Optical Beams in Nonlocal Nonlinear Media
DEFF Research Database (Denmark)
Królikowski, W.; Bang, Ole; Wyller, J.
2003-01-01
We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons.......We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons....
Nonlinear Quantum Optics in Artificially Structured Media
Helt, Lukas Gordon
This thesis presents an analysis of photon pairs generated via either spontaneous parametric downconversion or spontaneous four-wave mixing in channel waveguides as well as in microring resonators side-coupled to channel waveguides. The state of photons exiting a particular device is calculated within a general Hamiltonian formalism that simplifies the link between quantum nonlinear optics experiments and classical nonlinear optics experiments. This state contains information regarding photon pair production efficiency as well as modal and spectral correlations between the two photons, characterized by a two-dimensional spectral distribution function called the biphoton wave function. In the limit of a low probability of pair production, photon pair production efficiencies are cast into forms resembling corresponding well-known classical nonlinear optical frequency conversion efficiencies, making it easy to see what plays the role of a classical "seed" field in an un-seeded (quantum) process. This also allows photon pair production efficiencies to be calculated based on the results of classical nonlinear optical experiments. It is further calculated that, unless generated photons are collected over a very narrow frequency range, their generation efficiency does not scale the same way with device length in a channel waveguide, or resonance quality factor in a microring resonator, as might be expected from the corresponding classical frequency conversion efficiency. Although calculations do not include self- or cross-phase modulation, nor two-photon absorption or free-carrier absorption, it is calculated that their neglect is justified in the low pair production probability limit. Linear (scattering) loss is also neglected, though partially addressed in the final chapter of this thesis. Biphoton wave functions are calculated explicitly, such that their shape and orientation, including approximate analytic expressions for their widths, can easily be determined. This
Covariant Description of Transformation Optics in Linear and Nonlinear Media
Paul, Oliver
2011-01-01
The technique of transformation optics (TO) is an elegant method for the design of electromagnetic media with tailored optical properties. In this paper, we focus on the formal structure of TO theory. By using a complete covariant formalism, we present a general transformation law that holds for arbitrary materials including bianisotropic, magneto-optical, nonlinear and moving media. Due to the principle of general covariance, the formalism is applicable to arbitrary space-time coordinate transformations and automatically accounts for magneto-electric coupling terms. The formalism is demonstrated for the calculation of the second harmonic generation in a twisted TO concentrator.
Decay of high order optical vortices in anisotropic nonlinear optical media
DEFF Research Database (Denmark)
Mamaev, A.V.; Saffman, M.; Zozulya, A.A.
1997-01-01
We present an experimental and theoretical study of the decay of high order optical vortices in media with an anisotropic nonlocal nonlinearity. Vortices with charge n decay into an aligned array of n vortices of unit charge.......We present an experimental and theoretical study of the decay of high order optical vortices in media with an anisotropic nonlocal nonlinearity. Vortices with charge n decay into an aligned array of n vortices of unit charge....
1992-02-13
niobate and absolute measurements of nonlinear optical coefficients of six different commonly used nonlinear optical materials. The refractometry data for...applied radiation and is now an established technology for Nd:YAG lasers. Optical parametric oscillation and amplification provide a method of generating...continuously tunable output -3- The relative advantages of nonlinear optical frequency conversion compared to other methods for the generation of near
Modulation instability of broad optical beams in nonlinear media with general nonlinearity
Institute of Scientific and Technical Information of China (English)
Hongcheng Wang; Weilong She
2006-01-01
@@ The modulation instability of quasi-plane-wave optical beams is investigated in the frame of generalized Schr(o)dinger equation with the nonlinear term of a general form. General expressions are derived for the dispersion relation, the critical transverse spatial frequency, as well as the instability growth rate.The analysis generalizes the known results reported previously. A detailed discussion on the modulation instability in biased centrosymmetric photorefractive media is also given.
Lai, Puxiang; Tay, Jian Wei; Wang, Lihong V
2014-01-01
Non-invasively focusing light into strongly scattering media, such as biological tissue, is highly desirable but challenging. Recently, wavefront shaping technologies guided by ultrasonic encoding or photoacoustic sensing have been developed to address this limitation. So far, these methods provide only acoustic diffraction-limited optical focusing. Here, we introduce nonlinear photoacoustic wavefront shaping (PAWS), which achieves optical diffraction-limited (i.e. single-speckle-grain) focusing in scattering media. We develop an efficient dual-pulse excitation approach to generate strong nonlinear photoacoustic (PA) signals based on the Grueneisen memory effect. These nonlinear PA signals are used as feedback to guide iterative wavefront optimization. By maximizing the amplitude of the nonlinear PA signal, light is effectively focused to a single optical speckle grain. Experimental results demonstrate a clear optical focus on the scale of 5-7 micrometers, which is ~10 times smaller than the acoustic focus in...
Self-Organization of Light in Optical Media with Competing Nonlinearities.
Maucher, F; Pohl, T; Skupin, S; Krolikowski, W
2016-04-22
We study the propagation of light beams through optical media with competing nonlocal nonlinearities. We demonstrate that the nonlocality of competing focusing and defocusing nonlinearities gives rise to self-organization and stationary states with stable hexagonal intensity patterns, akin to transverse crystals of light filaments. Signatures of this long-range ordering are shown to be observable in the propagation of light in optical waveguides and even in free space. We consider a specific form of the nonlinear response that arises in atomic vapor upon proper light coupling. Yet, the general phenomenon of self-organization is a generic consequence of competing nonlocal nonlinearities, and may, hence, also be observed in other settings.
Bloembergen, Nicolaas
1996-01-01
Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe
DEFF Research Database (Denmark)
Mamaev, A.V.; Saffman, M.; Zozulya, A.A.
1996-01-01
We analyze the evolution of (1+1) dimensional dark stripe beams in bulk media with a photorefractive nonlinear response. These beams, including solitary wave solutions, are shown to be unstable with respect to symmetry breaking and formation of structure along the initially homogeneous coordinate....... Experimental results show the complete sequence of events starting from self-focusing of the stripe, its bending due to the snake instability, and subsequent decay into a set of optical vortices....
Boyd, Robert W
2013-01-01
Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q
A comparison of nonlinear media for parametric all-optical signal processing
DEFF Research Database (Denmark)
Martinez Diaz, Jordi; Bohigas Nadal, Jaume; Vukovic, Dragana;
2013-01-01
We systematically compare nonlinear media for parametric signal processing by determining the minimum pump power that is required for a given conversion efficiency in a degenerate four-wave mixing process, including the effect of nonlinear loss....
Nonlinear localized modes in PT-symmetric optical media with competing gain and loss
Midya, Bikashkali
2014-01-01
The existence and stability of the nonlinear spatial localized modes are investigated in parity-time symmetric optical media characterized by a generic complex hyperbolic refractive index distribution with competing gain and loss profile. The exact analytical expressions of the localized modes are found for all values of the competing parameter and in the presence of both the self-focusing and self-defocusing Kerr nonlinearity. The effect of competing gain/loss profile on the stability structure of these localized modes are discussed with the help of linear stability analysis followed by the direct numerical simulation of the governing equation. The spatial localized modes in two-dimensional geometry as well as the transverse power-flow density associated with these localized modes are also examined.
Institute of Scientific and Technical Information of China (English)
Yang Hong; Tang Yi
2008-01-01
We investigate the energy exchange between (3+1)D colliding spatiotemporal solitons (STSs) in dispersive media with cubic-quintic (CQ) nonlinearity by numerical simulations. Energy exchange between two (3+l)D head on colliding STSs caused by their phase difference is observed, just as occurring in other optical media. Moreover, energy exchange between two head-on colliding STSs with different speeds is firstly shown in the CQ and saturable media.This phenomenon, we believe, may arouse some interest in the future studies of soliton collision in optical media.
Optical solitons in resonant and nonresonant nonlinear media in the presence of perturbations.
Piscureanu, M; Manaila-Maximean, D
2000-01-01
We studied the optical solitons in nonlinear resonant and nonresonant media in the presence of perturbations, assuming that the transient effects are stimulated by the light scanning beam. We treated a slight deviation from the exact necessary condition for the soliton existence (2betanu=1), as a small perturbation for the integrable system, studying its influence upon the soliton propagation conditions. The approximation is constructed by the help of an algebraic version of the soliton perturbation theory using a Riemann boundary problem in connection with the inverse scattering method. We have obtained the soliton equation and we have solved it in the presence of a small perturbation in the adiabatic approximation. In this case we have demonstrated that for a Lorentz profile line the amplitude of the soliton remains unchanged, the only effect of the perturbation results in a phase shift.
Nonlinear localized modes in PT-symmetric optical media with competing gain and loss
Energy Technology Data Exchange (ETDEWEB)
Midya, Bikashkali, E-mail: bikash.midya@gmail.com [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108 (India); Roychoudhury, Rajkumar, E-mail: rroychoudhury123@gmail.com [Advanced Center for Nonlinear and Complex Phenomena, Kolkata 700075 (India)
2014-02-15
The existence and stability of the nonlinear spatial localized modes are investigated in parity-time symmetric optical media characterized by a generic complex hyperbolic refractive index distribution with competing gain and loss profile. The exact analytical expression of the localized modes are found for all values of the competing parameter and in the presence of both the self-focusing and self-defocusing Kerr nonlinearity. The effects of competing gain/loss profile on the stability structure of these localized modes are discussed with the help of linear stability analysis followed by the direct numerical simulation of the governing equation. The spatial localized modes in two-dimensional geometry as well as the transverse power-flow density associated with these localized modes are also examined. -- Highlights: • Existence of localized modes is investigated in PT-symmetric complex potentials. • Exact analytical expression of the localized modes is obtained. • Effect of gain/loss profile on the stability of these localized modes is discussed. • Localized modes in 2D and associated transverse power-flow density are also examined.
Nonlinear Optical Wave Equation for Micro- and Nano-Structured Media and Its Application
2013-03-01
distribution is unlimited. 3 Summary Major trends recently occurred in the modern physics and applications of nonlinear optics are closely linked with...interaction in an optically transparent nonmagnetic continuous medium is the subject area of the macroscopic electrodynamics [1,2]. For the majority of...activity worldwide in the area of linear and nonlinear nanophotonics. References. [1]. L. D. Landau and E. M. Lifshitz, Electrodynamics of
Leblond, Hervé; Mihalache, Dumitru; 10.1103/PHYSREVA.80.053812
2011-01-01
By using a powerful reductive perturbation technique, or a multiscale analysis, a generic Kadomtsev-Petviashvili evolution equation governing the propagation of femtosecond spatiotemporal optical solitons in quadratic nonlinear media beyond the slowly varying envelope approximation is put forward. Direct numerical simulations show the formation, from adequately chosen few-cycle input pulses, of both stable line solitons (in the case of a quadratic medium with normal dispersion) and of stable lumps (for a quadratic medium with anomalous dispersion). Besides, a typical example of the decay of the perturbed unstable line soliton into stable lumps for a quadratic nonlinear medium with anomalous dispersion is also given.
Smith, David D.
2002-01-01
This talk will review the linear and nonlinear optical properties of metal nanoparticles and dielectric microparticles, with an emphasis on local field effects, and whispering gallery modes (WGMs), as well as the conjunction of these two effects for enhanced Raman. In particular, enhanced optical properties that result from electromagnetic coupling effects will be discussed in the context of Mie scattering from concentric spheres and bispheres. Predictions of mode splitting and photonic bandgaps in micro-spheres will be presented and will be shown to be analogous to effects that occur in coupled resonator optical waveguides (CROW). Slow and fast light in SCISSOR / CROW configurations will also be discussed.
Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong
2015-01-01
This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.
Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media
Phillips, C R; Gallmann, L; Keller, U
2015-01-01
Advances in the amplification and manipulation of ultrashort laser pulses has led to revolutions in several areas. Examples include chirped pulse amplification for generating high peak-power lasers, power-scalable amplification techniques, pulse shaping via modulation of spatially-dispersed laser pulses, and efficient frequency-mixing in quasi-phase-matched nonlinear crystals to access new spectral regions. In this work, we introduce and demonstrate a new platform for nonlinear optics which has the potential to combine all of these separate functionalities (pulse amplification, frequency transfer, and pulse shaping) into a single monolithic device. Moreover, our approach simultaneously offers solutions to the performance-limiting issues in the conventionally-used techniques, and supports scaling in power and bandwidth of the laser source. The approach is based on two-dimensional patterning of quasi-phase-matching gratings combined with optical parametric interactions involving spatially dispersed laser pulses...
Resource Letter NO-1: Nonlinear Optics
Garmire, Elsa
2011-03-01
This Resource Letter provides a guide to the literature on nonlinear optics. Books, journals, and websites are introduced that cover the general subject. Journal articles and websites are cited covering the following topics: second-order nonlinearities in transparent media including second-harmonic generation and optical parametric oscillation, third-order and higher nonlinearities, nonlinear refractive index, absorptive nonlinearities such as saturable absorption and multiphoton absorption, and scattering nonlinearities such as stimulated Raman scattering and stimulated Brillouin scattering. Steady-state and transient phenomena, fiber optics, solitons, nonlinear wave mixing, optical phase conjugation, nonlinear spectroscopy, and multiphoton microscopy are all outlined.
Organic nonlinear optical materials
Umegaki, S.
1987-01-01
Recently, it became clear that organic compounds with delocalized pi electrons show a great nonlinear optical response. Especially, secondary nonlinear optical constants of more than 2 digits were often seen in the molecular level compared to the existing inorganic crystals such as LiNbO3. The crystallization was continuously tried. Organic nonlinear optical crystals have a new future as materials for use in the applied physics such as photomodulation, optical frequency transformation, opto-bistabilization, and phase conjugation optics. Organic nonlinear optical materials, e.g., urea, O2NC6H4NH2, I, II, are reviewed with 50 references.
Agrawal, Govind P
2001-01-01
The Optical Society of America (OSA) and SPIE - The International Society for Optical Engineering have awarded Govind Agrawal with an honorable mention for the Joseph W. Goodman Book Writing Award for his work on Nonlinear Fiber Optics, 3rd edition.Nonlinear Fiber Optics, 3rd Edition, provides a comprehensive and up-to-date account of the nonlinear phenomena occurring inside optical fibers. It retains most of the material that appeared in the first edition, with the exception of Chapter 6, which is now devoted to the polarization effects relevant for light propagation in optical
Lugiato, Luigi; Brambilla, Massimo
2015-01-01
Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.
Distributed nonlinear optical response
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov
2005-01-01
The purpose of the research presented here is to investigate basic physical properties in nonlinear optical materials with delayed or nonlocal nonlinearity. Soliton propagation, spectral broadening and the influence of the nonlocality or delay of the nonlinearity are the main focusses in the work...
Eaton, D F
1991-07-19
The current state of materials development in nonlinear optics is summarized, and the promise of these materials is critically evaluated. Properties and important materials constants of current commercial materials and of new, promising, inorganic and organic molecular and polymeric materials with potential in second- and third-order nonlinear optical applications are presented.
Nonlinear optics and photonics
He, Guang S
2015-01-01
This book provides a comprehensive presentation on most of the major topics in nonlinear optics and photonics, with equal emphasis on principles, experiments, techniques, and applications. It covers many major new topics including optical solitons, multi-photon effects, nonlinear photoelectric effects, fast and slow light , and Terahertz photonics. Chapters 1-10 present the fundamentals of modern nonlinear optics, and could be used as a textbook with problems provided at the end of each chapter. Chapters 11-17 cover the more advanced topics of techniques and applications of nonlinear optics and photonics, serving as a highly informative reference for researchers and experts working in related areas. There are also 16 pages of color photographs to illustrate the visual appearances of some typical nonlinear optical effects and phenomena. The book could be adopted as a textbook for both undergraduates and graduate students, and serve as a useful reference work for researchers and experts in the fields of physics...
Nonlinear Gamow vectors, shock waves and irreversibility in optically nonlocal media
Gentilini, Silvia; Marcucci, Giulia; DelRe, Eugenio; Conti, Claudio
2015-01-01
Dispersive shock waves dominate wave-breaking phenomena in Hamiltonian systems. In the absence of loss, these highly irregular and disordered waves are potentially reversible. However, no experimental evidence has been given about the possibility of inverting the dynamics of a dispersive shock wave and turn it into a regular wave-front. Nevertheless, the opposite scenario, i.e., a smooth wave generating turbulent dynamics is well studied and observed in experiments. Here we introduce a new theoretical formulation for the dynamics in a highly nonlocal and defocusing medium described by the nonlinear Schroedinger equation. Our theory unveils a mechanism that enhances the degree of irreversibility. This mechanism explains why a dispersive shock cannot be reversed in evolution even for an arbitrarirly small amount of loss. Our theory is based on the concept of nonlinear Gamow vectors, i.e., power dependent generalizations of the counter-intuitive and hereto elusive exponentially decaying states in Hamiltonian sys...
SOVIET AND POLISH RESEARCH ON THE SELF-TRAPPING OF OPTICAL BEAMS IN NONLINEAR MEDIA.
Physical Review Letters in October 1964, was preceded in the Soviet literature by the works of G. A. Askar’yan of the Lebedev Institute and V. I. Talanov of the Scientific-Research Radiophysics Institute at Gor’kiy State University, which were published in June 1962 and 1964, respectively. Since that time Soviet researchers have contributed some 15 papers on various aspects of the self-focusing of optical beams. Significant research on the self-trapping of optical
Modulational instability in nonlocal nonlinear Kerr media
DEFF Research Database (Denmark)
Krolikowski, Wieslaw; Bang, Ole; Juul Rasmussen, Jens
2001-01-01
We study modulational instability (MI) of plane waves in nonlocal nonlinear Kerr media. For a focusing nonlinearity we show that, although the nonlocality tends to suppress MI, it can never remove it completely, irrespective of the particular profile of the nonlocal response function....... For a defocusing nonlinearity the stability properties depend sensitively on the response function profile: for a smooth profile (e.g., a Gaussian) plane waves are always stable, but MI may occur for a rectangular response. We also find that the reduced model for a weak nonlocality predicts MI in defocusing media...... for arbitrary response profiles, as long as the intensity exceeds a certain critical value. However, it appears that this regime of MI is beyond the validity of the reduced model, if it is to represent the weakly nonlocal limit of a general nonlocal nonlinearity, as in optics and the theory of Bose...
Stolz, A; Markey, L; Francs, G Colas des; Bouhelier, A
2013-01-01
We introduce strongly-coupled optical gap antennas to interface optical radiation with current-carrying electrons at the nanoscale. The transducer relies on the nonlinear optical and electrical properties of an optical antenna operating in the tunneling regime. We discuss the underlying physical mechanisms controlling the conversion and demonstrate that a two-wire optical antenna can provide advanced optoelectronic functionalities beyond tailoring the electromagnetic response of a single emitter. Interfacing an electronic command layer with a nanoscale optical device may thus be facilitated by the optical rectennas discussed here.
The quantum theory of nonlinear optics
Drummond, Peter D
2014-01-01
Playing a prominent role in communications, quantum science and laser physics, quantum nonlinear optics is an increasingly important field. This book presents a self-contained treatment of field quantization and covers topics such as the canonical formalism for fields, phase-space representations and the encompassing problem of quantization of electrodynamics in linear and nonlinear media. Starting with a summary of classical nonlinear optics, it then explains in detail the calculation techniques for quantum nonlinear optical systems and their applications, quantum and classical noise sources in optical fibers and applications of nonlinear optics to quantum information science. Supplemented by end-of-chapter exercises and detailed examples of calculation techniques in different systems, this book is a valuable resource for graduate students and researchers in nonlinear optics, condensed matter physics, quantum information and atomic physics. A solid foundation in quantum mechanics and classical electrodynamic...
Navarrete, Alvaro; Paredes, Angel; Salgueiro, José R.; Michinel, Humberto
2017-01-01
We analyze theoretically the Schrödinger-Poisson equation in two transverse dimensions in the presence of a Kerr term. The model describes the nonlinear propagation of optical beams in thermo-optical media and can be regarded as an analog system for a self-gravitating self-interacting wave. We compute numerically the family of radially symmetric ground-state bright stationary solutions for focusing and defocusing local nonlinearity, keeping in both cases a focusing nonlocal nonlinearity. We also analyze excited states and oscillations induced by fixing the temperature at the borders of the material. We provide simulations of soliton interactions, drawing analogies with the dynamics of galactic cores in the scalar field dark-matter scenario.
Leburn, Christopher; Reid, Derryck
2013-01-01
The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrasho...
Nonlinear effects in optical fibers
Ferreira, Mario F
2011-01-01
Cutting-edge coverage of nonlinear phenomena occurring inside optical fibers Nonlinear fiber optics is a specialized part of fiber optics dealing with optical nonlinearities and their applications. As fiber-optic communication systems have become more advanced and complex, the nonlinear effects in optical fibers have increased in importance, as they adversely affect system performance. Paradoxically, the same nonlinear phenomena also offer the promise of addressing the bandwidth bottleneck for signal processing for future ultra-high speed optical networks. Nonlinear Effects in Optical Fiber
Electrifying photonic metamaterials for tunable nonlinear optics.
Kang, Lei; Cui, Yonghao; Lan, Shoufeng; Rodrigues, Sean P; Brongersma, Mark L; Cai, Wenshan
2014-08-11
Metamaterials have not only enabled unprecedented flexibility in producing unconventional optical properties that are not found in nature, they have also provided exciting potential to create customized nonlinear media with high-order properties correlated to linear behaviour. Two particularly compelling directions are active metamaterials, whose optical properties can be purposely tailored by external stimuli in a reversible manner, and nonlinear metamaterials, which enable intensity-dependent frequency conversion of light waves. Here, by exploring the interaction of these two directions, we leverage the electrical and optical functions simultaneously supported in nanostructured metals and demonstrate electrically controlled nonlinear optical processes from a metamaterial. Both second harmonic generation and optical rectification, enhanced by the resonance behaviour in the metamaterial absorber, are modulated externally with applied voltage signals. Our results reveal an opportunity to exploit optical metamaterials as self-contained, dynamic electro-optic systems with intrinsically embedded electrical functions and optical nonlinearities.
Schmidt, Bruno E; Ernotte, Guilmot; Clerici, Matteo; Morandotti, Roberto; Ibrahim, Heide; Legare, Francois
2016-01-01
In the framework of linear optics, light fields do not interact with each other in a medium. Yet, when their field amplitude becomes comparable to the electron binding energies of matter, the nonlinear motion of these electrons emits new dipole radiation whose amplitude, frequency and phase differ from the incoming fields. Such high fields are typically achieved with ultra-short, femtosecond (1fs = 10-15 sec.) laser pulses containing very broad frequency spectra. Here, the matter not only couples incoming and outgoing fields but also causes different spectral components to interact and mix through a convolution process. In this contribution, we describe how frequency domain nonlinear optics overcomes the shortcomings arising from this convolution in conventional time domain nonlinear optics1. We generate light fields with previously inaccessible properties because the uncontrolled coupling of amplitudes and phases is turned off. For example, arbitrary phase functions are transferred linearly to the second har...
All-optical switching in optically induced nonlinear waveguide couplers
Energy Technology Data Exchange (ETDEWEB)
Diebel, Falko, E-mail: falko.diebel@uni-muenster.de; Boguslawski, Martin; Rose, Patrick; Denz, Cornelia [Institut für Angewandte Physik and Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, 48149 Münster (Germany); Leykam, Daniel; Desyatnikov, Anton S. [Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia)
2014-06-30
We experimentally demonstrate all-optical vortex switching in nonlinear coupled waveguide arrays optically induced in photorefractive media. Our technique is based on multiplexing of nondiffracting Bessel beams to induce various types of waveguide configurations. Using double- and quadruple-well potentials, we demonstrate precise control over the coupling strength between waveguides, the linear and nonlinear dynamics and symmetry-breaking bifurcations of guided light, and a power-controlled optical vortex switch.
Fundamentals of nonlinear optics
Powers, Peter E
2011-01-01
Peter Powers's rigorous but simple description of a difficult field keeps the reader's attention throughout. … All chapters contain a list of references and large numbers of practice examples to be worked through. … By carefully working through the proposed problems, students will develop a sound understanding of the fundamental principles and applications. … the book serves perfectly for an introductory-level course for second- and third-order nonlinear optical phenomena. The author's writing style is refreshing and original. I expect that Fundamentals of Nonlinear Optics will fast become pop
Electromagnetic beam propagation in nonlinear media
Institute of Scientific and Technical Information of China (English)
V.V.Semak; M.N.Shneider
2015-01-01
We deduce a complete wave propagation equation that includes inhomogeneity of the dielectric constant and present this propagation equation in compact vector form. Although similar equations are known in narrow fields such as radio wave propagation in the ionosphere and electromagnetic and acoustic wave propagation in stratified media, we develop here a novel approach of using such equations in the modeling of laser beam propagation in nonlinear media. Our approach satisfies the correspondence principle since in the limit of zero-length wavelength it reduces from physical to geometrical optics.
Spiralling solitons and multipole localized modes in nonlocal nonlinear media
DEFF Research Database (Denmark)
Buccoliero, Daniel; Lopez-Aguayo, Servando; Skupin, Stefan
2007-01-01
We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two differe...... models of nonlocal nonlinearity and suggest that the stabilization mechanism is a generic property of a spatial nonlocal nonlinear response independent of its particular functional form.......We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two different...
Nonlinear fibre optics overview
DEFF Research Database (Denmark)
Travers, J. C.; Frosz, Michael Henoch; Dudley, J. M.
2010-01-01
, provides a background to the associated nonlinear optical processes, treats the generation mechanisms from continuous wave to femtosecond pulse pump regimes and highlights the diverse applications. A full discussion of numerical methods and comprehensive computer code are also provided, enabling readers...
Handbook of nonlinear optical crystals
Dmitriev, Valentin G; Nikogosyan, David N
1991-01-01
This Handbook of Nonlinear Optical Crystals provides a complete description of the properties and applications of nonlinear crystals In addition, it presents the most important equations for calculating the main parameters of nonlinear frequency converters This comprehensive reference work will be of great value to all scientists and engineers working in nonlinear optics, quantum electronics and laser physics
Agrawal, Govind
2012-01-01
Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o
Essentials of nonlinear optics
Murti, Y V G S
2014-01-01
Current literature on Nonlinear Optics varies widely in terms of content, style, and coverage of specific topics, relative emphasis of areas and the depth of treatment. While most of these books are excellent resources for the researchers, there is a strong need for books appropriate for presenting the subject at the undergraduate or postgraduate levels in Universities. The need for such a book to serve as a textbook at the level of the bachelors and masters courses was felt by the authors while teaching courses on nonlinear optics to students of both science and engineering during the past two decades. This book has emerged from an attempt to address the requirement of presenting the subject at college level. A one-semester course covering the essentials can effectively be designed based on this.
Self-guiding light in layered nonlinear media
DEFF Research Database (Denmark)
Bergé, L.; Mezentsev, V. K.; Juul Rasmussen, Jens;
2000-01-01
We study the propagation of intense optical beams in layered Kerr media. With appropriate shapes, beams with a power close to the self-focusing threshold are shown to propagate over long distances as quasistationary waveguides in cubic media supporting a periodic nonlinear refractive index. (C...
Remote Atmospheric Nonlinear Optical Magnetometry
2014-04-28
Boyd , Nonlinear Optics (Elsevier, Burlington, MA, 2008). [13] M. Scully and S. Zubairy, Quantum Optics (Cambridge U. Press, Cambridge, UK, 1997...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6703--14-9548 Remote Atmospheric Nonlinear Optical Magnetometry PhilliP SPrangle...b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Remote Atmospheric Nonlinear Optical Magnetometry Phillip Sprangle, Luke
Terahertz Nonlinear Optics in Semiconductors
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.
2013-01-01
We demonstrate the nonlinear optical effects – selfphase modulation and saturable absorption of a single-cycle THz pulse in a semiconductor. Resulting from THz-induced modulation of Drude plasma, these nonlinear optical effects, in particular, lead to self-shortening and nonlinear spectral...
Leslie, Thomas M.
1993-01-01
A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film
Nonlinear Optical Terahertz Technology Project
National Aeronautics and Space Administration — Our approach is based on high-Q optical WGM resonators made with a nonlinear crystal. Such resonators have been demonstrated to dramatically enhance nonlinear...
Scale-invariant nonlinear optics in gases
Heyl, C M; Miranda, M; Louisy, M; Kovacs, K; Tosa, V; Balogh, E; Varjú, K; L'Huillier, A; Couairon, A; Arnold, C L
2015-01-01
Nonlinear optical methods are becoming ubiquitous in many areas of modern photonics. They are, however, often limited to a certain range of input parameters, such as pulse energy and average power, since restrictions arise from, for example, parasitic nonlinear effects, damage problems and geometrical considerations. Here, we show that many nonlinear optics phenomena in gaseous media are scale-invariant if spatial coordinates, gas density and laser pulse energy are scaled appropriately. We develop a general scaling model for (3+1)-dimensional wave equations, demonstrating the invariant scaling of nonlinear pulse propagation in gases. Our model is numerically applied to high-order harmonic generation and filamentation as well as experimentally verified using the example of pulse post-compression via filamentation. Our results provide a simple recipe for up-or downscaling of nonlinear processes in gases with numerous applications in many areas of science.
Focus issue introduction: nonlinear optics.
Boulanger, Benoît; Cundiff, Steven T; Gauthier, Daniel J; Karlsson, Magnus; Lu, Yan-Qing; Norwood, Robert A; Skryabin, Dmitry; Taira, Takunori
2011-11-07
It is now fifty years since the original observation of second harmonic generation ushered in the field of nonlinear optics, close on the heels of the invention of the laser. This feature issue celebrates this anniversary with papers that span the range from new nonlinear optical materials, through the increasingly novel methods that have been developed for phase matching, to emerging areas such as nonlinear metamaterials and plasmonic enhancement of optical properties. It is clear that the next fifty years of nonlinear optics will witness a proliferation of new applications with increasing technological impact.
Applications of nonlinear fiber optics
Agrawal, Govind
2008-01-01
* The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo
Focus issue introduction: nonlinear optics 2013.
Dadap, Jerry I; Karlsson, Magnus; Panoiu, Nicolae C
2013-12-16
Nonlinear Optics has continued to develop over the last few years at an extremely fast pace, with significant advances being reported in nonlinear optical metamaterials, optical signal processing, quantum optics, nonlinear optics at subwavelength scale, and biophotonics. These exciting new developments have generated significant potential for a broad spectrum of technological applications in which nonlinear-optical processes play a central role.
Nonlinear Optics: Principles and Applications
DEFF Research Database (Denmark)
Rottwitt, Karsten; Tidemand-Lichtenberg, Peter
As nonlinear optics further develops as a field of research in electromagnetic wave propagation, its state-of-the-art technologies will continue to strongly impact real-world applications in a variety of fields useful to the practicing scientist and engineer. From basic principles to examples...... of applications, Nonlinear Optics: Principles and Applications effectively bridges physics and mathematics with relevant applied material for real-world use. The book progresses naturally from fundamental aspects to illustrative examples, and presents a strong theoretical foundation that equips the reader...... and matter, this text focuses on the physical understanding of nonlinear optics, and explores optical material response functions in the time and frequency domain....
Field guide to nonlinear optics
Powers, Peter E
2013-01-01
Optomechanics is a field of mechanics that addresses the specific design challenges associated with optical systems. This [i]Field Guide [/i]describes how to mount optical components, as well as how to analyze a given design. It is intended for practicing optical and mechanical engineers whose work requires knowledge in both optics and mechanics. This Field Guide is designed for those looking for a condensed and concise source of key concepts, equations, and techniques for nonlinear optics. Topics covered include technologically important effects, recent developments in nonlinear optics
Nonlinear optics principles and applications
Li, Chunfei
2017-01-01
This book reflects the latest advances in nonlinear optics. Besides the simple, strict mathematical deduction, it also discusses the experimental verification and possible future applications, such as the all-optical switches. It consistently uses the practical unit system throughout. It employs simple physical images, such as "light waves" and "photons" to systematically explain the main principles of nonlinear optical effects. It uses the first-order nonlinear wave equation in frequency domain under the condition of “slowly varying amplitude approximation" and the classical model of the interaction between the light and electric dipole. At the same time, it also uses the rate equations based on the energy-level transition of particle systems excited by photons and the energy and momentum conservation principles to explain the nonlinear optical phenomenon. The book is intended for researchers, engineers and graduate students in the field of the optics, optoelectronics, fiber communication, information tech...
Whittam, A J
2001-01-01
susceptibility from 26 pm/V (same film without octadecanoic acid) to 40 pm/V. This increase in the second-order susceptibility occurred even though the amount of NLO-active dye was effectively diluted by the addition of the inactive octadecanoic acid. The wavelength of the absorption maximum ranged from 346-440 nm and there was direct correlation between the susceptibilities and the transparency of the films at the harmonic wavelength. Hemicyanine dyes were synthesised, with the general formulae: - (a) C sub 1 sub 8 H sub 3 sub 7 -A sup + -[CH=CH-C sub 6 H sub 4] sub x -N(CH sub 3) sub 2 I (b) C sub 1 sub 8 H sub 3 sub 7 -A sup + -[CH=CH] sub y -C sub 6 H sub 4 -N(CH sub 3) sub 2 I where A sup + is a pyridinium or isoquinolinium acceptor, and x = 1 or 2, and y = 1 or 2. The optically nonlinear dyes were investigated via the Langmuir-Blodgett (LB) technique. The dyes all produced isotherm data, with molecular areas of 22-60 A sup 2 per molecule, which are consistent with the cross-sectional areas of the chromo...
Energy Technology Data Exchange (ETDEWEB)
Adams, J
2002-08-09
New crystalline materials were investigated for applications in frequency conversion of near-infrared wavelengths and as gain media for tunable mid-infrared solid-state lasers. GaCa{sub 4}O(BO{sub 3}){sub 3} (GdCOB), YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB), LaCa{sub 4}O(BO{sub 3}){sub 3} (LaCOB), and Gd{sub 0.275}Y{sub 0.725}Ca{sub 4}O(BO{sub 3}){sub 3} were characterized for frequency conversion of 1 {micro}m lasers. For type I doubling at 1064 nm, LaCOB, GdCOB, and YCOB were found to have effective coupling coefficients (d{sub eff}) of 0.52 {+-} 0.05, 0.78 {+-} 0.06, and 1.12 {+-} 0.07 pm/V, respectively. LaCOB was measured to have angular and thermal sensitivities of 1224 {+-} 184 (cm-rad){sup -1} and < 0.10 (cm-{sup o}C){sup -1}, respectively. The effective coupling coefficient for type II noncritically phasematched (NCPM) doubling at 1064 nm in Gd{sub 0.275}Y{sub 0.725}Ca{sub 4}O(BO{sub 3}){sub 3} was measured to be 0.37 {+-} 0.04 pm/V. We predict LaCOB to have a type I NCPM fundamental wavelength of 1042 {+-} 1.5 nm. Due to its low angular and thermal sensitivities for doubling near 1047 nm, LaCOB has potential for frequency doubling of high-average power Nd:LiYF{sub 4} and Yb:Sr{sub 5}(P0{sub 4}){sub 3}F lasers. LaCOB, GdCOB, and YCOB were also investigated for optical parametric oscillator applications and we determined that they may have potential in a Ti:sapphire pumped oscillator. The effective linear electro-optic coefficients (r{sub eff}) were measured along dielectric directions in YCOB and a maximum r{sub eff} of 10.8 pm/V was found. For a crystal with a 5:1 aspect ratio, the corresponding half-wave voltage at 1064 nm would be 19.6 kV. Therefore a Pockels cell composed of two YCOB crystals with 5:1 aspect ratios would have a required half-wave voltage <10 kV. Moderate coupling coefficients (3 x KH{sub 2}PO{sub 4}), low thermal sensitivities, ease of growth to large sizes, non-hygroscopicity, and favorable polishing and coating characteristics make La
Nonlinear optics: the next decade.
Kivshar, Yuri S
2008-12-22
This paper concludes the Focus Serial assembled of invited papers in key areas of nonlinear optics (Editors: J.M. Dudley and R.W. Boyd), and it discusses new directions for future research in this field.
Anderson Localization in Nonlocal Nonlinear Media
Folli, Viola; 10.1364/OL.37.000332
2012-01-01
The effect of focusing and defocusing nonlinearities on Anderson localization in highly nonlocal media is theoretically and numerically investigated. A perturbative approach is developed to solve the nonlocal nonlinear Schroedinger equation in the presence of a random potential, showing that nonlocality stabilizes Anderson states.
Multipole vector solitons in nonlocal nonlinear media.
Kartashov, Yaroslav V; Torner, Lluis; Vysloukh, Victor A; Mihalache, Dumitru
2006-05-15
We show that multipole solitons can be made stable via vectorial coupling in bulk nonlocal nonlinear media. Such vector solitons are composed of mutually incoherent nodeless and multipole components jointly inducing a nonlinear refractive index profile. We found that stabilization of the otherwise highly unstable multipoles occurs below certain maximum energy flow. Such a threshold is determined by the nonlocality degree.
Oscillating solitons in nonlinear optics
Indian Academy of Sciences (India)
Lin Xiao-Gang; Liu Wen-Jun; Lei Ming
2016-03-01
Oscillating solitons are obtained in nonlinear optics. Analytical study of the variable coefficient nonlinear Schrödinger equation, which is used to describe the soliton propagation in those systems, is carried out using the Hirota’s bilinear method. The bilinear forms and analytic soliton solutions are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.
Rotational Doppler effect in nonlinear optics
Li, Guixin; Zentgraf, Thomas; Zhang, Shuang
2016-08-01
The translational Doppler effect of electromagnetic and sound waves has been successfully applied in measurements of the speed and direction of vehicles, astronomical objects and blood flow in human bodies, and for the Global Positioning System. The Doppler effect plays a key role for some important quantum phenomena such as the broadened emission spectra of atoms and has benefited cooling and trapping of atoms with laser light. Despite numerous successful applications of the translational Doppler effect, it fails to measure the rotation frequency of a spinning object when the probing wave propagates along its rotation axis. This constraint was circumvented by deploying the angular momentum of electromagnetic waves--the so-called rotational Doppler effect. Here, we report on the demonstration of rotational Doppler shift in nonlinear optics. The Doppler frequency shift is determined for the second harmonic generation of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry. We find that the second harmonic generation signal with circular polarization opposite to that of the fundamental beam experiences a Doppler shift of three times the rotation frequency of the optical crystal. This demonstration is of fundamental significance in nonlinear optics, as it provides us with insight into the interaction of light with moving media in the nonlinear optical regime.
Nonlinear optics and organic materials
Energy Technology Data Exchange (ETDEWEB)
Shen, Y.R.
1994-07-01
We shall consider an interesting topic relating nonlinear optics and organic materials: how nonlinear optics can be used to study organic materials. One of the main differences between linear and nonlinear responses of a medium to incoming radiation is in their symmetries. It leads to the possibility that some properties of the medium could be more sensitively probed by nonlinear, rather than linear, optical means, or vise versa. A well-known example is that some vibrational modes of a medium could be Raman-active but infrared-inactive, and would be more readily observed by Raman scattering, which is a two-photon transition process. In this paper, we shall discuss, with the help of three examples, how we can use second harmonic generation (SHG) and sum frequency generation (SFG) to obtain unique information about a material. We shall focus on thin films, surfaces, and interfaces.
Nonlinear Optics and Turbulence
1992-10-01
currently at Queen Mary College, London Patrick Dunne, (Ph.D., 1987, M.I.T., Hydrodynamic Stability, Nonlinear Waves), 1987-1988. Alecsander Dyachenko...U I I I U I I 3 9 3 V. BIOGRAPHIES A. FACULTY BRUCE BAYLY, 31, Ph.D. 1986, Princeton University. Postdoctoral visiting member 1986-88 at Courant...Caputo, A. C. Newell, and M. Shelley , "Nonlinear Wave Propagation Through a Random Medium and Soliton Tunneling", Integrable Systems and
Stable helical solitons in optical media
Indian Academy of Sciences (India)
Boris Malomed; G D Peng; P L Chu; Isaac Towers; Alexander V Buryak; Rowland A Sammut
2001-11-01
We present a review of new results which suggest the existence of fully stable spinning solitons (self-supporting localised objects with an internal vorticity) in optical ﬁbres with self-focusing Kerr (cubic) nonlinearity, and in bulk media featuring a combination of the cubic self-defocusing and quadratic nonlinearities. Their distinctive difference from other optical solitons with an internal vorticity, which were recently studied in various optical media, theoretically and also experimentally, is that all the spinning solitons considered thus far have been found to be unstable against azimuthal perturbations. In the ﬁrst part of the paper, we consider solitons in a nonlinear optical ﬁbre in a region of parameters where the ﬁbre carries exactly two distinct modes, viz., the fundamental one and the ﬁrst-order helical mode. From the viewpoint of application to communication systems, this opens the way to doubling the number of channels carried by a ﬁbre. Besides that, these solitons are objects of fundamental interest. To fully examine their stability, it is crucially important to consider collisions between them, and their collisions with fundamental solitons, in (ordinary or hollow) optical ﬁbres. We introduce a system of coupled nonlinear Schrödinger equations for the fundamental and helical modes with nonstandard values of the cross-phase-modulation coupling constants, and show, in analytical and numerical forms, results of collisions between solitons carried by the two modes. In the second part of the paper, we demonstrate that the interaction of the fundamental beam with its second harmonic in bulk media, in the presence of self-defocusing Kerr nonlinearity, gives rise to the ﬁrst ever example of completely stable spatial ring-shaped solitons with intrinsic vorticity. The stability is demonstrated both by direct simulations and by analysis of linearized equations.
New nonlinear optical materials based on ferrofluids
Energy Technology Data Exchange (ETDEWEB)
Huang, J P [Department of Physics, Fudan University, Shanghai 200433 (China); Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Institute of Theoretical Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Yu, K W [Department of Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Institute of Theoretical Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China)
2006-01-01
We exploit theoretically a new class of magneto-controlled nonlinear optical material based on ferrofluids in which ferromagnetic nanoparticles are coated with a nonmagnetic metallic nonlinear shell. Such an optical material can have anisotropic nonlinear optical properties and a giant enhancement of nonlinearity, as well as an attractive figure of merit.
Terahertz semiconductor nonlinear optics
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias
2013-01-01
nonlinearity in doped semiconductors originates from the near-instantaneous heating of free electrons in the ponderomotive potential created by electric field of the THz pulse, leading to ultrafast increase of electron effective mass by intervalley scattering. Modification of effective mass in turn leads...
Nonlinear Optics of Hexaphenyl Nanofibers
DEFF Research Database (Denmark)
Balzer, Frank; Al-Shamery, Katharina; Neuendorf, Rolf
2003-01-01
measurements reveal that the nonlinear optical transition dipole moment is oriented with an angle of 75° with respect to the needles long axes. The absolute value of the macroscopic second-order susceptibility, averaged over a size distribution of p-6P nanoaggregates, is estimated to be of the order of 6...
Solitons in nonlocal nonlinear media: Exact solutions
DEFF Research Database (Denmark)
Krolikowski, Wieslaw; Bang, Ole
2001-01-01
We investigate the propagation of one-dimensional bright and dark spatial solitons in a nonlocal Kerr-like media, in which the nonlocality is of general form. We find an exact analytical solution to the nonlinear propagation equation in the case of weak nonlocality. We study the properties...
Stabilization of vortex beams in Kerr media by nonlinear absorption
Porras, Miguel A.; Carvalho, Márcio; Leblond, Hervé; Malomed, Boris A.
2016-11-01
We elaborate a solution for the problem of stable propagation of transversely localized vortex beams in homogeneous optical media with self-focusing Kerr nonlinearity. Stationary nonlinear Bessel-vortex states are stabilized against azimuthal breakup and collapse by multiphoton absorption, while the respective power loss is offset by the radial influx of the power from an intrinsic reservoir. A linear stability analysis and direct numerical simulations reveal a region of stability of these vortices. Beams with multiple vorticities have their stability regions too. These beams can then form robust tubular filaments in transparent dielectrics as common as air, water, and optical glasses at sufficiently high intensities. We also show that the tubular, rotating, and specklelike filamentation regimes, previously observed in experiments with axicon-generated Bessel beams, can be explained as manifestations of the stability or instability of a specific nonlinear Bessel-vortex state, which is fully identified.
Stabilization of vortex beams in Kerr media by nonlinear absorption
Porras, Miguel A; Leblond, Hervé; Malomed, Boris A
2016-01-01
We elaborate a new solution for the problem of stable propagation of transversely localized vortex beams in homogeneous optical media with self-focusing Kerr nonlinearity. Stationary nonlinear Bessel-vortex states are stabilized against azimuthal breakup and collapse by multiphoton absorption, while the respective power loss is offset by the radial influx of the power from an intrinsic reservoir. A linear stability analysis and direct numerical simulations reveal a region of stability of these vortices. Beams with multiple vorticities have their stability regions too. These beams can then form robust tubular filaments in transparent dielectrics as common as air, water and optical glasses at sufficiently high intensities. We also show that the tubular, rotating and speckle-like filamentation regimes, previously observed in experiments with axicon-generated Bessel beams, can be explained as manifestations of the stability or instability of a specific nonlinear Bessel-vortex state, which is fully identified.
Nonlinear fiber optics formerly quantum electronics
Agrawal, Govind
1995-01-01
The field of nonlinear fiber optics has grown substantially since the First Edition of Nonlinear Fiber Optics, published in 1989. Like the First Edition, this Second Edition is a comprehensive, tutorial, and up-to-date account of nonlinear optical phenomena in fiber optics. It synthesizes widely scattered research material and presents it in an accessible manner for students and researchers already engaged in or wishing to enter the field of nonlinear fiber optics. Particular attention is paid to the importance of nonlinear effects in the design of optical fiber communication systems. This is
Unsymmetrical squaraines for nonlinear optical materials
Marder, Seth R. (Inventor); Chen, Chin-Ti (Inventor); Cheng, Lap-Tak (Inventor)
1996-01-01
Compositions for use in non-linear optical devices. The compositions have first molecular electronic hyperpolarizability (.beta.) either positive or negative in sign and therefore display second order non-linear optical properties when incorporated into non-linear optical devices.
Frequency comb generation in quadratic nonlinear media
Ricciardi, Iolanda; Parisi, Maria; Maddaloni, Pasquale; Santamaria, Luigi; De Natale, Paolo; De Rosa, Maurizio
2014-01-01
Optical frequency combs are nowadays routinely used tools in a wide range of scientific and technological applications. Different techniques have been developed for generating optical frequency combs, like mode-locking in lasers and third-order interactions in microresonators, or to extend their spectral capabilities, using frequency conversion processes in nonlinear materials. Here, we experimentally demonstrate and theoretically explain the onset of optical frequency combs in a simple cavity-enhanced second-harmonic-generation system, exploiting second-order nonlinear interactions. We develop an elemental model which provides a deep physical insight into the observed dynamics. Moreover, despite the different underlying physical mechanism, the proposed model is remarkably similar to the description of third-order effects in microresonators, revealing a potential variety of new effects to be explored. Finally, exploiting a nonlinearity intrinsically stronger than the third-order one, our work lays the groundw...
Energy Technology Data Exchange (ETDEWEB)
Max-Planck-Institut fur Quantenoptik; Goulielmakis, E.; Schultze, M.; Hofstetter, M.; Yakovlev, V. S.; Gagnon, J.; Uiberacker, M.; Aquila, A. L.; gullikson, E. M.; attwood, D. T.; Kienberger, R.; Krausz, F.; Kleineberg, U.
2008-11-05
Nonlinear optics plays a central role in the advancement of optical science and laser-based technologies. We report on the confinement of the nonlinear interaction of light with matter to a single wave cycle and demonstrate its utility for time-resolved and strong-field science. The electric field of 3.3-femtosecond, 0.72-micron laser pulses with a controlled and measured waveform ionizes atoms near the crests of the central wave cycle, with ionization being virtually switched off outside this interval. Isolated sub-100-attosecond pulses of extreme ultraviolet light (photon energy {approx} 80 electron volts), containing {approx} 0.5 nanojoule of energy, emerge from the interaction with a conversion efficiency of {approx} 10{sup -6}. These tools enable the study of the precision control of electron motion with light fields and electron-electron interactions with a resolution approaching the atomic unit of time ({approx} 24 attoseconds).
