Femtosecond nonlinear polarization evolution based on cascade quadratic nonlinearities.
Liu, X; Ilday, F O; Beckwitt, K; Wise, F W
2000-09-15
We experimentally demonstrate that one can exploit nonlinear phase shifts produced in type I phase-mismatched second-harmonic generation to produce intensity-dependent polarization evolution with 100-fs pulses. An amplitude modulator based on nonlinear polarization rotation provides passive amplitude-modulation depth of up to ~50%. Applications of the amplitude and phase modulations to mode locking of femtosecond bulk and fiber lasers are promising and are discussed.
Analysis on the effect of nonlinear polarization evolution in nonlinear amplifying loop mirror
Institute of Scientific and Technical Information of China (English)
Feng Qu; Xiaoming Liu; Pu Zhang; Xubiao Jiang; Hongming Zhang; Minyu Yao
2005-01-01
By considering the cross phase modulation (XPM) between the two orthogonal poparization components,the nonlinear birefringence and nonlinear polarization evolution (NPE) in highly-nonlinear fiber (HNLF),as well as the unequal evolutions of the state of polarization (SOP) between the clockwise (CW) and counter-clockwise (CCW) waves in a nonlinear amplifying loop mirror (NALM) are analyzed. It is pointed out that the traditional cosine expression is no longer valid for the power transmission of NALM due to uncompleted interference under the high power condition. The analytical expression considering NPE effect is derived, and the experimental result is presented.
Matsas, V J; Richardson, D J; Newson, T P; Payne, D N
1993-03-01
A full characterization of a self-starting, passively mode-locked soliton ring fiber laser in terms of its various modes of mode-locked operation, cavity length, and type of fiber used is presented. Direct evidence, based on state-of-polarization measurements, that nonlinear polarization evolution is the responsible mode-locking mechanism is also given.
Yan, Zhiyu; Li, Xiaohui; Tang, Yulong; Shum, Perry Ping; Yu, Xia; Zhang, Ying; Wang, Qi Jie
2015-02-23
We propose and demonstrate a tunable and switchable dual-wavelength ultra-fast Tm-doped fiber laser. The tunability is based on nonlinear polarization evolution (NPE) technique in a passively mode-locked laser cavity. The NPE effect induces wavelength-dependent loss in the cavity to effectively alleviate mode competition and enables the multiwavelength mode locking. The laser exhibits tunable dual-wavelength mode locking over a wide range from 1852 to 1886 nm. The system has compact structure and both the wavelength tuning and switching capabilities can be realized by controlling the polarization in the fiber ring cavity.
Wang, Yunzheng; Zhang, Liqiang; Zhuo, Zhuang; Guo, Songzhen
2016-07-20
We propose a cross-splicing method, for the first time to our knowledge, to compensate the effect of fiber birefringence in a polarization-maintaining fiber ring laser mode locked by nonlinear polarization evolution. This method has been investigated numerically and experimentally. The results indicate that stable mode-locking pulses can be obtained in the cavity with this method; otherwise, no mode-locking states are achieved. The design processes of the laser cavity are presented. Pulses with single pulse energy of 2.1 nJ are generated at pump power of 460 mW. The spectral bandwidth and pulse duration are 17.5 nm and 11.7 ps, respectively. The tunability of the laser is also studied. The central wavelength can be tuned from 1023.2 to 1045.9 nm.
Titan Polar Landscape Evolution
Moore, Jeffrey M.
2016-01-01
With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.
Nonlinear evolution equations in QCD
Stasto, A. M.
2004-01-01
The following lectures are an introduction to the phenomena of partonic saturation and nonlinear evolution equations in Quantum Chromodynamics. After a short introduction to the linear evolution, the problems of unitarity bound and parton saturation are discussed. The nonlinear Balitsky-Kovchegov evolution equation in the high energy limit is introduced, and the progress towards the understanding of the properties of its solution is reviewed. We discuss the concepts of the saturation scale, g...
Nonlinear Evolution of Ferroelectric Domains
Institute of Scientific and Technical Information of China (English)
WeiLU; Dai－NingFANG; 等
1997-01-01
The nonlinear evolution of ferroelectric domains is investigated in the paper and amodel is proposed which can be applied to numerical computation.Numerical results show that the model can accurately predict some nonlinear behavior and consist with those experimental results.
Nonlinear evolution of drift instabilities
Energy Technology Data Exchange (ETDEWEB)
Lee, W.W.; Krommes, J.A.; Oberman, C.R.; Smith, R.A.
1984-01-01
The nonlinear evolution of collisionless drift instabilities in a shear-free magnetic field has been studied by means of gyrokinetic particle simulation as well as numerical integration of model mode-coupling equations. The purpose of the investigation is to identify relevant nonlinear mechanisms responsible for the steady-state drift wave fluctuations. It is found that the saturation of the instability is mainly caused by the nonlinear E x B convection of the resonant electrons and their associated velocity space nonlinearity. The latter also induces energy exchange between the competing modes, which, in turn, gives rise to enhanced diffusion. The nonlinear E x B convection of the ions, which contributes to the nonlinear frequency shift, is also an important ingredient for the saturation.
Polarization shaping for control of nonlinear propagation
Bouchard, Frédéric; Yao, Alison M; Travis, Christopher; De Leon, Israel; Rubano, Andrea; Karimi, Ebrahim; Oppo, Gian-Luca; Boyd, Robert W
2016-01-01
We study the nonlinear optical propagation of two different classes of space-varying polarized light beams -- radially symmetric vector beams and Poincar\\'e beams with lemon and star topologies -- in a rubidium vapour cell. Unlike Laguerre-Gauss and other types of beams that experience modulational instabilities, we observe that their propagation is not marked by beam breakup while still exhibiting traits such as nonlinear confinement and self-focusing. Our results suggest that by tailoring the spatial structure of the polarization, the effects of nonlinear propagation can be effectively controlled. These findings provide a novel approach to transport high-power light beams in nonlinear media with controllable distortions to their spatial structure and polarization properties.
Polarization Shaping for Control of Nonlinear Propagation.
Bouchard, Frédéric; Larocque, Hugo; Yao, Alison M; Travis, Christopher; De Leon, Israel; Rubano, Andrea; Karimi, Ebrahim; Oppo, Gian-Luca; Boyd, Robert W
2016-12-02
We study the nonlinear optical propagation of two different classes of light beams with space-varying polarization-radially symmetric vector beams and Poincaré beams with lemon and star topologies-in a rubidium vapor cell. Unlike Laguerre-Gauss and other types of beams that quickly experience instabilities, we observe that their propagation is not marked by beam breakup while still exhibiting traits such as nonlinear confinement and self-focusing. Our results suggest that, by tailoring the spatial structure of the polarization, the effects of nonlinear propagation can be effectively controlled. These findings provide a novel approach to transport high-power light beams in nonlinear media with controllable distortions to their spatial structure and polarization properties.
On the polarization of nonlinear gravitational waves
Poplawski, Nikodem J.
2011-01-01
We derive a relation between the two polarization modes of a plane, linear gravitational wave in the second-order approximation. Since these two polarizations are not independent, an initially monochromatic gravitational wave loses its periodic character due to the nonlinearity of the Einstein field equations. Accordingly, real gravitational waves may differ from solutions of the linearized field equations, which are being assumed in gravitational-wave detectors.
The light filament as a new nonlinear polarization state
Kovachev, Lubomir M
2015-01-01
We present an analytical approach to the theory of nonlinear propagation in gases of femtosecond optical pulses with broad-band spectrum . The vector character of the nonlinear third-order polarization of the electrical field in air is investigated in details. A new polarization state is presented by using left-hand and right-hand circular components of the electrical field . The corresponding system of vector amplitude equations is derived in the rotating basis. We found that this system of nonlinear equations has $3D+1$ vector soliton solutions with Lorentz shape. The solution presents a relatively stable propagation and rotation with GHz frequency of the vector of the electrical field in a plane orthogonal to the direction of propagation. The evolution of the intensity profile demonstrates a weak self-compression and a week spherical wave in the first milliseconds of propagation.
Fast and Chaotic Fiber-Based Nonlinear Polarization Scrambler
Guasoni, M; Gilles, M; Picozzi, A; Fatome, J
2015-01-01
We report a simple and efficient all-optical polarization scrambler based on the nonlinear interaction in an optical fiber between a signal beam and its backward replica which is generated and amplified by a reflective loop. When the amplification factor exceeds a certain threshold, the system exhibits a chaotic regime in which the evolution of the output polarization state of the signal becomes temporally chaotic and scrambled all over the surface of the Poincar\\'e sphere. We derive some analytical estimations for the scrambling performances of our device which are well confirmed by the experimental results. The polarization scrambler has been successfully tested on a single channel 10-Gbit/s On/Off Keying Telecom signal, reaching scrambling speeds up to 250-krad/s, as well as in a wavelength division multiplexing configuration. A different configuration based on a sequent cascade of polarization scramblers is also discussed numerically, which leads to an increase of the scrambling performances.
New nonlinear polarization effects for frequency selection
Karagodova, Tamara Y.; Karagodov, Alexander I.
1998-05-01
The method of computer simulations on nonlinear resonant magnetooptical effects developed for real multi-level atoms in the two laser fields of arbitrary intensity and external magnetic field is applied for the polarization effects of different types calculations and investigations of the dependence of the characteristics of these effects on magnetic field strength, intensities, polarization and detunings of laser fields for alkaline atoms. The essence of the method consists in simulations and analysis of the plots of dependence of quasi energies on parameters, which are obtained with the help of sorting subprogram, and selection of suitable algorithms for calculations of characteristics of nonlinear resonant magnetooptical effects. One photon and two photon resonant effects are investigated for wide range of magnetic field strength from Zeeman to Paschen Back effects. Some new features in the spectra of rotation of plane of polarization and circular dichroism of different types are predicted. The results show the agreement with known experiments. Such calculations of nonlinear resonant magnetooptical effects in the intense laser fields resonant to adjacent transitions and magnetic field show the opportunity of investigation the modifications of electronic structure due to intense radiation fields and strong external magnetic field in atomic gases and also may be used for the treatment of new methods of phase-polarization selection of modes of tunable lasers.
Nonlinear evolution of parallel propagating Alfven waves: Vlasov - MHD simulation
Nariyuki, Y; Kumashiro, T; Hada, T
2009-01-01
Nonlinear evolution of circularly polarized Alfv\\'en waves are discussed by using the recently developed Vlasov-MHD code, which is a generalized Landau-fluid model. The numerical results indicate that as far as the nonlinearity in the system is not so large, the Vlasov-MHD model can validly solve time evolution of the Alfv\\'enic turbulence both in the linear and nonlinear stages. The present Vlasov-MHD model is proper to discuss the solar coronal heating and solar wind acceleration by Alfve\\'n waves propagating from the photosphere.
Nonlinear Evolution of Alfvenic Wave Packets
Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.
1998-01-01
Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.
On a Nonlinear Model in Adiabatic Evolutions
Sun, Jie; Lu, Song-Feng
2016-08-01
In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using. Supported by the National Natural Science Foundation of China under Grant Nos. 61402188 and 61173050. The first author also gratefully acknowledges the support from the China Postdoctoral Science Foundation under Grant No. 2014M552041
Polarization of a probe laser beam due to nonlinear QED effects
Shakeri, Soroush; Kalantari, Seyed Zafarollah; Xue, She-Sheng
2017-01-01
Nonlinear QED interactions induce different polarization properties on a given probe beam. We consider the polarization effects caused by the photon-photon interaction in laser experiments, when a laser beam propagates through a constant magnetic field or collides with another laser beam. We solve the quantum Boltzmann equation within the framework of the Euler-Heisenberg Lagrangian for both time-dependent and constant background field to explore the time evolution of the Stokes parameters Q, U, and V describing polarization. Assuming an initially linearly polarized probe laser beam, we also calculate the induced ellipticity and rotation of the polarization plane.
Saturation at low x and nonlinear evolution
Stasto, A. M.
2002-01-01
In this talk the results of the analytical and numerical analysis of the nonlinear Balitsky-Kovchegov equation are presented. The characteristic BFKL diffusion into infrared regime is suppressed by the generation of the saturation scale. We identify the scaling and linear regimes for the solution. We also study the impact of subleading corrections onto the nonlinear evolution.
Tian, Jiajun; Yao, Yong; Sun, Yunxu; Yu, Xuelian; Chen, Deying
2009-08-17
A new multiwavelength Erbium-doped fiber laser is proposed and demonstrated. The intensity-dependent loss induced by nonlinear polarization rotation in a power-symmetric nonlinear optical loop mirror (NOLM) suppresses the mode competition of an Erbium-doped fiber and ensures stable multiwavelength operation at room temperature. The polarization state and its evolution conditions for stable multiwavelength operation in the ring laser cavity are discussed. The number and spectra region of output wavelength can be controlled by adjusting the work states of NOLM. (c) 2009 Optical Society of America
Nonlinear Evolution of Aggregates with Inextensible Constraints
Institute of Scientific and Technical Information of China (English)
Ming－XiangCHEN; WeiYANG; 等
1996-01-01
Crystalline and semicrystalline polymers are formed as aggregates of grains with evolving inextensible axes.This inextensible constratint leads to texture evolution under large plastic deformation.This paper reveals the nonlinear texture evolution of crystalline polymers under axi-symmetric straining.
Nonlinear evolution of whistler wave modulational instability
DEFF Research Database (Denmark)
Karpman, V.I.; Lynov, Jens-Peter; Michelsen, Poul;
1995-01-01
The nonlinear evolution of the modulational instability of whistler waves coupled to fast magnetosonic waves (FMS) and to slow magnetosonic waves (SMS) is investigated. Results from direct numerical solutions in two spatial dimensions agree with simplified results from a set of ordinary different......The nonlinear evolution of the modulational instability of whistler waves coupled to fast magnetosonic waves (FMS) and to slow magnetosonic waves (SMS) is investigated. Results from direct numerical solutions in two spatial dimensions agree with simplified results from a set of ordinary...
Evolution Of Nonlinear Waves in Compressing Plasma
Energy Technology Data Exchange (ETDEWEB)
P.F. Schmit, I.Y. Dodin, and N.J. Fisch
2011-05-27
Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size {Delta} during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches {Delta}. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.
Nonlinear self-flipping of polarization states in asymmetric waveguides
Zhang, Wen Qi; Monro, Tanya M; Afshar, V Shahraam
2012-01-01
Waveguides of subwavelength dimensions with asymmetric geometries, such as rib waveguides, can display nonlinear polarization effects in which the nonlinear phase difference dominates the linear contribution, provided the birefringence is sufficiently small. We demonstrate that self-flipping polarization states can appear in such rib waveguides at low (mW) power levels. We describe an optical power limiting device with optimized rib waveguide parameters that can operate at low powers with switching properties.
Nonlinear Gyrokinetic Theory With Polarization Drift
Energy Technology Data Exchange (ETDEWEB)
L. Wang and T.S. Hahm
2010-03-25
A set of the electrostatic toroidal gyrokinetic Vlasov equation and the Poisson equation, which explicitly includes the polarization drift, is derived systematically by using Lie-transform method. The polarization drift is introduced in the gyrocenter equations of motion, and the corresponding polarization density is derived. Contrary to the wide-spread expectation, the inclusion of the polarization drift in the gyrocenter equations of motion does not affect the expression for the polarization density significantly. This is due to modification of the gyrocenter phase-space volume caused by the electrostatic potential [T. S. Hahm, Phys. Plasmas 3, 4658 (1996)] .
Kong, Lingjie; Xiao, Xiaosheng; Yang, Changxi
2011-09-12
We numerically studied the polarization dynamics in dissipative soliton lasers mode-locked by nonlinear polarization rotation (NPR). It was found that the polarization states of the intracavity dissipative soliton vary with time across the pulse. Depending on output coupling ratios, the polarization states of the pulse peak before the polarizer can be either nearly circular or nearly linear polarizations. The polarization dependent component in NPR is found to play a role of spectral filter under high and medium output coupling. However, NPR may work as a weak optical limiter under low output coupling, when additional spectral filtering is necessary to maintain steady mode-locking state.
Martin, D A
2015-01-01
We study evolution equations and stationary homogeneous solutions for electric and magnetic field amplitudes in a ring cavity with flat mirrors. The cavity is filled with a positive or negative refraction index material with third order Kerr-like electric nonlinearities and also magnetic nonlinearities, which can be relevant in metamaterials. We consider the degree of freedom of polarization in the incident beam. It is found that considering a magnetic nonlinearity increases the variety of possible qualitatively different solutions. A classification of solutions is proposed in terms of the number of bifurcations. The analysis can be useful for the implementation of optical switching or memory storage using ring cavities with non linear materials.
Equilateral pentagon polarization maintaining photonic crystal fibre with low nonlinearity
Institute of Scientific and Technical Information of China (English)
Yang Han-Rui; Li Xu-You; Hong Wei; Hao Jin-Hui
2012-01-01
A new pentagon polarization maintaining photonic crystal fibre with low nonlinearity is introduced. The full vector finite element method was used to investigate the distribution and the effective area of modal field,the nonlinear properties,the effective indices of two orthogonal polarization modes and the birefringence of the new PM-PCF effectively.It is found that the birefringence of the new polarization maintaining photonic crystal fibre can easily achieve the order of 10-4,and it can obtain higher birefringence,larger effectively mode-field area and lower nonlinearity than traditional hexagonal polarization maintaining photonic crystal fibre with the same hole pitch,same hole diameter,and same ring number.It is important for sensing and communication applications,especially has potential application for fibre optical gyroscope.
TAYLOR EXPANSION METHOD FOR NONLINEAR EVOLUTION EQUATIONS
Institute of Scientific and Technical Information of China (English)
HE Yin-nian
2005-01-01
A new numerical method of integrating the nonlinear evolution equations, namely the Taylor expansion method, was presented. The standard Galerkin method can be viewed as the 0-th order Taylor expansion method; while the nonlinear Galerkin method can be viewed as the 1-st order modified Taylor expansion method. Moreover, the existence of the numerical solution and its convergence rate were proven. Finally, a concrete example,namely, the two-dimensional Navier-Stokes equations with a non slip boundary condition,was provided. The result is that the higher order Taylor expansion method is of the higher convergence rate under some assumptions about the regularity of the solution.
Energy conversion evolution at lunar polar sites
Indian Academy of Sciences (India)
James D Burke
2005-12-01
Lunar polar environments have many advantages from the standpoint of energy supply to robotic and human surface bases.Sunlight is nearly continuous and always horizontal at peaks of perpetual light,while waste heat rejection is aided by the existence of cold,permanently shadowed regions nearby.In this paper a possible evolution of lunar polar energy systems will be described,beginning with small robotic photovoltaic landers and continuing into the development of increasingly powerful and diverse energy installations to provide not only electric power but also piped-in sunlight,air conditioning and high-temperature process heat.
Nonlinear Magnetic Phenomena in Highly Polarized Target Materials
Kiselev, Yu F
2007-01-01
The report introduces and surveys nonlinear magnetic phenomena which have been observed at high nuclear polarizations in polarized targets of the SMC and of the COMPASS collaborations at CERN. Some of these phenomena, namely the frequency modulation eect and the distortion of the NMR line shape, promote the development of the polarized target technique. Others, as the spin-spin cross-relaxation between spin subsystems can be used for the development of quantum statistical physics. New findings bear on an electromagnetic noise and the spectrally resolved radiation from LiD with negatively polarized nuclei detected by low temperature bolometers. These nonlinear phenomena need to be taken into account for achieving the ultimate polarizations.
Institute of Scientific and Technical Information of China (English)
ZHAO Shuang; WU Chong-Qing; WANG Yong-Jun
2009-01-01
Linewidth enhancement factors (LEFs) of the transverse electric mode and the transverse magnetic mode in bulk semiconductor optical amplifiers are measured using the nonlinear optical loop mirror method and the principal state of polarization vector method.The polarization dependence of LEFs plays an important role in the nonlinear polarization rotation.The relationship between the polarization-dependence of LEFs and nonlinear polarization rotation in the Stokes space is demonstrated.
Nonsmooth analysis of doubly nonlinear evolution equations
Mielke, Alexander; Savare', Giuseppe
2011-01-01
In this paper we analyze a broad class of abstract doubly nonlinear evolution equations in Banach spaces, driven by nonsmooth and nonconvex energies. We provide some general sufficient conditions, on the dissipation potential and the energy functional,for existence of solutions to the related Cauchy problem. We prove our main existence result by passing to the limit in a time-discretization scheme with variational techniques. Finally, we discuss an application to a material model in finite-strain elasticity.
Dynamically Encircling Exceptional Points: Exact Evolution and Polarization State Conversion
Hassan, Absar U.; Zhen, Bo; Soljačić, Marin; Khajavikhan, Mercedeh; Christodoulides, Demetrios N.
2017-03-01
We show that a two-level non-Hermitian Hamiltonian with constant off-diagonal exchange elements can be analyzed exactly when the underlying exceptional point is perfectly encircled in the complex plane. The state evolution of this system is explicitly obtained in terms of an ensuing transfer matrix, even for large encirclements, regardless of adiabatic conditions. Our results clearly explain the direction-dependent nature of this process and why in the adiabatic limit its outcome is dominated by a specific eigenstate—irrespective of initial conditions. Moreover, numerical simulations suggest that this mechanism can still persist in the presence of nonlinear effects. We further show that this robust process can be harnessed to realize an optical omnipolarizer: a configuration that generates a desired polarization output regardless of the input polarization state, while from the opposite direction it always produces the counterpart eigenstate.
Modeling of nonlinear responses for reciprocal transducers involving polarization switching
DEFF Research Database (Denmark)
Willatzen, Morten; Wang, Linxiang
2007-01-01
Nonlinearities and hysteresis effects in a reciprocal PZT transducer are examined by use of a dynamical mathematical model on the basis of phase-transition theory. In particular, we consider the perovskite piezoelectric ceramic in which the polarization process in the material can be modeled....... We present numerical results for the reciprocal-transducer system and identify the influence of nonlinearities on the system dynamics at high and low frequency as well as electrical impedance effects due to tuning by a series inductance. It is found that nonlinear effects are not important at high...... by Landau theory for the first-order phase transformation, in which each polarization state is associated with a minimum of the Landau free-energy function. Nonlinear constitutive laws are obtained by using thermodynamical equilibrium conditions, and hysteretic behavior of the material can be modeled...
Titan's south polar stratospheric vortex evolution
Teanby, Nicholas A.; Vinatier, Sandrine; Sylvestre, Melody; de Kok, Remco; Nixon, Conor; Irwin, Patrick Gerard Joseph
2016-10-01
Titan experienced northern spring equinox in August 2009 when the south polar region was plunged into perpetual darkness. Following equinox, the south pole experienced the most extreme changes in stratospheric behaviour ever observed: the global stratospheric circulation cell reversed direction (Teanby et al 2012), HCN ice clouds (de Kok et al 2014) and other exotic condensates appeared over the south pole (Jennings et al 2015, West et al 2016), and significant composition and temperature changes occurred (Vinatier et al 2015, Teanby et al 2015, Coustenis et al 2016). Here we use Cassini CIRS limb and nadir observations from 2004-2016 to investigate the evolution of south polar stratospheric temperature and composition in the post-equinox period. Reversal following equinox was extremely rapid, taking less than 6 months (1/60th of a Titan year), which resulted in an initial adiabatic polar hot spot and increased trace gas abundances (Teanby et al 2012). However, rather than develop this trend further as winter progressed, Titan's polar hot spot subsequently disappeared, with the formation of a polar cold spot. Recently in late 2015 / early 2016 a more subdued hotspot began to return with associated extreme trace gas abundances. This talk will reveal the rapid and significant changes observed so far and discuss implications for possible polar feedback mechanisms and Titan's atmospheric dynamics.Coustenis et al (2016), Icarus, 270, 409-420.de Kok et al (2014), Nature, 514, 65-67.Jennings et al (2015), ApJL, 804, L34.Teanby et al (2012), Nature, 491, 732-735.Teanby et al (2015), DPS47, National Harbor, 205.02.Vinatier et al (2015), Icarus, 250, 95-115.West et al (2016), Icarus, 270, 399-408.
Automated control of optical polarization for nonlinear microscopy
Brideau, Craig; Stys, Peter K.
2012-03-01
Laser-scanning non-linear optical techniques such as multi-photon fluorescence excitation microscopy (MPM), Second/ Third Harmonic Generation (SHG/THG), and Coherent Anti-Stokes Raman Scattering (CARS) are being utilized in research laboratories worldwide. The efficiencies of these non-linear effects are dependent on the polarization state of the excitation light relative to the orientation of the sample being imaged. In highly ordered anisotropic biological samples this effect can become pronounced and the excitation polarization can have a dramatic impact on imaging experiments. Therefore, controlling the polarization state of the exciting light is important; however this is challenging when the excitation light passes through a complex optical system. In a typical laser-scanning microscope, components such as the dichroic filters, lenses, and even mirrors can alter the polarization state of a laser beam before it reaches the sample. We present an opto-mechanical solution to compensate for the polarization effects of an optical path, and to precisely program the polarization state of the exciting laser light. The device and accompanying procedures allow the delivery of precise laser polarization states at constant average power levels to a sample during an imaging experiment.
Nonlinear forecasting of intertidal shoreface evolution
Grimes, D. J.; Cortale, N.; Baker, K.; McNamara, D. E.
2015-10-01
Natural systems dominated by sediment transport are notoriously difficult to forecast. This is particularly true along the ocean coastline, a region that draws considerable human attention as economic investment and infrastructure are threatened by both persistent, long-term and acute, event driven processes (i.e., sea level rise and storm damage, respectively). Forecasting the coastline's evolution over intermediate time (daily) and space (tens of meters) scales is hindered by the complexity of sediment transport and hydrodynamics, and limited access to the detailed local forcing that drives fast scale processes. Modern remote sensing systems provide an efficient, economical means to collect data within these regions. A solar-powered digital camera installation is used to capture the coast's evolution, and machine learning algorithms are implemented to extract the shoreline and estimate the daily mean intertidal coastal profile. Methods in nonlinear time series forecasting and genetic programming applied to these data corroborate that coastal morphology at these scales is predominately driven by nonlinear internal dynamics, which partially mask external forcing signatures. Results indicate that these forecasting techniques achieve nontrivial predictive skill for spatiotemporal forecast of the upper coastline profile (as much as 43% of variance in data explained for one day predictions). This analysis provides evidence that societally relevant coastline forecasts can be achieved without knowing the forcing environment or the underlying dynamical equations that govern coastline evolution.
3-D nonlinear evolution of MHD instabilities
Energy Technology Data Exchange (ETDEWEB)
Bateman, G.; Hicks, H. R.; Wooten, J. W.
1977-03-01
The nonlinear evolution of ideal MHD internal instabilities is investigated in straight cylindrical geometry by means of a 3-D initial-value computer code. These instabilities are characterized by pairs of velocity vortex cells rolling off each other and helically twisted down the plasma column. The cells persist until the poloidal velocity saturates at a few tenths of the Alfven velocity. The nonlinear phase is characterized by convection around these essentially fixed vortex cells. For example, the initially centrally peaked temperature profile is convected out and around to form an annulus of high temperature surrounding a small region of lower temperature. Weak, centrally localized instabilities do not alter the edge of the plasma. Strong, large-scale instabilities, resulting from a stronger longitudinal equilibrium current, drive the plasma against the wall. After three examples of instability are analyzed in detail, the numerical methods and their verification are discussed.
Nonlinear Saturable and Polarization-induced Absorption of Rhenium Disulfide
Cui, Yudong; Lu, Feifei; Liu, Xueming
2017-01-01
Monolayer of transition metal dichalcogenides (TMDs), with lamellar structure as that of graphene, has attracted significant attentions in optoelectronics and photonics. Here, we focus on the optical absorption response of a new member TMDs, rhenium disulphide (ReS2) whose monolayer and bulk forms have the nearly identical band structures. The nonlinear saturable and polarization-induced absorption of ReS2 are investigated at near-infrared communication band beyond its bandgap. It is found that the ReS2-covered D-shaped fiber (RDF) displays the remarkable polarization-induced absorption, which indicates the different responses for transverse electric (TE) and transverse magnetic (TM) polarizations relative to ReS2 plane. Nonlinear saturable absorption of RDF exhibits the similar saturable fluence of several tens of μJ/cm2 and modulation depth of about 1% for ultrafast pulses with two orthogonal polarizations. RDF is utilized as a saturable absorber to achieve self-started mode-locking operation in an Er-doped fiber laser. The results broaden the operation wavelength of ReS2 from visible light to around 1550 nm, and numerous applications may benefit from the anisotropic and nonlinear absorption characteristics of ReS2, such as in-line optical polarizers, high-power pulsed lasers, and optical communication system.
Nonlinear Saturable and Polarization-induced Absorption of Rhenium Disulfide
Cui, Yudong; Lu, Feifei; Liu, Xueming
2017-01-01
Monolayer of transition metal dichalcogenides (TMDs), with lamellar structure as that of graphene, has attracted significant attentions in optoelectronics and photonics. Here, we focus on the optical absorption response of a new member TMDs, rhenium disulphide (ReS2) whose monolayer and bulk forms have the nearly identical band structures. The nonlinear saturable and polarization-induced absorption of ReS2 are investigated at near-infrared communication band beyond its bandgap. It is found that the ReS2-covered D-shaped fiber (RDF) displays the remarkable polarization-induced absorption, which indicates the different responses for transverse electric (TE) and transverse magnetic (TM) polarizations relative to ReS2 plane. Nonlinear saturable absorption of RDF exhibits the similar saturable fluence of several tens of μJ/cm2 and modulation depth of about 1% for ultrafast pulses with two orthogonal polarizations. RDF is utilized as a saturable absorber to achieve self-started mode-locking operation in an Er-doped fiber laser. The results broaden the operation wavelength of ReS2 from visible light to around 1550 nm, and numerous applications may benefit from the anisotropic and nonlinear absorption characteristics of ReS2, such as in-line optical polarizers, high-power pulsed lasers, and optical communication system. PMID:28053313
DYNAMIC BIFURCATION OF NONLINEAR EVOLUTION EQUATIONS
Institute of Scientific and Technical Information of China (English)
MA TIAN; WANG SHOUHONG
2005-01-01
The authors introduce a notion of dynamic bifurcation for nonlinear evolution equations, which can be called attractor bifurcation. It is proved that as the control parameter crosses certain critical value, the system bifurcates from a trivial steady state solution to an attractor with dimension between m and m + 1, where m + 1 is the number of eigenvalues crossing the imaginary axis. The attractor bifurcation theory presented in this article generalizes the existing steady state bifurcations and the Hopf bifurcations. It provides a unified point of view on dynamic bifurcation and can be applied to many problems in physics and mechanics.
Chaotic behavior in nonlinear polarization dynamics
Energy Technology Data Exchange (ETDEWEB)
David, D.; Holm, D.D.; Tratnik, M.V. (Los Alamos National Lab., NM (USA))
1989-01-01
We analyze the problem of two counterpropagating optical laser beams in a slightly nonlinear medium from the point of view of Hamiltonian systems; the one-beam subproblem is also investigated as a special case. We are interested in these systems as integrable dynamical systems which undergo chaotic behavior under various types of perturbations. The phase space for the two-beam problem is C{sup 2} {times} C{sup 2} when we restricted the the regime of travelling-wave solutions. We use the method of reduction for Hamiltonian systems invariant under one-parameter symmetry groups to demonstrate that the phase space reduces to the two-sphere S{sup 2} and is therefore completely integrable. The phase portraits of the system are classified and we also determine the bifurcations that modify these portraits; some new degenerate bifurcations are presented in this context. Finally, we introduce various physically relevant perturbations and use the Melnikov method to prove that horseshoe chaos and Arnold diffusion occur as consequences of these perturbations. 10 refs., 7 figs., 1 tab.
Some new solutions of nonlinear evolution equations with variable coefficients
Virdi, Jasvinder Singh
2016-05-01
We construct the traveling wave solutions of nonlinear evolution equations (NLEEs) with variable coefficients arising in physics. Some interesting nonlinear evolution equations are investigated by traveling wave solutions which are expressed by the hyperbolic functions, the trigonometric functions and rational functions. The applied method will be used in further works to establish more entirely new solutions for other kinds of such nonlinear evolution equations with variable coefficients arising in physics.
Seasonal Evolution of Titan's Atmospheric Polar Vortices
Teanby, Nicholas A.; Irwin, P. G.; Nixon, C. A.; de Kok, R.; Vinatier, S.; Coustenis, A.; Sefton-Nash, E.; Calcutt, S. B.; Flasar, F. M.
2013-10-01
Titan is the largest satellite of Saturn and is the only moon in our solar system to have a significant atmosphere. Titan's middle-atmosphere circulation usually comprises a single hemisphere-to-hemisphere meridional circulation cell, with upwelling air in the summer hemisphere and subsiding air at the winter pole with an associated winter polar vortex. Titan has an axial tilt (obliquity) of 26.7degrees, so during its 29.5 Earth year annual cycle pronounced seasonal effects are expected as the relative solar insolation in each hemisphere changes. The most dramatic of these changes is predicted to be the reversal in global meridional circulation as the peak solar heating switches hemispheres after an equinox. Since northern spring equinox in mid-2009, Titan's atmosphere has demonstrated dramatic changes in temperature, composition, and aerosol distribution. These changes indicate major changes to the atmospheric circulation pattern have indeed occurred. Here we use nine years of Cassini/CIRS infrared spectra to determine the temperature and composition evolution of the atmosphere through northern-fall to northern-spring. Particularly dramatic changes are observed at the poles, where a new south polar hot-spot/vortex has been forming. The north polar vortex also appears to be weakening throughout this period. Furthermore, the meridional circulation reversal, predicted by numerical models, occurred a mere six months after equinox, showing that despite Titan's long annual cycle, rapid changes are possible. This gives us new insight into vortex formation processes and atmospheric dynamics.
Chiral Huygens metasurfaces for nonlinear structuring of linearly polarized light
Lesina, A Calà; Ramunno, L
2016-01-01
We report on a chiral nanostructure, which we term a "butterfly nanoantenna," that, when used in a metasurface, allows the direct conversion of a linearly polarized beam into a nonlinear optical far-field of arbitrary complexity. The butterfly nanoantenna exhibits field enhancement in its gap for every incident linear polarization, which can be exploited to drive nonlinear optical emitters within the gap, for the structuring of light within a frequency range not accessible by linear plasmonics. As the polarization, phase and amplitude of the field in the gap are highly controlled, nonlinear emitters within the gap behave as an idealized Huygens source. A general framework is thereby proposed wherein the butterfly nanoantennas can be arranged on a surface to produce a highly structured far-field nonlinear optical beam with high purity. A third harmonic Laguerre-Gauss beam carrying an optical orbital angular momentum of 41 is demonstrated as an example, through large-scale simulations on a high-performance comp...
Polarization-selective optical nonlinearities in cold Rydberg atoms
Wu, Jin-Hui; Artoni, M.; La Rocca, G. C.
2015-12-01
We study the interaction between a probe and a trigger weak fields in a sample of cold rubidium atoms in the presence of a coupling and a dressing strong fields. Dipole Rydberg blockade may occur and can be set to depend on the probe and trigger polarizations giving rise to diverse regimes of electromagnetically induced transparency (EIT) with a concomitant small probe and trigger absorption and dispersion. This is shown to be relevant to the implementation of polarization conditional probe and trigger cross nonlinearities in cold Rydberg atoms.
Dispersion and polarization dependence of mobile carrier optical nonlinearities
Rustagi, K. C.
1984-06-01
Based on the author's earlier work, it is shown that the proper inclusion of carrier scattering should strongly modify the frequency and polarization dependence of optical nonlinearities due to mobile carriers in semiconductors. When the momentum relaxation is much faster than the energy relaxation, the intensity dependent refractive index is enhanced, the induced birefringence becomes a sharp function of the difference frequency ωa-ωb, and a collision induced stimulated Raman effect becomes important.
Olivier, Michel; Gagnon, Marc-Daniel; Habel, Joé
2016-02-28
When a laser is mode-locked, it emits a train of ultra-short pulses at a repetition rate determined by the laser cavity length. This article outlines a new and inexpensive procedure to force mode locking in a pre-adjusted nonlinear polarization rotation fiber laser. This procedure is based on the detection of a sudden change in the output polarization state when mode locking occurs. This change is used to command the alignment of the intra-cavity polarization controller in order to find mode-locking conditions. More specifically, the value of the first Stokes parameter varies when the angle of the polarization controller is swept and, moreover, it undergoes an abrupt variation when the laser enters the mode-locked state. Monitoring this abrupt variation provides a practical easy-to-detect signal that can be used to command the alignment of the polarization controller and drive the laser towards mode locking. This monitoring is achieved by feeding a small portion of the signal to a polarization analyzer measuring the first Stokes parameter. A sudden change in the read out of this parameter from the analyzer will occur when the laser enters the mode-locked state. At this moment, the required angle of the polarization controller is kept fixed. The alignment is completed. This procedure provides an alternate way to existing automating procedures that use equipment such as an optical spectrum analyzer, an RF spectrum analyzer, a photodiode connected to an electronic pulse-counter or a nonlinear detecting scheme based on two-photon absorption or second harmonic generation. It is suitable for lasers mode locked by nonlinear polarization rotation. It is relatively easy to implement, it requires inexpensive means, especially at a wavelength of 1550 nm, and it lowers the production and operation costs incurred in comparison to the above-mentioned techniques.
Exact Travelling Wave Solutions to a Coupled Nonlinear Evolution Equation[
Institute of Scientific and Technical Information of China (English)
HUANGDing-Jiang; ZHANGHong-Qing
2004-01-01
By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.
Exact Travelling Wave Solutions to a Coupled Nonlinear Evolution Equation
Institute of Scientific and Technical Information of China (English)
HUANG Ding-Jiang; ZHANG Hong-Qing
2004-01-01
By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.
Nonlinear optical polarization analysis in chemistry and biology
Simpson, Garth J
2017-01-01
This rigorous yet accessible guide presents a molecular-based description of nonlinear optical polarization analysis of chemical and biological assemblies. It includes discussion of the most common nonlinear optical microscopy and interfacial measurements used for quantitative analysis, specifically second harmonic generation (SHG), two-photon excited fluorescence (2PEF), vibrational sum frequency generation (SFG), and coherent anti-Stokes Raman spectroscopy/stimulated Raman spectroscopy (CARS/SRS). A linear algebra mathematical framework is developed, allowing step-wise systematic connections to be made between the observable measurements and the molecular response. Effects considered include local field corrections, the molecular orientation distribution, rotations between the molecular frame, the local frame and the laboratory frame, and simplifications from molecular and macromolecular symmetry. Specific examples are provided throughout the book, working from the common and relatively simple case studies ...
Approximate viability for nonlinear evolution inclusions with application to controllability
Directory of Open Access Journals (Sweden)
Omar Benniche
2016-12-01
Full Text Available We investigate approximate viability for a graph with respect to fully nonlinear quasi-autonomous evolution inclusions. As application, an approximate null controllability result is given.
New travelling wave solutions for nonlinear stochastic evolution equations
Indian Academy of Sciences (India)
Hyunsoo Kim; Rathinasamy Sakthivel
2013-06-01
The nonlinear stochastic evolution equations have a wide range of applications in physics, chemistry, biology, economics and finance from various points of view. In this paper, the (′/)-expansion method is implemented for obtaining new travelling wave solutions of the nonlinear (2 + 1)-dimensional stochastic Broer–Kaup equation and stochastic coupled Korteweg–de Vries (KdV) equation. The study highlights the significant features of the method employed and its capability of handling nonlinear stochastic problems.
Extension of Variable Separable Solutions for Nonlinear Evolution Equations
Institute of Scientific and Technical Information of China (English)
JIA Hua-Bing; ZHANG Shun-Li; XU Wei; ZHU Xiao-Ning; WANG Yong-Mao; LOU Sen-Yue
2008-01-01
We give the generalized definitions of variable separable solutions to nonlinear evolution equations, and characterize the relation between the functional separable solution and the derivative-dependent functional separablecation, we classify the generalized nonlinear diffusion equations that admit special functional separable solutions and obtain some exact solutions to the resulting equations.
A variational approach to nonlinear evolution equations in optics
Indian Academy of Sciences (India)
D Anderson; M Lisak; A Berntson
2001-11-01
A tutorial review is presented of the use of direct variational methods based on RayleighRitz optimization for ﬁnding approximate solutions to various nonlinear evolution equations. The practical application of the approach is demonstrated by some illustrative examples in connection with the nonlinear Schrödinger equation.
Prolongation Structure of Semi-discrete Nonlinear Evolution Equations
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Based on noncommutative differential calculus, we present a theory of prolongation structure for semi-discrete nonlinear evolution equations. As an illustrative example, a semi-discrete model of the nonlinear Schr(o)dinger equation is discussed in terms of this theory and the corresponding Lax pairs are also given.
Directory of Open Access Journals (Sweden)
E. M. E. Zayed
2014-01-01
Full Text Available We apply the generalized projective Riccati equations method to find the exact traveling wave solutions of some nonlinear evolution equations with any-order nonlinear terms, namely, the nonlinear Pochhammer-Chree equation, the nonlinear Burgers equation and the generalized, nonlinear Zakharov-Kuznetsov equation. This method presents wider applicability for handling many other nonlinear evolution equations in mathematical physics.
Nonlinear and Perturbative Evolution of Distorted Black Holes; 2, Odd-parity Modes
Baker, J; Campanelli, M; Loustó, C O; Seidel, E; Takahashi, R
2000-01-01
We compare the fully nonlinear and perturbative evolution of nonrotating black holes with odd-parity distortions utilizing the perturbative results to interpret the nonlinear results. This introduction of the second polarization (odd-parity) mode of the system, and the systematic use of combined techniques brings us closer to the goal of studying more complicated systems like distorted, rotating black holes, such as those formed in the final inspiral stage of two black holes. The nonlinear evolutions are performed with the 3D parallel code for Numerical Relativity, {Cactus}, and an independent axisymmetric code, {Magor}. The linearized calculation is performed in two ways: (a) We treat the system as a metric perturbation on Schwarzschild, using the Regge-Wheeler equation to obtain the waveforms produced. (b) We treat the system as a curvature perturbation of a Kerr black hole (but here restricted to the case of vanishing rotation parameter a) and evolve it with the Teukolsky equation The comparisons of the wa...
Indian Academy of Sciences (India)
Hari Prakash; Devendra K Singh
2010-03-01
It is shown that all optical polarization states of light except plane and circular polarization states undergo an intensity-dependent change in normal incidence of light in an isotropic nonlinear Kerr medium. This effect should be detectable and we propose an experiment for detecting nonlinear susceptibility involved in that part of nonlinear polarization, which depends on the polarization state of light also.
Polarization State Evolution in Fibre Polarization Transformer Influenced by Phase Difference
Institute of Scientific and Technical Information of China (English)
SHI Zhi-Dong; JI Min-Ning; BAO Huan-Huan
2007-01-01
In accordance with the intrinsic structure of controllably-spun birefringent-fibre-based fibre polarization transformer (FPT), the Jones vector is calculated from point to point along the polarization transforming fibre by the cascade differential phase retarder model. It is the first time using this concise method to examine the phasedifference effect on the evolution of state of polarization (SOP) inside this special fibre component. Both the extinction ratio and orientation angle of SOP are calculated to give out a whole evolution history from linear polarization light at the slow spun end into circular polarization light at the fast spun end, and vice versa. The influence of phase-difference is discussed on the polarization transforming performance and further referential conclusion is provided for design and test of the FPT component.
Trapping polarization of light in nonlinear optical fibers: An ideal Raman polarizer
Kozlov, Victor V; Ania-Castanon, Juan Diego; Wabnitz, Stefan
2012-01-01
The main subject of this contribution is the all-optical control over the state of polarization (SOP) of light, understood as the control over the SOP of a signal beam by the SOP of a pump beam. We will show how the possibility of such control arises naturally from a vectorial study of pump-probe Raman interactions in optical fibers. Most studies on the Raman effect in optical fibers assume a scalar model, which is only valid for high-PMD fibers (here, PMD stands for the polarization-mode dispersion). Modern technology enables manufacturing of low-PMD fibers, the description of which requires a full vectorial model. Within this model we gain full control over the SOP of the signal beam. In particular we show how the signal SOP is pulled towards and trapped by the pump SOP. The isotropic symmetry of the fiber is broken by the presence of the polarized pump. This trapping effect is used in experiments for the design of new nonlinear optical devices named Raman polarizers. Along with the property of improved sig...
Nonlinear evolution of cylindrical gravitational waves: Numerical method and physical aspects
Celestino, Juliana; de Oliveira, H. P.; Rodrigues, E. L.
2016-05-01
General cylindrical waves are the simplest axisymmetrical gravitational waves that contain both + and × modes of polarization. In this paper, we have studied the evolution of general cylindrical gravitational waves in the realm of the characteristic scheme with a numerical code based on the Galerkin-Collocation method. The investigation consists of the numerical realization of concepts such as Bondi mass and the news functions adapted to cylindrical symmetry. The Bondi mass decays due to the presence of the news functions associated with both polarization modes. We have interpreted each polarization mode as channels from which mass is extracted. Under this perspective, we have presented the enhancement effect of the polarization mode + due to the nonlinear interaction with the mode ×. After discussing the role of matter in cylindrical symmetry, we have extended the numerical code to include electromagnetic fields.
Nonlinear evolution of cylindrical gravitational waves: numerical method and physical aspects
Celestino, Juliana; Rodrigues, E L
2015-01-01
General cylindrical waves are the simplest axisymmetrical gravitational waves that contain both $+$ and $\\times$ modes of polarization. In this paper, we have studied the evolution of general cylindrical gravitational waves in the realm of the characteristic scheme with a numerical code based on the Galerkin-Collocation method. The investigation consists of the numerical realization of concepts such as Bondi mass and the news functions adapted to cylindrical symmetry. The Bondi mass decays due to the presence of the news functions associated with both polarization modes. We have interpreted that each polarization mode as channels from which mass is extracted. Under this perspective, we have presented the enhancement effect of the polarization mode $+$ due to the nonlinear interaction with the mode $\\times$. After discussing the role of matter in cylindrical symmetry, we have extended the numerical code to include electromagnetic fields.
Optical polarization based logic functions (XOR or XNOR) with nonlinear Gallium nitride nanoslab.
Bovino, F A; Larciprete, M C; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V
2009-10-26
We present a scheme of XOR/XNOR logic gate, based on non phase-matched noncollinear second harmonic generation from a medium of suitable crystalline symmetry, Gallium nitride. The polarization of the noncollinear generated beam is a function of the polarization of both pump beams, thus we experimentally investigated all possible polarization combinations, evidencing that only some of them are allowed and that the nonlinear interaction of optical signals behaves as a polarization based XOR. The experimental results show the peculiarity of the nonlinear optical response associated with noncollinear excitation, and are explained using the expression for the effective second order optical nonlinearity in noncollinear scheme.
New traveling wave solutions for nonlinear evolution equations
Energy Technology Data Exchange (ETDEWEB)
El-Wakil, S.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Madkour, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Abdou, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt)]. E-mail: m_abdou_eg@yahoo.com
2007-06-11
The generalized Jacobi elliptic function expansion method is used with a computerized symbolic computation for constructing the new exact traveling wave solutions. The validity and reliability of the method is tested by its applications on a class of nonlinear evolution equations of special interest in mathematical physics. As a result, many exact traveling wave solutions are obtained which include the kink-shaped solutions, bell-shaped solutions, singular solutions and periodic solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics.
The Nonlinear Evolution of Galaxy Intrinsic Alignments
Lee, Jounghun; Pen, Ue-Li
2007-01-01
The non-Gaussian contribution to the intrinsic halo spin alignments is analytically modeled and numerically detected. Assuming that the growth of non-Gaussianity in the density fluctuations caused the tidal field to have nonlinear-order effect on the orientations of the halo angular momentum, we model the intrinsic halo spin alignments as a linear scaling of the density correlations on large scales, which is different from the previous quadratic-scaling model based on the linear tidal torque ...
Evolution of sum-chirp in polarization multiplexed communication system
Institute of Scientific and Technical Information of China (English)
Wang Jing; Wang Zhen-Li
2004-01-01
The evolution of sum-chirp for an initially chirped Gaussian pulse is studied in the polarization multiplexed communication system, with fibre attenuation considered. The sum-chirp is found to have the character of saturation.Its value appears different along the two different polarization axes, determined by the incidence polarization angle. We also find that sum-chirp is dominated by the initial chirp at a short distance, and by the cross-phase modulation effect at long distance. And it is influenced apparently by a wavevector mismatch parameter below 10 ps/km. Further, its saturation results from the effective distance determined by fibre attenuation.
Nonlinear evolution of the modulational instability of whistler waves
DEFF Research Database (Denmark)
Karpman, V.I.; Hansen, F.R.; Huld, T.
1990-01-01
The nonlinear evolution of the modulational instability of whistler waves coupled to fast magnetosonic waves is investigated in two spatial dimensions by numerical simulations. The long time evolution of the modulational instability shows a quasirecurrent behavior with a slow spreading...... of the energy, originally confined to the lowest wave numbers, to larger and larger wave numbers resulting in an apparently chaotic or random wave field. © 1990 The American Physical Society...
The nonlinear evolution of modes on unstable stratified shear layers
Blackaby, Nicholas; Dando, Andrew; Hall, Philip
1993-06-01
The nonlinear development of disturbances in stratified shear flows (having a local Richardson number of value less than one quarter) is considered. Such modes are initially fast growing but, like related studies, we assume that the viscous, non-parallel spreading of the shear layer results in them evolving in a linear fashion until they reach a position where their amplitudes are large enough and their growth rates have diminished sufficiently so that amplitude equations can be derived using weakly nonlinear and non-equilibrium critical-layer theories. Four different basic integro-differential amplitude equations are possible, including one due to a novel mechanism; the relevant choice of amplitude equation, at a particular instance, being dependent on the relative sizes of the disturbance amplitude, the growth rate of the disturbance, its wavenumber, and the viscosity of the fluid. This richness of choice of possible nonlinearities arises mathematically from the indicial Frobenius roots of the governing linear inviscid equation (the Taylor-Goldstein equation) not, in general, differing by an integer. The initial nonlinear evolution of a mode will be governed by an integro-differential amplitude equations with a cubic nonlinearity but the resulting significant increase in the size of the disturbance's amplitude leads on to the next stage of the evolution process where the evolution of the mode is governed by an integro-differential amplitude equations with a quintic nonlinearity. Continued growth of the disturbance amplitude is expected during this stage, resulting in the effects of nonlinearity spreading to outside the critical level, by which time the flow has become fully nonlinear.
Nonlinear observer to estimate polarization phenomenon in membrane distillation
Directory of Open Access Journals (Sweden)
Khoukhi Billal
2015-01-01
Full Text Available This paper presents a bi-dimensional dynamic model of Direct Contact Membrane Desalination (DCMD process. Most of the MD configuration processes have been modeled as steady-state one-dimensional systems. Stationary two-dimensional MD models have been considered only in very few studies. In this work, a dynamic model of a DCMD process is developed. The model is implemented using Matlab/Simulink environment. Numerical simulations are conducted for different operational parameters at the module inlets such as the feed and permeate temperature or feed and permeate flow rate. The results are compared with experimental data published in the literature. The work presents also a feed forward control that compensates the possible decrease of the temperature gradient by increasing the flow rate. This work also deals with a development of nonlinear observer to estimate temperature polarization inside the membrane. The observer gives a good profile and longitudinal temperature estimations and shows a good prediction of pure water flux production.
Olivier, Michel; Gagnon, Marc-Daniel; Piché, Michel
2015-03-09
A strategy to align a mode-locked fiber laser with nonlinear polarization rotation is presented. This strategy is based on measurements of the output polarization state. It is shown that, as the angle of a motorized polarization controller inside the cavity is swept, the laser eventually reaches a mode-locked regime and the values of the Stokes parameters undergo an abrupt change. The sensing of this sudden variation is thus used to detect the mode-locking condition and a feedback mechanism drives the alignment of the polarization controller to force mode locking.
NEW EXACT TRAVELLING WAVE SOLUTIONS TO THREE NONLINEAR EVOLUTION EQUATIONS
Institute of Scientific and Technical Information of China (English)
Sirendaoreji
2004-01-01
Based on the computerized symbolic computation, some new exact travelling wave solutions to three nonlinear evolution equations are explicitly obtained by replacing the tanhξ in tanh-function method with the solutions of a new auxiliary ordinary differential equation.
EXACT SOLITARY WAVE SOLUTIONS OF THETWO NONLINEAR EVOLUTION EQUATIONS
Institute of Scientific and Technical Information of China (English)
ZhuYanjuan; ZhangChunhua
2005-01-01
The solitary wave solutions of the combined KdV-mKdV-Burgers equation and the Kolmogorov-Petrovskii-Piskunov equation are obtained by means of the direct algebra method, which can be generalized to deal with high dimensional nonlinear evolution equations.
BOUNDARY LAYER AND VANISHING DIFFUSION LIMIT FOR NONLINEAR EVOLUTION EQUATIONS
Institute of Scientific and Technical Information of China (English)
彭艳
2014-01-01
In this paper, we consider an initial-boundary value problem for some nonlinear evolution equations with damping and diffusion. The main purpose is to investigate the boundary layer effect and the convergence rates as the diffusion parameterαgoes to zero.
