduced to analyze and predict time series data. In respect of the importance of analysis and the accuracy of the prediction result, a study was undertaken to test the effectiveness of the improved nonlinear prediction method for data that contain noise. The improved nonlinear prediction method involves the formation of composite serial data based on the successive differences of the time series. Then, the phase space reconstruction was performed on the composite data (one-dimensional) to reconstruct a number of space dimensions. Finally the local linear approximation method was employed to make a prediction based on the phase space. This improved method was tested with data series Logistics that contain 0%, 5%, 10%, 20% and 30% of noise. The results show that by using the improved method, the predictions were found to be in close agreement with the observed ones. The correlation coefficient was close to one when the improved method was applied on data with up to 10% noise. Thus, an improvement to analyze data with noise without involving any noise reduction method was introduced to predict the time series data.
Ability of non-linear mixed models to predict growth in laying hens
Directory of Open Access Journals (Sweden)
Luis Fernando Galeano-Vasco
2014-11-01
Full Text Available In this study, the Von Bertalanffy, Richards, Gompertz, Brody, and Logistics non-linear mixed regression models were compared for their ability to estimate the growth curve in commercial laying hens. Data were obtained from 100 Lohmann LSL layers. The animals were identified and then weighed weekly from day 20 after hatch until they were 553 days of age. All the nonlinear models used were transformed into mixed models by the inclusion of random parameters. Accuracy of the models was determined by the Akaike and Bayesian information criteria (AIC and BIC, respectively, and the correlation values. According to AIC, BIC, and correlation values, the best fit for modeling the growth curve of the birds was obtained with Gompertz, followed by Richards, and then by Von Bertalanffy models. The Brody and Logistic models did not fit the data. The Gompertz nonlinear mixed model showed the best goodness of fit for the data set, and is considered the model of choice to describe and predict the growth curve of Lohmann LSL commercial layers at the production system of University of Antioquia.
Drzewiecki, Wojciech
2016-12-01
In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels) was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques. The results proved that in case of sub-pixel evaluation the most accurate prediction of change may not necessarily be based on the most accurate individual assessments. When single methods are considered, based on obtained results Cubist algorithm may be advised for Landsat based mapping of imperviousness for single dates. However, Random Forest may be endorsed when the most reliable evaluation of imperviousness change is the primary goal. It gave lower accuracies for individual assessments, but better prediction of change due to more correlated errors of individual predictions. Heterogeneous model ensembles performed for individual time points assessments at least as well as the best individual models. In case of imperviousness change assessment the ensembles always outperformed single model approaches. It means that it is possible to improve the accuracy of sub-pixel imperviousness change assessment using ensembles of heterogeneous non-linear regression models.
Basant, Nikita; Gupta, Shikha; Singh, Kunwar P
2015-11-01
In this study, we established nonlinear quantitative-structure toxicity relationship (QSTR) models for predicting the toxicities of chemical pesticides in multiple aquatic test species following the OECD (Organization for Economic Cooperation and Development) guidelines. The decision tree forest (DTF) and decision tree boost (DTB) based QSTR models were constructed using a pesticides toxicity dataset in Selenastrum capricornutum and a set of six descriptors. Other six toxicity data sets were used for external validation of the constructed QSTRs. Global QSTR models were also constructed using the combined dataset of all the seven species. The diversity in chemical structures and nonlinearity in the data were evaluated. Model validation was performed deriving several statistical coefficients for the test data and the prediction and generalization abilities of the QSTRs were evaluated. Both the QSTR models identified WPSA1 (weighted charged partial positive surface area) as the most influential descriptor. The DTF and DTB QSTRs performed relatively better than the single decision tree (SDT) and support vector machines (SVM) models used as a benchmark here and yielded R(2) of 0.886 and 0.964 between the measured and predicted toxicity values in the complete dataset (S. capricornutum). The QSTR models applied to six other aquatic species toxicity data yielded R(2) of >0.92 (DTF) and >0.97 (DTB), respectively. The prediction accuracies of the global models were comparable with those of the S. capricornutum models. The results suggest for the appropriateness of the developed QSTR models to reliably predict the aquatic toxicity of chemicals and can be used for regulatory purpose.
Ecological prediction with nonlinear multivariate time-frequency functional data models
Yang, Wen-Hsi; Wikle, Christopher K.; Holan, Scott H.; Wildhaber, Mark L.
2013-01-01
Time-frequency analysis has become a fundamental component of many scientific inquiries. Due to improvements in technology, the amount of high-frequency signals that are collected for ecological and other scientific processes is increasing at a dramatic rate. In order to facilitate the use of these data in ecological prediction, we introduce a class of nonlinear multivariate time-frequency functional models that can identify important features of each signal as well as the interaction of signals corresponding to the response variable of interest. Our methodology is of independent interest and utilizes stochastic search variable selection to improve model selection and performs model averaging to enhance prediction. We illustrate the effectiveness of our approach through simulation and by application to predicting spawning success of shovelnose sturgeon in the Lower Missouri River.
Davis, Craig Warren; Di Toro, Dominic M
2015-07-07
Procedures for accurately predicting linear partition coefficients onto various sorbents (e.g., organic carbon, soils, clay) are reliable and well established. However, similar procedures for the prediction of sorption parameters of nonlinear isotherm models are not. The purpose of this paper is to present a procedure for predicting nonlinear isotherm parameters, specifically the median Langmuir binding constants, K̃L, obtained utilizing the single-chemical parameter log-normal Langmuir isotherm developed in the accompanying work. A reduced poly parameter linear free energy relationship (pp-LFER) is able to predict median Langmuir binding constants for graphite, charcoal, and Darco granular activated carbon (GAC) adsorption data. For the larger F400 GAC data set, a single pp-LFER model was insufficient, as a plateau is observed for the median Langmuir binding constants of larger molecular volume sorbates. This volumetric cutoff occurs in proximity to the median pore diameter for F400 GAC. A log-linear relationship exists between the aqueous solubility of these large compounds and their median Langmuir binding constants. Using this relationship for the chemicals above the volumetric cutoff and the pp-LFER below the cutoff, the median Langmuir binding constants can be predicted with a root-mean square error for graphite (n = 13), charcoal (n = 11), Darco GAC (n = 14), and F400 GAC (n = 44) of 0.129, 0.307, 0.407, and 0.424, respectively.
Explicit Nonlinear Model Predictive Control for a Saucer-Shaped Unmanned Aerial Vehicle
Directory of Open Access Journals (Sweden)
Zhihui Xing
2013-01-01
Full Text Available A lifting body unmanned aerial vehicle (UAV generates lift by its body and shows many significant advantages due to the particular shape, such as huge loading space, small wetted area, high-strength fuselage structure, and large lifting area. However, designing the control law for a lifting body UAV is quite challenging because it has strong nonlinearity and coupling, and usually lacks it rudders. In this paper, an explicit nonlinear model predictive control (ENMPC strategy is employed to design a control law for a saucer-shaped UAV which can be adequately modeled with a rigid 6-degrees-of-freedom (DOF representation. In the ENMPC, control signal is calculated by approximation of the tracking error in the receding horizon by its Taylor-series expansion to any specified order. It enhances the advantages of the nonlinear model predictive control and eliminates the time-consuming online optimization. The simulation results show that ENMPC is a propriety strategy for controlling lifting body UAVs and can compensate the insufficient control surface area.
Nonlinear Model Predictive Control Based on a Self-Organizing Recurrent Neural Network.
Han, Hong-Gui; Zhang, Lu; Hou, Ying; Qiao, Jun-Fei
2016-02-01
A nonlinear model predictive control (NMPC) scheme is developed in this paper based on a self-organizing recurrent radial basis function (SR-RBF) neural network, whose structure and parameters are adjusted concurrently in the training process. The proposed SR-RBF neural network is represented in a general nonlinear form for predicting the future dynamic behaviors of nonlinear systems. To improve the modeling accuracy, a spiking-based growing and pruning algorithm and an adaptive learning algorithm are developed to tune the structure and parameters of the SR-RBF neural network, respectively. Meanwhile, for the control problem, an improved gradient method is utilized for the solution of the optimization problem in NMPC. The stability of the resulting control system is proved based on the Lyapunov stability theory. Finally, the proposed SR-RBF neural network-based NMPC (SR-RBF-NMPC) is used to control the dissolved oxygen (DO) concentration in a wastewater treatment process (WWTP). Comparisons with other existing methods demonstrate that the SR-RBF-NMPC can achieve a considerably better model fitting for WWTP and a better control performance for DO concentration.
Acikmese, Ahmet Behcet; Carson, John M., III
2006-01-01
A robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems is developed that guarantees resolvability. With resolvability, initial feasibility of the finite-horizon optimal control problem implies future feasibility in a receding-horizon framework. The control consists of two components; (i) feed-forward, and (ii) feedback part. Feed-forward control is obtained by online solution of a finite-horizon optimal control problem for the nominal system dynamics. The feedback control policy is designed off-line based on a bound on the uncertainty in the system model. The entire controller is shown to be robustly stabilizing with a region of attraction composed of initial states for which the finite-horizon optimal control problem is feasible. The controller design for this algorithm is demonstrated on a class of systems with uncertain nonlinear terms that have norm-bounded derivatives and derivatives in polytopes. An illustrative numerical example is also provided.
Boiler-turbine control system design using continuous-time nonlinear model predictive control
Institute of Scientific and Technical Information of China (English)
ZHUO Xu-sheng; ZHOU Huai-chun
2008-01-01
A continuous-time nonlinear model predictive controller (NMPC) was designed for a boiler-turbine unit. The controller was designed by optimizing a receding-horizon performance index, with the nonlinear system approximated by its Taylor series expansion with a certain order, the magnitude saturation constraints on the inputs satisfied by increasing the predictive time, and the rate saturation conditions on the actuators satisfied by tuning the time constant of the reference trajectories in a reference governor. Simulation results showed that the controller can drive the drum pressure and output power of the nonlinear boiler-turbine unit to follow their respective reference trajectories throughout a varying operation range and keep the water level deviation within tolerances. Comparison of the NMPC scheme with the generic model control (GMC) scheme indicated that the responses are slower and there are more oscillations in the responses of the water level, fuel flow input and feed water flow input in the GMC scheme when the boiler-turbine unit is operating over a wide range.
Predictive simulation of nonlinear ultrasonics
Shen, Yanfeng; Giurgiutiu, Victor
2012-04-01
Most of the nonlinear ultrasonic studies to date have been experimental, but few theoretical predictive studies exist, especially for Lamb wave ultrasonic. Compared with nonlinear bulk waves and Rayleigh waves, nonlinear Lamb waves for structural health monitoring become more challenging due to their multi-mode dispersive features. In this paper, predictive study of nonlinear Lamb waves is done with finite element simulation. A pitch-catch method is used to interrogate a plate with a "breathing crack" which opens and closes under tension and compression. Piezoelectric wafer active sensors (PWAS) used as transmitter and receiver are modeled with coupled field elements. The "breathing crack" is simulated via "element birth and death" technique. The ultrasonic waves generated by the transmitter PWAS propagate into the structure, interact with the "breathing crack", acquire nonlinear features, and are picked up by the receiver PWAS. The features of the wave packets at the receiver PWAS are studied and discussed. The received signal is processed with Fast Fourier Transform to show the higher harmonics nonlinear characteristics. A baseline free damage index is introduced to assess the presence and the severity of the crack. The paper finishes with summary, conclusions, and suggestions for future work.
Multivariate Nonlinear Analysis and Prediction of Shanghai Stock Market
Directory of Open Access Journals (Sweden)
Junhai Ma
2008-01-01
Full Text Available This study attempts to characterize and predict stock returns series in Shanghai stock exchange using the concepts of nonlinear dynamical theory. Surrogate data method of multivariate time series shows that all the stock returns time series exhibit nonlinearity. Multivariate nonlinear prediction methods and univariate nonlinear prediction method, all of which use the concept of phase space reconstruction, are considered. The results indicate that multivariate nonlinear prediction model outperforms univariate nonlinear prediction model, local linear prediction method of multivariate time series outperforms local polynomial prediction method, and BP neural network method. Multivariate nonlinear prediction model is a useful tool for stock price prediction in emerging markets.
Model Predictive Control of Nonlinear Systems: Stability Region and Feasible Initial Control
Institute of Scientific and Technical Information of China (English)
Xiao-Bing Hu; Wen-Hua Chen
2007-01-01
This paper proposes a new method for model predictive control (MPC) of nonlinear systems to calculate stability region and feasible initial control profile/sequence, which are important to the implementations of MPC. Different from many existing methods,this paper distinguishes stability region from conservative terminal region. With global linearization, linear differential inclusion (LDI)and linear matrix inequality (LMI) techniques, a nonlinear system is transformed into a convex set of linear systems, and then the vertices of the set are used off-line to design the controller, to estimate stability region, and also to determine a feasible initial control profile/sequence. The advantages of the proposed method are demonstrated by simulation study.
Iterated non-linear model predictive control based on tubes and contractive constraints.
Murillo, M; Sánchez, G; Giovanini, L
2016-05-01
This paper presents a predictive control algorithm for non-linear systems based on successive linearizations of the non-linear dynamic around a given trajectory. A linear time varying model is obtained and the non-convex constrained optimization problem is transformed into a sequence of locally convex ones. The robustness of the proposed algorithm is addressed adding a convex contractive constraint. To account for linearization errors and to obtain more accurate results an inner iteration loop is added to the algorithm. A simple methodology to obtain an outer bounding-tube for state trajectories is also presented. The convergence of the iterative process and the stability of the closed-loop system are analyzed. The simulation results show the effectiveness of the proposed algorithm in controlling a quadcopter type unmanned aerial vehicle.
Generalized nonlinear models applied to the prediction of basal area and volume of Eucalyptus sp
Directory of Open Access Journals (Sweden)
Samuel de Pádua Chaves e Carvalho
2011-12-01
Full Text Available This paper aims to propose the use of generalized nonlinear models for prediction of basal area growth and yield of total volume of the hybrid Eucalyptus urocamaldulensis, in a stand situation in a central region in state of Minas Gerais. The used methodology allows to work with data in its original form without the necessity of transformation of variables, and generate highly accurate models. To evaluate the fitting quality, it was proposed the Bayesian information criterion, of the Akaike, and test the maximum likelihood, beyond the standard error of estimate, and residual graphics. The models were used with a good performance, highly accurate and parsimonious estimates of the variables proposed, with errors reduced to 12% for basal area and 4% for prediction of the volume.
Nonlinear quantitative radiation sensitivity prediction model based on NCI-60 cancer cell lines.
Zhang, Chunying; Girard, Luc; Das, Amit; Chen, Sun; Zheng, Guangqiang; Song, Kai
2014-01-01
We proposed a nonlinear model to perform a novel quantitative radiation sensitivity prediction. We used the NCI-60 panel, which consists of nine different cancer types, as the platform to train our model. Important radiation therapy (RT) related genes were selected by significance analysis of microarrays (SAM). Orthogonal latent variables (LVs) were then extracted by the partial least squares (PLS) method as the new compressive input variables. Finally, support vector machine (SVM) regression model was trained with these LVs to predict the SF2 (the surviving fraction of cells after a radiation dose of 2 Gy γ-ray) values of the cell lines. Comparison with the published results showed significant improvement of the new method in various ways: (a) reducing the root mean square error (RMSE) of the radiation sensitivity prediction model from 0.20 to 0.011; and (b) improving prediction accuracy from 62% to 91%. To test the predictive performance of the gene signature, three different types of cancer patient datasets were used. Survival analysis across these different types of cancer patients strongly confirmed the clinical potential utility of the signature genes as a general prognosis platform. The gene regulatory network analysis identified six hub genes that are involved in canonical cancer pathways.
Nonlinear Quantitative Radiation Sensitivity Prediction Model Based on NCI-60 Cancer Cell Lines
Directory of Open Access Journals (Sweden)
Chunying Zhang
2014-01-01
Full Text Available We proposed a nonlinear model to perform a novel quantitative radiation sensitivity prediction. We used the NCI-60 panel, which consists of nine different cancer types, as the platform to train our model. Important radiation therapy (RT related genes were selected by significance analysis of microarrays (SAM. Orthogonal latent variables (LVs were then extracted by the partial least squares (PLS method as the new compressive input variables. Finally, support vector machine (SVM regression model was trained with these LVs to predict the SF2 (the surviving fraction of cells after a radiation dose of 2 Gy γ-ray values of the cell lines. Comparison with the published results showed significant improvement of the new method in various ways: (a reducing the root mean square error (RMSE of the radiation sensitivity prediction model from 0.20 to 0.011; and (b improving prediction accuracy from 62% to 91%. To test the predictive performance of the gene signature, three different types of cancer patient datasets were used. Survival analysis across these different types of cancer patients strongly confirmed the clinical potential utility of the signature genes as a general prognosis platform. The gene regulatory network analysis identified six hub genes that are involved in canonical cancer pathways.
Economic Optimization of Spray Dryer Operation using Nonlinear Model Predictive Control
DEFF Research Database (Denmark)
Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik
2014-01-01
In this paper we investigate an economically optimizing Nonlinear Model Predictive Control (E-NMPC) for a spray drying process. By simulation we evaluate the economic potential of this E-NMPC compared to a conventional PID based control strategy. Spray drying is the preferred process to reduce......-shooting method combined with a quasi-Newton Sequential Quadratic Programming (SQP) algorithm and the adjoint method for computation of gradients. The E-NMPC improves the cost of spray drying by 26.7% compared to conventional PI control in our simulations....
Santosa, H.; Hobara, Y.
2017-01-01
The electric field amplitude of very low frequency (VLF) transmitter from Hawaii (NPM) has been continuously recorded at Chofu (CHF), Tokyo, Japan. The VLF amplitude variability indicates lower ionospheric perturbation in the D region (60-90 km altitude range) around the NPM-CHF propagation path. We carried out the prediction of daily nighttime mean VLF amplitude by using Nonlinear Autoregressive with Exogenous Input Neural Network (NARX NN). The NARX NN model, which was built based on the daily input variables of various physical parameters such as stratospheric temperature, total column ozone, cosmic rays, Dst, and Kp indices possess good accuracy during the model building. The fitted model was constructed within the training period from 1 January 2011 to 4 February 2013 by using three algorithms, namely, Bayesian Neural Network (BRANN), Levenberg Marquardt Neural Network (LMANN), and Scaled Conjugate Gradient (SCG). The LMANN has the largest Pearson correlation coefficient (r) of 0.94 and smallest root-mean-square error (RMSE) of 1.19 dB. The constructed models by using LMANN were applied to predict the VLF amplitude from 5 February 2013 to 31 December 2013. As a result the one step (1 day) ahead predicted nighttime VLF amplitude has the r of 0.93 and RMSE of 2.25 dB. We conclude that the model built according to the proposed methodology provides good predictions of the electric field amplitude of VLF waves for NPM-CHF (midlatitude) propagation path.
AUTHOR|(SzGeCERN)673023; Blanco Viñuela, Enrique
In each of eight arcs of the 27 km circumference Large Hadron Collider (LHC), 2.5 km long strings of super-conducting magnets are cooled with superfluid Helium II at 1.9 K. The temperature stabilisation is a challenging control problem due to complex non-linear dynamics of the magnets temperature and presence of multiple operational constraints. Strong nonlinearities and variable dead-times of the dynamics originate at strongly heat-flux dependent effective heat conductivity of superfluid that varies three orders of magnitude over the range of possible operational conditions. In order to improve the temperature stabilisation, a proof of concept on-line economic output-feedback Non-linear Model Predictive Controller (NMPC) is presented in this thesis. The controller is based on a novel complex first-principles distributed parameters numerical model of the temperature dynamics over a 214 m long sub-sector of the LHC that is characterized by very low computational cost of simulation needed in real-time optimizat...
Prediction of Ship Unsteady Maneuvering in Calm Water by a Fully Nonlinear Ship Motion Model
Directory of Open Access Journals (Sweden)
Ray-Qing Lin
2012-01-01
Full Text Available This is the continuation of our research on development of a fully nonlinear, dynamically consistent, numerical ship motion model (DiSSEL. In this study we will report our results in predicting ship motions in unsteady maneuvering in calm water. During the unsteady maneuvering, both the rudder angle, and ship forward speed vary with time. Therefore, not only surge, sway, and yaw motions occur, but roll, pitch and heave motions will also occur even in calm water as heel, trim, and sinkage, respectively. When the rudder angles and ship forward speed vary rapidly with time, the six degrees-of-freedom ship motions and their interactions become strong. To accurately predict the six degrees-of-freedom ship motions in unsteady maneuvering, a universal method for arbitrary ship hull requires physics-based fully-nonlinear models for ship motion and for rudder forces and moments. The numerical simulations will be benchmarked by experimental data of the Pre-Contract DDG51 design and an Experimental Hull Form. The benchmarking shows a good agreement between numerical simulations by the enhancement DiSSEL and experimental data. No empirical parameterization is used, except for the influence of the propeller slipstream on the rudder, which is included using a flow acceleration factor.
A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials
Matouš, Karel; Geers, Marc G. D.; Kouznetsova, Varvara G.; Gillman, Andrew
2017-02-01
Since the beginning of the industrial age, material performance and design have been in the midst of innovation of many disruptive technologies. Today's electronics, space, medical, transportation, and other industries are enriched by development, design and deployment of composite, heterogeneous and multifunctional materials. As a result, materials innovation is now considerably outpaced by other aspects from component design to product cycle. In this article, we review predictive nonlinear theories for multiscale modeling of heterogeneous materials. Deeper attention is given to multiscale modeling in space and to computational homogenization in addressing challenging materials science questions. Moreover, we discuss a state-of-the-art platform in predictive image-based, multiscale modeling with co-designed simulations and experiments that executes on the world's largest supercomputers. Such a modeling framework consists of experimental tools, computational methods, and digital data strategies. Once fully completed, this collaborative and interdisciplinary framework can be the basis of Virtual Materials Testing standards and aids in the development of new material formulations. Moreover, it will decrease the time to market of innovative products.
A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials
Energy Technology Data Exchange (ETDEWEB)
Matouš, Karel, E-mail: kmatous@nd.edu [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 (United States); Geers, Marc G.D.; Kouznetsova, Varvara G. [Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven (Netherlands); Gillman, Andrew [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 (United States)
2017-02-01
Since the beginning of the industrial age, material performance and design have been in the midst of innovation of many disruptive technologies. Today's electronics, space, medical, transportation, and other industries are enriched by development, design and deployment of composite, heterogeneous and multifunctional materials. As a result, materials innovation is now considerably outpaced by other aspects from component design to product cycle. In this article, we review predictive nonlinear theories for multiscale modeling of heterogeneous materials. Deeper attention is given to multiscale modeling in space and to computational homogenization in addressing challenging materials science questions. Moreover, we discuss a state-of-the-art platform in predictive image-based, multiscale modeling with co-designed simulations and experiments that executes on the world's largest supercomputers. Such a modeling framework consists of experimental tools, computational methods, and digital data strategies. Once fully completed, this collaborative and interdisciplinary framework can be the basis of Virtual Materials Testing standards and aids in the development of new material formulations. Moreover, it will decrease the time to market of innovative products.
Nonlinear Model-Based Predictive Control applied to Large Scale Cryogenic Facilities
Blanco Vinuela, Enrique; de Prada Moraga, Cesar
2001-01-01
The thesis addresses the study, analysis, development, and finally the real implementation of an advanced control system for the 1.8 K Cooling Loop of the LHC (Large Hadron Collider) accelerator. The LHC is the next accelerator being built at CERN (European Center for Nuclear Research), it will use superconducting magnets operating below a temperature of 1.9 K along a circumference of 27 kilometers. The temperature of these magnets is a control parameter with strict operating constraints. The first control implementations applied a procedure that included linear identification, modelling and regulation using a linear predictive controller. It did improve largely the overall performance of the plant with respect to a classical PID regulator, but the nature of the cryogenic processes pointed out the need of a more adequate technique, such as a nonlinear methodology. This thesis is a first step to develop a global regulation strategy for the overall control of the LHC cells when they will operate simultaneously....
Zhao, Meng; Ding, Baocang
2015-03-01
This paper considers the distributed model predictive control (MPC) of nonlinear large-scale systems with dynamically decoupled subsystems. According to the coupled state in the overall cost function of centralized MPC, the neighbors are confirmed and fixed for each subsystem, and the overall objective function is disassembled into each local optimization. In order to guarantee the closed-loop stability of distributed MPC algorithm, the overall compatibility constraint for centralized MPC algorithm is decomposed into each local controller. The communication between each subsystem and its neighbors is relatively low, only the current states before optimization and the optimized input variables after optimization are being transferred. For each local controller, the quasi-infinite horizon MPC algorithm is adopted, and the global closed-loop system is proven to be exponentially stable.
Tofighi, Elham; Mahdizadeh, Amin
2016-09-01
This paper addresses the problem of automatic tuning of weighting coefficients for the nonlinear model predictive control (NMPC) of wind turbines. The choice of weighting coefficients in NMPC is critical due to their explicit impact on efficiency of the wind turbine control. Classically, these weights are selected based on intuitive understanding of the system dynamics and control objectives. The empirical methods, however, may not yield optimal solutions especially when the number of parameters to be tuned and the nonlinearity of the system increase. In this paper, the problem of determining weighting coefficients for the cost function of the NMPC controller is formulated as a two-level optimization process in which the upper- level PSO-based optimization computes the weighting coefficients for the lower-level NMPC controller which generates control signals for the wind turbine. The proposed method is implemented to tune the weighting coefficients of a NMPC controller which drives the NREL 5-MW wind turbine. The results are compared with similar simulations for a manually tuned NMPC controller. Comparison verify the improved performance of the controller for weights computed with the PSO-based technique.
Directory of Open Access Journals (Sweden)
Mohammad M. Kashani
2016-01-01
Full Text Available A numerical model is presented that enables simulation of the nonlinear flexural response of corroded reinforced concrete (RC components. The model employs a force-based nonlinear fibre beam-column element. A new phenomenological uniaxial material model for corroded reinforcing steel is used. This model accounts for the impact of corrosion on buckling strength, postbuckling behaviour, and low-cycle fatigue degradation of vertical reinforcement under cyclic loading. The basic material model is validated through comparison of simulated and observed responses for uncorroded RC columns. The model is used to explore the impact of corrosion on the inelastic response of corroded RC columns.
Energy Technology Data Exchange (ETDEWEB)
Zhou, Ping; Song, Heda; Wang, Hong; Chai, Tianyou
2017-09-01
Blast furnace (BF) in ironmaking is a nonlinear dynamic process with complicated physical-chemical reactions, where multi-phase and multi-field coupling and large time delay occur during its operation. In BF operation, the molten iron temperature (MIT) as well as Si, P and S contents of molten iron are the most essential molten iron quality (MIQ) indices, whose measurement, modeling and control have always been important issues in metallurgic engineering and automation field. This paper develops a novel data-driven nonlinear state space modeling for the prediction and control of multivariate MIQ indices by integrating hybrid modeling and control techniques. First, to improve modeling efficiency, a data-driven hybrid method combining canonical correlation analysis and correlation analysis is proposed to identify the most influential controllable variables as the modeling inputs from multitudinous factors would affect the MIQ indices. Then, a Hammerstein model for the prediction of MIQ indices is established using the LS-SVM based nonlinear subspace identification method. Such a model is further simplified by using piecewise cubic Hermite interpolating polynomial method to fit the complex nonlinear kernel function. Compared to the original Hammerstein model, this simplified model can not only significantly reduce the computational complexity, but also has almost the same reliability and accuracy for a stable prediction of MIQ indices. Last, in order to verify the practicability of the developed model, it is applied in designing a genetic algorithm based nonlinear predictive controller for multivariate MIQ indices by directly taking the established model as a predictor. Industrial experiments show the advantages and effectiveness of the proposed approach.
A non-linear model predictive controller with obstacle avoidance for a space robot
Wang, Mingming; Luo, Jianjun; Walter, Ulrich
2016-04-01
This study investigates the use of the non-linear model predictive control (NMPC) strategy for a kinematically redundant space robot to approach an un-cooperative target in complex space environment. Collision avoidance, traditionally treated as a high level planning problem, can be effectively translated into control constraints as part of the NMPC. The objective of this paper is to evaluate the performance of the predictive controller in a constrained workspace and to investigate the feasibility of imposing additional constraints into the NMPC. In this paper, we reformulated the issue of the space robot motion control by using NMPC with predefined objectives under input, output and obstacle constraints over a receding horizon. An on-line quadratic programming (QP) procedure is employed to obtain the constrained optimal control decisions in real-time. This study has been implemented for a 7 degree-of-freedom (DOF) kinematically redundant manipulator mounted on a 6 DOF free-floating spacecraft via simulation studies. Real-time trajectory tracking and collision avoidance particularly demonstrate the effectiveness and potential of the proposed NMPC strategy for the space robot.
Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control
Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.
1997-01-01
One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.
Nonlinear Model Predictive Control of A Gasoline HCCI Engine Using Extreme Learning Machines
Janakiraman, Vijay Manikandan; Nguyen, XuanLong; Assanis, Dennis
2015-01-01
Homogeneous charge compression ignition (HCCI) is a futuristic combustion technology that operates with a high fuel efficiency and reduced emissions. HCCI combustion is characterized by complex nonlinear dynamics which necessitates a model based control approach for automotive application. HCCI engine control is a nonlinear, multi-input multi-output problem with state and actuator constraints which makes controller design a challenging task. Typical HCCI controllers make use of a first princi...
DEFF Research Database (Denmark)
Boiroux, Dimitri; Hagdrup, Morten; Mahmoudi, Zeinab
2016-01-01
This paper presents a novel ensemble nonlinear model predictive control (NMPC) algorithm for glucose regulation in type 1 diabetes. In this approach, we consider a number of scenarios describing different uncertainties, for instance meals or metabolic variations. We simulate a population of 9 pat...
Nonlinear predictive control in the LHC accelerator
Blanco, E; Cristea, S; Casas, J
2009-01-01
This paper describes the application of a nonlinear model-based control strategy in a real challenging process. A predictive controller based on a nonlinear model derived from physical relationships, mainly heat and mass balances, has been developed and commissioned in the inner triplet heat exchanger unit (IT-HXTU) of the large hadron collider (LHC) particle accelerator at European Center for Nuclear Research (CERN). The advanced regulation\\ maintains the magnets temperature at about 1.9 K. The development includes a constrained nonlinear state estimator with a receding horizon estimation procedure to improve the regulator predictions.
Zitelli, Gregory; Djouadi, Seddik M; Day, Judy D
2015-10-01
The inflammatory response aims to restore homeostasis by means of removing a biological stress, such as an invading bacterial pathogen. In cases of acute systemic inflammation, the possibility of collateral tissue damage arises, which leads to a necessary down-regulation of the response. A reduced ordinary differential equations (ODE) model of acute inflammation was presented and investigated in [10]. That system contains multiple positive and negative feedback loops and is a highly coupled and nonlinear ODE. The implementation of nonlinear model predictive control (NMPC) as a methodology for determining proper therapeutic intervention for in silico patients displaying complex inflammatory states was initially explored in [5]. Since direct measurements of the bacterial population and the magnitude of tissue damage/dysfunction are not readily available or biologically feasible, the need for robust state estimation was evident. In this present work, we present results on the nonlinear reachability of the underlying model, and then focus our attention on improving the predictability of the underlying model by coupling the NMPC with a particle filter. The results, though comparable to the initial exploratory study, show that robust state estimation of this highly nonlinear model can provide an alternative to prior updating strategies used when only partial access to the unmeasurable states of the system are available.
Directory of Open Access Journals (Sweden)
Gang Chen
2012-01-01
Full Text Available It is not easy for the system identification-based reduced-order model (ROM and even eigenmode based reduced-order model to predict the limit cycle oscillation generated by the nonlinear unsteady aerodynamics. Most of these traditional ROMs are sensitive to the flow parameter variation. In order to deal with this problem, a support vector machine- (SVM- based ROM was investigated and the general construction framework was proposed. The two-DOF aeroelastic system for the NACA 64A010 airfoil in transonic flow was then demonstrated for the new SVM-based ROM. The simulation results show that the new ROM can capture the LCO behavior of the nonlinear aeroelastic system with good accuracy and high efficiency. The robustness and computational efficiency of the SVM-based ROM would provide a promising tool for real-time flight simulation including nonlinear aeroelastic effects.
Directory of Open Access Journals (Sweden)
Bo Wang
2014-01-01
Full Text Available When predicting the nonlinear stability of high-speed spindle system, it is necessary to create an accurate model that reflects the dynamic characteristics of the whole system, including the spindle-bearing joint and spindle-holder-tool joints. In this paper, the distribution spring model of spindle-holder-tool joints was built with the consideration of its dynamic characteristics; the five-DOF dynamic model of the angle contact ball bearing was also established to study the influence of speed and preload on the spindle-bearing joint, both of which were used in the general whole complete spindle system FEM model. The rationality of the model was verified by comparison with the FRF of traditional rigid model and experiments. At last, the influences of speed and cutting force on the nonlinear stability were analyzed by amplitude spectrum, bifurcation, and Poincaré mapping. The results provided a theoretical basis and an evaluating criterion for nonlinear stability prediction and product surface quality improvement.
Directory of Open Access Journals (Sweden)
Fan Liang
2013-01-01
Full Text Available Off‐pump coronary artery bypass graft surgery outperforms the traditional on‐pump surgery because the assisted robotic tools can cancel the relative motion between the beating heart and the robotic tools, which reduces post‐surgery complications for patients. The challenge for the robot assisted tool when tracking the beating heart is the abrupt change caused by the nonlinear nature of heart motion and high precision surgery requirements. A characteristic analysis of 3D heart motion data through bi‐spectral analysis demonstrates the quadratic nonlinearity in heart motion. Therefore, it is necessary to introduce nonlinear heart motion prediction into the motion tracking control procedures. In this paper, the heart motion tracking problem is transformed into a heart motion model following problem by including the adaptive heart motion model into the controller. Moreover, the model following algorithm with the nonlinear heart motion model embedded inside provides more accurate future reference by the quadratic term of sinusoid series, which could enhance the tracking accuracy of sharp change point and approximate the motion with sufficient detail. The experiment results indicate that the proposed algorithm outperforms the linear prediction‐based model following controller in terms of tracking accuracy (root mean square.
Multi input single output model predictive control of non-linear bio-polymerization process
Energy Technology Data Exchange (ETDEWEB)
Arumugasamy, Senthil Kumar; Ahmad, Z. [School of Chemical Engineering, Univerisiti Sains Malaysia, Engineering Campus, Seri Ampangan,14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)
2015-05-15
This paper focuses on Multi Input Single Output (MISO) Model Predictive Control of bio-polymerization process in which mechanistic model is developed and linked with the feedforward neural network model to obtain a hybrid model (Mechanistic-FANN) of lipase-catalyzed ring-opening polymerization of ε-caprolactone (ε-CL) for Poly (ε-caprolactone) production. In this research, state space model was used, in which the input to the model were the reactor temperatures and reactor impeller speeds and the output were the molecular weight of polymer (M{sub n}) and polymer polydispersity index. State space model for MISO created using System identification tool box of Matlab™. This state space model is used in MISO MPC. Model predictive control (MPC) has been applied to predict the molecular weight of the biopolymer and consequently control the molecular weight of biopolymer. The result shows that MPC is able to track reference trajectory and give optimum movement of manipulated variable.
Samareh, Hossein; Khoshrou, Seyed Hassan; Shahriar, Kourosh; Ebadzadeh, Mohammad Mehdi; Eslami, Mohammad
2017-09-01
When particle's wave velocity resulting from mining blasts exceeds a certain level, then the intensity of produced vibrations incur damages to the structures around the blasting regions. Development of mathematical models for predicting the peak particle velocity (PPV) based on the properties of the wave emission environment is an appropriate method for better designing of blasting parameters, since the probability of incurred damages can considerably be mitigated by controlling the intensity of vibrations at the building sites. In this research, first out of 11 blasting and geo-mechanical parameters of rock masses, four parameters which had the greatest influence on the vibrational wave velocities were specified using regression analysis. Thereafter, some models were developed for predicting the PPV by nonlinear regression analysis (NLRA) and artificial neural network (ANN) with correlation coefficients of 0.854 and 0.662, respectively. Afterward, the coefficients associated with the parameters in the NLRA model were optimized using optimization particle swarm-genetic algorithm. The values of PPV were estimated for 18 testing dataset in order to evaluate the accuracy of the prediction and performance of the developed models. By calculating statistical indices for the test recorded maps, it was found that the optimized model can predict the PPV with a lower error than the other two models. Furthermore, considering the correlation coefficient (0.75) between the values of the PPV measured and predicted by the optimized nonlinear model, it was found that this model possesses a more desirable performance for predicting the PPV than the other two models.
Directory of Open Access Journals (Sweden)
Muayad Al-Qaisy
2013-04-01
Full Text Available In this article, multi-input multi-output (MIMO linear model predictive controller (LMPC based on state space model and nonlinear model predictive controller based on neural network (NNMPC are applied on a continuous stirred tank reactor (CSTR. The idea is to have a good control system that will be able to give optimal performance, reject high load disturbance, and track set point change. In order to study the performance of the two model predictive controllers, MIMO Proportional-Integral-Derivative controller (PID strategy is used as benchmark. The LMPC, NNMPC, and PID strategies are used for controlling the residual concentration (CA and reactor temperature (T. NNMPC control shows a superior performance over the LMPC and PID controllers by presenting a smaller overshoot and shorter settling time.
Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling
National Research Council Canada - National Science Library
Issaku Kawashima; Hiroaki Kumano
2017-01-01
Mind-wandering (MW), task-unrelated thought, has been examined by researchers in an increasing number of articles using models to predict whether subjects are in MW, using numerous physiological variables...
Directory of Open Access Journals (Sweden)
Ming Dong
2010-01-01
Full Text Available The primary objective of engineering asset management is to optimize assets service delivery potential and to minimize the related risks and costs over their entire life through the development and application of asset health and usage management in which the health and reliability prediction plays an important role. In real-life situations where an engineering asset operates under dynamic operational and environmental conditions, the lifetime of an engineering asset is generally described as monitored nonlinear time-series data and subject to high levels of uncertainty and unpredictability. It has been proved that application of data mining techniques is very useful for extracting relevant features which can be used as parameters for assets diagnosis and prognosis. In this paper, a tutorial on nonlinear time-series data mining in engineering asset health and reliability prediction is given. Besides that an overview on health and reliability prediction techniques for engineering assets is covered, this tutorial will focus on concepts, models, algorithms, and applications of hidden Markov models (HMMs and hidden semi-Markov models (HSMMs in engineering asset health prognosis, which are representatives of recent engineering asset health prediction techniques.
An Efficient Implementation of Partial Condensing for Nonlinear Model Predictive Control
DEFF Research Database (Denmark)
Frison, Gianluca; Kouzoupis, Dimitris; Jørgensen, John Bagterp
2016-01-01
Partial (or block) condensing is a recently proposed technique to reformulate a Model Predictive Control (MPC) problem into a form more suitable for structure-exploiting Quadratic Programming (QP) solvers. It trades off horizon length for input vector size, and this degree of freedom can be emplo......Partial (or block) condensing is a recently proposed technique to reformulate a Model Predictive Control (MPC) problem into a form more suitable for structure-exploiting Quadratic Programming (QP) solvers. It trades off horizon length for input vector size, and this degree of freedom can...
Hou, Zhaolu; Li, Jianping; Ding, Ruiqiang; Feng, Jie
2017-04-01
Nonlinear local Lyapunov vectors (NLLVs) have been developed to indicate orthogonal directions in phase space with different error growth rates. Comparing to the breeding vectors (BVs), NLLVs can span the fast-growing perturbation subspace efficiently and may gasp more components in analysis errors than the BVs in the nonlinear dynamical system. Here, NLLVs are employed in the Zebiak-Cane (ZC) atmosphere-ocean coupled model and represent a nonlinear, finite-time extension of the local Lyapunov vectors of the ZC model. The statistical properties of NLLVs is not very sensitive to the choice of the breeding parameter. However, the non-leading NLLVs have some randomness, which increase the diversity of NLLVs. Not only the leading NLLV but also the non-leading NLLVs are flow-dependent and related to the background ENSO evolution of the ZC model in the aspect of spatial structure and error growth rate. the non-leading NLLVs also are the instability direction related to the ENSO process in the ZC model. Due to the non-leading NLLVs, the subspace of the first few NLLVs can describe better the analysis error than that of the same number BVs in the ZC model. NLLVs as initial ensemble perturbations are applied to the ensemble prediction of ENSO and the performance are systematically compared to those of the random perturbation (RP) technique, and the BV method in the prefect environment. The results demonstrate that the RP technique has the worst performance and the NLLVs method is the best in the ensemble forecasts. In particular, the NLLV technique can reduce the "spring barrier" for ENSO prediction further than the other ensemble method.
Directory of Open Access Journals (Sweden)
Ali Akbar Akbari
2014-08-01
Full Text Available Introduction In order to improve the quality of life of amputees, biomechatronic researchers and biomedical engineers have been trying to use a combination of various techniques to provide suitable rehabilitation systems. Diverse biomedical signals, acquired from a specialized organ or cell system, e.g., the nervous system, are the driving force for the whole system. Electromyography(EMG, as an experimental technique,is concerned with the development, recording, and analysis of myoelectric signals. EMG-based research is making progress in the development of simple, robust, user-friendly, and efficient interface devices for the amputees. Materials and Methods Prediction of muscular activity and motion patterns is a common, practical problem in prosthetic organs. Recurrent neural network (RNN models are not only applicable for the prediction of time series, but are also commonly used for the control of dynamical systems. The prediction can be assimilated to identification of a dynamic process. An architectural approach of RNN with embedded memory is Nonlinear Autoregressive Exogenous (NARX model, which seems to be suitable for dynamic system applications. Results Performance of NARX model is verified for several chaotic time series, which are applied as input for the neural network. The results showed that NARX has the potential to capture the model of nonlinear dynamic systems. The R-value and MSE are and , respectively. Conclusion EMG signals of deltoid and pectoralis major muscles are the inputs of the NARX network. It is possible to obtain EMG signals of muscles in other arm motions to predict the lost functions of the absent arm in above-elbow amputees, using NARX model.
Xia, Zhiye; Xu, Lisheng; Chen, Hongbin; Wang, Yongqian; Liu, Jinbao; Feng, Wenlan
2017-06-01
Extended range forecasting of 10-30 days, which lies between medium-term and climate prediction in terms of timescale, plays a significant role in decision-making processes for the prevention and mitigation of disastrous meteorological events. The sensitivity of initial error, model parameter error, and random error in a nonlinear crossprediction error (NCPE) model, and their stability in the prediction validity period in 10-30-day extended range forecasting, are analyzed quantitatively. The associated sensitivity of precipitable water, temperature, and geopotential height during cases of heavy rain and hurricane is also discussed. The results are summarized as follows. First, the initial error and random error interact. When the ratio of random error to initial error is small (10-6-10-2), minor variation in random error cannot significantly change the dynamic features of a chaotic system, and therefore random error has minimal effect on the prediction. When the ratio is in the range of 10-1-2 (i.e., random error dominates), attention should be paid to the random error instead of only the initial error. When the ratio is around 10-2-10-1, both influences must be considered. Their mutual effects may bring considerable uncertainty to extended range forecasting, and de-noising is therefore necessary. Second, in terms of model parameter error, the embedding dimension m should be determined by the factual nonlinear time series. The dynamic features of a chaotic system cannot be depicted because of the incomplete structure of the attractor when m is small. When m is large, prediction indicators can vanish because of the scarcity of phase points in phase space. A method for overcoming the cut-off effect ( m > 4) is proposed. Third, for heavy rains, precipitable water is more sensitive to the prediction validity period than temperature or geopotential height; however, for hurricanes, geopotential height is most sensitive, followed by precipitable water.
Jamali, A.; Khaleghi, E.; Gholaminezhad, I.; Nariman-zadeh, N.
2016-05-01
In this paper, a new multi-objective genetic programming (GP) with a diversity preserving mechanism and a real number alteration operator is presented and successfully used for Pareto optimal modelling of some complex non-linear systems using some input-output data. In this study, two different input-output data-sets of a non-linear mathematical model and of an explosive cutting process are considered separately in three-objective optimisation processes. The pertinent conflicting objective functions that have been considered for such Pareto optimisations are namely, training error (TE), prediction error (PE), and the length of tree (complexity of the network) (TL) of the GP models. Such three-objective optimisation implementations leads to some non-dominated choices of GP-type models for both cases representing the trade-offs among those objective functions. Therefore, optimal Pareto fronts of such GP models exhibit the trade-off among the corresponding conflicting objectives and, thus, provide different non-dominated optimal choices of GP-type models. Moreover, the results show that no significant optimality in TE and PE may occur when the TL of the corresponding GP model exceeds some values.
Directory of Open Access Journals (Sweden)
Ming Zhang
Full Text Available BACKGROUND: The scarcity of grafts available necessitates a system that considers expected posttransplant survival, in addition to pretransplant mortality as estimated by the MELD. So far, however, conventional linear techniques have failed to achieve sufficient accuracy in posttransplant outcome prediction. In this study, we aim to develop a pretransplant predictive model for liver recipients' survival with benign end-stage liver diseases (BESLD by a nonlinear method based on pretransplant characteristics, and compare its performance with a BESLD-specific prognostic model (MELD and a general-illness severity model (the sequential organ failure assessment score, or SOFA score. METHODOLOGY/PRINCIPAL FINDINGS: With retrospectively collected data on 360 recipients receiving deceased-donor transplantation for BESLD between February 1999 and August 2009 in the west China hospital of Sichuan university, we developed a multi-layer perceptron (MLP network to predict one-year and two-year survival probability after transplantation. The performances of the MLP, SOFA, and MELD were assessed by measuring both calibration ability and discriminative power, with Hosmer-Lemeshow test and receiver operating characteristic analysis, respectively. By the forward stepwise selection, donor age and BMI; serum concentration of HB, Crea, ALB, TB, ALT, INR, Na(+; presence of pretransplant diabetes; dialysis prior to transplantation, and microbiologically proven sepsis were identified to be the optimal input features. The MLP, employing 18 input neurons and 12 hidden neurons, yielded high predictive accuracy, with c-statistic of 0.91 (P<0.001 in one-year and 0.88 (P<0.001 in two-year prediction. The performances of SOFA and MELD were fairly poor in prognostic assessment, with c-statistics of 0.70 and 0.66, respectively, in one-year prediction, and 0.67 and 0.65 in two-year prediction. CONCLUSIONS/SIGNIFICANCE: The posttransplant prognosis is a multidimensional nonlinear
Miranian, A; Abdollahzade, M
2013-02-01
Local modeling approaches, owing to their ability to model different operating regimes of nonlinear systems and processes by independent local models, seem appealing for modeling, identification, and prediction applications. In this paper, we propose a local neuro-fuzzy (LNF) approach based on the least-squares support vector machines (LSSVMs). The proposed LNF approach employs LSSVMs, which are powerful in modeling and predicting time series, as local models and uses hierarchical binary tree (HBT) learning algorithm for fast and efficient estimation of its parameters. The HBT algorithm heuristically partitions the input space into smaller subdomains by axis-orthogonal splits. In each partitioning, the validity functions automatically form a unity partition and therefore normalization side effects, e.g., reactivation, are prevented. Integration of LSSVMs into the LNF network as local models, along with the HBT learning algorithm, yield a high-performance approach for modeling and prediction of complex nonlinear time series. The proposed approach is applied to modeling and predictions of different nonlinear and chaotic real-world and hand-designed systems and time series. Analysis of the prediction results and comparisons with recent and old studies demonstrate the promising performance of the proposed LNF approach with the HBT learning algorithm for modeling and prediction of nonlinear and chaotic systems and time series.