Quantum Computation with Nonlinear Optics
Liu, Yang; Zhang, Wen-Hong; Zhang, Cun-Lin; Long, Gui-Lu
2008-01-01
We propose a scheme of quantum computation with nonlinear quantum optics. Polarization states of photons are used for qubits. Photons with different frequencies represent different qubits. Single qubit rotation operation is implemented through optical elements like the Faraday polarization rotator. Photons are separated into different optical paths, or merged into a single optical path using dichromatic mirrors. The controlled-NOT gate between two qubits is implemented by the proper combination of parametric up and down conversions. This scheme has the following features: (1) No auxiliary qubits are required in the controlled-NOT gate operation; (2) No measurement is required in the course of the computation; (3) It is resource efficient and conceptually simple.
Quantum Computation with Nonlinear Optics
Institute of Scientific and Technical Information of China (English)
LU Ke; LIU Yang; LIN Zhen-Quan; ZHANG Wen-Hong; SUN Yun-Fei; ZHANG Cun-Lin; LONG Gui-Lu
2008-01-01
We propose a scheme of quantum computation with nonlinear quantum optics. Polarization states of photons are used for qubits. Photons with different frequencies represent different qubits. Single qubit rotation operation is implemented through optical elements like the Faraday polarization rotator. Photons are separated into different optical paths, or merged into a single optical path using dichromatic mirrors. The controlled-NOT gate between two qubits is implemented by the proper combination of parametric up and down conversions. This scheme has the following features: (1) No auxiliary qubits are required in the controlled-NOT gate operation; (2) No measurement is required in the courseof the computation; (3) It is resource efficient and conceptually simple.
Organosilicon Polymeric Nonlinear Optical Materials for Optical Switching and Modulation
1994-02-28
Organosilicon Polymeric Nonlinear Optical Materials for Optical C: F49620-93-C-0039 Switching and Modulation 6. AUTHOR(S) Mr. Sandip K. Sengupta, Dr...D FINAL REPORT for Organosilicon Polymeric Nonlinear Optical Materials for Optical Switching and Modulation Prepared for: USAF, AFMC (AFOSR) Air Force...34Organosilicon Polymeric Nonlinear Optical Materials for Optical Switching and Modulation," contract number F49620-93-C-0039. The work has been performed by Dr
Nonlinear Acoustic Wave Interactions in Layered Media.
1980-03-06
Generated Components in Dispersive Media. . . . . . . . . . . . . 62 4.4 Dispersion in Medium II . . . . . . . . .. 68 V. CONCLUSIONS...give rise to leaky wave modes which are more thoroughly discussed 17 18 by Kapany and Burke, and by Marcuse . Leaky modes are C.C. Ghizoni, J.M...1977), 843-848. 1 7N.S. Kapany and J.J. Burke, Optical Waveeeuides, (New York: Academic Press, 1972), pp. 24-34. D. Marcuse , Theory of Dielectric Optical
Nonlinear optical interactions in silicon waveguides
Kuyken, B.; Leo, F.; Clemmen, S.; Dave, U.; Van Laer, R.; Ideguchi, T.; Zhao, H.; Liu, X.; Safioui, J.; Coen, S.; Gorza, S. P.; Selvaraja, S. K.; Massar, S.; Osgood, R. M.; Verheyen, P.; Van Campenhout, J.; Baets, R.; Green, W. M. J.; Roelkens, G.
2017-03-01
The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator.
Extremely nonlocal optical nonlinearities in atoms trapped near a waveguide
Shahmoon, Ephraim; Stimming, Hans Peter; Mazets, Igor; Kurizki, Gershon
2014-01-01
Nonlinear optical phenomena are typically local. Here we predict the possibility of highly nonlocal optical nonlinearities for light propagating in atomic media trapped near a nano-waveguide, where long-range interactions between the atoms can be tailored. When the atoms are in an electromagnetically-induced transparency configuration, the atomic interactions are translated to long-range interactions between photons and thus to highly nonlocal optical nonlinearities. We derive and analyze the governing nonlinear propagation equation, finding a roton-like excitation spectrum for light and the emergence of long-range order in its output intensity. These predictions open the door to studies of unexplored wave dynamics and many-body physics with highly-nonlocal interactions of optical fields in one dimension.
Graphene - a rather ordinary nonlinear optical material
khurgin, Jacob B
2014-01-01
An analytical expression for the nonlinear refractive index of graphene has been derived and used to obtain the performance metrics of third order nonlinear devices using graphene as a nonlinear medium. None of the metrics is found to be superior to the existing nonlinear optical materials.
Nonlinear optical crystals a complete survey
Nikogosyan, David N
2005-01-01
Nonlinear optical crystals are widely used in modern optical science and technology for frequency conversion of laser light, i.e. to generate laser radiation at any specific wavelength in visible, UV or IR spectral regions. This unrivalled reference book contains the most complete and up-to-date information on properties of nonlinear optical crystals. It includes: * Database of 63 common and novel nonlinear optical crystals * Periodically-poled and self-frequency-doubling materials * Full description of linear and nonlinear optical properties * Significant amount of crystallophysical, thermophysical, spectroscopic, electro-optic and magneto-optic information * 7 mini-reviews on novel applications, such as deep-UV light generation, terahertz-wave generation, ultrashort laser pulse compression, photonic band-gap crystals, x3 nonlinearity, etc. * More than 1500 different references with full titles It is a vital source of information for scientists and engineers dealing with modern applications of nonlinear opti...
Quantum nonlinear optics without photons
Stassi, Roberto; Macrı, Vincenzo; Kockum, Anton Frisk; Di Stefano, Omar; Miranowicz, Adam; Savasta, Salvatore; Nori, Franco
2017-08-01
Spontaneous parametric down-conversion is a well-known process in quantum nonlinear optics in which a photon incident on a nonlinear crystal spontaneously splits into two photons. Here we propose an analogous physical process where one excited atom directly transfers its excitation to a pair of spatially separated atoms with probability approaching 1. The interaction is mediated by the exchange of virtual rather than real photons. This nonlinear atomic process is coherent and reversible, so the pair of excited atoms can transfer the excitation back to the first one: the atomic analog of sum-frequency generation of light. The parameters used to investigate this process correspond to experimentally demonstrated values in ultrastrong circuit quantum electrodynamics. This approach can be extended to realize other nonlinear interatomic processes, such as four-atom mixing, and is an attractive architecture for the realization of quantum devices on a chip. We show that four-qubit mixing can efficiently implement quantum repetition codes and, thus, can be used for error-correction codes.
Modulation instability, solitons and beam propagation in spatially nonlocal nonlinear media
DEFF Research Database (Denmark)
Krolikowski, Wieslaw; Bang, Ole; Nikolov, Nikola Ivanov
2004-01-01
We present an overview of recent advances in the understanding of optical beams in nonlinear media with a spatially nonlocal nonlinear response. We discuss the impact of nonlocality on the modulational instability of plane waves, the collapse of finite-size beams, and the formation and interaction...
Nonlinear Photonics and Novel Optical Phenomena
Morandotti, Roberto
2012-01-01
Nonlinear Photonics and Novel Optical Phenomena contains contributed chapters from leading experts in nonlinear optics and photonics, and provides a comprehensive survey of fundamental concepts as well as hot topics in current research on nonlinear optical waves and related novel phenomena. The book covers self-accelerating airy beams, integrated photonics based on high index doped-silica glass, linear and nonlinear spatial beam dynamics in photonic lattices and waveguide arrays, polariton solitons and localized structures in semiconductor microcavities, terahertz waves, and other novel phenomena in different nanophotonic and optical systems.
Plasma metamaterials as cloaking and nonlinear media
Sakai, O.; Yamaguchi, S.; Bambina, A.; Iwai, A.; Nakamura, Y.; Tamayama, Y.; Miyagi, S.
2017-01-01
Plasma metamaterials, composites of low-temperature plasmas and periodic functional microstructures, work as cloaking and nonlinear media. Due to functions of the microstructures like negative permeability, electromagnetic waves in and around plasma metamaterials propagate in a quite different manner from the case with the conventional space in which relative permeability is positive and unity. Using plasmas and plasma metamaterials, we achieve various controls of microwave propagating paths such as unidirectionality and cloaking in the two- or 3D spaces. For instance, a concentric plasma layer makes wave propagation unidirectional, and waves propagate in different routes when they start inside or outside the concentric layer. Furthermore, due to spatial permittivity gradient and anisotropic refractive index, electromagnetic waves detour in plasma metamaterial layers. Another significant point that plasma metamaterials can realize is nonlinearity. When we study high-power electromagnetic waves propagating in them, we observe several properties describable in terms of nonlinear dynamics and nonlinear photonics. Microwaves beyond threshold energy trigger bifurcations in plasma permittivity, and the second harmonic wave detected simultaneously is generated with strong emission levels. Such electromagnetic wave propagation is achieved with advantages over other materials, since plasmas and metallic microstructures work in harmony and in synergy.
Fibre-optic nonlinear optical microscopy and endoscopy.
Fu, L; Gu, M
2007-06-01
Nonlinear optical microscopy has been an indispensable laboratory tool of high-resolution imaging in thick tissue and live animals. Rapid developments of fibre-optic components in terms of growing functionality and decreasing size provide enormous opportunities for innovations in nonlinear optical microscopy. Fibre-based nonlinear optical endoscopy is the sole instrumentation to permit the cellular imaging within hollow tissue tracts or solid organs that are inaccessible to a conventional optical microscope. This article reviews the current development of fibre-optic nonlinear optical microscopy and endoscopy, which includes crucial technologies for miniaturized nonlinear optical microscopy and their embodiments of endoscopic systems. A particular attention is given to several classes of photonic crystal fibres that have been applied to nonlinear optical microscopy due to their unique properties for ultrashort pulse delivery and signal collection. Furthermore, fibre-optic nonlinear optical imaging systems can be classified into portable microscopes suitable for imaging behaving animals, rigid endoscopes that allow for deep tissue imaging with minimally invasive manners, and flexible endoscopes enabling imaging of internal organs. Fibre-optic nonlinear optical endoscopy is coming of age and a paradigm shift leading to optical microscope tools for early cancer detection and minimally invasive surgery.
Kim, Kihong; Phung, D K; Rotermund, F; Lim, H
2008-01-21
We develop a generalized version of the invariant imbedding method, which allows us to solve the electromagnetic wave equations in arbitrarily inhomogeneous stratified media where both the dielectric permittivity and magnetic permeability depend on the strengths of the electric and magnetic fields, in a numerically accurate and efficient manner. We apply our method to a uniform nonlinear slab and find that in the presence of strong external radiation, an initially uniform medium of positive refractive index can spontaneously change into a highly inhomogeneous medium where regions of positive or negative refractive index as well as metallic regions appear. We also study the wave transmission properties of periodic nonlinear media and the influence of nonlinearity on the mode conversion phenomena in inhomogeneous plasmas. We argue that our theory is very useful in the study of the optical properties of a variety of nonlinear media including nonlinear negative index media fabricated using wires and split-ring resonators.
Beam Combining by Phase Transition Nonlinear Media
1990-02-01
use the Redlich Kwong equation of state for the media we consider. This equation of state can be written RT a p - -b -FT(p.-’ + b)p ; 2-I M (2-1) where...as ac 3 dg-A7 C VA/\\CIIJT (6) The Redlich - Kwong equation of state; i.e., _ RT T-1/2 v-P v(v+P) (7) can be used to compute aP/lT, where the relevant...practical the application of nonlinear phase conjugate techniques to the beam combining of multiple lasers with a coherence characteristic of a
Modulational stability and dark solitons in periodic quadratic nonlinear media
DEFF Research Database (Denmark)
Corney, Joel Frederick; Bang, Ole
2000-01-01
We show that stable dark solitons exist in quadratic nonlinear media with periodic linear and nonlinear susceptibilities. We investigate the modulational stability of plane waves in such systems, a necessary condition for stable dark solitons....
Nonlinear optics quantum computing with circuit QED.
Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M
2013-02-08
One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.
Design of Organic Nonlinear Optical Materials
1990-06-01
This project deals with a new approach to designing organic nonlinear optical materials for second harmonic generation based on the use of hydrogen...patterns for even simple organic molecules. For organic nonlinear optical materials this dilemma means that even the most promising organic molecule may
Rashidian Vaziri, Mohammad Reza
2013-07-10
In this paper, the Z-scan theory for nonlocal nonlinear media has been further developed when nonlinear absorption and nonlinear refraction appear simultaneously. To this end, the nonlinear photoinduced phase shift between the impinging and outgoing Gaussian beams from a nonlocal nonlinear sample has been generalized. It is shown that this kind of phase shift will reduce correctly to its known counterpart for the case of pure refractive nonlinearity. Using this generalized form of phase shift, the basic formulas for closed- and open-aperture beam transmittances in the far field have been provided, and a simple procedure for interpreting the Z-scan results has been proposed. In this procedure, by separately performing open- and closed-aperture Z-scan experiments and using the represented relations for the far-field transmittances, one can measure the nonlinear absorption coefficient and nonlinear index of refraction as well as the order of nonlocality. Theoretically, it is shown that when the absorptive nonlinearity is present in addition to the refractive nonlinearity, the sample nonlocal response can noticeably suppress the peak and enhance the valley of the Z-scan closed-aperture transmittance curves, which is due to the nonlocal action's ability to change the beam transverse dimensions.
Nonlinear optical properties of ultrathin metal layers
DEFF Research Database (Denmark)
Lysenko, Oleg
2016-01-01
. The optical characterization of the plasmonic waveguides is performed using femtosecond and picosecond optical pulses. Two nonlinear optical effects in the strip plasmonic waveguides are experimentally observed and reported. The first effect is the nonlinear power transmission of the plasmonic mode......-order nonlinear susceptibility of the plasmonic mode in the gold strip waveguides significantly depends on the metal layer thickness and laser pulse duration. This dependence is explained in detail in terms of the free-electron temporal dynamics in gold. The third-order nonlinear susceptibility of the gold layer...... duration dependence of the third-order nonlinear susceptibility of gold is calculated in the broad range from tens of femtoseconds to tens of picoseconds using the two-temperature model of the free-electron temporal dynamics of gold, and shows the saturation of the thirdorder nonlinear susceptibility...
Reciprocity breaking during nonlinear propagation of adapted beams through random media.
Palastro, J P; Peñano, J; Nelson, W; DiComo, G; Helle, M; Johnson, L A; Hafizi, B
2016-08-22
Adaptive optics (AO) systems rely on the principle of reciprocity, or symmetry with respect to the interchange of point sources and receivers. These systems use the light received from a low power emitter on or near a target to compensate phase aberrations acquired by a laser beam during linear propagation through random media. If, however, the laser beam propagates nonlinearly, reciprocity is broken, potentially undermining AO correction. Here we examine the consequences of this breakdown, providing the first analysis of AO applied to high peak power laser beams. While discussed for general random and nonlinear media, we consider specific examples of Kerr-nonlinear, turbulent atmosphere.
Reciprocity breaking during nonlinear propagation of adapted beams through random media
Palastro, J P; Nelson, W; DiComo, G; Johnson, L A; Helle, M H; Hafizi, B
2016-01-01
Adaptive optics (AO) systems rely on the principle of reciprocity, or symmetry with respect to the interchange of point sources and receivers. These systems use the light received from a low power emitter on or near a target to compensate profile aberrations acquired by a laser beam during linear propagation through random media. If, however, the laser beam propagates nonlinearly, reciprocity is broken, potentially undermining AO correction. Here we examine the consequences of this breakdown. While discussed for general random and nonlinear media, we consider specific examples of Kerr-nonlinear, turbulent atmosphere.
Metamaterials with tailored nonlinear optical response.
Husu, Hannu; Siikanen, Roope; Mäkitalo, Jouni; Lehtolahti, Joonas; Laukkanen, Janne; Kuittinen, Markku; Kauranen, Martti
2012-02-08
We demonstrate that the second-order nonlinear optical response of noncentrosymmetric metal nanoparticles (metamolecules) can be efficiently controlled by their mutual ordering in an array. Two samples with minor change in ordering have nonlinear responses differing by a factor of up to 50. The results arise from polarization-dependent plasmonic resonances modified by long-range coupling associated with metamolecular ordering. The approach opens new ways for tailoring the nonlinear responses of metamaterials and their tensorial properties.
Model of anisotropic nonlinearity in self-defocusing photorefractive media.
Barsi, C; Fleischer, J W
2015-09-21
We develop a phenomenological model of anisotropy in self-defocusing photorefractive crystals. In addition to an independent term due to nonlinear susceptibility, we introduce a nonlinear, non-separable correction to the spectral diffraction operator. The model successfully describes the crossover between photovoltaic and photorefractive responses and the spatially dispersive shock wave behavior of a nonlinearly spreading Gaussian input beam. It should prove useful for characterizing internal charge dynamics in complex materials and for accurate image reconstruction through nonlinear media.
Nonlinear soliton matching between optical fibers
DEFF Research Database (Denmark)
Agger, Christian; Sørensen, Simon Toft; Thomsen, Carsten L.
2011-01-01
In this Letter, we propose a generic nonlinear coupling coefficient, η2 NL ¼ ηjγ=β2jfiber2=jγ=β2jfiber1, which gives a quantitative measure for the efficiency of nonlinear matching of optical fibers by describing how a fundamental soliton couples from one fiber into another. Specifically, we use η...
Nonlinear surface waves in soft, weakly compressible elastic media.
Zabolotskaya, Evgenia A; Ilinskii, Yurii A; Hamilton, Mark F
2007-04-01
Nonlinear surface waves in soft, weakly compressible elastic media are investigated theoretically, with a focus on propagation in tissue-like media. The model is obtained as a limiting case of the theory developed by Zabolotskaya [J. Acoust. Soc. Am. 91, 2569-2575 (1992)] for nonlinear surface waves in arbitrary isotropic elastic media, and it is consistent with the results obtained by Fu and Devenish [Q. J. Mech. Appl. Math. 49, 65-80 (1996)] for incompressible isotropic elastic media. In particular, the quadratic nonlinearity is found to be independent of the third-order elastic constants of the medium, and it is inversely proportional to the shear modulus. The Gol'dberg number characterizing the degree of waveform distortion due to quadratic nonlinearity is proportional to the square root of the shear modulus and inversely proportional to the shear viscosity. Simulations are presented for propagation in tissue-like media.
Development of Organic Nonlinear Optical Materials
1992-10-22
10 SOVRCE Of FUNO#NG NUM#E*S DM J .j PROGRAM PR0jECT TA5. ~ *0. I1I TITLE &Vila* So.Ivety ClaUMC400NJ Development of Organic NonLinear Optical Materials (U...0102-LF-014-6603 UNCLASSIFIED (U) AFOSR Contract: F4962040-C 0097 FINAL REPORT Development of Organic Nonlinear Optical Materials by J. Sounnk IL
Structure property relationships for the nonlinear optical response of fullerenes
Rustagi, Kailash C.; Ramaniah, Lavanya M.; Nair, Selvakumar V.
1994-11-01
We present a phenomenological theory of nonlinear optical response of fullerenes. An empirical tight-binding model is used in conjunction with a classical electromagnetic picture for the screening. Since in bulk media such a picture of screening corresponds to the self- consistent field approach, the only additional approximation involved in our approach is the neglect of nonlocality. We obtain reliable estimates for the linear and nonlinear susceptibilities of C60, C70, C76 and other pure carbon fullerenes and also substituted fullerenes. The relatively large values of (beta) that we obtain for C76 and substituted fullerenes appear promising for the development of fullerene-based nonlinear optical materials. Our phenomenological picture of screening provides a good understanding of the linear absorption spectra of higher fullerenes and predicts that a comparison of the one-photon and multi-photon spectra will provide an insight into screening effects in these systems.
Completely integrable models of nonlinear optics
Indian Academy of Sciences (India)
Andrey I Maimistov
2001-11-01
The models of the nonlinear optics in which solitons appeared are considered. These models are of paramount importance in studies of nonlinear wave phenomena. The classical examples of phenomena of this kind are the self-focusing, self-induced transparency and parametric interaction of three waves. At present there are a number of theories based on completely integrable systems of equations, which are, both, generations of the original known models and new ones. The modiﬁed Korteweg-de Vries equation, the nonlinear Schrödinger equation, the derivative nonlinear Schrödinger equation, Sine–Gordon equation, the reduced Maxwell–Bloch equation, Hirota equation, the principal chiral ﬁeld equations, and the equations of massive Thirring model are some soliton equations, which are usually to be found in nonlinear optics theory.
Investigation of Optical Fibers for Nonlinear Optics.
1984-04-17
Northwestern University, 1970. Experience Dr. Harrington has 13 years of research experi- ence in the area of optical properties of solids . Since joining...dynamics, and optical properties of solids . 34 34I ANTONIO C. PASTOR, Member of the Technical Staff, Optical Physics Department, Hughes Research
Nonlinear Integrated Optical Waveguides in Chalcogenide Glasses
Institute of Scientific and Technical Information of China (English)
Yinlan; Ruan; Barry; Luther-Davies; Weitang; Li; Andrei; Rode; Marek; Samoc
2003-01-01
This paper reports on the study and measurement of the third order optical nonlinearity in bulk sulfide-based chalcogenide glasses; The fabrication process of the ultrafast laser deposited As-S-(Se)-based chalcogenide films and optical waveguides using two techniques: wet chemistry etching and plasma etching.
Forbidden second order optical nonlinearity of graphene
Cheng, J L; Sipe, J E
2016-01-01
We present a practical scheme to separate the contributions of the electric quadrupole-like and the magnetic dipole-like effects to the forbidden second order optical nonlinear response of graphene, and give analytic expressions for the second order optical conductivities, calculated from the independent particle approximation, with relaxation described in a phenomenological way. We predict strong second order nonlinear effects, including second harmonic generation, photon drag, and difference frequency generation. We discuss in detail the controllablity of these responses by tuning the chemical potential, where the interband optical transitions play a dominant role.
Spinning solitons in cubic-quintic nonlinear media
Indian Academy of Sciences (India)
Lucian-Cornel Crasovan; Boris A Malomed; Dumitru Mihalache
2001-11-01
We review recent theoretical results concerning the existence, stability and unique features of families of bright vortex solitons (doughnuts, or ‘spinning’ solitons) in both conservative and dissipative cubic-quintic nonlinear media.
Nonlinear microstructured polymer optical fibres
DEFF Research Database (Denmark)
Frosz, Michael Henoch
. The combination of a small core size and zero-dispersion wavelength at the operating wavelength of widely available femtosecond Ti:sapphire lasers led to an extensive research in supercontinuum generation and other nonlinear effects in PCFs. It is crucial for the efficiency of many nonlinear mechanisms...... that the pump laser wavelength is close to the zero-dispersion wavelength and that the core size is small. Recently, work in fabricating PCFs from materials other than silica has intensified. One of the advantages of using alternative materials can be a higher inherent material nonlinearity, which...... to accurately obtain a small core size while maintaining small structural variations during fibre drawing. This talk will give a presentation of how the mPOFs are fabricated and the route to obtaining nonlinear effects in them....
Mesoscale Engineering of Nanocomposite Nonlinear Optical Materials
Energy Technology Data Exchange (ETDEWEB)
Afonso, C.N.; Feldman, L.C.; Gonella, F.; Haglund, R.F.; Luepke, G.; Magruder, R.H.; Mazzoldi, P.; Osborne, D.H.; Solis, J.; Zuhr, R.A.
1999-11-01
Complex nonlinear optical materials comprising elemental, compound or alloy quantum dots embedded in appropriate dielectric or semiconducting hosts may be suitable for deployment in photonic devices. Ion implantation, ion exchange followed by ion implantation, and pulsed laser deposition have ail been used to synthesize these materials. However, the correlation between the parameters of energetic-beam synthesis and the nonlinear optical properties is still very rudimentary when one starts to ask what is happening at nanoscale dimensions. Systems integration of complex nonlinear optical materials requires that the mesoscale materials science be well understood within the context of device structures. We discuss the effects of beam energy and energy density on quantum-dot size and spatial distribution, thermal conductivity, quantum-dot composition, crystallinity and defects - and, in turn, on the third-order optical susceptibility of the composite material. Examples from recent work in our laboratories are used to illustrate these effects.
Nonlinear dynamics in atom optics
Energy Technology Data Exchange (ETDEWEB)
Chen Wenyu; Dyrting, S.; Milburn, G.J. [Queensland Univ., St. Lucia, QLD (Australia). Dept. of Physics
1996-12-31
In this paper theoretical work on classical and quantum nonlinear dynamics of cold atoms is reported. The basic concepts in nonlinear dynamics are reviewed and then applied to the motion of atoms in time-dependent standing waves and to the atomic bouncer. The quantum dynamics for the cases of regular and chaotic classical dynamics is described. The effect of spontaneous emission and external noise is also discussed. 104 refs., 1 tab., 21 figs.
Contactless nonlinear optics mediated by long-range Rydberg interactions
Busche, Hannes; Huillery, Paul; Ball, Simon W.; Ilieva, Teodora; Jones, Matthew P. A.; Adams, Charles S.
2017-07-01
In conventional nonlinear optics, linear quantum optics, and cavity quantum electrodynamics to create effective photon-photon interactions photons must have, at one time, interacted with matter inside a common medium. In contrast, in Rydberg quantum optics, optical photons are coherently and reversibly mapped onto collective atomic Rydberg excitations, giving rise to dipole-mediated effective photon-photon interactions that are long range. Consequently, a spatial overlap between the light modes is no longer required. We demonstrate such a contactless coupling between photons stored as collective Rydberg excitations in spatially separate optical media. The potential induced by each photon modifies the retrieval mode of its neighbour, leading to correlations between them. We measure these correlations as a function of interaction strength, distance and storage time, demonstrating an effective interaction between photons separated by 15 times their wavelength. Contactless effective photon-photon interactions are relevant for scalable multichannel photonic devices and the study of strongly correlated many-body dynamics using light.
Nonlinear optics with stationary pulses of light
Andre, A.; Bajcsy, M.; Zibrov, A. S.; Lukin, M. D.
2004-01-01
We show that the recently demonstrated technique for generating stationary pulses of light [Nature {\\bf 426}, 638 (2003)] can be extended to localize optical pulses in all three spatial dimensions in a resonant atomic medium. This method can be used to dramatically enhance the nonlinear interaction between weak optical pulses. In particular, we show that an efficient Kerr-like interaction between two pulses can be implemented as a sequence of several purely linear optical processes. The resul...
Nonlinear optical properties of metal nanoparticle composites for optical applications
Energy Technology Data Exchange (ETDEWEB)
Takeda, Y. E-mail: takeda.yoshihiko@nims.go.jp; Kishimoto, N
2003-05-01
Optical absorption and nonlinear optical response were investigated for nanoparticle composites in amorphous SiO{sub 2} fabricated by negative Ta ion implantation at 60 keV. X-ray photoelectron spectroscopy was used to identify Ta and the oxide formation in the matrix. Optical absorption clearly indicated a surface plasmon peak at 2.2 eV and the peak resulted from formation of nanoparticles embedded in the matrix. The measured absorption was compared with calculated ones, evaluated by Maxwell-Garnett theory. Nonlinear absorption was measured with a pump-probe method using a femtosecond laser system. The pumping laser transiently bleached the surface plasmon band and lead to the nonlinearity. The transient response recovered in several picoseconds and behaved in terms of electron dynamics in metallic nanoparticles. The Ta nanoparticle composite is one of the promising candidates for nonlinear optical materials with good thermal stability.
Optical rogue waves and soliton turbulence in nonlinear fibre optics
DEFF Research Database (Denmark)
Genty, G.; Dudley, J. M.; de Sterke, C. M.
2009-01-01
We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required.......We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required....
Nonlinear optical properties of semiconductor nanocrystals
Ricard, Gianpiero Banfi Vittorio Degiorgio Daniel
1998-05-01
This review is devoted to the description of recent experimental results concerning the nonlinear optical properties of semiconductor-doped glasses SDGs with particular emphasis on the regime in which the energy of the incident photon is smaller than the energy gap. A considerable theoretical and experimental effort has been devoted in the last 10years to the fundamental aspects of quantumconfined structures, which have properties somewhat intermediate between the bulk crystals and atoms or molecules. From this point of view, SDGs represent an easily available test system, and optical techniques have been a major diagnostic tool. Luminescence and absorption spectroscopy were extensively used to characterize the electronic states. The experiments aimed at the measurement of the real and imaginary parts of the third-order optical susceptibility of SDGs below the bandgap are described in some detail, and the results obtained with different techniques are compared. Besides the intrinsic fast nonlinearity due to bound electrons, SDGs may present a larger but much slower nonlinearity due to the free carriers generated by two-photon absorption. This implies that experiments have to be properly designed for separation of the two effects. In this article we stress the importance of a detailed structural characterization of the samples. Knowledge of the volume fraction occupied by the nanocrystals is necessary in order to derive from the experimental data the intrinsic nonlinearity and to compare it with the bulk nonlinearity. We discuss recent experiments in which the dependence of the intrinsic nonlinearity on the crystal size is derived by performing, on the samples, measurements of the real part and imaginary part of the nonlinear optical susceptibility and measurements of crystal size and volume fraction. Structural characterization is of interest also for a better understanding of the physical processes underlying the growth of crystallites in SDGs. The average size of
Anomalous interaction of nonlocal solitons in media with competing nonlinearities
DEFF Research Database (Denmark)
Esbensen, B. K.; Bache, Morten; Bang, Ole
2012-01-01
We theoretically investigate properties of individual bright spatial solitons and their interaction in nonlocal media with competing focusing and defocusing nonlinearities. We consider the general case with both nonlinear responses characterized by different strengths and degrees of nonlocality. We...... and interaction of solitons using numerical simulations of the full model of beam propagation. The numerical simulations fully confirm our analytical results....
Nonlinear optical model for strip plasmonic waveguides
DEFF Research Database (Denmark)
Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei
2016-01-01
This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core...... significantly depends on the layer thickness and has the dominant contribution to the effective third-order susceptibility of the long-range plasmon polariton mode. This results in two nonlinear optical effects in plasmonic waveguides, which we experimentally observed and reported in [Opt. Lett. 41, 317 (2016......)]. The first effect is the nonlinear power saturation of the plasmonic mode, and the second effect is the spectral broadening of the plasmonic mode. Both nonlinear plasmonic effects can be used for practical applications and their appropriate model will be important for further developments in communication...
Transition between self-focusing and self-defocusing in nonlocally nonlinear media
Liang, Guo; Hu, Yahong; Wang, Jing; Wang, Zhuo; Li, Yingbing; Guo, Qi; Hu, Wei; Lou, Senyue; Christodoulides, Demetrios N
2015-01-01
We reveal the relevance between the nonlocality and the focusing/defocusing states in nonlocally nonlinear media, and predict a novel phenomenon that the self-focusing/self-defocusing property of the optical beam in the nonlocally nonlinear medium with a sine-oscillation response function depends on its degree of nonlocality. The transition from the focusing nonlinearity to the defocusing nonlinearity of the nonlinear refractive index will happen when the degree of nonlocality of the system goes cross a critical value, and vise verse. Bright and dark soliton solutions are obtained, respectively, in the focusing state and in the defocusing state, and their stabilities are also discussed. It is mentioned that such a phenomenon might be experimentally realized in the nematic liquid crystal with negative dielectric anisotropy or in the quadratic nonlinear medium.
Stable One-Dimensional Periodic Wave in Kerr-Type and Quadratic Nonlinear Media
Directory of Open Access Journals (Sweden)
Roxana Savastru
2012-01-01
Full Text Available We present the propagation of optical beams and the properties of one-dimensional (1D spatial solitons (“bright” and “dark” in saturated Kerr-type and quadratic nonlinear media. Special attention is paid to the recent advances of the theory of soliton stability. We show that the stabilization of bright periodic waves occurs above a certain threshold power level and the dark periodic waves can be destabilized by the saturation of the nonlinear response, while the dark quadratic waves turn out to be metastable in the broad range of material parameters. The propagation of (1+1 a dimension-optical field on saturated Kerr media using nonlinear Schrödinger equations is described. A model for the envelope one-dimensional evolution equation is built up using the Laplace transform.
Gurbatov, S N; Saichev, A I
2012-01-01
"Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is...
Tunable nanowire nonlinear optical probe
Energy Technology Data Exchange (ETDEWEB)
Nakayama, Yuri; Pauzauskie, Peter J.; Radenovic, Aleksandra; Onorato, Robert M.; Saykally, Richard J.; Liphardt, Jan; Yang, Peidong
2008-02-18
One crucial challenge for subwavelength optics has been thedevelopment of a tunable source of coherent laser radiation for use inthe physical, information, and biological sciences that is stable at roomtemperature and physiological conditions. Current advanced near-fieldimaging techniques using fiber-optic scattering probes1,2 have alreadyachieved spatial resolution down to the 20-nm range. Recently reportedfar-field approaches for optical microscopy, including stimulatedemission depletion (STED)3, structured illumination4, and photoactivatedlocalization microscopy (PALM)5, have also enabled impressive,theoretically-unlimited spatial resolution of fluorescent biomolecularcomplexes. Previous work with laser tweezers6-8 has suggested the promiseof using optical traps to create novel spatial probes and sensors.Inorganic nanowires have diameters substantially below the wavelength ofvisible light and have unique electronic and optical properties9,10 thatmake them prime candidates for subwavelength laser and imagingtechnology. Here we report the development of an electrode-free,continuously-tunable coherent visible light source compatible withphysiological environments, from individual potassium niobate (KNbO3)nanowires. These wires exhibit efficient second harmonic generation(SHG), and act as frequency converters, allowing the local synthesis of awide range of colors via sum and difference frequency generation (SFG,DFG). We use this tunable nanometric light source to implement a novelform of subwavelength microscopy, in which an infrared (IR) laser is usedto optically trap and scan a nanowire over a sample, suggesting a widerange of potential applications in physics, chemistry, materials science,and biology.
Nonlinear Optical Parameters of Magnetoactive Semiconductor-Plasmas
Singh, M.; Joseph, D.; Duhan, S.
The nonlinear optical parameters (absorption coefficient and refractive index) of semiconductor-plasmas subjected to a transverse magnetic field have been investigated analytically. By employing the coupled-mode scheme, an expression of third-order optical susceptibility and resultant nonlinear absorption and refractive index of the medium are obtained. The analysis has been applied to both cases, viz., centrosymmetric (β = 0) and noncentrosymmetric (β ≠ 0) in the presence of magnetic field. The numerical estimates are made for InSb crystal at liquid nitrogen temperature duly irradiated by a 10-nanosecond pulsed 10.6 μm CO2 laser. The influence of doping concentration and magnetic field on both the nonlinear absorption and refractive index has been explored, and the results are found to be well in agreement with theory and experiment. Analysis further establishes that absorption coefficient and refractive index can be controlled with precision in semiconductors by the proper selection of doping concentration and an external magnetic field, and hence these media may be used for fabrication of fast cubic nonlinear optical devices under off-resonant transition regime.
Towards multimodal nonlinear optical tomography - experimental methodology
Vogler, N.; Medyukhina, A.; Latka, I.; Kemper, S.; Böhm, M.; Dietzek, B.; Popp, J.
2011-08-01
All-optical microspectroscopic and tomographic tools reveal great potential for clinical dermatologic diagnostics, i.e., investigation of human skin and skin diseases. While optical-coherence tomography has been complemented by two-photon fluorescence tomography and second-harmonic generation tomography, a joint study of various nonlinear optical microspectroscopies, i.e., application of the recently developed multimodal imaging approach, to sizable human-tissue samples has not been evaluated up to now. Here, we present such multimodal approach combining different nonlinear optical contrast mechanisms for imaging, namely two-photon excited fluorescence (TPF), second-harmonic generation (SHG), and coherent anti-Stokes Raman scattering (CARS) into a joint microscopic experiment. We show the potential of imaging large skin areas and discuss the information obtained in a case study comparing normal skin and keloid tissue.
Quantum nonlinear optics: nonlinear optics meets the quantum world (Conference Presentation)
Boyd, Robert W.
2016-02-01
This presentation first reviews the historical development of the field of nonlinear optics, starting from its inception in 1961. It then reviews some of its more recent developments, including especially how nonlinear optics has become a crucial tool for the developing field of quantum technologies. Fundamental quantum processes enabled by nonlinear optics, such as the creation of squeezed and entangled light states, are reviewed. We then illustrate these concepts by means of specific applications, such as the development of secure communication systems based on the quantum states of light.
Recent Issues on Nonlinear Effects in Optical Fibers
Institute of Scientific and Technical Information of China (English)
Takashi; Inoue; Osamu; Aso; Shu; Namiki
2003-01-01
This talk will discuss the types of optical signal degradation due to fiber nonlinearity and review recently invented fibers for suppressing the effects. It also introduces efficiency of highly nonlinear fibers and their applications to nonlinear signal processing.
Optical and nonlinear optical properties of orthorhombic BiB3O6
Cherepakhin, A. V.; Zaitsev, A. I.; Aleksandrovsky, A. S.; Zamkov, A. V.
2012-03-01
Dispersion of refraction coefficients of orthorhombic BiB3O6 in the wavelength range between 435.8 and 1060 nm is studied, nonlinear optical coefficients are determined, and phase matching angles, angular and spectral bandwidths for second harmonic generation processes are calculated. δ-BiBO may be suitable for doubling of lasers with a wavelength in the 1.3 μm region as well as the matrix for self-doubling lasing media.
Nonlinear microstructured polymer optical fibres
DEFF Research Database (Denmark)
Frosz, Michael Henoch
is potentially the case for microstructured polymer optical fibres (mPOFs). Another advantage is that polymer materials have a higher biocompatibility than silica, meaning that it is easier to bond certain types of biosensor materials to a polymer surface than to silica. As with silica PCFs, it is difficult...
Localized Turing patterns in nonlinear optical cavities
Kozyreff, G.
2012-05-01
The subcritical Turing instability is studied in two classes of models for laser-driven nonlinear optical cavities. In the first class of models, the nonlinearity is purely absorptive, with arbitrary intensity-dependent losses. In the second class, the refractive index is real and is an arbitrary function of the intracavity intensity. Through a weakly nonlinear analysis, a Ginzburg-Landau equation with quintic nonlinearity is derived. Thus, the Maxwell curve, which marks the existence of localized patterns in parameter space, is determined. In the particular case of the Lugiato-Lefever model, the analysis is continued to seventh order, yielding a refined formula for the Maxwell curve and the theoretical curve is compared with recent numerical simulation by Gomila et al. [D. Gomila, A. Scroggie, W. Firth, Bifurcation structure of dissipative solitons, Physica D 227 (2007) 70-77.
Min, Changjun; Wang, Pei; Chen, Chunchong; Deng, Yan; Lu, Yonghua; Ming, Hai; Ning, Tingyin; Zhou, Yueliang; Yang, Guozhen
2008-04-15
All-optical switching based on a subwavelength metallic grating structure containing nonlinear optical materials has been proposed and numerically investigated. Metal-dielectric composite material is used in the switching for its larger third-order nonlinear susceptibility (approximately 10(-7)esu) and ultrafast response properties. The calculated dependence of the signal light intensity on the pump light intensity shows a bistable behavior, which results in a significant switch effect. It rests on a surface plasmon's enhanced intensity-dependent change of the effective dielectric constant of Kerr nonlinear media, corresponding to a transition of the far-field transmission from a low- to high-transmission state. The study of this switching structure shows great advantages of smaller size, lower requirement of pump light intensity, and shorter switching time at approximately the picosecond level.
Infiltrated microstructured fibers as tunable and nonlinear optical devices
DEFF Research Database (Denmark)
Rosberg, Christian Romer; Bennet, Francis; Neshev, Dragomir N.;
We study the light guiding properties of microstructured optical fibers infiltrated with nonlinear liquids and demonstrate their applicability for spatial beam control in novel type tunable and nonlinear optical devices....
Laser and nonlinear optical materials: SPIE volume 681
Energy Technology Data Exchange (ETDEWEB)
De Shazer, L.G.
1987-01-01
This book contains papers arranged under the following session headings: Nonlinear optical crystals; Laser host crystals; Electro-optic and magneto-optic materials; and Characterization of optical materials.
Nonlinear compression of optical solitons
Indian Academy of Sciences (India)
M N Vinoj; V C Kuriakose
2001-11-01
In this paper, we consider nonlinear Schrödinger (NLS) equations, both in the anomalous and normal dispersive regimes, which govern the propagation of a single ﬁeld in a ﬁber medium with phase modulation and ﬁbre gain (or loss). The integrability conditions are arrived from linear eigen value problem. The variable transformations which connect the integrable form of modiﬁed NLS equations are presented. We succeed in Hirota bilinearzing the equations and on solving, exact bright and dark soliton solutions are obtained. From the results, we show that the soliton is alive, i.e. pulse area can be conserved by the inclusion of gain (or loss) and phase modulation effects.
Yashkir, O. V.; Yashkir, Yu N.
1987-11-01
An investigation is made of nonlinear optical interaction of light propagating in a planar waveguide with surface polaritons. Reduced wave equations for the amplitudes of the waveguide modes and surface polaritons are used to study the characteristics of generation of surface polaritons of difference frequency, parametric frequency up-conversion of the polaritons, and stimulated Raman scattering by the polaritons. An analysis is made of the characteristic properties of the investigated nonlinear optical processes.
FILAMENTATION INSTABILITY OF LASER BEAMS IN NONLOCAL NONLINEAR MEDIA
Institute of Scientific and Technical Information of China (English)
文双春; 范滇元
2001-01-01
The filamentation instability of laser beams propagating in nonlocal nonlinear media is investigated. It is shown that the filamentation instability can occur in weakly nonlocal self-focusing media for any degree of nonlocality, and in defocusing media for the input light intensity exceeding a threshold related to the degree of nonlocality. A linear stability analysis is used to predict the initial growth rate of the instability. It is found that the nonlocality tends to suppress filamentation instability in self-focusing media and to stimulate filamentation instability in self-defocusing media. Numerical simulations confirm the results of the linear stability analysis and disclose a recurrence phenomenon in nonlocal self-focusing media analogous to the Fermi-Pasta-Ulam problem.
Anisotropic and nonlinear optical waveguides
Someda, CG
1992-01-01
Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an
Energy Technology Data Exchange (ETDEWEB)
Picozzi, A., E-mail: Antonio.Picozzi@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, Université de Bourgogne, CNRS-UMR 5027, Dijon (France); Garnier, J. [Laboratoire de Probabilités et Modèles Aléatoires and Laboratoire Jacques-Louis Lions, Université Paris VII, 75205 Paris Cedex 13 (France); Hansson, T. [Department of Information Engineering, Università di Brescia, Brescia 25123 (Italy); Suret, P.; Randoux, S. [Laboratoire de Physique des Lasers, Atomes et Molécules, CNRS, Université de Lille (France); Millot, G. [Laboratoire Interdisciplinaire Carnot de Bourgogne, Université de Bourgogne, CNRS-UMR 5027, Dijon (France); Christodoulides, D.N. [College of Optics/CREOL, University of Central Florida, Orlando, FL 32816 (United States)
2014-09-01
is constrained by the causality condition of the response function. The spatio-temporal domain will be considered in the limit of an inertial nonlinearity. We review different theories developed to describe bright and dark spatial incoherent solitons experimentally observed in slowly responding nonlinear media: The coherent density method, the mutual coherence function approach, the modal theory and the Wigner–Moyal formulation. When the incoherent wave exhibits homogeneous fluctuations, the relevant kinetic equation is the wave turbulence (Hasselmann) equation. It describes wave condensation and the underlying irreversible process of thermalization to thermodynamic equilibrium, as well as genuine nonequilibrium turbulent regimes. In this way different remarkable phenomena associated to wave thermalization are reviewed, e.g., wave condensation or supercontinuum generation in photonic crystal fibers, as well as different mechanisms of breakdown of thermalization. Finally, recent developments aimed at providing a wave turbulence formulation of Raman fiber lasers and passive optical cavities are reviewed in relation with condensation-like phenomena.
Ring vortex solitons in nonlocal nonlinear media
DEFF Research Database (Denmark)
Briedis, D.; Petersen, D.E.; Edmundson, D.;
2005-01-01
or higher charge fundamental vortices as well as higher order (multiple ring) vortex solitons. Our results pave the way for experimental observation of stable vortex rings in other nonlocal nonlinear systems including Bose-Einstein condensates with pronounced long-range interparticle interaction....
Extreme nonlinear optics and laser damage
Maldutis, Evaldas
2010-11-01
The study of laser induced damage threshold caused by series of identical laser pulses (LID-T-N) on gamma radiation resistant glasses and their analogs is performed applying know-how ultra stable laser radiation. The presented results and analysis of earlier received results show that nonlinear optical phenomena in extreme conditions of interaction are different from the traditional nonlinear optical processes, because they depend not only on intensity of electromagnetic field of laser radiation, but also on the pulse number in series of identical laser pulses. This range of laser intensities is not wide; it is different for each material and determines the range of Extreme Nonlinear Optics. The dependence of LID-T-N on pulse number N for different kinds of high quality transparent glasses was observed. The study of dynamics of these processes (i.e. the study of dependence on N) at different intensities in series of incident laser pulses provides new information about properties of the materials useful for studying laser damage fundamentals and their application. The expectation that gamma radiation resistant glasses could give useful information for technology of resistant optics for high power lasers has not proved. The received results well correspond with the earlier proposed model of laser damage.
Rigorous theory of molecular orientational nonlinear optics
Directory of Open Access Journals (Sweden)
Chong Hoon Kwak
2015-01-01
Full Text Available Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A 68, 905 (1955] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1 the derivation of rigorous tensorial components of the effective molecular hyperpolarizabilities, (2 the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect, optical Kerr effect (OKE, dc electric field induced second harmonic generation (EFISH, degenerate four wave mixing (DFWM and third harmonic generation (THG. We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR, Pockels effect and difference frequency generation (DFG are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR, dc electric field induced difference frequency generation (EFIDFG and pump-probe transmission are presented.
Generalized Optical Theorem Detection in Random and Complex Media
Tu, Jing
The problem of detecting changes of a medium or environment based on active, transmit-plus-receive wave sensor data is at the heart of many important applications including radar, surveillance, remote sensing, nondestructive testing, and cancer detection. This is a challenging problem because both the change or target and the surrounding background medium are in general unknown and can be quite complex. This Ph.D. dissertation presents a new wave physics-based approach for the detection of targets or changes in rather arbitrary backgrounds. The proposed methodology is rooted on a fundamental result of wave theory called the optical theorem, which gives real physical energy meaning to the statistics used for detection. This dissertation is composed of two main parts. The first part significantly expands the theory and understanding of the optical theorem for arbitrary probing fields and arbitrary media including nonreciprocal media, active media, as well as time-varying and nonlinear scatterers. The proposed formalism addresses both scalar and full vector electromagnetic fields. The second contribution of this dissertation is the application of the optical theorem to change detection with particular emphasis on random, complex, and active media, including single frequency probing fields and broadband probing fields. The first part of this work focuses on the generalization of the existing theoretical repertoire and interpretation of the scalar and electromagnetic optical theorem. Several fundamental generalizations of the optical theorem are developed. A new theory is developed for the optical theorem for scalar fields in nonhomogeneous media which can be bounded or unbounded. The bounded media context is essential for applications such as intrusion detection and surveillance in enclosed environments such as indoor facilities, caves, tunnels, as well as for nondestructive testing and communication systems based on wave-guiding structures. The developed scalar
Optical chirality in gyrotropic media: symmetry approach
Proskurin, Igor; Ovchinnikov, Alexander S.; Nosov, Pavel; Kishine, Jun-ichiro
2017-06-01
We discuss optical chirality in different types of gyrotropic media. Our analysis is based on the formalism of nongeometric symmetries of Maxwell’s equations in vacuum generalized to material media with given constituent relations. This approach enables us to directly derive conservation laws related to nongeometric symmetries. For isotropic chiral media, we demonstrate that like a free electromagnetic field, both duality and helicity generators belong to the basis set of nongeometric symmetries that guarantees the conservation of optical chirality. In gyrotropic crystals, which exhibit natural optical activity, the situation is quite different from the case of isotropic media. For light propagating along a certain crystallographic direction, there arises two distinct cases: (1) the duality is broken but the helicity is preserved, or (2) only the duality symmetry survives. We show that the existence of one of these symmetries (duality or helicity) is enough to define optical chirality. In addition, we present examples of low-symmetry media, where optical chirality cannot be defined.