The Peridic Wave Solutions for Two Nonlinear Evolution Equations
Institute of Scientific and Technical Information of China (English)
ZHANG Jin-Liang; WANG Ming-Liang; CHENG Dong-Ming; FANG Zong-De
2003-01-01
By using the F-expansion method proposed recently, the periodic wave solutions expressed by Jacobielliptic functions for two nonlinear evolution equations are derived. In the limit cases, the solitary wave solutions andthe other type of traveling wave solutions for the system are obtained.
Stable Solution of Nonlinear Age-structuredForest Evolution System
Institute of Scientific and Technical Information of China (English)
WANGDing-jiang; ZHAOTing-fang
2004-01-01
This paper studies the dynamical behavior of a class of total area dependent nonlinear age-structured forest evolution model. We give the problem of equal value for the forest system, and discuss the stable solution of system. We obtained the necessary and sufficient conditions for there exists the stable solution.
Trifonov, A. Yu.; Shapovalov, A. V.
2011-05-01
The two-dimensional Kolmogorov-Petrovskii-Piskunov-Fisher equation with nonlocal nonlinearity and axially symmetric coefficients in polar coordinates is considered. The method of separation of variables in polar coordinates and the nonlinear superposition principle proposed by the authors are used to construct the asymptotic solution of a Cauchy problem in a special class of smooth functions. The functions of this class arbitrarily depend on the angular variable and are semiclassically concentrated in the radial variable. The angular dependence of the function has been exactly taken into account in the solution. For the radial equation, the formalism of semiclassical asymptotics has been developed for the class of functions which singularly depend on an asymptotic small parameter, whose part is played by the diffusion coefficient. A dynamic system of Einstein-Ehrenfest equations (a system of equations in mean and central moments) has been derived. The evolution operator for the class of functions under consideration has been constructed in explicit form.
Reduction of neoclassical polarization current contribution to NTM evolution
Qu, Hongpeng; Peng, Xiaodong; Wang, Feng; Wang, Aike; Shen, Yong
2016-09-01
The neoclassical polarization current, which can be generated by a time-dependent electric field resulting from magnetic island rotation, is believed to play an important role in the initial stage of the neoclassical tearing mode (NTM) evolution in tokamak plasmas. In the previous analytical description of the neoclassical polarization current contribution to the evolution of NTMs in the limit of low collision frequency ( νii≪ɛω , νii is ion collision frequency, ɛ is the inverse aspect ratio, and ω is the island propagation frequency in the plasma rest frame), the width of magnetic islands has been assumed to be much larger than the finite-banana-width (FBW) of the trapped ions in order to solve the drift-kinetic equation of ions by using the perturbation method. In this paper, we introduce a new analytical approach to investigate the neoclassical polarization current contribution to the NTM evolution without the assumption of the large island width by solving the drift-kinetic equation in a so-called ion-banana-center coordinate system. The results show that, when the island width is comparable to the FBW of the thermal ion, the neoclassical polarization current term in the equation of the NTM evolution is much smaller than the previous analytical expression but matches well with the empirical anticipation commonly adopted in experiments.
A Hierarchy of New Nonlinear Evolution Equations Associated with a 3 × 3 Matrix Spectral Problem
Institute of Scientific and Technical Information of China (English)
GENG Xian-Guo; LI Fang
2009-01-01
A 3 × 3 matrix spectral problem with three potentials and the corresponding hierarchy of new nonlinear evolution equations are proposed. Generalized Hamiltonian structures for the hierarchy of nonlinear evolution equations are derived with the aid of trace identity.
The chaotic effects in a nonlinear QCD evolution equation
Zhu, Wei; Shen, Zhenqi; Ruan, Jianhong
2016-10-01
The corrections of gluon fusion to the DGLAP and BFKL equations are discussed in a united partonic framework. The resulting nonlinear evolution equations are the well-known GLR-MQ-ZRS equation and a new evolution equation. Using the available saturation models as input, we find that the new evolution equation has the chaos solution with positive Lyapunov exponents in the perturbative range. We predict a new kind of shadowing caused by chaos, which blocks the QCD evolution in a critical small x range. The blocking effect in the evolution equation may explain the Abelian gluon assumption and even influence our expectations to the projected Large Hadron Electron Collider (LHeC), Very Large Hadron Collider (VLHC) and the upgrade (CppC) in a circular e+e- collider (SppC).
Nonlinear response of metallic acGNR to an elliptically-polarized terahertz excitation field
Wang, Yichao
2016-01-01
We present a theoretical description of the nonlinear response induced by an elliptically-polarized terahertz beam normally-incident on intrinsic and extrinsic metallic armchair graphene nanorib- bons. Our results show that using a straightforward experimental setup, it should be possible to observe novel polarization-dependent nonlinearities at low excitation field strengths of the or- der of 10 4 V/m. At low temperatures the Kerr nonlinearities in extrinsic nanoribbons persist to significantly higher excitation frequencies than they do for linear polarizations, and at room tem- peratures, the third-harmonic nonlinearities are enhanced by 2-3 orders of magnitude. Finally, the Fermi-level and temperature dependence of the nonlinear response is characterized.
Institute of Scientific and Technical Information of China (English)
胡业民; 胡希伟
2001-01-01
Numerical analyses for the nonlinear evolutions of stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) processes are given. Various effects of the second- and third-order nonlinear susceptibilities on the SRS and SBS processes are studied. The nonlinear evolutions of SRS and SBS processes are atfected more efficiently than their linear growth rates by the nonlinear susceptibility.
Transient evolution of a photon gas in the nonlinear QED vacuum
Energy Technology Data Exchange (ETDEWEB)
Wu, S Q; Hartemann, F V
2011-10-04
Thermally induced vacuum polarization stemming from QED radiative corrections to the electromagnetic field equations is studied. The physical behavior of thermal radiation, in the nonlinear QED vacuum first described by Heisenberg and Euler, is a problem of some theoretical importance in view of its relation to the cosmic microwave background (CMB), early universe evolution, and Hawking-Unruh radiation. The questions of evolution toward equilibrium, stability, and invariance of thermal radiation under such conditions are of great interest. Our analysis presents novel aspects associated with photon-photon scattering in a photon gas in the framework of quantum kinetic theory. Within the context of the Euler-Heisenberg theory, we show that a homogeneous, isotropic photon gas with arbitrary spectral distribution function evolves toward an equilibrium state with a Bose-Einstein distribution. The transient evolution toward equilibrium of a gas of photons undergoing photon-photon scattering is studied in detail via the Boltzmann transport equation.
Biomechanical consequences of rapid evolution in the polar bear lineage.
Directory of Open Access Journals (Sweden)
Graham J Slater
Full Text Available The polar bear is the only living ursid with a fully carnivorous diet. Despite a number of well-documented craniodental adaptations for a diet of seal flesh and blubber, molecular and paleontological data indicate that this morphologically distinct species evolved less than a million years ago from the omnivorous brown bear. To better understand the evolution of this dietary specialization, we used phylogenetic tests to estimate the rate of morphological specialization in polar bears. We then used finite element analysis (FEA to compare the limits of feeding performance in the polar bear skull to that of the phylogenetically and geographically close brown bear. Results indicate that extremely rapid evolution of semi-aquatic adaptations and dietary specialization in the polar bear lineage produced a cranial morphology that is weaker than that of brown bears and less suited to processing tough omnivorous or herbivorous diets. Our results suggest that continuation of current climate trends could affect polar bears by not only eliminating their primary food source, but also through competition with northward advancing, generalized brown populations for resources that they are ill-equipped to utilize.
Cross-polarized wave generation by effective cubic nonlinear optical interaction.
Petrov, G I; Albert, O; Etchepare, J; Saltiel, S M
2001-03-15
A new cubic nonlinear optical effect in which a linearly polarized wave propagating in a single quadratic medium is converted into a wave that is cross polarized to the input wave is observed in BBO crystal. The effect is explained by cascading of two different second-order processes: second-harmonic generation and difference frequency mixing.
Shallow water modal evolution due to nonlinear internal waves
Badiey, Mohsen; Wan, Lin; Luo, Jing
2017-09-01
Acoustic modal behavior is reported for an L-shape hydrophone array during the passage of a strong nonlinear internal wave packet. Acoustic track is nearly parallel to the front of nonlinear internal waves. Through modal decomposition at the vertical array, acoustic modes are identified. Modal evolution along the horizontal array then is examined during a passing internal wave. Strong intensity fluctuations of individual modes are observed before and during the internal waves packet passes the fixed acoustic track showing a detailed evolution of the waveguide modal behavior. Acoustic refraction created either uneven distribution of modal energy over the horizontal array or additional returns observable at the entire L-shape array. Acoustic ray-mode simulations are used to phenomenologically explain the observed modal behavior.
Solitary wave solutions to nonlinear evolution equations in mathematical physics
Indian Academy of Sciences (India)
Anwar Ja’afar Mohamad Jawad; M Mirzazadeh; Anjan Biswas
2014-10-01
This paper obtains solitons as well as other solutions to a few nonlinear evolution equations that appear in various areas of mathematical physics. The two analytical integrators that are applied to extract solutions are tan–cot method and functional variable approaches. The soliton solutions can be used in the further study of shallow water waves in (1+1) as well as (2+1) dimensions.
Nonlinear Evolution of Magnetic Islands in the Magnetopause Current Sheet
Institute of Scientific and Technical Information of China (English)
XianminWANG; ZuyinPU
1996-01-01
Nonlinear evolution of magnetic islands produced by time-dependent magnetic reconnection in the magnetopause current sheet is studied.It is shown that the magnetic islands are unstable against the interference from external disturbances.Their structure can be destroyed by medium and small-scale solar wind turbulences,leading to stochastic magnetic reconnection and the formation of irregular small0scale structures in magnetospheric boundary regions.
Modified constrained differential evolution for solving nonlinear global optimization problems
2013-01-01
Nonlinear optimization problems introduce the possibility of multiple local optima. The task of global optimization is to find a point where the objective function obtains its most extreme value while satisfying the constraints. Some methods try to make the solution feasible by using penalty function methods, but the performance is not always satisfactory since the selection of the penalty parameters for the problem at hand is not a straightforward issue. Differential evolut...
Travelling wave solutions for ( + 1)-dimensional nonlinear evolution equations
Indian Academy of Sciences (India)
Jonu Lee; Rathinasamy Sakthivel
2010-10-01
In this paper, we implement the exp-function method to obtain the exact travelling wave solutions of ( + 1)-dimensional nonlinear evolution equations. Four models, the ( + 1)-dimensional generalized Boussinesq equation, ( + 1)-dimensional sine-cosine-Gordon equation, ( + 1)-double sinh-Gordon equation and ( + 1)-sinh-cosinh-Gordon equation, are used as vehicles to conduct the analysis. New travelling wave solutions are derived.
Domain evolution and polarization of continuously graded ferroelectric films
Energy Technology Data Exchange (ETDEWEB)
Roytburd, A.; Roytburd, V.
2008-01-01
A thermodynamic analysis of graded ferroelectric films demonstrates that in the equilibrium state the films are subdivided into a single-domain band and a polydomain band which consists of wedge-shape domains. Polarization under an external electrostatic field proceeds through an inter-band boundary movement due to growth or shrinkage of the wedge domains. It is shown how the domain structure and evolution are determined by the principal characteristics of the film: the distribution of the spontaneous polarization and dielectric constant. Graded films exhibit a sharp increase of polarization with the field for weak fields, with a drop of the dielectric constant when the field is increasing. A general approach to finding the dependence of the displacement and the wedge-domain shape on the field as well as analytical solutions for the p{sup 4} Landau-Devonshire and parabolic potentials are presented.
Institute of Scientific and Technical Information of China (English)
Xiao Li; Zhang Wei; Huang Yi-Dong; Peng Jiang-De
2008-01-01
High nonlinear microstructure fibre (HNMF) is preferred in nonlinear fibre optics, especially in the applications of optical parametric effects, due to its high optical nonlinear coefficient. However, polarization dependent dispersion will impact the nonlinear optical parametric process in HNMFs. In this paper, modulation instability (MI) method is used to measure the polarization dependent dispersion of a piece of commercial HNMF, including the group velocity dispersion, the dispersion slope, the fourth-order dispersion and group birefringence. It also experimentally demonstrates the impact of the polarization dependent dispersion on the continuous wave supercontinuum (SC) generation. On one axis MI sidebands with symmetric frequency dctunings are generated, while on the other axis with larger MI frequency detuning, SC is generated by soliton self-frequency shift.
Nonlinear coupling of left and right handed circularly polarized dispersive Alfvén wave
Energy Technology Data Exchange (ETDEWEB)
Sharma, R. P., E-mail: rpsharma@ces.iitd.ac.in; Sharma, Swati, E-mail: swati.sharma704@gmail.com; Gaur, Nidhi, E-mail: nidhiphysics@gmail.com [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India)
2014-07-15
The nonlinear phenomena are of prominent interests in understanding the particle acceleration and transportation in the interplanetary space. The ponderomotive nonlinearity causing the filamentation of the parallel propagating circularly polarized dispersive Alfvén wave having a finite frequency may be one of the mechanisms that contribute to the heating of the plasmas. The contribution will be different of the left (L) handed mode, the right (R) handed mode, and the mix mode. The contribution also depends upon the finite frequency of the circularly polarized waves. In the present paper, we have investigated the effect of the nonlinear coupling of the L and R circularly polarized dispersive Alfvén wave on the localized structures formation and the respective power spectra. The dynamical equations are derived in the presence of the ponderomotive nonlinearity of the L and R pumps and then studied semi-analytically as well as numerically. The ponderomotive nonlinearity accounts for the nonlinear coupling between both the modes. In the presence of the adiabatic response of the density fluctuations, the nonlinear dynamical equations satisfy the modified nonlinear Schrödinger equation. The equations thus obtained are solved in solar wind regime to study the coupling effect on localization and the power spectra. The effect of coupling is also studied on Faraday rotation and ellipticity of the wave caused due to the difference in the localization of the left and the right modes with the distance of propagation.
Finite Volume Evolution Galerkin Methods for Nonlinear Hyperbolic Systems
Lukáčová-Medvid'ová, M.; Saibertová, J.; Warnecke, G.
2002-12-01
We present new truly multidimensional schemes of higher order within the frame- work of finite volume evolution Galerkin (FVEG) methods for systems of nonlinear hyperbolic conservation laws. These methods couple a finite volume formulation with approximate evolution operators. The latter are constructed using the bicharacteristics of the multidimensional hyperbolic system, such that all of the infinitely many directions of wave propagation are taken into account. Following our previous results for the wave equation system, we derive approximate evolution operators for the linearized Euler equations. The integrals along the Mach cone and along the cell interfaces are evaluated exactly, as well as by means of numerical quadratures. The influence of these numerical quadratures will be discussed. Second-order resolution is obtained using a conservative piecewise bilinear recovery and the midpoint rule approximation for time integration. We prove error estimates for the finite volume evolution Galerkin scheme for linear systems with constant coefficients. Several numerical experiments for the nonlinear. Euler equations, which confirm the accuracy and good multidimensional behavior of the FVEG schemes, are presented as well.
Polarization effects in the non-linear Compton scattering
Ivanov, D Y; Serbo, V G
2005-01-01
We consider emission of a photon by an electron in the field of a strong laser wave. A probability of this process for circularly or linearly polarized laser photons and for arbitrary polarization of all other particles is calculated. We obtain the complete set of functions which describe such a probability in a compact invariant form. Besides, we discuss in some detail the polarization effects in the kinematics relevant to the problem of electron to photon conversion at photon-photon and electron-photon colliders.
Modelling of nonlinear shoaling based on stochastic evolution equations
DEFF Research Database (Denmark)
Kofoed-Hansen, Henrik; Rasmussen, Jørgen Hvenekær
1998-01-01
A one-dimensional stochastic model is derived to simulate the transformation of wave spectra in shallow water including generation of bound sub- and super-harmonics, near-resonant triad wave interaction and wave breaking. Boussinesq type equations with improved linear dispersion characteristics...... are recast into evolution equations for the complex amplitudes, and serve as the underlying deterministic model. Next, a set of evolution equations for the cumulants is derived. By formally introducing the well-known Gaussian closure hypothesis, nonlinear evolution equations for the power spectrum...... and bispectrum are derived. A simple description of depth-induced wave breaking is incorporated in the model equations, assuming that the total rate of dissipation may be distributed in proportion to the spectral energy density on each discrete frequency. The proposed phase-averaged model is compared...
Analytic treatment of nonlinear evolution equations using ﬁrst integral method
Indian Academy of Sciences (India)
Ahmet Bekir; Ömer Ünsal
2012-07-01
In this paper, we show the applicability of the ﬁrst integral method to combined KdV-mKdV equation, Pochhammer–Chree equation and coupled nonlinear evolution equations. The power of this manageable method is conﬁrmed by applying it for three selected nonlinear evolution equations. This approach can also be applied to other nonlinear differential equations.
Solookinejad, G.
2016-09-01
In this study, the linear and nonlinear susceptibility of a single-layer graphene nanostructure driven by a weak probe light and an elliptical polarized coupling field is discussed theoretically. The Landau levels of graphene can be separated in infrared or terahertz regions under the strong magnetic field. Therefore, by using the density matrix formalism in quantum optic, the linear and nonlinear susceptibility of the medium can be derived. It is demonstrated that by adjusting the elliptical parameter, one can manipulate the linear and nonlinear absorption as well as Kerr nonlinearity of the medium. It is realized that the enhanced Kerr nonlinearity can be possible with zero linear absorption and nonlinear amplification at some values of elliptical parameter. Our results may be having potential applications in quantum information science based on Nano scales devices.
Energy Technology Data Exchange (ETDEWEB)
Solookinejad, G., E-mail: ghsolooki@gmail.com
2016-09-15
In this study, the linear and nonlinear susceptibility of a single-layer graphene nanostructure driven by a weak probe light and an elliptical polarized coupling field is discussed theoretically. The Landau levels of graphene can be separated in infrared or terahertz regions under the strong magnetic field. Therefore, by using the density matrix formalism in quantum optic, the linear and nonlinear susceptibility of the medium can be derived. It is demonstrated that by adjusting the elliptical parameter, one can manipulate the linear and nonlinear absorption as well as Kerr nonlinearity of the medium. It is realized that the enhanced Kerr nonlinearity can be possible with zero linear absorption and nonlinear amplification at some values of elliptical parameter. Our results may be having potential applications in quantum information science based on Nano scales devices.
Seasonal Evolution of Saturn's Polar Temperatures and Composition
Fletcher, Leigh N; Sinclair, J A; Orton, G S; Giles, R S; Hurley, J; Gorius, N; Achterberg, R K; Hesman, B E; Bjoraker, G L
2014-01-01
The seasonal evolution of Saturn's polar atmospheric temperatures and hydrocarbon composition is derived from a decade of Cassini Composite Infrared Spectrometer (CIRS) 7-16 $\\mu$m thermal infrared spectroscopy. We construct a near-continuous record of atmospheric variability poleward of 60$^\\circ$ from northern winter/southern summer (2004, $L_s=293^\\circ$) through the equinox (2009, $L_s=0^\\circ$) to northern spring/southern autumn (2014, $L_s=56^\\circ$). The hot tropospheric polar cyclones and the hexagonal shape of the north polar belt are both persistent features throughout the decade of observations. The hexagon vertices rotated westward by $\\approx30^\\circ$ longitude between March 2007 and April 2013, confirming that they are not stationary in the Voyager-defined System III longitude system as previously thought. The extended region of south polar stratospheric emission has cooled dramatically poleward of the sharp temperature gradient near 75$^\\circ$S, coinciding with a depletion in the abundances of ...
On Models of Nonlinear Evolution Paths in Adiabatic Quantum Algorithms
Institute of Scientific and Technical Information of China (English)
SUN Jie; LU Song-Feng; Samuel L.Braunstein
2013-01-01
In this paper,we study two different nonlinear interpolating paths in adiabatic evolution algorithms for solving a particular class of quantum search problems where both the initial and final Hamiltonian are one-dimensional projector Hamiltonians on the corresponding ground state.If the overlap between the initial state and final state of the quantum system is not equal to zero,both of these models can provide a constant time speedup over the usual adiabatic algorithms by increasing some another corresponding "complexity".But when the initial state has a zero overlap with the solution state in the problem,the second model leads to an infinite time complexity of the algorithm for whatever interpolating functions being applied while the first one can still provide a constant running time.However,inspired by a related reference,a variant of the first model can be constructed which also fails for the problem when the overlap is exactly equal to zero if we want to make up the "intrinsic" fault of the second model — an increase in energy.Two concrete theorems are given to serve as explanations why neither of these two models can improve the usual adiabatic evolution algorithms for the phenomenon above.These just tell us what should be noted when using certain nonlinear evolution paths in adiabatic quantum algorithms for some special kind of problems.
On the Nonlinear Evolution of Cosmic Web: Lagrangian Dynamics Revisited
Wang, Xin
2014-01-01
We investigate the nonlinear evolution of cosmic morphologies of the large-scale structure by examining the Lagrangian dynamics of various tensors of a cosmic fluid element, including the velocity gradient tensor, the Hessian matrix of the gravitational potential as well as the deformation tensor. Instead of the eigenvalue representation, the first two tensors, which associate with the "kinematic" and "dynamical" cosmic web classification algorithm respectively, are studied in a more convenient parameter space. These parameters are defined as the rotational invariant coefficients of the characteristic equation of the tensor. In the nonlinear local model (NLM) where the magnetic part of Weyl tensor vanishes, these invariants are fully capable of characterizing the dynamics. Unlike the Zeldovich approximation (ZA), where various morphologies do not change before approaching a one-dimensional singularity, the sheets in NLM are unstable for both overdense and underdense perturbations. While it has long been known...
Nonlinear evolution operators and semigroups applications to partial differential equations
Pavel, Nicolae H
1987-01-01
This research monograph deals with nonlinear evolution operators and semigroups generated by dissipative (accretive), possibly multivalued operators, as well as with the application of this theory to partial differential equations. It shows that a large class of PDE's can be studied via the semigroup approach. This theory is not available otherwise in the self-contained form provided by these Notes and moreover a considerable part of the results, proofs and methods are not to be found in other books. The exponential formula of Crandall and Liggett, some simple estimates due to Kobayashi and others, the characterization of compact semigroups due to Brézis, the proof of a fundamental property due to Ursescu and the author and some applications to PDE are of particular interest. Assuming only basic knowledge of functional analysis, the book will be of interest to researchers and graduate students in nonlinear analysis and PDE, and to mathematical physicists.
Lectures on nonlinear evolution equations initial value problems
Racke, Reinhard
2015-01-01
This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behavior of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schrödinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial-boundary value p...
The non-linear evolution of edge localized modes
Energy Technology Data Exchange (ETDEWEB)
Wenninger, Ronald
2013-01-09
Edge localized modes (ELMs) are instabilities in the edge of tokamak plasmas in the high confinement regime (H-mode). Without them the edge transport in ordinary H-mode plasmas is too low to establish a stationary situation. However in a future device large unmitigated ELMs are believed to cause divertor power flux densities far in excess of tolerable material limits. Hence the size of energy loss per ELM and the resulting ELM frequency must be controlled. To proceed in understanding how the ELM size is determined and how ELM mitigation methods work it is necessary to characterize the non-linear evolution of pedestal erosion. In order to achieve this experimental data is compared to the results of ELM simulations with the code JOREK (reduced MHD, non-linear) applying a specially developed synthetic magnetic diagnostic. The experimental data are acquired by several fast sampling diagnostics at the experiments ASDEX Upgrade and TCV at a large number of toroidal/poloidal positions. A central element of the presented work is the detailed characterization of dominant magnetic perturbations during ELMs. These footprints of the instability can be observed most intensely in close temporal vicinity to the onset of pedestal erosion. Dominant magnetic perturbations are caused by current perturbations located at or inside the last closed flux surface. In ASDEX Upgrade under certain conditions dominant magnetic perturbations like other H-mode edge instabilities display a similarity to solitons. Furthermore - as expected - they are often observed to be correlated to a perturbation of electron temperature. In TCV it is possible to characterize the evolution of the toroidal structure of dominant magnetic perturbations. Between growing above the level of background fluctuations and the maximum perturbation level for all time instance a similar toroidal structure is observed. This rigid mode-structure is an indication for non-linear coupling. Most frequently the dominant toroidal
Ivanov, D Y; Serbo, V G
2003-01-01
We consider emission of a photon by an electron in the field of a strong laser wave. Polarization effects in this process are important for a number of physical problems. We discuss a probability of this process for linearly polarized laser photons and for arbitrary polarization of all other particles. We obtain the complete set of functions which describe such a probability in a compact form.
Quantum nonlinear optics with polar J-aggregates in microcavities
Herrera, Felipe; Pachon, Leonardo A; Saikin, Semion K; Aspuru-Guzik, Alán
2014-01-01
We show that an ensemble of organic dye molecules with permanent electric dipole moments embedded in a microcavity can lead to strong optical nonlinearities at the single photon level. The strong long-range electrostatic interaction between chromophores due to their permanent dipoles introduces the desired nonlinearity of the light-matter coupling in the microcavity. We obtain the absorption spectra of a weak probe field under the influence of strong exciton-photon coupling with the cavity field. Using realistic parameters, we demonstrate that a single cavity photon can significantly modify the absorptive and dispersive response of the medium to a probe photon at a different frequency. Finally, we show that the system is in the regime of cavity-induced transparency with a broad transparency window for dye dimers. We illustrate our findings using pseudoisocyanine chloride (PIC) J-aggregates in currently-available optical microcavities.
Vacuum nonlinear electrodynamic polarization effects in hard emission of pulsars and magnetars
Denisov, V. I.; Sokolov, V. A.; Svertilov, S. I.
2017-09-01
The nonlinear electrodynamics influence of pulsar magnetic field on the electromagnetic pulse polarization is discussed from the point of observation interpretation. The calculations of pulsar magnetic field impact on the electromagnetic pulse polarization are made in such a way to make it easier to interpret these effects in space experiments. The law of hard emission pulse propagation in the pulsar magnetic field according to the vacuum (nonlinear electrodynamics is obtained. It has been shown, that due to the birefringence in the vacuum the front part of any hard emission pulse coming from a pulsar should be linearly polarized and the rest of pulse can have arbitrary polarization. The observational possibilities of vacuum birefringence are discussed. In this paper we give the estimations of detector parameters such as effective area, exposure time and necessity of polarization measurements with high accuracy. The combination of large area and extremely long exposure time gives the good opportunity to search the fine polarization effects like vacuum nonlinear electrodynamics birefringence.
Non-linear vacuum polarization in strong fields
Energy Technology Data Exchange (ETDEWEB)
Gyulassy, M.
1981-07-01
The Wichmann-Kroll formalism for calculating the vacuum polarization density to first order in ..cap alpha.. but to all orders in Z..cap alpha.. is derived. The most essential quantity is shown to be the electrons Green's function in these calculations. The method of constructing that Green's function in the field of finite radius nuclei is then presented.
Instability of coupled geostrophic density fronts and its nonlinear evolution
Scherer, Emilie; Zeitlin, Vladimir
Instability of coupled density fronts, and its fully nonlinear evolution are studied within the idealized reduced-gravity rotating shallow-water model. By using the collocation method, we benchmark the classical stability results on zero potential vorticity (PV) fronts and generalize them to non-zero PV fronts. In both cases, we find a series of instability zones intertwined with the stability regions along the along-front wavenumber axis, the most unstable modes being long wave. We then study the nonlinear evolution of the unstable modes with the help of a high-resolution well-balanced finite-volume numerical scheme by initializing it with the unstable modes found from the linear stability analysis. The most unstable long-wave mode evolves as follows: after a couple of inertial periods, the coupled fronts are pinched at some location and a series of weakly connected co-rotating elliptic anticyclonic vortices is formed, thus totally changing the character of the flow. The characteristics of these vortices are close to known rodon lens solutions. The shorter-wave unstable modes from the next instability zones are strongly concentrated in the frontal regions, have sharp gradients, and are saturated owing to dissipation without qualitatively changing the flow pattern.
Linear and Nonlinear Evolution of Disturbances in Supersonic Streamwise Vortices
Khorrami, Mehdi R.; Chang, Chau-Lyan; Wie, Yong-Sun
1997-11-01
Effective control of compressible streamwise vortices play a significant role in both external and internal aerodynamics. In this study, evolution of disturbances in a supersonic vortex is studied by using quasi-cylindrical linear stability analysis and parabolized stability equations (PSE)footnote M. R. Malik and C.-L. Chang, AIAA Paper 97-0758. formulation. Appropriate mean-flow profilesfootnote M. K. Smart, I. M. Kalkhoran, and J. Bentson, AIAA Paper 94-2576. suitable for stability analysis were identified and modeled successfully. Using linear stability analysis, the stability characteristics of axisymmetric vortices were mapped thoroughly. The results indicate that viscosity has very little effect while increasing Mach number significantly stabilizes the disturbance. Linear PSE analysis shows that the effect of streamwise mean flow variation is small for the case considered here. Nonlinear evolution of helical modes is also studied by using PSE. The growth of the disturbances results in the appearance of coherent large scale motion and significant mean flow distortion in the axial velocity and temperature fields. In the end, nonlinear effects tend to stabilize the vortex.
High intensity polarization entangled source with a 2D nonlinear photonic crystal
DEFF Research Database (Denmark)
Wang, Qin
2009-01-01
We gave a proposal on how to use a piece of two-dimension (2D) nonlinear photonic crystal to generate a polarization entangled source. It provides not only has a high stability, but also a high entangled quality and a high intensity. Moreover, our scheme involves only practical experimental...
Cascaded Optical Buffer Based on Nonlinear Polarization Rotation in Semiconductor Optical Amplifiers
Institute of Scientific and Technical Information of China (English)
CHENG Mu; WU Chong-Qing; LIU Hua
2008-01-01
A cascaded buffer based on nonlinear polarization rotation in semiconductor optical amplifiers is proposed, which is suitable for fast reconfiguration of buffering time at picoseconds. With the proposed buffer, sixty different buffer times are demonstrated at 2.5 Gb/s.
Yan, Xiao-Qing; Liu, Zhi-Bo; Zhang, Xiao-Liang; Zang, Wei-Ping; Tian, Jian-Guo
2010-05-10
The normal elliptically polarized light Z-scan method is modified by adding a quarter-wave plate and an analyzer before the detector. The normalized transmittance formulas of modified elliptically polarized light Z-scan are obtained for media with negligible nonlinear absorption. Compared with normal linearly and elliptically polarized light Z-scan methods, an increase of sensitivity by a factor of larger than 4 is achieved for the real part of third-order susceptibility component's measurements using this modified elliptically polarized light Z-scan method. The analytical results are verified by studying the real part of independent susceptibility components of CS(2) liquid. Moreover, the potential application for cross-polarized wave generation is discussed. (c) 2010 Optical Society of America.
Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers.
Shen, Xuling; Li, Wenxue; Yan, Ming; Zeng, Heping
2012-08-15
We demonstrate a convenient approach to precisely tune the polarization state of a nonlinear-polarization-rotation mode-locked Yb-doped fiber laser by using an electronic polarization controller. It is shown to benefit self-starting of mode-locking states, with precise tuning of the spectral profile, pulse width, and carrier-envelope offset frequency. The pulse width changed linearly by 0.78 ps in the time domain, and the carrier-envelope offset frequency shifted ~77.5 MHz in the frequency domain with a slight change of the driving voltage of 30.7 mV applied on the controller, corresponding to a polarization rotation of 0.0135π. This facilitated precise and automatic regeneration of a particular mode-locking state by setting an accurate voltage at the polarization controller with a programmed microprocessor control unit.
Doyuran, Adnan; Joshi, Chandrashekhar; Lim, Jae; Rosenzweig, James E; Tochitsky, Sergei Ya; Travish, Gil; Williams, Oliver
2005-01-01
An Inverse Compton Scattering (ICS) experiment investigating the polarized harmonic production in the nonlinear regime has begun which will utilize the existing terawatt CO2 laser system and 15 MeV photoinjector in the Neptune Laboratory at UCLA. A major motivation for a source of high brightness polarized x-rays is the production of polarized positrons for use in future linear collider experiments. Analytical calculations have been performed to predict the angular and frequency spectrums for various polarizations and different scattering angles. Currently, the experiment is running and we report the set-up and initial results. The advantages and limitations of using a high laser vector potential, ao, in an ICS-based polarized positron source are expected to be revealed with further measurement of the harmonic spectrum and angular characteristics.
Ivanov, D Y; Serbo, V G
2003-01-01
We consider emission of a photon by an electron in the field of a strong laser wave. Polarization effects in this process are important for a number of physical problems. We discuss a probability of this process for circularly polarized laser photons and for arbitrary polarization of all other particles. We obtain the complete set of functions which describe such a probability in a compact covariant form. Besides, we discuss an application of the obtained formulas to the problem of electron -> photon conversion at photon-photon and photon-electron colliders.
A Direct Algebraic Method in Finding Particular Solutions to Some Nonlinear Evolution Equations
Institute of Scientific and Technical Information of China (English)
LIUChun-Ping; CHENJian-Kang; CAIFan
2004-01-01
Firstly, a direct algebraic method and a routine way in finding traveling wave solutions to nonlinear evolution equations are explained. And then some new exact solutions for some evolution equations are obtained by using the method.
Multiple scales analysis and travelling wave solutions for KdV type nonlinear evolution equations
Ayhan, Burcu; Ozer, M. Naci; Bekir, Ahmet
2017-01-01
Nonlinear evolution equations are the mathematical models of problems that arise in many field of science. These equations has become an important field of study in applied mathematics in recent years. We apply exact solution methods and multiple scale method which is known as a perturbation method to nonlinear evolution equations. Using exact solution methods we get travelling wave solutions expressed by hyperbolic functions, trigonometric functions and rational functions. Also we derive Nonlinear Schrödinger (NLS) type equations from Korteweg-de Vries (KdV) type nonlinear evolution equations and we get approximate solutions for KdV type equations using multiple scale method. The proposed methods are direct and effective and can be used for many nonlinear evolution equations. It is shown that these methods provide a powerful mathematical tool to solve nonlinear evolution equations in mathematical physics.
Large amplitude nonlinear structures in the nighttime polar mesosphere
Maharaj, Shimul K.; Bharuthram, Ramashwar; Singh Lakhina, Gurbax; Muralikrishna, Polinaya; Singh, Satyavir
2016-07-01
The existence of large amplitude potential structures will be investigated for a plasma composed of negative ions, positive ions, electrons and an additional fourth component of charged (usually positive) nano-sized ions in an attempt to model the plasma composition in the nighttime polar mesosphere (˜80 - 90 km altitude) [1]. The fourth ionic component becomes positively charged if there is a high enough concentration of negative ions which are sufficiently heavy. The positive charge on the fourth component can be explained by the capture of currents, and is not a result of photo-emission and secondary electron emission processes. Consequently, if the negative ions are much lighter, then the fourth ion component will become negatively charged. The charged ion species will be treated as inertial species which are cold or adiabatic, whilst the electrons will be considered to be Boltzmann-distributed (isothermal). Taking into consideration not only the dynamics of the heaviest species (dust-acoustic) but also the lighter ions (ion-acoustic), the theoretical study will use the Sagdeev pseudo-potential formalism to explore the existence of arbitrary amplitude solitons and double layer potential structures. [1] Observations of positively charged nanoparticles in the nighttime polar mesosphere, M. Rapp, J. Hedin, I. Strelnikova, M. Friederich, J. Gumbel, and F.˜J. Lübken, Geophys. Res. Letters. 32, L23821, doi:10.1029/2005GL024676 (2005).
S-polarized nonlinear surface and guided waves in an asymmetric layered structure
Energy Technology Data Exchange (ETDEWEB)
Mihalache, D.; Totia, H.
1983-08-01
An exact solution of Maxwell's equations is found, corresponding to s-polarized nonlinear surface and guided waves in an asymmetric layered structure. The system under consideration consists of a film with dielectric constant epsilon/sub 2/ bounded at the negative-z side by a linear medium with dielectric constant epsilon/sub 1/ and at the positive -z side by a nonlinear substrate characterized by the diagonal dielectric tensor epsilon/sub 11/ = epsilon/sub 22/ = epsilon/sub 33/ = epsilon/sub 0/ + ..cap alpha.. absolute value of E-vector/sup 2/, ..cap alpha.. > 0 (a selffocussing medium). We predict bistable states of s-polarized nonlinear surface and guided waves provided that the power flow in the wave is the control parameter.
Castro-Lopez, Marta; Brinks, Daan; Sapienza, Riccardo; van Hulst, Niek F
2011-11-09
Resonant optical antennas are ideal for nanoscale nonlinear optical interactions due to their inherent strong local field enhancement. Indeed second- and third-order nonlinear response of gold nanoparticles has been reported. Here we compare the on- and off-resonance properties of aluminum, silver, and gold nanoantennas, by measuring two-photon photoluminescence. Remarkably, aluminum shows 2 orders of magnitude higher luminescence efficiency than silver or gold. Moreover, in striking contrast to gold, the aluminum emission largely preserves the linear incident polarization. Finally, we show the systematic resonance control of two-photon excitation and luminescence polarization by tuning the antenna width and length independently. Our findings point to aluminum as a promising metal for nonlinear plasmonics.
Nonlinear polarization of ionic liquids: theory, simulations, experiments
Kornyshev, Alexei
2010-03-01
Room temperature ionic liquids (RTILs) composed of large, often asymmetric, organic cations and simple or complex inorganic or organic anions do not freeze at ambient temperatures. Their rediscovery some 15 years ago is widely accepted as a ``green revolution'' in chemistry, offering an unlimited number of ``designer'' solvents for chemical and photochemical reactions, homogeneous catalysis, lubrication, and solvent-free electrolytes for energy generation and storage. As electrolytes they are non-volatile, some can sustain without decomposition up to 6 times higher voltages than aqueous electrolytes, and many are environmentally friendly. The studies of RTILs and their applications have reached a critical stage. So many of them can be synthesized - about a thousand are known already - their mixtures can further provide ``unlimited'' number of combinations! Thus, establishing some general laws that could direct the best choice of a RTIL for a given application became crucial; guidance is expected from theory and modelling. But for a physical theory, RTILs comprise a peculiar and complex class of media, the description of which lies at the frontier line of condensed matter theoretical physics: dense room temperature ionic plasmas with ``super-strong'' Coulomb correlations, which behave like glasses at short time-scale, but like viscous liquids at long-time scale. This talk will introduce RTILs to physicists and overview the current understanding of the nonlinear response of RTILs to electric field. It will focus on the theory, simulations, and experimental characterisation of the structure and nonlinear capacitance of the electrical double layer at a charged electrode. It will also discuss pros and contras of supercapacitor applications of RTILs.
Explicit Traveling Wave Solutions to Nonlinear Evolution Equations
Institute of Scientific and Technical Information of China (English)
Linghai ZHANG
2011-01-01
First of all,some technical tools are developed. Then the author studies explicit traveling wave solutions to nonlinear dispersive wave equations,nonlinear dissipative dispersive wave equations,nonlinear convection equations,nonlinear reaction diffusion equations and nonlinear hyperbolic equations,respectively.
Misawa, Tetsuro; Yokoyama, Takehito; Murakami, Shuichi
2012-02-01
Recent photoelectron spectroscopy experiments have revealed the presence of the Dirac cone on the surface of the topological insulator and its spin-splitting due to the spin-orbit interaction. In general, on spin-orbit coupled systems, electric fields induce spin polarizations as linear and nonlinear responses. Here we investigate the inverse Faraday effect on the surface of the topological insulator. The inverse Faraday effect is a non-linear optical effect where a circularly polarized light induces a dc spin polarization. We employ the Keldysh Green's function method to calculate the induced spin polarization and discuss its frequency dependence. In particular, in the low frequency limit, our analytical result gives the spin polarization proportional to the frequency and the square of the lifetime. As for the finite frequency regime, we employ numerical methods to discuss the resonance due to interband transitions. We also discuss the photogalvanic effect, where an illumination of a circular polarized light generates the dc charge current. Lastly, we evaluate those quantities with realistic parameters.[4pt] [1] T. Misawa, T. Yokoyama, S. Murakami, Phys. Rev. B84, 165407 (2011).
Multi-soliton rational solutions for some nonlinear evolution equations
Directory of Open Access Journals (Sweden)
Osman Mohamed S.
2016-01-01
Full Text Available The Korteweg-de Vries equation (KdV and the (2+ 1-dimensional Nizhnik-Novikov-Veselov system (NNV are presented. Multi-soliton rational solutions of these equations are obtained via the generalized unified method. The analysis emphasizes the power of this method and its capability of handling completely (or partially integrable equations. Compared with Hirota’s method and the inverse scattering method, the proposed method gives more general exact multi-wave solutions without much additional effort. The results show that, by virtue of symbolic computation, the generalized unified method may provide us with a straightforward and effective mathematical tool for seeking multi-soliton rational solutions for solving many nonlinear evolution equations arising in different branches of sciences.
Nonlinear Evolution of a Baroclinic Wave and Imbalanced Dissipation
Nadiga, Balasubramanya T
2015-01-01
We consider the nonlinear evolution of an unstable baroclinic wave in a regime of rotating stratified flow that is of relevance to interior circulation in the oceans and in the atmosphere---a regime characterized by small large-scale Rossby and Froude numbers, a small vertical to horizontal aspect ratio, and no bounding horizontal surfaces. Using high-resolution simulations of the non-hydrostatic Boussinesq equations and companion integrations of the balanced quasi-geostrophic equations, we present evidence for a local route to dissipation of balanced energy directly through interior turbulent cascades. Analysis of simulations presented in this study suggest that a developing baroclinic instability can lead to secondary instabilities that can cascade a small fraction of the energy forward to unbalanced scales. Mesoscale shear and strain resulting from the hydrostatic geostrophic baroclinic instability drive frontogenesis. The fronts in turn support ageostrophic secondary circulation and instabilities. These t...
Nonlinear evolution of drift instabilities in the presence of collisions
Energy Technology Data Exchange (ETDEWEB)
Federici, J.F.; Lee, W.W.; Tang, W.M.
1986-07-01
Nonlinear evolution of drift instabilities in the presence of electron-ion collisions in a shear-free slab has been studied by using gyrokinetic particle simulation techniques as well as by solving, both numerically and analytically, model mode-coupling equations. The purpose of the investigation is to determine the mechanisms responsible for the nonlinear saturation of the instability and for the ensuing steady-state transport. Such an insight is very valuable for understanding drift wave problems in more complicated geometries. The results indicate that the electron E x B convection is the dominant mechanism for saturation. It is also found that the saturation amplitude and the associated quasilinear diffusion are greatly enhanced over their collisionless values as a result of weak collisions. In the highly collisional (fluid) limit, there is an upper bound for saturation with ephi/T/sub e/ approx. = (..omega../sub l//..cap omega../sub i/)/(k/sub perpendicular/rho/sub s/)/sup 2/. The associated quasilinear diffusion, which increases with collisionality, takes the form of D/sub ql/ approx. = ..gamma../sub l//k/sub perpendicular//sup 2/, where ..omega../sub l/ and ..gamma../sub l/ are the linear frequency and growth rate, respectively. In the steady state, the diffusion process becomes stochastic in nature. The relevant mechanisms here are related to the velocity-space nonlinearities and background fluctuations. The magnitude of the diffusion at this stage can be comparable to that of quasilinear diffusion in the presence of collisions, and it remains finite even in the collisionless limit.
Nonlinear tumor evolution from dysplastic nodules to hepatocellular carcinoma.
Joung, Je-Gun; Ha, Sang Yun; Bae, Joon Seol; Nam, Jae-Yong; Gwak, Geum-Youn; Lee, Hae-Ock; Son, Dae-Soon; Park, Cheol-Keun; Park, Woong-Yang
2017-01-10
Dysplastic nodules are premalignant neoplastic nodules found in explanted livers with cirrhosis. Genetic signatures of premalignant dysplastic nodules (DNs) with concurrent hepatocellular carcinoma (HCC) may provide an insight in the molecular evolution of hepatocellular carcinogenesis. We analyzed four patients with multifocal nodular lesions and cirrhotic background by whole-exome sequencing (WES). The genomic profiles of somatic single nucleotide variations (SNV) and copy number variations (CNV) in DNs were compared to those of HCCs. The number and variant allele frequency of somatic SNVs of DNs and HCCs in each patient was identical along the progression of pathological grade. The somatic SNVs in DNs showed little conservation in HCC. Additionally, CNVs showed no conservation. Phylogenetic analysis based on SNVs and copy number profiles indicated a nonlinear segregation pattern, implying independent development of DNs and HCC in each patient. Thus, somatic mutations in DNs may be developed separately from other malignant nodules in the same liver, suggesting a nonlinear model for hepatocarcinogenesis from DNs to HCC.
Institute of Scientific and Technical Information of China (English)
唐登斌; 夏浩
2002-01-01
The nonlinear evolution problem in nonparallel boundary layer stability was studied. The relative parabolized stability equations of nonlinear nonparallel boundary layer were derived. The developed numerical method, which is very effective, was used to study the nonlinear evolution of T-S disturbance wave at finite amplitudes. Solving nonlinear equations of different modes by using predictor-corrector and iterative approach, which is uncoupled between modes, improving computational accuracy by using high order compact differential scheme, satisfying normalization condition, determining tables of nonlinear terms at different modes, and implementing stably the spatial marching, were included in this method. With different initial amplitudes, the nonlinear evolution of T-S wave was studied. The nonlinear nonparallel results of examples compare with data of direct numerical simulations (DNS) using full Navier- Stokes equations.
Evolution of Nonlinear Internal Waves in China Seas
Liu, Antony K.; Hsu, Ming-K.; Liang, Nai K.
1997-01-01
Synthetic Aperture Radar (SAR) images from ERS-I have been used to study the characteristics of internal waves of Taiwan in the East China Sea, and east of Hainan Island in the South China Sea. Rank-ordered packets of internal solitons propagating shoreward from the edge of the continental shelf were observed in the SAR images. Based on the assumption of a semidiurnal tidal origin, the wave speed can be estimated and is consistent with the internal wave theory. By using the SAR images and hydrographic data, internal waves of elevation have been identified in shallow water due to a thicker mixed layer as compared with the bottom layer on the continental shelf. The generation mechanism includes the influences of the tide and the Kuroshio intrusion across the continental shelf for the formations of elevation internal waves. The effects of water depth on the evolution of solitons and wave packets are modeled by nonlinear Kortweg-deVries (KdV) type equation and linked to satellite image observations. The numerical calculations of internal wave evolution on the continental shelf have been performed and compared with the SAR observations. For a case of depression waves in deep water, the solitons first disintegrate into dispersive wave trains and then evolve to a packet of elevation waves in the shallow water area after they pass through a turning point of approximately equal layer depths has been observed in the SAR image and simulated by numerical model.
Zhu, Chengjie; Huang, Guoxiang
2011-11-07
We study linear and nonlinear propagations of probe and signal pulses in a multiple quantum-well structure with a four-level, double Λ-type configuration. We show that slow, mutually matched group velocities and giant Kerr nonlinearity of the probe and the signal pulses may be achieved with nearly vanishing optical absorption. Based on these properties we demonstrate that two-qubit quantum polarization phase gates can be constructed and highly entangled photon pairs may be produced. In addition, we show that coupled slow-light soliton pairs with very low generation power can be realized in the system.
Energy Technology Data Exchange (ETDEWEB)
Zhang Xiaofei [School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Xu Qing, E-mail: xuqing@whut.edu.c [School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Liu Hanxing; Chen Wen [School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Chen Min; Kim, Bok-Hee [Faculty of Advanced Materials Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)
2011-04-01
Nonlinear dielectric properties of Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} ceramics prepared by citrate method were investigated under bias electric field with respect to field history. X-ray diffraction analysis and temperature dependence of the dielectric constant ({epsilon}{sub r}) confirmed a macroscopically paraelectric state for the specimen at room temperature. A slim polarization versus electric field (P-E) hysteresis loop of the specimen at room temperature indicated the existence of polar nano-regions (PNRs) superimposed on the paraelectric background. The nonlinear dielectric properties in continuous cycles of bias field sweep displayed a strong sensitivity to the field history. This phenomenon was qualitatively explained in terms of an irreversible polarization evolution of the PNRs under the bias fields. A considerable decline of the tunability with the cycle number suggests an appreciable contribution of the PNRs to the dielectric nonlinearity. The polarization and size of the PNRs were determined by fitting the dielectric constants to a multipolarization mechanism model.
Hasan, Md. Rabiul; Anower, Md. Shamim; Hasan, Md. Imran
2016-05-01
A simple hexagonal photonic crystal fiber is proposed to simultaneously achieve ultrahigh birefringence, large nonlinear coefficient, and two zero dispersion wavelengths (ZDWs). The finite element method with circular perfectly matched layer boundary condition is used to simulate the designed structure. Simulation results show that it is possible to achieve two closely lying ZDWs of 1.08 and 1.29 μm for x-polarization with 0.88 and 1.20 μm for y-polarization modes, respectively. In addition, an ultrahigh birefringence of 3.15×10-2 and a high nonlinear coefficient of 58 W-1 km-1 are also obtained at the excitation wavelength of 1.55 μm. The proposed fiber can have important applications in supercontinuum generation, parametric amplification, four-wave mixing, and optical sensors design.
Derkowska-Zielinska, Beata
2017-02-01
The influence of solvent polarity on nonlinear optical properties of tris-(8-hydroxyquinoline)-aluminum (Alqsub>3sub>) was investigated by the degenerate four-wave mixing method at the 532 nm. It was obtained that the effective values of the third-order nonlinear optical susceptibility (χeff⟨3⟩) and the second-order hyperpolarizability (γsub>effsub>) of Alqsub>3sub> depend on the solvent polarity. Additionally, it was found that Alqsub>3sub> dissolved in dimethyl sulfoxide has the highest values of χeff⟨3⟩ and γsub>effsub>. Furthermore, two Stegeman's figures of merit were also calculated. The obtained results suggest that Alqsub>3sub> is also promising material for application in all-optical signal processing devices.
Muñoz-Jaramillo, Andrés; Zhang, Jie; DeLuca, Edward E; 10.1088/0004-637X/753/2/146
2013-01-01
Although the Sun's polar magnetic fields are thought to provide important clues for understanding the 11-year sunspot cycle, including the observed variations of its amplitude and period, the current database of high-quality polar-field measurements spans relatively few sunspot cycles. In this paper we address this deficiency by consolidating Mount Wilson Observatory polar faculae data from four data reduction campaigns, validating it through a comparison with facular data counted automatically from MDI intensitygrams, and calibrating it against polar field measurements taken by the Wilcox Solar Observatory and average polar field and total polar flux calculated using MDI line-of-sight magnetograms. Our results show that the consolidated polar facular measurements are in excellent agreement with both polar field and polar flux estimates, making them an ideal proxy to study the evolution of the polar magnetic field. Additionally, we combine this database with sunspot area measurements to study the role of the ...
Polarization effects and nonlinear switching in fiber figure-eight lasers.
Stentz, A J; Boyd, R W
1994-09-15
We have developed a novel experimental procedure that allows us to quantify how polarization effects determine the passive mode locking of an optical fiber figure-eight laser. Based on our measurements, we have performed numerical simulations demonstrating that the nonlinear switching within this laser operates in a manner contrary to that described by the conventional theory of passive mode locking with a fast saturable absorber.
Attosecond nonlinear polarization and light-matter energy transfer in solids.
Sommer, A; Bothschafter, E M; Sato, S A; Jakubeit, C; Latka, T; Razskazovskaya, O; Fattahi, H; Jobst, M; Schweinberger, W; Shirvanyan, V; Yakovlev, V S; Kienberger, R; Yabana, K; Karpowicz, N; Schultze, M; Krausz, F
2016-05-23
Electric-field-induced charge separation (polarization) is the most fundamental manifestation of the interaction of light with matter and a phenomenon of great technological relevance. Nonlinear optical polarization produces coherent radiation in spectral ranges inaccessible by lasers and constitutes the key to ultimate-speed signal manipulation. Terahertz techniques have provided experimental access to this important observable up to frequencies of several terahertz. Here we demonstrate that attosecond metrology extends the resolution to petahertz frequencies of visible light. Attosecond polarization spectroscopy allows measurement of the response of the electronic system of silica to strong (more than one volt per ångström) few-cycle optical (about 750 nanometres) fields. Our proof-of-concept study provides time-resolved insight into the attosecond nonlinear polarization and the light-matter energy transfer dynamics behind the optical Kerr effect and multi-photon absorption. Timing the nonlinear polarization relative to the driving laser electric field with sub-30-attosecond accuracy yields direct quantitative access to both the reversible and irreversible energy exchange between visible-infrared light and electrons. Quantitative determination of dissipation within a signal manipulation cycle of only a few femtoseconds duration (by measurement and ab initio calculation) reveals the feasibility of dielectric optical switching at clock rates above 100 terahertz. The observed sub-femtosecond rise of energy transfer from the field to the material (for a peak electric field strength exceeding 2.5 volts per ångström) in turn indicates the viability of petahertz-bandwidth metrology with a solid-state device.
Attosecond nonlinear polarization and light-matter energy transfer in solids
Sommer, A.; Bothschafter, E. M.; Sato, S. A.; Jakubeit, C.; Latka, T.; Razskazovskaya, O.; Fattahi, H.; Jobst, M.; Schweinberger, W.; Shirvanyan, V.; Yakovlev, V. S.; Kienberger, R.; Yabana, K.; Karpowicz, N.; Schultze, M.; Krausz, F.