A three-dimensional nonlinear reduced-order predictive joint model
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
Mechanical joints can have significant effects on the dynamics of assembled structures. However, the lack of efficacious predictive dynamic models for joints hinders accurate prediction of their dynamic behavior. The goal of our work is to develop physics-based, reduced-order, finite element models that are capable of replicating the effects of joints on vibrating structures. The authors recently developed the so-called two-dimensional adjusted Iwan beam element (2-D AIBE) to simulate the hysteretic behavior of bolted joints in 2-D beam structures. In this paper, 2-D AIBE is extended to three-dimensional cases by formulating a three-dimensional adjusted Iwan beam element (3-D AIBE). Impulsive loading experiments are applied to a jointed frame structure and a beam structure containing the same joint. The frame is subjected to excitation out of plane so that the joint is under rotation and single axis bending. By assuming that the rotation in the joint is linear elastic, the parameters of the joint associated with bending in the frame are identified from acceleration responses of the jointed beam structure, using a multi-layer feed-forward neural network (MLFF). Numerical simulation is then performed on the frame structure using the identified parameters. The good agreement between the simulated and experimental impulsive acceleration responses of the frame structure validates the efficacy of the presented 3-D AIBE, and indicates that the model can potentially be applied to more complex structural systems with joint parameters identified from a relatively simple structure.
Collier, W.; Milian Sanz, J.
2016-09-01
The length and flexibility of wind turbine blades are increasing over time. Typically, the dynamic response of the blades is analysed using linear models of blade deflection, enhanced by various ad-hoc non-linear correction models. For blades undergoing large deflections, the small deflection assumption inherent to linear models becomes less valid. It has previously been demonstrated that linear and nonlinear blade models can show significantly different blade response, particularly for blade torsional deflection, leading to load prediction differences. There is a need to evaluate how load predictions from these two approaches compare to measurement data from the field. In this paper, time domain simulations in turbulent wind are carried out using the aero-elastic code Bladed with linear and non-linear blade deflection models. The turbine blade load and deflection simulation results are compared to measurement data from an onshore prototype of the GE 6MW Haliade turbine, which features 73.5m long LM blades. Both linear and non-linear blade models show a good match to measurement turbine load and blade deflections. Only the blade loads differ significantly between the two models, with other turbine loads not strongly affected. The non-linear blade model gives a better match to the measured blade root flapwise damage equivalent load, suggesting that the flapwise dynamic behaviour is better captured by the non-linear blade model. Conversely, the linear blade model shows a better match to measurements in some areas such as blade edgewise damage equivalent load.
DEFF Research Database (Denmark)
Troen, Ib; Bechmann, Andreas; Kelly, Mark C.
2014-01-01
Using the Wind Atlas methodology to predict the average wind speed at one location from measured climatological wind frequency distributions at another nearby location we analyse the relative prediction errors using a linearized flow model (IBZ) and a more physically correct fully non-linear 3D...
Fast numerical methods for mixed-integer nonlinear model-predictive control
Kirches, Christian
2011-01-01
Christian Kirches develops a fast numerical algorithm of wide applicability that efficiently solves mixed-integer nonlinear optimal control problems. He uses convexification and relaxation techniques to obtain computationally tractable reformulations for which feasibility and optimality certificates can be given even after discretization and rounding.
Liu, Changxin; Gao, Jian; Li, Huiping; Xu, Demin
2017-08-14
The event-triggered control is a promising solution to cyber-physical systems, such as networked control systems, multiagent systems, and large-scale intelligent systems. In this paper, we propose an event-triggered model predictive control (MPC) scheme for constrained continuous-time nonlinear systems with bounded disturbances. First, a time-varying tightened state constraint is computed to achieve robust constraint satisfaction, and an event-triggered scheduling strategy is designed in the framework of dual-mode MPC. Second, the sufficient conditions for ensuring feasibility and closed-loop robust stability are developed, respectively. We show that robust stability can be ensured and communication load can be reduced with the proposed MPC algorithm. Finally, numerical simulations and comparison studies are performed to verify the theoretical results.
Hallbauer-Zadorozhnaya, Valeriya; Santarato, Giovanni; Abu Zeid, Nasser
2015-08-01
In this paper, two separate but related goals are tackled. The first one is to demonstrate that in some saturated rock textures the non-linear behaviour of induced polarization (IP) and the violation of Ohm's law not only are real phenomena, but they can also be satisfactorily predicted by a suitable physical-mathematical model, which is our second goal. This model is based on Fick's second law. As the model links the specific dependence of resistivity and chargeability of a laboratory sample to the injected current and this in turn to its pore size distribution, it is able to predict pore size distribution from laboratory measurements, in good agreement with mercury injection capillary pressure test results. This fact opens up the possibility for hydrogeophysical applications on a macro scale. Mathematical modelling shows that the chargeability acquired in the field under normal conditions, that is at low current, will always be very small and approximately proportional to the applied current. A suitable field test site for demonstrating the possible reliance of both resistivity and chargeability on current was selected and a specific measuring strategy was established. Two data sets were acquired using different injected current strengths, while keeping the charging time constant. Observed variations of resistivity and chargeability are in agreement with those predicted by the mathematical model. These field test data should however be considered preliminary. If confirmed by further evidence, these facts may lead to changing the procedure of acquiring field measurements in future, and perhaps may encourage the design and building of a new specific geo-resistivity meter. This paper also shows that the well-known Marshall and Madden's equations based on Fick's law cannot be solved without specific boundary conditions.
Predicting nonlinear properties of metamaterials from the linear response.
O'Brien, Kevin; Suchowski, Haim; Rho, Junsuk; Salandrino, Alessandro; Kante, Boubacar; Yin, Xiaobo; Zhang, Xiang
2015-04-01
The discovery of optical second harmonic generation in 1961 started modern nonlinear optics. Soon after, R. C. Miller found empirically that the nonlinear susceptibility could be predicted from the linear susceptibilities. This important relation, known as Miller's Rule, allows a rapid determination of nonlinear susceptibilities from linear properties. In recent years, metamaterials, artificial materials that exhibit intriguing linear optical properties not found in natural materials, have shown novel nonlinear properties such as phase-mismatch-free nonlinear generation, new quasi-phase matching capabilities and large nonlinear susceptibilities. However, the understanding of nonlinear metamaterials is still in its infancy, with no general conclusion on the relationship between linear and nonlinear properties. The key question is then whether one can determine the nonlinear behaviour of these artificial materials from their exotic linear behaviour. Here, we show that the nonlinear oscillator model does not apply in general to nonlinear metamaterials. We show, instead, that it is possible to predict the relative nonlinear susceptibility of large classes of metamaterials using a more comprehensive nonlinear scattering theory, which allows efficient design of metamaterials with strong nonlinearity for important applications such as coherent Raman sensing, entangled photon generation and frequency conversion.
Doulamis, A D; Doulamis, N D; Kollias, S D
2003-01-01
Multimedia services and especially digital video is expected to be the major traffic component transmitted over communication networks [such as internet protocol (IP)-based networks]. For this reason, traffic characterization and modeling of such services are required for an efficient network operation. The generated models can be used as traffic rate predictors, during the network operation phase (online traffic modeling), or as video generators for estimating the network resources, during the network design phase (offline traffic modeling). In this paper, an adaptable neural-network architecture is proposed covering both cases. The scheme is based on an efficient recursive weight estimation algorithm, which adapts the network response to current conditions. In particular, the algorithm updates the network weights so that 1) the network output, after the adaptation, is approximately equal to current bit rates (current traffic statistics) and 2) a minimal degradation over the obtained network knowledge is provided. It can be shown that the proposed adaptable neural-network architecture simulates a recursive nonlinear autoregressive model (RNAR) similar to the notation used in the linear case. The algorithm presents low computational complexity and high efficiency in tracking traffic rates in contrast to conventional retraining schemes. Furthermore, for the problem of offline traffic modeling, a novel correlation mechanism is proposed for capturing the burstness of the actual MPEG video traffic. The performance of the model is evaluated using several real-life MPEG coded video sources of long duration and compared with other linear/nonlinear techniques used for both cases. The results indicate that the proposed adaptable neural-network architecture presents better performance than other examined techniques.
Brands, Dave W A; Bovendeerd, Peter H M; Wismans, Jac S H M
2002-11-01
In current Finite Element (FE) head models, brain tissue is commonly assumed to display linear viscoelastic material behaviour. However, brain tissue behaves like a non-linear viscoelastic solid for shear strains above 1%. The main objective of this study was to study the effect of non-linear material behaviour on the predicted brain response. We used a non-linear viscoelastic constitutive model, developed on the basis of experimental shear data presented elsewere. First we tested the numerical implementation of the constitutive model by simulating the response of a silicone gel (Sylgard 572 A&B) filled cylindrical cup, subjected to a transient rotational acceleration. The experimental results could be reproduced within 9%. Subsequently, the effect of non-linear material modelling on computed brain response was investigated in an existing three-dimensional head model subjected to an eccentric rotation. At the applied external load strains in the brain were approximately ten times larger than was expected on the basis of published data. This is probably caused by the values of the shear moduli applied in the model. These are at least a factor of ten lower than the ones used in head models in literature but comparable to material data in recent literature. Non-linear material behaviour was found to influence the levels of predicted strains (+20%) and stresses (-11%) but not their temporal and spatial distribution. The pressure response was independent of non-linear material behaviour. In fact it could be predicted by the equilibrium of momentum, and thus it is independent of the choice of the brain constitutive model.
Learning-based Nonlinear Model Predictive Control to Improve Vision-based Mobile Robot Path Tracking
2015-07-01
corresponding cost function to be J(u) = ( xd − x)TQx ( xd − x) + uTRu, (20) where Qx ∈ RKnx×Knx is positive semi-definite, R and u are as in (3), xd is a...sequence of desired states, xd = ( xd ,k+1, . . . , xd ,k+K), x is a sequence of predicted states, x = (xk+1, . . . ,xk+K), and K is the given prediction...vact,k−1+b, ωact,k−1+b), based ωk θk vk xd ,i−1 xd ,i xd ,i+1 xk yk Figure 5: Definition of the robot velocities, vk and ωk, and three pose variables
Institute of Scientific and Technical Information of China (English)
Ping Wang; Chaohe Yang; Xuemin Tian; Dexian Huang
2014-01-01
The performance of data-driven models relies heavily on the amount and quality of training samples, so it might deteriorate significantly in the regions where samples are scarce. The objective of this paper is to develop an on-line SVR model updating strategy to track the change in the process characteristics efficiently with affordable computational burden. This is achieved by adding a new sample that violates the Karush-Kuhn-Tucker condi-tions of the existing SVR model and by deleting the old sample that has the maximum distance with respect to the newly added sample in feature space. The benefits offered by such an updating strategy are exploited to develop an adaptive model-based control scheme, where model updating and control task perform alternately. The effectiveness of the adaptive controller is demonstrated by simulation study on a continuous stirred tank reactor. The results reveal that the adaptive MPC scheme outperforms its non-adaptive counterpart for large-magnitude set point changes and variations in process parameters.
Kim, Yu Shin; Galis, Zorina S; Rachev, Alexander; Han, Hai-Chao; Vito, Raymond P
2009-01-01
Arteries adapt to their mechanical environment by undergoing remodeling of the structural scaffold via the action of matrix metalloproteinases (MMPs). Cell culture studies have shown that stretching vascular smooth muscle cells (VSMCs) positively correlates to the production of MMP-2 and -9. In tissue level studies, the expressions and activations of MMP-2 and -9 are generally higher in the outer media. However, homogeneous mechanical models of arteries predict lower stress and strain in the outer media, which appear inconsistent with experimental findings. The effects of heterogeneity may be important to our understanding of VSMC function since arteries exhibit structural heterogeneity across the wall. We hypothesized that local stresses, computed using a heterogeneous mechanical model of arteries, positively correlate to the levels of MMP-2 and -9 in situ. We developed a model of the arterial wall accounting for nonlinearity, residual strain, anisotropy, and structural heterogeneity. The distributions of elastin and collagen fibers in situ, measured in the media of porcine carotid arteries, showed significant nonuniformities. Anisotropy was represented by the direction of collagen fibers measured by the helical angle of VSMC nuclei. The points at which the collagen fibers became load bearing were computed, assuming a uniform fiber strain and orientation under physiological loading conditions, an assumption motivated by morphological measurements. The distributions of circumferential stresses, computed using both heterogeneous and homogeneous models, were correlated to the distributions of expressions and activations of MMP-2 and -9 in porcine common carotid arteries incubated in an ex vivo perfusion organ culture system under physiological conditions for 48 h. While strains computed using incompressibility were identical in both models, the heterogeneous model, unlike the homogeneous model, predicted higher circumferential stresses in the outer layer correlated
Generalized Nonlinear Yule Models
Lansky, Petr; Polito, Federico; Sacerdote, Laura
2016-10-01
With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.
Generalized Nonlinear Yule Models
Lansky, Petr; Polito, Federico; Sacerdote, Laura
2016-11-01
With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.
Institute of Scientific and Technical Information of China (English)
GU Ji-jun; AN Chen; LEVI Carlos; SU Jian
2012-01-01
The Generalized Integral Transform Technique (GITT) was applied to predict dynamic response of Vortex-Induced Vibration (VIV) of a long flexible cylinder.A nonlinear wake oscillator model was used to represent the cross-flow force acting on the cylinder,leading to a coupled system of second-order Partial Differential Equations (PDEs) in temporal variable.The GITT approach was used to transform the system of PDEs to a system of Ordinary Differential Equations (ODEs),which was numerically solved by using the Adams-Moulton and Gear method (DIVPAG) developed by the International Mathematics and Statistics Library (IMSL).Numerical results were presented for comparison to those given by the finite difference method and experimental results,allowing a critical evaluation of the technique performance.The influence of variation of mean axial tension induced by elongation of flexible cylinder was evaluated,which was shown to be not negligible in numerical simulation of VIV of a long flexible cylinder.
Adaptive nonlinear prediction of ocean reverberation
Institute of Scientific and Technical Information of China (English)
GAN Weiming; LI Fenghua
2009-01-01
An adaptive nonlinear prediction algorithm is proposed to predict ocean reverber-ation based on the phase space reconstruction of nonlinear dynamic system. The prediction algorithm is tested by experimental reverberation data measured in two areas, and the one-step forward prediction results are in good agreement with the experimental data. If the errors between the predicted and experimental data are chosen as the variable to detect the target in the reverberation series, the reverberation is suppressed and the signal-to-reverberation ratio is improved.
Directory of Open Access Journals (Sweden)
Sakaros Bogning Dongue
2013-01-01
Full Text Available This paper presents the modelling of electrical I-V response of illuminated photovoltaic crystalline modules. As an alternative method to the linear five-parameter model, our strategy uses advantages of a nonlinear analytical five-point model to take into account the effects of nonlinear variations of current with respect to solar irradiance and of voltage with respect to cells temperature. We succeeded in this work to predict with great accuracy the I-V characteristics of monocrystalline shell SP75 and polycrystalline GESOLAR GE-P70 photovoltaic modules. The good comparison of our calculated results to experimental data provided by the modules manufacturers makes it possible to appreciate the contribution of taking into account the nonlinear effect of operating conditions data on I-V characteristics of photovoltaic modules.
Stability analysis of embedded nonlinear predictor neural generalized predictive controller
Directory of Open Access Journals (Sweden)
Hesham F. Abdel Ghaffar
2014-03-01
Full Text Available Nonlinear Predictor-Neural Generalized Predictive Controller (NGPC is one of the most advanced control techniques that are used with severe nonlinear processes. In this paper, a hybrid solution from NGPC and Internal Model Principle (IMP is implemented to stabilize nonlinear, non-minimum phase, variable dead time processes under high disturbance values over wide range of operation. Also, the superiority of NGPC over linear predictive controllers, like GPC, is proved for severe nonlinear processes over wide range of operation. The necessary conditions required to stabilize NGPC is derived using Lyapunov stability analysis for nonlinear processes. The NGPC stability conditions and improvement in disturbance suppression are verified by both simulation using Duffing’s nonlinear equation and real-time using continuous stirred tank reactor. Up to our knowledge, the paper offers the first hardware embedded Neural GPC which has been utilized to verify NGPC–IMP improvement in realtime.
Nonlinear analysis and prediction of time series in multiphase reactors
Liu, Mingyan
2014-01-01
This book reports on important nonlinear aspects or deterministic chaos issues in the systems of multi-phase reactors. The reactors treated in the book include gas-liquid bubble columns, gas-liquid-solid fluidized beds and gas-liquid-solid magnetized fluidized beds. The authors take pressure fluctuations in the bubble columns as time series for nonlinear analysis, modeling and forecasting. They present qualitative and quantitative non-linear analysis tools which include attractor phase plane plot, correlation dimension, Kolmogorov entropy and largest Lyapunov exponent calculations and local non-linear short-term prediction.
Baring, M G; Reynolds, S P; Grenier, I; Goret, P; Baring, Matthew G.; Ellison, Donald C.; Reynolds, Stephen P; Grenier, Isabelle; Goret, Philippe
1999-01-01
Supernova remnants (SNRs) are widely believed to be the principal source of galactic cosmic rays. Such energetic particles can produce gamma-rays and lower energy photons via interactions with the ambient plasma. In this paper, we present results from a Monte Carlo simulation of non-linear shock structure and acceleration coupled with photon emission in shell-like SNRs. These non-linearities are a by-product of the dynamical influence of the accelerated cosmic rays on the shocked plasma and result in distributions of cosmic rays which deviate from pure power-laws. Such deviations are crucial to acceleration efficiency and spectral considerations, producing GeV/TeV intensity ratios that are quite different from test particle predictions. The Sedov scaling solution for SNR expansions is used to estimate important shock parameters for input into the Monte Carlo simulation. We calculate ion and electron distributions that spawn neutral pion decay, bremsstrahlung, inverse Compton, and synchrotron emission, yieldin...
Kratochwil, Nicole A; Meille, Christophe; Fowler, Stephen; Klammers, Florian; Ekiciler, Aynur; Molitor, Birgit; Simon, Sandrine; Walter, Isabelle; McGinnis, Claudia; Walther, Johanna; Leonard, Brian; Triyatni, Miriam; Javanbakht, Hassan; Funk, Christoph; Schuler, Franz; Lavé, Thierry; Parrott, Neil J
2017-03-01
Early prediction of human clearance is often challenging, in particular for the growing number of low-clearance compounds. Long-term in vitro models have been developed which enable sophisticated hepatic drug disposition studies and improved clearance predictions. Here, the cell line HepG2, iPSC-derived hepatocytes (iCell®), the hepatic stem cell line HepaRG™, and human hepatocyte co-cultures (HμREL™ and HepatoPac®) were compared to primary hepatocyte suspension cultures with respect to their key metabolic activities. Similar metabolic activities were found for the long-term models HepaRG™, HμREL™, and HepatoPac® and the short-term suspension cultures when averaged across all 11 enzyme markers, although differences were seen in the activities of CYP2D6 and non-CYP enzymes. For iCell® and HepG2, the metabolic activity was more than tenfold lower. The micropatterned HepatoPac® model was further evaluated with respect to clearance prediction. To assess the in vitro parameters, pharmacokinetic modeling was applied. The determination of intrinsic clearance by nonlinear mixed-effects modeling in a long-term model significantly increased the confidence in the parameter estimation and extended the sensitive range towards 3% of liver blood flow, i.e., >10-fold lower as compared to suspension cultures. For in vitro to in vivo extrapolation, the well-stirred model was used. The micropatterned model gave rise to clearance prediction in man within a twofold error for the majority of low-clearance compounds. Further research is needed to understand whether transporter activity and drug metabolism by non-CYP enzymes, such as UGTs, SULTs, AO, and FMO, is comparable to the in vivo situation in these long-term culture models.
Nonlinear cumulative damage model for multiaxial fatigue
Institute of Scientific and Technical Information of China (English)
SHANG De-guang; SUN Guo-qin; DENG Jing; YAN Chu-liang
2006-01-01
On the basis of the continuum fatigue damage theory,a nonlinear uniaxial fatigue cumulative damage model is first proposed.In order to describe multiaxial fatigue damage characteristics,a nonlinear multiaxial fatigue cumulative damage model is developed based on the critical plane approach,The proposed model can consider the multiaxial fatigue limit,mean hydrostatic pressure and the unseparated characteristic for the damage variables and loading parameters.The recurrence formula of fatigue damage model was derived under multilevel loading,which is used to predict multiaxial fatigue life.The results showed that the proposed nonlinear multiaxial fatigue cumulative damage model is better than Miner's rule.
NONLINEAR PREDICTIVE CONTROL FOR TERRAIN FOLLOWING
Institute of Scientific and Technical Information of China (English)
1998-01-01
A nonlinear continuous predictive control method was used for design of cruise missile terrain-following controller. A performance index which combined the tracking error and rate of tracking error is presented. Then an optimal nonlinear feedback control law is generated to minimize the performance index. The tracking performance and robustness of controller are discussed. The advantage of the control law is demonstrated by successfully designing cruise missile terrain following controllers. The results show that the controller exhibits robustness and excellent tracking performance.
Zhu, Qing; Zhou, Zhiwen; Duncan, Emily W.; Lv, Ligang; Liao, Kaihua; Feng, Huihui
2017-02-01
Spatio-temporal variability of soil moisture (θ) is a challenge that remains to be better understood. A trade-off exists between spatial coverage and temporal resolution when using the manual and real-time θ monitoring methods. This restricted the comprehensive and intensive examination of θ dynamics. In this study, we integrated the manual and real-time monitored data to depict the hillslope θ dynamics with good spatial coverage and temporal resolution. Linear (stepwise multiple linear regression-SMLR) and non-linear (support vector machines-SVM) models were used to predict θ at 39 manual sites (collected 1-2 times per month) with θ collected at three real-time monitoring sites (collected every 5 mins). By comparing the accuracies of SMLR and SVM for each depth and manual site, an optimal prediction model was then determined at this depth of this site. Results showed that θ at the 39 manual sites can be reliably predicted (root mean square errors model. The subsurface flow dynamics was an important factor that determined whether the relationship was linear or non-linear. Depth to bedrock, elevation, topographic wetness index, profile curvature, and θ temporal stability influenced the selection of prediction model since they were related to the subsurface soil water distribution and movement. Using this approach, hillslope θ spatial distributions at un-sampled times and dates can be predicted. Missing information of hillslope θ dynamics can be acquired successfully.
Ławryńczuk, Maciej
2017-03-01
This paper details development of a Model Predictive Control (MPC) algorithm for a boiler-turbine unit, which is a nonlinear multiple-input multiple-output process. The control objective is to follow set-point changes imposed on two state (output) variables and to satisfy constraints imposed on three inputs and one output. In order to obtain a computationally efficient control scheme, the state-space model is successively linearised on-line for the current operating point and used for prediction. In consequence, the future control policy is easily calculated from a quadratic optimisation problem. For state estimation the extended Kalman filter is used. It is demonstrated that the MPC strategy based on constant linear models does not work satisfactorily for the boiler-turbine unit whereas the discussed algorithm with on-line successive model linearisation gives practically the same trajectories as the truly nonlinear MPC controller with nonlinear optimisation repeated at each sampling instant. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Quantification and prediction of rare events in nonlinear waves
Sapsis, Themistoklis; Cousins, Will; Mohamad, Mustafa
2014-11-01
The scope of this work is the quantification and prediction of rare events characterized by extreme intensity, in nonlinear dispersive models that simulate water waves. In particular we are interested for the understanding and the short-term prediction of rogue waves in the ocean and to this end, we consider 1-dimensional nonlinear models of the NLS type. To understand the energy transfers that occur during the development of an extreme event we perform a spatially localized analysis of the energy distribution along different wavenumbers by means of the Gabor transform. A stochastic analysis of the Gabor coefficients reveals i) the low-dimensionality of the intermittent structures, ii) the interplay between non-Gaussian statistical properties and nonlinear energy transfers between modes, as well as iii) the critical scales (or Gabor coefficients) where a critical energy can trigger the formation of an extreme event. The unstable character of these critical localized modes is analysed directly through the system equation and it is shown that it is defined as the result of the system nonlinearity and the wave dissipation (that mimics wave breaking). These unstable modes are randomly triggered through the dispersive ``heat bath'' of random waves that propagate in the nonlinear medium. Using these properties we formulate low-dimensional functionals of these Gabor coefficients that allow for the prediction of extreme event well before the strongly nonlinear interactions begin to occur. The prediction window is further enhanced by the combination of the developed scheme with traditional filtering schemes.
Santosa, H.; Hobara, Y.; Balikhin, M. A.
2015-12-01
Very Low Frequency (VLF) waves have been proposed as an approach to study and monitor the lower ionospheric conditions. The ionospheric perturbations are identified in relation with thunderstorm activity, geomagnetic storm and other factors. The temporal dependence of VLF amplitude has a complicated and large daily variabilities in general due to combinations of both effects from above (space weather effect) and below (atmospheric and crustal processes) of the ionosphere. Quantitative contributions from different external sources are not known well yet. Thus the modelling and prediction of VLF wave amplitude are important issues to study the lower ionospheric responses from various external parameters and to also detect the anomalies of the ionosphere. The purpose of the study is to model and predict nighttime average amplitude of VLF wave propagation from the VLF transmitter in Hawaii (NPM) to receiver in Chofu (CHO) Tokyo, Japan path using NARX neural network. The constructed model was trained for the target parameter of nighttime average amplitude of NPM-CHO path. The NARX model, which was built based on daily input variables of various physical parameters such as stratosphere temperature, cosmic rays and total column ozone, possessed good accuracies. As a result, the constructed models are capable of performing accurate multistep ahead predictions, while maintaining acceptable one step ahead prediction accuracy. The results of the predicted daily VLF amplitude are in good agreement with observed (true) value for one step ahead prediction (r = 0.92, RMSE = 1.99), multi-step ahead 5 days prediction (r = 0.91, RMSE = 1.14) and multi-step ahead 10 days prediction (r = 0.75, RMSE = 1.74). The developed model indicates the feasibility and reliability of predicting lower ionospheric properties by the NARX neural network approach, and provides physical insights on the responses of lower ionosphere due to various external forcing.
基于ESN和PSO的非线性模型预测控制%Nonlinear Model Predictive Control Based on ESN and PSO
Institute of Scientific and Technical Information of China (English)
柴毅; 周海林; 付东莉; 罗德超
2011-01-01
To the problem that the control objects in practical industry processes are nonlinear systems, and the traditional control theory can not deal with them perfectly, the nonlinear model predictive algorithm is introduced. The algorilhmn of nonlinear model predic-tive control system based on the echo stale network (ESN) model and the particle swarm optimization (PSO) is proposed. The ESN can identify nonlinear system perfectly, and has larger progress in computing time, data training and stability compared with the traditional recursive neural network. The PSO algorithm has the global optimization and faster speed for optimum. The simulation results of continue stirred tank reactor shows that it is significantly supcrinr cornered to the neural networks based prediction control and traditional PID control, end the effectiveness of it in nonlinear model predictive control is proved.%针对传统的控制理论对实际的工业生产过程中的被控系统,特别是具有强非线性的系统控制效果不是很理想,而应用非线性模型预测控制算法能够较好解决非线性系统的控制问题,提出了一种基于回声状态网络(Echo State Network,ESN)模型进行非线性系统辨识和粒子群优化(Particle Swarm Optimization,PSO)进行滚动优化的非线性模型预测控制系统的算法.ESN能够很好地辨证非线性系统,其计算时间、数据训练和稳定性相对于传统递归神经网络有了较太进步,PSO具有全局优化和较快的寻优速度.针对典型化工非线性对象连续搅拌槽反应器(Continue Stirred Tank Reactor,CSTR)的仿真实例表明,此模型在预测控制化于BP和PSO结合的非线性预测控制,以及传统的PID控制,证明了该算法运用于非线性模型预测控制中的有效性.
Institute of Scientific and Technical Information of China (English)
钟伟民; 何国龙; 皮道映; 孙优贤
2005-01-01
A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identification method. By solving a cubic equation in the feature space, an explicit predictive control law is obtained through the predictive control mechanism. The effect of controller is demonstrated on a recognized benchmark problem and on the control of continuous-stirred tank reactor (CSTR). Simulation results show that SVM with quadratic polynomial kernel function based predictive controller can be well applied to nonlinear systems, with good performance in following reference trajectory as well as in disturbance-rejection.
Biyanto, Totok R.
2016-06-01
Fouling in a heat exchanger in Crude Preheat Train (CPT) refinery is an unsolved problem that reduces the plant efficiency, increases fuel consumption and CO2 emission. The fouling resistance behavior is very complex. It is difficult to develop a model using first principle equation to predict the fouling resistance due to different operating conditions and different crude blends. In this paper, Artificial Neural Networks (ANN) MultiLayer Perceptron (MLP) with input structure using Nonlinear Auto-Regressive with eXogenous (NARX) is utilized to build the fouling resistance model in shell and tube heat exchanger (STHX). The input data of the model are flow rates and temperatures of the streams of the heat exchanger, physical properties of product and crude blend data. This model serves as a predicting tool to optimize operating conditions and preventive maintenance of STHX. The results show that the model can capture the complexity of fouling characteristics in heat exchanger due to thermodynamic conditions and variations in crude oil properties (blends). It was found that the Root Mean Square Error (RMSE) are suitable to capture the nonlinearity and complexity of the STHX fouling resistance during phases of training and validation.
Energy Technology Data Exchange (ETDEWEB)
Biyanto, Totok R. [Department of Engineering Physics, Institute Technology of Sepuluh Nopember Surabaya, Surabaya, Indonesia 60111 (Indonesia)
2016-06-03
Fouling in a heat exchanger in Crude Preheat Train (CPT) refinery is an unsolved problem that reduces the plant efficiency, increases fuel consumption and CO{sub 2} emission. The fouling resistance behavior is very complex. It is difficult to develop a model using first principle equation to predict the fouling resistance due to different operating conditions and different crude blends. In this paper, Artificial Neural Networks (ANN) MultiLayer Perceptron (MLP) with input structure using Nonlinear Auto-Regressive with eXogenous (NARX) is utilized to build the fouling resistance model in shell and tube heat exchanger (STHX). The input data of the model are flow rates and temperatures of the streams of the heat exchanger, physical properties of product and crude blend data. This model serves as a predicting tool to optimize operating conditions and preventive maintenance of STHX. The results show that the model can capture the complexity of fouling characteristics in heat exchanger due to thermodynamic conditions and variations in crude oil properties (blends). It was found that the Root Mean Square Error (RMSE) are suitable to capture the nonlinearity and complexity of the STHX fouling resistance during phases of training and validation.
Federated nonlinear predictive filtering for the gyroless attitude determination system
Zhang, Lijun; Qian, Shan; Zhang, Shifeng; Cai, Hong
2016-11-01
This paper presents a federated nonlinear predictive filter (NPF) for the gyroless attitude determination system with star sensor and Global Positioning System (GPS) sensor. This approach combines the good qualities of both the NPF and federated filter. In order to combine them, the equivalence relationship between the NPF and classical Kalman filter (KF) is demonstrated from algorithm structure and estimation criterion. The main features of this approach include a nonlinear predictive filtering algorithm to estimate uncertain model errors and determine the spacecraft attitude by using attitude kinematics and dynamics, and a federated filtering algorithm to process measurement data from multiple attitude sensors. Moreover, a fault detection and isolation algorithm is applied to the proposed federated NPF to improve the estimation accuracy even when one sensor fails. Numerical examples are given to verify the navigation performance and fault-tolerant performance of the proposed federated nonlinear predictive attitude determination algorithm.
Nonlinear Predictive Control for PEMFC Stack Operation Temperature
Institute of Scientific and Technical Information of China (English)
LI Xi; CAO Guang-yi; ZHU Xin-jian
2005-01-01
Operating temperature of proton exchange membrane fuel cell stack should be controlled within a special range. The input-output data and operating experiences were used to establish a PEMFC stack model and operating temperature control system. A nonlinear predictive control algorithm based on fuzzy model was presented for a family of complex system with severe nonlinearity such as PEMFC. Based on the obtained fuzzy model, a discrete optimization of the control action was carried out according to the principle of Branch and Bound method. The test results demonstrate the effectiveness and advantage of this approach.
Online prediction and control in nonlinear stochastic systems
DEFF Research Database (Denmark)
Nielsen, Torben Skov
2002-01-01
of systems which are inherently non-stationary. The third part concerns the issue of predicting the power production from wind turbines in the presence of Numerical Weather Predictions (NWP) of selected climatical variables. Here the transformation through the wind turbines from (primarily) wind speed....... The papers G , H and J investigate models and methods for predicting wind power from a wind farm on basis of observations and numerical weather predictions. All three papers consider multistep prediction models, but uses di erent estimation methods as well as dierent models for the diurnal variation of wind......The present thesis consists of a summary report and ten research papers. The subject of the thesis is on-line prediction and control of non-linear and non-stationary systems based on stochastic modelling. The thesis consists of three parts where the rst part deals with on-line estimation in linear...
Neural Generalized Predictive Control of a non-linear Process
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole
1998-01-01
The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability...... detail and discuss the implementation difficulties. The neural generalized predictive controller is tested on a pneumatic servo sys-tem....
Nonlinear modeling of thermoacoustically driven energy cascade
Gupta, Prateek; Scalo, Carlo; Lodato, Guido
2016-11-01
We present an investigation of nonlinear energy cascade in thermoacoustically driven high-amplitude oscillations, from the initial weakly nonlinear regime to the shock wave dominated limit cycle. We develop a first principle based quasi-1D model for nonlinear wave propagation in a canonical minimal unit thermoacoustic device inspired by the experimental setup of Biwa et al.. Retaining up to quadratic nonlinear terms in the governing equations, we develop model equations for nonlinear wave propagation in the proximity of differentially heated no-slip boundaries. Furthermore, we discard the effects of acoustic streaming in the present study and focus on nonlinear energy cascade due to high amplitude wave propagation. Our model correctly predicts the observed exponential growth of the thermoacoustically amplified second harmonic, as well as the energy transfer rate to higher harmonics causing wave steepening. Moreover, we note that nonlinear coupling of local pressure with heat transfer reduces thermoacoustic amplification gradually thus causing the system to reach limit cycle exhibiting shock waves. Throughout, we verify the results from the quasi-1D model with fully compressible Navier-Stokes simulations.
Modeling of unusual nonlinear behaviors in superconducting microstrip transmission lines
Energy Technology Data Exchange (ETDEWEB)
Javadzadeh, S. Mohammad Hassan, E-mail: smh_javadzadeh@ee.sharif.edu [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of); Farzaneh, Forouhar; Fardmanesh, Mehdi [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of)
2013-03-15
Highlights: ► Avoiding of considering just quadratic or modulus nonlinearity. ► Proposing a nonlinear model to predict unusual nonlinear behaviors at low temperatures. ► Description of temperature dependency of nonlinear behaviors in superconducting lines. ► Analytical formulation for each parameter in our proposed model. ► Obtaining very good results which shows this model can predict unusual nonlinear behavior. -- Abstract: There are unusual nonlinear behaviors in superconducting materials, especially at low temperatures. This paper describes the procedure to reliably predict this nonlinearity in superconducting microstrip transmission lines (SMTLs). An accurate nonlinear distributed circuit model, based on simultaneously considering of both quadratic and modulus nonlinearity dependences, is proposed. All parameters of the equivalent circuit can be calculated analytically using proposed closed-form expressions. A numerical method based on Harmonic Balance approach is used to predict nonlinear phenomena like intermodulation distortions and third harmonic generations. Nonlinear analyses of the SMTLs at the different temperatures and the input powers have been presented. This proposed model can describe the unusual behaviors of the nonlinearity at low temperatures, which are frequently observed in the SMTLs.
NONLINEAR STABILITY FOR EADY'S MODEL
Institute of Scientific and Technical Information of China (English)
LIU Yong-ming; QIU Ling-cun
2005-01-01
Poincaré type integral inequality plays an important role in the study of nonlinear stability ( in the sense of Arnold's second theorem) for three-dimensional quasigeostophic flow. The nonlinear stability of Eady's model is one of the most important cases in the application of the method. But the best nonlinear stability criterion obtained so far and the linear stability criterion are not coincident. The two criteria coincide only when the period of the channel is infinite.additional conservation law of momentum and by rigorous estimate of integral inequality. So the new nonlinear stability criterion was obtained, which shows that for Eady 's model in the periodic channel, the linear stable implies the nonlinear stable.
Nonlinear models for autoregressive conditional heteroskedasticity
DEFF Research Database (Denmark)
Teräsvirta, Timo
This paper contains a brief survey of nonlinear models of autore- gressive conditional heteroskedasticity. The models in question are parametric nonlinear extensions of the original model by Engle (1982). After presenting the individual models, linearity testing and parameter estimation...... are discussed. Forecasting volatility with nonlinear models is considered. Finally, parametric nonlinear models based on multi- plicative decomposition of the variance receive attention....
Hou, Zhongsheng; Liu, Shida; Tian, Taotao
2016-05-18
In this paper, a novel data-driven model-free adaptive predictive control method based on lazy learning technique is proposed for a class of discrete-time single-input and single-output nonlinear systems. The feature of the proposed approach is that the controller is designed only using the input-output (I/O) measurement data of the system by means of a novel dynamic linearization technique with a new concept termed pseudogradient (PG). Moreover, the predictive function is implemented in the controller using a lazy-learning (LL)-based PG predictive algorithm, such that the controller not only shows good robustness but also can realize the effect of model-free adaptive prediction for the sudden change of the desired signal. Further, since the LL technique has the characteristic of database queries, both the online and offline I/O measurement data are fully and simultaneously utilized to real-time adjust the controller parameters during the control process. Moreover, the stability of the proposed method is guaranteed by rigorous mathematical analysis. Meanwhile, the numerical simulations and the laboratory experiments implemented on a practical three-tank water level control system both verify the effectiveness of the proposed approach.
Neuro-fuzzy predictive control for nonlinear application
Institute of Scientific and Technical Information of China (English)
CHEN Dong-xiang; WANG Gang; LV Shi-xia
2008-01-01
Aiming at the unsatisfactory dynamic performances of conventional model predictive control (MPC) in a highly nonlinear process, a scheme employed the fuzzy neural network to realize the nonlinear process is proposed. The neuro-fuzzy predictor has the capability of achieving high predictive accuracy due to its nonlinear mapping and interpolation features, and adaptively updating network parameters by a learning procedure to re-duce the model errors caused by changes of the process under control. To cope with the difficult problem of non-linear optimization, Pepanaqi method was applied to search the optimal or suboptimal solution. Comparisons were made among the objective function values of alternatives in initial space. The search was then confined to shrink the smaller region according to results of comparisons. The convergent point was finally approached to be considered as the optimal or suboptimal solution. Experimental results of the neuro-fuzzy predictive control for drier application reveal that the proposed control scheme has less tracking errors and can smooth control actions, which is applicable to changes of drying condition.
On the prediction of stress relaxation from known creep of nonlinear materials
Energy Technology Data Exchange (ETDEWEB)
Touati, D.; Cederbaum, G. [Ben-Gurion Univ. of the Negev, Beer Sheva (Israel)
1997-04-01
A method to predict the nonlinear relaxation behavior from creep experiments of nonlinear viscoelastic materials is presented. It is shown that for given nonlinear creep properties, and creep compliance represented by the Prony series, the Schapery creep model can be transformed into a set of first order nonlinear equations. The solution of these equations enables the obtaining of the nonlinear stress relaxation curves. The strain-dependent constitutive equation can then be constructed for a given nonlinear viscoelastic model, as needed for engineering applications. A comparison example of the calculated stress relaxation curves, with test data for polyurethane demonstrates the very good accuracy of the proposed method.
Fan, Jiajie; Mohamed, Moumouni Guero; Qian, Cheng; Fan, Xuejun; Zhang, Guoqi; Pecht, Michael
2017-07-18
With the expanding application of light-emitting diodes (LEDs), the color quality of white LEDs has attracted much attention in several color-sensitive application fields, such as museum lighting, healthcare lighting and displays. Reliability concerns for white LEDs are changing from the luminous efficiency to color quality. However, most of the current available research on the reliability of LEDs is still focused on luminous flux depreciation rather than color shift failure. The spectral power distribution (SPD), defined as the radiant power distribution emitted by a light source at a range of visible wavelength, contains the most fundamental luminescence mechanisms of a light source. SPD is used as the quantitative inference of an LED's optical characteristics, including color coordinates that are widely used to represent the color shift process. Thus, to model the color shift failure of white LEDs during aging, this paper first extracts the features of an SPD, representing the characteristics of blue LED chips and phosphors, by multi-peak curve-fitting and modeling them with statistical functions. Then, because the shift processes of extracted features in aged LEDs are always nonlinear, a nonlinear state-space model is then developed to predict the color shift failure time within a self-adaptive particle filter framework. The results show that: (1) the failure mechanisms of LEDs can be identified by analyzing the extracted features of SPD with statistical curve-fitting and (2) the developed method can dynamically and accurately predict the color coordinates, correlated color temperatures (CCTs), and color rendering indexes (CRIs) of phosphor-converted (pc)-white LEDs, and also can estimate the residual color life.
A hybrid AR-EMD-SVR model for the short-term prediction of nonlinear and non-stationary ship motion
Institute of Scientific and Technical Information of China (English)
Wen-yang DUAN; Li-min HUANG; Yang HAN; Ya-hui ZHANG; Shuo HUANG
2015-01-01
题目：用于非线性非平稳船舶运动极短期预报的一种复合自回归经验模态分解支持向量机回归模型 目的：基于支持向量机回归（SVR）模型在非线时间序列的预测能力及经验模态分解（EMD）方法在处理非线性非平稳性的优势，提出一种复合自回归经验模态分解支持向量机回归（AR-EMD-SVR）模型，提高非线性非平稳船舶运动极短期预报精度。 创新点：1.研究非线性非平稳船舶运动的极短期预报问题，提出一种复合的预报方法；2.基于不同层次的预报模型和模型试验数据，分析非线性非平稳性对极短期预报精度的影响。 方法：1.在SVR模型中引入基于自回归（AR）预报端点延拓的 EMD 方法，形成复合的 AR-EMD-SVR 预报模型；2.基于集装箱船模水池试验运动数据将 AR-EMD-SVR 模型与 AR、SVR 和EMD-AR 三种模型进行比较，分析非线性非平稳性对极短期预报的影响以及不同模型的预报性能。 结论：1. AR-EMD 方法能够有效的克服非平稳对极短期预报模型（AR和 SVR）在精度上所带来的不良影响；2.基于船模试验数据的预报结果表明：相较于 AR、SVR 和 EMD-AR 三种预报模型，基于 AR-EMD-SVR模型的非线性非平稳船舶运动极短期预报结果具有更高的精度。%Accurate and reliable short-term prediction of ship motions offers improvements in both safety and control quality in ship motion sensitive maritime operations. Inspired by the satisfactory nonlinear learning capability of a support vector re-gression (SVR) model and the strong non-stationary processing ability of empirical mode decomposition (EMD), this paper develops a hybrid autoregressive (AR)-EMD-SVR model for the short-term forecast of nonlinear and non-stationary ship motion. The proposed hybrid model is designed by coupling the SVR model with an AR-EMD technique, which employs an AR model in ends
Nonlinear predictive energy management of residential buildings with photovoltaics & batteries
Sun, Chao; Sun, Fengchun; Moura, Scott J.
2016-09-01
This paper studies a nonlinear predictive energy management strategy for a residential building with a rooftop photovoltaic (PV) system and second-life lithium-ion battery energy storage. A key novelty of this manuscript is closing the gap between building energy management formulations, advanced load forecasting techniques, and nonlinear battery/PV models. Additionally, we focus on the fundamental trade-off between lithium-ion battery aging and economic performance in energy management. The energy management problem is formulated as a model predictive controller (MPC). Simulation results demonstrate that the proposed control scheme achieves 96%-98% of the optimal performance given perfect forecasts over a long-term horizon. Moreover, the rate of battery capacity loss can be reduced by 25% with negligible losses in economic performance, through an appropriate cost function formulation.
A nonlinear constitutive model for magnetostrictive materials
Institute of Scientific and Technical Information of China (English)
Xin'en Liu; Xiaojing Zheng
2005-01-01
A general nonlinear constitutive model is proposed for magnetostrictive materials, based on the important physical fact that a nonlinear part of the elastic strain produced by a pre-stress is related to the magnetic domain rotation or movement and is responsible for the change of the maximum magnetostrictive strain with the pre-stress. To avoid the complicity of determining the tensor function describing the nonlinear elastic strain part, this paper proposes a simplified model by means of linearizing the nonlinear function.For the convenience of engineering applications, the expressions of the 3-D (bulk), 2-D (film) and 1-D (rod) models are, respectively, given for an isotropic material and their applicable ranges are also discussed. By comparison with the experimental data of a Terfenol-D rod, it is found that the proposed model can accurately predict the magnetostrictive strain curves in low, moderate and high magnetic field regions for various compressive pre-stress levels. The numerical simulation further illustrates that, for either magnetostrictive rods or thin films, the proposed model can effectively describe the effects of the pre-stress or residual stress on the magnetization and magnetostrictive strain curves, while none of the known models can capture all of them. Therefore, the proposed model enjoys higher precision and wider applicability than the previous models, especially in the region of the high field.
Prediction and simulation errors in parameter estimation for nonlinear systems
Aguirre, Luis A.; Barbosa, Bruno H. G.; Braga, Antônio P.
2010-11-01
This article compares the pros and cons of using prediction error and simulation error to define cost functions for parameter estimation in the context of nonlinear system identification. To avoid being influenced by estimators of the least squares family (e.g. prediction error methods), and in order to be able to solve non-convex optimisation problems (e.g. minimisation of some norm of the free-run simulation error), evolutionary algorithms were used. Simulated examples which include polynomial, rational and neural network models are discussed. Our results—obtained using different model classes—show that, in general the use of simulation error is preferable to prediction error. An interesting exception to this rule seems to be the equation error case when the model structure includes the true model. In the case of error-in-variables, although parameter estimation is biased in both cases, the algorithm based on simulation error is more robust.
Nonlinear Control of Heartbeat Models
Directory of Open Access Journals (Sweden)
Witt Thanom
2011-02-01
Full Text Available This paper presents a novel application of nonlinear control theory to heartbeat models. Existing heartbeat models are investigated and modified by incorporating the control input as a pacemaker to provide the control channel. A nonlinear feedback linearization technique is applied to force the output of the systems to generate artificial electrocardiogram (ECG signal using discrete data as the reference inputs. The synthetic ECG may serve as a flexible signal source to assess the effectiveness of a diagnostic ECG signal-processing device.