Plasmonic optical trapping in biologically relevant media.
Directory of Open Access Journals (Sweden)
Brian J Roxworthy
Full Text Available We present plasmonic optical trapping of micron-sized particles in biologically relevant buffer media with varying ionic strength. The media consist of 3 cell-growth solutions and 2 buffers and are specifically chosen due to their widespread use and applicability to breast-cancer and angiogenesis studies. High-precision rheological measurements on the buffer media reveal that, in all cases excluding the 8.0 pH Stain medium, the fluids exhibit Newtonian behavior, thereby enabling straightforward measurements of optical trap stiffness from power-spectral particle displacement data. Using stiffness as a trapping performance metric, we find that for all media under consideration the plasmonic nanotweezers generate optical forces 3-4x a conventional optical trap. Further, plasmonic trap stiffness values are comparable to those of an identical water-only system, indicating that the performance of a plasmonic nanotweezer is not degraded by the biological media. These results pave the way for future biological applications utilizing plasmonic optical traps.
Nonlinear Mixing in Optical Multicarrier Systems
Hameed, Mahmood Abdul
Although optical fiber has a vast spectral bandwidth, efficient use of this bandwidth is still important in order to meet the ever increased capacity demand of optical networks. In addition to wavelength division multiplexing, it is possible to partition multiple low-rate subcarriers into each high speed wavelength channel. Multicarrier systems not only ensure efficient use of optical and electrical components, but also tolerate transmission impairments. The purpose of this research is to understand the impact of mixing among subcarriers in Radio-Over-Fiber (RoF) and high speed optical transmission systems, and experimentally demonstrate techniques to minimize this impact. We also analyze impact of clipping and quantization on multicarrier signals and compare bandwidth efficiency of two popular multiplexing techniques, namely, orthogonal frequency division multiplexing (OFDM) and Nyquist modulation. For an OFDM-RoF system, we present a novel technique that minimizes the RF domain signal-signal beat interference (SSBI), relaxes the phase noise limit on the RF carrier, realizes the full potential of optical heterodyne-based RF carrier generation, and increases the performance-to-cost ratio of RoF systems. We demonstrate a RoF network that shares the same RF carrier for both downlink and uplink, avoiding the need of an additional RF oscillator in the customer unit. For multi-carrier optical transmission, we first experimentally compare performance degradations of coherent optical OFDM and single-carrier Nyquist pulse modulated systems in a nonlinear environment. We then experimentally evaluate SSBI compensation techniques in the presence of semiconductor optical amplifier (SOA) induced nonlinearities for a multicarrier optical system with direct detection. We show that SSBI contamination can be significantly reduced from the data signal when the carrier-to-signal power ratio is sufficiently low.
Quantum Information Processing using Nonlinear Optical Effects
DEFF Research Database (Denmark)
Andersen, Lasse Mejling
of the converted idler depends on the other pump. This allows for temporal-mode-multiplexing. When the effects of nonlinear phase modulation (NPM) are included, the phases of the natural input and output modes are changed, reducing the separability. These effects are to some degree mediated by pre......This PhD thesis treats applications of nonlinear optical effects for quantum information processing. The two main applications are four-wave mixing in the form of Bragg scattering (BS) for quantum-state-preserving frequency conversion, and sum-frequency generation (SFG) in second-order nonlinear...... to obtain a 100 % conversion efficiency is to use multiple stages of frequency conversion, but this setup suffers from the combined effects of NPM. This problem is circumvented by using asymmetrically pumped BS, where one pump is continuous wave. For this setup, NPM is found to only lead to linear phase...
Optically nonlinear Langmuir Blodgett films
Amiri, M A
2003-01-01
A series of novel amphiphilic molecules plus a new class of chevron-shaped materials, without aliphatic tails, were designed, synthesised and non-centrosymmetrically aligned by the Langmuir-Blodgett technique. Their LB films exhibited optical second-harmonic generation (SHG). The chevron-shaped molecules have a central cationic acceptor and two pi-bridged donor groups with an angle of ca. 120 deg between the charge-transfer axes of the D-pi-(A sup +)-pi-D unit. A monolayer LB film of a representative example, 1-butyl-2,6-bis[2- (4-dibutylaminophenyl)vinyl]pyridinium iodide, has an effective susceptibility, chi sup ( sup 2 sup ) sub e sub f sub f , of 120 pm V sup - sup 1 at 1064 nm, a thickness of 1.16 nm and an area in contact with the substrate of 0.91 nm sup 2 molecule sup - sup 1. The second-harmonic intensity (1.6 x 10 sup - sup 4 versus quartz) is similar to those of the extensively studied conventional amphiphilic hemicyanines but as a result of non-centrosymmetric alignment, without the need for long ...
Time-reversed wave mixing in nonlinear optics.
Zheng, Yuanlin; Ren, Huaijin; Wan, Wenjie; Chen, Xianfeng
2013-11-19
Time-reversal symmetry is important to optics. Optical processes can run in a forward or backward direction through time when such symmetry is preserved. In linear optics, a time-reversed process of laser emission can enable total absorption of coherent light fields inside an optical cavity of loss by time-reversing the original gain medium. Nonlinearity, however, can often destroy such symmetry in nonlinear optics, making it difficult to study time-reversal symmetry with nonlinear optical wave mixings. Here we demonstrate time-reversed wave mixings for optical second harmonic generation (SHG) and optical parametric amplification (OPA) by exploring this well-known but underappreciated symmetry in nonlinear optics. This allows us to observe the annihilation of coherent beams. Our study offers new avenues for flexible control in nonlinear optics and has potential applications in efficient wavelength conversion, all-optical computing.
Making of a nonlinear optical cavity
Martínez-Lorente, R; Esteban-Martín, A; García-Monreal, J; Roldán, E; Silva, F
2016-01-01
In the article we explain in detail how to build a photorefractive oscillator (PRO), which is a laser-pumped nonlinear optical cavity containing a photorefractive crystal. The specific PRO whose construction we describe systematically, is based on a Fabry-Perot optical cavity working in a non-degenerate four wave-mixing configuration. This particular PRO has the property that the generated beam exhibits laser-like phase invariance and, as an application, we show how a suitably modulated injected beam converts the output field from phase-invariant into phase-bistable. While the emphasis is made on the making of the experimental device and on the way measurements are implemented, some introduction to the photorefractive effect as well as to the necessary concepts of nonlinear dynamics are also given, so that the article is reasonably self-contained.
Impact of nonlinearities on fiber optic communications
2011-01-01
This book covers the recent progress in fiber-optic communication systems with a main focus on the impact of fiber nonlinearities on system performance. There has been significant progress in coherent communication systems in the past few years due to the advances in digital signal processing techniques. This has led to renewed interest in fiber linear and nonlinear impairments as well as techniques to mitigate them in the electrical domain. In this book, the reader will find all the important topics of fiber optic communication systems in one place, with in-depth coverage by the experts of each sub-topic. Pioneers from each of the sub-topics have been invited to contribute. Each chapter will have a section on fundamentals as well as reviews of literature and of recent developments. Readers will benefit from this approach since many of the conference proceedings and journal articles mainly focus on the authors’ research, without spending space on preliminaries.
Nonlinear optics of astaxanthin thin films
Esser, A.; Fisch, Herbert; Haas, Karl-Heinz; Haedicke, E.; Paust, J.; Schrof, Wolfgang; Ticktin, Anton
1993-02-01
Carotinoids exhibit large nonlinear optical properties due to their extended (pi) -electron system. Compared to other polyenes which show a broad distribution of conjugation lengths, carotinoids exhibit a well defined molecular structure, i.e. a well defined conjugation length. Therefore the carotinoid molecules can serve as model compounds to study the relationship between structure and nonlinear optical properties. In this paper the synthesis of four astaxanthins with C-numbers ranging from 30 to 60, their preparation into thin films, wavelength dispersive Third Harmonic Generation (THG) measurements and some molecular modelling calculations will be presented. Resonant (chi) (3) values reach 1.2(DOT)10-10 esu for C60 astaxanthin. In the nonresonant regime a figure of merit (chi) (3)/(alpha) of several 10-13 esu-cm is demonstrated.
Nonlinear optical studies of organic monolayers
Energy Technology Data Exchange (ETDEWEB)
Shen, Y.R.
1988-02-01
Second-order nonlinear optical effects are forbidden in a medium with inversion symmetry, but are necessarily allowed at a surface where the inversion summary is broken. They are often sufficiently strong so that a submonolayer perturbation of the surface can be readily detected. They can therefore be used as effective tools to study monolayers adsorbed at various interfaces. We discuss here a number of recent experiments in which optical second harmonic generation (SHG) and sum-frequency generation (SFG) are employed to probe and characterize organic monolayers. 15 refs., 5 figs.
Controlling nonlinear waves in excitable media
Energy Technology Data Exchange (ETDEWEB)
Puebla, Hector [Departamento de Energia, Universidad Autonoma Metropolitana, Av. San Pablo No. 180, Reynosa-Tamaulipas, Azcapotzalco 02200, DF, Mexico (Mexico)], E-mail: hpuebla@correo.azc.uam.mx; Martin, Roland [Laboratoire de Modelisation et d' Imagerie en Geosciences, CNRS UMR and INRIA Futurs Magique-3D, Universite de Pau (France); Alvarez-Ramirez, Jose [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa (Mexico); Aguilar-Lopez, Ricardo [Departamento de Biotecnologia y Bioingenieria, CINVESTAV-IPN (Mexico)
2009-01-30
A new feedback control method is proposed to control the spatio-temporal dynamics in excitable media. Applying suitable external forcing to the system's slow variable, successful suppression and control of propagating pulses as well as spiral waves can be obtained. The proposed controller is composed by an observer to infer uncertain terms such as diffusive transport and kinetic rates, and an inverse-dynamics feedback function. Numerical simulations shown the effectiveness of the proposed feedback control approach.
Topological nature of nonlinear optical effects in solids
Morimoto, Takahiro; Nagaosa, Naoto
2015-01-01
There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by the strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by the nonlinear suscepti...
Enhanced optical nonlinearities in air-cladding silicon pedestal waveguides
Zhang, Yaojing; Yao, Yifei; Tsang, Hon Ki
2016-01-01
The third-order optical nonlinearity in optical waveguides has found applications in optical switching, optical wavelength conversion, optical frequency comb generation, and ultrafast optical signal processing. The development of an integrated waveguide platform with a high nonlinearity is therefore important for nonlinear integrated photonics. Here, we report the observation of an enhancement in the nonlinearity of an air-cladding silicon pedestal waveguide. We observe enhanced nonlinear spectral broadening compared to a conventional silicon-on-insulator waveguide. At the center wavelength of 1555 nm, the nonlinear-index coefficient of air-cladding silicon pedestal waveguide is measured to be about 5% larger than that of a conventional silicon-on-insulator waveguide. We observe enhanced spectral broadening from self-phase modulation of an optical pulse in the pedestal waveguide. The interaction of light with the confined acoustic phonons in the pedestal structure gives rise to a larger nonlinear-index coeffi...
Nonlinear inversion schemes for fluorescence optical tomography.
Freiberger, Manuel; Egger, Herbert; Scharfetter, Hermann
2010-11-01
Fluorescence optical tomography is a non-invasive imaging modality that employs the absorption and re-emission of light by fluorescent dyes. The aim is to reconstruct the fluorophore distribution in a body from measurements of light intensities at the boundary. Due to the diffusive nature of light propagation in tissue, fluorescence tomography is a nonlinear and severely ill-posed problem, and some sort of regularization is required for a stable solution. In this paper we investigate reconstruction methods based on Tikhonov regularization with nonlinear penalty terms, namely total-variation regularization and a levelset-type method using a nonlinear parameterization of the unknown function. Moreover, we use the full threedimensional nonlinear forward model, which arises from the governing system of partial differential equations. We discuss the numerical realization of the regularization schemes by Newtontype iterations, present some details of the discretization by finite element methods, and outline the efficient implementation of sensitivity systems via adjoint methods. As we will demonstrate in numerical tests, the proposed nonlinear methods provide better reconstructions than standard methods based on linearized forward models and linear penalty terms. We will additionally illustrate, that the careful discretization of the methods derived on the continuous level allows to obtain reliable, mesh independent reconstruction algorithms.
Study On Nonlinear effect In 2D Plastic Media
Wenjie, D.; Chen, X.
2011-12-01
Unlike the perfect elastic, homogeneous and isotropic model, the properties of real earth media are heterogeneous, plastic and anisotropic to a certain extend. To accurately simulate the strong ground motion in a basin, nonlinear or plastic effect should be considered in simulation. In this study, we use DRP/opt MacCormack non-staggered finite difference method to simulate 2D seismic wave propagation in anisotropic and plastic media. Compared with the traditional staggered grid FDM, this scheme is more accurate and more efficient. We focus on the nonlinear character of the sedimentary basin model. The preliminary ground motion results indicate that the energy of seismic wave has obvious nonlinear dissipation and irreversible deformations which is danger to buildings in the sedimentary basin.
Spontaneous natural optical activity in disordered media
Pinheiro, F A; Papasimakis, N; Zheludev, N I
2016-01-01
We demonstrate natural optical activity in disordered ensembles of non-chiral plasmonic resonators. We show that the statistical distributions of rotatory power and spatial dichroism are strongly dependent on the scattering mean free path in diffusive random media. This result is explained in terms of the intrinsic geometric chirality of disordered media, as they lack mirror symmetry. We argue that chirality and natural optical activity of disordered systems can be quantified by the standard deviation of both rotatory power and spatial dichroism. Our results are based on microscopic electromagnetic wave transport theory coupled to vectorial Green's matrix method for pointlike scatterers, and are independently confirmed by full-wave simulations.
Nonlinear property of slightly compressible media permeated with air-filled bubbles
Institute of Scientific and Technical Information of China (English)
Bo QIN
2009-01-01
Based on the nonlinear oscillation of an air- filled bubble in weakly compressible media at prestressed state, the effective medium method is used to study the nonlinear property of the slightly compressible media permeated with air bubbles. It is this nonlinear oscilla- tion of air bubbles that results in the nonlinear property of the porous media. Numerical results have confirmed that the nonlinearity of the porous media is usually high, though the optimal porosity is very small. Moreover, the nonlinear property is greatly affected by the prestressed state, porosity, and shear modulus of the matrix media.
Third-Order Nonlinear Optical Susceptibility of Indium Phosphide Nanocrystals
Institute of Scientific and Technical Information of China (English)
WANG Hong-Li; WANG Dong; CHEN Guang-De; LIU Hui
2007-01-01
InP nanocrystals synthesized by refluxing and annealing of organic solvent are determined from XRD measurements to have an average granularity of 25 nm. The nonlinear optical properties of the InP nanocrystals studied by using laser Z-scan technique with 50ps pulses at 532nm are found to reveal strong nonlinear optical properties and two-photon absorption phenomenon. Also, the nonlinear absorption coefficient, the nonlinear refractive index and the third-order nonlinear optical susceptibility are determined by experiments, in which the nonlinear refractive index is three orders of magnitude larger than that of bulk InP.
DSP Approach to the Design of Nonlinear Optical Devices
Directory of Open Access Journals (Sweden)
Steve Blair
2005-06-01
Full Text Available Discrete-time signal processing (DSP tools have been used to analyze numerous optical filter configurations in order to optimize their linear response. In this paper, we propose a DSP approach to design nonlinear optical devices by treating the desired nonlinear response in the weak perturbation limit as a discrete-time filter. Optimized discrete-time filters can be designed and then mapped onto a specific optical architecture to obtain the desired nonlinear response. This approach is systematic and intuitive for the design of nonlinear optical devices. We demonstrate this approach by designing autoregressive (AR and autoregressive moving average (ARMA lattice filters to obtain a nonlinear phase shift response.
Gauge Field Optics with Anisotropic Media
Liu, Fu
2014-01-01
By considering gauge transformations on the macroscopic Maxwell's equations, a two dimensional gauge field, with its pseudo magnetic field in the real space, is identified as tilted anisotropy in the constitutive parameters. We show that optical spin Hall effect and one-way edge states become possible simply by using anisotropic media with broadband response. The proposed gauge field also allows us to design an optical isolator based on the Aharonov-Bohm effect. Our approach will be useful in spoof magneto-optics with arbitrary magnetic fields mimicked by metamaterials with subwavelength unit cells. It also serves as a generic way to design polarization-dependent devices.
Progress in nonlinear nano-optics
Lienau, Christoph; Grunwald, Rüdiger
2015-01-01
This book presents the state of the art in nonlinear nanostructures for ultrafast laser applications. Most recent results in two emerging fields are presented: (i) generation of laser-induced nanostructures in materials like metals, metal oxides and semiconductors, and (ii) ultrafast excitation and energy transfer in nanoscale physical, chemical and hybrid systems. Particular emphasis is laid on the up-to-date controversially discussed mechanisms of sub-wavelength ripple formation including models of self-organized material transport and multiphoton excitation channels, nonlinear optics of plasmonic structures (nanotips, nanowires, 3D-metamaterials), and energy localization and transport on ultrafast time scale and spatial nanoscale. High-resolution spectroscopy, simulation and characterization techniques are reported. New applications of ultrashort-pulsed lasers for materials processing and the use of nanostructured materials for characterizing laser fields and laser-matter-interactions are discussed.
Bacteriorhodopsin: Tunable Optical Nonlinear Magnetic Response
Bovino, F A; Sibilia, C; Giardina, M; Váró, G; Gergely, C
2011-01-01
We report on a strong and tunable magnetic optical nonlinear response of Bacteriorhodopsin (BR) under "off resonance" femtosecond (fs) pulse excitation, by detecting the polarization map of the noncollinear second harmonic signal of an oriented BR film, as a function of the input beam power. BR is a light-driven proton pump with a unique photochemistry initiated by the all trans retinal chromophore embedded in the protein. An elegant application of this photonic molecular machine has been recently found in the new area of optogenetics, where genetic expression of BR in brain cells conferred a light responsivity to the cells enabling thus specific stimulation of neurons. The observed strong tunable magnetic nonlinear response of BR might trigger promising applications in the emerging area of pairing optogenetics and functional magnetic resonance imaging susceptible to provide an unprecedented complete functional mapping of neural circuits.
Nonlinear optical properties of induced transmission filters.
Owens, Daniel T; Fuentes-Hernandez, Canek; Hales, Joel M; Perry, Joseph W; Kippelen, Bernard
2010-08-30
The nonlinear optical (NLO) properties of induced transmission filters (ITFs) based on Ag are experimentally determined using white light continuum pump-probe measurements. The experimental results are supported using simulations based on the matrix transfer method. The magnitude of the NLO response is shown to be 30 times that of an isolated Ag film of comparable thickness. The impacts of design variations on the linear and NLO response are simulated. It is shown that the design can be modified to enhance the NLO response of an ITF by a factor of 2 or more over a perfectly matched ITF structure.
Nonlinear Optics in AlGaAs on Insulator
DEFF Research Database (Denmark)
Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta;
2016-01-01
AlGaAs on insulator is a powerful nonlinear platform sporting a high effective nonlinearity and the possibility to fabricate complex designs. We will present low loss waveguides enabling efficient optical signal processing and Kerr comb generation.......AlGaAs on insulator is a powerful nonlinear platform sporting a high effective nonlinearity and the possibility to fabricate complex designs. We will present low loss waveguides enabling efficient optical signal processing and Kerr comb generation....
Stability Analysis of Continuous Waves in Nonlocal Random Nonlinear Media
Directory of Open Access Journals (Sweden)
Maxim A. Molchan
2007-08-01
Full Text Available On the basis of the competing cubic-quintic nonlinearity model, stability (instability of continuous waves in nonlocal random non-Kerr nonlinear media is studied analytically and numerically. Fluctuating media parameters are modeled by the Gaussian white noise. It is shown that for different response functions of a medium nonlocality suppresses, as a rule, both the growth rate peak and bandwidth of instability caused by random parameters. At the same time, for a special form of the response functions there can be an ''anomalous'' subjection of nonlocality to the instability development which leads to further increase of the growth rate. Along with the second-order moments of the modulational amplitude, higher-order moments are taken into account.
Rogue and shock waves in nonlinear dispersive media
Resitori, Stefania; Baronio, Fabio
2016-01-01
This self-contained set of lectures addresses a gap in the literature by providing a systematic link between the theoretical foundations of the subject matter and cutting-edge applications in both geophysical fluid dynamics and nonlinear optics. Rogue and shock waves are phenomena that may occur in the propagation of waves in any nonlinear dispersive medium. Accordingly, they have been observed in disparate settings – as ocean waves, in nonlinear optics, in Bose-Einstein condensates, and in plasmas. Rogue and dispersive shock waves are both characterized by the development of extremes: for the former, the wave amplitude becomes unusually large, while for the latter, gradients reach extreme values. Both aspects strongly influence the statistical properties of the wave propagation and are thus considered together here in terms of their underlying theoretical treatment. This book offers a self-contained graduate-level text intended as both an introduction and reference guide for a new generation of scientists ...
Stability conditions for one-dimensional optical solitons in cubic-quintic-septimal media
Reyna, Albert S; de Araujo, Cid B
2015-01-01
Conditions for stable propagation of one-dimensional bright spatial solitons in media exhibiting optical nonlinearities up to the seventh-order are investigated. The results show well-defined stability regions even when all the nonlinear terms are focusing. Conditions for onset of the supercritical collapse of the optical beam are identified too. A variational approximation is used to predict dependence of the soliton propagation constant on the norm, and respective stability regions are identified using the Vakhitov-Kolokolov criterion. Analytical results obtained by means of the variational approximation are corroborated by numerical simulations of the cubic-quintic-septimal nonlinear Schroedinger equation.
Kramers-Kronig relations and sum rules in nonlinear optical spectroscopy.
Peiponen, Kai-Erik; Lucarini, Valerio; Saarinen, Jarkko J; Vartiainen, Erik
2004-05-01
The full potential of the Kramers-Kronig relations and sum rules for nonlinear susceptibilities has unfortunately drawn relatively little attention in nonlinear optical spectra analysis. In this feature article a simple treatment of an anharmonic oscillator model in description of the nonlinear susceptibility of media and holomorphic properties of the nonlinear susceptibility were utilized. Using such concepts, conventional Kramers-Kronig, multiply-subtractive Kramers-Kronig, and generalized Kramers-Kronig dispersion relations can be derived. We demonstrate how in practice the variety of different Kramers-Kronig relations mentioned above, as well as various sum rules, can be applied in nonlinear optical spectra analysis. As an example we treat the third-harmonic wave generation spectrum from a polymer.
Enhanced Kerr electro-optic nonlinearity through cascaded Pockels effects
Li, Guang-Zhen; Jiang, Hao-Wei; Chen, Xian-Feng
2015-01-01
We demonstrated a large enhancement of Kerr electro-optic nonlinearity through cascaded Pockels effects in a domain inversion ferroelectric crystal. We designed a structure that can implement the cascaded Pockels effects and second-harmonic generation simultaneously. The energy coupling between the fundamental lights of different polarizations led to a large nonlinear phase shift, and thus an effective electro-optic nonlinear refractive index. The effective nonlinearity can be either positive or negative, causing the second-harmonic spectra to move towards the coupling center, which in turn, offered us a way to measure the effective electro-optic nonlinear refractive index. The corresponding enhanced Kerr electro-optic nonlinearity is more than three orders of magnitude higher than the intrinsic value. These results open a door to manipulate the nonlinear phase by applying external electric field instead of light intensity in noncentrosymmetric crystals.
Quantum optics in multiple scattering random media
DEFF Research Database (Denmark)
Lodahl, Peter
Quantum Optics in Multiple Scattering Random Media Peter Lodahl Research Center COM, Technical University of Denmark, Dk-2800 Lyngby, Denmark. Coherent transport of light in a disordered random medium has attracted enormous attention both from a fundamental and application point of view. Coherent...... quantum optics in multiple scattering media and novel fundamental phenomena have been predicted when examining quantum fluctuations instead of merely the intensity of the light [1]. Here I will present the first experimental study of the propagation of quantum noise through an elastic, multiple scattering...... medium [2]. Two different types of quantum noise measurements have been carried out: total transmission and short-range frequency correlations. When comparing shot noise (quantum) to technical noise (classical) we observed markedly different behavior, c.f. Fig. 1. The experimental results are found...
Ciattoni, Alessandro
2014-01-01
Strong nonlinear optical mechanisms operating in a miniaturized environment have a key role in photonics since they allow complex and versatile light manipulation within subwavelength devices. On the other hand, due to its two-dimensional planar geometry, graphene can easily be embedded within miniaturized structures and has fascinating linear and nonlinear optical properties arising from its relativistic electron dynamics. However, very few light steering graphene-based setups with a strong nonlinear behavior have been proposed since, due to its intrinsic planar localization, graphene nonlinearity has to be exploited through novel schemes not available in standard bulk nonlinear optics. Here we show that an active cavity hosting a graphene sheet, when tuned near its lasing threshold, is able to isolate the spatially localized graphene nonlinearity thus producing a very strong nonlinear device response with multi-valued features. The proposed strategy for exploiting graphene nonlinearity through its baring co...
Nonlinear optical microscopy improvement by focal-point axial modulation
Dashtabi, Mahdi Mozdoor; Massudi, Reza
2016-05-01
Among the most important challenges of microscopy-even more important than the resolution enhancement, especially in biological and neuroscience applications-is noninvasive and label-free imaging deeper into live scattering samples. However, the fundamental limitation on imaging depth is the signal-to-background ratio in scattering biological tissues. Here, using a vibrating microscope objective in conjunction with a lock-in amplifier, we demonstrate the background cancellation in imaging the samples surrounded by turbid and scattering media, which leads to more clear images deeper into the samples. Furthermore, this technique offers the localization and resolution enhancement as well as resolves ambiguities in signal interpretation, using a single-color laser. This technique is applicable to most nonlinear as well as some linear point-scanning optical microscopies.
Integrated optic devices based on nonlinear optical polymers
van Tomme, Emmanuel; van Daele, Peter P.; Baets, Roel G.; Lagasse, Paul E.
1991-03-01
An examination is made of the state of the art of nonlinear optical polymeric materials in view of their potential advantages. It is shown that these organic materials have many attractive features compared to LiNbO3 and III-V semiconductors with regard to their use in integrated optic circuits, especially since the level of integration is ever increasing. Considering more specifically electro-optic devices, a description is given of some of the theoretical background and basic properties. These polymers have already demonstrated a very high and extremely fast electro-optic effect compared to LiNbO3. It is also shown how low-loss waveguides can be fabricated by using easy techniques such as direct UV bleaching. The performance of phase modulators, Mach-Zehnder interferometers, and 2 x 2 space switches built with such polymers is already very promising. The results described in this study indicate a rapid rate of progress made by this technology, and one can expect that polymers in general and NLO polymers in particular will play an increasingly important role in integrated optics.
Time-dependent evolution of an optical vortex in photorefractive media
DEFF Research Database (Denmark)
Mamaev, A.V.; Saffman, M.; Zozulya, A.A.
1997-01-01
We study the transient decay and rotation of a singly charged optical vortex in media with a photorefractive nonlinearity under conditions where the light intensity is high compared to the saturation intensity. Transient decay of an initially circular vortex is characterized by charge...
Large nonlocal nonlinear optical response of castor oil
Souza, Rogério F.; Alencar, Márcio A. R. C.; Meneghetti, Mario R.; Hickmann, Jandir M.
2009-09-01
The nonlocal nonlinearity of castor oil was investigated using the Z-scan technique in the CW regime at 514 nm and in femtosecond regime at 810 nm. Large negative nonlinear refractive indexes of thermal origin, thermo-optical coefficients and degree of nonlocality were obtained for both laser excitation wavelengths. The results indicate that the electronic part of the nonlinear refractive index and nonlinear absorption were negligible. Our results suggest that castor oil is promising candidate as a nonlinear medium for several nonlocal optical applications, such as in spatial soliton propagation, as well as a dispersant agent in the measurement of absorptive properties of nanoparticles.
Optical bistability in nonlinear composites with coated ellipsoidal nanoparticles
Pinchuk, A
2003-01-01
Nonlinear composite structures show great promise for use in optical switching, signal processing, etc. We derive an effective nonlinear dielectric permittivity of composite structures where coated ellipsoidal nonlinear particles are imbedded in a linear host medium. The derived expression for the effective dielectric permittivity tensor follows the Clasius-Mossotti approximation. We observe conditions for the existence of the optical bistability effect in a coated ellipsoidal particle with a nonlinear core and a metallic shell. Our numerical results show stronger bistability effects in more dense suspensions of nonlinear heterogeneous ellipsoids.
Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators.
Heebner, John E; Lepeshkin, Nick N; Schweinsberg, Aaron; Wicks, G W; Boyd, Robert W; Grover, Rohit; Ho, P T
2004-04-01
We have constructed and characterized several optical microring resonators with scale sizes of the order of 10 microm. These devices are intended to serve as building blocks for engineerable linear and nonlinear photonic media. Light is guided vertically by an epitaxially grown structure and transversely by deeply etched air-clad sidewalls. We report on the spectral phase transfer characteristics of such resonators. We also report the observation of a pi-rad Kerr nonlinear phase shift accumulated in a single compact ring resonator evidenced by all-optical switching between output ports of a resonator-enhanced Mach-Zehnder interferometer.
Composite structures for the enhancement of nonlinear optical materials.
Neeves, A E; Birnboim, M H
1988-12-01
Calculations of the nonlinear optical behavior are developed for model composites consisting of nanospheres with a metallic core and a nonlinear shell suspended in a nonlinear medium. The concept for the enhancement of optical phase conjugation from all these nonlinear regions is that the optical field can be concentrated both inside and in the neighborhood of the metallic core, aided by surface-mediated plasmon resonance. Calculations for gold cores and aluminum cores indicate that phase-conjugate reflectivity enhancements of 10(8) may be possible.
Characterizaticr of Solid State Laser and Nonlinear Optical Materials.
1995-02-02
materials useful in the different methods for obtaining frequency agility: narrow line emitters with multiple lasing channels and nonlinear optical materials . In...codoped with two or more rare earth ions were studied and computers models developed to explain their spectral dynamics. The nonlinear optical materials investigated
A Photonic Basis for Deriving Nonlinear Optical Response
Andrews, David L.; Bradshaw, David S.
2009-01-01
Nonlinear optics is generally first presented as an extension of conventional optics. Typically the subject is introduced with reference to a classical oscillatory electric polarization, accommodating correction terms that become significant at high intensities. The material parameters that quantify the extent of the nonlinear response are cast as…
Nonlinear refractive index of optical crystals
Adair, Robert; Chase, L. L.; Payne, Stephen A.
1989-02-01
The nonlinear refractive indices (n2) of a large number of optical crystals have been measured at a wavelength near one micrometer with use of nearly degenerate three-wave mixing. The measurements are compared with the predictions of an empirical formula derived by Boling, Glass, and Owyoung. This formula, which relates n2 to the linear refractive index and its dispersion, is shown to be accurate to within about 30% for materials with nonlinear indices ranging over 3 orders of magnitude. Measurements for a number of binary oxide and fluoride crystals have been analyzed under the assumption that the hyperpolarizability of the anion is much larger than that of the cation. It is found that the hyperpolarizability of oxygen varies by a factor of 10, and that of fluorine varies by a factor of 7, depending on the size of the coordinating cation. This behavior is similar to that of the linear polarizability, although the hyperpolarizability is much more sensitive than the linear polarizability to the identity of the cation. The measured halide ion hyperpolarizabilities for several alkali-halide crystals are in reasonable agreement with recent self-consistent calculations. A semiempirical model was proposed by Wilson and Curtis to account for the dependence of the linear anionic polarizability on the radius of the cation. This model also accounts quite well for the variation of the hyperpolarizability of both fluorine and oxygen, except for cation partners that have filled or unfilled d-electron shells. The nonlinear indices of a number of complex oxides (i.e., those with more than one cation) have been calculated from the partial hyperpolarizabilities deduced from the data for the binary oxides. The calculated and measured values of n2 agree to within an average error of 13%.
High nonlinear optical anisotropy of urea nanofibers
Isakov, D.; de Matos Gomes, E.; Belsley, M.; Almeida, B.; Martins, A.; Neves, N.; Reis, R.
2010-07-01
Nanofibers consisting of the optically nonlinear organic molecule urea embedded in both poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA) polymers were produced by the electrospinning technique. The second-harmonic generation produced by aligned fiber mats of these materials displays a strong dependence on the polarization of the incident light. In PVA-urea nanofibers the effectiveness in generating of the second-harmonic light is as high as that of a pure urea powder with an average grain size of 110 μm. The results suggest that single crystalline urea nanofibers were achieved with a long-range crystalline order extending into the range of 2-4 μm with PVA as the host polymer.
Extreme nonlinearities in InAs/InP nanowire gain media: the two-photon induced laser
DEFF Research Database (Denmark)
Capua, Amir; Kami, Ouri; Eisenstein, Gadi;
2012-01-01
We demonstrate a novel laser oscillation scheme in an InAs / InP wire-like quantum dash gain medium. A short optical pulse excites carriers by two photon absorption which relax to the energy levels providing gain thereby enabling laser oscillations. The nonlinear dynamic interaction is analyzed...... and quantified using multi-color pump-probe measurements and shows a highly efficient nonlinear two photon excitation process which is larger by more than an order of magnitude compared to common quantum well and bulk gain media. The dynamic response of the nonlinearly induced laser line is characterized...
Optical bistability in a nonlinear-shell-coated metallic nanoparticle
Chen, Hongli; Zhang, Youming; Zhang, Baile; Gao, Lei
2016-01-01
We provide a self-consistent mean field approximation in the framework of Mie scattering theory to study the optical bistability of a metallic nanoparticle coated with a nonlinear shell. We demonstrate that the nanoparticle coated with a weakly nonlinear shell exhibits optical bistability in a broad range of incident optical intensity. This optical bistability critically relies on the geometry of the shell-coated nanoparticle, especially the fractional volume of the metallic core. The incident wavelength can also affect the optical bistability. Through an optimization-like process, we find a design with broader bistable region and lower threshold field by adjusting the size of the nonlinear shell, the fractional volume of the metallic core, and the incident wavelength. These results may find potential applications in optical bistable devices such as all-optical switches, optical transistors and optical memories. PMID:26907967
Adaptive control of the propagation of ultrafast light through random and nonlinear media
Moores, Mark David
2001-12-01
Ultrafast light sources generate coherent pulses with durations of less than one picosecond, and represent the next generation of illuminators for medical imaging and optical communications applications. Such sources are already widely used experimentally. Correction of temporal widths or pulse envelopes after traversal of optically non-ideal materials is critical for the delivery of optimal ultrashort pulses. It is important to investigate the physical mechanisms that distort pulses and to develop and implement methods for minimizing these effects. In this work, we investigate methods for characterizing and manipulating pulse propagation dynamics in random (scattering) and nonlinear optical media. In particular, we use pulse shaping to manipulate the light field of ultrashort infrared pulses. Application of spectral phase by a liquid crystal spatial light modulator is used to control the temporal pulse shape. The applied phase is controlled by a genetic algorithm that adaptively responds to the feedback from previous phase profiles. Experiments are detailed that address related aspects of the character of ultrafast pulses-the short timescales and necessarily wide frequency bandwidths. Material dispersion is by definition frequency dependent. Passage through an inhomogeneous system of randomly situated boundaries (scatterers) causes additional distortion of ballistic pulses due to multiple reflections. The reflected rays accumulate phase shifts that depend on the separation of the reflecting boundaries and the photon frequency. Ultrafast bandwidths present a wide range of frequencies for dispersion and interaction with macroscopic dielectric structure. The shaper and adaptive learning algorithm are used to reduce these effects, lessening the impact of the scattering medium on propagating pulses. The timescale of ultrashort pulses results in peak intensities that interact with the electronic structure of optical materials to induce polarization that is no longer
Controlled opacity in a class of nonlinear dielectric media
Bittencourt, Eduardo; De Lorenci, Vitorio A; Klippert, Renato
2016-01-01
Motivated by new technologies on designing and tailoring metamaterials, we seek for properties of certain classes of nonlinear optical materials that allow room for a reversibly controlled opacityto-transparency phase transition through the application of external electromagnetic fields. We examine some mathematically simple models for the dielectric parameters of the medium, and compute the relevant geometric quantities that describe the speed and polarization of light rays.
Controlled opacity in a class of nonlinear dielectric media
Bittencourt, E.; Camargo, G. H. S.; De Lorenci, V. A.; Klippert, R.
2017-03-01
Motivated by new technologies for designing and tailoring metamaterials, we seek properties for certain classes of nonlinear optical materials that allow room for a reversibly controlled opacity-to-transparency phase transition through the application of external electromagnetic fields. We examine some mathematically simple models for the dielectric parameters of the medium and compute the relevant geometric quantities that describe the speed and polarization of light rays.
Nonlinear Optical Properties of a MMA-Silica Nanohybrid Material Doped with Rhodamine 6G
Directory of Open Access Journals (Sweden)
J. Lima-Gutiérrez
2013-01-01
Full Text Available A novel nanohybrid material based on MMA-Silica has been synthesized with an organic dye dopant (R6G to tailor the optical properties. This novel material can be used on several devices such as active laser media for an organic solid state laser, OLEDs, or as a characterization media for new organic dye molecules. Thin films were deposited by dip-coating and characterized by absorption and reflection UV-VIS, photoluminescence, SEM, and Z-scan technique to verify their nonlinear behavior. R6G dye dopant has been used to verify that the nanohybrid matrix does not inhibit its optical properties.
Laser And Nonlinear Optical Materials For Laser Remote Sensing
Barnes, Norman P.
2005-01-01
NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.
Bidirectional all-optical switches based on highly nonlinear optical fibers
Liu, Wenjun; Yang, Chunyu; Liu, Mengli; Yu, Weitian; Zhang, Yujia; Lei, Ming; Wei, Zhiyi
2017-05-01
All-optical switches have become one of the research focuses of nonlinear optics due to their fast switching speed. They have been applied in such fields as ultrafast optics, all-optical communication and all-optical networks. In this paper, based on symbolic computation, bidirectional all-optical switches are presented using analytic two-soliton solutions. Various types of soliton interactions are analyzed through choosing the different parameters of high-order dispersion and nonlinearity. Results indicate that bidirectional all-optical switches can be effectively achieved using highly nonlinear optical fibers.
Optical limiter based on two-dimensional nonlinear photonic crystals
Belabbas, Amirouche; Lazoul, Mohamed
2016-04-01
The aim behind this work is to investigate the capabilities of nonlinear photonic crystals to achieve ultra-fast optical limiters based on third order nonlinear effects. The purpose is to combine the actions of nonlinear effects with the properties of photonic crystals in order to activate the photonic band according to the magnitude of the nonlinear effects, themselves a function of incident laser power. We are interested in designing an optical limiter based nonlinear photonic crystal operating around 1064 nm and its second harmonic at 532 nm. Indeed, a very powerful solid-state laser that can blind or destroy optical sensors and is widely available and easy to handle. In this work, we perform design and optimization by numerical simulations to determine the better structure for the nonlinear photonic crystal to achieve compact and efficient integrated optical limiter. The approach consists to analyze the band structures in Kerr-nonlinear two-dimensional photonic crystals as a function of the optical intensity. We confirm that these bands are dynamically red-shifted with regard to the bands observed in linear photonic crystals or in the case of weak nonlinear effects. The implemented approach will help to understand such phenomena as intensitydriven optical limiting with Kerr-nonlinear photonic crystals.
Nonlinear super-resolution nano-optics and applications
Wei, Jingsong
2015-01-01
This book covers many advances in the subjects of nano-optics and nano photonics. The author describes the principle and technical schematics of common methods for breaking through the optical diffraction limit and focuses on realizing optical super-resolution with nonlinear effects of thin film materials. The applications of nonlinear optical super-resolution effects in nano-data storage, nanolithography, and nano-imaging are also presented. This book is useful to graduate students majoring in optics and nano science and also serves as a reference book for academic researchers, engineers, technical professionals in the fields of super-resolution optics and laser techniques, nano-optics and nano photonics, nano-data storage, nano imaging, micro/nanofabrication and nanolithography and nonlinear optics.
Improved fiber nonlinearity mitigation in dispersion managed optical OFDM links
Tamilarasan, Ilavarasan; Saminathan, Brindha; Murugappan, Meenakshi
2017-02-01
Fiber nonlinearity is seen as a capacity limiting factor in OFDM based dispersion managed links since the Four Wave Mixing effects become enhanced due to the high PAPR. In this paper, the authors have compared the linear and nonlinear PAPR reduction techniques for fiber nonlinearity mitigation in OFDM based dispersion managed links. In the existing optical systems, linear transform techniques such as SLM and PTS have been implemented to reduce nonlinear effects. In the proposed study, superior performance of the L2-by-3 nonlinear transform technique is demonstrated for PAPR reduction to mitigate fiber nonlinearities. The performance evaluation is carried out by interfacing multiple simulators. The results of both linear and nonlinear transform techniques have been compared and the results show that nonlinear transform technique outperforms the linear transform in terms of nonlinearity mitigation and improved BER performance.
Nonlinear optical properties of Au/PVP composite thin films
Institute of Scientific and Technical Information of China (English)
Shen Hong; Cheng Bo-Lin; Lu Guo-Wei; Wang Wei-Tian; Guan Dong-Yi; Chen Zheng-Hao; Yang Guo-Zhen
2005-01-01
Colloidal Au and poly(vinylpyrrolidone) (PVP) composite thin films are fabricated by spin-coating method. Linear optical absorption measurements of the Au/PVP composite films indicate an absorption peak around 530 nm due to the surface plasmon resonance of gold nanoparticles. Nonlinear optical properties are studied using standard Z-scan technique, and experimental results show large optical nonlinearities of the Au/PVP composite films. A large value of films.
Energy Technology Data Exchange (ETDEWEB)
Chabchoub, A., E-mail: achabchoub@swin.edu.au [Centre for Ocean Engineering Science and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Kibler, B.; Finot, C.; Millot, G. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS, Université de Bourgogne, 21078 Dijon (France); Onorato, M. [Dipartimento di Fisica, Università degli Studi di Torino, Torino 10125 (Italy); Istituto Nazionale di Fisica Nucleare, INFN, Sezione di Torino, Torino 10125 (Italy); Dudley, J.M. [Institut FEMTO-ST, UMR 6174 CNRS- Université de Franche-Comté, 25030 Besançon (France); Babanin, A.V. [Centre for Ocean Engineering Science and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)
2015-10-15
The dynamics of waves in weakly nonlinear dispersive media can be described by the nonlinear Schrödinger equation (NLSE). An important feature of the equation is that it can be derived in a number of different physical contexts; therefore, analogies between different fields, such as for example fiber optics, water waves, plasma waves and Bose–Einstein condensates, can be established. Here, we investigate the similarities between wave propagation in optical Kerr media and water waves. In particular, we discuss the modulation instability (MI) in both media. In analogy to the water wave problem, we derive for Kerr-media the Benjamin–Feir index, i.e. a nondimensional parameter related to the probability of formation of rogue waves in incoherent wave trains.
Measurement of the Acoustic Nonlinearity Parameter for Biological Media.
Cobb, Wesley Nelson
In vitro measurements of the acoustic nonlinearity parameter are presented for several biological media. With these measurements it is possible to predict the distortion of a finite amplitude wave in biological tissues of current diagnostic and research interest. The measurement method is based on the finite amplitude distortion of a sine wave that is emmitted by a piston source. The growth of the second harmonic component of this wave is measured by a piston receiver which is coaxial with and has the same size as the source. The experimental measurements and theory are compared in order to determine the nonlinearity parameter. The density, sound speed, and attenuation for the medium are determined in order to make this comparison. The theory developed for this study accounts for the influence of both diffraction and attenuation on the experimental measurements. The effects of dispersion, tissue inhomogeneity and gas bubbles within the excised tissues are studied. To test the measurement method, experimental results are compared with established values for the nonlinearity parameter of distilled water, ethylene glycol and glycerol. The agreement between these values suggests that the measurement uncertainty is (+OR-) 5% for liquids and (+OR-) 10% for solid tissues. Measurements are presented for dog blood and bovine serum albumen as a function of concentration. The nonlinearity parameters for liver, kidney and spleen are reported for both human and canine tissues. The values for the fresh tissues displayed little variation (6.8 to 7.8). Measurements for fixed, normal and cirrhotic tissues indicated that the nonlinearity parameter does not depend strongly on pathology. However, the values for fixed tissues were somewhat higher than those of the fresh tissues.
Bifocal optical coherenc refractometry of turbid media.
Alexandrov, Sergey A; Zvyagin, Andrei V; Silva, K K M B Dilusha; Sampson, David D
2003-01-15
We propose and demonstrate a novel technique, which we term bifocal optical coherence refractometry, for the rapid determination of the refractive index of a turbid medium. The technique is based on the simultaneous creation of two closely spaced confocal gates in a sample. The optical path-length difference between the gates is measured by means of low-coherence interferometry and used to determine the refractive index. We present experimental results for the refractive indices of milk solutions and of human skin in vivo. As the axial scan rate determines the acquisition time, which is potentially of the order of tens of milliseconds, the technique has potential for in vivo refractive-index measurements of turbid biological media under dynamic conditions.
Nonlinear Optical Materials for the Smart Filtering of Optical Radiation.
Dini, Danilo; Calvete, Mário J F; Hanack, Michael
2016-11-23
The control of luminous radiation has extremely important implications for modern and future technologies as well as in medicine. In this Review, we detail chemical structures and their relevant photophysical features for various groups of materials, including organic dyes such as metalloporphyrins and metallophthalocyanines (and derivatives), other common organic materials, mixed metal complexes and clusters, fullerenes, dendrimeric nanocomposites, polymeric materials (organic and/or inorganic), inorganic semiconductors, and other nanoscopic materials, utilized or potentially useful for the realization of devices able to filter in a smart way an external radiation. The concept of smart is referred to the characteristic of those materials that are capable to filter the radiation in a dynamic way without the need of an ancillary system for the activation of the required transmission change. In particular, this Review gives emphasis to the nonlinear optical properties of photoactive materials for the function of optical power limiting. All known mechanisms of optical limiting have been analyzed and discussed for the different types of materials.
Optical and Nonlinear Optical Response of Light Sensor Thin Films
Directory of Open Access Journals (Sweden)
S. Z. Weisz
2005-04-01
Full Text Available For potential ultrafast optical sensor application, both VO2 thin films andnanocomposite crystal-Si enriched SiO2 thin films grown on fused quartz substrates weresuccessfully prepared using pulsed laser deposition (PLD and RF co-sputteringtechniques. In photoluminescence (PL measurement c-Si/SiO2 film containsnanoparticles of crystal Si exhibits strong red emission with the band maximum rangingfrom 580 to 750 nm. With ultrashort pulsed laser excitation all films show extremelyintense and ultrafast nonlinear optical (NLO response. The recorded holography fromall these thin films in a degenerate-four-wave-mixing configuration shows extremelylarge third-order response. For VO2 thin films, an optically induced semiconductor-tometalphase transition (PT immediately occurred upon laser excitation. it accompanied.It turns out that the fast excited state dynamics was responsible to the induced PT. For c-Si/SiO2 film, its NLO response comes from the contribution of charge carriers created bylaser excitation in conduction band of the c-Si nanoparticles. It was verified byintroducing Eu3+ which is often used as a probe sensing the environment variations. Itturns out that the entire excited state dynamical process associated with the creation,movement and trapping of the charge carriers has a characteristic 500 ps duration.
Topology optimization of nonlinear optical devices
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard
2011-01-01
This paper considers the design of nonlinear photonic devices. The nonlinearity stems from a nonlinear material model with a permittivity that depends on the local time-averaged intensity of the electric field. A finite element model is developed for time-harmonic wave propagation and an incremen......This paper considers the design of nonlinear photonic devices. The nonlinearity stems from a nonlinear material model with a permittivity that depends on the local time-averaged intensity of the electric field. A finite element model is developed for time-harmonic wave propagation...