2016-06-01
Electric-field-induced charge separation (polarization) is the most fundamental manifestation of the interaction of light with matter and a phenomenon of great technological relevance. Nonlinear optical polarization produces coherent radiation in spectral ranges inaccessible by lasers and constitutes the key to ultimate-speed signal manipulation. Terahertz techniques have provided experimental access to this important observable up to frequencies of several terahertz. Here we demonstrate that attosecond metrology extends the resolution to petahertz frequencies of visible light. Attosecond polarization spectroscopy allows measurement of the response of the electronic system of silica to strong (more than one volt per ångström) few-cycle optical (about 750 nanometres) fields. Our proof-of-concept study provides time-resolved insight into the attosecond nonlinear polarization and the light-matter energy transfer dynamics behind the optical Kerr effect and multi-photon absorption. Timing the nonlinear polarization relative to the driving laser electric field with sub-30-attosecond accuracy yields direct quantitative access to both the reversible and irreversible energy exchange between visible-infrared light and electrons. Quantitative determination of dissipation within a signal manipulation cycle of only a few femtoseconds duration (by measurement and ab initio calculation) reveals the feasibility of dielectric optical switching at clock rates above 100 terahertz. The observed sub-femtosecond rise of energy transfer from the field to the material (for a peak electric field strength exceeding 2.5 volts per ångström) in turn indicates the viability of petahertz-bandwidth metrology with a solid-state device.
Chen, Hong; Huang, Xuanqi; Fu, Houqiang; Lu, Zhijian; Zhang, Xiaodong; Montes, Jossue A.; Zhao, Yuji
2017-05-01
We report the basic nonlinear optical properties, namely, two-photon absorption coefficient ( β ), three-photon absorption coefficient ( γ ), and Kerr nonlinear refractive index ( n kerr), of GaN crystals in polar c-plane, nonpolar m-plane, and semipolar ( 20 21 ¯ ) plane orientations. A typical Z-scan technique was used for the measurement with a femtosecond Ti:S laser from wavelengths of 724 nm to 840 nm. For the two-photon absorption coefficient ( β ), similar values were obtained for polar, nonpolar, and semipolar samples, which are characterized to be ˜0.90 cm/GW at 724 nm and ˜0.65 cm/GW at 730 nm for all the three samples. For the Kerr nonlinear refractive index ( n kerr), self-focusing features were observed in this work, which is different from previous reports where self-defocusing features were observed on GaN in the visible and near-UV spectral regions. At 724 nm, n kerr was measured to be ˜2.5 0 × 10 - 14 cm 2 / W for all three samples. Three-photon absorption coefficients ( γ ) were also determined, which were found to be consistent with previous reports. This study provides valuable information on the basic nonlinear optical properties of III-nitride semiconductors, which are vital for a wide range of applications such as integrated photonics and quantum photonics.
Constructive role of sensors nonlinearities in the acquisition of partially polarized speckle images
Energy Technology Data Exchange (ETDEWEB)
Delahaies, Agnes; Rousseau, David; Chapeau-Blondeau, Francois [Laboratoire d' Ingenierie des Systemes Automatises (LISA), Universite d' Angers, 62 avenue Notre Dame du Lac, 49000 Angers (France); Gindre, Denis, E-mail: david.rousseau@univ-angers.f [Laboratoire des Proprietes Optiques des Materiaux et Applications (POMA), Universite d' Angers, 2 boulevard Lavoisier, 49000 Angers (France)
2010-02-01
We study the impact of the level of the speckle noise on data acquisition in a partially polarized coherent imaging system with the presence of a nonlinearity in the imaging sensor characteristic. In perfectly linear acquisition conditions, due to the essentially multiplicative action of the speckle, the image contrast is unchanged as the speckle noise level increases, and so it has no impact on the quality of the acquired images. On the contrary, in nonlinear conditions the acquisition is affected by the speckle noise level. However, this effect of the speckle is not always detrimental. We show that, in definite nonlinear conditions, there is usually an optimal level of the speckle noise that leads to a maximum quality of the acquired images. We theoretically analyze such nonlinear regimes with partially polarized speckled images. We specifically exhibit the existence of an optimal speckle noise level in the interesting case of images realized only by a depolarization contrast. Illustrations are given with a simple 1-bit hard limiter and binary images. Then, we propose and discuss as perspectives an experimental optical setup to confront theory and experiment.
Gamma ray vortices from nonlinear inverse Compton scattering of circularly polarized light
Taira, Yoshitaka; Katoh, Masahiro
2016-01-01
Inverse Compton scattering (ICS) is an elemental radiation process that produces high-energy photons both in nature and in the laboratory. Non-linear ICS is a process in which multiple photons are converted to a single high-energy photon. Here, we theoretically show that the photon produced by non-linear ICS of circularly polarized photons is a vortex, which means that it possesses a helical wave front and carries orbital angular momentum. Our work explains a recent experimental result regarding non-linear Compton scattering that clearly shows an annular intensity distribution as a remarkable feature of a vortex beam. Our work implies that gamma ray vortices should be produced in various situations in astrophysics in which high-energy electrons and intense circularly polarized light fields coexist. They should play a critical role in stellar nucleosynthesis. Non-linear ICS is the most promising radiation process for realizing a gamma ray vortex source based on currently available laser and accelerator technol...
Nonlinear evolution of large-scale structure in the universe
Energy Technology Data Exchange (ETDEWEB)
Frenk, C.S.; White, S.D.M.; Davis, M.
1983-08-15
Using N-body simulations we study the nonlinear development of primordial density perturbation in an Einstein--de Sitter universe. We compare the evolution of an initial distribution without small-scale density fluctuations to evolution from a random Poisson distribution. These initial conditions mimic the assumptions of the adiabatic and isothermal theories of galaxy formation. The large-scale structures which form in the two cases are markedly dissimilar. In particular, the correlation function xi(r) and the visual appearance of our adiabatic (or ''pancake'') models match better the observed distribution of galaxies. This distribution is characterized by large-scale filamentary structure. Because the pancake models do not evolve in a self-similar fashion, the slope of xi(r) steepens with time; as a result there is a unique epoch at which these models fit the galaxy observations. We find the ratio of cutoff length to correlation length at this time to be lambda/sub min//r/sub 0/ = 5.1; its expected value in a neutrino dominated universe is 4(..cap omega..h)/sup -1/ (H/sub 0/ = 100h km s/sup -1/ Mpc/sup -1/). At early epochs these models predict a negligible amplitude for xi(r) and could explain the lack of measurable clustering in the Ly..cap alpha.. absorption lines of high-redshift quasars. However, large-scale structure in our models collapses after z = 2. If this collapse precedes galaxy formation as in the usual pancake theory, galaxies formed uncomfortably recently. The extent of this problem may depend on the cosmological model used; the present series of experiments should be extended in the future to include models with ..cap omega..<1.
Solitons and periodic solutions to a couple of fractional nonlinear evolution equations
Indian Academy of Sciences (India)
M Mirzazadeh; M Eslami; Anjan Biswas
2014-03-01
This paper studies a couple of fractional nonlinear evolution equations using first integral method. These evolution equations are foam drainage equation and Klein–Gordon equation (KGE), the latter of which is considered in (2 + 1) dimensions. For the fractional evolution, the Jumarie’s modified Riemann–Liouville derivative is considered. Exact solutions to these equations are obtained.
Two Kinds of Square-Conservative Integrators for Nonlinear Evolution Equations
Institute of Scientific and Technical Information of China (English)
CHEN Jing-Bo; LIU Hong
2008-01-01
@@ Based on the Lie-group and Gauss-Legendre methods, two kinds of square-conservative integrators for squareconservative nonlinear evolution equations are presented. Lie-group based square-conservative integrators are linearly implicit, while Gauss-Legendre based square-conservative integrators are nonlinearly implicit and iterarive schemes are needed to solve the corresponding integrators. These two kinds of integrators provide natural candidates for simulating square-conservative nonlinear evolution equations in the sense that these integrators not only preserve the square-conservative properties of the continuous equations but also are nonlinearly stable.Numerical experiments are performed to test the presented integrators.
Non-linear evolution of the cosmic neutrino background
Villaescusa-Navarro, Francisco; Peña-Garay, Carlos; Viel, Matteo
2012-01-01
We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations. Our set of simulations explore the properties of neutrinos in a reference $\\Lambda$CDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass $10^{11}-10^{15}$ $h^{-1}$M$_{\\odot}$, over a redshift range $z=0-2$. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified ...
Institute of Scientific and Technical Information of China (English)
Su Shi-Lei; Wang Yuan; Guo Qi; Wang Hong-Fu; Zhang Shou
2012-01-01
We propose a protocol to generate a four-photon polarization-entangled cluster state with cross-Kerr nonlinearity by using the interference of polarized photons. The protocol is based on optical elements,cross-Kerr nonlinearity,and homodyne measurement,therefore it is feasible with current experimental technology.The success probability of our protocol is optimal,this property makes our protocol more efficient than others in the applications of quantum communication.
Energy Technology Data Exchange (ETDEWEB)
Zhang, H. [Univ. of Texas, Austin, TX (United States). Dept. of Mathematics
1994-10-01
In this paper the author considers a nonlinear evolution problem denoted in the paper as P. Problem (P) arises in the study of thermal evaporation of atoms and molecules from locally heated surface regions (spikes) invoked as one of several mechanisms of ion-bombardment-induced particle emission (sputtering). Then in the case of particle-induced evaporation, the Stefan-Boltzman law of heat loss by radiation is replaced by some activation law describing the loss of heat by evaporation. The equation in P is the so-called degenerate diffusion problem, which has been extensively studied in recent years. However, when dealing with the nonlinear flux boundary condition, {beta}({center_dot}) is usually assumed to be monotene. The purpose of this paper is to provide a general theory for problem P under a different assumption on {beta}({center_dot}), i.e., Lipschitz continuity instead of monotonicity. The main idea of the proof used here is to choose an appropriate test function from the corresponding linearized dual space of the solution. The similar idea has been used by many authors, e.g., Aronson, Crandall and Peletier, Bertsch and Hilhorst and Friedman. The author follows the proof of Bertsch and Hilhorst. The paper is organized as follows. They begin by stating the precise assumptions on the functions involved in P and by defining a weak solution. Then, in Section 2 they prove the existence of the solution by the method of parabolic regularization. The uniqueness is proved in Section 3. Finally, they study the large time behavior of the solution in Section 4.
Non-linear evolution of the cosmic neutrino background
Energy Technology Data Exchange (ETDEWEB)
Villaescusa-Navarro, Francisco; Viel, Matteo [INAF/Osservatorio Astronomico di Trieste, Via Tiepolo 11, 34143, Trieste (Italy); Bird, Simeon [Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ, 08540 (United States); Peña-Garay, Carlos, E-mail: villaescusa@oats.inaf.it, E-mail: spb@ias.edu, E-mail: penya@ific.uv.es, E-mail: viel@oats.inaf.it [Instituto de Física Corpuscular, CSIC-UVEG, E-46071, Paterna, Valencia (Spain)
2013-03-01
We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations which incorporate cold dark matter (CDM) and neutrinos as independent particle species. Our set of simulations explore the properties of neutrinos in a reference ΛCDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass 10{sup 11}−10{sup 15} h{sup −1}M{sub s}un, over a redshift range z = 0−2. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula, once the neutrino contribution to the total matter is removed. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified and mass and redshift dependent deviations from the expected Fermi-Dirac distribution are in place both in the cosmological volume and inside haloes. The neutrino density profiles around virialized haloes have been carefully investigated and a simple fitting formula is provided. The neutrino profile, unlike the cold dark matter one, is found to be cored with core size and central density that depend on the neutrino mass, redshift and mass of the halo, for halos of masses larger than ∼ 10{sup 13.5}h{sup −1}M{sub s}un. For lower masses the neutrino profile is best fitted by a simple power-law relation in the range probed by the simulations. The results we obtain are numerically converged in terms of neutrino profiles at the 10% level for scales above ∼ 200 h{sup −1}kpc at z = 0, and are stable with
Energy Technology Data Exchange (ETDEWEB)
Ye, Tianyu; Mani, R. G. [Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303 (United States); Wegscheider, W. [Laboratorium für Festkörperphysik, ETH Zürich, 8093 Zürich (Switzerland)
2014-11-10
We examine the role of the microwave power in the linear polarization angle dependence of the microwave radiation induced magnetoresistance oscillations observed in the high mobility GaAs/AlGaAs two dimensional electron system. The diagonal resistance R{sub xx} was measured at the fixed magnetic fields of the photo-excited oscillatory extrema of R{sub xx} as a function of both the microwave power, P, and the linear polarization angle, θ. Color contour plots of such measurements demonstrate the evolution of the lineshape of R{sub xx} versus θ with increasing microwave power. We report that the non-linear power dependence of the amplitude of the radiation-induced magnetoresistance oscillations distorts the cosine-square relation between R{sub xx} and θ at high power.
Nonlinear Dynamic Study on Geomagnetic Polarity Reversal and Cretaceous Normal Superchron
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
It is generally acknowledged that geomagnetic polarity has reversed many times in geological history and an abnormal geologic phenomenon is the Cretaceous normal superchron. However, the causes have been unknown up to now. The nonlinear theory has been applied to analyze the phenomenon in geomagnetic polarity reversal and the Cretaceous normal superchron. The Cretaceous normal superchron implies that interaction of the Earth's core-mantle and liquid movement in the outer core may be the lowest energy state and the system of Earth magnetic field maintains a sort of temporal or spatial order structure by exchanging substance and energy in the outside continuously.During 121-83 Ma, there was no impact of a celestial body that would result in a geomagnetic polarity reversal, which may be a cause for occurrence of the Cretaceous normal superchron. The randomness of geomagnetic polarity reversal has the self-reversion characteristic of chaos and the chaos theory gives a simple and clear explanation for the dynamic cause of the geomagnetic polarity reversal.
Solitary Wave and Non-traveling Wave Solutions to Two Nonlinear Evolution Equations
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
By applying the extended homogeneous balance method, we find some new explicit solutions to two nonlinear evolution equations, which include n-resonance plane solitary wave and non-traveling wave solutions.
Generalized Dromion Structures of New (2 + 1)-Dimensional Nonlinear EvolutionEquation
Institute of Scientific and Technical Information of China (English)
ZHANG Jie-Fang
2001-01-01
We derive the generalized dromions of the new (2 + 1)-dimensional nonlinear evolution equation by the arbitrary function presented in the bilinearized linear equations. The rich soliton and dromion structures for this system are released.
SIMILARITY REDUCTIONS FOR THE NONLINEAR EVOLUTION EQUATION ARISING IN THE FERMI-PASTA-ULAM PROBLEM
Institute of Scientific and Technical Information of China (English)
谢福鼎; 闫振亚; 张鸿庆
2002-01-01
Four families of similarity reductions are obtained for the nonlinear evolution equation arising in the Fermi-Pasta-Ulam problem via using both the direct method due to Clarkson and Kruskal and the improved direct method due to Lou.
A new application of Riccati equation to some nonlinear evolution equations
Energy Technology Data Exchange (ETDEWEB)
Geng Tao [School of Science, PO Box 122, Beijing University of Posts and Telecommunications, Beijing 100876 (China)], E-mail: taogeng@yahoo.com.cn; Shan Wenrui [School of Science, PO Box 122, Beijing University of Posts and Telecommunications, Beijing 100876 (China)
2008-03-03
By means of symbolic computation, a new application of Riccati equation is presented to obtain novel exact solutions of some nonlinear evolution equations, such as nonlinear Klein-Gordon equation, generalized Pochhammer-Chree equation and nonlinear Schroedinger equation. Comparing with the existing tanh methods and the proposed modifications, we obtain the exact solutions in the form as a non-integer power polynomial of tanh (or tan) functions by using this method, and the availability of symbolic computation is demonstrated.
Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves
DEFF Research Database (Denmark)
Eldeberky, Y.; Madsen, Per A.
1999-01-01
This paper presents a new and more accurate set of deterministic evolution equations for the propagation of fully dispersive, weakly nonlinear, irregular, multidirectional waves. The equations are derived directly from the Laplace equation with leading order nonlinearity in the surface boundary c...
Nonlinear evolution of oblique waves on compressible shear layers
Goldstein, M. E.; Leib, S. J.
1989-01-01
The effects of critical-layer nonlinearity on spatially growing oblique instability waves on compressible shear layers between two parallel streams are considered. The analysis shows that mean temperature nonuniformities cause nonlinearity to occur at much smaller amplitudes than it does when the flow is isothermal. The nonlinear instability wave growth rate effects are described by an integrodifferential equation which bears some resemblance to the Landau equation, in that it involves a cubic-type nonlinearity. The numerical solutions to this equation are worked out and discussed in some detail. Inviscid solutions always end in a singularity at a finite downstream distance, but viscosity can eliminate this singularity for certain parameter ranges.
Dispersion-insensitive low-coherent pulses emerging from nonlinear polarization switching
Mao, D.; Liu, X. M.; Lu, H.; Wang, L. R.; Duan, L. N.
2011-11-01
We have experimentally investigated low-repetition nanosecond pulses delivered from an erbium-doped fiber (EDF) laser operating in ultra-large anomalous dispersion regime. The output pulses with rectangular profile and Gaussian spectrum almost keep invariable when they propagate through either normal- or anomalous-dispersion fibers. After nanosecond pulses are amplified via a two-stage EDF amplifier, they are broken up and exhibited as flatly broadened supercontinuum from 1520 to 1700 nm if amplified pulses are launched into a 10-km single-mode fiber, whereas the pulses retain the same duration with a broadband supercontinuum from 1200 to 1750 nm if they are input into a 100-m highly-nonlinear low-dispersion photonic-crystal fiber (PCF). The experimental observations demonstrate that the nanosecond pulses result from nonlinear polarization switching and can be regarded as dispersion-insensitive low-coherent pulses rather than compressible pulses.
Polarization dependence of nonlinear wave mixing of spinor polaritons in semiconductor microcavities
Lewandowski, Przemyslaw; Baudin, Emmanuel; Chan, Chris K P; Leung, P T; Luk, Samuel M H; Galopin, Elisabeth; Lemaitre, Aristide; Bloch, Jacqueline; Tignon, Jerome; Roussignol, Philippe; Kwong, N H; Binder, Rolf; Schumacher, Stefan
2015-01-01
The pseudo-spin dynamics of propagating exciton-polaritons in semiconductor microcavities are known to be strongly influenced by TE-TM splitting. As a vivid consequence, in the Rayleigh scattering regime, the TE-TM splitting gives rise to the optical spin Hall effect (OSHE). Much less is known about its role in the nonlinear optical regime in which four-wave mixing for example allows the formation of spatial patterns in the polariton density, such that hexagons and two-spot patterns are observable in the far field. Here we present a detailed analysis of spin-dependent four-wave mixing processes, by combining the (linear) physics of TE-TM splitting with spin-dependent nonlinear processes, i.e., exciton-exciton interaction and fermionic phase-space filling. Our combined theoretical and experimental study elucidates the complex physics of the four-wave mixing processes that govern polarization and orientation of off-axis modes.
Fang, Xiaohui; Wai, P K A; Lu, Chao; Chen, Jinhua
2014-02-10
A pulse-width-tunable 10 GHz flattop pulse (FTP) train is generated based on the combined action of active mode locking and nonlinear polarization rotation pulse shaping. Although the setup was previously used for other applications, the mechanism of FTP generation based on it is first analyzed and confirmed in the experiment. An FTP with pulse width tunable from 12 to 20 ps by changing polarization controllers is generated within the wavelength tuning range of 20 nm. The generated pulse reveals good stability, with the side mode suppression ratio of 65 dB, timing jitter of 92 fs, and amplitude fluctuation of 0.36%.
Right-hand polarized 4fce auroral roar emissions: 2. Nonlinear generation theory
Yoon, P. H.; LaBelle, J.; Weatherwax, A. T.
2016-08-01
Auroral roar emissions are commonly interpreted as Z (or upper hybrid) mode naturally excited by precipitating auroral electrons. Subsequent conversion to escaping radiation makes it possible for these emissions to be detected on the ground. Most emissions are detected as having left-hand (L) circular (or ordinary O) polarization, but the companion paper presents a systematic experimental study on the rare occurrence of the right-hand polarized, or equivalently, extraordinary (X) mode 4fce emission. A similar observation was reported earlier by Sato et al. (2015). The suggested emission mechanism is the nonlinear coalescence of two upper hybrid roars at 2fce. The present paper formulates a detailed theory for such an emission mechanism.
Energy Technology Data Exchange (ETDEWEB)
Alvarez-Estrada, R.F.
1979-08-01
A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly.
ANTI-PERIODIC SOLUTIONS FOR FIRST AND SECOND ORDER NONLINEAR EVOLUTION EQUATIONS IN BANACH SPACES
Institute of Scientific and Technical Information of China (English)
WEI Wei; XIANG Xiaoling
2004-01-01
In this paper, a new existence theorem of anti-periodic solutions for a class ofstrongly nonlinear evolution equations in Banach spaces is presentedThe equations con-tain nonlinear monotone operators and a nonmonotone perturbationMoreover, throughan appropriate transformation, the existence of anti-periodic solutions for a class of second-order nonlinear evolution equations is verifiedOur abstract results are illustrated by anexample from quasi-linear partial differential equations with time anti-periodic conditionsand an example from quasi-linear anti-periodic hyperbolic differential equations.
Single and multi-solitary wave solutions to a class of nonlinear evolution equations
Wang, Deng-Shan; Li, Hongbo
2008-07-01
In this paper, an effective discrimination algorithm is presented to deal with equations arising from physical problems. The aim of the algorithm is to discriminate and derive the single traveling wave solutions of a large class of nonlinear evolution equations. Many examples are given to illustrate the algorithm. At the same time, some factorization technique are presented to construct the traveling wave solutions of nonlinear evolution equations, such as Camassa-Holm equation, Kolmogorov-Petrovskii-Piskunov equation, and so on. Then a direct constructive method called multi-auxiliary equations expansion method is described to derive the multi-solitary wave solutions of nonlinear evolution equations. Finally, a class of novel multi-solitary wave solutions of the (2+1)-dimensional asymmetric version of the Nizhnik-Novikov-Veselov equation are given by three direct methods. The algorithm proposed in this paper can be steadily applied to some other nonlinear problems.
The Nonlinear Evolution of Massive Stellar Core Collapses That ``Fizzle''
Imamura, James N.; Pickett, Brian K.; Durisen, Richard H.
2003-04-01
Core collapse in a massive rotating star may pause before nuclear density is reached, if the core contains total angular momentum J>~1049 g cm2 s-1. In such aborted or ``fizzled'' collapses, temporary equilibrium objects form that, although rapidly rotating, are secularly and dynamically stable because of the high electron fraction per baryon Ye>0.3 and the high entropy per baryon Sb/k~1-2 of the core material at neutrino trapping. These fizzled collapses are called ``fizzlers.'' In the absence of prolonged infall from the surrounding star, the evolution of fizzlers is driven by deleptonization, which causes them to contract and spin up until they either become stable neutron stars or reach the dynamic instability point for barlike modes. The barlike instability case is of current interest because the bars would be sources of gravitational wave (GW) radiation. In this paper, we use linear and nonlinear techniques, including three-dimensional hydrodynamic simulations, to study the behavior of fizzlers that have deleptonized to the point of reaching dynamic bar instability. The simulations show that the GW emission produced by bar-unstable fizzlers has rms strain amplitude r15h=10-23 to 10-22 for an observer on the rotation axis, with wave frequency of roughly 60-600 Hz. Here h is the strain and r15= (r/15 Mpc) is the distance to the fizzler in units of 15 Mpc. If the bars that form by dynamic instability can maintain GW emission at this level for 100 periods or more, they may be detectable by the Laser Interferometer Gravitational-Wave Observatory at the distance of the Virgo Cluster. They would be detectable as burst sources, defined as sources that persist for ~10 cycles or less, if they occurred in the Local Group of galaxies. The long-term behavior of the bars is the crucial issue for the detection of fizzler events. The bars present at the end of our simulations are dynamically stable but will evolve on longer timescales because of a variety of effects, such as
Direct approach for solving nonlinear evolution and two-point boundary value problems
Indian Academy of Sciences (India)
Jonu Lee; Rathinasamy Sakthivel
2013-12-01
Time-delayed nonlinear evolution equations and boundary value problems have a wide range of applications in science and engineering. In this paper, we implement the differential transform method to solve the nonlinear delay differential equation and boundary value problems. Also, we present some numerical examples including time-delayed nonlinear Burgers equation to illustrate the validity and the great potential of the differential transform method. Numerical experiments demonstrate the use and computational efﬁciency of the method. This method can easily be applied to many nonlinear problems and is capable of reducing the size of computational work.
Nonpoint Symmetry and Reduction of Nonlinear Evolution and Wave Type Equations
Directory of Open Access Journals (Sweden)
Ivan Tsyfra
2015-01-01
Full Text Available We study the symmetry reduction of nonlinear partial differential equations with two independent variables. We propose new ansätze reducing nonlinear evolution equations to system of ordinary differential equations. The ansätze are constructed by using operators of nonpoint classical and conditional symmetry. Then we find solution to nonlinear heat equation which cannot be obtained in the framework of the classical Lie approach. By using operators of Lie-Bäcklund symmetries we construct the solutions of nonlinear hyperbolic equations depending on arbitrary smooth function of one variable too.
Exact Controllability for a Class of Nonlinear Evolution Control Systems
Institute of Scientific and Technical Information of China (English)
L¨u Yue; Li Yong
2015-01-01
In this paper, we study the exact controllability of the nonlinear control systems. The controllability results by using the monotone operator theory are es-tablished. No compactness assumptions are imposed in the main results.
Directory of Open Access Journals (Sweden)
Yongquan Zhou
2013-01-01
Full Text Available In view of the traditional numerical method to solve the nonlinear equations exist is sensitive to initial value and the higher accuracy of defects. This paper presents an invasive weed optimization (IWO algorithm which has population diversity with the heuristic global search of differential evolution (DE algorithm. In the iterative process, the global exploration ability of invasive weed optimization algorithm provides effective search area for differential evolution; at the same time, the heuristic search ability of differential evolution algorithm provides a reliable guide for invasive weed optimization. Based on the test of several typical nonlinear equations and a circle packing problem, the results show that the differential evolution invasive weed optimization (DEIWO algorithm has a higher accuracy and speed of convergence, which is an efficient and feasible algorithm for solving nonlinear systems of equations.
Chang, You Min; Lee, Junsu; Lee, Ju Han
2010-09-13
Proposed herein is an alternative photonic scheme for the generation of a doublet UWB pulse, which is based on the nonlinear polarization rotation of an elliptically polarized probe beam. The proposed scheme is a modified optical-fiber Kerr shutter that uses an elliptically polarized probe beam together with a linearly polarized control beam. Through theoretical analysis, it was shown that the optical-fiber-based Kerr shutter is capable of producing an ideal transfer function for the successful conversion of input Gaussian pulses into doublet pulses under special elliptical polarization states of the probe beam. An experimental verification was subsequently carried out to verify the working principle. Finally, the system performance of the generated UWB doublet pulses was assessed by propagating them over a 25-km-long standard single-mode fiber link, followed by wireless transmission. Error-free transmission was successfully achieved.
A non-linear induced polarization effect on transient electromagnetic soundings
Hallbauer-Zadorozhnaya, Valeriya Yu.; Santarato, Giovanni; Abu Zeid, Nasser; Bignardi, Samuel
2016-10-01
In a TEM survey conducted for characterizing the subsurface for geothermal purposes, a strong induced polarization effect was recorded in all collected data. Surprisingly, anomalous decay curves were obtained in part of the sites, whose shape depended on the repetition frequency of the exciting square waveform, i.e. on current pulse length. The Cole-Cole model, besides being not directly related to physical parameters of rocks, was found inappropriate to model the observed distortion, due to induced polarization, because this model is linear, i.e. it cannot fit any dependence on current pulse. This phenomenon was investigated and explained as due to the presence of membrane polarization linked to constrictivity of (fresh) water-saturated pores. An algorithm for mathematical modeling of TEM data was then developed to fit this behavior. The case history is then discussed: 1D inversion, which accommodates non-linear effects, produced models that agree quite satisfactorily with resistivity and chargeability models obtained by an electrical resistivity tomography carried out for comparison.
TRANSPORT CORRIDOR "URAL INDUSTRIAL – URAL POLAR": PROBLEMS, EVOLUTION PATHS
Directory of Open Access Journals (Sweden)
N.V. Tabakov
2007-06-01
Full Text Available The article deals with the theoretic and methodological questions regarding the formation of a transport corridor "Urals industrial – Urals Polar". Analyzed are the main factors that affect the formation of the transport infrastructure. A big effect is centered around the world-view problem, which has to do with the occupation of a human, and the effect of it on nature. Put forth is the possibility to look upon the question of the formation of ma transport corridor "Urals industrial – Urals Polar" in the frame of the forming of the Ural-West-Siberian TPK, taking into account the global transport web.
Nonlinear evolution of oblique whistler waves in radiation belts
Sharma, R. P.; Nandal, P.; Yadav, N.; Sharma, Swati
2017-02-01
Magnetic power spectrum and formation of coherent structures have been investigated in the present work applicable to Van Allen radiation belt. The nonlinear interaction of high frequency oblique whistler wave and low frequency magnetosonic wave has been investigated. Simulation was performed of the coupled equation of these two waves. The nonlinear interaction of these waves leads to the formation of the localized structures. These resulting localized structures are of complex nature. The associated magnetic power spectrum has also been studied. Dispersive nonlinear processes account for the high frequency part of the spectrum. The resulting magnetic power spectrum shows a scaling of k^{ - 4.5}. The energy transfer process from injection scales to smaller scales is explained by the results.
Invariant Subspaces of the Two-Dimensional Nonlinear Evolution Equations
Directory of Open Access Journals (Sweden)
Chunrong Zhu
2016-11-01
Full Text Available In this paper, we develop the symmetry-related methods to study invariant subspaces of the two-dimensional nonlinear differential operators. The conditional Lie–Bäcklund symmetry and Lie point symmetry methods are used to construct invariant subspaces of two-dimensional differential operators. We first apply the multiple conditional Lie–Bäcklund symmetries to derive invariant subspaces of the two-dimensional operators. As an application, the invariant subspaces for a class of two-dimensional nonlinear quadratic operators are provided. Furthermore, the invariant subspace method in one-dimensional space combined with the Lie symmetry reduction method and the change of variables is used to obtain invariant subspaces of the two-dimensional nonlinear operators.
Evolution of electron spin polarization in semiconductor heterostructures
Pershin, Yuriy; Privman, Vladimir
2004-03-01
Last years theoretical and experimental investigations of electron spin-related effects in semiconductor heterostructures have received much consideration because of idea to create a semiconductor device based on the manipulation of electron spin. High degree of electron spin polarization is of crucial importance in operation of spintronic devices. We study possibilities to increase electron spin relaxation time by different means in systems where the D'yakonov-Perel' relaxation mechanism is dominant. Specifically, we show that the electron spin relaxation time in a two-dimensional electron gas with an antidote lattice increases exponentially with antidote radius for certain values of parameters. In another approach, we propose to use electron spin polarization having non-homogeneous direction of spin polarization vector in operation of a spintronic device. It is found that that the electron spin relaxation time essentially depends on the initial spin polarization distribution. This effect has its origin in the coherent spin precession of electrons diffusing in the same direction. We predict a long spin relaxation time of a novel structure: a spin coherence standing wave and discuss its experimental realization.
Devi, Seema; Agarwal, Asha; Pandey, Kiran; Pradhan, Asima
2015-03-01
Reflectance spectroscopy contains information of scatterers and absorbers present inside biological tissues and has been successfully used to diagnose disease. Success of any diagnostic tool depends upon the potential of statistical algorithm to extract appropriate diagnostic features from the measured optical data. In our recent study, we have used the potential of the classification algorithm, Nonlinear Maximum Representation and Discrimination Features (NMRDF) to extract important diagnostic features from reflectance spectra of normal and dysplastic human cervical tissue. This NMRDF algorithm uses the higher order correlation information in the input data, which helps to represent the asymmetrically distributed data and provides the closed form solution of the nonlinear transform for maximum discrimination. We have recorded unpolarized, co and cross-polarized reflectance spectra from 350nm to 650nm, illuminating the human cervical tissue epithelium with white light source. A total of 139 samples were divided into training and validation data sets. The input parameters were optimized using training data sets to extract the appropriate nonlinear features from the input reflectance spectra. These extracted nonlinear features are used as input for nearest mean classifier to calculate the sensitivity and specificity for both training as well as validation data sets. We have observed that co-polarized components provide maximum sensitivity and specificity compared to cross-polarized components and unpolarized data. This is expected since co-polarized light provides subsurface information while cross-polarized and unpolarized data mask the vital epithelial information through high diffuse scattering.
Yang, X; Li, Z; Tangdiongga, E; Lenstra, D; Khoe, G; Dorren, H
2004-05-31
We demonstrate the generation of sub-picosecond optical pulses using a semiconductor optical amplifier (SOA) and a linear polarizer placed in a ring-laser configuration. Nonlinear polarization rotation in the SOA serves as the passive mode-locking mechanism. The ring cavity generates pulses with duration below 800 fs (FWHM) at a repetition rate of 14 MHz. The time -bandwidth product is 0.48. Simulation results in good agreement with the experimental results are presented.
Nonlinear Evolution of the Ion-Ion Beam Instability
DEFF Research Database (Denmark)
Pécseli, Hans; Trulsen, J.
1982-01-01
The criterion for the existence of vortexlike ion phase-space configurations, as obtained by a standard pseudopotential method, is found to coincide with the criterion for the linear instability for two (cold) counterstreaming ion beams. A nonlinear equation is derived, which demonstrates...
Stability of planar diffusion wave for nonlinear evolution equation
Institute of Scientific and Technical Information of China (English)
无
2012-01-01
It is known that the one-dimensional nonlinear heat equation ut = f(u)x1x1,f'(u) 0,u(±∞,t) = u±,u+ = u_ has a unique self-similar solution u(x1/1+t).In multi-dimensional space,u(x1/1+t) is called a planar diffusion wave.In the first part of the present paper,it is shown that under some smallness conditions,such a planar diffusion wave is nonlinearly stable for the nonlinear heat equation:ut-△f(u) = 0,x ∈ Rn.The optimal time decay rate is obtained.In the second part of this paper,it is further shown that this planar diffusion wave is still nonlinearly stable for the quasilinear wave equation with damping:utt + utt+ △f(u) = 0,x ∈ Rn.The time decay rate is also obtained.The proofs are given by an elementary energy method.
Nonlinear evolution of density and flow perturbations on a Bjorken background
Brouzakis, Nikolaos; Tetradis, Nikolaos; Wiedemann, Urs Achim
2015-01-01
Density perturbations and their dynamic evolution from early to late times can be used for an improved understanding of interesting physical phenomena both in cosmology and in the context of heavy-ion collisions. We discuss the spectrum and bispectrum of these perturbations around a longitudinally expanding fireball after a heavy-ion collision. The time-evolution equations couple the spectrum and bispectrum to each other, as well as to higher-order correlation functions through nonlinear terms. A non-trivial bispectrum is thus always generated, even if absent initially. For initial conditions corresponding to a model of independent sources, we discuss the linear and nonlinear evolution is detail. We show that, if the initial conditions are sufficiently smooth for fluid dynamics to be applicable, the nonlinear effects are relatively small.
Nonlinear evolution of density and flow perturbations on a Bjorken background
Brouzakis, Nikolaos; Floerchinger, Stefan; Tetradis, Nikolaos; Wiedemann, Urs Achim
2015-03-01
Density perturbations and their dynamic evolution from early to late times can be used for an improved understanding of interesting physical phenomena both in cosmology and in the context of heavy-ion collisions. We discuss the spectrum and bispectrum of these perturbations around a longitudinally expanding fireball after a heavy-ion collision. The time-evolution equations couple the spectrum and bispectrum to each other, as well as to higher-order correlation functions through nonlinear terms. A nontrivial bispectrum is thus always generated, even if absent initially. For initial conditions corresponding to a model of independent sources, we discuss the linear and nonlinear evolution in detail. We show that, if the initial conditions are sufficiently smooth for fluid dynamics to be applicable, the nonlinear effects are relatively small.
STUDY ON EXACT ANALYTICAL SOLUTIONS FOR TWO SYSTEMS OF NONLINEAR EVOLUTION EQUATIONS
Institute of Scientific and Technical Information of China (English)
闫振亚; 张鸿庆
2001-01-01
The homogeneous balance method was improved and applied to two systems of nonlinear evolution equations. As a result, several families of exact analytic solutions are derived by some new ansatzs. These solutions contain Wang's and Zhang's results and other new types of analytical solutions, such as rational fraction solutions and periodic solutions. The way can also be applied to solve more nonlinear partial differential equations.
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A trial equation method to nonlinear evolution equation with rank inhomogeneous is given. As applications, the exact traveling wave solutions to some higher-order nonlinear equations such as generalized Boussinesq equation,generalized Pochhammer-Chree equation, KdV-Burgers equation, and KS equation and so on, are obtained. Among these, some results are new. The proposed method is based on the idea of reduction of the order of ODE. Some mathematical details of the proposed method are discussed.
Nonlinear Dynamics of Ion Concentration Polarization in Porous Media: The Leaky Membrane Model
Dydek, E Victoria
2013-01-01
The conductivity of highly charged membranes is nearly constant, due to counter-ions screening pore surfaces. Weakly charged porous media, or "leaky membranes", also contain a significant concentration of co-ions, whose depletion at high current leads to ion concentration polarization and conductivity shock waves. To describe these nonlinear phenomena the absence of electro-osmotic flow, a simple Leaky Membrane Model is formulated, based on macroscopic electroneutrality and Nernst-Planck ionic fluxes. The model is solved in cases of unsupported binary electrolytes: steady conduction from a reservoir to a cation-selective surface, transient response to a current step, steady conduction to a flow-through porous electrode, and steady conduction between cation-selective surfaces in cross flow. The last problem is motivated by separations in leaky membranes, such as shock electrodialysis. The article begins with a tribute to Neal Amundson, whose pioneering work on shock waves in chromatography involved similar mat...
Lian, Yudong; Ren, Guobin; Zhu, Bofeng; Gao, Yixiao; Jian, Wei; Ren, Wenhua; Jian, Shuisheng
2017-05-01
We propose and demonstrate a switchable multiwavelength fiber laser using erbium-doped twin-core fiber (ED-TCF) and nonlinear polarization rotation (NPR). The number switchability of lasing wavelengths being switched from 1 to 4 and wavelength location switchability could be achieved simultaneously in the proposed configuration with a wavelength spacing of 1.1 nm and an optical signal to noise ratio (OSNR) larger than 43 dB. The output laser powers at different wavelengths are nearly the same with a fluctuation less than 2 dB. The proposed fiber laser shows good stability with wavelength shift within 0.01 nm and peak power fluctuation less than 5 dB. The proposed fiber laser has the advantages of simple structure and stable operation.
Nonlinear effects related to circularly polarized dispersive Alfvén waves
Sharma, Swati; Gaur, Nidhi; Sharma, R. P.
2016-09-01
In situ measurements of solar wind have strongly implicated its turbulent behavior. The observed power spectra report a breakpoint around length scales of the order of ion scales. As one of the responsible mechanisms for the observed steepening in power spectrum, our approach includes a right circularly polarized dispersive Alfvén wave (DAW) with finite frequency correction which, when subjected to transverse collapse/filamentation instability, may possibly result in steepening of spectrum and progressive transfer of energy from larger scales to smaller scales. We have studied the nonlinear effects associated with coupling of DAW with kinetic Alfvén wave in solar wind at 1 A.U. The formation of localized structures provides a clue about the emergence of turbulence. Numerical simulation is performed to study localization and power spectral density of the field and density fluctuations. The results show steeper spectrum indicating transfer of large scale turbulent energy down to small scales.
Directory of Open Access Journals (Sweden)
Hasibun Naher
2014-10-01
Full Text Available In this article, new extension of the generalized and improved (G′/G-expansion method is proposed for constructing more general and a rich class of new exact traveling wave solutions of nonlinear evolution equations. To demonstrate the novelty and motivation of the proposed method, we implement it to the Korteweg-de Vries (KdV equation. The new method is oriented toward the ease of utilize and capability of computer algebraic system and provides a more systematic, convenient handling of the solution process of nonlinear equations. Further, obtained solutions disclose a wider range of applicability for handling a large variety of nonlinear partial differential equations.
Institute of Scientific and Technical Information of China (English)
WANG Mei-Jiao; WANG Qi
2006-01-01
In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly construct a series of stochastic nontravelling wave solutions for nonlinear stochastic evolution equation. To illustrate the effectiveness of our method, we take the stochastic mKdV equation as an example, and successfully construct some new and more general solutions including a series of rational formal nontraveling wave and coefficient functions' soliton-like solutions and trigonometric-like function solutions. The method can also be applied to solve other nonlinear stochastic evolution equation or equations.
Rogue waves and rational solutions of a (3+1)-dimensional nonlinear evolution equation
Energy Technology Data Exchange (ETDEWEB)
Zhaqilao,, E-mail: zhaqilao@imnu.edu.cn
2013-12-06
A simple symbolic computation approach for finding the rogue waves and rational solutions to the nonlinear evolution equation is proposed. It turns out that many rational solutions with real and complex forms of a (3+1)-dimensional nonlinear evolution equation are obtained. Some features of rogue waves and rational solutions are graphically discussed. -- Highlights: •A simple symbolic computation approach for finding the rational solutions to the NEE is proposed. •Some rogue waves and rational solutions with real and complex forms of a (3+1)-D NEE are obtained. •Some features of rogue waves are graphically discussed.
Global Existence and Uniqueness of Solutions to Evolution p-Laplacian Systems with Nonlinear Sources
Institute of Scientific and Technical Information of China (English)
WEI Yingjie; GAO Wenjie
2013-01-01
This paper presents the global existence and uniqueness of the initial and boundary value problem to a system of evolution p-Laplacian equations coupled with general nonlinear terms.The authors use skills of inequality estimation and the method of regularization to construct a sequence of approximation solutions,hence obtain the global existence of solutions to a regularized system.Then the global existence of solutions to the system of evolution p-Laplacian equations is obtained with the application of a standard limiting process.The uniqueness of the solution is proven when the nonlinear terms are local Lipschitz continuous.
Travelling Wave Solutions to a Special Type of Nonlinear Evolution Equation
Institute of Scientific and Technical Information of China (English)
XU Gui-Qiong; LI Zhi-Bin
2003-01-01
A unified approach is presented for finding the travelling wave solutions to one kind of nonlinear evolution equation by introducing a concept of "rank". The key idea of this method is to make use of the arbitrariness of the manifold in Painleve analysis. We selected a new expansion variable and thus obtained a rich variety of travelling wave solutions to nonlinear evolution equation, which covered solitary wave solutions, periodic wave solutions, Weierstrass elliptic function solutions, and rational solutions. Three illustrative equations are investigated by this means, and abundant travelling wave solutions are obtained in a systematic way. In addition, some new solutions are firstly reported here.
Ferroelectric polarization induces electronic nonlinearity in ion-doped conducting polymers
Fabiano, Simone; Sani, Negar; Kawahara, Jun; Kergoat, Loïg; Nissa, Josefin; Engquist, Isak; Crispin, Xavier; Berggren, Magnus
2017-01-01
Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is an organic mixed ion-electron conducting polymer. The PEDOT phase transports holes and is redox-active, whereas the PSS phase transports ions. When PEDOT is redox-switched between its semiconducting and conducting state, the electronic and optical properties of its bulk are controlled. Therefore, it is appealing to use this transition in electrochemical devices and to integrate those into large-scale circuits, such as display or memory matrices. Addressability and memory functionality of individual devices, within these matrices, are typically achieved by nonlinear current-voltage characteristics and bistability—functions that can potentially be offered by the semiconductor-conductor transition of redox polymers. However, low conductivity of the semiconducting state and poor bistability, due to self-discharge, make fast operation and memory retention impossible. We report that a ferroelectric polymer layer, coated along the counter electrode, can control the redox state of PEDOT. The polarization switching characteristics of the ferroelectric polymer, which take place as the coercive field is overcome, introduce desired nonlinearity and bistability in devices that maintain PEDOT in its highly conducting and fast-operating regime. Memory functionality and addressability are demonstrated in ferro-electrochromic display pixels and ferro-electrochemical transistors. PMID:28695197
Evolution of spiral wave and pattern formation in a vortical polarized electric field
Institute of Scientific and Technical Information of China (English)
Ma Jun; Yi Ming; Li Bing-Wei; Li Yan-Long
2008-01-01
In this paper, the evolution of the pattern transition induced by the vortical electric field (VEF) is investigated. Firstly, a scheme is suggested to generate the VEF by changing the spatial magnetic field. Secondly, the VEF is imposed on the whole medium, and the evolutions of the spiral wave and the spatiotemporal chaos are investigated by using the numerical simulation. The result confirms that the drift and the breakup of the spiral wave and the new net-like pattern are observed when different polarized fields are imposed on the whole medium respectively. Finally, the pattern transition induced by the polarized field is discussed theoretically.
Polarization entangled photon-pair source based on quantum nonlinear photonics and interferometry
Kaiser, F.; Ngah, L. A.; Issautier, A.; Delord, T.; Aktas, D.; D'Auria, V.; De Micheli, M. P.; Kastberg, A.; Labonté, L.; Alibart, O.; Martin, A.; Tanzilli, S.
2014-09-01
We present a versatile, high-brightness, guided-wave source of polarization entangled photons, emitted at a telecom wavelength. Photon-pairs are generated using an integrated type-0 nonlinear waveguide, and subsequently prepared in a polarization entangled state via a stabilized fiber interferometer. We show that the single photon emission wavelength can be tuned over more than 50 nm, whereas the single photon spectral bandwidth can be chosen at will over more than five orders of magnitude (from 25 MHz to 4 THz). Moreover, by performing entanglement analysis, we demonstrate a high degree of control of the quantum state via the violation of the Bell inequalities by more than 40 standard deviations. This makes this scheme suitable for a wide range of quantum optics experiments, ranging from fundamental research to quantum information applications. We report on details of the setup, as well as on the characterization of all included components, previously outlined in Kaiser et al. (Laser Phys. Lett. 10 (2013) 045202).
Li, Wei; Wang, Wen Ting; Sun, Wen Hui; Liu, Jian Guo; Zhu, Ning Hua
2014-05-05
We propose a novel approach to generating millimeter-wave (MMW) ultrawideband (UWB) signal based on nonlinear polarization rotation (NPR) in a highly nonlinear fiber (HNLF). The MMW UWB signal is background-free by eliminating the baseband frequency components using an optical filter. The proposed scheme is theoretically analyzed and experimentally verified. The generated MMW UWB signal centered at 25.5 GHz has a 10-dB bandwidth of 7 GHz from 22 to 29 GHz, which fully satisfies the spectral mask regulated by the Federal Communications Commission (FCC).
How, Martin J; Porter, Megan L; Radford, Andrew N; Feller, Kathryn D; Temple, Shelby E; Caldwell, Roy L; Marshall, N Justin; Cronin, Thomas W; Roberts, Nicholas W
2014-10-01
The polarization of light provides information that is used by many animals for a number of different visually guided behaviours. Several marine species, such as stomatopod crustaceans and cephalopod molluscs, communicate using visual signals that contain polarized information, content that is often part of a more complex multi-dimensional visual signal. In this work, we investigate the evolution of polarized signals in species of Haptosquilla, a widespread genus of stomatopod, as well as related protosquillids. We present evidence for a pre-existing bias towards horizontally polarized signal content and demonstrate that the properties of the polarization vision system in these animals increase the signal-to-noise ratio of the signal. Combining these results with the increase in efficacy that polarization provides over intensity and hue in a shallow marine environment, we propose a joint framework for the evolution of the polarized form of these complex signals based on both efficacy-driven (proximate) and content-driven (ultimate) selection pressures. © 2014. Published by The Company of Biologists Ltd.
Soliton solutions to a few fractional nonlinear evolution equations in shallow water wave dynamics
Mirzazadeh, Mohammad; Ekici, Mehmet; Sonmezoglu, Abdullah; Ortakaya, Sami; Eslami, Mostafa; Biswas, Anjan
2016-05-01
This paper studies a few nonlinear evolution equations that appear with fractional temporal evolution and fractional spatial derivatives. These are Benjamin-Bona-Mahoney equation, dispersive long wave equation and Nizhnik-Novikov-Veselov equation. The extended Jacobi's elliptic function expansion method is implemented to obtain soliton and other periodic singular solutions to these equations. In the limiting case, when the modulus of ellipticity approaches zero or unity, these doubly periodic functions approach solitary waves or shock waves or periodic singular solutions emerge.
Small x nonlinear evolution with impact parameter and the structure function data
Berger, Jeffrey
2011-01-01
Nonlinear evolution at small values of Bjorken x is evaluated numerically using the dipole framework with impact parameter dependence. Confinement effects are modeled by including masses into the evolution. Sensitivity of the predictions due to different prescriptions of the cuts on large dipole sizes is investigated. Running coupling effects are taken into account in this analysis. Finally, a comparison with the inclusive data from HERA on the structure functions F2 and FL is performed.
Institute of Scientific and Technical Information of China (English)
SUN Xue-ming; ZHANG Hui-jian; ZUO Meng; GU Wan-yi; XU Da-xiong
2006-01-01
Dense wavelength division multiplexing (DWDM) system is the ultimate selection as an optical communication system because of its high speeds and capacities.However,the fiber nonlinear effects and polarization mode dispersion severely limit the performance of the system when signal propagates at 40 Gbit/s in a single channel.The coupled nonlinear Schr(o)dinger equations of a single channel in DWDM,which are all considered factors of group velocity dispersion (GVD),self phase modulation (SPM),cross phase modulation (XPM),four wave mixing (FWM) and polarization mode dispersion (PMD),are derived,while their number results are obtained with extended split-step Fourier method.Finally,to analyze the impacts of the fiber nonlinear effects and PMD on the optical communication system,the simulated results of an 8x40 Gbit/s DWDM system are discussed under different conditions respectively.
A procedure to construct exact solutions of nonlinear evolution equations
Indian Academy of Sciences (India)
Adem Cengiz Çevikel; Ahmet Bekir; Mutlu Akar; Sait San
2012-09-01
In this paper, we implemented the functional variable method for the exact solutions of the Zakharov-Kuznetsov-modified equal-width (ZK-MEW), the modified Benjamin-Bona-Mohany (mBBM) and the modified kdV-Kadomtsev-Petviashvili (kdV-KP) equation. By using this scheme, we found some exact solutions of the above-mentioned equation. The obtained solutions include solitary wave solutions, periodic wave solutions and combined formal solutions. The functional variable method presents a wider-applicability for handling nonlinear wave equations.
The nonlinear evolution of inviscid Goertler vortices in three-dimensional boundary layers
Blackaby, Nicholas; Dando, Andrew; Hall, Philip
1995-09-01
The nonlinear development of inviscid Gortler vortices in a three-dimensional boundary layer is considered. We do not follow the classical approach of weakly nonlinear stability problems and consider a mode which has just become unstable. Instead we extend the method of Blackaby, Dando, and Hall (1992), which considered the closely related nonlinear development of disturbances in stratified shear flows. The Gortler modes we consider are initially fast growing and we assume, following others, that boundary-layer spreading results in them evolving in a linear fashion until they reach a stage where their amplitudes are large enough and their growth rates have diminished sufficiently so that amplitude equations can be derived using weakly nonlinear and non-equilibrium critical-layer theories. From the work of Blackaby, Dando and Hall (1993) is apparent, given the range of parameters for the Gortler problem, that there are three possible nonlinear integro-differential evolution equations for the disturbance amplitude. These are a cubic due to viscous effects, a cubic which corresponds to the novel mechanism investigated in this previous paper, and a quintic. In this paper we shall concentrate on the two cubic integro-differential equations and in particular, on the one due to the novel mechanism as this will be the first to affect a disturbance. It is found that the consideration of a spatial evolution problem as opposed to temporal (as was considered in Blackaby, Dando, and Hall, 1992) causes a number of significant changes to the evolution equations.
Institute of Scientific and Technical Information of China (English)
WANG Peng-Zhou; ZHANG Shun-Li
2008-01-01
We present basic theory of variable separation for (1 + 1)-dimensional nonlinear evolution equations with mixed partial derivatives. As an application, we classify equations uxt = A(u, ux)uxxx + B(u, ux) that admits derivative-dependent functional separable solutions (DDFSSs) and illustrate how to construct those DDFSSs with some examples.
Exact Solutions of Some (1+1)-Dimensional Nonlinear Evolution Equations
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
By means of the variable separation method, new exact solutions of some (1+1)-dimensional nonlinear evolution equations are obtained. Abundant localized excitations can be found by selecting corresponding arbitrary functions appropriately. Namely, the new soliton-like localized excitations and instanton-like localized excitations are presented.
Localized Excitations in a Sixth-Order (1+1)-Dimensional Nonlinear Evolution Equation
Institute of Scientific and Technical Information of China (English)
SHEN Shou-Feng
2005-01-01
In this letter, by means of the Lax pair, Darboux transformation, and variable separation approach, a new exact solution of a sixth-order (1+ 1)-dimensional nonlinear evolution equation, which includes some arbitrary functions,is obtained. Abundant new localized excitations can be found by selecting appropriate functions and they are illustrated both analytically and graphically.
Institute of Scientific and Technical Information of China (English)
CHEN Jiang; HE Hong-Sheng; YANG Kong-Qing
2005-01-01
A generalized F-expansion method is introduced and applied to (3+ 1)-dimensional Kadomstev-Petviashvili(KP) equation. As a result, some new Jacobi elliptic function solutions of the equation are found, from which the trigonometric function solutions and the solitary wave solutions can be obtained. The method can also be extended to other types of nonlinear evolution equations in mathematical physics.