Prediction of ventricular fibrillation based on nonlinear multi-parameter
Institute of Scientific and Technical Information of China (English)
SI Junfeng; NING Xinbao; ZHOU Lingling; ZHANG Song
2003-01-01
Ventricular fibrillation (VF) caused by myocardial ischemia is one of the leading factors of death attributed to cardiovascular diseases. It is particularly significant to predict VF and gain valuable time for clinic therapy. Fivedogs are taken as the research objects and a VF model is introduced. The nonlinear characteristics of the ECGs before and after VF are investigated with nonlinear multi-parame- ter analysis methods, Gaussian kernel (GK) correlation estimation algorithm and Lyapunov exponent estimation algorithm. Correlation entropy h2is also presented. The results indicate that there are three parameters which will change at the same time with the conditions of myocardial ischemia, and any changes of a single parameter may be caused by other factors and mislead the judgment. Multi-parameter analysis is more reliable to reveal the heart conditions,and to predict VF without misjudgments.
A Nonlinear Prediction Model for Philip Infiltration Parameters%Philip入渗模型参数的非线性预报模型
Institute of Scientific and Technical Information of China (English)
郭华; 樊贵盛
2016-01-01
利用黄土高原区大田耕作土壤的水分入渗试验过程资料 ,拟合了Philip入渗模型参数 ,建立了以土壤体积含水率、干密度、粉、黏粒含量和有机质含量等土壤理化参数为输入变量 ,Philip入渗模型参数为输出变量的土壤传递函数 ,通过对函数的分析、检验 ,建立了土壤入渗参数 S和A 的多元非线性预测模型 ;在此基础上 ,运用灰色关联分析理论 ,将各输入变量进行了灰色排序.研究表明 :用土壤体积含水率、干密度、粉粒含量、黏粒含量和有机质含量作为预报模型的输入参数可实现对入渗参数的预测 ,预测参数实测值与预测值之间的相对误差可控制在8% 以下 ,所建立的非线性预测模型高度相关.%Using the soil water infiltration test data in the Loess Plateau as the background ,the Philip infiltration model parameters were fitted ,and the Pedo-Transfer Functions was established .Soil water content ,soil bulk density ,soil silt content and soil organic matter content were used as input parameters ,and soil infiltration parameters were used as the output factors in Pedo-Transfer Func-tions .Multivariate nonlinear prediction models of infiltration parameter S and A were established by analyzing and testing Pedo-Transfer Functions .On this basis ,each input parameter was gray sorted by the gray relational analysis theory .The results showed that :it was reasonable to use soil water content ,soil bulk density ,soil silt content and soil organic matter content as input parame-ters to predict infiltration parameters ,and the relative errors between the measured value and the predicted value could be controlled below 8% .The nonlinear relationship models were highly correlated .
Predicting speech intelligibility in conditions with nonlinearly processed noisy speech
DEFF Research Database (Denmark)
Jørgensen, Søren; Dau, Torsten
2013-01-01
The speech-based envelope power spectrum model (sEPSM; [1]) was proposed in order to overcome the limitations of the classical speech transmission index (STI) and speech intelligibility index (SII). The sEPSM applies the signal-tonoise ratio in the envelope domain (SNRenv), which was demonstrated...... to successfully predict speech intelligibility in conditions with nonlinearly processed noisy speech, such as processing with spectral subtraction. Moreover, a multiresolution version (mr-sEPSM) was demonstrated to account for speech intelligibility in various conditions with stationary and fluctuating...... from computational auditory scene analysis and further support the hypothesis that the SNRenv is a powerful metric for speech intelligibility prediction....
A nonlinear RDF model for waves propagating in shallow water
Institute of Scientific and Technical Information of China (English)
王厚杰; 杨作升; 李瑞杰; 张军
2001-01-01
In this paper, a composite explicit nonlinear dispersion relation is presented with reference to Stokes 2nd order dispersion relation and the empirical relation of Hedges. The explicit dispersion relation has such advantages that it can smoothly match the Stokes relation in deep and intermediate water and Hedgs’s relation in shallow water. As an explicit formula, it separates the nonlinear term from the linear dispersion relation. Therefore it is convenient to obtain the numerical solution of nonlinear dispersion relation. The present formula is combined with the modified mild-slope equation including nonlinear effect to make a Refraction-Diffraction (RDF) model for wave propagating in shallow water. This nonlinear model is verified over a complicated topography with two submerged elliptical shoals resting on a slope beach. The computation results compared with those obtained from linear model show that at present the nonlinear RDF model can predict the nonlinear characteristics and the combined refracti
Institute of Scientific and Technical Information of China (English)
CHEN Bomin; JI Liren; YANG Peicai; ZHANG Daomin
2006-01-01
Based on Chen et al. (2006), the scheme of the combination of the pentad-mean zonal height departure nonlinear prediction with the T42L9 model prediction was designed, in which the pentad zonal heights at all the 12-initial-value-input isobar levels from 50 hPa to 1000 hPa except 200, 300, 500, and 700 hPa were derived from nonlinear forecasts of the four levels by means of a good correlation between neighboring levels.Then the above pentad zonal heights at 12 isobar-levels were transformed to the spectrum coefficients of the temperature at each integration step of T42L9 model. At last, the nudging was made. On account of a variety of error accumulation, the pentad zonal components of the monthly height at isobar levels output by T42L9 model were replaced by the corresponding nonlinear results once more when integration was over.Multiple case experiments showed that such combination of two kinds of prediction made an improvement in the wave component as a result of wave-flow nonlinear interaction while reducing the systematical forecast errors. Namely the monthly-mean height anomaly correlation coefficients over the high- and mid-latitudes of the Northern Hemisphere, over the Southern Hemisphere and over the globe increased respectively from 0.249 to 0.347, from 0.286 to 0.387, and from 0.343 to 0.414 (relative changes of 31.5%, 41.0%, and 18.3%).The monthly-mean root-mean-square error (RMSE) of T42L9 model over the three areas was considerably decreased, the relative change over the globe reached 44.2%. The monthly-mean anomaly correlation coefficients of wave 4-9 over the areas were up to 0.392, 0.200, and 0.295, with the relative change of 53.8%, 94.1%,and 61.2%, and correspondingly their RMSEs were decreased respectively with the rate of 8.5%, 6.3%, and 8.1%. At the same time the monthly-mean pattern of parts of cases were presented better.
Cestari, Andrea
2013-01-01
Predictive modeling is emerging as an important knowledge-based technology in healthcare. The interest in the use of predictive modeling reflects advances on different fronts such as the availability of health information from increasingly complex databases and electronic health records, a better understanding of causal or statistical predictors of health, disease processes and multifactorial models of ill-health and developments in nonlinear computer models using artificial intelligence or neural networks. These new computer-based forms of modeling are increasingly able to establish technical credibility in clinical contexts. The current state of knowledge is still quite young in understanding the likely future direction of how this so-called 'machine intelligence' will evolve and therefore how current relatively sophisticated predictive models will evolve in response to improvements in technology, which is advancing along a wide front. Predictive models in urology are gaining progressive popularity not only for academic and scientific purposes but also into the clinical practice with the introduction of several nomograms dealing with the main fields of onco-urology.
Model updating of nonlinear structures from measured FRFs
Canbaloğlu, Güvenç; Özgüven, H. Nevzat
2016-12-01
There are always certain discrepancies between modal and response data of a structure obtained from its mathematical model and experimentally measured ones. Therefore it is a general practice to update the theoretical model by using experimental measurements in order to have a more accurate model. Most of the model updating methods used in structural dynamics are for linear systems. However, in real life applications most of the structures have nonlinearities, which restrict us applying model updating techniques available for linear structures, unless they work in linear range. Well-established frequency response function (FRF) based model updating methods would easily be extended to a nonlinear system if the FRFs of the underlying linear system (linear FRFs) could be experimentally measured. When frictional type of nonlinearity co-exists with other types of nonlinearities, it is not possible to obtain linear FRFs experimentally by using low level forcing. In this study a method (named as Pseudo Receptance Difference (PRD) method) is presented to obtain linear FRFs of a nonlinear structure having multiple nonlinearities including friction type of nonlinearity. PRD method, calculates linear FRFs of a nonlinear structure by using FRFs measured at various forcing levels, and simultaneously identifies all nonlinearities in the system. Then, any model updating method can be used to update the linear part of the mathematical model. In this present work, PRD method is used to predict the linear FRFs from measured nonlinear FRFs, and the inverse eigensensitivity method is employed to update the linear finite element (FE) model of the nonlinear structure. The proposed method is validated with different case studies using nonlinear lumped single-degree of freedom system, as well as a continuous system. Finally, a real nonlinear T-beam test structure is used to show the application and the accuracy of the proposed method. The accuracy of the updated nonlinear model of the
Institute of Scientific and Technical Information of China (English)
包哲静; 皮道映; 孙优贤
2007-01-01
Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be transformed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimization in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm.
Nonlinear time series modelling: an introduction
Simon M. Potter
1999-01-01
Recent developments in nonlinear time series modelling are reviewed. Three main types of nonlinear models are discussed: Markov Switching, Threshold Autoregression and Smooth Transition Autoregression. Classical and Bayesian estimation techniques are described for each model. Parametric tests for nonlinearity are reviewed with examples from the three types of models. Finally, forecasting and impulse response analysis is developed.
Nonlinear trading models through Sharpe Ratio maximization.
Choey, M; Weigend, A S
1997-08-01
While many trading strategies are based on price prediction, traders in financial markets are typically interested in optimizing risk-adjusted performance such as the Sharpe Ratio, rather than the price predictions themselves. This paper introduces an approach which generates a nonlinear strategy that explicitly maximizes the Sharpe Ratio. It is expressed as a neural network model whose output is the position size between a risky and a risk-free asset. The iterative parameter update rules are derived and compared to alternative approaches. The resulting trading strategy is evaluated and analyzed on both computer-generated data and real world data (DAX, the daily German equity index). Trading based on Sharpe Ratio maximization compares favorably to both profit optimization and probability matching (through cross-entropy optimization). The results show that the goal of optimizing out-of-sample risk-adjusted profit can indeed be achieved with this nonlinear approach.
Institute of Scientific and Technical Information of China (English)
Zolfaghar Mehdizadeh; Hamid Reza Lotfizadeh; S. S. Mortazavi; Hadi Noorizadeh
2012-01-01
Water pollution affects plants and organisms living in these bodies of water; and, in almost all cases the effect is damaging not only to individual species and populations, but also to the natural biological communities. Genetic algorithm and kernel partial least square (GA-KPLS) and Levenberg- Marquardt artificial neural network (L-M ANN) techniques were used to investigate the correlation between retention time (tR) and descriptors for 150 organic contaminants in natural water and wastewater, which are obtained by gas chromatography coupled to high-resolution time-of-flight mass spectrometry (GC-TOF MS). The L-M ANN model gave a significantly better performance than the GA-KPLS model. This indicates that L-M ANN can be used as an alternative modeling toot for quantitative structure-retention relationship (QSRR) studies.
Model reduction of systems with localized nonlinearities.
Energy Technology Data Exchange (ETDEWEB)
Segalman, Daniel Joseph
2006-03-01
An LDRD funded approach to development of reduced order models for systems with local nonlinearities is presented. This method is particularly useful for problems of structural dynamics, but has potential application in other fields. The key elements of this approach are (1) employment of eigen modes of a reference linear system, (2) incorporation of basis functions with an appropriate discontinuity at the location of the nonlinearity. Galerkin solution using the above combination of basis functions appears to capture the dynamics of the system with a small basis set. For problems involving small amplitude dynamics, the addition of discontinuous (joint) modes appears to capture the nonlinear mechanics correctly while preserving the modal form of the predictions. For problems involving large amplitude dynamics of realistic joint models (macro-slip), the use of appropriate joint modes along with sufficient basis eigen modes to capture the frequencies of the system greatly enhances convergence, though the modal nature the result is lost. Also observed is that when joint modes are used in conjunction with a small number of elastic eigen modes in problems of macro-slip of realistic joint models, the resulting predictions are very similar to those of the full solution when seen through a low pass filter. This has significance both in terms of greatly reducing the number of degrees of freedom of the problem and in terms of facilitating the use of much larger time steps.
Linear and non-linear bias: predictions vs. measurements
Hoffmann, Kai; Gaztanaga, Enrique
2016-01-01
We study the linear and non-linear bias parameters which determine the mapping between the distributions of galaxies and the full matter density fields, comparing different measurements and predictions. Accociating galaxies with dark matter haloes in the MICE Grand Challenge N-body simulation we directly measure the bias parameters by comparing the smoothed density fluctuations of halos and matter in the same region at different positions as a function of smoothing scale. Alternatively we measure the bias parameters by matching the probablility distributions of halo and matter density fluctuations, which can be applied to observations. These direct bias measurements are compared to corresponding measurements from two-point and different third-order correlations, as well as predictions from the peak-background model, which we presented in previous articles using the same data. We find an overall variation of the linear bias measurements and predictions of $\\sim 5 \\%$ with respect to results from two-point corr...
Linear and nonlinear dynamic systems in financial time series prediction
Directory of Open Access Journals (Sweden)
Salim Lahmiri
2012-10-01
Full Text Available Autoregressive moving average (ARMA process and dynamic neural networks namely the nonlinear autoregressive moving average with exogenous inputs (NARX are compared by evaluating their ability to predict financial time series; for instance the S&P500 returns. Two classes of ARMA are considered. The first one is the standard ARMA model which is a linear static system. The second one uses Kalman filter (KF to estimate and predict ARMA coefficients. This model is a linear dynamic system. The forecasting ability of each system is evaluated by means of mean absolute error (MAE and mean absolute deviation (MAD statistics. Simulation results indicate that the ARMA-KF system performs better than the standard ARMA alone. Thus, introducing dynamics into the ARMA process improves the forecasting accuracy. In addition, the ARMA-KF outperformed the NARX. This result may suggest that the linear component found in the S&P500 return series is more dominant than the nonlinear part. In sum, we conclude that introducing dynamics into the ARMA process provides an effective system for S&P500 time series prediction.
Tom, Nathan
2015-01-01
To further maximize power absorption in both regular and irregular ocean wave environments, nonlinear-model-predictive control (NMPC) was applied to a model-scale point absorber developed at the University of California Berkeley, Berkeley, CA, USA. The NMPC strategy requires a power-takeoff (PTO) unit that could be turned on and off, as the generator would be inactive for up to 60% of the wave period. To confirm the effectiveness of this NMPC strategy, an in-house-designed permanent magnet linear generator (PMLG) was chosen as the PTO. The time-varying performance of the PMLG was first characterized by dry-bench tests, using mechanical relays to control the electromagnetic conversion process. The on/off sequencing of the PMLG was tested under regular and irregular wave excitation to validate NMPC simulations using control inputs obtained from running the choice optimizer offline. Experimental results indicate that successful implementation was achieved and absorbed power using NMPC was up to 50% greater than the passive system, which utilized no controller. Previous investigations into MPC applied to wave energy converters have lacked the experimental results to confirm the reported gains in power absorption. However, after considering the PMLG mechanical-to-electrical conversion efficiency, the electrical power output was not consistently maximized. To improve output power, a mathematical relation between the efficiency and damping magnitude of the PMLG was inserted in the system model to maximize the electrical power output through continued use of NMPC which helps separate this work from previous investigators. Of significance, results from latter simulations provided a damping time series that was active over a larger portion of the wave period requiring the actuation of the applied electrical load, rather than on/off control.
Modelling Loudspeaker Non-Linearities
DEFF Research Database (Denmark)
Agerkvist, Finn T.
2007-01-01
This paper investigates different techniques for modelling the non-linear parameters of the electrodynamic loudspeaker. The methods are tested not only for their accuracy within the range of original data, but also for the ability to work reasonable outside that range, and it is demonstrated...... that polynomial expansions are rather poor at this, whereas an inverse polynomial expansion or localized fitting functions such as the gaussian are better suited for modelling the Bl-factor and compliance. For the inductance the sigmoid function is shown to give very good results. Finally the time varying...
Non-linear aeroelastic prediction for aircraft applications
de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.
2007-05-01
Current industrial practice for the prediction and analysis of flutter relies heavily on linear methods and this has led to overly conservative design and envelope restrictions for aircraft. Although the methods have served the industry well, it is clear that for a number of reasons the inclusion of non-linearity in the mathematical and computational aeroelastic prediction tools is highly desirable. The increase in available and affordable computational resources, together with major advances in algorithms, mean that non-linear aeroelastic tools are now viable within the aircraft design and qualification environment. The Partnership for Unsteady Methods in Aerodynamics (PUMA) Defence and Aerospace Research Partnership (DARP) was sponsored in 2002 to conduct research into non-linear aeroelastic prediction methods and an academic, industry, and government consortium collaborated to address the following objectives: To develop useable methodologies to model and predict non-linear aeroelastic behaviour of complete aircraft. To evaluate the methodologies on real aircraft problems. To investigate the effect of non-linearities on aeroelastic behaviour and to determine which have the greatest effect on the flutter qualification process. These aims have been very effectively met during the course of the programme and the research outputs include: New methods available to industry for use in the flutter prediction process, together with the appropriate coaching of industry engineers. Interesting results in both linear and non-linear aeroelastics, with comprehensive comparison of methods and approaches for challenging problems. Additional embryonic techniques that, with further research, will further improve aeroelastics capability. This paper describes the methods that have been developed and how they are deployable within the industrial environment. We present a thorough review of the PUMA aeroelastics programme together with a comprehensive review of the relevant research
Processing Approach of Non-linear Adjustment Models in the Space of Non-linear Models
Institute of Scientific and Technical Information of China (English)
LI Chaokui; ZHU Qing; SONG Chengfang
2003-01-01
This paper investigates the mathematic features of non-linear models and discusses the processing way of non-linear factors which contributes to the non-linearity of a nonlinear model. On the basis of the error definition, this paper puts forward a new adjustment criterion, SGPE.Last, this paper investigates the solution of a non-linear regression model in the non-linear model space and makes the comparison between the estimated values in non-linear model space and those in linear model space.
Nonlinear rheological models for structured interfaces
Sagis, L.M.C.
2010-01-01
The GENERIC formalism is a formulation of nonequilibrium thermodynamics ideally suited to develop nonlinear constitutive equations for the stress–deformation behavior of complex interfaces. Here we develop a GENERIC model for multiphase systems with interfaces displaying nonlinear viscoelastic stres
General expression for linear and nonlinear time series models
Institute of Scientific and Technical Information of China (English)
Ren HUANG; Feiyun XU; Ruwen CHEN
2009-01-01
The typical time series models such as ARMA, AR, and MA are founded on the normality and stationarity of a system and expressed by a linear difference equation; therefore, they are strictly limited to the linear system. However, some nonlinear factors are within the practical system; thus, it is difficult to fit the model for real systems with the above models. This paper proposes a general expression for linear and nonlinear auto-regressive time series models (GNAR). With the gradient optimization method and modified AIC information criteria integrated with the prediction error, the parameter estimation and order determination are achieved. The model simulation and experiments show that the GNAR model can accurately approximate to the dynamic characteristics of the most nonlinear models applied in academics and engineering. The modeling and prediction accuracy of the GNAR model is superior to the classical time series models. The proposed GNAR model is flexible and effective.
Adaptive regression for modeling nonlinear relationships
Knafl, George J
2016-01-01
This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of outcome variables. Such nonlinear dependence is often not considered in applied research, yet nonlinear relationships are common and so need to be addressed. A standard linear analysis can produce misleading conclusions, while a nonlinear analysis can provide novel insights into data, not otherwise possible. A variety of examples of the benefits of modeling nonlinear relationships are presented throughout the book. Methods are covered using what are called fractional polynomials based on real-valued power transformations of primary predictor variables combined with model selection based on likelihood cross-validation. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in the s...
Prediction of nonlinear optical properties of large organic molecules
Cardelino, Beatriz H.
1992-01-01
The preparation of materials with large nonlinear responses usually requires involved synthetic processes. Thus, it is very advantageous for materials scientists to have a means of predicting nonlinear optical properties. The prediction of nonlinear optical properties has to be addressed first at the molecular level and then as bulk material. For relatively large molecules, two types of calculations may be used, which are the sum-over-states and the finite-field approach. The finite-field method was selected for this research, because this approach is better suited for larger molecules.
Predictability of extremes in non-linear hierarchically organized systems
Kossobokov, V. G.; Soloviev, A.
2011-12-01
Understanding the complexity of non-linear dynamics of hierarchically organized systems progresses to new approaches in assessing hazard and risk of the extreme catastrophic events. In particular, a series of interrelated step-by-step studies of seismic process along with its non-stationary though self-organized behaviors, has led already to reproducible intermediate-term middle-range earthquake forecast/prediction technique that has passed control in forward real-time applications during the last two decades. The observed seismic dynamics prior to and after many mega, great, major, and strong earthquakes demonstrate common features of predictability and diverse behavior in course durable phase transitions in complex hierarchical non-linear system of blocks-and-faults of the Earth lithosphere. The confirmed fractal nature of earthquakes and their distribution in space and time implies that many traditional estimations of seismic hazard (from term-less to short-term ones) are usually based on erroneous assumptions of easy tractable analytical models, which leads to widespread practice of their deceptive application. The consequences of underestimation of seismic hazard propagate non-linearly into inflicted underestimation of risk and, eventually, into unexpected societal losses due to earthquakes and associated phenomena (i.e., collapse of buildings, landslides, tsunamis, liquefaction, etc.). The studies aimed at forecast/prediction of extreme events (interpreted as critical transitions) in geophysical and socio-economical systems include: (i) large earthquakes in geophysical systems of the lithosphere blocks-and-faults, (ii) starts and ends of economic recessions, (iii) episodes of a sharp increase in the unemployment rate, (iv) surge of the homicides in socio-economic systems. These studies are based on a heuristic search of phenomena preceding critical transitions and application of methodologies of pattern recognition of infrequent events. Any study of rare
Determining the minimum embedding dimension of nonlinear time series based on prediction method
Institute of Scientific and Technical Information of China (English)
Bian Chun-Hua; Ning Xin-Bao
2004-01-01
Determining the embedding dimension of nonlinear time series plays an important role in the reconstruction of nonlinear dynamics. The paper first summarizes the current methods for determining the embedding dimension.Then, inspired by the fact that the optimum modelling dimension of nonlinear autoregressive (NAR) prediction model can characterize the embedding feature of the dynamics, the paper presents a new idea that the optimum modelling dimension of the NAR model can be taken as the minimum embedding dimension. Some validation examples and results are given and the present method shows its advantage for short data series.
Nonlinear Modelling of Low Frequency Loudspeakers
DEFF Research Database (Denmark)
Olsen, Erling Sandermann
1997-01-01
In the Danish LoDist project on distortion from dynamic low-frequency loudspeakers, a detailed nonlinear model of loudspeakers has been developed. The model has been implemented in a PC program so that it can be used to create signals for listening tests and analysis. Also, different methods...... for describing the nonlinearities have been developed. Different aspects of modelling loudspeaker nonlinearities are discussed, and the program is briefly described....
Nonlinear Modelling of Low Frequency Loudspeakers
DEFF Research Database (Denmark)
Olsen, Erling Sandermann
1997-01-01
In the Danish LoDist project on distortion from dynamic low frequency loudspeakers a detailed nonlinear model of loudspeakers has been developed. The model has been implemented in a PC program so that it can be used to create signals for listening tests and analysis. Also, different methods...... for describing the nonlinearities have been developed. Different aspects of modelling loudspeaker nonlinearities are discussed and the program is briefly demonstrated....
Predictive Dynamic Stimulation of Structures with Non-Smooth Nonlinearities
2005-06-30
bang- bang, dead band, and Duffing type nonlinearity. Nonlinear damping has been considered in the form of Coulomb damping, velocity-squared damping...or 2,000 DOF reduced to 5 or 10 DOF) of simple oscillator systems capture the free oscillation decay and the steady state response to harmonic...smooth or non-smooth), the linear based reduced model tends to overestimate the change in oscillation frequency due to the nonlinearity. Specifically
Computational Models for Nonlinear Aeroelastic Systems Project
National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate new and efficient computational methods of modeling nonlinear aeroelastic systems. The...
Model Updating Nonlinear System Identification Toolbox Project
National Aeronautics and Space Administration — ZONA Technology (ZONA) proposes to develop an enhanced model updating nonlinear system identification (MUNSID) methodology that utilizes flight data with...
Determining the input dimension of a neural network for nonlinear time series prediction
Institute of Scientific and Technical Information of China (English)
张胜; 刘红星; 高敦堂; 都思丹
2003-01-01
Determining the input dimension of a feed-forward neural network for nonlinear time series prediction plays an important role in the modelling.The paper first summarizes the current methods for determining the input dimension of the neural network.Then inspired by the fact that the correlation dimension of a nonlinear dynamic system is the mostimportant feature of it,the paper presents a new idea that the input dimension of the neural network for nonlinear time series prediction can be taken as an integer just greater than or equal to the correlation dimension.Finally,some wlidation examples and results are given.
Mathematical modeling and applications in nonlinear dynamics
Merdan, Hüseyin
2016-01-01
The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems. Provides methods for mathematical models with switching, thresholds, and impulses, each of particular importance for discontinuous processes Includes qualitative analysis of behaviors on Tumor-Immune Systems and methods of analysis for DNA, neural networks and epidemiology Introduces...
Nonlinear State Space Modeling and System Identification for Electrohydraulic Control
Directory of Open Access Journals (Sweden)
Jun Yan
2013-01-01
Full Text Available The paper deals with nonlinear modeling and identification of an electrohydraulic control system for improving its tracking performance. We build the nonlinear state space model for analyzing the highly nonlinear system and then develop a Hammerstein-Wiener (H-W model which consists of a static input nonlinear block with two-segment polynomial nonlinearities, a linear time-invariant dynamic block, and a static output nonlinear block with single polynomial nonlinearity to describe it. We simplify the H-W model into a linear-in-parameters structure by using the key term separation principle and then use a modified recursive least square method with iterative estimation of internal variables to identify all the unknown parameters simultaneously. It is found that the proposed H-W model approximates the actual system better than the independent Hammerstein, Wiener, and ARX models. The prediction error of the H-W model is about 13%, 54%, and 58% less than the Hammerstein, Wiener, and ARX models, respectively.
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Nonlinear time series prediction is studied by using an improved least squares support vector machine (LSSVM) regression based on chaotic mutation evolutionary programming (CMEP) approach for parameter optimization.We analyze how the prediction error varies with different parameters (σ, γ) in LS-SVM. In order to select appropriate parameters for the prediction model, we employ CMEP algorithm. Finally, Nasdaq stock data are predicted by using this LS-SVM regression based on CMEP, and satisfactory results are obtained.
Robust Designs for Three Commonly Used Nonlinear Models
Xu, Xiaojian; Chen, Arnold
2011-11-01
In this paper, we study the robust designs for a few nonlinear models, including an exponential model with an intercept, a compartmental model, and a Michaelis-Menten model, when these models are possibly misspecified. The minimax robust designs we considered in this paper are under consideration of not only minimizing the variances but also reducing the possible biases in estimation. Both prediction and extrapolation cases are discussed. The robust designs are found incorporating the approximation of these models with several situations such as homoscedasticity, and heteroscedasticity. Both ordinary and weighted nonlinear least squares methods are utilized.
Nonlinear system modeling based on experimental data
Energy Technology Data Exchange (ETDEWEB)
PAEZ,THOMAS L.; HUNTER,NORMAN F.
2000-02-02
The canonical variate analysis technique is used in this investigation, along with a data transformation algorithm, to identify a system in a transform space. The transformation algorithm involves the preprocessing of measured excitation/response data with a zero-memory-nonlinear transform, specifically, the Rosenblatt transform. This transform approximately maps the measured excitation and response data from its own space into the space of uncorrelated, standard normal random variates. Following this transform, it is appropriate to model the excitation/response relation as linear since Gaussian inputs excite Gaussian responses in linear structures. The linear model is identified in the transform space using the canonical variate analysis approach, and system responses in the original space are predicted using inverse Rosenblatt transformation. An example is presented.
Nonlinear prediction of the aerodynamic loads on lifting surfaces
Kandil, O. A.; Mook, D. T.; Nayfeh, A. H.
1974-01-01
A numerical procedure is used to predict the nonlinear aerodynamic characteristics of lifting surfaces of low aspect ratio at high angles of attack for low subsonic Mach numbers. The procedure utilizes a vortex-lattice method and accounts for separation at sharp tips and leading edges. The shapes of the wakes emanating from the edges are predicted, and hence the nonlinear characteristics are calculated. Parallelogram and delta wings are presented as numerical examples. The numerical results are in good agreement with the experimental data.
Optimal design for nonlinear response models
Fedorov, Valerii V
2013-01-01
Optimal Design for Nonlinear Response Models discusses the theory and applications of model-based experimental design with a strong emphasis on biopharmaceutical studies. The book draws on the authors' many years of experience in academia and the pharmaceutical industry. While the focus is on nonlinear models, the book begins with an explanation of the key ideas, using linear models as examples. Applying the linearization in the parameter space, it then covers nonlinear models and locally optimal designs as well as minimax, optimal on average, and Bayesian designs. The authors also discuss ada
Prediction of municipal solid waste generation using nonlinear autoregressive network.
Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Maulud, K N A
2015-12-01
Most of the developing countries have solid waste management problems. Solid waste strategic planning requires accurate prediction of the quality and quantity of the generated waste. In developing countries, such as Malaysia, the solid waste generation rate is increasing rapidly, due to population growth and new consumption trends that characterize society. This paper proposes an artificial neural network (ANN) approach using feedforward nonlinear autoregressive network with exogenous inputs (NARX) to predict annual solid waste generation in relation to demographic and economic variables like population number, gross domestic product, electricity demand per capita and employment and unemployment numbers. In addition, variable selection procedures are also developed to select a significant explanatory variable. The model evaluation was performed using coefficient of determination (R(2)) and mean square error (MSE). The optimum model that produced the lowest testing MSE (2.46) and the highest R(2) (0.97) had three inputs (gross domestic product, population and employment), eight neurons and one lag in the hidden layer, and used Fletcher-Powell's conjugate gradient as the training algorithm.
Prediction of the nonlinear creep deformation of plastic products
Spoormaker, Jan; Skrypnyk, Ihor; Heidweiller, Anton
2015-01-01
Based on an example of the non-linear creep deformations of an air inlet, thispaper demonstrates modern capabilities in the FEA modeling of complex 3D visco-elastic deformations in relation to the design of plastic products. The importance of such capabilities for designing complex plastic components is discussed. Because commercial FEA packages do not yet render these capabilities "off the shelf", the non-linear visco-elasticity model is incorporated through a user subroutine. The specifics ...
Completely integrable models of nonlinear optics
Indian Academy of Sciences (India)
Andrey I Maimistov
2001-11-01
The models of the nonlinear optics in which solitons appeared are considered. These models are of paramount importance in studies of nonlinear wave phenomena. The classical examples of phenomena of this kind are the self-focusing, self-induced transparency and parametric interaction of three waves. At present there are a number of theories based on completely integrable systems of equations, which are, both, generations of the original known models and new ones. The modiﬁed Korteweg-de Vries equation, the nonlinear Schrödinger equation, the derivative nonlinear Schrödinger equation, Sine–Gordon equation, the reduced Maxwell–Bloch equation, Hirota equation, the principal chiral ﬁeld equations, and the equations of massive Thirring model are some soliton equations, which are usually to be found in nonlinear optics theory.
TF/TA2 trajectory tracking using nonlinear predictive control approach
Institute of Scientific and Technical Information of China (English)
Tang Qiang; Zhang Xinguo; Liu Xicheng
2006-01-01
The use of a methodology of nonlinear continuous predictive control to design the guidance control law for the aircraft TF/TA2 trajectory tracking problem is emplojed. For the derivation of the predictive control law, by using Taylor series expansion, and based on optimizing a performance index which is a quadratic function of both the predictive value of the state variables and the control inputs, a state variable feedback controller for nonlinear systems is obtained, and it provides a tradeoff between satisfactory tracking performance and the control magnitude requirements. Numerical simulation results for a supersonic fighter aircraft model show the viability of this approach.
Designing Experiments for Nonlinear Models - An Introduction
Johnson, Rachel T.; Montgomery, Douglas C.
2009-01-01
The article of record as published may be found at http://dx.doi.org/10.1002/qre.1063 We illustrate the construction of Bayesian D-optimal designs for nonlinear models and compare the relative efficiency of standard designs with these designs for several models and prior distributions on the parameters. Through a relative efficiency analysis, we show that standard designs can perform well in situations where the nonlinear model is intrinsically linear. However, if the model is non...
A new method of determining the optimal embedding dimension based on nonlinear prediction
Institute of Scientific and Technical Information of China (English)
Meng Qing-Fang; Peng Yu-Hua; Xue Pei-Jun
2007-01-01
A new method is proposed to determine the optimal embedding dimension from a scalar time series in this paper. This method determines the optimal embedding dimension by optimizing the nonlinear autoregressive prediction model parameterized by the embedding dimension and the nonlinear degree. Simulation results show the effectiveness of this method. And this method is applicable to a short time series, stable to noise, computationally efficient, and without any purposely introduced parameters.
Functional uniform priors for nonlinear modeling.
Bornkamp, Björn
2012-09-01
This article considers the topic of finding prior distributions when a major component of the statistical model depends on a nonlinear function. Using results on how to construct uniform distributions in general metric spaces, we propose a prior distribution that is uniform in the space of functional shapes of the underlying nonlinear function and then back-transform to obtain a prior distribution for the original model parameters. The primary application considered in this article is nonlinear regression, but the idea might be of interest beyond this case. For nonlinear regression the so constructed priors have the advantage that they are parametrization invariant and do not violate the likelihood principle, as opposed to uniform distributions on the parameters or the Jeffrey's prior, respectively. The utility of the proposed priors is demonstrated in the context of design and analysis of nonlinear regression modeling in clinical dose-finding trials, through a real data example and simulation.
Sensor fusion and nonlinear prediction for anomalous event detection
Energy Technology Data Exchange (ETDEWEB)
Hernandez, J.V.; Moore, K.R.; Elphic, R.C.
1995-03-07
The authors consider the problem of using the information from various time series, each one characterizing a different physical quantity, to predict the future state of the system and, based on that information, to detect and classify anomalous events. They stress the application of principal components analysis (PCA) to analyze and combine data from different sensors. They construct both linear and nonlinear predictors. In particular, for linear prediction the authors use the least-mean-square (LMS) algorithm and for nonlinear prediction they use both backpropagation (BP) networks and fuzzy predictors (FP). As an application, they consider the prediction of gamma counts from past values of electron and gamma counts recorded by the instruments of a high altitude satellite.
Modeling of Nonlinear Signal Distortion in Fiber-Optical Networks
Johannisson, Pontus
2013-01-01
A low-complexity model for signal quality prediction in a nonlinear fiber-optical network is developed. The model, which builds on the Gaussian noise model, takes into account the signal degradation caused by a combination of chromatic dispersion, nonlinear signal distortion, and amplifier noise. The center frequencies, bandwidths, and transmit powers can be chosen independently for each channel, which makes the model suitable for analysis and optimization of resource allocation, routing, and scheduling in large-scale optical networks applying flexible-grid wavelength-division multiplexing.
Non-linear finite element modeling
DEFF Research Database (Denmark)
Mikkelsen, Lars Pilgaard
The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...... on the governing equations and methods of implementing....
Fatigue Life Prediction of Metallic Materials Based on the Combined Nonlinear Ultrasonic Parameter
Zhang, Yuhua; Li, Xinxin; Wu, Zhenyong; Huang, Zhenfeng; Mao, Hanling
2017-07-01
The fatigue life prediction of metallic materials is always a tough problem that needs to be solved in the mechanical engineering field because it is very important for the secure service of mechanical components. In this paper, a combined nonlinear ultrasonic parameter based on the collinear wave mixing technique is applied for fatigue life prediction of a metallic material. Sweep experiments are first conducted to explore the influence of driving frequency on the interaction of two driving signals and the fatigue damage of specimens, and the amplitudes of sidebands at the difference frequency and sum frequency are tracked when the driving frequency changes. Then, collinear wave mixing tests are carried out on a pair of cylindrically notched specimens with different fatigue damage to explore the relationship between the fatigue damage and the relative nonlinear parameters. The experimental results show when the fatigue degree is below 65% the relative nonlinear parameter increases quickly, and the growth rate is approximately 130%. If the fatigue degree is above 65%, the increase in the relative nonlinear parameter is slow, which has a close relationship with the microstructure evolution of specimens. A combined nonlinear ultrasonic parameter is proposed to highlight the relationship of the relative nonlinear parameter and fatigue degree of specimens; the fatigue life prediction model is built based on the relationship, and the prediction error is below 3%, which is below the prediction error based on the relative nonlinear parameters at the difference and sum frequencies. Therefore, the combined nonlinear ultrasonic parameter using the collinear wave mixing method can effectively estimate the fatigue degree of specimens, which provides a fast and convenient method for fatigue life prediction.
Fatigue Life Prediction of Metallic Materials Based on the Combined Nonlinear Ultrasonic Parameter
Zhang, Yuhua; Li, Xinxin; Wu, Zhenyong; Huang, Zhenfeng; Mao, Hanling
2017-08-01
The fatigue life prediction of metallic materials is always a tough problem that needs to be solved in the mechanical engineering field because it is very important for the secure service of mechanical components. In this paper, a combined nonlinear ultrasonic parameter based on the collinear wave mixing technique is applied for fatigue life prediction of a metallic material. Sweep experiments are first conducted to explore the influence of driving frequency on the interaction of two driving signals and the fatigue damage of specimens, and the amplitudes of sidebands at the difference frequency and sum frequency are tracked when the driving frequency changes. Then, collinear wave mixing tests are carried out on a pair of cylindrically notched specimens with different fatigue damage to explore the relationship between the fatigue damage and the relative nonlinear parameters. The experimental results show when the fatigue degree is below 65% the relative nonlinear parameter increases quickly, and the growth rate is approximately 130%. If the fatigue degree is above 65%, the increase in the relative nonlinear parameter is slow, which has a close relationship with the microstructure evolution of specimens. A combined nonlinear ultrasonic parameter is proposed to highlight the relationship of the relative nonlinear parameter and fatigue degree of specimens; the fatigue life prediction model is built based on the relationship, and the prediction error is below 3%, which is below the prediction error based on the relative nonlinear parameters at the difference and sum frequencies. Therefore, the combined nonlinear ultrasonic parameter using the collinear wave mixing method can effectively estimate the fatigue degree of specimens, which provides a fast and convenient method for fatigue life prediction.
Neural Generalized Predictive Control of a non-linear Process
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole
1998-01-01
qualities. The controller is a non-linear version of the well-known generalized predictive controller developed in linear control theory. It involves minimization of a cost function which in the present case has to be done numerically. Therefore, we develop the numerical algorithms necessary in substantial...
Linear and non-linear bias: predictions versus measurements
Hoffmann, K.; Bel, J.; Gaztañaga, E.
2017-02-01
We study the linear and non-linear bias parameters which determine the mapping between the distributions of galaxies and the full matter density fields, comparing different measurements and predictions. Associating galaxies with dark matter haloes in the Marenostrum Institut de Ciències de l'Espai (MICE) Grand Challenge N-body simulation, we directly measure the bias parameters by comparing the smoothed density fluctuations of haloes and matter in the same region at different positions as a function of smoothing scale. Alternatively, we measure the bias parameters by matching the probability distributions of halo and matter density fluctuations, which can be applied to observations. These direct bias measurements are compared to corresponding measurements from two-point and different third-order correlations, as well as predictions from the peak-background model, which we presented in previous papers using the same data. We find an overall variation of the linear bias measurements and predictions of ˜5 per cent with respect to results from two-point correlations for different halo samples with masses between ˜1012and1015 h-1 M⊙ at the redshifts z = 0.0 and 0.5. Variations between the second- and third-order bias parameters from the different methods show larger variations, but with consistent trends in mass and redshift. The various bias measurements reveal a tight relation between the linear and the quadratic bias parameters, which is consistent with results from the literature based on simulations with different cosmologies. Such a universal relation might improve constraints on cosmological models, derived from second-order clustering statistics at small scales or higher order clustering statistics.
Ensemble prediction experiments using conditional nonlinear optimal perturbation
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Two methods for initialization of ensemble forecasts are compared, namely, singular vector (SV) and conditional nonlinear optimal perturbation (CNOP). The comparison is done for forecast lengths of up to 10 days with a three-level quasi-geostrophic (QG) atmospheric model in a perfect model scenario. Ten cases are randomly selected from 1982/1983 winter to 1993/1994 winter (from December to the following February). Anomaly correlation coefficient (ACC) is adopted as a tool to measure the quality of the predicted ensembles on the Northern Hemisphere 500 hPa geopotential height. The results show that the forecast quality of ensemble samples in which the first SV is replaced by CNOP is higher than that of samples composed of only SVs in the medium range, based on the occurrence of weather re-gime transitions in Northern Hemisphere after about four days. Besides, the reliability of ensemble forecasts is evaluated by the Rank Histograms. The above conclusions confirm and extend those reached earlier by the authors, which stated that the introduction of CNOP improves the forecast skill under the condition that the analysis error belongs to a kind of fast-growing error by using a barotropic QG model.
Ensemble prediction experiments using conditional nonlinear optimal perturbation
Institute of Scientific and Technical Information of China (English)
JIANG ZhiNa; MU Mu; WANG DongHai
2009-01-01
Two methods for initialization of ensemble forecasts are compared, namely, singular vector (SV) and conditional nonlinear optimal perturbation (CNOP). The comparison is done for forecast lengths of up to 10 days with a three-level quasi-geostrophic (QG) atmospheric model in a perfect model scenario. Ten cases are randomly selected from 1982/1983 winter to 1993/1994 winter (from 12 to the following February). Anomaly correlation coefficient (ACC) is adopted as a tool to measure the quality of the predicted ensembles on the Northern Hemisphere 500 hPa geopotential height. The results show that the forecast quality of ensemble samples in which the first SV is replaced by CNOP is higher than that of samples composed of only SVs in the medium range, based on the occurrence of weather re-gime transitions in Northern Hemisphere after about four days. Besides, the reliability of ensemble forecasts is evaluated by the Rank Histograms. The above conclusions confirm .and extend those reached earlier by the authors, which stated that the introduction of CNOP improves the forecast skill under the condition that the analysis error belongs to a kind of fast-growing error by using a barotropic QG model.
Nonlinear fastest growing perturbation and the first kind of predictability
Institute of Scientific and Technical Information of China (English)
MU; Mu
2001-01-01
［1］Jiao Jiujiu, Grey hydrogeologic system analysis and time series model, Survey Science and Technology (in Chinese), 1987,(10): 39-43.［2］Li Shuwen, Wang Baolai, Xiao Guoqiang, A compound model of grey and periodic scrape and its application in groundwater prediction, Journal of Hebei Institute of Architectural Science & Technology (in Chinese), 1992, (3): 246-251.［3］Wang Qingyin, Li Shuwen, Grey distributed parameter model and groundwater analog, Journal of Hebei Institute of Architectural Science & Technology (in Chinese), 1992, (3): 66-70.［4］Guo Chunqing, Xia Riyuan, Liu Zhenglin, Gray Systematic Theory and Methodological Study of Krast Groundwater Resources Evaluation (in Chinese), Beijing: Geological Publishing House, 1993, 3-60.［5］Wang Qingyin, Liu Kaidi, The Mathematical Method of Grey Systematic Theory and Its Application (in Chinese), Chengdu: Publishing House of Southwestern China University of Communication, 1990, 23-27.［6］Wang Qingyin, Wu Heqing, The concept of grey number and its property, in Proceedings of NAFIPS98, USA, 1998,45-49.［7］Givoli, D., Doukhovni, I., Finite element programming approach for contact problems with geometrical nonlinearity, Computers and Structures, 1996, (8): 31-41.［8］Li Shuwen, Wang Zhiqiang, Wu Qiang, The superiority of storage-centered finite element method in solving seepage problem, Coal Geology and Exploration (in Chinese), 1999, (5): 46-49.
Implementation of neural network based non-linear predictive control
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole
1999-01-01
of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...
Institute of Scientific and Technical Information of China (English)
赵洪山; 兰晓明; 周雪青
2013-01-01
This paper presented a multi-machine power system nonlinear excitation predictive control method which combined model predictive control and model reduction technology in order to tackle the problem that the optimal excitation control and the traditional proportional-integral-derivative (PID) excitation control could not consider the constraint of states and input of the system, and to reduce the complexity of the numerical calculation of high order dynamic model in nonlinear excitation predictive control. First, The theory of empirical Gramians balanced reduction was used to reduce the orders of power system nonlinear dynamic model to save the computing time of open-loop optimization of model predictive control. Then, it used the least-square residual of system input and output as the objection function, using reduced dynamic model as equivalent constraint and the change limits of system output and control input as unequivalent constrain to establish the excitation predictive control model based on reduced model. Next, the interior-point method was used to solve the optimal problem meanwhile to realize multi-step prediction. Finally, we took advantage of a four-machine power system to verify the effectiveness of the predictive control method. The simulation results show that nonlinear excitation predictive control method based on balanced reduced model for the multi-machine power systems can greatly shorten the optimization time, meanwhile maintain the voltage of generator terminals within the set points and improve the stability of power system.% 将预测控制与模型降阶技术相结合提出一种基于平衡降阶模型的多机电力系统非线性励磁预测控制方法，以解决最优励磁控制和传统比例积分微分励磁控制无法考虑系统复杂状态和控制输入约束的问题，并且降低非线性励磁预测控制高阶动态模型数值计算的复杂性。首先，利用经验Gramians 平衡降阶原理，对电力系统
Fredette, Luke; Dreyer, Jason T.; Rook, Todd E.; Singh, Rajendra
2016-06-01
The dynamic stiffness properties of automotive hydraulic bushings exhibit significant amplitude sensitivity which cannot be captured by linear time-invariant models. Quasi-linear and nonlinear models are therefore proposed with focus on the amplitude sensitivity in magnitude and loss angle spectra (up to 50 Hz). Since production bushing model parameters are unknown, dynamic stiffness tests and laboratory experiments are utilized to extract model parameters. Nonlinear compliance and resistance elements are incorporated, including their interactions in order to improve amplitude sensitive predictions. New solution approximations for the new nonlinear system equations refine the multi-term harmonic balance term method. Quasi-linear models yield excellent accuracy but cannot predict trends in amplitude sensitivity since they rely on available dynamic stiffness measurements. Nonlinear models containing both nonlinear resistance and compliance elements yield superior predictions to those of prior models (with a single nonlinearity) while also providing more physical insight. Suggestion for further work is briefly mentioned.
Nonlinear Resistivity for Magnetohydrodynamical Models
Lingam, Manasvi; Pfefferlé, David; Comisso, Luca; Bhattacharjee, Amitava
2016-01-01
A nonlinear current-dependent resistivity that accurately accounts for the collisional electron-ion momentum transfer rate is derived. It is shown that the Spitzer resistivity overestimates the resistivity in certain observationally relevant regimes. The nonlinear resistivity computed herein is a strictly decreasing function of the current, in contrast to some notable previous proposals. The relative importance of the new expression with respect to the well-established electron inertia and Hall terms is also examined. The subtle implications of this current-dependent resistivity are discussed in the context of plasma systems and phenomena such as magnetic reconnection.