Cai, Wenshan
2016-09-01
Metamaterials have offered not only the unprecedented opportunity to generate unconventional electromagnetic properties that are not found in nature, but also the exciting potential to create customized nonlinear media with tailored high-order effects. Two particularly compelling directions of current interests are active metamaterials, where the optical properties can be purposely manipulated by external stimuli, and nonlinear metamaterials, which enable intensity-dependent frequency conversion of light. By exploring the interaction of these two directions, we leverage the electrical and optical functions simultaneously supported in nanostructured metals and demonstrate electrically-controlled nonlinear processes from photonic metamaterials. We show that a variety of nonlinear optical phenomena, including the wave mixing and the optical rectification, can be purposely modulated by applied voltage signals. In addition, electrically-induced and voltage-controlled nonlinear effects facilitate us to demonstrate the backward phase matching in a negative index material, a long standing prediction in nonlinear metamaterials. Other results to be covered in this talk include photon-drag effect in plasmonic metamaterials and ion-assisted nonlinear effects from metamaterials in electrolytes. Our results reveal a grand opportunity to exploit optical metamaterials as self-contained, dynamic electrooptic systems with intrinsically embedded electrical functions and optical nonlinearities. Reference: L. Kang, Y. Cui, S. Lan, S. P. Rodrigues, M. L. Brongersma, and W. Cai, Nature Communications, 5, 4680 (2014). S. P. Rodrigues and W.Cai, Nature Nanotechnology, 10, 387 (2015). S. Lan, L. Kang, D. T. Schoen, S. P. Rodrigues, Y. Cui, M. L. Brongersma, and W. Cai, Nature Materials, 14, 807 (2015).
Nonlinear Optical Response of Conjugated Polymer to Electric Field
Institute of Scientific and Technical Information of China (English)
ZHOU Yu-fang; ZHUANG De-xin; CUI Bin
2005-01-01
The organic π-conjugated polymers are of major interest materials for the use in electro-optical and nonlinear optical devices. In this work, for a selected polyacetylene chain, the optical absorption spectra in UV/Vis regime as well as the linear polarizabilitiy and nonlinear hyperpolarizability are calculated by using quantum chemical ab initio and semiempirical methods. The relationship of its optical property to electric field is obtained. Some physical mechanism of electric field effect on molecular optical property is discussed by means of electron distribution and intramolecular charge transfer.
Nonlinear fiber applications for ultrafast all-optical signal processing
Kravtsov, Konstantin
In the present dissertation different aspects of all-optical signal processing, enabled by the use of nonlinear fibers, are studied. In particular, we focus on applications of a novel heavily GeO2-doped (HD) nonlinear fiber, that appears to be superior to many other types of nonlinear fibers because of its high nonlinearity and suitability for the use in nonlinear optical loop mirrors (NOLMs). Different functions, such as all-optical switching, thresholding, and wavelength conversion, are demonstrated with the HD fibers in the NOLM configuration. These basic functions are later used for realization of ultrafast time-domain demultiplexers, clock recovery, detectors of short pulses in stealth communications, and primitive elements for analog computations. Another important technology that benefits from the use of nonlinear fiber-based signal processing is optical code-division multiple access (CDMA). It is shown in both theory and experiment that all-optical thresholding is a unique way of improving existing detection methods for optical CDMA. Also, it is the way of implementation of true asynchronous optical spread-spectrum networks, which allows full realization of optical CDMA potential. Some aspects of quantum signal processing and manipulation of quantum states are also studied in this work. It is shown that propagation and collisions of Thirring solitons lead to a substantial squeezing of quantum states, which may find applications for generation of squeezed light.
Nonlinear and Dispersive Optical Pulse Propagation
Dijaili, Sol Peter
In this dissertation, there are basically four novel contributions to the field of picosecond pulse propagation and measurement. The first contribution is the temporal ABCD matrix which is an analog of the traditional ABCD ray matrices used in Gaussian beam propagation. The temporal ABCD matrix allows for the easy calculation of the effects of linear chirp or group velocity dispersion in the time domain. As with Gaussian beams in space, there also exists a complete Hermite-Gaussian basis in time whose propagation can be tracked with the temporal ABCD matrices. The second contribution is the timing synchronization between a colliding pulse mode-locked dye laser and a gain-switched Fabry-Perot type AlGaAs laser diode that has achieved less than 40 femtoseconds of relative timing jitter by using a pulsed optical phase lock loop (POPLL). The relative timing jitter was measured using the error voltage of the feedback loop. This method of measurement is accurate since the frequencies of all the timing fluctuations fall within the loop bandwidth. The novel element is a broad band optical cross-correlator that can resolve femtosecond time delay errors between two pulse trains. The third contribution is a novel dispersive technique of determining the nonlinear frequency sweep of a picosecond pulse with relatively good accuracy. All the measurements are made in the time domain and hence there is no time-bandwidth limitation to the accuracy. The fourth contribution is the first demonstration of cross -phase modulation in a semiconductor laser amplifier where a variable chirp was observed. A simple expression for the chirp imparted on a weak signal pulse by the action of a strong pump pulse is derived. A maximum frequency excursion of 16 GHz due to the cross-phase modulation was measured. A value of 5 was found for alpha _{xpm} which is a factor for characterizing the cross-phase modulation in a similar manner to the conventional linewidth enhancement factor, alpha.
Linear and nonlinear optical properties of chalcogenide microstructured optical fibers
Trolès, Johann; Brilland, Laurent; Caillaud, Celine; Renversez, Gilles; Mechin, David; Adam, Jean-Luc
2015-03-01
Chalcogenide glasses are known for their large transparency in the mid-infrared and their high linear refractive index (>2). They present also a high non-linear coefficient (n2), 100 to 1000 times larger than for silica, depending on the composition. we have developed a casting method to prepare the microstructured chalcogenide preform. This method allows optical losses as low as 0.4 dB/m at 1.55 µm and less than 0.05 dB/m in the mid IR. Various chalcogenide MOFs operating in the IR range has been fabricated in order to associate the high non-linear properties of these glasses and the original MOF properties. For example, small core fibers have been drawn to enhance the non linearities for telecom applications such as signal regeneration and generation of supercontinuum sources. On another hand, in the 3-12 µm window, single mode fibers and exposed core fibers have been realized for Gaussian beams propagation and sensors applications respectively.
Nonlinear optical properties of manganese porphyrin-incorporated PVC film
Directory of Open Access Journals (Sweden)
Jeong-Hyon Ha
2010-12-01
Full Text Available We measured thermally originated solid phase nonlinear optical properties of manganese porphyrin-incorporated PVC polymer film using CW low-power Z-scan and optical power limiting methods. The nonlinear refractive index (n2 of this porphyrin film is estimated to have a negative value of 7.2 ⅹ10-5 cm2/W at 632.8 nm and to be larger than that of ZnTPP in the Nafion film. The photodegradation effect common in the solution phase appears to be minor in this solid phase system. The large nonlinear effect is thought to limit the optical power due to the aperture effect.
Nonlinear optical microscopy for imaging thin films and surfaces
Energy Technology Data Exchange (ETDEWEB)
Smilowitz, L.B.; McBranch, D.W.; Robinson, J.M.
1995-03-01
We have used the inherent surface sensitivity of second harmonic generation to develop an instrument for nonlinear optical microscopy of surfaces and interfaces. We have demonstrated the use of several nonlinear optical responses for imaging thin films. The second harmonic response of a thin film of C{sub 60} has been used to image patterned films. Two photon absorption light induced fluorescence has been used to image patterned thin films of Rhodamine 6G. Applications of nonlinear optical microscopy include the imaging of charge injection and photoinduced charge transfer between layers in semiconductor heterojunction devices as well as across membranes in biological systems.
Advances in chemical physics modern nonlinear optics, pt.1
Rice, Stuart A
2009-01-01
Partial table of contents: Hyper-Rayleigh and Hyper-Raman Rotational and Vibrational Spectroscopy (T. Bancewicz & Z. Ożgo). Polarization Properties of Hyper-Rayleigh and Hyper-Raman Scatterings (M. Kozierowski). Fast Molecular Reorientation in Liquid Crystals Probed by Nonlinear Optics (J. Lalanne, et al.). Nonlinear Propagation of Laser Light of Different Polarizations (G. Rivoire). Nonlinear Magneto-Optics of Magnetically Ordered Crystals (R. Zawodny). Dynamical Questions in Quantum Optics (A. Shumovsky). Quantum Resonance Fluorescence from Mutually Correlated Atoms (Z. Fi
Bright solitons in defocusing media with spatial modulation of the quintic nonlinearity
Zeng, Jianhua
2012-01-01
It has been recently demonstrated that self-defocusing (SDF) media with the cubic nonlinearity, whose local coefficient grows from the center to periphery fast enough, support stable bright solitons, without the use of any linear potential. Our objective is to test the genericity of this mechanism for other nonlinearities, by applying it to one- and two-dimensional (1D and 2D) quintic SDF media. The models may be implemented in optics (in particular, in colloidal suspensions of nanoparticles), and the 1D model may be applied to the description of the Tonks-Girardeau gas of ultracold bosons. In 1D, the nonlinearity-modulation function is taken as $% g_{0}+\\sinh ^{2}(\\beta x) $. This model admits a subfamily of exact solutions for fundamental solitons. Generic \\ soliton solutions are constructed in a numerical form, and also by means of the Thomas-Fermi and variational approximations (TFA and VA). In particular, a new ansatz for the VA is proposed, in the form of "raised $\\mathrm{sech}$", which provides for an ...
Modeling and compensation of transmitter nonlinearity in coherent optical OFDM.
Amiralizadeh, Siamak; Nguyen, An T; Rusch, Leslie A
2015-10-05
We present a comprehensive study of nonlinear distortions from an optical OFDM transmitter. Nonlinearities are introduced by the combination of effects from the digital-to-analog converter (DAC), electrical power amplifier (PA) and optical modulator in the presence of high peak-to-average power ratio (PAPR). We introduce parameters to quantify the transmitter nonlinearity. High input backoff avoids OFDM signal compression from the PA, but incurs high penalties in power efficiency. At low input backoff, common PAPR reduction techniques are not effective in suppressing the PA nonlinear distortion. A bit error distribution investigation shows a technique combining nonlinear predistortion with PAPR mitigation could achieve good power efficiency by allowing low input backoff. We use training symbols to extract the transmitter nonlinear function. We show that piecewise linear interpolation (PLI) leads to an accurate transmitter nonlinearity characterization. We derive a semi-analytical solution for bit error rate (BER) that validates the PLI approximation accurately captures transmitter nonlinearity. The inverse of the PLI estimate of the nonlinear function is used as a predistorter to suppress transmitter nonlinearity. We investigate performance of the proposed scheme by Monte Carlo simulations. Our simulations show that when DAC resolution is more than 4 bits, BER below forward error correction limit of 3.8 × 10(-3) can be achieved by using predistortion with very low input power backoff for electrical PA and optical modulator.
Advances in nonlinear optical materials and devices
Byer, Robert L.
1991-01-01
The recent progress in the application of nonlinear techniques to extend the frequency of laser sources has come from the joint progress in laser sources and in nonlinear materials. A brief summary of the progress in diode pumped solid state lasers is followed by an overview of progress in nonlinear frequency extension by harmonic generation and parametric processes. Improved nonlinear materials including bulk crystals, quasiphasematched interactions, guided wave devices, and quantum well intersubband studies are discussed with the idea of identifying areas of future progress in nonlinear materials and devices.
Elegant Ince-Gaussian breathers in strongly nonlocal nonlinear media
Institute of Scientific and Technical Information of China (English)
Bai Zhi-Yong; Deng Dong-Mei; Guo Qi
2012-01-01
A novel class of optical breathers,called elegant Ince-Gaussian breathers,are presented in this paper.They are exact analytical solutions to Snyder and Mitchell's mode in an elliptic coordinate system,and their transverse structures are described by Ince-polynomials with complex arguments and a Gaussian function.We provide convincing evidence for the correctness of the solutions and the existence of the breathers via comparing the analytical solutions with numerical simulation of the nonlocal nonlinear Schr(o)dinger equation.
Nonlinear and quantum optics with whispering gallery resonators
Strekalov, Dmitry V.; Marquardt, Christoph; Matsko, Andrey B.; Schwefel, Harald G. L.; Leuchs, Gerd
2016-12-01
Optical whispering gallery modes (WGMs) derive their name from a famous acoustic phenomenon of guiding a wave by a curved boundary observed nearly a century ago. This phenomenon has a rather general nature, equally applicable to sound and all other waves. It enables resonators of unique properties attractive both in science and engineering. Very high quality factors of optical WGM resonators persisting in a wide wavelength range spanning from radio frequencies to ultraviolet light, their small mode volume, and tunable in- and out- coupling make them exceptionally efficient for nonlinear optical applications. Nonlinear optics facilitates interaction of photons with each other and with other physical systems, and is of prime importance in quantum optics. In this paper we review numerous applications of WGM resonators in nonlinear and quantum optics. We outline the current areas of interest, summarize progress, highlight difficulties, and discuss possible future development trends in these areas.
Nonlinear and Quantum Optics with Whispering Gallery Resonators
Strekalov, Dmitry V; Matsko, Andrey B; Schwefel, Harald G L; Leuchs, Gerd
2016-01-01
Optical Whispering Gallery Modes (WGMs) derive their name from a famous acoustic phenomenon of guiding a wave by a curved boundary observed nearly a century ago. This phenomenon was later realized to have a rather general nature, equally applicable to sound and all other waves, but in particular also to electromagnetic waves ranging from radio frequencies to ultraviolet light. Very high quality factors of optical WGM resonators persisting in a wide wavelength range, their small mode volume, and tunable in- and out- coupling make them exceptionally efficient for nonlinear optical applications. Nonlinear optics facilitates interaction of photons with each other and with other physical systems, and is of prime importance in quantum optics. In this paper we review numerous applications of WGM resonators in nonlinear and quantum optics. We outline the current areas of interest, summarize progress, highlight difficulties, and discuss possible future development trends in these areas.
Nonlinear photon-assisted tunneling transport in optical gap antennas.
Stolz, Arnaud; Berthelot, Johann; Mennemanteuil, Marie-Maxime; Colas des Francs, Gérard; Markey, Laurent; Meunier, Vincent; Bouhelier, Alexandre
2014-05-14
We introduce strongly coupled optical gap antennas to interface optical radiation with current-carrying electrons at the nanoscale. The transducer relies on the nonlinear optical and electrical properties of an optical gap antenna operating in the tunneling regime. We discuss the underlying physical mechanisms controlling the conversion involving d-band electrons and demonstrate that a simple two-wire optical antenna can provide advanced optoelectronic functionalities beyond tailoring the electromagnetic response of a single emitter. Interfacing an electronic command layer with a nanoscale optical device may thus be facilitated by the optical rectennas discussed here.
Dielectric Optical-Controllable Magnifying Lens by Nonlinear Negative Refraction
Cao, Jianjun; Shang, Ce; Zheng, Yuanlin; Feng, Yaming; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie
2015-01-01
A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive indices. Recent advancements in nanotechnology enable novel lenses, such as, superlens and hyperlens, with sub-wavelength resolution capabilities by specially designed materials’ refractive indices with meta-materials and transformation optics. However, these artificially nano- or micro-engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here, we experimentally demonstrate, for the first time, a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into the nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applications in microscopy and imaging science. PMID:26149952
Dielectric Optical-Controlled Magnifying Lens by Nonlinear Negative Refraction
Cao, Jianjun; Zheng, Yuanlin; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie
2014-01-01
A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive index. Recent advancements in nanotechnology enable novel lenses, such as, superlens, hyperlens, Luneburg lens, with sub-wavelength resolution capabilities by specially designing materials' refractive indices with meta-materials and transformation optics. However, these artificially nano/micro engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here we experimentally demonstrate for the first time a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applicat...
Intra-Channel Nonlinear Effect on Optical PPM Pulse Transmission
Institute of Scientific and Technical Information of China (English)
Sun; Linghao; Jarmo; Takala
2003-01-01
PPM encoded Gaussian pulse sequence shows more immunity than non-PPM schemes on optical fiber intra-channel nonlinearity and demonstrated by a numerical study of IXPM and IFWM effects deploying on 100Gb/s single channelsystem.
Optical Nonlinearities in Chalcogenide Glasses and their Applications
Zakery, A
2007-01-01
Photonics, which uses photons for information and image processing, has been labeled the technology of the 21st century, for which non-linear optical processes provide the key functions of frequency conversion and optical switching. Chalcogenide glass fiber is one of the most promising candidates for use as a non-linear optical medium because of its high optical nonlinearity and long interaction length. Since the chalcogenide glass fibers transmit into the IR, there are numerous potential applications in the civil, medical and military areas. One of the most exciting developments in the future is going to be in the area of rare-earth ion doping of chalcogenide fibers for IR fluorescence emission. The IR light sources, lasers and amplifiers developed using this phenomena will be very useful in civil, medical and military applications. Remote IR spectroscopy and imaging using flexible fibers will be realized for applications. Other future research areas which will inevitably be explored includes non-linear opti...
Topological nature of nonlinear optical effects in solids.
Morimoto, Takahiro; Nagaosa, Naoto
2016-05-01
There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by nonlinear susceptibilities, which have complex expressions including many matrix elements and energy denominators. On the other hand, a nonequilibrium steady state under an electric field periodic in time has a concise description in terms of the Floquet bands of electrons dressed by photons. We show theoretically, using the Floquet formalism, that various nonlinear optical effects, such as the shift current in noncentrosymmetric materials, photovoltaic Hall response, and photo-induced change of order parameters under the continuous irradiation of monochromatic light, can be described in a unified fashion by topological quantities involving the Berry connection and Berry curvature. We found that vector fields defined with the Berry connections in the space of momentum and/or parameters govern the nonlinear responses. This topological view offers a route to designing nonlinear optical materials.
Merging Nonlinear Optics and Negative-Index Metamaterials
Popov, Alexander K
2011-01-01
The extraordinary properties of nonlinear optical propagation processes in double-domain positive/negative index metamaterials are reviewed. These processes include second harmonic generation, three- and four-wave frequency mixing, and optical parametric amplification. Striking contrasts with the properties of the counterparts in ordinary materials are shown. We also discuss the possibilities for compensating strong losses inherent to plasmonic metamaterials, which present a major obstacle in numerous exciting applications, and the possibilities for creation of unique ultracompact photonic devices such as data processing chips and nonlinear-optical sensors. Finally, we propose similar extraordinary three-wave mixing processes in crystals based on optical phonons with negative dispersion.
Walasik, Wiktor T.; Silahli, Salih Z.; Litchinitser, Natalia M.
2016-09-01
Colloidal metamaterials are a robust and flexible platform for engineering of optical nonlinearities and studies of light filamentation. To date, nonlinear propagation and modulation instability of Gaussian beams and optical vortices carrying orbital angular momentum were studied in such media. Here, we investigate the propagation of necklace beams and the conservation of the orbital angular momentum in colloidal media with saturable nonlinearity. We study various scenarios leading to generation of helical necklace beams or twisted beams, depending on the radius, power, and charge of the input vortex beam. Helical beams are build of two separate solitary beams with circular cross-sections that spiral around their center of mass as a result of the equilibrium between the attraction force of in-phase solitons and the centrifugal force associated with the rotational movement. A twisted beam is a single beam with an elliptical cross-section that rotates around it's own axis. We show that the orbital angular momentum is converted into the rotational motion at different rates for helical and twisted beams. While earlier studies reported that solitary beams are expelled form the initial vortex ring along straight trajectories tangent to the vortex ring, we show that depending on the charge and the power of the initial beam, these trajectories can diverge from the tangential direction and may be curvilinear. These results provide a detailed description of necklace beam dynamics in saturable nonlinear media and may be useful in studies of light filamentation in liquids and light propagation in highly scattering colloids and biological samples.
Molecular and crystal design of nonlinear optical organic materials
Energy Technology Data Exchange (ETDEWEB)
Suponitsky, Kirill Yu; Antipin, Mikhail Yu [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow (Russian Federation); Timofeeva, Tatiana V [Department of Chemistry, New Mexico Highlands University (United States)
2006-06-30
The results of theoretical and experimental studies on the second-order molecular and crystal nonlinear optical susceptibilities of organic and several classes of organoelement compounds are summarised. Modern methods used in these studies are briefly characterised, their advantages and drawbacks are outlined as regards their application to the systematic search for efficient nonlinear optical materials. Recent achievements and the main challenges in the field are thoroughly discussed and an optimum algorithm of the design of such materials is proposed.
Optical asymmetry of helical media with a gradient of parameters
Eritsyan, H S
2002-01-01
The propagation of electromagnetic waves in isotropic gyrotropic media and helical media in the presence of gradients of optical parameters is considered. It is shown that in helical media effects of asymmetry analogous to effects of irreversibility of waves can be observed.
Optical computation based on nonlinear total reflectional optical switch at the interface
Indian Academy of Sciences (India)
Jianqi Zhang; Huan Xu
2009-03-01
A new scheme of binary half adder and full adder is proposed. It realizes a kind of all-optical computation which is based on the polarization coding technique and the nonlinear total reflectional optical switches.
New CMOS Compatible Platforms for Integrated Nonlinear Optical Signal Processing
Moss, D J
2014-01-01
Nonlinear photonic chips have succeeded in generating and processing signals all-optically with performance far superior to that possible electronically - particularly with respect to speed. Although silicon-on-insulator has been the leading platform for nonlinear optics, its high two-photon absorption at telecommunications wavelengths poses a fundamental limitation. This paper reviews some of the recent achievements in CMOS-compatible platforms for nonlinear optics, focusing on amorphous silicon and Hydex glass, highlighting their potential future impact as well as the challenges to achieving practical solutions for many key applications. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement.
Platforms for integrated nonlinear optics compatible with silicon integrated circuits
Moss, David J
2014-01-01
Nonlinear photonic chips are capable of generating and processing signals all-optically with performance far superior to that possible electronically - particularly with respect to speed. Although silicon has been the leading platform for nonlinear optics, its high two-photon absorption at telecommunications wavelengths poses a fundamental limitation. We review recent progress in CMOS-compatible platforms for nonlinear optics, focusing on Hydex glass and silicon nitride and briefly discuss the promising new platform of amorphous silicon. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation, ultrafast optical pulse generation and measurement. We highlight their potential future impact as well as the challenges to achieving practical solutions for many key applications.
Nonlinear Taylor dispersion in gravity currents in porous media
Szulczewski, Michael; Juanes, Ruben
2012-11-01
Taylor dispersion describes how a non-uniform flow can accelerate diffusive mixing between fluids by elongating the fluid-fluid interface over which diffusion acts. While Taylor dispersion has been extensively studied in simple systems such as Poiseuille and Couette flows, it is poorly understood in more complex systems such as porous-media flows. Here, we study Taylor dispersion in porous media during a gravity-driven flow using theory and simulations. We consider a simple geometry for physical insight: a horizontal, confined layer of permeable rock in which two fluids of different densities are initially separated by a vertical interface. We show that the flow exhibits a non-uniform velocity field that leads to Taylor dispersion at the aquifer scale. Unlike the classical model of Taylor dispersion, however, the diffusive mixing is coupled to the flow velocity because it reduces the lateral density gradient that drives the flow. This coupling causes the flow to continually decelerate and eventually stop completely. To model the flow, we develop a non-linear diffusion equation for the concentration of the more dense fluid, which admits an analytical similarity solution. We discuss applications of the model to CO2 sequestration.
Lifetime of the Nonlinear Geometric Optics Approximation
DEFF Research Database (Denmark)
Binzer, Knud Andreas
The subject of the thesis is to study acertain approximation method for highly oscillatory solutions to nonlinear partial differential equations.......The subject of the thesis is to study acertain approximation method for highly oscillatory solutions to nonlinear partial differential equations....
Prediction of nonlinear optical properties of large organic molecules
Cardelino, Beatriz H.
1992-01-01
The preparation of materials with large nonlinear responses usually requires involved synthetic processes. Thus, it is very advantageous for materials scientists to have a means of predicting nonlinear optical properties. The prediction of nonlinear optical properties has to be addressed first at the molecular level and then as bulk material. For relatively large molecules, two types of calculations may be used, which are the sum-over-states and the finite-field approach. The finite-field method was selected for this research, because this approach is better suited for larger molecules.
Shocks, singularities and oscillations in nonlinear optics and fluid mechanics
Santo, Daniele; Lannes, David
2017-01-01
The book collects the most relevant results from the INdAM Workshop "Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics" held in Rome, September 14-18, 2015. The contributions discuss recent major advances in the study of nonlinear hyperbolic systems, addressing general theoretical issues such as symmetrizability, singularities, low regularity or dispersive perturbations. It also investigates several physical phenomena where such systems are relevant, such as nonlinear optics, shock theory (stability, relaxation) and fluid mechanics (boundary layers, water waves, Euler equations, geophysical flows, etc.). It is a valuable resource for researchers in these fields. .
Extra phase noise from thermal fluctuations in nonlinear optical crystals
DEFF Research Database (Denmark)
César, J. E. S.; Coelho, A.S.; Cassemiro, K.N.
2009-01-01
We show theoretically and experimentally that scattered light by thermal phonons inside a second-order nonlinear crystal is the source of additional phase noise observed in optical parametric oscillators. This additional phase noise reduces the quantum correlations and has hitherto hindered the d...... the direct production of multipartite entanglement in a single nonlinear optical system. We cooled the nonlinear crystal and observed a reduction in the extra noise. Our treatment of this noise can be successfully applied to different systems in the literature....
A general theory of two-wave mixing in nonlinear media
DEFF Research Database (Denmark)
Chi, Mingjun; Huignard, Jean-Pierre; Petersen, Paul Michael
2009-01-01
A general theory of two-wave mixing in nonlinear media is presented. Assuming a gain (or absorption) grating and a refractive index grating are generated because of the nonlinear process in a nonlinear medium, the coupled-wave equations of two-wave mixing are derived based on the Maxwell’s wave e...
Delocalization of nonlinear optical responses in plasmonic nanoantennas
Viarbitskaya, Sviatlana; Cluzel, Benoit; Francs, Gérard Colas des; Bouhelier, Alexandre
2015-01-01
Remote excitation and emission of two-photon luminescence and second-harmonic generation are observed in micrometer long gold rod optical antennas upon local illumination with a tightly focused near-infrared femtosecond laser beam. We show that the nonlinear radiations can be emitted from the entire antenna and the measured far-field angular patterns bear the information regarding the nature and origins of the respective nonlinear processes. We demonstrate that the nonlinear responses are transported by the propagating surface plasmon at excitation frequency, enabling thereby polariton-mediated tailoring and design of nonlinear responses.
Nonlinear limits to the information capacity of optical fiber communications
Mitra, P P; Mitra, Partha P.; Stark, Jason B.
2000-01-01
The exponential growth in the rate at which information can be communicated through an optical fiber is a key element in the so called information revolution. However, like all exponential growth laws, there are physical limits to be considered. The nonlinear nature of the propagation of light in optical fiber has made these limits difficult to elucidate. Here we obtain basic insights into the limits to the information capacity of an optical fiber arising from these nonlinearities. The key simplification lies in relating the nonlinear channel to a linear channel with multiplicative noise, for which we are able to obtain analytical results. In fundamental distinction to the linear additive noise case, the capacity does not grow indefinitely with increasing signal power, but has a maximal value. The ideas presented here have broader implications for other nonlinear information channels, such as those involved in sensory transduction in neurobiology. These have been often examined using additive noise linear cha...
Ageing of the nonlinear optical susceptibility in soft matter
Energy Technology Data Exchange (ETDEWEB)
Ghofraniha, N [SMC-INFM-CNR, c/o Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185, Rome (Italy); Conti, C [Research Centre ' Enrico Fermi' , Via Panisperna 89/A, 00184 Rome (Italy); Leonardo, R Di [SOFT-INFM-CNR, c/o Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185, Rome (Italy); Ruzicka, B [SOFT-INFM-CNR, c/o Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185, Rome (Italy); Ruocco, G [SOFT-INFM-CNR, c/o Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185, Rome (Italy)
2007-05-23
We investigate the nonlinear optics response of a colloidal dispersion undergoing dynamics slowing down with age, by using Z-scan and dynamic light scattering measurements. We study the high optical nonlinearity of an organic dye (rhodamine B) dispersed in a water-clay (laponite) suspension. We consider different clay concentrations (2.0-2.6 wt%) experiencing dynamics arrest. We find that (i) the concentration dependent exponential growth of both mean relaxation time and nonlinear absorption coefficient can be individually scaled to a master curve and (ii) the scaling times are the same for the two physical quantities. These findings indicate that the optical nonlinear susceptibility exhibits the same ageing universal scaling behaviour, typical of disordered out of equilibrium systems.
Third Order Nonlinear Optical Effects in Conjugated Polymers
Halvorson, Craig Steven
Third order nonlinear optical effects in conjugated materials were studied using two different spectroscopic methods, third harmonic generation and two photon absorption. The third harmonic generation spectra of cis-polyacetylene, trans-polyacetylene, oriented trans-polyacetylene, three isomers of polyaniline, cis and trans-polyacetylene in polyvinyl butyral, polyheptdadiester, polyheptadiketone, and MEH-PPV/polyethylene blends were measured. The nonlinear optical susceptibility increases with structural order, and is enhanced by the presence of a degenerate ground state. The magnitude of the susceptibility reaches as high as 10^{-7} esu, which is sufficient for the creation of all-optical nonlinear devices. The two photon absorption spectrum of oriented transpolyacetylene was measured using nonlinear photothermal deflection. The spectrum reveals directly the Ag state at 1.1 eV in trans-polyacetylene, and reveals another Ag state at higher energy. The magnitude of the two photon absorption is large enough to rule out using trans-polyacetylene in serial all-optical nonlinear devices; all-optical devices made from conjugated polymers must be parallel, not serial. A new figure of merit for nonlinear devices was proposed.
Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA.
Kravtsov, Konstantin; Prucnal, Paul R; Bubnov, Mikhail M
2007-10-01
We present an experimental demonstration of an ultrafast all-optical thresholder based on a nonlinear Sagnac interferometer. The proposed design is intended for operation at very small nonlinear phase shifts. Therefore, it requires an in-loop nonlinearity lower than for the classical nonlinear loop mirror scheme. Only 15 meters of conventional (non-holey) silica-based fiber is used as a nonlinear element. The proposed thresholder is polarization insensitive and is good for multi-wavelength operation, meeting all the requirements for autocorrelation detection in various optical CDMA communication systems. The observed cubic transfer function is superior to the quadratic transfer function of second harmonic generation-based thresholders.
Conditional linear-optical measurement schemes generate effective photon nonlinearities
Lapaire, G G; Dowling, J P; Sipe, J E; Dowling, Jonathan P.
2003-01-01
We provide a general approach for the analysis of optical state evolution under conditional measurement schemes, and identify the necessary and sufficient conditions for such schemes to simulate unitary evolution on the freely propagating modes. If such unitary evolution holds, an effective photon nonlinearity can be identified. Our analysis extends to conditional measurement schemes more general than those based solely on linear optics.
Chemical studies on the nonlinear optics of coordina- tion compounds
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The exploration of molecule-based nonlinear optical (NLO) materials at the molecular level is one of the novel areas developed recently from the viewpoint of chemistry. This review summarizes some of our recent researches on new NLO materials based on coordination compounds, which may have potential applications in optical devices.
Ultra-Fast Optical Signal Processing in Nonlinear Silicon Waveguides
DEFF Research Database (Denmark)
Oxenløwe, Leif Katsuo; Galili, Michael; Pu, Minhao;
2011-01-01
We describe recent demonstrations of exploiting highly nonlinear silicon nanowires for processing Tbit/s optical data signals. We perform demultiplexing and optical waveform sampling of 1.28 Tbit/s and wavelength conversion of 640 Gbit/s data signals....
Nonlinear fiber-optic strain sensor based on four-wave mixing in microstructured optical fiber
DEFF Research Database (Denmark)
Gu, Bobo; Yuan, Scott Wu; Frosz, Michael H.
2012-01-01
We demonstrate a nonlinear fiber-optic strain sensor, which uses the shifts of four-wave mixing Stokes and anti-Stokes peaks caused by the strain-induced changes in the structure and refractive index of a microstructured optical fiber. The sensor thus uses the inherent nonlinearity of the fiber...
Li, Bing-Xuan; Wei, Yong; Huang, Cheng-Hui; Zhuang, Feng-Jiang; Zhang, Ge; Guo, Guo-Cong
2014-01-01
In the present paper the authors report a research on testing the nonlinear optical performance of optical materials in visible and infrared band. Based on the second order nonlinear optic principle and the photoelectric signal detection technology, the authors have proposed a new testing scheme in which a infrared OPO laser and a method for separating the beams arising from frequency matching and the light produced by other optical effects were used. The OPO laser is adopted as light source to avoid the error of measurement caused by absorption because the double frequency signal of the material is in the transmittance band Our research work includes testing system composition, operational principle and experimental method. The experimental results of KTP, KDP, AGS tested by this method were presented. In the experiment several new infrared non-linear materials were found. This method possesses the merits of good stability and reliability, high sensitivity, simple operation and good reproducibility, which can effectively make qualitative and semi-quantitative test for optical material's nonlinear optical properties from visible to infrared. This work provides an important test -method for the research on second order nonlinear optical materials in visible, infrared and ultraviolet bands.
Collapse arrest and soliton stabilization in nonlocal nonlinear media
DEFF Research Database (Denmark)
Bang, Ole; Krolikowski, Wieslaw; Wyller, John
2002-01-01
We investigate the properties of localized waves in cubic nonlinear materials with a symmetric nonlocal nonlinear response of arbitrary shape and degree of nonlocality, described by a general nonlocal nonlinear Schrodinger type equation. We prove rigorously by bounding the Hamiltonian that nonloc......We investigate the properties of localized waves in cubic nonlinear materials with a symmetric nonlocal nonlinear response of arbitrary shape and degree of nonlocality, described by a general nonlocal nonlinear Schrodinger type equation. We prove rigorously by bounding the Hamiltonian...
Nonlinear optics at low powers: Alternative mechanism of on-chip optical frequency comb generation
Rogov, Andrei S.; Narimanov, Evgenii E.
2016-12-01
Nonlinear optical effects provide a natural way of light manipulation and interaction and form the foundation of applied photonics, from high-speed signal processing and telecommunication to ultrahigh-bandwidth interconnects and information processing. However, relatively weak nonlinear response at optical frequencies calls for operation at high optical powers or boosting efficiency of nonlinear parametric processes by enhancing local-field intensity with high-quality-factor resonators near cavity resonance, resulting in reduced operational bandwidth and increased loss due to multiphoton absorption. We present an alternative to this conventional approach, with strong nonlinear optical effects at low local intensities, based on period-doubling bifurcations near nonlinear cavity antiresonance and apply it to low-power optical frequency comb generation in a silicon chip.
Nonlinear optics at low powers: new mechanism of on-chip optical frequency comb generation
Rogov, Andrei
2016-01-01
Nonlinear optical effects provide a natural way of light manipulation and interaction, and form the foundation of applied photonics -- from high-speed signal processing and telecommunication, to ultra-high bandwidth interconnects and information processing. However, relatively weak nonlinear response at optical frequencies calls for operation at high optical powers, or boosting efficiency of nonlinear parametric processes by enhancing local field intensity with high quality-factor resonators near cavity resonance, resulting in reduced operational bandwidth and increased loss due to multi-photon absorption. Here, we present an alternative to this conventional approach, with strong nonlinear optical effects at substantially lower local intensities, based on period-doubling bifurcations near nonlinear cavity anti-resonance, and apply it to low-power optical comb generation in a silicon chip.
Lavdas, Spyros; You, Jie; Osgood, Richard M.; Panoiu, Nicolae C.
2015-08-01
We present recent results pertaining to pulse reshaping and optical signal processing using optical nonlinearities of silicon-based tapered photonic wires and photonic crystal waveguides. In particular, we show how nonlinearity and dispersion engineering of tapered photonic wires can be employed to generate optical similaritons and achieve more than 10× pulse compression. We also discuss the properties of four-wave mixing pulse amplification and frequency conversion efficiency in long-period Bragg waveguides and photonic crystal waveguides. Finally, the influence of linear and nonlinear optical effects on the transmission bit-error rate in uniform photonic wires and photonic crystal waveguides made of silicon is discussed.
Beam evolutions of solitons in strongly nonlocal media with fading optical lattices
Institute of Scientific and Technical Information of China (English)
Dai Zhi-Ping; Lu Shi-Zhuan; You Kai-Ming
2013-01-01
We address the impact of imprinted fading optical lattices on the beam evolution of solitons in strongly nonlocal nonlinear media.The results show that the width of the soliton experiences a change with the increasing propagation distance,the critical power for the soliton varies with the lattice fading away,and the soliton breathing is affected by the initial lattice depth and the nonlocality degree.
Hofstadter butterflies in nonlinear Harper lattices, and their optical realizations
Energy Technology Data Exchange (ETDEWEB)
Manela, Ofer; Segev, Mordechai [Department of Physics and Solid State Institute, Technion, Haifa 32000 (Israel); Christodoulides, Demetrios N [College of Optics/CREOL, University of Central Florida, FL 32816-2700 (United States); Kip, Detlef, E-mail: msegev@tx.technion.ac.i [Department of Electrical Engineering, Helmut Schmidt University, 22043 Hamburg (Germany)
2010-05-15
The ubiquitous Hofstadter butterfly describes a variety of systems characterized by incommensurable periodicities, ranging from Bloch electrons in magnetic fields and the quantum Hall effect to cold atoms in optical lattices and more. Here, we introduce nonlinearity into the underlying (Harper) model and study the nonlinear spectra and the corresponding extended eigenmodes of nonlinear quasiperiodic systems. We show that the spectra of the nonlinear eigenmodes form deformed versions of the Hofstadter butterfly and demonstrate that the modes can be classified into two families: nonlinear modes that are a 'continuation' of the linear modes of the system and new nonlinear modes that have no counterparts in the linear spectrum. Finally, we propose an optical realization of the linear and nonlinear Harper models in transversely modulated waveguide arrays, where these Hofstadter butterflies can be observed. This work is relevant to a variety of other branches of physics beyond optics, such as disorder-induced localization in ultracold bosonic gases, localization transition processes in disordered lattices, and more.
The optical nonlinearity of gold nanoparticles prepared by bioreduction method
Balbuena Ortega, A.; Arroyo Carrasco, M. L.; Gayou, V. L.; Orduña Díaz, A.; Delgado Macuil, R.; Rojas López, Marlon
2013-11-01
Nonlinear optical and electronic properties of nanosized metal particles have drawn considerable attention because of their strong and size-dependent plasmon resonance absorption. In a metal nanoparticle system such as gold dispersed in a transparent matrix, an absorption peak due to surface plasmon resonance is usually observed in the visible spectral region. Metal nanoparticles are of special interest as nonlinear materials for optical switching and computing because of their relatively large third-order nonlinearity (χ3) and ultrafast response time. The purpose of this study was to analyze the nonlinear optical properties of biosynthesized gold nanoparticles. The samples were prepared by biosynthesis method using yeast extract as reducing agent and the nonlinear optical properties of the nanoparticles were investigated using a single beam Z-scan technique with a beam power of 20 mW and operated at wavelength of 514 nm. The reaction between metal ions and yeast extracts were monitored by UV-visible spectra of Au nanoparticles in aqueous solution with different pH (3-6). The surface plasmon peak position was shifted from 528 nm to 573 nm, according to of pH variation 4 to 6. The average particle size was calculated by the absorption peak position using the Fernig method, from 42 to 103 nm. The z-scan curves showed a negative nonlocal nonlinear refractive index with a magnitude dependent on the nanoparticle size.
Nonlinear Optical Absorption of Organic Molecules for Applications in Optical Devices
Boni, Leonardo De; Daniel S. Correa; Mendonca, Cleber R.
2010-01-01
This chapter aimed to describe the resonant nonlinear optical properties of four important organic molecules: Chlorophyll A, Indocyanine Green, Ytterbium Bisphthalocyanine and Cytochrome C, which are materials that present interesting optical nonlinearities for applications in optical devices. It was shown that Chlorophyll A solution exhibits a RSA process for Q-switched and mode-locked laser pulses, with an intersystem-crossing time relatively fast and a triplet state cross section value twi...
Nonlinear Quantum Optics in Optomechanical Nanoscale Waveguides
Zoubi, Hashem
2016-01-01
We explore the possibility of achieving a significant nonlinear phase shift among photons propagating in nanoscale waveguides exploiting interactions among photons that are mediated by vibrational modes and induced through Stimulated Brillouin Scattering (SBS). We introduce a configuration that allows slowing down the photons by several orders of magnitude via SBS involving sound waves and two pump fields. We extract the conditions for maintaining vanishing amplitude gain or loss for slowly propagating photons while keeping the influence of thermal phonons to the minimum. The nonlinear phase among two counter-propagating photons can be used to realize a deterministic phase gate.
Dynamic computer-generated nonlinear-optical holograms
Liu, Haigang; Li, Jun; Fang, Xiangling; Zhao, Xiaohui; Zheng, Yuanlin; Chen, Xianfeng
2017-08-01
We propose and experimentally demonstrate dynamic nonlinear optical holograms by introducing the concept of computer-generated holograms for second-harmonic generation of a structured fundamental wave with a specially designed wave front. The generation of Laguerre-Gaussian second-harmonic beams is investigated in our experiment. Such a method, which only dynamically controls the wave front of the fundamental wave by a spatial light modulator, does not need domain inversion in nonlinear crystals and hence is a more flexible way to achieve the off-axis nonlinear second-harmonic beams. It can also be adopted in other schemes and has potential applications in nonlinear frequency conversion, optical signal processing, and real-time hologram, etc.
Dissipation-induced optical nonlinearity at low light levels
Greenberg, Joel A
2011-01-01
We observe a dissipation-induced nonlinear optical process in a gas of cold atoms that gives rise to large nonlinear coupling strengths with high transparency. The nonlinearity results from the simultaneous cooling and crystallization of the gas, and can give rise to efficient Bragg scattering in the form of a six-wave-mixing process at low-light-levels with an extremely large effective fifth-order nonlinear susceptibility of \\chi^(5)= 7.6 x 10-15 (m/V)^4. For large optical gains, collective scattering due to the strong light-matter coupling leads to slow group velocities (~c/105) and long atomic coherence times (~100 {\\mu}s).
Nonlinear optical properties of sodium copper chlorophyllin in aqueous solution.
Li, Jiangting; Peng, Yufeng; Han, Xueyun; Guo, Shaoshuai; Liang, Kunning; Zhang, Minggao
2017-06-16
Sodium copper chlorophyllin (SCC), as one of the derivatives of chlorophyll - with its inherent green features; good stability for heat, light, acids and alkalies; unique antimicrobial capability; and particular deodori zation performance - is widely applied in some fields such as the food industry, medicine and health care, daily cosmetic industry etc. SCC, as one of the metal porphyrins, has attracted much attention because of its unique electronic band structure and photon conversion performance. To promote the application of SCC in materials science; energy research and photonics, such as fast optical communications; and its use in nonlinear optical materials, solar photovoltaic cells, all-optical switches, optical limiters and saturable absorbers, great efforts should be dedicated to studying its nonlinear optical (NLO) properties. In this study, the absorption spectra and NLO properties of SCC in aqueous solution at different concentrations were measured. The Z-scan technique was used to determine NLO properties. The results indicated that the absorption spectra of SCC exhibit 2 characteristic absorption peaks located at the wavelengths 405 and 630 nm, and the values of the peaks increase with increasing SCC concentration. The results also showed that SCC exhibits reverse saturation absorption and negative nonlinear refraction (self-defocusing). It can be seen that SCC has good optical nonlinearity which will be convenient for applications in materials science, energy research and photonics.
Nonlinear optical and magneto-optical effects in non-spherical magnetic granular composite
Institute of Scientific and Technical Information of China (English)
Ping Xu(须萍); Zhenya Li(李振亚)
2004-01-01
The magnetization-induced nonlinear optical and nonlinear magneto-optical properties in a magnetic metal-insulator composite are studied based on a tensor effective medium approximation with shape factor and Taylcr-expansion method. There is a weakly nonlinear relation between electric displacement D and elcctric field E in the composite. The results of our studies on the effective dielectric tensor and the nonlinear susceptibility tensor in a magnetic nanocomposite are surveyed. It is shown that such a metal-insulator composite exhibits the enhancements of optical and magneto-optical nonlinearity. The frequencies at which the enhancements occur, and the amplitude of the enhancement factors depend on the concentration and shape of the magnetic grains.
Linear and nonlinear optical properties of tellurite glasses
Jin, Zhian
Tellurite glasses have been widely studied from bulk materials to structured devices, with the emphasis on the development of nonlinear optical fibers to demonstrate the functionalities of supercontinuum generation, erbium doped fiber amplifier and Raman amplifiers, etc. The new type tellurite-based optical fibers exhibit superior advantages over conventional silica ones, due to their high optical nonlinearity, broad transmission window, high rare earth element solubility and Raman gain intensity. Like silica fibers, tellurite fibers may also incorporate various fiber structures including solid core-cladding one and microstructure one (e.g. photonic crystal). The fiber loss was ever reported as low as ˜1dB/m using rod-in-tube fabrication process. Beyond all those progresses, little success has been made on improving the optical nonlinear property of tellurite glasses chi(3) ˜ 50 times bigger than fused silica). The challenge remains for tellurite glasses that their optical nonlinearity is more than 1 order smaller to compare with chalcogenides, although they are more stable chemically and structurally. In this work, after carefully reviewing the trend of optical nonlinearity for solid glasses, we adopted two strategies to potentially increase the linear and third-order optical nonlinear properties for tellurite glasses. A more polarizable electronic excitation may be achievable by introducing chalcogen elements (e.g. Sulfur or Selenium) into TeO2 vitreous network and synthesizing glasses with a linear helical chainlike structure. The ab initio computational results of microscopic hyper-polarizabilities of hypothetical mixed - 2 - tellurite chalcogenide glass molecular structure (TeO2(TeOX)n) confirmed the enhanced effect as Te-X (X=S or Se) bonds exist and the molecular size (n) grows. Quantitative estimates of the macroscopic linear and nonlinear properties for a mixed glass made from chains of n = 5 units leads to a conclusion that the extra Te-S (or Te
Photoconductive and nonlinear optical properties of composites based on metallophthalocyanines
Vannikov, A. V.; Grishina, A. D.; Gorbunova, Yu. G.; Tsivadze, A. Yu.
2015-08-01
The photoconductive, photorefractive and nonlinear optical properties of composites from polyvinylcarbazole or aromatic polyimide containing supramolecular ensembles of (tetra-15-crown-5) - phthalocyaninato gallium, indium, - phthalocyaninateacetato yttrium, - phthalocyaninato ruthenium with axially coordinated pyrazine molecules were investigated at 633, 1030 and 1064nmusing continuous and pulsed lasers. Supramolecular ensembles (SE) were prepared through dissolution of molecular metallophthalocyanines in tetrachloroethane (TCE) and subsequent treatment via three cycles of heating to 90∘C and slow cooling to room temperature. The zscan method in femtosecond and nanosecond regimeswas used for measuring nonlinear optical properties phthalocyaninato indium and yttrium in TCE solutions and polymer films. It was established that effect of heavy metallic atom is basic factor which determines the quantum yield, photorefractive amplification of laser object beam, dielectric susceptibility of third order and nonlinear optical properties of metallophthalocyanines.
Nonlinear optical studies of single gold nanoparticles
Dijk, Meindert Alexander van
2007-01-01
Gold nanoparticles are spherical clusters of gold atoms, with diameters typically between 1 and 100 nanometers. The applications of these particles are rather diverse, from optical labels for biological experiments to data carrier for optical data storage. The goal of my project was to develop new
Conservation Laws in Higher-Order Nonlinear Optical Effects
Kim, J; Shin, H J; Kim, Jongbae
1999-01-01
Conservation laws of the nonlinear Schrödinger equation are studied in the presence of higher-order nonlinear optical effects including the third-order dispersion and the self-steepening. In a context of group theory, we derive a general expression for infinitely many conserved currents and charges of the coupled higher-order nonlinear Schrödinger equation. The first few currents and charges are also presented explicitly. Due to the higher-order effects, conservation laws of the nonlinear Schrödinger equation are violated in general. The differences between the types of the conserved currents for the Hirota and the Sasa-Satsuma equations imply that the higher-order terms determine the inherent types of conserved quantities for each integrable cases of the higher-order nonlinear Schrödinger equation.