The homotopic mapping solution for the solitary wave for a generalized nonlinear evolution equation
Institute of Scientific and Technical Information of China (English)
Mo Jia-Qi; Lin Su-Rong
2009-01-01
This paper studies a generalized nonlinear evolution equation. Using the homotopic mapping method,it constructs a corresponding homotopic mapping transform. Selecting a suitable initial approximation and using homotopic mapping,it obtains an approximate solution with an arbitrary degree of accuracy for the solitary wave. From the approximate solution obtained by using the homotopic mapping method,it possesses a good accuracy.
Non-Linear Evolution of Steady and Migrating Alternate Bars in a Straight Channel (abstract)
Southgate, H.N.; Crosato, A.
2013-01-01
This paper contains an analysis of a long-duration experiment that shows the evolution of alternate bars in a straight channel. The theoretical predictions are based on a weakly non-linear theory of the morphological development. Both the experiment and theory have several innovative features.
Non-Linear Evolution of Steady and Migrating Alternate Bars in a Straight Channel (abstract)
Southgate, H.N.; Crosato, A.
2013-01-01
This paper contains an analysis of a long-duration experiment that shows the evolution of alternate bars in a straight channel. The theoretical predictions are based on a weakly non-linear theory of the morphological development. Both the experiment and theory have several innovative features.
Directory of Open Access Journals (Sweden)
Yusuf Pandir
2012-01-01
Full Text Available We obtain the classification of exact solutions, including soliton, rational, and elliptic solutions, to the one-dimensional general improved Camassa Holm KP equation and KdV equation by the complete discrimination system for polynomial method. In discussion, we propose a more general trial equation method for nonlinear partial differential equations with generalized evolution.
Indian Academy of Sciences (India)
Yusuf Gurefe; Abdullah Sonmezoglu; Emine Misirli
2011-12-01
In this paper some exact solutions including soliton solutions for the KdV equation with dual power law nonlinearity and the (, ) equation with generalized evolution are obtained using the trial equation method. Also a more general trial equation method is proposed.
Luo, Ting
As optical communications approach more data bandwidth, longer transmission distance, and more reconfigurability, dispersion, nonlinearity and polarization-dependent effects are becoming key issues for future all-optical fiber optic systems and networks. For ≥10 Gbit/s optical fiber transmission systems, it is critical that chromatic dispersion and polarization-mode-dispersion be well monitored and compensated using some type of dispersion monitoring and compensation. On the other hand, dispersive and nonlinear effects in optical fiber systems can also be beneficial and have applications on pulse management, all-optical signal processing and network function, which will be essential for high bite-rate optical networks and replacing the expensive optical-electrical-optical (O/E/O) conversion. In this Ph.D. dissertation, we present a detailed research on dispersion, nonlinearity, and polarization-dependent effects in high-speed optical communication systems. We have demonstrated: (i) A dynamic channel-spacing tunable multi-wavelength Erbium-doped fiber laser; (ii) Chromatic-dispersion-insensitive PMD monitoring by tracking the radio-frequency extracted from the vestigial-sideband; (iii) A method for simultaneous chromatic and polarization-mode dispersions monitoring by adding a frequency-shifted carrier; (iv) Polarization-insensitive optical parametric amplification by depolarizing the pump; (v) All optical chromatic dispersion monitoring potential for ultra-high speed (>40 Gbit/s) optical systems using cross-phase modulation in a highly nonlinear fiber; (vi) A novel fiber-based autocorrelator using polarimetric four-wave mixing effect and a tunable differential-group-delay element; (vii) A simple all-fiber-based autocorrelator by measuring the degree-of-polarization; and (viii) Reduction of pattern dependent data distortion in a stimulated Brillouin scattering based slow light element. These techniques will play key roles in future high-speed dynamic WDM optical
Nonlinear evolution of the modulational instability under weak forcing and damping
Directory of Open Access Journals (Sweden)
J. Touboul
2010-12-01
Full Text Available The evolution of modulational instability, or Benjamin-Feir instability is investigated within the framework of the two-dimensional fully nonlinear potential equations, modified to include wind forcing and viscous dissipation. The wind model corresponds to the Miles' theory. The introduction of dissipation in the equations is briefly discussed. Evolution of this instability in the presence of damping was considered by Segur et al. (2005a and Wu et al. (2006. Their results were extended theoretically by Kharif et al. (2010 who considered wind forcing and viscous dissipation within the framework of a forced and damped nonlinear Schrödinger equation. The marginal stability curve derived from the fully nonlinear numerical simulations coincides with the curve obtained by Kharif et al. (2010 from a linear stability analysis. Furthermore, it is found that the presence of wind forcing promotes the occurrence of a permanent frequency-downshifting without invoking damping due to breaking wave phenomenon.
Directory of Open Access Journals (Sweden)
S. S. Motsa
2014-01-01
Full Text Available This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs. The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.
Motsa, S S; Magagula, V M; Sibanda, P
2014-01-01
This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.
Institute of Scientific and Technical Information of China (English)
ZHANG Ying-Yue; YANG Qiu-Ying; CHEN Tian-Lun
2007-01-01
We introduce a modified small-world network adding new links with nonlinearly preferential connection instead of adding randomly, then we apply Bak-Sneppen (BS) evolution model on this network. We study several important structural properties of our network such as the distribution of link-degree, the maximum link-degree, and the length of the shortest path. We further argue several dynamical characteristics of the model such as the important critical value fc, the f0 avalanche, and the mutating condition, and find that those characteristics show particular behaviors.
Institute of Scientific and Technical Information of China (English)
Lilin Yi; Weisheng Hu; Hao He; Yi Dong; Yaohui Jin; Weiqiang Sun
2011-01-01
We demonstrate an all-optical reconfigurable logic gate based on dominant nonlinear polarization rotation accompanied with cross-gain modulation effect in a singlc semiconductor optical amplifier (SOA). Five logic functions, including NOT, OR, NOR, AND, and NAND, are realized using 10-Gb/s on-off keying signals with flexible wavelength tunability. The operation principle is explained in detail. By adjusting polarization controllers, multiple logic functions corresponding to different input polarization states are separately achieved using a single SOA with high flexibility.%@@ We demonstrate an all-optical reconfigurable logic gate based on dominant nonlinear polarization rotation accompanied with cross-gain modulation effect in a single semiconductor optical amplifier (SOA).Five logic functions, including NOT, OR, NOR, AND, and NAND, are realized using 10-Gb/s on-off keying signals with flexible wavelength tunability.The operation principle is explained in detail.By adjusting polarization controllers, multiple logic functions corresponding to different input polarization states are separately achieved using a single SOA with high flexibility.
Li, Yan; Zeng, Xinglin; Mo, Qi; Li, Wei; Liu, Zhijian; Wu, Jian
2016-10-01
In few-mode polarization-maintaining-fiber (FM-PMF), the effective-index splitting exists not only between orthogonally polarization state but also between degenerated modes within a high-order mode group. Hence besides the polarization state evolution, the mode patterns in each LP set are need to be analyzed. In this letter, the completed firstorder mode (LP11 mode) evolution in PM-FMF is analyzed and represented by analogous Jones vector and Poincarésphere respectively. Furthermore, with Jones matrix analysis, the modal dynamics in FM-PMFs is conveniently analyzed. The conclusions are used to propose a PM-FMF based LP11 mode rotator and an PM-FMF based OAM generator. Both simulation and experiments are conducted to investigate performance of the two devices.
Nonlinear evolution and final fate of (charged) superradiant instability
Bosch, Pablo; Lehner, Luis
2016-01-01
We describe the full nonlinear development of the superradiant instability for a charged massless scalar field, coupled to general relativity and electromagnetism, in the vicinity of a Reissner--Nordstr\\"om-AdS black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeateadly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.
Universal and integrable nonlinear evolution systems of equations in 2+1 dimensions
Energy Technology Data Exchange (ETDEWEB)
Maccari, A. [Technical Institute G. Cardano, Piazza della Resistenza 1, 00015 Monterotondo, Rome (Italy)
1997-08-01
Integrable systems of nonlinear partial differential equations (PDEs) are obtained from integrable equations in 2+1 dimensions, by means of a reduction method of broad applicability based on Fourier expansion and spatio{endash}temporal rescalings, which is asymptotically exact in the limit of weak nonlinearity. The integrability by the spectral transform is explicitly demonstrated, because the corresponding Lax pairs have been derived, applying the same reduction method to the Lax pair of the initial equation. These systems of nonlinear PDEs are likely to be of applicative relevance and have a {open_quotes}universal{close_quotes} character, inasmuch as they may be derived from a very large class of nonlinear evolution equations with a linear dispersive part. {copyright} {ital 1997 American Institute of Physics.}
Linear and Nonlinear Evolution and Diffusion Layer Selection in Electrokinetic Instability
Demekhin, E A; Polyanskikh, S V
2011-01-01
In the present work fournontrivial stages of electrokinetic instability are identified by direct numerical simulation (DNS) of the full Nernst-Planck-Poisson-Stokes (NPPS) system: i) The stage of the influence of the initial conditions (milliseconds); ii) 1D self-similar evolution (milliseconds-seconds); iii) The primary instability of the self-similar solution (seconds); iv) The nonlinear stage with secondary instabilities. The self-similar character of evolution at intermediately large times is confirmed. Rubinstein and Zaltzman instability and noise-driven nonlinear evolution to over-limiting regimes in ion-exchange membranes are numerically simulated and compared with theoretical and experimental predictions. The primary instability which happens during this stage is found to arrest self-similar growth of the diffusion layer and specifies its characteristic length as was first experimentally predicted by Yossifon and Chang (PRL 101, 254501 (2008)). A novel principle for the characteristic wave number sele...
Nonlinear reflection process of linearly-polarized, broadband Alfv\\'en waves in the fast solar wind
Shoda, Munehito
2016-01-01
Using one-dimensional numerical simulations, we study the elementary process of Alfv\\'{e}n wave reflection in a uniform medium, including nonlinear effects. In the linear regime, Alfv\\'{e}n wave reflection is triggered only by the inhomogeneity of the medium, whereas in the nonlinear regime, it can occur via nonlinear wave-wave interactions. Such nonlinear reflection (backscattering) is typified by decay instability. In most studies of decay instabilities, the initial condition has been a circularly polarized Alfv\\'{e}n wave. In this study we consider a linearly polarized Alfv\\'en wave, which drives density fluctuations by its magnetic pressure force. For generality, we also assume a broadband wave with a red-noise spectrum. In the data analysis, we decompose the fluctuations into characteristic variables using local eigenvectors, thus revealing the behaviors of the individual modes. Different from circular-polarization case, we find that the wave steepening produces a new energy channel from the parent Alfv\\...
An almost symmetric Strang splitting scheme for nonlinear evolution equations.
Einkemmer, Lukas; Ostermann, Alexander
2014-07-01
In this paper we consider splitting methods for the time integration of parabolic and certain classes of hyperbolic partial differential equations, where one partial flow cannot be computed exactly. Instead, we use a numerical approximation based on the linearization of the vector field. This is of interest in applications as it allows us to apply splitting methods to a wider class of problems from the sciences. However, in the situation described, the classic Strang splitting scheme, while still being a method of second order, is not longer symmetric. This, in turn, implies that the construction of higher order methods by composition is limited to order three only. To remedy this situation, based on previous work in the context of ordinary differential equations, we construct a class of Strang splitting schemes that are symmetric up to a desired order. We show rigorously that, under suitable assumptions on the nonlinearity, these methods are of second order and can then be used to construct higher order methods by composition. In addition, we illustrate the theoretical results by conducting numerical experiments for the Brusselator system and the KdV equation.
Nonlinear asymmetric tearing mode evolution in cylindrical geometry
Teng, Q.; Ferraro, N.; Gates, D. A.; Jardin, S. C.; White, R. B.
2016-10-01
The growth of a tearing mode is described by reduced MHD equations. For a cylindrical equilibrium, tearing mode growth is governed by the modified Rutherford equation, i.e., the nonlinear Δ'(w ) . For a low beta plasma without external heating, Δ'(w ) can be approximately described by two terms, Δ'ql(w ), ΔA'(w ) [White et al., Phys. Fluids 20, 800 (1977); Phys. Plasmas 22, 022514 (2015)]. In this work, we present a simple method to calculate the quasilinear stability index Δql' rigorously, for poloidal mode number m ≥2 . Δql' is derived by solving the outer equation through the Frobenius method. Δ'ql is composed of four terms proportional to: constant Δ'0 , w, w ln w , and w2. ΔA' is proportional to the asymmetry of island that is roughly proportional to w. The sum of Δql' and ΔA' is consistent with the more accurate expression calculated perturbatively [Arcis et al., Phys. Plasmas 13, 052305 (2006)]. The reduced MHD equations are also solved numerically through a 3D MHD code M3D-C1 [Jardin et al., Comput. Sci. Discovery 5, 014002 (2012)]. The analytical expression of the perturbed helical flux and the saturated island width agree with the simulation results. It is also confirmed by the simulation that the ΔA' has to be considered in calculating island saturation.
Long-term evolution of strongly nonlinear internal solitary waves in a rotating channel
Directory of Open Access Journals (Sweden)
J. C. Sánchez-Garrido
2009-09-01
Full Text Available The evolution of internal solitary waves (ISWs propagating in a rotating channel is studied numerically in the framework of a fully-nonlinear, nonhydrostatic numerical model. The aim of modelling efforts was the investigation of strongly-nonlinear effects, which are beyond the applicability of weakly nonlinear theories. Results reveal that small-amplitude waves and sufficiently strong ISWs evolve differently under the action of rotation. At the first stage of evolution an initially two-dimensional ISW transforms according to the scenario described by the rotation modified Kadomtsev-Petviashvili equation, namely, it starts to evolve into a Kelvin wave (with exponential decay of the wave amplitude across the channel with front curved backwards. This transition is accompanied by a permanent radiation of secondary Poincaré waves attached to the leading wave. However, in a strongly-nonlinear limit not all the energy is transmitted to secondary radiated waves. Part of it returns to the leading wave as a result of nonlinear interactions with secondary Kelvin waves generated in the course of time. This leads to the formation of a slowly attenuating quasi-stationary system of leading Kelvin waves, capable of propagating for several hundreds hours as a localized wave packet.
The nonlinear evolution of de Sitter space instabilities
Niemeyer, J C; Niemeyer, Jens C.; Bousso, Raphael
2000-01-01
We investigate the quantum evolution of large black holes that nucleate spontaneously in de Sitter space. By numerical computation in the s-wave and one-loop approximations, we verify claims that such black holes can initially "anti-evaporate" instead of shrink. We show, however, that this is a transitory effect. It is followed by an evaporating phase, which we are able to trace until the black holes are small enough to be treated as Schwarzschild. Under generic perturbations, the nucleated geometry is shown to decay into a ring of de Sitter regions connected by evaporating black holes. This confirms that de Sitter space is globally unstable and fragments into disconnected daughter universes.
Deb Roy, Gauranga; Fazlul Karim, Md.; Ismail, Ahmad Izani M.
2007-01-01
A nonlinear shallow water model in cylindrical polar coordinate system is developed, using an explicit finite difference scheme with a very fine resolution, to compute different aspects of tsunami at North Sumatra and the adjacent island Simeulue in Indonesia, and the Penang Island in Peninsular Malaysia. The pole of the frame is placed on the mainland of Penang (100.5°E) and the model area extends up to the west of Sumatra (87.5°E). The model is applied to simulate the propagation of tsunami wave towards North Sumatra, Simeulue and Penang Islands associated with Indonesian tsunami of 26 December 2004. The model is also applied to compute water levels along the coastal belts of those islands. Computed and observed water level data are found to be in good agreement and North Sumatra is found to be vulnerable for very high surges. The computed and observed arrival times of high surges are also in reasonable agreement everywhere. Further studies are carried out to investigate the effect of convective terms and it is found that their effects are insignificant in tsunami propagation and weakly significant for wave amplitude very near to the coast.
Three-Dimensional Induced Polarization Parallel Inversion Using Nonlinear Conjugate Gradients Method
Directory of Open Access Journals (Sweden)
Huan Ma
2015-01-01
Full Text Available Four kinds of array of induced polarization (IP methods (surface, borehole-surface, surface-borehole, and borehole-borehole are widely used in resource exploration. However, due to the presence of large amounts of the sources, it will take much time to complete the inversion. In the paper, a new parallel algorithm is described which uses message passing interface (MPI and graphics processing unit (GPU to accelerate 3D inversion of these four methods. The forward finite differential equation is solved by ILU0 preconditioner and the conjugate gradient (CG solver. The inverse problem is solved by nonlinear conjugate gradients (NLCG iteration which is used to calculate one forward and two “pseudo-forward” modelings and update the direction, space, and model in turn. Because each source is independent in forward and “pseudo-forward” modelings, multiprocess modes are opened by calling MPI library. The iterative matrix solver within CULA is called in each process. Some tables and synthetic data examples illustrate that this parallel inversion algorithm is effective. Furthermore, we demonstrate that the joint inversion of surface and borehole data produces resistivity and chargeability results are superior to those obtained from inversions of individual surface data.
Institute of Scientific and Technical Information of China (English)
2008-01-01
Using functional derivative technique in quantum field theory, the algebraic dy-namics approach for solution of ordinary differential evolution equations was gen-eralized to treat partial differential evolution equations. The partial differential evo-lution equations were lifted to the corresponding functional partial differential equations in functional space by introducing the time translation operator. The functional partial differential evolution equations were solved by algebraic dynam-ics. The algebraic dynamics solutions are analytical in Taylor series in terms of both initial functions and time. Based on the exact analytical solutions, a new nu-merical algorithm—algebraic dynamics algorithm was proposed for partial differ-ential evolution equations. The difficulty of and the way out for the algorithm were discussed. The application of the approach to and computer numerical experi-ments on the nonlinear Burgers equation and meteorological advection equation indicate that the algebraic dynamics approach and algebraic dynamics algorithm are effective to the solution of nonlinear partial differential evolution equations both analytically and numerically.
Institute of Scientific and Technical Information of China (English)
WANG Shundin; ZHANG Hua
2008-01-01
Using functional derivative technique In quantum field theory,the algebraic dy-namics approach for solution of ordinary differential evolution equations was gen-eralized to treat partial differential evolution equations.The partial differential evo-lution equations were lifted to the corresponding functional partial differential equations in functional space by Introducing the time translation operator.The functional partial differential evolution equations were solved by algebraic dynam-ics.The algebraic dynamics solutions are analytical In Taylor series In terms of both initial functions and time.Based on the exact analytical solutions,a new nu-merical algorithm-algebraic dynamics algorithm was proposed for partial differ-ential evolution equations.The difficulty of and the way out for the algorithm were discussed.The application of the approach to and computer numerical experi-ments on the nonlinear Burgers equation and meteorological advection equation indicate that the algebraic dynamics approach and algebraic dynamics algorithm are effective to the solution of nonlinear partial differential evolution equations both analytically and numerically.
Surface Flux Transport and the Evolution of the Sun's Polar Fields
Wang, Y.-M.
2017-09-01
The evolution of the polar fields occupies a central place in flux transport (Babcock-Leighton) models of the solar cycle. We discuss the relationship between surface flux transport and polar field evolution, focusing on two main issues: the latitudinal profile of the meridional flow and the axial tilts of active regions. Recent helioseismic observations indicate that the poleward flow speed peaks at much lower latitudes than inferred from magnetic feature tracking, which includes the effect of supergranular diffusion and thus does not represent the actual bulk flow. Employing idealized simulations, we demonstrate that flow profiles that peak at mid latitudes give rise to overly strong and concentrated polar fields. We discuss the differences between magnetic and white-light measurements of tilt angles, noting the large uncertainties inherent in the sunspot group measurements and their tendency to underestimate the actual tilts. We find no clear evidence for systematic cycle-to-cycle variations in Joy's law during cycles 21-23. Finally, based on the observed evolution of the Sun's axial dipole component and polar fields up to the end of 2015, we predict that cycle 25 will be similar in amplitude to cycle 24.
Evolutions of matter-wave bright soliton with spatially modulated nonlinearity
Institute of Scientific and Technical Information of China (English)
Yongshan Cheng; Fei Liu
2009-01-01
The evolution characteristics of a matter-wave bright soliton are investigated by means of the variational approach in the presence of spatially varying nonlinearity.It is found that the atom density envelope of the soliton is changed as a result of the spatial variation of the s-wave scattering length.The stable soliton can exist in appropriate initial conditions.The movement of the soliton depends on the sign and value of the coefficient of spatially modulated nonlinearity.These theoretical predictions are confirmed by the full numerical simulations of the one-dimensional Gross-Pitaevskii equation.
Experimental investigation of the nonlinear evolution of an impurity-driven drift wave
Energy Technology Data Exchange (ETDEWEB)
Allen, G.R.; Yamada, M.; Rewoldt, G.; Tang, W.M.
1982-04-01
An impurity-driven drift wave is observed to be destabilized by the reversed density gradient of a singly-ionized heavy-impurity-ion population in a Q-machine plasma. The evolution of the instability is investigated as it progresses from the initial linear exponential growth phase, into a nonlinear saturated state, whereupon strong radially outward anomalous diffusion is observed. The relationship between the anomalous diffusion coefficient and the wave amplitude is in agreement with estimates obtained from the nonlinear drift-wave turbulence theory of Dupree.
Nonlinear evolution equations associated with the chiral-field spectral problem
Energy Technology Data Exchange (ETDEWEB)
Bruschi, M.; Ragnisco, O. (Istituto Nazionale di Fisica Nucleare, Roma (Italy); Dipt. di Fisica, Univ. Rome (Italy))
1985-08-11
In this paper we derive and investigate the class of nonlinear evolution equations (NEEs) associated with the linear problem psisub(x) = lambdaApsi. It turns out that many physically interesting NEEs pertain to this class: for instance, the chiral-field equation, the nonlinear Klein-Gordon equations, the Heisenberg and Papanicolau spin chain models, the modified Boussinesq equation, the Wadati-Konno-Ichikawa equations, etc. We display also the Baecklund transformations for such a class and exploit them to derive in a special case the one-soliton solution.
Institute of Scientific and Technical Information of China (English)
YAN Zhen-Ya
2004-01-01
A Weierstrass elliptic function expansion method and its algorithm are developed in this paper. The method changes the problem solving nonlinear evolution equations into another one solving the correspondingsystem of nonlinear algebraic equations. With the aid of symbolic computation (e.g. Maple), the method is applied to the combined KdV-mKdV equation and (2+1)-dimensional coupled Davey-Stewartson equation. As a consequence, many new types of doubly periodic solutions are obtained in terms of the Weierstrass elliptic function. Jacobi elliptic function solutions and solitary wave solutions are also given as simple limits of doubly periodic solutions.
Institute of Scientific and Technical Information of China (English)
YANZhen-Ya
2004-01-01
A Weierstrass elliptic function expansion method and its algorithm are developed in this paper. The method changes the problem solving nonlinear evolution equations into another one solving the corresponding system of nonlinear algebraic equations. With the aid of symbolic computation (e.g. Maple), the method is applied to the combined KdV-mKdV equation and (2+1)-dimensional coupled Davey-Stewartson equation. As a consequence, many new types of doubly periodic solutions are obtained in terms of the Weierstrass elliptic function. Jacobi elliptic function solutions and solitary wave solutions are also given as simple limits of doubly periodic solutions.
Directory of Open Access Journals (Sweden)
Florian Hartig
Full Text Available If two species exhibit different nonlinear responses to a single shared resource, and if each species modifies the resource dynamics such that this favors its competitor, they may stably coexist. This coexistence mechanism, known as relative nonlinearity of competition, is well understood theoretically, but less is known about its evolutionary properties and its prevalence in real communities. We address this challenge by using adaptive dynamics theory and individual-based simulations to compare community stabilization and evolutionary stability of species that coexist by relative nonlinearity. In our analysis, evolution operates on the species' density-compensation strategies, and we consider a trade-off between population growth rates at high and low resource availability. We confirm previous findings that, irrespective of the particular model of density dependence, there are many combinations of overcompensating and undercompensating density-compensation strategies that allow stable coexistence by relative nonlinearity. However, our analysis also shows that most of these strategy combinations are not evolutionarily stable and will be outcompeted by an intermediate density-compensation strategy. Only very specific trade-offs lead to evolutionarily stable coexistence by relative nonlinearity. As we find no reason why these particular trade-offs should be common in nature, we conclude that the sympatric evolution and evolutionary stability of relative nonlinearity, while possible in principle, seems rather unlikely. We speculate that this may, at least in part, explain why empirical demonstrations of this coexistence mechanism are rare, noting, however, that the difficulty to detect relative nonlinearity in the field is an equally likely explanation for the current lack of empirical observations, and that our results are limited to communities with non-overlapping generations and constant resource supply. Our study highlights the need for
Hartig, Florian; Münkemüller, Tamara; Johst, Karin; Dieckmann, Ulf
2014-01-01
If two species exhibit different nonlinear responses to a single shared resource, and if each species modifies the resource dynamics such that this favors its competitor, they may stably coexist. This coexistence mechanism, known as relative nonlinearity of competition, is well understood theoretically, but less is known about its evolutionary properties and its prevalence in real communities. We address this challenge by using adaptive dynamics theory and individual-based simulations to compare community stabilization and evolutionary stability of species that coexist by relative nonlinearity. In our analysis, evolution operates on the species' density-compensation strategies, and we consider a trade-off between population growth rates at high and low resource availability. We confirm previous findings that, irrespective of the particular model of density dependence, there are many combinations of overcompensating and undercompensating density-compensation strategies that allow stable coexistence by relative nonlinearity. However, our analysis also shows that most of these strategy combinations are not evolutionarily stable and will be outcompeted by an intermediate density-compensation strategy. Only very specific trade-offs lead to evolutionarily stable coexistence by relative nonlinearity. As we find no reason why these particular trade-offs should be common in nature, we conclude that the sympatric evolution and evolutionary stability of relative nonlinearity, while possible in principle, seems rather unlikely. We speculate that this may, at least in part, explain why empirical demonstrations of this coexistence mechanism are rare, noting, however, that the difficulty to detect relative nonlinearity in the field is an equally likely explanation for the current lack of empirical observations, and that our results are limited to communities with non-overlapping generations and constant resource supply. Our study highlights the need for combining ecological and
Institute of Scientific and Technical Information of China (English)
Cao Wen-Jun; Xu Wen-Cheng; Luo Zhi-Chao; Wang Lu-Yan; Wang Hui-Yi; Dong Jiang-Li; Luo Ai-Ping
2011-01-01
We report on the generation of dual-wavelength dissipative solitons in a passively mode-locked fibre laser with a net normal dispersion using the nonlinear polarization rotation (NPR) technique.Taking the intrinsic advantage of the intracavity birefringence-induced spectral filtering effect in the NPR-based ring laser cavity,the dual-wavelength dissipative solitons are obtained.In addition,the wavelength separation and the lasing location of the dual-wavelength solitons can be flexibly tuned by changing the orientation of the polarization controller.
Vasavada, A. R.; Richardson, M. I.; Byrne, S.; Ivanov, A. B.; Christensen, P. R.
2003-01-01
The presence of a thick sequence of horizontal layers of ice-rich material at Mars north pole, dissected by troughs and eroding at its margins, is undoubtedly telling us something about the evolution of Mars climate we just don't know what yet. The North Polar Layered Deposits (NPLD) most likely formed as astronomically driven climate variations led to the deposition of conformable, areally extensive layers of ice and dust over the polar region. More recently, the balance seems to have fundamentally shifted to net erosion, as evidenced by the many troughs within the NPLD and the steep, arcuate scarps present near its margins, both of which expose layering.
Mateo, Eduardo F; Zhou, Xiang; Li, Guifang
2011-01-17
An improved split-step method (SSM) for digital backward propagation (DBP) applicable to wavelength-division multiplexed (WDM) transmission with polarization-division multiplexing (PDM) is presented. A coupled system of nonlinear partial differential equations, derived from the Manakov equations, is used for DBP. The above system enables the implementation of DBP on a channel-by-channel basis, where only the effect of phase-mismatched four-wave mixing (FWM) is neglected. A novel formulation of the SSM for PDM-WDM systems is presented where new terms are included in the nonlinear step to account for inter-polarization mixing effects. In addition, the effect of inter-channel walk-off is included. This substantially reduces the computational load compared to the conventional SSM.
Influence of Ion Nonlinear Polarization Drift and Warm Ions on Solitary Kinetic Alfvén Wave
Institute of Scientific and Technical Information of China (English)
DUAN Su-Ping; LI Zhong-Yuan
2003-01-01
Considering the effects of ion nonlinear polarization drift and warm ions, we adopt two-fluid model to results derived in this paper indicate that dip SKAW and hump SKAW both exist in a wide range in magnetosphere(for the pressure parameter β ~ 10-5 ~ 0.01, where βis the ratio of thermal pressure to magnetic pressure, i.e.region 1 > β > me/mi. These results are different from previous ones. That indicates that the effects of ion nonlinear polarization drift and warm ions are important and they cannot be neglected. The SKAW has an electric field parallel to the ambient magnetic field, which makes the SKAW take an important role in the acceleration and energization of field-aligned charged particles in magnetic plasmas. And the SKAW is also important for the heating of a local plasma.So it makes a novel physical mechanism of energy transmission possible.
Institute of Scientific and Technical Information of China (English)
YANG Xu-Dong; RUAN Hang-Yu; LOU Sen-Yue
2007-01-01
A new algorithm for symbolic computation of polynomial-type conserved densities for nonlinear evolution systems is presented. The algorithm is implemented in Maple. The improved algorithm is more efficient not only in removing the redundant terms of the general form of the conserved densities but also in solving the conserved densities with the associated flux synchronously without using Euler operator. Furthermore, the program conslaw. mpl can be used to determine the preferences for a given parameterized nonlinear evolution systems. The code is tested on several well-known nonlinear evolution equations from the soliton theory.
Grammatical Immune System Evolution for reverse engineering nonlinear dynamic Bayesian models.
McKinney, B A; Tian, D
2008-01-01
An artificial immune system algorithm is introduced in which nonlinear dynamic models are evolved to fit time series of interacting biomolecules. This grammar-based machine learning method learns the structure and parameters of the underlying dynamic model. In silico immunogenetic mechanisms for the generation of model-structure diversity are implemented with the aid of a grammar, which also enforces semantic constraints of the evolved models. The grammar acts as a DNA repair polymerase that can identify recombination and hypermutation signals in the antibody (model) genome. These signals contain information interpretable by the grammar to maintain model context. Grammatical Immune System Evolution (GISE) is applied to a nonlinear system identification problem in which a generalized (nonlinear) dynamic Bayesian model is evolved to fit biologically motivated artificial time-series data. From experimental data, we use GISE to infer an improved kinetic model for the oxidative metabolism of 17beta-estradiol (E(2)), the parent hormone of the estrogen metabolism pathway.
Nonlinear evolution of Airy-like beams generated by modulated waveguide arrays.
Cao, Zheng; Tan, Qinggui; Li, Xiaojun; Qi, Xinyuan
2016-08-20
We numerically study the formation of modulated waveguide generated Airy-like beams and their subsequent evolution in homogeneous medium. The results show that the Airy-like beams could be generated from narrow Gaussian beams propagating in one-dimensional transverse separation modulated unbent, cosine bent, or logarithm bent waveguide arrays, respectively. The waveguide-generated Airy-like beams maintain their characteristics when propagating without nonlinearity or under the self-defocusing nonlinearity in homogeneous medium, while the beams are distorted under the self-focusing nonlinearity. The deformation depends on the waveguide bending and the outgoing angles of the Airy-like beams. Our results provide a new way to generate and manipulate the Airy-like beam.
Energy Technology Data Exchange (ETDEWEB)
Eliasson, B., E-mail: bengt.eliasson@strath.ac.uk [SUPA, Physics Department, John Anderson Building, Strathclyde University, Glasgow G4 0NG, Scotland (United Kingdom); Lazar, M., E-mail: mlazar@tp4.rub.de [Centre for Mathematical Plasma Astrophysics, Celestijnenlaan 200B, 3001 Leuven (Belgium); Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, 44780 Bochum (Germany)
2015-06-15
This paper presents a numerical study of the linear and nonlinear evolution of the electromagnetic electron-cyclotron (EMEC) instability in a bi-Kappa distributed plasma. Distributions with high energy tails described by the Kappa power-laws are often observed in collision-less plasmas (e.g., solar wind and accelerators), where wave-particle interactions control the plasma thermodynamics and keep the particle distributions out of Maxwellian equilibrium. Under certain conditions, the anisotropic bi-Kappa distribution gives rise to plasma instabilities creating low-frequency EMEC waves in the whistler branch. The instability saturates nonlinearly by reducing the temperature anisotropy until marginal stability is reached. Numerical simulations of the Vlasov-Maxwell system of equations show excellent agreement with the growth-rate and real frequency of the unstable modes predicted by linear theory. The wave-amplitude of the EMEC waves at nonlinear saturation is consistent with magnetic trapping of the electrons.
An Improved Differential Evolution Trained Neural Network Scheme for Nonlinear System Identification
Institute of Scientific and Technical Information of China (English)
Bidyadhar Subudhi; Debashisha Jena
2009-01-01
This paper prescnts an improved nonlinear system identification scheme using differential evolution (DE), neural network (NN) and Levenberg Marquardt algorithm (LM). With a view to achieve better convergence of NN weights optimization during the training, the DE and LM are used in a combined framework to train the NN. We present the convergence analysis of the DE and demonstrate the efficacy of the proposed improved system identification algorithm by exploiting the combined DE and LM training of the NN and suitably implementing it together with other system identification methods, namely NN and DE+NN on a numbcr of examples including a practical case study. The identification rcsults obtained through a series of simulation studies of these methods on different nonlinear systems demonstrate that the proposed DE and LM trained NN approach to nonlinear system identification can yield better identification results in terms of time of convergence and less identification error.
Nonlinear evolution of tidally forced inertial waves in rotating fluid bodies
Favier, B; Baruteau, C; Ogilvie, G I
2014-01-01
We perform one of the first studies into the nonlinear evolution of tidally excited inertial waves in a uniformly rotating fluid body, exploring a simplified model of the fluid envelope of a planet (or the convective envelope of a solar-type star) subject to the gravitational tidal perturbations of an orbiting companion. Our model contains a perfectly rigid spherical core, which is surrounded by an envelope of incompressible uniform density fluid. The corresponding linear problem was studied in previous papers which this work extends into the nonlinear regime, at moderate Ekman numbers (the ratio of viscous to Coriolis accelerations). By performing high-resolution numerical simulations, using a combination of pseudo-spectral and spectral element methods, we investigate the effects of nonlinearities, which lead to time-dependence of the flow and the corresponding dissipation rate. Angular momentum is deposited non-uniformly, leading to the generation of significant differential rotation in the initially unifor...
Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals.
Philip, Reji; Chantharasupawong, Panit; Qian, Huifeng; Jin, Rongchao; Thomas, Jayan
2012-09-12
Atomic clusters of metals are an emerging class of extremely interesting materials occupying the intermediate size regime between atoms and nanoparticles. Here we report the nonlinear optical (NLO) characteristics of ultrasmall, atomically precise clusters of gold, which are smaller than the critical size for electronic energy quantization (∼2 nm). Our studies reveal remarkable features of the distinct evolution of the optical nonlinearity as the clusters progress in size from the nonplasmonic regime to the plasmonic regime. We ascertain that the smallest atomic clusters do not show saturable absorption at the surface plasmon wavelength of larger gold nanocrystals (>2 nm). Consequently, the third-order optical nonlinearity in these ultrasmall gold clusters exhibits a significantly lower threshold for optical power limiting. This limiting efficiency, which is superior to that of plasmonic nanocrystals, is highly beneficial for optical limiting applications.
A convective-advective balance approach for solving some nonlinear evolution equations analytically
Energy Technology Data Exchange (ETDEWEB)
Abdel Hamid, B. [United Arab Emirates Univ. (United Arab Emirates). Dept. of Mathematics and Computer Science
1999-09-01
A symbolic computation-based approach of balancing the convective and advective effects in a nonlinear evolution equation leads to a transformation that maps the nonlinear equation onto either a linear one or to a system of linear and homogeneous equations. The method is demonstrated by mapping Burgers' equation and nonlinear heat equation onto the linear heat equation. It is shown that the transformation obtained by balancing the convective-advective effects are reducible to those obtained by the Cole and Hopf through Backlund transformation. The method is also used to transform the modified KdV equation into a system of linear and homogeneous functions in the partial derivatives which leads to an exact solution. Computations in the presented approach are carried out in a straightforward way.
Effects of Interaction Between Gravitation and Nonlinear Electrodynamics On Scalar Field Evolution
Institute of Scientific and Technical Information of China (English)
CHEN Ju-Hua; WANG Yong-Jiu
2011-01-01
In this paper we investigate the scalar field evolution in the dyadosphere spacetime by using the third-order WKB approximation.We find that the coupling term between the gravitation and the nonlinear electrodynamics makes the scalar field decay more quickly and it also makes the scalar field oscillate more slowly.On the other words, this coupling term takes effect on the scalar field evolution as a damping factor.At the same time these effects become more obvious for the scalar field with higher angle quantum number.
Indian Academy of Sciences (India)
Junchao Chen; Biao Li
2012-03-01
In this paper, an extended multiple (′/)-expansion method is proposed to seek exact solutions of nonlinear evolution equations. The validity and advantages of the proposed method is illustrated by its applications to the Sharma–Tasso–Olver equation, the sixth-order Ramani equation, the generalized shallow water wave equation, the Caudrey–Dodd–Gibbon–Sawada–Kotera equation, the sixth-order Boussinesq equation and the Hirota–Satsuma equations. As a result, various complexiton solutions consisting of hyperbolic functions, trigonometric functions, rational functions and their mixture with parameters are obtained. When some parameters are taken as special values, the known double solitary-like wave solutions are derived from the double hyperbolic function solution. In addition, this method can also be used to deal with some high-dimensional and variable coefﬁcients’ nonlinear evolution equations.
Integrable nonlinear evolution partial differential equations in 4 + 2 and 3 + 1 dimensions.
Fokas, A S
2006-05-19
The derivation and solution of integrable nonlinear evolution partial differential equations in three spatial dimensions has been the holy grail in the field of integrability since the late 1970s. The celebrated Korteweg-de Vries and nonlinear Schrödinger equations, as well as the Kadomtsev-Petviashvili (KP) and Davey-Stewartson (DS) equations, are prototypical examples of integrable evolution equations in one and two spatial dimensions, respectively. Do there exist integrable analogs of these equations in three spatial dimensions? In what follows, I present a positive answer to this question. In particular, I first present integrable generalizations of the KP and DS equations, which are formulated in four spatial dimensions and which have the novelty that they involve complex time. I then impose the requirement of real time, which implies a reduction to three spatial dimensions. I also present a method of solution.
Directory of Open Access Journals (Sweden)
S. S. Motsa
2014-01-01
Full Text Available This paper presents a new application of the homotopy analysis method (HAM for solving evolution equations described in terms of nonlinear partial differential equations (PDEs. The new approach, termed bivariate spectral homotopy analysis method (BISHAM, is based on the use of bivariate Lagrange interpolation in the so-called rule of solution expression of the HAM algorithm. The applicability of the new approach has been demonstrated by application on several examples of nonlinear evolution PDEs, namely, Fisher’s, Burgers-Fisher’s, Burger-Huxley’s, and Fitzhugh-Nagumo’s equations. Comparison with known exact results from literature has been used to confirm accuracy and effectiveness of the proposed method.
Barker, Adrian J
2016-01-01
We perform global two-dimensional hydrodynamical simulations of Keplerian discs with free eccentricity over thousands of orbital periods. Our aim is to determine the validity of secular theory in describing the evolution of eccentric discs, and to explore their nonlinear evolution for moderate eccentricities. Linear secular theory is found to correctly predict the structure and precession rates of discs with small eccentricities. However, discs with larger eccentricities (and eccentricity gradients) are observed to precess faster (retrograde relative to the orbital motion), at a rate that depends on their eccentricities (and eccentricity gradients). We derive analytically a nonlinear secular theory for eccentric gas discs, which explains this result as a modification of the pressure forces whenever eccentric orbits in a disc nearly intersect. This effect could be particularly important for highly eccentric discs produced in tidal disruption events, or for narrow gaseous rings; it might also play a role in cau...
Nonlinear wave evolution in VLASOV plasma: a lie-transform analysis
Energy Technology Data Exchange (ETDEWEB)
Cary, J.R.
1979-08-01
Nonlinear wave evolution in Vlasov plasma is analyzed using the Lie transform, a powerful mathematical tool which is applicable to Hamiltonian systems. The first part of this thesis is an exposition of the Lie transform. Dewar's general Lie transform theory is explained and is used to construct Deprit's Lie transform perturbation technique. The basic theory is illustrated by simple examples.
Bi-Hamiltonian Structure of a Third-Order Nonlinear Evolution Equation on Plane Curve Motions
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In the present paper, we identify the integrability of the third-order nonlinear evolution equation ut = (1/2)((uxx + u)-2)x in a Hamiltonian viewpoint. We prove that the recursion operator obtained by S. Yu. Sakovich is hereditary, and then deduce a bi-Hamiltonian structure of the equation by using some decomposition of the hereditary operator. A hierarchy associated to the equation is also shown.
Application of Exp-function method for nonlinear evolution equations with variable coefficients
Energy Technology Data Exchange (ETDEWEB)
El-Wakil, S.A.; Madkour, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Abdou, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Faculty of Education for Girls, Physics Department, King Kahlid University, Bisha, Kingdom Saudi Arabia (Saudi Arabia)], E-mail: m_abdou_eg@yahoo.com
2007-09-10
In this Letter, the Exp-function method with the aid of symbolic computational system Maple is used to obtain generalized solitary solutions and periodic solutions of a generalized Zakharov-Kuznetsov equation with variable coefficients. It is shown that the Exp-function method, with the help of symbolic computation, provides a powerful mathematical tool for solving other nonlinear evolution equations arising in mathematical physics.
Baumgarte, Thomas W; Cordero-Carrión, Isabel; Müller, Ewald
2012-01-01
In the absence of symmetry assumptions most numerical relativity simulations adopt Cartesian coordinates. While Cartesian coordinates have some desirable properties, spherical polar coordinates appear better suited for certain applications, including gravitational collapse and supernova simulations. Development of numerical relativity codes in spherical polar coordinates has been hampered by the need to handle the coordinate singularities at the origin and on the axis, for example by careful regularization of the appropriate variables. Assuming spherical symmetry and adopting a covariant version of the BSSN equations, Montero and Cordero-Carri\\'on recently demonstrated that such a regularization is not necessary when a partially implicit Runge-Kutta (PIRK) method is used for the time evolution of the gravitational fields. Here we report on an implementation of the BSSN equations in spherical polar coordinates without any symmetry assumptions. Using a PIRK method we obtain stable simulations in three spatial d...
Resonant nonlinear interactions between atmospheric waves in the polar summer mesopause region
Institute of Scientific and Technical Information of China (English)
LIU; Renqiang; (刘仁强); YI; Fan; (易帆)
2003-01-01
Data obtained from the mobile SOUSY VHF radar at And(ya/Norway in summer 1987 have been used to study the nonlinear interactions between planetary waves, tides and gravity waves in the polar mesosphere, and the instability of background atmosphere above the mesopause. It is observed that 35-h planetary wave, diurnal, semidiurnal and terdiurnal tides are the prominent perturbations in the Lomb-Scargle spectra of the zonal wind component. By inspecting the frequency combinations, several triads are identified. By bispectral analysis it is shown that most bispectral peaks stand for quadratic coupling between tidal harmonics or between tide and planetary or gravity wave, and the height dependence of bispectral peaks reflects the variation of wave-wave interactions. Above the mesopause, the occurrence heights of the maximum L-S power spectral peaks corresponding to the prominent wave components tend to increase with their frequencies. This may result from the process in which two low frequency waves interact to generate a high frequency wave. Intensities of the planetary wave and tides increase gradually, arrive at their maxima, and then decay quickly in turn with increasing height. This kind of scene correlates with a "chain" of wave-wave resonant interactions that shifts with height from lower frequency segment to higher frequency segment. By instability analysis, it is observed that above the mesopause, the Richardson number becomes smaller and smaller with height, implying that the turbulent motion grows stronger and stronger and accordingly the background atmosphere more and more instable. It is suggested that the wave-wave sum resonant interaction and the wave dissipation due to instability are two dominant dynamical processes that occur in the mesopause region. The former invokes the energy transfer from lower frequency waves to higher frequency waves. The latter results in the heating of the atmosphere and accelerating of the background flow.
POLARIZATION EVOLUTION OF EARLY OPTICAL AFTERGLOWS OF GAMMA-RAY BURSTS
Energy Technology Data Exchange (ETDEWEB)
Lan, Mi-Xiang; Dai, Zi-Gao [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wu, Xue-Feng, E-mail: dzg@nju.edu.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)
2016-01-10
The central engine and jet composition of gamma-ray bursts (GRBs) remain mysterious. Here we suggest that observations on the polarization evolution of early optical afterglows may shed light on these questions. We first study the dynamics of a reverse shock and a forward shock that are generated during the interaction of a relativistic jet and its ambient medium. The jet is likely magnetized with a globally large-scale magnetic field from the central engine. The existence of the reverse shock requires that the magnetization degree of the jet should not be high (σ ≤ 1), so that the jet is mainly composed of baryons and leptons. We then calculate the light curves and polarization evolution of early optical afterglows and find that when the polarization position angle changes by 90° during the early afterglow, the polarization degree is zero for a toroidal magnetic field but is very likely to be nonzero for an aligned magnetic field. This result would be expected to provide a probe for the central engine of GRBs because an aligned field configuration could originate from a magnetar central engine and a toroidal field configuration could be produced from a black hole via the Blandford–Znajek mechanism. Finally, for such two kinds of magnetic field configurations, we fit the observed data of the early optical afterglow of GRB 120308A equally well.
Polarization-Independent High-Speed Switching in a Standard Non-Linear Optical Loop Mirror
DEFF Research Database (Denmark)
Mulvad, Hans Christian Hansen; Galili, Michael; Oxenløwe, Leif Katsuo
2008-01-01
We introduce a scheme which allows polarization-independent switching in a standard NOLM. Experimental verification is performed by switching 10 Gbit/s data with 0.2 dB polarization-dependence and by error-free demultiplexing of polarization-scrambled 320 Gbit/s OTDM data....
Institute of Scientific and Technical Information of China (English)
Wu Xuesong; Gao Wenjie; Cao Jianwen
2011-01-01
In this paper, the authors discuss the global existence and blow-up of the solution to an evolution ρ-Laplace system with nonlinear sources and nonlinear boundary condition. The authors first establish the local existence of solutions, then give a necessary and sufficient condition on the global existence of the positive solution.
Baldi, Marco
2010-01-01
We present a complete numerical study of cosmological models with a time dependent coupling between the dark energy component driving the present accelerated expansion of the Universe and the Cold Dark Matter (CDM) fluid. Depending on the functional form of the coupling strength, these models show a range of possible intermediate behaviors between the standard LCDM background evolution and the widely studied case of interacting dark energy models with a constant coupling. These different background evolutions play a crucial role in the growth of cosmic structures, and determine strikingly different effects of the coupling on the internal dynamics of nonlinear objects. By means of a suitable modification of the cosmological N-body code GADGET-2 we have performed a series of high-resolution N-body simulations of structure formation in the context of interacting dark energy models with variable couplings. Depending on the type of background evolution, the halo density profiles are found to be either less or more...
Tagantsev, Alexander K.; Stolichnov, Igor; Setter, Nava; Cross, Jeffrey S.
2004-12-01
The phenomenon of polarization imprint consisting of the development of a preferential polarization state in ferroelectric films is known as one of the major issues impacting the development of high density ferroelectric memories. According to the commonly accepted scenario, the imprint is related to the charge injection and charge accumulation in the nearby-electrode passive layer of the ferroelectric film. Recent studies demonstrated that the coercive voltage shift induced by the imprint exhibits a nonlinear time dependence in a logarithmic scale. This result was interpreted as the presence of two different imprint mechanisms characterized by different activation energies. In the present work, an analytical theory of the injection scenario of imprint is developed. The charge accumulation at the interface is shown to provoke a voltage offset and polarization loss which are nonlinearly dependent on the time in logarithmic scale. This result is obtained for different charge injection mechanisms including Schottky, Pool-Frenkel, and tunneling scenarios. Thus, it is shown that a single imprint mechanism can be responsible for a nolinear (in logarithmic scale) time dependence of the voltage offset and polarization loss. Additionally, the temperature dependence of the logarithmic rate of imprint is shown to be nonexponential. The developed model ties together the time and temperature dependences of imprint. For the experimental verification of the model a study of imprint has been performed on (111) Pb(Zr ,Ti)O3 film capacitors with temperatures ranging from 25 to 150°C and exposure times up to 1000h. It has been found that the theory developed adequately describes the obtained experimental data. Based upon the theoretical and experimental results a test for ferroelectric memories is proposed, which enables the long-term prediction of polarization loss caused by imprint for a wide temperature range and for different operating voltages.
QCD evolution of (un)polarized gluon TMDPDFs and the Higgs $q_T$-distribution
Echevarria, Miguel G; Mulders, Piet J; Pisano, Cristian
2015-01-01
We provide the proper definition of all the leading-twist (un)polarized gluon transverse momentum dependent parton distribution functions (TMDPDFs), by considering the Higgs boson transverse momentum distribution in hadron-hadron collisions and deriving the factorization theorem in terms of them. We show that the evolution of all the (un)polarized gluon TMDPDFs is driven by a universal evolution kernel, which can be resummed up to next-to-next-to-leading-logarithmic accuracy. Considering the proper definition of gluon TMDPDFs, we perform an explicit next-to-leading-order calculation of the unpolarized ($f_1^g$), linearly polarized ($h_1^{\\perp g}$) and helicity ($g_{1L}^g$) gluon TMDPDFs, and show that, as expected, they are free from rapidity divergences. As a byproduct, we obtain the Wilson coefficients of the refactorization of these TMDPDFs at large transverse momentum. In particular, the coefficient of $g_{1L}^g$, which has never been calculated before, constitutes a new and necessary ingredient for a re...
DEFF Research Database (Denmark)
Tuz, Vladimir R.; Novitsky, Denis V.; Prosvirnin, Sergey L.
2014-01-01
Optical properties of one-dimensional photonic structures consisting of Kerr-type nonlinear and magnetic layers under the action of an external static magnetic field in the Faraday geometry are investigated. The structure is a periodic arrangement of alternating nonlinear and magnetic layers (a one...
Shemer, Lev; Sergeeva, Anna; Liberzon, Dan
2010-12-01
Results of extensive experiments on propagation of unidirectional nonlinear random waves in a large wave tank are presented. The nonlinearity of the wavefield determined by the characteristic wave amplitude and the dominant wave length was retained constant in various series of experimental runs. In each experimental series, initial spectra of different shape and/or width were considered. Every series contained sufficient number of independent realizations to ensure reliable statistics. Evolution of various statistical parameters along the tank was investigated. It is demonstrated that the spectrum width plays an important role in the evolution of the random wavefield and strongly affects the variation of the wave spectrum as well as of parameters that characterize the deviation of the wavefield statistics from that corresponding to the Gaussian distribution. In particular, in a random wavefield that initially contains independent free harmonics within a narrow spectrum, extremely steep waves appear more often in the process of evolutions than predicted by a Rayleigh distribution, while for wider initial wave spectra the probability of those waves decreases sharply and is well below the Rayleigh values.
Shahmansouri, M.; Misra, A. P.
2016-12-01
The modulational instability (MI) and the evolution of weakly nonlinear two-dimensional (2D) Langmuir wave (LW) packets are studied in an unmagnetized collisionless plasma with weakly relativistic electron flow. By using a 2D self-consistent relativistic fluid model and employing the standard multiple-scale technique, a coupled set of Davey-Stewartson (DS)-like equations is derived, which governs the slow modulation and the evolution of LW packets in relativistic plasmas. It is found that the relativistic effects favor the instability of LW envelopes in the k - θ plane, where k is the wave number and θ ( 0 ≤ θ ≤ π ) the angle of modulation. It is also found that as the electron thermal velocity or θ increases, the growth rate of MI increases with cutoffs at higher wave numbers of modulation. Furthermore, in the nonlinear evolution of the DS-like equations, it is seen that with an effect of the relativistic flow, a Gaussian wave beam collapses in a finite time, and the collapse can be arrested when the effect of the thermal pressure or the relativistic flow is slightly relaxed. The present results may be useful to the MI and the formation of localized LW envelopes in cosmic plasmas with a relativistic flow of electrons.
Shahmansouri, M
2016-01-01
The modulational instability (MI) and the evolution of weakly nonlinear two-dimensional (2D) Langmuir wave (LW) packets are studied in an unmagnetized collisionless plasma with weakly relativistic electron flow. By using a 2D self-consistent relativistic fluid model and employing the standard multiple-scale technique, a coupled set of Davey-Stewartson (DS)-like equations is derived which governs the slow modulation and the evolution of LW packets in relativistic plasmas. It is found that the relativistic effects favor the instability of LW envelopes in the k{\\theta} plane, where k is the wave number and {\\theta} the angle of modulation. It is also found that as the electron thermal velocity or {\\theta} increases, the growth rate of MI increases with cutoffs at higher wave numbers of modulation. Furthermore, in the nonlinear evolution of the DS-like equations, it is seen that with an effect of the relativistic flow, a Gaussian wave beam collapses in a finite time, and the collapse can be arrested when the effe...