A nonlinear viscoelastic constitutive equation - Yield predictions in multiaxial deformations
Shay, R. M., Jr.; Caruthers, J. M.
1987-01-01
Yield stress predictions of a nonlinear viscoelastic constitutive equation for amorphous polymer solids have been obtained and are compared with the phenomenological von Mises yield criterion. Linear viscoelasticity theory has been extended to include finite strains and a material timescale that depends on the instantaneous temperature, volume, and pressure. Results are presented for yield and the correct temperature and strain-rate dependence in a variety of multiaxial deformations. The present nonlinear viscoelastic constitutive equation can be formulated in terms of either a Cauchy or second Piola-Kirchhoff stress tensor, and in terms of either atmospheric or hydrostatic pressure.
Nonlinear local Lyapunov exponent and atmospheric predictability research
Institute of Scientific and Technical Information of China (English)
CHEN; Baohua; LI; Jianping; DING; Ruiqiang
2006-01-01
Because atmosphere itself is a nonlinear system and there exist some problems using the linearized equations to study the initial error growth, in this paper we try to use the error nonlinear growth theory to discuss its evolution, based on which we first put forward a new concept: nonlinear local Lyapunov exponent. It is quite different from the classic Lyapunov exponent because it may characterize the finite time error local average growth and its value depends on the initial condition,initial error, variables, evolution time, temporal and spatial scales. Based on its definition and the atmospheric features, we provide a reasonable algorithm to the exponent for the experimental data,obtain the atmospheric initial error growth in finite time and gain the maximal prediction time. Lastly,taking 500 hPa height field as example, we discuss the application of the nonlinear local Lyapunov exponent in the study of atmospheric predictability and get some reliable results: atmospheric predictability has a distinct spatial structure. Overall, predictability shows a zonal distribution. Prediction time achieves the maximum over tropics, the second near the regions of Antarctic, it is also longer next to the Arctic and in subtropics and the mid-latitude the predictability is lowest. Particularly speaking, the average prediction time near the equation is 12 days and the maximum is located in the tropical Indian, Indonesia and the neighborhood, tropical eastern Pacific Ocean, on these regions the prediction time is about two weeks. Antarctic has a higher predictability than the neighboring latitudes and the prediction time is about 9 days. This feature is more obvious on Southern Hemispheric summer. In Arctic, the predictability is also higher than the one over mid-high latitudes but it is not pronounced as in Antarctic. Mid-high latitude of both Hemispheres (30°S-60°S, 30°-60°N) have the lowest predictability and the mean prediction time is just 3-4 d. In addition
PCI-SS: MISO dynamic nonlinear protein secondary structure prediction
Directory of Open Access Journals (Sweden)
Aboul-Magd Mohammed O
2009-07-01
Full Text Available Abstract Background Since the function of a protein is largely dictated by its three dimensional configuration, determining a protein's structure is of fundamental importance to biology. Here we report on a novel approach to determining the one dimensional secondary structure of proteins (distinguishing α-helices, β-strands, and non-regular structures from primary sequence data which makes use of Parallel Cascade Identification (PCI, a powerful technique from the field of nonlinear system identification. Results Using PSI-BLAST divergent evolutionary profiles as input data, dynamic nonlinear systems are built through a black-box approach to model the process of protein folding. Genetic algorithms (GAs are applied in order to optimize the architectural parameters of the PCI models. The three-state prediction problem is broken down into a combination of three binary sub-problems and protein structure classifiers are built using 2 layers of PCI classifiers. Careful construction of the optimization, training, and test datasets ensures that no homology exists between any training and testing data. A detailed comparison between PCI and 9 contemporary methods is provided over a set of 125 new protein chains guaranteed to be dissimilar to all training data. Unlike other secondary structure prediction methods, here a web service is developed to provide both human- and machine-readable interfaces to PCI-based protein secondary structure prediction. This server, called PCI-SS, is available at http://bioinf.sce.carleton.ca/PCISS. In addition to a dynamic PHP-generated web interface for humans, a Simple Object Access Protocol (SOAP interface is added to permit invocation of the PCI-SS service remotely. This machine-readable interface facilitates incorporation of PCI-SS into multi-faceted systems biology analysis pipelines requiring protein secondary structure information, and greatly simplifies high-throughput analyses. XML is used to represent the input
Model Updating Nonlinear System Identification Toolbox Project
National Aeronautics and Space Administration — ZONA Technology proposes to develop an enhanced model updating nonlinear system identification (MUNSID) methodology by adopting the flight data with state-of-the-art...
Comparing coefficients of nested nonlinear probability models
DEFF Research Database (Denmark)
Kohler, Ulrich; Karlson, Kristian Bernt; Holm, Anders
2011-01-01
In a series of recent articles, Karlson, Holm and Breen have developed a method for comparing the estimated coeffcients of two nested nonlinear probability models. This article describes this method and the user-written program khb that implements the method. The KHB-method is a general decomposi......In a series of recent articles, Karlson, Holm and Breen have developed a method for comparing the estimated coeffcients of two nested nonlinear probability models. This article describes this method and the user-written program khb that implements the method. The KHB-method is a general...... decomposition method that is unaffected by the rescaling or attenuation bias that arise in cross-model comparisons in nonlinear models. It recovers the degree to which a control variable, Z, mediates or explains the relationship between X and a latent outcome variable, Y*, underlying the nonlinear probability...
On a Nonlinear Model in Adiabatic Evolutions
Sun, Jie; Lu, Song-Feng
2016-08-01
In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using. Supported by the National Natural Science Foundation of China under Grant Nos. 61402188 and 61173050. The first author also gratefully acknowledges the support from the China Postdoctoral Science Foundation under Grant No. 2014M552041
Computational Models for Nonlinear Aeroelastic Systems Project
National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate a new and efficient computational method of modeling nonlinear aeroelastic systems. The...
An Improved Nonlinear Five-Point Model for Photovoltaic Modules
Directory of Open Access Journals (Sweden)
Sakaros Bogning Dongue
2013-01-01
Full Text Available This paper presents an improved nonlinear five-point model capable of analytically describing the electrical behaviors of a photovoltaic module for each generic operating condition of temperature and solar irradiance. The models used to replicate the electrical behaviors of operating PV modules are usually based on some simplified assumptions which provide convenient mathematical model which can be used in conventional simulation tools. Unfortunately, these assumptions cause some inaccuracies, and hence unrealistic economic returns are predicted. As an alternative, we used the advantages of a nonlinear analytical five-point model to take into account the nonideal diode effects and nonlinear effects generally ignored, which PV modules operation depends on. To verify the capability of our method to fit PV panel characteristics, the procedure was tested on three different panels. Results were compared with the data issued by manufacturers and with the results obtained using the five-parameter model proposed by other authors.
Non-linear Loudspeaker Unit Modelling
DEFF Research Database (Denmark)
Pedersen, Bo Rohde; Agerkvist, Finn T.
2008-01-01
Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of three...... frequencies and different displacement levels. The model errors are discussed and analysed including a test with loudspeaker unit where the diaphragm is removed....
Identifying nonlinear biomechanical models by multicriteria analysis
Srdjevic, Zorica; Cveticanin, Livija
2012-02-01
In this study, the methodology developed by Srdjevic and Cveticanin (International Journal of Industrial Ergonomics 34 (2004) 307-318) for the nonbiased (objective) parameter identification of the linear biomechanical model exposed to vertical vibrations is extended to the identification of n-degree of freedom (DOF) nonlinear biomechanical models. The dynamic performance of the n-DOF nonlinear model is described in terms of response functions in the frequency domain, such as the driving-point mechanical impedance and seat-to-head transmissibility function. For randomly generated parameters of the model, nonlinear equations of motion are solved using the Runge-Kutta method. The appropriate data transformation from the time-to-frequency domain is performed by a discrete Fourier transformation. Squared deviations of the response functions from the target values are used as the model performance evaluation criteria, thus shifting the problem into the multicriteria framework. The objective weights of criteria are obtained by applying the Shannon entropy concept. The suggested methodology is programmed in Pascal and tested on a 4-DOF nonlinear lumped parameter biomechanical model. The identification process over the 2000 generated sets of parameters lasts less than 20 s. The model response obtained with the imbedded identified parameters correlates well with the target values, therefore, justifying the use of the underlying concept and the mathematical instruments and numerical tools applied. It should be noted that the identified nonlinear model has an improved accuracy of the biomechanical response compared to the accuracy of a linear model.
Modeling and study of nonlinear effects in electrodynamic shakers
Saraswat, Abhishek; Tiwari, Nachiketa
2017-02-01
An electrodynamic shaker is inherently a nonlinear electro-mechanical system. In this work, we have developed a lumped parameter model for the entire electromechanical system, developed an approach to non-destructively determine these parameters, and predict the nonlinear response of the shaker. This predicted response has been validated using experimental data. Through such an approach, we have been able to accurately predict the resulting distortions in the response of the shaker and other nonlinear effects like DC offset in the displacement response. Our approach offers a key advantage vis-à-vis other approaches which rely on techniques involving Volterra Series expansions or techniques based on blackbox models like neural networks, which is that in our approach, apart from predicting the response of the shaker, the model parameters obtained have a physical significance and changes in the parameters can be directly mapped to modification in key design parameters of the shaker. The proposed approach is also advantageous in one more way: it requires measurement of only four parameters, voltage, current, displacement and acceleration for estimating shaker model parameters non-destructively. The proposed model can be used for the design of linearization controllers, prototype testing and simulation of new shaker designs as well as for performance prediction of shakers under testing conditions.
Nonlinear diffusion model for Rayleigh-Taylor mixing.
Boffetta, G; De Lillo, F; Musacchio, S
2010-01-22
The complex evolution of turbulent mixing in Rayleigh-Taylor convection is studied in terms of eddy diffusivity models for the mean temperature profile. It is found that a nonlinear model, derived within the general framework of Prandtl mixing theory, reproduces accurately the evolution of turbulent profiles obtained from numerical simulations. Our model allows us to give very precise predictions for the turbulent heat flux and for the Nusselt number in the ultimate state regime of thermal convection.
Nonlinear diffusion model for Rayleigh-Taylor mixing
Boffetta, G; Musacchio, S
2010-01-01
The complex evolution of turbulent mixing in Rayleigh-Taylor convection is studied in terms of eddy diffusiviy models for the mean temperature profile. It is found that a non-linear model, derived within the general framework of Prandtl mixing theory, reproduces accurately the evolution of turbulent profiles obtained from numerical simulations. Our model allows to give very precise predictions for the turbulent heat flux and for the Nusselt number in the ultimate state regime of thermal convection.
Nonlinear Dynamic Model Explains The Solar Dynamic
Kuman, Maria
Nonlinear mathematical model in torus representation describes the solar dynamic. Its graphic presentation shows that without perturbing force the orbits of the planets would be circles; only perturbing force could elongate the circular orbits into ellipses. Since the Hubble telescope found that the planetary orbits of other stars in the Milky Way are also ellipses, powerful perturbing force must be present in our galaxy. Such perturbing force is the Sagittarius Dwarf Galaxy with its heavy Black Hole and leftover stars, which we see orbiting around the center of our galaxy. Since observations of NASA's SDO found that magnetic fields rule the solar activity, we can expect when the planets align and their magnetic moments sum up, the already perturbed stars to reverse their magnetic parity (represented graphically as periodic looping through the hole of the torus). We predict that planets aligned on both sides of the Sun, when their magnetic moments sum-up, would induce more flares in the turbulent equatorial zone, which would bulge. When planets align only on one side of the Sun, the strong magnetic gradient of their asymmetric pull would flip the magnetic poles of the Sun. The Sun would elongate pole-to-pole, emit some energy through the poles, and the solar activity would cease. Similar reshaping and emission was observed in stars called magnetars and experimentally observed in super-liquid fast-spinning Helium nanodroplets. We are certain that NASA's SDO will confirm our predictions.
Nonlinear optical model for strip plasmonic waveguides
DEFF Research Database (Denmark)
Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei
2016-01-01
This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core...... significantly depends on the layer thickness and has the dominant contribution to the effective third-order susceptibility of the long-range plasmon polariton mode. This results in two nonlinear optical effects in plasmonic waveguides, which we experimentally observed and reported in [Opt. Lett. 41, 317 (2016......)]. The first effect is the nonlinear power saturation of the plasmonic mode, and the second effect is the spectral broadening of the plasmonic mode. Both nonlinear plasmonic effects can be used for practical applications and their appropriate model will be important for further developments in communication...
Yu, Shukai; Talbayev, Diyar
2016-01-01
We present an experimental and computational study of the nonlinear optical response of conduction electrons to intense terahertz (THz) electric field. Our observations (saturable absorption and an amplitude-dependent group refractive index) can be understood on the qualitative level as the breakdown of the effective mass approximation. However, a predictive theoretical description of the nonlinearity has been missing. We propose a model based on the semiclassical electron dynamics, a realistic band structure, and the free electron Drude parameters to accurately calculate the experimental observables in InSb. Our results open a path to predictive modeling of the conduction-electron optical nonlinearity in semiconductors, metamaterials, as well as high-field effects in THz plasmonics.
Energy Technology Data Exchange (ETDEWEB)
Prill, Dennis; Class, Andreas G. [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). AREVA Nuclear Professional School (ANPS)
2013-07-01
Unexpected non-linear boiling water reactor (BWR) instability events in various plants, e.g. LaSalle II in 1988 and Oskarshamn II in 1990 amongst others, emphasize the major safety relevance and the existence of parameter regions with unstable behavior. A detailed description of the complete dynamical non-linear behavior is of paramount importance for BWR operation. An extension of state-of-the-art methodology towards a more general stability description, also applicable in the non-linear region, could lead to a deeper understanding of non-linear BWR stability phenomena. With the intention of a full non-linear stability analysis of the two-phase BWR system, the present paper aims at a general non-linear methodology capable to achieve reliable and numerical stable reduced order models (ROMs), representing the dynamical behavior of an original system based on a small number of transients. Model-specific options and aspects of the proposed methodology are focused on and illustrated by means of a strongly non-linear dynamical system showing complex oscillating behavior. Prediction capability of the proposed methodology is also addressed. (orig.)
Topological approximation of the nonlinear Anderson model
Milovanov, Alexander V.; Iomin, Alexander
2014-06-01
We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t →+∞. The second moment of the associated probability distribution grows with time as a power law ∝ tα, with the exponent α =1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the
Nonlinear modeling of an aerospace object dynamics
Davydov, I. E.; Davydov, E. I.
2017-01-01
Here are presented the scientific results, obtained by motion modeling of complicated technical systems of aerospace equipment with consideration of nonlinearities. Computerized panel that allows to measure mutual influence of the system's motion and stabilization device with consideration of its real characteristics has been developed. Analysis of motion stability of a system in general has been carried out and time relationships of the system's motion taking in account nonlinearities are presented.
Identification of a Class of Non-linear State Space Models using RPE Techniques
DEFF Research Database (Denmark)
Zhou, Wei-Wu; Blanke, Mogens
1989-01-01
The RPE (recursive prediction error) method in state-space form is developed in the nonlinear systems and extended to include the exact form of a nonlinearity, thus enabling structure preservation for certain classes of nonlinear systems. Both the discrete and the continuous-discrete versions...... of the algorithm in an innovations model are investigated, and a nonlinear simulation example shows a quite convincing performance of the filter as combined parameter and state estimator...
On the nonlinear modeling of ring oscillators
Elwakil, Ahmed S.
2009-06-01
We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.
Correlations and Non-Linear Probability Models
DEFF Research Database (Denmark)
Breen, Richard; Holm, Anders; Karlson, Kristian Bernt
2014-01-01
the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....
Predicting catastrophes in nonlinear dynamical systems by compressive sensing.
Wang, Wen-Xu; Yang, Rui; Lai, Ying-Cheng; Kovanis, Vassilios; Grebogi, Celso
2011-04-15
An extremely challenging problem of significant interest is to predict catastrophes in advance of their occurrences. We present a general approach to predicting catastrophes in nonlinear dynamical systems under the assumption that the system equations are completely unknown and only time series reflecting the evolution of the dynamical variables of the system are available. Our idea is to expand the vector field or map of the underlying system into a suitable function series and then to use the compressive-sensing technique to accurately estimate the various terms in the expansion. Examples using paradigmatic chaotic systems are provided to demonstrate our idea.
Predicting catastrophes in nonlinear dynamical systems by compressive sensing
Wang, Wen-Xu; Lai, Ying-Cheng; Kovanis, Vassilios; Grebogi, Celso
2011-01-01
An extremely challenging problem of significant interest is to predict catastrophes in advance of their occurrences. We present a general approach to predicting catastrophes in nonlinear dynamical systems under the assumption that the system equations are completely unknown and only time series reflecting the evolution of the dynamical variables of the system are available. Our idea is to expand the vector field or map of the underlying system into a suitable function series and then to use the compressive-sensing technique to accurately estimate the various terms in the expansion. Examples using paradigmatic chaotic systems are provided to demonstrate our idea.
Nonlinear system PID-type multi-step predictive control
Institute of Scientific and Technical Information of China (English)
Yan ZHANG; Zengqiang CHEN; Zhuzhi YUAN
2004-01-01
A compound neural network was constructed during the process of identification and multi-step prediction. Under the PlD-type long-range predictive cost function, the control signal was calculated based on gradient algorithm. The nonlinear controller' s structure was similar to the conventional PID controller. The parameters of this controller were tuned by using a local recurrent neural network on-line. The controller has a better effect than the conventional PID controller. Simulation study shows the effectiveness and good performance.
Adaptive modeling of shallow fully nonlinear gravity waves
Dutykh, Denys; Mitsotakis, Dimitrios
2014-01-01
This paper presents an extended version of the celebrated Serre-Green-Naghdi (SGN) system. This extension is based on the well-known Bona-Smith-Nwogu trick which aims to improve the linear dispersion properties. We show that in the fully nonlinear setting it results in modifying the vertical acceleration. Even if this technique is well-known, the effect of this modification on the nonlinear properties of the model is not clear. The first goal of this study is to shed some light on the properties of solitary waves, as the most important class of nonlinear permanent solutions. Then, we propose a simple adaptive strategy to choose the optimal value of the free parameter at every instance of time. This strategy is validated by comparing the model prediction with the reference solutions of the full Euler equations and its classical counterpart. Numerical simulations show that the new adaptive model provides a much better accuracy for the same computational complexity.
Validating a quasi-linear transport model versus nonlinear simulations
Casati, A.; Bourdelle, C.; Garbet, X.; Imbeaux, F.; Candy, J.; Clairet, F.; Dif-Pradalier, G.; Falchetto, G.; Gerbaud, T.; Grandgirard, V.; Gürcan, Ö. D.; Hennequin, P.; Kinsey, J.; Ottaviani, M.; Sabot, R.; Sarazin, Y.; Vermare, L.; Waltz, R. E.
2009-08-01
In order to gain reliable predictions on turbulent fluxes in tokamak plasmas, physics based transport models are required. Nonlinear gyrokinetic electromagnetic simulations for all species are still too costly in terms of computing time. On the other hand, interestingly, the quasi-linear approximation seems to retain the relevant physics for fairly reproducing both experimental results and nonlinear gyrokinetic simulations. Quasi-linear fluxes are made of two parts: (1) the quasi-linear response of the transported quantities and (2) the saturated fluctuating electrostatic potential. The first one is shown to follow well nonlinear numerical predictions; the second one is based on both nonlinear simulations and turbulence measurements. The resulting quasi-linear fluxes computed by QuaLiKiz (Bourdelle et al 2007 Phys. Plasmas 14 112501) are shown to agree with the nonlinear predictions when varying various dimensionless parameters, such as the temperature gradients, the ion to electron temperature ratio, the dimensionless collisionality, the effective charge and ranging from ion temperature gradient to trapped electron modes turbulence.
Wang, Dong; Zhao, Yang; Yang, Fangfang; Tsui, Kwok-Leung
2017-09-01
Brownian motion with adaptive drift has attracted much attention in prognostics because its first hitting time is highly relevant to remaining useful life prediction and it follows the inverse Gaussian distribution. Besides linear degradation modeling, nonlinear-drifted Brownian motion has been developed to model nonlinear degradation. Moreover, the first hitting time distribution of the nonlinear-drifted Brownian motion has been approximated by time-space transformation. In the previous studies, the drift coefficient is the only hidden state used in state space modeling of the nonlinear-drifted Brownian motion. Besides the drift coefficient, parameters of a nonlinear function used in the nonlinear-drifted Brownian motion should be treated as additional hidden states of state space modeling to make the nonlinear-drifted Brownian motion more flexible. In this paper, a prognostic method based on nonlinear-drifted Brownian motion with multiple hidden states is proposed and then it is applied to predict remaining useful life of rechargeable batteries. 26 sets of rechargeable battery degradation samples are analyzed to validate the effectiveness of the proposed prognostic method. Moreover, some comparisons with a standard particle filter based prognostic method, a spherical cubature particle filter based prognostic method and two classic Bayesian prognostic methods are conducted to highlight the superiority of the proposed prognostic method. Results show that the proposed prognostic method has lower average prediction errors than the particle filter based prognostic methods and the classic Bayesian prognostic methods for battery remaining useful life prediction.
Discussion About Nonlinear Time Series Prediction Using Least Squares Support Vector Machine
Institute of Scientific and Technical Information of China (English)
XU Rui-Rui; BIAN Guo-Xing; GAO Chen-Feng; CHEN Tian-Lun
2005-01-01
The least squares support vector machine (LS-SVM) is used to study the nonlinear time series prediction.First, the parameter γ and multi-step prediction capabilities of the LS-SVM network are discussed. Then we employ clustering method in the model to prune the number of the support values. The learning rate and the capabilities of filtering noise for LS-SVM are all greatly improved.
A Novel Method for Prediction of Nonlinear Aeroelastic Responses
2010-01-01
Brian A. Freno Graduate Student, Texas A&M University Publications Journal articles: 1. Gargoloff, J. I. and Cizmas, P. G. A., “Mesh Generation and...papers: 1. Cizmas, P. G. A., Freno , B. A., Brenner, T. A., Worley, G. D., “A High-Fidelity Nonlinear Aeroelastic Model for Aircraft with Large Wing
Nonlinear Time Series Prediction Using Chaotic Neural Networks
Institute of Scientific and Technical Information of China (English)
LI KePing; CHEN TianLun
2001-01-01
A nonlinear feedback term is introduced into the evaluation equation of weights of the backpropagation algorithm for neural network, the network becomes a chaotic one. For the purpose of that we can investigate how the different feedback terms affect the process of learning and forecasting, we use the model to forecast the nonlinear time series which is produced by Makey-Glass equation. By selecting the suitable feedback term, the system can escape from the local minima and converge to the global minimum or its approximate solutions, and the forecasting results are better than those of backpropagation algorithm.``
Directory of Open Access Journals (Sweden)
A. Tata
2009-01-01
Full Text Available This paper presents a nonlinear finite element modeling and analysis of rectangular normal-strength reinforced concrete columns confined with transverse steel under axial compressive loading. In this study, the columns were modeled as discrete elements using ANSYS nonlinear finite element software. Concrete was modeled with 8-noded SOLID65 elements that can translate either in the x-, y-, or z-axis directions from ANSYS element library. Longitudinal and transverse steels were modeled as discrete elements using 3D-LINK8 bar elements available in the ANSYS element library. The nonlinear constitutive law of each material was also implemented in the model. The results indicate that the stress-strain relationships obtained from the analytical model using ANSYS are in good agreement with the experimental data. This has been confirmed with the insignificant difference between the analytical and experimental, i.e. 5.65 and 2.80 percent for the peak stress and the strain at the peak stress, respectively. The comparison shows that the ANSYS nonlinear finite element program is capable of modeling and predicting the actual nonlinear behavior of confined concrete column under axial loading. The actual stress-strain relationship, the strength gain and ductility improvement have also been confirmed to be satisfactorily.
Nonlinear dispersion effects in elastic plates: numerical modelling and validation
Kijanka, Piotr; Radecki, Rafal; Packo, Pawel; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.
2017-04-01
Nonlinear features of elastic wave propagation have attracted significant attention recently. The particular interest herein relates to complex wave-structure interactions, which provide potential new opportunities for feature discovery and identification in a variety of applications. Due to significant complexity associated with wave propagation in nonlinear media, numerical modeling and simulations are employed to facilitate design and development of new measurement, monitoring and characterization systems. However, since very high spatio- temporal accuracy of numerical models is required, it is critical to evaluate their spectral properties and tune discretization parameters for compromise between accuracy and calculation time. Moreover, nonlinearities in structures give rise to various effects that are not present in linear systems, e.g. wave-wave interactions, higher harmonics generation, synchronism and | recently reported | shifts to dispersion characteristics. This paper discusses local computational model based on a new HYBRID approach for wave propagation in nonlinear media. The proposed approach combines advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE). The methods are investigated in the context of their accuracy for predicting nonlinear wavefields, in particular shifts to dispersion characteristics for finite amplitude waves and secondary wavefields. The results are validated against Finite Element (FE) calculations for guided waves in copper plate. Critical modes i.e., modes determining accuracy of a model at given excitation frequency - are identified and guidelines for numerical model parameters are proposed.
Modeling of the vibrating beam accelerometer nonlinearities
Romanowski, P. A.; Knop, R. C.
Successful modeling and processing of the output of a quartz Vibrating Beam Accelerometer (VBA), whose errors are inherently nonlinear with respect to input acceleration, are reported. The VBA output, with two signals that are frequencies of vibrating quartz beams, has inherent higher-order terms. In order to avoid vibration rectification errors, the signal output must be sampled at a rapid rate and the output must be reduced using a nonlinear model. The present model, with acceleration as a function of frequency, is derived by a least-squares process where the covariance matrix is obtained from simulated data. The system performance is found to be acceptable to strategic levels, and it is shown that a vibration rectification error of 400 micrograms/sq g can be reduced to 4 micrograms/sq g by using the processor electronics and a nonlinear model.
Nonlinear observer design for a nonlinear string/cable FEM model using contraction theory
DEFF Research Database (Denmark)
Turkyilmaz, Yilmaz; Jouffroy, Jerome; Egeland, Olav
Contraction theory is a recently developed nonlinear analysis tool which may be useful for solving a variety of nonlinear control problems. In this paper, using Contraction theory, a nonlinear observer is designed for a general nonlinear cable/string FEM (Finite Element Method) model. The cable...
Nonlinear observer design for a nonlinear string/cable FEM model using contraction theory
DEFF Research Database (Denmark)
Turkyilmaz, Yilmaz; Jouffroy, Jerome; Egeland, Olav
Contraction theory is a recently developed nonlinear analysis tool which may be useful for solving a variety of nonlinear control problems. In this paper, using Contraction theory, a nonlinear observer is designed for a general nonlinear cable/string FEM (Finite Element Method) model. The cable...
Nonlinear modeling of neural population dynamics for hippocampal prostheses
Song, Dong; Chan, Rosa H.M.; Vasilis Z Marmarelis; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.
2009-01-01
Developing a neural prosthesis for the damaged hippocampus requires restoring the transformation of population neural activities performed by the hippocampal circuitry. To bypass a damaged region, output spike trains need to be predicted from the input spike trains and then reinstated through stimulation. We formulate a multiple-input, multiple-output (MIMO) nonlinear dynamic model for the input–output transformation of spike trains. In this approach, a MIMO model comprises a series of physio...
A Stochastic Nonlinear Water Wave Model for Efficient Uncertainty Quantification
Bigoni, Daniele; Eskilsson, Claes
2014-01-01
A major challenge in next-generation industrial applications is to improve numerical analysis by quantifying uncertainties in predictions. In this work we present a stochastic formulation of a fully nonlinear and dispersive potential flow water wave model for the probabilistic description of the evolution waves. This model is discretized using the Stochastic Collocation Method (SCM), which provides an approximate surrogate of the model. This can be used to accurately and efficiently estimate the probability distribution of the unknown time dependent stochastic solution after the forward propagation of uncertainties. We revisit experimental benchmarks often used for validation of deterministic water wave models. We do this using a fully nonlinear and dispersive model and show how uncertainty in the model input can influence the model output. Based on numerical experiments and assumed uncertainties in boundary data, our analysis reveals that some of the known discrepancies from deterministic simulation in compa...
Levy, R.; Mcginness, H.
1976-01-01
Investigations were performed to predict the power available from the wind at the Goldstone, California, antenna site complex. The background for power prediction was derived from a statistical evaluation of available wind speed data records at this location and at nearby locations similarly situated within the Mojave desert. In addition to a model for power prediction over relatively long periods of time, an interim simulation model that produces sample wind speeds is described. The interim model furnishes uncorrelated sample speeds at hourly intervals that reproduce the statistical wind distribution at Goldstone. A stochastic simulation model to provide speed samples representative of both the statistical speed distributions and correlations is also discussed.
A Nonlinear Model of Thermoacoustic Devices
Karpov, Sergey; Prosperetti, Andrea
2002-01-01
This paper presents a nonlinear, time-domain model of thermoacoustic devices based on cross-sectional averaged equations. Heat transfer perpendicular to the device axis - which lies at the core of thermoacoustic effects - is modeled in a novel and more realistic way. Heat conduction in the solid sur
Some Asymptotic Inference in Multinomial Nonlinear Models (a Geometric Approach)
Institute of Scientific and Technical Information of China (English)
WEIBOCHENG
1996-01-01
A geometric framework is proposed for multinomlat nonlinear modelsbased on a modified vemlon of the geometric structure presented by Bates & Watts[4]. We use this geometric framework to study some asymptotic inference in terms ofcurvtures for multlnomial nonlinear models. Our previous results [15] for ordlnary nonlinear regression models are extended to multlnomlal nonlinear models.
Bayesian parameter estimation for nonlinear modelling of biological pathways
Directory of Open Access Journals (Sweden)
Ghasemi Omid
2011-12-01
Full Text Available Abstract Background The availability of temporal measurements on biological experiments has significantly promoted research areas in systems biology. To gain insight into the interaction and regulation of biological systems, mathematical frameworks such as ordinary differential equations have been widely applied to model biological pathways and interpret the temporal data. Hill equations are the preferred formats to represent the reaction rate in differential equation frameworks, due to their simple structures and their capabilities for easy fitting to saturated experimental measurements. However, Hill equations are highly nonlinearly parameterized functions, and parameters in these functions cannot be measured easily. Additionally, because of its high nonlinearity, adaptive parameter estimation algorithms developed for linear parameterized differential equations cannot be applied. Therefore, parameter estimation in nonlinearly parameterized differential equation models for biological pathways is both challenging and rewarding. In this study, we propose a Bayesian parameter estimation algorithm to estimate parameters in nonlinear mathematical models for biological pathways using time series data. Results We used the Runge-Kutta method to transform differential equations to difference equations assuming a known structure of the differential equations. This transformation allowed us to generate predictions dependent on previous states and to apply a Bayesian approach, namely, the Markov chain Monte Carlo (MCMC method. We applied this approach to the biological pathways involved in the left ventricle (LV response to myocardial infarction (MI and verified our algorithm by estimating two parameters in a Hill equation embedded in the nonlinear model. We further evaluated our estimation performance with different parameter settings and signal to noise ratios. Our results demonstrated the effectiveness of the algorithm for both linearly and nonlinearly
Correlations and Non-Linear Probability Models
DEFF Research Database (Denmark)
Breen, Richard; Holm, Anders; Karlson, Kristian Bernt
2014-01-01
Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations betwee...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models.......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under...
STUDY ON PREDICTION METHODS FOR DYNAMIC SYSTEMS OF NONLINEAR CHAOTIC TIME SERIES
Institute of Scientific and Technical Information of China (English)
马军海; 陈予恕; 辛宝贵
2004-01-01
The prediction methods for nonlinear dynamic systems which are decided by chaotic time series are mainly studied as well as structures of nonlinear self-related chaotic models and their dimensions.By combining neural networks and wavelet theories,the structures of wavelet transform neural networks were studied and also a wavelet neural networks learning method was given.Based on wavelet networks,a new method for parameter identification was suggested,which can be used selectively to extract different scales of frequency and time in time series in order to realize prediction of tendencies or details of original time series.Through pre-treatment and comparison of results before and after the treatment,several useful conclusions are reached:High accurate identification can be guaranteed by applying wavelet networks to identify parameters of self-related chaotic models and more valid prediction of the chaotic time series including noise can be achieved accordingly.
Directory of Open Access Journals (Sweden)
Janser Moura Pereira
2005-08-01
Full Text Available This work was carried out to evaluate the statistical properties of eight nonlinear models used to predict nitrogen mineralization in soils of the Southern Minas Gerais State, Brazil. The parameter estimations for nonlinear models with and without structure of autoregressive errors was made by the least squares method. First, a structure of second order autoregressive errors, AR(2 was considered for all nonlinear models and then the significance of the autocorrelation parameters was verified. Among the models, the Juma presented an autocorrelation of second order, and the model of Broadbent presented one of first order. In summary, these models presented significant autocorrelation parameters. To estimate the parameters of nonlinear models, the SAS procedure MODEL was used (SAS. The comparison of the models was made by measuring the fitted parameters: adjusted R-square, mean square error and mean predicted error. The Juma model with AR(2 best fitted for nitrogen mineralization without liming, followed by Cabrera, Stanford & Smith without autoregressive errors, for both with and without soil acidity correction.Este trabalho teve por objetivo avaliar o grau do ajuste de oito modelos não lineares apresentados na literatura, utilizados para descrever a mineralização do nitrogênio em latossolo do sul de Minas Gerais incubado durante 28 semanas. A estimação dos parâmetros para os modelos de regressão não linear sem e com estrutura de erros autorregressivos foi feita pelo método de mínimos quadrados. A princípio, considerou-se para todos os modelos não lineares uma estrutura de erros autorregressivos de segunda ordem, AR(2 e, em seguida, verificou-se a significância dos parâmetros de autocorrelação. Apenas o modelo de Juma apresentou autocorrelação de segunda ordem, e o modelo de Broadbent apresentou autocorrelação de primeira ordem, ou seja, apenas estes modelos apresentaram parâmetros de autocorrelação significativos. Para
Nonlinear Dynamic Modeling of Langevin-Type Piezoelectric Transducers
Directory of Open Access Journals (Sweden)
Nicolás Peréz Alvarez
2015-11-01
Full Text Available Langevin transducers are employed in several applications, such as power ultrasound systems, naval hydrophones, and high-displacement actuators. Nonlinear effects can influence their performance, especially at high vibration amplitude levels. These nonlinear effects produce variations in the resonant frequency, harmonics of the excitation frequency, in addition to loss of symmetry in the frequency response and “frequency domain hysteresis”. In this context, this paper presents a simplified nonlinear dynamic model of power ultrasound transducers requiring only two parameters for simulating the most relevant nonlinear effects. One parameter reproduces the changes in the resonance frequency and the other introduces the dependence of the frequency response on the history of the system. The piezoelectric constitutive equations are extended by a linear dependence of the elastic constant on the mechanical displacement amplitude. For introducing the frequency hysteresis, the elastic constant is computed by combining the current value of the mechanical amplitude with the previous state amplitude. The model developed in this work is applied for predicting the dynamic responses of a 26 kHz ultrasonic transducer. The comparison of theoretical and experimental responses, obtained at several input voltages around the tuned frequency, shows a good agreement, indicating that the model can accurately describe the transducer nonlinear behavior.
Application of nonlinear forecasting techniques for meteorological modeling
Directory of Open Access Journals (Sweden)
V. Pérez-Muñuzuri
Full Text Available A nonlinear forecasting method was used to predict the behavior of a cloud coverage time series several hours in advance. The method is based on the reconstruction of a chaotic strange attractor using four years of cloud absorption data obtained from half-hourly Meteosat infrared images from Northwestern Spain. An exhaustive nonlinear analysis of the time series was carried out to reconstruct the phase space of the underlying chaotic attractor. The forecast values are used by a non-hydrostatic meteorological model ARPS for daily weather prediction and their results compared with surface temperature measurements from a meteorological station and a vertical sounding. The effect of noise in the time series is analyzed in terms of the prediction results.
Key words: Meterology and atmospheric dynamics (mesoscale meteorology; general – General (new fields
Prediction of biodegradation kinetics using a nonlinear group contribution method
Energy Technology Data Exchange (ETDEWEB)
Tabak, H.H. (Environmental Protection Agency, Cincinnati, OH (United States)); Govind, R. (Univ. of Cincinnati, OH (United States))
1993-02-01
The fate of organic chemicals in the environment depends on their susceptibility to biodegradation. Hence, development of regulations concerning their manufacture and use requires information on the extent and rate of biodegradation. Recent studies have attempted to correlate the kinetics of biodegradation with the molecular structure of the compound. This has led to the development of structure-biodegradation relationships (SBRs) using the group contribution approach. Each defined group present in the chemical structure of the compound is assigned a unique numerical contribution toward the calculation of the biodegradation kinetic constants. In this paper, a nonlinear group contribution method has been developed using neural networks; it is trained using literature data on the first-order biodegradation kinetic rate constant for a number of priority pollutants. The trained neural network is then used to predict the biodegradation kinetic constant for a new list of compounds, and results have been compared with the experimental values and the predictions obtained from a linear group contribution method. It has been shown that the nonlinear group contribution method using neural networks is able to provide a superior fit to the training set data and test data set and produce a lower prediction error than the previous linear method.
Perturbation analysis of nonlinear matrix population models
Directory of Open Access Journals (Sweden)
Hal Caswell
2008-03-01
Full Text Available Perturbation analysis examines the response of a model to changes in its parameters. It is commonly applied to population growth rates calculated from linear models, but there has been no general approach to the analysis of nonlinear models. Nonlinearities in demographic models may arise due to density-dependence, frequency-dependence (in 2-sex models, feedback through the environment or the economy, and recruitment subsidy due to immigration, or from the scaling inherent in calculations of proportional population structure. This paper uses matrix calculus to derive the sensitivity and elasticity of equilibria, cycles, ratios (e.g. dependency ratios, age averages and variances, temporal averages and variances, life expectancies, and population growth rates, for both age-classified and stage-classified models. Examples are presented, applying the results to both human and non-human populations.
Groundwater transport modeling with nonlinear sorption and intraparticle diffusion
Singh, Anshuman; Allen-King, Richelle M.; Rabideau, Alan J.
2014-08-01
Despite recent advances in the mechanistic understanding of sorption in groundwater systems, most contaminant transport models provide limited support for nonideal sorption processes such as nonlinear isotherms and/or diffusion-limited sorption. However, recent developments in the conceptualization of "dual mode" sorption for hydrophobic organic contaminants have provided more realistic and mechanistically sound alternatives to the commonly used Langmuir and Freundlich models. To support the inclusion of both nonlinear and diffusion-limited sorption processes in groundwater transport models, this paper presents two numerical algorithms based on the split operator approach. For the nonlinear equilibrium scenario, the commonly used two-step split operator algorithm has been modified to provide a more robust treatment of complex multi-parameter isotherms such as the Polanyi-partitioning model. For diffusion-limited sorption, a flexible three step split-operator procedure is presented to simulate intraparticle diffusion in multiple spherical particles with different sizes and nonlinear isotherms. Numerical experiments confirmed the accuracy of both algorithms for several candidate isotherms. However, the primary advantages of the algorithms are: (1) flexibility to accommodate any isotherm equation including "dual mode" and similar expressions, and (2) ease of adapting existing grid-based transport models of any dimensionality to include nonlinear sorption and/or intraparticle diffusion. Comparisons are developed for one-dimensional transport scenarios with different isotherms and particle configurations. Illustrative results highlight (1) the potential influence of isotherm model selection on solute transport predictions, and (2) the combined effects of intraparticle diffusion and nonlinear sorption on the plume transport and flushing for both single-particle and multi-particle scenarios.
Nonlinear control of the Salnikov model reaction
DEFF Research Database (Denmark)
Recke, Bodil; Jørgensen, Sten Bay
1999-01-01
This paper explores different nonlinear control schemes, applied to a simple model reaction. The model is the Salnikov model, consisting of two ordinary differential equations. The control strategies investigated are I/O-linearisation, Exact linearisation, exact linearisation combined with LQR...... and Control Lyapunov Functions (CLF's). The results show that based on the lowest possible cost function and shortest settling time, the exact linearisation performs marginally better than the other methods....
Nonlinear System Identification and Behavioral Modeling
Huq, Kazi Mohammed Saidul; Kabir, A F M Sultanul
2010-01-01
The problem of determining a mathematical model for an unknown system by observing its input-output data pair is generally referred to as system identification. A behavioral model reproduces the required behavior of the original analyzed system, such as there is a one-to-one correspondence between the behavior of the original system and the simulated system. This paper presents nonlinear system identification and behavioral modeling using a work assignment.
Nonlinear distortion in wireless systems modeling and simulation with Matlab
Gharaibeh, Khaled M
2011-01-01
This book covers the principles of modeling and simulation of nonlinear distortion in wireless communication systems with MATLAB simulations and techniques In this book, the author describes the principles of modeling and simulation of nonlinear distortion in single and multichannel wireless communication systems using both deterministic and stochastic signals. Models and simulation methods of nonlinear amplifiers explain in detail how to analyze and evaluate the performance of data communication links under nonlinear amplification. The book addresses the analysis of nonlinear systems
Robust Predictive Functional Control for Flight Vehicles Based on Nonlinear Disturbance Observer
Directory of Open Access Journals (Sweden)
Yinhui Zhang
2015-01-01
Full Text Available A novel robust predictive functional control based on nonlinear disturbance observer is investigated in order to address the control system design for flight vehicles with significant uncertainties, external disturbances, and measurement noise. Firstly, the nonlinear longitudinal dynamics of the flight vehicle are transformed into linear-like state-space equations with state-dependent coefficient matrices. And then the lumped disturbances are considered in the linear structure predictive model of the predictive functional control to increase the precision of the predictive output and resolve the intractable mismatched disturbance problem. As the lumped disturbances cannot be derived or measured directly, the nonlinear disturbance observer is applied to estimate the lumped disturbances, which are then introduced to the predictive functional control to replace the unknown actual lumped disturbances. Consequently, the robust predictive functional control for the flight vehicle is proposed. Compared with the existing designs, the effectiveness and robustness of the proposed flight control are illustrated and validated in various simulation conditions.
Directory of Open Access Journals (Sweden)
E. L. Dmitrieva
2016-05-01
Full Text Available Basic peculiarities of nonlinear Kalman filtering algorithm applied to processing of interferometric signals are considered. Analytical estimates determining statistical characteristics of signal values prediction errors were obtained and analysis of errors histograms taking into account variations of different parameters of interferometric signal was carried out. Modeling of the signal prediction procedure with known fixed parameters and variable parameters of signal in the algorithm of nonlinear Kalman filtering was performed. Numerical estimates of prediction errors for interferometric signal values were obtained by formation and analysis of the errors histograms under the influence of additive noise and random variations of amplitude and frequency of interferometric signal. Nonlinear Kalman filter is shown to provide processing of signals with randomly variable parameters, however, it does not take into account directly the linearization error of harmonic function representing interferometric signal that is a filtering error source. The main drawback of the linear prediction consists in non-Gaussian statistics of prediction errors including cases of random deviations of signal amplitude and/or frequency. When implementing stochastic filtering of interferometric signals, it is reasonable to use prediction procedures based on local statistics of a signal and its parameters taken into account.
Model Reduction of Nonlinear Aeroelastic Systems Experiencing Hopf Bifurcation
Abdelkefi, Abdessattar
2013-06-18
In this paper, we employ the normal form to derive a reduced - order model that reproduces nonlinear dynamical behavior of aeroelastic systems that undergo Hopf bifurcation. As an example, we consider a rigid two - dimensional airfoil that is supported by nonlinear springs in the pitch and plunge directions and subjected to nonlinear aerodynamic loads. We apply the center manifold theorem on the governing equations to derive its normal form that constitutes a simplified representation of the aeroelastic sys tem near flutter onset (manifestation of Hopf bifurcation). Then, we use the normal form to identify a self - excited oscillator governed by a time - delay ordinary differential equation that approximates the dynamical behavior while reducing the dimension of the original system. Results obtained from this oscillator show a great capability to predict properly limit cycle oscillations that take place beyond and above flutter as compared with the original aeroelastic system.
Nonlinearity detection in hyperspectral images using a polynomial post-nonlinear mixing model.
Altmann, Yoann; Dobigeon, Nicolas; Tourneret, Jean-Yves
2013-04-01
This paper studies a nonlinear mixing model for hyperspectral image unmixing and nonlinearity detection. The proposed model assumes that the pixel reflectances are nonlinear functions of pure spectral components contaminated by an additive white Gaussian noise. These nonlinear functions are approximated by polynomials leading to a polynomial post-nonlinear mixing model. We have shown in a previous paper that the parameters involved in the resulting model can be estimated using least squares methods. A generalized likelihood ratio test based on the estimator of the nonlinearity parameter is proposed to decide whether a pixel of the image results from the commonly used linear mixing model or from a more general nonlinear mixing model. To compute the test statistic associated with the nonlinearity detection, we propose to approximate the variance of the estimated nonlinearity parameter by its constrained Cramér-Rao bound. The performance of the detection strategy is evaluated via simulations conducted on synthetic and real data. More precisely, synthetic data have been generated according to the standard linear mixing model and three nonlinear models from the literature. The real data investigated in this study are extracted from the Cuprite image, which shows that some minerals seem to be nonlinearly mixed in this image. Finally, it is interesting to note that the estimated abundance maps obtained with the post-nonlinear mixing model are in good agreement with results obtained in previous studies.
Nonlinear GARCH model and 1 / f noise
Kononovicius, A.; Ruseckas, J.
2015-06-01
Auto-regressive conditionally heteroskedastic (ARCH) family models are still used, by practitioners in business and economic policy making, as a conditional volatility forecasting models. Furthermore ARCH models still are attracting an interest of the researchers. In this contribution we consider the well known GARCH(1,1) process and its nonlinear modifications, reminiscent of NGARCH model. We investigate the possibility to reproduce power law statistics, probability density function and power spectral density, using ARCH family models. For this purpose we derive stochastic differential equations from the GARCH processes in consideration. We find the obtained equations to be similar to a general class of stochastic differential equations known to reproduce power law statistics. We show that linear GARCH(1,1) process has power law distribution, but its power spectral density is Brownian noise-like. However, the nonlinear modifications exhibit both power law distribution and power spectral density of the 1 /fβ form, including 1 / f noise.
Non-linear calibration models for near infrared spectroscopy.