ICI optical data storage tape: An archival mass storage media
Ruddick, Andrew J.
1993-01-01
At the 1991 Conference on Mass Storage Systems and Technologies, ICI Imagedata presented a paper which introduced ICI Optical Data Storage Tape. This paper placed specific emphasis on the media characteristics and initial data was presented which illustrated the archival stability of the media. More exhaustive analysis that was carried out on the chemical stability of the media is covered. Equally important, it also addresses archive management issues associated with, for example, the benefits of reduced rewind requirements to accommodate tape relaxation effects that result from careful tribology control in ICI Optical Tape media. ICI Optical Tape media was designed to meet the most demanding requirements of archival mass storage. It is envisaged that the volumetric data capacity, long term stability and low maintenance characteristics demonstrated will have major benefits in increasing reliability and reducing the costs associated with archival storage of large data volumes.
From Ewald sphere to Ewald shell in nonlinear optics
Huang, Huang; Huang, Cheng-Ping; Zhang, Chao; Hong, Xu-Hao; Zhang, Xue-Jin; Qin, Yi-Qiang; Zhu, Yong-Yuan
2016-07-01
Ewald sphere is a simple vector scheme to depict the X-ray Bragg diffraction in a crystal. A similar method, known as the nonlinear Ewald sphere, was employed to illustrate optical frequency conversion processes. We extend the nonlinear Ewald sphere to the Ewald shell construction. With the Ewald shell, a variety of quasi-phase-matching (QPM) effects, such as the collective envelope effect associated with multiple QPM resonances, the enhanced second- harmonic generation due to multiple reciprocal vectors etc., are suggested theoretically and verified experimentally. By rotating the nonlinear photonic crystal sample, the dynamic evolution of these QPM effects has also been observed, which agreed well with the Ewald shell model.
Pulse operation of semiconductor laser with nonlinear optical feedback
Guignard, Celine; Besnard, Pascal; Mihaescu, Adrian; MacDonald, K. F.; Pochon, Sebastien; Zheludev, Nikolay I.
2004-09-01
A semiconductor laser coupled to a gallium-made non linear mirror may exhibit pulse regime. In order to better understand this coupled cavity, stationary solutions and dynamics are described following the standard Lang and Kobayashi equations for a semiconductor laser submitted to nonlinear optical feedback. It is shown that the nonlinearity distorts the ellipse on which lied the stationary solutions, with a ``higher'' part corresponding to lower reflectivity and a ``lower'' part to higher reflectivity. Bifurcation diagrams and nonlinear analysis are presented while the conditions for pulsed operation are discussed.
Dispersion of the nonlinear refractive index of optical crystals
Adair, Robert; Chase, L. L.; Payne, Stephen A.
1992-09-01
The nonlinear refractive indices of several important optical materials have been measured at the second and third harmonic wavelengths of the Nd laser using nearly degenerate four-wave mixing. Measurements made relative to the nonlinear index of fused silica have the highest accuracy. Absolute measurements were also made using the Raman cross-section of benzene as a nonlinear reference standard. The relative measurements are compared with a despersion model base on parameters fitted to the linear refractive indicies and also to a recently proposed model based on Kramers-Kronig transformation of the calculated, two-band, two-photon loss spectrum.
Dynamics of optical rogue waves in inhomogeneous nonlinear waveguides
Institute of Scientific and Technical Information of China (English)
Zhang Jie-Fang; Jin Mei-Zhen; He Ji-Da; Lou Ji-Hui; Dai Chao-Qing
2013-01-01
We propose a unified theory to construct exact rogue wave solutions of the (2+1)-dimensional nonlinear Schr(o)dinger equation with varying coefficients.And then the dynamics of the first-and the second-order optical rogues are investigated.Finally,the controllability of the optical rogue propagating in inhomogeneous nonlinear waveguides is discussed.By properly choosing the distributed coefficients,we demonstrate analytically that rogue waves can be restrained or even be annihilated,or emerge periodically and sustain forever.We also figure out the center-of-mass motion of the rogue waves.
Modeling of Nonlinear Signal Distortion in Fiber-Optical Networks
Johannisson, Pontus
2013-01-01
A low-complexity model for signal quality prediction in a nonlinear fiber-optical network is developed. The model, which builds on the Gaussian noise model, takes into account the signal degradation caused by a combination of chromatic dispersion, nonlinear signal distortion, and amplifier noise. The center frequencies, bandwidths, and transmit powers can be chosen independently for each channel, which makes the model suitable for analysis and optimization of resource allocation, routing, and scheduling in large-scale optical networks applying flexible-grid wavelength-division multiplexing.
Hybrid quantum systems for enhanced nonlinear optical susceptibilities
Sullivan, Dennis; Kuzyk, Mark G
2016-01-01
Significant effort has been expended in the search for materials with ultra-fast nonlinear-optical susceptibilities, but most fall far below the fundamental limits. This work applies a theoretical materials development program that has identified a promising new hybrid made of a nanorod and a molecule. This system uses the electrostatic dipole moment of the molecule to break the symmetry of the metallic nanostructure that shifts the energy spectrum to make it optimal for a nonlinear-optical response near the fundamental limit. The structural parameters are varied to determine the ideal configuration, providing guidelines for making the best structures.
Weakly Nonlinear Geometric Optics for Hyperbolic Systems of Conservation Laws
Chen, Gui-Qiang; Zhang, Yongqian
2012-01-01
We establish an $L^1$-estimate to validate the weakly nonlinear geometric optics for entropy solutions of nonlinear hyperbolic systems of conservation laws with arbitrary initial data of small bounded variation. This implies that the simpler geometric optics expansion function can be employed to study the properties of general entropy solutions to hyperbolic systems of conservation laws. Our analysis involves new techniques which rely on the structure of the approximate equations, besides the properties of the wave-front tracking algorithm and the standard semigroup estimates.
A Web Tool for Research in Nonlinear Optics
Prikhod'ko, Nikolay V.; Abramovsky, Viktor A.; Abramovskaya, Natalia V.; Demichev, Andrey P.; Kryukov, Alexandr P.; Polyakov, Stanislav P.
2016-02-01
This paper presents a project of developing the web platform called WebNLO for computer modeling of nonlinear optics phenomena. We discuss a general scheme of the platform and a model for interaction between the platform modules. The platform is built as a set of interacting RESTful web services (SaaS approach). Users can interact with the platform through a web browser or command line interface. Such a resource has no analogues in the field of nonlinear optics and will be created for the first time therefore allowing researchers to access high-performance computing resources that will significantly reduce the cost of the research and development process.
Third-Order Optical Nonlinearity in Novel Porphyrin Dimers
Institute of Scientific and Technical Information of China (English)
PEI Song-Hao; ZHAO Da-Peng; ZHANG Wei; ZHENG Wen-Qi; WANG Xing-Qiao; PENG Wei-Xian; SHI Guang; SONG Ying-Lin
2008-01-01
@@ We investigate the third-order optical nonlinearities in four novel porphyrin dimers (directs A to I)) and a monomeric porphyrin H2 CPTPP measured by using the single-beam z-scan technique with a pulsed Q-switched Nd:YAG nanosecond laser at 532nm.All the samples show strong excited state absorption (ESA) and high value of X(3) in the ns domain at this wavelength.We perform a comparison between dimer A and its monomer H2 CPTPP in their third-order optical nonlinearity, and discuss the relationships between the values of X(3) and the different bridging groups for all the dimers.
High-speed signal processing using highly nonlinear optical fibres
DEFF Research Database (Denmark)
Peucheret, Christophe; Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen
2009-01-01
relying on the phase of the optical field. Topics covered include all-optical switching of 640 Gbit/s and 1.28 Tbit/s serial data, wavelength conversion at 640 Gbit/s, optical amplitude regeneration of differential phase shift keying (DPSK) signals, as well as midspan spectral inversion for differential 8......We review recent progress in all-optical signal processing techniques making use of conventional silica-based highly nonlinear fibres. In particular, we focus on recent demonstrations of ultra-fast processing at 640 Gbit/s and above, as well as on signal processing of novel modulation formats...
40-Gb/s all-optical wavelength conversion based on a nonlinear optical loop mirror
DEFF Research Database (Denmark)
Yu, Jianjun; Zheng, Xueyan; Peucheret, Christophe
2000-01-01
All-optical wavelength conversion based on a nonlinear optical loop mirror (NOLM) at 40 Gb/s is demonstrated for the first time. The effect of walkoff time between control beam and signal beams is investigated when the NOLM is used as an all-optical wavelength converter or an all...
Recent Advances in Graphene-Assisted Nonlinear Optical Signal Processing
Directory of Open Access Journals (Sweden)
Jian Wang
2016-01-01
Full Text Available Possessing a variety of remarkable optical, electronic, and mechanical properties, graphene has emerged as an attractive material for a myriad of optoelectronic applications. The wonderful optical properties of graphene afford multiple functions of graphene based polarizers, modulators, transistors, and photodetectors. So far, the main focus has been on graphene based photonics and optoelectronics devices. Due to the linear band structure allowing interband optical transitions at all photon energies, graphene has remarkably large third-order optical susceptibility χ(3, which is only weakly dependent on the wavelength in the near-infrared frequency range. The graphene-assisted four-wave mixing (FWM based wavelength conversions have been experimentally demonstrated. So, we believe that the potential applications of graphene also lie in nonlinear optical signal processing, where the combination of its unique large χ(3 nonlinearities and dispersionless over the wavelength can be fully exploited. In this review article, we give a brief overview of our recent progress in graphene-assisted nonlinear optical device and their applications, including degenerate FWM based wavelength conversion of quadrature phase-shift keying (QPSK signal, phase conjugated wavelength conversion by degenerate FWM and transparent wavelength conversion by nondegenerate FWM, two-input and three-input high-base optical computing, and high-speed gate-tunable terahertz coherent perfect absorption (CPA using a split-ring graphene.
Fusion arrest and collapse phenomena due to Kerr-nonlinearity in quadratic media
DEFF Research Database (Denmark)
Johansen, Steffen Kjær; Bang, Ole; Sørensen, Mads Peter
2000-01-01
Emphasizing collapse phenomena it is investigated to what extend the always present cubic nonlinearity affects the properties of soliton interaction in quadratic bulk media. An effective particle approach is applied and verified by numerical simulations....
Optics in a nonlinear gravitational wave
Harte, Abraham I
2015-01-01
Gravitational waves can act like gravitational lenses, affecting the observed positions, brightnesses, and redshifts of distant objects. Exact expressions for such effects are derived here, allowing for arbitrarily-moving sources and observers in the presence of plane-symmetric gravitational waves. The commonly-used predictions of linear perturbation theory are shown to be generically overshadowed---even for very weak gravitational waves---by nonlinear effects when considering observations of sufficiently distant sources; higher-order perturbative corrections involve secularly-growing terms which cannot necessarily be neglected. Even on more moderate scales where linear effects remain at least marginally dominant, nonlinear corrections are qualitatively different from their linear counterparts. There is a sense in which they can, for example, mimic the existence of a third type of gravitational wave polarization.
Optics in a nonlinear gravitational plane wave
Harte, Abraham I.
2015-09-01
Gravitational waves can act like gravitational lenses, affecting the observed positions, brightnesses, and redshifts of distant objects. Exact expressions for such effects are derived here in general relativity, allowing for arbitrarily-moving sources and observers in the presence of plane-symmetric gravitational waves. At least for freely falling sources and observers, it is shown that the commonly-used predictions of linear perturbation theory can be generically overshadowed by nonlinear effects; even for very weak gravitational waves, higher-order perturbative corrections involve secularly-growing terms which cannot necessarily be neglected when considering observations of sufficiently distant sources. Even on more moderate scales where linear effects remain at least marginally dominant, nonlinear corrections are qualitatively different from their linear counterparts. There is a sense in which they can, for example, mimic the existence of a third type of gravitational wave polarization.
Nonlinear optical properties and optical power limiting effect of Giemsa dye
Al-Saidi, Imad Al-Deen Hussein A.; Abdulkareem, Saif Al-Deen
2016-08-01
The nonlinear optical properties of Giemsa dye in chloroform solution for different concentrations and dye mixed with poly(methylmethacrylate) (PMMA) as a dye-doped polymer film were investigated using continuous wave (CW) low power solid-state laser (SSL) operating at wavelength of 532 nm as an excitation source. Using the single beam z-scan technique, the nonlinear refractive index (n2), the nonlinear absorption coefficient (β), and the third-order nonlinear optical susceptibility (χ(3)) of Giemsa dye were measured. The measurements reveal that both n2 and β are dependent on the dye concentration. The obtained results indicate that the Giemsa dye exhibits positive nonlinear saturable absorption (SA) and negative refraction nonlinearity, manifestation of self-defocusing effect. Optical power limiting characteristics of the Giemsa dye at different concentrations in solution and polymer film were studied. The observed large third-order optical nonlinearity of Giemsa dye confirms that Giemsa dye is a promising nonlinear material for the optical power limiting and photonic devices applications.
Materials for Nonlinear Optics Chemical Perspectives
1991-01-01
introduced into LB muldilayers built from 1/1 mixtures with an amphiphilic cyclodextrin . The polyenic chains are again perpendicular to the substrate...molecules in inorganic matrices. The encapsulated molecules can be used to induce new optical properties in the material or to probe the changes at the...glass are discussed here. First, laser dyes including rhodamines and coumarins are encapsulated . The resulting doped gel-glasses exhibit optical gain
Nonlinear Real-Time Optical Signal Processing.
1983-12-01
8217 " University of Southern CaliforniaN JU Los Angeles, California 90089-0272 " --;984. ,’ I ’I Research Sponsored by the ., k Air Force Office of...concentrates on experimental results from the sixteen gate clocked master-slave optical flip-flop. A second paper " Architectures for a Sequential Optical Logic...purpose computer could permit the realization of a number of architectural advantages over semiconductor electronics [27]. These advantages include
Application of Novel Nonlinear Optical Materials to Optical Processing
Banerjee, Partha P.
1999-01-01
We describe wave mixing and interactions in nonlinear photorefractive polymers and disodium flourescein. Higher diffracted orders yielding forward phase conjugation can be generated in a two-wave mixing geometry in photorefractive polymers, and this higher order can be used for image edge enhancement and correlation. Four-wave mixing and phase conjugation is studied using nonlinear disodium floureschein, and the nature and properties of gratings written in this material are investigated.
Nonlinear Optical BBO Crystals: Growth, Properties and Applications
Institute of Scientific and Technical Information of China (English)
唐鼎元
2000-01-01
Low temperature phase barium metaborate β-BaB2O4 (BBO) is an important nonlinear optical material. Up to now, the BBO single crystals with large size and good optical quality were grown from Na2O or NaF fluxed solvents by the top-seeded solution growth (TSSG) technique with or without pulling. In order to improve the growth rate and quality of BBO crystals, several new techniques such as continuous feeding, forced stirring and cooling growing crystals etc. have been suggested. Applications of BBO as an excellent nonlinear optical crystal include mainly frequency conversion of various laser radiation, high average power frequency conversion, frequency doubling of ultrashort pulses and broadly tunable optical parametric oscillators (OPO).This paper is a brief review on the growth, properties and applications of BBO crystals.
Nonlinear Behavior Of Saturated Porous Media Under External Impact
Perepechko, Y.
2005-12-01
This paper deals with nonlinear behavior of liquid saturated porous media in gravity filed under external impact. The continuum is assumed to be a two-velocity medium; it consists of a deformable porous matrix (with Maxwell's reology) and a Newtonian liquid that saturates this matrix. The energy dissipation in this model takes place due the interface friction between the solid matrix and saturating liquid, and also through relaxation of inelastic shear stress in the porous matrix. The elaborated nonisothermal mathematical model for this kind of medium is a thermodynamically consistent and closed model. Godunov's explicit difference scheme was used for computer simulation; the method implies numerical simulation for discontinuity decay in flux calculations. As an illustrative example, we consider the formation of dissipation structures in a plain layer of that medium after pulse or periodic impact on the background of liquid filtration through the porous matrix. At the process beginning, one can observe elastic behavior of the porous matrix. Deformation spreading through the saturated porous matrix occurs almost without distortions and produces a channel-shaped zone of stretching with a high porosity. Later on, dissipation processes and reology properties of porous medium causes the diffusion of this channel. We also observe a correlation between the liquid distribution (porosity for the solid matrix) and dilatancy fields; this allows us to restore the dilatancy field from the measured fluid saturation of the medium. This work was supported by the RFBR (Grant No. 04-05-64107), the Presidium of SB RAS (Grant 106), the President's Grants (NSh-2118.2003.5, NSh-1573.2003.5).
A Strategy for the Development of Macromolecular Nonlinear Optical Materials
1990-01-01
obsolete. SECURITY CLASSIFICATION OF THIS PAGE STRATEGY FOR THE DEVELOPMENT OF MACROMOLECULAR NONLINEAR OPTICAL MATERIALS Braja K. Mandala , Jan-Chan...materials is significantly different from the conventional inorganic NLO materials. The extent of second order (quadratic) NLO effect such as second...is a criterion of paramount importance for a large second order electro-optic effect in organic materials 8 ,9 . The most common approach to obtain
Nonlinear Optical Properties and Femtosecond Laser Micromachining of Special Glasses
Almeida,Juliana M. P.; Gustavo F. B. Almeida; Boni, Leonardo De; Cleber R. Mendonça
2015-01-01
Materials specially designed for photonics have been at the vanguard of chemistry, physics and materials science, driven by the development of new technologies. One particular class of materials investigated in this context are glasses, that in principle should exhibit high third order optical nonlinearities and fast response time, whose optical properties can be tailored by compositional changes, such as, for instance, the incorporation of metallic nanoparticles to explore plasmon resonances...
Harmonic nanoparticles: noncentrosymmetric metal oxides for nonlinear optics
Rogov, Andrii; Mugnier, Yannick; Bonacina, Luigi
2015-01-01
The combination of nonlinear optics and nanotechnology is an extremely rich scientific domain yet widely unexplored. We present here a review of recent optical investigations on noncentrosymmetric oxide nanoparticles with a large ${{\\chi }^{(2)}}$ response, often referred to as harmonic nanoparticles (HNPs). HNPs feature a series of properties which distinguish them from other photonics nanoprobes (quantum dots, up-conversion nanoparticles, noble metal particles). HNPs emission is inherently ...
Guesmi, Latifa; Menif, Mourad
2016-04-01
The field of fiber optics nonlinearity is more discussed last years due to such remarkable enhancement in the nonlinear processes efficiency. In this paper, and for optical performance monitoring (OPM), a new achievement of nonlinear effects has been investigated. The use of cross-phase modulation (XPM) and four-wave mixing (FWM) effects between input optical signal and inserted continuous-wave probe has proposed for impairments monitoring. Indeed, transmitting a multi-channels phase modulated signal at high data rate (1 Tbps WDM Nyquist NRZ- DP-QPSK) improves the sensitivity and the dynamic range monitoring. It was observed by simulation results that various optical parameters including optical power, wavelength, chromatic dispersion (CD), polarization mode dispersion (PMD), optical signal-to-noise ratio (OSNR), Q-factor and so on, can be monitored. Also, the effect of increasing the channel spacing between WDM signals is studied and proved its use for FWM power monitoring.
Real-Time Implementation of Nonlinear Optical Processing Functions.
1986-09-30
demonstrating that the memory is nonlinear and selective. The recording medium could be replaced with real-time media such as photorefractive crystals. Thicker...recording media Fi4 4. Schematic of experiment that d,.non* trated ,,pera have the added advantage of higher angular selectiv- "" . e e r aity. thus... geometrica snapes in contact ’A,.n a c-:’:ser ’Figure 51a’ ., and a spher:cal 4:verg.ng reference -eam Upion :"um’latlon of t -" c-’gram by the object beam
Quantum-dot based nanothermometry in optical plasmonic recording media
Energy Technology Data Exchange (ETDEWEB)
Maestro, Laura Martinez [Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Autónoma de Madrid, Madrid 28049 (Spain); Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Zhang, Qiming; Li, Xiangping; Gu, Min [Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Jaque, Daniel [Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Autónoma de Madrid, Madrid 28049 (Spain)
2014-11-03
We report on the direct experimental determination of the temperature increment caused by laser irradiation in a optical recording media constituted by a polymeric film in which gold nanorods have been incorporated. The incorporation of CdSe quantum dots in the recording media allowed for single beam thermal reading of the on-focus temperature from a simple analysis of the two-photon excited fluorescence of quantum dots. Experimental results have been compared with numerical simulations revealing an excellent agreement and opening a promising avenue for further understanding and optimization of optical writing processes and media.
Quantum optics of spatial transformation media
Leonhardt, U
2006-01-01
We show how transformation media [J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006); U. Leonhardt and T. G. Philbin, cond-mat/0607418] map quantum electromagnetism in physical space to QED in empty flat space. As a consequence, the Casimir force of left-handed dielectric media may become repulsive and may possibly levitate ultra-thin metal foils.
Stability of two-dimensional spatial solitons in nonlocal nonlinear media
DEFF Research Database (Denmark)
Skupin, S.; Bang, Ole; Edmundson, D.;
2006-01-01
We discuss the existence and stability of two-dimensional solitons in media with spatially nonlocal nonlinear response. We show that such systems, which include thermal nonlinearity and dipolar Bose-Einstein condensates, may support a variety of stationary localized structures, including rotating...
Exact bright and dark spatial soliton solutions in saturable nonlinear media
Energy Technology Data Exchange (ETDEWEB)
Calvo, Gabriel F. [Departamento de Matematicas, E.T.S. de Ingenieros Industriales, Instituto de Matematica Aplicada a la Ciencia y la Ingenieria (IMACI), E.T.S.I. Industriales, Avda. Camilo Jose Cela, 3, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Belmonte-Beitia, Juan [Departamento de Matematicas, E.T.S. de Ingenieros Industriales, Instituto de Matematica Aplicada a la Ciencia y la Ingenieria (IMACI), E.T.S.I. Industriales, Avda. Camilo Jose Cela, 3, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: Juan.Belmonte@uclm.es; Perez-Garcia, Victor M. [Departamento de Matematicas, E.T.S. de Ingenieros Industriales, Instituto de Matematica Aplicada a la Ciencia y la Ingenieria (IMACI), E.T.S.I. Industriales, Avda. Camilo Jose Cela, 3, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)
2009-08-30
We present exact analytical bright and dark (black and grey) solitary wave solutions of a nonlinear Schroedinger-type equation describing the propagation of spatial beams in media exhibiting a saturable nonlinearity (such as centrosymmetric photorefractive materials). A qualitative study of the stationary equation is carried out together with a discussion of the stability of the solutions.
Nonlinear optical response of a two-dimensional atomic crystal.
Merano, Michele
2016-01-01
The theory of Bloembergen and Pershan for the light waves at the boundary of nonlinear media is extended to a nonlinear two-dimensional (2D) atomic crystal, i.e., a single planar atomic lattice, placed between linear bulk media. The crystal is treated as a zero-thickness interface, a real 2D system. Harmonic waves emanate from it. Generalization of the laws of reflection and refraction give the direction and the intensity of the harmonic waves. As a particular case that contains all the essential physical features, second-order harmonic generation is considered. The theory, due to its simplicity that stems from the special character of a single planar atomic lattice, is able to elucidate and explain the rich experimental details of harmonic generation from a 2D atomic crystal.
Demonstration of a Chip-based Nonlinear Optical Isolator
Hua, Shiyue; Jiang, Xiaoshun; Hua, Qian; Jiang, Liang; Xiao, Min
2016-01-01
Despite fundamentally challenging in integrated (nano)photonics, achieving chip-based light nonreciprocity becomes increasingly urgent in signal processing and optical communications. Because of material incompatibilities in conventional approaches based on Faraday effects, alternative solutions have resorted to nonlinear processes to obtain one-way transmission. However, revealed dynamic reciprocity in a recent theoretical analysis has pinned down the functionalities of these nonlinear isolators. To overcome this dynamic reciprocity, we here report the first demonstration of a nonlinear optical isolator on a silicon chip enforced by phase-matched parametric amplification. Using a high-Q microtoroid resonator, we realize highly nonreciprocal transport at the 1,550 nm wavelength when waves are simultaneously launched in both forward and backward directions. Our design, compatible with current CMOS technique, yields convincing isolation performance with sufficiently low insertion loss for a wide range of input ...
Optoelectronic and nonlinear optical processes in low dimensional semiconductors
Indian Academy of Sciences (India)
B P Singh
2006-11-01
Spatial confinement of quantum excitations on their characteristic wavelength scale in low dimensional materials offers unique possibilities to engineer the electronic structure and thereby control their physical properties by way of simple manipulation of geometrical parameters. This has led to an overwhelming interest in quasi-zero dimensional semiconductors or quantum dots as tunable materials for multitude of exciting applications in optoelectronic and nonlinear optical devices and quantum information processing. Large nonlinear optical response and high luminescence quantum yield expected in these systems is a consequence of huge enhancement of transition probabilities ensuing from quantum confinement. High quantum efficiency of photoluminescence, however, is not usually realized in the case of bare semiconductor nanoparticles owing to the presence of surface states. In this talk, I will focus on the role of quantum confinement and surface states in ascertaining nonlinear optical and optoelectronic properties of II–VI semiconductor quantum dots and their nanocomposites. I will also discuss the influence of nonlinear optical processes on their optoelectronic characteristics.
Generalized dispersive wave emission in nonlinear fiber optics.
Webb, K E; Xu, Y Q; Erkintalo, M; Murdoch, S G
2013-01-15
We show that the emission of dispersive waves in nonlinear fiber optics is not limited to soliton-like pulses propagating in the anomalous dispersion regime. We demonstrate, both numerically and experimentally, that pulses propagating in the normal dispersion regime can excite resonant dispersive radiation across the zero-dispersion wavelength into the anomalous regime.
Nonlinear interaction of meta-atoms through optical coupling
Energy Technology Data Exchange (ETDEWEB)
Slobozhanyuk, A. P.; Kapitanova, P. V.; Filonov, D. S.; Belov, P. A. [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Powell, D. A. [Nonlinear Physics Centre and Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), Australian National University, Canberra, ACT 0200 (Australia); Shadrivov, I. V.; Kivshar, Yu. S. [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Nonlinear Physics Centre and Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), Australian National University, Canberra, ACT 0200 (Australia); Lapine, M., E-mail: mlapine@physics.usyd.edu.au [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Physics, University of Sydney, New South Wales 2006 (Australia); McPhedran, R. C. [Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Physics, University of Sydney, New South Wales 2006 (Australia)
2014-01-06
We propose and experimentally demonstrate a multi-frequency nonlinear coupling mechanism between split-ring resonators. We engineer the coupling between two microwave resonators through optical interaction, whilst suppressing the direct electromagnetic coupling. This allows for a power-dependent interaction between the otherwise independent resonators, opening interesting opportunities to address applications in signal processing, filtering, directional coupling, and electromagnetic compatibility.
Investigation of Nonlinear Optical Properties of Semiconductors.
1984-02-23
optical studies of InSb NI. W. Goodwin" and D. G. Seiler Center jo .4pphed Quurntm Electronics, Department of Phytics , North 1exu.% State Unuvpieroty...lnSb, in zero magnetic field, is that of Pidgeon anJ data, aside from two-photon absorption, could be ab- co-workers,’ who give references to other
Matsuda, Nobuyuki; Kato, Takumi; Harada, Ken-Ichi; Takesue, Hiroki; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya
2011-10-10
We demonstrate highly enhanced optical nonlinearity in a coupled-resonator optical waveguide (CROW) in a four-wave mixing experiment. Using a CROW consisting of 200 coupled resonators based on width-modulated photonic crystal nanocavities in a line defect, we obtained an effective nonlinear constant exceeding 10,000 /W/m, thanks to slow light propagation combined with a strong spatial confinement of light achieved by the wavelength-sized cavities.
Implementation of Nonlinear Control Laws for an Optical Delay Line
Hench, John J.; Lurie, Boris; Grogan, Robert; Johnson, Richard
2000-01-01
This paper discusses the implementation of a globally stable nonlinear controller algorithm for the Real-Time Interferometer Control System Testbed (RICST) brassboard optical delay line (ODL) developed for the Interferometry Technology Program at the Jet Propulsion Laboratory. The control methodology essentially employs loop shaping to implement linear control laws. while utilizing nonlinear elements as means of ameliorating the effects of actuator saturation in its coarse, main, and vernier stages. The linear controllers were implemented as high-order digital filters and were designed using Bode integral techniques to determine the loop shape. The nonlinear techniques encompass the areas of exact linearization, anti-windup control, nonlinear rate limiting and modal control. Details of the design procedure are given as well as data from the actual mechanism.
Few-photon coherent nonlinear optics with a single molecule
Maser, Andreas; Utikal, Tobias; Götzinger, Stephan; Sandoghdar, Vahid
2015-01-01
The pioneering experiments of linear spectroscopy were performed using flames in the 1800s, but nonlinear optical measurements had to wait until lasers became available in the twentieth century. Because the nonlinear cross section of materials is very small, usually macroscopic bulk samples and pulsed lasers are used. Numerous efforts have explored coherent nonlinear signal generation from individual nanoparticles or small atomic ensembles with millions of atoms. Experiments on a single semiconductor quantum dot have also been reported, albeit with a very small yield. Here, we report on coherent nonlinear spectroscopy of a single molecule under continuous-wave single-pass illumination, where efficient photon-molecule coupling in a tight focus allows switching of a laser beam by less than a handful of pump photons nearly resonant with the sharp molecular transition. Aside from their fundamental importance, our results emphasize the potential of organic molecules for applications such as quantum information pro...
Broadband excitation and collection in fiber-optic nonlinear endomicroscopy
Prakash Ghimire, Navin; Bao, Hongchun; Gu, Min
2013-08-01
Broadband excitation and collection in a fiber-optic nonlinear endomicroscope are realized by using a single hollow-core double-clad photonic crystal fiber and a gradient index lens. Femtosecond pulses with central wavelengths in the range of 750-850 nm can be directly delivered through the core of the fiber for nonlinear excitation without pre-chirping. A gradient index lens with numerical aperture 0.8 designed to operate over the near-infrared wavelength range is used for focusing the laser beam from the fiber for nonlinear excitation and for collecting the fluorescent signal from the sample. This compact system is suitable to perform nonlinear imaging of multiple fluorophors in the wavelength range of 750-850 nm.
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Ba Phi [Central University of Construction, Tuy Hoa (Viet Nam); Kim, Ki Hong [Ajou University, Suwon (Korea, Republic of)
2014-06-15
We study theoretically the influence of nonlinear gain effects on the transmission and the Anderson localization of waves in both uniform and random one-dimensional amplifying media by using the discrete nonlinear Schroedinger equation. In uniform amplifying media with nonlinear gain, we find that the strong oscillatory behavior of the transmittance and the reflectance for odd and even values of the sample length disappears for large nonlinearities. The exponential decay rate of the transmittance in the asymptotic limit is found to be independent of nonlinear gain. In random amplifying media, we find that the maximum values of the disorder-averaged logarithmic transmittance and reflectance depend nonmonotonically on the strength of nonlinear gain. We also find that the localization length is independent of nonlinear gain. In other words, the Anderson localization is neither enhanced nor weakened due to nonlinear gain. In both the uniform and the random cases, the crossover length, which is the critical length for the amplification to be efficient, is strongly reduced by the nonlinear nature of the gain.
Energy Technology Data Exchange (ETDEWEB)
Zaytsev, Kirill I., E-mail: kirzay@gmail.com; Katyba, Gleb M.; Yakovlev, Egor V.; Yurchenko, Stanislav O., E-mail: st.yurchenko@mail.ru [Bauman Moscow State Technical University, 2nd Baumanskaya str. 5, Moscow 105005 (Russian Federation); Gorelik, Vladimir S. [P. N. Lebedev Physics Institute of the Russian Academy of Sciences, Leninskiy Prospekt 53, Moscow 119991 (Russian Federation)
2014-06-07
A novel approach for the enhancement of nonlinear optical effects inside globular photonic crystals (PCs) is proposed and systematically studied via numerical simulations. The enhanced optical harmonic generation is associated with two- and three-dimensional PC pumping with the wavelength corresponding to different PC band-gaps. The interactions between light and the PC are numerically simulated using the finite-difference time-domain technique for solving the Maxwell's equations. Both empty and infiltrated two-dimensional PC structures are considered. A significant enhancement of harmonic generation is predicted owing to the highly efficient PC pumping based on the structural light focusing effect inside the PC structure. It is shown that a highly efficient harmonic generation could be attained for both the empty and infiltrated two- and three-dimensional PCs. We are demonstrating the ability for two times enhancement of the parametric decay efficiency, one order enhancement of the second harmonic generation, and two order enhancement of the third harmonic generation in PC structures in comparison to the nonlinear generations in appropriate homogenous media. Obviously, the nonlinear processes should be allowed by the molecular symmetry. The criteria of the nonlinear process efficiency are specified and calculated as a function of pumping wavelength position towards the PC globule diameter. Obtained criterion curves exhibit oscillating characteristics, which indicates that the highly efficient generation corresponds to the various PC band-gap pumping. The highest efficiency of nonlinear conversions could be reached for PC pumping with femtosecond optical pulses; thus, the local peak intensity would be maximized. Possible applications of the observed phenomenon are also discussed.
Optical Nonlinear Properties of Gold Nanoparticles Synthesized by Laser Ablation in Polymer Solution
Directory of Open Access Journals (Sweden)
M. Tajdidzadeh
2017-01-01
Full Text Available In the present study, gold nanoparticles were synthesized in various polymer solutions by means of employing laser ablation technique at the same ablation time. Specifically, gold nanoparticles were synthesized in polyethylene glycol and chitosan solutions, in order to compare the effects of the liquid media which served as stabilizers for particle size and volume fraction of nanoparticles. In addition, this experiment was repeated in distilled water for reference purposes. As the findings indicated, the particle size which was obtained in polyethylene glycol was about 7.49 nm, that is, smaller than those of chitosan solution and distilled water, respectively. In contrast, it was observed that the volume fraction of gold nanoparticles increased in polyethylene glycol in comparison with the other media which indicated an effect on the formation of NPs. On the other hand, Z-scan technique was employed to measure the nonlinear refractive index and nonlinear absorption coefficient of nanofluids containing gold nanoparticles. Consequently, the nonlinear properties of nanofluids pointed to a significant contribution with the number of nanoparticles observed in fluids and both optical nonlinear parameters were observed to increase by means of a prior increase in the volume fraction of Au-NPs in polyethylene glycol solution.
2015-09-17
processing - optical frequency conversion and optical DSB -to-SSB conversion 5a. CONTRACT NUMBER FA2386-14-1-0006 5b. GRANT NUMBER Grant 134113...nonlinear dynamics of semiconductor lasers for certain optical signal processing functionalities, including optical DSB -to-SSB conversion, photonic...conversion and optical DSB -to-SSB conversion Performance Period May 30, 2014 ~ May 29, 2015 Principal Investigator Name: Sheng-Kwang Hwang Position
Pan, Shoukui; Okano, Y.; Tsunekawa, S.; Fukuda, T.
1993-03-01
The Kyropoulus method was used to grow nonlinear optical organic crystals ABP (4-aminobenzophenone). The crystals were characterized by nonlinear optical measurements and had a large effect of frequency doubling.
Quantum nonlinear optics with single photons enabled by strongly interacting atoms
DEFF Research Database (Denmark)
Peyronel, Thibault; Firstenberg, Ofer; Liang, Qi Yu
2012-01-01
The realization of strong nonlinear interactions between individual light quanta (photons) is a long-standing goal in optical science and engineering, being of both fundamental and technological significance. In conventional optical materials, the nonlinearity at light powers corresponding...
Power-transfer effects in monomode optical nonlinear waveguiding structures.
Jakubczyk, Z; Jerominek, H; Patela, S; Tremblay, R; Delisle, C
1987-09-01
We describe power-transfer effects, over a certain threshold, among constituents of planar waveguiding structures consisting of an optical linear layer deposited onto a nonlinear substrate (CdS(x)Se(1-x)-doped glass). Proper selection of the thickness of the linear waveguiding film and the refractive index of the linear cladding allows one to obtain optical transistor action and to construct all-optical AND, OR, NOT, and XOR logic gates. The effects appear for the TE(0) guided mode.
Detecting nonlinear acoustic waves in liquids with nonlinear dipole optical antennae
Maksymov, Ivan S
2015-01-01
Ultrasound is an important imaging modality for biological systems. High-frequency ultrasound can also (e.g., via acoustical nonlinearities) be used to provide deeply penetrating and high-resolution imaging of vascular structure via catheterisation. The latter is an important diagnostic in vascular health. Typically, ultrasound requires sources and transducers that are greater than, or of order the same size as the wavelength of the acoustic wave. Here we design and theoretically demonstrate that single silver nanorods, acting as optical nonlinear dipole antennae, can be used to detect ultrasound via Brillouin light scattering from linear and nonlinear acoustic waves propagating in bulk water. The nanorods are tuned to operate on high-order plasmon modes in contrast to the usual approach of using fundamental plasmon resonances. The high-order operation also gives rise to enhanced optical third-harmonic generation, which provides an important method for exciting the higher-order Fabry-Perot modes of the dipole...
Optical nonlinearities of small polarons in lithium niobate
Imlau, Mirco; Badorreck, Holger; Merschjann, Christoph
2015-12-01
An overview of optical nonlinearities of small bound polarons is given, which can occur in the congruently melting composition of LiNbO3. Such polarons decisively influence the linear and nonlinear optical performance of this material that is important for the field of optics and photonics. On the basis of an elementary phenomenological approach, the localization of carriers in a periodic lattice with intrinsic defects is introduced. It is applied to describe the binding energies of four electron and hole small polarons in LiNbO3: small free NbNb4 + polarons, small bound NbLi4 + polarons, small bound NbLi4 +:NbNb4 + bipolarons, and small bound O- hole polarons. For the understanding of their linear interaction with light, an optically induced transfer between nearest-neighboring polaronic sites is assumed. It reveals spectrally well separated optical absorption features in the visible and near-infrared spectral range, their small polaron peak energies and lineshapes. Nonlinear interaction of light is assigned to the optical formation of short-lived small polarons as a result of carrier excitation by means of band-to-band transitions. It is accompanied by the appearance of a transient absorption being spectrally constituted by the individual fingerprints of the small polarons involved. The relaxation dynamics of the transients is thermally activated and characterized phenomenologically by a stretched exponential behavior, according to incoherent 3D small polaron hopping between regular and defect sites of the crystal lattice. It is shown that the analysis of the dynamics is a useful tool for revealing the recombination processes between small polarons of different charge. Nonlinear interaction of small polarons with light furthermore results in changes of the index of refraction. Besides its causal relation to the transients via Kramers-Kronig relation, pronounced index changes may occur due to optically generated electric fields modulating the index of refraction
Third-order optical nonlinearities of PVP/Pd nanohybrids
Papagiannouli, I.; Potamianos, D.; Krasia-Christoforou, T.; Couris, S.
2017-10-01
Pd nanoparticles stabilized by polyvinylpyrrolidone were synthesized following mild reduction of palladium ion complexes. Their morphology and optical properties were characterized using Transmission Electron Microscopy, Dynamic Light Scattering and UV-Vis absorption spectroscopy to confirm the existence of monodispersed, low-dimensional single nanoparticles. Furthermore, their third-order nonlinear optical properties were investigated by means of the Z-scan technique, using 35 ps and 4 ns laser pulses, both in the visible (532 nm) and in the infrared (1064 nm). These results denote that the surface plasmon resonance is not significantly contributing to the nonlinear optical response of Pd nanoparticles. In contrast, a two photon absorption process was found to contribute to the observed response. The present results are discussed and compared with previous literature findings.
Nonlinear Silicon Photonic Signal Processing Devices for Future Optical Networks
Directory of Open Access Journals (Sweden)
Cosimo Lacava
2017-01-01
Full Text Available In this paper, we present a review on silicon-based nonlinear devices for all optical nonlinear processing of complex telecommunication signals. We discuss some recent developments achieved by our research group, through extensive collaborations with academic partners across Europe, on optical signal processing using silicon-germanium and amorphous silicon based waveguides as well as novel materials such as silicon rich silicon nitride and tantalum pentoxide. We review the performance of four wave mixing wavelength conversion applied on complex signals such as Differential Phase Shift Keying (DPSK, Quadrature Phase Shift Keying (QPSK, 16-Quadrature Amplitude Modulation (QAM and 64-QAM that dramatically enhance the telecom signal spectral efficiency, paving the way to next generation terabit all-optical networks.
Space vehicle pose estimation via optical correlation and nonlinear estimation
Rakoczy, John M.; Herren, Kenneth A.
2008-03-01
A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.
E Heebner, John; Boyd, Robert W; Park, Q-Han
2002-03-01
We describe an optical transmission line that consists of an array of wavelength-scale optical disk resonators coupled to an optical waveguide. Such a structure leads to exotic optical characteristics, including ultraslow group velocities of propagation, enhanced optical nonlinearities, and large dispersion with a controllable magnitude and sign. This device supports soliton propagation, which can be described by a generalized nonlinear Schrodinger equation.
Metal-organic frameworks as competitive materials for non-linear optics.
Mingabudinova, L R; Vinogradov, V V; Milichko, V A; Hey-Hawkins, E; Vinogradov, A V
2016-09-26
The last five years have witnessed a huge breakthrough in the creation and the study of the properties of a new class of compounds - metamaterials. The next stage of this technological revolution will be the development of active, controllable, and non-linear metamaterials, surpassing natural media as platforms for optical data processing and quantum information applications. However, scientists are constantly faced with the need to find new methods that can ensure the formation of quantum and non-linear metamaterials with higher resolution. One such method of producing metamaterials in the future, which will provide scalability and availability, is chemical synthesis. Meanwhile, the chemical synthesis of organized 3D structures with a period of a few nanometers and a size of up to a few millimeters is not an easy task and is yet to be resolved. The most promising avenue seems to be the use of highly porous structures based on metal-organic frameworks that have demonstrated their unique properties in the field of non-linear optics (NLO) over the past three years. Thus, the aim of this review is to examine current progress and the possibilities of using metal-organic frameworks in the field of non-linear optics as chemically obtained metamaterials of the future. The review begins by presenting the theoretical principles of physical phenomena represented by mathematical descriptions for clarity. Major attention is paid to the second harmonic generation (SHG) effect. In this section we compare inorganic single crystals, which are most commonly used to study the effect in question, to organic materials, which also possess the required properties. Based on these data, we present a rationale for the possibility of studying the non-linear optical properties of metal-organic structures as well as describing the use of synthetic approaches and the difficulties associated with them. The second part of the review explicitly acquaints the reader with a new class of materials
Liquid-state acoustically-nonlinear nanoplasmonic source of optical frequency combs
Maksymov, Ivan S
2016-01-01
Nonlinear acoustic interactions in liquids are effectively stronger than nonlinear optical interactions in solids. Thus, harnessing these interactions will offer new possibilities in the design of ultra-compact nonlinear photonic devices. We theoretically demonstrate a hybrid, liquid-state and nanoplasmonic, source of optical frequency combs compatible with fibre-optic technology. This source relies on a nanoantenna to harness the strength of nonlinear acoustic effects and synthesise optical spectra from ultrasound.
Induced optical metric in the non-impedance-matched media
Mousavi, S. A.; Roknizadeh, R.; Sahebdivan, S.
2016-11-01
In non-magnetic anisotropic media, the behavior of electromagnetic waves depends on the polarization and direction of the incident light. Therefore, to tame the unwanted wave responses such as polarization dependent reflections, the artificial impedance-matched media are suggested to be used in optical devices like invisibility cloak or super lenses. Nevertheless, developing the impedance-matched media is far from trivial in practice. In this paper, we are comparing the samples of both impedance-matched and non-impedance-matched (non-magnetic) media regarding their electromagnetic response in constructing a well-defined optical metric. In the case of similar anisotropic patterns, we show that the optical metric in an impedance-matched medium for unpolarized light is the same as the optical metric of an electrical birefringent medium when the extraordinary mode is concerned. By comparing the eikonal equation in an empty curved space-time and its counterparts in the medium, we have shown that a non-impedance-matched medium can resemble an optical metric for a particular polarization. As an example of non-impedance-matched materials, we are studying a medium with varying optical axis profile. We show that such a medium can be an alternative to impedance-matched materials in various optical devices.
Second-order nonlinear optical metamaterials: ABC-type nanolaminates
Energy Technology Data Exchange (ETDEWEB)
Alloatti, L., E-mail: alloatti@mit.edu; Kieninger, C.; Lauermann, M.; Köhnle, K. [Institute of Photonics and Quantum Electronics (IPQ), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Froelich, A.; Wegener, M. [Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany); Frenzel, T. [Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Freude, W. [Institute of Photonics and Quantum Electronics (IPQ), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Institute for Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Leuthold, J.; Koos, C., E-mail: christian.koos@kit.edu [Institute of Photonics and Quantum Electronics (IPQ), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Institute for Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany)
2015-09-21
We demonstrate a concept for second-order nonlinear metamaterials that can be obtained from non-metallic centrosymmetric constituents with inherently low optical absorption. The concept is based on iterative atomic-layer deposition of three different materials, A = Al{sub 2}O{sub 3}, B = TiO{sub 2}, and C = HfO{sub 2}. The centrosymmetry of the resulting ABC stack is broken since the ABC and the inverted CBA sequences are not equivalent—a necessary condition for non-zero second-order nonlinearity. In our experiments, we find that the bulk second-order nonlinear susceptibility depends on the density of interfaces, leading to a nonlinear susceptibility of 0.26 pm/V at a wavelength of 800 nm. ABC-type nanolaminates can be deposited on virtually any substrate and offer a promising route towards engineering of second-order optical nonlinearities at both infrared and visible wavelengths.
VARIANCE OF NONLINEAR PHASE NOISE IN FIBER-OPTIC SYSTEM
Directory of Open Access Journals (Sweden)
RANJU KANWAR
2013-04-01
Full Text Available In communication system, the noise process must be known, in order to compute the system performance. The nonlinear effects act as strong perturbation in long- haul system. This perturbation effects the signal, when interact with amplitude noise, and results in random motion of the phase of the signal. Based on the perturbation theory, the variance of nonlinear phase noise contaminated by both self- and cross-phase modulation, is derived analytically for phase-shift- keying system. Through this work, it is investigated that for longer transmission distance, 40-Gb/s systems are more sensitive to nonlinear phase noise as compared to 50-Gb/s systems. Also, when transmitting the data through the fiber optic link, bit errors are produced due to various effects such as noise from optical amplifiers and nonlinearity occurring in fiber. On the basis of the simulation results , we have compared the bit error rate based on 8-PSK with theoretical results, and result shows that in real time approach, the bit error rate is high for the same signal to noise ratio. MATLAB software is used to validate the analytical expressions for the variance of nonlinear phase noise.
Dispersive optical nonlinearities in an EIT-Rydberg medium
Stanojevic, Jovica; Bimbard, Erwan; Ourjoumtsev, Alexei; Grangier, Philippe
2013-01-01
We investigate dispersive optical nonlinearities that arise from Rydberg excitation blockade in cold Rydberg gases. We consider a two-photon transition scheme and study the non-linear response to a weak optical probe in presence of a strong control beam. For very low probe fields, the dominant nonlinearities are of the third order and they can be exactly evaluated in a steady state regime. In a more general case, the change in average atomic populations and coherences due to Rydberg interactions can be characterized by properly defined scaling parameters, which are generally complex numbers but in certain situations take the usual meaning of the number of atoms in a blockade sphere. They can be used in a simple "universal scaling" formula to determine the dispersive optical nonlinearity of the medium. We also develop a novel technique to account for the Rydberg interaction effects, by simplifying the treatment of nonlocal interaction terms, the so-called collisional integrals. We find algebraic relations that...