Stoller, Patrick C.; Kim, Beop-Min; Rubenchik, Alexander M.; Reiser, Karen M.; Da Silva, Luiz B.
2001-05-01
The measurement of the second order nonlinear susceptibility of collagen in various biological tissues has potential applications in the detection of structural changes which are related to different pathological conditions. We investigate second harmonic generation in a rat-tail tendon, a highly organized collagen structure consisting of parallel fibers. Using an electro-optic modulator and a quarter-wave plate, we modulate the linear polarization of an ultra-short pulse laser beam that is used to measure second harmonic generation in a confocal microscopy setup. Phase-sensitive detection of the generated signal, coupled with a simple model of the collagen protein structures, allows us to measure a parameter (gamma) related to nonlinear susceptibility and to determine the relative orientation of the structures. Our preliminary results indicate that it may be possible to use this parameter to characterize the structure.
Energy Technology Data Exchange (ETDEWEB)
Stoller, P; Kim, B-M; Rubenchik, A M; Reiser, K M; Da Silva, L B
2001-03-03
The measurement of the second order nonlinear susceptibility of collagen in various biological tissues has potential applications in the detection of structural changes which are related to different pathological conditions. We investigate second harmonic generation in rat-tail tendon, a highly organized collagen structure consisting of parallel fibers. Using an electro-optic modulator and a quarter-wave plate, we modulate the linear polarization of an ultra-short pulse laser beam that is used to measure second harmonic generation (SHG) in a confocal microscopy setup. Phase-sensitive detection of the generated signal, coupled with a simple model of the collagen protein structures, allows us to measure a parameter {gamma} related to nonlinear susceptibility and to determine the relative orientation of the structures. Our preliminary results indicate that it may be possible to use this parameter to characterize the structure.
Energy Technology Data Exchange (ETDEWEB)
Nariyuki, Y. [Faculty of Human Development, University of Toyama, 3190, Toyama City, Toyama 930-8555 (Japan); Hada, T. [Department of Earth System Science and Technology, Kyushu University, 6-1, Kasuga City, Fukuoka 816-8580 (Japan); Tsubouchi, K., E-mail: nariyuki@edu.u-toyama.ac.jp [Graduate School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)
2014-10-01
The damping process of field-aligned, low-frequency right-handed polarized nonlinear Alfvén waves (NAWs) in solar wind plasmas with and without proton beams is studied by using a two-dimensional ion hybrid code. The numerical results show that the obliquely propagating kinetic Alfvén waves (KAWs) excited by beam protons affect the damping of the low-frequency NAW in low beta plasmas, while the nonlinear wave-wave interaction between parallel propagating waves and nonlinear Landau damping due to the envelope modulation are the dominant damping process in high beta plasmas. The nonlinear interaction between the NAWs and KAWs does not cause effective energy transfer to the perpendicular direction. Numerical results suggest that while the collisionless damping due to the compressibility of the envelope-modulated NAW plays an important role in the damping of the field-aligned NAW, the effect of the beam instabilities may not be negligible in low beta solar wind plasmas.
Wang, Meiyu; Yan, Fengli; Gao, Ting
2017-08-01
We present a new scheme to provide an arbitrary four-photon polarization-entangled state, which enables the encoding of single logical qubit information into a four-qubit decoherence-free subspace robustly against collective decoherence. With the assistance of the cross-Kerr nonlinearities, a spatial entanglement gate and a polarization entanglement gate are inserted into the circuit, where the X-quadrature homodyne measurement is properly performed. According to the outcomes of homodyne measurement in the spatial entanglement process, some swap gates are inserted into the corresponding paths of the photons to swap their spatial modes. Apart from Kerr media, some basic linear optical elements are necessary, which make it feasible with current experimental techniques.
Ema, S. A.; Hossen, M. R.; Mamun, A. A.
2016-04-01
The nonlinear propagation of ion-acoustic (IA) waves in a strongly coupled plasma system containing Maxwellian electrons and nonthermal ions has been theoretically and numerically investigated. The well-known reductive perturbation technique is used to derive both the Burgers and Korteweg-de Vries (KdV) equations. Their shock and solitary wave solutions have also been numerically analyzed in understanding localized electrostatic disturbances. It has been observed that the basic features (viz. polarity, amplitude, width, etc.) of IA waves are significantly modified by the effect of polarization force and other plasma parameters (e.g., the electron-to-ion number density ratio and ion-to-electron temperature ratio). This is a unique finding among all theoretical investigations made before, whose probable implications are discussed in this investigation. The implications of the results obtained from this investigation may be useful in understanding the wave propagation in both space and laboratory plasmas.
Nonlinear evolution of mirror instability in the Earth's magnetosheath in pic simulations
Ahmadi, Narges
Mirror modes are large amplitude non-propagating structures frequently observed in the magnetosheath and they are generated in space plasma environments with proton temperature anisotropy of larger than one. The proton temperature anisotropy also drives the proton cyclotron instability which has larger linear growth rate than that of the mirror instability. Linear dispersion theory predicts that electron temperature anisotropy can enhance the mirror instability growth rate while leaving the proton cyclotron instability largely unaffected. Contrary to the hypothesis, electron temperature anisotropy leads to excitement of the electron whistler instability. Our results show that the electron whistler instability grows much faster than the mirror instability and quickly consumes the electron free energy, so that there is not enough electron temperature anisotropy left to significantly impact the evolution of the mirror instability. Observational studies have shown that the shape of mirror structures is related to local plasma parameters and distance to the mirror instability threshold. Mirror structures in the form of magnetic holes are observed when plasma is mirror stable or marginally mirror unstable and magnetic peaks are observed when plasma is mirror unstable. Mirror structures are created downstream of the quasi-perpendicular bow shock and they are convected toward the magnetopause. In the middle magnetosheath, where plasma is mirror unstable, mirror structures are dominated by magnetic peaks. Close to the magnetopause, plasma expansion makes the region mirror stable and magnetic peaks evolve to magnetic holes. We investigate the nonlinear evolution of mirror instability using expanding box Particle-in-Cell simulations. We change the plasma conditions by artificially enlarging the simulation box over time to make the plasma mirror stable and investigate the final nonlinear state of the mirror structures. We show that the direct nonlinear evolution of the mirror
Loures, Cristian Redondo; Biancalana, Fabio
2014-01-01
We study the influence of third-harmonic generation (THG) and negative frequency polarization terms in the self-phase modulation (SPM) of short and intense pulses in Kerr media. We find that THG induces additional symmetric lobes in the SPM process. The amplitude of these new sidebands are greatly enhanced by the contributions of the negative frequency Kerr (NFK) term and the shock operator. We compare our theoretical predictions based on the analytical nonlinear phase with simulations carried out by using the full unidirectional pulse propagation equation (UPPE).
A New Generalization of Extended Tanh-Function Method for Solving Nonlinear Evolution Equations
Institute of Scientific and Technical Information of China (English)
ZHENG Xue-Dong; CHEN Yong; LI Biao; ZHANG Hong-Qing
2003-01-01
Making use of a new generalized ansatze and a proper transformation, we generalized the extended tanh-function method. Applying the generalized method with the aid of Maple, we consider some nonlinear evolution equations.As a result, we can successfully recover the previously known solitary wave solutions that had been found by the extendedtanh-function method and other more sophisticated methods. More importantly, for some equations, we also obtain othernew and more general solutions at the same time. The results include kink-profile solitary-wave solutions, bell-profilesolitary-wave solutions, periodic wave solutions, rational solutions, singular solutions and new formal solutions.
Traveling wave solutions of nonlinear evolution equations via the enhanced (G′/G-expansion method
Directory of Open Access Journals (Sweden)
Kamruzzaman Khan
2014-07-01
Full Text Available In this article, an enhanced (G′/G-expansion method is suggested to find the traveling wave solutions for the modified Korteweg de-Vries (mKDV equation. Abundant traveling wave solutions are derived, which are expressed by the hyperbolic and trigonometric functions involving several parameters. The efficiency of this method for finding these exact solutions has been demonstrated. It is shown that the proposed method is effective and can be used for many other nonlinear evolution equations (NLEEs in mathematical physics.
Infinitely-many conservation laws for two (2+1)-dimensional nonlinear evolution equations in fluids
Indian Academy of Sciences (India)
Yan Jiang; Bo Tian; Pan Wang; Kun Su
2014-07-01
In this paper, a method that can be used to construct the infinitely-many conservation laws with the Lax pair is generalized from the (1+1)-dimensional nonlinear evolution equations (NLEEs) to the (2+1)-dimensional ones. Besides, we apply that method to the Kadomtsev– Petviashvili (KP) and Davey–Stewartson equations in fluids, and respectively obtain their infinitelymany conservation laws with symbolic computation. Based on that method, we can also construct the infinitely-many conservation laws for other multidimensional NLEEs possessing the Lax pairs, including the cylindrical KP, modified KP and (2+1)-dimensional Gardner equations, in fluids, plasmas, optical fibres and Bose–Einstein condensates.
Time-evolution of quantum systems via a complex nonlinear Riccati equation. II. Dissipative systems
Cruz, Hans; Schuch, Dieter; Castaños, Octavio; Rosas-Ortiz, Oscar
2016-10-01
In our former contribution (Cruz et al., 2015), we have shown the sensitivity to the choice of initial conditions in the evolution of Gaussian wave packets via the nonlinear Riccati equation. The formalism developed in the previous work is extended to effective approaches for the description of dissipative quantum systems. By means of simple examples we show the effects of the environment on the quantum uncertainties, correlation function, quantum energy contribution and tunnelling currents. We prove that the environmental parameter γ is strongly related with the sensitivity to the choice of initial conditions.
Differential Evolution-Based PID Control of Nonlinear Full-Car Electrohydraulic Suspensions
Directory of Open Access Journals (Sweden)
Jimoh O. Pedro
2013-01-01
Full Text Available This paper presents a differential-evolution- (DE- optimized, independent multiloop proportional-integral-derivative (PID controller design for full-car nonlinear, electrohydraulic suspension systems. The multiloop PID control stabilises the actuator via force feedback and also improves the system performance. Controller gains are computed using manual tuning and through DE optimization to minimise a performance index, which addresses suspension travel, road holding, vehicle handling, ride comfort, and power consumption constraints. Simulation results showed superior performance of the DE-optimized PID-controlled active vehicle suspension system (AVSS over the manually tuned PID-controlled AVSS and the passive vehicle suspension system (PVSS.
A THIRD-ORDER BOUSSINESQ MODEL APPLIED TO NONLINEAR EVOLUTION OF SHALLOW-WATER WAVES
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The conventional Boussinesq model is extended to the third order in dispersion and nonlinearity. The new equations are shown to possess better linear dispersion characteristics. For the evolution of periodic waves over a constant depth, the computed wave envelops are spatially aperiodic and skew. The model is then applied to the study of wave focusing by a topographical lens and the results are compared with Whalin's (1971) experimental data as well as some previous results from the conventional Boussinesq model. Encouragingly, improved agreement with Whalin's experimental data is found.
TRAVELLING WAVE SOLUTIONS OF NONLINEAR EVOLUTION EQUATIONS BY USING SYMBOLIC COMPUTATION
Institute of Scientific and Technical Information of China (English)
FanEngui
2001-01-01
Abstract. A Riccati equation involving a parameter and symbolic computation are used to uni-formly construct the different forms of travelling wave solutions for nonlinear evolution equa-tions. It is shown that the sign of the parameter can be applied in judging the existence of vari-ous forms of travelling wave solutions. An efficiency of this method is demonstrated on some e-quations,which include Burgers-Huxley equation,Caudrey-Dodd-Gibbon-Kawada equation,gen-eralized Benjamin-Bona-Mahony equation and generalized Fisher equation.
Approximated Lax pairs for the reduced order integration of nonlinear evolution equations
Gerbeau, Jean-Frédéric; Lombardi, Damiano
2014-05-01
A reduced-order model algorithm, called ALP, is proposed to solve nonlinear evolution partial differential equations. It is based on approximations of generalized Lax pairs. Contrary to other reduced-order methods, like Proper Orthogonal Decomposition, the basis on which the solution is searched for evolves in time according to a dynamics specific to the problem. It is therefore well-suited to solving problems with progressive front or wave propagation. Another difference with other reduced-order methods is that it is not based on an off-line/on-line strategy. Numerical examples are shown for the linear advection, KdV and FKPP equations, in one and two dimensions.
Canonical structure of evolution equations with non-linear dispersive terms
Indian Academy of Sciences (India)
B Talukdar; J Shamanna; S Ghosh
2003-07-01
The inverse problem of the variational calculus for evolution equations characterized by non-linear dispersive terms is analysed with a view to clarify why such a system does not follow from Lagrangians. Conditions are derived under which one could construct similar equations which admit a Lagrangian representation. It is shown that the system of equations thus obtained can be Hamiltonized by making use of the Dirac’s theory of constraints. The speciﬁc results presented refer to the third- and ﬁfth-order equations of the so-called distinguished subclass.
Directory of Open Access Journals (Sweden)
Heung-Ryoul Noh
2016-03-01
Full Text Available We present an analytical calculation of temporal evolution of populations for optically pumped atoms under the influence of weak, circularly polarized light. The differential equations for the populations of magnetic sublevels in the excited state, derived from rate equations, are expressed in the form of inhomogeneous second-order differential equations with constant coefficients. We present a general method of analytically solving these differential equations, and obtain explicit analytical forms of the populations of the ground state at the lowest order in the saturation parameter. The obtained populations can be used to calculate lineshapes in various laser spectroscopies, considering transit time relaxation.
The Evolution of Unpolarized and Polarized Structure Functions at small $x$
Blümlein, Johannes; Vogt, A
1996-01-01
A survey is given of recent developments on the resummed small-$x$ evol= ution, in a framework based on the renormalization group equation, of non--singl= et and singlet structure functions in both unpolarized and polarized deep--inela= stic scattering. The available resummed anomalous dimensions are discussed for= all these cases, and the most important analytic and numerical results are compiled. The quantitative effects of these small-$x$ resummations on the evolution of the various parton densities and structure functions are presented, and their present uncertainties are investigated. An applicati= on to QED radiative corrections is given.
Annenkov, Sergei; Shrira, Victor
2016-04-01
We study numerically the long-term evolution of water wave spectra without wind forcing, using three different models, aiming at understanding the role of different sets of assumptions. The first model is the classical Hasselmann kinetic equation (KE). We employ the WRT code kindly provided by G. van Vledder. Two other models are new. As the second model, we use the generalised kinetic equation (gKE), derived without the assumption of quasi-stationarity. Thus, unlike the KE, the gKE is valid in the cases when a wave spectrum is changing rapidly (e.g. at the initial stage of evolution of a narrow spectrum). However, the gKE employs the same statistical closure as the KE. The third model is based on the Zakharov integrodifferential equation for water waves and does not depend on any statistical assumptions. Since the Zakharov equation plays the role of the primitive equation of the theory of wave turbulence, we refer to this model as direct numerical simulation of spectral evolution (DNS-ZE). For initial conditions, we choose two narrow-banded spectra with the same frequency distribution (a JONSWAP spectrum with high peakedness γ = 6) and different degrees of directionality. These spectra are from the set of observations collected in a directional wave tank by Onorato et al (2009). Spectrum A is very narrow in angle (corresponding to N = 840 in the cosN directional model). Spectrum B is initially wider in angle (corresponds to N = 24). Short-term evolution of both spectra (O(102) wave periods) has been studied numerically by Xiao et al (2013) using two other approaches (broad-band modified nonlinear Schrödinger equation and direct numerical simulation based on the high-order spectral method). We use these results to verify the initial stage of our DNS-ZE simulations. However, the advantage of the DNS-ZE method is that it allows to study long-term spectral evolution (up to O(104) periods), which was previously possible only with the KE. In the short-term evolution
Spin Evolution of Accreting Neutron Stars: Nonlinear Development of the R-mode Instability
Bondarescu, Ruxandra; Wasserman, Ira
2007-01-01
The nonlinear saturation of the r-mode instability and its effects on the spin evolution of Low Mass X-ray Binaries (LMXBs) are modeled using the triplet of modes at the lowest parametric instability threshold. We solve numerically the coupled equations for the three mode amplitudes in conjunction with the spin and temperature evolution equations. We observe that very quickly the mode amplitudes settle into quasi-stationary states. Once these states are reached, the mode amplitudes can be found algebraically and the system of equations is reduced from eight to two equations: spin and temperature evolution. Eventually, the system may reach thermal equilibrium and either (1) undergo a cyclic evolution with a frequency change of at most 10%, (2) evolve toward a full equilibrium state in which the accretion torque balances the gravitational radiation emission, or (3) enter a thermogravitational runaway on a very long timescale of about $10^6$ years. Alternatively, a faster thermal runaway (timescale of about 100 ...
Nonlinear dust acoustic waves with polarization force effects in Kappa distribution plasma
Chen, Hui; Zhou, Suyun; Luo, Rongxiang; Liu, Sanqiu
2017-01-01
The propagation characteristics of dust acoustic solitary waves (DASWs) in dusty plasmas with the effects of polarization force and superthermal ions are studied. First, the polarization force induced by superthermal ions is obtained. It is shown that the superthermality of background ions affect the Debye screening of dust grains as well as the polarization force significantly. Then for small amplitude solitary waves, the KdV equation is obtained by applying the reductive perturbation technique. And for the arbitrary amplitude solitary waves, the Sagdeev potential method is employed and the Sagdeev potential is analyzed. In both case, the effects of the polarization force associated the ions’ superthermality on the characteristic of the DASWs are analyzed.
Grammatical Immune System Evolution for Reverse Engineering Nonlinear Dynamic Bayesian Models
Directory of Open Access Journals (Sweden)
B.A. McKinney
2008-01-01
Full Text Available An artificial immune system algorithm is introduced in which nonlinear dynamic models are evolved to ﬁ t time series of interacting biomolecules. This grammar-based machine learning method learns the structure and parameters of the underlying dynamic model. In silico immunogenetic mechanisms for the generation of model-structure diversity are implemented with the aid of a grammar, which also enforces semantic constraints of the evolved models. The grammar acts as a DNA repair polymerase that can identify recombination and hypermutation signals in the antibody (model genome. These signals contain information interpretable by the grammar to maintain model context. Grammatical Immune System Evolution (GISE is applied to a nonlinear system identification problem in which a generalized (nonlinear dynamic Bayesian model is evolved to ﬁ t biologically motivated artificial time-series data. From experimental data, we use GISE to infer an improved kinetic model for the oxidative metabolism of 17β-estradiol (E2, the parent hormone of the estrogen metabolism pathway.
Nonlinear evolution characteristics of the climate system on the interdecadal-centennial timescale
Institute of Scientific and Technical Information of China (English)
Gao Xin-Quan; Zhang Wen
2005-01-01
To better understand the physical mechanism of the climate change on interdecadal-centennial timescale, this paper focuses on analysing and modelling the evolution characteristics of the climate change. The method of wavelet transform is used to pick out the interdecadal timescale oscillations from long-term instrumental observations, natural proxy records, and modelling series. The modelling series derived from the most simplified nonlinear climatic model are used to identify whether modifications are concerned with some forcings such as the solar radiation on the climate system. The results show that two major oscillations exist in various observations and model series, namely the 2030a and the 60-70a timescale respectively, and these quasi-periodicities are modulated with time. Further, modelling results suggest that the originations of these oscillations are not directly linked with the periodic variation of solar radiations such as the 1-year cycle, the 11-year cycle, and others, but possibly induced by the internal nonlinear effects of the climate system. It seems that the future study on the genesis of the climate change with interdecadal-centennial timescale should focus on the internal nonlinear dynamics in the climate system.
Hornsby, William A; Buchholz, Rico; Grosshauser, Stefan; Weikl, Arne; Zarzoso, David; Casson, Francis J; Poli, Emanuele; Peeters, Artur G
2015-01-01
The non-linear evolution of a magnetic island is studied using the Vlasov gyro-kinetic code GKW. The interaction of electromagnetic turbulence with a self-consistently growing magnetic island, generated by a tearing unstable $\\Delta' > 0$ current profile, is considered. The turbulence is able to seed the magnetic island and bypass the linear growth phase by generating structures that are approximately an ion gyro-radius in width. The non-linear evolution of the island width and its rotation frequency, after this seeding phase, is found to be modified and is dependent on the value of the plasma beta and equilibrium pressure gradients. At low values of beta the island evolves largely independent of the turbulence, while at higher values the interaction has a dramatic effect on island growth, causing the island to grow exponentially at the growth rate of its linear phase, even though the island is larger than linear theory validity. The turbulence forces the island to rotate in the ion-diamagnetic direction as o...
Ryu, D; Frank, A I; Ryu, Dongsu; Frank, Adam
2000-01-01
We investigate through high resolution 3D simulations the nonlinear evolution of compressible magnetohydrodynamic flows subject to the Kelvin-Helmholtz instability. We confirm in 3D flows the conclusion from our 2D work that even apparently weak magnetic fields embedded in Kelvin-Helmholtz unstable plasma flows can be fundamentally important to nonlinear evolution of the instability. In fact, that statement is strengthened in 3D by this work, because it shows how field line bundles can be stretched and twisted in 3D as the quasi-2D Cat's Eye vortex forms out of the hydrodynamical motions. In our simulations twisting of the field may increase the maximum field strength by more than a factor of two over the 2D effect. If, by these developments, the Alfv\\'en Mach number of flows around the Cat's Eye drops to unity or less, our simulations suggest magnetic stresses will eventually destroy the Cat's Eye and cause the plasma flow to self-organize into a relatively smooth and apparently stable flow that retains memo...
Application of the green function formalism to nonlinear evolution of the low gain FEL oscillator
Energy Technology Data Exchange (ETDEWEB)
Shvets, G. [Princeton Plasma Physics Lab., NJ (United States); Wurtele, J.S.; Gardent, D. [Massachusetts Institute of Technology, Cambridge, MA (United States)] [and others
1995-12-31
A matrix formalism for the optical pulse evolution in the frequency domain, is applied to the nonlinear regime of operation. The formalism was previously developed for studies of the linear evolution of the low-gain FEL oscillator with an arbitrary shape of the electron beam. By varying experimentally controllable parameters, such as cavity detunning and cavity losses, different regimes of operation of the FEL oscillator, such as a steady state saturation and limit cycle saturation, are studied numerically. It is demonstrated that the linear supermodes, numerically obtained from the matrix formalism, provide an appropriate framework for analyzing the periodic change in the output power in the limit cycle regime. The frequency of this oscillation is related to the frequencies of the lowest-order linear supermodes. The response of the output radiation to periodic variation of the electron energy is studied. It is found that the response is enhanced when the frequency of the energy variation corresponds to the difference of per-pass phase advances of the lowest linear supermodes. Finally, various nonlinear models are tested to capture the steady state saturation and limit cycle variation of the EM field in the oscillator cavity.
Nonlinear evolution of cosmic magnetic fields and cosmic microwave background anisotropies
Tashiro, Hiroyuki; Sugiyama, Naoshi; Banerjee, Robi
2006-01-01
In this work we investigate the effects of primordial magnetic fields on cosmic microwave background anisotropies (CMB). Based on cosmological magneto-hydro dynamic (MHD) simulations [R. Banerjee and K. Jedamzik, Phys. Rev. DPRVDAQ0556-2821 70, 123003 (2004).10.1103/PhysRevD.70.123003] we calculate the CMB anisotropy spectra and polarization induced by fluid fluctuations (Alfvén modes) generated by primordial magnetic fields. The strongest effect on the CMB spectra comes from the transition epoch from a turbulent regime to a viscous regime. The balance between magnetic and kinetic energy until the onset of the viscous regime provides a one to one relation between the comoving coherence length L and the comoving magnetic field strength B, such as L˜30(B/10-9Gauss)3pc. The resulting CMB temperature and polarization anisotropies for the initial power law index of the magnetic fields n>3/2 are somewhat different from the ones previously obtained by using linear perturbation theory. In particular, differences can appear on intermediate scales l20000. On scales l0.7Mpc for the most extreme case, or B0.8Mpc for the most conservative case. We may also expect higher signals on large scales of the polarization spectra compared to linear calculations. The signal may even exceed the B-mode polarization from gravitational lensing depending on the strength of the primordial magnetic fields. On very small scales, the diffusion damping scale of nonlinear calculations turns out to be much smaller than the one of linear calculations if the comoving magnetic field strength B>16nGauss. If the magnetic field strength is smaller, the diffusion scales become smaller too. Therefore we expect to have both, temperature and polarization anisotropies, even beyond l>10000 regardless of the strength of the magnetic fields. The peak values of the temperature anisotropy and the B-mode polarization spectra are approximately 40μK and a few μK, respectively.
Evolution of microwave limb sounder ozone and the polar vortex during winter
Manney, G. L.; Froidevaux, L.; Waters, J. W.; Zurek, R. W.
1995-01-01
The evolution of polar ozone observed by the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) is described for the northern hemisphere (NH) winters of 1991/1992, 1992/1993, and 1993/1994 and the southern hemisphere (SH) winters of 1992 and 1993. Imterannual and interhemispheric variability in polar ozone evolution are closely related to differences in the polar vortex and to the frequency, duration and strength of stratospheric sudden warmings. Ozone in the midstratospheric vortices increases during the winter, with largest increases associated with stratospheric warmings and a much larger increase in the NH than in the SH. A smaller NH increase was observed in 1993/1994, when the middle stratospheric vortex was stronger. During strong stratospheric warmings in the NH, the upper stratospheric vortex may be so much eroded that it presents little barrier to poleward transport; in contrast, the SH vortex remains strong throughout the stratosphere during wintertime warmings, and ozone increases only below the mixing ratio peak, due to enhanced diabatic descent. Ozone mixing ratios decrease rapidly in the lower stratosphere in both SH late winters, as expected from chemical destruction due to enhanced reactive chlorine. The interplay between dynamics and chemistry is more complex in the NH lower stratosphere and interannual variability is greater. Evidence has previously been shown for chemical ozone destruction in the 1991/1992 and 1992/1993 winters. We show here evidence suggesting some chemical destruction in late February and early March 1994. In the NH late winter lower stratosphere the pattern of high-ozone values (typical of the vortex) seen in mid-latitudes is related to the strength of the lower-stratospheric vortex, with the largest areal extent of high ozone outside the vortex in 1994, when the lower stratospheric vortex is relatively weak, and the least extent in 1993 when the lower stratospheric vortex is strongest.
2014-12-18
300.6420) Spectroscopy, nonlinear; (190.3270) Kerr effect; (320.7110) Ultrafast nonlinear optics. http://dx.doi.org/10.1364/ OPTICA .1.000436 1...10$15/0$15.00 © 2014 Optical Society of America Research Article Vol. 1, No. 6 / December 2014 / Optica 436 Report Documentation Page Form ApprovedOMB...described by rd t Cd 1 − e− t τr;d e − tτf ;dΘt ; (5) Research Article Vol. 1, No. 6 / December 2014 / Optica 437 where the subscript d
Self-similar solutions for some nonlinear evolution equations: KdV, mKdV and Burgers equations
Directory of Open Access Journals (Sweden)
S.A. El-Wakil
2016-02-01
Full Text Available A method for solving three types of nonlinear evolution equations namely KdV, modified KdV and Burgers equations, with self-similar solutions is presented. The method employs ideas from symmetry reduction to space and time variables and similarity reductions for nonlinear evolution equations are performed. The obtained self-similar solutions of KdV and mKdV equations are related to Bessel and Airy functions whereas those of Burgers equation are related to the error and Hermite functions. These solutions appear as new types of solitary, shock and periodic waves. Also, the method can be applied to other nonlinear evolution equations in mathematical physics.
Portyankina, Ganna; Pommerol, Antoine; Aye, Klaus-Michael; Hansen, Candice J.; Thomas, Nicolas
2013-08-01
We present an overview of our analyses of HiRISE observations of spring evolution of selected dune areas of the north polar erg. The north polar erg is covered annually by seasonal volatile ice layer, a mixture of CO2 and H2O with mineral dust contamination. In spring, this layer sublimes creating visually enigmatic phenomena, e.g. dark and bright fan-shaped deposits, dark-bright-dark bandings, dark down-slope streaks, and seasonal polygonal cracks. Similar phenomena in southern polar areas are believed to be related to the specific process of solid-state greenhouse effect. In the north, it is currently unclear if the solid-state greenhouse effect is able to explain all the observed phenomena especially because the increased influence of H2O on the time scales of this process has not yet been quantified. HiRISE observations of our selected locations show that the ground exhibits a temporal behaviour similar to the one observed in the southern polar areas: a brightening phase starting close to the spring equinox with a subsequent darkening towards summer solstice. The resolution of HiRISE enabled us to study dunes and substrate individually and even distinguish between different developments on windward and slip face sides of single dunes. Differences in the seasonal evolution between steep slip faces and flatter substrate and windward sides of dunes have been identified and compared to CRISM data of CO2 and H2O distributions on dunes. We also observe small scale dark blotches that appear in early observations and tend to sustain a low reflectivity throughout the spring. These blotches can be regarded as the analogue of dark fan deposits in southern polar areas, leading us to the conclusion that both martian polar areas follow similar spring evolutions.
Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas
Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.
1997-01-01
We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.
Energy Technology Data Exchange (ETDEWEB)
Gao, Tao [Fundamental Science on EHF Laboratory, University of Electronic Science and Technology of China (UESTC), Chengdu 611731 (China); Science and Technology on Monolithic Integrated Circuits and Modules Laboratory, Nanjing Electronic Devices Institute, Nanjing 210016 (China); Xu, Ruimin [Fundamental Science on EHF Laboratory, University of Electronic Science and Technology of China (UESTC), Chengdu 611731 (China); Kong, Yuechan, E-mail: kycfly@163.com; Zhou, Jianjun; Kong, Cen; Dong, Xun; Chen, Tangsheng [Science and Technology on Monolithic Integrated Circuits and Modules Laboratory, Nanjing Electronic Devices Institute, Nanjing 210016 (China)
2015-06-15
We demonstrate highly improved linearity in a nonlinear ferroelectric of Pb(Zr{sub 0.52}Ti{sub 0.48})-gated AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor (MIS-HEMT). Distinct double-hump feature in the transconductance-gate voltage (g{sub m}-V{sub g}) curve is observed, yielding remarkable enhancement in gate voltage swing as compared to MIS-HEMT with conventional linear gate dielectric. By incorporating the ferroelectric polarization into a self-consistent calculation, it is disclosed that in addition to the common hump corresponding to the onset of electron accumulation, the second hump at high current level is originated from the nonlinear polar nature of ferroelectric, which enhances the gate capacitance by increasing equivalent dielectric constant nonlinearly. This work paves a way for design of high linearity GaN MIS-HEMT by exploiting the nonlinear properties of dielectric.
Non-linear power law approach for spatial and temporal pattern analysis of salt marsh evolution
Taramelli, A.; Cornacchia, L.; Valentini, E.; Bozzeda, F.
2013-11-01
Many complex systems on the Earth surface show non-equilibrium fluctuations, often determining the spontaneous evolution towards a critical state. In this context salt marshes are characterized by complex patterns both in geomorphological and ecological features, which often appear to be strongly correlated. A striking feature in salt marshes is vegetation distribution, which can self-organize in patterns over time and space. Self-organized patchiness of vegetation can often give rise to power law relationships in the frequency distribution of patch sizes. In cases where the whole distribution does not follow a power law, the variance of scale in its tail may often be disregarded. To this end, the research aims at how changes in the main climatic and hydrodynamic variables may influence such non-linearity, and how numerical thresholds can describe this. Since it would be difficult to simultaneously monitor the presence and typology of vegetation and channel sinuosity through in situ data, and even harder to analyze them over medium to large time-space scales, remote sensing offers the ability to analyze the scale invariance of patchiness distributions. Here, we focus on a densely vegetated and channelized salt marsh (Scheldt estuary Belgium-the Netherlands) by means of the sub-pixel analysis on satellite images to calculate the non-linearity in the values of the power law exponents due to the variance of scale. The deviation from power laws represents stochastic conditions under climate drivers that can be hybridized on the basis of a fuzzy Bayesian generative algorithm. The results show that the hybrid approach is able to simulate the non-linearity inherent to the system and clearly show the existence of a link between the autocorrelation level of the target variable (i.e. size of vegetation patches), due to its self-organization properties, and the influence exerted on it by the external drivers (i.e. climate and hydrology). Considering the results of the
Evolution and Regularisation of Vacuum Brill Gravitational Waves in Spherical Polar Coordinates
Masterson, Andrew
2014-01-01
In this thesis the universal collapse of vacuum Brill waves is demonstrated numerically and analytically. This thesis presents the mathematical and numerical methods necessary to regularise and evolve Brill Gravitational Waves in spherical polar coordinates. A Cauchy ADM formulation is used for the time evolution. We find strong evidence that all IVP formulations of pure vacuum Brill gravitational waves collapse to form singularities/black holes, and we do not observe critical black hole mass scaling phenomena in the IVP parameter phase space that has been characterised in non-vacuum systems. A theoretical framework to prove this result analytically is presented. We discuss the meaning of Brill metric variables, the topology of trapped surfaces for various scenarios, and verify other results in the field related to critical values of initial value parameters and black hole formation approaching spatial infinity. The instability of Minkowski (flat) space under Brill wave and more general perturbations is demon...
DEFF Research Database (Denmark)
Nielsen, Søren R. K.; Peng, Yongbo; Sichani, Mahdi Teimouri
2016-01-01
The paper deals with the response and reliability analysis of hysteretic or geometric nonlinear uncertain dynamical systems of arbitrary dimensionality driven by stochastic processes. The approach is based on the probability density evolution method proposed by Li and Chen (Stochastic dynamics...... of structures, 1st edn. Wiley, London, 2009; Probab Eng Mech 20(1):33–44, 2005), which circumvents the dimensional curse of traditional methods for the determination of non-stationary probability densities based on Markov process assumptions and the numerical solution of the related Fokker–Planck and Kolmogorov......–Feller equations. The main obstacle of the method is that a multi-dimensional convolution integral needs to be carried out over the sample space of a set of basic random variables, for which reason the number of these need to be relatively low. In order to handle this problem an approach is suggested, which...
Holzwarth, V R
2003-01-01
Observations of magnetically active close binaries with orbital periods of a few days reveal the existence of starspots at preferred longitudes (with respect to the direction of the companion star). We numerically investigate the non-linear dynamics and evolution of magnetic flux tubes in the convection zoneof a fast-rotating component of a close binary system and explore whether the tidal effects are able to generate non-uniformities in the surface distribution of erupting flux tubes. Assuming a synchronised system with a rotation period of two days and consisting of two solar-type components, both the tidal force and the deviation of the stellar structure from spherical shape are considered in lowest-order perturbation theory. The magnetic field is initially stored in the form of toroidal magnetic flux rings within the stably stratified overshoot region beneath the convection zone. Once the field has grown sufficiently strong, instabilities initiate the formation of rising flux loops, which rise through the...
Instability of wormholes supported by a ghost scalar field: II. Nonlinear evolution
Energy Technology Data Exchange (ETDEWEB)
Gonzalez, J A; Guzman, F S; Sarbach, O [Instituto de Fisica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio C-3, Cd. Universitaria, A P 2-82, 58040 Morelia, Michoacan (Mexico)
2009-01-07
We analyze the nonlinear evolution of spherically symmetric wormhole solutions coupled to a massless ghost scalar field using numerical methods. In a previous article, we have shown that static wormholes with these properties are unstable with respect to linear perturbations. Here, we show that depending on the initial perturbation the wormholes either expand or decay to a Schwarzschild black hole. We estimate the time scale of the expanding solutions and those collapsing to a black hole, and show that they are consistent in the regime of small perturbations with those predicted from perturbation theory. In the collapsing case, we also present a systematic study of the final black hole horizon and discuss the possibility for a luminous signal to travel from one universe to the other and back before the black hole forms. In the expanding case, the wormholes seem to undergo an exponential expansion, at least during the run time of our simulations.
Michaelian, Karo
2013-01-01
The most important thermodynamic work performed by life today is the dissipation of the solar photon flux into heat through organic pigments in water. From this thermodynamic perspective, biological evolution is thus just the dispersal of organic pigments and water throughout Earth's surface, while adjusting the gases of Earth's atmosphere to allow the most intense part of the solar spectrum to penetrate the atmosphere and reach the surface to be intercepted by these pigments. The covalent bonding of atoms in organic pigments provides excited levels compatible with the energies of these photons. Internal conversion through vibrational relaxation to the ground state of these excited molecules when in water leads to rapid dissipation of the solar photons into heat, and this is the major source of entropy production on Earth. A non-linear irreversible thermodynamic analysis shows that the proliferation of organic pigments on Earth is a direct consequence of the pigments catalytic properties in dissipating the so...
Gubarkova, Ekaterina V.; Kirillin, Mikhail Yu.; Dudenkova, Varvara V.; Timashev, Peter S.; Kotova, Svetlana L.; Kiseleva, Elena B.; Timofeeva, Lidia B.; Belkova, Galina V.; Solovieva, Anna B.; Moiseev, Alexander A.; Gelikonov, Gregory V.; Fiks, Ilya I.; Feldchtein, Felix I.; Gladkova, Natalia D.
2016-12-01
A combination of approaches to the image analysis in cross-polarization optical coherence tomography (CP OCT) and high-resolution imaging by nonlinear microscopy and atomic force microscopy (AFM) at the different stages of atherosclerotic plaque development is studied. This combination allowed us to qualitatively and quantitatively assess the disorganization of collagen in the atherosclerotic arterial tissue (reduction and increase of CP backscatter), at the fiber (change of the geometric distribution of fibers in the second-harmonic generation microscopy images) and fibrillar (violation of packing and different nature of a basket-weave network of fibrils in the AFM images) organization levels. The calculated CP channel-related parameters are shown to have a statistically significant difference between stable and unstable (also called vulnerable) plaques, and hence, CP OCT could be a potentially powerful, minimally invasive method for vulnerable plaques detection.
Tectonic and petrologic evolution of the Western Mediterranean: the double polarity subduction model
Melchiorre, Massimiliano; Vergés, Jaume; Fernàndez, Manel; Torné, Montserrat; Casciello, Emilio
2016-04-01
The geochemical composition of the mantle beneath the Mediterranean area is extremely heterogeneous. This feature results in volcanic products whose geochemical features in some cases do not correspond to the geodynamic environment in which they are sampled and that is observed at present day. The subduction-related models that have been developed during the last decades to explain the evolution of the Western Mediterranean are mainly based on geologic and seismologic evidences, as well as petrography and age of exhumation of the metamorphic units that compose the inner parts of the different arcs. Except few cases, most of these models are poorly constrained from a petrologic point of view. Usually the volcanic activity that affected the Mediterranean area since Oligocene has been only used as a corollary, and not as a key constrain. This choice is strictly related to the great geochemical variability of the volcanic products erupted in the Western Mediterranean, due to events of long-term recycling affecting the mantle beneath the Mediterranean since the Variscan Orogeny, together with depletion episodes due to partial melting. We consider an evolutionary scenario for the Western Mediterranean based on a double polarity subduction model according to which two opposite slabs separated by a transform fault of the original Jurassic rift operated beneath the Western and Central Mediterranean. Our aim has been to reconstruct the evolution of the Western Mediterranean since the Oligocene considering the volcanic activity that affected this area since ~30 Ma and supporting the double polarity subduction model with the petrology of the erupted rocks.
Nonlinear evolution of subsonic and supersonic disturbances on a compressible free shear layer
Leib, S. J.
1991-01-01
The effects of a nonlinear-nonequilibrium-viscous critical layer on the spatial evolution of subsonic and supersonic instability modes on a compressible free shear layer is considered. It is shown that the instability wave amplitude is governed by an integrodifferential equation with cubic-type nonlinearity. Numerical and asymptotic solutions to this equation show that the amplitude either ends in a singularity at a finite downstream distance or reaches an equilibrium value, depending on the Prandtl number, viscosity law, viscous parameter and a real parameter which is determined by the linear inviscid stability theory. A necessary condition for the existence of the equilibrium solution is derived, and whether or not this condition is met is determined numerically for a wide range of physical parameters including both subsonic and supersonic disturbances. it is found that no equilibrium solution exists for the subsonic modes unless the temperature ratio of the low-to-high-speed streams exceeds a critical value, while equilibrium solutions for the most rapidly growing supersonic mode exist over most of the parameter range examined.
Kim, Sangsik; Qi, Minghao
2015-12-01
Hybrid plasmonic (HP) modes allow strong optical field confinement and simultaneously low propagation loss, offering a potentially compact and efficient platform for on-chip photonic applications. However, their implementation is hampered by the low coupling efficiency between dielectric guided modes and HP modes, caused by mode mismatch and polarization difference. In this work, we present a mode-evolution-based polarization rotation and coupling structure that adiabatically rotates the TE mode in a silicon waveguide and couples it to the HP mode in a strip silicon-dielectric-metal waveguide. Simulation shows that high coupling factors of 92%, 78%, 75%, and 73% are achievable using Ag, Au, Al, and Cu as the metal cap, respectively, at a conversion length of about 5 μm. For an extremely broad wavelength range of 1300-1800 nm, the coupling factor is >64% with a Ag metal cap, and the total back-reflection power, including all the mode reflections and backscattering, is below -40 dB, due to the adiabatic mode transition. Our device does not require high-resolution lithography and is tolerant to fabrication variations and imperfections. These attributes together make our device suitable for optical transport systems spanning all telecommunication bands.
Energy Technology Data Exchange (ETDEWEB)
Baher, S. [Department of Physics, Lorestan University, Khoramabad (Iran, Islamic Republic of) and Research Institute of Applied Sciences (ACECR), Shahid Beheshti University (Iran, Islamic Republic of)]. E-mail: bahersalar@yahoo.com; Baharvand, A. [Department of Physics, Lorestan University, Khoramabad (Iran, Islamic Republic of); Sepahvand, R. [Department of Physics, Lorestan University, Khoramabad (Iran, Islamic Republic of); Badraghi, J. [Research Institute of Applied Sciences (ACECR), Shahid Beheshti University (Iran, Islamic Republic of)
2007-04-30
The propagation of nonlinear s-polarized polariton waves (TE modes) in an infinitely extended superlattice is considered. The periodic system is composed of two different components where the layers are arranged in an alternating fashion so that each layer of material 1 is bounded by two layers of material 2 and vice versa. In general, each of the individual layers may be characterized by a Kerr-type nonlinear dielectric function with a frequency-dependent characteristic of either the plasmons in a metal/semiconductor or the optical phonons in an ionic crystal. To investigate the propagation of polariton modes in such a system, a theoretical model is formulated leading to Jacobi elliptic functions for the electric field amplitude across the layers. Subsequently, the application of boundary conditions at the interfaces gives rise to dispersion relations. Numerical examples are given for plasmon-polariton and phonon-polariton modes and a comparison is made with phonon-polariton modes propagating in a three layered system.
Energy Technology Data Exchange (ETDEWEB)
Cruz, Hans, E-mail: hans@ciencias.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México DF (Mexico); Schuch, Dieter [Institut für Theoretische Physik, JW Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Castaños, Octavio, E-mail: ocasta@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México DF (Mexico); Rosas-Ortiz, Oscar [Physics Department, Cinvestav, A. P. 14-740, 07000 México D. F. (Mexico)
2015-09-15
The sensitivity of the evolution of quantum uncertainties to the choice of the initial conditions is shown via a complex nonlinear Riccati equation leading to a reformulation of quantum dynamics. This sensitivity is demonstrated for systems with exact analytic solutions with the form of Gaussian wave packets. In particular, one-dimensional conservative systems with at most quadratic Hamiltonians are studied.
Energy Technology Data Exchange (ETDEWEB)
Liu Chunping
2003-06-02
Using a direct algebraic method, more new exact solutions of the Kolmogorov-Petrovskii-Piskunov equation are presented by formula form. Then a theorem concerning the relation between the kink-type solution and the kink-bell-type solution of nonlinear evolution equations is given. Finally, the applications of the theorem to several well-known equations in physics are also discussed.
Wang, Xiong; Zhou, Pu; Wang, Xiaolin; Xiao, Hu; Liu, Zejin
2014-03-10
We demonstrate the nanosecond-level pulses in Tm-doped fiber laser generated by passively harmonic mode-locking. Nonlinear polarization rotation performed by two polarization controllers (PCs) is employed to induce the self-starting harmonic mode-locking. The fundamental repetition rate of the laser is 448.8 kHz, decided by the length of the cavity. Bundles of pulses with up to 17 uniform subpulses are generated due to the split of pulse when the pump power increases and the PCs are adjusted. Continuous harmonic mode-locked pulse trains are obtained with 1st to 6th and even more than 15th order when the positions of the PCs are properly fixed and the pump power is scaled up. The widths of all the uniform individual pulses are mostly 3-5 ns, and pulse with width of 304 ns at fundamental repetition rate can also be generated by adjusting the PCs. Hysteresis phenomenon of the passively harmonic mode-locked pulses' repetition frequency versus pump power is observed. The rather wide 3dB spectral bandwidth of the pulse train (25 nm) indicates that they may resemble noise-like pulses.
Almaiman, Ahmed; Ziyadi, Morteza; Mohajerin-Ariaei, Amirhossein; Cao, Yinwen; Chitgarha, Mohammad Reza; Liao, Peicheng; Bao, Changjing; Shamee, Bishara; Ahmed, Nisar; Alishahi, Fatemeh; Fallahpour, Ahmad; Akasaka, Youichi; Yang, Jeng-Yuan; Sekiya, Motoyoshi; Touch, Joseph D; Tur, Moshe; Langrock, Carsten; Fejer, Martin M; Willner, Alan E
2016-06-15
This Letter proposes a method for tunable automatically locked homodyne detection of wavelength-division multiplexing (WDM) dual-polarization (DP) phase-shift keyed (PSK) channels using nonlinear mixing. Two stages of periodically poled lithium niobate (PPLN) waveguides and an LCoS filter enable automatic phase locking of the channels to a local laser.
Directory of Open Access Journals (Sweden)
M. Komanec
2014-09-01
Full Text Available We have developed a data transparent optical packet switch prototype employing wavelength conversion based on four-wave mixing. The switch is composed of an electro-optical control unit and an all-optical switching segment. To achieve higher switching efficiencies, Ge-doped silica suspended-core and chalcogenide arsenicselenide single-mode fibers were experimentally evaluated and compared to conventional highly-nonlinear fiber. Improved connectorization technology has been developed for Ge-doped suspended-core fiber, where we achieved connection losses of 0.9 dB. For the arsenic-selenide fiber we present a novel solid joint technology, with connection losses of only 0.25 dB, which is the lowest value presented up-to-date. Conversion efficiency of -13.7 dB was obtained for the highly-nonlinear fiber, which is in perfect correlation with previously published results and thus verifies the functionality of the prototype. Conversion efficiency of -16.1 dB was obtained with arsenic-selenide fiber length reduced to five meters within simulations, based on measurement results with a 26 m long component. Employment of such a short arsenic-selenide fiber segment allows significant broadening of the wavelength conversion spectral range due to possible neglection of dispersion.
Ajaev; Davis
2000-02-01
Directional solidification of a dilute binary alloy in a Hele-Shaw cell is modeled by a long-wave nonlinear evolution equation with zero flux and contact-angle conditions at the walls. The basic steady-state solution and its linear stability criteria are found analytically, and the nonlinear system is solved numerically. Concave-down (toward the solid) interfaces under physically realistic conditions are found to be more unstable than the planar front. Weakly nonlinear analysis indicates that subcritical bifurcation is promoted, the domain of modulational instability is expanded and transition to three-dimensional patterns is delayed due to the contact-angle condition. In the strongly nonlinear regime fully three-dimensional steady-state solutions are found whose characteristic amplitude is larger than that for the two-dimensional problem. In the subcritical regime secondary bifurcation to stable solutions is promoted.
Halevy, A; Dovrat, L; Eisenberg, H S; Becker, P; Bohatý, L
2011-01-01
We describe the full characterization of the biaxial nonlinear crystal BiB3O6 (BiBO) as a polarization entangled photon source using non-collinear type-II parametric down-conversion. We consider the relevant parameters for crystal design, such as cutting angles, polarization of the photons, effective nonlinearity, spatial and temporal walk-offs, crystal thickness and the effect of the pump laser bandwidth. Experimental results showing entanglement generation with high rates and a comparison to the well investigated beta-BaB2O4 (BBO) crystal are presented as well. Changing the down-conversion crystal of a polarization entangled photon source from BBO to BiBO enhances the generation rate as if the pump power was increased by more than three times. Such an improvement is currently required for the generation of multiphoton entangled states.
Halevy, A; Megidish, E; Dovrat, L; Eisenberg, H S; Becker, P; Bohatý, L
2011-10-10
We describe the full characterization of the biaxial nonlinear crystal BiB₃O₆ (BiBO) as a polarization entangled photon source using non-collinear type-II parametric down-conversion. We consider the relevant parameters for crystal design, such as cutting angles, polarization of the photons, effective nonlinearity, spatial and temporal walk-offs, crystal thickness and the effect of the pump laser bandwidth. Experimental results showing entanglement generation with high rates and a comparison to the well investigated β-BaB₂O₄ (BBO) crystal are presented as well. Changing the down-conversion crystal of a polarization entangled photon source from BBO to BiBO enhances the generation rate as if the pump power was increased by 2.5 times. Such an improvement is currently required for the generation of multiphoton entangled states.
Marder, Seth R.; Gorman, Christopher B.; Cheng, Lap-Tak A.; Tiemann, Bruce G.
1993-02-01
We recently reported that there is an optimal combination of donor and acceptor strengths for a given molecular length and bridge structure that maximizes (beta) . For this combination, there is the correct degree of bond length alternation and asymmetry in the molecule. Our recent findings suggest that molecules that can be viewed as asymmetric cyanines with relatively small amounts of bond length alternation are nearly optimal. In this manner, we have identified molecules with nonlinearities many times that of conventional chromophores for a given length. In this paper, we will present a new computational analysis that allows the correlation of bond length alternation with hyperpolarizabilities and will present EFISH data on simple donor-acceptor polyene chromophores.
Institute of Scientific and Technical Information of China (English)
HAO Dong-shan; L(U) Jian
2005-01-01
The evolution of the electron phase orbits based on the multi-photon nonlinear Compton scattering with the high power laser-plasma is discussed by using Kroll-Morton-Rosenbluth theory. The random evolution of the un-captured electron phase orbits from periodicity to non-periodicity is found after the energy has been exchanged between the electron and photons. With the increase of the absorbed photon number n by an electron,this evolution will be more and more intense, while which is rapidly decreased with the enhancement of the collision non-flexibility ξ and their initial speeds of the electrons and photons, but this evolution is lower than that in the high power laser field. When the electrons are captured by the laser field, the evolution is finished, and the electrons will stably transport,and the photons don't provide the energy for these electrons any more.
Linking climate history and ice crystalline fabric evolution in polar ice sheets
Kennedy, Joseph Huston
An ice sheet consists of an unfathomable number of grains that typically have a preferred orientation of the crystalline lattices, termed fabric. At the surface of ice sheets, the microstructural processes which control the grain structure and fabric evolution are influenced by climate variables. Layers of firn, in different climate regimes, may have an observable variation in fabric which can persist deep into the ice sheet; fabric may have 'memory' of these past climate regimes. To model the evolution of a subtle variation in fabric below the firn-ice transition, we have developed and released an open-source Fabric Evolution with Recrystallization (FEvoR) model. FEvoR is an anisotropic stress model that distributes stresses through explicit nearest-neighbor interaction. The model includes parameterizations of grain growth, rotation recrystallization and migration recrystallization which account for the major recrystallization processes that affect the macroscopic grain structure and fabric evolution. Using this model, we explore the evolution of a subtle variation in near-surface fabric using both constant applied stress and a stress-temperature history based on data from Taylor Dome, East Antarctica. Our results show that a subtle fabric variation will be preserved for ≈200 ka in compressive stress regimes with temperatures typical of polar ice-sheets. The addition of shear to compressive stress regimes preserves fabric variations longer than in compression-only regimes because shear drives a positive feedback between crystal rotation and deformation. We find that temperature affects how long the fabric variation is preserved, but does not affect the strain-integrated fabric evolution profile except when crossing the thermal-activation-energy threshold (≈ -10°C). Even at high temperatures, migration recrystallization does not rid the fabric of its memory under most conditions. High levels of nearest-neighbor interactions between grains will rid the fabric
Prescott, Aaron M.; Abel, Steven M.
2016-12-01
The rational design of network behavior is a central goal of synthetic biology. Here, we combine in silico evolution with nonlinear dimensionality reduction to redesign the responses of fixed-topology signaling networks and to characterize sets of kinetic parameters that underlie various input-output relations. We first consider the earliest part of the T cell receptor (TCR) signaling network and demonstrate that it can produce a variety of input-output relations (quantified as the level of TCR phosphorylation as a function of the characteristic TCR binding time). We utilize an evolutionary algorithm (EA) to identify sets of kinetic parameters that give rise to: (i) sigmoidal responses with the activation threshold varied over 6 orders of magnitude, (ii) a graded response, and (iii) an inverted response in which short TCR binding times lead to activation. We also consider a network with both positive and negative feedback and use the EA to evolve oscillatory responses with different periods in response to a change in input. For each targeted input-output relation, we conduct many independent runs of the EA and use nonlinear dimensionality reduction to embed the resulting data for each network in two dimensions. We then partition the results into groups and characterize constraints placed on the parameters by the different targeted response curves. Our approach provides a way (i) to guide the design of kinetic parameters of fixed-topology networks to generate novel input-output relations and (ii) to constrain ranges of biological parameters using experimental data. In the cases considered, the network topologies exhibit significant flexibility in generating alternative responses, with distinct patterns of kinetic rates emerging for different targeted responses.