Ni, Wangdong; Nørgaard, Lars; Mørup, Morten
2014-02-27
Different calibration techniques are available for spectroscopic applications that show nonlinear behavior. This comprehensive comparative study presents a comparison of different nonlinear calibration techniques: kernel PLS (KPLS), support vector machines (SVM), least-squares SVM (LS-SVM), relevance vector machines (RVM), Gaussian process regression (GPR), artificial neural network (ANN), and Bayesian ANN (BANN). In this comparison, partial least squares (PLS) regression is used as a linear benchmark, while the relationship of the methods is considered in terms of traditional calibration by ridge regression (RR). The performance of the different methods is demonstrated by their practical applications using three real-life near infrared (NIR) data sets. Different aspects of the various approaches including computational time, model interpretability, potential over-fitting using the non-linear models on linear problems, robustness to small or medium sample sets, and robustness to pre-processing, are discussed. The results suggest that GPR and BANN are powerful and promising methods for handling linear as well as nonlinear systems, even when the data sets are moderately small. The LS-SVM is also attractive due to its good predictive performance for both linear and nonlinear calibrations.
Variable structure control with sliding mode prediction for discrete-time nonlinear systems
Institute of Scientific and Technical Information of China (English)
Lingfei XIAO; Hongye SU; Xiaoyu ZHANG; Jian CHU
2006-01-01
A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining feedback correction and receding horizon optimization methods which are extensively applied on predictive control strategy, a discrete-time variable structure control law is constructed. The closed-loop systems are proved to have robustness to uncertainties with unspecified boundaries. Numerical simulation and pendulum experiment results illustrate that the closed-loop systems possess desired performance, such as strong robustness, fast convergence and chattering elimination.
Institute of Scientific and Technical Information of China (English)
唐圣金; 郭晓松; 于传强; 周志杰; 周召发; 张邦成
2014-01-01
Real time remaining useful life (RUL) prediction based on condition monitoring is an essential part in condition based maintenance (CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item’s individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction.
Optimal Parameter Tuning in a Predictive Nonlinear Control Method for a Mobile Robot
Directory of Open Access Journals (Sweden)
D. Hazry
2006-01-01
Full Text Available This study contributes to a new optimal parameter tuning in a predictive nonlinear control method for stable trajectory straight line tracking with a non-holonomic mobile robot. In this method, the focus lies in finding the optimal parameter estimation and to predict the path that the mobile robot will follow for stable trajectory straight line tracking system. The stability control contains three parameters: 1 deflection parameter for the traveling direction of the mobile robot 2 deflection parameter for the distance across traveling direction of the mobile robot and 3 deflection parameter for the steering angle of the mobile robot . Two hundred and seventy three experimental were performed and the results have been analyzed and described herewith. It is found that by using a new optimal parameter tuning in a predictive nonlinear control method derived from the extension of kinematics model, the movement of the mobile robot is stabilized and adhered to the reference posture
An adaptive model-free predictive control method of nonlinear system%一种非线性系统的自适应无模型预测控制方法
Institute of Scientific and Technical Information of China (English)
张洁; 张广辉; 苏成利
2014-01-01
In order to avoid modeling difficulties and model mismatch problems of control method based on model which control the nonlinear system , an adaptive model-free predictive control algorithm of nonlinear sysytem is proposed .In the algorithm , nonlinear systems are converted into linear systems which are described by a series of pseudo-partial-derivatives.Then a novel project algorithm is used to estimate the pseudo-partial-derivatives , and the general model of the controlled object is given .By sol-ving quadratic objective function through the receding horizon optimization strategy , the optimized control law is obtained .Simulation result of CSTR process shows that the proposed algorithm is an effective strat -egy with excellent tracking ability and strong robustness .%为了避免基于模型的控制方法在控制非线性系统时存在建模困难和模型失配的问题，提出一种非线性系统的自适应无模型预测控制方法。该方法首先将非线性系统转化为由一组伪偏导数描述的线性系统，然后利用一种改进的投影算法在线估计这组伪偏导数，得到被控系统的泛模型。根据得到的泛模型，推导出预测模型，在此基础上根据预测控制滚动的优化策略求解二次目标函数得出最优控制律。通过对CSTR过程进行仿真验证，结果表明该方法具有良好的跟踪性能和较强的鲁棒性。
Dynamical effects of overparametrization in nonlinear models
Aguirre, Luis Antonio; Billings, S. A.
1995-01-01
This paper is concemed with dynamical reconstruction for nonlinear systems. The effects of the driving function and of the complexity of a given representation on the bifurcation patter are investigated. It is shown that the use of different driving functions to excite the system may yield models with different bifurcation patterns. The complexity of the reconstructions considered is quantified by the embedding dimension and the number of estimated parameters. In this respect it appears that models which reproduce the original bifurcation behaviour are of limited complexity and that excessively complex models tend to induce ghost bifurcations and spurious dynamical regimes. Moreover, some results suggest that the effects of overparametrization on the global dynamical behaviour of a nonlinear model may be more deleterious than the presence of moderate noise levels. In order to precisely quantify the complexity of the reconstructions, global polynomials are used although the results are believed to apply to a much wider class of representations including neural networks.
Research on nonlinear stochastic dynamical price model
Energy Technology Data Exchange (ETDEWEB)
Li Jiaorui [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); School of Statistics, Xi' an University of Finance and Economics, Xi' an 710061 (China)], E-mail: jiaoruili@mail.nwpu.edu.cn; Xu Wei; Xie Wenxian; Ren Zhengzheng [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)
2008-09-15
In consideration of many uncertain factors existing in economic system, nonlinear stochastic dynamical price model which is subjected to Gaussian white noise excitation is proposed based on deterministic model. One-dimensional averaged Ito stochastic differential equation for the model is derived by using the stochastic averaging method, and applied to investigate the stability of the trivial solution and the first-passage failure of the stochastic price model. The stochastic price model and the methods presented in this paper are verified by numerical studies.
Zhou, Feifan; Ding, Ruiqiang; Feng, Guolin; Fu, Zuntao; Duan, Wansuo
2012-09-01
Recent progress in the study of nonlinear atmospheric dynamics and related predictability of weather and climate in China (2007-2011) are briefly introduced in this article. Major achievements in the study of nonlinear atmospheric dynamics have been classified into two types: (1) progress based on the analysis of solutions of simplified control equations, such as the dynamics of NAO, the optimal precursors for blocking onset, and the behavior of nonlinear waves, and (2) progress based on data analyses, such as the nonlinear analyses of fluctuations and recording-breaking temperature events, the long-range correlation of extreme events, and new methods of detecting abrupt dynamical change. Major achievements in the study of predictability include the following: (1) the application of nonlinear local Lyapunov exponents (NLLE) to weather and climate predictability; (2) the application of condition nonlinear optimal perturbation (CNOP) to the studies of El Niño-Southern Oscillation (ENSO) predictions, ensemble forecasting, targeted observation, and sensitivity analysis of the ecosystem; and (3) new strategies proposed for predictability studies. The results of these studies have provided greater understanding of the dynamics and nonlinear mechanisms of atmospheric motion, and they represent new ideas for developing numerical models and improving the forecast skill of weather and climate events.
Institute of Scientific and Technical Information of China (English)
ZHOU Feifan; DING Ruiqiang; FENG Guolin; FU Zuntao; DUAN Wansuo
2012-01-01
Recent progress in the study of nonlinear atmospheric dynamics and related predictability of weather and climate in China (2007-2011) are briefly introduced in this article.Major achievements in the study of nonlinear atmospheric dynamics have been classified into two types:(1) progress based on the analysis of solutions of simplified control equations,such as the dynamics of NAO,the optimal precursors for blocking onset,and the behavior of nonlinear waves,and (2) progress based on data analyses,such as the nonlinear analyses of fluctuations and recording-breaking temperature events,the long-range correlation of extreme events,and new methods of detecting abrupt dynamical change.Major achievements in the study of predictability include the following:(1) the application of nonlinear local Lyapunov exponents (NLLE) to weather and climate predictability; (2) the application of condition nonlinear optimal perturbation (CNOP) to the studies of El Ni(n)o-Southern Oscillation (ENSO) predictions,ensemble forecasting,targeted observation,and sensitivity analysis of the ecosystem; and (3) new strategies proposed for predictability studies.The results of these studies have provided greater understanding of the dynamics and nonlinear mechanisms of atmospheric motion,and they represent new ideas for developing numerical models and improving the forecast skill of weather and climate events.
An efficient artificial bee colony algorithm with application to nonlinear predictive control
Ait Sahed, Oussama; Kara, Kamel; Benyoucef, Abousoufyane; Laid Hadjili, Mohamed
2016-05-01
In this paper a constrained nonlinear predictive control algorithm, that uses the artificial bee colony (ABC) algorithm to solve the optimization problem, is proposed. The main objective is to derive a simple and efficient control algorithm that can solve the nonlinear constrained optimization problem with minimal computational time. Indeed, a modified version, enhancing the exploring and the exploitation capabilities, of the ABC algorithm is proposed and used to design a nonlinear constrained predictive controller. This version allows addressing the premature and the slow convergence drawbacks of the standard ABC algorithm, using a modified search equation, a well-known organized distribution mechanism for the initial population and a new equation for the limit parameter. A convergence statistical analysis of the proposed algorithm, using some well-known benchmark functions is presented and compared with several other variants of the ABC algorithm. To demonstrate the efficiency of the proposed algorithm in solving engineering problems, the constrained nonlinear predictive control of the model of a Multi-Input Multi-Output industrial boiler is considered. The control performances of the proposed ABC algorithm-based controller are also compared to those obtained using some variants of the ABC algorithms.
Model predictive control for nonlinear parabolic system using wavelet base%基于小波基的非线性抛物型系统模型预测控制
Institute of Scientific and Technical Information of China (English)
艾岭
2015-01-01
针对一类由非线性抛物型描述的分布参数系统，研究了一种基于小波分解的模型降阶和预测控制方法。利用小波配点方法，分别将一阶和二阶空间偏导数投影到拟Shannon小波基上，不需要求解系统的主导极点，得到系统的低阶常微分方程逼近模型；采用前向Eular方法离散化时间变量，将得到的差分方程组模型作为系统的预测模型，选择标准二次优化性能指标，设计相应的非线性预测控制器；将此方法应用到由一个放置在反应器中的细长催化棒组成的传输-反应系统的温度场控制问题中，取得了满意的控制效果。%For a class of nonlinear parabolic distributed parameter systems, model reduction and predic-tive control method were investigated. First, the first order and second order spatial partial derivative were projected to quasi-Shannon wavelet using wavelet collocation method respectively, eliminating the need of knowledge of solution of dominant pole of the system. The correspondent lower order model was obtained. A group of ordinary differential equations obtained through Eular’ s discretizing time variable was selected as the predictive model of the system, standard quadratic optimization performance index was selected, and the corresponding nonlinear predictive controller was designed. This method was applied to the transfer-reaction system of catalytic rod, and simulation results indicate that the proposed method meets the requirements of system control.
Simplified Model of Nonlinear Landau Damping
Energy Technology Data Exchange (ETDEWEB)
N. A. Yampolsky and N. J. Fisch
2009-07-16
The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the electron distribution function close to the phase velocity of the plasma wave. As a result, Landau damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts. However, this simple picture is invalid when the external driving force changes the plasma wave fast enough so that the plateau cannot be fully developed. A new model to describe amplification of the plasma wave including the saturation of Landau damping and the nonlinear frequency shift is proposed. The proposed model takes into account the change of the plasma wave amplitude and describes saturation of the Landau damping rate in terms of a single fluid equation, which simplifies the description of the inherently kinetic nature of Landau damping. A proposed fluid model, incorporating these simplifications, is verified numerically using a kinetic Vlasov code.
An Improved Nonlinear Circuit Model for GaAs Gunn Diode in W-Band Oscillator
Zhang, Bo; Fan, Yong; Zhang, Yonghong
An improved nonlinear circuit model for a GaAs Gunn diode in an oscillator is proposed based on the physical mechanism of the diode. This model interprets the nonlinear harmonic character on the Gunn diode. Its equivalent nonlinear circuit of which can assist in the design of the Gunn oscillator and help in the analysis of the fundamental and harmonic characteristics of the GaAs Gunn diode. The simulation prediction and the experiment of the Gunn oscillator show the feasibility of the nonlinear circuit model for the GaAs Gunn oscillator.
Nonlinear Dynamical Modeling and Forecast of ENSO Variability
Feigin, Alexander; Mukhin, Dmitry; Gavrilov, Andrey; Seleznev, Aleksey; Loskutov, Evgeny
2017-04-01
New methodology of empirical modeling and forecast of nonlinear dynamical system variability [1] is applied to study of ENSO climate system. The methodology is based on two approaches: (i) nonlinear decomposition of data [2], that provides low-dimensional embedding for further modeling, and (ii) construction of empirical model in the form of low dimensional random dynamical ("stochastic") system [3]. Three monthly data sets are used for ENSO modeling and forecast: global sea surface temperature anomalies, troposphere zonal wind speed, and thermocline depth; all data sets are limited by 30 S, 30 N and have horizontal resolution 10x10 . We compare results of optimal data decomposition as well as prognostic skill of the constructed models for different combinations of involved data sets. We also present comparative analysis of ENSO indices forecasts fulfilled by our models and by IRI/CPC ENSO Predictions Plume. [1] A. Gavrilov, D. Mukhin, E. Loskutov, A. Feigin, 2016: Construction of Optimally Reduced Empirical Model by Spatially Distributed Climate Data. 2016 AGU Fall Meeting, Abstract NG31A-1824. [2] D. Mukhin, A. Gavrilov, E. Loskutov , A.Feigin, J.Kurths, 2015: Principal nonlinear dynamical modes of climate variability, Scientific Reports, rep. 5, 15510; doi: 10.1038/srep15510. [3] Ya. Molkov, D. Mukhin, E. Loskutov, A. Feigin, 2012: Random dynamical models from time series. Phys. Rev. E, Vol. 85, n.3.
Non-Minimum Phase Nonlinear System Predictive Control Based on Local Recurrent Neural Networks
Institute of Scientific and Technical Information of China (English)
张燕; 陈增强; 袁著祉
2003-01-01
After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent PID controller is adopted to correct the errors including identified model errors and accumulated errors produced in the recursive process. Characterized by predictive control, this method can achieve a good control accuracy and has good robustness. A simulation study shows that this control algorithm is very effective.
MODELING NONLINEAR DYNAMICS OF CIRCULATING FLUIDIZED BEDS USING NEURAL NETWORKS
Institute of Scientific and Technical Information of China (English)
Wei; Chen; Atsushi; Tsutsumi; Haiyan; Lin; Kentaro; Otawara
2005-01-01
In the present work, artificial neural networks (ANNs) were proposed to model nonlinear dynamic behaviors of local voidage fluctuations induced by highly turbulent interactions between the gas and solid phases in circulating fluidized beds. The fluctuations of local voidage were measured by using an optical transmittance probe at various axial and radial positions in a circulating fluidized bed with a riser of 0.10 m in inner diameter and 10 m in height. The ANNs trained with experimental time series were applied to make short-term and long-term predictions of dynamic characteristics in the circulating fluidized bed. An early stop approach was adopted to enhance the long-term prediction capability of ANNs. The performance of the trained ANN was evaluated in terms of time-averaged characteristics, power spectra, cycle number and short-term predictability analysis of time series measured and predicted by the model.
STEW A Nonlinear Data Modeling Computer Program
Chen, H
2000-01-01
A nonlinear data modeling computer program, STEW, employing the Levenberg-Marquardt algorithm, has been developed to model the experimental sup 2 sup 3 sup 9 Pu(n,f) and sup 2 sup 3 sup 5 U(n,f) cross sections. This report presents results of the modeling of the sup 2 sup 3 sup 9 Pu(n,f) and sup 2 sup 3 sup 5 U(n,f) cross-section data. The calculation of the fission transmission coefficient is based on the double-humped-fission-barrier model of Bjornholm and Lynn. Incident neutron energies of up to 5 MeV are considered.
STEW: A Nonlinear Data Modeling Computer Program
Energy Technology Data Exchange (ETDEWEB)
Chen, H.
2000-03-04
A nonlinear data modeling computer program, STEW, employing the Levenberg-Marquardt algorithm, has been developed to model the experimental {sup 239}Pu(n,f) and {sup 235}U(n,f) cross sections. This report presents results of the modeling of the {sup 239}Pu(n,f) and {sup 235}U(n,f) cross-section data. The calculation of the fission transmission coefficient is based on the double-humped-fission-barrier model of Bjornholm and Lynn. Incident neutron energies of up to 5 MeV are considered.
A Nonlinear Viscous Model for Sn-Whisker Growth
Yang, Fuqian
2016-12-01
Based on the mechanism of the grain boundary fluid flow, a nonlinear viscous model for the growth of Sn-whiskers is proposed. This model consists of two units, one with a stress exponent of one and one with a stress exponent of n -1. By letting one of the constants be zero in the model, the constitutive relationship reduces to a linear flow relation or a power-law relation, representing the flow behavior of various metals. Closed-form solutions for the growth behavior of a whisker are derived, which can be used to predict the whisker growth and the stress evolution.
Simple nonlinear models suggest variable star universality
Lindner, John F; Kia, Behnam; Hippke, Michael; Learned, John G; Ditto, William L
2015-01-01
Dramatically improved data from observatories like the CoRoT and Kepler spacecraft have recently facilitated nonlinear time series analysis and phenomenological modeling of variable stars, including the search for strange (aka fractal) or chaotic dynamics. We recently argued [Lindner et al., Phys. Rev. Lett. 114 (2015) 054101] that the Kepler data includes "golden" stars, whose luminosities vary quasiperiodically with two frequencies nearly in the golden ratio, and whose secondary frequencies exhibit power-law scaling with exponent near -1.5, suggesting strange nonchaotic dynamics and singular spectra. Here we use a series of phenomenological models to make plausible the connection between golden stars and fractal spectra. We thereby suggest that at least some features of variable star dynamics reflect universal nonlinear phenomena common to even simple systems.
Thermoviscous Model Equations in Nonlinear Acoustics
DEFF Research Database (Denmark)
Rasmussen, Anders Rønne
Four nonlinear acoustical wave equations that apply to both perfect gasses and arbitrary fluids with a quadratic equation of state are studied. Shock and rarefaction wave solutions to the equations are studied. In order to assess the accuracy of the wave equations, their solutions are compared...... to solutions of the basic equations from which the wave equations are derived. A straightforward weakly nonlinear equation is the most accurate for shock modeling. A higher order wave equation is the most accurate for modeling of smooth disturbances. Investigations of the linear stability properties...... of solutions to the wave equations, reveal that the solutions may become unstable. Such instabilities are not found in the basic equations. Interacting shocks and standing shocks are investigated....
Modified Nonlinear Model of Arcsin-Electrodynamics
Kruglov, S. I.
2016-07-01
A new modified model of nonlinear arcsin-electrodynamics with two parameters is proposed and analyzed. We obtain the corrections to the Coulomb law. The effect of vacuum birefringence takes place when the external constant magnetic field is present. We calculate indices of refraction for two perpendicular polarizations of electromagnetic waves and estimate bounds on the parameter γ from the BMV and PVLAS experiments. It is shown that the electric field of a point-like charge is finite at the origin. We calculate the finite static electric energy of point-like particles and demonstrate that the electron mass can have the pure electromagnetic nature. The symmetrical Belinfante energy-momentum tensor and dilatation current are found. We show that the dilatation symmetry and dual symmetry are broken in the model suggested. We have investigated the gauge covariant quantization of the nonlinear electrodynamics fields as well as the gauge fixing approach based on Dirac's brackets.
Energy Technology Data Exchange (ETDEWEB)
Barus, R. P. P., E-mail: rismawan.ppb@gmail.com [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung and Centre for Material and Technical Product, Jalan Sangkuriang No. 14 Bandung (Indonesia); Tjokronegoro, H. A.; Leksono, E. [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia); Ismunandar [Chemistry Study, Faculty of Mathematics and Science, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia)
2014-09-25
Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range.
The Nonlinear Magnetosphere: Expressions in MHD and in Kinetic Models
Hesse, Michael; Birn, Joachim
2011-01-01
Like most plasma systems, the magnetosphere of the Earth is governed by nonlinear dynamic evolution equations. The impact of nonlinearities ranges from large scales, where overall dynamics features are exhibiting nonlinear behavior, to small scale, kinetic, processes, where nonlinear behavior governs, among others, energy conversion and dissipation. In this talk we present a select set of examples of such behavior, with a specific emphasis on how nonlinear effects manifest themselves in MHD and in kinetic models of magnetospheric plasma dynamics.
MCRG Flow for the nonlinear Sigma Model
Koerner, Daniel; Wipf, Andreas
2013-01-01
A study of the renormalization group flow in the three-dimensional nonlinear O(N) sigma model using Monte Carlo Renormalization Group (MCRG) techniques is presented. To achieve this, we combine an improved blockspin transformation with the canonical demon method to determine the flow diagram for a number of different truncations. Systematic errors of the approach are highlighted. Results are discussed with hindsight on the fixed point structure of the model and the corresponding critical exponents. Special emphasis is drawn on the existence of a nontrivial ultraviolet fixed point as required for theories modeling the asymptotic safety scenario of quantum gravity.
Forecasting with nonlinear time series models
DEFF Research Database (Denmark)
Kock, Anders Bredahl; Teräsvirta, Timo
and two versions of a simple artificial neural network model. Techniques for generating multi-period forecasts from nonlinear models recursively are considered, and the direct (non-recursive) method for this purpose is mentioned as well. Forecasting with com- plex dynamic systems, albeit less frequently...... applied to economic fore- casting problems, is briefly highlighted. A number of large published studies comparing macroeconomic forecasts obtained using different time series models are discussed, and the paper also contains a small simulation study comparing recursive and direct forecasts in a partic...
Nonlinear Modelling of Low Frequency Loudspeakers
DEFF Research Database (Denmark)
Olsen, Erling Sandermann; Christensen, Knud Bank
1996-01-01
A central part of the Danish LoDist project has been the derivation of an extended equivalent circuit and a corresponding set of differential equations suitable for the simulation of high-fidelity woofers under large and very large (clipping) signal conditions. A model including suspension creep ...... and eddy current losses seems to be sufficient, but all the parameters of the model vary with the position of the diaphragm. The model and the associated set of nonlinear differential equations and the solution of the equations are discussed....
Nonlinear Inertia Classification Model and Application
Directory of Open Access Journals (Sweden)
Mei Wang
2014-01-01
Full Text Available Classification model of support vector machine (SVM overcomes the problem of a big number of samples. But the kernel parameter and the punishment factor have great influence on the quality of SVM model. Particle swarm optimization (PSO is an evolutionary search algorithm based on the swarm intelligence, which is suitable for parameter optimization. Accordingly, a nonlinear inertia convergence classification model (NICCM is proposed after the nonlinear inertia convergence (NICPSO is developed in this paper. The velocity of NICPSO is firstly defined as the weighted velocity of the inertia PSO, and the inertia factor is selected to be a nonlinear function. NICPSO is used to optimize the kernel parameter and a punishment factor of SVM. Then, NICCM classifier is trained by using the optical punishment factor and the optical kernel parameter that comes from the optimal particle. Finally, NICCM is applied to the classification of the normal state and fault states of online power cable. It is experimentally proved that the iteration number for the proposed NICPSO to reach the optimal position decreases from 15 to 5 compared with PSO; the training duration is decreased by 0.0052 s and the recognition precision is increased by 4.12% compared with SVM.
MODEL PREDICTIVE CONTROL FUNDAMENTALS
African Journals Online (AJOL)
2012-07-02
Jul 2, 2012 ... paper, we will present an introduction to the theory and application of MPC with Matlab codes written to ... model predictive control, linear systems, discrete-time systems, ... and then compute very rapidly for this open-loop con-.
Ren, Shijin
2003-01-01
Response surface models based on multiple linear regression had previously been developed for the toxicity of aromatic chemicals to Tetrahymena pyriformis. However, a nonlinear relationship between toxicity and one of the molecular descriptors in the response surface model was observed. In this study, response surface models were established using six nonlinear modeling methods to handle the nonlinearity exhibited in the aromatic chemicals data set. All models were validated using the method of cross-validation, and prediction accuracy was tested on an external data set. Results showed that response surface models based on locally weighted regression scatter plot smoothing (LOESS), multivariate adaptive regression splines (MARS), neural networks (NN), and projection pursuit regression (PPR) provided satisfactory power of model fitting and prediction and had similar applicabilities. The response surface models based on nonlinear methods were difficult to interpret and conservative in discriminating toxicity mechanisms.
Nonlinear Dependence of Global Warming Prediction on Ocean State
Liang, M.; Lin, L.; Tung, K. K.; Yung, Y. L.; Sun, S.
2010-12-01
Global temperature has increased by 0.8 C since the pre-industrial era, and is likely to increase further if greenhouse gas emission continues unchecked. Various mitigation efforts are being negotiated among nations to keep the increase under 2 C, beyond which the outcome is believed to be catastrophic. Such policy efforts are currently based on predictions by the state-of-the-art coupled atmosphere ocean models (AOGCM). Caution is advised for their use for the purpose of short-term (less than a century) climate prediction as the predicted warming and spatial patterns vary depending on the initial state of the ocean, even in an ensemble mean. The range of uncertainty in such predictions by Intergovernmental Panel on Climate Change (IPCC) models may be underreported when models were run with their oceans at various stages of adjustment with their atmospheres. By comparing a very long run (> 1000 years) of the coupled Goddard Institute for Space Studies (GISS) model with what was reported to IPCC Fourth Assessment Report (AR4), we show that the fully adjusted model transient climate sensitivity should be 30% higher for the same model, and the 2 C warming should occur sooner than previously predicted. Using model archives we further argue that this may be a common problem for the IPCC AR4 models, since few, if any, of the models has a fully adjusted ocean. For all models, multi-decadal climate predictions to 2050 are highly dependent on the initial ocean state (and so are unreliable). Such dependence cannot be removed simply by subtracting the climate drift from control runs.
Evaluation of model fit in nonlinear multilevel structural equation modeling
Directory of Open Access Journals (Sweden)
Karin eSchermelleh-Engel
2014-03-01
Full Text Available Evaluating model fit in nonlinear multilevel structural equation models (MSEM presents a challenge as no adequate test statistic is available. Nevertheless, using a product indicator approach a likelihood ratio test for linear models is provided which may also be useful for nonlinear MSEM. The main problem with nonlinear models is that product variables are nonnormally distributed. Although robust test statistics have been developed for linear SEM to ensure valid results under the condition of nonnormality, they were not yet investigated for nonlinear MSEM. In a Monte Carlo study, the performance of the robust likelihood ratio test was investigated for models with single-level latent interaction effects using the unconstrained product indicator approach. As overall model fit evaluation has a potential limitation in detecting the lack of fit at a single level even for linear models, level-specific model fit evaluation was also investigated using partially saturated models. Four population models were considered: a model with interaction effects at both levels, an interaction effect at the within-group level, an interaction effect at the between-group level, and a model with no interaction effects at both levels. For these models the number of groups, predictor correlation, and model misspecification was varied. The results indicate that the robust test statistic performed sufficiently well. Advantages of level-specific model fit evaluation for the detection of model misfit are demonstrated.
Evaluation of model fit in nonlinear multilevel structural equation modeling.
Schermelleh-Engel, Karin; Kerwer, Martin; Klein, Andreas G
2014-01-01
Evaluating model fit in nonlinear multilevel structural equation models (MSEM) presents a challenge as no adequate test statistic is available. Nevertheless, using a product indicator approach a likelihood ratio test for linear models is provided which may also be useful for nonlinear MSEM. The main problem with nonlinear models is that product variables are non-normally distributed. Although robust test statistics have been developed for linear SEM to ensure valid results under the condition of non-normality, they have not yet been investigated for nonlinear MSEM. In a Monte Carlo study, the performance of the robust likelihood ratio test was investigated for models with single-level latent interaction effects using the unconstrained product indicator approach. As overall model fit evaluation has a potential limitation in detecting the lack of fit at a single level even for linear models, level-specific model fit evaluation was also investigated using partially saturated models. Four population models were considered: a model with interaction effects at both levels, an interaction effect at the within-group level, an interaction effect at the between-group level, and a model with no interaction effects at both levels. For these models the number of groups, predictor correlation, and model misspecification was varied. The results indicate that the robust test statistic performed sufficiently well. Advantages of level-specific model fit evaluation for the detection of model misfit are demonstrated.
Ouari, Kamel; Rekioua, Toufik; Ouhrouche, Mohand
2014-01-01
In order to make a wind power generation truly cost-effective and reliable, an advanced control techniques must be used. In this paper, we develop a new control strategy, using nonlinear generalized predictive control (NGPC) approach, for DFIG-based wind turbine. The proposed control law is based on two points: NGPC-based torque-current control loop generating the rotor reference voltage and NGPC-based speed control loop that provides the torque reference. In order to enhance the robustness of the controller, a disturbance observer is designed to estimate the aerodynamic torque which is considered as an unknown perturbation. Finally, a real-time simulation is carried out to illustrate the performance of the proposed controller.
Nonlinear Model of non-Debye Relaxation
Zon, Boris A
2010-01-01
We present a simple nonlinear relaxation equation which contains the Debye equation as a particular case. The suggested relaxation equation results in power-law decay of fluctuations. This equation contains a parameter defining the frequency dependence of the dielectric permittivity similarly to the well-known one-parameter phenomenological equations of Cole-Cole, Davidson-Cole and Kohlrausch-Williams-Watts. Unlike these models, the obtained dielectric permittivity (i) obeys to the Kramers-Kronig relation; (ii) has proper behaviour at large frequency; (iii) its imaginary part, conductivity, shows a power-law frequency dependence \\sigma ~ \\omega^n where n1 is also observed in several experiments. The nonlinear equation proposed may be useful in various fields of relaxation theory.
Linear and non-linear perturbations in dark energy models
Escamilla-Rivera, Celia; Fabris, Julio C; Alcaniz, Jailson S
2016-01-01
In this work we discuss observational aspects of three time-dependent parameterisations of the dark energy equation of state $w(z)$. In order to determine the dynamics associated with these models, we calculate their background evolution and perturbations in a scalar field representation. After performing a complete treatment of linear perturbations, we also show that the non-linear contribution of the selected $w(z)$ parameterisations to the matter power spectra is almost the same for all scales, with no significant difference from the predictions of the standard $\\Lambda$CDM model.
Extended nonlinear feedback model for describing episodes of high inflation
Szybisz, M A; Szybisz, L.
2016-01-01
An extension of the nonlinear feedback (NLF) formalism to describe regimes of hyper- and high-inflation in economy is proposed in the present work. In the NLF model the consumer price index (CPI) exhibits a finite time singularity of the type $1/(t_c -t)^{(1- \\beta)/\\beta}$, with $\\beta>0$, predicting a blow up of the economy at a critical time $t_c$. However, this model fails in determining $t_c$ in the case of weak hyperinflation regimes like, e.g., that occurred in Israel. To overcome this...
Residual models for nonlinear partial differential equations
Directory of Open Access Journals (Sweden)
Garry Pantelis
2005-11-01
Full Text Available Residual terms that appear in nonlinear PDEs that are constructed to generate filtered representations of the variables of the fully resolved system are examined by way of a consistency condition. It is shown that certain commonly used empirical gradient models for the residuals fail the test of consistency and therefore cannot be validated as approximations in any reliable sense. An alternate method is presented for computing the residuals. These residual models are independent of free or artificial parameters and there direct link with the functional form of the system of PDEs which describe the fully resolved system are established.
Luna, Julio; Jemei, Samir; Yousfi-Steiner, Nadia; Husar, Attila; Serra, Maria; Hissel, Daniel
2016-10-01
In this work, a nonlinear model predictive control (NMPC) strategy is proposed to improve the efficiency and enhance the durability of a proton exchange membrane fuel cell (PEMFC) power system. The PEMFC controller is based on a distributed parameters model that describes the nonlinear dynamics of the system, considering spatial variations along the gas channels. Parasitic power from different system auxiliaries is considered, including the main parasitic losses which are those of the compressor. A nonlinear observer is implemented, based on the discretised model of the PEMFC, to estimate the internal states. This information is included in the cost function of the controller to enhance the durability of the system by means of avoiding local starvation and inappropriate water vapour concentrations. Simulation results are presented to show the performance of the proposed controller over a given case study in an automotive application (New European Driving Cycle). With the aim of representing the most relevant phenomena that affects the PEMFC voltage, the simulation model includes a two-phase water model and the effects of liquid water on the catalyst active area. The control model is a simplified version that does not consider two-phase water dynamics.
Nominal model predictive control
Grüne, Lars
2013-01-01
5 p., to appear in Encyclopedia of Systems and Control, Tariq Samad, John Baillieul (eds.); International audience; Model Predictive Control is a controller design method which synthesizes a sampled data feedback controller from the iterative solution of open loop optimal control problems.We describe the basic functionality of MPC controllers, their properties regarding feasibility, stability and performance and the assumptions needed in order to rigorously ensure these properties in a nomina...
Nominal Model Predictive Control
Grüne, Lars
2014-01-01
5 p., to appear in Encyclopedia of Systems and Control, Tariq Samad, John Baillieul (eds.); International audience; Model Predictive Control is a controller design method which synthesizes a sampled data feedback controller from the iterative solution of open loop optimal control problems.We describe the basic functionality of MPC controllers, their properties regarding feasibility, stability and performance and the assumptions needed in order to rigorously ensure these properties in a nomina...
Model of anisotropic nonlinearity in self-defocusing photorefractive media.
Barsi, C; Fleischer, J W
2015-09-21
We develop a phenomenological model of anisotropy in self-defocusing photorefractive crystals. In addition to an independent term due to nonlinear susceptibility, we introduce a nonlinear, non-separable correction to the spectral diffraction operator. The model successfully describes the crossover between photovoltaic and photorefractive responses and the spatially dispersive shock wave behavior of a nonlinearly spreading Gaussian input beam. It should prove useful for characterizing internal charge dynamics in complex materials and for accurate image reconstruction through nonlinear media.
DEFF Research Database (Denmark)
Minko, Tomasz; Wisniewski, Rafal; Bendtsen, Jan Dimon
2016-01-01
In this paper we examine a supermarket system. In order to grasp the most important dynamics we present a model that includes the single zone building thermal envelope with its heating, cooling and ventilation. Moreover we include heat waste recovery from the refrigeration high pressure side. The...
Directory of Open Access Journals (Sweden)
Xuliang Yao
2017-01-01
Full Text Available The attitude control and depth tracking issue of autonomous underwater vehicle (AUV are addressed in this paper. By introducing a nonsingular coordinate transformation, a novel nonlinear reduced-order observer (NROO is presented to achieve an accurate estimation of AUV’s state variables. A discrete-time model predictive control with nonlinear model online linearization (MPC-NMOL is applied to enhance the attitude control and depth tracking performance of AUV considering the wave disturbance near surface. In AUV longitudinal control simulation, the comparisons have been presented between NROO and full-order observer (FOO and also between MPC-NMOL and traditional NMPC. Simulation results show the effectiveness of the proposed method.
Nonlinear filtering techniques for noisy geophysical data: Using big data to predict the future
Moore, J. M.
2014-12-01
Chaos is ubiquitous in physical systems. Within the Earth sciences it is readily evident in seismology, groundwater flows and drilling data. Models and workflows have been applied successfully to understand and even to predict chaotic systems in other scientific fields, including electrical engineering, neurology and oceanography. Unfortunately, the high levels of noise characteristic of our planet's chaotic processes often render these frameworks ineffective. This contribution presents techniques for the reduction of noise associated with measurements of nonlinear systems. Our ultimate aim is to develop data assimilation techniques for forward models that describe chaotic observations, such as episodic tremor and slip (ETS) events in fault zones. A series of nonlinear filters are presented and evaluated using classical chaotic systems. To investigate whether the filters can successfully mitigate the effect of noise typical of Earth science, they are applied to sunspot data. The filtered data can be used successfully to forecast sunspot evolution for up to eight years (see figure).
Candidate Prediction Models and Methods
DEFF Research Database (Denmark)
Nielsen, Henrik Aalborg; Nielsen, Torben Skov; Madsen, Henrik
2005-01-01
This document lists candidate prediction models for Work Package 3 (WP3) of the PSO-project called ``Intelligent wind power prediction systems'' (FU4101). The main focus is on the models transforming numerical weather predictions into predictions of power production. The document also outlines...... the possibilities w.r.t. different numerical weather predictions actually available to the project....
Yan, Jun; Li, Bo; Guo, Gang; Zeng, Yonghua; Zhang, Meijun
2013-11-01
Electro-hydraulic control systems are nonlinear in nature and their mathematic models have unknown parameters. Existing research of modeling and identification of the electro-hydraulic control system is mainly based on theoretical state space model, and the parameters identification is hard due to its demand on internal states measurement. Moreover, there are also some hard-to-model nonlinearities in theoretical model, which needs to be overcome. Modeling and identification of the electro-hydraulic control system of an excavator arm based on block-oriented nonlinear(BONL) models is investigated. The nonlinear state space model of the system is built first, and field tests are carried out to reveal the nonlinear characteristics of the system. Based on the physic insight into the system, three BONL models are adopted to describe the highly nonlinear system. The Hammerstein model is composed of a two-segment polynomial nonlinearity followed by a linear dynamic subsystem. The Hammerstein-Wiener(H-W) model is represented by the Hammerstein model in cascade with another single polynomial nonlinearity. A novel Pseudo-Hammerstein-Wiener(P-H-W) model is developed by replacing the single polynomial of the H-W model by a non-smooth backlash function. The key term separation principle is applied to simplify the BONL models into linear-in-parameters structures. Then, a modified recursive least square algorithm(MRLSA) with iterative estimation of internal variables is developed to identify the all the parameters simultaneously. The identification results demonstrate that the BONL models with two-segment polynomial nonlinearities are able to capture the system behavior, and the P-H-W model has the best prediction accuracy. Comparison experiments show that the velocity prediction error of the P-H-W model is reduced by 14%, 30% and 75% to the H-W model, Hammerstein model, and extended auto-regressive (ARX) model, respectively. This research is helpful in controller design, system
From spiking neuron models to linear-nonlinear models.
Directory of Open Access Journals (Sweden)
Srdjan Ostojic
Full Text Available Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF, exponential integrate-and-fire (EIF and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates.
Directory of Open Access Journals (Sweden)
Ahad Zeinali
2007-12-01
Full Text Available Introduction: Because of the importance of vertebral compressive fracture (VCF role in increasing the patients’ death rate and reducing their quality of life, many studies have been conducted for a noninvasive prediction of vertebral compressive strength based on bone mineral density (BMD determination and recently finite element analysis. In this study, QCT-voxel based nonlinear finite element method is used for predicting vertebral compressive strength. Material and Methods: Four thoracolumbar vertebrae were excised from 3 cadavers with an average age of 42 years. They were then put in a water phantom and were scanned using the QCT. Using a computer program prepared in MATLAB, detailed voxel based geometry and mechanical characteristics of the vertebra were extracted from the CT images. The three dimensional finite element models of the samples were created using ANSYS computer program. The compressive strength of each vertebra body was calculated based on a linearly elastic-linearly plastic model and large deformation analysis in ANSYS and was compared to the value measured experimentally for that sample. Results: Based on the obtained results the QCT-voxel based nonlinear finite element method (FEM can predict vertebral compressive strength more effectively and accurately than the common QCT-voxel based linear FEM. The difference between the predicted strength values using this method and the measured ones was less than 1 kN for all the samples. Discussion and Conclusion: It seems that the QCT-voxel based nonlinear FEM used in this study can predict more effectively and accurately the vertebral strengths based on every vertebrae specification by considering their detailed geometric and densitometric characteristics.
Fallacies of composition in nonlinear marketing models
Bischi, Gian Italo; Cerboni Baiardi, Lorenzo
2015-01-01
In this paper we consider some nonlinear discrete-time dynamic models proposed in the literature to represent marketing competition, and we use these models to critically discuss the statement, often made in economic literature, that identical agents behave identically and quasi-identical ones behave in a similar way. We show, through examples and some general mathematical statements, that the one-dimensional model of a representative agent, whose dynamics summarize the common behavior of identical interacting agents, may be misleading. In order to discuss these topics some simple methods for the study of local stability and bifurcations are employed, as well as numerical examples where some results taken from the literature on chaos synchronization are applied to two-dimensional marketing models that exhibit riddling, blowout and other global phenomena related to the existence of measure-theoretic attractors.
Nonlinear regime-switching state-space (RSSS) models.
Chow, Sy-Miin; Zhang, Guangjian
2013-10-01
Nonlinear dynamic factor analysis models extend standard linear dynamic factor analysis models by allowing time series processes to be nonlinear at the latent level (e.g., involving interaction between two latent processes). In practice, it is often of interest to identify the phases--namely, latent "regimes" or classes--during which a system is characterized by distinctly different dynamics. We propose a new class of models, termed nonlinear regime-switching state-space (RSSS) models, which subsumes regime-switching nonlinear dynamic factor analysis models as a special case. In nonlinear RSSS models, the change processes within regimes, represented using a state-space model, are allowed to be nonlinear. An estimation procedure obtained by combining the extended Kalman filter and the Kim filter is proposed as a way to estimate nonlinear RSSS models. We illustrate the utility of nonlinear RSSS models by fitting a nonlinear dynamic factor analysis model with regime-specific cross-regression parameters to a set of experience sampling affect data. The parallels between nonlinear RSSS models and other well-known discrete change models in the literature are discussed briefly.
A computerized implementation of a non-linear equation to predict barrier shielding requirements.
Chamberlain, A C; Strydom, W J
1997-04-01
A non-linear equation to predict barrier shielding thickness from the work function of x- and gamma-ray generators is presented. This equation is incorporated into a model that takes into account primary, scatter, and leakage radiation components to determine the amount of shielding necessary. The case of multiple wall materials is also considered. The equation accurately models the radiation attenuation curves given in NCRP 49 for concrete and lead, thus eliminating the necessity to use graphical or tabular methods to calculate shielding thickness, which can be inaccurate.
Improved Nonlinear Equation Method for Numerical Prediction of Jominy End-Quench Curves
Institute of Scientific and Technical Information of China (English)
SONG Yue-peng; LIU Guo-quan; LIU Sheng-xin; LIU Jian-tao; FENG Cheng-ming
2007-01-01
Without considering the effects of alloying interaction on the Jominy end-quench curves, the prediction results obtained by YU Bai-hai's nonlinear equation method for multi-alloying steels were different from those experimental ones reported in literature. Some alloying elements have marked influence on Jominy end-quench curves of steels. An improved mathematical model for simulating the Jominy end-quench curves is proposed by introducing a parameter named alloying interactions equivalent (Le). With the improved model, the Jominy end-quench curves of steels so obtained agree very well with the experimental ones.
Modeling of Macroeconomics by a Novel Discrete Nonlinear Fractional Dynamical System
Directory of Open Access Journals (Sweden)
Zhenhua Hu
2013-01-01
Full Text Available We propose a new nonlinear economic system with fractional derivative. According to the Jumarie’s definition of fractional derivative, we obtain a discrete fractional nonlinear economic system. Three variables, the gross domestic production, inflation, and unemployment rate, are considered by this nonlinear system. Based on the concrete macroeconomic data of USA, the coefficients of this nonlinear system are estimated by the method of least squares. The application of discrete fractional economic model with linear and nonlinear structure is shown to illustrate the efficiency of modeling the macroeconomic data with discrete fractional dynamical system. The empirical study suggests that the nonlinear discrete fractional dynamical system can describe the actual economic data accurately and predict the future behavior more reasonably than the linear dynamic system. The method proposed in this paper can be applied to investigate other macroeconomic variables of more states.
Model Reduction of Nonlinear Fire Dynamics Models
Lattimer, Alan Martin
2016-01-01
Due to the complexity, multi-scale, and multi-physics nature of the mathematical models for fires, current numerical models require too much computational effort to be useful in design and real-time decision making, especially when dealing with fires over large domains. To reduce the computational time while retaining the complexity of the domain and physics, our research has focused on several reduced-order modeling techniques. Our contributions are improving wildland fire reduced-order mod...
Identification of a class of nonlinear state-space models using RPE techniques
DEFF Research Database (Denmark)
Zhou, W. W.; Blanke, Mogens
1986-01-01
The recursive prediction error methods in state-space form have been efficiently used as parameter identifiers for linear systems, and especially Ljung's innovations filter using a Newton search direction has proved to be quite ideal. In this paper, the RPE method in state-space form is developed...... to the nonlinear case and extended to include the exact form of a nonlinearity, thus enabling structure preservation for certain classes of nonlinear systems. Both the discrete and the continuous-discrete versions of the algorithm in an innovations model are investigated, and a nonlinear simulation example shows...... a quite convincing performance of the filter as combined parameter and state estimator....
Predictive Surface Complexation Modeling
Energy Technology Data Exchange (ETDEWEB)
Sverjensky, Dimitri A. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Earth and Planetary Sciences
2016-11-29
Surface complexation plays an important role in the equilibria and kinetics of processes controlling the compositions of soilwaters and groundwaters, the fate of contaminants in groundwaters, and the subsurface storage of CO_{2} and nuclear waste. Over the last several decades, many dozens of individual experimental studies have addressed aspects of surface complexation that have contributed to an increased understanding of its role in natural systems. However, there has been no previous attempt to develop a model of surface complexation that can be used to link all the experimental studies in order to place them on a predictive basis. Overall, my research has successfully integrated the results of the work of many experimentalists published over several decades. For the first time in studies of the geochemistry of the mineral-water interface, a practical predictive capability for modeling has become available. The predictive correlations developed in my research now enable extrapolations of experimental studies to provide estimates of surface chemistry for systems not yet studied experimentally and for natural and anthropogenically perturbed systems.
On the Nonlinear Structural Analysis of Wind Turbine Blades using Reduced Degree-of-Freedom Models
DEFF Research Database (Denmark)
Holm-Jørgensen, Kristian; Larsen, Jesper Winther; Nielsen, Søren R.K.
2008-01-01
, modelling geometrical and inertial nonlinear couplings in the fundamental flap and edge direction. The purpose of this article is to examine the applicability of such a reduced-degree-of-freedom model in predicting the nonlinear response and stability of a blade by comparison to a full model based...... on a nonlinear co-rotating FE formulation. By use of the reduced-degree-of-freedom model it is shown that under strong resonance excitation of the fundamental flap or edge modes, significant energy is transferred to higher modes due to parametric or nonlinear coupling terms, which influence the response...... representing the case of infinitely many included modes, is shown to predict stable and ordered response for all considered parameters. Further, the analysis shows that the reduced-degree-of-freedom model of relatively low order overestimates the response near resonance peaks, which is a consequence...
Rapid prediction method for nonlinear expansion process of medical vascular stent
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
A neural network model with high nonlinear recognition capability was constructed to describe the relationship between the deformation impact factors and the deformation results of vascular stent.Then,using the weighted correction method with the attached momentum term,the network training algorithm was optimized by introducing learning factor η and momentum factor ψ,so the speed of the network training and the system robustness were enhanced.The network was trained by some practi-cal cases,and the statistical hypothesis validation was made for the predictive errors.It was shown that the average difference between the intelligent predictive result of vascular stent deformation neu-ral network and the nonlinear finite element analysis result was less than 0.03%,and the trained net-work could perfectly predict the vascular stent deformation.Further more,the rapid evaluation tool for the vascular stent mechanics performance was established using the Pro/Toolkit and the intelligent neural network predictive model of vascular stent expansion.The proposed tool system with strong practicality and high efficiency can significantly shorten the product development cycle of vascular stent.