Deterministic quantum nonlinear optics with single atoms and virtual photons
Kockum, Anton Frisk; Miranowicz, Adam; Macrı, Vincenzo; Savasta, Salvatore; Nori, Franco
2017-06-01
We show how analogs of a large number of well-known nonlinear-optics phenomena can be realized with one or more two-level atoms coupled to one or more resonator modes. Through higher-order processes, where virtual photons are created and annihilated, an effective deterministic coupling between two states of such a system can be created. In this way, analogs of three-wave mixing, four-wave mixing, higher-harmonic and -subharmonic generation (i.e., up- and down-conversion), multiphoton absorption, parametric amplification, Raman and hyper-Raman scattering, the Kerr effect, and other nonlinear processes can be realized. In contrast to most conventional implementations of nonlinear optics, these analogs can reach unit efficiency, only use a minimal number of photons (they do not require any strong external drive), and do not require more than two atomic levels. The strength of the effective coupling in our proposed setups becomes weaker the more intermediate transition steps are needed. However, given the recent experimental progress in ultrastrong light-matter coupling and improvement of coherence times for engineered quantum systems, especially in the field of circuit quantum electrodynamics, we estimate that many of these nonlinear-optics analogs can be realized with currently available technology.
Defocusing regimes of nonlinear waves in media with negative dispersion
DEFF Research Database (Denmark)
Bergé, L.; Kuznetsov, E.A.; Juul Rasmussen, J.
1996-01-01
Defocusing regimes of quasimonochromatic waves governed by a nonlinear Schrodinger equation with mixed-sign dispersion are investigated. For a power-law nonlinearity, we show that localized solutions to this equation defined at the so-called critical dimension cannot collapse in finite time...
(DARPA) Nonlinear Optics at Low Light Levels
2010-05-28
Stokes and anti-Stokes photons are transmitted through 10 GHz electro- optic amplitude modulators ( Eospace Inc.) with a half-wave voltage, Vπ of 1.3V. To...sinusoidal phase modulators ( EOSPACE ) which are driven at 30 GHz with modulation depths of about 1.5 radians. To set the modulation depth, we adjust...variable attenuator, (e) Atm Inc. P1409-360 phase trimmer, (f) Nextec-RF NA00435 amplifiers, (g) MegaPhase CA- V1K2 K to V coaxial adapters, (h) EOSPACE
Optical angular momentum in dispersive media
Philbin, T G
2012-01-01
The angular momentum density and flux of light in a dispersive, rotationally symmetric medium are derived from Noether's theorem. Optical angular momentum in a dispersive medium has no simple relation to optical linear momentum, even if the medium is homogeneous. A circularly polarized monochromatic beam in a homogeneous, dispersive medium carries a spin angular momentum per unit energy of $\\pm\\omega^{-1}$, as in vacuum. This result demonstrates the non-trivial interplay of dispersive contributions to optical angular momentum and energy.
Hirooka, Toshihiko; Seya, Daiki; Harako, Koudai; Suzuki, Daiki; Nakazawa, Masataka
2015-08-10
We propose the ultrahigh-speed demultiplexing of Nyquist OTDM signals using an optical Nyquist pulse as both a signal and a sampling pulse in an all-optical nonlinear switch. The narrow spectral width of the Nyquist pulses means that the spectral overlap between data and control pulses is greatly reduced, and the control pulse itself can be made more tolerant to dispersion and nonlinear distortions inside the nonlinear switch. We apply the Nyquist control pulse to the 640 to 40 Gbaud demultiplexing of DPSK and DQPSK signals using a nonlinear optical loop mirror (NOLM), and demonstrate a large performance improvement compared with conventional Gaussian control pulses. We also show that the optimum spectral profile of the Nyquist control pulse depends on the walk-off property of the NOLM.
Second-order nonlinear optical microscopy of spider silk
Zhao, Yue; Hien, Khuat Thi Thu; Mizutani, Goro; Rutt, Harvey N.
2017-06-01
Asymmetric β-sheet protein structures in spider silk should induce nonlinear optical interaction such as second harmonic generation (SHG) which is experimentally observed for a radial line and dragline spider silk using an imaging femtosecond laser SHG microscope. By comparing different spider silks, we found that the SHG signal correlates with the existence of the protein β-sheets. Measurements of the polarization dependence of SHG from the dragline indicated that the β-sheet has a nonlinear response depending on the direction of the incident electric field. We propose a model of what orientation the β-sheet takes in spider silk.
Self-characterization of linear and nonlinear adaptive optics systems
Hampton, Peter J.; Conan, Rodolphe; Keskin, Onur; Bradley, Colin; Agathoklis, Pan
2008-01-01
We present methods used to determine the linear or nonlinear static response and the linear dynamic response of an adaptive optics (AO) system. This AO system consists of a nonlinear microelectromechanical systems deformable mirror (DM), a linear tip-tilt mirror (TTM), a control computer, and a Shack-Hartmann wavefront sensor. The system is modeled using a single-input-single-output structure to determine the one-dimensional transfer function of the dynamic response of the chain of system hardware. An AO system has been shown to be able to characterize its own response without additional instrumentation. Experimentally determined models are given for a TTM and a DM.
In vivo multimodal nonlinear optical imaging of mucosal tissue
Sun, Ju; Shilagard, Tuya; Bell, Brent; Motamedi, Massoud; Vargas, Gracie
2004-05-01
We present a multimodal nonlinear imaging approach to elucidate microstructures and spectroscopic features of oral mucosa and submucosa in vivo. The hamster buccal pouch was imaged using 3-D high resolution multiphoton and second harmonic generation microscopy. The multimodal imaging approach enables colocalization and differentiation of prominent known spectroscopic and structural features such as keratin, epithelial cells, and submucosal collagen at various depths in tissue. Visualization of cellular morphology and epithelial thickness are in excellent agreement with histological observations. These results suggest that multimodal nonlinear optical microscopy can be an effective tool for studying the physiology and pathology of mucosal tissue.
Digital ultrasonically encoded (DUE) optical focusing into random media
Tay, Jian Wei; Suzuki, Yuta; Wang, Lihong V
2013-01-01
Focusing light into opaque random or scattering media such as biological tissue is a much sought-after goal for biomedical applications such as photodynamic therapy, optical manipulation, and photostimulation. However, focusing with conventional lenses is restricted to one transport mean free path in scattering media, limiting both optical penetration depth and resolution. Focusing deeper is possible by using optical phase conjugation or wavefront shaping to compensate for the scattering. For practical applications, wavefront shaping offers the advantage of a robust optical system that is less sensitive to optical misalignment. Here, the phase of the incident light is spatially tailored using a phase-shifting array to pre-compensate for scattering. The challenge, then, is to determine the phase pattern which allows light to be optimally delivered to the target region. Optimization algorithms are typically employed for this purpose, with visible particles used as targets to generate feedback. However, using th...
Nonlinear optical studies of relaxation in semiconductor microstructures
Remillard, Jeffrey Thomas
1990-11-01
Exposing a semiconductor to optical radiation near the fundamental band gap results in the creation of populations or elementary excitations including electrons, holes, and excitons, and also results in the creation of a superposition state between the ground and excited state of the solid. The relaxation of optically generated excitons and carriers in semiconductor microstructures was studied using four wave mixing (FWM) spectroscopy. The systems studied include CdSSe microcrystallite doped glasses and GaA/AlGaAs multiple quantum well structures (MQWS). First, the nonlinear optical response of simple two level systems is examined in order to provide insight into the types of line shapes expected from semiconductors. It is shown that the line shape is strongly dependent on how the system is coupled to the reservoir and the consequences of coupling to a reservoir are examined in a FWM measurement made in atomic sodium. The first semiconductor system studied is CdSSe microcrystallite doped glass. This system is shown to have a very slow component to the nonlinear response which has an optical intensity dependence and temperature dependence which suggests that the FWM response in these materials is trap mediated. Room temperature FWM measurements in GaAs MQWS enables the measurement of the carrier recombination time and the ambipolar diffusion coefficient. Using the technique of correlated optical fields, a slow component to the nonlinear response was measured showing an interference profile which suggests a possible shift of the exciton resonance due to the optically generated carriers. At low temperatures, measurements of the exciton line shape and relaxation time were made and evidence for exciton spectral diffusion was found. The low temperature line shapes can be qualitatively reproduced using Modified Optical Bloch equations which include the effects of spectral diffusion.
Nonlinear Quantum Optical Springs and Their Nonclassical Properties
Institute of Scientific and Technical Information of China (English)
M.J. Faghihi; M.K. Tavassoly
2011-01-01
The original idea of quantum optical spring arises from the requirement of quantization of the frequency of oscillations in the Hamiltonian of harmonic oscillator. This purpose is achieved by considering a spring whose constant （and so its frequency） depends on the quantum states ofanother system. Recently, it is realized that by the assumption of frequency modulation of ω to ω √1＋ μα＋α the mentioned idea can be established. In the present paper, we generalize the approach of quantum optical spring with particular attention to the dependence or trequency to the intensity of radiation field that naturally observes in the nonlinear coherent states, from which we arrive at a physical system has been called by us as nonlinear quantum optical spring. Then, after the introduction of the generalized tlamiltonian of nonlinear quantum optical spring and it＇s solution, we will investigate the nonclassical properties of the obtained states. Specially, typical collapse and revival in the distribution functions and squeezing parameters, as particular quantum features, will be revealed.
Ablation and optical third-order nonlinearities in Ag nanoparticles
Directory of Open Access Journals (Sweden)
Carlos Torres-Torres
2010-11-01
Full Text Available Carlos Torres-Torres1, Néstor Peréa-López2, Jorge Alejandro Reyes-Esqueda3, Luis Rodríguez-Fernández3, Alejandro Crespo-Sosa3, Juan Carlos Cheang-Wong3, Alicia Oliver31Section of Graduate Studies and Research, School of Mechanical and Electrical Engineering, National Polytechnic Institute, Zacatenco, Distrito Federal, Mexico; 2Laboratory for Nanoscience and Nanotechnology Research and Advanced Materials Department, IPICYT, Camino a la Presa San Jose, San Luis Potosi, Mexico; 3Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, México, D.F. 01000, MéxicoAbstract: The optical damage associated with high intensity laser excitation of silver nanoparticles (NPs was studied. In order to investigate the mechanisms of optical nonlinearity of a nanocomposite and their relation with its ablation threshold, a high-purity silica sample implanted with Ag ions was exposed to different nanosecond and picosecond laser irradiations. The magnitude and sign of picosecond refractive and absorptive nonlinearities were measured near and far from the surface plasmon resonance (SPR of the Ag NPs with a self-diffraction technique. Saturable optical absorption and electronic polarization related to self-focusing were identified. Linear absorption is the main process involved in nanosecond laser ablation, but nonlinearities are important for ultrashort picosecond pulses when the absorptive process become significantly dependent on the irradiance. We estimated that near the resonance, picosecond intraband transitions allow an expanded distribution of energy among the NPs, in comparison to the energy distribution resulting in a case of far from resonance, when the most important absorption takes place in silica. We measured important differences in the ablation threshold and we estimated that the high selectiveness of the SPR of Ag NPs as well as their corresponding optical nonlinearities can be strongly significant for laser
Nonlinear optical response in doped conjugated polymers
Harigaya, K
1995-01-01
Exciton effects on conjugated polymers are investigated in soliton lattice states. We use the Su-Schrieffer-Heeger model with long-range Coulomb interactions. The Hartree-Fock (HF) approximation and the single-excitation configuration- interaction (single-CI) method are used to obtain optical absorption spectra. The third-harmonic generation (THG) at off-resonant frequencies is calculated as functions of the soliton concentration and the chain length of the polymer. The magnitude of the THG at the 10 percent doping increases by the factor about 10^2 from that of the neutral system. This is owing to the accumulation of the oscillator strengths at the lowest exciton with increasing the soliton concentration. The increase by the order two is common for several choices of Coulomb interaction strengths.
Nonlinear optics with coherent free electron lasers
Bencivenga, F.; Capotondi, F.; Mincigrucci, R.; Cucini, R.; Manfredda, M.; Pedersoli, E.; Principi, E.; Simoncig, A.; Masciovecchio, C.
2016-12-01
We interpreted the recent construction of free electron laser (FELs) facilities worldwide as an unprecedented opportunity to bring concepts and methods from the scientific community working with optical lasers into the domain of x-ray science. This motivated our efforts towards the realization of FEL-based wave-mixing applications. In this article we present new extreme ultraviolet transient grating (X-TG) data from vitreous SiO2, collected using two crossed FEL pulses (photon frequency 38 eV) to generate the X-TG and a phase matched optical probing pulse (photon frequency 3.1 eV). This experiment extends our previous investigation, which was carried out on a nominally identical sample using a different FEL photon frequency (45 eV) to excite the X-TG. The present data are featured by a peak intensity of the X-TG signal substantially larger than that previously reported and by slower modulations of the X-TG signal at positive delays. These differences could be ascribed to the different FEL photon energy used in the two experiments or to differences in the sample properties. A systematic X-TG study on the same sample as a function of the FEL wavelength is needed to draw a consistent conclusion. We also discuss how the advances in the performance of the FELs, in terms of generation of fully coherent photon pulses and multi-color FEL emission, may push the development of original experimental strategies to study matter at the femtosecond-nanometer time-length scales, with the unique option of element and chemical state specificity. This would allow the development of advanced experimental tools based on wave-mixing processes, which may have a tremendous impact in the study of a large array of phenomena, ranging from nano-dynamics in complex materials to charge and energy transfer processes.
Intrinsic optical bistability between left-handed material and nonlinear optical materials
Institute of Scientific and Technical Information of China (English)
Shi Hong-Yan; Jiang Yong-Yuan; Sun Xiu-Dong; Guo Ru-Hai; Zhao Yi-Ping
2005-01-01
The electromagnetic properties of the interface between a left-handed material and a conventional nonlinear material were investigated theoretically and numerically. We found a new phenomenon-optical bistability of the interface.It was shown that the incident intensity, incident angle and permeability ratio between the left-handed and the nonlinear materials could dramatically affect the optical bistable behaviour. We also compared the bistable behaviours of different electromagnetic modes. The results indicated that the TE mode was prior to the TM mode to obtain optical bistability for the same parameter.
Conditioning-induced elastic nonlinearity in hysteretic media
Gliozzi, A. S.; Scalerandi, M.; Antonaci, P.; Bruno, C. L. E.
2010-08-01
The definition and measurement of the nonlinear elastic properties of a sample is of great importance for a large number of applications, including characterization of material performances and damage detection. However, such measurements are often influenced by spurious effects due to a combination of nonlinearity and nonequilibrium phenomena. We will present experimental data to show how nonlinearity due to small cracks in concrete samples increases as a consequence of conditioning, i.e., after having perturbed them with a constant amplitude excitation. In addition, our experimental data highlight "memory effects," i.e., they show that when the excitation is removed, the elastic modulus does not return instantaneously to the initial value.
Travelling Wave Solutions in Nonlinear Diffusive and Dispersive Media
Bazeia, D; Raposo, and E.P.
1998-01-01
We investigate the presence of soliton solutions in some classes of nonlinear partial differential equations, namely generalized Korteweg-de Vries-Burgers, Korteveg-de Vries-Huxley, and Korteveg-de Vries-Burgers-Huxley equations, which combine effects of diffusion, dispersion, and nonlinearity. We emphasize the chiral behavior of the travelling solutions, whose velocities are determined by the parameters that define the equation. For some appropriate choices, we show that these equations can be mapped onto equations of motion of relativistic 1+1 dimensional phi^{4} and phi^{6} field theories of real scalar fields. We also study systems of two coupled nonlinear equations of the types mentioned.
Directory of Open Access Journals (Sweden)
Anju K. Augustine
2014-01-01
Full Text Available We present third-order optical nonlinear absorption in CdSe quantum dots (QDs with particle sizes in the range of 4.16–5.25 nm which has been evaluated by the Z-scan technique. At an excitation irradiance of 0.54 GW/cm2 the CdSe QDs exhibit reverse saturation indicating a clear nonlinear behavior. Nonlinearity increases with particle size in CdSe QDs within the range of our investigations which in turn depends on the optical band gap. The optical limiting threshold of the QDs varies from 0.35 GW/cm2 to 0.57 GW/cm2 which makes CdSe QDs a promising candidate for reverse-saturable absorption based devices at high laser intensities such as optical limiters.
Nonlinear optical properties and optical limiting measurements of graphene oxide - Ag@TiO2 compounds
Ebrahimi, M.; Zakery, A.; Karimipour, M.; Molaei, M.
2016-07-01
In this work Graphene Oxide (GO), Ag@TiO2 core-shells and GO-Ag@TiO2 compounds were prepared and experimentally verified. Using a low power laser diode with 532 nm wavelength, the magnitude and the sign of the nonlinear refractive index and nonlinear absorption were determined by the Z-scan technique. It was observed that the nonlinear absorption of GO-Ag@TiO2 mixture was higher than pure GO. The optical limiting effect of these samples was also investigated using the 2nd harmonics of a pulsed Nd-YAG laser at 532 nm. Our results showed that the sole Ag@TiO2 didn't show any appreciable optical limiting effect, however after just mixing with graphene oxide the threshold of optical limiting was increased and the compound showed an enhancement of optical limiting behavior compared to GO itself. The presented results are discussed and compared with other literature reports.
Enhancement of second-order nonlinear-optical signals by optical stimulation
Goodman, Aaron J
2015-01-01
Second-order nonlinear optical interactions such as sum- and difference-frequency generation are widely used for bioimaging and as selective probes of interfacial environments. However, inefficient nonlinear optical conversion often leads to poor signal-to-noise ratio and long signal acquisition times. Here, we demonstrate the dramatic enhancement of weak second-order nonlinear optical signals via stimulated sum- and difference-frequency generation. We present a conceptual framework to quantitatively describe the interaction and show that the process is highly sensitive to the relative optical phase of the stimulating field. To emphasize the utility of the technique, we demonstrate stimulated enhancement of second harmonic generation (SHG) from bovine collagen-I fibrils. Using a stimulating pulse fluence of only 3 nJ/cm2, we obtain an SHG enhancement >10^4 relative to the spontaneous signal. The stimulation enhancement is greatest in situations where spontaneous signals are the weakest - such as low laser pow...
Zhao, Peng; Wang, Zonghua; Chen, Jishi; Zhou, Yu; Zhang, Fushi
2017-04-01
The nonlinear optical properties of the polymeric carboxyl phthalocyanine with lanthanum (LaPPc.COOH), holmium (HoPPc.COOH) and ytterbium (YbPPc.COOH) as centric atom, were investigated by the Z-scan method using a picosecond 532 nm laser. The synthesized phthalocyanines had steric polymeric structure and dissolved well in aqueous solution. The nonlinear optical response of them was attributed to the reverse saturable absorption and self-focus refraction. The nonlinear absorption properties decreased with the centric atoms changing from La, Ho to Yb. The largest second-order hyperpolarizability and optical limiting response threshold of LaPPc.COOH were 3.89 × 10-29 esu and 0.32 J/cm2, respectively. The reverse saturable absorption was explained by a three level mode of singlet excited state under the picosecond irradiation. The result indicates the steric structure presented additive stability of these polymeric phthalocyanines for their application as potential optical limiting materials.
Ray-optics analysis of inhomogeneous optically anisotropic media
Sluijter, M.
2010-01-01
When the optical behavior of light in a medium depends on the direction in which light is traveling, the medium is called optically anisotropic. Light is an electromagnetic wave and in this thesis, we discuss the electromagnetic theory on optical anisotropy. We do this with the assumption that the w
Ray-optics analysis of inhomogeneous optically anisotropic media
Sluijter, M.
2010-01-01
When the optical behavior of light in a medium depends on the direction in which light is traveling, the medium is called optically anisotropic. Light is an electromagnetic wave and in this thesis, we discuss the electromagnetic theory on optical anisotropy. We do this with the assumption that the w
Ray-optics analysis of inhomogeneous optically anisotropic media
Sluijter, M.
2010-01-01
When the optical behavior of light in a medium depends on the direction in which light is traveling, the medium is called optically anisotropic. Light is an electromagnetic wave and in this thesis, we discuss the electromagnetic theory on optical anisotropy. We do this with the assumption that the
Pakarzadeh, H.; Rezaei, S. M.
2016-01-01
In this article, we investigate for the first time the dispersion and the nonlinear characteristics of the tapered photonic crystal fibers (PCFs) as a function of length z, via solving the eigenvalue equation of the guided mode using the finite-difference frequency-domain method. Since the structural parameters such as the air-hole diameter and the pitch of the microstructured cladding change along the tapered PCFs, dispersion and nonlinear properties change with the length as well. Therefore, it is important to know the exact behavior of such fiber parameters along z which is necessary for nonlinear optics applications. We simulate the z dependency of the zero-dispersion wavelength, dispersion slope, effective mode area, nonlinear parameter, and the confinement loss along the tapered PCFs and propose useful relations for describing dispersion and nonlinear parameters. The results of this article, which are in a very good agreement with the available experimental data, are important for simulating pulse propagation as well as investigating nonlinear effects such as supercontinuum generation and parametric amplification in tapered PCFs.
Large Enhancement of Optical Nonlinearities of New Organophosphorus Fullerene Derivative
Institute of Scientific and Technical Information of China (English)
刘智波; 田建国; 臧维平; 周文远; 张春平; 郑建禺; 周迎春; 徐华
2003-01-01
Optical nonlinearities of new organophosphorus fullerene derivative were determined by the Z-scan method with a pulsed Q-switch Nd:YAG laser at 532nm. The experimental results demonstrated that the derivative has much larger excited-states nonlinear absorption and nonlinear refraction than C60. A five-level model was utilized to fit the experimental data, and a good agreement is reached. Some parameters such as excited-state absorption cross and refraction cross were obtained. To our knowledge, the excited-state cross section of new organophosphorus fullerene derivative and its effective ratio to the ground-state cross section are the largest values among the fullerene derivatives reported to date.
Center for Analysis of Heterogeneous and Nonlinear Media
1989-10-14
computation of singular solutions of the nonlinear Schroedinger equation) Xue Xin (nonlinear homogenization) Jing-Yi Zhu (Ph.D. 1989, adaptive vortex method...numerical analysis of the vortex method for vortex sheets were carried out by Krasny and by Caflisch and Lowengrub. 2. Exact singular solutions of the...restriction to analytic functions. - 18- Singularities - Examples and the Generic Form of Singularities Singular solutions of the Birkhoff-Rott equation (1
Beyond the perturbative description of the nonlinear optical response of low-index materials.
Reshef, Orad; Giese, Enno; Zahirul Alam, M; De Leon, Israel; Upham, Jeremy; Boyd, Robert W
2017-08-15
We show that standard approximations in nonlinear optics are violated for situations involving a small value of the linear refractive index. Consequently, the conventional equation for the intensity-dependent refractive index, n(I)=n0+n2I, becomes inapplicable in epsilon-near-zero and low-index media, even in the presence of only third-order effects. For the particular case of indium tin oxide, we find that the χ((3)), χ((5)), and χ((7)) contributions to refraction eclipse the linear term; thus, the nonlinear response can no longer be interpreted as a perturbation in these materials. Although the response is non-perturbative, we find no evidence that the power series expansion of the material polarization diverges.
Bidirectional invisibility in Kramers-Kronig optical media
Longhi, Stefano
2016-01-01
A broad class of planar dielectric media with complex permittivity profiles that are fully invisible, for both left and right incidence sides, is introduced. Such optical media are locally isotropic, non-magnetic and belong to the recently discovered class of Kramers-Kronig media [{\\it Nature Photon.} 9, 436 (2015)], i.e. the spatial profiles of the real and imaginary parts of the dielectric permittivity are related each other by a Hilbert transform. The transition from unidirectional to bidirectional invisibility, and the possibility to realize sharp reflection above a cut-off incidence angle, are also discussed.
Bidirectional invisibility in Kramers-Kronig optical media
Longhi, S.
2016-08-01
A broad class of planar dielectric media with complex permittivity profiles that are fully invisible, for both left and right incidence sides, is introduced. Such optical media are locally isotropic, non-magnetic and belong to the recently discovered class of Kramers-Kronig media [{\\it Nature Photon.} 9, 436 (2015)], i.e. the spatial profiles of the real and imaginary parts of the dielectric permittivity are related each other by a Hilbert transform. The transition from unidirectional to bidirectional invisibility, and the possibility to realize sharp reflection above a cut-off incidence angle, are also discussed.
Long wave-short wave resonance in nonlinear negative refractive index media.
Chowdhury, Aref; Tataronis, John A
2008-04-18
We show that long wave-short wave resonance can be achieved in a second-order nonlinear negative refractive index medium when the short wave lies on the negative index branch. With the medium exhibiting a second-order nonlinear susceptibility, a number of nonlinear phenomena such as solitary waves, paired solitons, and periodic wave trains are possible or enhanced through the cascaded second-order effect. Potential applications include the generation of terahertz waves from optical pulses.
Quantum nonlinear optics with polar J-aggregates in microcavities
Herrera, Felipe; Pachon, Leonardo A; Saikin, Semion K; Aspuru-Guzik, Alán
2014-01-01
We show that an ensemble of organic dye molecules with permanent electric dipole moments embedded in a microcavity can lead to strong optical nonlinearities at the single photon level. The strong long-range electrostatic interaction between chromophores due to their permanent dipoles introduces the desired nonlinearity of the light-matter coupling in the microcavity. We obtain the absorption spectra of a weak probe field under the influence of strong exciton-photon coupling with the cavity field. Using realistic parameters, we demonstrate that a single cavity photon can significantly modify the absorptive and dispersive response of the medium to a probe photon at a different frequency. Finally, we show that the system is in the regime of cavity-induced transparency with a broad transparency window for dye dimers. We illustrate our findings using pseudoisocyanine chloride (PIC) J-aggregates in currently-available optical microcavities.
Preparation of the Inclusion Complex-Type Nonlinear Optical Polymer
Directory of Open Access Journals (Sweden)
Li-Fen Wang
2013-01-01
Full Text Available This study uses the inclusion complex method to import nonlinear optical (NLO chromophores, disperse red1 (DR1, and spiropyran (SP, into the γ-CD cavity of the γ-cyclodextrin polymer (γ-CDP to prepare orderly aligned nonphotocontrollable and photocontrollable nonlinear optical polymers. Calculations support the ultraviolet/visible analyses and suggest the formation of the 1 : 2 DR1/γ-CDP and 1 : 2 SP/γ-CDP inclusion complexes. Upon complexation, the DR1 and SP molecules are free to align themselves along an applied electric field and show high order parameters of approximately 0.48 and 0.20, respectively. Reversible photochromic reactions exhibit that the SP/γ-CDP complex still retains the photochromic properties following corona poling.
Chromatic and Dispersive Effects in Nonlinear Integrable Optics
Webb, Stephen D; Valishev, Alexander; Nagaitsev, Sergei N; Danilov, Viatcheslav V
2015-01-01
Proton accumulator rings and other circular hadron accelerators are susceptible to intensity-driven parametric instabilities because the zero-current charged particle dynamics are characterized by a single tune. Landau damping can suppress these instabilities, which requires energy spread in the beam or introducing nonlinear magnets such as octupoles. However, this approach reduces dynamic aperture. Nonlinear integrable optics can suppress parametric instabilities independent of energy spread in the distribution, while preserving the dynamic aperture. This novel approach promises to reduce particle losses and enable order-of-magnitude increases in beam intensity. In this paper we present results, obtained using the Lie operator formalism, on how chromaticity and dispersion affect particle orbits in integrable optics. We conclude that chromaticity in general breaks the integrability, unless the vertical and horizontal chromaticities are equal. Because of this, the chromaticity correcting magnets can be weaker ...
Nonlinear optical polarization analysis in chemistry and biology
Simpson, Garth J
2017-01-01
This rigorous yet accessible guide presents a molecular-based description of nonlinear optical polarization analysis of chemical and biological assemblies. It includes discussion of the most common nonlinear optical microscopy and interfacial measurements used for quantitative analysis, specifically second harmonic generation (SHG), two-photon excited fluorescence (2PEF), vibrational sum frequency generation (SFG), and coherent anti-Stokes Raman spectroscopy/stimulated Raman spectroscopy (CARS/SRS). A linear algebra mathematical framework is developed, allowing step-wise systematic connections to be made between the observable measurements and the molecular response. Effects considered include local field corrections, the molecular orientation distribution, rotations between the molecular frame, the local frame and the laboratory frame, and simplifications from molecular and macromolecular symmetry. Specific examples are provided throughout the book, working from the common and relatively simple case studies ...
Parametric Analysis of Fiber Non-Linearity in Optical systems
Directory of Open Access Journals (Sweden)
Abhishek Anand
2013-06-01
Full Text Available With the advent of technology Wavelength Division Multiplexing (WDM is always an area of interest in the field of optical communication. When combined with Erbium Doped Fiber Amplifier (EDFA, it provides high data transmission rate and low attenuation. But due to fiber non-linearity such as Self Phase Modulation (SPM and Cross Phase Modulation (XPM the system performance has degraded. This non-linearity depends on different parameters of an optical system such as channel spacing, power of the channel and length of the fiber section. The degradation can be seen in terms of phase deviation and Bit Error Rate (BER performance. Even after dispersion compensation at the fiber end, residual pulse broadening still exists due to cross talk penalty.
ZnS/PVA nanocomposites for nonlinear optical applications
Ozga, K.; Michel, J.; Nechyporuk, B. D.; Ebothé, J.; Kityk, I. V.; Albassam, A. A.; El-Naggar, A. M.; Fedorchuk, A. O.
2016-07-01
We have found a correlation between ZnS nanocomposite nonlinear optical features and technological processing using electrolytic method. In the earlier researches this factor was neglected. However, it may open a new stage for operation by photovoltaic features of the well known semiconductors within a wide range of magnitudes. The titled nanostructured zinc sulfide (ZnS) was synthesized by electrolytic method. The obtained ZnS nano-crystallites possessed nano-particles sizes varying within 1.6 nm…1.8 nm. The titled samples were analyzed by XRD, HR-TEM, STEM, and nonlinear optical methods such as photo-induced two-photon absorption (TPA) and second harmonic generation (SHG). For this reason the nano-powders were embedded into the photopolymer poly(vinyl) alcohol (PVA) matrices. Role of aggregation in the mentioned properties is discussed. Possible origin of the such correlations are discussed.
Nonlinear optical localization in embedded chalcogenide waveguide arrays
Directory of Open Access Journals (Sweden)
Mingshan Li
2014-05-01
Full Text Available We report the nonlinear optical localization in an embedded waveguide array fabricated in chalcogenide glass. The array, which consists of seven waveguides with circularly symmetric cross sections, is realized by ultrafast laser writing. Light propagation in the chalcogenide waveguide array is studied with near infrared laser pulses centered at 1040 nm. The peak intensity required for nonlinear localization for the 1-cm long waveguide array was 35.1 GW/cm2, using 10-nJ pulses with 300-fs pulse width, which is 70 times lower than that reported in fused silica waveguide arrays and with over 7 times shorter interaction distance. Results reported in this paper demonstrated that ultrafast laser writing is a viable tool to produce 3D all-optical switching waveguide circuits in chalcogenide glass.
Harmonic nanoparticles: noncentrosymmetric metal oxides for nonlinear optics
Rogov, Andrii; Mugnier, Yannick; Bonacina, Luigi
2015-03-01
The combination of nonlinear optics and nanotechnology is an extremely rich scientific domain yet widely unexplored. We present here a review of recent optical investigations on noncentrosymmetric oxide nanoparticles with a large {{χ }(2)} response, often referred to as harmonic nanoparticles (HNPs). HNPs feature a series of properties which distinguish them from other photonics nanoprobes (quantum dots, up-conversion nanoparticles, noble metal particles). HNPs emission is inherently nonlinear and based on the efficient generation of harmonics as opposed to fluorescence or surface plasmon scattering. In addition, the fully coherent signal emitted by HNPs together with their polarization sensitive response and absence of resonant interaction make them appealing for several applications ranging from multi-photon (infrared) microscopy and holography, to cell tracking and sensing.
Dynamic nonlinear thermal optical effects in coupled ring resonators
Directory of Open Access Journals (Sweden)
Chenguang Huang
2012-09-01
Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.
Nonlinear interface optical switch structure for dual mode switching revisited
Bussjager, Rebecca J.; Osman, Joseph M.; Chaiken, Joseph
1998-07-01
There is a need for devices which will allow integration of photonic/optical computing subsystems into electronic computing architectures. This presentation reviews the nonlinear interface optical switch (NIOS) concept and then describes a new effect, the erasable optical memory (EOM) effect. We evaluate an extension of the NIOS device to allow simultaneous optical/electronic, i.e. dual mode, switching of light utilizing the EOM effect. Specific devices involve the fabrication of thin film tungsten (VI) oxide (WO3) and tungsten (V) oxide (W2O5) on the hypotenuse of glass (BK-7), fused silica (SiO2) and zinc selenide (ZnSe) right angle prisms. Chemical reactions and temporal response tests were performed and are discussed.
Ultratransparent Media and Transformation Optics with Shifted Spatial Dispersions
Luo, Jie; Yang, Yuting; Yao, Zhongqi; Lu, Weixin; Hou, Bo; Hang, Zhi Hong; Chan, C. T.; Lai, Yun
2016-11-01
By using pure dielectric photonic crystals, we demonstrate the realization of ultratransparent media, which allow near 100% transmission of light for all incident angles and create aberration-free virtual images. The ultratransparency effect is well explained by spatially dispersive effective medium theory for photonic crystals, and verified by both simulations and proof-of-principle microwave experiments. Designed with shifted elliptical equal frequency contours, such ultratransparent media not only provide a low-loss and feasible platform for transformation optics devices at optical frequencies, but also enable new freedom for phase manipulation beyond the local medium framework.
Internal Defect Measurement of Scattering Media by Optical Coherence Microscopy
Institute of Scientific and Technical Information of China (English)
ZHU Yong-kai; ZHAO Hong; WANG Zhao; WANG Jun-li
2005-01-01
Optical coherence microscopy is applied to measure scattering media's internal defect, which based on low coherence interferometry and confocal microscopy. Optical coherence microscopy is more effective in the rejection of out of focus and multiple scattered photons originating further away of the focal plane. With the three-dimension scanning, the internal defect is detected by measuring the thickness of different points on the sample. The axial resolution is 6 μm and lateral resolution is 1.2 μm. This method is possessed of the advantages over the other measurement method of scattering media, such as non-destruction and highresolution.
Nonlinear random optical waves: Integrable turbulence, rogue waves and intermittency
Randoux, Stéphane; Walczak, Pierre; Onorato, Miguel; Suret, Pierre
2016-10-01
We examine the general question of statistical changes experienced by ensembles of nonlinear random waves propagating in systems ruled by integrable equations. In our study that enters within the framework of integrable turbulence, we specifically focus on optical fiber systems accurately described by the integrable one-dimensional nonlinear Schrödinger equation. We consider random complex fields having a Gaussian statistics and an infinite extension at initial stage. We use numerical simulations with periodic boundary conditions and optical fiber experiments to investigate spectral and statistical changes experienced by nonlinear waves in focusing and in defocusing propagation regimes. As a result of nonlinear propagation, the power spectrum of the random wave broadens and takes exponential wings both in focusing and in defocusing regimes. Heavy-tailed deviations from Gaussian statistics are observed in focusing regime while low-tailed deviations from Gaussian statistics are observed in defocusing regime. After some transient evolution, the wave system is found to exhibit a statistically stationary state in which neither the probability density function of the wave field nor the spectrum changes with the evolution variable. Separating fluctuations of small scale from fluctuations of large scale both in focusing and defocusing regimes, we reveal the phenomenon of intermittency; i.e., small scales are characterized by large heavy-tailed deviations from Gaussian statistics, while the large ones are almost Gaussian.
Computationally Efficient Nonlinearity Compensation for Coherent Fiber-Optic Systems
Institute of Scientific and Technical Information of China (English)
Likai Zhu; Guifang Li
2012-01-01
Split-step digital backward propagation (DBP) can be combined with coherent detection to compensate for fiber nonlinear impairments. A large number of DBP steps is usually needed for a long-haul fiber system, and this creates a heavy computational load. In a trade-off between complexity and performance, interchannel nonlinearity can be disregarded in order to simplify the DBP algorithm. The number of steps can also be reduced at the expense of performance. In periodic dispersion-managed long-haul transmission systems, optical waveform distortion is dominated by chromatic dispersion. As a result, the nonlinearity of the optical signal repeats in every dispersion period. Because of this periodic behavior, DBP of many fiber spans can be folded into one span. Using this distance-folded DBP method, the required computation for a transoceanic transmission system with full inline dispersion compensation can be reduced by up to two orders of magnitude with negligible penalty. The folded DBP method can be modified to compensate for nonlinearity in fiber links with non-zero residua dispersion per span.
Nonlinear optical properties of methyl red under CW irradiation
Zheng, Yu; Ye, Qing; Wang, Chen; Wang, Jin; Deng, Zhichao; Mei, Jianchun; Zhou, Wenyuan; Zhang, Chunping; Tian, Jianguo
2015-12-01
Organic materials have wide potential application in nonlinear optical devices. The nonlinear optical (NLO) properties of methyl red (MR) doped polymethyl methacrylate (MR-PMMA) are investigated under CW laser irradiation at 473 nm, 532 nm and 632.8 nm, respectively. By combining Kramers-Kronig (K-K) relation and CW Z-scan technique, the effective refractive index n2 and the change of refractive index Δn are obtained under different scanning speed at 473 nm and 532 nm. Δn is positive at 473 nm, while Δn is negative at 532 nm. The experimental result is consistent with that of K-K relation. With the scanning speed decreasing, the NLO properties of MR-PMMA are enhanced. With different laser powers at 632.8 nm, MR-PMMA has only nonlinear absorption rather than nonlinear refraction. Meanwhile, the sample is investigated under pulse laser irradiation at 532 nm. Through the comparison of results of CW Z-scan and pulse Z-scan, the influence of the cumulative thermal effect on NLO properties of material is investigated. The results indicate that, under CW irradiation near the absorption peak wavelength, the cumulative thermal effect has great influence to the NLO properties of MR-PMMA.
Femtosecond nonlinear fiber optics in the ionization regime.
Hölzer, P; Chang, W; Travers, J C; Nazarkin, A; Nold, J; Joly, N Y; Saleh, M F; Biancalana, F; Russell, P St J
2011-11-11
By using a gas-filled kagome-style photonic crystal fiber, nonlinear fiber optics is studied in the regime of optically induced ionization. The fiber offers low anomalous dispersion over a broad bandwidth and low loss. Sequences of blueshifted pulses are emitted when 65 fs, few-microjoule pulses, corresponding to high-order solitons, are launched into the fiber and undergo self-compression. The experimental results are confirmed by numerical simulations which suggest that free-electron densities of ∼10(17) cm(-3) are achieved at peak intensities of 10(14) W/cm(2) over length scales of several centimeters.
Optical detection of terahertz using nonlinear parametric upconversion.
Khan, M Jalal; Chen, Jerry C; Kaushik, Sumanth
2008-12-01
We extend our work to perform sensitive, room-temperature optical detection of terahertz (THz) by using nonlinear parametric upconversion. THz radiation at 700 GHz is mixed with pump light at 1,550 nm in a bulk GaAs crystal to generate an idler wave at 1,555.6 nm. The idler is separated, coupled into optical fiber, and detected using a gated Geiger-mode avalanche photodiode. The resulting THz detector has a power sensitivity of 4.5 pW/Hz and a timing resolution of 1 ns.
Nonlinear optical properties of atomic vapor and semiconductors
Energy Technology Data Exchange (ETDEWEB)
Kim, Doseok [Univ. of California, Berkeley, CA (United States). Dept. of Physics
1997-05-01
This thesis contains the study of highly forbidden resonant second harmonic generation (SHG) in atomic potassium vapor using tunable picosecond pulses. Various output characteristics of vapor SHG have been investigated including the input intensity dependence, potassium vapor density dependence, buffer gas pressure dependence, and spatial profile. Recently, the discovery of new nonlinear optical crystals such as barium borate (β-BaB_{2}O_{4}, BBO) and lithium borate (LiB_{3}O_{5}, LBO) has greatly improved the performance of a tunable coherent optical devices based on optical parametric generation and amplification. In the second part of this thesis, a homebuilt picosecond optical parametric generator/amplifier (OPG/OPA) system is described in detail, including its construction details and output characteristics. This laser device has found many useful applications in spectroscopic studies including surface nonlinear optical spectroscopy via sum-frequency generation (SFG). The last part of this thesis reports studies on multiphoton-excited photoluminescence from porous silicon and GaN. Multiphoton excitation and photoluminescence can give numerous complementary information about semiconductors not obtainable with one-photon, above-bandgap excitation.
Stent-induced coronary artery stenosis characterized by multimodal nonlinear optical microscopy
Wang, Han-Wei; Simianu, Vlad; Locker, Mattew J.; Cheng, Ji-Xin; Sturek, Michael
2011-02-01
We demonstrate for the first time the applicability of multimodal nonlinear optical (NLO) microscopy to the interrogation of stented coronary arteries under different diet and stent deployment conditions. Bare metal stents and Taxus drug-eluting stents (DES) were placed in coronary arteries of Ossabaw pigs of control and atherogenic diet groups. Multimodal NLO imaging was performed to inspect changes in arterial structures and compositions after stenting. Sum frequency generation, one of the multimodalities, was used for the quantitative analysis of collagen content in the peristent and in-stent artery segments of both pig groups. Atherogenic diet increased lipid and collagen in peristent segments. In-stent segments showed decreased collagen expression in neointima compared to media. Deployment of DES in atheromatous arteries inhibited collagen expression in the arterial media.
Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Quantum Dots
Energy Technology Data Exchange (ETDEWEB)
Klimov, V.; McBranch, D.; Schwarz, C.
1998-08-10
Low-dimensional semiconductors have attracted great interest due to the potential for tailoring their linear and nonlinear optical properties over a wide-range. Semiconductor nanocrystals (NC's) represent a class of quasi-zero-dimensional objects or quantum dots. Due to quantum cordhement and a large surface-to-volume ratio, the linear and nonlinear optical properties, and the carrier dynamics in NC's are significantly different horn those in bulk materials. napping at surface states can lead to a fast depopulation of quantized states, accompanied by charge separation and generation of local fields which significantly modifies the nonlinear optical response in NC's. 3D carrier confinement also has a drastic effect on the energy relaxation dynamics. In strongly confined NC's, the energy-level spacing can greatly exceed typical phonon energies. This has been expected to significantly inhibit phonon-related mechanisms for energy losses, an effect referred to as a phonon bottleneck. It has been suggested recently that the phonon bottleneck in 3D-confined systems can be removed due to enhanced role of Auger-type interactions. In this paper we report femtosecond (fs) studies of ultrafast optical nonlinearities, and energy relaxation and trap ping dynamics in three types of quantum-dot systems: semiconductor NC/glass composites made by high temperature precipitation, ion-implanted NC's, and colloidal NC'S. Comparison of ultrafast data for different samples allows us to separate effects being intrinsic to quantum dots from those related to lattice imperfections and interface properties.
Dispersion and polarization dependence of mobile carrier optical nonlinearities
Rustagi, K. C.
1984-06-01
Based on the author's earlier work, it is shown that the proper inclusion of carrier scattering should strongly modify the frequency and polarization dependence of optical nonlinearities due to mobile carriers in semiconductors. When the momentum relaxation is much faster than the energy relaxation, the intensity dependent refractive index is enhanced, the induced birefringence becomes a sharp function of the difference frequency ωa-ωb, and a collision induced stimulated Raman effect becomes important.
High field optical nonlinearity and the Kramers-Kronig relations.
Wahlstrand, J K; Cheng, Y-H; Milchberg, H M
2012-09-14
The nonlinear optical response to high fields is absolutely measured for the noble gas atoms He, Ne, Ar, Kr, and Xe. We find that the response is quadratic in the laser field magnitude up to the ionization threshold of each gas. Its size and quadratic dependence are well predicted by a Kramers-Kronig analysis employing known ionization probabilities, and the results are consistent with calculations using the time-dependent Schrödinger equation.
Nonlinear Optical Spectroscopy of Excited States in Polyfluorene
Tong, M; Vardeny, Z V
2006-01-01
We used a variety of nonlinear optical (NLO) spectroscopies to study the singlet excited states order, and primary photoexcitations in polyfluorene; an important blue emitting p-conjugated polymer. The polarized NLO spectroscopies include ultrafast pump-probe photomodulation, two-photon absorption, and electroabsorption. For completeness we also measured the linear absorption and photoluminescence spectra. We found that the primary photoexcitations in polyfluorene are singlet excitons.
Properties of nonreciprocal light propagation in a nonlinear optical isolator
Roy, Dibyendu
2016-01-01
Light propagation in a nonlinear optical medium is nonreciprocal for spatially asymmetric linear permittivity. We here examine physical mechanism and properties of such nonreciprocity (NR). For this, we calculate transmission of light through a two-level atom asymmetrically coupled to light inside open waveguides. We determine the critical intensity of incident light for maximum NR and a dependence of the corresponding NR on asymmetry in the coupling. Surprisingly, we find that it is mainly c...
Optical nonlinearities in semiconductor-doped glasses near and below the band edge
Bindra, K. S.; Oak, S. M.; Rustagi, K. C.
1998-03-01
We present a brief review of our recent experimental results on optical nonlinearities in semiconductor-doped glasses. It is shown that even below the absorption edge the nonlinearities are determined by nonlinear absorption. The optical Kerr effect is found to have a susceptibility which is comparable to that for nonlinear refraction. We also find that in degenerate four-wave mixing the observed intensity dependence can be strongly influenced by nonlinear absorption.
Review of Robust Data Exchange Using Optical Nonlinearities
Directory of Open Access Journals (Sweden)
Jian Wang
2012-01-01
Full Text Available Data exchange, namely bidirectional information swapping, provides enhanced flexibility compared to the unidirectional information transfer. To fulfill the rapid development of high-speed large-capacity optical communications with emerging multiplexing/demultiplexing techniques and advanced modulation formats, a laudable goal would be to achieve data exchange in different degrees of freedom (wavelength, time, polarization, for different modulation formats (OOK, DPSK, DQPSK, pol-muxed, and at different granularities (entire data, groups of bits, tributary channels. Optical nonlinearities are potentially suitable candidates to enable data exchange in the wavelength, time, and polarization domains. In this paper, we will review our recent works towards robust data exchange by exploiting miscellaneous optical nonlinearities, including the use of cSFG/DFG in a PPLN waveguide for time- (groups of bits and channel-selective data exchange and tributary channel exchange between two WDM+OTDM signals, nondegenerate FWM in an HNLF for phase-transparent data exchange (DPSK, DQPSK, bidirectional degenerate FWM in an HNLF for multi-channel data exchange, and Kerr-induced nonlinear polarization rotation in an HNLF for tributary channel exchange of a pol-muxed DPSK OTDM signal. The demonstrated data exchanges in different degrees of freedom, for different modulation formats, and at different granularities, open the door for alternative approaches to achieve superior network performance.
Stable rotating dipole solitons in nonlocal optical media
DEFF Research Database (Denmark)
Lopez-Aguayo, Servando; Desyatnikov, Anton S.; Kivshar, Yuri S.
2006-01-01
We reveal that nonlocality can provide a simplæe physical mechanism for stabilization of multihump optical solitons and present what we believe to be the first example of stable rotating dipole solitons and soliton spiraling, which we are known to be unstable in all types of realistic nonlinear...
Optical data storage in nonphotosensitive media by femtosecond laser pulses
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Ultrashort lasers have become powerful tools by inducing extremely nonlinear effects in a wide variety of materials.Femtosecond laser data storage in non-photosensitive media is promising for its high density and fast retrieval. We reviewed the progress of three types of femtosecond laser storage in transparent materials: three-dimensional bit-oriented storage by micro-voids, holographic data storage by two beam interference and storage by computer-generated holograms.
Singular optical manipulation of birefringent elastic media using nonsingular beams.
Brasselet, Etienne
2009-10-15
It is shown that nonsingular light beams can generate singular birefringent patterns in homogeneous birefringent elastic media. These orientational defects of the optical-axis spatial distribution originate from an optical torque driven by a nonzero longitudinal field component. Singular radial and spin-dependent azimuthal light-induced elastic distortion patterns are described and experimentally observed in a uniform liquid-crystal film in the course of a focused circularly polarized Gaussian beam.
Optical dispersive shock waves in defocusing colloidal media
An, X.; Marchant, T. R.; Smyth, N. F.