Cutts, J. A.; Blasius, K. R.; Roberts, W. J.
1979-01-01
The discovery of a new type of Martian polar terrain, called undulating plain, is reported and the evolution of the plains and other areas of the Martian polar region is discussed in terms of the trapping of dust by the perennial ice cover. High-resolution Viking Orbiter 2 observations of the north polar terrain reveal perennially ice-covered surfaces with low relief, wavelike, regularly spaced, parallel ridges and troughs (undulating plains) occupying areas of the polar terrain previously thought to be flat, and associated with troughs of considerable local relief which exhibit at least partial annual melting. It is proposed that the wavelike topography of the undulating plains originates from long-term periodic variations in cyclical dust precipitation at the margin of a growing or receding perennial polar cap in response to changes in insolation. The troughs are proposed to originate from areas of steep slope in the undulating terrain which have lost their perennial ice cover and have become incapable of trapping dust. The polar landscape thus appears to record the migrations, expansions and contractions of the Martian polar cap.
Nonlinear evolution of multi-helicity neo-classical tearing modes in rotating tokamak plasmas
Wei, Lai; Wang, Zheng-Xiong; Wang, Jialei; Yang, Xuefeng
2016-10-01
Plasma perturbations from the core and/or boundary regions of tokamaks can provide seed islands for the excitation of neo-classical tearing modes (NTMs) with negative {{ Δ }\\prime} , where {{ Δ }\\prime} is the linear instability parameter of the classical tearing mode. In this work, by means of reduced magnetohydrodynamic simulations, we numerically investigate the nonlinear evolution of multi-helicity NTMs in rotating tokamak plasmas with these two types of plasma perturbations with different boundary conditions. In the first case of initial plasma perturbations from the core region with a zero boundary condition, the meta-stable property of seed-island triggered NTM with negative {{ Δ }\\prime} is verified in the single helicity simulation. Nevertheless in the multiple helicity simulation, this seed-island triggered NTM with negative {{ Δ }\\prime} can be suppressed by a spontaneous NTM with positive {{ Δ }\\prime} through the competitive interaction between NTMs with different helicities. If a fixed poloidal rotation is taken into account in the first case, two different helicity NTMs could coexist in the saturation stage, which is different qualitatively from the process without plasma rotation. In the second case of initial plasma perturbations from the boundary region with a nonzero boundary condition, as the amplitude of plasma perturbations on the boundary increases, the mode with negative {{ Δ }\\prime} gradually changes from the driven-reconnection state to the NTM state, accompanied by an enhancement of magnetic island width in the single helicity simulation. Nevertheless in the multi-helicity simulation, the spontaneous NTM with positive {{ Δ }\\prime} can make the driven-reconnection triggered NTM with negative {{ Δ }\\prime} transfer from the NTM state back to the driven-reconnection state again. The underlying mechanism behind these transitions is analyzed step by step. Effects of fixed and unfixed poloidal rotations on the nonlinear
Ayhan, Burcu; Özer, M. Naci; Bekir, Ahmet
2016-08-01
In this article, we applied the method of multiple scales for Korteweg-de Vries (KdV) type equations and we derived nonlinear Schrödinger (NLS) type equations. So we get a relation between KdV type equations and NLS type equations. In addition, exact solutions were found for KdV type equations. The ( G'} over G )-expansion methods and the ( {G'} over G, {1 over G}} )-expansion methods were proposed to establish new exact solutions for KdV type differential equations. We obtained periodic and hyperbolic function solutions for these equations. These methods are very effective for getting travelling wave solutions of nonlinear evolution equations (NEEs).
Islam, Md Shafiqul; Khan, Kamruzzaman; Akbar, M Ali; Mastroberardino, Antonio
2014-10-01
The purpose of this article is to present an analytical method, namely the improved F-expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To verify the computational efficiency, we consider the modified Benjamin-Bona-Mahony equation and the modified Korteweg-de Vries equation. Our results reveal that the method is a very effective and straightforward way of formulating the exact travelling wave solutions of nonlinear wave equations arising in mathematical physics and engineering.
Evolution of nonlinear internal waves in the East and South China Seas
Liu, Antony K.; Chang, Y. Steve; Hsu, Ming-K.; Liang, Nai K.
1998-04-01
Synthetic Aperture Radar (SAR) images from ERS-I have been used to study the characteristics of internal waves northeast and south of Taiwan in the East China Sea, and east of Hainan Island in the South China Sea. Rank-ordered packets of internal solitons propagating shoreward from the edge of the continental shelf were observed in the SAR images. On the basis of the assumption of a semidiurnal tidal origin, the wave speed can be estimated and is consistent with the internal wave theory. By using the SAR images and hydrographic data, internal waves of elevation have been identified in shallow water by a thicker mixed layer as compared with the bottom layer on the continental shelf. The generation mechanism includes the influences of the tide and the Kuroshio intrusion across the continental shelf for the formations of elevation internal waves. The effects of water depth on the evolution of solitons and wave packets are modeled by the nonlinear Kortweg-deVries (KdV) type equation and linked to satellite image observations. The numerical calculations of internal wave evolution on the continental shelf have been performed and compared with the SAR observations. For a case of depression waves in deep water, the solitons first disintegrate into dispersive wave trains and then evolve to a packet of elevation waves in the shallow water area after they pass through a "turning point" of approximately equal layer depths that has been observed in the SAR image and simulated by the numerical model. The importance of the dissipation effect in the coastal area is also discussed and demonstrated.
Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution.
Donges, Jonathan F; Donner, Reik V; Trauth, Martin H; Marwan, Norbert; Schellnhuber, Hans-Joachim; Kurths, Jürgen
2011-12-20
Potential paleoclimatic driving mechanisms acting on human evolution present an open problem of cross-disciplinary scientific interest. The analysis of paleoclimate archives encoding the environmental variability in East Africa during the past 5 Ma has triggered an ongoing debate about possible candidate processes and evolutionary mechanisms. In this work, we apply a nonlinear statistical technique, recurrence network analysis, to three distinct marine records of terrigenous dust flux. Our method enables us to identify three epochs with transitions between qualitatively different types of environmental variability in North and East Africa during the (i) Middle Pliocene (3.35-3.15 Ma B.P.), (ii) Early Pleistocene (2.25-1.6 Ma B.P.), and (iii) Middle Pleistocene (1.1-0.7 Ma B.P.). A deeper examination of these transition periods reveals potential climatic drivers, including (i) large-scale changes in ocean currents due to a spatial shift of the Indonesian throughflow in combination with an intensification of Northern Hemisphere glaciation, (ii) a global reorganization of the atmospheric Walker circulation induced in the tropical Pacific and Indian Ocean, and (iii) shifts in the dominating temporal variability pattern of glacial activity during the Middle Pleistocene, respectively. A reexamination of the available fossil record demonstrates statistically significant coincidences between the detected transition periods and major steps in hominin evolution. This result suggests that the observed shifts between more regular and more erratic environmental variability may have acted as a trigger for rapid change in the development of humankind in Africa.
Rossby waves and polar spots in rapidly rotating stars: Implications for stellar wind evolution
Zaqarashvili, T V; Ballester, J L; Carbonell, M; Khodachenko, M L; Lammer, H; Leitzinger, M; Odert, P
2011-01-01
Rapidly rotating stars show short-period oscillations in magnetic activity and polar appearance of starspots. The aim of this paper is to study large-scale shallow water waves in the tachoclines of rapidly rotating stars and their connection to the periodicity and the formation of starspots at high latitudes. Shallow-water magnetohydrodynamic equations were used to study the dynamics of large-scale waves at the rapidly rotating stellar tachoclines in the presence of toroidal magnetic field. Dispersion relations and latitudinal distribution of wave modes were derived. We found that low-frequency magnetic Rossby waves tend to be located at poles, but high-frequency magnetic Poincare waves are concentrated near the equator in rapidly rotating stars. These results have important implications for the evolution of the stellar wind in young Sun-like stars. Unstable magnetic Rossby waves may lead to the local enhancement of magnetic flux at high latitudes of tachoclines in rapidly rotating stars. The enhanced magneti...
Energy Technology Data Exchange (ETDEWEB)
Schüler, D.; Alonso, S.; Bär, M. [Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, 10587 Berlin (Germany); Torcini, A. [CNR-Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi - Via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); INFN Sez. Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy)
2014-12-15
Pattern formation often occurs in spatially extended physical, biological, and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue, we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexisting static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.
Approach in Theory of Nonlinear Evolution Equations: The Vakhnenko-Parkes Equation
Directory of Open Access Journals (Sweden)
V. O. Vakhnenko
2016-01-01
Full Text Available A variety of methods for examining the properties and solutions of nonlinear evolution equations are explored by using the Vakhnenko equation (VE as an example. The VE, which arises in modelling the propagation of high-frequency waves in a relaxing medium, has periodic and solitary traveling wave solutions some of which are loop-like in nature. The VE can be written in an alternative form, known as the Vakhnenko-Parkes equation (VPE, by a change of independent variables. The VPE has an N-soliton solution which is discussed in detail. Individual solitons are hump-like in nature whereas the corresponding solution to the VE comprises N-loop-like solitons. Aspects of the inverse scattering transform (IST method, as applied originally to the KdV equation, are used to find one- and two-soliton solutions to the VPE even though the VPE’s spectral equation is third-order and not second-order. A Bäcklund transformation for the VPE is used to construct conservation laws. The standard IST method for third-order spectral problems is used to investigate solutions corresponding to bound states of the spectrum and to a continuous spectrum. This leads to N-soliton solutions and M-mode periodic solutions, respectively. Interactions between these types of solutions are investigated.
Non-linear macro evolution of a dc driven micro atmospheric glow discharge
Energy Technology Data Exchange (ETDEWEB)
Xu, S. F.; Zhong, X. X., E-mail: xxzhong@sjtu.edu.cn [The State Key Laboratory on Fiber Optic Local Area, Communication Networks and Advanced Optical Communication Systems, Key Laboratory for Laser Plasmas and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)
2015-10-15
We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surface and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are similar to logistic growth curves, suggesting that a self-inhibition process occurs in the micro discharge. Meanwhile, the total brightness increases linearly during the same time when the water acts as an anode. Discharge-water interactions cause the micro discharge to evolve. The charged particle bomb process is probably responsible for the different behaviors of the micro discharges when the water acts as cathode and anode.
Non-linear macro evolution of a dc driven micro atmospheric glow discharge
Xu, Shaofeng
2015-01-01
We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surface and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are simila...
DEFF Research Database (Denmark)
Tatu, Aditya Jayant
defined subspace, the N-links bicycle chain space, i.e. the space of curves with equidistant neighboring landmark points. This in itself is a useful shape space for medical image analysis applications. The Histogram of Gradient orientation based features are many in number and are widely used......This thesis deals with two unrelated issues, restricting curve evolution to subspaces and computing image patches in the equivalence class of Histogram of Gradient orientation based features using nonlinear projection methods. Curve evolution is a well known method used in various applications like...... specific requirements like shape priors or a given data model, and due to limitations of the computer, the computed curve evolution forms a path in some finite dimensional subspace of the space of curves. We give methods to restrict the curve evolution to a finite dimensional linear or implicitly defined...
Schäfer, Christoph; Fries, Christian; Theobald, Christian; L'huillier, Johannes A
2013-01-15
Continuous-wave mode-locking of a laser exploiting the nonlinear polarization rotation (NPR) technique via Type I second harmonic generation is demonstrated for the first time. The NPR is generated by a lithium triborate crystal and transformed into nonlinear cavity losses of a 888 nm pumped Nd:YVO4 laser. Self-starting, reliable mode-locking has been achieved at a high average output power of 20.6 W and a pulse duration of 7.3 ps. Furthermore, transform limited pulses down to 2.7 ps have been demonstrated at 9.9 W.
Energy Technology Data Exchange (ETDEWEB)
Jain, Neeraj; Büchner, Jörg [Max Planck/Princeton Center for Plasma Physics, Göttingen (Germany); Max Planck Institute for Solar System Research, Justus-Von-Liebig-Weg-3, Göttingen (Germany)
2014-07-15
Nonlinear evolution of three dimensional electron shear flow instabilities of an electron current sheet (ECS) is studied using electron-magnetohydrodynamic simulations. The dependence of the evolution on current sheet thickness is examined. For thin current sheets (half thickness =d{sub e}=c/ω{sub pe}), tearing mode instability dominates. In its nonlinear evolution, it leads to the formation of oblique current channels. Magnetic field lines form 3-D magnetic spirals. Even in the absence of initial guide field, the out-of-reconnection-plane magnetic field generated by the tearing instability itself may play the role of guide field in the growth of secondary finite-guide-field instabilities. For thicker current sheets (half thickness ∼5 d{sub e}), both tearing and non-tearing modes grow. Due to the non-tearing mode, current sheet becomes corrugated in the beginning of the evolution. In this case, tearing mode lets the magnetic field reconnect in the corrugated ECS. Later thick ECS develops filamentary structures and turbulence in which reconnection occurs. This evolution of thick ECS provides an example of reconnection in self-generated turbulence. The power spectra for both the thin and thick current sheets are anisotropic with respect to the electron flow direction. The cascade towards shorter scales occurs preferentially in the direction perpendicular to the electron flow.
Sun, Dajun D; Lee, Ping I
2015-04-06
The importance of rate of supersaturation generation on the kinetic solubility profiles of amorphous systems has recently been shown by us; however, the previous focus was limited to constant rates of supersaturation generation. The objective of the current study is to further examine the effect of nonlinear rate profiles of supersaturation generation in amorphous systems, including (1) instantaneous or infinite rate (i.e., initial degree of supersaturation), (2) first-order rate (e.g., from dissolution of amorphous drug particles), and (3) matrix diffusion regulated rate (e.g., drug release from amorphous solid dispersions (ASDs) based on cross-linked poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels), on the kinetic solubility profiles of a model poorly soluble drug indomethacin (IND) under nonsink dissolution conditions. The previously established mechanistic model taking into consideration both the crystal growth and ripening processes was extended to predict the evolution of supersaturation resulting from nonlinear rates of supersaturation generation. Our results confirm that excessively high initial supersaturation or a rapid supersaturation generation leads to a surge in maximum supersaturation followed by a rapid decrease in drug concentration owing to supersaturation-induced precipitation; however, an exceedingly low degree of supersaturation or a slow rate of supersaturation generation does not sufficiently raise the supersaturation level, which results in a lower but broader maximum kinetic solubility profile. Our experimental data suggest that an optimal area-under-the-curve of the kinetic solubility profiles exists at an intermediate initial supersaturation level for the amorphous systems studied here, which agrees well with the predicted trend. Our model predictions also support our experimental findings that IND ASD in cross-linked PHEMA exhibits a unique kinetic solubility profile because the resulting supersaturation level is governed by a matrix
Berzin, A. A.; Vinokurov, D. L.; Morosov, A. I.
2016-11-01
The evolution of the antiferromagnetism vector of multiferroic BiFeO3 during switching of its ferroelectric polarization by an electric field has been studied by numerical simulation in the framework of the phenomenological model for the magnetic anisotropy energy. Optimal variants have been found for the cut of electrosensitive BiFeO3 layer, the deformation induced by a substrate, and the direction of applying electric field for the development of prototypes of new-generation marnetoresistive memory.
The self-similar, non-linear evolution of rotating magnetic flux ropes
Directory of Open Access Journals (Sweden)
C. J. Farrugia
Full Text Available We study, in the ideal MHD approximation, the non-linear evolution of cylindrical magnetic flux tubes differentially rotating about their symmetry axis. Our force balance consists of inertial terms, which include the centrifugal force, the gradient of the axial magnetic pressure, the magnetic pinch force and the gradient of the gas pressure. We employ the "separable" class of self-similar magnetic fields, defined recently. Taking the gas to be a polytrope, we reduce the problem to a single, ordinary differential equation for the evolution function. In general, two regimes of evolution are possible; expansion and oscillation. We investigate the specific effect rotation has on these two modes of evolution. We focus on critical values of the flux rope parameters and show that rotation can suppress the oscillatory mode. We estimate the critical value of the angular velocity Ω_{crit}, above which the magnetic flux rope always expands, regardless of the value of the initial energy. Studying small-amplitude oscillations of the rope, we find that torsional oscillations are superimposed on the rotation and that they have a frequency equal to that of the radial oscillations. By setting the axial component of the magnetic field to zero, we study small-amplitude oscillations of a rigidly rotating pinch. We find that the frequency of oscillation ω is inversely proportional to the angular velocity of rotation Ω; the product ωΩbeing proportional to the inverse square of the Alfvén time. The period of large-amplitude oscillations of a rotating flux rope of low beta increases exponentially with the energy of the equivalent 1D oscillator. With respect to large-amplitude oscillations of a non-rotating flux rope, the only change brought about by rotation is to introduce a multiplicative factor greater than unity, which further increases the period. This multiplicative factor depends on the ratio of the azimuthal speed to the Alfvén speed
National Research Council Canada - National Science Library
Naher, Hasibun; Abdullah, Farah Aini
2013-01-01
In this article, new (G′/G)-expansion method and new generalized (G′/G)-expansion method is proposed to generate more general and abundant new exact traveling wave solutions of nonlinear evolution equations...
Seasonal evolution of Titan's polar caps: interaction between atmospheric and subsurface processes
Sotin, C.
2012-12-01
of laboratory experiments are included into a model describing the evolution of the polar crust from both a thermal and a compositional point of view. The thermal conductivity of clathrates is several times smaller than that of water ice. For a given heat flux, it induce a much larger thermal gradient which is compatible with the presence of an ocean at 65 (+/- 15 km) depth [5, 6]. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. [1] Brown R.H. et al. (2008) Nature 454, 607. [2] Choukroun M. and C. Sotin (2012) Geophys. Res. Lett., 39, L04201 [3] Beghin C. et al. (2012) Icarus, 218, 1028-1042. [4] Iess L. et al. (2012) 337, 457-459. [5] Neish C.D. and Lorenz R.D. (2012) Planet. Space Sci., 60, 26-33. [6] Mandt K.E. et al. (2012) Ap. J., 1017 749:160.
Evolution of Channels Draining Mount St. Helens: Linking Non-Linear and Rapid, Threshold Responses
Simon, A.
2010-12-01
The catastrophic eruption of Mount St. Helens buried the valley of the North Fork Toutle River (NFT) to a depth of up to 140 m. Initial integration of a new drainage network took place episodically by the “filling and spilling” (from precipitation and seepage) of depressions formed during emplacement of the debris avalanche deposit. Channel incision to depths of 20-30 m occurred in the debris avalanche and extensive pyroclastic flow deposits, and headward migration of the channel network followed, with complete integration taking place within 2.5 years. Downstream reaches were converted from gravel-cobble streams with step-pool sequences to smoothed, infilled channels dominated by sand-sized materials. Subsequent channel evolution was dominated by channel widening with the ratio of changes in channel width to changes in channel depth ranging from about 60 to 100. Widening resulted in significant adjustment of hydraulic variables that control sediment-transport rates. For a given discharge over time, flow depths were reduced, relative roughness increased and flow velocity and boundary shear stress decreased non-linearly. These changes, in combination with coarsening of the channel bed with time resulted in systematically reduced rates of degradation (in upstream reaches), aggradation (in downstream reaches) and sediment-transport rates through much of the 1990s. Vertical adjustments were, therefore, easy to characterize with non-linear decay functions with bed-elevation attenuating with time. An empirical model of bed-level response was then created by plotting the total dimensionless change in elevation against river kilometer for both initial and secondary vertical adjustments. High magnitude events generated from the generated from upper part of the mountain, however, can cause rapid (threshold) morphologic changes. For example, a rain-on-snow event in November 2006 caused up to 9 m of incision along a 6.5 km reach of Loowit Creek and the upper NFT. The event
Boville, B. A.; Kiehl, J. T.; Briegleb, B. P.
1988-01-01
The possible effect of the Antartic ozone hole on the evolution of the polar vortex during late winter and spring using a general circulation model (GCM) is examined. The GCM is a version of the NCAR Community Climate Model whose domain extends from the surface to the mesosphere and is similar to that described on Boville and Randel (1986). Ozone is not a predicted variable in the model. A zonally averaged ozone distribution is specified as a function of latitude, pressure and month for the radiation parameterization. Rather that explicitly address reasons for the formation of the ozone hole, researchers postulate its existence and ask what effect it has on the subsequent evolution of the vortex. The evolution of the model when an ozone hole is imposed is then discussed.
2013-11-18
capability to realistic ocean environments. REFERENCES 1. Dysthe, K.B. 1979 Note on a modification to the nonlinear schrodinger equation for...wave turbulence. Phy. Rev. Lett. 98, 94503. 3. Trulsen,K.and Dysthe,K.B. 1996 A modified nonlinear Schrodinger equation for broader bandwidth
Directory of Open Access Journals (Sweden)
Hasibun Naher
2013-03-01
Full Text Available In this article, new (G′/G-expansion method and new generalized (G′/G-expansion method is proposed to generate more general and abundant new exact traveling wave solutions of nonlinear evolution equations. The novelty and advantages of these methods is exemplified by its implementation to the KdV equation. The results emphasize the power of proposed methods in providing distinct solutions of different physical structures in nonlinear science. Moreover, these methods could be more effectively used to deal with higher dimensional and higher order nonlinear evolution equations which frequently arise in many scientific real time application fields.
Nerozzi, Stefano; Holt, John W.
2014-05-01
The north polar layered deposits (NPLD) are the largest accumulation of water ice in the northern hemisphere of Mars. Since their discovery, they are thought to hold a valuable record of recent climate change within their stratigraphy (Murray et al., Icarus, 1972; Cutts, JGR, 1973b), yet little is known about their age and accumulation history. Due to exposures in trough walls, detailed stratigraphy of the uppermost layers and their evolution have been studied extensively since the first Mariner 9 images of the NPLD (e.g. Soderblom et al., JGR, 1973). However, large portions of the polar cap are still unmapped and no detailed studies of the lowermost layered deposits have been performed to date, primarily due to a general lack of visible exposures. Correlation of reflectors within radargrams acquired by the Shallow Radar (SHARAD) (Seu et al., Planet. Space Sci., 2004) onboard Mars Reconnaissance Orbiter makes a detailed stratigraphic reconstruction of the NPLD possible. An extensive set of radargrams is available over Planum Boreum and individual reflectors can be traced over hundreds of kilometers (Seu et al., JGR, 2007a; Putzig et al., Icarus, 2009; Holt et al., Nature, 2010) with a theoretical vertical resolution of ~9 m in water ice (Seu et al., JGR, 2007a). In this study, we present a highly-detailed stratigraphic reconstruction of the first ~500 m of the NPLD at a scale down to the single reflector. A set of 8 horizons was tracked across 700+ radargrams, and thicknesses were calculated for each stratigraphic interval assuming a bulk composition of water ice. Along with the quantitative analysis of derived isopach maps, this study is based on the qualitative comparison of "radar facies" in different locations of Planum Boreum with techniques borrowed from traditional sequence stratigraphy. In general, the NPLD is characterized by uniform layering. However, important layer extent and thickness variations are observed within the lowermost sequence. Limited
Guo, Haizhong; Zhao, Ruiqiang; Jin, Kui-Juan; Gu, Lin; Xiao, Dongdong; Yang, Zhenzhong; Li, Xiaolong; Wang, Le; He, Xu; Gu, Junxing; Wan, Qian; Wang, Can; Lu, Huibin; Ge, Chen; He, Meng; Yang, Guozhen
2015-02-04
Varying the film thickness is a precise route to tune the interfacial strain to manipulate the properties of the multiferroic materials. Here, to explore the effects of the interfacial strain on the properties of the multiferroic BiFeO3 films, we investigated thickness-dependent structural and polarization evolutions of the BiFeO3 films. The epitaxial growth with an atomic stacking sequence of BiO/TiO2 at the interface was confirmed by scanning transmission electron microscopy. Combining X-ray diffraction experiments and first-principles calculations, a thickness-dependent structural evolution was observed from a fully strained tetragonality to a partially relaxed one without any structural phase transition or rotated twins. The tetragonality (c/a) of the BiFeO3 films increases as the film thickness decreases, while the polarization is in contrast with this trend, and the size effect including the depolarization field plays a crucial role in this contradiction in thinner films. These findings offer an alternative strategy to manipulate structural and polarization properties by tuning the interfacial strain in epitaxial multiferroic thin films.
Mohanty, Pratap Ranjan; Panda, Anup Kumar
2016-11-01
This paper is concerned to performance improvement of boost PFC converter under large random load fluctuation, ensuring unity power factor (UPF) at source end and regulated voltage at load side. To obtain such performance, a nonlinear controller based on dynamic evolution path theory is designed and its robustness is examined under both heavy and light loading condition. In this paper, %THD and zero-cross-over dead-zone of input current is significantly reduced. Also, very less response time of input current and output voltage to that of load and reference variation is remarked. A simulation model of proposed system is designed and it is realized using dSPACE 1104 signal processor for a 390VDC, 500W prototype. The relevant experimental and simulation waveforms are presented.
Cahill, James A; Green, Richard E; Fulton, Tara L; Stiller, Mathias; Jay, Flora; Ovsyanikov, Nikita; Salamzade, Rauf; St John, John; Stirling, Ian; Slatkin, Montgomery; Shapiro, Beth
2013-01-01
Despite extensive genetic analysis, the evolutionary relationship between polar bears (Ursus maritimus) and brown bears (U. arctos) remains unclear. The two most recent comprehensive reports indicate a recent divergence with little subsequent admixture or a much more ancient divergence followed by extensive admixture. At the center of this controversy are the Alaskan ABC Islands brown bears that show evidence of shared ancestry with polar bears. We present an analysis of genome-wide sequence data for seven polar bears, one ABC Islands brown bear, one mainland Alaskan brown bear, and a black bear (U. americanus), plus recently published datasets from other bears. Surprisingly, we find clear evidence for gene flow from polar bears into ABC Islands brown bears but no evidence of gene flow from brown bears into polar bears. Importantly, while polar bears contributed <1% of the autosomal genome of the ABC Islands brown bear, they contributed 6.5% of the X chromosome. The magnitude of sex-biased polar bear ancestry and the clear direction of gene flow suggest a model wherein the enigmatic ABC Island brown bears are the descendants of a polar bear population that was gradually converted into brown bears via male-dominated brown bear admixture. We present a model that reconciles heretofore conflicting genetic observations. We posit that the enigmatic ABC Islands brown bears derive from a population of polar bears likely stranded by the receding ice at the end of the last glacial period. Since then, male brown bear migration onto the island has gradually converted these bears into an admixed population whose phenotype and genotype are principally brown bear, except at mtDNA and X-linked loci. This process of genome erosion and conversion may be a common outcome when climate change or other forces cause a population to become isolated and then overrun by species with which it can hybridize.
Directory of Open Access Journals (Sweden)
James A Cahill
Full Text Available Despite extensive genetic analysis, the evolutionary relationship between polar bears (Ursus maritimus and brown bears (U. arctos remains unclear. The two most recent comprehensive reports indicate a recent divergence with little subsequent admixture or a much more ancient divergence followed by extensive admixture. At the center of this controversy are the Alaskan ABC Islands brown bears that show evidence of shared ancestry with polar bears. We present an analysis of genome-wide sequence data for seven polar bears, one ABC Islands brown bear, one mainland Alaskan brown bear, and a black bear (U. americanus, plus recently published datasets from other bears. Surprisingly, we find clear evidence for gene flow from polar bears into ABC Islands brown bears but no evidence of gene flow from brown bears into polar bears. Importantly, while polar bears contributed <1% of the autosomal genome of the ABC Islands brown bear, they contributed 6.5% of the X chromosome. The magnitude of sex-biased polar bear ancestry and the clear direction of gene flow suggest a model wherein the enigmatic ABC Island brown bears are the descendants of a polar bear population that was gradually converted into brown bears via male-dominated brown bear admixture. We present a model that reconciles heretofore conflicting genetic observations. We posit that the enigmatic ABC Islands brown bears derive from a population of polar bears likely stranded by the receding ice at the end of the last glacial period. Since then, male brown bear migration onto the island has gradually converted these bears into an admixed population whose phenotype and genotype are principally brown bear, except at mtDNA and X-linked loci. This process of genome erosion and conversion may be a common outcome when climate change or other forces cause a population to become isolated and then overrun by species with which it can hybridize.
Directory of Open Access Journals (Sweden)
Long Wei
2014-01-01
Full Text Available In a recent paper (Zhang (2013, the author claims that he has proposed two rules to modify Ibragimov’s theorem on conservation laws to “ensure the theorem can be applied to nonlinear evolution equations with any mixed derivatives.” In this letter, we analysis the paper. Indeed, the so-called “modification rules” are needless and the theorem of Ibragimov can be applied to construct conservation laws directly for nonlinear equations with any mixed derivatives as long as the formal Lagrangian is rewritten in symmetric form. Moreover, the conservation laws obtained by the so-called “modification rules” in the paper under discussion are equivalent to the one obtained by Ibragimov’s theorem.
The evolution of ozone observed by UARS MLS in the 1992 late winter southern polar vortex
Energy Technology Data Exchange (ETDEWEB)
Manney, G.L.; Froidevaux, L.; Waters, J.W.; Elson, L.S.; Fishbein, E.F.; Zurek, R.W. (California Institute of Technology, Pasadena (United States)); Harwood, R.S.; Lahoz, W.A. (Edinburgh Univ. (United Kingdom))
1993-06-18
This paper presents initial data analysis of ozone distributions in the southern polar vortex region during the winter of 1992. The data comes from the microwave limb sounder on the upper atmosphere research satellite. The data provides never before available coverage of the polar stratosphere, and reveals the development of an ozone hole from column ozone data, changes in ozone mixing ratios in the lower stratosphere consistent with ozone destruction processes in the stratosphere, and evidence to support the transport of ozone toward the pole by tidal wave activity in the stratosphere. The ozone measurements are compared with the development of the polar vortex derived from national meteorological center data.
Energy Technology Data Exchange (ETDEWEB)
Segre, S.E. [Rome Univ. 2. Tor Vergata, Rome (Italy). Istituto Nazionale Fisica della Materia, Dipartimento di Fisica
2001-07-01
The known analytic expressions for the evolution of the polarization of electromagnetic waves propagating in a plasma with uniformly sheared magnetic field are extended to the case where the shear is not constant. Exact analytic expressions are found for the case when the space variations of the medium are such that the magnetic field components and the plasma density satisfy a particular condition (eq. 13), possibly in a convenient reference frame of polarization space. [Italian] Le espressioni, gia' note, per l'evoluzione della polarizzazione di onde elettromagnetiche propaganti in un plasma magnetizzato con shear costante vengono estese a casi in cui questo non e' costante. Si trovano soluzioni analitiche esatte per il caso in cui le variazioni spaziali del mezzo sono tali da soddisfare una particolare condizione (eq. 13), eventualmente in un opportuno sistema di riferimento nello spazio della polarizzazione (lo spazio di Poincare').
Directory of Open Access Journals (Sweden)
Berezovskaya Faina S
2004-09-01
Full Text Available Abstract Background The size distribution of gene families in a broad range of genomes is well approximated by a generalized Pareto function. Evolution of ensembles of gene families can be described with Birth, Death, and Innovation Models (BDIMs. Analysis of the properties of different versions of BDIMs has the potential of revealing important features of genome evolution. Results In this work, we extend our previous analysis of stochastic BDIMs. In addition to the previously examined rational BDIMs, we introduce potentially more realistic logistic BDIMs, in which birth/death rates are limited for the largest families, and show that their properties are similar to those of models that include no such limitation. We show that the mean time required for the formation of the largest gene families detected in eukaryotic genomes is limited by the mean number of duplications per gene and does not increase indefinitely with the model degree. Instead, this time reaches a minimum value, which corresponds to a non-linear rational BDIM with the degree of approximately 2.7. Even for this BDIM, the mean time of the largest family formation is orders of magnitude greater than any realistic estimates based on the timescale of life's evolution. We employed the embedding chains technique to estimate the expected number of elementary evolutionary events (gene duplications and deletions preceding the formation of gene families of the observed size and found that the mean number of events exceeds the family size by orders of magnitude, suggesting a highly dynamic process of genome evolution. The variance of the time required for the formation of the largest families was found to be extremely large, with the coefficient of variation >> 1. This indicates that some gene families might grow much faster than the mean rate such that the minimal time required for family formation is more relevant for a realistic representation of genome evolution than the mean time. We
On the Cauchy Problem of Evolution p-Laplacian Equation with Nonlinear Gradient Term
Institute of Scientific and Technical Information of China (English)
Mingyu CHEN; Junning ZHAO
2009-01-01
The authors study the existence of solution to p-Laplacian equation with non-linear forcing term under optimal assumptions on the initial data,which are assumed to be measures.The existence of local solution is obtained.
Energy Technology Data Exchange (ETDEWEB)
Yao Yuqin [College of Sciences, Shanghai University, Shanghai 200436 (China)] e-mail: yyqinw@126.com
2005-11-01
In this paper, based on the well-known Sine-Poisson equation, a new Sine-Poisson equation expansion method with constant coefficients or variable coefficients is presented, which can be used to construct more new exact solutions of nonlinear evolution equations in mathematical physics. The KdV-mKdV equation and the typical breaking soliton equation are chosen to illustrate our method such that many types of new exact solutions are obtained, which include exponential solutions, kink-shaped solutions, singular solutions and soliton-like solutions.
Institute of Scientific and Technical Information of China (English)
柳银萍; 李志斌
2003-01-01
Based on a 0 of elliptic equation, a new algebraic method to construct a series of exact solutions for nonlinear evolution equations is proposed, meanwhile, its complete implementation TRWS in Maple is presented. The TRWS can output a series of travelling wave solutions entirely automatically, which include polynomial solutions, exponential function solutions, triangular function solutions, hyperbolic function solutions, rational function solutions, Jacobi elliptic function solutions, and Weierstrass elliptic function solutions. The effectiveness of the package is illustrated by applying it to a variety of equations. Not only are previously known solutions recovered but also new solutions and more general form of solutions are obtained.
Directory of Open Access Journals (Sweden)
T. Sakai
2009-07-01
Full Text Available A weakly nonlinear evolution model that accounts for multi-modal interaction in a small, continuously stratified lake of variable depth is derived. In particular, an evolution model for the first two vertical modes in a lake that is subject to wind stress forcing is numerically simulated. Defining modal energies, energy transfer between the first and the second vertical modes is calculated for several different forms of the density stratification. Modal energy transfer mainly occurs during reflection of mode-one waves at the vertical end walls, and it is shown that the amount of energy transfer from the first to the second mode is greatly dependent on the shape of the stratification profile. Also, the initial modal energy partition at the wind setup is shown to depend significantly on the penetration depth of the internal shear stress induced by the wind stress, especially if the stress distribution extends into the upper levels of the metalimnion.
Vaibhav, V.
2011-04-01
The paper addresses the problem of constructing non-reflecting boundary conditions for two types of one dimensional evolution equations, namely, the cubic nonlinear Schrödinger (NLS) equation, ∂tu+Lu-iχ|u|2u=0 with L≡-i∂x2, and the equation obtained by letting L≡∂x3. The usual restriction of compact support of the initial data is relaxed by allowing it to have a constant amplitude along with a linear phase variation outside a compact domain. We adapt the pseudo-differential approach developed by Antoine et al. (2006) [5] for the NLS equation to the second type of evolution equation, and further, extend the scheme to the aforementioned class of initial data for both of the equations. In addition, we discuss efficient numerical implementation of our scheme and produce the results of several numerical experiments demonstrating its effectiveness.
Park, Q H
1999-01-01
Using the Painlevé analysis, we investigate the integrability properties of a system of two coupled nonlinear Schrödinger equations that describe the propagation of orthogonally polarized optical waves in an isotropic medium. Besides the well-known integrable vector nonlinear Schrödinger equation, we show that there exist a new set of equations passing the Painlevé test where the self and cross phase modulational terms are of different magnitude. We introduce the Hirota bilinearization and the Bãcklund transformation to obtain soliton solutions and prove integrability by making a change of variables. The conditions on the third-order susceptibility tensor $\\chi^{(3)} $ imposed by these new integrable equations are explained.
Birch, Samuel; Dietrich, William; Howard, Alan; Bristow, Charlie; Malaska, Michael; Moore, Jeff; Mastrogiuseppe, Marco; Hofgartner, Jason; Williams, David; White, Oliver; Soderblom, Jason; Barnes, Jason; Turtle, Elizabeth; Lunine, Jonathan; Wood, Charles; Neish, Catherine; Kirk, Randy; Stofan, Ellen; Lorenz, Ralph; Lopes, Rosaly
2016-01-01
We present a geomorphologic map of Titan's polar terrains. The map was generated from a combination of Cassini Synthetic Aperture Radar (SAR) and Imaging Science Subsystem imaging products, as well as altimetry, SARTopo and radargrammetry topographic datasets. In combining imagery with topographic data, our geomorphologic map reveals a stratigraphic sequence from which we infer process interactions between units. In mapping both polar regions with the same geomorphologic units, we conclude that processes that formed the terrains of the north polar region also acted to form the landscape we observe at the south. Uniform, SAR-dark plains are interpreted as sedimentary deposits, and are bounded by moderately dissected uplands. These plains contain the highest density of filled and empty lake depressions, and canyons. These units unconformably overlay a basement rock that outcrops as mountains and SAR-bright dissected terrains at various elevations across both poles. All these units are then superposed by surfici...
Wu, Wenjue; Zhou, Yue; Sun, Ji; Dai, Yitang; Yin, Feifei; Dai, Jian; Xu, Kun
2016-11-01
We proposed a mode-locked all-polarization-maintaining erbium-doped fiber laser base on a nonlinear amplifying loop mirror (NALM). The laser can generate 1.6 ps pulses at 1550 nm with the energy of 1 nJ that can be compressed down to 100 fs with the compressor outside the cavity. The repetition rate of the output pulse is 12MHz. Such configuration of laser is easier controlled and self starting long term operation, and is highly desirable for industrial applications, such as micro-machining.
Non-linear Evolution of Rayleigh-Taylor Instability in a Radiation Supported Atmosphere
Jiang, Yan-Fei; Stone, James
2012-01-01
The non-linear regime of Rayleigh-Taylor instability (RTI) in a radiation supported atmosphere, consisting of two uniform fluids with different densities, is studied numerically. We perform simulations using our recently developed numerical algorithm for multi-dimensional radiation hydrodynamics based on a variable Eddington tensor as implemented in Athena, focusing on the regime where scattering opacity greatly exceeds absorption opacity. We find that the radiation field can reduce the growth and mixing rate of RTI, but this reduction is only significant when radiation pressure significantly exceeds gas pressure. Small scale structures are also suppressed in this case. In the non-linear regime, dense fingers sink faster than rarefied bubbles can rise, leading to asymmetric structures about the interface. By comparing the calculations that use a variable Eddington tensor (VET) versus the Eddington approximation, we demonstrate that anisotropy in the radiation field can affect the non-linear development of RTI...
Maximal Dimension of Invariant Subspaces to Systems of Nonlinear Evolution Equations
Institute of Scientific and Technical Information of China (English)
Shoufeng SHEN; ChangZheng QU; Yongyang JIN; Lina JI
2012-01-01
In this paper,the dimension of invariant subspaces admitted by nonlinear systems is estimated under certain conditions.It is shown that if the two-component nonlinear vector differential operator F =(F1,F2) with orders {k1,k2} (k1 ≥ k2) preserves the invariant subspace W1n1 × W2n2 (n1 ≥ n2),then n1 - n2 ≤ k2,n1 ≤ 2(k1 + k2) + 1,where Wqnq is the space generated by solutions of a linear ordinary differential equation of order nq (q =1,2).Several examples including the (1+1)-dimensional diffusion system and It(o)'s type,Drinfel'd-Sokolov-Wilson's type and Whitham-Broer-Kaup's type equations are presented to illustrate the result.Furthermore,the estimate of dimension for m-component nonlinear systems is also given.
Gajjar, J. S. B.
1995-01-01
We consider the nonlinear stability of a fully three-dimensional boundary layer flow in an incompressible fluid and derive an equation governing the nonlinear development of a stationary cross-flow vortex. The amplitude equation is a novel integro-differential equation which has spatial derivatives of the amplitude occurring in the kernal function. It is shown that the evolution of the cross-flow vortex is strongly coupled to the properties of an unsteady wall layer which is in fact driven by an unknown slip velocity, proportional to the amplitude of the cross-flow vortex. The work is extended to obtain the corresponding equation for rotating disk flow. A number of special cases are examined and the numerical solution for one of cases, and further analysis, demonstrates the existence of finite-distance as well as focussing type singularities. The numerical solutions also indicate the presence of a new type of nonlinear wave solution for a certain set of parameter values.
Generalized Kudryashov method for solving some (3+1-dimensional nonlinear evolution equations
Directory of Open Access Journals (Sweden)
Md. Shafiqul Islam
2015-06-01
Full Text Available In this work, we have applied the generalized Kudryashov methods to obtain the exact travelling wave solutions for the (3+1-dimensional Jimbo-Miwa (JM equation, the (3+1-dimensional Kadomtsev-Petviashvili (KP equation and the (3+1-dimensional Zakharov-Kuznetsov (ZK. The attained solutions show distinct physical configurations. The constraints that will guarantee the existence of specific solutions will be investigated. These solutions may be useful and desirable for enlightening specific nonlinear physical phenomena in genuinely nonlinear dynamical systems.
Institute of Scientific and Technical Information of China (English)
通拉嘎; 贾卫国; 杨军; 张俊萍
2012-01-01
通过对低双折射非线性相干耦合模传输方程引入斯托克斯参量表达式,利用庞加莱球图示法,分析了非线性相干耦合波在低双折射光纤中偏振态的衍化规律,并运用相图法数学几何法给出了双折射差与偏振不稳定性的关系,临街功率表达式.当两个运动常量满足关系时,偏振态围绕庞加莱球上的P1,P2稳定点旋转的闭合曲线衍化,并呈现椭圆偏振态；当两个运动常量满足关系时,出现保偏现象；当两个运动常量满足关系时,偏振态围绕P1,P3稳定点旋转的闭合曲线衍化.%Nonlinear polarization evolution for different birefringence regions in a weakly birefringent fiber was analysed by using Poincaré sphere.It was derived by quoting the Stoke's parameters formalism in the nonlinear coupled differential equations for the nonlinear coupled-mode.The phase plane method shows how the evolution of polarization was governed by refringence.Three conditions was derived for different initial values.While the two constants of motion allow for the inequality-R＞Γ,the polarization state would either be elliptical or spin around the stable singular points P1 and P2 on the Poincaré sphere.For the inequality-R=Γ,the linear polarization maintaing phenomenon would occur,the critical power for polarization instability was obtained by using geometrical methods.For the inequality-R＜Γ＜R,the evolution of polarization state would spin around the two points fixed point P and P3 on the Poincaré sphere.
A new method to obtain approximate symmetry of nonlinear evolution equation from perturbations
Institute of Scientific and Technical Information of China (English)
Zhang Zhi-Yong; Yong Xue-Lin; Chen Yu-Fu
2009-01-01
A novel method for obtaining the approximate symmetry of a partial differential equation with a small parameter is introduced. By expanding the independent variable and the dependent variable in the small parameter series, we obtain more affluent approximate symmetries. The method is applied to two perturbed nonlinear partial differential equations and new approximate solutions are derived.
Directory of Open Access Journals (Sweden)
Pabitra Pal Choudhury
2011-01-01
Full Text Available Dynamics of a nonlinear cellular automaton (CA is, in general asymmetric, irregular, and unpredictable as opposed to that of a linear CA, which is highly systematic and tractable, primarily due to the presence of a matrix handle. In this paper, we present a novel technique of studying the properties of the State Transition Diagram of a nonlinear uniform one-dimensional cellular automaton in terms of its deviation from a suggested linear model. We have considered mainly elementary cellular automata with neighborhood of size three, and, in order to facilitate our analysis, we have classified the Boolean functions of three variables on the basis of number and position(s of bit mismatch with linear rules. The concept of deviant and nondeviant states is introduced, and hence an algorithm is proposed for deducing the State Transition Diagram of a nonlinear CA rule from that of its nearest linear rule. A parameter called the proportion of deviant states is introduced, and its dependence on the length of the CA is studied for a particular class of nonlinear rules.
Birch, S. P. D.; Hayes, A. G.; Dietrich, W. E.; Howard, A. D.; Bristow, C. S.; Malaska, M. J.; Moore, J. M.; Mastrogiuseppe, M.; Hofgartner, J. D.; Williams, D. A.; White, O. L.; Soderblom, J. M.; Barnes, J. W.; Turtle, E. P.; Lunine, J. I.; Wood, C. A.; Neish, C. D.; Kirk, R. L.; Stofan, E. R.; Lorenz, R. D.; Lopes, R. M. C.
2017-01-01
We present a geomorphologic map of Titan's polar terrains. The map was generated from a combination of Cassini Synthetic Aperture Radar (SAR) and Imaging Science Subsystem imaging products, as well as altimetry, SARTopo and radargrammetry topographic datasets. In combining imagery with topographic data, our geomorphologic map reveals a stratigraphic sequence from which we infer process interactions between units. In mapping both polar regions with the same geomorphologic units, we conclude that processes that formed the terrains of the north polar region also acted to form the landscape we observe at the south. Uniform, SAR-dark plains are interpreted as sedimentary deposits, and are bounded by moderately dissected uplands. These plains contain the highest density of filled and empty lake depressions, and canyons. These units unconformably overlay a basement rock that outcrops as mountains and SAR-bright dissected terrains at various elevations across both poles. All these units are then superposed by surficial units that slope towards the seas, suggestive of subsequent overland transport of sediment. From estimates of the depths of the embedded empty depressions and canyons that drain into the seas, the SAR-dark plains must be >600 m thick in places, though the thickness may vary across the poles. At the lowest elevations of each polar region, there are large seas, which are currently liquid methane/ethane filled at the north and empty at the south. The large plains deposits and the surrounding hillslopes may represent remnant landforms that are a result of previously vast polar oceans, where larger liquid bodies may have allowed for a sustained accumulation of soluble and insoluble sediments, potentially forming layered sedimentary deposits. Coupled with vertical crustal movements, the resulting layers would be of varying solubilities and erosional resistances, allowing formation of the complex landscape that we observe today.
Xiao, Xiaosheng; Hua, Yi
2016-10-01
All-normal-dispersion (ANDi) mode-locked Yb-doped fiber laser is a promising seed source for supercontinuum (SC) generation, due to its compact structure and broadband output. The influences of output ports of the ANDi laser mode-locked by nonlinear polarization rotation (NPR), on the generated SC are investigated. Two output ports of ANDi laser are considered, one of which is the conventional nonlinear polarization rotation (NPR) port and the other is extracted from a coupler after the NPR port. It is found that, the SC originated from the coupler port is much broader than that from the NPR port, which is validated by lots of experiments with different output parameters. Furthermore, the conclusion is verified and generalized to general ANDi lasers by numerical simulations, because the output pulse from coupler port could be cleaner than that from NPR port. Besides, there are no significant differences in the phase coherence and temporal stability between the SCs generated from both ports. Hence for the SC generation based on ANDi laser, it is preferred to use the pulse of coupler port (i.e. pulse after NPR port) serving as the seed source.
Yuan, Jinhui; Kang, Zhe; Li, Feng; Zhou, Guiyao; Zhang, Xianting; Mei, Chao; Sang, Xinzhu; Wu, Qiang; Yan, Binbin; Zhou, Xian; Zhong, Kangping; Wang, Kuiru; Yu, Chongxiu; Lu, Chao; Tam, Hwa Yaw; Wai, P K A
2017-08-23
Deep-ultraviolet (UV) second-harmonics (SHs) have important applications in basic physics and applied sciences. However, it still remains challenging to generate deep-UV SHs especially in optical fibers. Here, for the first time, we experimentally demonstrate the deep-UV SH generations (SHGs) by combined degenerate four-wave mixing (FWM) and surface nonlinearity polarization in an in-house designed and fabricated air-silica photonic crystal fiber (PCF). When femtosecond pump pulses with average input power P av of 650 mW and center wavelength λ p of 810, 820, 830, and 840 nm are coupled into the normal dispersion region close to the zero-dispersion wavelength of the fundamental mode of the PCF, the anti-Stokes waves induced by degenerate FWM process are tunable from 669 to 612 nm. Then, they serve as the secondary pump, and deep-UV SHs are generated within the wavelength range of 334.5 to 306 nm as a result of surface nonlinearity polarization at the core-cladding interface of the PCF. The physical mechanism of the SHGs is confirmed by studying the dependences of the output power P SH of the SHs on the PCF length and time. Finally, we also establish a theoretical model to analyze the SHGs.
Directory of Open Access Journals (Sweden)
Kerry J Kim
2009-02-01
Full Text Available Many genetic networks are astonishingly robust to quantitative variation, allowing these networks to continue functioning in the face of mutation and environmental perturbation. However, the evolution of such robustness remains poorly understood for real genetic networks. Here we explore whether and how ploidy and recombination affect the evolution of robustness in a detailed computational model of the segment polarity network. We introduce a novel computational method that predicts the quantitative values of biochemical parameters from bit sequences representing genotype, allowing our model to bridge genotype to phenotype. Using this, we simulate 2,000 generations of evolution in a population of individuals under stabilizing and truncation selection, selecting for individuals that could sharpen the initial pattern of engrailed and wingless expression. Robustness was measured by simulating a mutation in the network and measuring the effect on the engrailed and wingless patterns; higher robustness corresponded to insensitivity of this pattern to perturbation. We compared robustness in diploid and haploid populations, with either asexual or sexual reproduction. In all cases, robustness increased, and the greatest increase was in diploid sexual populations; diploidy and sex synergized to evolve greater robustness than either acting alone. Diploidy conferred increased robustness by allowing most deleterious mutations to be rescued by a working allele. Sex (recombination conferred a robustness advantage through "survival of the compatible": those alleles that can work with a wide variety of genetically diverse partners persist, and this selects for robust alleles.
Polarizing efficiency as indicator of the interstellar magnetic fields and grain evolution
Voshchinnikov, N V; Das, H K
2015-01-01
We quantitatively interpret the relation between the polarizing efficiency $P_{\\max}/E(B-V)$ and the wavelength of the maximum polarization $\\lambda_{\\max}$ observed for 16 objects (including 246 stars) separated into two groups: dark clouds and open clusters. The groups are distinguished by the distribution of the parameter $\\lambda_{\\max}$. We use the model of homogeneous silicate and carbonaceous spheroidal particles having imperfect alignment and the size distribution evolving due to gas accretion and grain coagulation. We assume that polarization is mainly produced by large silicate particles with sizes $r_{V} \\ga r_{V,\\rm cut}$. We find that the models with the initial size distribution fail to explain the values of $\\lambda_{\\max} \\ga 0.65\\,\\mkm$ observed for several dark clouds. After an inclusion of evolutionary effects, $\\lambda_{\\max}$ shifts to longer wavelengths on time-scales $\\sim 20 (n_\\mathrm{H}/10^3 \\mathrm{cm}^{-3})^{-1}$ Myr ($n_\\mathrm{H}$ is the hydrogen density in molecular clouds where...
Directory of Open Access Journals (Sweden)
Hung-Chi Hsiao
2012-04-01
Full Text Available With the increasing cost of setting up a semiconductor fabrication facility, coupled with significant costs of developing a leading nanotechnology process, aggressive outsourcing (asset-light business models via working more closely with foundry companies is how semiconductor manufacturing firms are looking to strengthen their sustainable competitive advantages. This study aims to construct a market intelligence framework for developing a wafer demand forecasting model based on long-term trend detection to facilitate decision makers in capacity planning. The proposed framework modifies market variables by employing inventory factors and uses a top-down forecasting approach with nonlinear least square method to estimate the forecast parameters. The nonlinear mathematical approaches could not only be used to examine forecasting performance, but also to anticipate future growth of the semiconductor industry. The results demonstrated the practical viability of this long-term demand forecast framework.
Directory of Open Access Journals (Sweden)
Mustapha Lahmar
2015-04-01
Full Text Available On the basis of the V. K. Stokes micro-continuum theory, the effects of couple stresses on the nonlinear dynamic response of the unbalanced Jeffcott’s flexible rotor supported by layered hydrodynamic journal bearings is presented in this paper. A nonlinear transient modified Reynolds’ equation is derived and discretized by the finite element method to obtain the fluid-film pressure field as well as the film thickness by means of the implicit Euler method. The nonlinear orbits of the rotor center are determined by solving the nonlinear differential equations of motion with the explicit Euler’s scheme taking into account the flexibility of rotor. According to the obtained results, the combined effects of couple stresses due to the presence of polymer additives in lubricant and the pressure dependent viscosity on the nonlinear dynamic response of the rotor-bearing system are significant and cannot be ignored or overlooked. As expected, these effects are more noticeable for polymers characterized by higher length molecular chains.
Finite time extinction for nonlinear fractional evolution equations and related properties.
Jesus Ildefonso Diaz; Teresa Pierantozzi; Luis Vazquez
2016-01-01
The finite time extinction phenomenon (the solution reaches an equilibrium after a finite time) is peculiar to certain nonlinear problems whose solutions exhibit an asymptotic behavior entirely different from the typical behavior of solutions associated to linear problems. The main goal of this work is twofold. Firstly, we extend some of the results known in the literature to the case in which the ordinary time derivative is considered jointly with a fractional time differentiation. Secondly,...