Forecasting RMB Exchange Rate Based on a Nonlinear Combination Model of ARFIMA, SVM, and BPNN
Directory of Open Access Journals (Sweden)
Chi Xie
2015-01-01
Full Text Available There are various models to predict financial time series like the RMB exchange rate. In this paper, considering the complex characteristics of RMB exchange rate, we build a nonlinear combination model of the autoregressive fractionally integrated moving average (ARFIMA model, the support vector machine (SVM model, and the back-propagation neural network (BPNN model to forecast the RMB exchange rate. The basic idea of the nonlinear combination model (NCM is to make the prediction more effective by combining different models’ advantages, and the weight of the combination model is determined by a nonlinear weighted mechanism. The RMB exchange rate against US dollar (RMB/USD and the RMB exchange rate against Euro (RMB/EUR are used as the empirical examples to evaluate the performance of NCM. The results show that the prediction performance of the nonlinear combination model is better than the single models and the linear combination models, and the nonlinear combination model is suitable for the prediction of the special time series, such as the RMB exchange rate.
Modeling and Prediction Using Stochastic Differential Equations
DEFF Research Database (Denmark)
Juhl, Rune; Møller, Jan Kloppenborg; Jørgensen, John Bagterp
2016-01-01
Pharmacokinetic/pharmakodynamic (PK/PD) modeling for a single subject is most often performed using nonlinear models based on deterministic ordinary differential equations (ODEs), and the variation between subjects in a population of subjects is described using a population (mixed effects) setup...... that describes the variation between subjects. The ODE setup implies that the variation for a single subject is described by a single parameter (or vector), namely the variance (covariance) of the residuals. Furthermore the prediction of the states is given as the solution to the ODEs and hence assumed...... deterministic and can predict the future perfectly. A more realistic approach would be to allow for randomness in the model due to e.g., the model be too simple or errors in input. We describe a modeling and prediction setup which better reflects reality and suggests stochastic differential equations (SDEs...
Model Reduction for Nonlinear Systems by Incremental Balanced Truncation
Besselink, Bart; van de Wouw, Nathan; Scherpen, Jacquelien M. A.; Nijmeijer, Henk
2014-01-01
In this paper, the method of incremental balanced truncation is introduced as a tool for model reduction of nonlinear systems. Incremental balanced truncation provides an extension of balanced truncation for linear systems towards the nonlinear case and differs from existing nonlinear balancing tech
Model Reduction for Nonlinear Systems by Incremental Balanced Truncation
Besselink, Bart; van de Wouw, Nathan; Scherpen, Jacquelien M. A.; Nijmeijer, Henk
2014-01-01
In this paper, the method of incremental balanced truncation is introduced as a tool for model reduction of nonlinear systems. Incremental balanced truncation provides an extension of balanced truncation for linear systems towards the nonlinear case and differs from existing nonlinear balancing tech
Li, Wangnan; Cai, Hongneng; Li, Chao
2014-11-01
This paper deals with the characterization of the strength of the constituents of carbon fiber reinforced plastic laminate (CFRP), and a prediction of the static compressive strength of open-hole structure of polymer composites. The approach combined with non-linear analysis in macro-level and a linear elastic micromechanical failure analysis in microlevel (non-linear MMF) is proposed to improve the prediction accuracy. A face-centered cubic micromechanics model is constructed to analyze the stresses in fiber and matrix in microlevel. Non-interactive failure criteria are proposed to characterize the strength of fiber and matrix. The non-linear shear behavior of the laminate is studied experimentally, and a novel approach of cubic spline interpolation is used to capture significant non-linear shear behavior of laminate. The user-defined material subroutine UMAT for the non-linear share behavior is developed and combined in the mechanics analysis in the macro-level using the Abaqus Python codes. The failure mechanism and static strength of open-hole compressive (OHC) structure of polymer composites is studied based on non-linear MMF. The UTS50/E51 CFRP is used to demonstrate the application of theory of non-linear MMF.
Directory of Open Access Journals (Sweden)
Qihong Chen
2014-01-01
Full Text Available This paper presents a neural network predictive control strategy to optimize power distribution for a fuel cell/ultracapacitor hybrid power system of a robot. We model the nonlinear power system by employing time variant auto-regressive moving average with exogenous (ARMAX, and using recurrent neural network to represent the complicated coefficients of the ARMAX model. Because the dynamic of the system is viewed as operating- state- dependent time varying local linear behavior in this frame, a linear constrained model predictive control algorithm is developed to optimize the power splitting between the fuel cell and ultracapacitor. The proposed algorithm significantly simplifies implementation of the controller and can handle multiple constraints, such as limiting substantial fluctuation of fuel cell current. Experiment and simulation results demonstrate that the control strategy can optimally split power between the fuel cell and ultracapacitor, limit the change rate of the fuel cell current, and so as to extend the lifetime of the fuel cell.
Chen, Qihong; Long, Rong; Quan, Shuhai; Zhang, Liyan
2014-01-01
This paper presents a neural network predictive control strategy to optimize power distribution for a fuel cell/ultracapacitor hybrid power system of a robot. We model the nonlinear power system by employing time variant auto-regressive moving average with exogenous (ARMAX), and using recurrent neural network to represent the complicated coefficients of the ARMAX model. Because the dynamic of the system is viewed as operating- state- dependent time varying local linear behavior in this frame, a linear constrained model predictive control algorithm is developed to optimize the power splitting between the fuel cell and ultracapacitor. The proposed algorithm significantly simplifies implementation of the controller and can handle multiple constraints, such as limiting substantial fluctuation of fuel cell current. Experiment and simulation results demonstrate that the control strategy can optimally split power between the fuel cell and ultracapacitor, limit the change rate of the fuel cell current, and so as to extend the lifetime of the fuel cell.
Nonlinear structural finite element model updating and uncertainty quantification
Ebrahimian, Hamed; Astroza, Rodrigo; Conte, Joel P.
2015-04-01
This paper presents a framework for nonlinear finite element (FE) model updating, in which state-of-the-art nonlinear structural FE modeling and analysis techniques are combined with the maximum likelihood estimation method (MLE) to estimate time-invariant parameters governing the nonlinear hysteretic material constitutive models used in the FE model of the structure. The estimation uncertainties are evaluated based on the Cramer-Rao lower bound (CRLB) theorem. A proof-of-concept example, consisting of a cantilever steel column representing a bridge pier, is provided to verify the proposed nonlinear FE model updating framework.
Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties
Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon
2014-01-01
Purpose The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency during anterior-posterior stretching. Method Three materially linear and three materially nonlinear models were created and stretched up to 10 mm in 1 mm increments. Phonation onset pressure (Pon) and fundamental frequency (F0) at Pon were recorded for each length. Measurements were repeated as the models were relaxed in 1 mm increments back to their resting lengths, and tensile tests were conducted to determine the stress-strain responses of linear versus nonlinear models. Results Nonlinear models demonstrated a more substantial frequency response than did linear models and a more predictable pattern of F0 increase with respect to increasing length (although range was inconsistent across models). Pon generally increased with increasing vocal fold length for nonlinear models, whereas for linear models, Pon decreased with increasing length. Conclusions Nonlinear synthetic models appear to more accurately represent the human vocal folds than linear models, especially with respect to F0 response. PMID:22271874
Modified nonlinear model of arcsin-electrodynamics
Kruglov, S I
2015-01-01
A new modified model of nonlinear arcsin-electrodynamics with two parameters is proposed and analyzed. We obtain the corrections to the Coulomb law. The effect of vacuum birefringence takes place when the external constant magnetic field is present. We calculate indices of refraction for two perpendicular polarizations of electromagnetic waves and estimate bounds on the parameter $\\gamma$ from the BMV and PVLAS experiments. It is shown that the electric field of a point-like charge is finite at the origin. We calculate the finite static electric energy of point-like particles and demonstrate that the electron mass can have the pure electromagnetic nature. The symmetrical Belinfante energy-momentum tensor and dilatation current are found. We show that the dilatation symmetry and dual symmetry are broken in the model suggested.
Candidate Prediction Models and Methods
DEFF Research Database (Denmark)
Nielsen, Henrik Aalborg; Nielsen, Torben Skov; Madsen, Henrik
2005-01-01
This document lists candidate prediction models for Work Package 3 (WP3) of the PSO-project called ``Intelligent wind power prediction systems'' (FU4101). The main focus is on the models transforming numerical weather predictions into predictions of power production. The document also outlines...
Nonlinear time reversal of classical waves: experiment and model.
Frazier, Matthew; Taddese, Biniyam; Xiao, Bo; Antonsen, Thomas; Ott, Edward; Anlage, Steven M
2013-12-01
We consider time reversal of electromagnetic waves in a closed, wave-chaotic system containing a discrete, passive, harmonic-generating nonlinearity. An experimental system is constructed as a time-reversal mirror, in which excitations generated by the nonlinearity are gathered, time-reversed, transmitted, and directed exclusively to the location of the nonlinearity. Here we show that such nonlinear objects can be purely passive (as opposed to the active nonlinearities used in previous work), and we develop a higher data rate exclusive communication system based on nonlinear time reversal. A model of the experimental system is developed, using a star-graph network of transmission lines, with one of the lines terminated by a model diode. The model simulates time reversal of linear and nonlinear signals, demonstrates features seen in the experimental system, and supports our interpretation of the experimental results.
Nonlinear dynamical model of an automotive dual mass flywheel
Directory of Open Access Journals (Sweden)
Lei Chen
2015-06-01
Full Text Available The hysteresis, stick–slip, and rotational speed-dependent characteristics in a basic dual mass flywheel are obtained from a static and a dynamic experiments. Based on the experimental results, a nonlinear model of the transferred torque in this dual mass flywheel is developed, with the overlying form of nonlinear elastic torque and frictional torque. The nonlinearities of stiffness are investigated, deriving a nonlinear model to describe the rotational speed-dependent stiffness. In addition, Bouc–Wen model is used to model the hysteretic frictional torque. Thus, the nonlinear 2-degree-of-freedom system of this dual mass flywheel is set up. Then, the Levenberg–Marquardt method is adopted for the parameter estimation of the frictional torque. Finally, taking the nonlinear stiffness in this model into account, the parameters of Bouc–Wen model are estimated based on the dynamic test data.
Institute of Scientific and Technical Information of China (English)
马军海; 陈予恕
2001-01-01
The prediction methods and its applications of the nonlinear dynamic systems determined from chaotic time series of low-dimension are discussed mainly. Based on the work of the foreign researchers, the chaotic time series in the phase space adopting one kind of nonlinear chaotic model were reconstructed. At first, the model parameters were estimated by using the improved least square method. Then as the precision was satisfied,the optimization method was used to estimate these parameters. At the end by using the obtained chaotic model, the future data of the chaotic time series in the phase space was predicted. Some representative experimental examples were analyzed to testify the models and the algorithms developed in this paper. The results show that if the algorithms developed here are adopted, the parameters of the corresponding chaotic model will be easily calculated well and true. Predictions of chaotic series in phase space make the traditional methods change from outer iteration to interpolations. And if the optimal model rank is chosen, the prediction precision will increase notably. Long term superior predictability of nonlinear chaotic models is proved to be irrational and unreasonable.
Discussion of Some Problems About Nonlinear Time Series Prediction Using v-Support Vector Machine
Institute of Scientific and Technical Information of China (English)
GAO Cheng-Feng; CHEN Tian-Lun; NAN Tian-Shi
2007-01-01
Some problems in using v-support vector machine (v-SVM) for the prediction of nonlinear time series are discussed. The problems include selection of various net parameters, which affect the performance of prediction, mixture of kernels, and decomposition cooperation linear programming v-SVM regression, which result in improvements of the algorithm. Computer simulations in the prediction of nonlinear time series produced by Mackey-Glass equation and Lorenz equation provide some improved results.
Nonlinear Thermoelastic Model for SMAs and SMA Hybrid Composites
Turner, Travis L.
2004-01-01
A constitutive mathematical model has been developed that predicts the nonlinear thermomechanical behaviors of shape-memory-alloys (SMAs) and of shape-memory-alloy hybrid composite (SMAHC) structures, which are composite-material structures that contain embedded SMA actuators. SMAHC structures have been investigated for their potential utility in a variety of applications in which there are requirements for static or dynamic control of the shapes of structures, control of the thermoelastic responses of structures, or control of noise and vibrations. The present model overcomes deficiencies of prior, overly simplistic or qualitative models that have proven ineffective or intractable for engineering of SMAHC structures. The model is sophisticated enough to capture the essential features of the mechanics of SMAHC structures yet simple enough to accommodate input from fundamental engineering measurements and is in a form that is amenable to implementation in general-purpose structural analysis environments.
Nonlinear elastic model for compacted clay concrete interface
Institute of Scientific and Technical Information of China (English)
R. R. SHAKIR; Jungao ZHU
2009-01-01
In this paper, a nonlinear elastic model was developed to simulate the behavior of compacted clay concrete interface (CCCI) based on the principle of transition mechanism failure (TMF). A number of simple shear tests were conducted on CCCI to demonstrate different failure mechanisms; i.e., sliding failure and deformation failure. The clay soil used in the test was collected from the "Shuang Jang Kou" earth rockfill dam project. It was found that the behavior of the interface depends on the critical water contents by which two failure mechanisms can be recognized. Mathematical relations were proposed between the shear at failure and water content in addition to the transition mechanism indicator.The mathematical relations were then incorporated into the interface model. The performance of the model is verified with the experimental results. The verification shows that the proposed model is capable of predicting the interface shear stress versus the total shear displacement very well.
Recovering map static nonlinearities from chaotic data using dynamical models
Aguirre, Luis Antonio
1997-02-01
This paper is concerned with the estimation from chaotic data of maps with static nonlinearities. A number of issues concerning model construction such as structure selection, over-parametrization and model validation are discussed in the light of the shape of the static non-linearities reproduced by the estimated maps. A new interpretation of term clusters and cluster coefficients of polynomial models is provided based on this approach. The paper discusses model limitations and some useful principles to select the structure of nonlinear maps. Some of the ideas have been tested using several nonlinear systems including a boost voltage regulator map and a set of real data from a chaotic circuit.
Nonlinear continuous predictive controller for robot manipulator%机器人非线性连续预测控制
Institute of Scientific and Technical Information of China (English)
周建锁; 叶青; 刘志远; 裴润
2000-01-01
研究了一种机器人非线性连续预测控制方案，其预测模型通过对系统状态进行泰勒级数展开并作适当的截尾处理来获得，并通过优化性能指标求得控制律.与其他非线性模型预测控制相比，所得到的控制器具有解析形式，方法简单、计算量小、利于在线应用.仿真结果表明了非线性预测控制器的有效性%A time-continuous nonlinear model predictive control scheme for robot manipulator is studied with a predictive model acquired by truncating appropriately Taylor series expansion for system states, and control law identified by optimizing the cost function. Compared with other nonlinear predictive control using such empirical predictive model as Hammerstein model, Volterra model, NARMAX model and so on, the resulting controller, which has analytical formula with less calculation, is simple and fit for on-line application. Simulation results show the nonlinear predictive controller is very effective
On Non-Linear Sensitivity of Marine Biological Models to Parameter Variations
2007-01-01
M.B., 2002. Understanding uncertain enviromental systems. In: Grasman, J., van Straten, G. (Eds.), Predictability and Nonlinear Modelling in Natural...Lekien, F., 2006. Quantifying uncertainities in ocean predictions. In: Paluszkiewicz, T., Harper, S. (Eds.), Oceanography, special issue on Advances in
Melanoma risk prediction models
Directory of Open Access Journals (Sweden)
Nikolić Jelena
2014-01-01
Full Text Available Background/Aim. The lack of effective therapy for advanced stages of melanoma emphasizes the importance of preventive measures and screenings of population at risk. Identifying individuals at high risk should allow targeted screenings and follow-up involving those who would benefit most. The aim of this study was to identify most significant factors for melanoma prediction in our population and to create prognostic models for identification and differentiation of individuals at risk. Methods. This case-control study included 697 participants (341 patients and 356 controls that underwent extensive interview and skin examination in order to check risk factors for melanoma. Pairwise univariate statistical comparison was used for the coarse selection of the most significant risk factors. These factors were fed into logistic regression (LR and alternating decision trees (ADT prognostic models that were assessed for their usefulness in identification of patients at risk to develop melanoma. Validation of the LR model was done by Hosmer and Lemeshow test, whereas the ADT was validated by 10-fold cross-validation. The achieved sensitivity, specificity, accuracy and AUC for both models were calculated. The melanoma risk score (MRS based on the outcome of the LR model was presented. Results. The LR model showed that the following risk factors were associated with melanoma: sunbeds (OR = 4.018; 95% CI 1.724- 9.366 for those that sometimes used sunbeds, solar damage of the skin (OR = 8.274; 95% CI 2.661-25.730 for those with severe solar damage, hair color (OR = 3.222; 95% CI 1.984-5.231 for light brown/blond hair, the number of common naevi (over 100 naevi had OR = 3.57; 95% CI 1.427-8.931, the number of dysplastic naevi (from 1 to 10 dysplastic naevi OR was 2.672; 95% CI 1.572-4.540; for more than 10 naevi OR was 6.487; 95%; CI 1.993-21.119, Fitzpatricks phototype and the presence of congenital naevi. Red hair, phototype I and large congenital naevi were
A nonlinear model of gold production in Malaysia
Ramli, Norashikin; Muda, Nora; Umor, Mohd Rozi
2014-06-01
Malaysia is a country which is rich in natural resources and one of it is a gold. Gold has already become an important national commodity. This study is conducted to determine a model that can be well fitted with the gold production in Malaysia from the year 1995-2010. Five nonlinear models are presented in this study which are Logistic model, Gompertz, Richard, Weibull and Chapman-Richard model. These model are used to fit the cumulative gold production in Malaysia. The best model is then selected based on the model performance. The performance of the fitted model is measured by sum squares error, root mean squares error, coefficient of determination, mean relative error, mean absolute error and mean absolute percentage error. This study has found that a Weibull model is shown to have significantly outperform compare to the other models. To confirm that Weibull is the best model, the latest data are fitted to the model. Once again, Weibull model gives the lowest readings at all types of measurement error. We can concluded that the future gold production in Malaysia can be predicted according to the Weibull model and this could be important findings for Malaysia to plan their economic activities.
Variational modelling of nonlinear water waves
Kalogirou, Anna; Bokhove, Onno
2015-11-01
Mathematical modelling of water waves is demonstrated by investigating variational methods. A potential flow water wave model is derived using variational techniques and extented to include explicit time-dependence, leading to non-autonomous dynamics. As a first example, we consider the problem of a soliton splash in a long wave channel with a contraction at its end, resulting after a sluice gate is removed at a finite time. The removal of the sluice gate is included in the variational principle through a time-dependent gravitational potential. A second example involving non-autonomous dynamics concerns the motion of a free surface in a vertical Hele-Shaw cell. Explicit time-dependence now enters the model through a linear damping term due to the effect of wall friction and a term representing the motion of an artificially driven wave pump. In both cases, the model is solved numerically using a Galerkin FEM and the numerical results are compared to wave structures observed in experiments. The water wave model is also adapted to accommodate nonlinear ship dynamics. The novelty is this case is the coupling between the water wave dynamics, the ship dynamics and water line dynamics on the ship. For simplicity, we consider a simple ship structure consisting of V-shaped cross-sections.
Real-Time Onboard Global Nonlinear Aerodynamic Modeling from Flight Data
Brandon, Jay M.; Morelli, Eugene A.
2014-01-01
Flight test and modeling techniques were developed to accurately identify global nonlinear aerodynamic models onboard an aircraft. The techniques were developed and demonstrated during piloted flight testing of an Aermacchi MB-326M Impala jet aircraft. Advanced piloting techniques and nonlinear modeling techniques based on fuzzy logic and multivariate orthogonal function methods were implemented with efficient onboard calculations and flight operations to achieve real-time maneuver monitoring and analysis, and near-real-time global nonlinear aerodynamic modeling and prediction validation testing in flight. Results demonstrated that global nonlinear aerodynamic models for a large portion of the flight envelope were identified rapidly and accurately using piloted flight test maneuvers during a single flight, with the final identified and validated models available before the aircraft landed.
Nonlinear Eddy Viscosity Models applied to Wind Turbine Wakes
DEFF Research Database (Denmark)
Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan;
2013-01-01
The linear k−ε eddy viscosity model and modified versions of two existing nonlinear eddy viscosity models are applied to single wind turbine wake simulations using a Reynolds Averaged Navier-Stokes code. Results are compared with field wake measurements. The nonlinear models give better results...
A simple numerical model of a geometrically nonlinear Timoshenko beam
Keijdener, C.; Metrikine, A.
2015-01-01
In the original problem for which this model was developed, onedimensional flexible objects interact through a non-linear contact model. Due to the non-linear nature of the contact model, a numerical time-domain approach was adopted. One of the goals was to see if the coupling between axial and tran
Population mixture model for nonlinear telomere dynamics
Itzkovitz, Shalev; Shlush, Liran I.; Gluck, Dan; Skorecki, Karl
2008-12-01
Telomeres are DNA repeats protecting chromosomal ends which shorten with each cell division, eventually leading to cessation of cell growth. We present a population mixture model that predicts an exponential decrease in telomere length with time. We analytically solve the dynamics of the telomere length distribution. The model provides an excellent fit to available telomere data and accounts for the previously unexplained observation of telomere elongation following stress and bone marrow transplantation, thereby providing insight into the nature of the telomere clock.
Hong, Ming; Mao, Zhu; Todd, Michael D.; Su, Zhongqing
2017-01-01
Nonlinear features extracted from Lamb wave signals (e.g., second harmonic generation) are demonstrably sensitive to microscopic damage, such as fatigue and material thermal degradation. While a majority of the existing studies in this context is focused on detecting undersized damage in metallic materials, the present study is aimed at expanding such a detection philosophy to the domain of composites, by linking the relative acoustic nonlinearity parameter (RANP) - a prominent nonlinear signal feature of Lamb waves - to barely visible impact damage (BVID) in composites. Nevertheless, considering immense uncertainties inevitably embedded in acquired signals (due to instrumentation, environment, operation, computation/estimation, etc.) which can adversely obfuscate nonlinear features, it is necessary to quantify the uncertainty of the RANP (i.e., its statistics) in order to enhance decision-making associated with its use as a detection feature. A probabilistic model is established to numerically evaluate the statistical distribution of the RANP. Using piezoelectric wafers, Lamb waves are acquired and processed to produce histograms of RANP estimates in both the healthy and damaged conditions of a CF/EP laminate, to which the model is compared, with good agreement observed between the model-predicted and experimentally-obtained statistic distributions of the RANP. With the model, BVID in the laminate is predicted. The model is further made use of to quantify the level of confidence in damage prediction results based on the concept of a receiver operating characteristic, enabling the practitioners to better understand the obtained results in the presence of uncertainties.
A multilevel nonlinear mixed-effects approach to model growth in pigs
DEFF Research Database (Denmark)
Strathe, Anders Bjerring; Danfær, Allan Christian; Sørensen, H
2009-01-01
Growth functions have been used to predict market weight of pigs and maximize return over feed costs. This study was undertaken to compare 4 growth functions and methods of analyzing data, particularly one that considers nonlinear repeated measures. Data were collected from an experiment with 40...... pigs maintained from birth to maturity and their BW measured weekly or every 2 wk up to 1,007 d. Gompertz, logistic, Bridges, and Lopez functions were fitted to the data and compared using information criteria. For each function, a multilevel nonlinear mixed effects model was employed because....... Furthermore, studies should consider adding continuous autoregressive process when analyzing nonlinear mixed models with repeated measures....
Research on modeling of nonlinear vibration isolation system based on BouceWen model
Institute of Scientific and Technical Information of China (English)
Zhi-ling PENG; Chun-gui ZHOU
2014-01-01
A feedforword neural network of multi-layer topologies for systems with hysteretic nonlinearity is constructed based on BouceWen dif-ferential model. It not only reflects the hysteresis force characteristics of the BouceWen model, but also determines its corresponding pa-rameters. The simulation results show that restoring forceedisplacement curve hysteresis loop is very close to the real curve. The model trained can accurately predict the time response of system. The model is checked under the noise level. The result shows that the model has higher modeling precision, good generalization capability and a certain anti-interference ability.
Non-Linear Sigma Model on Conifolds
Parthasarathy, R
2002-01-01
Explicit solutions to the conifold equations with complex dimension $n=3,4$ in terms of {\\it{complex coordinates (fields)}} are employed to construct the Ricci-flat K\\"{a}hler metrics on these manifolds. The K\\"{a}hler 2-forms are found to be closed. The complex realization of these conifold metrics are used in the construction of 2-dimensional non-linear sigma model with the conifolds as target spaces. The action for the sigma model is shown to be bounded from below. By a suitable choice of the 'integration constants', arising in the solution of Ricci flatness requirement, the metric and the equations of motion are found to be {\\it{non-singular}}. As the target space is Ricci flat, the perturbative 1-loop counter terms being absent, the model becomes topological. The inherent U(1) fibre over the base of the conifolds is shown to correspond to a gauge connection in the sigma model. The same procedure is employed to construct the metric for the resolved conifold, in terms of complex coordinates and the action ...
Sensor Fault Tolerant Generic Model Control for Nonlinear Systems
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A modified Strong Tracking Filter (STF) is used to develop a new approach to sensor fault tolerant control. Generic Model Control (GMC) is used to control the nonlinear process while the process runs normally because of its robust control performance. If a fault occurs in the sensor, a sensor bias vector is then introduced to the output equation of the process model. The sensor bias vector is estimated on-line during every control period using the STF. The estimated sensor bias vector is used to develop a fault detection mechanism to supervise the sensors. When a sensor fault occurs, the conventional GMC is switched to a fault tolerant control scheme, which is, in essence, a state estimation and output prediction based GMC. The laboratory experimental results on a three-tank system demonstrate the effectiveness of the proposed Sensor Fault Tolerant Generic Model Control (SFTGMC) approach.
Nonlinear dynamic modeling of multicomponent batch distillation: a case study
Directory of Open Access Journals (Sweden)
Jiménez L.
2002-01-01
Full Text Available The aim of this work is to compare several of the commercial dynamic models for batch distillation available worldwide. In this context, BATCHFRAC(TM, CHEMCAD(TM BATCH, and HYSYS.Plant® software performances are compared to experimental data. The software can be used as soft sensors, playing the roll of ad-hoc observers or estimators for control objectives. Rigorous models were used as an alternative to predict the concentration profile and to specify the optimal switching time from products to slop cuts. The performance of a nonlinear model obtained using a novel identification algorithm was also studied. In addition, the strategy for continuous separation was revised with residue curve map analysis using Aspen SPLIT(TM.
Models of the delayed nonlinear Raman response in diatomic gases
Palastro, J. P.; Antonsen, T. M., Jr.; Pearson, A.
2011-07-01
We examine the delayed response of a diatomic gas to a polarizing laser field with the goal of obtaining computationally efficient methods for use with laser pulse propagation simulations. We demonstrate that for broadband pulses, heavy molecules such as O2 and N2, and typical atmospheric temperatures, the initial delayed response requires only classical physics. The linear kinetic Green's function is derived from the Boltzmann equation and shown to be in excellent agreement with full density-matrix calculations. A straightforward perturbation approach for the fully nonlinear, kinetic impulse response is also presented. With the kinetic theory a reduced fluid model of the diatomic gas’ orientation is derived. Transport coefficients are introduced to model the kinetic phase mixing of the delayed response. In addition to computational rapidity, the fluid model provides intuition through the use of familiar macroscopic quantities. Both the kinetic and the fluid descriptions predict a nonlinear steady-state alignment after passage of the laser pulse, which in the fluid model is interpreted as an anisotropic temperature of the diatomic fluid with respect to motion about the polarization axis.
Wang, John T.; Bomarito, Geoffrey F.
2016-01-01
This study implements a plasticity tool to predict the nonlinear shear behavior of unidirectional composite laminates under multiaxial loadings, with an intent to further develop the tool for use in composite progressive damage analysis. The steps for developing the plasticity tool include establishing a general quadratic yield function, deriving the incremental elasto-plastic stress-strain relations using the yield function with associated flow rule, and integrating the elasto-plastic stress-strain relations with a modified Euler method and a substepping scheme. Micromechanics analyses are performed to obtain normal and shear stress-strain curves that are used in determining the plasticity parameters of the yield function. By analyzing a micromechanics model, a virtual testing approach is used to replace costly experimental tests for obtaining stress-strain responses of composites under various loadings. The predicted elastic moduli and Poisson's ratios are in good agreement with experimental data. The substepping scheme for integrating the elasto-plastic stress-strain relations is suitable for working with displacement-based finite element codes. An illustration problem is solved to show that the plasticity tool can predict the nonlinear shear behavior for a unidirectional laminate subjected to multiaxial loadings.
A new ensemble model for short term wind power prediction
DEFF Research Database (Denmark)
Madsen, Henrik; Albu, Razvan-Daniel; Felea, Ioan
2012-01-01
As the objective of this study, a non-linear ensemble system is used to develop a new model for predicting wind speed in short-term time scale. Short-term wind power prediction becomes an extremely important field of research for the energy sector. Regardless of the recent advancements in the re-search...
Modeling a multivariable reactor and on-line model predictive control.
Yu, D W; Yu, D L
2005-10-01
A nonlinear first principle model is developed for a laboratory-scaled multivariable chemical reactor rig in this paper and the on-line model predictive control (MPC) is implemented to the rig. The reactor has three variables-temperature, pH, and dissolved oxygen with nonlinear dynamics-and is therefore used as a pilot system for the biochemical industry. A nonlinear discrete-time model is derived for each of the three output variables and their model parameters are estimated from the real data using an adaptive optimization method. The developed model is used in a nonlinear MPC scheme. An accurate multistep-ahead prediction is obtained for MPC, where the extended Kalman filter is used to estimate system unknown states. The on-line control is implemented and a satisfactory tracking performance is achieved. The MPC is compared with three decentralized PID controllers and the advantage of the nonlinear MPC over the PID is clearly shown.
Highly Nonlinear Ising Model and Social Segregation
Sumour, M A; Shabat, M M
2011-01-01
The usual interaction energy of the random field Ising model in statistical physics is modified by complementing the random field by added to the energy of the usual Ising model a nonlinear term S^n were S is the sum of the neighbor spins, and n=0,1,3,5,7,9,11. Within the Schelling model of urban segregation, this modification corresponds to housing prices depending on the immediate neighborhood. Simulations at different temperatures, lattice size, magnetic field, number of neighbors and different time intervals showed that results for all n are similar, expect for n=3 in violation of the universality principle and the law of corresponding states. In order to find the critical temperatures, for large n we no longer start with all spins parallel but instead with a random configuration, in order to facilitate spin flips. However, in all cases we have a Curie temperature with phase separation or long-range segregation only below this Curie temperature, and it is approximated by a simple formula: Tc is proportion...
Asymmetric and common absorption of shocks in nonlinear autoregressive models
Dijk, Dick van; Franses, Philip Hans; Boswijk, Peter
2000-01-01
textabstractA key feature of many nonlinear time series models is that they allow for the possibility that the model structure experiences changes, depending on for example the state of the economy or of the financial market. A common property of these models is that it generally is not possible to fully understand the structure of the model by considering the estimated values of the model parameters only. Put differently, it often is difficult to interpret a specific nonlinear model. To shed...
Prediction of nonlinear optical properties of organic materials. General theoretical considerations
Cardelino, B.; Moore, C.; Zutaut, S.
1993-01-01
The prediction of nonlinear optical properties of organic materials is geared to assist materials scientists in the selection of good candidate molecules. A brief summary of the quantum mechanical methods used for estimating hyperpolarizabilities will be presented. The advantages and limitations of each technique will be discussed. Particular attention will be given to the finite-field method for calculating first and second order hyperpolarizabilities, since this method is better suited for large molecules. Corrections for dynamic fields and bulk effects will be discussed in detail, focusing on solvent effects, conformational isomerization, core effects, dispersion, and hydrogen bonding. Several results will be compared with data obtained from third-harmonic-generation (THG) and dc-induced second harmonic generation (EFISH) measurements. These comparisons will demonstrate the qualitative ability of the method to predict the relative strengths of hyperpolarizabilities of a class of compounds. The future application of molecular mechanics, as well as other techniques, in the study of bulk properties and solid state defects will be addressed. The relationship between large values for nonlinear optical properties and large conjugation lengths is well known, and is particularly important for third-order processes. For this reason, the materials with the largest observed nonresonant third-order properties are conjugated polymers. An example of this type of polymer is polydiacetylene. One of the problems in dealing with polydiacetylene is that substituents which may enhance its nonlinear properties may ultimately prevent it from polymerizing. A model which attempts to predict the likelihood of solid-state polymerization is considered, along with the implications of the assumptions that are used. Calculations of the third-order optical properties and their relationship to first-order properties and energy gaps will be discussed. The relationship between monomeric and
Ahn, Joong-Bae; Lee, Joonlee
2016-08-01
A new multimodel ensemble (MME) method that uses a genetic algorithm (GA) is developed and applied to the prediction of winter surface air temperature (SAT) and precipitation. The GA based on the biological process of natural evolution is a nonlinear method which solves nonlinear optimization problems. Hindcast data of winter SAT and precipitation from the six coupled general circulation models participating in the seasonal MME prediction system of the Asia-Pacific Economic Conference Climate Center are used. Three MME methods using GA (MME/GAs) are examined in comparison with a simple composite MME strategy (MS0): MS1 which applies GA to single-model ensembles (SMEs), MS2 which applies GA to each ensemble member and then performs a simple composite method for MME, and MS3 which applies GA to both MME and SME. MS3 shows the highest predictability compared to MS0, MS1, and MS2 for both winter SAT and precipitation. These results indicate that biases of ensemble members of each model and model ensemble are more reduced with MS3 than with other MME/GAs and MS0. The predictability of the MME/GAs shows a greater improvement than that of MS0, particularly in higher-latitude land areas. The reason for the more improved increase of predictability over the land area, particularly in MS3, seems to be the fact that GA is more efficient in finding an optimum solution in a complex region where nonlinear physical properties are evident.
Directory of Open Access Journals (Sweden)
Nahid Ardalani
2011-07-01
Full Text Available This article describes linear and nonlinear Artificial Neural Network(ANN-based predictors as Autoregressive Moving Average models with Auxiliary input (ARMAX process for Signal to Interference plus Noise Ratio (SINR prediction in Direct Sequence Code Division Multiple Access (DS/CDMA systems. The Multi Layer Perceptron (MLP neural network with nonlinear function is used as nonlinear neural network and Adaptive Linear (Adaline predictor is used as linear predictor. The problem of complexity of the MLP and Adaline structures is solved by using the Minimum Mean Squared Error (MMSE principle to select the optimal numbers of input and hidden nodes by try and error role. Simulation results show that both of MLP and Adaline optimal neural networks can track the effect of deep fading due to using a 1.8 GHZ carrier frequency at the urban mobile speeds of 10 km/h, 50 km/h and 120 km/h with tolerable estimation errors. Therefore, the neural networkbased predictor is well suitable SINR-based predictor in closedloop power control to combat multi path fading in CDMA systems.
Fuzzy Modeling for Uncertainty Nonlinear Systems with Fuzzy Equations
Directory of Open Access Journals (Sweden)
Raheleh Jafari
2017-01-01
Full Text Available The uncertain nonlinear systems can be modeled with fuzzy equations by incorporating the fuzzy set theory. In this paper, the fuzzy equations are applied as the models for the uncertain nonlinear systems. The nonlinear modeling process is to find the coefficients of the fuzzy equations. We use the neural networks to approximate the coefficients of the fuzzy equations. The approximation theory for crisp models is extended into the fuzzy equation model. The upper bounds of the modeling errors are estimated. Numerical experiments along with comparisons demonstrate the excellent behavior of the proposed method.
A NEW SOLUTION MODEL OF NONLINEAR DYNAMIC LEAST SQUARE ADJUSTMENT
Institute of Scientific and Technical Information of China (English)
陶华学; 郭金运
2000-01-01
The nonlinear least square adjustment is a head object studied in technology fields. The paper studies on the non-derivative solution to the nonlinear dynamic least square adjustment and puts forward a new algorithm model and its solution model. The method has little calculation load and is simple. This opens up a theoretical method to solve the linear dynamic least square adjustment.
Nonlinear softening as a predictive precursor to climate tipping
Sieber, Jan
2011-01-01
Approaching a dangerous bifurcation, from which a dynamical system such as the Earth's climate will jump (tip) to a different state, the current stable state lies within a shrinking basin of attraction. Persistence of the state becomes increasingly precarious in the presence of noisy disturbances. We consider an underlying potential, as defined theoretically for a saddle-node fold and (via averaging) for a Hopf bifurcation. Close to a stable state, this potential has a parabolic form; but approaching a jump it becomes increasingly dominated by softening nonlinearities. If we have already detected a decrease in the linear decay rate, nonlinear information allows us to estimate the propensity for early tipping due to noise. If there is no discernable trend in the linear analysis, nonlinear softening is even more important in showing the proximity to tipping. After extensive normal form calibration studies, we apply our technique to two geological time series from paleo-climate tipping events. For the ending of ...
Filtering nonlinear dynamical systems with linear stochastic models
Harlim, J.; Majda, A. J.
2008-06-01
An important emerging scientific issue is the real time filtering through observations of noisy signals for nonlinear dynamical systems as well as the statistical accuracy of spatio-temporal discretizations for filtering such systems. From the practical standpoint, the demand for operationally practical filtering methods escalates as the model resolution is significantly increased. For example, in numerical weather forecasting the current generation of global circulation models with resolution of 35 km has a total of billions of state variables. Numerous ensemble based Kalman filters (Evensen 2003 Ocean Dyn. 53 343-67 Bishop et al 2001 Mon. Weather Rev. 129 420-36 Anderson 2001 Mon. Weather Rev. 129 2884-903 Szunyogh et al 2005 Tellus A 57 528-45 Hunt et al 2007 Physica D 230 112-26) show promising results in addressing this issue; however, all these methods are very sensitive to model resolution, observation frequency, and the nature of the turbulent signals when a practical limited ensemble size (typically less than 100) is used. In this paper, we implement a radical filtering approach to a relatively low (40) dimensional toy model, the L-96 model (Lorenz 1996 Proc. on Predictability (ECMWF, 4-8 September 1995) pp 1-18) in various chaotic regimes in order to address the 'curse of ensemble size' for complex nonlinear systems. Practically, our approach has several desirable features such as extremely high computational efficiency, filter robustness towards variations of ensemble size (we found that the filter is reasonably stable even with a single realization) which makes it feasible for high dimensional problems, and it is independent of any tunable parameters such as the variance inflation coefficient in an ensemble Kalman filter. This radical filtering strategy decouples the problem of filtering a spatially extended nonlinear deterministic system to filtering a Fourier diagonal system of parametrized linear stochastic differential equations (Majda and Grote
Lattice Boltzmann model for nonlinear convection-diffusion equations.
Shi, Baochang; Guo, Zhaoli
2009-01-01
A lattice Boltzmann model for convection-diffusion equation with nonlinear convection and isotropic-diffusion terms is proposed through selecting equilibrium distribution function properly. The model can be applied to the common real and complex-valued nonlinear evolutionary equations, such as the nonlinear Schrödinger equation, complex Ginzburg-Landau equation, Burgers-Fisher equation, nonlinear heat conduction equation, and sine-Gordon equation, by using a real and complex-valued distribution function and relaxation time. Detailed simulations of these equations are performed, and it is found that the numerical results agree well with the analytical solutions and the numerical solutions reported in previous studies.
Errouissi, Rachid; Yang, Jun; Chen, Wen-Hua; Al-Durra, Ahmed
2016-08-01
In this paper, a robust nonlinear generalised predictive control (GPC) method is proposed by combining an integral sliding mode approach. The composite controller can guarantee zero steady-state error for a class of uncertain nonlinear systems in the presence of both matched and unmatched disturbances. Indeed, it is well known that the traditional GPC based on Taylor series expansion cannot completely reject unknown disturbance and achieve offset-free tracking performance. To deal with this problem, the existing approaches are enhanced by avoiding the use of the disturbance observer and modifying the gain function of the nonlinear integral sliding surface. This modified strategy appears to be more capable of achieving both the disturbance rejection and the nominal prescribed specifications for matched disturbance. Simulation results demonstrate the effectiveness of the proposed approach.
Nonlinear lower hybrid modeling in tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Napoli, F.; Schettini, G. [Università Roma Tre, Dipartimento di Ingegneria, Roma (Italy); Castaldo, C.; Cesario, R. [Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati (Italy)
2014-02-12
We present here new results concerning the nonlinear mechanism underlying the observed spectral broadening produced by parametric instabilities occurring at the edge of tokamak plasmas in present day LHCD (lower hybrid current drive) experiments. Low frequency (LF) ion-sound evanescent modes (quasi-modes) are the main parametric decay channel which drives a nonlinear mode coupling of lower hybrid (LH) waves. The spectrum of the LF fluctuations is calculated here considering the beating of the launched LH wave at the radiofrequency (RF) operating line frequency (pump wave) with the noisy background of the RF power generator. This spectrum is calculated in the frame of the kinetic theory, following a perturbative approach. Numerical solutions of the nonlinear LH wave equation show the evolution of the nonlinear mode coupling in condition of a finite depletion of the pump power. The role of the presence of heavy ions in a Deuterium plasma in mitigating the nonlinear effects is analyzed.
Institute of Scientific and Technical Information of China (English)
Pascale KULISA; Cédric DANO
2006-01-01
Three linear two-equation turbulence models k- ε, k- ω and k- 1 and a non-linear k- l model are used for aerodynamic and thermal turbine flow prediction. The pressure profile in the wake and the heat transfer coefficient on the blade are compared with experimental data. Good agreement is obtained with the linear k- l model. No significant modifications are observed with the non-linear model. The balance of transport equation terms in the blade wake is also presented. Linear and non-linear k- l models are evaluated to predict the threedimensional vortices characterising the turbine flows. The simulations show that the passage vortex is the main origin of the losses.
Chortis, Dimitris I
2013-01-01
This book concerns the development of novel finite elements for the structural analysis of composite beams and blades. The introduction of material damping is also an important aspect of composite structures and it is presented here in terms of their static and dynamic behavior. The book thoroughly presents a new shear beam finite element, which entails new blade section mechanics, capable of predicting structural blade coupling due to composite coupling and/or internal section geometry. Theoretical background is further expanded towards the inclusion of nonlinear structural blade models and damping mechanics for composite structures. The models effectively include geometrically nonlinear terms due to large displacements and rotations, improve the modeling accuracy of very large flexible blades, and enable the modeling of rotational stiffening and buckling, as well as, nonlinear structural coupling. Validation simulations on specimen level study the geometric nonlinearities effect on the modal frequencies and...
A Modal Model to Simulate Typical Structural Dynamic Nonlinearity
Energy Technology Data Exchange (ETDEWEB)
Pacini, Benjamin Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mayes, Randall L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roettgen, Daniel R [Univ. of Wisconsin, Madison, WI (United States)
2015-10-01
Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combination with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.
Directory of Open Access Journals (Sweden)
Zhi-yuan Li
2014-01-01
Full Text Available As the core of the effective financial crisis prevention, enterprise finance crisis prediction has been the focal attention of both theorists and businessmen. Financial crisis predictions need to apply a variety of financial and operating indicators for its analysis. Therefore, a new evaluation model based on nonlinear programming is established, the nature of the model is proved, the detailed solution steps of the model are given, and the significance and algorithm of the model are thoroughly discussed in this study. The proposed model can deal with the case of missing data, and has the good isotonic property and profound theoretical background. In the empirical analysis to predict the financial crisis and through the comparison of the analysis of historical data and the real enterprises with financial crisis, we find that the results are in accordance with the real enterprise financial conditions and the proposed model has a good predictive ability.
Naro, Daniel; Rummel, Christian; Schindler, Kaspar; Andrzejak, Ralph G.
2014-09-01
The rank-based nonlinear predictability score was recently introduced as a test for determinism in point processes. We here adapt this measure to time series sampled from time-continuous flows. We use noisy Lorenz signals to compare this approach against a classical amplitude-based nonlinear prediction error. Both measures show an almost identical robustness against Gaussian white noise. In contrast, when the amplitude distribution of the noise has a narrower central peak and heavier tails than the normal distribution, the rank-based nonlinear predictability score outperforms the amplitude-based nonlinear prediction error. For this type of noise, the nonlinear predictability score has a higher sensitivity for deterministic structure in noisy signals. It also yields a higher statistical power in a surrogate test of the null hypothesis of linear stochastic correlated signals. We show the high relevance of this improved performance in an application to electroencephalographic (EEG) recordings from epilepsy patients. Here the nonlinear predictability score again appears of higher sensitivity to nonrandomness. Importantly, it yields an improved contrast between signals recorded from brain areas where the first ictal EEG signal changes were detected (focal EEG signals) versus signals recorded from brain areas that were not involved at seizure onset (nonfocal EEG signals).
ASYMPTOTIC EFFICIENT ESTIMATION IN SEMIPARAMETRIC NONLINEAR REGRESSION MODELS
Institute of Scientific and Technical Information of China (English)
ZhuZhongyi; WeiBocheng
1999-01-01
In this paper, the estimation method based on the “generalized profile likelihood” for the conditionally parametric models in the paper given by Severini and Wong (1992) is extendedto fixed design semiparametrie nonlinear regression models. For these semiparametrie nonlinear regression models,the resulting estimator of parametric component of the model is shown to beasymptotically efficient and the strong convergence rate of nonparametric component is investigated. Many results (for example Chen (1988) ,Gao & Zhao (1993), Rice (1986) et al. ) are extended to fixed design semiparametric nonlinear regression models.
Control design approaches for nonlinear systems using multiple models
Institute of Scientific and Technical Information of China (English)
Junyong ZHAI; Shumin FEI; Feipeng DA
2007-01-01
It is difficult to realize control for some complex nonlinear systems operated in different operating regions.Based on developing local models for different operating regions of the process, a novel algorithm using multiple models is proposed. It utilizes dynamic model bank to establish multiple local models, and their membership functions are defined according to respective regions. Then the nonlinear system is approximated to a weighted combination of the local models.The stability of the nonlinear system is proven. Finally, simulations are given to demonstrate the validity of the proposed method.
TESTING FOR VARYING DISPERSION IN DISCRETE EXPONENTIAL FAMILY NONLINEAR MODELS
Institute of Scientific and Technical Information of China (English)
LinJinguan; WeiBocheng; ZhangNansong
2003-01-01
It is necessary to test for varying dispersion in generalized nonlinear models. Wei ,et al(1998) developed a likelihood ratio test,a score test and their adjustments to test for varying dispersion in continuous exponential family nonlinear models. This type of problem in the framework of general discrete exponential family nonlinear models is discussed. Two types of varying dispersion, which are random coefficients model and random effects model, are proposed,and corresponding score test statistics are constructed and expressed in simple ,easy to use ,matrix formulas.
Mathematical modeling suggests that periodontitis behaves as a non-linear chaotic dynamical process
Papantonopoulos, G.H.; Takahashi, K.; Bountis, T.; Loos, B.G.