2017-03-01
The propagation of an optical dispersive shock wave, generated from a jump discontinuity in light intensity, in a defocusing colloidal medium is analysed. The equations governing nonlinear light propagation in a colloidal medium consist of a nonlinear Schrödinger equation for the beam and an algebraic equation for the medium response. In the limit of low light intensity, these equations reduce to a perturbed higher order nonlinear Schrödinger equation. Solutions for the leading and trailing edges of the colloidal dispersive shock wave are found using modulation theory. This is done for both the perturbed nonlinear Schrödinger equation and the full colloid equations for arbitrary light intensity. These results are compared with numerical solutions of the colloid equations.
Nonlinear plasmonics with Kerr-like media for sensing
Crutcher, Sihon H.; Ruffin, Paul B.; Edwards, Eugene; Brantley, Christina L.
2014-04-01
Sensing technologies are currently needed for better maintainability, reliability, safety, and monitoring small variable changes on microscopic and nanoscale systems. Plasmonic sensor research has contributed to chemical and biological sensing needs by monitoring ultrafast temporal and spatial changes in optoelectronic systems. Nonlinear plasmonic waveguides with subwavelength confinement can further enhance the capabilities of plasmonic devices. Results in this paper highlight the derivation of the full-vector Maxwell Equations for the single metal- dielectric slot waveguide and the metal -dielectric -metal waveguide with the dielectric having a Kerr-like nonlinearity. These waveguides, typically have metallic losses that compete with nonlinearity at certain frequencies that can hinder surface plasmon wave propagation. By considering temporal and spatial beam propagation in these waveguides one expects to observe novel effects that could be used for sensing applications such as femtosecond pulse propagation with plasmon self-focusing, self-trapping, and frequency conversion with reduction in metallic losses.
Linear and nonlinear magneto-optics of ferritin.
Pankowska, M; Dobek, A
2009-07-07
Measurements of Rayleigh light scattering and Cotton-Mouton (CM) effect are carried out at room temperature for 100 mM NaCl solutions of apoferritin/ferritin loaded with 0, 90, 100, 500, 700, and 1500 Fe atoms/molecule. Because of the spherical shape, ferritin macromolecule should not manifest magnetic anisotropy; however, in solution it shows the induced magnetic birefringence (CM effect) and changes in intensity of the scattered light components. The newly obtained data support the previously reported conclusions indicating that the deformation of linear optical polarizability induced in the ferritin by a magnetic field and the orientation of the induced magnetic dipole moment by this field are the main sources of the magneto-optical phenomena observed. Nevertheless, it is also found that the orientation of the permanent magnetic dipole moment contributes to both effects. The magnetic field induced changes in the light scattering and the CM effect theoretically depend on the linear magneto-optical polarizability, chi, on the nonlinear magneto-optical polarizability, eta, and square of the permanent magnetic dipole moment value of the macromolecule, mu(2). On the basis of the theory describing both effects as well as the experimental data, the values of the anisotropy of linear magneto-optical polarizabilities components, the values of the linear optical polarizability and its anisotropy, nonlinear magneto-optical polarizability and its anisotropy, are estimated. Also the magnetic dipole moment of the ferritin macromolecule is found. Interestingly, not all iron atoms in the ferritin are indicated to be in the superparamagnetic state, some of them occur in the diamagnetic form.
Nonlinear Optical Properties of Carotenoid and Chlorophyll Harmonophores
Tokarz, Danielle Barbara
Information regarding the structure and function of living tissues and cells is instrumental to the advancement of cell biology and biophysics. Nonlinear optical microscopy can provide such information, but only certain biological structures generate nonlinear optical signals. Therefore, structural specificity can be achieved by introducing labels for nonlinear optical microscopy. Few studies exist in the literature about labels that facilitate harmonic generation, coined "harmonophores". This thesis consists of the first major investigation of harmonophores for third harmonic generation (THG) microscopy. Carotenoids and chlorophylls were investigated as potential harmonophores. Their nonlinear optical properties were studied by the THG ratio technique. In addition, a tunable refractometer was built in order to determine their second hyperpolarizability (gamma). At 830 nm excitation wavelength, carotenoids and chlorophylls were found to have large negative gamma values however, at 1028 nm, the sign of gamma reversed for carotenoids and remained negative for chlorophylls. Consequently, at 1028 nm wavelength, THG signal is canceled with mixtures of carotenoids and chlorophylls. Furthermore, when such molecules are covalently bonded as dyads or interact within photosynthetic pigment-protein complexes, it is found that additive effects with the gamma values still play a role, however, the overall gamma value is also influenced by the intra-pigment and inter-pigment interaction. The nonlinear optical properties of aggregates containing chlorophylls and carotenoids were the target of subsequent investigations. Carotenoid aggregates were imaged with polarization-dependent second harmonic generation and THG microscopy. Both techniques revealed crystallographic information pertaining to H and J aggregates and beta-carotene crystalline aggregates found in orange carrot. In order to demonstrate THG enhancement due to labeling, cultured cells were labeled with carotenoid
Stable one-dimensional periodic waves in Kerr-type saturable and quadratic nonlinear media
Energy Technology Data Exchange (ETDEWEB)
Kartashov, Yaroslav V [ICFO-Institut de Ciencies Fotoniques, and Department of Signal Theory and Communications, Universitat Politecnica de Catalunya, E-08034 Barcelona (Spain); Egorov, Alexey A [Physics Department, M V Lomonosov Moscow State University, 119899, Moscow (Russian Federation); Vysloukh, Victor A [Departamento de Fisica y Matematicas, Universidad de las Americas-Puebla, Santa Catarina Martir, 72820, Puebla, Cholula (Mexico); Torner, Lluis [ICFO-Institut de Ciencies Fotoniques, and Department of Signal Theory and Communications, Universitat Politecnica de Catalunya, E-08034 Barcelona (Spain)
2004-05-01
We review the latest progress and properties of the families of bright and dark one-dimensional periodic waves propagating in saturable Kerr-type and quadratic nonlinear media. We show how saturation of the nonlinear response results in the appearance of stability (instability) bands in a focusing (defocusing) medium, which is in sharp contrast with the properties of periodic waves in Kerr media. One of the key results discovered is the stabilization of multicolour periodic waves in quadratic media. In particular, dark-type waves are shown to be metastable, while bright-type waves are completely stable in a broad range of energy flows and material parameters. This yields the first known example of completely stable periodic wave patterns propagating in conservative uniform media supporting bright solitons. Such results open the way to the experimental observation of the corresponding self-sustained periodic wave patterns.
Polycarbonate-Based Blends for Optical Non-linear Applications
Stanculescu, F.; Stanculescu, A.
2016-02-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
Nonlinear optical characteristics of monolayer MoSe{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Le, Chinh Tam; Ullah, Farman; Senthilkumar, Velusamy; Kim, Yong Soo [Department of Physics and Energy Harvest Storage Research Center, University of Ulsan (Korea, Republic of); Clark, Daniel J.; Jang, Joon I. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY (United States); Sim, Yumin; Seong, Maeng-Je [Department of Physics, Chung-Ang University, Seoul (Korea, Republic of); Chung, Koo-Hyun [School of Mechanical Engineering, University of Ulsan (Korea, Republic of); Park, Hyoyeol [Electronics, Communication and Semiconductor Applications Department, Ulsan College (Korea, Republic of)
2016-08-15
In this study, we utilized picosecond pulses from an Nd:YAG laser to investigate the nonlinear optical characteristics of monolayer MoSe{sub 2}. Two-step growth involving the selenization of pulsed-laser-deposited MoO{sub 3} film was employed to yield the MoSe{sub 2} monolayer on a SiO{sub 2}/Si substrate. Raman scattering, photoluminescence (PL) spectroscopy, and atomic force microscopy verified the high optical quality of the monolayer. The second-order susceptibility χ{sup (2)} was calculated to be ∝50 pm V{sup -1} at the second harmonic wavelength λ{sub SHG} ∝810 nm, which is near the optical gap of the monolayer. Interestingly, our wavelength-dependent second harmonic scan can identify the bound excitonic states including negatively charged excitons much more efficiently, compared with the PL method at room temperature. Additionally, the MoSe{sub 2} monolayer exhibits a strong laser-induced damage threshold ∝16 GW cm{sup -2} under picosecond-pulse excitation{sub .} Our findings suggest that monolayer MoSe{sub 2} can be considered as a promising candidate for high-power, thin-film-based nonlinear optical devices and applications. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Polycarbonate-Based Blends for Optical Non-linear Applications.
Stanculescu, F; Stanculescu, A
2016-12-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
Nonlinear optical field sensors in extreme electromagnetic and acoustic environments
Garzarella, Anthony; Wu, Dong Ho
2014-03-01
Sensors based on electro-optic (EO) and magneto-optic (MO) crystals measure external electric and magnetic fields through changes in birefringence which the fields induce on the nonlinear crystals. Due to their small size and all-dielectric structure, EO and MO sensors are ideal in environments involving very large electromagnetic powers. Conventional antennas and metallic probes not only present safety hazards, due to their metallic structure and the presence of large currents, but they can also perturb the very fields they intend to measure. In the case of railguns, the large electromagnetic signals are also accompanied by tremendous acoustic noise, which presents a noise background that the sensors must overcome. In this presentation, we describe extensive data obtained from fiber optic EO and MO sensors used in the railgun of the Naval Research Laboratory. Along with the field measurements obtained, we will describe the interactions between the acoustic noise and the nonlinear crystals (most notably, photoelastic effects), the noise equivalent fields they produce, and methods they could be suppressed through the optical and geometrical configurations of the sensor so that the signal to noise ratio can be maximized.
Modeling delamination due to thermal stress in optical storage media
Nkansah, M. A.; Evans, K. E.
1990-04-01
Finite element analysis is used to calculate the shape of blisters formed in bilayer optical storage media due to the buildup of thermal stresses during laser writing. It is shown that practically usable blisters may be expected to form in a time period of about 15 ns. Such a thermal stress delamination process may also precede melting in conventional pit formation processes.
Photoacoustic-guided convergence of light through optically diffusive media.
Kong, Fanting; Silverman, Ronald H; Liu, Liping; Chitnis, Parag V; Lee, Kotik K; Chen, Y C
2011-06-01
We demonstrate that laser beams can be converged toward a light-absorbing target through optically diffusive media by using photoacoustic-guided interferometric focusing. The convergence of light is achieved by shaping the wavefront of the incident light with a deformable mirror to maximize the photoacoustic signal, which is proportional to the scattered light intensity at the light absorber.
Nidya, M.; Umadevi, M.; Sankar, Pranitha; Philip, Reji; Rajkumar, Beulah J. M.
2015-04-01
An extensive study on the behavior of L-Phenylalanine capped silver nanoparticles (Phe-Ag NPs) in the aqueous phase and in a sol-gel thin film showed different UV/Vis, Transmission Electron Microscope (TEM), Dynamic Light Scattering and Zeta potential profiles. Scanning Electron Microscope (SEM) images of the samples in the sol gel film showed Ag embedded in the SiO2 matrix. Surface Enhanced Raman Spectra (SERS) confirmed that both in the aqueous media and in the sol gel film, the attachment of Phe to the Ag NP surface was through the benzene ring, with the sol-gel film showing a better enhancement. Photocatalytic degradation of crystal violet was measured spectrophotometrically using Phe-Ag NPs as a nanocatalyst under visible light illumination. Intensity-dependent nonlinear optical absorption of Phe-Ag measured using the open aperture Z-scan technique revealed that the material is an efficient optical limiter with potential applications.
Valligatla, Sreeramulu; Haldar, Krishna Kanta; Patra, Amitava; Desai, Narayana Rao
2016-10-01
The semiconductor nanocrystals are found to be promising class of third order nonlinear optical materials because of quantum confinement effects. Here, we highlight the nonlinear optical switching and optical limiting of cadmium selenide (CdSe) quantum dots (QDs) using nanosecond Z-scan measurement. The intensity dependent nonlinear absorption and nonlinear refraction of CdSe QDs were investigated by applying the Z-scan technique with 532 nm, nanosecond laser pulses. At lower intensities, the nonlinear process is dominated by saturable absorption (SA) and it is changed to reverse saturable absorption (RSA) at higher intensities. The SA behaviour is attributed to the ground state bleaching and the RSA is ascribed to free carrier absorption (FCA) of CdSe QDs. The nonlinear optical switching behaviour and reverse saturable absorption makes CdSe QDs are good candidate for all-optical device and optical limiting applications.
Laser beam propagation in non-linearly absorbing media
CSIR Research Space (South Africa)
Forbes, A
2006-08-01
Full Text Available Many analytical techniques exist to explore the propagation of certain laser beams in free space, or in a linearly absorbing medium. When the medium is nonlinearly absorbing the propagation must be described by an iterative process using the well...
Thermal conductivities of some novel nonlinear optical materials.
Beasley, J D
1994-02-20
Results of thermal conductivity measurements are reported for several of the more recently developed nonlinear optical crystals. New or substantially revised values of thermal conductivity were obtained in six materials. Notable thermal conductivities measured were those for AgGaS(2) [0.014 W/(cm K) and 0.015 W/(cm K)], AgGaSe(2) [0.010 W/(cm K) and 0.011 W/(cm K)], beta barium borate [0.016 W/(cm K) and 0.012 W/(cm K)], and ZnGeP(2) [0.36 W/(cm K) and 0.35 W/(cm K)], with values quoted for directions respectively parallel and perpendicular to the optic axis for each material. These new data provide necessary input for the design of high-power optical frequency converters.
Linear and nonlinear magneto-optical properties of monolayer phosphorene
Nguyen, Chuong V.; Ngoc Hieu, Nguyen; Duque, C. A.; Quoc Khoa, Doan; Van Hieu, Nguyen; Van Tung, Luong; Vinh Phuc, Huynh
2017-01-01
We theoretically study the magneto-optical properties of monolayer phosphorene under a perpendicular magnetic field. We evaluate linear, third-order nonlinear, and total absorption coefficients and relative refractive index changes as functions of the photon energy and the magnetic field, and show that they are strongly influenced by the magnetic field. The magneto-optical absorption coefficients and relative refractive index changes appear in two different regimes: the microwave to THz and the visible frequency. The amplitude of intra-band transition peaks is larger than that of the inter-band transitions. The resonant peaks are blue-shifted with the magnetic field. Our results demonstrate the potential of monolayer phosphorene as a new two-dimensional material for applications in nano-electronic and optical devices as a promising alternative to graphene.
Linear addition algebra of optical nonlinearities in transparent conductive oxides
Kinsey, N; Clerici, M; Kim, J; Carnemolla, E; Shaltout, A; Kaipurath, R; Faccio, D; Shalaev, V M; Ferrera, M; Boltasseva, A
2016-01-01
The fields of nanophotonics and metamaterials have revolutionized the way we think of optical space ({\\epsilon},{\\mu}), enabling us to engineer the refractive index almost at will to confine light to the smallest of volumes as well as to manipulate optical signals with extremely small footprints and energy requirements. More recently, significant efforts have been devoted to the search for suitable materials for dynamic control, and so far, all-optical methods have primarily relied on either interband or intraband excitations. Here, we show that aluminum doped zinc oxide (AZO) supports a hybrid nonlinearity that exhibits a large and ultrafast response with controllable sign. We demonstrate that these two opposite material responses are independent and can be algebraically added together via two-color excitation, resulting in an increase in device bandwidth and unprecedented tuning capabilities. This peculiar behavior of AZO places it as a key material for next-generation ultrafast tunable nanophotonics and me...
DEFF Research Database (Denmark)
Guo, Hairun; Zeng, Xianglong; Zhou, Binbin
2013-01-01
We interpret the purely spectral forward Maxwell equation with up to third-order induced polarizations for pulse propagation and interactions in quadratic nonlinear crystals. The interpreted equation, also named the nonlinear wave equation in the frequency domain, includes quadratic and cubic...
Synthesis of Imidazole Derivatives for Their Second-order Nonlinear Optics
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
The design and the synthesis of two conjugated donor-acceptor imidazole derivatives(1, 2) were carried out for second-order nonlinear optics. The thermal properties, the transparency and second-order nonlinear optical properties of the molecules were investigated. The experimental results indicate that a good nonlinearity-transparency-thermal stability trade-off is achieved for them.
1994-09-01
Pasillas, P.; Hoover, J.; Lindsay, G.; Henry, R. J. Appi. Phys. 1990, 68 , 456. 139. Hampsch, H.; Yang, J.; Wong, G.; Torkelson, J. Macromolecules 1990, 23...New York, 1992. 295. Syms, R.; Cozens, J. Optical Guided Waves and Devices, McGraw Hill: New York, 1992. 296. Marcuse , D. Theory of Optical Dielectric
Sharma, Arvind; Nagar, A. K.
2016-05-01
The origin of optical bistability and hysterectic reflectivity on account of nonlinearity at optically induced Gallium silica interface has been investigated. Assuming the wave to be incident from the gallium nano particle layer side at gallium silica interface. The coupling between incident and reflected waves has shown nonlinear effects on Snell's law and Fresnel law. Effect of these nonlinear processes optical bistability and hysterectic reflectivity theoretically has been investigated. Theoretical results obtained are consistent with the available experimental results.
Z-scan for thin media with more than one nonlocal nonlinear response.
Irivas, B A Martinez; Carrasco, M L Arroyo; Otero, M M Mendez; García, R Ramos; Castillo, M D Iturbe
2016-06-13
A model to characterize the response of a thin media that can exhibit more than one nonlocal nonlinear response when it is illuminated with a Gaussian beam in a z-scan experiment is proposed. The model considers that these nonlocal contributions can be treated as independent contributions in the refractive or absorptive nonlinear response. Numerical results for two nonlocal nonlinear contributions with different magnitudes between them are presented. Experimental results obtained from a hydrogenated amorphous silicon sample are used to corroborate this model.
Strong electronic correlation effects in coherent multidimensional nonlinear optical spectroscopy.
Karadimitriou, M E; Kavousanaki, E G; Dani, K M; Fromer, N A; Perakis, I E
2011-05-12
We discuss a many-body theory of the coherent ultrafast nonlinear optical response of systems with a strongly correlated electronic ground state that responds unadiabatically to photoexcitation. We introduce a truncation of quantum kinetic density matrix equations of motion that does not rely on an expansion in terms of the interactions and thus applies to strongly correlated systems. For this we expand in terms of the optical field, separate out contributions to the time-evolved many-body state due to correlated and uncorrelated multiple optical transitions, and use "Hubbard operator" density matrices to describe the exact dynamics of the individual contributions within a subspace of strongly coupled states, including "pure dephasing". Our purpose is to develop a quantum mechanical tool capable of exploring how, by coherently photoexciting selected modes, one can trigger nonlinear dynamics of strongly coupled degrees of freedom. Such dynamics could lead to photoinduced phase transitions. We apply our theory to the nonlinear response of a two-dimensional electron gas (2DEG) in a magnetic field. We coherently photoexcite the two lowest Landau level (LL) excitations using three time-delayed optical pulses. We identify some striking temporal and spectral features due to dynamical coupling of the two LLs facilitated by inter-Landau-level magnetoplasmon and magnetoroton excitations and compare to three-pulse four-wave-mixing (FWM) experiments. We show that these features depend sensitively on the dynamics of four-particle correlations between an electron-hole pair and a magnetoplasmon/magnetoroton, reminiscent of exciton-exciton correlations in undoped semiconductors. Our results shed light into unexplored coherent dynamics and relaxation of the quantum Hall system (QHS) and can provide new insight into non-equilibrium co-operative phenomena in strongly correlated systems.
Optimization of optical nonlinearities in quantum cascade lasers
Bai, Jing
Nonlinearities in quantum cascade lasers (QCL's) have wide applications in wavelength tunability and ultra-short pulse generation. In this thesis, optical nonlinearities in InGaAs/AlInAs-based mid-infrared (MIR) QCL's with quadruple resonant levels are investigated. Design optimization for the second-harmonic generation (SHG) of the device is presented. Performance characteristics associated with the third-order nonlinearities are also analyzed. The design optimization for SHG efficiency is obtained utilizing techniques from supersymmetric quantum mechanics (SUSYQM) with both material-dependent effective mass and band nonparabolicity. Current flow and power output of the structure are analyzed by self-consistently solving rate equations for the carriers and photons. Nonunity pumping efficiency from one period of the QCL to the next is taken into account by including all relevant electron-electron (e-e) and longitudinal (LO) phonon scattering mechanisms between the injector/collector and active regions. Two-photon absorption processes are analyzed for the resonant cascading triple levels designed for enhancing SHG. Both sequential and simultaneous two-photon absorption processes are included in the rate-equation model. The current output characteristics for both the original and optimized structures are analyzed and compared. Stronger resonant tunneling in the optimized structure is manifested by enhanced negative differential resistance. Current-dependent linear optical output power is derived based on the steady-state photon populations in the active region. The second-harmonic (SH) power is derived from the Maxwell equations with the phase mismatch included. Due to stronger coupling between lasing levels, the optimized structure has both higher linear and nonlinear output powers. Phase mismatch effects are significant for both structures leading to a substantial reduction of the linear-to-nonlinear conversion efficiency. The optimized structure can be fabricated
Nonlinear optical effects in pure and N-doped semiconductors
Donlagic, N S
2000-01-01
the optical response of a one-dimensional n-doped two-band semiconductor whose conduction band has been linearized with respect to the two Fermi points. Due to the linearization it is possible to calculate the linear and nonlinear response functions of the interacting electron system exactly. These response functions are then used in order to determine the linear absorption spectrum and the time-integrated signal of a degenerated four-wave-mixing experiment. It is shown that the well-known features of the linear response can directly be related to features of the nonlinear experiments. For example, the exponent which describes the algebraic decay of the time-integrated four-wave-mixing signal is functionally dependent on the exponent of the algebraic singularity in the linear absorption spectrum reflecting the common origin of the different phenomena. Over the last decades, the nonlinear optical properties of condensed matter systems have been an attractive and fruitful field of research. While the linear res...
Light-matter interactions in engineered optical media (Conference Presentation)
Litchinitser, Natalia M.; Walasik, Wiktor T.; Silahli, Salih Z.
2016-09-01
The emergence of metamaterials also has a strong potential to enable a plethora of novel nonlinear light-matter interactions and even new nonlinear materials. In particular, nonlinear focusing and defocusing effects are of paramount importance for manipulation of the minimum focusing spot size of structured light beams necessary for nanoscale trapping, manipulation, and fundamental spectroscopic studies. Colloidal suspensions offer as a promising platform for engineering polarizibilities and realization of large and tunable nonlinearities. We will present our recent studies of the phenomenon of spatial modulational instability leading to laser beam filamentation in an engineered soft-matter nonlinear media as well as in negative index metamaterials. We will also discuss the possibilities of guiding, manipulating, and processing radio-and microwave-frequency radiation using photonic structures built of filaments in air. In particular, we introduce so-called virtual hyperbolic metamaterials formed by an array of plasma channels in air as a result of self-focusing of an intense laser pulse, and show that such structure can be used to manipulate microwave beams in a free space. Generation of virtual hyperbolic metamaterials requires a regular and spatially invariant distribution of plasma channels. Therefore, we discuss the generation of such large regular arrays of filaments and consider the interactions between multiple filaments, multiple filament formation, and phase-controlled structured filaments.
Villanueva, Guillermo E; Jakubinek, Michael B; Simard, Benoit; Oton, Claudio J; Matres, Joaquín; Shao, Li-Yang; Pérez-Millán, Pere; Albert, Jacques
2011-06-01
Single-wall carbon nanotube deposition on the cladding of optical fibers has been carried out to fabricate an all-fiber nonlinear device. Two different nanotube deposition techniques were studied. The first consisted of repeatedly immersing the optical fiber into a nanotube supension, increasing the thickness of the coating in each step. The second deposition involved wrapping a thin film of nanotubes around the optical fiber. For both cases, interaction of transmitted light through the fiber core with the external coating was assisted by the cladding mode resonances of a tilted fiber Bragg grating. Ultrafast nonlinear effects of the nanotube-coated fiber were measured by means of a pump-probe pulses experiment. © 2011 Optical Society of America
Doppler effect of nonlinear waves and superspirals in oscillatory media.
Brusch, Lutz; Torcini, Alessandro; Bär, Markus
2003-09-01
Nonlinear waves emitted from a moving source are studied. A meandering spiral in a reaction-diffusion medium provides an example in which waves originate from a source exhibiting a back-and-forth movement in a radial direction. The periodic motion of the source induces a Doppler effect that causes a modulation in wavelength and amplitude of the waves ("superspiral"). Using direct simulations as well as numerical nonlinear analysis within the complex Ginzburg-Landau equation, we show that waves subject to a convective Eckhaus instability can exhibit monotonic growth or decay as well as saturation of these modulations depending on the perturbation frequency. Our findings elucidate recent experimental observations concerning superspirals and their decay to spatiotemporal chaos.
Non-linear optical titanyl arsenates: Crystal growth and properties
Nordborg, Jenni Eva Louise
Crystals are appreciated not only for their appearance, but also for their unique physical properties which are utilized by the photonic industry in appliances that we come across every day. An important part of enabling the technical use of optical devices is the manufacture of crystals. This dissertation deals with a specific group of materials called the potassium titanyl phosphate (KIP) family, known for their non-linear optical and ferroelectric properties. The isomorphs vary in their linear optical and dielectric properties, which can be tuned to optimize device performance by forming solid solutions of the different materials. Titanyl arsenates have a wide range of near-infrared transmission which makes them useful for tunable infrared lasers. The isomorphs examined in the present work were primarily RbTiOASO4 (RTA) and CsTiOAsO4 (CTA) together with the mixtures RbxCs 1-xTiOAsO4 (RCTA). Large-scale crystals were grown by top seeding solution growth utilizing a three-zone furnace with excellent temperature control. Sufficiently slow cooling and constant upward lifting produced crystals with large volumes useable for technical applications. Optical quality RTA crystals up to 10 x 12 x 20 mm were grown. The greater difficulty in obtaining good crystals of CTA led to the use of mixed RCTA materials. The mixing of rubidium and cesium in RCTA is more favorable to crystal growth than the single components in pure RTA and CTA. Mixed crystals are rubidium-enriched and contain only 20-30% of the cesium concentration in the flux. The cesium atoms show a preference for the larger cation site. The network structure is very little affected by the cation substitution; consequently, the non-linear optical properties of the Rb-rich isomorphic mixtures of RTA and CTA can be expected to remain intact. Crystallographic methods utilizing conventional X-ray tubes, synchrotron radiation and neutron diffraction have been employed to investigate the properties of the atomic
Double resonant processes in $\\chi^{(2)}$ nonlinear periodic media
Konotop, V. V.; Kuzmiak, V.
2000-01-01
In a one-dimensional periodic nonlinear $\\chi^{(2)}$ medium, by choosing a proper material and geometrical parameters of the structure, it is possible to obtain two matching conditions for simultaneous generation of second and third harmonics. This leads to new diversity of the processes of the resonant three-wave interactions, which are discussed within the framework of slowly varying envelope approach. In particular, we concentrate on the fractional conversion of the frequency $\\omega \\to (...
Vectorial spatial solitons in bulk periodic quadratically nonlinear media
Energy Technology Data Exchange (ETDEWEB)
Panoiu, N-C [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States); Mihalache, D [Department of Theoretical Physics, Institute of Atomic Physics, PO Box MG-6, Bucharest (Romania); Mazilu, D [Department of Theoretical Physics, Institute of Atomic Physics, PO Box MG-6, Bucharest (Romania); Lederer, F [Institute of Solid State Theory and Theoretical Optics, Friedrich Schiller University Jena, Max-Wien-Platz 1, Jena, D-07743 (Germany); Osgood, R M Jr [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States)
2004-05-01
We present a comprehensive analysis of the generation, propagation and characteristic properties of two-dimensional spatial solitons formed in quasi-phase-matched gratings through type-II vectorial interaction. By employing an averaging approach based on asymptotic expansion theory, we show that the dynamics of soliton propagation in the grating and their stability properties are strongly influenced by induced Kerr-like nonlinearities. Finally, through extensive numerical simulations, we verify the validity of our theoretical predictions.
Higher-order modulation instability in nonlinear fiber optics.
Erkintalo, Miro; Hammani, Kamal; Kibler, Bertrand; Finot, Christophe; Akhmediev, Nail; Dudley, John M; Genty, Goëry
2011-12-16
We report theoretical, numerical, and experimental studies of higher-order modulation instability in the focusing nonlinear Schrödinger equation. This higher-order instability arises from the nonlinear superposition of elementary instabilities, associated with initial single breather evolution followed by a regime of complex, yet deterministic, pulse splitting. We analytically describe the process using the Darboux transformation and compare with experiments in optical fiber. We show how a suitably low frequency modulation on a continuous wave field induces higher-order modulation instability splitting with the pulse characteristics at different phases of evolution related by a simple scaling relationship. We anticipate that similar processes are likely to be observed in many other systems including plasmas, Bose-Einstein condensates, and deep water waves.
Nonlinear optical signals and spectroscopy with quantum light
Dorfman, Konstantin E; Mukamel, Shaul
2016-01-01
Conventional nonlinear spectroscopy uses classical light to detect matter properties through the variation of its response with frequencies or time delays. Quantum light opens up new avenues for spectroscopy by utilizing parameters of the quantum state of light as novel control knobs and through the variation of photon statistics by coupling to matter. We present an intuitive diagrammatic approach for calculating ultrafast spectroscopy signals induced by quantum light, focusing on applications involving entangled photons with nonclassical bandwidth properties - known as "time-energy entanglement". Nonlinear optical signals induced by quantized light fields are expressed using time ordered multipoint correlation functions of superoperators. These are different from Glauber's g- functions for photon counting which use normally ordered products of ordinary operators. Entangled photon pairs are not subjected to the classical Fourier limitations on the joint temporal and spectral resolution. After a brief survey o...
Assessment of fibrotic liver disease with multimodal nonlinear optical microscopy
Lu, Fake; Zheng, Wei; Tai, Dean C. S.; Lin, Jian; Yu, Hanry; Huang, Zhiwei
2010-02-01
Liver fibrosis is the excessive accumulation of extracellular matrix proteins such as collagens, which may result in cirrhosis, liver failure, and portal hypertension. In this study, we apply a multimodal nonlinear optical microscopy platform developed to investigate the fibrotic liver diseases in rat models established by performing bile duct ligation (BDL) surgery. The three nonlinear microscopy imaging modalities are implemented on the same sectioned tissues of diseased model sequentially: i.e., second harmonic generation (SHG) imaging quantifies the contents of the collagens, the two-photon excitation fluorescence (TPEF) imaging reveals the morphology of hepatic cells, while coherent anti-Stokes Raman scattering (CARS) imaging maps the distributions of fats or lipids quantitatively across the tissue. Our imaging results show that during the development of liver fibrosis (collagens) in BDL model, fatty liver disease also occurs. The aggregated concentrations of collagen and fat constituents in liver fibrosis model show a certain correlationship between each other.
Nonlinear optical absorption of photosynthetic pigment molecules in leaves.
Ye, Zi-Piao
2012-04-01
A mathematical formulation of the relationship between optical absorption coefficient of photosynthetic pigment molecules and light intensity was developed. It showed that physical parameters of photosynthetic pigment molecule (i.e., light absorption cross-section of photosynthetic pigment molecule, its average lifetime in the excited state, total photosynthetic pigment molecules, the statistical weight, or degeneracy of energy level of photosynthetic pigment molecules in the ground state and in the excited state) influenced on both the light absorption coefficient and effective light absorption cross-section of photosynthetic pigment molecules. Moreover, it also showed that both the light absorption coefficient and effective light absorption cross-section of photosynthetic pigment molecules were not constant, they decreased nonlinearly with light intensity increasing. The occupation numbers of photosynthetic pigment molecules in the excited states increased nonlinearly with light intensity increasing.
Linear and nonlinear optical response of spherical anisotropic semiconductor microcrystallites
Ramaniah, Lavanya M.; Nair, Selvakumar V.; Rustagi, Kailash C.
1989-12-01
We present a phenomenological theory of the linear and nonlinear optical properties associated with the Fröhlich resonances of an optically anisotropic, spherical semiconductor crystallite. Using the Maxwell-Garnett approach, we calculate the effective dielectric function of a composite medium containing such crystallites. To study the effect of anisotropy, we take CdS and CdSe quantum dots as examples for the inclusions, and use a two-resonance model for the dielectric function. Even for randomly oriented inclusions, the Fröhlich resonances split as a result of anisotropic local-field corrections. At higher laser intensities, absorption saturation leads to bistability or tristability in the optical response of individual crystallites, while the response of the composite medium with randomly oriented inclusions shows multistability, with many intermediate branches. The nonlinear response of such a composite medium also exhibits a new kind of orientation-induced broadening of resonances. We also find that tristability is possible in another kind of inhomogeneous material, viz., a composite medium containing two types of isotropic spherical crystallites.
Automated control of optical polarization for nonlinear microscopy
Brideau, Craig; Stys, Peter K.
2012-03-01
Laser-scanning non-linear optical techniques such as multi-photon fluorescence excitation microscopy (MPM), Second/ Third Harmonic Generation (SHG/THG), and Coherent Anti-Stokes Raman Scattering (CARS) are being utilized in research laboratories worldwide. The efficiencies of these non-linear effects are dependent on the polarization state of the excitation light relative to the orientation of the sample being imaged. In highly ordered anisotropic biological samples this effect can become pronounced and the excitation polarization can have a dramatic impact on imaging experiments. Therefore, controlling the polarization state of the exciting light is important; however this is challenging when the excitation light passes through a complex optical system. In a typical laser-scanning microscope, components such as the dichroic filters, lenses, and even mirrors can alter the polarization state of a laser beam before it reaches the sample. We present an opto-mechanical solution to compensate for the polarization effects of an optical path, and to precisely program the polarization state of the exciting laser light. The device and accompanying procedures allow the delivery of precise laser polarization states at constant average power levels to a sample during an imaging experiment.
Maximum Likelihood Sequence Detection Receivers for Nonlinear Optical Channels
Directory of Open Access Journals (Sweden)
Gabriel N. Maggio
2015-01-01
Full Text Available The space-time whitened matched filter (ST-WMF maximum likelihood sequence detection (MLSD architecture has been recently proposed (Maggio et al., 2014. Its objective is reducing implementation complexity in transmissions over nonlinear dispersive channels. The ST-WMF-MLSD receiver (i drastically reduces the number of states of the Viterbi decoder (VD and (ii offers a smooth trade-off between performance and complexity. In this work the ST-WMF-MLSD receiver is investigated in detail. We show that the space compression of the nonlinear channel is an instrumental property of the ST-WMF-MLSD which results in a major reduction of the implementation complexity in intensity modulation and direct detection (IM/DD fiber optic systems. Moreover, we assess the performance of ST-WMF-MLSD in IM/DD optical systems with chromatic dispersion (CD and polarization mode dispersion (PMD. Numerical results for a 10 Gb/s, 700 km, and IM/DD fiber-optic link with 50 ps differential group delay (DGD show that the number of states of the VD in ST-WMF-MLSD can be reduced ~4 times compared to an oversampled MLSD. Finally, we analyze the impact of the imperfect channel estimation on the performance of the ST-WMF-MLSD. Our results show that the performance degradation caused by channel estimation inaccuracies is low and similar to that achieved by existing MLSD schemes (~0.2 dB.
Optical nonlinearity enhancement with graphene-decorated silicon waveguides
Ishizawa, Atsushi; Kou, Rai; Goto, Takahiro; Tsuchizawa, Tai; Matsuda, Nobuyuki; Hitachi, Kenichi; Nishikawa, Tadashi; Yamada, Koji; Sogawa, Tetsuomi; Gotoh, Hideki
2017-04-01
Broadband on-chip optical frequency combs (OFCs) are important for expanding the functionality of photonic integrated circuits. Here, we demonstrate a huge local optical nonlinearity enhancement using graphene. A waveguide is decorated with graphene by precisely manipulating graphene’s area and position. Our approach simultaneously achieves both an extremely efficient supercontinuum and ultra-short pulse generation. With our graphene-decorated silicon waveguide (G-SWG), we have achieved enhanced spectral broadening of femtosecond pump pulses, along with an eightfold increase in the output optical intensity at a wavelength approximately 200 nm shorter than that of the pump pulses. We also found that this huge nonlinearity works as a compressor that effectively compresses pulse width from 80 to 15.7 fs. Our results clearly show the potential for our G-SWG to greatly boost the speed and capacity of future communications with lower power consumption, and our method will further decrease the required pump laser power because it can be applied to decorate various kinds of waveguides with various two-dimensional materials.
Z-scan: A simple technique for determination of third-order optical nonlinearity
Energy Technology Data Exchange (ETDEWEB)
Singh, Vijender, E-mail: chahal-gju@rediffmail.com [Department of Applied Science, N.C. College of Engineering, Israna, Panipat-132107, Haryana (India); Aghamkar, Praveen, E-mail: p-aghamkar@yahoo.co.in [Department of Physics, Chaudhary Devi Lal University, Sirsa-125055, Haryana (India)
2015-08-28
Z-scan is a simple experimental technique to measure intensity dependent nonlinear susceptibilities of third-order nonlinear optical materials. This technique is used to measure the sign and magnitude of both real and imaginary part of the third order nonlinear susceptibility (χ{sup (3)}) of nonlinear optical materials. In this paper, we investigate third-order nonlinear optical properties of Ag-polymer composite film by using single beam z-scan technique with Q-switched, frequency doubled Nd: YAG laser (λ=532 nm) at 5 ns pulse. The values of nonlinear absorption coefficient (β), nonlinear refractive index (n{sub 2}) and third-order nonlinear optical susceptibility (χ{sup (3)}) of permethylazine were found to be 9.64 × 10{sup −7} cm/W, 8.55 × 10{sup −12} cm{sup 2}/W and 5.48 × 10{sup −10} esu, respectively.
Demi, L; van Dongen, K W A; Verweij, M D
2011-03-01
Experimental data reveals that attenuation is an important phenomenon in medical ultrasound. Attenuation is particularly important for medical applications based on nonlinear acoustics, since higher harmonics experience higher attenuation than the fundamental. Here, a method is presented to accurately solve the wave equation for nonlinear acoustic media with spatially inhomogeneous attenuation. Losses are modeled by a spatially dependent compliance relaxation function, which is included in the Westervelt equation. Introduction of absorption in the form of a causal relaxation function automatically results in the appearance of dispersion. The appearance of inhomogeneities implies the presence of a spatially inhomogeneous contrast source in the presented full-wave method leading to inclusion of forward and backward scattering. The contrast source problem is solved iteratively using a Neumann scheme, similar to the iterative nonlinear contrast source (INCS) method. The presented method is directionally independent and capable of dealing with weakly to moderately nonlinear, large scale, three-dimensional wave fields occurring in diagnostic ultrasound. Convergence of the method has been investigated and results for homogeneous, lossy, linear media show full agreement with the exact results. Moreover, the performance of the method is demonstrated through simulations involving steered and unsteered beams in nonlinear media with spatially homogeneous and inhomogeneous attenuation.
Institute of Scientific and Technical Information of China (English)
CAO; Wenhua; LIU; Songhao
2004-01-01
A novel scheme to compress optical pulses is proposed and demonstrated numerically, which is based on a nonlinear optical loop mirror constructed from dispersion decreasing fiber (DDF). We show that, in contrast to the conventional soliton-effect pulse compression in which compressed pulses are always accompanied by pedestals and frequency chirps owning to nonlinear effects, the proposed scheme can completely suppress pulse pedestals and frequency chirps. Unlike the adiabatic compression technique in which DDF length must increase exponentially with input pulsewidth, the proposed scheme does not require adiabatic condition and therefore can be used to compress long pulses by using reasonable fiber lengths. For input pulses with peak powers higher than a threshold value, the compressed pulses can propagate like fundamental solitons. Furthermore, the scheme is fairly insensitive to small variations in the loop length and is more robust to higher-order nonlinear effects and initial frequency chirps than the adiabatic compression technique.
Enhancement of Second-Order Nonlinear-Optical Signals by Optical Stimulation
Goodman, A. J.; Tisdale, W. A.
2015-05-01
Second-order nonlinear optical interactions such as sum- and difference-frequency generation are widely used for bioimaging and as selective probes of interfacial environments. However, inefficient nonlinear optical conversion often leads to poor signal-to-noise ratio and long signal acquisition times. Here, we demonstrate the dramatic enhancement of weak second-order nonlinear optical signals via stimulated sum- and difference-frequency generation. We present a conceptual framework to quantitatively describe the interaction and show that the process is highly sensitive to the relative optical phase of the stimulating field. To emphasize the utility of the technique, we demonstrate stimulated enhancement of second harmonic generation (SHG) from bovine collagen-I fibrils. Using a stimulating pulse fluence of only 3 nJ /cm2 , we obtain an SHG enhancement >104 relative to the spontaneous signal. The stimulation enhancement is greatest in situations where spontaneous signals are the weakest—such as low laser power, small sample volume, and weak nonlinear susceptibility—emphasizing the potential for this technique to improve signal-to-noise ratios in biological imaging and interfacial spectroscopy.
Cascaded Optical Buffer Based on Nonlinear Polarization Rotation in Semiconductor Optical Amplifiers
Institute of Scientific and Technical Information of China (English)
CHENG Mu; WU Chong-Qing; LIU Hua
2008-01-01
A cascaded buffer based on nonlinear polarization rotation in semiconductor optical amplifiers is proposed, which is suitable for fast reconfiguration of buffering time at picoseconds. With the proposed buffer, sixty different buffer times are demonstrated at 2.5 Gb/s.
Engineering optical soliton bistability in colloidal media
Matuszewski, Michal
2010-01-01
We consider a mixture consisting of two species of spherical nanoparticles dispersed in a liquid medium. We show that with an appropriate choice of refractive indices and particle diameters, it is possible to observe the phenomenon of optical soliton bistability in two spatial dimensions in a broad beam power range. Previously, this possibility was ruled out in the case of a single-species colloid. As a particular example, we consider the system of hydrophilic silica particles and gas bubbles generated in the process of electrolysis in water. The interaction of two soliton beams can lead to switching of the lower branch solitons to the upper branch, and the interaction of solitons from different branches is phase independent and always repulsive.
Optical forensics for tracing counterfeit recorded media
Smith, Patrick J.; O'Doherty, Phelim; Luna, Carlos; McCarthy, Sean
2004-12-01
We describe an optical forensic method for tracing a CD back to the pressing machine in which it was created, and present a system we have developed which maintains a library of the 'fingerprints' of such machines and can compare sample CDs against this library. In principle, any security feature that is deliberately created can be copied by a counterfeiter. In our forensic method we concentrate on features that arise spontaneously in the manufacturing process. Such features act as a signature or 'fingerprint'. In the case of CDs we show how the moulding process leaves an imprint of an unpolished part of the 'mirror plate' on the CD surface. Using machine vision and pattern-matching, we demonstrate the use of the system to acquire a positive match of a sample against a pre-recorded library entry created using a different CD from the same mould.
Optical Multi-hysteresises and "Rogue Waves" in Nonlinear Plasma
Kaplan, A E
2010-01-01
An overdense plasma layer irradiated by an intense light can exhibit dramatic nonlinear-optical effects due to a relativistic mass-effect of free electrons: highly-multiple hysteresises of reflection and transition, and emergence of gigantic "rogue waves". Those are trapped quasi-soliton field spikes inside the layer, sustained by an incident radiation with a tiny fraction of their peak intensity once they have been excited by orders of magnitude larger pumping. The phenomenon persists even in the layers with "soft" boundaries, as well as in a semi-infinite plasma with low absorption.
Molecular design of porphyrin-based nonlinear optical materials.
Keinan, Shahar; Therien, Michael J; Beratan, David N; Yang, Weitao
2008-11-27
Nonlinear optical chromophores containing (porphyrinato)Zn(II), proquinoid, and (terpyridyl)metal(II) building blocks were optimized in a library containing approximately 10(6) structures using the linear combination of atomic potentials (LCAP) methodology. We report here the library design and molecular property optimizations. Two basic structural types of large beta(0) chromophores were examined: linear and T-shaped motifs. These T-shaped geometries suggest a promising NLO chromophoric architecture for experimental investigation and further support the value of performing LCAP searches in large chemical spaces.
Structure/property relationships in non-linear optical materials
Energy Technology Data Exchange (ETDEWEB)
Cole, J.M. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)]|[Durham Univ. (United Kingdom); Howard, J.A.K. [Durham Univ. (United Kingdom); McIntyre, G.J. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.
Fabrication of nonlinear plastic optical fiber (POF) and application
Kim, Eung Soo; Kinoshita, Takeshi; Yu, Yun Sik; Jeong, Myung Yung
2007-04-01
We have developed a fabrication technique for plastic optical fiber (POF) using nonlinear organic materials. The fabrication technique is the direct core solution injection into the hole of cladding preform formed by polymerization of cladding solution. The cladding solution was made of MMA, BBP, and BPO. The preform of fiber was drawn into fiber following polymerization of core solution in cladding preform. We used DR1 to control the refractive index of fiber and investigated the sensor characteristics. The sensitivity of fabricated fiber is about 0.11 W/°C in the temperature range from 20 °C to 100 °C.
Field-enhanced nonlinear optical properties of organic nanofibers
DEFF Research Database (Denmark)
Kostiučenko, Oksana; Fiutowski, Jacek; Brewer, Jonathan R.;
Second harmonic generation in nonlinearly optically active organic nanofibers, generated via self-assembled surface growth from nonsymmetrically functionalized para-quarterphenylene (CNHP4) molecules, has been investigated. After the growth on mica templates, nanofibers have been transferred onto...... lithographically defined regular arrays of metal and dielectric nanostructures. Such hybrid systems were employed to correlate the second harmonic response to both morphology of the fibers i.e. local field enhancement due to local changes in the fiber’s morphology and field enhancement effects appearing...
Field-enhanced nonlinear optical properties of organic nanofibers
DEFF Research Database (Denmark)
Kostiučenko, Oksana; Fiutowski, Jacek; Brewer, Jonathan R.;
2014-01-01
Second harmonic generation in nonlinearly optically active organic nanofibers, generated via self-assembled surface growth from nonsymmetrically functionalized para-quarterphenylene (CNHP4) molecules, has been investigated. After the growth on mica templates, nanofibers have been transferred onto...... lithographically defined regular arrays of metal and dielectric nanostructures. Such hybrid systems were employed to correlate the second harmonic response to both morphology of the fibers i.e. local field enhancement due to local changes in the fiber’s morphology and field enhancement effects appearing...
Integrable nonlinear parity-time symmetric optical oscillator
Hassan, Absar U; Miri, Mohammad-Ali; Khajavikhan, Mercedeh; Christodoulides, Demetrios N
2016-01-01
The nonlinear dynamics of a balanced parity-time symmetric optical microring arrangement are analytically investigated. By considering gain and loss saturation effects, the pertinent conservation laws are explicitly obtained in the Stokes domain-thus establishing integrability. Our analysis indicates the existence of two regimes of oscillatory dynamics and frequency locking, both of which are analogous to those expected in linear parity-time symmetric systems. Unlike other saturable parity time symmetric systems considered before, the model studied in this work first operates in the symmetric regime and then enters the broken parity-time phase.
Research of nonlinear optical properties of copper nanoparticles
Institute of Scientific and Technical Information of China (English)
L.Guo; Z.H.Wu; 等
1999-01-01
This research reports the preparation and characterization of copper nanoparticles modified by didecyl benzene sulfonate (DBS),The Cu nanoparticles' size was determined to be 40nm by transmission electron microscope(TEM).The X-ray photoelectron spectrometry(XPS) results show that there are interactions between the copper nanoparticles and DBS function group.The nonlinear optical properties were studied by the four-wave mixing method.The value of x(3)/α0 was found to be 6.9×10-11 esucm.
Directory of Open Access Journals (Sweden)
Lianwei Chen
2014-01-01
Full Text Available Silicon nanoparticles at different doping concentrations are investigated for tuning their optical nonlinear performance. The silicon nanoparticles are synthesized from doped silicon wafers by pulsed laser ablation. Their dispersions in water are studied for both nonlinear absorption and nonlinear refraction properties. It is found that the optical nonlinear performance can be modified by the doping concentration. Nanoparticles at a higher doping concentration exhibit better saturable absorption performance for femtosecond laser pulse, which is ascribed to the free carrier absorption mechanism.