Soliton solutions of some nonlinear evolution equations with time-dependent coefficients
Indian Academy of Sciences (India)
Hitender Kumar; Anand Malik; Fakir Chand
2013-02-01
In this paper, we obtain exact soliton solutions of the modified KdV equation, inho-mogeneous nonlinear Schrödinger equation and (, ) equation with variable coefficients using solitary wave ansatz. The constraint conditions among the time-dependent coefficients turn out as necessary conditions for the solitons to exist. Numerical simulations for dark and bright soliton solutions for the mKdV equation are also given.
The nonlinear evolution of rogue waves generated by means of wave focusing technique
Hu, HanHong; Ma, Ning
2011-01-01
Generating the rogue waves in offshore engineering is investigated, first of all, to forecast its occurrence to protect the offshore structure from being attacked, to study the mechanism and hydrodynamic properties of rouge wave experimentally as well as the rouge/structure interaction for the structure design. To achieve these purposes demands an accurate wave generation and calculation. In this paper, we establish a spatial domain model of fourth order nonlinear Schrödinger (NLS) equation for describing deep-water wave trains in the moving coordinate system. In order to generate rogue waves in the experimental tank efficiently, we take care that the transient water wave (TWW) determines precisely the concentration of time/place. First we simulate the three-dimensional wave using TWW in the numerical tank and modeling the deepwater basin with a double-side multi-segmented wave-maker in Shanghai Jiao Tong University (SJTU) under the linear superposing theory. To discuss its nonlinearity for guiding the experiment, we set the TWW as the initial condition of the NLS equation. The differences between the linear and nonlinear simulations are presented. Meanwhile, the characteristics of the transient water wave, including water particle velocity and wave slope, are investigated, which are important factors in safeguarding the offshore structures.
Ngoko Djiokap, J M; Manakov, N L; Meremianin, A V; Hu, S X; Madsen, L B; Starace, Anthony F
2014-11-28
Control of double ionization of He by means of the polarization and carrier-envelope phase (CEP) of an intense, few-cycle extreme ultraviolet (XUV) pulse is demonstrated numerically by solving the six-dimensional two-electron, time-dependent Schrödinger equation for He interacting with an elliptically polarized XUV pulse. Guided by perturbation theory (PT), we predict the existence of a nonlinear dichroic effect (∝I^{3/2}) that is sensitive to the CEP, ellipticity, peak intensity I, and temporal duration of the pulse. This dichroic effect (i.e., the difference of the two-electron angular distributions for opposite helicities of the ionizing XUV pulse) originates from interference of first- and second-order PT amplitudes, allowing one to probe and control S- and D-wave channels of the two-electron continuum. We show that the back-to-back in-plane geometry with unequal energy sharing is an ideal one for observing this dichroic effect that occurs only for an elliptically polarized, few-cycle attosecond pulse.
Deep-time evolution of regeneration and preaxial polarity in tetrapod limb development.
Fröbisch, Nadia B; Bickelmann, Constanze; Olori, Jennifer C; Witzmann, Florian
2015-11-12
Among extant tetrapods, salamanders are unique in showing a reversed preaxial polarity in patterning of the skeletal elements of the limbs, and in displaying the highest capacity for regeneration, including full limb and tail regeneration. These features are particularly striking as tetrapod limb development has otherwise been shown to be a highly conserved process. It remains elusive whether the capacity to regenerate limbs in salamanders is mechanistically and evolutionarily linked to the aberrant pattern of limb development; both are features classically regarded as unique to urodeles. New molecular data suggest that salamander-specific orphan genes play a central role in limb regeneration and may also be involved in the preaxial patterning during limb development. Here we show that preaxial polarity in limb development was present in various groups of temnospondyl amphibians of the Carboniferous and Permian periods, including the dissorophoids Apateon and Micromelerpeton, as well as the stereospondylomorph Sclerocephalus. Limb regeneration has also been reported in Micromelerpeton, demonstrating that both features were already present together in antecedents of modern salamanders 290 million years ago. Furthermore, data from lepospondyl 'microsaurs' on the amniote stem indicate that these taxa may have shown some capacity for limb regeneration and were capable of tail regeneration, including re-patterning of the caudal vertebral column that is otherwise only seen in salamander tail regeneration. The data from fossils suggest that salamander-like regeneration is an ancient feature of tetrapods that was subsequently lost at least once in the lineage leading to amniotes. Salamanders are the only modern tetrapods that retained regenerative capacities as well as preaxial polarity in limb development.
Bartelmann, Matthias; Berg, Daniel; Kozlikin, Elena; Lilow, Robert; Viermann, Celia
2014-01-01
We calculate the power spectrum of density fluctuations in the statistical non-equilibrium field theory for classical, microscopic degrees of freedom to first order in the interaction potential. We specialise our result to cosmology by choosing appropriate initial conditions and propagators and show that the non-linear growth of the density power spectrum found in numerical simulations of cosmic structure evolution is reproduced well to redshift zero and for arbitrary wave numbers. The main difference of our approach to ordinary cosmological perturbation theory is that we do not perturb a dynamical equation for the density contrast. Rather, we transport the initial phase-space distribution of a canonical particle ensemble forward in time and extract any collective information from it at the time needed. Since even small perturbations of particle trajectories can lead to large fluctuations in density, our approach allows to reach high density contrast already at first order in the perturbations of the particle...
Polarized SANS study of microstructural evolution in a martensitic steel for fusion reactors
Energy Technology Data Exchange (ETDEWEB)
Coppola, R. [ENEA-Casaccia, FIS, CP 2400, 00100 Roma (Italy); Glaettli, H. [CEA-SACLAY, SPEC and Laboratoire Leon Brillouin (CEA-CNRS), 91191 Gif-sur-Yvette (France); Valli, M. [ENEA-Bologna, FIS, V. Don Fiammelli 2, 40128 Bologna (Italy)
2002-07-01
The results of a polarized SANS study of a martensitic steel (MANET) developed for fusion-reactor technology are presented. The measurements were carried out to investigate Cr-redistribution phenomena in the martensitic matrix, which can play a crucial role in ductile-to-brittle transition changes under irradiation. The nuclear-magnetic interference term and the ratio of nuclear plus magnetic to nuclear SANS cross sections show that such inhomogeneities, which are present immediately after quenching and give rise to Fe-rich precipitates, dissolve even for short tempering times. (orig.)
King, I. R.; Fassett, C. I.; Thomson, B. J.; Minton, D. A.; Watters, W. A.
2017-01-01
When sufficiently large impact craters form on the Moon, rocks and unweathered materials are excavated from beneath the regolith and deposited into their blocky ejecta. This enhances the rockiness and roughness of the proximal ejecta surrounding fresh impact craters. The interior of fresh craters are typically also rough, due to blocks, breccia, and impact melt. Thus, both the interior and proximal ejecta of fresh craters are usually radar bright and have high circular polarization ratios (CPR). Beyond the proximal ejecta, radar-dark halos are observed around some fresh craters, suggesting that distal ejecta is finer-grained than background regolith. The radar signatures of craters fade with time as the regolith grows.
Effects of constant voltage on time evolution of propagating concentration polarization.
Zangle, Thomas A; Mani, Ali; Santiago, Juan G
2010-04-15
We extend the analytical theory of propagating concentration polarization (CP) to describe and compare the effects of constant-voltage versus constant-current conditions on the transient development of CP enrichment and depletion zones. We support our analysis with computational and experimental results. We find that at constant voltage, enrichment and depletion regions spread as t(1/2) as opposed to the previously observed t(1) scaling for constant current conditions. At low, constant voltages, the growth and propagation of CP zones can easily be misinterpreted as nonpropagating behavior.
Photon Polarization in Photonic Crystal Fibers under Compton Scattering
Institute of Scientific and Technical Information of China (English)
HAO Dong-shan; ZHANG Xiao-fu
2007-01-01
Using the quantum invariant theory and unitary transformation means, we study the influences of multi-photon nonlinear Compton scattering on the photon polarization in photonic crystal fibers(PCF). The results show that the photon polarization of the incident photon changes a lot due to scattered optical, and its general geometric phase factor, Hamiton number and evolution operator are definited both by the incident and scattered optical.
Evolution of Weakly Nonlinear Water Waves in the Presence of Viscosity and Surfactant
1989-08-14
Pliny, 77 A.D. Naturalis Historia . Book ii, Chapter 107, section 234. Reynolds, 0. 1880 On the effect of oil on destroying waves on the surface of water...fluid. J. Appl . Mech. Tech. Phy., 9, 190-194. * 36 I 77 7 I LIST OF FIGURES Figure 1. Evolution of modulations for inviscid gravity waves (A = 0) when the
On nonlinear evolution of low-frequency Alfvén waves in weakly-expanding solar wind plasmas
Energy Technology Data Exchange (ETDEWEB)
Nariyuki, Y. [Faculty of Human Development, University of Toyama, 3190 Toyama City, Toyama 930-8555 (Japan)
2015-02-15
A multi-dimensional nonlinear evolution equation for Alfvén waves in weakly-expanding solar wind plasmas is derived by using the reductive perturbation method. The expansion of solar wind plasma parcels is modeled by an expanding box model, which includes the accelerating expansion. It is shown that the resultant equation agrees with the Wentzel-Kramers-Brillouin prediction of the low-frequency Alfvén waves in the linear limit. In the cold and one-dimensional limit, a modified derivative nonlinear Schrodinger equation is obtained. Direct numerical simulations are carried out to discuss the effect of the expansion on the modulational instability of monochromatic Alfvén waves and the propagation of Alfvén solitons. By using the instantaneous frequency, it is quantitatively shown that as far as the expansion rate is much smaller than wave frequencies, effects of the expansion are almost adiabatic. It is also confirmed that while shapes of Alfvén solitons temporally change due to the expansion, some of them can stably propagate after their collision in weakly-expanding plasmas.
Misra, A P
2010-01-01
We consider the nonlinear propagation of electrostatic wave packets in an ultra-relativistic (UR) degenerate dense electron-ion plasma, whose dynamics is governed by the nonlocal two-dimensional nonlinear Schroedinger-like equations. The coupled set of equations are then used to study the modulational instability (MI) of a uniform wave train to an infinitesimal perturbation of multi-dimensional form. The condition for the MI is obtained, and it is shown that the nondimensional parameter, $\\beta\\propto\\lambda_C n_0^{1/3}$ (where $\\lambda_C$ is the reduced Compton wavelength and $n_0$ is the particle number density), associated with the UR pressure of degenerate electrons, shifts the stable (unstable) regions at $n_{0}\\sim10^{30}$ cm$^{-3}$ to unstable (stable) ones at higher densities, i.e. $n_{0}\\gtrsim7\\times10^{33}$. It is also found that higher the values of $n_{0}$, the lower is the growth rate of MI with cut-offs at lower wave numbers of modulation. Furthermore, the dynamical evolution of the wave packet...
Persistence of solutions to nonlinear evolution equations in weighted Sobolev spaces
Directory of Open Access Journals (Sweden)
Xavier Carvajal Paredes
2010-11-01
Full Text Available In this article, we prove that the initial value problem associated with the Korteweg-de Vries equation is well-posed in weighted Sobolev spaces $mathcal{X}^{s,heta}$, for $s geq 2heta ge 2$ and the initial value problem associated with the nonlinear Schrodinger equation is well-posed in weighted Sobolev spaces $mathcal{X}^{s,heta}$, for $s geq heta geq 1$. Persistence property has been proved by approximation of the solutions and using a priori estimates.
Sakhnovich, Lev A; Roitberg, Inna Ya
2013-01-01
This monograph fits theclearlyneed for books with a rigorous treatment of theinverse problems for non-classical systems and that of initial-boundary-value problems for integrable nonlinear equations. The authorsdevelop a unified treatment of explicit and global solutions via the transfer matrix function in a form due to Lev A. Sakhnovich. The book primarily addresses specialists in the field. However, it is self-contained andstarts with preliminaries and examples, and hencealso serves as an introduction for advanced graduate students in the field.
Petruk, O.; Bandiera, R.; Beshley, V.; Orlando, S.; Miceli, M.
2017-09-01
Polarized radio emission has been mapped with great detail in several Galactic supernova remnants (SNRs), but has not yet been exploited to the extent it deserves. We have developed a method to model maps of the Stokes parameters for shell-like SNRs during their Sedov evolution phase. At first, three-dimensional structure of an SNR has been computed, by modelling the distribution of the magnetohydrodynamic parameters and of the accelerated particles. The generation and dissipation of the turbulent component of magnetic field everywhere in SNR are also considered taking into account its interaction with accelerated particles. Then, in order to model the emission, we have used a generalization of the classical synchrotron theory, valid for the case in which the magnetic field has ordered and disordered components. Finally, two-dimensional projected maps have been derived, for different orientations of SNR and of interstellar magnetic field with respect to the observer. An important effect to consider is the Faraday rotation of the polarization planes inside the SNR interior. In this paper, we present details of the model, and describe general properties of the images.
Institute of Scientific and Technical Information of China (English)
牛晓花; 潘祖梁
2006-01-01
A new method based on Lie-B(a)cklund symmetry method to solve the perturbed nonlinear evolution equations is presented. New approximate solutions of perturbed nonlinear evolution equations stemming from the exact solutions of unperturbed equations are obtained.This method is a generalization of Burde's Lie point symmetry technique.
非线性林龄结构森林系统的稳定解%Stable Solution of Nonlinear Age-structured Forest Evolution System
Institute of Scientific and Technical Information of China (English)
王定江; 赵廷芳
2004-01-01
This paper studies the dynamical behavior of a class of total area dependent nonlinear age-structured forest evolution model. We give the problem of equal value for the forest system, and discuss the stable solution of system. We obtained the necessary and sufficient conditions for there exists the stable solution.
Jain, Neeraj
2016-01-01
The dissipation mechanism by which the magnetic field reconnects in the presence of an external (guide) magnetic field in the direction of the main current is not well understood. In thin electron current sheets (ECS) (thickness ~ an electron inertial length) formed in collisionless magnetic reconnection, electron shear flow instabilities (ESFI) are potential candidates for providing an anomalous dissipation mechanism which can break the frozen-in condition of the magnetic field affecting the structure and rate of reconnection. We investigate the evolution of ESFI in guide field magnetic reconnection. The properties of the resulting plasma turbulence and their dependence on the strength of the guide field are studied. Utilizing 3-D electron-magnetohydrodynamic simulations of ECS we show that, unlike the case of ECS self-consistently embedded in anti-parallel magnetic fields, the evolution of thin ECS in the presence of a guide field (equal to the asymptotic value of the reconnecting magnetic field or larger) ...
The impact of nonlinear functional responses on the long-term evolution of food web structure.
Drossel, Barbara; McKane, Alan J; Quince, Christopher
2004-08-21
We investigate the long-term web structure emerging in evolutionary food web models when different types of functional responses are used. We find that large and complex webs with several trophic layers arise only if the population dynamics is such that it allows predators to focus on their best prey species. This can be achieved using modified Lotka-Volterra or Holling/Beddington functional responses with effective couplings that depend on the predator's efficiency at exploiting the prey, or a ratio-dependent functional response with adaptive foraging. In contrast, if standard Lotka-Volterra or Holling/Beddington functional responses are used, long-term evolution generates webs with almost all species being basal, and with additionally many links between these species. Interestingly, in all cases studied, a large proportion of weak links result naturally from the evolution of the food webs.
Stratigraphy and evolution of the buried CO2 deposit in the Martian south polar cap
Bierson, C. J.; Phillips, R. J.; Smith, I. B.; Wood, S. E.; Putzig, N. E.; Nunes, D.; Byrne, S.
2016-05-01
Observations by the Shallow Radar instrument on Mars Reconnaissance Orbiter reveal several deposits of buried CO2 ice within the south polar layered deposits. Here we present mapping that demonstrates this unit is 18% larger than previously estimated, containing enough mass to double the atmospheric pressure on Mars if sublimated. We find three distinct subunits of CO2 ice, each capped by a thin (10-60 m) bounding layer (BL). Multiple lines of evidence suggest that each BL is dominated by water ice. We model the history of CO2 accumulation at the poles based on obliquity and insolation variability during the last 1 Myr assuming a total mass budget consisting of the current atmosphere and the sequestered ice. Our model predicts that CO2 ice has accumulated over large areas several times during that period, in agreement with the radar findings of multiple periods of accumulation.
Social Judgment Theory Based Model On Opinion Formation, Polarization And Evolution
Chau, H F; Chow, F K; Fung, C -H F
2013-01-01
The dynamical origin of opinion polarization in the real world is an interesting topic physical scientists may help to understand. To properly model the dynamics, the theory must be fully compatible with the social judgment theory (SJT) of microscopic opinion change. Here we introduce a generic SJT-based model of opinion formation with homogeneous agents by extending a similar model proposed by Jager and Amblard. The agents' opinions will eventually cluster around extreme and/or moderate opinions forming three phases in a two-dimensional parameter space that describes the microscopic opinion response of the agents. The dynamics of this model can be qualitatively understood by mean-field analysis. More importantly, first-order phase transition in opinion distribution is observed by evolving the system under a slow change in the system parameters, showing that punctuated equilibria in public opinion can occur even in a fully connected social network.
Nonlinear dynamic evolution and control in CCFN with mixed attachment mechanisms
Wang, Jianrong; Wang, Jianping; Han, Dun
2017-01-01
In recent years, wireless communication plays an important role in our lives. Cooperative communication, is used by a mobile station with single antenna to share with each other forming a virtual MIMO antenna system, will become a development with a diversity gain for wireless communication in tendency future. In this paper, a fitness model of evolution network based on complex networks with mixed attachment mechanisms is devised in order to study an actual network-CCFN (cooperative communication fitness network). Firstly, the evolution of CCFN is given by four cases with different probabilities, and the rate equations of nodes degree are presented to analyze the evolution of CCFN. Secondly, the degree distribution is analyzed by calculating the rate equation and numerical simulation with the examples of four fitness distributions such as power law, uniform fitness distribution, exponential fitness distribution and Rayleigh fitness distribution. Finally, the robustness of CCFN is studied by numerical simulation with four fitness distributions under random attack and intentional attack to analyze the effects of degree distribution, average path length and average degree. The results of this paper offers insights for building CCFN systems in order to program communication resources.
Finite time extinction for nonlinear fractional evolution equations and related properties
Directory of Open Access Journals (Sweden)
Jesus Ildefonso Diaz
2016-08-01
Full Text Available The finite time extinction phenomenon (the solution reaches an equilibrium after a finite time is peculiar to certain nonlinear problems whose solutions exhibit an asymptotic behavior entirely different from the typical behavior of solutions associated to linear problems. The main goal of this work is twofold. Firstly, we extend some of the results known in the literature to the case in which the ordinary time derivative is considered jointly with a fractional time differentiation. Secondly, we consider the limit case when only the fractional derivative remains. The latter is the most extraordinary case, since we prove that the finite time extinction phenomenon still appears, even with a non-smooth profile near the extinction time.
Nonlinear analysis of a simple model of temperature evolution in a satellite
Gaite, Jose; Pérez-Grande, Isabel
2007-01-01
We analyse a simple model of the heat transfer to and from a small satellite orbiting round a solar system planet. Our approach considers the satellite isothermal, with external heat input from the environment and from internal energy dissipation, and output to the environment as black-body radiation. The resulting nonlinear ordinary differential equation for the satellite's temperature is analysed by qualitative, perturbation and numerical methods, which show that the temperature approaches a periodic pattern (attracting limit cycle). This approach can occur in two ways, according to the values of the parameters: (i) a slow decay towards the limit cycle over a time longer than the period, or (ii) a fast decay towards the limit cycle over a time shorter than the period. In the first case, an exactly soluble average equation is valid. We discuss the consequences of our model for the thermal stability of satellites.
Higher order effects in non-linear evolution from a veto in rapidities
Chachamis, G.; Lublinsky, M.; Sabio Vera, A.
2005-02-01
Higher order corrections to the Balitsky-Kovchegov equation have been estimated by introducing a rapidity veto which forbids subsequent emissions to be very close in rapidity and is known to mimic higher order corrections to the linear BFKL equation. The rapidity veto constraint has been first introduced using analytical arguments obtaining a power growth with energy, Q(Y)˜e, of the saturation scale of λ˜0.45. Then a numerical analysis for the non-linear Balitsky-Kovchegov equation has been carried out for phenomenological rapidities: when a veto of about two units of rapidity is introduced for a fixed value of the coupling constant of α=0.2 the saturation scale λ decreases from ˜0.6 to ˜0.3, and when running coupling effects are taken into account it decreases from ˜0.4 to ˜0.3.
Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability.
Bosch, Pablo; Green, Stephen R; Lehner, Luis
2016-04-08
We describe the full nonlinear development of the superradiant instability for a charged massless scalar field coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordström-anti-de Sitter black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeatedly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.
Yan, Ming; Li, Wenxue; Yang, Kangwen; Zhou, Hui; Shen, Xuling; Zhou, Qian; Ru, Qitian; Bai, Dongbi; Zeng, Heping
2012-05-01
We report on a simple scheme to precisely control carrier-envelope phase of a nonlinear-polarization-rotation mode-locked self-started Yb-fiber laser system with an average output power of ∼7 W and a pulse width of 130 fs. The offset frequency was locked to the repetition rate of ∼64.5 MHz with a relative linewidth of ∼1.4 MHz by using a self-referenced feed-forward scheme based on an acousto-optic frequency shifter. The phase noise and timing jitter were calculated to be 370 mrad and 120 as, respectively.
Novikov, A; Odoulov, S; Jungen, R; Tschudi, T
1991-12-15
The development of a spatial subharmonic, i.e., of a light wave propagating at the bisector of two pump waves, with orthogonal polarizations incident upon a BaTiO(3) crystal in a plane normal to the optical axis is observed and studied. Parametric amplification of a seed wave meeting the phase-matching condition in the presence of two pump waves is shown to be the main reason for subharmonic generation in this crystal.
Institute of Scientific and Technical Information of China (English)
S.V.Ivanova
2008-01-01
By the 90°elastic light scattering investigation and far field observation in the range of 20-800℃,the relation between behavior of light scattering anomalies and evolution of nanodomain structures in lattice of barium sodium niobate(Ba2NaNb5O15,BSN)crystal was clarified.The correlation between anomalies on the temperature curves of the elastic light scattering intensity and temperature transformations of nanodomains was studied by X-ray and electron microscope methods.Phase transition near 500℃ and movement in field of scattering light could be explained by appearance of a new incommensurate phase.
Boyd, Robert W
2013-01-01
Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q
Soloviev, V. R.; Krivtsov, V. M.; Shcherbanev, S. A.; Starikovskaia, S. M.
2017-01-01
Surface dielectric barrier discharge, initiated by a high-voltage pulse of negative polarity in atmospheric pressure air, is studied numerically and experimentally. At a pulse duration of a few tens of nanoseconds, two waves of optical emission propagate from the high-voltage electrode corresponding to the leading and trailing edges of the high-voltage pulse. It is shown by means of numerical modeling that a glow-like discharge slides along the surface of the dielectric at the leading edge of the pulse, slowing down on the plateau of the pulse. When the trailing edge of the pulse arrives to the high-voltage electrode, a second discharge starts and propagates in the same direction. The difference is that the discharge corresponding to the trailing edge is not diffuse and demonstrates a well-pronounced streamer-like shape. The 2D (in numerical modeling) streamer propagates above the dielectric surface, leaving a gap of about 0.05 mm between the streamer and the surface. The calculated and experimentally measured emission picture, waveform of the electrical current, and deposited energy, qualitatively coincide. The sensitivity of the numerical solution to unknown physical parameters of the model is discussed.
Romani, Annalisa; Lapucci, Chiara; Cantini, Claudio; Ieri, Francesca; Mulinacci, Nadia; Visioli, Francesco
2007-02-21
We characterized "Olivastra Seggianese" extra virgin olive oil (EVOO) and evaluated its chemical and sensory characteristics and antioxidant and antiradical activities during storage under novel conditions. Two oils (A and B) were analyzed for the commodity characteristics at blending (t0) and after 9, 12, and 18 months; panel tests were performed and minor polar compounds (MPC) content was assessed at blending (t0) and after 6, 9, 12, and 18 months. Antioxidant and antiradical activities in vitro were evaluated at t0 and after 12 months, by human low density lipoprotein (LDL) and 1,1-diphenyl-2-picrylhydrazil radical (DPPH*) tests. Oil A, which had an initially higher MPC content, possessed "harder" organoleptic characteristics than oil B, which had a lower MPC content and was endowed with a "smoother" taste profile. Statistical analyses showed that secoiridoids, particularly deacetoxy-oleuropein aglycone, should be quantified to evaluate EVOO stability during storage. The antioxidant activity toward human LDL was linked to MPC content and to storage time. The tests on the stable free radical DPPH* confirmed the results on human LDL. We propose this as an additional parameter to evaluate olive oil quality and stability over time.
Nonlinear Evolution of the Radiation-Driven Magneto-Acoustic Instability (RMI)
Fernández, Rodrigo
2012-01-01
We examine the nonlinear development of unstable magnetosonic waves driven by a background radiative flux -- the Radiation-Driven Magneto-Acoustic Instability (RMI, a.k.a. the "photon bubble" instability). The RMI may serve as a persistent source of density, radiative flux, and magnetic field fluctuations in stably-stratified, optically-thick media. The conditions for instability are present in a variety of astrophysical environments, and do not require the radiation pressure to dominate or the magnetic field to be strong. Here we numerically study the saturation properties of the RMI, covering three orders of magnitude in the relative strength of radiation, magnetic field, and gas energies. Two-dimensional, time-dependent radiation-MHD simulations of local, stably-stratified domains are conducted with Zeus-MP in the optically-thick, highly-conducting limit. Our results confirm the theoretical expectations of Blaes and Socrates (2003) in that the RMI operates even in gas pressure-dominated environments that a...
NONLINEAR EVOLUTION OF THE RADIATION-DRIVEN MAGNETO-ACOUSTIC INSTABILITY
Energy Technology Data Exchange (ETDEWEB)
Fernandez, Rodrigo; Socrates, Aristotle [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)
2013-04-20
We examine the nonlinear development of unstable magnetosonic waves driven by a background radiative flux-the radiation-driven magneto-acoustic instability (RMI, a.k.a. the ''photon bubble'' instability). The RMI may serve as a persistent source of density, radiative flux, and magnetic field fluctuations in stably stratified, optically thick media. The conditions for instability are present in a variety of astrophysical environments and do not require the radiation pressure to dominate or the magnetic field to be strong. Here, we numerically study the saturation properties of the RMI, covering three orders of magnitude in the relative strength of radiation, magnetic field, and gas energies. Two-dimensional, time-dependent radiation-magnetohydrodynamic simulations of local, stably stratified domains are conducted with Zeus-MP in the optically thick, highly conducting limit. Our results confirm the theoretical expectations of Blaes and Socrates in that the RMI operates even in gas-pressure-dominated environments that are weakly magnetized. The saturation amplitude is a monotonically increasing function of the ratio of radiation to gas pressure. Keeping this ratio constant, we find that the saturation amplitude peaks when the magnetic pressure is comparable to the radiation pressure. We discuss the implications of our results for the dynamics of magnetized stellar envelopes, where the RMI should act as a source of sub-photospheric perturbations.
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2017-06-01
We investigate the influence of collective self-gravity forces on the nonlinear evolution of the viscous overstability in Saturn's dense rings. Local N-body simulations, incorporating vertical and radial collective self-gravity are performed. Vertical self-gravity is mimicked through an increased frequency of vertical oscillations, while radial self-gravity is approximated by solving the Poisson equation for a thin disk in Fourier space. Direct particle-particle forces are omitted, while the magnitude of radial self gravity is controlled by assigning a variable surface mass density to the system's homogeneous ground state. We compare our simulations with large-scale isothermal and non-isothermal hydrodynamic model calculations, including radial self-gravity and employing transport coefficients derived in Salo et al. (2001). We concentrate on optical depths τ=1.5-2, appropriate to model Saturn's dense rings. Our isothermal and non isothermal hydrodynamic results in the limit of vanishing self-gravity compare very well with the studies of Latter&Ogilvie (2010) and Rein&latter (2013), respectively.With non-vanishing radial self-gravity we find that the wavelengths of saturated overstable wave trains are located in close vicinity of the local minimum of the nonlinear dispersion relation for a particular surface density. Good agreement is found between non-isothermal hydrodynamics and N-body simulations for disks with strong radial self-gravity, while the largest deviations occur for a weak but non-vanishing self-gravity.The resulting saturation wavelengths of the viscous overstability for moderate and strong radial self-gravity (λ~ 200-300m) agree reasonably well with the length scale of periodic micro structure in Saturn's inner A and B ring, as found by Cassini.
Nakajima, Hideaki; Wohltmann, Ingo; Wegner, Tobias; Takeda, Masanori; Pitts, Michael C.; Poole, Lamont R.; Lehmann, Ralph; Santee, Michelle L.; Rex, Markus
2016-03-01
We examined observations of polar stratospheric clouds (PSCs) by CALIPSO, and of HCl and ClO by MLS along air mass trajectories, to investigate the dependence of the inferred PSC composition on the temperature history of the air parcels and the dependence of the level of chlorine activation on PSC composition. Several case studies based on individual trajectories from the Arctic winter 2009/2010 were conducted, with the trajectories chosen such that the first processing of the air mass by PSCs in this winter occurred on the trajectory. Transitions of PSC composition classes were observed to be highly dependent on the temperature history. In cases of a gradual temperature decrease, nitric acid trihydrate (NAT) and super-cooled ternary solution (STS) mixture clouds were observed. In cases of rapid temperature decrease, STS clouds were first observed, followed by NAT/STS mixture clouds. When temperatures dropped below the frost point, ice clouds formed and then transformed into NAT/STS mixture clouds when temperature increased above the frost point. The threshold temperature for rapid chlorine activation on PSCs is approximately 4 K below the NAT existence temperature, TNAT. Furthermore, simulations of the ATLAS chemistry and transport box model along the trajectories were used to corroborate the measurements and show good agreement with the observations. Rapid chlorine activation was observed when an air mass encountered PSCs. Usually, chlorine activation was limited by the amount of available ClONO2. Where ClONO2 was not the limiting factor, a large dependence on temperature was evident.
Nakajima, H.; Wohltmann, I.; Wegner, T.; Takeda, M.; Pitts, M. C.; Poole, L. R.; Lehmann, R.; Santee, M. L.; Rex, M.
2015-08-01
We examined observations of polar stratospheric clouds (PSCs) by CALIPSO and of HCl, ClO and HNO3 by MLS along air mass trajectories to investigate the dependence of the inferred PSC composition on the temperature history of the air parcels, and the dependence of the level of chlorine activation on PSC composition. Several case studies based on individual trajectories from the Arctic winter 2009/10 were conducted, with the trajectories chosen such that the first processing of the air mass by PSCs in this winter occurred on the trajectory. Transitions of PSC composition classes were observed to be highly dependent on the temperature history. In cases of a gradual temperature decrease, nitric acid trihydrate (NAT) and super-cooled ternary solution (STS) mixture clouds were observed. In cases of rapid temperature decrease, STS clouds were first observed, followed by NAT/STS mixture clouds. When temperatures dropped below the frost point, ice clouds formed, and then transformed into NAT/STS mixture clouds when temperature increased above the frost point. The threshold temperature for rapid chlorine activation on PSCs is approximately 4 K below the NAT existence temperature, TNAT. Furthermore, simulations of the ATLAS chemistry and transport box model along the trajectories were used to corroborate the measurements and show good agreement with the observations. Rapid chlorine activation was observed when an airmass encountered PSCs. The observed and modelled dependence of the rate of chlorine activation on the PSC composition class was small. Usually, chlorine activation was limited by the amount of available ClONO2. Where ClONO2 was not the limiting factor, a large dependence on temperature was evident.
Directory of Open Access Journals (Sweden)
H. Nakajima
2015-08-01
Full Text Available We examined observations of polar stratospheric clouds (PSCs by CALIPSO and of HCl, ClO and HNO3 by MLS along air mass trajectories to investigate the dependence of the inferred PSC composition on the temperature history of the air parcels, and the dependence of the level of chlorine activation on PSC composition. Several case studies based on individual trajectories from the Arctic winter 2009/10 were conducted, with the trajectories chosen such that the first processing of the air mass by PSCs in this winter occurred on the trajectory. Transitions of PSC composition classes were observed to be highly dependent on the temperature history. In cases of a gradual temperature decrease, nitric acid trihydrate (NAT and super-cooled ternary solution (STS mixture clouds were observed. In cases of rapid temperature decrease, STS clouds were first observed, followed by NAT/STS mixture clouds. When temperatures dropped below the frost point, ice clouds formed, and then transformed into NAT/STS mixture clouds when temperature increased above the frost point. The threshold temperature for rapid chlorine activation on PSCs is approximately 4 K below the NAT existence temperature, TNAT. Furthermore, simulations of the ATLAS chemistry and transport box model along the trajectories were used to corroborate the measurements and show good agreement with the observations. Rapid chlorine activation was observed when an airmass encountered PSCs. The observed and modelled dependence of the rate of chlorine activation on the PSC composition class was small. Usually, chlorine activation was limited by the amount of available ClONO2. Where ClONO2 was not the limiting factor, a large dependence on temperature was evident.
Directory of Open Access Journals (Sweden)
Bashir Ahmad
2015-09-01
Full Text Available This article presents necessary conditions for the existence of weak solutions of the following space-nonlocal evolution equations on $\\mathbb{H}\\times(0, +\\infty$, where $\\mathbb{H}$ is the Heisenberg group: $$\\displaylines{ \\frac{\\partial^2 u }{\\partial t^2} + (- \\Delta_{\\mathbb{H}}^{\\alpha/2}|u|^m = |u|^{p},\\cr \\frac{\\partial u}{\\partial t} + (- \\Delta_{\\mathbb{H}}^{\\alpha/2} |u|^m = |u|^{p},\\cr \\frac{\\partial^2 u }{\\partial t^2} + (- \\Delta_{\\mathbb{H}}^{\\alpha/2} |u|^m + \\frac{\\partial u }{\\partial t} = |u|^p, }$$ $p \\in \\mathbb{R}, p>1, m \\in \\mathbb{N}$. Moreover, the life span for each equation is estimated under some suitable conditions. Our method of proof is based on the test function method.
DEFF Research Database (Denmark)
Kwok, C.H.; Chow, C.W.; Tsang, H.K.;
2006-01-01
We study the conversion bandwidth of the cross-polarization-modulation (YPoIM)-based wavelength conversion scheme with a dispersion-flattened highly nonlinear photonic-crystal fiber for signals with a nonreturn-to-zero (NRZ) modulation format. Both theoretical and experimental results show...... using the YPoIM approach compared with the four-wave mixing approach previously reported is demonstrated....
3D simulations of supernova remnants evolution including non-linear particle acceleration
Ferrand, Gilles; Ballet, Jean; Teyssier, Romain; Fraschetti, Federico
2009-01-01
If a sizeable fraction of the energy of supernova remnant shocks is channeled into energetic particles (commonly identified with Galactic cosmic rays), then the morphological evolution of the remnants must be distinctly modified. Evidence of such modifications has been recently obtained with the Chandra and XMM-Newton X-ray satellites. To investigate these effects, we coupled a semi-analytical kinetic model of shock acceleration with a 3D hydrodynamic code (by means of an effective adiabatic index). This enables us to study the time-dependent compression of the region between the forward and reverse shocks due to the back reaction of accelerated particles, concomitantly with the development of the Rayleigh-Taylor hydrodynamic instability at the contact discontinuity. Density profiles depend critically on the injection level eta of particles: for eta up to about 10^-4 modifications are weak and progressive, for eta of the order of 10^-3 modifications are strong and immediate. Nevertheless, the extension of the...
NONLINEAR EFFECTS OF THIRD-AND FIFTH-ORDER ON POLARIZATION BEATS IN AFOUR-LEVEL SYS-TEM
Institute of Scientific and Technical Information of China (English)
Zhang Yan-peng; Lu Ke-qing; Wu Hong-cai; Xu Jiao; Fu Pan-ming
2000-01-01
We have employed second-order coherence function theory to study thenonlinear effects of third-and fifth-order on polarization beats in afour-level system (TPBFS and FPBFS). It is found that the differenttemporal behavior of the beat signal in TPBFS and FPBFS depends on thestochastic properties of the lasers and transverse relaxation rate ofthe transition. We have considered the cases that pump beams have eithernarrow band or broadband linewidth and found that for both cases aDoppler-free precision can be achieved in the measurement of theenergy-level difference between two excited states which are dipolarforbidden from the ground state. We also discussed the spatiallmodulation behavior of the beat signal.
Chen, Mei-Dan; Li, Xian; Wang, Yao; Li, Biao
2017-06-01
With symbolic computation, some lump solutions are presented to a (3+1)-dimensional nonlinear evolution equation by searching the positive quadratic function from the Hirota bilinear form of equation. The quadratic function contains six free parameters, four of which satisfy two determinant conditions guaranteeing analyticity and rational localization of the solutions, while the others are free. Then, by combining positive quadratic function with exponential function, the interaction solutions between lump solutions and the stripe solitons are presented on the basis of some conditions. Furthermore, we extend this method to obtain more general solutions by combining of positive quadratic function and hyperbolic cosine function. Thus the interaction solutions between lump solutions and a pair of resonance stripe solitons are derived and asymptotic property of the interaction solutions are analyzed under some specific conditions. Finally, the dynamic properties of these solutions are shown in figures by choosing the values of the parameters. Supported by National Natural Science Foundation of China under Grant Nos. 11271211, 11275072, and 11435005, Ningbo Natural Science Foundation under Grant No. 2015A610159 and the Opening Project of Zhejiang Provincial Top Key Discipline of Physics Sciences in Ningbo University under Grant No. xkzw11502 and K.C. Wong Magna Fund in Ningbo University
Institute of Scientific and Technical Information of China (English)
Chang Jiang ZHU; Zhi Yong ZHANG; Hui YIN
2006-01-01
In this paper, we consider the global existence and the asymptotic behavior of solutions to the Cauchy problem for the following nonlinear evolution equations with ellipticity and dissipative effects:{ψt = -(1 - α)ψ - θx + αψxx, (E)θt = -(1 - α)θ + vψx + (χθ)x + αθxx,with initial data(ψ,θ)(x, 0) = (ψ0(x),θ0(x)) → (χ±,θ±) as x →±∞, (Ⅰ)where α and v are positive constants such that α＜ 1, v ＜ 4α(1 - α). Under the assumption that|ψ+ - ψ-| + |θ+ - θ-| is sufficiently small, we show the global existence of the solutions to Cauchy problem (E) and (I) if the initial data is a small perturbation. And the decay rates of the solutions with exponential rates also are obtained. The analysis is based on the energy method.
Finite-beta effects on the nonlinear evolution of the (m = 1; n = 1) mode in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Holmes, J.A.; Carreras, B.A.; Hicks, H.R.; Lynch, V.E.; Rothe, K.E.
1982-01-01
The stability and evolution of ISX-B-like plasmas are numerically studied using a reduced set of resistive magnetohydrodynamic (MHD) equations. For a sequence of equilibria stable to ideal modes, the n = 1 mode changes from a tearing branch to a pressure-driven branch as ..beta../sup p/ is increased. When this mode is unstable at low beta, it is just the (m = 1;n = 1) tearing mode. Higher n modes also become linearly unstable with increasing ..beta../sub p/; they are essentially pressure driven and have a ballooning character. For low values of beta the instability is best described as a ..beta../sub p/ distortion of the (m = 1;n = 1) tearing mode. This mode drives many other helicities through toroidal and nonlinear couplings. As ..beta../sub p/ is increased, the growth of the m = 1 island slows down in time, going from exponential to linear before reconnection occurs. If ..beta../sub p/ is large enough, the island saturates without reconnection. A broad spectrum of other modes, driven by the (m = 1;n = 1) instability, is produced. These results agree with some observed features of MHD activity in ISX-B.
Balkaya, Çağlayan; Ekinci, Yunus Levent; Göktürkler, Gökhan; Turan, Seçil
2017-01-01
3D non-linear inversion of total field magnetic anomalies caused by vertical-sided prismatic bodies has been achieved by differential evolution (DE), which is one of the population-based evolutionary algorithms. We have demonstrated the efficiency of the algorithm on both synthetic and field magnetic anomalies by estimating horizontal distances from the origin in both north and east directions, depths to the top and bottom of the bodies, inclination and declination angles of the magnetization, and intensity of magnetization of the causative bodies. In the synthetic anomaly case, we have considered both noise-free and noisy data sets due to two vertical-sided prismatic bodies in a non-magnetic medium. For the field case, airborne magnetic anomalies originated from intrusive granitoids at the eastern part of the Biga Peninsula (NW Turkey) which is composed of various kinds of sedimentary, metamorphic and igneous rocks, have been inverted and interpreted. Since the granitoids are the outcropped rocks in the field, the estimations for the top depths of two prisms representing the magnetic bodies were excluded during inversion studies. Estimated bottom depths are in good agreement with the ones obtained by a different approach based on 3D modelling of pseudogravity anomalies. Accuracy of the estimated parameters from both cases has been also investigated via probability density functions. Based on the tests in the present study, it can be concluded that DE is a useful tool for the parameter estimation of source bodies using magnetic anomalies.
Directory of Open Access Journals (Sweden)
Dhar A.K.
2015-05-01
Full Text Available Fourth order nonlinear evolution equations, which are a good starting point for the study of nonlinear water waves, are derived for deep water surface capillary gravity waves in the presence of second waves in which air is blowing over water. Here it is assumed that the space variation of the amplitude takes place only in a direction along which the group velocity projection of the two waves overlap. A stability analysis is made for a uniform wave train in the presence of a second wave train. Graphs are plotted for the maximum growth rate of instability wave number at marginal stability and wave number separation of fastest growing sideband component against wave steepness. Significant improvements are noticed from the results obtained from the two coupled third order nonlinear Schrödinger equations.
Multiple polarization states of vector soliton in fiber laser
Chen, Weicheng; Xu, Wencheng; Cao, Hui; Han, Dingan
2007-11-01
Vector soliton is obtained in erbium-doped fiber laser via nonlinear polarization rotation techniques. In experiment, we observe the every 4- and 7-pulse sinusoidal peak modulation. Temporal pulse sinusoidal peak modulation owes to evolution behavior of vector solitons in multiple polarization states. The polarizer in the laser modulates the mode-locked pulses with different polarization states into periodical pulse train intensities modulation. Moreover, the increasing pumping power lead to the appearance of the harmonic pulses and change the equivalent beat length to accelerate the polarization rotation. When the laser cavity length is the n-th multiple ratios to the beat length to maintain the mode-locking, the mode-locked vector soliton is in n-th multiple polarization states, exhibiting every n-pulse sinusoidal peak modulation.
2016-01-01
Modeling and prediction of polar organic chemical integrative sampler (POCIS) sampling rates (Rs) for 73 compounds using artificial neural networks (ANNs) is presented for the first time. Two models were constructed: the first was developed ab initio using a genetic algorithm (GSD-model) to shortlist 24 descriptors covering constitutional, topological, geometrical and physicochemical properties and the second model was adapted for Rs prediction from a previous chromatographic retention model (RTD-model). Mechanistic evaluation of descriptors showed that models did not require comprehensive a priori information to predict Rs. Average predicted errors for the verification and blind test sets were 0.03 ± 0.02 L d–1 (RTD-model) and 0.03 ± 0.03 L d–1 (GSD-model) relative to experimentally determined Rs. Prediction variability in replicated models was the same or less than for measured Rs. Networks were externally validated using a measured Rs data set of six benzodiazepines. The RTD-model performed best in comparison to the GSD-model for these compounds (average absolute errors of 0.0145 ± 0.008 L d–1 and 0.0437 ± 0.02 L d–1, respectively). Improvements to generalizability of modeling approaches will be reliant on the need for standardized guidelines for Rs measurement. The use of in silico tools for Rs determination represents a more economical approach than laboratory calibrations. PMID:27363449
Institute of Scientific and Technical Information of China (English)
刘明姬; 吕悦; 吕显瑞
2007-01-01
In this paper, we establish sufficient conditions for the controllability of nonlinear neutral evolution equations with nonlocal conditions. The result is obtained by using Krasnoselski-Schaefer type fixed point theorem.
Institute of Scientific and Technical Information of China (English)
吕悦; 刘明姬; 吕显瑞
2008-01-01
In this paper,we establish suflicient conditions for existence and control lability of nonlinear neutral evolution integrodifferential systems in Banach spaces.The result is obtained by using the resolvent operators and fixed point analysis approach.
Energy Technology Data Exchange (ETDEWEB)
Miles, A
2004-04-27
In core-collapse supernovae, strong blast waves drive interfaces susceptible to Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) instabilities. In addition, perturbation growth can result from material expansion in large-scale velocity gradients behind the shock front. Laser-driven experiments are designed to produce a strongly shocked interface whose evolution is a scaled version of the unstable hydrogen-helium interface in core-collapse supernovae such as SN 1987A. The ultimate goal of this research is to develop an understanding of the effect of hydrodynamic instabilities and the resulting transition to turbulence on supernovae observables that remain as yet unexplained. In this dissertation, we present a computational study of unstable systems driven by high Mach number shock and blast waves. Using multi-physics radiation hydrodynamics codes and theoretical models, we consider the late nonlinear instability evolution of single mode, few mode, and multimode interfaces. We rely primarily on 2D calculations but present recent 3D results as well. For planar multimode systems, we show that compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions (IC's) by allowing for memory of the initial conditions to be retained in the mix-width at all times. The loss of transverse spectral information is demonstrated, however, along with the existence of a quasi-self-similar regime over short time intervals. Aspects of the IC's are shown to have a strong effect on the time to transition to the quasi-self-similar regime. With higher-dimensional blast waves, divergence restores the properties necessary for establishment of the self-similar state, but achieving it requires very high initial characteristic mode number and high Mach number for the incident blast wave. We point to recent stellar calculations that predict IC's we find incompatible with self-similarity, and
Energy Technology Data Exchange (ETDEWEB)
Miles, Aaron R. [Univ. of Maryland, College Park, MD (United States)
2004-01-01
In core-collapse supernovae, strong blast waves drive interfaces susceptible to Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) instabilities. In addition, perturbation growth can result from material expansion in large-scale velocity gradients behind the shock front. Laser-driven experiments are designed to produce a strongly shocked interface whose evolution is a scaled version of the unstable hydrogen-helium interface in core-collapse supernovae such as SN 1987A. The ultimate goal of this research is to develop an understanding of the effect of hydrodynamic instabilities and the resulting transition to turbulence on supernovae observables that remain as yet unexplained. In this dissertation, we present a computational study of unstable systems driven by high Mach number shock and blast waves. Using multi-physics radiation hydrodynamics codes and theoretical models, we consider the late nonlinear instability evolution of single mode, few mode, and multimode interfaces. We rely primarily on 2D calculations but present recent 3D results as well. For planar multimode systems, we show that compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions (IC's) by allowing for memory of the initial conditions to be retained in the mix-width at all times. The loss of transverse spectral information is demonstrated, however, along with the existence of a quasi-self-similar regime over short time intervals. Aspects of the IC's are shown to have a strong effect on the time to transition to the quasi-self-similar regime. With higher-dimensional blast waves, divergence restores the properties necessary for establishment of the self-similar state, but achieving it requires very high initial characteristic mode number and high Mach number for the incident blast wave. We point to recent stellar calculations that predict IC's we find incompatible with self-similarity, and
Lokstein, Heiko; Krikunova, Maria; Teuchner, Klaus; Voigt, Bernd
2011-08-15
Photosynthetically active pigments are usually organized into pigment-protein complexes. These include light-harvesting antenna complexes (LHCs) and reaction centers. Site energies of the bound pigments are determined by interactions with their environment, i.e., by pigment-protein as well as pigment-pigment interactions. Thus, resolution of spectral substructures of the pigment-protein complexes may provide valuable insight into structure-function relationships. By means of conventional (linear) and time-resolved spectroscopic techniques, however, it is often difficult to resolve the spectral substructures of complex pigment-protein assemblies. Nonlinear polarization spectroscopy in the frequency domain (NLPF) is shown to be a valuable technique in this regard. Based on initial experimental work with purple bacterial antenna complexes as well as model systems NLPF has been extended to analyse the substructure(s) of very complex spectra, including analyses of interactions between chlorophylls and "optically dark" states of carotenoids in LHCs. The paper reviews previous work and outlines perspectives regarding the application of NLPF spectroscopy to disentangle structure-function relationships in pigment-protein complexes.
Knippenberg, S; Rehn, D R; Wormit, M; Starcke, J H; Rusakova, I L; Trofimov, A B; Dreuw, A
2012-02-14
An earlier proposed approach to molecular response functions based on the intermediate state representation (ISR) of polarization propagator and algebraic-diagrammatic construction (ADC) approximations is for the first time employed for calculations of nonlinear response properties. The two-photon absorption (TPA) spectra are considered. The hierarchy of the first- and second-order ADC∕ISR computational schemes, ADC(1), ADC(2), ADC(2)-x, and ADC(3/2), is tested in applications to H(2)O, HF, and C(2)H(4) (ethylene). The calculated TPA spectra are compared with the results of coupled cluster (CC) models and time-dependent density-functional theory (TDDFT) calculations, using the results of the CC3 model as benchmarks. As a more realistic example, the TPA spectrum of C(8)H(10) (octatetraene) is calculated using the ADC(2)-x and ADC(2) methods. The results are compared with the results of TDDFT method and earlier calculations, as well as to the available experimental data. A prominent feature of octatetraene and other polyene molecules is the existence of low-lying excited states with increased double excitation character. We demonstrate that the two-photon absorption involving such states can be adequately studied using the ADC(2)-x scheme, explicitly accounting for interaction of doubly excited configurations. Observed peaks in the experimental TPA spectrum of octatetraene are assigned based on our calculations.
Ortega, Alejandra; Perez-Martinez, Ana Laura; Ogawa, Takeshi; Smith, Francis; Walser, Ardie; Dorsinville, Roger
A highly-conjugated polar dye with three aromatic rings connected with azo groups was prepared and it was incorporated in polycinnamate. It showed a third-order nonlinear susceptibility of 8 × 10-10 esu determined by a Z-scan technique. The unpoled and poled films show the same susceptibility indicating the polymer film could not be poled. The open aperture Z-scan showed negligible two-photon absorption at 1064 nm.
Lalung, M.; Phukan, P.; Sarma, J. K.
2017-09-01
In this work we have solved the nonlinear GLR-MQ evolution equation upto next-to-leading order (NLO) by considering NLO terms of the gluon-gluon splitting functions and running coupling constant α s (Q 2). Here, we have incorporated a Regge-like behaviour of gluon distribution in order to obtain a solution of the GLR-MQ equation in the range of 5G e V 2 ≤ Q 2 ≤ 25G e V 2. We have studied the Q 2 evolution of the gluon distribution function G(x, Q 2) and its nonlinear effects at small-x. It can be observed from our analysis that the nonlinearities increase with decrease in the correlation radius R of two interacting gluons, as expected. We have compared our result of G(x, Q 2) as Q 2 increases and x decreases, for two different values of R, viz. R = 2G e V -1 and 5 G e V -1. We have also checked the sensitivity of the Regge intercept λ G on our results. We compare our computed results with those obtained by the global analysis to parton distribution functions (PDFs) by various collaborations where LHC data have been included viz. ABM12, CT14, MMHT14, PDF4LHC15, NNPDF3.0 and CJ15. Besides we have also shown comparison of our results with HERA PDF data viz. HERAPDF15.
Nonlinearity-reduced interferometer
Wu, Chien-ming
2007-12-01
Periodic nonlinearity is a systematic error limiting the accuracy of displacement measurements at the nanometer level. It results from many causes such as the frequency mixing, polarization mixing, polarization-frequency mixing, and the ghost reflections. An interferometer having accuracy in displacement measurement of less than one-nanometer is necessary in nanometrology. To meet the requirement, the periodic nonlinearity should be less than deep sub-nanometer. In this paper, a nonlinearity-reduced interferometry has been proposed. Both the linear- and straightness-interferometer were tested. The developed interferometer demonstrated of a residual nonlinearity less than 25 pm.
Lin, Sheng-Fong; Lin, Gong-Ru
2014-09-08
With the combining effects of the fiber birefringence induced round-trip phase variation and the gain profile reshaping induced spectral filtering in the Erbium-doped fiber laser (EDFL) cavity, the mechanism corresponding to the central wavelength tunability of the EDFL passively mode-locked by nonlinear polarization rotation is explored. Bending the intracavity fiber induces the refractive index difference between orthogonal axes, which enables the dual-band central wavelength shift of 2.9 nm at 1570 nm region and up to 10.2 nm at 1600 nm region. The difference between the wavelength shifts at two bands is attributed to the gain dispersion decided by the gain spectral curvature of the EDFA, and the spacing between two switchable bands is provided by the birefringence induced variation on phase delay which causes transmittance variation. In addition, the central wavelength shift can also be controlled by varying the pumping geometry. At 1570 nm regime, an offset of up to 5.9 nm between the central wavelengths obtained under solely forward or backward pumping condition is observed, whereas the bidirectional pumping scheme effectively compensates the gain spectral reshaping effects to minimize the central wavelength shift. In contrast, the wavelength offset shrinks to only 1.1 nm when mode-locking at 1600 nm under single-sided pumping, as the gain profile strongly depends on the spatial distribution of the excited erbium ions under different pumping schemes. Except the birefringence variation and the gain spectral filtering phenomena, the gain-saturation mechanism induced refractive index change and its influence to the dual-band central wavelength tunability are also observed and analyzed.