2013-01-01
Background: This study aims to expand on a previously presented cellular automata model and further explore the non-linear dynamics of periodontitis. Additionally the authors investigated whether their mathematical model could predict the two known types of periodontitis, aggressive (AgP) and
DEFF Research Database (Denmark)
Chon, K H; Holstein-Rathlou, N H; Marsh, D J
1998-01-01
via the Laguerre expansion technique achieve this prediction NMSE with approximately half the number of free parameters relative to either neural-network model. However, both approaches are deemed effective in modeling nonlinear dynamic systems and their cooperative use is recommended in general....
Mathematical modeling suggests that periodontitis behaves as a non-linear chaotic dynamical process
Papantonopoulos, G.H.; Takahashi, K.; Bountis, T.; Loos, B.G.
2013-01-01
Background: This study aims to expand on a previously presented cellular automata model and further explore the non-linear dynamics of periodontitis. Additionally the authors investigated whether their mathematical model could predict the two known types of periodontitis, aggressive (AgP) and chroni
Economic model predictive control theory, formulations and chemical process applications
Ellis, Matthew; Christofides, Panagiotis D
2017-01-01
This book presents general methods for the design of economic model predictive control (EMPC) systems for broad classes of nonlinear systems that address key theoretical and practical considerations including recursive feasibility, closed-loop stability, closed-loop performance, and computational efficiency. Specifically, the book proposes: Lyapunov-based EMPC methods for nonlinear systems; two-tier EMPC architectures that are highly computationally efficient; and EMPC schemes handling explicitly uncertainty, time-varying cost functions, time-delays and multiple-time-scale dynamics. The proposed methods employ a variety of tools ranging from nonlinear systems analysis, through Lyapunov-based control techniques to nonlinear dynamic optimization. The applicability and performance of the proposed methods are demonstrated through a number of chemical process examples. The book presents state-of-the-art methods for the design of economic model predictive control systems for chemical processes. In addition to being...
Nonlinear flow model for well production in an underground formation
Directory of Open Access Journals (Sweden)
J. C. Guo
2013-05-01
Full Text Available Fluid flow in underground formations is a nonlinear process. In this article we modelled the nonlinear transient flow behaviour of well production in an underground formation. Based on Darcy's law and material balance equations, we used quadratic pressure gradients to deduce diffusion equations and discuss the origins of nonlinear flow issues. By introducing an effective-well-radius approach that considers skin factor, we established a nonlinear flow model for both gas and liquid (oil or water. The liquid flow model was solved using a semi-analytical method, while the gas flow model was solved using numerical simulations because the diffusion equation of gas flow is a stealth function of pressure. For liquid flow, a series of standard log-log type curves of pressure transients were plotted and nonlinear transient flow characteristics were analyzed. Qualitative and quantitative analyses were used to compare the solutions of the linear and nonlinear models. The effect of nonlinearity upon pressure transients should not be ignored. For gas flow, pressure transients were simulated and compared with oil flow under the same formation and well conditions, resulting in the conclusion that, under the same volume rate production, oil wells demand larger pressure drops than gas wells. Comparisons between theoretical data and field data show that nonlinear models will describe fluid flow in underground formations realistically and accurately.
Model reduction of nonlinear systems subject to input disturbances
Ndoye, Ibrahima
2017-07-10
The method of convex optimization is used as a tool for model reduction of a class of nonlinear systems in the presence of disturbances. It is shown that under some conditions the nonlinear disturbed system can be approximated by a reduced order nonlinear system with similar disturbance-output properties to the original plant. The proposed model reduction strategy preserves the nonlinearity and the input disturbance nature of the model. It guarantees a sufficiently small error between the outputs of the original and the reduced-order systems, and also maintains the properties of input-to-state stability. The matrices of the reduced order system are given in terms of a set of linear matrix inequalities (LMIs). The paper concludes with a demonstration of the proposed approach on model reduction of a nonlinear electronic circuit with additive disturbances.
Nonlinear and Non Normal Regression Models in Physiological Research
1984-01-01
Applications of nonlinear and non normal regression models are in increasing order for appropriate interpretation of complex phenomenon of biomedical sciences. This paper reviews critically some applications of these models physiological research.
Modeling of the nonlinear resonant response in sedimentary rocks
Energy Technology Data Exchange (ETDEWEB)
Ten Cate, James A [Los Alamos National Laboratory; Shankland, Thomas J [Los Alamos National Laboratory; Vakhnenko, Vyacheslav O [NON LANL; Vakhnenko, Oleksiy [NON LANL
2009-04-03
We suggest a model for describing a wide class of nonlinear and hysteretic effects in sedimentary rocks at longitudinal bar resonance. In particular, we explain: hysteretic behaviour of a resonance curve on both its upward and downward slopes; linear softening of resonant frequency with increase of driving level; gradual (almost logarithmic) recovery of resonant frequency after large dynamical strains; and temporal relaxation of response amplitude at fixed frequency. Starting with a suggested model, we predict the dynamical realization of end-point memory in resonating bar experiments with a cyclic frequency protocol. These theoretical findings were confirmed experimentally at Los Alamos National Laboratory. Sedimentary rocks, particularly sandstones, are distinguished by their grain structure in which each grain is much harder than the intergrain cementation material. The peculiarities of grain and pore structures give rise to a variety of remarkable nonlinear mechanical properties demonstrated by rocks, both at quasistatic and alternating dynamic loading. Thus, the hysteresis earlier established for the stress-strain relation in samples subjected to quasistatic loading-unloading cycles has also been discovered for the relation between acceleration amplitude and driving frequency in bar-shaped samples subjected to an alternating external drive that is frequency-swept through resonance. At strong drive levels there is an unusual, almost linear decrease of resonant frequency with strain amplitude, and there are long-term relaxation phenomena such as nearly logarithmic recovery (increase) of resonant frequency after the large conditioning drive has been removed. In this report we present a short sketch of a model for explaining numerous experimental observations seen in forced longitudinal oscillations of sandstone bars. According to our theory a broad set of experimental data can be understood as various aspects of the same internally consistent pattern. Furthermore
Modelling and Estimation of Hammerstein System with Preload Nonlinearity
Directory of Open Access Journals (Sweden)
Khaled ELLEUCH
2010-12-01
Full Text Available This paper deals with modelling and parameter identification of nonlinear systems described by Hammerstein model having asymmetric static nonlinearities known as preload nonlinearity characteristic. The simultaneous use of both an easy decomposition technique and the generalized orthonormal bases leads to a particular form of Hammerstein model containing a minimal parameters number. The employ of orthonormal bases for the description of the linear dynamic block conducts to a linear regressor model, so that least squares techniques can be used for the parameter estimation. Singular Values Decomposition (SVD technique has been applied to separate the coupled parameters. To demonstrate the feasibility of the identification method, an illustrative example is included.
A new nonlinear model for analyzing the behaviour of carbon nanotube-based resonators
Farokhi, Hamed; Païdoussis, Michael P.; Misra, Arun K.
2016-09-01
The present study develops a new size-dependent nonlinear model for the analysis of the behaviour of carbon nanotube-based resonators. In particular, based on modified couple stress theory, the fully nonlinear equations of motion of the carbon nanotube-based resonator are derived using Hamilton's principle, taking into account both the longitudinal and transverse displacements. Molecular dynamics simulation is then performed in order to verify the validity of the developed size-dependent continuum model at the nano scale. The nonlinear partial differential equations of motion of the system are discretized by means of the Galerkin technique, resulting in a high-dimensional reduced-order model of the system. The pseudo-arclength continuation technique is employed to examine the nonlinear resonant behaviour of the carbon nanotube-based resonator. A new universal pull-in formula is also developed for predicting the occurrence of the static pull-in and validated using numerical simulations.
Applications of Nonlinear Dynamics Model and Design of Complex Systems
In, Visarath; Palacios, Antonio
2009-01-01
This edited book is aimed at interdisciplinary, device-oriented, applications of nonlinear science theory and methods in complex systems. In particular, applications directed to nonlinear phenomena with space and time characteristics. Examples include: complex networks of magnetic sensor systems, coupled nano-mechanical oscillators, nano-detectors, microscale devices, stochastic resonance in multi-dimensional chaotic systems, biosensors, and stochastic signal quantization. "applications of nonlinear dynamics: model and design of complex systems" brings together the work of scientists and engineers that are applying ideas and methods from nonlinear dynamics to design and fabricate complex systems.
Extended models of nonlinear waves in liquid with gas bubbles
Kudryashov, Nikolay A
2016-01-01
In this work we generalize the models for nonlinear waves in a gas--liquid mixture taking into account an interphase heat transfer, a surface tension and a weak liquid compressibility simultaneously at the derivation of the equations for nonlinear waves. We also take into consideration high order terms with respect to the small parameter. Two new nonlinear differential equations are derived for long weakly nonlinear waves in a liquid with gas bubbles by the reductive perturbation method considering both high order terms with respect to the small parameter and the above mentioned physical properties. One of these equations is the perturbation of the Burgers equation and corresponds to main influence of dissipation on nonlinear waves propagation. The other equation is the perturbation of the Burgers--Korteweg--de Vries equation and corresponds to main influence of dispersion on nonlinear waves propagation.
Nonlinear Mixed-Effects Models for Repairable Systems Reliability
Institute of Scientific and Technical Information of China (English)
TAN Fu-rong; JIANG Zhi-bin; KUO Way; Suk Joo BAE
2007-01-01
Mixed-effects models, also called random-effects models, are a regression type of analysis which enables the analyst to not only describe the trend over time within each subject, but also to describe the variation among different subjects. Nonlinear mixed-effects models provide a powerful and flexible tool for handling the unbalanced count data. In this paper, nonlinear mixed-effects models are used to analyze the failure data from a repairable system with multiple copies. By using this type of models, statistical inferences about the population and all copies can be made when accounting for copy-to-copy variance. Results of fitting nonlinear mixed-effects models to nine failure-data sets show that the nonlinear mixed-effects models provide a useful tool for analyzing the failure data from multi-copy repairable systems.
A Boussinesq model with alleviated nonlinearity and dispersion
Institute of Scientific and Technical Information of China (English)
ZHANG Dian-xin; TAO Jian-hua
2008-01-01
The classical Boussinesq equation is a weakly nonlinear and weakly dispersive equation, which has been widely applied to simulate wave propagation in off-coast shallow waters. A new form of the Boussinesq model for an uneven bottoms is derived in this paper. In the new model, nonlinearity is reduced without increasing the order of the highest derivative in the differential equations. Dispersion relationship of the model is improved to the order of Pade (2,2) by adjusting a parameter in the model based on the long wave approximation. Analysis of the linear dispersion, linear shoaling and nonlinearity of the present model shows that the performances in terms of nonlinearity, dispersion and shoaling of this model are improved. Numerical results obtained with the present model are in agreement with experimental data.
Lopes, Marta B; Calado, Cecília R C; Figueiredo, Mário A T; Bioucas-Dias, José M
2016-11-16
The monitoring of biopharmaceutical products using Fourier transform infrared (FT-IR) spectroscopy relies on calibration techniques involving the acquisition of spectra of bioprocess samples along the process. The most commonly used method for that purpose is partial least squares (PLS) regression, under the assumption that a linear model is valid. Despite being successful in the presence of small nonlinearities, linear methods may fail in the presence of strong nonlinearities. This paper studies the potential usefulness of nonlinear regression methods for predicting, from in situ near-infrared (NIR) and mid-infrared (MIR) spectra acquired in high-throughput mode, biomass and plasmid concentrations in Escherichia coli DH5-α cultures producing the plasmid model pVAX-LacZ. The linear methods PLS and ridge regression (RR) are compared with their kernel (nonlinear) versions, kPLS and kRR, as well as with the (also nonlinear) relevance vector machine (RVM) and Gaussian process regression (GPR). For the systems studied, RR provided better predictive performances compared to the remaining methods. Moreover, the results point to further investigation based on larger data sets whenever differences in predictive accuracy between a linear method and its kernelized version could not be found. The use of nonlinear methods, however, shall be judged regarding the additional computational cost required to tune their additional parameters, especially when the less computationally demanding linear methods herein studied are able to successfully monitor the variables under study.
Paiement, Jean-François; Grandvalet, Yves; Bengio, Samy
2008-01-01
Modeling long-term dependencies in time series has proved very difficult to achieve with traditional machine learning methods. This problem occurs when considering music data. In this paper, we introduce generative models for melodies. We decompose melodic modeling into two subtasks. We first propose a rhythm model based on the distributions of distances between subsequences. Then, we define a generative model for melodies given chords and rhythms based on modeling sequences of Narmour featur...
Employment of CB models for non-linear dynamic analysis
Klein, M. R. M.; Deloo, P.; Fournier-Sicre, A.
1990-01-01
The non-linear dynamic analysis of large structures is always very time, effort and CPU consuming. Whenever possible the reduction of the size of the mathematical model involved is of main importance to speed up the computational procedures. Such reduction can be performed for the part of the structure which perform linearly. Most of the time, the classical Guyan reduction process is used. For non-linear dynamic process where the non-linearity is present at interfaces between different structures, Craig-Bampton models can provide a very rich information, and allow easy selection of the relevant modes with respect to the phenomenon driving the non-linearity. The paper presents the employment of Craig-Bampton models combined with Newmark direct integration for solving non-linear friction problems appearing at the interface between the Hubble Space Telescope and its solar arrays during in-orbit maneuvers. Theory, implementation in the FEM code ASKA, and practical results are shown.
Pressure prediction model for compression garment design.
Leung, W Y; Yuen, D W; Ng, Sun Pui; Shi, S Q
2010-01-01
Based on the application of Laplace's law to compression garments, an equation for predicting garment pressure, incorporating the body circumference, the cross-sectional area of fabric, applied strain (as a function of reduction factor), and its corresponding Young's modulus, is developed. Design procedures are presented to predict garment pressure using the aforementioned parameters for clinical applications. Compression garments have been widely used in treating burning scars. Fabricating a compression garment with a required pressure is important in the healing process. A systematic and scientific design method can enable the occupational therapist and compression garments' manufacturer to custom-make a compression garment with a specific pressure. The objectives of this study are 1) to develop a pressure prediction model incorporating different design factors to estimate the pressure exerted by the compression garments before fabrication; and 2) to propose more design procedures in clinical applications. Three kinds of fabrics cut at different bias angles were tested under uniaxial tension, as were samples made in a double-layered structure. Sets of nonlinear force-extension data were obtained for calculating the predicted pressure. Using the value at 0° bias angle as reference, the Young's modulus can vary by as much as 29% for fabric type P11117, 43% for fabric type PN2170, and even 360% for fabric type AP85120 at a reduction factor of 20%. When comparing the predicted pressure calculated from the single-layered and double-layered fabrics, the double-layered construction provides a larger range of target pressure at a particular strain. The anisotropic and nonlinear behaviors of the fabrics have thus been determined. Compression garments can be methodically designed by the proposed analytical pressure prediction model.
Linear and Nonlinear Thinking: A Multidimensional Model and Measure
Groves, Kevin S.; Vance, Charles M.
2015-01-01
Building upon previously developed and more general dual-process models, this paper provides empirical support for a multidimensional thinking style construct comprised of linear thinking and multiple dimensions of nonlinear thinking. A self-report assessment instrument (Linear/Nonlinear Thinking Style Profile; LNTSP) is presented and…
Combined forecasts from linear and nonlinear time series models
N. Terui (Nobuhiko); H.K. van Dijk (Herman)
1999-01-01
textabstractCombined forecasts from a linear and a nonlinear model are investigated for time series with possibly nonlinear characteristics. The forecasts are combined by a constant coefficient regression method as well as a time varying method. The time varying method allows for a locally (non)line
Temperature effects in a nonlinear model of monolayer Scheibe aggregates
DEFF Research Database (Denmark)
Bang, Ole; Christiansen, Peter Leth; If, F.
1994-01-01
A nonlinear dynamical model of molecular monolayers arranged in Scheibe aggregates is derived from a proper Hamiltonian. Thermal fluctuations of the phonons are included. The resulting equation for the excitons is the two dimensional nonlinear Schrodinger equation with noise. Two limits...
Linear and Nonlinear Thinking: A Multidimensional Model and Measure
Groves, Kevin S.; Vance, Charles M.
2015-01-01
Building upon previously developed and more general dual-process models, this paper provides empirical support for a multidimensional thinking style construct comprised of linear thinking and multiple dimensions of nonlinear thinking. A self-report assessment instrument (Linear/Nonlinear Thinking Style Profile; LNTSP) is presented and…
DEFF Research Database (Denmark)
Fournier, David A.; Skaug, Hans J.; Ancheta, Johnoel
2011-01-01
Many criteria for statistical parameter estimation, such as maximum likelihood, are formulated as a nonlinear optimization problem.Automatic Differentiation Model Builder (ADMB) is a programming framework based on automatic differentiation, aimed at highly nonlinear models with a large number...
Local Influence Analysis for Semiparametric Reproductive Dispersion Nonlinear Models
Institute of Scientific and Technical Information of China (English)
Xue-dong CHEN; Nian-sheng TANG; Xue-ren WANG
2012-01-01
The present paper proposes a semiparametric reproductive dispersion nonlinear model (SRDNM)which is an extension of the nonlinear reproductive dispersion models and the semiparameter regression models.Maximum penalized likelihood estimates (MPLEs) of unknown parameters and nonparametric functions in SRDNM are presented.Assessment of local influence for various perturbation schemes are investigated.Some local influence diagnostics are given.A simulation study and a real example are used to illustrate the proposed methodologies.
The application of modeling and prediction with MRA wavelet network
Institute of Scientific and Technical Information of China (English)
LU Shu-ping; YANG Xue-jing; ZHAO Xi-ren
2004-01-01
As there are lots of non-linear systems in the real engineering, it is very important to do more researches on the modeling and prediction of non-linear systems. Based on the multi-resolution analysis (MRA) of wavelet theory, this paper combined the wavelet theory with neural network and established a MRA wavelet network with the scaling function and wavelet function as its neurons. From the analysis in the frequency domain, the results indicated that MRA wavelet network was better than other wavelet networks in the ability of approaching to the signals. An essential research was carried out on modeling and prediction with MRA wavelet network in the non-linear system. Using the lengthwise sway data received from the experiment of ship model, a model of offline prediction was established and was applied to the short-time prediction of ship motion. The simulation results indicated that the forecasting model improved the prediction precision effectively, lengthened the forecasting time and had a better prediction results than that of AR linear model.The research indicates that it is feasible to use the MRA wavelet network in the short -time prediction of ship motion.
Energy Technology Data Exchange (ETDEWEB)
Combescure, D.; Sollogoub, P.; Jeanvoine, E.; Politopoulos, I
2000-07-01
Models for the sizing of new structures are more and more reliable. Meanwhile the seismic prediction of an old building is a more complex problem. The non-linear displacements have to be take into account in the sizing codes. The CEA developed assessment methods of these non-linear deformations. This paper presents the different non-linear models, their particularities and two examples of structure analysis. (A.L.B.)
Zephyr - the prediction models
DEFF Research Database (Denmark)
Nielsen, Torben Skov; Madsen, Henrik; Nielsen, Henrik Aalborg
2001-01-01
This paper briefly describes new models and methods for predicationg the wind power output from wind farms. The system is being developed in a project which has the research organization Risø and the department of Informatics and Mathematical Modelling (IMM) as the modelling team and all the Dani...
Bayesian model comparison in nonlinear BOLD fMRI hemodynamics
DEFF Research Database (Denmark)
Jacobsen, Danjal Jakup; Hansen, Lars Kai; Madsen, Kristoffer Hougaard
2008-01-01
Nonlinear hemodynamic models express the BOLD (blood oxygenation level dependent) signal as a nonlinear, parametric functional of the temporal sequence of local neural activity. Several models have been proposed for both the neural activity and the hemodynamics. We compare two such combined models......: the original balloon model with a square-pulse neural model (Friston, Mechelli, Turner, & Price, 2000) and an extended balloon model with a more sophisticated neural model (Buxton, Uludag, Dubowitz, & Liu, 2004). We learn the parameters of both models using a Bayesian approach, where the distribution...
The Chaotic Prediction for Aero-Engine Performance Parameters Based on Nonlinear PLS Regression
Directory of Open Access Journals (Sweden)
Chunxiao Zhang
2012-01-01
Full Text Available The prediction of the aero-engine performance parameters is very important for aero-engine condition monitoring and fault diagnosis. In this paper, the chaotic phase space of engine exhaust temperature (EGT time series which come from actual air-borne ACARS data is reconstructed through selecting some suitable nearby points. The partial least square (PLS based on the cubic spline function or the kernel function transformation is adopted to obtain chaotic predictive function of EGT series. The experiment results indicate that the proposed PLS chaotic prediction algorithm based on biweight kernel function transformation has significant advantage in overcoming multicollinearity of the independent variables and solve the stability of regression model. Our predictive NMSE is 16.5 percent less than that of the traditional linear least squares (OLS method and 10.38 percent less than that of the linear PLS approach. At the same time, the forecast error is less than that of nonlinear PLS algorithm through bootstrap test screening.
Foundations of Complex Systems Nonlinear Dynamics, Statistical Physics, and Prediction
Nicolis, Gregoire
2007-01-01
Complexity is emerging as a post-Newtonian paradigm for approaching a large body of phenomena of concern at the crossroads of physical, engineering, environmental, life and human sciences from a unifying point of view. This book outlines the foundations of modern complexity research as it arose from the cross-fertilization of ideas and tools from nonlinear science, statistical physics and numerical simulation. It is shown how these developments lead to an understanding, both qualitative and quantitative, of the complex systems encountered in nature and in everyday experience and, conversely, h
Coupled Oscillator Model for Nonlinear Gravitational Perturbations
Yang, Huan; Green, Stephen R; Lehner, Luis
2015-01-01
Motivated by the gravity/fluid correspondence, we introduce a new method for characterizing nonlinear gravitational interactions. Namely we map the nonlinear perturbative form of the Einstein equation to the equations of motion of a collection of nonlinearly-coupled harmonic oscillators. These oscillators correspond to the quasinormal or normal modes of the background spacetime. We demonstrate the mechanics and the utility of this formalism within the context of perturbed asymptotically anti-de Sitter black brane spacetimes. We confirm in this case that the boundary fluid dynamics are equivalent to those of the hydrodynamic quasinormal modes of the bulk spacetime. We expect this formalism to remain valid in more general spacetimes, including those without a fluid dual. In other words, although borne out of the gravity/fluid correspondence, the formalism is fully independent and it has a much wider range of applicability. In particular, as this formalism inspires an especially transparent physical intuition, w...
A Composite Model Predictive Control Strategy for Furnaces
Institute of Scientific and Technical Information of China (English)
Hao Zang; Hongguang Li; Jingwen Huang; Jia Wang
2014-01-01
Tube furnaces are essential and primary energy intensive facilities in petrochemical plants. Operational optimi-zation of furnaces could not only help to improve product quality but also benefit to reduce energy consumption and exhaust emission. Inspired by this idea, this paper presents a composite model predictive control (CMPC) strategy, which, taking advantage of distributed model predictive control architectures, combines tracking nonlinear model predictive control and economic nonlinear model predictive control metrics to keep process running smoothly and optimize operational conditions. The control ers connected with two kinds of communi-cation networks are easy to organize and maintain, and stable to process interferences. A fast solution algorithm combining interior point solvers and Newton's method is accommodated to the CMPC realization, with reason-able CPU computing time and suitable online applications. Simulation for industrial case demonstrates that the proposed approach can ensure stable operations of furnaces, improve heat efficiency, and reduce the emission effectively.
Reduced Noise Effect in Nonlinear Model Estimation Using Multiscale Representation
Directory of Open Access Journals (Sweden)
Mohamed N. Nounou
2010-01-01
Full Text Available Nonlinear process models are widely used in various applications. In the absence of fundamental models, it is usually relied on empirical models, which are estimated from measurements of the process variables. Unfortunately, measured data are usually corrupted with measurement noise that degrades the accuracy of the estimated models. Multiscale wavelet-based representation of data has been shown to be a powerful data analysis and feature extraction tool. In this paper, these characteristics of multiscale representation are utilized to improve the estimation accuracy of the linear-in-the-parameters nonlinear model by developing a multiscale nonlinear (MSNL modeling algorithm. The main idea in this MSNL modeling algorithm is to decompose the data at multiple scales, construct multiple nonlinear models at multiple scales, and then select among all scales the model which best describes the process. The main advantage of the developed algorithm is that it integrates modeling and feature extraction to improve the robustness of the estimated model to the presence of measurement noise in the data. This advantage of MSNL modeling is demonstrated using a nonlinear reactor model.
Neural networks for modelling and control of a non-linear dynamic system
Murray-Smith, R.; Neumerkel, D.; Sbarbaro-Hofer, D.
1992-01-01
The authors describe the use of neural nets to model and control a nonlinear second-order electromechanical model of a drive system with varying time constants and saturation effects. A model predictive control structure is used. This is compared with a proportional-integral (PI) controller with regard to performance and robustness against disturbances. Two feedforward network types, the multilayer perceptron and radial-basis-function nets, are used to model the system. The problems involved ...
Catalytic cracking models developed for predictive control purposes
Directory of Open Access Journals (Sweden)
Dag Ljungqvist
1993-04-01
Full Text Available The paper deals with state-space modeling issues in the context of model-predictive control, with application to catalytic cracking. Emphasis is placed on model establishment, verification and online adjustment. Both the Fluid Catalytic Cracking (FCC and the Residual Catalytic Cracking (RCC units are discussed. Catalytic cracking units involve complex interactive processes which are difficult to operate and control in an economically optimal way. The strong nonlinearities of the FCC process mean that the control calculation should be based on a nonlinear model with the relevant constraints included. However, the model can be simple compared to the complexity of the catalytic cracking plant. Model validity is ensured by a robust online model adjustment strategy. Model-predictive control schemes based on linear convolution models have been successfully applied to the supervisory dynamic control of catalytic cracking units, and the control can be further improved by the SSPC scheme.
Blind channel identication of nonlinear folding mixing model
Institute of Scientific and Technical Information of China (English)
Su Yong; Xu Shangzhi; Ye Zhongfu
2006-01-01
Signals from multi-sensor systems are often mixtures of (statistically) independent sources by unknown mixing method. Blind source separation(BSS) and independent component analysis(ICA) are the methods to identify/recover the channels and the sources. BSS/ICA of nonlinear mixing models are difficult problems. For instance, the post-nonlinear model has been studied by several authors. It is noticed that in most cases, the proposed models are always with an invertible mixing. According to this fact there is an interesting question: how about the situation of the non-invertible non-linear mixing in BSS or ICA? A new simple non-linear mixing model is proposed with a kind of non-invertible mixing, the folding mixing, and method to identify its channel, blindly.
Extended nonlinear feedback model for describing episodes of high inflation
Szybisz, Martín A.; Szybisz, Leszek
2017-01-01
An extension of the nonlinear feedback (NLF) formalism to describe regimes of hyper- and high-inflation in economy is proposed in the present work. In the NLF model the consumer price index (CPI) exhibits a finite time singularity of the type 1 /(tc - t) (1 - β) / β, with β > 0, predicting a blow up of the economy at a critical time tc. However, this model fails in determining tc in the case of weak hyperinflation regimes like, e.g., that occurred in Israel. To overcome this trouble, the NLF model is extended by introducing a parameter γ, which multiplies all terms with past growth rate index (GRI). In this novel approach the solution for CPI is also analytic being proportional to the Gaussian hypergeometric function 2F1(1 / β , 1 / β , 1 + 1 / β ; z) , where z is a function of β, γ, and tc. For z → 1 this hypergeometric function diverges leading to a finite time singularity, from which a value of tc can be determined. This singularity is also present in GRI. It is shown that the interplay between parameters β and γ may produce phenomena of multiple equilibria. An analysis of the severe hyperinflation occurred in Hungary proves that the novel model is robust. When this model is used for examining data of Israel a reasonable tc is got. High-inflation regimes in Mexico and Iceland, which exhibit weaker inflations than that of Israel, are also successfully described.
Review of Nonlinear Methods and Modelling
Borg, F G
2005-01-01
The first part of this Review describes a few of the main methods that have been employed in non-linear time series analysis with special reference to biological applications (biomechanics). The second part treats the physical basis of posturogram data (human balance) and EMG (electromyography, a measure of muscle activity).
Exact travelling wave solutions for some important nonlinear physical models
Indian Academy of Sciences (India)
Jonu Lee; Rathinasamy Sakthivel
2013-05-01
The two-dimensional nonlinear physical models and coupled nonlinear systems such as Maccari equations, Higgs equations and Schrödinger–KdV equations have been widely applied in many branches of physics. So, finding exact travelling wave solutions of such equations are very helpful in the theories and numerical studies. In this paper, the Kudryashov method is used to seek exact travelling wave solutions of such physical models. Further, three-dimensional plots of some of the solutions are also given to visualize the dynamics of the equations. The results reveal that the method is a very effective and powerful tool for solving nonlinear partial differential equations arising in mathematical physics.
A Fully Associative, Non-Linear Kinematic, Unified Viscoplastic Model for Titanium Based Matrices
Arnold, S. M.; Saleeb, A. F.; Castelli, M. G.
1994-01-01
Specific forms for both the Gibb's and complementary dissipation potentials are chosen such that a complete (i.e., fully associative) potential based multiaxial unified viscoplastic model is obtained. This model possesses one tensorial internal state variable that is associated with dislocation substructure, with an evolutionary law that has nonlinear kinematic hardening and both thermal and strain induced recovery mechanisms. A unique aspect of the present model is the inclusion of non-linear hardening through the use of a compliance operator, derived from the Gibb's potential, in the evolution law for the back stress. This non-linear tensorial operator is significant in that it allows both the flow and evolutionary laws to be fully associative (and therefore easily integrated) and greatly influences the multiaxial response under non-proportional loading paths. In addition to this nonlinear compliance operator, a new consistent, potential preserving, internal strain unloading criterion has been introduced to prevent abnormalities in the predicted stress-strain curves, which are present with nonlinear hardening formulations, during unloading and reversed loading of the external variables. Specification of an experimental program for the complete determination of the material functions and parameters for characterizing a metallic matrix, e.g., TIMETAL 21S, is given. The experiments utilized are tensile, creep, and step creep tests. Finally, a comparison of this model and a commonly used Bodner-Partom model is made on the basis of predictive accuracy and numerical efficiency.
Compound waves in a higher order nonlinear model of thermoviscous fluids
DEFF Research Database (Denmark)
Rønne Rasmussen, Anders; Sørensen, Mads Peter; Gaididei, Yuri B.
2016-01-01
A generalized traveling wave ansatz is used to investigate compound shock waves in a higher order nonlinear model of a thermoviscous fluid. The fluid velocity potential is written as a traveling wave plus a linear function of space and time. The latter offers the possibility of predicting...
A reduced order model for nonlinear vibroacoustic problems
Directory of Open Access Journals (Sweden)
Ouisse Morvan
2012-07-01
Full Text Available This work is related to geometrical nonlinearities applied to thin plates coupled with fluid-filled domain. Model reduction is performed to reduce the computation time. Reduced order model (ROM is issued from the uncoupled linear problem and enriched with residues to describe the nonlinear behavior and coupling effects. To show the efficiency of the proposed method, numerical simulations in the case of an elastic plate closing an acoustic cavity are presented.
A Comment on the Renormalization of the Nonlinear Sigma Model
Bettinelli, D; Quadri, A; Bettinelli, Daniele; Ferrari, Ruggero; Quadri, Andrea
2007-01-01
We consider the recently proposed renormalization procedure for the nonlinear sigma model, consisting in the recursive subtraction of the divergences in a symmetric fashion. We compare this subtraction with the conventional procedure in power counting renormalizable (PCR) theories. We argue that symmetric subtraction in the nonlinear sigma model does not follow the lore by which nonrenormalizable theories require an infinite number of parameter fixings. Our conclusion is that only two parameters can be consistently used as physical constants.
Confidence scores for prediction models
DEFF Research Database (Denmark)
Gerds, Thomas Alexander; van de Wiel, MA
2011-01-01
modelling strategy is applied to different training sets. For each modelling strategy we estimate a confidence score based on the same repeated bootstraps. A new decomposition of the expected Brier score is obtained, as well as the estimates of population average confidence scores. The latter can be used...... to distinguish rival prediction models with similar prediction performances. Furthermore, on the subject level a confidence score may provide useful supplementary information for new patients who want to base a medical decision on predicted risk. The ideas are illustrated and discussed using data from cancer...
RECENT PROGRESS IN NONLINEAR EDDY-VISCOSITY TURBULENCE MODELING
Institute of Scientific and Technical Information of China (English)
符松; 郭阳; 钱炜祺; 王辰
2003-01-01
This article presents recent progresses in turbulence modeling in the Unit for Turbulence Simulation in the Department of Engineering Mechanics at Tsinghua University. The main contents include: compact Non-Linear Eddy-Viscosity Model (NLEVM) based on the second-moment closure, near-wall low-Re non-linear eddy-viscosity model and curvature sensitive turbulence model.The models have been validated in a wide range of complex flow test cases and the calculated results show that the present models exhibited overall good performance.
Modeling, Prediction, and Control of Heating Temperature for Tube Billet
Directory of Open Access Journals (Sweden)
Yachun Mao
2015-01-01
Full Text Available Annular furnaces have multivariate, nonlinear, large time lag, and cross coupling characteristics. The prediction and control of the exit temperature of a tube billet are important but difficult. We establish a prediction model for the final temperature of a tube billet through OS-ELM-DRPLS method. We address the complex production characteristics, integrate the advantages of PLS and ELM algorithms in establishing linear and nonlinear models, and consider model update and data lag. Based on the proposed model, we design a prediction control algorithm for tube billet temperature. The algorithm is validated using the practical production data of Baosteel Co., Ltd. Results show that the model achieves the precision required in industrial applications. The temperature of the tube billet can be controlled within the required temperature range through compensation control method.
Predicting path from undulations for C. elegans using linear and nonlinear resistive force theory
Keaveny, Eric E.; Brown, André E. X.
2017-04-01
A basic issue in the physics of behaviour is the mechanical relationship between an animal and its surroundings. The model nematode C. elegans provides an excellent platform to explore this relationship due to its anatomical simplicity. Nonetheless, the physics of nematode crawling, in which the worm undulates its body to move on a wet surface, is not completely understood and the mathematical models often used to describe this phenomenon are empirical. We confirm that linear resistive force theory, one such empirical model, is effective at predicting a worm’s path from its sequence of body postures for forward crawling, reversing, and turning and for a broad range of different behavioural phenotypes observed in mutant worms. Worms recently isolated from the wild have a higher effective drag anisotropy than the laboratory-adapted strain N2 and most mutant strains. This means the wild isolates crawl with less surface slip, perhaps reflecting more efficient gaits. The drag anisotropies required to fit the observed locomotion data (70 ± 28 for the wild isolates) are significantly larger than the values measured by directly dragging worms along agar surfaces (3–10 in Rabets et al (2014 Biophys. J. 107 1980–7)). A proposed nonlinear extension of the resistive force theory model also provides accurate predictions, but does not resolve the discrepancy between the parameters required to achieve good path prediction and the experimentally measured parameters. We confirm that linear resistive force theory provides a good effective model of worm crawling that can be used in applications such as whole-animal simulations and advanced tracking algorithms, but that the nature of the physical interaction between worms and their most commonly studied laboratory substrate remains unresolved.
Modelling, controlling, predicting blackouts
Wang, Chengwei; Baptista, Murilo S
2016-01-01
The electric power system is one of the cornerstones of modern society. One of its most serious malfunctions is the blackout, a catastrophic event that may disrupt a substantial portion of the system, playing havoc to human life and causing great economic losses. Thus, understanding the mechanisms leading to blackouts and creating a reliable and resilient power grid has been a major issue, attracting the attention of scientists, engineers and stakeholders. In this paper, we study the blackout problem in power grids by considering a practical phase-oscillator model. This model allows one to simultaneously consider different types of power sources (e.g., traditional AC power plants and renewable power sources connected by DC/AC inverters) and different types of loads (e.g., consumers connected to distribution networks and consumers directly connected to power plants). We propose two new control strategies based on our model, one for traditional power grids, and another one for smart grids. The control strategie...
An Anisotropic Hardening Model for Springback Prediction
Zeng, Danielle; Xia, Z. Cedric
2005-08-01
As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test.
Nonlinear model calibration of a shear wall building using time and frequency data features
Asgarieh, Eliyar; Moaveni, Babak; Barbosa, Andre R.; Chatzi, Eleni
2017-02-01
This paper investigates the effects of different factors on the performance of nonlinear model updating for a seven-story shear wall building model. The accuracy of calibrated models using different data features and modeling assumptions is studied by comparing the time and frequency responses of the models with the exact simulated ones. Simplified nonlinear finite element models of the shear wall building are calibrated so that the misfit between the considered response data features of the models and the structure is minimized. A refined FE model of the test structure, which was calibrated manually to match the shake table test data, is used instead of the real structure for this performance evaluation study. The simplified parsimonious FE models are composed of simple nonlinear beam-column fiber elements with nonlinearity infused in them by assigning generated hysteretic nonlinear material behaviors to uniaxial stress-strain relationship of the fibers. Four different types of data features and their combinations are used for model calibration: (1) time-varying instantaneous modal parameters, (2) displacement time histories, (3) acceleration time histories, and (4) dissipated hysteretic energy. It has been observed that the calibrated simplified FE models can accurately predict the nonlinear structural response in the absence of significant modeling errors. In the last part of this study, the physics-based models are further simplified for casting into state-space formulation and a real-time identification is performed using an Unscented Kalman filter. It has been shown that the performance of calibrated state-space models can be satisfactory when reasonable modeling assumptions are used.
Modeling of nonlinear responses for reciprocal transducers involving polarization switching
DEFF Research Database (Denmark)
Willatzen, Morten; Wang, Linxiang
2007-01-01
Nonlinearities and hysteresis effects in a reciprocal PZT transducer are examined by use of a dynamical mathematical model on the basis of phase-transition theory. In particular, we consider the perovskite piezoelectric ceramic in which the polarization process in the material can be modeled....... We present numerical results for the reciprocal-transducer system and identify the influence of nonlinearities on the system dynamics at high and low frequency as well as electrical impedance effects due to tuning by a series inductance. It is found that nonlinear effects are not important at high...... by Landau theory for the first-order phase transformation, in which each polarization state is associated with a minimum of the Landau free-energy function. Nonlinear constitutive laws are obtained by using thermodynamical equilibrium conditions, and hysteretic behavior of the material can be modeled...
Nonlinear unmixing of hyperspectral images: models and algorithms
Dobigeon, Nicolas; Richard, Cédric; Bermudez, José C M; McLaughlin, Stephen; Hero, Alfred O
2013-01-01
When considering the problem of unmixing hyperspectral images, most of the literature in the geoscience and image processing areas rely on the widely acknowledged linear mixing model (LMM). However, in specific but common contexts, the LMM may be not valid and other nonlinear models should be invoked. Consequently, over the last few years, several significant contributions have been proposed to overcome the limitations inherent in the LMM. In this paper, we present an overview of recent advances that deal with the nonlinear unmixing problem. The main nonlinear models are introduced and their validity discussed. Then, we describe the main classes of unmixing strategies designed to solve the problem in supervised and unsupervised frameworks. Finally, the problem of detecting nonlinear mixtures in hyperspectral images is addressed.
A Study of Thermal Contact using Nonlinear System Identification Models
Directory of Open Access Journals (Sweden)
M. H. Shojaeefard
2008-01-01
Full Text Available One interesting application of system identification method is to identify and control the heat transfer from the exhaust valve to the seat to keep away the valve from being damaged. In this study, two co-axial cylindrical specimens are used as exhaust valve and its seat. Using the measured temperatures at different locations of the specimens and with a semi-analytical method, the temperature distribution of the specimens is calculated and consequently, the thermal contact conductance is calculated. By applying the system identification method and having the temperatures at both sides of the contact surface, the temperature transfer function is calculated. With regard to the fact that the thermal contact has nonlinear behavior, two nonlinear black-box models called nonlinear ARX and NLN Hammerstein-Wiener models are taken for accurate estimation. Results show that the NLN Hammerstein-Wiener models with wavelet network nonlinear estimator is the best.
Melanoma Risk Prediction Models
Developing statistical models that estimate the probability of developing melanoma cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Nonlinear response to a click in a time-domain model of the mammalian ear.
Meaud, Julien; Lemons, Charlsie
2015-07-01
In this paper, a state-space implementation of a previously developed frequency-domain model of the cochlea is coupled to a lumped parameter model of the middle ear. After validation of the time-domain model by comparison of its steady-state response to results obtained with a frequency-domain formulation, the nonlinear response of the cochlea to clicks is investigated. As observed experimentally, a compressive nonlinearity progressively develops within the first few cycles of the response of the basilar membrane (BM). Furthermore, a time-frequency analysis shows that the instantaneous frequency of the BM response to a click progressively approaches the characteristic frequency. This phenomenon, called glide, is predicted at all stimulus intensities, as in experiments. In typical experiments with sensitive animals, the click response is characterized by a long ringing and the response envelope includes several lobes. In order to achieve similar results, inhomogeneities are introduced in the cochlear model. Simulations demonstrate the strong link between characteristics of the frequency response, such as dispersion and frequency-dependent nonlinearity, and characteristics of the time-domain response, such as the glide and a time-dependent nonlinearity. The progressive buildup of cochlear nonlinearity in response to a click is shown to be a consequence of the glide and of frequency-dependent nonlinearity.
A Comparative Study of Neural Networks and Fuzzy Systems in Modeling of a Nonlinear Dynamic System
Directory of Open Access Journals (Sweden)
Metin Demirtas
2011-07-01
Full Text Available The aim of this paper is to compare the neural networks and fuzzy modeling approaches on a nonlinear system. We have taken Permanent Magnet Brushless Direct Current (PMBDC motor data and have generated models using both approaches. The predictive performance of both methods was compared on the data set for model configurations. The paper describes the results of these tests and discusses the effects of changing model parameters on predictive and practical performance. Modeling sensitivity was used to compare for two methods.
A nonlinear mixed-effects model for degradation data obtained from in-service inspections
Energy Technology Data Exchange (ETDEWEB)
Yuan, X.-X. [Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada); Pandey, M.D. [Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada)], E-mail: mdpandey@uwaterloo.ca
2009-02-15
Monitoring of degradation and predicting its progression using periodic inspection data are important to ensure safety and reliability of engineering systems. Traditional regression models are inadequate in modeling the periodic inspection data, as it ignores units specific random effects and potential correlation among repeated measurements. This paper presents an advanced nonlinear mixed-effects (NLME) model, generally adopted in bio-statistical literature, for modeling and predicting degradation in nuclear piping system. The proposed model offers considerable improvement by reducing the variance associated with degradation of a specific unit, which leads to more realistic estimates of risk.
A Simple Holographic Model of Nonlinear Conductivity
Horowitz, Gary T; Santos, Jorge E
2013-01-01
We present a simple analytic gravitational solution which describes the holographic dual of a 2+1-dimensional conductor which goes beyond the usual linear response. In particular it includes Joule heating. We find that the nonlinear frequency-dependent conductivity is a constant. Surprisingly, the pressure remains isotropic. We also apply an electric field to a holographic insulator and show that there is a maximum electric field below which it can remain an insulator. Above this critical value, we argue that it becomes a conductor due to pair creation of charged particles. Finally, we study 1+1 and 3+1 dimensional conductors at the nonlinear level; here exact solutions are not available and a perturbative analysis shows that the current becomes time dependent, but in a way that is captured by a time-dependent effective temperature.
Nonlinear dynamics new directions models and applications
Ugalde, Edgardo
2015-01-01
This book, along with its companion volume, Nonlinear Dynamics New Directions: Theoretical Aspects, covers topics ranging from fractal analysis to very specific applications of the theory of dynamical systems to biology. This second volume contains mostly new applications of the theory of dynamical systems to both engineering and biology. The first volume is devoted to fundamental aspects and includes a number of important new contributions as well as some review articles that emphasize new development prospects. The topics addressed in the two volumes include a rigorous treatment of fluctuations in dynamical systems, topics in fractal analysis, studies of the transient dynamics in biological networks, synchronization in lasers, and control of chaotic systems, among others. This book also: · Develops applications of nonlinear dynamics on a diversity of topics such as patterns of synchrony in neuronal networks, laser synchronization, control of chaotic systems, and the study of transient dynam...
Nonlinear wind prediction using a fuzzy modular temporal neural network
Energy Technology Data Exchange (ETDEWEB)
Wu, G.G. [GeoControl Systems, Inc., Houston, TX (United States); Zhijie Dou [West Texas A& M Univ., Canyon, TX (United States)
1995-12-31
This paper introduces a new approach utilizing a fuzzy classifier and a modular temporal neural network to predict wind speed and direction for advanced wind turbine control systems. The fuzzy classifier estimates wind patterns and then assigns weights accordingly to each module of the temporal neural network. A temporal network with the finite-duration impulse response and multiple-layer structure is used to represent the underlying dynamics of physical phenomena. Using previous wind measurements and information given by the classifier, the modular network trained by a standard back-propagation algorithm predicts wind speed and direction effectively. Meanwhile, the feedback from the network helps auto-tuning the classifier.
Modeling of nonlinear propagation in fiber tapers
DEFF Research Database (Denmark)
Lægsgaard, Jesper
2012-01-01
A full-vectorial nonlinear propagation equation for short pulses in tapered optical fibers is developed. Specific emphasis is placed on the importance of the field normalization convention for the structure of the equations, and the interpretation of the resulting field amplitudes. Different...... numerical schemes for interpolation of fiber parameters along the taper are discussed and tested in numerical simulations on soliton propagation and generation of continuum radiation in short photonic-crystal fiber tapers....
Nonlinear extensions of a fractal-multifractal approach for environmental modeling
Energy Technology Data Exchange (ETDEWEB)
Cortis, A.; Puente, C.E.; Sivakumar, B.
2008-10-15
We present the extension of a deterministic fractal geometric procedure aimed at representing the complexity of the spatio-temporal patterns encountered in environmental applications. The original procedure, which is based on transformations of multifractal distributions via fractal functions, is extended through the introduction of nonlinear perturbations to the underlying iterated linear maps. We demonstrate how the nonlinear perturbations generate yet a richer collection of patterns by means of various simulations that include evolutions of patterns based on changes in their parameters and in their statistical and multifractal properties. It is shown that the nonlinear extensions yield structures that closely resemble complex hydrologic temporal data sets, such as rainfall and runoff time series, and width-functions of river networks as a function of distance from the basin outlet. The implications of this nonlinear approach for environmental modeling and prediction are discussed.
Energy Technology Data Exchange (ETDEWEB)
Rajkumar, V. [ABB Transmission Technology Institute, Raleigh, NC (United States); Mohler, R.R. [Oregon State Univ., Corvallis, OR (United States)
1994-12-31
This paper presents a framework for the development of discrete-time, nonlinear predictive controllers using thyristor-controlled-series-capacitors and phasor measurements of bus voltage magnitude and angle, for the stabilization and rapid damping of multimachine power systems which are subjected to large disturbances. When the faults of concern are large, the nonlinear predictive controllers are used to return the power system state to a small region about the post-fault equilibrium. In this region, linear controllers provide local asymptotic stability and rapid damping. Simulation results are provided on a sample four-machine power system.