Propagation of a Laguerre-Gaussian correlated Schell-model beam in strongly nonlocal nonlinear media
Qiu, Yunli; Chen, Zhaoxi; He, Yingji
2017-04-01
Analytical expressions for the cross-spectral density function and the second-order moments of the Wigner distribution function of a Laguerre-Gaussian correlated Schell-model (LGCSM) beam propagating in strongly nonlocal nonlinear media are derived. The propagation properties, such as beam irradiance, beam width, the spectral degree of coherence and the propagation factor of a LGCSM beam inside the media are investigated in detail. The effect of the beam parameters and the input power on the evolution properties of a LGCSM is illustrated numerically. It is found that the beam width varies periodically or keeps invariant for a certain proper input power. And both the beam irradiance and the spectral degree of coherence of the LGCSM beam change periodically with the propagation distance for the arbitrary input power which however has no influence on the propagation factor. The coherent length and the mode order mainly affect the evolution speed of the LGCSM beam in strongly nonlocal nonlinear media.
Multilayer Au/TiO2 Composite Films with Ultrafast Third-Order Nonlinear Optical Properties
Institute of Scientific and Technical Information of China (English)
LONG Hua; YANG Guang; CHEN Ai-Ping; LI Yu-Hua; LU Pei-Xiang
2008-01-01
We report on the ultrafast third-order optical nonlinearity in multilayer Au/TiO2 composite films fabricated on quartz substrates by pulsed laser deposition technique. The linear optical properties of the films are determined and optical absorption peaks due to surface plasmon resonance of Au particles are observed at about 59Onm.The third-order optical nonlinearities of the films are investigated by z-scan method using a femtosecond laser(50 fs) at the wavelength of 800 nm. The sample showed fast nonlinear optical responses with nonlinear absorption coefficient and nonlinear refractive index being -3.66×10-10 m/W and -2.95×10-17 m2/W, respectively. The results also show that the nonlinear optical effects increase with the increasing Au concentration in the composite films.
640 Gbit/s optical time-division add-drop multiplexing in a non-linear optical loop mirror
DEFF Research Database (Denmark)
Mulvad, Hans Christian Hansen; Galili, Michael; Oxenløwe, Leif Katsuo
2009-01-01
Error-free 640 Gbit/s all-optical time-division add-drop multiplexing is demonstrated using a non-linear optical loop mirror. Both the add- and drop operations are achieved simultaneously by switching.......Error-free 640 Gbit/s all-optical time-division add-drop multiplexing is demonstrated using a non-linear optical loop mirror. Both the add- and drop operations are achieved simultaneously by switching....
Nonlinear dynamics of direction-selective recurrent neural media.
Xie, Xiaohui; Giese, Martin A
2002-05-01
The direction selectivity of cortical neurons can be accounted for by asymmetric lateral connections. Such lateral connectivity leads to a network dynamics with characteristic properties that can be exploited for distinguishing in neurophysiological experiments this mechanism for direction selectivity from other possible mechanisms. We present a mathematical analysis for a class of direction-selective neural models with asymmetric lateral connections. Contrasting with earlier theoretical studies that have analyzed approximations of the network dynamics by neglecting nonlinearities using methods from linear systems theory, we study the network dynamics with nonlinearity taken into consideration. We show that asymmetrically coupled networks can stabilize stimulus-locked traveling pulse solutions that are appropriate for the modeling of the responses of direction-selective neurons. In addition, our analysis shows that outside a certain regime of stimulus speeds the stability of these solutions breaks down, giving rise to lurching activity waves with specific spatiotemporal periodicity. These solutions, and the bifurcation by which they arise, cannot be easily accounted for by classical models for direction selectivity.
A novel organic nonlinear optical crystal: Creatininium succinate
Energy Technology Data Exchange (ETDEWEB)
Thirumurugan, R.; Anitha, K., E-mail: singlecerystalxrd@gmail.ciom [School of Physics, Madurai Kamraj University, Madurai 625021 (India)
2015-06-24
A novel organic material complex of creatininium succinate (CS) has been synthesized and single crystals were grown by the reaction of creatinine and succinic acid from aqueous solution by employing the technique of slow evaporation at room temperature. The structure of the grown crystal has been elucidated using single crystal X-ray diffraction analysis and the structure was refined by least-squares method to R = 0.027 for 1840 reflections. FT-IR spectral investigation has been carried out to identify the various functional groups in the title compound. UV–Vis transmission was carried out which shows the crystal has a good optical transmittance in the visible region with lower cutoff wavelength around 220 nm. Nonlinear optical property of the crystal was confirmed by Kurtz-Perry powder technique.
Dimensionality of InGaAs nonlinear optical response
Energy Technology Data Exchange (ETDEWEB)
Bolton, S.R. [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.
1995-07-01
In this thesis the ultrafast optical properties of a series of InGaAs samples ranging from the two to the three dimensional limit are discussed. An optical system producing 150 fs continuum centered at 1.5 microns was built. Using this system, ultrafast pump-probe and four wave mixing experiments were performed. Carrier thermalization measurements reveal that screening of the Coulomb interaction is relatively unaffected by confinement, while Pauli blocking nonlinearities at the band edge are approximately twice as strong in two dimensions as in three. Carrier cooling via phonon emission is influenced by confinement due both to the change in electron distribution function and the reduction in electron phonon coupling. Purely coherent band edge effects, as measured by the AC Stark effect and four wave mixing, are found to be dominated by the changes in excitonic structure which take place with confinement.
Ultrafast Third-Order Nonlinear Optical Spectroscopy of Chlorinated Hydrocarbons
Energy Technology Data Exchange (ETDEWEB)
Napoleon Thantu; Robert S. Schley
2003-09-01
Time-resolved Raman induced Kerr effect spectroscopy in the optical heterodyne detection configuration has been employed to investigate intermolecular, intramolecular, and reorientational dynamics in neat trichloroethylene (TCE). The reorientation time constant is directly measured from the time-resolved data, while Fourier transformation of the time-resolved data yields the intermolecular and intramolecular vibrational spectrum. Use of ultrashort, femtosecond pulses enables excitation of depolarized Raman-active transitions between 1 and 500 cm-1. The intramolecular vibrations have been identified using a previous assignment. The limitations imposed by the laser and detector noise, and other nonlinear optical processes that are manifest at high pulse intensities, on the use of this time-domain technique for performing chemical species detection are discussed using carbon tetrachloride as an example.
Figures of merit of nonlinear optical chromophores in photorefractive polymers
Barzoukas, Marguerite; Blanchard-Desce, Mireille H.; Wortmann, Ruediger W.
1999-05-01
A pre-requisite to obtain polymers with a large photorefractive response is to design non-linear optical chromophores with a large figure of merit. This figure depends on the glass transition temperature of the material. We present a theoretical investigation that shows which are the important molecular parameters that control the magnitude of the figure of merit either in a low-Tg or in a high-Tg polymer. Derivation of the figures of merit for various push-pull molecules show a molecular engineering strategy can be successfully implemented to yield very large figures of merit. This approach is supported by an experimental investigation based on electro-optical absorption measurements.
Low power continuous wave laser induced optical nonlinearities in saffron ( Crocus Sativus L.)
Nasibov, H.; Mamedbeili, I.
2010-12-01
We report on the low power CW laser induced nonlinear optical responses of Saffron (stigmata of Crocus Savitus L.) ethanol and methanol extracts. The optical nonlinearities were investigated by performing Z-scan measurements at 470 and 535 nm wavelengths. At both wavelengths the material has a strong nonlinear refraction, mainly of thermal origin. However, only at 470 nm wavelength the material exhibit pronounced saturable nonlinear absorption. Long-term (70 days) stability measurements indicated that the nonlinearities in the Saffron extracts are due to their nonvolatile components. This study shows that there is great potential for Saffron extracts to be used in nonlinear photonic applications.
Nonlinear optical response of some Graphene oxide and Graphene fluoride derivatives
Liaros, Nikolaos; Orfanos, Ioannis; Papadakis, Ioannis; Couris, Stelios
2016-12-01
The nonlinear optical properties of two graphene derivatives, graphene oxide and graphene fluoride, are investigated by means of the Z-scan technique employing 35 ps and 4 ns, visible (532 nm) laser excitation. Both derivatives were found to exhibit significant third-order nonlinear optical response at both excitation regimes, with the nonlinear absorption being relatively stronger and concealing the presence of nonlinear refraction under ns excitation, while ps excitation reveals the presence of both nonlinear absorption and refraction. Both nonlinear properties are of great interest for several photonics, opto-fluidics, opto-electronics and nanotechnology applications.
Zinc Oxide Nanocrystals for Non-resonant Nonlinear Optical Microscopy in Biology and Medicine.
Kachynski, Aliaksandr V; Kuzmin, Andrey N; Nyk, Marcin; Roy, Indrajit; Prasad, Paras N
2008-07-24
In this paper we show that biocompatible zinc oxide (ZnO) nanocrystals (NCs) having non-centrosymmetric structure can be used as non-resonant nonlinear optical probes for targeting in bioimaging applications in vitro by use of the second order processes of second harmonic and sum frequency generation, as well as the third order process of four wave mixing. These non-resonant processes provide advantages above and beyond traditional two-photon bioimaging: (i) the probes do not photo-bleach; (ii) the input wavelength can be judiciously selected; and (iii) no heat is dissipated into the cells, ensuring longer cell viability and ultimately longer imaging times. ZnO NCs have been synthesized in organic media by using a non-hydrolytic sol-gel process, and subsequently dispersed in aqueous media using phospholipid micelles, and incorporated with the biotargeting molecule folic acid (FA). Sum Frequency, Second Harmonic and non-resonant four wave mixing non-linear signals from this stable dispersion of ZnO NCs, targeted to the live tumor (KB) cells were used for imaging. Robust intracellular accumulation of the targeted (FA incorporated) ZnO nanocrystals could be observed, without any indication of cytotoxicity.
Indian Academy of Sciences (India)
Hussain A Badran; Alaa Y Al-Ahmad; Qusay M Ali Hassan; Chassib A Emshary
2016-01-01
The optical properties of Violet 1-doped polyvinyl alcohol (PVA) have been investigated using Wemble and Didomenico (WD) method. The optical constants such as refractive index , the dispersion energy , the oscillation energy 0, the lattice dielectric constant ∞, light frequency dielectric constant 0 and the ratio of carrier concentration to the effective mass /* have been determined using reflection spectra in the wavelength range 300–900 nm. The singlebeam Z-scan technique was used to determine the nonlinear optical properties of Violet 1:polyvinylalcohol (PVA) thin film. The experiments were performed using continuous wave (cw) laser with a wavelength of 635 nm. The calculated nonlinear refractive index of the film, $n_{2} = -2.79 \\times 10^{-7}$ cm2/Wand nonlinear absorption coefficient, $\\beta = 6.31\\times10^{−3}$ cm/W. Optical limiting characteristics of the dye-doped polymer film was studied. The result reveals that Violet 1 can be a promising material for optical limiting applications.
Characterizing the Statistics of a Bunch of Optical Pulses Using a Nonlinear Optical Loop Mirror
Directory of Open Access Journals (Sweden)
Olivier Pottiez
2015-01-01
Full Text Available We propose in this work a technique for determining the amplitude distribution of a wave packet containing a large number of short optical pulses with different amplitudes. The technique takes advantage of the fast response of the optical Kerr effect in a fiber nonlinear optical loop mirror (NOLM. Under some assumptions, the statistics of the pulses can be determined from the energy transfer characteristic of the packet through the NOLM, which can be measured with a low-frequency detection setup. The statistical distribution is retrieved numerically by approximating the solution of a system of nonlinear algebraic equations using the least squares method. The technique is demonstrated numerically in the case of a packet of solitons.
Nonlinear optical spectroscopy of isotropic and anisotropic metallic nanocomposites
Energy Technology Data Exchange (ETDEWEB)
Fernandez-Hernandez, R C; Gleason-Villagran, R; Cheang-Wong, J C; Crespo-Sosa, A; Rodriguez-Fernandez, L; Lopez-Suarez, A; Oliver, A; Reyes-Esqueda, J A [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico, D. F. 04510 (Mexico); Torres-Torres, C [Seccion de Estudios de Posgrado e Investigacion, ESIME-Zacatenco, Instituto Politecnico Nacional, Mexico, D. F. 07338 (Mexico); Rangel-Rojo, R, E-mail: reyes@fisica.unam.mx [CICESE/Depto. de Optica, A.P. 360, Ensenada, B. C. 22860 (Mexico)
2011-01-01
In this work, we studied the nonlinear absorption and refraction of isotropic and anisotropic metallic nanocomposites, which consist of Au and Ag nanoparticles (NPs) embedded in matrices of SiO{sub 2}. We performed this study at different wavelengths using the Z-scan technique in the picosecond regime. The wavelengths were selected accordingly to the absorption spectra of the nanocomposites, choosing wavelengths into the inter- and intra-band transitions regions, including the surface plasmon (SP) resonance, as well as in the transparent region. For the anisotropic nanocomposites, the polarization and the incident angle were varied in order to evaluate the different components of the third order susceptibility tensor, {chi}{sup (3)}. We observed dramatic changes of sign for both, nonlinear refraction and absorption, when passing from Au to Ag and/or varying the wave length. The results accentuate the importance of the hot-electrons contribution to the nonlinear optical response at this temporal regime, when compared to inter-band and intra-band transitions contributions.
Ruan, Haowen; Yang, Changhuei
2015-01-01
Focusing light inside scattering media in a freely addressable fashion is challenging, as the wavefront of the scattered light is highly disordered. Recently developed ultrasound-guided wavefront shaping methods are addressing this challenge, albeit with relatively low modulation efficiency and resolution limitations. In this paper, we present a new technique, time-reversed ultrasound microbubble encoded (TRUME) optical focusing, which is able to focus light with improved efficiency and sub-ultrasound wavelength resolution. This method ultrasonically destructs microbubbles, and measures the wavefront change to compute and render a suitable time-reversed wavefront solution for focusing. We demonstrate that the TRUME technique can create an optical focus at the site of bubble destruction with a size of ~2 microns. Due to the nonlinear pressure-to-destruction response, the TRUME technique can break the addressable focus resolution barrier imposed by the ultrasound focus. We experimentally demonstrate a 2-fold ad...
Measuring large optical reflection matrices of turbid media
Yu, Hyeonseung; Park, YongKeun
2015-01-01
We report the measurement of a large optical reflection matrix (RM) of a highly disordered medium. Incident optical fields onto a turbid sample are controlled by a spatial light modulator, and the corresponding fields reflected from the sample are measured using full-field Michelson interferometry. The number of modes in the measured RM is set to exceed the number of resolvable modes in the scattering media. We successfully study the subtle intrinsic correlations in the RM which agrees with the theoretical prediction by random-matrix theory when the effect of the limited numerical aperture on the eigenvalue distribution of the RM is taken into account. The possibility of the enhanced delivery of incident energy into scattering media is also examined from the eigenvalue distribution which promises efficient light therapeutic applications.
Multilevel optical data recording methods on phase-change media
Institute of Scientific and Technical Information of China (English)
肖家曦; 齐国生; 佘鹏; 刘嵘; 徐端颐
2003-01-01
Multilevel data storage (ML) is a new method in the optical storage field, which is also a trend for improving the capability of future optical discs. This article introduces several ML methods based on phase-change media including pit depth modulation (PDM) and mark radial width modulation (MRWM). In addition, some disadvantages and advantages concerning the principle of these methods will be discussed. Finally, a new ML method will be advanced, through which the levels in one recording pit will be increased evidently.
Thermal stresses in multilayer optical-storage media
Nkansah, M. A.; Evans, K. E.
1989-07-01
Previously, it has been shown that thermal stresses may have a significant role to play in optical-storage media. Calculations have shown that thermal stresses are produced in single-layer optical-storage thin films sufficient to cause interlayer failure and blister formation. In this paper, more realistic multilayer thin films are modeled and it is shown that considerably higher stresses can be produced depending on the layer geometry and material properties. These effects are important both in the initial writing process and in subsequent reading or writing processes, and may result in long-term-accumulated, stress-induced damage.
Soliton gyroscopes in media with spatially growing repulsive nonlinearity
Driben, Rodislav; Malomed, Boris A; Meier, Torsten; Torner, Lluis
2013-01-01
We find that the recently introduced model of self-trapping supported by a spatially growing strength of a repulsive nonlinearity gives rise to robust vortex-soliton tori, i.e., three-dimensional vortex solitons, with topological charges S. The family with S=1 is completely stable, while the one with S=2 has alternating regions of stability and instability. The families are nearly exactly reproduced in an analytical form by the Thomas-Fermi approximation (TFA). Unstable states with S=2 and 3 split into persistently rotating pairs or triangles of unitary vortices. Application of a moderate torque to the vortex torus initiates a persistent precession mode, with the torus' axle moving along a conical surface. A strong torque heavily deforms the vortex solitons, but, nonetheless, they restore themselves with the axle oriented according to the vectorial addition of angular momenta.
Pérez-Moreno, Javier; Clays, Koen
The generalized Thomas-Kuhn sum rules are used to characterize the nonlinear optical response of organic chromophores in terms of fundamental parameters that can be measured experimentally. The nonlinear optical performance of organic molecules is evaluated from the combination of hyper-Rayleigh scattering measurements and the analysis in terms of the fundamental limits. Different strategies for the enhancement of nonlinear optical behavior at the molecular and supramolecular level are evaluated and new paradigms for the design of more efficient nonlinear optical molecules are proposed and investigated.
Investigation of local and nonlocal nonlinear optical refraction effect in IZO thin films
Htwe, Zin Maung; Zhang, Yun-Dong; Yao, Cheng-Bao; Li, Hui; Yuan, Ping
2016-10-01
We report the local and nonlocal nonlinear optical refraction properties of indium doped zinc oxide (IZO) thin films using closed aperture Z-scan technique. The Z-scan results show the films have positive nonlinear optical refraction properties. The nonlocal parameter m of samples is increased with indium. In both of local and nonlocal studies, the nonlinear optical refractions of thin films were increased with In contents and laser energy. This relation reveals the role of In composition in IZO affects on the nonlinear optical responses of the films. These results make the IZO thin films as the promising application in optoelectronics devices.
Hanumantharao, Redrothu; Kalainathan, S.
2012-02-01
A new and efficient semi organic nonlinear optical crystal (NLO) from the amino acid family L-alanine lithium chloride (LAL) has been grown by slow evaporation technique from aqueous solution. The functional groups were identified from NMR spectral studies. Mass spectral analysis shows the molecular ion mass. Dielectric studies has been done for the grown crystal and relative SHG efficiency is measured by Kurtz and Perry method and found to about 0.43 times that of standard potassium dihydrogen phosphate (KDP) crystals. The compound crystallized in non-centrosymmetric space group Pna21. The results have been discussed in detail.
Hanumantharao, Redrothu; Kalainathan, S
2012-02-01
A new and efficient semi organic nonlinear optical crystal (NLO) from the amino acid family L-alanine lithium chloride (LAL) has been grown by slow evaporation technique from aqueous solution. The functional groups were identified from NMR spectral studies. Mass spectral analysis shows the molecular ion mass. Dielectric studies has been done for the grown crystal and relative SHG efficiency is measured by Kurtz and Perry method and found to about 0.43 times that of standard potassium dihydrogen phosphate (KDP) crystals. The compound crystallized in non-centrosymmetric space group Pna21. The results have been discussed in detail.
de Aguiar, Hilton B; Brasselet, Sophie
2016-01-01
Despite the tremendous progresses in wavefront control through or inside complex scattering media, several limitations prevent reaching practical feasibility for nonlinear imaging in biological tissues. While the optimization of nonlinear signals might suffer from low signal to noise conditions and from possible artifacts at large penetration depths, it has nevertheless been largely used in the multiple scattering regime since it provides a guide star mechanism as well as an intrinsic compensation for spatiotemporal distortions. Here, we demonstrate the benefit of Transmission Matrix (TM) based approaches under broadband illumination conditions, to perform nonlinear imaging. Using ultrashort pulse illumination with spectral bandwidth comparable but still lower than the spectral width of the scattering medium, we show strong nonlinear enhancements of several orders of magnitude, through thicknesses of a few transport mean free paths, which corresponds to millimeters in biological tissues. Linear TM refocusing ...
Inexact Picard iterative scheme for steady-state nonlinear diffusion in random heterogeneous media.
Mohan, P Surya; Nair, Prasanth B; Keane, Andy J
2009-04-01
In this paper, we present a numerical scheme for the analysis of steady-state nonlinear diffusion in random heterogeneous media. The key idea is to iteratively solve the nonlinear stochastic governing equations via an inexact Picard iteration scheme, wherein the nonlinear constitutive law is linearized using the current guess of the solution. The linearized stochastic governing equations are then spatially discretized and approximately solved using stochastic reduced basis projection schemes. The approximation to the solution process thus obtained is used as the guess for the next iteration. This iterative procedure is repeated until an appropriate convergence criterion is met. Detailed numerical studies are presented for diffusion in a square domain for varying degrees of nonlinearity. The numerical results are compared against benchmark Monte Carlo simulations, and it is shown that the proposed approach provides good approximations for the response statistics at modest computational effort.
Thioborates: potential nonlinear optical materials with rich structural chemistry.
Lian, Yu-Kun; Wu, Li-Ming; Chen, Ling
2017-03-27
Nonlinear optical (NLO) crystal materials with good performance are urgently needed. Various compounds have been explored to date. Metal chalcogenides and borates are common sources of potential NLO materials with desirable properties, particularly in the IR and UV regions, respectively. However, these two types of crystals have their specific drawbacks. Thioborates, as an emerging system, have unique advantages by combining the merits of borates and sulfides, i.e., the high laser damage thresholds and rich structural diversity of borates with large optical nonlinearity and the favorable transparency range of sulfides. However, only a limited number of thioborates are known. This paper summarizes the known thioborates according to structural motifs that range from zero-dimension to three-dimension, most of which are formed by sharing corners of the basic building units (BS3)(3-) and (BS4)(5-). Although nearly one-third of the known thioborates are noncentrosymmetric, most of their properties, especially their NLO behaviors, are unexplored. Further attempts and additional investigations are required with respect to design syntheses, property improvements and micro-mechanism studies.
Organic non-linear optics and opto-electronics
Maldonado, J. L.; Ramos-Ortíz, G.; Rodríguez, M.; Meneses-Nava, M. A.; Barbosa-García, O.; Santillán, R.; Farfán, N.
2010-12-01
π-conjugated organic molecules and polymers are of great importance in physics, chemistry, material science and engineering. It is expected that, in the near future, organic materials will find widespread use in many technological applications. In the case of organic opto-electronic systems, the list of devices includes light emitting diodes (OLEDs), photovoltaic cells (OPVs), field-effect transistors (OFET), photorefractive materials for light manipulation, among others. These materials are also used for photonic applications: all-optical switching, modulators, optical correlators, plastic waveguides, all polymeric integrated circuits, solid-state lasers, and for biophotonic applications as in the case of the development of organic labels for multiphoton microscopy and photodynamic therapy. The advances in the developing of organic compounds with better mechanical, electrical, and optical (linear and non-linear) characteristics are of a great importance for this field. Here, we present the research on this area carried out at the Centro de Investigaciones en Óp-tica (CIO), in collaboration with Chemistry Departments of different institutions. This work focuses on the optical characterization of materials through several techniques such as TOF, FWM, TBC, THG Maker Fringes, HRS, Z-scan, and TPEF. Additionally, some applications, such as dynamic holography by using photorefractive polymers, and OPVs cells will be discussed.
Nonlinear coherent dynamics of an atom in an optical lattice
Argonov, V Y
2006-01-01
We consider a simple model of lossless interaction between a two-level single atom and a standing-wave single-mode laser field which creates a one-dimensional optical lattice. Internal dynamics of the atom is governed by the laser field which is treated to be classical with a large number of photons. Center-of-mass classical atomic motion is governed by the optical potential and the internal atomic degree of freedom. The resulting Hamilton-Schr\\"odinger equations of motion are a five-dimensional nonlinear dynamical system with two integrals of motion. The main focus of the paper is chaotic atomic motion that may be quantified strictly by positive values of the maximal Lyapunov exponent. It is shown that atom, depending on the value of its total energy, can either oscillate chaotically in a well of the optical potential or fly ballistically with weak chaotic oscillations of its momentum or wander in the optical lattice changing the direction of motion in a chaotic way. In the regime of chaotic wandering atomic...
Computational Modeling of Ultrafast Pulse Propagation in Nonlinear Optical Materials
Goorjian, Peter M.; Agrawal, Govind P.; Kwak, Dochan (Technical Monitor)
1996-01-01
There is an emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. rib build such devices and subsystems, one needs to model the entire chip. Accurate computer modeling of electromagnetic wave propagation in semiconductors is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Here, the computer simulations are made by solving the full vector, nonlinear, Maxwell's equations, coupled with the semiconductor Bloch equations, without any approximations. The carrier is retained in the description of the optical pulse, (i.e. the envelope approximation is not made in the Maxwell's equations), and the rotating wave approximation is not made in the Bloch equations. These coupled equations are solved to simulate the propagation of femtosecond optical pulses in semiconductor materials. The simulations describe the dynamics of the optical pulses, as well as the interband and intraband.
Nonlinear Interferometric Vibrational Imaging (NIVI) with Novel Optical Sources
Boppart, Stephen A.; King, Matthew D.; Liu, Yuan; Tu, Haohua; Gruebele, Martin
Optical imaging is essential in medicine and in fundamental studies of biological systems. Although many existing imaging modalities can supply valuable information, not all are capable of label-free imaging with high-contrast and molecular specificity. The application of molecular or nanoparticle contrast agents may adversely influence the biological system under investigation. These substances also present ongoing concerns over toxicity or particle clearance, which must be properly addressed before their approval for in vivo human imaging. Hence there is an increasing appreciation for label-free imaging techniques. It is of primary importance to develop imaging techniques that can indiscriminately identify and quantify biochemical compositions to high degrees of sensitivity and specificity through only the intrinsic optical response of endogenous molecular species. The development and use of nonlinear interferometric vibrational imaging, which is based on the interferometric detection of optical signals from coherent anti-Stokes Raman scattering (CARS), along with novel optical sources, offers the potential for label-free molecular imaging.
Zhang, Bo
The past decade has witnessed astounding boom in telecommunication network traffic. With the emergence of multimedia over Internet, the high-capacity optical transport systems have started to shift focus from the core network towards the end users. This trend leads to diverse optical networks with transparency and reconfigurability requirement. As single channel data rate continues to increase and channel spacing continues to shrink for high capacity, high spectral efficiency, the workload on conventional electronic signal processing elements in the router nodes continues to build up. Performing signal processing functions in the optical domain can potentially alleviate the speed bottleneck if the unique optical properties are efficiently leveraged to assist electronic processing methodologies. Ultra-high bandwidth capability along with the promise for multi-channel and format-transparent operation make optical signal processing an attractive technology which is expected to have great impact on future optical networks. For optical signal processing applications in fiber-optic network and systems, a laudable goal would be to explore the unique nonlinear optical processes in novel photonic devices. This dissertation investigates novel optical signal processing techniques through simulations and experimental demonstrations, analyzes limitations of these nonlinear processing elements and proposes techniques to enhance the system performance or designs for functional photonic modules. Two key signal-processing building blocks for future optical networks, namely slow-light-based tunable optical delay lines and SOA-based high-speed wavelength converters, are presented in the first part of the dissertation. Phase preserving and spectrally efficient slow light are experimentally demonstrated using advanced modulation formats. Functional and novel photonic modules, such as multi-channel synchronizer and variable-bit-rate optical time division multiplexer are designed and
Apparatus and Methods Using Highly Optically Dispersive Media
2011-08-02
of two-beam interferometers , such as, e.g., a Michelson interferometer , a Twyman-Green interferometer , and others known in the art. An alternative...guiding fiber . 20 32. The apparatus of claim 1, wherein the apparatus is a spectroscopic interferometer . 33. The apparatus of claim 1, wherein the...Zhimin et a!. "Enhancing the spectral sensitivity of interferometers using slow-light media". Optics Letters, vol. 32, No. 8, Apr. 15, 2007, pp. 915
Finite element analysis of thermal stresses in optical storage media
Evans, K. E.; Nkansah, M. A.; Abbott, S. J.
1988-10-01
Finite element techniques are used to calculate the thermal stresses generated in single-layer, optical storage thin films. The calculations predict that the thermal stresses generated by laser heating may reach values well beyond the strength of the media in times much less than that for pit formation by melting. Both dye-polymer and metal-based systems are considered with either air or substrate incident laser sources.
Lavrov, Roman; Peil, Michael; Jacquot, Maxime; Larger, Laurent; Udaltsov, Vladimir; Dudley, John
2009-08-01
We demonstrate experimentally how nonlinear optical phase dynamics can be generated with an electro-optic delay oscillator. The presented architecture consists of a linear phase modulator, followed by a delay line, and a differential phase-shift keying demodulator (DPSK-d). The latter represents the nonlinear element of the oscillator effecting a nonlinear transformation. This nonlinearity is considered as nonlocal in time since it is ruled by an intrinsic differential delay, which is significantly greater than the typical phase variations. To study the effect of this specific nonlinearity, we characterize the dynamics in terms of the dependence of the relevant feedback gain parameter. Our results reveal the occurrence of regular GHz oscillations (approximately half of the DPSK-d free spectral range), as well as a pronounced broadband phase-chaotic dynamics. Beyond this, the observed dynamical phenomena offer potential for applications in the field of microwave photonics and, in particular, for the realization of novel chaos communication systems. High quality and broadband phase-chaos synchronization is also reported with an emitter-receiver pair of the setup.
The nonlinear Schrödinger equation singular solutions and optical collapse
Fibich, Gadi
2015-01-01
This book is an interdisciplinary introduction to optical collapse of laser beams, which is modelled by singular (blow-up) solutions of the nonlinear Schrödinger equation. With great care and detail, it develops the subject including the mathematical and physical background and the history of the subject. It combines rigorous analysis, asymptotic analysis, informal arguments, numerical simulations, physical modelling, and physical experiments. It repeatedly emphasizes the relations between these approaches, and the intuition behind the results. The Nonlinear Schrödinger Equation will be useful to graduate students and researchers in applied mathematics who are interested in singular solutions of partial differential equations, nonlinear optics and nonlinear waves, and to graduate students and researchers in physics and engineering who are interested in nonlinear optics and Bose-Einstein condensates. It can be used for courses on partial differential equations, nonlinear waves, and nonlinear optics. Gadi Fib...
Laser Induced Nonlinear Optical Properties of Zinc Oxide Thin Film Prepared by Sol-Gel Method
Directory of Open Access Journals (Sweden)
Vinay Kumari
2011-01-01
Full Text Available Optical nonlinearities of spin coated ZnO thin film have been investigated by using single beam Z-Scan technique in the visible region. X- ray diffraction shows that all films are oriented along the c-axis direction of the hexagonal crystal structure. The average optical transmittance of all films is higher than 80 %. The nonlinear optical parameters viz. nonlinear absorption coefficient (β, nonlinear index of refraction (η2, nonlinear susceptibility (χ3, have been estimated using nanosecond laser pulses of second harmonic of Nd:YAG Laser. The value of nonlinear absorption coefficient β is estimated to be greater than the already reported value. The films clearly exhibit a-ve value of nonlinear refraction at 532 nm which is attributed to the two photon absorption and free carrier absorption. The presence of RSA in ZnO thin films inferes that ZnO is a potential material for the development of optical limiter.
Local numerical modelling of ultrasonic guided waves in linear and nonlinear media
Packo, Pawel; Radecki, Rafal; Kijanka, Piotr; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.
2017-04-01
Nonlinear ultrasonic techniques provide improved damage sensitivity compared to linear approaches. The combination of attractive properties of guided waves, such as Lamb waves, with unique features of higher harmonic generation provides great potential for characterization of incipient damage, particularly in plate-like structures. Nonlinear ultrasonic structural health monitoring techniques use interrogation signals at frequencies other than the excitation frequency to detect changes in structural integrity. Signal processing techniques used in non-destructive evaluation are frequently supported by modeling and numerical simulations in order to facilitate problem solution. This paper discusses known and newly-developed local computational strategies for simulating elastic waves, and attempts characterization of their numerical properties in the context of linear and nonlinear media. A hybrid numerical approach combining advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE) is proposed for unique treatment of arbitrary strain-stress relations. The iteration equations of the method are derived directly from physical principles employing stress and displacement continuity, leading to an accurate description of the propagation in arbitrarily complex media. Numerical analysis of guided wave propagation, based on the newly developed hybrid approach, is presented and discussed in the paper for linear and nonlinear media. Comparisons to Finite Elements (FE) are also discussed.
Point-by-point near-field optical energy deposition around plasmonic nanospheres in absorbing media.
Harrison, R K; Ben-Yakar, Adela
2015-08-01
Here we investigate the effects of absorbing media on plasmon-enhanced near-field optical energy deposition. We find that increasing absorption by the medium results in increased particle scattering at the expense of particle absorption, and that much of this increased particle scattering is absorbed by the medium close to the particle surface. We present an analytical method for evaluating the spatial distribution of near-field enhanced absorption surrounding plasmonic metal nanospheres in absorbing media using a new point-by-point method. We propose criteria to define relevant near-field boundaries and calculate the properties of the local absorption enhancement, which redistributes absorption to the near-field and decays asymptotically as a function of the distance from the particle to background levels. Using this method, we performed a large-scale parametric study to understand the effect of particle size and wavelength on the near-field absorption for gold nanoparticles in aqueous media and silicon, and identified conditions that are relevant to enhanced local infrared absorption in silicon. The presented approach provides insight into the local energy transfer around plasmonic nanoparticles for predicting near-field effects for advanced concepts in optical sensing, thin-film solar cells, nonlinear imaging, and photochemical applications.
Nonlinear dynamics in flow through unsaturated fractured-porous media: Status and perspectives
Energy Technology Data Exchange (ETDEWEB)
Faybishenko, Boris
2002-11-27
The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fractured rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences.
Nonlinear dynamics in flow through unsaturated fractured-porous media: Status and perspectives
Energy Technology Data Exchange (ETDEWEB)
Faybishenko, Boris
2002-11-27
The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fractured rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences.
Nonlinear to Linear Elastic Code Coupling in 2-D Axisymmetric Media.
Energy Technology Data Exchange (ETDEWEB)
Preston, Leiph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-08-01
Explosions within the earth nonlinearly deform the local media, but at typical seismological observation distances, the seismic waves can be considered linear. Although nonlinear algorithms can simulate explosions in the very near field well, these codes are computationally expensive and inaccurate at propagating these signals to great distances. A linearized wave propagation code, coupled to a nonlinear code, provides an efficient mechanism to both accurately simulate the explosion itself and to propagate these signals to distant receivers. To this end we have coupled Sandia's nonlinear simulation algorithm CTH to a linearized elastic wave propagation code for 2-D axisymmetric media (axiElasti) by passing information from the nonlinear to the linear code via time-varying boundary conditions. In this report, we first develop the 2-D axisymmetric elastic wave equations in cylindrical coordinates. Next we show how we design the time-varying boundary conditions passing information from CTH to axiElasti, and finally we demonstrate the coupling code via a simple study of the elastic radius.
Chiro-optic and nonlinear optical studies of bridged triarylamine heterohelicenes; A DFT study
Islam, Nasarul; Pandith, Altaf Hussain
2017-08-01
Density Functional Theory at B3PW91/6-311G (d, p) level was employed to analyze the spectral properties and nonlinear optical response of the oxo and thia-bridged triarylamine heterohelicenes. The energy calculations of optimized geometries reveals that the M and P isomeric forms of heterohelicenes of 1, 2, 3 and 4 are enantiomers, while as for 5, 6 and 7 they are atropisomers. The simulated Infrared and Vibrational circular dichroism spectra in the mid-infrared region (1300-1650 cm-1) display peaks, having contribution from out-of-phase stretching of the three fused aromatic rings and contribution from the three Nsbnd C bond stretching. In addition to these peaks M-7 displays peak corresponds to bending of Hsbnd Csbnd H of terminal methoxy group. In this study we have observed the oxo-bridged heterohelicenes displays higher values of hyperpolarizability as compared to thia-bridged heterohelicenes. In case of M-5, M-6 and M-7 the calculation reveals that with increase in electron donating capacity of substituent the hyperpolarizability increase due to decrease in optical band gap. Therefore, the oxo- and thia-bridged heterohelicenes can act as good raw material for nonlinear optical device and their nonlinear optical response can be enhanced by the extension in π-conjugation or addition of electron donating substituents.
Nonlinear optical properties of natural laccaic acid dye studied using Z-scan technique
CSIR Research Space (South Africa)
Zongo, S
2015-08-01
Full Text Available We have investigated the nonlinear optical properties, including the optical limiting behaviour for five different concentrations of laccaic acid dye in solution and a thin film obtained through doping in poly (methyl methacrylate) (PMMA) polymer...
Unifying diffusion and seepage for nonlinear gas transport in multiscale porous media
Song, Hongqing; Wang, Yuhe; Wang, Jiulong; Li, Zhengyi
2016-09-01
We unify the diffusion and seepage process for nonlinear gas transport in multiscale porous media via a proposed new general transport equation. A coherent theoretical derivation indicates the wall-molecule and molecule-molecule collisions drive the Knudsen and collective diffusive fluxes, and constitute the system pressure across the porous media. A new terminology, nominal diffusion coefficient can summarize Knudsen and collective diffusion coefficients. Physical and numerical experiments show the support of the new formulation and provide approaches to obtain the diffusion coefficient and permeability simultaneously. This work has important implication for natural gas extraction and greenhouse gases sequestration in geological formations.
Nonlinear optical properties of Au-Ag core-shell nanorods for all-optical switching
Zhang, Luman; Dai, Hongwei; Wang, Xia; Yao, Linhua; Ma, Zongwei; Han, Jun-Bo
2017-09-01
Au-Ag core-shell nanorods with surface plasmon resonance wavelengths of 760-840 nm were prepared. Wavelength-dependent nonlinear absorption coefficients (β) and nonlinear refractive indices (γ) of the nanorods were measured by using Z-scan techniques. The corresponding one-photon and two-photon figures of merit (W and T) were calculated from β and γ. The results show that the requirements of W > 1 and T < 1 for the application of all-optical switching could be achieved for all the samples over a broad wavelength range. These observations make the Au-Ag core-shell nanorods a good candidate for all-optical switching devices.
All-optical switching and nonlinear optical properties of HBT in ethanol solution
Institute of Scientific and Technical Information of China (English)
Zheng Jia-Jin; Zhang Gui-Lan; Guo Yang-Xue; Li Xiang-Ping; Chen Wen-Ju
2007-01-01
This paper demonstrates an all-optical switching model system comprising a single pulsed pump beam at 355 nm and a CW He-Ne signal beam at 632.8 nm with 2-(2'-hydroxyphenyl)benzothiazole (HBT) in ethanol solution. The origins of the optical switching effect were discussed. By the study of nonlinear optical properties for HBT in ethanol solvent, this paper verified that the excited-state intramolecular proton transfer (ESIPT) effect of HBT and the thermal effect of solvent worked on quite different time scales and together induced the change of the refractive index of HBT solution, leading to the signal beam deflection. The results indicated that the HBT molecule could be an excellent candidate for high-speed and high-sensitive optical switching devices.
Directory of Open Access Journals (Sweden)
2007-03-01
Full Text Available Transparent Nonlinear Optical (NLO inorganic/organic (polyimide/silica hybrid composites with covalent links between the inorganic and the organic networks were prepared by the sol-gel method. The silica content in the hybrid films was varied from 0 to 22.5/wt%. The prepared PI hybrids were characterized by IR, UV-Vis, Thermogravimetric analysis (TGA, X-ray diffraction (XRD, Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM. They exhibited fair good optical transparency. The SiO2 phase was well dispersed in the polymer matrix. DSC and TGA results showed that these hybrid materials had excellent thermal stability. The polymer solutions could be spin coated on the indium-tin-oxide (ITO glass to form optical quality thin films. The electro-optic coefficients (γ33 at the wavelength of 832 nm for polymer thin films poled were in the range of 19-27 pm/V.
Nonlinear coda wave analysis of hysteretic elastic behavior in strongly scattering media
Ouarabi, M. Ait; Boubenider, F.; Gliozzi, A. S.; Scalerandi, M.
2016-10-01
Strongly scattering elastic media, such as consolidated granular materials, respond to ultrasonic pulse excitations with a long response signal with peculiar properties. The portion of the signal at late times, termed coda, is due to multiple scattering. It contains information about the elastic properties of the material, and it has been proven to be very sensitive to small variations in the modulus. Here we propose a technique based on a nonlinear analysis of the coda of a signal, which might be applied to quantify the nonlinear elastic response in consolidated granular media exhibiting a hysteretic elastic behavior. The method proposed allows for an intrinsic definition of the reference signal which is normally needed for applying coda-based methods.
Propagation dynamics of finite-energy Airy beams in nonlocal nonlinear media
Wu, Zhen-Kun; Li, Peng; Gu, Yu-Zong
2017-10-01
We investigate periodic inversion and phase transition of normal and displaced finite-energy Airy beams propagating in nonlocal nonlinear media with the split-step Fourier method. Numerical simulation results show that parameters such as the degree of nonlocality and amplitude have profound effects on the intensity distribution of the period of an Airy beam. Nonlocal nonlinear media will reduce into a harmonic potential if the nonlocality is strong enough, which results in the beam fluctuating in an approximately cosine mode. The beam profile changes from an Airy profile to a Gaussian one at a critical point, and during propagation the process repeats to form an unusual oscillation. We also briefly discus the two-dimensional case, being equivalent to a product of two one-dimensional cases.
Molecular Optics Nonlinear Optical Processes in Organic and Polymeric Crystals and Films. Part 2
1991-11-01
susceptibility gamma ijkl(-omega 4; omega 1, omega 2, omega 3 ) demonstrate that the microscopic origin of the nonresonant third order nonlinear optical...interaction calculations of gamma jkl(-omega 4; omega 1, omega 2, omega 3 ) for the archetypal class of quasi-one dimensional conjugated structures...largest of the two dominant, competing virtual excitation processes that determine gamma ijkl(- omega 4; omega 1, omega 2, omega 3 ). It is also found in
Femtojoule-Scale All-Optical Latching and Modulation via Cavity Nonlinear Optics
Kwon, Yeong-Dae; Armen, Michael A.; Mabuchi, Hideo
2013-11-01
We experimentally characterize Hopf bifurcation phenomena at femtojoule energy scales in a multiatom cavity quantum electrodynamical (cavity QED) system and demonstrate how such behaviors can be exploited in the design of all-optical memory and modulation devices. The data are analyzed by using a semiclassical model that explicitly treats heterogeneous coupling of atoms to the cavity mode. Our results highlight the interest of cavity QED systems for ultralow power photonic signal processing as well as for fundamental studies of mesoscopic nonlinear dynamics.
Indian Academy of Sciences (India)
S Venugopal Rao; P T Anusha; L Giribabu; Surya P Tewari
2010-11-01
We present our experimental results on the picosecond nonlinear optical (NLO) studies of symmetrical and unsymmetrical phthalocyanines, examined using the Z-scan technique. Both the open-aperture and closed-aperture Z-scan curves for three samples were recorded and the nonlinear coefficients were extracted from the theoretical fits. The nonlinear absorption/refraction contribution from the solvent was also identified. The observed open aperture behaviour for these molecules is understood in terms of the absorption coefficients of these molecules near 800 nm and the peak intensities used. It is established that these phthalocyanines exhibit large optical nonlinearities and, hence, are suitable for optical limiting applications.
Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals.
Lepeshkin, Nick N; Schweinsberg, Aaron; Piredda, Giovanni; Bennink, Ryan S; Boyd, Robert W
2004-09-17
We describe a new type of artificial nonlinear optical material composed of a one-dimensional metal-dielectric photonic crystal. Because of the resonant nature of multiple Bragg reflections, the transmission within the transmission band can be quite large, even though the transmission through the same total thickness of bulk metal would be very small. This procedure allows light to penetrate into the highly nonlinear metallic layers, leading to a large nonlinear optical response. We present experimental results for a Cu/SiO(2) crystal which displays a strongly enhanced nonlinear optical response (up to 12X) in transmission.
Dipole Solitons in Nonlinear Media with an Exponential-Decay Nonlocal Response
Institute of Scientific and Technical Information of China (English)
YANG Zhen-Jun; MA Xue-Kai; ZHENG Yi-Zhou; GAO Xing-Hui; LU Da-Quan; HU Wei
2011-01-01
By applying the variational approach,the analytical expression of dipole solitons is obtained in nonlinear media with an exponential-decay nonlocal response.The relations of the soliton power versus the propagation constant and the soliton width are given.Some numerical simulations are carried out.The results show that the analytical expression is in excellent agreement with the numerical results for the strongly nonlocal case.
Field computation in non-linear magnetic media using particle swarm optimization
Energy Technology Data Exchange (ETDEWEB)
Adly, A.A. E-mail: amradlya@intouch.com; Abd-El-Hafiz, S.K
2004-05-01
This paper presents an automated particle swarm optimization approach using which field computations may be carried out in devices involving non-linear magnetic media. Among the advantages of the proposed approach are its ability to handle complex geometries and its computational efficiency. The proposed approach has been implemented and computations were carried out for an electromagnet subject to different DC excitation conditions. These computations showed good agreement with the results obtained by the finite-element approach.
Nonlinear optical response in Kronig-Penney type graphene superlattice in terahertz regime
Jiang, Lijuan; Yuan, Rui-Yang; Zhao, Xin; Lv, Jing; Yan, Hui
2015-05-01
The terahertz nonlinear optical response in Kronig-Penney (KP) type graphene superlattice is demonstrated. The single-, triple- and quintuple-frequencies of the fifth-order nonlinear responses are investigated for different frequencies and temperatures with the angle φ along the periodicity of the superlattice toward the external field tuning from 0 to π/2. The results show that the fifth-order nonlinear optical conductance of graphene superlattice is enhanced in the terahertz regime when φ = 0, i.e. an external field is applied along the periodicity of the superlattice. The fifth-order nonlinear optical conductances at φ = 0 for different frequencies and temperatures are calculated. The results show that the nonlinear optical conductance is enhanced in low frequency and low temperature. Our results suggest that KP type graphene superlattices are preferred structures for developing graphene-based nonlinear photonics and optoelectronics devices.
Performance emulation and parameter estimation for nonlinear fibre-optic links
DEFF Research Database (Denmark)
Piels, Molly; Porto da Silva, Edson; Zibar, Darko
2016-01-01
Fibre-optic communication systems, especially when operating in the nonlinear regime, generally do not perform exactly as theory would predict. A number of methods for data-based evaluation of nonlinear fibre-optic link parameters, both for accurate performance emulation and optimization...
Inclusion Tuning of Nonlinear Optical Materials: KTP (Potassium Titanyl Phosphate) Isomorphs
1988-06-01
o OFCE OF NAVAL RESEARCH Contract N00014-87-K-0457 V R&T Code 4134015-01 0) Technical. Report No. 23 "Inclusion Tuning of Nonlinear Optical Materials : KIP...bry block nuum.ber) see attached #11 Inclusion Tuning of Nonlinear Optical Materials : KTP Isomorphs * Q1 UISTRISUTION/AVAII..ASILITY 00 ABSTRACT 21
Eye/Sensor Protection against Laser Irradiation Organic Nonlinear Optical Materials
1989-06-12
Recent developments in organic nonlinear optical materials for application to eye and sensor protection are reviewed. This compendium includes a...noteworthy organic third-order nonlinear optical materials is included as an appendix. Lasers are playing an important and increasing role in modern
Basic Studies of Nonlinear Optical Materials for Eye and Sensor Protection
2004-03-10
1 BASIC STUDIES OF NONLINEAR OPTICAL MATERIALS FOR EYE AND SENSOR PROTECTION I. Abstract: We have studied the spectroscopy, kinetics and...study liquid or solid materials from CW to 100x10-15 seconds. Basic Studies of Nonlinear Optical Materials for Eye and Sensor Protection
Performance emulation and parameter estimation for nonlinear fibre-optic links
DEFF Research Database (Denmark)
Piels, Molly; Porto da Silva, Edson; Zibar, Darko;
2016-01-01
Fibre-optic communication systems, especially when operating in the nonlinear regime, generally do not perform exactly as theory would predict. A number of methods for data-based evaluation of nonlinear fibre-optic link parameters, both for accurate performance emulation and optimization, are rev...