Energy Technology Data Exchange (ETDEWEB)
Li Wenting [Department of Applied Mathematics, Dalian University of Technology, Dalian 116024 (China)], E-mail: lwt.wentinglee@yahoo.com.cn; Zhang Hongqing [Department of Applied Mathematics, Dalian University of Technology, Dalian 116024 (China)
2009-03-15
Based on symbolic computation and the idea of rational expansion method, a new generalized compound Riccati equations rational expansion method (GCRERE) is suggested to construct a series of exact complexiton solutions for nonlinear evolution equations. Compared with most existing rational expansion methods and other sophisticated methods, the proposed method not only recover some known solutions, but also find some new and general complexiton solutions. The validity and reliability of the method is tested by its application to the (2+1)-dimensional Burgers equation. It is shown that more complexiton solutions can be found by this new method.
Institute of Scientific and Technical Information of China (English)
范恩贵
2001-01-01
A Riccati equation involving a parameter and symbolic computation are used to uniformly construct the different forms of travelling wave solutions for nonlinear evolution equations.It is shown that the sign of the parameter can be applied in judging the existence of various forms of travelling wave solutions.An efficiency of this method is demonstrated on some equations,which include Burgers-Huxley equation,Caudrey-Dodd-Gibbon-Kawada equation,generalized Benjamin-Bona-Mahony equation and generalized Fisher equation.
González-Ortega, C; Cancino-Villarreal, P; Alonzo-Torres, V E; Martínez-Robles, I; Pérez-Peña, E; Gutiérrez-Gutiérrez, A M
2016-04-01
Identification of the best embryos to transfer is a key element for success in assisted reproduction. In the last decade, several morphological criteria of oocytes and embryos were evaluated with regard to their potential for predicting embryo viability. The introduction of polarization light microscopy systems has allowed the visualization of the meiotic spindle and the different layers of the zona pellucida in human oocytes on the basis of birefringence in a non-destructive way. Conflicting results have been reported regarding the predictive value in ICSI cycles. To assess the predictive ability of meiotic spindle and zona pellucida of human oocytes to implant by polarized microscopy in ICSI cycles. Prospective and observational clinical study. 903 oocytes from 94 ICSI cycles were analyzed with polarized microscopy. Meiotic spindle visualization and zona pellucida birefringence values by polarized microscopy were correlated with ICSI cycles results. Meiotic spindle visualization and birefringence values of zona pellucida decreased in a direct basis with increasing age. In patients aged over the 35 years, the percentage of a visible spindle and mean zona pellucida birefringence was lower than in younger patients. Fertilization rate were higher in oocytes with visible meiotic spindle (81.3% vs. 64%; p Polarized light microscopy improves oocyte selection, which significantly impacts in the development of embryos with greater implantation potential. The use of polarized light microscopy with sperm selection methods, blastocyst culture and deferred embryo transfers will contribute to transfer fewer embryos without diminishing rates of live birth and single embryo transfer will be more feasible.
Bartelmann, Matthias; Berg, Daniel; Kozlikin, Elena; Lilow, Robert; Viermann, Celia
2014-01-01
We use the non-equlibrium statistical field theory for classical particles, recently developed by Mazenko and Das and Mazenko, together with the free generating functional we have previously derived for point sets initially correlated in phase space, to calculate the time evolution of power spectra in the free theory, i.e. neglecting particle interactions. We provide expressions taking linear and quadratic momentum correlations into account. Up to this point, the expressions are general with respect to the free propagator of the microscopic degrees of freedom. We then specialise the propagator to that expected for particles in cosmology treated within the Zel'dovich approximation and show that, to linear order in the momentum correlations, the linear growth of the cosmological power spectrum is reproduced. Quadratic momentum correlations return a first contribution to the non-linear evolution of the power spectrum, for which we derive a simple closed expression valid for arbitrary wave numbers. This expressio...
Shahriar, M S; Krishnamurthy, Subramanian; Tu, Y; Pati, G S; Tseng, S
2013-01-01
The Liouville equation governing the evolution of the density matrix for an atomic/molecular system is expressed in terms of a commutator between the density matrix and the Hamiltonian, along with terms that account for decay and redistribution. For finding solutions of this equation, it is convenient first to reformulate the Liouville equation by defining a vector corresponding to the elements of the density operator, and determining the corresponding time-evolution matrix. For a system of N energy levels, the size of the evolution matrix is N2xN2. When N is very large, evaluating the elements of these matrices becomes very cumbersome. We describe a novel algorithm that can produce the evolution matrix in an automated fashion for an arbitrary value of N. As a non-trivial example, we apply this algorithm to a fifteen-level atomic system used for producing optically controlled polarization rotation. We also point out how such a code can be extended for use in an atomic system with arbitrary number of energy le...
Institute of Scientific and Technical Information of China (English)
WANG He-Lin; LENG Yu-Xin; XU Zhi-Zhan; QI Yi-Hong; HU Ming-Lie; WANG Ching-Yue
2009-01-01
Using the tunable pump pulses with about 100 fs pulse duration and 1064 nm central wavelength; the polarization-,wavelength- and power-dependent anti-Stokes lines are generated and modulated simultaneously in a polarizationmaintaining photonic crystal fiber (PM-PCF) with two zero-dispersion wavelengths.By accurately controlling the polarization directions,the wavelength and the power of the pump pulse in the fiber anomalous region close to the second zero-dispersion wavelength of the PM-PCF,the output anti-Stokes pulse spectra can be tuned between 563nm and 603 nm,which is in good agreement with the theoretical simulation.The color conversion of the mode image from yellow to orange is also observed with the different polarization pump pulses.These results can be attributed to the combined interaction between the fiber birefringence (including linear- and nonlinearbirefringence) and dispersion,and are attributed to phase-matching parametric four-wave mixing.
de Bruyn, A G
2014-01-01
We examine the long-term evolution of the intra-hour variable quasar, J1819+3845, whose variations have been attributed to interstellar scintillation by extremely local turbulent plasma, located only 1-3pc from Earth. The variations in this source ceased some time between June 2006 and February 2007. The evolution of the source spectrum and the long-term lightcurve, and the persistent compactness of the source VLBI structure indicates that the cessation of rapid variability was associated with the passage of the scattering material out of the line of sight to the quasar. We present an analysis of the linear polarization variations and their relation to total intensity variations. The proper motion of polarized features in the quasar jet is found to be subluminal. Systematic time delays between Stokes I, Q and U, in combination with the structure of the source obtained from 8.4GHz VLBI data, confirm the estimate of the screen distance: 1-2pc, making the screen one of the nearest objects to the Solar System. We...
Montoux, Nadege; David, Christine; Klekociuk, Andrew; Pitts, Michael; di Liberto, Luca; Snels, Marcel; Jumelet, Julien; Bekki, Slimane; Larsen, Niels
2010-05-01
The project ORACLE-O3 ("Ozone layer and UV RAdiation in a changing CLimate Evaluated during IPY") is one of the coordinated international proposals selected for the International Polar Year (IPY). As part of this global project, LOLITA-PSC ("Lagrangian Observations with Lidar Investigations and Trajectories in Antarctica and Arctic, of PSC") is devoted to Polar Stratospheric Clouds (PSC) studies. Indeed, understanding the formation and evolution of PSC is an important issue to quantify the impact of climate changes on their frequency of formation and, further, on chlorine activation and subsequent ozone depletion. In this framework, three lidar stations performed PSC observations in Antarctica during the 2006, 2007, and 2008 winters: Davis (68.58°S, 77.97°E), McMurdo (77.86°S, 166.48°E) and Dumont D'Urville (66.67°S, 140.01°E). The data are completed with the lidar data from CALIOP ("Cloud-Aerosol Lidar with Orthogonal Polarization") onboard the CALIPSO ("Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation") satellite. Lagrangian trajectory calculations are used to identify air masses with PSCs sounded by several ground-based lidar stations with the same method, called MATCH, applied for the first time in Arctic to study the ozone depletion with radiosoundings. The evolution of the optical properties of the PSCs and thus the type of PSCs formed (supercooled ternary solution, nitric acid trihydrate particles or ice particles) could thus be linked to the thermodynamical evolution of the air mass deduced from the trajectories. A modeling with the microphysical model of the Danish Meteorological Institute allows assessing our ability to predict PSCs for various environmental conditions. Indeed, from pressure and temperature evolution, the model allows retrieving the types of particles formed as well as their mean radii, their concentrations and could also simulate the lidar signals. In a first step, a case in August 2007 around 17-18 km, involving
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Numerical method to solve the problem related with theinteractive effect of dispersion (both chromatic dispersion and polarization mode dispersion) and nonlinearity on optical pulse transmission is present. Evolutions of pulses with various initial chirping and shape at bit-rate of 10 Gb/s are simulated and compared. Gaussian pulse with appropriate prechirping is propitious for high bit-rate transmission.
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In this paper, we introduce a modified small-world network added with new links with preferential connection instead of adding randomly, then we apply Bak-Sneppen (BS) evolution model on this network. Several dynamical character of the model such as the evolution graph, fo avalanche, the critical exponent D and τ, and the distribution of mutation times of all the nodes, show particular behaviors different from those of the model based on the regular network and the small-world network.
Institute of Scientific and Technical Information of China (English)
2008-01-01
Optical frequency domain phase conjugation(FDPC) is based on phase conjuga-tion of spectrum of an input signal.It is equivalent to the phase conjugation and the time reversal of the temporal envelope of an input signal.The use of FDPC to con-trol polarization signal distortion in birefringent optical fiber systems is proposed.Evolution of polarization signals in the system using midway FDPC is analyzed theoretically and simulated numerically.It is shown that the distortion of polariza-tion signals can be controlled effectively by FDPC.The impairments due to disper-sion and nonlinear effects can be suppressed simultaneously.
Institute of Scientific and Technical Information of China (English)
BU Yang; WANG XiangZhao
2008-01-01
Optical frequency domain phase conjugation (FDPC) is based on phase conjugation of spectrum of an input signal. It is equivalent to the phase conjugation and the time reversal of the temporal envelope of an input signal. The use of FDPC to con-trol polarization signal distortion in birefringent optical fiber systems is proposed. Evolution of polarization signals in the system using midway FDPC is analyzed theoretically and simulated numerically. It is shown that the distortion of polariza-tion signals can be controlled effectively by FDPC. The impairments due to disper-sion and nonlinear effects can be suppressed simultaneously.
Chughtai, Mohsan Niaz; Forzati, Marco; Mårtensson, Jonas; Rafique, Danish
2012-03-26
In this paper we numerically investigate nonlinear impairments in a WDM system with mixed PM (D)QPSK and OOK channels. First we analyze the dependence of XPM and XPolM on SOP and baud rate in absence of PMD. In this case we find that the nonlinear impairments are highly dependent on relative SOP between the PM (D)QPSK and neighbouring OOK channels. The dependence on relative SOP is more pronounced in differential detection than in coherent detection. However, with increasing values of PMD this dependence decreases, and non-linear tolerance improves.
Directory of Open Access Journals (Sweden)
Hui Liu
2015-01-01
Full Text Available Objective. To understand how aquaporin4 (AQP4 and dystroglycan (DG polarized distribution change and their roles in brain edema formation after traumatic brain injury (TBI. Methods. Brain water content, Evans blue detection, real-time PCR, western blot, and immunofluorescence were used. Results. At an early stage of TBI, AQP4 and DG maintained vessel-like pattern in perivascular endfeet; M1, M23, and M1/M23 were increased in the core lesion. At a later stage of TBI, DG expression was lost in perivascular area, accompanied with similar but delayed change of AQP4 expression; expression of M1, M23, and DG and the ratio of M1/M2 were increased. Conclusion. At an early stage, AQP4 and DG maintained the polarized distribution. Upregulated M1 and M23 could retard the cytotoxic edema formation. At a later stage AQP4 and DG polarized expression were lost from perivascular endfeet and induced the worst cytotoxic brain edema. The alteration of DG expression could regulate that of AQP4 expression after TBI.
Energy Technology Data Exchange (ETDEWEB)
Lissenden, Cliff [Pennsylvania State Univ., State College, PA (United States); Hassan, Tasnin [North Carolina State Univ., Raleigh, NC (United States); Rangari, Vijaya [Tuskegee Univ., Tuskegee, AL (United States)
2014-10-30
The research built upon a prior investigation to develop a unified constitutive model for design-by-analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-fatigue and creep-ratcheting tests were conducted on the nickel-base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-fatigue and creep-ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched
Stoever, Edward C., Jr.
Crustal Evolution Education Project (CEEP) modules were designed to: (1) provide students with the methods and results of continuing investigations into the composition, history, and processes of the earth's crust and the application of this knowledge to man's activities and (2) to be used by teachers with little or no previous background in the…
Polarization WSF Algorithm Based on Differential Evolution%基于微分进化的极化WSF信号参数估计算法
Institute of Scientific and Technical Information of China (English)
刘扬; 吴瑛
2011-01-01
Compared with traditional antenna array, the polarization sensitive array can receive spatial information and more complete electromagnetic information. It has higher receive gain due to less sensitivity to the variation of signal polarization. The polarization weighted subspace fitting (WSF) algorithm is obviously better in accuracy and resolution than the general subspace algorithm and can process coherent signals. The algorithm has good robustness. But the number of parameters needed to be estimated is twice more than traditional WSF, so computation problem appears more prominent. To deal with this problem, the genetic algorithm is used to polarization WSF. But poor performance is expressed, which is different from traditional WSF. Differential evolution algorithm, features as simplicity, fast convergence, high accuracy, search performance, and stability, is suitable for solving multi-dimensional functions of maximum solution, this paper applies the algorithm to the polarization WSF and compares it with the WSF based on genetic algorithm. Experimental comparison simulation shows the efficiency of the method.%极化敏感阵列与传统的天线阵列相比,可以同时接收到信号的空间信息和更加完整的电磁信息,由于受信号极化变化的干扰较小,接收增益更高,估计出的极化状态参数可以用于检测、多址等领域,因此具有更加广阔的开发价值.极化加权信号子空间( WSF)算法的精度、分辨率明显优于一般子空间类算法,并且可以处理相干信号,鲁棒性较好,与传统空间谱WSF相比,需要估计的参数多了一倍,计算量问题显得更加突出.针对该问题,首先将遗传算法应用于联合谱WSF,与传统测向不同,性能不佳.微分进化算法简单,收敛速度快,搜索精度高,性能稳定,将该算法应用于极化加权信号子空间算法的多维函数求解,并将它与基于遗传算法的极化WSF进行比较,证明文中算法的有效性.
El-Qulity, Said Ali; Mohamed, Ali Wagdy
2016-01-01
This paper proposes a nonlinear integer goal programming model (NIGPM) for solving the general problem of admission capacity planning in a country as a whole. The work aims to satisfy most of the required key objectives of a country related to the enrollment problem for higher education. The system general outlines are developed along with the solution methodology for application to the time horizon in a given plan. The up-to-date data for Saudi Arabia is used as a case study and a novel evolutionary algorithm based on modified differential evolution (DE) algorithm is used to solve the complexity of the NIGPM generated for different goal priorities. The experimental results presented in this paper show their effectiveness in solving the admission capacity for higher education in terms of final solution quality and robustness.
Qin, Bo; Tian, Bo; Wang, Yu-Feng; Shen, Yu-Jia; Wang, Ming
2017-10-01
Under investigation in this paper are the Belov-Chaltikian (BC), Leznov and Blaszak-Marciniak (BM) lattice equations, which are associated with the conformal field theory, UToda(m_1,m_2) system and r-matrix, respectively. With symbolic computation, the Bell-polynomial approach is developed to directly bilinearize those three sets of differential-difference nonlinear evolution equations (NLEEs). This Bell-polynomial approach does not rely on any dependent variable transformation, which constitutes the key step and main difficulty of the Hirota bilinear method, and thus has the advantage in the bilinearization of the differential-difference NLEEs. Based on the bilinear forms obtained, the N-soliton solutions are constructed in terms of the N × N Wronskian determinant. Graphic illustrations demonstrate that those solutions, more general than the existing results, permit some new properties, such as the solitonic propagation and interactions for the BC lattice equations, and the nonnegative dark solitons for the BM lattice equations.
Jouve, Laurene
2009-01-01
We present the first 3D MHD study in spherical geometry of the non-linear dynamical evolution of magnetic flux tubes in a turbulent rotating convection zone. We study numerically the rise of magnetic toroidal flux ropes from the base of a modelled convection zone up to the top of our computational domain where bipolar patches are formed. We compare the dynamical behaviour of flux tubes in a fully convective shell possessing self-consistently generated mean flows such as meridional circulation and differential rotation, with reference calculations done in a quiet isentropic zone. We find that two parameters influence the tubes during their rise through the convection zone: the initial field strength and amount of twist, thus confirming previous findings in Cartesian geometry. Further, when the tube is sufficiently strong with respect to the equipartition field, it rises almost radially independently of the initial latitude (either low or high). By contrast, weaker field cases indicate that downflows and upflow...
Energy Technology Data Exchange (ETDEWEB)
Ruyer, C., E-mail: charles.ruyer@polytechnique.edu; Gremillet, L., E-mail: laurent.gremillet@cea.fr; Debayle, A. [CEA, DAM, DIF, F-91297 Arpajon (France); Bonnaud, G. [CEA, Saclay, INSTN, F-91191 Gif-sur-Yvette (France)
2015-03-15
We present a predictive model of the nonlinear phase of the Weibel instability induced by two symmetric, counter-streaming ion beams in the non-relativistic regime. This self-consistent model combines the quasilinear kinetic theory of Davidson et al. [Phys. Fluids 15, 317 (1972)] with a simple description of current filament coalescence. It allows us to follow the evolution of the ion parameters up to a stage close to complete isotropization, and is thus of prime interest to understand the dynamics of collisionless shock formation. Its predictions are supported by 2-D and 3-D particle-in-cell simulations of the ion Weibel instability. The derived approximate analytical solutions reveal the various dependencies of the ion relaxation to isotropy. In particular, it is found that the influence of the electron screening can affect the results of simulations using an unphysical electron mass.
Ruyer, C; Debayle, A; Bonnaud, G
2015-01-01
We present a predictive model of the nonlinear phase of the Weibel instability induced by two symmetric, counter-streaming ion beams in the non-relativistic regime. This self-consistent model combines the quasilinear kinetic theory of Davidson et al. [Phys. Fluids 15, 317 (1972)] with a simple description of current filament coalescence. It allows us to follow the evolution of the ion parameters up to a stage close to complete isotropization, and is thus of prime interest to understand the dynamics of collisionless shock formation. Its predictions are supported by 2-D and 3-D particle-in-cell simulations of the ion Weibel instability. The derived approximate analytical solutions reveal the various dependencies of the ion relaxation to isotropy. In particular, it is found that the influence of the electron screening can affect the results of simulations using an unphysical electron mass.
Institute of Scientific and Technical Information of China (English)
王云虎; 陈勇
2011-01-01
In the present letter, we get the appropriate bilinear forms of （2 ＋ 1）-dimensional KdV equation, extended （2 ＋ 1）-dimensional shallow water wave equation and （2 ＋ 1）-dimensional Sawada -Kotera equation in a quick and natural manner, namely by appling the binary Bell polynomials. Then the Hirota direct method and Riemann theta function are combined to construct the periodic wave solutions of the three types nonlinear evolution equations. And the corresponding figures of the periodic wave solutions are given. Furthermore, the asymptotic properties of the periodic wave solutions indicate that the soliton solutions can be derived from the periodic wave solutions.
Institute of Scientific and Technical Information of China (English)
LU Chang-gen; CAO Wei-dong; QIAN Jian-hua
2006-01-01
A new method for direct numerical simulation of incompressible Navier-Stokes equations is studied in the paper. The compact finite difference and the non-linear terms upwind compact finite difference schemes on non-uniform meshes in x and y directions are developed respectively. With the Fourier spectral expansion in the spanwise direction, three-dimensional N-S equation are converted to a system of two-dimensional equations. The third-order mixed explicit-implicit scheme is employed for time integration. The treatment of the three-dimensional non-reflecting outflow boundary conditions is presented, which is important for the numerical simulations of the problem of transition in boundary layers, jets, and mixing layer. The numerical results indicate that high accuracy, stabilization and efficiency are achieved by the proposed numerical method. In addition, a theory model for the coherent structure in a laminar boundary layer is also proposed, based on which the numerical method is implemented to the non-linear evolution of coherent structure. It is found that the numerical results of the distribution of Reynolds stress, the formation of high shear layer, and the event of ejection and sweeping, match well with the observed characteristics of the coherent structures in a turbulence boundary layer.
Institute of Scientific and Technical Information of China (English)
胡祖权; 陈银华; 郑聚高; 刘昊; 郁明阳; 吴剑
2011-01-01
Time evolution of ionospheric D-region plasmas including the perturbations of electrons and charged aerosol particles is investigated under the conditions of polar mesosphere summer echoes （PMSE）. It is shown that the time scale of decay of the electron density is in the order of an hour under typical PMSE conditions, in the majority of cases, the electron density is anticorrelated to the ion density, except that the radius of aerosol particles is greater than 50 nm. Also, the evolutions under varied parameters, such as the amplitude and width of perturbation, the aerosol particle radius, and the altitude of the PMSE occurrence are investigated. The obtained results are useful for interpreting the experimental observations.
Zhong, Xian-Qiong; Zhang, Xiao-Xia; Du, Xian-Tong; Liu, Yong; Cheng, Ke
2015-10-01
The approximate analytical frequency chirps and the critical distances for cross-phase modulation induced optical wave breaking (OWB) of the initial hyperbolic-secant optical pulses propagating in optical fibers with quintic nonlinearity (QN) are presented. The pulse evolutions in terms of the frequency chirps, shapes and spectra are numerically calculated in the normal dispersion regime. The results reveal that, depending on different QN parameters, the traditional OWB or soliton or soliton pulse trains may occur. The approximate analytical critical distances are found to be in good agreement with the numerical ones only for the traditional OWB whereas the approximate analytical frequency chirps accords well with the numerical ones at the initial evolution stages of the pulses. Supported by the Postdoctoral Fund of China under Grant No. 2011M501402, the Key Project of Chinese Ministry of Education under Grant No. 210186, the Major Project of Natural Science Supported by the Educational Department of Sichuan Province under Grant No. 13ZA0081, the Key Project of National Natural Science Foundation of China under Grant No 61435010, and the National Natural Science Foundation of China under Grant No. 61275039
Csizmadia, Peter; Racz, Istvan
2013-01-01
A new numerical method is introduced to study the problem of time evolution of generic non-linear dynamical systems in four-dimensional spacetimes. It is assumed that the time level surfaces are foliated by a one-parameter family of codimension two compact surfaces with no boundary and which are conformal to a Riemannian manifold C. The method is based on the use of a multipole expansion determined uniquely by the induced metric structure on C. The approach is fully spectral in the angular directions. The dynamics in the complementary 1+1 Lorentzian spacetime is followed by making use of a fourth order finite differencing scheme with adaptive mesh refinement. In checking the reliability of the introduced new method the evolution of a massless scalar field on a fixed Kerr spacetime is investigated. In particular, the angular distribution of the evolving field in to be superradiant scattering is studied. The primary aim was to check the validity of some of the recent arguments claiming that the Penrose process,...
Directory of Open Access Journals (Sweden)
M.V. Tkach
2016-12-01
Full Text Available Using the Feynman-Pines diagram technique, the energy spectrum of localized quasi-particles interacting with polarization phonons is calculated and analyzed in the wide range of energies at the finite temperature of the system. It is established that the general model of the system, besides the bound states known from the simplified model with an additional condition for the operator of quasi-particles number, contains the new bound states even for the systems with weak coupling. The contribution of multi-phonon processes into the formation of renormalized spectrum of the system is analyzed. The reasons of the appearance, behaviour and disappearance of separate pairs of bound states depending on the coupling constant and temperature are revealed.
Chernov, Gennady; Tan, Baolin; Yan, Yihua; Tan, Chengming; Fu, Qijun; Karlicky, Marian; Fomichev, Valery
2015-01-01
The measurement of positions and sizes of radio sources in the observations of solar radio spectral fine structures in an M6.5 flare on April 11, 2013 were observed simultaneously by several radio instruments at four different observatories: Chinese Solar Broadband Radio Spectrometers at Huairou (SBRS/Huairou), Ondrejov Radio spectrograph in the Czech Republic (ORSC/Ondrejov), Badary Broadband Microwave spectropolarimeter (BMS/Irkutsk), and spectrograph/IZMIRAN (Moscow, Troitsk). The fine structures include microwave zebra patterns (ZP), fast pulsations, and fibers. They were observed during the flare brightening located at the tops of a loop arcade. The dynamics of the polarization was associated with the motion of the flare exciter, which was observed in EUV images at 171A and 131A (SDO/AIA). Combining magnetograms observed by the SDO Helioseismic and Magnetic Imager (HMI) with the homologous assumption of EUV flare brightening and ZP bursts, we deduced that the observed ZPs correspond to the ordinary radio...
Bogusławski, Jakub; Kowalczyk, Maciej; Iwanowski, Przemysław; Hruban, Andrzej; Diduszko, Ryszard; Piotrowski, Kazimierz; Dybko, Krzysztof; Wojciechowski, Tomasz; Aleszkiewicz, Marta; Sotor, Jarosław
2017-08-07
Due to their broadband nonlinear optical properties, low-dimensional materials are widely used for pulse generation in fiber and solid-state lasers. Here we demonstrate novel materials, Bi2Te2Se (BTS) and Sn-doped Bi2Te2Se (BSTS), which can be used as a universal saturable absorbers for distinct spectral regimes. The material was mechanically exfoliated from a bulk single-crystal and deposited onto a side-polished fiber. We have performed characterization of the fabricated devices and employed them in polarization-maintaining ytterbium- and erbium-doped fiber lasers. This enabled us to obtain self-starting passively Q-switched regime at 1 µm and 1.56 µm. The oscillators emitted stable, linearly polarized radiation with the highest single pulse energy approaching 692 nJ. Both lasers are characterized by the best performance observed in all-polarization maintaining Q-switched fiber lasers with recently investigated new saturable absorbers, which was enabled by a very high damage threshold of the devices. This demonstrates the great potential of the investigated materials for the ultrafast photonics community.
Gimenez, M. Cecilia; Paz García, Ana Pamela; Burgos Paci, Maxi A.; Reinaudi, Luis
2016-04-01
The evolution of public opinion using tools and concepts borrowed from Statistical Physics is an emerging area within the field of Sociophysics. In the present paper, a Statistical Physics model was developed to study the evolution of the ideological self-positioning of an ensemble of agents. The model consists of an array of L components, each one of which represents the ideology of an agent. The proposed mechanism is based on the "voter model", in which one agent can adopt the opinion of another one if the difference of their opinions lies within a certain range. The existence of "undecided" agents (i.e. agents with no definite opinion) was implemented in the model. The possibility of radicalization of an agent's opinion upon interaction with another one was also implemented. The results of our simulations are compared to statistical data taken from the Latinobarómetro databank for the cases of Argentina, Chile, Brazil and Uruguay in the last decade. Among other results, the effect of taking into account the undecided agents is the formation of a single peak at the middle of the ideological spectrum (which corresponds to a centrist ideological position), in agreement with the real cases studied.
DEFF Research Database (Denmark)
Olsson, Per-Ivar; Fiandaca, Gianluca; Larsen, Jakob Juul;
This paper presents an advanced signal processing scheme for time-domain induced polarization full waveform data. The scheme includes several steps with an improved induced polarization (IP) response gating design using convolution with tapered windows to suppress high frequency noise...... of noise model parameters for each segment, a full harmonic noise model is subtracted. Furthermore, the uncertainty of the background drift removal is estimated which together with the gating uncertainty estimate and a uniform uncertainty gives a total, data-driven, error estimate for each IP gate...
Nonlinear elastic waves in materials
Rushchitsky, Jeremiah J
2014-01-01
The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...
Vosoughian, H.; Riazi, Z.; Afarideh, H.; Sarri, G.
2016-12-01
In the nonlinear bubble regime, due to localized depletion at the front of the pulse during its propagation through the plasma, the phase shift between carrier waves and pulse envelope plays an important role in plasma response. The Carrier-Envelope Phase (CEP) breaks down the symmetric transverse ponderomotive force of the laser pulse that makes the bubble structure unstable. Our studies using a series of two-dimensional particle-in-cell simulations show that the utilization of a negatively chirped laser pulse is more effective in controlling the pulse depletion rate, and consequently, the effect of the CEP in the bubble regime. The results indicate that the pulse depletion rate diminishes during the propagation of the pulse in plasma that leads to postponing the effect of Carrier-Envelope Phase (CEP) in plasma response, and therefore, maintaining the stability of the bubble shape for a longer time than the un-chirped laser pulse. As a result, a localized electron bunch with higher maximum energy is produced during the acceleration process.
Wang, Sijia; Liu, Bowen; Song, Youjian; Hu, Minglie
2016-04-01
We report on a simple passive scheme to reduce the intensity noise of high-power nonlinear fiber amplifiers by use of the spectral-breathing parabolic evolution of the pulse amplification with an optimized negative initial chirp. In this way, the influences of amplified spontaneous emission (ASE) on the amplifier intensity noise can be efficiently suppressed, owing to the lower overall pulse chirp, shorter spectral broadening distance, as well as the asymptotic attractive nature of self-similar pulse amplification. Systematic characterizations of the relative intensity noise (RIN) of a free-running nonlinear Yb-doped fiber amplifier are performed over a series of initial pulse parameters. Experiments show that the measured amplifier RIN increases respect to the decreased input pulse energy, due to the increased amount of ASE noise. For pulse amplification with a proper negative initial chirp, the increase of RIN is found to be smaller than with a positive initial chirp, confirming the ASE noise tolerance of the proposed spectral-breathing parabolic amplification scheme. At the maximum output average power of 27W (25-dB amplification gain), the incorporation of an optimum negative initial chirp (-0.84 chirp parameter) leads to a considerable amplifier root-mean-square (rms) RIN reduction of ~20.5% (integrated from 10 Hz to 10 MHz Fourier frequency). The minimum amplifier rms RIN of 0.025% (integrated from 1 kHz to 5 MHz Fourier frequency) is obtained along with the transform-limited compressed pulse duration of 55fs. To our knowledge, the demonstrated intensity noise performance is the lowest RIN level measured from highpower free-running femtosecond fiber amplifiers.
Albacete, Javier L
2007-12-31
We present predictions for the pseudorapidity density of charged particles produced in central Pb-Pb collisions at the LHC. Particle production in such collisions is calculated in the framework of k(t) factorization. The nuclear unintegrated gluon distributions at LHC energies are determined from numerical solutions of the Balitsky-Kovchegov equation including recently calculated running coupling corrections. The initial conditions for the evolution are fixed by fitting Relativistic Heavy Ion Collider data at collision energies square root[sNN]=130 and 200 GeV per nucleon. We obtain dNch(Pb-Pb)/deta(square root[sNN]=5.5 TeV)/eta=0 approximately 1290-1480.
一类非线性发展方程的复合型双孤子新解∗%New complexion two-soliton solutions of a class of nonlinear evolution equation
Institute of Scientific and Technical Information of China (English)
套格图桑; 伊丽娜
2015-01-01
通过下列步骤，构造了一类非线性发展方程的无穷序列复合型双孤子新解：步骤一，给出两种函数变换，把一类非线性发展方程化为二阶非线性常微分方程；步骤二，再通过函数变换，二阶非线性常微分方程转化为一阶非线性常微分方程组，并获得了该方程组的首次积分；步骤三，利用首次积分与两种椭圆方程的新解与Bäcklund变换，构造了一类非线性发展方程的无穷序列复合型双孤子新解。%New infinite sequence complexion two-soliton solutions of a kind of nonlinear evolution equation are constructed with the help of function transformations and two kinds of elliptic equations. Step one,according to two function transformations, a kind of nonlinear evolution equation is changed into a nonlinear ordinary differential equation of second order. Step two, using function transformation, the nonlinear ordinary differential equation of second order is transformed into a set of nonlinear ordinary differential equations of first order, and the first integral of the set of equations is obtained. Finally, the first integral with new solutions and Bäcklund transformation of two kinds of elliptic equations are used to search for new infinite sequence complexion two-soliton solutions of a kind of nonlinear evolution equation.
Institute of Scientific and Technical Information of China (English)
WEN Jing; JIANG Hong-Bing; YU Jing; YANG Hong; GONG Qi-Huang
2011-01-01
@@ We investigate the propagation of femtosecond laser pulses in a 5-mm-thick BBO crystal along the direction of type-Ⅰ phase-matched second-harmonic generation.An intensity-asymmetric broadband conical emission (500- 2000 nm) is demonstrated when a suitable chirp is introduced.It is generated by optical parametric amplification pumped by the second-harmonic light and seeded by the fundamental light which is broadened by cascaded nonlinear processes during second-harmonic generation.
Yumura, Takashi; Yamamoto, Wataru
2017-09-20
We employed density functional theory (DFT) calculations with dispersion corrections to investigate energetically preferred alignments of certain p,p'-dimethylaminonitrostilbene (DANS) molecules inside an armchair (m,m) carbon nanotube (n × DANS@(m,m)), where the number of inner molecules (n) is no greater than 3. Here, three types of alignments of DANS are considered: a linear alignment in a parallel fashion and stacking alignments in parallel and antiparallel fashions. According to DFT calculations, a threshold tube diameter for containing DANS molecules in linear or stacking alignments was found to be approximately 1.0 nm. Nanotubes with diameters smaller than 1.0 nm result in the selective formation of linearly aligned DANS molecules due to strong confinement effects within the nanotubes. By contrast, larger diameter nanotubes allow DANS molecules to align in a stacking and linear fashion. The type of alignment adopted by the DANS molecules inside a nanotube is responsible for their second-order non-linear optical properties represented by their static hyperpolarizability (β0 values). In fact, we computed β0 values of DANS assemblies taken from optimized n × DANS@(m,m) structures, and their values were compared with those of a single DANS molecule. DFT calculations showed that β0 values of DANS molecules depend on their alignment, which decrease in the following order: linear alignment > parallel stacking alignment > antiparallel stacking alignment. In particular, a linear alignment has a β0 value more significant than that of the same number of isolated molecules. Therefore, the linear alignment of DANS molecules, which is only allowed inside smaller diameter nanotubes, can strongly enhance their second-order non-linear optical properties. Since the nanotube confinement determines the alignment of DANS molecules, a restricted nanospace can be utilized to control their second-order non-linear optical properties. These DFT findings can assist in the design
The Effect of Polar Lipids on Tear Film Dynamics
Aydemir, E.
2010-06-17
In this paper, we present a mathematical model describing the effect of polar lipids, excreted by glands in the eyelid and present on the surface of the tear film, on the evolution of a pre-corneal tear film. We aim to explain the interesting experimentally observed phenomenon that the tear film continues to move upward even after the upper eyelid has become stationary. The polar lipid is an insoluble surface species that locally alters the surface tension of the tear film. In the lubrication limit, the model reduces to two coupled non-linear partial differential equations for the film thickness and the concentration of lipid. We solve the system numerically and observe that increasing the concentration of the lipid increases the flow of liquid up the eye. We further exploit the size of the parameters in the problem to explain the initial evolution of the system. © 2010 Society for Mathematical Biology.
Indian Academy of Sciences (India)
D Subbarao; R Uma; H Singh; Kamal Goyal; Sanjeev Goyal; Ravinder Kumar
2000-11-01
It is useful to state propagation laws for a self-focusing laser beam or a soliton in grouptheoretical form to be called Lie-optical form for being able to predict self-focusing dynamics conveniently and amongst other things, the geometrical phase. It is shown that the propagation of the gaussian laser beam is governed by a rotation group in a non-absorbing medium and by the Lorentz group in an absorbing medium if the additional symmetry of paraxial propagation is imposed on the laser beam. This latter symmetry, however, needs care in its implementation because the electromagnetic wave of the laser sees a different refractive index proﬁle than the laboratory observer in this approximation. It is explained how to estimate this non-Taylor paraxial power series approximation. The group theoretical laws so-stated are used to predict the geometrical or Berry phase of the laser beam by a technique developed by one of us elsewhere. The group-theoretical Lie-optic (or ABCD) laws are also useful in predicting the laser behavior in a more complex optical arrangement like in a laser cavity etc. The nonlinear dynamical consequences of these laws for long distance (or time) predictions are also dealt with. Ergodic dynamics of an ensemble of laser beams on the torus during absorptionless self-focusing is discussed in this context. From the point of view of new physics concepts, we introduce a stroboscopic invariant torus and a stroboscopic generating function in classical mechanics that is useful for long-distance predictions of absorptionless self-focusing.
Kwok, C H; Chow, C W; Tsang, H K; Lin, Chinlon; Bjarklev, A
2006-06-15
We study the conversion bandwidth of the cross-polarization-modulation (XPoIM)-based wavelength conversion scheme with a dispersion-flattened highly nonlinear photonic-crystal fiber for signals with a nonreturn-to-zero (NRZ) modulation format. Both theoretical and experimental results show that the conversion bandwidth can be extended to cover a very wide band, including S-, C-, and L-bands for 10 Gbit/s NRZ signals (a total bandwidth of 120 nm is experimentally demonstrated). We also study the theoretical bandwidth limit for 40 Gbit/s NRZ signals. A significant extension of the conversion bandwidth using the XPoIM approach compared with the four-wave mixing approach previously reported is demonstrated.
Agrawal, Govind P
2001-01-01
The Optical Society of America (OSA) and SPIE - The International Society for Optical Engineering have awarded Govind Agrawal with an honorable mention for the Joseph W. Goodman Book Writing Award for his work on Nonlinear Fiber Optics, 3rd edition.Nonlinear Fiber Optics, 3rd Edition, provides a comprehensive and up-to-date account of the nonlinear phenomena occurring inside optical fibers. It retains most of the material that appeared in the first edition, with the exception of Chapter 6, which is now devoted to the polarization effects relevant for light propagation in optical
Cohen, J.; Shukhman, I. G.; Karp, M.; Philip, J.
2010-10-01
Recent experimental and numerical studies have shown that the interaction between a localized vortical disturbance and the shear of an external base flow can lead to the formation of counter-rotating vortex pairs and hairpin vortices that are frequently observed in wall bounded and free turbulent shear flows as well as in subcritical shear flows. In this paper an analytical-based solution method is developed. The method is capable of following (numerically) the evolution of finite-amplitude localized vortical disturbances embedded in shear flows. Due to their localization in space, the surrounding base flow is assumed to have homogeneous shear to leading order. The method can solve in a novel way the interaction between a general family of unbounded planar homogeneous shear flows and any localized disturbance. The solution is carried out using Lagrangian variables in Fourier space which is convenient and enables fast computations. The potential of the method is demonstrated by following the evolved structures of large amplitude disturbances in three canonical base flows, including simple shear, plane stagnation (extensional) and pure rotation flows, and a general case. The results obtained by the current method for plane stagnation and simple shear flows are compared with the published results. The proposed method could be extended to other flows (e.g. geophysical and rotating flows) and to include periodic disturbances as well.
Directory of Open Access Journals (Sweden)
Paul C. Rivera
2006-01-01
Full Text Available A common approach in modeling the generation and propagation of tsunami is based on the assumption of a kinematic vertical displacement of ocean water that is analogous to the ocean bottom displacement during a submarine earthquake and the use of a non-dispersive long-wave model to simulate its physical transformation as it radiates outward from the source region. In this study, a new generation mechanism and the use of a highly-dispersive wave model to simulate tsunami inception, propagation and transformation are proposed. The new generation model assumes that transient ground motion during the earthquake can accelerate horizontal currents with opposing directions near the fault line whose successive convergence and divergence generate a series of potentially destructive oceanic waves. The new dynamic model incorporates the effects of earthquake moment magnitude, ocean compressibility through the buoyancy frequency, the effects of focal and water depths, and the orientation of ruptured fault line in the tsunami magnitude and directivity.For tsunami wave simulation, the nonlinear momentum-based wave model includes important wave propagation and transformation mechanisms such as refraction, diffraction, shoaling, partial reflection and transmission, back-scattering, frequency dispersion, and resonant wave-wave interaction. Using this model and a coarse-resolution bathymetry, the new mechanism is tested for the Indian Ocean tsunami of December 26, 2004. A new flooding and drying algorithm that consider waves coming from every direction is also proposed for simulation of inundation of low-lying coastal regions.It is shown in the present study that with the proposed generation model, the observed features of the Asian tsunami such as the initial drying of areas east of the source region and the initial flooding of western coasts are correctly simulated. The formation of a series of tsunami waves with periods and lengths comparable to observations
Bohata, J; Zvanovec, S; Pesek, P; Korinek, T; Mansour Abadi, M; Ghassemlooy, Z
2016-03-10
This paper describes the experimental verification of the utilization of long-term evolution radio over fiber (RoF) and radio over free space optics (RoFSO) systems using dual-polarization signals for cloud radio access network applications determining the specific utilization limits. A number of free space optics configurations are proposed and investigated under different atmospheric turbulence regimes in order to recommend the best setup configuration. We show that the performance of the proposed link, based on the combination of RoF and RoFSO for 64 QAM at 2.6 GHz, is more affected by the turbulence based on the measured difference error vector magnitude value of 5.5%. It is further demonstrated the proposed systems can offer higher noise immunity under particular scenarios with the signal-to-noise ratio reliability limit of 5 dB in the radio frequency domain for RoF and 19.3 dB in the optical domain for a combination of RoF and RoFSO links.
Directory of Open Access Journals (Sweden)
Jia Hui Ong
2016-07-01
Full Text Available Parameter searching is one of the most important aspects in getting favorable results in optimization problems. It is even more important if the optimization problems are limited by time constraints. In a limited time constraint problems, it is crucial for any algorithms to get the best results or near-optimum results. In a previous study, Differential Evolution (DE has been found as one of the best performing algorithms under time constraints. As this has help in answering which algorithm that yields results that are near-optimum under a limited time constraint. Hence to further enhance the performance of DE under time constraint evaluation, a throughout parameter searching for population size, mutation constant and f constant have been carried out. CEC 2015 Global Optimization Competition’s 15 scalable test problems are used as test suite for this study. In the previous study the same test suits has been used and the results from DE will be use as the benchmark for this study since it shows the best results among the previous tested algorithms. Eight different populations size are used and they are 10, 30, 50, 100, 150, 200, 300, and 500. Each of these populations size will run with mutation constant of 0.1 until 0.9 and from 0.1 until 0.9. It was found that population size 100, Cr = 0.9, F=0.5 outperform the benchmark results. It is also observed from the results that good higher Cr around 0.8 and 0.9 with low F around 0.3 to 0.4 yields good results for DE under time constraints evaluation
Nonlinear diffusion and superconducting hysteresis
Energy Technology Data Exchange (ETDEWEB)
Mayergoyz, I.D. [Univ. of Maryland, College Park, MD (United States)
1996-12-31
Nonlinear diffusion of electromagnetic fields in superconductors with ideal and gradual resistive transitions is studied. Analytical results obtained for linear and nonlinear polarizations of electromagnetic fields are reported. These results lead to various extensions of the critical state model for superconducting hysteresis.
Kannajosyula, H.; Lissenden, C. J.; Rose, J. L.
2012-05-01
Ultrasonic guided wave mode control and steering using phased array transducers (PATs) is studied. A PAT with elements arranged on a cylindrical-polar grid is proposed to overcome the problem of large side-lodes associated with a rectangular grid PAT. The PAT is visualized as a spatio-temporal filter to calculate phase delays. Wavenumber bands resulting from the radial rows enable constructive interfere only in the vicinity of the desired wavenumber and angle of propagation. Finite element simulations are presented to study PAT performance.
On polarization in biomembranes
DEFF Research Database (Denmark)
Zecchi, Karis Amata
close to physiological conditions, making these effects biologically relevant. In this work, we consider the case of asymmetric membranes which can display spontaneous polarization in the absence of a field. Close to the phase transition, we find that the membrane displays piezoelectric, flexoelectric...... and thermoelectric behaviour. In particular, the membrane capacitance is a nonlinear function of the applied voltage. Furthermore, in the presence of spontaneous polarization, our thermodynamical description is able to explain the outward rectified current-voltage relationship measured on synthetic lipid bilayers....... Due to the nonlinear dependence of the membrane capacitance and conductance on voltage and the presence of spontaneous polarization, the traditional equivalent circuit of the membrane is not an accurate description in physiological conditions. An updated equivalent circuit of the lipid bilayer is here...
Nonlocal homogenization for nonlinear metamaterials
Gorlach, Maxim A; Lapine, Mikhail; Kivshar, Yuri S; Belov, Pavel A
2016-01-01
We present a consistent theoretical approach for calculating effective nonlinear susceptibilities of metamaterials taking into account both frequency and spatial dispersion. Employing the discrete dipole model, we demonstrate that effects of spatial dispersion become especially pronounced in the vicinity of effective permittivity resonance where nonlinear susceptibilities reach their maxima. In that case spatial dispersion may enable simultaneous generation of two harmonic signals with the same frequency and polarization but different wave vectors. We also prove that the derived expressions for nonlinear susceptibilities transform into the known form when spatial dispersion effects are negligible. In addition to revealing new physical phenomena, our results provide useful theoretical tools for analysing resonant nonlinear metamaterials.
Nonlinear Landau damping and Alfven wave dissipation
Vinas, Adolfo F.; Miller, James A.
1995-01-01
Nonlinear Landau damping has been often suggested to be the cause of the dissipation of Alfven waves in the solar wind as well as the mechanism for ion heating and selective preacceleration in solar flares. We discuss the viability of these processes in light of our theoretical and numerical results. We present one-dimensional hybrid plasma simulations of the nonlinear Landau damping of parallel Alfven waves. In this scenario, two Alfven waves nonresonantly combine to create second-order magnetic field pressure gradients, which then drive density fluctuations, which in turn drive a second-order longitudinal electric field. Under certain conditions, this electric field strongly interacts with the ambient ions via the Landau resonance which leads to a rapid dissipation of the Alfven wave energy. While there is a net flux of energy from the waves to the ions, one of the Alfven waves will grow if both have the same polarization. We compare damping and growth rates from plasma simulations with those predicted by Lee and Volk (1973), and also discuss the evolution of the ambient ion distribution. We then consider this nonlinear interaction in the presence of a spectrum of Alfven waves, and discuss the spectrum's influence on the growth or damping of a single wave. We also discuss the implications for wave dissipation and ion heating in the solar wind.
Park, Jesung; Kemp, Nate J; Rylander, H Grady; Milner, Thomas E
2009-08-03
Complex polarization ratio (CPR) in materials with birefringence and biattenuance is shown as a logarithmic spiral in the complex plane. A multi-state Levenberg-Marquardt nonlinear fitting algorithm using the CPR trajectory collected by polarization sensitive optical coherence tomography (PS-OCT) was developed to determine polarization properties of an anisotropic scattering medium. The Levenberg-Marquardt nonlinear fitting algorithm using the CPR trajectory is verified using simulated PS-OCT data with speckle noise. Birefringence and biattenuance of a birefringent film, ex-vivo rodent tail tendon and in-vivo primate retinal nerve fiber layer were determined using measured CPR trajectories and the Levenberg-Marquardt nonlinear fitting algorithm.
Nonlinear metrology with a quantum interface
Napolitano, M.; Mitchell, M. W.
2009-01-01
We describe nonlinear quantum atom-light interfaces and nonlinear quantum metrology in the collective continuous variable formalism. We develop a nonlinear effective Hamiltonian in terms of spin and polarization collective variables and show that model Hamiltonians of interest for nonlinear quantum metrology can be produced in $^{87}$Rb ensembles. With these Hamiltonians, metrologically relevant atomic properties, e.g. the collective spin, can be measured better than the "Heisenberg limit" $\\...
Energy Technology Data Exchange (ETDEWEB)
Sahu, Biswajit, E-mail: biswajit-sahu@yahoo.co.in [Department of Mathematics, West Bengal State University, Barasat, Kolkata 700126 (India); Sinha, Anjana, E-mail: sinha.anjana@gmail.com [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Roychoudhury, Rajkumar, E-mail: rroychoudhury123@gmail.com [Department of Mathematics, Visva-Bharati, Santiniketan - 731 204, India and Advanced Centre for Nonlinear and Complex Phenomena, 1175 Survey Park, Kolkata 700 075 (India)
2015-09-15
A numerical study is presented of the nonlinear dynamics of a magnetized, cold, non-relativistic plasma, in the presence of electron-ion collisions. The ions are considered to be immobile while the electrons move with non-relativistic velocities. The primary interest is to study the effects of the collision parameter, external magnetic field strength, and the initial electromagnetic polarization on the evolution of the plasma system.
Stability analysis of polarization attraction in optical fibers
Turitsyn, K S
2013-01-01
The nonlinear cross-polarization interaction among two intense counterpropagating beams in a span of lossless randomly birefringent telecom optical fiber may lead to the attraction an initially polarization scrambled signal towards wave with a well-defined state of polarization at the fiber output. By exploiting exact analytical solutions of the nonlinear polarization coupling process we carry out a linear stability study which reveals that temporally stable stationary solutions are only obtained whenever the output signal polarization is nearly orthogonal to the input pump polarization. Moreover, we predict that polarization attraction is acting in full strength whenever equally intense signal and pump waves are used.
UV Nano-Lights: Nonlinear Quantum Dot-Plasmon Coupling
2014-08-01
method is also applicable to bare nanoparticles in polar solvents. 15. SUBJECT TERMS Quantum Dots, Nonlinear Optical Materials , Energy...TERMS Quantum Dots, Nonlinear Optical Materials , Energy Conservation, Up-conversion 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT
Energy Technology Data Exchange (ETDEWEB)
Wang, Shuao; Alekseev, Evgeny V.; Ling, Jie; Liu, Guokui; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.
2010-03-23
Four new sodium uranyl borates, α-Na[(UO{sub 2}){sub 2}B{sub 10}O{sub 15}(OH){sub 5})] (NaUBO-1), β-Na[(UO{sub 2}){sub 2}B{sub 10}O{sub 15}(OH){sub 5}] (NaUBO-2), Na[(UO{sub 2}){sub 2}B{sub 10}O{sub 15}(OH){sub 5}]·3H{sub 2}O (NaUBO-3), and Na[(UO{sub 2})B{sub 6}O{sub 10}(OH)]·2H{sub 2}O (NaUBO-4), and four new thallium uranyl borates, α-Tl{sub 2}[(UO{sub 2}){sub 2}B{sub 11}O{sub 18}(OH){sub 3}] (TlUBO-1), β-Tl{sub 2}[(UO{sub 2}){sub 2}B{sub 11}O{sub 18}(OH){sub 3}] (TlUBO-2), Tl[(UO{sub 2}){sub 2}B{sub 10}O{sub 16}(OH){sub 3}] (TlUBO-3), and Tl{sub 2}[(UO{sub 2}){sub 2}B{sub 11}O{sub 19}(OH)] (TlUBO-4), have been prepared via the reaction of sodium nitrate or thallium nitrate, uranyl nitrate, and excess boric acid at 190 °C. These compounds share a common structural motif consisting of a linear uranyl, UO{sub 2}{sup 2+}, cation surrounded by BO{sub 3} triangles and BO{sub 4} tetrahedra to create a UO{sub 8} hexagonal bipyramidal environment around uranium. The borate anions bridge between uranyl units to create sheets. Additional BO{sub 3} triangles extend from the polyborate layers and are directed approximately perpendicular to the sheets. In some compounds, these units can link the layers together to yield three-dimensional networks with large pores to house the Na{sup +} or Tl{sup+} cations and water molecules. The structures are all noncentrosymmetric and are either polar or chiral. While the uranyl borate layers are noncentrosymmetric in and of themselves, there is also twisting of the interlayer BO{sub 3} groups to reduce the interlayer spacing, producing helical features in some structures. Na[(UO{sub 2})B{sub 6}O{sub 10}(OH)]·2H{sub 2}O and β-Tl{sub 2}[(UO{sub 2}){sub 2}B{sub 11}O{sub 18}(OH){sub 3}], which can be obtained as pure phases, display second-harmonic generation of 532 nm light from 1064 nm light.
Institute of Scientific and Technical Information of China (English)
李新霞; 路兴强; 龚学余
2011-01-01
在二维平板几何模型下,利用磁流体力学方程组数值模拟托卡马克装置中双撕裂模非线性演化过程中有理面上剪切流的时间和空间分布.结果表明,双撕裂模非线性演化的早期阶段,有理面上没有形成明显的剪切流.剪切流主要存在于快速磁重联阶段,随着磁重联的结束而逐渐消失,剪切流的强度和空间分布随磁岛的演化而改变.另外,较大的等离子体电阻加速磁重联,但是对剪切流的强度和变化趋势没有直接的影响.%Shear flows in resonant surfaces of Tokamka devices induced by nonlinear evolution of double tearing modes ( DTM ) are studied numerically in the framework of resistive magnetohydronamic model with slab geometry. It is found that in early phases of nonlinear evolution of DTM, no remarkable shear flows is generated in resonant surfaces. Effective shear flows emerge during the phase of fast magnetic reconnection and disappear finally. Both amplitude and distribution of shear flows are found vary with nonlinear evolution of magnetic islands. Moreover, by taking into account plasma resistivity, it is shown that greater plasmas resistivity results in faster magnetic reconection, but it hardly affects shear flows of resonant surfaces in Tokamka devices.