Practical Soil-Shallow Foundation Model for Nonlinear Structural Analysis
Directory of Open Access Journals (Sweden)
Moussa Leblouba
2016-01-01
Full Text Available Soil-shallow foundation interaction models that are incorporated into most structural analysis programs generally lack accuracy and efficiency or neglect some aspects of foundation behavior. For instance, soil-shallow foundation systems have been observed to show both small and large loops under increasing amplitude load reversals. This paper presents a practical macroelement model for soil-shallow foundation system and its stability under simultaneous horizontal and vertical loads. The model comprises three spring elements: nonlinear horizontal, nonlinear rotational, and linear vertical springs. The proposed macroelement model was verified using experimental test results from large-scale model foundations subjected to small and large cyclic loading cases.
Prediction models in complex terrain
DEFF Research Database (Denmark)
Marti, I.; Nielsen, Torben Skov; Madsen, Henrik
2001-01-01
are calculated using on-line measurements of power production as well as HIRLAM predictions as input thus taking advantage of the auto-correlation, which is present in the power production for shorter pediction horizons. Statistical models are used to discribe the relationship between observed energy production......The objective of the work is to investigatethe performance of HIRLAM in complex terrain when used as input to energy production forecasting models, and to develop a statistical model to adapt HIRLAM prediction to the wind farm. The features of the terrain, specially the topography, influence...... and HIRLAM predictions. The statistical models belong to the class of conditional parametric models. The models are estimated using local polynomial regression, but the estimation method is here extended to be adaptive in order to allow for slow changes in the system e.g. caused by the annual variations...
Directory of Open Access Journals (Sweden)
Luis Gonzaga Baca Ruiz
2016-08-01
Full Text Available This paper addresses the problem of energy consumption prediction using neural networks over a set of public buildings. Since energy consumption in the public sector comprises a substantial share of overall consumption, the prediction of such consumption represents a decisive issue in the achievement of energy savings. In our experiments, we use the data provided by an energy consumption monitoring system in a compound of faculties and research centers at the University of Granada, and provide a methodology to predict future energy consumption using nonlinear autoregressive (NAR and the nonlinear autoregressive neural network with exogenous inputs (NARX, respectively. Results reveal that NAR and NARX neural networks are both suitable for performing energy consumption prediction, but also that exogenous data may help to improve the accuracy of predictions.
Time-varying Combinations of Predictive Densities using Nonlinear Filtering
M. Billio (Monica); R. Casarin (Roberto); F. Ravazzolo (Francesco); H.K. van Dijk (Herman)
2012-01-01
textabstractWe propose a Bayesian combination approach for multivariate predictive densities which relies upon a distributional state space representation of the combination weights. Several specifications of multivariate time-varying weights are introduced with a particular focus on weight dynamics
Is the 2D O(3) Nonlinear $\\sigma$ Model Asymptotically Free?
Patrascioiu, Adrian; Seiler, Erhard
1997-01-01
We report the results of a Monte Carlo study of the continuum limit of the two dimensional O(3) non-linear $\\sigma$ model. The notable finding is that it agrees very well with both the prediction inspired by Zamolodchikovs' S-matrix ansatz and with the continuum limit of the dodecahedron spin model. The latter finding renders the existence of asymptotic freedom in the O(3) model rather unlikely.
Geometrically nonlinear creeping mathematic models of shells with variable thickness
Directory of Open Access Journals (Sweden)
V.M. Zhgoutov
2012-08-01
Full Text Available Calculations of strength, stability and vibration of shell structures play an important role in the design of modern devices machines and structures. However, the behavior of thin-walled structures of variable thickness during which geometric nonlinearity, lateral shifts, viscoelasticity (creep of the material, the variability of the profile take place and thermal deformation starts up is not studied enough.In this paper the mathematical deformation models of variable thickness shells (smoothly variable and ribbed shells, experiencing either mechanical load or permanent temperature field and taking into account the geometrical nonlinearity, creeping and transverse shear, were developed. The refined geometrical proportions for geometrically nonlinear and steadiness problems are given.
Haar basis and nonlinear modeling of complex systems
García, P.; Merlitti, A.
2007-04-01
In this work we introduce a technique to perform nonlinear modeling of chaotic time series using the kernel method. The basic idea behind this method is to map the data into a high dimensional space via nonlinear mapping and do a linear regression in this space. Here we use a Haar wavelet-like kernel to achieve the task. This strategy, in contrast to Support Vector Machines technique, shows the conceptual simplicity of least mean square algoritm for linear regression but allows local nonlinear aproximation of the system evolution, with low computational cost.
Physical mechanisms of nonlinear conductivity: A model analysis
Heuer, Andreas; Lühning, Lars
2014-03-01
Nonlinear effects are omnipresent in thin films of ion conducting materials showing up as a significant increase of the conductivity. For a disordered hopping model general physical mechanisms are identified giving rise to the occurrence of positive or negative nonlinear effects, respectively. Analytical results are obtained in the limit of high but finite dimensions. They are compared with the numerical results for 3D up to 6D systems. A very good agreement can be found, in particular for higher dimensions. The results can also be used to rationalize previous numerical simulations. The implications for the interpretation of nonlinear conductivity experiments on inorganic ion conductors are discussed.
Nonlinear analysis of lipid tubules by nonlocal beam model.
Shen, Hui-Shen
2011-05-07
Postbuckling, nonlinear bending and nonlinear vibration analyses are presented for lipid tubules. The lipid tubule is modeled as a nonlocal micro/nano-beam which contains small scale effect. The material properties are assumed to be size-dependent. The governing equation is solved by a two-step perturbation technique. The numerical results reveal that the small scale parameter e₀a reduces the postbuckling equilibrium paths, the static large deflections and natural frequencies of lipid tubules. In contrast, it increases the nonlinear to linear frequency ratios slightly for the lipid tubule with immovable end conditions.
Directory of Open Access Journals (Sweden)
J. Miksovsky
2005-01-01
Full Text Available We investigated the usability of the method of local linear models (LLM, multilayer perceptron neural network (MLP NN and radial basis function neural network (RBF NN for the construction of temporal and spatial transfer functions between different meteorological quantities, and compared the obtained results both mutually and to the results of multiple linear regression (MLR. The tested methods were applied for the short-term prediction of daily mean temperatures and for the downscaling of NCEP/NCAR reanalysis data, using series of daily mean, minimum and maximum temperatures from 25 European stations as predictands. None of the tested nonlinear methods was recognized to be distinctly superior to the others, but all nonlinear techniques proved to be better than linear regression in the majority of the cases. It is also discussed that the most frequently used nonlinear method, the MLP neural network, may not be the best choice for processing the climatic time series - LLM method or RBF NNs can offer a comparable or slightly better performance and they do not suffer from some of the practical disadvantages of MLPs. Aside from comparing the performance of different methods, we paid attention to geographical and seasonal variations of the results. The forecasting results showed that the nonlinear character of relations between climate variables is well apparent over most of Europe, in contrast to rather weak nonlinearity in the Mediterranean and North Africa. No clear large-scale geographical structure of nonlinearity was identified in the case of downscaling. Nonlinearity also seems to be noticeably stronger in winter than in summer in most locations, for both forecasting and downscaling.
Directory of Open Access Journals (Sweden)
Geoff Boeing
2016-11-01
Full Text Available Nearly all nontrivial real-world systems are nonlinear dynamical systems. Chaos describes certain nonlinear dynamical systems that have a very sensitive dependence on initial conditions. Chaotic systems are always deterministic and may be very simple, yet they produce completely unpredictable and divergent behavior. Systems of nonlinear equations are difficult to solve analytically, and scientists have relied heavily on visual and qualitative approaches to discover and analyze the dynamics of nonlinearity. Indeed, few fields have drawn as heavily from visualization methods for their seminal innovations: from strange attractors, to bifurcation diagrams, to cobweb plots, to phase diagrams and embedding. Although the social sciences are increasingly studying these types of systems, seminal concepts remain murky or loosely adopted. This article has three aims. First, it argues for several visualization methods to critically analyze and understand the behavior of nonlinear dynamical systems. Second, it uses these visualizations to introduce the foundations of nonlinear dynamics, chaos, fractals, self-similarity and the limits of prediction. Finally, it presents Pynamical, an open-source Python package to easily visualize and explore nonlinear dynamical systems’ behavior.
Implementation of neural network based non-linear predictive
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole
1998-01-01
-linear systems. GPC is model-based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis on an efficient Quasi...
Numerical modelling of nonlinear full-wave acoustic propagation
Energy Technology Data Exchange (ETDEWEB)
Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx [Grupo de Acústica y Vibraciones, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-186, C.P. 04510, México D.F., México (Mexico)
2015-10-28
The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.
Residual Minimizing Model Reduction for Parameterized Nonlinear Dynamical Systems
Constantine, Paul G
2010-01-01
We present a method for approximating the solution of a parameterized, nonlinear dynamical (or static) system using an affine combination of solutions computed at other points in the input parameter space. The coefficients of the affine combination are computed with a nonlinear least squares procedure that minimizes the residual of the dynamical system. The approximation properties of this residual minimizing scheme are comparable to existing reduced basis and POD-Galerkin model reduction methods, but its implementation requires only independent evaluations of the nonlinear forcing function. We prove some interesting characteristics of the scheme including uniqueness and an interpolatory property, and we present heuristics for mitigating the effects of the ill-conditioning and reducing the overall cost of the method. We apply the method to representative numerical examples from kinetics - a three state system with one parameter controlling the stiffness - and groundwater modeling - a nonlinear parabolic PDE w...
Directory of Open Access Journals (Sweden)
Luiz Augusto da Cruz Meleiro
2005-06-01
Full Text Available In this work a MIMO non-linear predictive controller was developed for an extractive alcoholic fermentation process. The internal model of the controller was represented by two MISO Functional Link Networks (FLNs, identified using simulated data generated from a deterministic mathematical model whose kinetic parameters were determined experimentally. The FLN structure presents as advantages fast training and guaranteed convergence, since the estimation of the weights is a linear optimization problem. Besides, the elimination of non-significant weights generates parsimonious models, which allows for fast execution in an MPC-based algorithm. The proposed algorithm showed good potential in identification and control of non-linear processes.Neste trabalho um controlador preditivo não linear multivariável foi desenvolvido para um processo de fermentação alcoólica extrativa. O modelo interno do controlador foi representado por duas redes do tipo Functional Link (FLN, identificadas usando dados de simulação gerados a partir de um modelo validado experimentalmente. A estrutura FLN apresenta como vantagem o treinamento rápido e convergência garantida, já que a estimação dos seus pesos é um problema de otimização linear. Além disso, a eliminação de pesos não significativos gera modelos parsimoniosos, o que permite a rápida execução em algoritmos de controle preditivo baseado em modelo. Os resultados mostram que o algoritmo proposto tem grande potencial para identificação e controle de processos não lineares.
Pérez-Marín, D; Garrido-Varo, A; Guerrero, J E; Fearn, T; Davies, A M C
2008-05-01
For quantitative applications, the most common usage of near-infrared reflection spectroscopy (NIRS) technology, calibration involves establishing a mathematical relationship between spectral data and data provided by the reference. This model may be fairly complex, since the near-infrared spectrum is highly variable and contains physical/chemical information for the sample that may be redundant, and multivariate calibration is usually required. When the relationship to be modeled is nonlinear, classical regression methods are inadequate, and more complex strategies and algorithms must be sought in order to model this nonlinearity. The development of NIRS calibrations to predict the ingredient composition, i.e., the inclusion percentage of each ingredient, in compound feeds is a complex task, due to the nature of the parameters to be predicted and to the heterogeneous nature of the matrices/formulas in which each ingredient participates. The present paper evaluates the use of least squares support vector machines (LSSVM) and two local calibration methods, CARNAC and locally biased regression, for developing NIRS models to predict two of the most representative ingredients in compound feed formulations, wheat and sunflower meal, using a large spectral library of 7523 commercial compound feed samples. For both ingredients, the best results were obtained using CARNAC, with standard errors of prediction (SEP) of 1.7% and 0.60% for wheat and sunflower meal, respectively, and even better results when the algorithm was allowed to refuse to predict 10% of the unknowns. Meanwhile, LSSVM performed less well on wheat (SEP 2.6%) but comparably on sunflower meal (SEP 0.60%), giving results very similar to those reported previously for artificial neural networks. Locally biased regression was the least successful of the three methods, with SEPs of 3.3% for wheat and 0.72% for sunflower meal. All the nonlinear methods improved on the standard approach using partial least squares
2010-09-30
Hyperfast Modeling of Nonlinear Ocean Waves A. R. Osborne Dipartimento di Fisica Generale, Università di Torino Via Pietro Giuria 1, 10125...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Universit?i Torino,Dipartimento di Fisica Generale,Via Pietro Giuria 1,10125 Torino, Italy, 8. PERFORMING
Reduced order prediction of rare events in unidirectional nonlinear water waves
Cousins, Will
2015-01-01
We consider the problem of short-term prediction of rare, extreme water waves in unidirectional fields, a critical topic for ocean structures and naval operations. One possible mechanism for the occurrence of such rare, unusually-intense waves is nonlinear wave focusing. Recent results have demonstrated that random localizations of energy, induced by the dispersive mixing of different harmonics, can grow significantly due to localized nonlinear focusing. Here we show how the interplay between i) statistical properties captured through linear information such as the waves power spectrum and ii) nonlinear dynamical properties of focusing localized wave groups defines a critical length scale associated with the formation of extreme events. The energy that is locally concentrated over this length scale acts as the "trigger" of nonlinear focusing for wave groups and the formation of subsequent rare events. We use this property to develop inexpensive, short-term predictors of large water waves. Specifically, we sho...
A kinetic model for predicting biodegradation.
Dimitrov, S; Pavlov, T; Nedelcheva, D; Reuschenbach, P; Silvani, M; Bias, R; Comber, M; Low, L; Lee, C; Parkerton, T; Mekenyan, O
2007-01-01
Biodegradation plays a key role in the environmental risk assessment of organic chemicals. The need to assess biodegradability of a chemical for regulatory purposes supports the development of a model for predicting the extent of biodegradation at different time frames, in particular the extent of ultimate biodegradation within a '10 day window' criterion as well as estimating biodegradation half-lives. Conceptually this implies expressing the rate of catabolic transformations as a function of time. An attempt to correlate the kinetics of biodegradation with molecular structure of chemicals is presented. A simplified biodegradation kinetic model was formulated by combining the probabilistic approach of the original formulation of the CATABOL model with the assumption of first order kinetics of catabolic transformations. Nonlinear regression analysis was used to fit the model parameters to OECD 301F biodegradation kinetic data for a set of 208 chemicals. The new model allows the prediction of biodegradation multi-pathways, primary and ultimate half-lives and simulation of related kinetic biodegradation parameters such as biological oxygen demand (BOD), carbon dioxide production, and the nature and amount of metabolites as a function of time. The model may also be used for evaluating the OECD ready biodegradability potential of a chemical within the '10-day window' criterion.
Ko, William L.; Fleischer, Van Tran; Lung, Shun-Fat
2017-01-01
For shape predictions of structures under large geometrically nonlinear deformations, Curved Displacement Transfer Functions were formulated based on a curved displacement, traced by a material point from the undeformed position to deformed position. The embedded beam (depth-wise cross section of a structure along a surface strain-sensing line) was discretized into multiple small domains, with domain junctures matching the strain-sensing stations. Thus, the surface strain distribution could be described with a piecewise linear or a piecewise nonlinear function. The discretization approach enabled piecewise integrations of the embedded-beam curvature equations to yield the Curved Displacement Transfer Functions, expressed in terms of embedded beam geometrical parameters and surface strains. By entering the surface strain data into the Displacement Transfer Functions, deflections along each embedded beam can be calculated at multiple points for mapping the overall structural deformed shapes. Finite-element linear and nonlinear analyses of a tapered cantilever tubular beam were performed to generate linear and nonlinear surface strains and the associated deflections to be used for validation. The shape prediction accuracies were then determined by comparing the theoretical deflections with the finiteelement- generated deflections. The results show that the newly developed Curved Displacement Transfer Functions are very accurate for shape predictions of structures under large geometrically nonlinear deformations.
Testing and Inference in Nonlinear Cointegrating Vector Error Correction Models
DEFF Research Database (Denmark)
Kristensen, Dennis; Rahbek, Anders
In this paper, we consider a general class of vector error correction models which allow for asymmetric and non-linear error correction. We provide asymptotic results for (quasi-)maximum likelihood (QML) based estimators and tests. General hypothesis testing is considered, where testing...... symmetric non-linear error correction are considered. A simulation study shows that the finite sample properties of the bootstrapped tests are satisfactory with good size and power properties for reasonable sample sizes....
Inference of a nonlinear stochastic model of the cardiorespiratory interaction
Smelyanskiy, V N; Stefanovska, A; McClintock, P V E
2005-01-01
A new technique is introduced to reconstruct a nonlinear stochastic model of the cardiorespiratory interaction. Its inferential framework uses a set of polynomial basis functions representing the nonlinear force governing the system oscillations. The strength and direction of coupling, and the noise intensity are simultaneously inferred from a univariate blood pressure signal, monitored in a clinical environment. The technique does not require extensive global optimization and it is applicable to a wide range of complex dynamical systems subject to noise.
Asymmetric and common absorption of shocks in nonlinear autoregressive models
D.J.C. van Dijk (Dick); Ph.H.B.F. Franses (Philip Hans); H.P. Boswijk (Peter)
2000-01-01
textabstractA key feature of many nonlinear time series models is that they allow for the possibility that the model structure experiences changes, depending on for example the state of the economy or of the financial market. A common property of these models is that it generally is not possible to
Asymmetric and common absorption of shocks in nonlinear autoregressive models
D.J.C. van Dijk (Dick); Ph.H.B.F. Franses (Philip Hans); H.P. Boswijk (Peter)
2000-01-01
textabstractA key feature of many nonlinear time series models is that they allow for the possibility that the model structure experiences changes, depending on for example the state of the economy or of the financial market. A common property of these models is that it generally is not possible to
Modeling and nonlinear heading control for sailing yachts
DEFF Research Database (Denmark)
Xiao, Lin; Jouffroy, Jerome
2011-01-01
This paper presents a study on the development and testing of a model-based heading controller for a sailing yacht. Using Fossen's compact notation for marine vehicles, we first describe a nonlinear 4-DOF dynamic model for a sailing yacht, including roll. Starting from this model, we then design ...
Modeling and nonlinear heading control for sailing yachts
DEFF Research Database (Denmark)
Xiao, Lin; Jouffroy, Jerome
2014-01-01
This paper presents a study on the development and testing of a model-based heading controller for a sailing yacht. Using Fossen’s compact notation for marine vehicles, we first describe a nonlinear four-degree-of-freedom (DOF) dynamic model for a sailing yacht, including roll. Our model also inc...
Nonlinear modeling of low-to-high-frequency noise up-conversion in microwave electron devices
Filicori, Fabio; Traverso, Pier A.; Florian, Corrado
2003-05-01
Measurement-based, circuit-oriented non-linear noise modeling of microwave electron devices is still an open field of research, since existing approaches are not always suitable for the accurate prediction of low-frequency noise up-conversion to RF, which represents an essential information for the non-linear circuit analyses performed in the CAD of low phase-noise oscillators. In this paper a technology-independent, empirical approach to the modeling of noise contributions at the ports of electron devices, operating under strongly non-linear conditions, is proposed. Details concerning the analytical formulation of the model, which is derived by considering randomly time-varying perturbations in the basic equations of an otherwise conventional charge-controlled non-linear model, are presented, along with a discussion about the measurement techniques devoted to its experimental characterization. An example of application of the proposed Charge-Controlled Non-linear Noise (CCNN) model is considered in the case of a HBT transistor. Techniques devoted to the implementation of the obtained model in the framework of commercial CAD tools for circuit analysis and design are provided as well.
Robust Model Predictive Control of a Wind Turbine
DEFF Research Database (Denmark)
Mirzaei, Mahmood; Poulsen, Niels Kjølstad; Niemann, Hans Henrik
2012-01-01
In this work the problem of robust model predictive control (robust MPC) of a wind turbine in the full load region is considered. A minimax robust MPC approach is used to tackle the problem. Nonlinear dynamics of the wind turbine are derived by combining blade element momentum (BEM) theory...... and first principle modeling of the turbine flexible structure. Thereafter the nonlinear model is linearized using Taylor series expansion around system operating points. Operating points are determined by effective wind speed and an extended Kalman filter (EKF) is employed to estimate this. In addition...... of the uncertain system is employed and a norm-bounded uncertainty model is used to formulate a minimax model predictive control. The resulting optimization problem is simplified by semidefinite relaxation and the controller obtained is applied on a full complexity, high fidelity wind turbine model. Finally...
Non-linear Growth Models in Mplus and SAS.
Grimm, Kevin J; Ram, Nilam
2009-10-01
Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included.
Earthquake analysis of structures using nonlinear models
Cemalovic, Miran
2015-01-01
Throughout the governing design codes, several different methods are presented for the evaluation of seismic problems. This thesis assesses the non-linear static and dynamic procedures presented in EN 1998-1 through the structural response of a RC wall-frame building. The structure is designed in detail according to the guidelines for high ductility (DCH) in EN 1998-1. The applied procedures are meticulously evaluated and the requirements in EN 1998-1 are reviewed. In addition, the finite ele...
Modeling of Propagation and Transformation of Transient Nonlinear Waves on A Current
Institute of Scientific and Technical Information of China (English)
Wojciech Sulisz; Maciej Paprota
2013-01-01
A novel theoretical approach is applied to predict the propagation and transformation of transient nonlinear waves on a current. The problem was solved by applying an eigenfunction expansion method and the derived semi-analytical solution was employed to study the transformation of wave profile and the evolution of wave spectrum arising from the nonlinear interactions of wave components in a wave train which may lead to the formation of very large waves. The results show that the propagation of wave trains is significantly affected by a current. A relatively small current may substantially affect wave train components and the wave train shape. This is observed for both opposing and following current. The results demonstrate that the application of the nonlinear model has a substantial effect on the shape of a wave spectrum. A train of originally linear and very narrow-banded waves changes its one-peak spectrum to a multi-peak one in a fairly short distance from an initial position. The discrepancies between the wave trains predicted by applying the linear and nonlinear models increase with the increasing wavelength and become significant in shallow water even for waves with low steepness. Laboratory experiments were conducted in a wave flume to verify theoretical results. The free-surface elevations recorded by a system of wave gauges are compared with the results provided by the nonlinear model. Additional verification was achieved by applying a Fourier analysis and comparing wave amplitude spectra obtained from theoretical results with experimental data. A reasonable agreement between theoretical results and experimental data is observed for both amplitudes and phases. The model predicts fairly well multi-peak spectra, including wave spectra with significant nonlinear wave components.
On Practical tuning of Model Uncertainty in Wind Turbine Model Predictive Control
DEFF Research Database (Denmark)
Odgaard, Peter Fogh; Hovgaard, Tobias
2015-01-01
Model predictive control (MPC) has in previous works been applied on wind turbines with promising results. These results apply linear MPC, i.e., linear models linearized at different operational points depending on the wind speed. The linearized models are derived from a nonlinear first principle...
Nonlinear Creep Model for Deep Rock under High Stress and High Pore Water Pressure Condition
Directory of Open Access Journals (Sweden)
Xie Yuanguang
2016-05-01
Full Text Available Conventional triaxial compression creep experiments for deep sandstone under high confining pressure and high pore water pressure were carried out, in order to predict the creep response of deep rock under these conditions. A nonlinear viscoelastic-plastic creep constitutive model was proposed based on the experimental results. The theory of component model was used as a basis for the formulation of this model. First, by using mathematical fitting and analogy, a new nonlinear viscous component was introduced based on the properties of the creep curves during the tertiary stage. Second, a timer component to judge whether the creep can get into the tertiary stage was presented. Finally, a nonlinear creep model was proposed. Results showed good agreement between theory curves from the nonlinear creep model and experimental data. This model can be applied to predict deep rock creep responses under high stress and high pore water pressure conditions. Hence, the obtained conclusions in this study are beneficial to deep rock engineering.
Similarity transformation approach to identifiability analysis of nonlinear compartmental models.
Vajda, S; Godfrey, K R; Rabitz, H
1989-04-01
Through use of the local state isomorphism theorem instead of the algebraic equivalence theorem of linear systems theory, the similarity transformation approach is extended to nonlinear models, resulting in finitely verifiable sufficient and necessary conditions for global and local identifiability. The approach requires testing of certain controllability and observability conditions, but in many practical examples these conditions prove very easy to verify. In principle the method also involves nonlinear state variable transformations, but in all of the examples presented in the paper the transformations turn out to be linear. The method is applied to an unidentifiable nonlinear model and a locally identifiable nonlinear model, and these are the first nonlinear models other than bilinear models where the reason for lack of global identifiability is nontrivial. The method is also applied to two models with Michaelis-Menten elimination kinetics, both of considerable importance in pharmacokinetics, and for both of which the complicated nature of the algebraic equations arising from the Taylor series approach has hitherto defeated attempts to establish identifiability results for specific input functions.
Performance prediction of gas turbines by solving a system of non-linear equations
Energy Technology Data Exchange (ETDEWEB)
Kaikko, J.
1998-09-01
This study presents a novel method for implementing the performance prediction of gas turbines from the component models. It is based on solving the non-linear set of equations that corresponds to the process equations, and the mass and energy balances for the engine. General models have been presented for determining the steady state operation of single components. Single and multiple shad arrangements have been examined with consideration also being given to heat regeneration and intercooling. Emphasis has been placed upon axial gas turbines of an industrial scale. Applying the models requires no information of the structural dimensions of the gas turbines. On comparison with the commonly applied component matching procedures, this method incorporates several advantages. The application of the models for providing results is facilitated as less attention needs to be paid to calculation sequences and routines. Solving the set of equations is based on zeroing co-ordinate functions that are directly derived from the modelling equations. Therefore, controlling the accuracy of the results is easy. This method gives more freedom for the selection of the modelling parameters since, unlike for the matching procedures, exchanging these criteria does not itself affect the algorithms. Implicit relationships between the variables are of no significance, thus increasing the freedom for the modelling equations as well. The mathematical models developed in this thesis will provide facilities to optimise the operation of any major gas turbine configuration with respect to the desired process parameters. The computational methods used in this study may also be adapted to any other modelling problems arising in industry. (orig.) 36 refs.
Prediction models in complex terrain
DEFF Research Database (Denmark)
Marti, I.; Nielsen, Torben Skov; Madsen, Henrik
2001-01-01
The objective of the work is to investigatethe performance of HIRLAM in complex terrain when used as input to energy production forecasting models, and to develop a statistical model to adapt HIRLAM prediction to the wind farm. The features of the terrain, specially the topography, influence...
Nonlinear continuous-time generalized predictive control of solar power plant
Directory of Open Access Journals (Sweden)
Khoukhi Billal
2015-01-01
Full Text Available This paper presents an application of nonlinear continuous-time generalized predictive control (GPC to the distributed collector field of a solar power plant. The major characteristic of a solar power plant is that the primary energy source, solar radiation, cannot be manipulated. Solar radiation varies throughout the day, causing changes in plant dynamics and strong perturbations in the process. A brief description of the solar power plant and its simulator is given. After that, basic concepts of predictive control and continuous-time generalized predictive control are introduced. A new control strategy, named nonlinear continuous-time generalized predictive control (NCGPC, is then derived to control the process. The simulation results show that the NCGPC gives a greater flexibility to achieve performance goals and better perturbation rejection than classical control.
Long-term non-linear predictability of ENSO events over the 20th century
Astudillo, H F; Borotto, F A
2015-01-01
We show that the monthly recorded history (1878-2013) of the Southern Oscillation Index (SOI), a descriptor of the El Ni\\~no Southern Oscillation (ENSO) phenomenon, can be well described as a dynamic system that supports an average nonlinear predictability well beyond the spring barrier. The predictability is strongly linked to a detailed knowledge of the topology of the attractor obtained by embedding the SOI index in a wavelets base state space. Using the state orbits on the attractor we show that the information contained in the Southern Oscillation Index (SOI) is sufficient to provide average nonlinear predictions for time periods of 2, 3 and 4 years in advance throughout the 20th century with an acceptable error. The simplicity of implementation and ease of use makes it suitable for studying non linear predictability in any area where observations are similar to those that describe the ENSO phenomenon.
Directory of Open Access Journals (Sweden)
Sharad Shandilya
Full Text Available The timing of defibrillation is mostly at arbitrary intervals during cardio-pulmonary resuscitation (CPR, rather than during intervals when the out-of-hospital cardiac arrest (OOH-CA patient is physiologically primed for successful countershock. Interruptions to CPR may negatively impact defibrillation success. Multiple defibrillations can be associated with decreased post-resuscitation myocardial function. We hypothesize that a more complete picture of the cardiovascular system can be gained through non-linear dynamics and integration of multiple physiologic measures from biomedical signals.Retrospective analysis of 153 anonymized OOH-CA patients who received at least one defibrillation for ventricular fibrillation (VF was undertaken. A machine learning model, termed Multiple Domain Integrative (MDI model, was developed to predict defibrillation success. We explore the rationale for non-linear dynamics and statistically validate heuristics involved in feature extraction for model development. Performance of MDI is then compared to the amplitude spectrum area (AMSA technique.358 defibrillations were evaluated (218 unsuccessful and 140 successful. Non-linear properties (Lyapunov exponent > 0 of the ECG signals indicate a chaotic nature and validate the use of novel non-linear dynamic methods for feature extraction. Classification using MDI yielded ROC-AUC of 83.2% and accuracy of 78.8%, for the model built with ECG data only. Utilizing 10-fold cross-validation, at 80% specificity level, MDI (74% sensitivity outperformed AMSA (53.6% sensitivity. At 90% specificity level, MDI had 68.4% sensitivity while AMSA had 43.3% sensitivity. Integrating available end-tidal carbon dioxide features into MDI, for the available 48 defibrillations, boosted ROC-AUC to 93.8% and accuracy to 83.3% at 80% sensitivity.At clinically relevant sensitivity thresholds, the MDI provides improved performance as compared to AMSA, yielding fewer unsuccessful defibrillations
Analysis of schizophrenia data using a nonlinear threshold index logistic model.
Jiang, Zhenyu; Du, Chengan; Jablensky, Assen; Liang, Hua; Lu, Zudi; Ma, Yang; Teo, Kok Lay
2014-01-01
Genetic information, such as single nucleotide polymorphism (SNP) data, has been widely recognized as useful in prediction of disease risk. However, how to model the genetic data that is often categorical in disease class prediction is complex and challenging. In this paper, we propose a novel class of nonlinear threshold index logistic models to deal with the complex, nonlinear effects of categorical/discrete SNP covariates for Schizophrenia class prediction. A maximum likelihood methodology is suggested to estimate the unknown parameters in the models. Simulation studies demonstrate that the proposed methodology works viably well for moderate-size samples. The suggested approach is therefore applied to the analysis of the Schizophrenia classification by using a real set of SNP data from Western Australian Family Study of Schizophrenia (WAFSS). Our empirical findings provide evidence that the proposed nonlinear models well outperform the widely used linear and tree based logistic regression models in class prediction of schizophrenia risk with SNP data in terms of both Types I/II error rates and ROC curves.
Analysis of schizophrenia data using a nonlinear threshold index logistic model.
Directory of Open Access Journals (Sweden)
Zhenyu Jiang
Full Text Available Genetic information, such as single nucleotide polymorphism (SNP data, has been widely recognized as useful in prediction of disease risk. However, how to model the genetic data that is often categorical in disease class prediction is complex and challenging. In this paper, we propose a novel class of nonlinear threshold index logistic models to deal with the complex, nonlinear effects of categorical/discrete SNP covariates for Schizophrenia class prediction. A maximum likelihood methodology is suggested to estimate the unknown parameters in the models. Simulation studies demonstrate that the proposed methodology works viably well for moderate-size samples. The suggested approach is therefore applied to the analysis of the Schizophrenia classification by using a real set of SNP data from Western Australian Family Study of Schizophrenia (WAFSS. Our empirical findings provide evidence that the proposed nonlinear models well outperform the widely used linear and tree based logistic regression models in class prediction of schizophrenia risk with SNP data in terms of both Types I/II error rates and ROC curves.
Fracture prediction using modified mohr coulomb theory for non-linear strain paths using AA3104-H19
Dick, Robert; Yoon, Jeong Whan
2016-08-01
Experiment results from uniaxial tensile tests, bi-axial bulge tests, and disk compression tests for a beverage can AA3104-H19 material are presented. The results from the experimental tests are used to determine material coefficients for both Yld2000 and Yld2004 models. Finite element simulations are developed to study the influence of materials model on the predicted earing profile. It is shown that only the YLD2004 model is capable of accurately predicting the earing profile as the YLD2000 model only predicts 4 ears. Excellent agreement with the experimental data for earing is achieved using the AA3104-H19 material data and the Yld2004 constitutive model. Mechanical tests are also conducted on the AA3104-H19 to generate fracture data under different stress triaxiality conditions. Tensile tests are performed on specimens with a central hole and notched specimens. Torsion of a double bridge specimen is conducted to generate points near pure shear conditions. The Nakajima test is utilized to produce points in bi-axial tension. The data from the experiments is used to develop the fracture locus in the principal strain space. Mapping from principal strain space to stress triaxiality space, principal stress space, and polar effective plastic strain space is accomplished using a generalized mapping technique. Finite element modeling is used to validate the Modified Mohr-Coulomb (MMC) fracture model in the polar space. Models of a hole expansion during cup drawing and a cup draw/reverse redraw/expand forming sequence demonstrate the robustness of the modified PEPS fracture theory for the condition with nonlinear forming paths and accurately predicts the onset of failure. The proposed methods can be widely used for predicting failure for the examples which undergo nonlinear strain path including rigid-packaging and automotive forming.
Directory of Open Access Journals (Sweden)
Shandilya Sharad
2012-10-01
.6% and 60.9%, respectively. Conclusion We report the development and first-use of a nontraditional non-linear method of analyzing the VF ECG signal, yielding high predictive accuracies of defibrillation success. Furthermore, incorporation of features from the PetCO2 signal noticeably increased model robustness. These predictive capabilities should further improve with the availability of a larger database.
Arnold, S. M.; Saleeb, A. F.; Castelli, M. G.
1995-01-01
Specific forms for both the Gibb's and complementary dissipation potentials are chosen such that a complete (i.e., fully associative) potential base multiaxial, nonisothermal unified viscoplastic model is obtained. This model possesses one tensorial internal state variable (that is, associated with dislocation substructure) and an evolutionary law that has nonlinear kinematic hardening and both thermal and strain induced recovery mechanisms. A unique aspect of the present model is the inclusion of nonlinear hardening through the use of a compliance operator, derived from the Gibb's potential, in the evolution law for the back stress. This nonlinear tensorial operator is significant in that it allows both the flow and evolutionary laws to be fully associative (and therefore easily integrated), greatly influences the multiaxial response under non-proportional loading paths, and in the case of nonisothermal histories, introduces an instantaneous thermal softening mechanism proportional to the rate of change in temperature. In addition to this nonlinear compliance operator, a new consistent, potential preserving, internal strain unloading criterion has been introduced to prevent abnormalities in the predicted stress-strain curves, which are present with nonlinear hardening formulations, during unloading and reversed loading of the external variables. The specific model proposed is characterized for a representative titanium alloy commonly used as the matrix material in SiC fiber reinforced composites, i.e., TIMETAL 21S. Verification of the proposed model is shown using 'specialized' non-standard isothermal and thermomechanical deformation tests.
Guerin, Heather Lynch; Elliott, Dawn M
2007-04-01
The annulus fibrosus of the intervertebral disc is comprised of concentric lamella of oriented collagen fibers embedded in a hydrated proteoglycan matrix with smaller amounts of minor collagens, elastin, and small proteoglycans. Its structure and composition enable the disc to withstand complex loads and result in inhomogeneous, anisotropic, and nonlinear mechanical behaviors. The specific contributions of the annulus fibrosus constituent structures to mechanical function remain unclear. Therefore, the objective of this study was to use a structurally motivated, anisotropic, nonlinear strain energy model of annulus fibrosus to determine the relative contributions of its structural components to tissue mechanical behavior. A nonlinear, orthotropic hyperelastic model was developed for the annulus fibrosus. Terms to describe fibers, matrix, and interactions between annulus fibrosus structures (shear and normal to the fiber directions) were explicitly included. The contributions of these structures were analyzed by including or removing terms and determining the effect on the fit to multidimensional experimental data. Correlation between experimental and model-predicted stress, a Bland-Altman analysis of bias and standard deviation of residuals, and the contribution of structural terms to overall tissue stress were calculated. Both shear and normal interaction terms were necessary to accurately model multidimensional behavior. Inclusion of shear interactions more accurately described annulus fibrosus nonlinearity. Fiber stretch and shear interactions dominated contributions to circumferential direction stress, while normal and shear interactions dominated axial stress. The results suggest that interactions between fibers and matrix, perhaps facilitated by crosslinks, elastin, or minor collagens, augment traditional (i.e., fiber-uncrimping) models of nonlinearity.
Vismara, S. O.; Ricci, S.; Bellini, M.; Trittoni, L.
2016-06-01
The objective of the present paper is to describe a procedure to identify and model the non-linear behaviour of structural elements. The procedure herein applied can be divided into two main steps: the system identification and the finite element model updating. The application of the restoring force surface method as a strategy to characterize and identify localized non-linearities has been investigated. This method, which works in the time domain, has been chosen because it has `built-in' characterization capabilities, it allows a direct non-parametric identification of non-linear single-degree-of-freedom systems and it can easily deal with sine-sweep excitations. Two different application examples are reported. At first, a numerical test case has been carried out to investigate the modelling techniques in the case of non-linear behaviour based on the presence of a free-play in the model. The second example concerns the flap of the Intermediate eXperimental Vehicle that successfully completed its 100-min mission on 11 February 2015. The flap was developed under the responsibility of Thales Alenia Space Italia, the prime contractor, which provided the experimental data needed to accomplish the investigation. The procedure here presented has been applied to the results of modal testing performed on the article. Once the non-linear parameters were identified, they were used to update the finite element model in order to prove its capability of predicting the flap behaviour for different load levels.
Soft sensor modeling based on variable partition ensemble method for nonlinear batch processes
Wang, Li; Chen, Xiangguang; Yang, Kai; Jin, Huaiping
2017-01-01
Batch processes are always characterized by nonlinear and system uncertain properties, therefore, the conventional single model may be ill-suited. A local learning strategy soft sensor based on variable partition ensemble method is developed for the quality prediction of nonlinear and non-Gaussian batch processes. A set of input variable sets are obtained by bootstrapping and PMI criterion. Then, multiple local GPR models are developed based on each local input variable set. When a new test data is coming, the posterior probability of each best performance local model is estimated based on Bayesian inference and used to combine these local GPR models to get the final prediction result. The proposed soft sensor is demonstrated by applying to an industrial fed-batch chlortetracycline fermentation process.
Variable structure control of nonlinear systems through simplified uncertain models
Sira-Ramirez, Hebertt
1986-01-01
A variable structure control approach is presented for the robust stabilization of feedback equivalent nonlinear systems whose proposed model lies in the same structural orbit of a linear system in Brunovsky's canonical form. An attempt to linearize exactly the nonlinear plant on the basis of the feedback control law derived for the available model results in a nonlinearly perturbed canonical system for the expanded class of possible equivalent control functions. Conservatism tends to grow as modeling errors become larger. In order to preserve the internal controllability structure of the plant, it is proposed that model simplification be carried out on the open-loop-transformed system. As an example, a controller is developed for a single link manipulator with an elastic joint.
A Simple Model for Nonlinear Confocal Ultrasonic Beams
Institute of Scientific and Technical Information of China (English)
ZHANG Dong; ZHOU Lin; SI Li-Sheng; GONG Xiu-Fen
2007-01-01
@@ A confocally and coaxially arranged pair of focused transmitter and receiver represents one of the best geometries for medical ultrasonic imaging and non-invasive detection. We develop a simple theoretical model for describing the nonlinear propagation of a confocal ultrasonic beam in biological tissues. On the basis of the parabolic approximation and quasi-linear approximation, the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation is solved by using the angular spectrum approach. Gaussian superposition technique is applied to simplify the solution, and an analytical solution for the second harmonics in the confocal ultrasonic beam is presented.Measurements are performed to examine the validity of the theoretical model. This model provides a preliminary model for acoustic nonlinear microscopy.
Institute of Scientific and Technical Information of China (English)
ZHANG JIA-SHU; XIAO XIAN-CI
2001-01-01
A multistage adaptive higher-order nonlinear finite impulse response (MAHONFIR) filter is proposed to predict chaotic time series. Using this approach, we may readily derive the decoupled parallel algorithm for the adaptation of the coefficients of the MAHONFIR filter, to guarantee a more rapid convergence of the adaptive weights to their optimal values. Numerical simulation results show that the MAHONFIR filters proposed here illustrate a very good performance for making an adaptive prediction of chaotic time series.
Notes on holographic superconductor models with the nonlinear electrodynamics
Zhao, Zixu; Chen, Songbai; Jing, Jiliang
2013-01-01
We investigate systematically the effect of the nonlinear correction to the usual Maxwell electrodynamics on the holographic dual models in the backgrounds of AdS black hole and AdS soliton. Considering three types of typical nonlinear electrodynamics, we observe that in the black hole background the higher nonlinear electrodynamics correction makes the condensation harder to form and changes the expected relation in the gap frequency, which is similar to that caused by the curvature correction. However, in strong contrast to the influence of the curvature correction, we find that in the AdS soliton background the nonlinear electrodynamics correction will not affect the properties of the holographic superconductor and insulator phase transitions, which may be a quite general feature for the s-wave holographic superconductor/insulator system.
The fractional-nonlinear robotic manipulator: Modeling and dynamic simulations
David, S. A.; Balthazar, J. M.; Julio, B. H. S.; Oliveira, C.
2012-11-01
In this paper, we applied the Riemann-Liouville approach and the fractional Euler-Lagrange equations in order to obtain the fractional-order nonlinear dynamics equations of a two link robotic manipulator. The aformentioned equations have been simulated for several cases involving: integer and non-integer order analysis, with and without external forcing acting and some different initial conditions. The fractional nonlinear governing equations of motion are coupled and the time evolution of the angular positions and the phase diagrams have been plotted to visualize the effect of fractional order approach. The new contribution of this work arises from the fact that the dynamics equations of a two link robotic manipulator have been modeled with the fractional Euler-Lagrange dynamics approach. The results reveal that the fractional-nonlinear robotic manipulator can exhibit different and curious behavior from those obtained with the standard dynamical system and can be useful for a better understanding and control of such nonlinear systems.
Scalerandi, Marco; Agostini, Valentina; Delsanto, Pier Paolo; Van Den Abeele, Koen; Johnson, Paul A
2003-06-01
Recent studies show that a broad category of materials share "nonclassical" nonlinear elastic behavior much different from "classical" (Landau-type) nonlinearity. Manifestations of "nonclassical" nonlinearity include stress-strain hysteresis and discrete memory in quasistatic experiments, and specific dependencies of the harmonic amplitudes with respect to the drive amplitude in dynamic wave experiments, which are remarkably different from those predicted by the classical theory. These materials have in common soft "bond" elements, where the elastic nonlinearity originates, contained in hard matter (e.g., a rock sample). The bond system normally comprises a small fraction of the total material volume, and can be localized (e.g., a crack in a solid) or distributed, as in a rock. In this paper a model is presented in which the soft elements are treated as hysteretic or reversible elastic units connected in a one-dimensional lattice to elastic elements (grains), which make up the hard matrix. Calculations are performed in the framework of the local interaction simulation approach (LISA). Experimental observations are well predicted by the model, which is now ready both for basic investigations about the physical origins of nonlinear elasticity and for applications to material damage diagnostics.
A 1-D model of the nonlinear dynamics of the human lumbar intervertebral disc
Marini, Giacomo; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J.
2017-01-01
Lumped parameter models of the spine have been developed to investigate its response to whole body vibration. However, these models assume the behaviour of the intervertebral disc to be linear-elastic. Recently, the authors have reported on the nonlinear dynamic behaviour of the human lumbar intervertebral disc. This response was shown to be dependent on the applied preload and amplitude of the stimuli. However, the mechanical properties of a standard linear elastic model are not dependent on the current deformation state of the system. The aim of this study was therefore to develop a model that is able to describe the axial, nonlinear quasi-static response and to predict the nonlinear dynamic characteristics of the disc. The ability to adapt the model to an individual disc's response was a specific focus of the study, with model validation performed against prior experimental data. The influence of the numerical parameters used in the simulations was investigated. The developed model exhibited an axial quasi-static and dynamic response, which agreed well with the corresponding experiments. However, the model needs further improvement to capture additional peculiar characteristics of the system dynamics, such as the change of mean point of oscillation exhibited by the specimens when oscillating in the region of nonlinear resonance. Reference time steps were identified for specific integration scheme. The study has demonstrated that taking into account the nonlinear-elastic behaviour typical of the intervertebral disc results in a predicted system oscillation much closer to the physiological response than that provided by linear-elastic models. For dynamic analysis, the use of standard linear-elastic models should be avoided, or restricted to study cases where the amplitude of the stimuli is relatively small.
Model-order reduction of nonlinear models of electromagnetic phased-array hyperthermia.
Kowalski, Marc E; Jin, Jian-Ming
2003-11-01
A method based on the Karhunen-Loéve (KL) transform is proposed for the reduction of large-scale, nonlinear ordinary differential equations such as those arising from the finite difference modeling of biological heat transfer. The method of snapshots is used to expedite computation of the required quantities in the KL procedure. Guidelines are presented and validated for snapshot selection and resultant basis series truncation, emphasizing the special physical features of the electromagnetic phased-array heat transfer physics. Applications to fast temperature prediction are presented.
Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity
Directory of Open Access Journals (Sweden)
Isao Ishida
2015-01-01
Full Text Available We introduce and investigate some properties of a class of nonlinear time series models based on the moving sample quantiles in the autoregressive data generating process. We derive a test fit to detect this type of nonlinearity. Using the daily realized volatility data of Standard & Poor’s 500 (S&P 500 and several other indices, we obtained good performance using these models in an out-of-sample forecasting exercise compared with the forecasts obtained based on the usual linear heterogeneous autoregressive and other models of realized volatility.
A propagation model of computer virus with nonlinear vaccination probability
Gan, Chenquan; Yang, Xiaofan; Liu, Wanping; Zhu, Qingyi
2014-01-01
This paper is intended to examine the effect of vaccination on the spread of computer viruses. For that purpose, a novel computer virus propagation model, which incorporates a nonlinear vaccination probability, is proposed. A qualitative analysis of this model reveals that, depending on the value of the basic reproduction number, either the virus-free equilibrium or the viral equilibrium is globally asymptotically stable. The results of simulation experiments not only demonstrate the validity of our model, but also show the effectiveness of nonlinear vaccination strategies. Through parameter analysis, some effective strategies for eradicating viruses are suggested.